
Mitsunori Ogihara

Fundamentals
of Java
Programming

Fundamentals of Java Programming

Mitsunori Ogihara

Fundamentals of Java
Programming

123

Mitsunori Ogihara
Department of Computer Science
University of Miami
Miami, FL, USA

ISBN 978-3-319-89490-4 ISBN 978-3-319-89491-1 (eBook)
https://doi.org/10.1007/978-3-319-89491-1

Library of Congress Control Number: 2018940440

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true
and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied,
with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-89491-1

To my family

Preface

This book was born from the desire of having an introductory Java programming textbook whose

contents can be covered in one semester. The book was written with two types of audience in mind:

those who intend to major in computer science and those who want to get a glimpse of computer

programming. The book does not cover graphical user interfaces or the materials that are taught in a

data structure course. The book very quickly surveys the Java Collection Framework and the generics

in the penultimate chapter. The book also covers the concepts of online and recursive algorithms in

the last chapter. The instructors who choose to use this textbook are free to skip these chapters if

there is no sufficient time. Except for the code examples that receive parameters from the command

line, the code examples can be compiled and run in a command-line environment as well as in IDEs.

To execute those code examples in an IDE, the user must follow the step of provide args before

execution. The code examples appearing in the book have very few comments, since the actions of

the code are explained in the prose. The code examples with extensive comments are available for the

publisher. There are PDF lecture slides accompanying the book. They are prepared using the Beamer

environment of LATEX. The source codes of the lecture slides may be available through the publisher.

Acknowledgements I would like to take this opportunity to thank those who helped me in

writing this book: Paul Drougas (Springer), Victor Milenkovic (University of Miami), Ted Pawlicki

(University of Rochester), Ken Regan (University at Buffalo), Geoff Sutcliffe (University of Miami),

and Osamu Watanabe (Tokyo Institute of Technology). Huge thanks go to my daughter Ellen, who

painstakingly read through the draft and provided constructive criticisms.

Miami, FL, USA Mitsunori Ogihara

vii

Contents

Part I Programming Basics

1 “Hello, World!” . 3

1.1 The Programming Environment for Java . 3

1.1.1 The Java Virtual Machine (JVM) . 3

1.1.2 Changing Folders in a Command Line Interface . 4

1.1.3 Source Codes, Bytecodes, and Compilation . 6

1.2 The First Program, “Hello, World!” . 7

1.2.1 Methods and Their Declarations . 9

1.2.2 System.out.println and System.out.print 10

1.2.3 Spacing in the Source Code . 11

1.2.4 Commenting . 11

1.2.5 Errors . 13

1.3 Using Multiple Statements . 15

1.3.1 System.out.println and System.out.print (Reprise) 15

1.3.2 Printing Multiple-Line Texts on the Screen . 16

1.3.3 Escaping Characters . 18

1.3.4 Printing Shapes . 20

2 Using Data for Computation . 29

2.1 Data . 29

2.1.1 Data and Their Taxonomy . 29

2.1.2 Number Literals . 30

2.1.3 Variable Declarations . 32

2.1.4 Assigning Values to Variables . 33

2.2 The Primitive Data Types . 35

2.3 Using Variables for Computation . 37

2.3.1 Quarterbacks Program (Reprise) . 37

2.3.2 Number Arithmetics . 39

2.3.3 Computing the Body-Mass Index . 46

2.3.4 Sum of Integers from 1 to 100 à la Gauss . 48

2.3.5 Simplified Expressions . 51

2.4 An Introduction to the String Data Type . 56

2.4.1 The String Data Type . 56

2.4.2 String Concatenation . 59

ix

x Contents

3 Reading Keyboard Input . 69

3.1 Class Scanner . 69

3.1.1 Importing Source Codes . 69

3.1.2 The Instantiation of a Scanner Object . 70

3.2 Reading Data with a Scanner Object . 71

3.3 Reading Input from the Keyboard . 77

4 Decomposing Code into Components . 87

4.1 Procedural Decomposition . 87

4.1.1 Printing Rectangles . 87

4.1.2 Printing Quadrangles . 92

4.1.3 “Old MacDonald Had a Farm” . 95

4.1.4 A General Strategy for Procedural Decomposition . 101

4.2 Using Multiple Program Files . 104

5 Passing Values to and from Methods . 109

5.1 Passing Values to Methods . 109

5.1.1 Methods That Work with Parameters . 109

5.1.2 Method Overloading . 115

5.2 Receiving a Value from a Method . 119

5.3 Class Math . 124

5.3.1 Mathematical Functions in Java . 124

5.3.2 Mortgage Calculation . 131

6 Conditions and Their Use for Controlling the Flow of Programs 143

6.1 Condition and Its Evaluation . 143

6.2 The If Statements . 149

6.2.1 If . 149

6.2.2 Else . 156

6.2.3 If-Else Inside If/Else . 158

6.2.4 Truncation of Conditional Evaluations . 162

Part II Loops

7 For-Loops . 173

7.1 Using For-Loops for Repetition . 173

7.2 Iteration . 180

7.2.1 Simple Iteration . 180

7.2.2 Iteration with an Auxiliary Variable . 186

7.3 Double For-Loops . 187

7.4 Computing the Maximum and Minimum in a Series of Numbers 193

7.5 A Betting Game . 195

7.5.1 For-Loops with Skipped Execution . 195

7.5.2 The Statements continue and break . 199

7.6 Computing the Fibonacci Sequence . 201

8 Formatted Printing Using printf . 211

8.1 General Rules for printf . 211

8.2 Formatted Printing of String Data . 212

8.3 Formatted Printing of Integers . 214

Contents xi

8.4 Formatted Printing of Floating Point Numbers . 216

8.5 Printing the Fibonacci Sequence (Reprise) . 218

9 Classes String and StringBuilder . 225

9.1 Methods for Obtaining Information from String Data . 225

9.2 Methods for Comparing String Data with Another . 228

9.2.1 The Equality Test and the Comparison in Dictionary Order 228

9.2.2 The Prefix and Suffix Tests . 230

9.3 Methods for Searching for a Pattern in a String Data . 231

9.4 Methods for Creating New String Data from Another . 234

9.4.1 String.format . 237

9.5 Class StringBuilder . 237

10 The Switch Statements . 245

10.1 The Syntax of Switch Statements . 245

10.2 Using a char Data in a Switch-Statement . 252

10.3 Using a String Data in a Switch Statement . 257

11 While-Loops and Do-While Loops . 263

11.1 Using While-Loops . 263

11.1.1 The Syntax of While-Loops . 263

11.1.2 Summing Input Numbers Until the Total Reaches a Goal 265

11.1.3 Integer Overflow . 266

11.1.4 Vending Machines . 268

11.1.5 The Collatz Conjecture . 270

11.1.6 Covnerting Decimal Numbers to Binary Numbers . 273

11.1.7 Infinite Loops and Their Termination . 276

11.2 Using Do-While Loops . 276

11.2.1 The Syntax of Do-While Loops . 276

11.2.2 “Waiting for Godot” . 277

11.2.3 Converting Decimal Numbers to Binary Numbers (Reprise) 278

11.3 CTRL-D . 279

11.4 Approximating the Square Root of a Real Number . 283

Part III Arrays and Objects

12 Arrays . 295

12.1 Arrays . 295

12.1.1 The Structure of an Array . 295

12.1.2 Computing the Number of Occurrences . 296

12.1.3 ArrayIndexOutOfBoundsException . 303

12.2 Relative Indexing . 305

12.2.1 The Concept of Relative Indexing . 305

12.2.2 Calculating the BMI for a Range of Weight Values . 306

12.2.3 Counting the Occurrences of Characters . 307

12.3 Arrays of boolean Data . 310

12.4 Using Multiple Arrays . 314

12.5 String Methods That Return an Array . 317

xii Contents

13 The Class Arrays and Resizing Arrays . 325

13.1 The Class Arrays . 325

13.2 Reordering Elements in an Array . 329

13.2.1 Reversing the Order of Elements . 332

13.2.2 Cyclic Shifting . 332

13.3 Modifications of an Array That Require Resizing . 336

13.3.1 Insertion and Deletion . 336

13.3.2 Adjoining Two Arrays . 341

13.4 args . 342

13.5 Searching for an Element in an Array . 343

13.5.1 Sequential Search . 343

13.5.2 Binary Search . 344

13.6 Arrays with Capacity and Size . 345

14 Multidimensional Arrays . 357

14.1 Rectangular Arrays . 357

14.1.1 Defining Multi-Dimensional Arrays . 357

14.1.2 Summing the Elements in Subsequences . 358

14.2 Jagged Arrays . 361

15 Class File . 367

15.1 Class File . 367

15.1.1 The File Path and the Instantiation of a File Object 367

15.1.2 File Methods . 368

15.1.3 Exception Handling . 370

15.1.4 File Listing . 376

15.2 Using Scanner Objects to Read from Files . 378

15.3 Using PrintStream to Write to Files . 384

16 Designing Object Classes . 391

16.1 Packaging a Group of Data as an Object . 391

16.1.1 The Position of a Game Piece . 391

16.1.2 Private Instance Variables and the toString Method 395

16.1.3 Using Constants in an Object Class . 398

16.1.4 Information Hiding . 402

16.2 An Object Class Representing a Bank Account . 408

16.3 Array with Capacity and Size (Reprise) . 415

Part IV Advanced Concepts

17 Interfaces, Inheritance, and Polymorphism . 427

17.1 Interface . 427

17.1.1 The Structure of an Interface . 427

17.1.2 A Simple Pizza Application . 427

17.2 Subclasses and Superclasses . 435

17.2.1 Extending Existing Classes and Interfaces . 435

17.2.2 Writing Extensions . 437

17.3 Polymorphism . 445

Contents xiii

17.4 Boxed Data Types . 446

17.5 Interface Comparable . 447

18 Generic Class Parameters and the Java Collection Framework . 457

18.1 ArrayList . 457

18.1.1 Maintaining a Collection of Merchandise Items . 457

18.1.2 The Class for Merchandise Item . 457

18.1.3 The Comparator Class . 458

18.1.4 The Collection of Merchandise Items That Uses ArrayList 459

18.1.5 The Main Class . 463

18.2 The Dynamic Maintenance of the Largest K Values . 471

18.3 The Java Collection Framework . 473

18.3.1 The Framework . 473

18.3.2 Some Classes from the Framework . 475

18.3.3 A Demonstration . 477

19 Online and Recursive Algorithms . 485

19.1 Online Algorithms . 485

19.1.1 The Definition of Online Algorithms . 485

19.1.2 Computing Recurrences . 486

19.1.3 Computing the Factorial Function . 489

19.2 Recursive Algorithms . 492

19.2.1 Computing the Factorial Function Recursively . 492

19.2.2 The Greatest Common Divisor of Two Integers . 497

19.2.3 The Tower of Hanoi . 500

Index . 507

List of Figures

Fig. 1.1 The program layers, JVM, JRE, and JDK . 4

Fig. 1.2 A screen short of Terminal on a Mac OS X machine . 4

Fig. 1.3 An IDE screen of Eclipse . 5

Fig. 1.4 The compilation and execution of HelloWorld.java 6

Fig. 3.1 The results of five consecutive calls of next . 73

Fig. 3.2 The results of executing a program that uses next and nextLine 77

Fig. 4.1 The method calls in Rectangle01 . 91

Fig. 4.2 The method calls in Rectangle02 . 93

Fig. 4.3 The decomposition of actions in the generation of the quadrant 94

Fig. 4.4 The dependency among methods in OldMacDonaldDecomposed.java . . 101

Fig. 4.5 The dependency among methods in the two source code . 104

Fig. 5.1 The call-by-reference concept . 116

Fig. 6.1 The execution diagram of an if-statement . 150

Fig. 6.2 The execution diagram of Temperature01.java . 152

Fig. 6.3 The combinations of temperature and humidity considered in Temperature03
. 154

Fig. 6.4 The execution diagram of an if-else statement . 156

Fig. 6.5 A hypothetical situation with interwoven conditions . 160

Fig. 7.1 A generic flow chart of for-loops . 176

Fig. 7.2 The code execution diagram of ForExample . 177

Fig. 11.1 A diagram that represents the while-loop . 264

Fig. 12.1 A view of an array . 296

Fig. 13.1 Swapping values between two array elements . 331

Fig. 13.2 Reversing the order of appearance of elements in an array 332

Fig. 13.3 The results obtained by executing cyclic shifts . 333

Fig. 13.4 An algorithm for left cyclic shift . 334

Fig. 13.7 An array with capacity and size . 346

xv

xvi List of Figures

Fig. 13.8 The concept of a array with capacity and size . 346

Fig. 14.1 The structure of a multi-dimensional array . 358

Fig. 15.1 The mechanism for handling run-time errors . 371

Fig. 16.1 An 8 × 8 game board . 392

Fig. 16.3 A black box . 402

Fig. 17.1 Two interfaces and their implementations . 436

Fig. 17.2 A PizzaComplex object . 438

Fig. 18.1 The Java Collection Framework . 474

Fig. 18.2 A LinkedList . 476

Fig. 18.3 A hash table . 477

Fig. 19.1 The value passing that occurs during the computation of the factorial (part 1) . . 495

Fig. 19.2 The value passing that occurs during the computation of the factorial (part 2) . . 495

Fig. 19.3 The value passing that occurs during the computation of the factorial (part 3) . . 495

Fig. 19.4 The value passing that occurs during the computation of the factorial (part 4) . . 495

Fig. 19.5 The value passing that occurs during the computation of the factorial (part 5) . . 495

Fig. 19.6 The value passing that occurs during the computation of the factorial (part 6) . . 496

Fig. 19.7 The value passing that occurs during the computation of the factorial (part 7) . . 496

Fig. 19.8 The value passing that occurs during the computation of the factorial (part 8) . . 496

Fig. 19.9 The value passing that occurs during the computation of the factorial (part 9) . . 496

Fig. 19.10 The value passing that occurs during the computation of the factorial (part 10) . 496

Fig. 19.11 The value passing that occurs during the computation of the factorial (part 11) . 497

Fig. 19.12 An example of the tower of Hanoi . 500

Fig. 19.13 The solution to a small Tower of Hanoi problem . 502

List of Tables

Table 1.1 A short list of commands . 5

Table 1.2 The list of meaningful symbols in Java . 21

Table 2.1 The primitive data type . 35

Table 2.2 The list of reserved words in Java . 39

Table 2.3 The selection of number types . 45

Table 3.1 Selected methods of Scanner . 75

Table 5.1 One-parameter functions in Math . 125

Table 5.2 Two-parameter functions in Math . 125

Table 9.1 A list of String methods . 226

Table 10.1 The output generated by the three examples of switch 246

Table 15.1 A list of File methods . 369

xvii

Part I

Programming Basics

1“Hello, World!”

1.1 The Programming Environment for Java

1.1.1 The Java Virtual Machine (JVM)

Java is one of the most popular programming languages. It is a descendant of the programming

language C and is much related to C++. Java, like C++, embodies the concept of object-oriented

programming, which allows a programmer to define a type of data with its permissible set of

operations.

To execute a Java program on a machine, the machine needs an installation of the Java Running

Environment (JRE). A major part of JRE is the Java Virtual Machine (JVM). JVM creates an

environment where Java programs interact with the hardware.

A programmer creates a Java program by writing its source code. A source code is a text file that

describes the program according to the syntax of Java and has the file name extension .java. An

executable Java program generated from a source code is called Java bytecode, and has the file

name extension .class. To generate a Java program from a source code, the machine needs an

extension of JRE called the Java Development Kit (JDK) (see Fig. 1.1).

The Java language that comes with JDK consists of two parts. The first part, called java.lang,

is an essential component of Java. The second part is a collection of source codes that can be selected

and added to the Java program being written.

To write and edit a Java source code, a text editor is needed. Some editors understand the syntax of

Java and offer a variety of assistance. Popular text editors, which can be used for editing general text,

include: vim, emacs, and sublime.

The process of generating Java bytecode from a Java source code is called compilation. A primitive

way to compile a Java source code is to execute a compilation command in a command line interface.

Modern computers usually come with command line interfaces. For example, Mac OSX has Terminal

and Windows has cmd. There are other downloadable command line interfaces. A command line

interface is a program that interacts with the user on a text screen (see Fig. 1.2). The user types,

according to the syntax of the command line interface, a character sequence representing an action

he/she wishes to take. This sequence is called a command or a command line. On the interface screen,

the characters that the user types appear (or “echo”) as they are being typed. After completing the

command, the user hits the return key. The command line interface then attempts to parse the entered

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_1

3© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_1

4 1 “Hello, World!”

Fig. 1.1 The program
layers, JVM, JRE, and JDK

JDK

JRE

Hardware

Hardware

Programs

Operating System

JVM

Source Codes &

Byte Codes

Other

Applications

Editing Tools,

IDE

Hardware

Program

Layer

Operating

System

Layer

Application

Program

Layer

Fig. 1.2 A screen shot of
Terminal on a Mac OS X
machine. The prompt is the
percent sign followed by
one white space

command according to its syntax. If the command is syntactically correct, the interface executes the

action represented by the command. When the action occurs, some characters may appear on the

screen after the command line. If there are many such characters, the text screen scrolls down to show

however many characters will fit on the screen, starting with the most recent. If the command is not

syntactically correct, the command line interface prints an error message. To inform the user that it is

ready to accept a new command, the command line interface prints a special sequence of characters,

called prompt, e.g., the “percent” symbol % followed by one white space, or the “greater than” symbol

>. Table 1.1 is a select list of commands.

An interactive development environment (IDE) is a program that combines a program editor and a

command line interface with many additional features that make it easy to write (in particular, large)

computer programs (see Fig. 1.3). The most famous IDEs for Java are Eclipse and Netbeans.

1.1.2 Changing Folders in a Command Line Interface

A command line interface (such as the program Finder for Mac and the program Folder for Windows)

works in one specific file folder. The specific folder is called the working folder (or the working

directory). In Finder and Folder, switching to a different folder is done by clicking icons. In a

1.1 The Programming Environment for Java 5

Table 1.1 A short list of commands available in the Terminal programs for Mac OSX and Linux, as well as their
counterparts in the Windows cmd

Terminal cmd Function

(Mac OSX/Linux) (Windows)

cd FOLDER cd FOLDER Change folder to FOLDER

cd cd Change to the home folder

cd .. cd .. Change to the parent folder

pwd chdir Print the working folder

ls dir Listing of all files in the folder

ls FILE ls FILE Listing of FILE in the folder

rm FILE del FILE Remove the file FILE

rmdir FOLDER del FOLDER Remove the folder FOLDER (must be empty)

mv FILE1 FILE2 move FILE1 FILE2 Rename FILE1 to FILE2

cp FILE1 FILE2 copy FILE1 FILE2 Copy FILE1 to FILE2

mkdir FOLDER mkdir FOLDER Create the folder FOLDER

cat FILE type FILE Show the contents of FILE

more FILE more FILE Show the contents of FILE in chunks

Fig. 1.3 An IDE screen of Eclipse

command line interface, this switch is made by typing a special command. The name of the command

is cd (which stands for “change directory”). The syntax of cd is:

cd FOLDER_PATH

6 1 “Hello, World!”

Here, FOLDER_PATH specifies how to get to the target folder from the working folder. In Chap. 15,

we study the general concept of file paths.

The folder moves are composed of two basic moves: moving to one of the folders that belong to

the present folder or moving to the parent (that is, the folder that the working folder belongs to as a

subfolder). To move to a child folder, the path that is specified is this child folder’s name. To move to

the parent, the path that is specified is .. (i.e., two periods).

It is possible to combine successive folder moves into one path. For a non-Windows system like

Mac OSX and Linux, this is done by inserting / between the individual moves. For Windows, \ is the

folder separator. For example, in Mac OSX,

cd ../foo/bar

changes the working folder to the parent, to a child of the parent named foo, and then to a child of

the child named bar. bar is thus a grandchild folder of the parent of the present working folder.

To check what the working folder directly is, the command pwd can be used for a non-Windows

system, and chdir for Windows. These commands print the path to the working folder, starting from

the “home” folder on the screen. It is also possible to take the inventory of the files in the working

folder using the command ls for a non-Windows system, and dir for Windows. This command

produces a list of all the files in the working folder.

1.1.3 Source Codes, Bytecodes, and Compilation

As mentioned earlier, all Java source files must have the file name extension .java. We call them

Java files. To compile the source code Foo.java in a command line interface, one must type the

command:

javac Foo.java

If the source code compiles without error, a file named Foo.class is created. This is the bytecode

of the program. We call it a class file. If the class file already exists, then the file is overwritten

upon successful compilation. In the case of IDE, .class files are generated only during the

execution process. If Foo.java has compiled successfully, the program can be executed by using

the command:

java Foo

after the prompt.

Here is an example of a user interaction with a command line interface, where the user tries to

compile and then execute a program whose source code is HelloWorld.java (Fig. 1.4). The

prompt of the command line interface is the percent symbol followed by one white space. The first

line is the compilation command, the second line is the execution command, the third line is the result

of executing the code, and the fourth line is the command prompt after the execution.

Fig. 1.4 The compilation
and execution of
HelloWorld.java

1.2 The First Program, “Hello, World!” 7

1.2 The First Program, “Hello, World!”

Let us start writing Java programs. Our first program is the popular Hello, World! program.

1 public class HelloWorld

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("Hello , World!");

6 }

7 }

Listing 1.1 HelloWorld.java

Executing this program produces a single line of output:

Hello, World!

Using this code, we shall learn some important ingredients of Java programs.

The three words in the first line:

public class HelloWorld

state that:

(a) this is a program unit of type class,

(b) the unit is named HelloWorld, and

(c) the unit is accessible from all other Java program units.

There are four kinds of program units: class, interface abstract class, and enum. This

book covers class and interface only.

The keyword public specifies that the unit is accessible from other program units. A keyword

that specifies the accessibility of program units and their components is called a visibility attribute.

There are three explicit visibility types: public, private, and protected. The default visibility

type, when there is no explicit visibility attribute, is the package visibility.

The order of appearance of the three components,

VISIBILITY_TYPE UNIT_TYPE NAME

applies to all Java source code files.

Every source file in Java has the file extension .java. In a single .java file, multiple classes

can be defined, simply by concatenating their source codes. In such a case, at most one class may be

public. In addition, if a source file contains a unit with the public visibility, the name of the unit

must match the file name. For example,

1 class Foo

2 {

3 ...

4 }

5 class Bar

6 {

7 ...

8 }

is okay, but

8 1 “Hello, World!”

1 public class Foo

2 {

3 ...

4 }

5 public class Bar

6 {

7 ...

8 }

is not.

1 public class Foo

2 {

3 ...

4 }

5 class Bar

6 {

7 ...

8 }

is acceptable as well, but the source file must be Foo.java.

Let us do an experiment. If the class name is changed from HelloWorld to Hello while

preserving the file name HelloWorld.java:

1 public class Hello

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("Hello , World!");

6 }

7 }

attempting to compile the source code (that is, the command javac HelloWorld.java)

produces the following error message:

1 HelloWorld.java :1: error: class Hello is public , should be

2 declared in a file named Hello.java

3 public class Hello

4 {

5 ˆ

6 1 error

The first two lines of the error message state the nature of the error, which is that, to define a class by

the name of Hello, the file name must be Hello.java. The next three lines of the error message

specify the location of the error using the “caret” symbol ^. According to the marking, the error is

at the class declaration. The last line of the error message is the total number of errors found in the

source code.

If the source file name HelloWorld.java is retained but the public attribute is removed, like

this one:

1.2 The First Program, “Hello, World!” 9

1 class Hello

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("Hello , World!");

6 }

7 }

the code compiles, but the .class generated is Hello.class, not HelloWorld.class.

1.2.1 Methods and Their Declarations

In Java, curly brackets { } are used to enclose units, components, and code blocks. For example, the

declaration of each program unit (such as class and interface) should be followed by a matching pair

of curly bracket. Two matching pairs appear either one after the other or one inside the other; that is,

either { ... { ... } ... } or { ... } ... { ... }

For a source file to compile successfully, all of its curly brackets must have unique matching partners.

Thus, the depth of a text in a source code can be defined as the number of matching pairs enclosing

it. Multiple methods may appear in one source code.

In the source code of HelloWorld.java, the opening line public class HelloWorld
is at depth 0, public static void main(String[] args) is at depth 1, and

System.out.println(...) is at depth 2. The component appearing between lines 3 and 6

is called a method.

A method has a name and defines a set of actions needs to be performed. Some methods process

information given to the in the form of parameters. Some methods report the results through the use

of return values. We cover this topic in Chap. 5.

A special kind of method is the method main. Each method main takes the form of:

public static void main(String[] args)

as its declaration. The term args appearing in the parentheses represents the sequence of characters

that the user types in the command line after the name of the program. We study args in Sect. 13.4.

Only Java classes with a method main can be executed.

The general method declaration consists of the following, where the parts in boxes are optional.

VISIBILITY static RETURN_TYPE NAME (PARAMETERS) THROWS

Optional Required for Required Required Required Optional

Static Methods

In the case of the method main, the attribute public states that the method is accessible from

outside, the attribute static states that the method is part of some executable program, the return

type void states that the method has no return value, and String[] args specifies that the

parameter is args and its data type is String[]. We study the meaning of square brackets in

Chap. 12. The last component is about handling errors that occur during the execution of the program.

We study this in Chap. 15.

10 1 “Hello, World!”

1.2.2 System.out.println and System.out.print

The method main has only one action:

System.out.println("Hello, World!");

This produces the output of Hello, World!. A sequence of characters that defines one unit of

action is called a statement.

Generally, a statement ends with a semicolon. The role of a statement is to perform a certain task.

A method can contain any number of statements, including none. The statements are executed in the

order they appear.

The period plays a special role in Java; it implies possession. System.out.println refers to a

method (by the name of println) associated with System.out, which is part of a group of virtual

hardware components named System. The siblings of System.out include: System.err, for

printing error messages, and System.in, for keyboard input.

The method println converts the data appearing inside its parentheses to a series of characters,

and then prints the series on the screen with the newline character (the equivalent of the return key) at

the end. The sequence "Hello, World!" is the thirteen character sequence:

’H’ ’e’ ’l’ ’l’ ’o’ ’,’ ’ ’ ’W’ ’o’ ’r’ ’l’ ’d’ ’!’

The double quotation mark " that surrounds the thirteen-character sequence is for marking the start

and the end of the sequence. A character sequence encased in a pair of double quotation marks is

called a String literal.

The method System.out.println automatically prints the newline character at the

end. Sometimes the attachment of the newline is not desirable, e.g., when a single line of

output is built by combining multiple outputs. The method System.out.print, a sibling of

System.out.println, is helpful in such an occasion. The method System.out.print does

the same as System.out.println, except that it does not append the newline character at the

end. Furthermore, System.out.println() has the effect of typing the return key (that is, going

to the next line without printing any other character), while System.out.print() is syntactically

incorrect because System.out.print() means “print nothing”.

If the method call is changed from System.out.println to System.out.print, how will

the output change? Here is the new code. The program has a new name HelloWorld01.

1 public class HelloWorld01

2 {

3 public static void main(String [] args)

4 {

5 System.out.print("Hello , World!");

6 }

7 }

Listing 1.2 A version of HelloWorld that uses System.out.print in place of System.out.println

The execution produces the following:

1 Hello, World!%

Listing 1.3 The result of executing HelloWorld.java

Note that the prompt % appears at the end line because of the use of System.out.print.

1.2 The First Program, “Hello, World!” 11

1.2.3 Spacing in the Source Code

In Java source code, the white space, the tab-stop, and the newline all serve as spacing characters. The

following spacing rules must be followed in Java:

• There should be some spacing between two consecutive occurrences of any of the following: type,

attribute, and name.

• Some mathematical and logical symbols run together to mean special operations. In this situation,

there should not be spacing between symbols.

• There should not be any newlines appearing inside a String literal (a character sequence within

a pair of double quotation marks).

Proper spacing makes Java source codes easy to read. For example, it is possible to write:

1 System . out . println ("Hello , World!"

2)

3 ;

instead of the plain

System.out.println("Hello , World!");

Although the Java compiler finds no problem in understanding this line of code, a human may find it

to be a bit difficult to parse.

It is advisable to limit the number of characters per line and work within that limit, breaking up long

lines into multiple smaller ones. The spacing, indentation, and the line width are up to the programmer.

Furthermore, indenting from the left end proportionally to the depth of code is good practice (recall

the discussion in Sect. 1.2.1). In other words, using some fixed quantity M , the code at depth D

receives an indentation of M ·D white spaces. The code in this book utilizes this scheme with M = 2.1

Most code examples that appear in this book present each curly bracket as a stand-alone in one line.

1.2.4 Commenting

It is possible to insert texts that have no relevance to how the code runs. Such texts are called

comments. Comments are free-form texts. Java compilers ignore comments when producing class

files and so they exist only in the source file. A programmer can use comments to make notes to

him or herself. For example, comments can be about the expected behavior of the program and about

the underlying algorithms. To save space, the code examples presented in this book use comments

sparingly.

Java has three kinds of comment formats.

The first kind starts with two forward slashes // appearing outside String literals. If two side-by-

side forward slashes appear outside multiple-line comments (see below) and outside String literals,

the two characters and all the characters appearing after them are treated as comments.

1Some people use M = 4 or M = 8. The latter is equivalent to the tab-stop; i.e., a tab-stop with a depth of 1.

12 1 “Hello, World!”

Because a programmer tends to limit the number of characters per line in the source code,

the comments that start with two forward slashes are naturally suitable for short comments. For

example, in

1 System.out.println("Hello!"); // first line

2 System.out.println("How are you!"); // second line

// first line and // second line are comments.

To place longer comments, multiple consecutive lines starting with two forward slashes after some

indentation can be used, e.g.,

1 // //

2 // This program receives two numbers from

3 // the user and prints the result of performing

4 // addition , subtraction , multiplication , and

5 // subtraction on the two.

6 // //

are long comment lines.

There is a special way of specifying multiple-line comments. If a line starts with /* after an

indentation, then all the characters starting from the /* and ending with the next */ are comments.

Using this option, a comment can be stated as:

1 /*

2 * This program receives two numbers from

3 * the user and prints the result of performing

4 * addition , subtraction , multiplication , and

5 * subtraction on the two.

6 */

The * appearing in the middle four lines are extraneous, but programmers tend to put that character

to make the vertical array of * look like the left border of the comments.

Be mindful of the following:

• /* appearing inside a matching pair of double quotation marks behaves as part of the String
literal. The same holds for */ and //.

• All characters appearing between /* and the matching */ are comments. Therefore, /* appearing

in a matching pair of /* and */ is part of the comment represented by the pair.

This means that the code

1 public class Foo

2 {

3 public static void main(String [] args)

4 {

5 /* here is a comment

6 /* one more comment? */

7 */

8 System.out.println("/*//");

9 }

10 }

has no matching /* for the */ in Line 7.

1.2 The First Program, “Hello, World!” 13

The last kind of comment is the Javadoc. The Javadoc is a variant of the aforementioned multiple-

line comment and uses a pair of /** and */ in place of /* and */. Javadocs are for publicizing

information about methods and classes and are written using a special syntax. IDEs such as Eclipse

are capable of presenting information available through Javadocs.

The following code shows some examples of commenting.

1 /*

2 * Class for showing comment examples

3 * Written by Mitsunori Ogihara

4 */

5 public class Comments

6 {

7 /**

8 * main method

9 * @param args the arguments

10 */

11 public static void main(String [] args)

12 {

13 // There are two lines in the program

14 System.out.println("A code needs comments!");

15 }

16 }

Listing 1.4 Examples of comments. Lines 1–4 form a multiple-line comment. Lines 7–10 form a Javadoc comment.
Line 13 is a single-line comment

1.2.5 Errors

A syntax error is a part of source code that fails to conform to the Java syntax. If a source code

contains syntax errors, the Java compiler, instead of producing the bytecode, produces an error

message stating that there are syntax errors. If there is a bytecode generated from the prior successful

compilation, that code remains the same without being updated.

The syntax error that a compiler produces is a bit cryptic and takes some experience to comprehend.

Mainly because the compiler is not aware of the true intension of the programmer who wrote the

erroneous code, the stated number of syntax errors does not necessarily agree with the actual number

of syntax errors.

Consider the following code, which is intended to execute three println statements successively.

1 // ---- This is the class name

2 public class BuggyHelloWorld

3 /----

4 // ---- Main method of the code

5 // ----

6 public static void main(String [] args)

7 {

8 System.out.pritnln("Hello , World!);

9 System.out.printin(Hello , Class!");

10 System.out.printin("Hello , its’ me!"):

11 }

12 }

13 }

Listing 1.5 A buggy version of the HelloWorld program. The intended class name is BuggyHelloWorld

14 1 “Hello, World!”

There are four syntax errors in the code:

1. the forward slash in line 3 should be a double forward slash,

2. the String literal in line 7 does not have a closing double quotation mark,

3. the colon at the end of line 7 should be a semicolon, and

4. There should be one more “}” at the end.

At the compilation step, we encounter the following error messages:

1 BuggyHelloWorld.java:2: error: ’{’ expected
2 public class BuggyHelloWorld
3 ^
4 BuggyHelloWorld.java:8: error: unclosed string literal
5 System.out.pritnln("Hello, World!);
6 ^
7 BuggyHelloWorld.java:8: error: ’;’ expected
8 System.out.pritnln("Hello, World!);
9 ^

10 BuggyHelloWorld.java:9: error: illegal start of expression
11 System.out.printin(Hello, Class!");
12 ^
13 BuggyHelloWorld.java:9: error: ’;’ expected
14 System.out.printin(Hello, Class!");
15 ^
16 BuggyHelloWorld.java:9: error: ’)’ expected
17 System.out.printin(Hello, Class!");
18 ^
19 BuggyHelloWorld.java:9: error: unclosed string literal
20 System.out.printin(Hello, Class!");
21 ^
22 BuggyHelloWorld.java:10: error: ’;’ expected
23 System.out.printin("Hello, its’ me!"):
24 ^
25 BuggyHelloWorld.java:10: error: ’;’ expected
26 System.out.printin("Hello, its’ me!"):
27 ^
28 BuggyHelloWorld.java:13: error: class, interface, or enum expected
29 }
30 ^
31 10 errors

Each error message consists of the source file name, the line number of the error, the nature of the

error, and the actual location of the error (indicated by the caret symbol). In the case of an IDE, instead

of presenting the errors in its command line interface screen, these errors are highlighted in the source

code editor screen.

As can be seen, the number of error messages is greater than the actual number of errors. Although

the number of error messages may exceed the number of true errors, it is always the case that the very

first error message corresponds to the very first syntax error. In the above example, “illegal start of

type” pointing to /--- is a true syntax error. Fixing the very first syntax error in the source code first

is a good strategy.

There are two other types of errors: run-time errors and logic errors. Runtime errors are those

that occur during the execution of code, interrupting the execution. They often result in a premature

termination of the program. Logic errors do not necessarily result in run-time errors, but occur due to

misconception or flaws in the logic of the programmer.

1.3 Using Multiple Statements 15

1.3 Using Multiple Statements

1.3.1 System.out.println and System.out.print (Reprise)

As mentioned earlier, a method can contain multiple statements. If multiple statements appear in a

method, they act in the order of appearance. Multiple statements can be used to write a program that

executes a complex task.

Consider the following program that prints the “ABC Song”:

1 public class MultiLines

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("A B C D E F G");

6 System.out.println("H I J K L M N O P");

7 System.out.println("Q R S and T U V");

8 System.out.println("W X Y and Z");

9 System.out.println("Now I know my A B C");

10 System.out.println("Won’t you sing along with me");

11 }

12 }

Listing 1.6 A source code with multiple println statements

The program executes the six System.out.println statements from top to bottom, and

produces the following six-line output.

1 A B C D E F G
2 H I J K L M N O P
3 Q R S and T U V
4 W X Y and Z
5 Now I know my A B C
6 Won’t you sing along with me

Recall that System.out.print is the version of System.out.println without the

newline at the end.

The next code is a variant of the previous code. We have changed the first, third, and fifth

System.out.println statements to System.out.print statements.

1 public class MultiLines01

2 {

3 public static void main(String [] args)

4 {

5 System.out.print("A B C D E F G");

6 System.out.println("H I J K L M N O P");

7 System.out.print("Q R S and T U V");

8 System.out.println("W X Y and Z");

9 System.out.print("Now I know my A B C");

10 System.out.println("Won’t you sing along with me");

11 }

12 }

Listing 1.7 A source code with multiple print and println statements

16 1 “Hello, World!”

The result of executing the code is as follows:

1 A B C D E F GH I J K L M N O P
2 Q R S and T U VW X Y and Z
3 Now I know my A B CWon’t you sing along with me

The use of System.out.print at three places has reduced the number of output lines from six to

three. In each of the three lines, two outputs appear side-by-side with no gaps in between. Thus, to

make the connections appear correct, some characters are needed in between. The next code example

fixes this spacing issue by appending the command and the space (i.e., ", ") to the first, third, and

fifth sequences.

1 public class MultiLines02

2 {

3 public static void main(String [] args)

4 {

5 System.out.print("A B C D E F G, ");

6 System.out.println("H I J K L M N O P");

7 System.out.print("Q R S and T U V, ");

8 System.out.println("W X Y and Z");

9 System.out.print("Now I know my A B C, ");

10 System.out.println("Won’t you sing along with me");

11 }

12 }

Listing 1.8 A source code with multiple print and println statements with some punctuation

The result of executing the code is as follows:

1 A B C D E F G, H I J K L M N O P
2 Q R S and T U V, W X Y and Z
3 Now I know my A B C, Won’t you sing along with me

1.3.2 Printing Multiple-Line Texts on the Screen

In a manner similar to the code for the ABC song, we can write a program that produces some

selected texts on the screen, for example, the poem “Autumn” by an American poet Henry Wadsworth

Longfellow (February 27, 1807 to March 24, 1882).

Thou comest, Autumn, heralded by the rain

With banners, by great gales incessant fanne

Brighter than brightest silks of Samarcand,

And stately oxen harnessed to thy wain!

Thou standest, like imperial Charlemagne,

Upon thy bridge of gold; thy royal hand

Outstretched with benedictions o’er the land,

Blessing the farms through all thy vast domain!

Thy shield is the red harvest moon, suspended

So ‘long’ beneath the heaven’s o’er-hanging eaves;

Thy steps are by the farmer’s prayers attended;

Like flames upon an altar shine the sheaves;

And, following thee, in thy ovation splendid,

Thine almoner, the wind, scatters the golden leaves!

The code Autumn.java that appears next produces this poem on the screen by combining

System.out.print and System.out.println statements, where each line of the poem is

split into two statements.

1.3 Using Multiple Statements 17

1 public class Autumn

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("Autumn , by Longfellow");

6 System.out.println ();

7 System.out.print("Thou comest , Autumn , ");

8 System.out.println("heralded by the rain");

9 System.out.print("With banners , ");

10 System.out.println("by great gales incessant fanne");

11 System.out.print("Brighter than brightest ");

12 System.out.println("silks of Samarcand ,");

13 System.out.print("And stately oxen ");

14 System.out.println("harnessed to thy wain!");

15 System.out.print("Thou standest , ");

16 System.out.println("like imperial Charlemagne ,");

17 System.out.print("Upon thy bridge of gold; ");

18 System.out.println("thy royal hand");

19 System.out.print("Outstretched with benedictions ");

20 System.out.println("o’er the land ,");

21 System.out.print("Blessing the farms through ");

22 System.out.println("all thy vast domain!");

23 System.out.print("Thy shield is the red harvest moon , ");

24 System.out.println("suspended");

25 System.out.print("So long beneath the heaven ’s ");

26 System.out.println("o’er-hanging eaves;");

27 System.out.print("Thy steps are by the farmer ’s ");

28 System.out.println("prayers attended;");

29 System.out.print("Like flames upon an altar ");

30 System.out.println("shine the sheaves;");

31 System.out.print("And , following thee , ");

32 System.out.println("in thy ovation splendid ,");

33 System.out.print("Thine almoner , the wind , ");

34 System.out.println("scatters the golden leaves!");

35 }

36 }

Listing 1.9 A source code for Autumn.java

The program produces the following output:

1
2 Thou comest, Autumn, heralded by the rain
3 With banners, by great gales incessant fanne
4 Brighter than brightest silks of Samarcand,
5 And stately oxen harnessed to thy wain!
6 Thou standest, like imperial Charlemagne,
7 Upon thy bridge of gold; thy royal hand
8 Outstretched with benedictions o’er the land,
9 Blessing the farms through all thy vast domain!

10 Thy shield is the red harvest moon, suspended
11 So long beneath the heaven’s o’er-hanging eaves;
12 Thy steps are by the farmer’s prayers attended;
13 Like flames upon an altar shine the sheaves;
14 And, following thee, in thy ovation splendid,
15 Thine almoner, the wind, scatters the golden leaves!

18 1 “Hello, World!”

1.3.3 Escaping Characters

Suppose we wish to print the following character sequence:

abc"def

To print a character sequence directly with System.out.print and System.out.println,

we attach the double quotation mark before and after the sequence. What if the sequence were

abc"def and we wrote out the statement as follows?

System.out.println("abc"def");

This would produce a compilation error.

The next code is one that has triple double quotation marks.

1 public class TripleQuote
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("abc"def");
6 }
7 }

Listing 1.10 A code that attempts to use a quotation mark inside a character sequence

The compiler produces the following error messages:

1 TripleQuote.java:3: error: ’)’ expected
2 System.out.println("abc"def");
3 ^
4 TripleQuote.java:3: error: unclosed string literal
5 System.out.println("abc"def");
6 ^
7 TripleQuote.java:3: error: ’;’ expected
8 System.out.println("abc"def");
9 ^

10 TripleQuote.java:5: error: reached end of file while parsing
11 }
12 ^
13 4 errors

What happened during the compilation attempt? The Java compiler tried to pair the first double

quotation mark with another. It chose, however, to pair the second quotation mark with the first.

The compiler then tried to make sense of the remainder def", but it could not.

To correct this problem, we need to tell the compiler that the middle double quotation mark is not

the end marker. Attaching a backslash \ before the quotation mark accomplishes this.

"abc\"def"

With this modification, the code looks like:

1 public class TripleQuoteCorrect
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("abc\"def");
6 }
7 }

Listing 1.11 A code that prints a quotation mark inside a character sequence

1.3 Using Multiple Statements 19

and the code generates the output as intended:

abc "def

We call the action of attaching the backslash to relieve a symbol of its regular duties escaping.

With escaping, we can insert a newline character using the combination \n. To include a tab-stop

character, we can use \t instead of using of the actual tab-stop. The benefit of using the \t is that the

character is visible; if we use the tab-stop character as it is, it is difficult to tell later whether a gap we

see is indeed a tab-stop or just a series of the white space.

Finally, to escape the backslash character, we use the double backslash \\.

Assuming that the tab-stop positions of a terminal program are at every eighth position starting

from the left end, the statement:

System.out.println("abcdefgh\n\"\\i\tj\nk");

produces the following output:

1 abcdefgh
2 "\i j
3 k

We can use escaping to print texts with quotation marks and backward slashes. Listing 1.12 is a

program that prints a quotation from Mark Twain’s Adventures of Huckleberry Finn. In one line of

the quote, the addition of System.out.println and the indentation makes the line too long to

fit in the width of 72 characters. To solve this issue, we split the line into two: the first half with

System.out.print and the second half with System.out.println (Lines 17 and 18).

1 public class HuckleberryFinn

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("\\ Quoted from Huckleberry Finn\\");

6 System.out.println("I broke in and says:");

7 System.out.println("\"They’re in an awful peck of trouble , and\"");

8 System.out.println("\"Who is?\"");

9 System.out.println("\"Why , pap and mam and sis and Miss Hooker;");

10 System.out.println("\tand if you’d take your ferryboat and go up

there \"");

11 System.out.println("\"Up where? Where are they ?\"");

12 System.out.println("\"On the wreck .\"");

13 System.out.println("\"What wreck ?\"");

14 System.out.println("\"Why , there ain’t but one .\"");

15 System.out.println("\"What , you don’t mean the Walter Scott ?\"");

16 System.out.println("\"Yes .\"");

17 System.out.print("\"Good land! what are they doin’ there , ");

18 System.out.println("for gracious sakes ?\"");

19 System.out.println("\"Well , they didn’t go there a-purpose .\"");

20 }

21 }

Listing 1.12 A program that prints a quotation from Mark Twain’s Adventures of Huckleberry Finn

Executing the code produces the following output.

20 1 “Hello, World!”

1 \Quoted from Huckleberry Finn\
2 I broke in and says:
3 "They’re in an awful peck of trouble, and"
4 "Who is?"
5 "Why, pap and mam and sis and Miss Hooker;
6 and if you’d take your ferryboat and go up there"
7 "Up where? Where are they?"
8 "On the wreck."
9 "What wreck?"

10 "Why, there ain’t but one."
11 "What, you don’t mean the Walter Scott?"
12 "Yes."
13 "Good land! what are they doin’ there, for gracious sakes?"
14 "Well, they didn’t go there a-purpose."

Using \n as the newline, we can print multiple short lines into single statements, as shown in

List 1.13. Note that most of the lines contain \n in the character sequence that needs to be printed.

1 public class HuckleberryFinn01

2 {

3 public static void main(String [] args)

4 {

5 System.out.print("\\ Quoted from Huckleberry Finn \\\n");

6 System.out.print("I broke in and says:\n\"They’re in");

7 System.out.print(" an awful peck of trouble , and \"\n");

8 System.out.print("\"Who is?\"\n\"Why , pap and mam and ");

9 System.out.print("sis and Miss Hooker ;\n\tand if you’d ");

10 System.out.print("take your ferryboat and go up there \"");

11 System.out.print("\n\"Up where? Where are they ?\"\n");

12 System.out.print("\"On the wreck .\"\n\"What wreck ?\"\n");

13 System.out.print("\"Why , there ain’t but one .\"\n");

14 System.out.print("\"What , you don’t mean the Walter ");

15 System.out.print("Scott ?\"\n\"Yes .\"\n\"Good land! ");

16 System.out.print("what are they doin’ there , for ");

17 System.out.print("gracious sakes ?\"\n\"Well , they ");

18 System.out.print("didn’t go there a-purpose .\"\n");

19 }

20 }

Listing 1.13 A program that uses squeezed print statements to produce the same quotation from Mark Twain’s
Adventures of Huckleberry Finn as before

The execution produces exactly the same result as before.

Java uses many symbol sequences, including escaping. Table 1.2 summarizes all such symbol

sequences.

1.3.4 Printing Shapes

Previously, we used multiple System.out.println statements to produce multiple-line texts on

the terminal screen. Expanding on the idea, now we write Java programs that print shapes on the

terminal screen.

1.3 Using Multiple Statements 21

Table 1.2 The list of
meaningful symbols in
Java

[] Arrays () Parameters

{} Code block <> Type parameter

. Class membership = Assignment

; Statement separator , Parameter separator

? If-then-else value selection : Case presentation

+ Addition/concatenation - Subtraction, negative sign

* Multiplication / Quotient

% Remainder, format type parameter

++ Increment - Decrement

+= Direct addition -= Direct subtraction

*= Direct multiplication /= Direct quotient

%= Direct remainder

== Equality != Inequality

> Greater than < Smaller than

>= Greater than or equal to >= Smaller than or equal to

&& Logical AND || Logical OR

! Negation

« Signed left shift » Signed right shift

«< Unsigned left shift »> Unsigned right shift

& Bit-wise AND | Bit-wise OR

^ Bit-wise XOR

&= Direct bit-wise AND |= Direct bit-wise OR

^= Direct bit-wise XOR

@ Javadoc keyword // Line comment

/* Multiple-line comment start /** Javadoc start

*/ Multiple-line comment/Java end

\ Escape \\ Backslash character

\n The newline character \t The tab-stop character

\’ Single quote in a char literal %% the % Character in format strings

%n The newline character in format strings

Suppose we want to print the figure of a right-angled triangle like the one appears next:

1 /|
2 / |
3 / |
4 / |
5 / |
6 / |
7 /______|

In the drawing, we use the forward slash / for the left side of the triangle, the vertical | for the right

side of the triangle, and the underscore _ for the bottom side.

22 1 “Hello, World!”

The following code will do the job:

1 //-- print a triangle

2 public class Triangle

3 {

4 public static void main(String [] args)

5 {

6 System.out.println(" /|");

7 System.out.println(" / |");

8 System.out.println(" / |");

9 System.out.println(" / |");

10 System.out.println(" / |");

11 System.out.println(" / |");

12 System.out.println("/______|");

13 }

14 }

Listing 1.14 The code for producing a right-angled triangle

How about an isosceles triangle, like this one?

1 /\
2 / \
3 / \
4 / \
5 / \
6 / \
7 /____________\

Using the \ for the right edge, we come up with the following code:

1 //-- print an isosceles

2 public class Isosceles

3 {

4 //-- main method

5 public static void main(String [] args)

6 {

7 System.out.println(" /\\"); // line 1

8 System.out.println(" / \\"); // line 2

9 System.out.println(" / \\"); // line 3

10 System.out.println(" / \\"); // line 4

11 System.out.println(" / \\"); // line 5

12 System.out.println(" / \\"); // line 6

13 System.out.println("/____________ \\"); // line 7

14 }

15 }

Listing 1.15 A code for printing on the screen an isosceles triangle

Let’s try printing an isosceles upside down, as shown next:

1 \------------/
2 \ /
3 \ /
4 \ /
5 \ /
6 \ /
7 \/

Summary 23

The shape looks a bit unwieldy, since we are using the dash to draw the top line. The triangle will

look better if we draw the top line using an over-line bar character, but unfortunately, such a character

does not exist in our standard character set, so the dash is our only option.

1 //-- print an isosceles upside down

2 public class UpsideDownIsoscelesCorrect

3 {

4 //-- main method

5 public static void main(String [] args)

6 {

7 System.out.println("\\------------/"); // line 7

8 System.out.println(" \\ /"); // line 6

9 System.out.println(" \\ /"); // line 5

10 System.out.println(" \\ /"); // line 4

11 System.out.println(" \\ /"); // line 3

12 System.out.println(" \\ /"); // line 2

13 System.out.println(" \\/"); // line 1

14 }

15 }

Listing 1.16 The code for producing an upside-down isosceles triangle on the screen

Try writing programs that draw other interesting shapes!

Summary

A command line interface is an environment in which the user, through typing commands after a

prompt, interacts with the system.

In command line interfaces and programming environments, there exists a “working folder”.

The standard header of a Java class is public class CLASS_NAME. Its file name should be

CLASS_NAME.java.

An executable Java class has public static void main(String[] arg).

To compile a Java program, use the command javac CLASS_NAME.java.

The Java compiler may produce compilation errors due to syntax errors.

The command to use when executing a Java bytecode by the name of CLASS_NAME is

java CLASS_NAME.

A code that compiles may produce terminating errors. Such terminating errors are called run-time

errors.

A code that compiles and is free of run-time errors may still not run correctly. Logical errors are

the culprits.

Java programs use pairs of curly braces to define code blocks.

Unless they are appearing in the source code for an object class, methods need to have the static
attribute.

Methods and classes may have a visibility attribute.

Method declarations must have both a return value specification and a parameter specification.

In a method, multiple statements may appear. Each statement ends with a semicolon.

System.out.println is a method that produces the value of its parameter on the screen and

then prints a newline.

System.out.print is a method that produces the value of its parameter on the screen.

24 1 “Hello, World!”

To print the double quotation mark, the escape sequence of \" is used.

To print the backslash as a character, the escape sequence of \\ is used.

There are three types of comments: single line comments, multiple-line comments, and Javadocs.

Exercises

1. Terminology Answer the following questions:

(a) What is the formal name of the process for creating an executable Java code from a .java file?

What about the command used in the Unix environment for creating such an executable code?

(b) What is the file extension of a Java byte code?

(c) What is the command used for executing a Java byte code?

(d) In a .java file two words usually appear before its class name. What are they?

(e) What are the three words that precede the main method in a .java file?

(f) State the differences between System .out.print and System.out.println.

(g) What are the three categories of errors in programming?

(h) In String literals, what sequences of characters must you use to print the double quote, the

backslash, and the newline?

2. Main Declaration Of the following possible declarations for the method main, which ones

will compile?

(a) public static void main(String[] args)
(b) static void main(String[] args)
(c) public static main(String[] args)
(d) public static void(String[] args)
(e) public static void main()
(f) public static void main(String[])
(g) public static void main(args)

3. Fixing errors The following code contains some errors and will not compile. State what we

must fix so that it will compile.

1 public class MyBuggyProgram {

2 public static main([] String args)

3 [

4 System.out.prink(’Hello!’):

5]

6 }

4. Escaping Which of the following require a backslash when being included in a String literal

(i.e., a series of characters flanked by a pair of double quotation marks)?

• A
• /

(i.e., the forward slash)

• \
(i.e, the backslash)

• "
• %

(i.e., the percentage symbol)

• @
(i.e., the at sign)

Exercises 25

Programming Projects

5. Alma Mater Write a program named AlmaMater that upon execution prints the Alma Mater

of your school. For the University of Miami, the output of the program should look like:

1 UM ALMA MATER
2
3 Southern suns and sky blue water,
4 Smile upon you Alma mater;
5 Mistress of this fruitful land,
6 With all knowledge at your hand,
7 Always just to honor true,
8 All our love we pledge to you.
9 Alma Mater, stand forever

10 On Biscayne’s wondrous shore.

6. Printing a Diamond Write a program named Diamond.java that prints the shape of a

diamond of height 10 and width 10 as shown:

1 /\
2 / \
3 / \
4 / \
5 / \
6 \ /
7 \ /
8 \ /
9 \ /

10 \/

7. Printing a Filled Diamond Write a program named DiamondFilled.java that prints the

shape of a diamond of height 10 and width 10 with the white space filled with forward slashes on

the left-hand side and backward slashes on the right-hand side, as shown:

1 /\
2 //\\
3 ///\\\
4 ////\\\\
5 /////\\\\\
6 \\\\\/////
7 \\\\////
8 \\\///
9 \\//

10 \/

8. Printing an X with ’X’

Write a program, XwithXs, that produces the following shape on the screen:

1 X X
2 X X
3 X X
4 X X
5 X
6 X X
7 X X
8 X X
9 X X

9. Cascaded printing Write a program, CascadedChildren, that prints the first two verses of

“Children” by Henry Wadsworth Longfellow with increasing indentations:

26 1 “Hello, World!”

1 Come to me, O ye children!
2 For I hear you at your play,
3 And the questions that perplexed me
4 Have vanished quite away.
5
6 Ye open the eastern windows,
7 That look towards the sun,
8 Where thoughts are singing swallows
9 And the brooks of morning run.

10. Slashes Write a program, Slashes, that produces the following shape on the screen:

1 / / / / / / / / / / / /
2 / / / / / / / / / / /
3 / / / / / / / / / / / /
4 / / / / / / / / / / /
5 / / / / / / / / / / / /
6 / / / / / / / / / / /
7 / / / / / / / / / / / /
8 / / / / / / / / / / /
9 / / / / / / / / / / / /

10 / / / / / / / / / / /

11. Backlashes Write a program, BackSlashes, that produces the following shape on the screen:

1 \ \ \ \ \ \ \ \ \ \ \ \
2 \ \ \ \ \ \ \ \ \ \ \
3 \ \ \ \ \ \ \ \ \ \ \ \
4 \ \ \ \ \ \ \ \ \ \ \
5 \ \ \ \ \ \ \ \ \ \ \ \
6 \ \ \ \ \ \ \ \ \ \ \
7 \ \ \ \ \ \ \ \ \ \ \ \
8 \ \ \ \ \ \ \ \ \ \ \
9 \ \ \ \ \ \ \ \ \ \ \ \

10 \ \ \ \ \ \ \ \ \ \ \

12. Tabstop You can use the tab-stop character \t to line things up (to improve the readability of

the text output). Consider the following code:

1 public class TestTabStop

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("Abbie Zuckerman 23yrs Soccer");

6 System.out.println("Brittany Ying 21yrs Swimming");

7 System.out.println("Caty Xenakis 22yrs Softball");

8 System.out.println("Dee Wick 20yrs Basketball");

9 System.out.println("Eva Venera 19yrs Polo");

10 }

11 }

The code produces the following output:

1 Abbie Zuckerman 23yrs Soccer
2 Brittany Ying 21yrs Swimming
3 Caty Xenakis 22yrs Softball
4 Dee Wick 20yrs Basketball
5 Eva Venera 19yrs Polo

Exercises 27

Revise the program so that it uses the same code, but replaces the whitespace (inside each pair

of double quotation marks) with the tab-stop. Run the program to see how it changes the way the

information appears on the screen.

13. Self introduction Write a program named SelfIntro that introduces yourself as follows:

1 My name is NAME.
2 I was born in PLACE.
3 My favorite television program is PROGRAM.
4 I woke up at HOUR:MINUTE today.
5 I own NUMBER books.
6 My target grade point average is GPA.

The uppercase words NAME, PLACE, PROGRAM, HOUR, MINUTE, NUMBER, and GPA, are

placeholders, so you must substitute them with appropriate text. PROGRAM must appear with

double quotation marks. For example,

1 My name is Mitsu Ogihara.
2 I was born in Japan.
3 My favorite television program is "Parks and Recreation".
4 I woke up at 6:30 today.
5 I own 1000 books.
6 My target grade point average is 4.0.

2Using Data for Computation

2.1 Data

2.1.1 Data and Their Taxonomy

The previous chapter presented how to write programs using only System.out.println and

System.out.print statements. This chapter introduces how to store, modify, and retrieve

information. The medium in which information is stored is called data.1

In Java, every data has its type, which specifies how the data encodes its information, as well as

what operations can be performed on the data. There are two broad classifications of data types in

Java: primitive data types and object data types.

A primitive data type is one that uses only a predetermined number of bits in representation, where

a bit is the fundamental unit of information and has two possible values (0 and 1). There are eight

primitive data types: boolean for the logical values, char for the characters, byte, short, int,

and long for whole numbers of various capacities, and float and double for real numbers of

various capacities.

On the other hand, an object data type is a custom-designed data type. A programmer designs a

new object data type by putting together existing data types and defining the permissible operations

for acting on the information stored. Some object data types require an indefinite number of bits for

representation.

In addition to the major difference between primitive and object data types, the following

distinctions can be made among data.

1. There are data with names referencing and data without these names.

(a) The former kind is a variable. A special variable is one whose value cannot be changed during

the course of program. Such a variable is called a constant

(b) The latter kind consists of literals and return values. A literal is a data whose value is exactly

specified. A return value is a value that a method returns.

1The term data is used for both singular and plural forms. The original singular form of “data” is “datum”, but this is
rarely used nowadays.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_2

29© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_2

30 2 Using Data for Computation

2. Some variables and constants are accessible only inside the method in which they appear; others

are accessible from everywhere in the class. The former ones are local, and the latter ones are

global.

(a) Some global variables in an object class play the role of storing information for individual

objects of the class. Those variables are instance variables (or field variables).

(b) Each global constant, as well as each instance variable, has a specific visibility type (public,

private, protected, and package).

2.1.2 Number Literals

The sequence "Hello, World!" is a literal of the data type String. Literals are available not

only for String but also for all the primitive data types.

The following is an example of a code using literals:

1 public class Literals

2 {

3 public static void main(String [] args)

4 {

5 System.out.print("Rank number ");

6 System.out.print(1);

7 System.out.print(" in my all -time favorite NFL QB list is ");

8 System.out.print("Steve Young");

9 System.out.println(".");

10 System.out.print("His overall quarterback rating is ");

11 System.out.print(96.8);

12 System.out.println(".");

13 }

14 }

Listing 2.1 A program that produces a comment about an NFL quarterback

In Lines 5, 7–9, and 12, String literals appear inside the parentheses. In Lines 6 and 11, literals

1 and 96.8 appear inside the parentheses. These are number literals (an int literal and a double
literal, to be precise).

When this program runs, System.out.print converts these two numbers to character

sequences, then prints those sequences on the screen.

1 Rank number 1 in my all-time favorite NFL quarterbacks is Steve Young.
2 His overall quarterback rating is 96.8.

By adding the same sequence of statements for two more quarterbacks, the following program is

obtained.

2.1 Data 31

1 public class Literals01

2 {

3 public static void main(String [] args)

4 {

5 System.out.print("Rank number ");

6 System.out.print(1);

7 System.out.print(" in my all -time favorite NFL QB list is ");

8 System.out.print("Steve Young");

9 System.out.println(".");

10 System.out.print("His overall QB rating is ");

11 System.out.print(96.8);

12 System.out.println(".");

13

Listing 2.2 A program that produces comments about three NFL quarterbacks (part 1). The program header and the
part that produces comments about the first player

For these additional two players, number literals appear in Lines 15, 20, 24 and 29.

14 System.out.print("Rank number ");

15 System.out.print(2);

16 System.out.print(" in my all -time favorite NFL QB list is ");

17 System.out.print("Peyton Manning");

18 System.out.println(".");

19 System.out.print("His overall QB rating is ");

20 System.out.print(96.5);

21 System.out.println(".");

22

23 System.out.print("Rank number ");

24 System.out.print(3);

25 System.out.print(" in my all -time favorite NFL QB list is ");

26 System.out.print("Tom Brady");

27 System.out.println(".");

28 System.out.print("His overall QB rating is ");

29 System.out.print(97.0);

30 System.out.println(".");

31 }

32 }

Listing 2.3 A program that produces comments about three NFL quarterbacks (part 2). The part that produces
comments about the second and the third players

The program produces the following output2:

1 Rank number 1 in my all-time favorite NFL quarterbacks is Steve Young.
2 His overall quarterback rating is 96.8.
3 Rank number 2 in my all-time favorite NFL quarterbacks is Peyton Manning.
4 His overall quarterback rating is 96.5.
5 Rank number 3 in my all-time favorite NFL quarterbacks is Tom Brady.
6 His overall quarterback rating is 97.0.

2Jon Steven “Steve” Young (born October 11, 1961) is a former NFL quarterback and a sportscaster. He played 13
seasons with the San Francisco 49ers, and led the team to three Super Bowl wins. Peyton Williams Manning (born March
24, 1976) is a former NFL quarterback who played with the Indianapolis Colts and later with the Denver Broncos. He
led each team to one Super Bowl win. Thomas Edward Patrick Brady Jr. (born August 3, 1977) is an NFL quarterback
for the New England Patriots. He led the team to five Super Bowl wins.

32 2 Using Data for Computation

2.1.3 Variable Declarations

A variable is a type of data with a reference name. Simply by putting its name in the code, the value

of the data in that specific moment can be looked up.

Since each data has a unique type, a variable is specified with its name and its type. This is called

a declaration. A declaration takes the following form:

DATA_TYPE VARIABLE_NAME;

Remember that the tab-stop can be used in place of the white space, and adding more tab-stops or

white space after that is possible as well.

One example is the following:

1 public static ...

2 {

3 ...

4 int myInteger;

5 ...

6 }

Here, int is the data type and myInteger is the name of the data. Notice the semicolon ;
appearing at the end. Each line of local/global variable/constant declarations requires a semicolon at

the end. The above is an instance in which the variable is a local variable. A local variable belongs to

a method and its declaration appears inside the method that it belongs to. The “locality” of variables

becomes important when multiple methods are written in a source code.

To declare a global variable, its declaration is placed outside the methods, at depth 1. For example,

the following declares a global variable named myInteger of data type int.

1 static int myInteger;

2

3 public static ...

4 {

5 ...

6 }

The attachment of static is required for the declaration of a global variable.

It is possible to join declarations of multiple variables of the same type in one line via separating

the names with commas, as shown next:

int oneInteger , anotherInteger , yetAnotherInteger;

Here, oneInteger, anotherInteger, and yetAnotherInteger are all of the int data

type. This single-line declaration is equivalent to:

1 int oneInteger;

2 int anotherInteger;

3 int yetAnotherInteger;

To name a variable, a sequence of contiguous characters chosen from the alphabet, numerals, the

underscore _, and the dollar sign $ must be used. In addition, the first character of the sequence

must be a letter of the alphabet.3 Thus, according to this rule, 55 cannot be a variable name. The

3Technically, a variable name can start with the underscore or the dollar sign, but the convention is to start a variable
name with a lowercase letter.

2.1 Data 33

variable names, method names, and class names are all case-sensitive. The following conventions are

generally used:

• The name of a variable must start with a lowercase letter.

• The name of a constant must contain no lowercase letter.

• The name of a class must start with an uppercase letter.

2.1.4 Assigning Values to Variables

As mentioned earlier, variables (or constants) are places where information is stored. The action of

giving a value to a variable/constant is called an assignment.

The syntax for an assignment is:

VARIABLE = VALUE;

Here, the equal sign = appearing in the middle symbolizes the assignment. The left-hand side of the

assignment, VARIABLE, is the name of the variable in which a value is to be stored. The right-hand

side of an assignment, VALUE, is the value being stored. JVM can interpret this as a data having the

same type as the variable. The value in an assignment can be:

• a literal of the same type;

• a variable of the same type;

• a call to a method that returns with data of the same type; or

• a formula of the same type.

Next is an example of assigning a value to a variable:

1 int myInteger;

2 myInteger = 55;

The first line here is a variable declaration. The type of the data is int and the name of the data is

myInteger. The second line is an assignment. The right-hand side of the assignment is an int
literal with the value of 55. This action stores the value of 55 into the variable myInteger.

It is possible to combine a declaration of a variable and an initial value assignment to the variable

all in a single statement, like this one:

int myInteger = 55;

It is also possible to combine multiple declarations and assignments of multiple variables in one line,

so long as they all have the same type. The following is an example of such combinations:

int oneInteger = 17, anotherInteger , yetAnotherInteger = 23;

This single line of code declares int variables, oneInteger, anotherInteger, and

yetAnotherInteger, and assigns the value of 17 to oneInteger and the value of 23 to

yetAnotherInteger (note that 17 and 23 are literals).

Here, anotherInteger does not have an assignment. Does it have a value? Yes, the default

value of a variable of a primitive number type immediately after declaration is 0.

34 2 Using Data for Computation

This one-line code is equivalent to:

1 int oneInteger , anotherInteger , yetAnotherInteger;

2 oneInteger = 17;

3 yetAnotherInteger = 23;

as well as to:

1 int oneInteger , anotherInteger , yetAnotherInteger;

2 oneInteger = 17, yetAnotherInteger = 23;

For the code to compile, the value assigned to a variable must match the data type of the variable.

In the above code fragment, an attempt to assign numbers with a decimal point,

1 int oneInteger , anotherInteger , yetAnotherInteger;

2 oneInteger = 17.5;

3 yetAnotherInteger = 23.0;

results in a syntax error, because neither 17.5 nor 23.0 are integers.

The Attribute final
By attaching final in front of the data type specification in a variable declaration, any future value

assignments to the variable are prohibited. Thus, by the attachment of final, a variable becomes a

constant.

1 static final int YOUR_INTEGER = 20;

2

3 public static void main(String [] args)

4 {

5 final int MY_NUMBER = 17;

6 ...

7 }

The first variable, YOUR_INTEGER, is a global constant and the second variable, MY_NUMBER, is

a local constant. Java requires that a value must be assigned to a constant using a combined declaration

and assignment. Therefore, in the above code example, splitting the declaration and assignment of

either constant into a standalone declaration and a standalone assignment is rejected as a syntax error.

A global constant may have an explicit visibility specification. As mentioned in Chap. 1, there are

three explicit visibility specifications: public, private, and protected. In the source code:

1 public class PubConstEx

2 {

3 public static final int COMMONINTEGER = 20;

4

5 public static void main(String [] args)

6 {

7 final int MY_NUMBER = 17;

8 ...

9 }

10 }

2.2 The Primitive Data Types 35

COMMONINTEGER is a global constant accessible from outside and MY_NUMBER is declared

to be a local constant. By combining the class name and the global variable name, as in

PubConstEx.COMMONINTEGER, the value 20 can be accessed from other source codes.

Reassignment

If a variable is not a constant, the value of the variable can be updated any number of times. Consider

the next code:

1 int myInteger;

2 myInteger = 63;

3 ...

4 myInteger = 97;

5 ...

6 myInteger = 20;

The dotted parts represent some arbitrary code. Assuming that no assignments to myInteger appear

in the dotted part, the value of myInteger changes from 63 to 97 in Line 4 and from 97 to 20 in

Line 6.

2.2 The Primitive Data Types

Java has eight primitive data types. They are boolean, byte, short, int, long, float, double, and char.

Table 2.1 shows the range of possible values for each type.

boolean
The boolean is a data type for storing a logical value. There are only two possible values for a

boolean data type: true and false. Here is an example of declaring boolean variables and

assigning values to them.

1 boolean logicA , logicB , logicC;

2 logicA = true;

3 logicB = false;

Table 2.1 The primitive data type

Type No. bits Data representation

boolean 1 Logical value, true or false

byte 8 Integer, [−128, 127]
short 16 Integer, [−32,768, 32,767]
int 32 Integer, [−2,147,483,648, 2,147,483,647]
long 64 Integer, [−9,223,372,036,854,775,808, 9,223,372,036,854,775,807]
float 32 Floating point number, approximately

from 1.4013 · 10−45 to 3.4028 · 10+38 (positive or negative)

double 64 Floating point number, approximately

from 4.9407 · 10−324 to 1.7977 · 10+308 (positive or negative)

char 16 UNICODE character, [0, 65,535]
(unsigned)

36 2 Using Data for Computation

There are three operators available for boolean: the negation !, the conjunction &&, and the

disjunction ||. The boolean data type will be discussed in Chap. 6.

byte
The data type byte consists of eight bits, so there are 28 = 256 possible values. The value range

of byte is between −27 = −128 and 27 − 1 = 127. The hexadecimal encoding is an encoding

that is often used for specifying a byte literal. This is the encoding that divides the bits into groups

of four and uses a unique character to represent each of the 16 possible values for each group. The

value range of four bits is between 0 and 15, so naturally the numerals 0 through 9 are used for

representing numbers 0 through 9. For the numbers 10 through 15, the letters a through f (or their

upper case letters A through F) are used. In hexadecimal encoding, a byte must be represented with

two characters. The combination YZ represents

The number Y represents multiplied by 16, plus the number Z represents.

Thus, “5f” in hexadecimal is not 65 (= 5 ∗ 10 + 15) but 95 (= 16 ∗ 5 + 5) and “dc” in hexadecimal

is 220 in decimal (= 13∗16+12). Hexadecimal encoding makes it possible to represent bit sequences

compactly: four characters for sixteen bits, eight characters for 32 bits, and sixteen characters for 64

bits. In hexadecimal encoding, to indicate that a literal is presented, the prefix 0x must be attached.

For example, 0x33 is 33 in hexadecimal, which is equal to 51 in decimal.

byte myByteValue = 0x3f;

short
The data type short consists of sixteen bits. It has 65,536 possible values. The value range is

between −215 = −32,768 and 215 − 1 = 32,767.

int
int is a data type that consists of 32 bits. It has 4,294,967,296 possible values. The value range is

between −231 = −2,147,483,648 and 231 − 1 = 2,147,483,647. The default data type of a whole

number literal is int.

long
The data type long consists of 64 bits. It has 18,446,744,073,709,551,616 possible values. The value

range is between −263 = −9,223,372,036,854,775,808 and 263 −1 = 9,223,372,036,854,775,807.

When presenting a literal in long, if the value that the literal represents goes beyond the range of

int, the letter L must be attached as a suffix at the end of the number sequence, like this one:

long myLongNumber = 1234567890987654321L;

float and double
float and double are data types for real numbers. They use floating point representations.

Basically, a floating point representation divides the available bits into three parts: the sign, the

significand, and the exponent. Let S be the sign (+1 or −1). The number of bits for the sign is one,

and the bit is at the highest position of the bits allocated for the data type. The bits of the significand

represent a number between 0 and 1. If that part has m bits and the bit sequence is b1 · · · bm, that part

represents the sum of all 2−i such that bi = 1. Let C be this fractional number. Each floating point

2.3 Using Variables for Computation 37

encoding system uses a fixed “base” for exponentiation, which is either 2 or 10. Let B be this base. If

there are n bits in the exponent, that part encodes a number between −2n−1 and 2n−1 − 1 (for whole

number types). Let E be this number. Now, the bits of the floating number altogether represent

S · (1 + C) · BE .

To designate that a floating point number literal is a float, the letter F must be attached as a suffix.

Here is an example of declaring and assigning a literal value to one variable for each primitive

number type:

1 byte myByte;

2 short myShort;

3 int myInt;

4 long myLong;

5 float myFloat;

6 double myDouble;

7 myByte = 0x3d;

8 myShort = 1345;

9 myInt = 90909;

10 myLong = 1234567890123456789L;

11 myFloat = -3.145F;

12 myDouble = 1.7320504;

The numbers appearing after ’=’ in lines 7–12 are all literals.

char
The last primitive data type is char. The representation of char requires sixteen bits. By attaching

the apostrophe before and after of a character, a char literal is specified, as in ’A’ and ’x’.

1 char myChar1 = ’A’;

2 char myChar2 = ’x’;

The default value of a char type variable is \0. This is the character corresponding to the number

0. This must not be confused this with the numeral 0. There is no direct arithmetic operation that can

be applied to char data for producing another char, but if a char data appears in a mathematical

formula, it acts as if it were an int. Since the single quotation mark is used for a char literal, to

specify the single quotation mark itself as a char literal, attaching a backslash as is must be done to

represent the double quotation mark in String literals; that is, ’\” represents the single quotation

mark. Because of this special use of backslash, two backslashes are used to mean the backslash itself

as a literal, as in ’\\’. The other escape sequences, ’\t’ and ’\n’, are valid for char literals too.

2.3 Using Variables for Computation

2.3.1 Quarterbacks Program (Reprise)

Using the fact that reassignments of values can be made to non-final variables, the previous three-

favorite-quarterback program can be rewritten using three variables:

• an int variable, rank, for specifying the rank in the list

• a String variable, name, for the name of the quarterback, and

• a double variable, qbr, for the quarterback rating.

38 2 Using Data for Computation

1 public class Literals02

2 {

3 public static void main(String [] args)

4 {

5 int rank;

6 String name;

7 double qbr;

8

9 rank = 1;

10 name = "Steve Young";

11 qbr = 96.8;

12 System.out.print("Rank number ");

13 System.out.print(rank);

14 System.out.print(" in my all -time favorite NFL QB list is ");

15 System.out.print(name);

16 System.out.println(".");

17 System.out.print("His overall QB rating is ");

18 System.out.print(qbr);

19 System.out.println(".");

20

Listing 2.4 A program that produces comments about three NFL quarterbacks using variables (part 1). The variable
declarations and the part that produced the comments about the first player

Note that the variable declarations appear in Lines 4, 5, and 7. The variable declarations are

followed by three blocks of the same format, each consisting of eleven lines. The first lines of each

block assign values to the variables. For example, the first lines of the first block are:

1 rank = 1;

2 name = "Steve Young";

3 qbr = 96.8;

The next eight lines of code make the presentation, with the three literals for rank, name, and rating

substituted with their respective names.

1 ...
2 System.out.print(rank);
3 ...
4 System.out.print(name);
5 ...
6 ...
7 System.out.print(qbr);
8 ...

In these three lines, the values of these variables substitute their respective locations into the print

statements. Note that the action order is:

declaration → assignment → reference

Since assignments can be made multiple times to non-final variables, a variable declaration is

effective until the end of the innermost pair of curly brackets that contains it. This means that two

declarations of the same variables cannot intersect. In the above program, the innermost matching

pair containing a variable declaration appears at Lines 4 and 44. Thus, the declarations are valid until

Line 44. Formally, the range of lines in which a variable declaration is valid is called the scope of the

variable.

2.3 Using Variables for Computation 39

21 rank = 2;

22 name = "Peyton Manning";

23 qbr = 96.5;

24 System.out.print("Rank number ");

25 System.out.print(rank);

26 System.out.print(" in my all -time favorite NFL QB list is ");

27 System.out.print(name);

28 System.out.println(".");

29 System.out.print("His overall QB rating is ");

30 System.out.print(qbr);

31 System.out.println(".");

32

33 rank = 3;

34 name = "Tom Brady";

35 qbr = 97.0;

36 System.out.print("Rank number ");

37 System.out.print(rank);

38 System.out.print(" in my all -time favorite NFL QB list is ");

39 System.out.print(name);

40 System.out.println(".");

41 System.out.print("His overall QB rating is ");

42 System.out.print(qbr);

43 System.out.println(".");

44 }

45 }

Listing 2.5 A program that produces comments about three NFL quarterbacks using variables (part 1). The part that
produces the comments about the second and the third players

Reserved Names

The names appearing in Table 2.2 cannot be used as the name of a variable, a method, or a class.

These are called the reserved names.

2.3.2 Number Arithmetics

2.3.2.1 Number Operations

In Java, the four standard arithmetic operations in mathematics (addition, subtraction, multiplication,

and division) are represented with the standard mathematical symbols (+, -, *, and /, respectively).

The negative sign - can be used for flipping the sign. The regular parentheses () can be used for

flipping the sign. There is no symbol for representing exponentiation.

The symbols that represent binary operations are called operators. The values that are evaluated

with an operator are called operands. Since - acts on a single value, it is a unary operator. Since +,

-, *, /, and % take two values, they are binary operators.

There are other additional operator types, such as unary bit shift («, », and »>), unary bit

complement (˜), and unary bit-wise (ˆ, |, and &). This textbook does not use these bit operators

(see Table 1.2)

Table 2.2 The list of
reserved words in Java

abstract boolean break case catch char class

const continue default do double else enum

extends final finally float for goto if

import implements import instanceof int interface long

native new package private protected public short

static strictfp super return switch synchronized this

throw throws transient try void volatile while

40 2 Using Data for Computation

In addition to using actual values (as represented by literals), variables can be used in mathematical

formulas. When evaluating a formula that contains a variable, the value of the variable at the moment

of evaluation is used. Consider the following code fragment:

1 double x, y, z;

2 x = 3.5;

3 y = 4.5;

4 z = -x + y + 1.0;

5 System.out.println(z);

In the fourth line of the program,

4 z = -x + y + 1.0;

the values that x and y hold (that is, 3.5 and 4.5, respectively) substitute their respective locations

into the right-hand side of the formula. The result of the evaluation is 2.0. Since there is =, this value

is assigned to the variable z. So, when the program executes System.out.println(z), this

new value of 2.0 emerges in output:

2.0

It is possible to write more complicated formulas. For example, in

1 double x, w;

2 x = 2.0;

3 w = (x + 1.0) * (-1.0 + x);

4 System.out.println(w);

the value of x becomes 2.0 in Line 2. The value of the formula (x + 1.0) * (-1.0 + x)
then becomes 3.0. This value is assigned to w. So, the output of the program is:

3.0

Alternatively, the code could be written as either

1 double x, w;

2 x = 2.0;

3 w = x * x - 1.0 * x + 1.0 * x - 1.0;

4 System.out.println(w);

or

1 double x, w;

2 x = 2.0;

3 w = (x * x) - 1.0;

4 System.out.println(w);

Both produce the same output as the original.

The Remainder Operator

The remainder operator %works as follows. Let a and b be two numbers. If the value of b is 0, a % b
is undefined, an attempt to execute the operation produces a run-time error. Otherwise, if a and b have

the same signs, the value of a % b is a - d * b, where d is the integer part of a divided by b,

and if a and b have opposite signs, the value of a % b is a + d * b, where d is the integer part

2.3 Using Variables for Computation 41

of |a| divided by |b|. For example, 10 % 3 is equal to 1 and -17.0 % 5.0 is -2.0 since the

integer part of -17.0 / 5.0 is equal to -3.

2.3.2.2 Evaluation of Formulas

To evaluate formulas with more than two operations, Java prioritizes these operators in the same way

we would in arithmetics.

• *, /, and % have the same level of priority.

• + and - have the same level of priority.

• The - for switching the sign has the highest priority. Next in priority is the { *, /, % } group. Last

is the { +, - } group.

• The evaluation of a formula is from left to right using the following principles:

– If there are parentheses in the formula, evaluate the leftmost and innermost parenthetical clause

to reduce it to a single value.

– If the formula does not have parentheses and has one of *, /, and %, process the leftmost one of

the three kinds.

– If the formula does not have parentheses and has no *, /, and %, process the leftmost operation.

In the code

1 double myDouble = 10.5;

2 int myInt = 11;

3 myDouble = -3 % 2 + (3 * 8 + myDouble * myInt) % 6;

the evaluation proceeds as follows:

1 -3 % 2 + (3 * 8 + 10.5 * 11) % 6
2 -1 + (3 * 8 + 10.5 * 11) % 6
3 -1 + (24 + 10.5 * 11) % 6
4 -1 + (24 + 115.5) % 6
5 -1 + 139.5 % 6
6 -1 + 1.5
7 0.5

0.5 becomes the value of myDouble.

Here is how to use data (and some arithmetics on the data) to perform computation. Consider a

program that evaluates several formulas involving a set of unknowns (which may appear in more than

one formula). The user enters the values for the unknowns. It is possible to ask the user to enter the

value of a variable whenever the calculation needs to use the value. However, since some variables

are used more than once and there is no guarantee that the user enters a consistent value to a variable,

the program instead stores the values of the unknowns into variables.

This first example is for computing various geometric values with respect to a radius R. A double
variable, radius, is used to represent the value of the radius. Suppose the following four quantities

are to be computed from R:

1. the perimeter of a circle having radius R,

2. the area of a circle having radius R,

3. the surface area of a sphere having radius R, and

4. the volume of a sphere having radius R.

The following mathematical formulas can be used in calculating the four quantities:

2πR, πR2, 4πR2, and 4
3πR3.

42 2 Using Data for Computation

The program uses four variables, circlePerimeter, circleArea, ballArea, and

ballVolume, to record the quantities. Lines 5 and 6 of the code declare these variables.

In Line 8, the value of radius is set to 10.0. The program then successively computes the four

quantities in Lines 10 through 13, and uses the literal 3.14159265 for π . Lines 15 through 18 print

the four quantities.

1 public class RadiusPrimitive

2 {

3 public static void main(String [] args)

4 {

5 double radius;

6 double circlePerimeter , circleArea , ballArea , ballVolume;

7

8 radius = 10.0;

9

10 circlePerimeter = 2.0 * 3.14159265 * radius;

11 circleArea = 3.14159265 * radius * radius;

12 ballArea = 4.0 * 3.14159265 * radius * radius;

13 ballVolume = 4.0 * 3.14159265 * radius * radius * radius / 3.0;

14

15 System.out.println(circlePerimeter);

16 System.out.println(circleArea);

17 System.out.println(ballArea);

18 System.out.println(ballVolume);

19 }

20 }

Listing 2.6 A preliminary version of the program for computing values for a given radius

This code produces the following output:

1 62.831853
2 314.159265
3 1256.63706
4 4188.7902

Two changes will be made to the program to obtain the next code. First, noticing that the value

3.14159265 as π appears in multiple formulas, a variable can be used to store a value for π . Second,

the four quantities that are calculated will be printed with their names.

Line 8 declares a new variable, pi, in which the value of π is stored (Line 10). In the ensuing

calculation, the variable pi is used in places where the value of π is needed. Also, the attribute of

final is attached to the variable so as to make it a local constant and prevent value changes.

1 // compute values given a radius

2 public class Radius

3 {

4 public static void main(String [] args)

5 {

6 double radius;

7 double circlePerimeter , circleArea , ballArea , ballVolume;

8 double pi;

9 // --- set the values of pi and radius

10 pi = 3.14159265;

11 radius = 10.0;

Listing 2.7 The code for computing values for a given radius (part 1). Quantity calculation

2.3 Using Variables for Computation 43

The second part of the code is for reporting the results of the calculation.

12 // calculcate the values

13 circlePerimeter = 2.0 * pi * radius;

14 circleArea = pi * radius * radius;

15 ballArea = 4.0 * pi * radius * radius;

16 ballVolume = 4.0 * pi * radius * radius * radius / 3.0;

17 //-- output the values

18 System.out.print("circlePerimeter = ");

19 System.out.println(circlePerimeter);

20 System.out.print("circleArea = ");

21 System.out.println(circleArea);

22 System.out.print("ballArea = ");

23 System.out.println(ballArea);

24 System.out.print("ballVolume = ");

25 System.out.println(ballVolume);

26 }

27 }

Listing 2.8 The code for printing the values of the four quantities. The part for calculating the quantities and printing
the results

To make clear which value represents which quantity, the program uses a print statement. The

program prints the name of the quantity preceding the presentation of the value. The statement

System.out.println(circlePerimeter);

prints the value of the variable circlePerimeter and proceeds to the next line.

This code produces the following output:

1 circlePerimeter = 62.831853
2 circleArea = 314.159265
3 ballArea = 1256.63706
4 ballVolume = 4188.7902

With this arrangement, the correspondence between the value and the meaning will be clear to the

user when reading the output.

Here is another, more obscure, way of calculating the four quantities in a row. The program uses

the facts that, for a fixed radius value,

(a) the area of the circle is the perimeter times the radius divided by 2,

(b) the surface area of the ball is four times the area of the circle, and

(c) the volume of the ball is the area of the ball times the radius divided by 3.

Based upon these facts, the program obtains the value for the variable circleArea with a formula

that contains circlePerimeter, obtains the value for the variable ballArea with a formula

that contains circleArea, and obtains the value for the variable ballVolume with a formula

that contains ballArea. Note that the variable pi is now a constant named PI with the attribute of

final (with its name in all uppercase according to the naming convention).

44 2 Using Data for Computation

1 // compute values given a radius

2 public class RadiusAlternative

3 {

4 public static void main(String [] args)

5 {

6 double radius;

7 double circlePerimeter , circleArea , ballArea , ballVolume;

8 final double PI = 3.14159265;

9 // --- set the values of PI and radius

10 radius = 10.0;

11 // calculcate the values

12 circlePerimeter = 2.0 * PI * radius;

13 circleArea = radius * circlePerimeter / 2.0;

14 ballArea = 4.0 * circleArea;

15 ballVolume = ballArea * radius / 3.0;

16 //-- output the values

17 System.out.print("circlePerimeter = ");

18 System.out.println(circlePerimeter);

19 System.out.print("circleArea = ");

20 System.out.println(circleArea);

21 System.out.print("ballArea = ");

22 System.out.println(ballArea);

23 System.out.print("ballVolume = ");

24 System.out.println(ballVolume);

25 }

26 }

Listing 2.9 An alternative for the calculation of values associated with a circle and a ball

Yet another modification will be made by moving the constant PI outside the method, thereby

changing it from a local constant to a global constant.

Note that the static attribute must be attached to the declaration.

1 // compute values given a radius

2 public class RadiusAlternative2

3 {

4 static final double PI = 3.14159265;

5 public static void main(String [] args)

6 {

7 double radius;

8 double circlePerimeter , circleArea , ballArea , ballVolume;

9 // --- set the values of PI and radius

10 radius = 10.0;

11 // calculcate the values

12 circlePerimeter = 2.0 * PI * radius;

13 circleArea = radius * circlePerimeter / 2.0;

14 ballArea = 4.0 * circleArea;

15 ballVolume = ballArea * radius / 3.0;

16 //-- output the values

17 System.out.print("circlePerimeter = ");

18 System.out.println(circlePerimeter);

19 System.out.print("circleArea = ");

20 System.out.println(circleArea);

21 System.out.print("ballArea = ");

22 System.out.println(ballArea);

23 System.out.print("ballVolume = ");

24 System.out.println(ballVolume);

25 }

26 }

Listing 2.10 The radius code with the value of π as the global constant

2.3 Using Variables for Computation 45

2.3.2.3 Mixing Different Number Types in a Formula

There are two rules that Java applies when two different number types appear as operands.

• Either one of them is a floating point number type (i.e., float or double) if and only if the result

is a floating point number type.

• The number of bits of the resulting data type is the maximum of the numbers of bits for the two

number types.

For example, if the operands are byte and float, the result will be a float. Table 2.3 shows the

primitive data type that results by mixing data types.

The next code attempts to compute the product and division between two numbers, 11 and 3. Each

number is either an int or a double. In each of the statements in Lines 14, 15, 18, 19, 22, 23, 26,

and 27, there appears an unfamiliar use of System.out.println. For example, Line 14 goes:

14 System.out.println(aInt / bInt);

Appearing inside the parentheses is a formula. Conveniently, if a formula appears inside the paren-

theses, both System.out.print and System.out.println evaluate the formula, convert the

result to a character sequence, and print the sequence on the screen.

The program first declares the variables it is going to use:

1 public class NumberTest

2 {

3 // --- try four possible cases of "11 divided by 3"

4 public static void main(String [] args)

5 {

6 int aInt , bInt;

7 double aDouble , bDouble;

8 aInt = 11;

9 bInt = 3;

10 aDouble = 11.0;

11 bDouble = 3.0;

Listing 2.11 A program that demonstrates the use of operators on double and/or int variables (part 1)

The program then executes a number of operations on the variables.

Table 2.3 The number
types chosen when two
primitive data types are
processed in binary
arithmetic operations

Type byte short int long float double

byte byte short int long float double

short short short int long float double

int int int int long float double

long long long long long double double

float float float float float double double

double double double double double double double

46 2 Using Data for Computation

12 // case 1

13 System.out.println("aInt vs bInt. / and %");

14 System.out.println(aInt / bInt);

15 System.out.println(aInt % bInt);

16 // case 2

17 System.out.println("aInt vs bDouble. / and %");

18 System.out.println(aInt / bDouble);

19 System.out.println(aInt % bDouble);

20 // case 3

21 System.out.println("aDouble vs bInt. / and %");

22 System.out.println(aDouble / bInt);

23 System.out.println(aDouble % bInt);

24 // case 4

25 System.out.println("aDouble vs bDouble. / and %");

26 System.out.println(aDouble / bDouble);

27 System.out.println(aDouble % bDouble);

28 }

29 }

Listing 2.12 A program that demonstrates the use of operators on double and/or int variables (part 1)

The result of executing the code is as follows:

1 aInt vs bInt. / and %
2 3
3 2
4 aInt vs bDouble. / and %
5 3.6666666666666665
6 2.0
7 aDouble vs bInt. / and %
8 3.6666666666666665
9 2.0

10 aDouble vs bDouble. / and %
11 3.6666666666666665
12 2.0

When a literal of a primitive number type appears, its default type is int for a whole number and

double for a floating point number. To treat a data as an alternate type, attach, in front of it, the

alternate type enclosed in a matching pair of parentheses. For example, (byte)12 instructs to treat

the int type value of 12 as a byte type. The action of attaching a data type to treat a data as a

different type is called casting.

Using casting, a floating point number can be truncated to an integer; that is, for a floating point

number x, (int)x is a 32-bit whole number that is equal to the integer part of x.

2.3.3 Computing the Body-Mass Index

The next example is a program for computing the Body-Mass Index for multiple combinations of

weight and height. The Body-Mass Index measures the balance between the height and weight of

a human body. The lower the index is, the lighter the person is. The following formula defines the

Body-Mass Index:

BMI = 703 ∗ weight (in pounds) / (height × height) (in inches)

2.3 Using Variables for Computation 47

In the program, the computation is carried out in the following steps:

• declare variables for storing weight, height, and the BMI value;

• assign a value to weight and a value to height;

• compute the BMI value;

• print the result;

• reassign a value to weight and a value to height;

• compute the BMI value with respect to the reassigned weight and height;

• print the result.

Next is the program BMI.java that does this.

1 public class BMI

2 {

3 public static void main(String [] args)

4 {

5 // first time

6 double weight = 140.0; // weight

7 double height = 67.0; // height

8 double bmi = 703.0 * weight / (height * height);

9 System.out.print("BMI = ");

10 System.out.println(bmi);

11 // second time

12 weight = 150.0; // weight

13 height = 70.0; // height

14 bmi = 703.0 * weight / (height * height);

15 System.out.print("BMI = ");

16 System.out.println(bmi);

17 }

18 }

Listing 2.13 The code for computing the BMI for predetermined combinations of height and weight

Here is what happens in the code:

• What appears after the first comment is the declaration of a double variable weight (Line 6).

Here, the program assigns the value of 140.0 immediately to the variable. The next line (Line 7)

does the same for height with the value of 67.0. Both these lines use the idea of combining a

variable declaration and a value assignment in one line.

• The next line (Line 8) declares a double variable bmi and assigns to it a value using the formula

703.0 * weight / (height * height). This line also uses the idea of combining a

variable declaration and a value assignment in one line. Furthermore, the line takes advantage of

the fact that by the time the code execution reaches this third declaration and assignment, both

weight and height have acquired new values.

• The parentheses surrounding the second multiplication line designate that the multiplication must

take place before the division (again, Java follows our common sense evaluation of mathematical

formulas). If the parentheses are removed, the last multiplication symbol must be replaced with the

division symbol; that is,

double bmi = 703.0 * weight / height / height;

48 2 Using Data for Computation

Otherwise, the code

double bmi = 703.0 * weight / height * height;

will divide the product of 703.0 and the value of weight by the value of height and then

multiply it by the value of height.

• The ensuing two lines are for producing the result on the screen. The first of the two is for printing

the String literal "BMI = ", and the second is for printing the value and proceeding to the next

line.

• Then the program assigns new values to weight and height and then recomputes the BMI

value. Since these lines are in the scope of the three variables, the type declaration double must

not appear again.

The execution of the code results in the following:

1 BMI = 21.92470483403876
2 BMI = 21.520408163265305

Note the difference, between the two lines, in the number of digits after the decimal point. The first

one has fourteen digits and the second one has fifteen. In both cases the actual BMI value has infinitely

many digits and thus the floating point expression cannot correctly represent the value. The value that

appears on the screen is only an approximation. Chapter 8 describes how to control the number of

digits appearing after the decimal point.

2.3.4 Sum of Integers from 1 to 100 à la Gauss

Johann Carl Friedrich Gauss (April 30, 1777 to February 23, 1855) is a German mathematician who

made important contributions to many fields of mathematics. There is a famous story stating that he

was a genius even as a school kid. The story goes like this.

One day a teacher asked the class to calculate, on a sheet of paper, the sum of integers from 1 to 100. While all
the other classmates were adding the numbers one after another, Gauss raised his hand to tell his teacher he had
completed the task. Miraculously, the answer he gave was correct. Stunned, the teacher asked Gauss to explain
how he had gotten to his answer. Gauss explained: If you add the first number, 1, and the last number, 100, the
result is 101. If you add the second number, 2, and the second to last number, 99, the result is 101. If you keep
going this way, the smaller number increases by 1 and the larger number decreases by 1, and so the sum is always
101. Since there are 100 numbers to add, there are 50 such pairs. Thus, the total is 101 * 50 = 5050.

Based upon his observation, the sum of all integers between 1 and n ≥ 1 can be quickly computed. If

n is an even number, the total is given as the following formula

(n + 1) ∗ n/2

If n is an odd number, the middle number (n+ 1)/2 does not pair with other numbers, and since there

are (n − 1)/2 pairs, the total is

(n + 1) ∗ (n − 1)/2 + (n + 1)/2 = (n + 1) ∗ ((n − 1)/2 + 1/2) = (n + 1) ∗ n/2

Thus, regardless of whether n is even or odd, the total is (n + 1) ∗ n/2.

The following program demonstrates the use of integer variables, which computes the sum of

integer sequences à la Gauss.

2.3 Using Variables for Computation 49

1 public class Gauss

2 {

3 public static void main(String [] args)

4 {

5 int n, sum;

6 n = 100;

7 sum = (n + 1) * n / 2;

8 System.out.print("The sum of integers from 1 to ");

9 System.out.print(n);

10 System.out.print(" = ");

11 System.out.println(sum);

12 n = 1000;

13 sum = (n + 1) * n / 2;

14 System.out.print("The sum of integers from 1 to ");

15 System.out.print(n);

16 System.out.print(" = ");

17 System.out.println(sum);

18 }

19 }

Listing 2.14 The code for computing 1 + · · · + n for n = 100 and n = 1000

The code uses two int variables, n and sum. The program assigns the value of 100 and then the

value of 1000 to the variable n. The five lines that appear after the first assignment are identical to the

five lines that appear after the second assignment. With these identical five lines, the program does the

following:

(a) it computes the sum using the formula,

(b) it prints a String literal "The sum of integers from 1 to ",

(c) it prints the value of n,

(d) it prints another String literal " = ", and

(e) it prints the value of sum.

The output of the program is as follows:

1 The sum of integers from 1 to 100 = 5050
2 The sum of integers from 1 to 1000 = 500500

2.3.4.1 Truncation of Real Numbers

Each of the floating point data types, float and double, has a finite number of bits for

representation. This limitation sometimes results in odd output. The next program shows such an

example. It works with two variables, v and a. The program assigns the initial value of 17.0 to v,

fixes the value of a to 3.42567824 (many digits!) and then updates the value v four times by: dividing

by a, subtracting 1.0, multiplying by a, and adding a. Before starting the series of modifications,

as well as after each of the four modifications, the program prints the value of v with additional

information regarding what value v represents. Since (((v/a)−1)∗a)+a = v, the value is anticipated

to return, at the end, to the original value, 17.0.

50 2 Using Data for Computation

1 public class RepresentationTest

2 {

3 public static void main(String [] args)

4 {

5 double v = 17.0;

6 double a = 3.42567824;

7

8 System.out.print("Start: ");

9 System.out.println(v);

10

11 v = v / a;

12 System.out.print("/ a : ");

13 System.out.println(v);

14

15 v = v - 1.0;

16 System.out.print("- 1.0: ");

17 System.out.println(v);

18

19 v = v * a;

20 System.out.print("* a : ");

21 System.out.println(v);

22

23 v = v + a;

24 System.out.print("+ a : ");

25 System.out.println(v);

26 }

27 }

Listing 2.15 A program that shows the limitation of using a finite number of bits for representating real numbers

The result is the following:

1 Start: 17.0
2 / a : 4.96252094008689
3 - 1.0: 3.9625209400868897
4 * a : 13.574321760000002
5 + a : 17.0

The first line of the output is the original value of 17.0. The second is the value immediately

after v = v / a. The third is the value immediately after v = v - 1.0. The fourth is the value

immediately after v = v * a. The last is the value immediately after v = v + a.

Notice that there is a difference between the length of the second output line (noted as / a) and

the length of the third output line (noted as - 1.0). Again, the difference is due to the fact that the

correct value of v / a requires an infinite number of digits. Also notice the 0000002 at the end the

fourth line. With a pencil calculation, the value is 13.57432176, but the representation does not

capture this correctly, hence the extra seven digits appearing at the end. Even though there are some

discrepancies, when the output moves to the last line, the tiny quantity of 0.000000000000002 at

the end vanishes, and so the output is 17.0 instead of 17.000000000000002.

2.3 Using Variables for Computation 51

2.3.5 Simplified Expressions

There is a way to simplify a mathematical formula that updates a variable using its current value. For

a formula of the type

a = a ◦ b;

where ◦ is one of the five operations {+,−, /, ∗, %}, the expression:

a ◦= b;

can be used instead. For example,

1 int a, b;

2 a = 20;

3 b = 13;

4 a = a + b;

5 b = b * 3;

can be simplified as

1 int a, b;

2 a = 20;

3 b = 13;

4 a += b;

5 b *= 3;

A special case of this short-hand is when the intended operation is either adding 1 to a or subtracting

1 from a. In this situation, the short-hand of either a++ or ++a can be used for adding 1 and the

short-hand of either a- or -a can be used for subtracting 1. The difference between having the ++
or - before or after the variable name is based on whether the change (i.e., adding 1 or subtracting 1)

takes place before or after the evaluation of the entire formula takes place. For example, in the next

code, adding 1 to b occurs before setting the value of a to the product of the value of b and the value

of c, and adding 1 to e occurs after setting the value of d to the product of the value of e and the

value of f.

1 a = ++b * c
2 d = e++ * f

The following program demonstrates the use of the simplified operations. The program uses two

int variables, myInt and other, and initializes the two variables with the values 10 and 13. The

program updates myInt five times using

• += other,

• *= other,

• -= other,

• /= other, and

• %= other

in this order, and reports the action it has performed, as well as the outcome.

52 2 Using Data for Computation

1 public class ShortHandExperiment

2 {

3 public static void main(String [] args)

4 {

5 int myInt , other;

6 myInt = 10;

7 other = 13;

8 System.out.print("myInt is ");

9 System.out.print(myInt);

10 System.out.print(", other is ");

11 System.out.println(other);

12

13 myInt += other;

14 System.out.print("Executed myInt += other\tmyInt is ");

15 System.out.println(myInt);

16

17 myInt *= other;

18 System.out.print("Executed myInt *= other\tmyInt is ");

19 System.out.println(myInt);

20

21 myInt -= other;

22 System.out.print("Executed myInt -= other\tmyInt is ");

23 System.out.println(myInt);

24

25 myInt /= other;

26 System.out.print("Executed myInt /= other\tmyInt is ");

27 System.out.println(myInt);

28

29 myInt %= other;

30 System.out.print("Executed myInt %= other\tmyInt is ");

31 System.out.println(myInt);

32

Listing 2.16 A program that demonstrates the use of mathematical short-hand expressions (part 1)

In the second part, the program executes myInt += other four times while modifying the value

of other with

• ++other,

• other++,

• -other, and

• other-

in this order, and reports the action it has performed and the outcome.

2.3 Using Variables for Computation 53

33 myInt += ++other;

34 System.out.print("Executed myInt += ++other\tmyInt is ");

35 System.out.print(myInt);

36 System.out.print(", other is now ");

37 System.out.println(other);

38

39 myInt += other ++;

40 System.out.print("Executed myInt += other ++\ tmyInt is ");

41 System.out.print(myInt);

42 System.out.print(", other is now ");

43 System.out.println(other);

44

45 myInt += --other;

46 System.out.print("Executed myInt += --other\tmyInt is ");

47 System.out.print(myInt);

48 System.out.print(", other is now ");

49 System.out.println(other);

50

51 myInt += other --;

52 System.out.print("Executed myInt += other --\tmyInt is ");

53 System.out.print(myInt);

54 System.out.print(", other is now ");

55 System.out.println(other);

56 }

57 }

Listing 2.17 A program that demonstrates the use of mathematical short-hand expressions (part 2)

The program produces the following output:

1 myInt is 10, other is 13
2 Executed myInt += other myInt is 23
3 Executed myInt *= other myInt is 299
4 Executed myInt -= other myInt is 286
5 Executed myInt /= other myInt is 22
6 Executed myInt %= other myInt is 9
7 Executed myInt += ++other myInt is 23, other is now 14
8 Executed myInt += other++ myInt is 37, other is now 15
9 Executed myInt += --other myInt is 51, other is now 14

10 Executed myInt += other-- myInt is 65, other is now 13

The next code uses two variables, int myInt and double myReal, to store an integer and a

floating point number, respectively. The program computes the product of the two variables and stores

the value of the product in a double variable, result. In addition, in the assignment of the product,

the program executes one of ++ or - either before or after the two variables:

1 result = myReal++ * myInt++;
2 result = ++myReal * ++myInt;
3 result = myReal-- * myInt--;
4 result = --myReal * --myInt;

These actions appear in Lines 19, 35, 51, and 66.

54 2 Using Data for Computation

Before each operation, the program prints the values of myInt and myReal, using four

statements:

1 System.out.print("myReal = ");

2 System.out.print(myReal);

3 System.out.print(" and myInt = ");

4 System.out.println(myInt);

The first and third lines announce the variables whose values are to be printed and the second and the

fourth lines print their values.

After the operation, the program reports the action it has performed and the values of the three

variables, and then draws a bunch of dashes.

Here is the code, presented in multiple parts. ++ or - appears in Lines 19, 35, 51, and 67.

1 public class ShortHandNew

2 {

3 public static void main(String [] args)

4 {

5 // //

6 // declaration and initialization

7 // //

8 int myInt;

9 double myReal , result;

10 myReal = 89.5;

11 myInt = 17;

12 // //

13 // first round

14 // //

15 System.out.print("myReal = ");

16 System.out.print(myReal);

17 System.out.print(" and myInt = ");

18 System.out.println(myInt);

19 result = myReal ++ * myInt ++;

20 System.out.println("Execute myReal ++ * myInt ++");

21 System.out.print("The result is ");

22 System.out.println(result);

23 System.out.print("Now myReal = ");

24 System.out.print(myReal);

25 System.out.print(" and myInt = ");

26 System.out.println(myInt);

27 System.out.println("--------------------------------------");

Listing 2.18 A program that demonstrate the use of ++ and −− (part 1)

2.3 Using Variables for Computation 55

28 // //

29 // second round

30 // //

31 System.out.print("myReal = ");

32 System.out.print(myReal);

33 System.out.print(" and myInt = ");

34 System.out.println(myInt);

35 result = ++ myReal * ++myInt;

36 System.out.println("Execute ++ myReal * ++myInt");

37 System.out.print("The result is ");

38 System.out.println(result);

39 System.out.print("Now myReal = ");

40 System.out.print(myReal);

41 System.out.print(" and myInt = ");

42 System.out.println(myInt);

43 System.out.println("--------------------------------------");

44 // //

45 // third round

46 // //

47 System.out.print("myReal = ");

48 System.out.print(myReal);

49 System.out.print(" and myInt = ");

50 System.out.println(myInt);

51 result = myReal -- * myInt --;

52 System.out.println("Execute myReal -- * myInt --");

53 System.out.print("The result is ");

54 System.out.println(result);

55 System.out.print("Now myReal = ");

56 System.out.print(myReal);

57 System.out.print(" and myInt = ");

58 System.out.println(myInt);

59 System.out.println("--------------------------------------");

60 // //

61 // fourth round

62 // //

63 System.out.print("myReal = ");

64 System.out.print(myReal);

65 System.out.print("and myInt = ");

66 System.out.println(myInt);

67 result = --myReal * --myInt;

68 System.out.println("Execute --myReal * --myInt");

69 System.out.print("The result is ");

70 System.out.println(result);

71 System.out.print("Now myReal = ");

72 System.out.print(myReal);

73 System.out.print(" and myInt = ");

74 System.out.println(myInt);

75 System.out.println("--------------------------------------");

76 }

77 }

Listing 2.19 A program that demonstrate the use of ++ and −− (part 2)

56 2 Using Data for Computation

Executing the program produces the following result:

1 myReal = 89.5 and myInt = 17
2 Execute myReal++ * myInt++
3 The result is 1521.5
4 Now myReal = 90.5 and myInt = 18
5 --------------------------------------
6 myReal = 90.5 and myInt = 18
7 Execute ++myReal * ++myInt
8 The result is 1738.5
9 Now myReal = 91.5 and myInt = 19

10 --------------------------------------
11 myReal = 91.5 and myInt = 19
12 Execute myReal-- * myInt--
13 The result is 1738.5
14 Now myReal = 90.5 and myInt = 18
15 --------------------------------------
16 myReal = 90.5and myInt = 18
17 Execute --myReal * --myInt
18 The result is 1521.5
19 Now myReal = 89.5 and myInt = 17
20 --------------------------------------

2.4 An Introduction to the StringData Type

2.4.1 The String Data Type

Recall that "Hello, World!" is a String literal. String is not a primitive data type. Rather,

String is an object type that encompasses a series of char data along with an int value

representing the length of the series. To create data of an object type, a special method called

constructor must be used. The use of any constructor requires a special keyword new. However,

since String is such an important data type, the Java language designers have made it possible to

create a String literal by specifying the character sequence that it encapsulates (using the double

quotation mark at the beginning and end of the sequence). The way to declare a String variable and

assign a value to it is the same as the other data types. The following source code is a new version of

the previous quarterback program, with the use of String variables.

The program decomposes the messages into the variable parts and the common parts. The first line

of the message takes the format of:

Rank No. 1 in my all-time favorite NFL QB list is Steve Young .

where the texts in a box are the unchanged parts. Thus, the first line is split into five parts total: the

three parts in a box, the rank number, and the name of the quarterback. The boxed parts are character

sequences. So is the name of the quarterback. The rank number can be thought of as an integer. The

variable names, rankText, favText, and period, are given to the three unchanged text parts

respectively, and the variable names, rank and name, are assigned to the remaining two. The output

of the line is:

rankText rank favText name period

The texts appearing in the boxes, including all the white space, are stored in the variables rankText,

favText, and period. The integer literal 1 is stored in the int variable rank and the String
literal "Steve Young" is assigned to the variable name. By printing the first four of the five

components (rankText, rank, favText, and name) successively with System.in.print

2.4 An Introduction to the String Data Type 57

and then the last of the five components, period, with System.out.println, the same output

can be generated.

To be more precise, the following code will be used:

1 String rankText , favText , period;

2 int rank;

3 String name;

4

5 rankText = "Rank number ";

6 favText = " in my all -time favorite NFL QB’s is ";

7 period = ".";

8

9 rank = 1;

10 name = "Steve Young";

11 System.out.print(rankText);

12 System.out.print(rank);

13 System.out.print(favText);

14 System.out.print(name);

15 System.out.println(period);

This series of actions produces the desired output line:

Rank number 1 in my all-time favorite NFL QB’s is Steve Young.

The second line can be decomposed in the same manner. The line is

His overall QB rating is 96.8 .

Again, the texts in a box are the unchanged parts. Since we already have declared the variable period
and assigned a literal consisting of a period to the variable, we will introduce only one new variable,

overText, which holds the other unchanged part His overall QB rating is.

The variable part in this line is a floating point number, so a double variable is used. The name

of the variable is qbr. By assigning the value 96.8 to qbr and printing the three components

successively, the second line of the output is reproduced.

The following is the code that represents this decomposition:

1 String overText;

2 double qbr;

3 overText = "His overall QB rating is ";

4

5 qbr = 96.8;

6 System.out.print(overText);

7 System.out.print(qbr);

8 System.out.println(period);

the code will produce the output:

His overall QB rating is 96.8.

By grouping the same type of variables together, rearranging the assignments and the declarations,

and making an assignment to each unchanged part immediately after declaring it, the next code is

obtained. In the next code, Lines 5–7 are the variable declarations, Lines 8–11 are the assignments to

the unchanged parts, Lines 13–15 are the assignments to the variable parts, and Lines 16–23 are the

print statements.

58 2 Using Data for Computation

1 public class Literals03

2 {

3 public static void main(String [] args)

4 {

5 int rank;

6 String name , rankText , favText , overText , period;

7 double qbr;

8 rankText = "Rank number ";

9 favText = " in my all -time favorite NFL QB list is ";

10 overText = "His overall QB rating is ";

11 period = ".";

12

13 rank = 1;

14 name = "Steve Young";

15 qbr = 96.8;

16 System.out.print(rankText);

17 System.out.print(rank);

18 System.out.print(favText);

19 System.out.print(name);

20 System.out.println(period);

21 System.out.print(overText);

22 System.out.print(qbr);

23 System.out.println(period);

24

25 rank = 2;

26 name = "Peyton Manning";

27 qbr = 96.5;

28 System.out.print(rankText);

29 System.out.print(rank);

30 System.out.print(favText);

31 System.out.print(name);

32 System.out.println(period);

33 System.out.print(overText);

34 System.out.print(qbr);

35 System.out.println(period);

36

37 rank = 3;

38 name = "Tom Brady";

39 qbr = 97.0;

40 System.out.print(rankText);

41 System.out.print(rank);

42 System.out.print(favText);

43 System.out.print(name);

44 System.out.println(period);

45 System.out.print(overText);

46 System.out.print(qbr);

47 System.out.println(period);

48 }

49 }

Listing 2.20 A program that produces comments about some NFL quarterbacks using variables and literals

2.4 An Introduction to the String Data Type 59

Here is the output of the code:

1 Rank number 1 in my all-time favorite NFL QB’s is Steve Young.
2 His overall QB rating is 96.8.
3 Rank number 2 in my all-time favorite NFL QB’s is Peyton Manning.
4 His overall QB rating is 96.5.
5 Rank number 3 in my all-time favorite NFL QB’s is Tom Brady.
6 His overall QB rating is 97.0.

2.4.2 String Concatenation

2.4.2.1 Concatenating Two String Data

A String object can represent a very, very long sequence.4 To specify a String, the beginning

and ending double quotation marks must appear in the same line. Therefore, to define a long (say, 900

characters) String literal, the width of the terminal screen is too small; viewing it on a screen results

in wraparound, i.e., the character sequence flows into the next line. For example, if a command line

interface window has the width of 64 characters (this quantity may change as the window is resized)

and a String has 900 characters in a single line, the line will be divided into much smaller segments

on the screen.

Fortunately, in Java, it is possible to concatenate String literals and variables using the + sign

to mean concatenation. It is also possible to concatenate between a String data and data of other

data types. Using concatenation, the process of generating output can be simplified.

The following code is a new version of the “favorite quarterbacks” program that uses the

concatenation operator:

1 public class Literals04

2 {

3 public static void main(String [] args)

4 {

5 int rank;

6 String name;

7 double qbr;

8 String rankText = "Rank number ";

9 String favText = " in my all -time favorite NFL QB list is ";

10 String overallText = "His overall QB rating is ";

11 String period = ".";

12

13 rank = 1;

14 name = "Steve Young";

15 qbr = 96.8;

16 System.out.println(rankText + rank + favText + name + period);

17 System.out.println(overallText + qbr + period);

18

Listing 2.21 A program that produces comments about three NFL quarterbacks using String concatenation (part 1)

4Since int is the data type for specifying the position of a character letter in a character sequence, the limit on the
length is 231 − 1.

60 2 Using Data for Computation

19 rank = 2;

20 name = "Peyton Manning";

21 qbr = 96.5;

22 System.out.println(rankText + rank + favText + name + period);

23 System.out.println(overallText + qbr + period);

24

25 rank = 3;

26 name = "Tom Brady";

27 qbr = 97.0;

28 System.out.println(rankText + rank + favText + name + period);

29 System.out.println(overallText + qbr + period);

30 }

31 }

Listing 2.22 A program that produces comments about three NFL quarterbacks using String concatenation (part 2)

Here is another example of using the concatenation operator. The program prints a quote from

Gettysburg Address by Abraham Lincoln (February 12, 1809 to April 15, 1865):

“Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty,

and dedicated to the proposition that all men are created equal.”

It is possible to declare a String variable and store this sentence in one line. If the width of the

screen is 64, the declaration and assignment will appear as:

1 String address1 = "Four score and seven years ago our fathers b

2 rought forth on this continent , a new nation , conceived in Libe

3 equal.";

with two mid-word breaks. Using the connector +, the code can be made easier to recognize:

1 String address1 = "Four score and seven years ago our"

2 + " fathers brought forth on this continent ,"

3 + " a new nation , conceived in Liberty , and"

4 + " dedicated to the proposition that all men"

5 + " are created equal.";

Because of the white space appearing at the start of the second, the third, the fourth, and the fifth

literals, System.out.println(address1) has the same effect as before:

1 Four score and seven years ago our fathers brought forth
2 on this continent, a new nation, conceived in Liberty,
3 and dedicated to the proposition that all men are create
4 d equal.

To avoid wraparound, the newline character \n to force line breaks can be inserted, e.g.,

1 String address1 =

2 "Four score and seven years ago our fathers brought forth\n"

3 + "on this continent , a new nation , conceived in Liberty ,\n"

4 + "and dedicated to the proposition that all men are\n"

5 + "created equal .\n";

2.4 An Introduction to the String Data Type 61

The output of System.out.println(address1) then changes to:

1 Four score and seven years ago our fathers brought forth
2 on this continent, a new nation, conceived in Liberty,
3 and dedicated to the proposition that all men are
4 created equal.

Here is another example. The example uses a String variable named row. The variable row has

the four lines of the song “Row, row, row your boat”. The literal has the newline at the end of each

line, so printing it produces the four lines, as shown next:

1 Row, row, row your boat,
2 Gently down the stream.
3 Merrily, merrily, merrily, merrily,
4 Life is but a dream.

The code for defining the String is as follows:

1 String row = "Row , row , row your boat ,\n"

2 + "Gently down the stream .\n"

3 + "Merrily , merrily , merrily , merrily ,\n"

4 + "Life is but a dream .\n"

When printing many short lines, the lines can be connected into a single line with a "\n in between,

thereby reducing the number of lines in the program. For example,

1 String count = "One\nTwo\nThree\nFour\nFive\n"

2 + "Six\nSeven\nEight\nNine\nTen\n";

3 System.out.print(count);

produces the output

1 One
2 Two
3 Three
4 Four
5 Five
6 Six
7 Seven
8 Eight
9 Nine

10 Ten

2.4.2.2 Concatenating String Data with Other Types of Data

When multiple number data are connected with a String object using the plus sign, the con-

catenation shows some peculiar behavior. This is because the plus sign has two roles as both the

addition operator of numbers and the String connector. Suppose the concatenation has more than

two terms and is free of parentheses. The java compiler interprets this from left to right, and in each

concatenation, if both terms are numbers, then the compiler treats it as the number addition.

62 2 Using Data for Computation

In the following code fragment:

1 String word1 = "csc120";

2 String word2 = 4 + 5 + 6 + "ab" + word1;

The value of word2 becomes the literal "15abcsc120", but not "456abcsc120". This is

because the first and the second concatenations are additions.

Consider the following example:

1 //-- examples of string manipulation

2 public class StringVariables {

3 public static void main(String [] args) {

4 String myString = "abcde";

5 int myInteger = 10;

6 double myDouble = 9.5;

7 System.out.print("myString = " + myString);

8 System.out.print(", myInteger = " + myInteger);

9 System.out.println(", myDouble = " + myDouble);

10

11 System.out.print("myString + myInteger + myDouble = ");

12 System.out.println(myString + myInteger + myDouble);

13

14 System.out.print("myString + (myInteger + myDouble) = ");

15 System.out.println(myString + (myInteger + myDouble));

16

17 System.out.print("myInteger + myString + myDouble = ");

18 System.out.println(myInteger + myString + myDouble);

19

20 System.out.print("myInteger + myDouble + myString = ");

21 System.out.println(myInteger + myDouble + myString);

22 }

23 }

Listing 2.23 A program that contains print statements that print values of String data generated by concatenation

In this code, both System.out.print and System.out.println have one or two

concatenations appearing in their parentheses. The execution of the code produces the following

result:

1 myString = abcde, myInteger = 10, myDouble = 9.5
2 myString + myInteger + myDouble = abcde109.5
3 myString + (myInteger + myDouble) = abcde19.5
4 myInteger + myString + myDouble = 10abcde9.5
5 myInteger + myDouble + myString = 19.5abcde

For String concatenation, the short-hand expression of += is available. In other words, w += x
can be used in place of w = w + x.

Exercises 63

Summary

Data carries information.

A data with a name is a variable. An example of data without a name is a literal.

A variable declaration requires the type and the name of the variable.

It is possible to declare multiple variables of the same type with just one type specification.

A variable declaration with final is a declaration of a constant.

Each variable declaration is valid until the end of the innermost pair of matching curly brackets

that contain it. This is the scope of the variable.

Two declarations having the same variable name must not have overlapping scopes.

The declaration of a variable must appear before an assignment to the variable.

A variable name must consist of letters and numerals, and must start with a letter.

The reserved words of Java cannot be used for names.

All the methods in a class have access to global variables.

Global variable declarations appear at depth 1 with the attribute of static while local variable

declarations appear at depth 2.

There are eight primitive data types. Other data types are object data types.

+, -, *, /, and % are five elementary mathematical operations.

Five shorthand expressions are available for self-updating. They are +=, -=, *=, /=, %=, ++, and

-.

It is possible to attach ++ or - to a variable, and the position of the attachment can be either before

or after the variable.

When a binary operator operates on two numbers of different types, the program chooses to

represent both with a floating number if and only if one of them is of a floating number.

Furthermore, for two numbers of different types, the program will choose the type with the larger

number of bits to represent both numbers.

It is possible to concatenate String literals and String variables with the + sign.

When a number concatenates with a String, the result is a String.

Exercises

1. Memory size The following are the four primitive data types in Java that represent whole

numbers. State how many bits are required to represent each of them.

(a) byte
(b) short
(c) int
(d) long

2. Memory size The following are the two primitive data types in Java that represent floating point

numbers. State how many bits are required to represent each of them.

(a) float
(b) double

3. Casting State whether or not the following statements are correct.

(a) To represent a whole number literal as a short, attach S at the end, e.g., as in 120S.

(b) To represent a whole number literal as a byte, attach B at the end, e.g., as in 120B.

(c) To represent a floating point number literal as a float, attach F at the end, e.g., as in

120.5F.

64 2 Using Data for Computation

4. Data type Suppose a is a long variable, b is an int variable, and c is a double variable.

State the data types of the following formulas:

(a) a / b
(b) a / c
(c) b / c

5. Declaring variables Write a program, MyFavorites, that declares two variables,

String word and int lucky, assigns some literals to them, and then prints the values

as follows:

1 My favorite word is "XXX".
2 My lucky number is YYY.

where XXX is for the value of word and YYY is for the value of lucky.

6. Value assignments to variables Consider the following series of statements:

1 int a = 11;

2 int b = 3;

3 int c = a / b + a % b;

4 a = a + b;

5 b = a - b;

What are the values of a, b and c after the very last statement?

7. Cyclic value assignments

Consider the following series of statements:

1 int a, b, c, d;

2 a = 11;

3 b = 12;

4 c = 13;

5 d = 14;

6 a = b;

7 b = c;

8 c = d;

9 d = a;

What are the values of the variables a, b, c, and d after each of the eight assignments?

8. What’s wrong with the code? Assume that the code below is part of the method main of a

class. State what is wrong with the code:

1 int numberX = 0, numberY = 2;

2 int numberX += numberY , numberZ;

3 numberZ = 0.5;

4 realW = 71.5;

5 double realW *= realW;

9. What’s wrong with the code? Assume that the code below is part of the method main of a

class. State what is wrong with the code:

Exercises 65

1 int a = 11, b = 10;

2 int b = a * b;

3 final int c = a;

4 c = a - 7;

10. Variable evaluation, ++ and −− After executing the code below, what are the values of x, y,

z and w?

1 int x, y, z, w;

2 x = 10;

3 y = 3;

4 z = x * y--;

5 w = --x * --y;

11. Variable evaluation, ++ and −− with division After executing the code below, what are the

values of z and w?

1 int x, y, z, w;

2 x = -11;

3 y = 4;

4 z = x / ++y;

5 w = ++x % y--;

12. Variable evaluation, String and number After executing the code below, what are the values

of z and w?

1 String x, y, z, w;

2 x = "emerson";

3 y = "palmer";

4 z = x + "lake" + y;

5 w = 1 + 2 + z + 3 + 4;

13. Value exchanging Let a and b be int variables. Write a code for exchanging the values of a
and b. For example, when a has the value of 10 and b has the value of 7, the exchange will make

the value of a equal to 7 and b equal to 10. Assume that a and b have been already declared in

the code and have been assigned values, so the task at hand is to swap the values of the two.

14. Value exchanging, again Let a, b, and c be int variables. Write a code for exchanging the

values of the three (the original value of a goes to b, the original value of b goes to c, and the

original value of c goes to a).

15. Short-hand Suppose a and b are int variables. What are the values of a and b after executing

the following?

1 a = 3;
2 b = 2;
3 a *= b;
4 b *= a;
5 a *= b;
6 b *= a;

66 2 Using Data for Computation

Programming Projects

16. Gravity again Recall that if an object is released so that it falls, the speed of the object at

t seconds after its release is gt and the distance the object has travelled in the t seconds after

release is 1
2gt2. Here, g is the gravity constant. Its value is approximately 9.8. Write a program,

Gravity, in which the method main performs the following actions:

(a) The program declares variables t for the travel time, speed for the speed, and distance
for the distance traveled;

(b) The program assigns some value to t;

(c) The program calculates the speed and the distance;

(d) The program prints the calculated values.

(e) The program assigns a different value to t and repeats Steps 1–4.

17. Computing the tax from a subtotal and then the total Write a program,

ComputeTaxAndTotal, that computes the tax and the total in the following manner:

• The program uses an int variable subtotal to store the subtotal in cents. Since we do not

know (yet) how to receive an input from the user, assign some int literal to this variable in the

code.

• The program use a double variable taxPercent to store the tax rate in percent. Again,

since we do not know (yet) how to receive an input from the user, assign some int literal to this

variable in the code (for example, the tax rate is 5.5% in the state of Massachusetts).

• The program then computes the tax amount as a whole number in cents, in an int variable

tax. Using the casting of (int), a floating point number can be converted to a whole number

by rounding it down.

• The program then computes the total, and stores it in an int variable total. (Again, this

quantity is in cents.)

• The program reports the result of the calculation in dollars and cents for the subtotal, the tax,

and the total, and then reports the tax rate.

The output the code may look like:

1 The subtotal = 110 dollars and 50 cents.
2 The tax rate = 5.5 percent.
3 The tax = 6 dollars and 7 cents.
4 The total = 116 dollars and 57 cents.

18. Speeding fine In the town of Treehead, the speeding fines are $20 times the mileage beyond

the speed limit. For example, if a driver was driving at 36 mph on a 30 mph road, his fine is

$120. Write a program, SpeedingFine, that produces the speeding fines for the following

combinations of speed and speed limit:

• (50 mph, 35 mph)

• (30 mph, 25 mph)

• (60 mph, 45 mph)

In the program, declare int variables, speed, limit, and fine. Compute the fine by assigning

values to the first two variables and multiplying it by the rate of 20. To report the results, write

a series of print/println statements in which the speed, the limit, and the fine appear as

variables. The code should execute this series three times and, before each series, the assignment

to the three variables must appear.

Here is an execution example of the program.

1 The fine for driving at 50 mph on a 35 mph road is 300 dollars.
2 The fine for driving at 30 mph on a 25 mph road is 100 dollars.
3 The fine for driving at 60 mph on a 45 mph road is 300 dollars.

Exercises 67

19. The area of a trapezoid Write a program, Trapezoid, that computes the area of a trapezoid

when given the top and bottom lengths and the height. The program specifies the top, the

bottom, and the height of the trapezoid in individual System.out.println statements. The

program computes the area by directly putting the formula (bottom + top) * height / 2 inside a

System.out.println statement. Freely choose the variables for the top, the bottom, and the height.

For example, the output of the program can be:

1 Top: 10.0
2 Bottom: 20.5
3 Height: 24.4
4 Area: 372.09999999999997

Split each line of the output into two parts: the first part prints the text, including the

whitespace, using a System.out.print statement, and the second part prints the quantity

using a System.out.println statement. For example, the first line should use the following

two statements:

1 System.out.print("Top: ");

2 System.out.println(10.0);

3Reading Keyboard Input

3.1 Class Scanner

3.1.1 Importing Source Codes

The class Scanner enables reading data from the keyboard, a String object, or a text file using the

characters (the white space character ’ ’, the tab-stop ’\t’, and the newline ’\n’) as separators

(such characters are called delimiters). The character sequences separated by the delimiters can be

read not only as String data but also as data of other types (when such interpretations are possible).

The class will play an important role in the programs presented in this book. The source code for

Scanner is available as part of JDK but not part of java.lang. Therefore, to write a source

code for a program that uses Scanner, the source code of Scanner must be included. To include

Scanner, an import statement must be used. If a class FooBar uses Scanner, the declaration

must take the following form:

1 import java.util.Scanner;

2 public class FooBar

3 {

4 ...

5 }

Here, java.util is the group called package that contains the source code for Scanner.

The source code library of JDK is a hierarchical (tree-like) structure. We call the top-level of the

hierarchy the root. Underneath the root exists a number of projects. A project is a collection of

packages, where a package is a collection of classes and/or hierarchies of classes serving common

purposes. Popular projects include java and javax. Popular packages in the project java are

lang, io, and util. The standard Java package lang belongs to the project java. The period .
appearing in the import statement refers to these hierarchical relations, so java.util.Scanner
means:

“the class Scanner in the package util of the project java”.

Some packages have sub-packages, and so the actual number of times that the separator . appears in

an import statement is more than two for some packages.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_3

69© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_3

70 3 Reading Keyboard Input

Multiple import statements may appear in the header. For example, the following code:

1 import java.util.Scanner;

2 import java.util.ArrayList;

3 import java.util.LinkedList;

4 import java.io.File;

5 import java.io.FileNotFoundException;

6 class FooBar

7 {

8 ...

9 }

imports five distinct classes. Multiple import statements for classes from the same package can be

substituted with a universal import statement.

1 import java.util .*;

2 class FooBar

3 {

4 ...

5 }

The asterisk, meaning “everything”, is called the wildcard.

3.1.2 The Instantiation of a Scanner Object

To use the functions of the class Scanner, one needs a Scanner object. A Scanner object is

created through a process called instantiation. The instantiation of an object of a type CLASS_NAME
takes the form of:

new CLASS_NAME(PARAMETERS)

where CLASS_NAME is a special method called constructor. Each object class has its own

constructors. The name of a constructor matches the name of the class it belongs to. Here,

PARAMETERS represents the information given to the instantiation procedure. Many classes,

including Scanner, accept more than one kind of parameter specification. In this book, we study

three Scanner constructors: one that takes a String object, one that takes System.in, which

refers to the keyboard, and one that takes a File object, which refers to a file.1 The next code

fragment uses the three Scanner constructors and assign them to Scanner variables.

1 Scanner strScanner , fileScanner , keyboard;

2 strScanner = new Scanner("My GPA is 4.00!");

3 fileScanner = new Scanner(new File("theFile.txt"));

4 keyboard = new Scanner(System.in);

1Although we do not use them in this book, String has many constructors (for various examples, see https://docs.
oracle.com/javase/7/docs/api/java/lang/String.html).

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

3.2 Reading Data with a Scanner Object 71

The first Scanner object strScanner scans the String literal "My GPA is 4.00!", the

second Scanner object fileScanner scans a file named "theFile.txt", and the last

Scanner object keyboard scans input from the keyboard. We will study the last type extensively

in this chapter.

3.2 Reading Data with a ScannerObject

Regardless of whether the input source may be a String, a File, or System.in, the chief

function of a Scanner is to read from the input source using a delimiter sequence as a separator.

Scanner does this by scanning the input character sequence from the beginning to the end and

discovering the longest stretch of characters free of delimiters. The delimiters are our usual suspect of

spacing characters: the white space character, the tab-stop, and the newline. We call such a delimiter-

free stretch of characters a token. When reading from a String and when reading from a File,

the contents of the input are fixed, so dividing the contents into tokens and delimiters is easy. When

reading from System.in, dividing the contents into tokens is a dynamic process, since the user

can use the delete key (or backspace key) to change the contents dynamically until the return key is

pressed, upon which no more changes are permitted.

Imagine that a String object myStringSource has contents

" Programming\t\tis fun, \nisn’t it?\n"

where \t and \n are the tab-stop, and the newline and the other gaps consist of the white space

characters. We can break this String data into an alternating series of delimiters and tokens, as

follows:

1. a delimiter " ",

2. a token "Programming",

3. a delimiter "\t\t",

4. a token "is",

5. a delimiter " ",

6. a token "fun,",

7. a delimiter "\n",

8. a token "isn’t",

9. a delimiter " ",

10. a token "it?"

If we have instantiated a Scanner object myInput from this String literal, then myInput
produces the five tokens in order of appearance.

To read data from the input source of a Scanner object, we apply a method to the object. Formally,

a method applied to an object data is called an instance method. To execute an instance method on an

object of an object class, we attach a period and the name of the method to the object, and then attach

a pair of parentheses after the method name. Each execution of the method is called a method call.

72 3 Reading Keyboard Input

This period has the same role as the second periods in System.out.println and

System.out.print, since System.out is an object of type PrintStream (which we will

study in Chap. 15).

The instance method used for reading a token as a String data from the input source of a

Scanner object is called next. Here is a code that uses the method:

1 String myStringSource;

2 Scanner myInput;

3 myStringSource = " Programming\t\tis fun , \nisn’t it?";

4 myInput = new Scanner(myStringSource);

5 myInput.next();

myInput.next() produces the first token of the String object, "Programming". If there

is no action that utilizes this token, the token disappears. The token that next produces in a String
variable can be saved via assignment; that is, after

1 String myStringSource , myFirstToken;

2 Scanner myInput;

3 myStringSource = " Programming\t\tis fun , \nisn’t it?";

4 myInput = new Scanner(myStringSource);

5 myFirstToken = myInput.next();

the variable firstToken has the value "Programming".

Earlier we quickly went over the return type of a method. In the case of the method next of

Scanner, its return type is String. In the case of the method next, the method comes back with

a String. We can obtain that value by assigning it to a String value. In a similar manner, we can

place the method call in a System.out.println, as shown next:

1 myInput = new Scanner(myStringSource);

2 System.out.println(myInput.next());

The System.out.println receives the return value of myInput.next() and prints it on

the screen. Since the first token retrieved is "Programming", the code produces the output:

Programming

By executing the next() four more times, we are able to retrieve all the tokens appearing in

mySourceText. For example,

3.2 Reading Data with a Scanner Object 73

Fig. 3.1 The results of five consecutive calls of next. The arrows show the start positions of the Scanner object for
the next read. The sequences immediately to the left of the arrows are the tokens that have been read

1 String myStringSource , token1 , token2 , token3 , token4 , token5

2 Scanner myInput;

3 myStringSource = " Programming\t\tis fun , \nisn’t it?";

4 myInput = new Scanner(myStringSource);

5 token1 = myInput.next();

6 token2 = myInput.next();

7 token3 = myInput.next();

8 token4 = myInput.next();

9 token5 = myInput.next();

retrieves the five tokens as five variables in the order they appear.

The results of the five calls of next are shown in Fig. 3.1.

It is impossible to scan beyond the last token. If an attempt is made to read beyond the last token,

a run-time error of NoSuchElementException occurs. The code appearing in the next source

code demonstrates an attempt to read beyond the last token, as well as the resulting run-time error.

74 3 Reading Keyboard Input

1 import java.util.Scanner;

2 public class BeyondLimit

3 {

4 public static void main(String [] args)

5 {

6 String aToken , tokens = new String("My age is 20");

7 Scanner keyboard = new Scanner(tokens);

8 aToken = keyboard.next();

9 System.out.println(aToken);

10 aToken = keyboard.next();

11 System.out.println(aToken);

12 aToken = keyboard.next();

13 System.out.println(aToken);

14 aToken = keyboard.next();

15 System.out.println(aToken);

16 aToken = keyboard.next();

17 System.out.println(aToken);

18 }

19 }

Listing 3.1 A program that attempts to read a token that does not exist

Since there are five keyboard.next() calls and there are only four tokens, an error occurs at

the fifth keyboard.next() call, as shown next:

1 My
2 age
3 is
4 20
5 Exception in thread "main" java.util.NoSuchElementException
6 at java.util.Scanner.throwFor(Scanner.java:862)
7 at java.util.Scanner.next(Scanner.java:1371)
8 at BeyondLimit.main(BeyondLimit.java:16)

The fifth line of the output is the start of the error message. The type of the error appears, at the end,

as java.util.NoSuchElementException.

It is vital to prevent attempts to read beyond the last token. When reading from the keyboard,

because the texts are generated dynamically and the length of the text is indefinite, we usually do not

encounter the error. (The error does not occur unless the user simultaneously presses the CTRL-key

and the letter ’d’ to indicate the end of the input. This combination is called CTRL-D. We will study

the use of CTRL-D in Chap. 11.)

When reading tokens from a String data or from a file, however, some proactive measures are

needed to prevent the error from happening. There are three possible approaches:

(a) know beforehand how many tokens are in the input source;

(b) check for the existence of a token before attempting to read;

(c) recover from NoSuchElementException using a special mechanism, called try-catch.

We will study the second approach in Chap. 11 and the third in Chap. 15.

3.2 Reading Data with a Scanner Object 75

Table 3.1 Selected
methods of Scanner

Name Return type Action

next String Obtains the next token

nextBoolean boolean Obtains the next boolean token

nextByte byte Obtains the next byte token

nextDouble double Obtains the next double token

nextFloat float Obtains the next float token

nextInt int Obtains the next int token

nextLong long Obtains the next long token

nextShort short Obtains the next short token

nextLine String Obtains the String before the next newline

hasNext boolean Checks whether or not the next token exists

All the methods in this table are usually called with an empty parameter,
i.e., with () attached after the method names. We will study hasNext in
Chap. 11

Using Scanner, we can fetch the next token not only as a String data but also as a token of a

specific primitive data type, given that the token can be interpreted as a literal of that type. The type-

specific fetch methods are: nextBoolean, nextByte, nextDouble, nextFloat, nextInt,

nextLong, and nextShort. Note that there is no method corresponding to reading a char. If

one of these methods is called and the next token cannot be interpreted as the type associated with

the method, a run-time error of InputMismatchException occurs. For example, suppose the

next token in the input sequence is -1.0. The token can be interpreted as a double data, a float
data, and a String data, but not as a whole number data or as a boolean data. Thus, the use of

nextBoolean, nextByte, nextDouble, nextFloat, nextInt, or nextLongwill fail (and

a run-time error will subsequently appear).

Table 3.1 presents a list of Scannermethods that appear in this textbook. We will study hasNext
in Chap. 11.

There is one particularly interesting “next” method in Scanner and this is nextLine. If the

remaining (or upcoming) character sequence has at least one occurrence of the newline character, the

nextLine returns the entire character sequence appearing before the first newline character in the

upcoming character sequence. After completing nextLine, the Scanner object scans the sequence

starting from the character immediately after the identified newline character.

If a Scanner object is instantiated with either a String data or a File object, the remaining

sequence may not contain any newline characters. If the nextLine method is called in such a

situation, the method returns the String data corresponding to all the remaining characters. After

that, no characters remain in the sequence.

Consider the following code:

76 3 Reading Keyboard Input

1 import java.util .*;

2 public class NextLine

3 {

4 public static void main(String [] args)

5 {

6 String myStringSource =

7 "My lucky number is 17 , \n how about yours? ";

8 Scanner myInput = new Scanner(myStringSource);

9 System.out.println(myInput.next());

10 System.out.println(myInput.next());

11 System.out.println(myInput.next());

12 System.out.println(myInput.next());

13 System.out.println(myInput.nextInt ());

14 System.out.println(myInput.nextLine ());

15 System.out.print(myInput.nextLine ());

16 System.out.println(":::::");

17 }

18 }

Listing 3.2 A program that combines next and nextLine

The source of the Scanner object is the String literal

"My lucky number is 17 , \n how about yours? "

The fifth token of the input source is the String literal "17". We can treat this as either a

String type or an int (or any other number type since 17 can be represented as a byte data).

The delimiter sequence that follows this number token consists of five characters, represented as

" , \n ". (the double quotation marks are attached so as to clarify the beginning and the ending

of the character sequence. If the method that is called at that point is next, then the Scanner
will skip to the next token ",". However, if the method that is called is nextLine instead, the

"\n" appearing as the fourth character of the five-character sequence becomes the delimiter. When

this happens, the Scanner object returns " , " as the result of executing nextLine, and then

the Scanner object positions itself to the fifth character of the sequence, i.e., the " " after the

newline. If nextLine and next are called successively, the method call to next returns "how".

If nextLine is called twice successively, the first call returns " , " as in the previous case, and

the second call returns the remainder of the sequence, " how about yours? ", because is no

additional appearance of \n. Based upon this analysis, the output of the program is expected to be:

1 % java NextLine
2 My
3 lucky
4 number
5 is
6 17
7 ,
8 how about yours? :::::
9 %

The ":::::" appearing at the end is not part of the String literal, but is a marking that this

program attaches to indicate the end of its output. Figure 3.2 shows the progress that the Scanner
object makes during the execution of the program.

3.3 Reading Input from the Keyboard 77

Fig. 3.2 The results of executing the program. The arrows show the positions of the Scanner object for the next read.
The sequences immediately to the left of the arrows are the tokens that have been read. Note that the last two reads are
done by nextLine so the delimiters other than the newline characters, if any, are included in the returned String
data that are returned

3.3 Reading Input from the Keyboard

We will now explore how to read data from the keyboard. Note two things:

1. The Scanner objects instantiated with System.in cannot take action until the return key is

pressed. This means that, depending on what actions are awaiting with the Scanner object, the

single line of input may offer a return value to multiple next methods of the Scanner object.

2. When reading the output generated by a program that scans keyboard input, the coexistence of the

output of the program and the echo of the keyboard input makes it difficult to distinguish between

the two different types of screen output.

The next code demonstrates the use of the type-specific token reading methods. The program stores

the result of each token it reads in a variable of an appropriate type, and then prints the value.

Notice that nextLine appears at the very beginning of the series of calls to next methods. This

is because if nextLine comes after another call to the next method, then the result of nextLine
will be an empty String.

78 3 Reading Keyboard Input

Furthermore, when a Scanner object is instantiated with System.in, because the white space

and the tab-stop are erasable after typing, nothing occurs until the return key is entered. For example,

if the character sequence ABC 17 5.4 is typed and the return key is entered, the sequence includes

three tokens, but none of the three tokens can be read until the pressing of the return key. Using this

1 import java.util.Scanner;

2

3 public class Nexts

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard;

8 boolean myBoolean;

9 byte myByte;

10 double myDouble;

11 float myFloat;

12 int myInt;

13 long myLong;

14 short myShort;

15 String myString;

16 keyboard = new Scanner(System.in);

17 // Nextline

18 System.out.print("Enter any String: ");

19 myString = keyboard.nextLine ();

20 System.out.println("You’ve entered: " + myString);

21 // String

22 System.out.print("Enter a String with no space: ");

23 myString = keyboard.next();

24 System.out.println("You’ve entered: " + myString);

25 // boolean

26 System.out.print("Enter a boolean: ");

27 myBoolean = keyboard.nextBoolean ();

28 System.out.println("You’ve entered: " + myBoolean);

29 // byte

30 System.out.print("Enter a byte: ");

31 myByte = keyboard.nextByte ();

32 System.out.println("You’ve entered: " + myByte);

33 // double

34 System.out.print("Enter a double: ");

35 myDouble = keyboard.nextDouble ();

36 System.out.println("You’ve entered: " + myDouble);

37 // float

38 System.out.print("Enter a float: ");

39 myFloat = keyboard.nextFloat ();

40 System.out.println("You’ve entered: " + myFloat);

41 // int

42 System.out.print("Enter an int: ");

43 myInt = keyboard.nextInt ();

44 System.out.println("You’ve entered: " + myInt);

45 // long

46 System.out.print("Enter a long: ");

47 myLong = keyboard.nextLong ();

48 System.out.println("You’ve entered: " + myLong);

49 }

50 }

Listing 3.3 A program that demonstrates the use of various “next” methods of Scanner

3.3 Reading Input from the Keyboard 79

information, if the user knows what types of tokens the program is expecting to receive, she can enter

multiple tokens in succession.

In the next code, the program expects three input tokens from the keyboard, a String, an int,

and a double. The program receives these input tokens and then prints them. Knowing what happens

in the code, the user can type ABC 10 4.5 to enter all the tokens required by the program at once.

1 import java.util.Scanner;

2 // an example of using Scanner

3 public class ScannerExample

4 {

5 public static void main(String [] args)

6 {

7 Scanner console;

8 String theWord;

9 int theWholeNumber;

10 double theRealNumber;

11 console = new Scanner(System.in);

12 System.out.print("Enter a string: ");

13 theWord = console.next();

14 System.out.print("Enter an int: ");

15 theWholeNumber = console.nextInt ();

16 System.out.print("Enter a double: ");

17 theRealNumber = console.nextDouble ();

18 System.out.print("You have entered ");

19 System.out.print(theWord);

20 System.out.print(", ");

21 System.out.print(theWholeNumber);

22 System.out.print(", and ");

23 System.out.print(theRealNumber);

24 System.out.println ();

25 }

26 }

Listing 3.4 A program that reads a String data, an int data, and a double data using methods of Scanner

The next program asks the user to enter two integers and then two real numbers. The program

then multiplies the two integers and divides the first real number by the second. Finally, the program

produces the output showing the results of the arithmetic operations.

80 3 Reading Keyboard Input

1 import java.util.Scanner;

2 // an example of using Scanner

3 public class ScannerMath

4 {

5 public static void main(String [] args)

6 {

7 Scanner console;

8 int int1 , int2 , product;

9 double real1 , real2 , quotient;

10

11 console = new Scanner(System.in);

12

13 System.out.print("Enter int no. 1: ");

14 int1 = console.nextInt ();

15 System.out.print("Enter int no. 2: ");

16 int2 = console.nextInt ();

17 product = int1 * int2;

18

19 System.out.print("Received ");

20 System.out.print(int1);

21 System.out.print(" and ");

22 System.out.println(int2);

23 System.out.print("The product is ");

24 System.out.println(product);

25

26 System.out.print("Enter double no. 1: ");

27 real1 = console.nextDouble ();

28 System.out.print("Enter double no. 2: ");

29 real2 = console.nextDouble ();

30 quotient = real1 / real2;

31

32 System.out.print("Received ");

33 System.out.print(real1);

34 System.out.print(" and ");

35 System.out.println(real2);

36 System.out.print("The quotient is ");

37 System.out.println(quotient);

38 }

39 }

Listing 3.5 A program that performs arithmetic operations on the numbers received from the user

Again, when running this code, all the numbers can be typed at once. Such “ahead of the game”

typing saves the wait time.

Summary

We construct an object by calling a constructor new CLASS_NAME(PARAMETERS).

A class may have more than one constructor, with each taking a unique set of parameters.

To use a Scanner object in the source code, the class Scanner must be imported.

To execute a method on an object, the method name along with parameters must be attached to

the object, with a period before the method name.

Scanner offers a variety of token reading methods: next, nextBoolean, nextByte,

nextDouble, nextFloat, nextInt, nextLine, nextLong, and nextShort.

Exercises 81

An attempt to read beyond the last token results in a run-time error.

The keyboard echo and the output of the program share the same screen.

Exercises

1. Terminology test

(a) To be able to use a Scanner, which class must be imported?

(b) To create a Scanner object that receives input from the keyboard, what statement is needed?

(c) Write the names of the Scanner methods necessary for receiving a String, an int, and

a double, respectively.

(d) When a user types a floating point number into a location where the program has just called

the nextInt method of a Scanner method, will an error occur? If so, what kind of error

is it?

(e) Does an int value of 15 pass for a double?

(f) What is the formal term that refers to the process of creating an object of an object type?

(g) What is the special keyword used in the source code when creating an object?

(h) For one primitive data type, the class Scanner does not have the next method designated

to read tokens of that type. Which type is this?

2. Scanning errors Consider the following program:

1 import java.util .*;

2 public class SimpleInputOutput

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 String word;

8 double real;

9 int value;

10 System.out.print("Enter a real number (for a double): ");

11 real = keyboard.nextDouble ();

12 System.out.print("Enter a word: ");

13 word = keyboard.next();

14 System.out.print("Enter an integer (for an int): ");

15 value = keyboard.nextInt ();

16 System.out.print("Your have entered: ");

17 System.out.println(real + ", " + word + ", " + value);

18 }

19 }

Suppose the user is considering the following key strokes when the code is compiled and run,

where the strokes are presented as String literals, with \t and \n representing the tab-stop and

newline respectively. Do they have enough tokens to finish the code? Which ones will run without

causing an error? For those that lead to an error, where will its error occur, and what is the nature

of the error?

(a) "\t0.5\tprogramming\t10\n"
(b) "\t5\tprogramming\t10.5\n"
(c) "\n\n5\n\n5\n"
(d) " 0 0 0.5"
(e) " 0 0 0.5\n"

82 3 Reading Keyboard Input

3. Scanning errors when nextLine is involved Consider the following program:

1 import java.util .*;

2 public class SimpleInputOutput

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 String word1 , word2;

8 double real;

9 int value;

10 System.out.print("Enter a real number (for a double): ");

11 real = keyboard.nextDouble ();

12 System.out.print("Enter a word: ");

13 word1 = keyboard.nextLine ();

14 System.out.print("Enter an integer (for an int): ");

15 value = keyboard.nextInt ();

16 System.out.print("Enter another word: ");

17 word2 = keyboard.nextLine ();

18 System.out.print("Your have entered: ");

19 System.out.println(

20 real + ", " + word1+ ", " + value + ", " + word2);

21 }

22 }

Suppose the user is considering the following key strokes when the code is compiled and run,

where the strokes are presented as String literals with \t and \n representing the tab-stop and

newline respectively. Do they have enough tokens to finish the code? Which ones will run without

causing an error? For those that lead to an error, where will its error and what is the nature of the

error?

(a) "\t0.5\tprogramming\t10\tJava\n"
(b) "\t5\tprogramming\n10.5\tJava\n"
(c) "5\nprogramming\n10.5\nJava\n"
(d) "\n\n5\n\n5\n"
(e) " -3 -3\n-3.7 -3.5\n"
(f) " 0.5 0.5\n6 6\n"

Programming Projects

4. Inferences Write a program named Inference that receives three names, name1, name2,

and name3, from the user and prints the following statements.

1 name1 is senior to name2
2 name2 is senior to name3
3 so
4 name1 is senior to name3
5
6 name3 is senior to name2
7 name2 is senior to name1
8 so
9 name3 is senior to name1

The output of the program is composed of the names entered, " is senior to , and "so".

Declare the last two as constants. Use three variables to store the entered names. Use these

components to produce the output.

Exercises 83

5. Arithmetic short-hand Write a program named ArithmeticShortHand that receives two

double numbers x and y from the user and then executes x *= y, y = x/y, and x /= y.

The program should print the values of x and y after each of the three actions. Try running the

program with various values for x and y. Also, see what happens when the value of y is set to 0.

6. Receiving five numbers Write a program named FiveNumbers that prompts the user to enter

five whole numbers, receives five numbers (u, v, x, y, and z) using nextInt, computes

the product of the five numbers as a long data, and produces the values of the five values and the

product on the screen. For example, the result could look like:

1 Enter five integers: 12 34 56 78 90
2 The five numbers are: 12, 34, 56, 78, 90
3 The product is: 160392960

7. Adding six numbers with four variables Write a program named Miser that prompts the

user to enter six whole numbers and produces the following output:

1 % java Miser
2 Enter six numbers: 1 10 3 4 -12 -6
3 You’ve entered: 1 10 3 4 12 -6 with the total sum of 0

Here, the numbers entered are 1, 10, 3, 4, -12, and -6. The program should be written so that it

uses only four variables: one variable for the scanner, one variable for the number received, one

variable for the total, and one variable for the message. The initial value of the variable storing

the total is 0, and the initial value of the variable storing the message is "You’ve entered:".

After these initializations, the program should receive the input value from the user, add the value

to the total, and update the value of the message variable by adding one white space followed by

the input value.

8. Favorite football player, an interactive program Write a program named FavoriteFoot
ballPlayer that receives the name, the position, the team, and the jersey number from the

user, and then produces the following message on the screen:

1 Enter name: Larry Fitzgerald
2 Enter position: Wide Receiver
3 Enter team: The Arizona Cardinals
4 Enter jersey number: 11
5 Your favorite football player is Larry Fitzgerald.
6 His position is Wide Receiver.
7 He is with The Arizona Cardinals and wears the jersey number 11.

Here, the first four lines show the interaction with the user. Since we do not need to perform math

operations, treat all the four values as String. The name may have spaces, so read each input

using nextLine.

9. Gravity again Recall that if an object is released to fall, the speed of the object at t seconds

after its release is gt and the distance the object has travelled in the t seconds after release is 1
2gt2.

Here, g is the gravity constant, which is approximately 9.8 (the unit is m/s2) on Earth. Write a

program named GravityInput whose method main does the following:

(a) It declares variables t for the travel time, speed for the speed, and distance for the

distance traveled;

(b) It receives a value for t from the user;

(c) It calculates the speed and the distance;

(d) It prints the calculated speed and distance.

(e) Repeat the last three steps two more times.

84 3 Reading Keyboard Input

10. Quadratic evaluation Write a program named QuadraticEvaluation that declares four

variables (a, b, c, x), receives values for the four from the user, calculates ax2 +bx + c and

a/x2 + b/x + c, and prints the values.

11. Adding time Write a program named AddTime that receives minutes and seconds from the

user four times, and then computes the total in hours, minutes, and seconds. The user must specify

the minutes and the seconds separately. Ideally, we want to be able to check if the values are valid

(that is, the minutes and the seconds have to be between 0 and 59), but because we have not

learned yet how to write code that does this, we will assume that the user always enters valid

values. The interactions with the user can be as follows:

1 Enter time #1: 10 50
2 Enter time #2: 26 35
3 Enter time #3: 37 30
4 Enter time #4: 41 50
5 The total is 1 hours 56 minutes 45 seconds.

We may want to print "hour" instead of "hours" for this particular case, but again, we do not

know yet how to identify that the number of hours is 1, so we will thus use "hours" throughout.

The task can be accomplished as follows:

• Compute the total seconds and the total minutes from the input.

• Add the quotient of the seconds divided by 60 to the minutes and then replace the seconds with

the remainder of the seconds divided by 60.

• Set the quotient of the minutes divided by 60 to the hour and then replace the minutes with the

remainder of the minutes divided by 60.

Programming Projects

12. Computing the tax, again Write a program named ComputeTaxAndtotalInteractive
that computes the tax and the total in the following manner:

• The program uses an int variable subtotal to store the subtotal in cents. The program

receives the value from the user.

• The program uses a double variable taxPercent to store the tax rate in percent. The

program receives the value from the user.

• The program then computes the tax amount as a whole number in cents, in an int variable

tax. Using the casting of (int) , a floating point number can be truncated to a whole number.

• The program then computes the total and stores it in an int variable total. (Again, this

quantity is in cents.)

• The program reports the result of the calculation in dollars and cents for the subtotal, the tax,

and the total, and then reports the tax rate.

The output of the code may look like:

1 Enter subtotal in cents: 11050
2 Enter tax percentage: 5.5
3 The subtotal = 110 dollars and 50 cents.
4 The tax rate = 5.5 percent.
5 The tax = 6 dollars and 7 cents.
6 The total = 116 dollars and 57 cents.

Exercises 85

13. Speeding fines, part 1 In the town of Silver Hollow, the speeding fines are $20 times the

mileage beyond the speed limit. For example, if a driver was driving at 36 mph on a 30 mph

road, his fine is $120. Write a program named SpeedingFineNew1 that receives the speed

and the limit from the user, and then computes the fine in Silver Hollow. The result could look

like:

1 Enter the speed and the limit: 50 35
2 The fine for driving at 50 mph on a 35 mph road is 300 dollars.

14. Speeding fines, part 2 In the town of Golden Valley, the speeding fines are $15 times the

percentage of the speed exceeding the limit. The percentage is rounded down to a whole number.

For example, if a driver was driving at 35 mph on a 30 mph road, the percentage of excess is the

integer part of (35 - 30) / 30, which is 16. Thus, the fine is 16 times $5 = $80. Write a

program named SpeedingFineNew2 that receives the speed and the limit from the user and

then computes the fine. The result could look like:

1 Enter the speed and the limit: 35 30
2 The fine for driving at 35 mph on a 30 mph road is 80 dollars.

15. Fractional difference Write a program named FractionalDifference that receives four

integers a, b, c, and d from the user, and then computes the difference (a/b) - (c/d).

Compute the difference by treating the four numbers as integers and then as floating point

numbers. To convert an integer to double, use casting of (double), e.g., (double) a.

The result could look like:

1 Enter the four numbers: 10 3 20 7
2 The difference is 1 using int and 0.4761904761904763 using double.

16. Volume of a rectilinear box Write a program named RectilinearBox that receives three

quantities, height, width, and length, from the user, and then computes the volume of the

rectilinear box whose dimensions are represented by these quantities. Assume that these quantities

are double (so the volume should be double).

4Decomposing Code into Components

4.1 Procedural Decomposition

4.1.1 Printing Rectangles

In this chapter, we learn how to decompose a source code into multiple methods.

We previously studied programs that draw shapes using multiple System.out.println
statements. Consider, this time, drawing a rectangle. Suppose we draw a rectangle with 3 × 3 white

space characters and surrounding borders, as shown next:

1 +---+
2 | |
3 | |
4 | |
5 +---+

We can accomplish the task using five System.out.println statements correspond-

ing to the five horizontal strips of the shape, as shown next.1 For clarification, the five

System.out.println statements are marked with line comments indicating their correspon-

dence to the strips.

1 public class Rectangle

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("+---+"); // top line

6 System.out.println("| |"); // middle section 1

7 System.out.println("| |"); // middle section 2

8 System.out.println("| |"); // middle section 3

9 System.out.println("+---+"); // bottom line

10 }

11 }

Listing 4.1 The source code for a program that produces a 3 × 3 white space rectangle with encompassing borders

1The program name for this is Rectangle, not Square, although the size of the white-area is 3 × 3. This is because the
shape does not look like a square, which is because the computer characters have longer height than width.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_4

87© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_4

88 4 Decomposing Code into Components

Suppose, instead of just one rectangle, we want to print the same rectangle three times, on top of

one another, as shown next.

1 +---+
2 | |
3 | |
4 | |
5 +---+
6 +---+
7 | |
8 | |
9 | |

10 +---+
11 +---+
12 | |
13 | |
14 | |
15 +---+

We can accomplish the task by repeating the five statements two more times:

1 public class Rectangle00

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("+---+"); // top line

6 System.out.println("| |"); // middle section 1

7 System.out.println("| |"); // middle section 2

8 System.out.println("| |"); // middle section 3

9 System.out.println("+---+"); // bottom line

10 System.out.println("+---+"); // top line

11 System.out.println("| |"); // middle section 1

12 System.out.println("| |"); // middle section 2

13 System.out.println("| |"); // middle section 3

14 System.out.println("+---+"); // bottom line

15 System.out.println("+---+"); // top line

16 System.out.println("| |"); // middle section 1

17 System.out.println("| |"); // middle section 2

18 System.out.println("| |"); // middle section 3

19 System.out.println("+---+"); // bottom line

20 }

21 }

Listing 4.2 A program that produces three rectangles

Alternatively, the same output can be generated using a source code that uses, three times, a method

that prints just one rectangle.

A method that prints a single rectangle can be defined as follows (where we use the name

oneRectangle for the method):

1 public static void oneRectangle ()

2 {

3 System.out.println("+---+");

4 System.out.println("| |");

5 System.out.println("| |");

6 System.out.println("| |");

7 System.out.println("+---+");

8 }

4.1 Procedural Decomposition 89

The method declaration conforms to the format we saw in Chap. 1:

ATTRIBUTES RETURN_TYPE METHOD_NAME(PARAMETERS)

oneRectangle is a public executable method requiring no parameters, with the return type of

void.

As mentioned earlier, one can define multiple methods in a source code. If oneRectangle is

the name of a method defined in a source code, all the methods appearing in the same source code

can execute the code oneRectangle. This is done by stating the name, and then attaching a pair of

parentheses followed by a semicolon:

1 public static ... fooBar(...)

2 {

3 ...

4 oneRectangle ();

5 ...

6 }

We call the action of executing a code (written in a method) by stating its name a method call.

Unlike the concept of method calls that we saw in Chap. 3, the method call oneRectangle
stands alone and does not require an instantiation of an object.

When a method call occurs, the present execution of the code is suspended temporarily, and the

code of the method that has been called is executed. Once the execution of the method is completed,

the suspended execution resumes.

Returning to the task of printing the three rectangles: now that we have written oneRectangle
as he method for printing one rectangle, the task can be accomplished by three successive calls of

oneRectangle, as shown next:

1 public static void main(String [] args)

2 {

3 oneRectangle ();

4 oneRectangle ();

5 oneRectangle ();

6 }

Remember that the declaration of a method in a class appears at depth 1 of a source code. If a class

has some k methods, the source code of the class will look like:

1 public class Foo

2 {

3 ATTRIBUTES_1 METHOD_1 (...)

4 {

5 ...

6 }

7 ATTRIBUTES_2 METHOD_2 (...)

8 {

9 ...

10 }

11 ...

12 ATTRIBUTES_k METHOD_k (...)

13 {

14 ...

15 }

16 }

90 4 Decomposing Code into Components

Here, ATTRIBUTES_i is a series of attributes for Method_i. These methods may appear in any

order.

Here is a complete source code for printing three rectangles using the method oneRectangle:

1 public class Rectangle01

2 {

3 public static void oneRectangle () {

4 System.out.println("+---+");

5 System.out.println("| |");

6 System.out.println("| |");

7 System.out.println("| |");

8 System.out.println("+---+");

9 }

10 public static void main(String [] args)

11 {

12 oneRectangle ();

13 oneRectangle ();

14 oneRectangle ();

15 }

16 }

Listing 4.3 A program that produces three rectangles. An alternate version

Since the order in which the two methods, oneRectangle and main, appear in the source does

not affect the way the source code works, the following code, in which the order of their appearances

is reversed, behaves exactly the same:

1 public class Rectangle01_Rev

2 {

3 public static void main(String [] args)

4 {

5 oneRectangle ();

6 oneRectangle ();

7 oneRectangle ();

8 }

9 public static void oneRectangle ()

10 {

11 System.out.println("+---+");

12 System.out.println("| |");

13 System.out.println("| |");

14 System.out.println("| |");

15 System.out.println("+---+");

16 }

17 }

Listing 4.4 A program that produces three rectangles. The order of the two methods have been switched

Figure 4.1 shows how the two methods work together. Each method is visualized in a column,

where the statements appearing in it are presented from top to bottom. When the first call of

oneRectangle occurs, C is recorded as the return location after completion of oneRectangle,

and then the execution of oneRectangle starts. When the execution of oneRectangle
completes, the return location of C is retrieved, and from there the execution of main resumes

(Fig. 4.2). We call the concept of using multiple methods with specific roles assigned to the methods a

procedural decomposition. The procedural decomposition of the three-rectangle program has three

benefits:

4.1 Procedural Decomposition 91

oneRectangle();

endOfMain

startOfMainA

B

C

D

E

startOfOneRectagle0

1

endOfOneRectagle

System.out.print(…);

System.out.print(…);

System.out.print(…);

System.out.print(…);

System.out.print(…);

2

3

4

5

6

execute oneRectangle

when done, jump to C

oneRectangle();

oneRectangle();

execute oneRectangle

when done, jump to D

execute oneRectangle

when done, jump to E

Fig. 4.1 The method calls in Rectangle01

1. In the source code of main, it is clear that some set of actions is repeated three times.

2. To change the shape, only one shape (i.e., the shape printed with oneRectangle) needs to be

modified.

3. To change the number of times the shape is printed, only the number of calls of oneRectangle()
needs to be modified.

Procedural decompositions improve the understanding of the code and make modifications easy.

Procedural decompositions can be made in a bottom-up manner, building a new method out of already

existing ones, as in case of the three identical rectangles. Procedural decompositions can be made in a

top-down manner as well, dividing an existing method into smaller components, as we will see now.

We notice that there are only two distinct strips in the rectangle: +--+ and |--|. We define

methods, line and section, that present these strips, respectively:

1 public static void line()

2 {

3 System.out.println("+---+");

4 }

and

1 public static void section ()

2 {

3 System.out.println("| |");

4 }

We can then rewrite oneRectangle as:

92 4 Decomposing Code into Components

1 public static void oneRectangle ()

2 {

3 line();

4 section ();

5 section ();

6 section ();

7 line();

8 }

The overall program looks like this:

1 public class Rectangle02

2 {

3 public static void line()

4 {

5 System.out.println("+---+");

6 }

7 public static void section ()

8 {

9 System.out.println("| |");

10 }

11 public static void oneRectangle ()

12 {

13 line();

14 section ();

15 section ();

16 section ();

17 line();

18 }

19 public static void main(String [] args)

20 {

21 oneRectangle ();

22 oneRectangle ();

23 oneRectangle ();

24 }

25 }

Listing 4.5 A program that produces three rectangles. The final version

The way the method calls are handled is now two-tiered. Added benefits of using this structure

are:

1. To change the width of the rectangle, the programmer only needs to edit the String literals

appearing in line and section.

2. To modify the number height of the rectangle, the programmer only needs to change the number

of times oneRectangle calls section.

4.1.2 Printing Quadrangles

Consider drawing four rectangles of same dimensions, two on top of the other two, where neighboring

rectangles share their adjacent sides and corners, as shown next:

4.1 Procedural Decomposition 93

oneRectangle();

endOfMain

startOfMainA

B

C

D

E

startOfOneRectagle0

1 line();

endOfOneRectagle

section();2

3

4

5

6

execute oneRectangle

when done, jump to C

oneRectangle();

oneRectangle();

execute oneRectangle

when done, jump to D

execute oneRectangle

when done, jump to E

startOfLine10

11

endOfLine12

startOfSection20

21

endOfSection22

section();

section();

execute line

when done, jump to 2

execute section

when done, jump to 5

. . .

line();
execute line

when done, jump to 6

Fig. 4.2 The method calls in Rectangle02

1 +---+---+
2 | | |
3 | | |
4 | | |
5 +---+---+
6 | | |
7 | | |
8 | | |
9 +---+---+

With all the actions placed in the main method, the code will look like:

94 4 Decomposing Code into Components

1 public class Quadrant01

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("+---+---+"); // top line

6 System.out.println("| | |"); // top section 1

7 System.out.println("| | |"); // top section 2

8 System.out.println("| | |"); // top section 3

9 System.out.println("+---+---+"); // middle line

10 System.out.println("| | |"); // bottom section 1

11 System.out.println("| | |"); // bottom section 2

12 System.out.println("| | |"); // bottom section 3

13 System.out.println("+---+---+"); // bottom line

14 }

15 }

Listing 4.6 A program that prints four rectangles with two on top of the other two

As in the case of the three rectangles, there are only two different printed strips that are printed:

(a) the pattern appearing at the top, in the middle, and at the bottom of the shape and (b) the pattern

appearing elsewhere. So, as before, we define two methods representing the patterns: line for the

former and side for the latter. We can decompose the drawing of the shape as the following sequence:

line, side, side, side, line, side, side, side, line

We can group the series of side into one and assign the name section to this group. The whole

sequence then becomes:

line, section, line, section, line

The above discussion is summarized in the diagram shown in Fig. 4.3. We then use this analysis to

decompose the original source code to a new one that employs multiple methods, Quadrant03.

Appearing first in the program is the method line that prints the line corresponding to the top, the

middle, and the bottom lines. Appearing next is the method side, which prints the line corresponding

to one line of the middle section.

Fig. 4.3 The
decomposition of actions
in the generation of the
quadrant

line section line section line

main

side

side

side

side

side

side

Program Flow

4.1 Procedural Decomposition 95

1 public class QuadrantDecomposed

2 {

3 // the horizontal line

4 public static void line()

5 {

6 System.out.println("+---+---+"); // border line

7 }

8 // the side line

9 public static void side()

10 {

11 System.out.println("| | |"); // one line of section

12 }

Listing 4.7 A program that produces four rectangles using method class (part 1). The methods that are responsible for
producing single lines

Appearing next is the method section that calls side three times. At the end, the method main
appears and calls line, section, line, section, and line in this order.

13 // the middle block between the horizontal lines

14 public static void section ()

15 {

16 side(); // section 1

17 side(); // section 2

18 side(); // section 3

19 }

20 // the main

21 public static void main(String [] args)

22 {

23 line();

24 section (); // top section

25 line();

26 section (); // bottom section

27 line();

28 }

29 }

Listing 4.8 A new version of the quadrant generation program that uses method calls (part 2). The methods for printing
the middle section and the method main

4.1.3 “Old MacDonald Had a Farm”

Suppose we are to write a code that produces on the screen the lyrics to a popular nursery rhyme

“Old MacDonald Had A Farm”. Each verse of the song introduces one new animal and then presents

the sound that the animal makes as well as the sounds of all the other animals in the reverse order of

introduction.

There are many variations of this rhyme, with regards to the number of animals and the order of

appearance. Here is one version with four animals (a cow, a pig, a duck, and a horse) with no “repeats”

from previous verses.

1 Old MacDonald had a farm
2 E-I-E-I-O
3 And on his farm he had a cow
4 E-I-E-I-O
5 With a moo moo here
6 And a moo moo there
7 Here a moo, there a moo
8 Everywhere a moo moo

96 4 Decomposing Code into Components

9 Old MacDonald had a farm
10 E-I-E-I-O
11

Listing 4.9 The lyrics to the rhyme “Old MacDonald Had A Farm” with four animals. Presented without repeats

12 Old MacDonald had a farm
13 E-I-E-I-O
14 And on his farm he had a pig
15 E-I-E-I-O
16 With a oink oink here
17 And a oink oink there
18 Here a oink, there a oink
19 Everywhere a oink oink
20 Old MacDonald had a farm
21 E-I-E-I-O
22
23 Old MacDonald had a farm
24 E-I-E-I-O
25 And on his farm he had a duck
26 E-I-E-I-O
27 With a quack quack here
28 And a quack quack there
29 Here a quack, there a quack
30 Everywhere a quack quack
31 Old MacDonald had a farm
32 E-I-E-I-O
33
34 Old MacDonald had a farm
35 E-I-E-I-O
36 And on his farm he had a horse
37 E-I-E-I-O
38 With a neigh neigh here
39 And a neigh neigh there
40 Here a neigh, there a neigh
41 Everywhere a neigh neigh
42 Old MacDonald had a farm
43 E-I-E-I-O
44

Listing 4.10 The lyrics to the rhyme “Old MacDonald Had A Farm” with four animals. Presented without repeats
(cont’d)

With the repeats from previous verses, the rhyme looks like:

1 Old MacDonald had a farm
2 E-I-E-I-O
3 And on his farm he had a cow
4 E-I-E-I-O
5 With a moo moo here
6 And a moo moo there
7 Here a moo, there a moo
8 Everywhere a moo moo
9 Old MacDonald had a farm

10 E-I-E-I-O
11
12 Old MacDonald had a farm
13 E-I-E-I-O
14 And on his farm he had a pig
15 E-I-E-I-O

Listing 4.11 The lyrics to the rhyme “Old MacDonald Had A Farm” with four animals (part 1)

4.1 Procedural Decomposition 97

16 With a oink oink here
17 And a oink oink there
18 Here a oink, there a oink
19 Everywhere a oink oink
20 With a moo moo here
21 And a moo moo there
22 Here a moo, there a moo
23 Everywhere a moo moo
24 Old MacDonald had a farm
25 E-I-E-I-O
26
27 Old MacDonald had a farm
28 E-I-E-I-O
29 And on his farm he had a duck
30 E-I-E-I-O
31 With a quack quack here
32 And a quack quack there
33 Here a quack, there a quack
34 Everywhere a quack quack
35 With a oink oink here
36 And a oink oink there
37 Here a oink, there a oink
38 Everywhere a oink oink
39 With a moo moo here
40 And a moo moo there
41 Here a moo, there a moo
42 Everywhere a moo moo
43 Old MacDonald had a farm
44 E-I-E-I-O
45
46 Old MacDonald had a farm
47 E-I-E-I-O
48 And on his farm he had a horse
49 E-I-E-I-O
50 With a neigh neigh here
51 And a neigh neigh there
52 Here a neigh, there a neigh
53 Everywhere a neigh neigh
54 With a quack quack here
55 And a quack quack there
56 Here a quack, there a quack
57 Everywhere a quack quack
58 With a oink oink here
59 And a oink oink there
60 Here a oink, there a oink
61 Everywhere a oink oink
62 With a moo moo here
63 And a moo moo there
64 Here a moo, there a moo
65 Everywhere a moo moo
66 Old MacDonald had a farm
67 E-I-E-I-O
68

Listing 4.12 The lyrics to the rhyme “Old MacDonald Had A Farm” with four animals (part 2)

The structure of these verses is simple. Each verse consists of four parts:

98 4 Decomposing Code into Components

part number the lines characteristic

1 “Old MacDonald ... -O” common among all the verses

2 “And ... had a XXX ... -O” unique to each verse

3 “With a YYY ... Everywhere a YYY” cumulative

4 “Old MacDonald ... -O” the first block, then one empty line

Based upon this observation, we design the following code:

1 public class OldMacDonaldDecomposed

2 {

3 // start and end of each verse

4 public static void macDonald ()

5 {

6 System.out.println("Old MacDonald had a farm");

7 System.out.println("E-I-E-I-O");

8 }

9 // possession of a cow

10 public static void cowPossession ()

11 {

12 System.out.println("And on his farm he had a cow");

13 System.out.println("E-I-E-I-O");

14 }

15 // possession of a pig

16 public static void pigPossession ()

17 {

18 System.out.println("And on his farm he had a pig");

19 System.out.println("E-I-E-I-O");

20 }

21 // possession of a duck

22 public static void duckPossession ()

23 {

24 System.out.println("And on his farm he had a duck");

25 System.out.println("E-I-E-I-O");

26 }

27 // possession of a horse

28 public static void horsePossession ()

29 {

30 System.out.println("And on his farm he had a horse");

31 System.out.println("E-I-E-I-O");

32 }

Listing 4.13 A program that print the lyrics to “Old MacDonald Had A Farm” using decomposition (part 1). The
method that produces the opening and ending lines of the verses and the methods for producing the lines about the
animals

4.1 Procedural Decomposition 99

33 // the sound of a cow

34 public static void cowSound ()

35 {

36 System.out.println("With a moo moo here");

37 System.out.println("And a moo moo there");

38 System.out.println("Here a moo , there a moo");

39 System.out.println("Everywhere a moo moo");

40 }

41 // the sound of a pig

42 public static void pigSound ()

43 {

44 System.out.println("With an oink oink here");

45 System.out.println("And an oink oink there");

46 System.out.println("Here an oink , there an oink");

47 System.out.println("Everywhere an oink oink");

48 }

49 // the sound of a duck

50 public static void duckSound ()

51 {

52 System.out.println("With a quack quack here");

53 System.out.println("And a quack quack there");

54 System.out.println("Here a quack , there a quack");

55 System.out.println("Everywhere a quack quack");

56 }

57 // the sound of a horse

58 public static void horseSound ()

59 {

60 System.out.println("With a neigh neigh here");

61 System.out.println("And a neigh neigh there");

62 System.out.println("Here a neigh , there a neigh");

63 System.out.println("Everywhere a neigh neigh");

64 }

Listing 4.14 A program that print the lyrics to “Old MacDonald Had A Farm” using decomposition (part 2). The
methods for printing the lines that introduce the sounds that the animals make

100 4 Decomposing Code into Components

65 // the cow verse

66 public static void cowVerse ()

67 {

68 macDonald ();

69 cowPossession ();

70 cowSound ();

71 macDonald ();

72 }

73 // the pig verse

74 public static void pigVerse ()

75 {

76 macDonald ();

77 pigPossession ();

78 pigSound ();

79 cowSound ();

80 macDonald ();

81 }

82 // the duck verse

83 public static void duckVerse ()

84 {

85 macDonald ();

86 duckPossession ();

87 duckSound ();

88 pigSound ();

89 cowSound ();

90 macDonald ();

91 }

92 // the horse verse

93 public static void horseVerse ()

94 {

95 macDonald ();

96 horsePossession ();

97 horseSound ();

98 duckSound ();

99 pigSound ();

100 cowSound ();

101 macDonald ();

102 }

103 // main

104 public static void main(String [] args)

105 {

106 cowVerse ();

107 System.out.println ();

108 pigVerse ();

109 System.out.println ();

110 duckVerse ();

111 System.out.println ();

112 horseVerse ();

113 }

114 }

Listing 4.15 A program that produces the lyrics to the rhyme “Old MacDonald Had A Farm” (part 3). The methods
that build individual verses and the method main

4.1 Procedural Decomposition 101

main

cowMain

pigMain

duckMain

horseMain

start
end

cow
Possession

cow

Calling

start

pig

Possession

cow

Calling

pig

Calling

end
start

duck

Possession

cow
Calling

pig

Calling

end

duck

Calling

start

horse

Possession

cow
Calling

pig
Calling

end

duck

Calling

horse

Calling

Fig. 4.4 The dependency among methods in OldMacDonaldDecomposed.java

Figure 4.4 presents the dependencies among the methods.

4.1.4 A General Strategy for Procedural Decomposition

While procedural decomposition helps better understand the code and makes future revisions easier,

it does not necessarily reduce the length of the source code because each additional method has its

own header and encompassing curly brackets.

In the next chapter, Chap. 5, we will study methods that take parameters and/or return a value. By

combining procedural decomposition and the use of multiple source code files, we will be able to

write a program divided into reasonably small units that are all easy to understand.

Since each method appearing in a source code can call each method appearing in the same source

code, it is possible to create a circle of method calls.

Suppose we have the program:

102 4 Decomposing Code into Components

1 public class Parts123

2 {

3 public static void partOne ()

4 {

5 System.out.println("One");

6 partTwo ();

7 }

8 public static void partTwo ()

9 {

10 System.out.println("Two");

11 partThree ();

12 }

13 public static void partThree ()

14 {

15 System.out.println("Three");

16 }

17 public static void main(String [] args)

18 {

19 partOne ();

20 }

21 }

Listing 4.16 A program with methods that print 1, 2, and 3

The action of the entire code is simple: main calls partOne, partOne calls partTwo, and

partTwo calls partThree. This produces the output of "One", "Two", and "Three". The

execution of the program produces the output:

1 One
2 Two
3 Three

By making a slight change to the code we can produce a bizarre effect.

1 public class InfiniteCalls

2 {

3 public static void partOne ()

4 {

5 System.out.println("One");

6 partTwo ();

7 }

8 public static void partTwo ()

9 {

10 System.out.println("Two");

11 partThree ();

12 }

Listing 4.17 A program that produces a bizarre effect (part 1)

4.1 Procedural Decomposition 103

13 public static void partThree ()

14 {

15 System.out.println("Three");

16 partOne ();

17 }

18 public static void main(String [] args)

19 {

20 partOne ();

21 }

22 }

Listing 4.18 A program that produces a bizarre effect (part 2)

The code produces the following:

1 % javac InfiniteCalls.java

2 % java InfiniteCalls

3 One

4 Two

5 Three

6 ...

7 ...

8 Exception in thread "main" java.lang.StackOverflowError

9 at sun.nio.cs.UTF_8$Encoder.encodeLoop(UTF_8.java :691)

10 at java.nio.charset.CharsetEncoder.encode(CharsetEncoder.java :579)

11 at sun.nio.cs.StreamEncoder.implWrite(StreamEncoder.java :271)

12 at sun.nio.cs.StreamEncoder.write(StreamEncoder.java :125)

13 at java.io.OutputStreamWriter.write(OutputStreamWriter.java :207)

14 at java.io.BufferedWriter.flushBuffer(BufferedWriter.java :129)

15 at java.io.PrintStream.write(PrintStream.java :526)

16 at java.io.PrintStream.print(PrintStream.java :669)

17 at java.io.PrintStream.println(PrintStream.java :806)

18 at InfiniteCalls.partOne(InfiniteCalls.java :3)

19 at InfiniteCalls.partThree(InfiniteCalls.java :12)

20 at InfiniteCalls.partTwo(InfiniteCalls.java :8)

21 at InfiniteCalls.partOne(InfiniteCalls.java :4)

22 ...

23 at InfiniteCalls.partThree(InfiniteCalls.java :12)

24 at InfiniteCalls.partTwo(InfiniteCalls.java :8)

25 at InfiniteCalls.partOne(InfiniteCalls.java :4)

26 %

The actual output of the code is much longer. The ... signifies the visual cut made to the output.

The import thing to notice is the line

Exception in thread "main" java.lang.StackOverflowError

The error message states that the method calls have used up all the memory space available for JVM

to run, so JVM had to abort the execution of the code. The direct cause of this termination is due to

the method call structure from Fig. 4.5. You can see that there is a loop going from one to three. This

loop repeats over and over again, which results in the exhaustion of the memory space. In general, we

call a loop structure that makes the program run forever an infinite loop. Thus, we say that the code

InfiniteClass.java has an infinite loop.

The word “Exception” appearing in the error message is a word that refers to a run-time error.

104 4 Decomposing Code into Components

Fig. 4.5 The dependency
among methods in the two
source code. Left panel: the
original code. Right panel:
the modified code

main

partOne

partTwo

partThree

main

partOne

partTwo

partThree

4.2 Using Multiple Program Files

We extend the idea of extracting components from a method to create another method, and write

multiple classes and use methods from one in another Java class.

The benefits of reusing existing source codes are twofold. First, the use of recycling code from

another class saves the coder from having to write the same code from scratch again. Second, sharing

the code among applications may make it easier to revise the code.

Consider the following class Signature.

1 public class Signature

2 {

3 public static void sign()

4 {

5 System.out.println ();

6 System.out.println(

7 "+---+");

8 System.out.println(

9 "| THIS PROGRAM IS CODED BY MITSU OGIHARA |");

10 System.out.println(

11 "+---+");

12 }

13 }

Listing 4.19 A program that produces a signature

Signature.java has one method, sign, which produces four lines of output as follows:

1
2 +---+
3 | THIS PROGRAM IS CODED BY MITSU OGIHARA |
4 +---+

There is no main method in this class, so we cannot execute the code by itself. By attaching the

class name Signature and a period before the method name, we can call this method from outside:

Signature.sign();

Knowing this capability we can write a new version of HelloWorld, which produces the signature

lines along with the "Hello, World!" message.

Exercises 105

1 public class HelloWorldCall

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("Hello , World!");

6 Signature.sign();

7 }

8 }

Listing 4.20 A HelloWorld program that print a signature at the end

To run the above code, you need both HelloWorldCall and Signature. Since the former

used the latter, one can compile the latter first and then compile the former. Alternatively, we may

simply compile both at the same time:

javac Signature.java HelloWorldCall.java

Summary

A class can have any number of methods in it.

Methods are defined at depth 1 of the class in which they appear.

Methods can appear in any order in a class.

The process of creating a method that is in charge of performing a certain part of the actions another

method performs is called procedural decomposition.

The benefits of procedural decomposition include better readability and easier code modification.

It is possible to write multiple classes with methods making calls across classes. When using

multiple program files, the files can be compiled either individually or all at once.

Exercises

1. Number manipulation Suppose we are writing a program PlayWithNumbersDecomposed,

in which we have two tasks:

(a) The program receive two integers, a and b, from the user and then prints a + b, a - b,

a * b, a / b, and a % b (we anticipate that the user will not enter 0 for the second

number).

(b) The program receives three integers, a, b, and c, from the user and then prints the result of

(a - b) / c for each of the six possible permutations among the three numbers.

Write the code for this program so that it has two separate methods that handle the two tasks. The

method main calls the two methods one after the other. Each non-main method instantiates its

own Scanner object with System.in. Here is an example of how the program may interact

with the user.

106 4 Decomposing Code into Components

1 Enter two integers: 1000435 345
2 a + b is equal to 1000780
3 a - b is equal to 1000090
4 a * b is equal to 345150075
5 a / b is equal to 2899
6 a % b is equal to 280
7 Enter three integers: 34325 79 -40
8 (a - b)/c is equal to -856
9 (a - c)/b is equal to 435

10 (b - c)/a is equal to 0
11 (b - a)/c is equal to 856
12 (c - a)/b is equal to -435
13 (c - b)/a is equal to 0

2. Shape Presentation Suppose we are writing a program HouseShape that produces the

following output on the screen:

1 /\
2 / \
3 / \
4 / +--+ \
5 / | | \
6 / +--+ \
7 -+--------+-
8 | |
9 | +--+ |

10 | | | |
11 | +--+ |
12 | |
13 -+--------+-
14 This is my house!

The action of the program can be divided into three parts:

• printing the roof (including the bottom of the roof),

• printing the body of the house, and

• printing the message.

Write a program with three methods (in addition to main) which correspond to the above three

tasks, where the method main simply calls the three methods in order.

3. Forward slashes Previously we wrote a program that produced on the screen:

1 / / / / / / / / / / / /
2 / / / / / / / / / / /
3 / / / / / / / / / / / /
4 / / / / / / / / / / /
5 / / / / / / / / / / / /
6 / / / / / / / / / / /
7 / / / / / / / / / / / /
8 / / / / / / / / / / /
9 / / / / / / / / / / / /

10 / / / / / / / / / / /

This output consists of five repetitions of the pattern of the first two lines. Write an alternate version,

SlashesWithMethodCalls, that performs this task with five identical method calls (in the

method main) to a method, twoLines. The method twoLines produces the consecutive pair

of two lines.

Exercises 107

Programming Projects

4. This Old Man “This Old Man” is a popular children rhyme that consists of ten verses. All the

verses are identical, except for the two words, which we present below as XXX and YYY, where

XXX goes from one to ten

1 This old man, he played XXX,
2 He played knick-knack on his YYY;
3 With a knick-knack paddywhack,
4 Give the dog a bone,
5 This old man came rolling home

Here is the list of ten words for YYY:

drum, shoe, knee, door, hive, sticks, heaven, gate, spine, again

We can decompose the common parts of the verses into:

(a) The first line excluding XXX,. In other words, it is "This old man, he played "
(b) The second line excluding YYY;. In other words, it is "He played knick-knack

on his "
(c) The third to fifth lines plus one empty line.

Let first, second, and rest be methods that print the three parts, where first and second
use System.out.print and rest uses System.out.println. Using this decomposition,

write a program that prints the first three verses of the rhyme.

5. Die face printing Consider printing the six sides of a die using in a 5 × 5 grid as follows:

+−−−+

| |

| o |

| |

+−−−+

+−−−+

| |

| o o |

| |

+−−−+

+−−−+

| o |

| o |

| o |

+−−−+

+−−−+

| o o |

| |

| o o |

+−−−+

108 4 Decomposing Code into Components

+−−−+

| o o |

| o |

| o o |

+−−−+

+−−−+

| o o |

| o o |

| o o |

+−−−+

Write a program named Dice that prints the six faces using a method call to print each line of the

faces.

6. Digits in 5×5 rectangles Consider writing a program that prints digits 0, . . . , 9 in 5×5 rectangles

using the following design: Here is the code:

1 +---+ | ----+ ----+ | | +---- +---- ----+ +---+ +---+
2 | | | | | | | | | | | | | |
3 | | | +---+ ----+ +---+ +---+ +---+ | +---+ +---+
4 | | | | | | | | | | | | |
5 +---+ | +---- ----+ | ----+ +---+ | +---+ |

To save space, the digits are placed side by side, but in the actual code, the digits will be stuck on

top of each other. There are only six patterns appearing in the digits:

1 +---+
2 +---
3 ---+
4 | |
5 |
6 |

We can give these six patterns unique pattern names and write six methods that print the individual

six patterns. With the addition of one more method that prints one empty line, the seven methods

can be used as the building blocks for digit printing. Write a program named Digits that

accomplishes this task. The program should have the seven building blocks as methods, ten

methods that print the ten digits with one blank line as their sixth lines, and the method main
that calls the ten methods one after another.

7. A Pop song Select one of the No. 1 hits by The Beatles (e.g., “I Want To Hold Your Hand”) and

write a program that prints the lyrics to the song line by line. A popular song lyrics search engine

can be used to find the lyrics. Consider the following points:

• If a line is repeated more than once, define a method for printing that line alone.

• If a series of lines are repeated more than once, find a maximally long stretch for that series and

define a method for printing that series.

• It is natural to define a method for each verse or bridge (a verse and a bridge are the units that

are presented with no blank lines in them).

5Passing Values to and from Methods

5.1 Passing Values to Methods

5.1.1 Methods That Work with Parameters

In this chapter, we will advance the concept of method decomposition and learn how to exchange

information with methods.

Recall the rhyme “Old MacDonald Had a Farm” that we examined in Chap. 4. The verses of the

song became longer and longer as each new verse introduced one new animal. The contents of the

verses are repetitive because they have the same principal structures. We now consider a new program

in which the song introduces only three animals: a cow, a pig, and a dog in this order. With slight

changes in capitalization and punctuation, our goal is to generate this output:

1 Old MacDonald had a farm, E-I-E-I-O
2 And on his farm he had a cow, E-I-E-I-O
3 With a Moo, Moo here
4 And a Moo, Moo there
5 Here a Moo, there a Moo
6 Everywhere a Moo, Moo
7 Old MacDonald had a farm, E-I-E-I-O
8
9 Old MacDonald had a farm, E-I-E-I-O

10 And on his farm he had a pig, E-I-E-I-O
11 With an Oink, Oink here
12 And an Oink, Oink there
13 Here an Oink, there an Oink
14 Everywhere an Oink, Oink
15 With a Moo, Moo here
16 And a Moo, Moo there
17 Here a Moo, there a Moo
18 Everywhere a Moo, Moo
19 Old MacDonald had a farm, E-I-E-I-O
20

Listing 5.1 The expected output our new “Old MacDonald Had A Farm” program (part 1)

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_5

109© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_5

110 5 Passing Values to and from Methods

21 Old MacDonald had a farm, E-I-E-I-O
22 And on his farm he had a dog, E-I-E-I-O
23 With a Bow, Wow here
24 And a Bow, Wow there
25 Here a Bow, there a Bow
26 Everywhere a Bow, Wow
27 With an Oink, Oink here
28 And an Oink, Oink there
29 Here an Oink, there an Oink
30 Everywhere an Oink, Oink
31 With a Moo, Moo here
32 And a Moo, Moo there
33 Here a Moo, there a Moo
34 Everywhere a Moo, Moo
35 Old MacDonald had a farm, E-I-E-I-O

Listing 5.2 The expected output our new “Old MacDonald Had A Farm” program (part 2)

Look at the lines that introduce the animal names:

1 And on his farm he had a cow, E-I-E-I-O
2 ...
3 And on his farm he had a pig, E-I-E-I-O
4 ...
5 And on his farm he had a dog, E-I-E-I-O

The three lines appear in all the verses with their unique animal names, "a cow", "a pig", and

"a dog". By hiding the variable part with ..., the lines are:

And on his farm he had ..., E-I-E-I-O

We thus construct a method that takes the ... and replaces it with the input when printing the line.

Suppose name is a String variable whose value is one of the three possible values and, for what it

is worth, any String. We can be substitute the line with:

System.out.println("And on his farm he had " + name

+ ", E-I-E-I-O");

Based upon what we have learned so far, we know that this statement accomplishes the required

task. We can turn this into a method by the name of “had,” since it is about an animal.

1 public static void had()

2 {

3 System.out.println("And on his farm he had " + name

4 + ", E-I-E-I-O");

5 }

Note that the declaration of name is missing in the code for had. Thus, for this code to function

correctly, the declaration must appear in the method or appear outside the method as the declaration

of a global variable. To make the declaration appear in the method, one can think of defining it as:

1 public static void had()

2 {

3 String name;

4 System.out.println("And on his farm he had " + name

5 + ", E-I-E-I-O");

6 }

5.1 Passing Values to Methods 111

Unfortunately, this does not allow the code outside the method to assign a value to name. The

correct way to do so, according to the Java syntax, is to place it inside the parentheses of the method

header, as shown next:

1 public static void had(String name)

2 {

3 System.out.println("And on his farm he had " + name

4 + ", E-I-E-I-O");

5 }

We call the variables appearing in the parentheses of a method declaration parameters, or formal

parameters, to be more precise.

The way we call this method is the same as the way we call the print methods of System.out,

e.g.,

1 ...

2 public static void main(String [] args)

3 {

4 had("a cow");

5 ...

6 String name = "a pig";

7 had(name);

8 ...

9 }

10 public static void had(String name)

11 {

12 System.out.println("And on his farm he had " + name

13 + ", E-I-E-I-O");

14 }

The first method call is had("a cow"). Before executing this call, JVM stores the value of

the String literal "a cow" to the method had. To pass the value, JVM stores the value in the

formal parameter name of the method had.

The second method call is had(name). This time, JVM stores the value of the variable name
appearing in the main method, which is "a pig", in the formal parameter name of the method

had.

As opposed to the term formal parameter, we call the variables that the JVM transfers to the formal

parameters of a method call actual parameters.

1 ...

2 public static void main(String [] args)

3 {

4 had("a cow");

5 ...

6 String name = "a pig";

7 had(name);

8 ...

9 }

10 public static void had(String name)

11 {

12 System.out.println("And on his farm he had " + name

13 + ", E-I-E-I-O");

14 }

112 5 Passing Values to and from Methods

Note that the name appearing in the second method call is different from the name appearing in

the method itself due to their scopes. The range of the first name starts at the { immediately after the

main declaration and ends at the } before the had declaration. The range of the second name starts

at the { immediately after the had declaration and ends at the last }. Therefore, we can safely change

the names stored in the variables without causing any problems.

We apply a similar decomposition to the section that prints the calling of the animals. In this

section, the output for the pig is:

1 With an Oink, Oink here
2 And an Oink, Oink there
3 Here an Oink, there an Oink
4 Everywhere an Oink, Oink

and the output for the dog is:

1 With a Bow, Wow here
2 And a Bow, Wow there
3 Here a Bow, there a Bow
4 Everywhere a Bow, Wow

We can identify the following pattern:

1 With xxx, yyy here
2 And xxx, yyy there
3 Here xxx, there xxx
4 Everywhere xxx, yyy

where xxx and yyy are respectively "an Oink" and "Oink" for the pig and respectively "a
Bow" and "Wow" for the dog. (Naturally, we wish we could dispose of the article appearing in each

xxx, but unfortunately that appears impossible, since the article is "an" for the pig and "a" for the

others.) The pattern is encode in a method named with as follows:

1 public static void with(String xxx , String yyy)

2 {

3 System.out.println("With " + xxx + ", " + yyy + " here");

4 System.out.println("And " + xxx + ", " + yyy + " there");

5 System.out.println("Here " + xxx + ", there " + xxx);

6 System.out.println("Everywhere " + xxx + ", " + yyy);

7 }

Unlike had, which takes just one formal parameter, the method with has two formal parameters.

Both are String data. When there is more than one formula parameter, we use a comma to separate

them. For variable declaration, we can combine multiple declarations of the same type by connecting

the variable names with a comma inserted between two variable names. Such abbreviations are not

permissible in formal parameter specifications; each parameter must have its own type specification.

5.1 Passing Values to Methods 113

In general, the parameter part of a method declaration is a list of parameter types and parameter

names.

(TYPE_1 NAME_1, ..., TYPE_k NAME_k)

If there is no parameter that the method takes, this part is empty; if there is only one parameter, there

will be no comma, since the number of commas is one fewer than the number of parameters. We call

the sequence of the types

[TYPE_1, ..., TYPE_k]

the parameter type signature of the method. The entire code appears next, shown in two parts:

1 public class OldMacDonaldPassing

2 {

3 //-- the cow verse

4 public static void cowVerse ()

5 {

6 macDonald ();

7 had("a cow");

8 with("a Moo", "Moo");

9 macDonald ();

10 }

11 //-- the pig verse

12 public static void pigVerse ()

13 {

14 macDonald ();

15 had("a pig");

16 with("an Oink", "Oink");

17 with("a Moo", "Moo");

18 macDonald ();

19 }

20 //-- the dog verse

21 public static void dogVerse ()

22 {

23 macDonald ();

24 had("a dog");

25 with("a Bow", "Wow");

26 with("an Oink", "Oink");

27 with("a Moo", "Moo");

28 macDonald ();

29 }

30 //-- start and end of each verse

31 public static void macDonald ()

32 {

33 System.out.println("Old MacDonald had a farm , E-I-E-I-O");

34 }

Listing 5.3 A source code for the parameterized version of the “Old MacDonald” program (part 1)

114 5 Passing Values to and from Methods

35 //-- the "Had" line

36 public static void had(String name)

37 {

38 System.out.println("And on his farm he had " + name

39 + ", E-I-E-I-O");

40 }

41 //-- the "With a" lines

42 public static void with(String xxx , String yyy)

43 {

44 System.out.println("With " + xxx + ", " + yyy + " here");

45 System.out.println("And " + xxx + ", " + yyy + " there");

46 System.out.println("Here " + xxx + ", there " + xxx);

47 System.out.println("Everywhere " + xxx + ", " + yyy);

48 }

49 //-- main

50 public static void main(String [] args)

51 {

52 cowVerse ();

53 System.out.println ();

54 pigVerse ();

55 System.out.println ();

56 dogVerse ();

57 }

58 }

Listing 5.4 A source code for the parameterized version of the “Old MacDonald” program (part 2)

Note that, in this version, main appears as the very first method. As mentioned earlier, methods

are free to call others regardless of their order of appearance in the source code.

The formal parameters of a method are local variables. The method can use them in the computation

by making modifications to them. If they are primitive data, the values of the corresponding actual

parameters are copied to the formal parameters. This means that the modifications that occur to the

formal parameters in the method do not reflect on the value of the actual parameters. In contrast,

if they are object data, the actual parameters inform the method the locations of the object data in

the computer memories. We call the locational information the reference. If the method assigns a

value to the formal parameter, the reference of the formal parameter changes, but the reference of

the actual parameter does not and the method loses the reference to the original data. From that

point on, any actions taken on the formal parameter will have no effect on the actual parameter.

If the method executes an instance method on the formal parameter without assigning a new

value, and that method modifies the status/contents of the object data, the actual parameter will be

affected.

To see how this mechanism works, consider the following code. The two assignments in test
have no effect on word or radius in main. The t.next(), on the other hand, because t and

textScanner are referring to the same Scanner object, has the effect of advancing the scanning

position. This means that, when main executes textScanner.next(), the method next returns

the second token of "Madman across the water!", across.

5.1 Passing Values to Methods 115

1 import java.util .*;

2 public class Levon

3 {

4 public static void main(String [] args)

5 {

6 String word = "Tiny Dancer";

7 double radius = 19.7;

8 Scanner textScanner = new Scanner("Madman across the water!");

9 test(word , textScanner , radius);

10 System.out.println(radius);

11 System.out.println(word);

12 System.out.println(textScanner.next());

13 }

14 public static void test(String w, Scanner t, double r)

15 {

16 w = "Levon";

17 r = 4.5;

18 System.out.println(t.next());

19 }

20 }

Listing 5.5 A code that demonstrates call-by-reference

Executing the code produces the following result:

Madman
19
Tiny Dancer
across

Figure 5.1 explains this effect. w, r, and t appearing in the lower part of the picture are the formal

parameters of test. word, radius, and textScanner appearing in the higher part of the picture

are the variables of main. The solid arrows originating from them represent the values they have at

the end of test. The dashed arrows originating from these variables represent the values they used

to have. The start positions for obtaining the next tokens are shown with big arrows. At the start of

test, w and r have the same values as word and radius. When the assignments to w and r are

made in test, the values of w and r change, but the values of word and radius are preserved. The

effect of t.next is different. While t and textScanner still have the Scanner object as their

values, the call t.next changes the position of the next available token.

We call the mechanism in which Java handles parameter passing call by reference.

5.1.2 Method Overloading

Java permits multiple methods having the same names appear in the same code unit as long as their

parameter type signatures are different. We call this method overloading.

The following code example demonstrates method overloading. The program defines seven

methods by the name of response. The first six of the seven methods take one parameter each:

a String, a boolean, a int, a byte, a double, and a float. The last of the seven takes no

parameter. These methods simply print on the screen what the parameter type is, as well as the value

of its parameter.

116 5 Passing Values to and from Methods

word

w

19

3000“Levon”

“Tiny Dancer”

radius

r

textScanner

t

M a d m a n ca r s ro s t h e a t ew

Fig. 5.1 The call-by-reference concept. On the top side, the boxes are actual parameters

1

2 /* ***************************************

3 * A toy example of method overloading

4 * *************************************** */

5

6 public class ResponseOverload

7 {

8 /* ******************

9 * the String version

10 * *************** */

11 public static void response(String data)

12 {

13 System.out.println("The data is a String \"" + data + "\".");

14 }

15

16 /* ******************

17 * the boolean version

18 * *************** */

19 public static void response(boolean data)

20 {

21 System.out.println("The data is a boolean " + data + ".");

22 }

23

24 /* ******************

25 * the int version

26 * *************** */

27 public static void response(int data)

28 {

29 System.out.println("The data is an int " + data + ".");

30 }

31

32 /* ******************

Listing 5.6 A program that demonstrates the use of method overloading (part 1)

5.1 Passing Values to Methods 117

33 * the byte version

34 * *************** */

35 public static void response(byte data)

36 {

37 System.out.println("The data is a byte " + data + ".");

38 }

39

40 /* ******************

41 * the float version

42 * *************** */

43 public static void response(float data)

44 {

45 System.out.println("The data is a float " + data + ".");

46 }

47

48 /* ******************

49 * the double version

50 * *************** */

51 public static void response(double data)

52 {

53 System.out.println("The data is a double " + data + ".");

54 }

55

56 /* ******************

57 * the empty version

58 * *************** */

59 public static void response ()

60 {

61 System.out.println("There is no data.");

62 }

63

64 /* ******************

65 * the main method

66 * *************** */

67 public static void main(String [] args)

68 {

69 String myString = "hello";

70 boolean myBoolean = false;

71 int myInteger = 10;

72 byte myByte = 0x7f;

73 double myDouble = -98.5;

74 float myFloat = 99.9F;

75

76 response(myString);

77 response(myBoolean);

78 response(myInteger);

79 response(myByte);

80 response(myDouble);

81 response(myFloat);

82 response ();

83 }

84 }

Listing 5.7 A program that demonstrates the use of method overloading (part 2)

118 5 Passing Values to and from Methods

The method main appearing at the end of the source code declares variables of six different types,

assigns values to them, and then makes seven calls. Six out of the seven take one variable each. The

one appearing at the end takes none.

The Java compiler assigns these calls to their respective types. Because each version announces

itself, it is possible to tell which one of the seven is called by looking at the output generated. Note

that if the letter F that appears at the end of the assignment to myFloat, this indicates that the literal

is a float.

Here is the result of executing the code:

1 The data is a String "hello".

2 The data is a boolean false.

3 The data is an int 10.

4 The data is a byte 127.

5 The data is a double -98.5.

6 The data is a float 99.9.

7 There is no data.

Notice that the output for myByte is in decimals, although the value specified is hexadecimal.

If the type signature of a method call does not match the type signature of any method having the

same name, a compiler checks if the data types of the actual parameter can be interpreted as different

types so that the interpreted type signature has a match. The interpretation is applied to number types,

by treating a whole number type as a floating point number type and/or by treating a number type

as a larger number type. If no match can be found even with the parameter type interpretation, the

compiler produces a syntax error.

The next code is a new version of ResponseOverload. The number of type signa-

tures for response has been reduced from seven to just two. The types are int and

double.

1

2 /* ***************************************

3 * A toy example of method overloading

4 * *************************************** */

5

6 public class ResponseOverloadLimited

7 {

8 /* ******************

9 * the int version

10 * *************** */

11 public static void response(int data)

12 {

13 System.out.println("The data is an int " + data + ".");

14 }

15

16 /* ******************

17 * the double version

18 * *************** */

19 public static void response(double data)

20 {

21 System.out.println("The data is a double " + data + ".");

22 }

23

Listing 5.8 A program with method overloading in which available methods are fewer than the method call types
(part 1)

5.2 Receiving a Value from a Method 119

24 /* ******************

25 * the main method

26 * *************** */

27 public static void main(String [] args)

28 {

29 int myInteger = 10;

30 byte myByte = 0x7f;

31 double myDouble = -98.5;

32 float myFloat = 99.9F;

33

34 response(myInteger);

35 response(myByte);

36 response(myDouble);

37 response(myFloat);

38 }

39 }

Listing 5.9 A program with method overloading in which available methods are fewer than the method call types
(part 2)

For myByte, the compiler uses the int version as its surrogate, and for myFloat, the compiler

uses the double version as its surrogate. These substitutions come naturally, since both int and

byte are for whole numbers with more bits in int, and both double and float are for floating

point numbers with more bits in double. Here is the result of executing the program.

1 The data is an int 10.

2 The data is an int 127.

3 The data is a double -98.5.

4 The data is a double 99.9.

If we take this further and eliminate the int version, then double will be used for all number

types.

5.2 Receiving a Value from a Method

It is possible to receive a value from a method as the outcome of its calculation. A method returns a

value of a specific data type (and that specific data type must appear in the method declaration). All

the methods we have seen so far had void as the return type. By changing it to something else, we

can write a declaration with a real return type.

ATTRIBUTES RETURN_TYPE METHOD_NAME(PARAMETERS)

For example, we can define a method named bmiCalculate that calculates the BMI value of

a person (given the weight value and the height value, where the return type is double) as

follows:

public static double bmiCalculate(double weight , double height)

Here is another example. Suppose we want to write a method calculateSum that computes the

sum of integers from 1 to n for an integer n. We can declare the method as follows:

120 5 Passing Values to and from Methods

public static int calculateSum(int n)

When a method that returns a value finishes its computation, the program execution goes back to

the location where the call took place, carrying the return value. Upon returning, JVM completes the

statement in which the method call appears, using the value it is carrying back from the method. For

example, in the case of calculateSum, if the method call appears in the form of:

int mySum = calculateSum(10);

and if the method returns some value (in this case 55 is the value we wish to receive), the end result is

the same as:

int mySum = 55;

We can use the data that a method returns in an assignment. We can also use it as a formal

parameter. If the data is an object type, we can directly apply a method for the type to the data that the

method returns. Consider the following two hypothetical methods:

1 public static Scanner generateScanner(int inputData)

2 {

3 String phrase;

4 // some computation to determine the value of phrase

5 // from inputData

6 Scanner yourScanner = new Scanner(phrase);

7 return yourScanner;

8 }

9 public static String firstToken(int inputInt)

10 {

11 Scanner myScanner = generateScanner(inputInt);

12 String myToken = yourScanner.next();

13 return(myToken);

14 }

The statement return has the role of returning a value. The parentheses surrounding the data to

be returned can be omitted.

The first method, generateScanner, determines the value of a String variable, phrase,

based upon the value of the parameter inputData. The method then calls the constructor for a

Scanner with the phrase as the parameter (i.e., new Scanner(phrase)). This call come

back with a Scanner object. The method stores this Scanner object in yourScanner. The

method concludes by returning yourScanner.

The second method, firstToken, calls the first method, generateScanner, with

inputInt as the actual parameter (note that there is transfer of value from inputInt to

inputData) and stores the Scanner that the first method returns in myScanner. Then, the

method executes next on myScanner to obtain its first token and stores the token in the variable

myToken. The method concludes by returning myToken.

We can simplify this code by disposing of the three variables, yourScanner, myScanner, and

myToken, as follows:

5.2 Receiving a Value from a Method 121

1 public static Scanner generateScanner(int inputData)

2 {

3 String phrase;

4 // some computation

5 return new Scanner(phrase);

6 }

7 public static String firstToken(int inputData)

8 {

9 return generateScanner(inputData).next();

10 }

In the first method, the return statement returns the Scanner object that the constructor

generates. In the second method, the program executes the method next directly on the Scanner
object that the first method returns.

Method calls can appear in another method call. If a method methodA takes some k parameters of

types TYPE_1, . . ., TYPE_k and methods METHOD_1, . . ., METHOD_k return the same types of data

respectively, and the value sequence to pass to these methods is SEQUENCE_1, . . ., SEQUENCE_k,

then:

1 TYPE_1 value_1 = method_1(SEQUENCE_1);
2 ...
3 TYPE_k value_k = method_k(SEQUENCE_k);
4 methodA(value_1, ..., value_k);

can be substituted with:

methodA(method_1 (SEQUENCE_1), ..., method_k(SEQUENCE_k));

Here is an illustration of how we may use this feature. In the previous code for computing BMI

values, we used pounds for the weight unit and feet and inches for the height units.

1 import java.util.Scanner;

2 public class BMIInteractive

3 {

4 public static final double BMI_SCALE = 703.0;

5 public static final int FEET_TO_INCHES = 12;

6

7 public static double bmiFormula(double weight , double height)

8 {

9 return BMI_SCALE * weight / (height * height);

10 }

11

Listing 5.10 A program for computing the BMI values interactively. Reprise (part 1)

122 5 Passing Values to and from Methods

12 public static void oneInteraction ()

13 {

14 Scanner keyboard = new Scanner(System.in);

15 System.out.print("Enter weight: ");

16 double weight = keyboard.nextDouble ();

17 System.out.print("Enter height in feet and inches: ");

18 double feet = keyboard.nextDouble ();

19 double inches = keyboard.nextDouble ();

20 double height = FEET_TO_INCHES * feet + inches;

21 double bmi = bmiFormula(weight , height);

22 System.out.println("Your BMI is " + bmi + ".");

23 }

24 public static void main(String [] args)

25 {

26 oneInteraction ();

27 oneInteraction ();

28 }

29 }

Listing 5.11 A program for computing the BMI values interactively. Reprise (part 2)

To compute the BMI value using these three values, we convert the feet and the inches to a single

value named height using the formula (Line 20), and then use the method bmiFormula to obtain

the BMI value (Line 21).

We can develop methods to conduct these calculations. One method, combineFeetAndInches,

takes the feet and inches for height and returns its inch-only value as follows:

1 public static double combineFeetAndInches(double feet , double inches)

2 {

3 return FEET_TO_INCHES * feet + inches;

4 }

The other method we introduce is a three-parameter version of bmiFormula. The method takes

three values, the weight, the feet, and the inches. The method computes the inch-based representation

of the height using combineFeetAndInches with feet and inches as the actual parameters.

Then, the method calls the two-parameter version of bmiFormula to obtain the BMI, and returns

the BMI. Since the inch-based representation of height is used nowhere else, we can dispose of the

variable for storing the inch-based value, as follows:

1 public static double bmiFormula(double weight , double feet ,

2 double inches)

3 {

4 return bmiFormula(weight , combineFeetAndInches(feet , inches));

5 }

The return value of the method call to combineFeetAndInches is used as the second actual

parameter of the call to bmiFormula.

The following is a version of the program with these new features. The output of the program is

different from that of the previous, and the program states what the input values are. The first part of

the code consists of the constants and the methods for computing the BMI values.

5.2 Receiving a Value from a Method 123

1 import java.util.Scanner;

2 public class BMIFeeding

3 {

4 public static final double BMI_SCALE = 703.0;

5 public static final int FEET_TO_INCHES = 12;

6

7 public static double bmiFormula(double weight , double height)

8 {

9 return BMI_SCALE * weight / (height * height);

10 }

11

12 public static double combineFeetAndInches(double feet , double inches)

13 {

14 return FEET_TO_INCHES * feet + inches;

15 }

16

17 public static double bmiFormula(double weight , double feet ,

18 double inches)

19 {

20 return bmiFormula(weight , combineFeetAndInches(feet , inches));

21 }

22

Listing 5.12 A new version of the program for computing the BMI values for the input provided by the user (part 1)

The next part consists of the method for interacting with the user and the method main.

23 public static void oneInteraction ()

24 {

25 Scanner keyboard = new Scanner(System.in);

26 System.out.print("Enter weight: ");

27 double weight = keyboard.nextDouble ();

28 System.out.print("Enter height in feet and inches: ");

29 double feet = keyboard.nextDouble ();

30 double inches = keyboard.nextDouble ();

31 double bmi = bmiFormula(weight , feet , inches);

32 System.out.println("Weight = " + weight + " pounds");

33 System.out.println("Height = " + feet + " feet and "

34 + inches + " inches");

35 System.out.println("BMI = " + bmi);

36 }

37 public static void main(String [] args)

38 {

39 oneInteraction ();

40 oneInteraction ();

41 }

42 }

Listing 5.13 A new version of the program for computing the BMI values for the input provided by the user (part 2)

124 5 Passing Values to and from Methods

Here is an execution example of the new program:

1 Enter weight: 170
2 Enter height in feet and inches: 5 7
3 Your BMI is 26.62285586990421.
4 Enter weight: 160
5 Enter height in feet and inches: 5 7
6 Your BMI is 25.056805524615726.

5.3 Class Math

5.3.1 Mathematical Functions in Java

In the very early days of computing, programmers had to write the code for mathematical functions

from scratch (even fundamental ones, such as the square root and the logarithm). Fortunately, modern

programming languages offer a plethora of pre-written mathematical functions allowing programmers

to skip that tedious process.

In Java, the class Math provides mathematical functions. To use a mathematical function in Math,

we attach a period and the name of the function to the class name, e.g., Math.sin. The class Math
is available without writing import. Since all important mathematical functions are available under

a single class and the web documentation of Java comes in classes, it is easy for a programmer who

needs mathematical functions to explore the Java provision of the functions.1

There are two constants in Math.

• Math.PI is a double constant that provides the value of π .

• Math.E is a double constant that provides the value of the base of the natural logarithm.

Since these quantities are irrational, the values that the class Math provides are

approximations.

Next, we present some of the methods in Math. The order of presentation is based on the number

of formal parameters.

There is only one Math method that takes no parameters: Math.random(). The method

Math.random() returns under a uniform distribution a random double value between 0 and 1.

The value is strictly less than 1 and greater than or equal to 0. Since double has finite length, the

number of values that Math.random may generate is finite.

1The link for the class Math is:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html .

5.3 Class Math 125

Table 5.1 One-parameter
functions in Math

Name What it computes

sin The sine of the parameter value (radian)

cos The cosine of the parameter value (radian)

tan The tangent of the parameter value (radian)

asin The inverse of sine, return value in [− π
2 , π

2]
acos The inverse of sine, return value in [0, π]
atan The inverse of sine, return value in [− π

2 , π
2]

sqrt The square root

cbrt The cubic root

log The natural logarithm

log10 The logarithm base 10

signum The sign of the number, −1.0, 0.0, or +1.0

exp The exponential function base the natural logarithm.

ceil The smallest whole number that is >= parameter

floor The largest whole number <= parameter

round The rounded whole number, as an int

abs The absolute value

Table 5.2 Two-parameter
functions in Math

max The maximum of two numbers given as parameters

min The minimum of two numbers given as parameters

pow The first parameter raised to the power of the second

Table 5.1 presents selected methods in Math that take just one parameter. For all but two of

the methods on the table, the return type is double. For Math.round, there are two versions.

The return type of Math.round that takes a double parameter is long, and the return type

of Math.round that takes a float parameter is int. For Math.abs, there are four versions.

The types of their input parameters are double, float, long, and int. For each version of

Math.abs, the return type is identical to the parameter type.

Table 5.2 presents some two-parameter methods of Math.

As in the case of abs, both max and min have four versions. The parameter types of the four

versions are double, float, long, and int. They compute the maximum (respectively, minimum)

of its two parameters.

Here is a code example that shows the use of the constants and the random number generator.

126 5 Passing Values to and from Methods

1 public class MathNoParameters

2 {

3 public static void main(String [] args)

4 {

5 System.out.println("PI: " + Math.PI);

6 System.out.println("E: " + Math.E);

7 System.out.println("Random round 1: " + Math.random ());

8 System.out.println("Random round 2: " + Math.random ());

9 System.out.println("Random round 3: " + Math.random ());

10 System.out.println("Random round 4: " + Math.random ());

11 System.out.println("Random round 5: " + Math.random ());

12 }

13 }

Listing 5.14 A program that demonstrates the use of constants and the method random of the class Math

Running the code produces the following result:

1 Math.PI = 3.141592653589793
2 Math.E= 2.718281828459045
3 Round 1: Math.random() = 0.056618315818746656
4 Round 2: Math.random() = 0.30658632116385387
5 Round 3: Math.random() = 0.07808433189065977
6 Round 4: Math.random() = 0.27893273824439646
7 Round 5: Math.random() = 0.752651071169672

Another execution produces the following result:

1 Math.PI = 3.141592653589793
2 Math.E= 2.718281828459045
3 Round 1: Math.random() = 0.2509009548325596
4 Round 2: Math.random() = 0.2199297628318726
5 Round 3: Math.random() = 0.4874309775816027
6 Round 4: Math.random() = 0.830865085635181
7 Round 5: Math.random() = 0.8592438408895406

The value Math.round generates is random, so we can expect the results to be different

each time.

Since the number that Math.random produces is between 0 and 1 (not including 1), by

multiplying the result of Math.random with a positive integer b and then adding another integer a,

a random real number between a and b can be generated. By applying the casting (int) to such a

number, it is possible to generate a random integer between a and a + b.

(int)(a + b * Math.random ());

Since a is an int parameter, the effect is the same if we take a outside the parentheses:

a + (int)(b * Math.random ());

The following code uses this idea. The program receives two values and produces a random integer

using the latter formula four times.

The program execution produces the following result:

5.3 Class Math 127

1 import java.util.Scanner;

2

3 public class MathRandomInt

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 int a, b;

9 System.out.print("Enter the size of the interval: ");

10 b = keyboard.nextInt ();

11 System.out.print("Enter the smallest number: ");

12 a = keyboard.nextInt ();

13 System.out.println(a + (int)(b * Math.random ()));

14 System.out.println(a + (int)(b * Math.random ()));

15 System.out.println(a + (int)(b * Math.random ()));

16 System.out.println(a + (int)(b * Math.random ()));

17 }

18 }

Listing 5.15 A program that generates random integers using Math.random

1 Enter the size of the interval: 5
2 Enter the smallest number: 4
3 5
4 8
5 7
6 5

Here is another run:

1 Enter the size of the interval: 10
2 Enter the smallest number: 20
3 28
4 26
5 22
6 27

The next code example shows the use of methods for algebraic and analytical functions that

return a double value. The program receives a real number from the user and then executes

the methods for the functions. For each function, the program produces an output line in the

format of:

NAME(XXX)=ZZZ

where NAME is the name of the function, XXX is the value the user has entered, and ZZZ is the value

the method has returned. The program also demonstrates the use of a two-parameter method pow. For

that method, we want to produce the output in the format of:

NAME(XXX,YYY)=ZZZ

For this purpose, the program uses two methods named nameArgValue via method overloading.

The first version takes three parameters. The three parameters are expected to be the name of the

function, the value of the input given to the function, and the value of the function. The second version

takes four parameters. The four parameters are expected to be the name of the function, the values of

the two inputs to the function, and the value of the function. The parameter type signatures of the two

methods are:

[String, double, double] and [String, double, double, double]

128 5 Passing Values to and from Methods

Next is the code for the method main. The program receives one floating point number from the user,

and then makes a series of calls to nameArgValue. In each call, the program passes the name of

the Math method it is using, the real number that the user has entered, and the return value of the call

to the Math method. To print the return value, the program executes System.out.println with

the method calls as the actual parameters.

1 import java.util.Scanner;

2

3 public class MathPoly

4 {

5 public static void nameArgValue(String name , double argument ,

6 double value)

7 {

8 System.out.print(name);

9 System.out.print("(");

10 System.out.print(argument);

11 System.out.print(")=");

12 System.out.println(value);

13 }

14

15 public static void nameArgValue(String name , double arg1 ,

16 double arg2 , double value)

17 {

18 System.out.print(name);

19 System.out.print("(");

20 System.out.print(arg1);

21 System.out.print(",");

22 System.out.print(arg2);

23 System.out.print(")=");

24 System.out.println(value);

25 }

26

27 public static void main(String [] args)

28 {

29 Scanner keyboard = new Scanner(System.in);

30 double real , real2;

31

32 System.out.print("Enter a positive real number: ");

33 real = keyboard.nextDouble ();

34

35 nameArgValue("sqrt", real , Math.sqrt(real));

36 nameArgValue("cbrt", real , Math.cbrt(real));

37 nameArgValue("log10", real , Math.log10(real));

38 nameArgValue("log", real , Math.log(real));

39 nameArgValue("exp", real , Math.exp(real));

40 nameArgValue("exp", -real , Math.exp(-real));

41 nameArgValue("abs", real , Math.abs(real));

42 nameArgValue("abs", -real , Math.abs(-real));

43 nameArgValue("signum", real , Math.signum(real));

44 nameArgValue("signum", -real , Math.signum(-real));

45

46 System.out.print("Enter another real number: ");

47 real2 = keyboard.nextDouble ();

48 nameArgValue("pow", real , real2 , Math.pow(real , real2));

49 }

50 }

Listing 5.16 A program that demonstrates the use of algebraic and analytical functions of Math

5.3 Class Math 129

The next code shows an example of rounding numbers. As before, the source code has two versions

of nameArgValue via method overloading. In the first version, the third parameter is double, and

in the second version, the third parameter is long.

The action of the method main is very similar to the action of the previous program. The program

receives input from the user, and then calls the three functions twice each. The first call is with the

value entered, and the second call is with the value having the opposite sign.

1 import java.util.Scanner;

2

3 public class MathRounding

4 {

5 public static void nameArgValue(String name , double argument ,

6 double value)

7 {

8 System.out.print(name);

9 System.out.print("(");

10 System.out.print(argument);

11 System.out.print(")=");

12 System.out.println(value);

13 }

14

15 public static void nameArgValue(String name , double argument ,

16 long value)

17 {

18 System.out.print(name);

19 System.out.print("(");

20 System.out.print(argument);

21 System.out.print(")=");

22 System.out.println(value);

23 }

24

25 public static void main(String [] args)

26 {

27 Scanner keyboard = new Scanner(System.in);

28 System.out.print("Enter a real number: ");

29 double real = keyboard.nextDouble ();

30 nameArgValue("ceil", real , Math.ceil(real));

31 nameArgValue("ceil", -real , Math.ceil(-real));

32 nameArgValue("floor", real , Math.floor(real));

33 nameArgValue("floor", -real , Math.floor(-real));

34 nameArgValue("round", real , Math.round(real));

35 nameArgValue("round", -real , Math.round(-real));

36 }

37 }

Listing 5.17 A program that demonstrates the use of rounding methods in Math

Here is an execution example of the code. Note that while the ceiling of 45.78 produces

46.0, the ceiling of −45.78 produces −45.0, not −46.0. The same difference exists for the

flooring.

130 5 Passing Values to and from Methods

1 Enter a real number: 45.78
2 ceil(45.78)=46.0
3 ceil(-45.78)=-45.0
4 floor(45.78)=45.0
5 floor(-45.78)=-46.0
6 round(45.78)=46
7 round(-45.78)=-46

The next code demonstrates the use of the trigonometric functions. Again, the program uses

methods named nameAndValue. The first method has four parameters, name, arg1, arg2, and

value, and produces the output in a new format:

xxx(Pi*(yyy/zzz))=vvv

with xxx, yyy, zzz, and vvv replaced with the values of name, arg1, arg2, and value,

respectively. Previously, we had a comma in place of the forward slash. Both nameArgValue
methods in this program combine some components to be printed into a single line with the use

of concatenation. As the result, the codes are shorter.

1 import java.util.Scanner;

2 public class MathTrigonometry

3 {

4 public static void nameArgValue(String name , int arg1 , int arg2 ,

5 double value)

6 {

7 System.out.print(name);

8 System.out.print("(Pi*(" + arg1 + "/" + arg2 + "))=");

9 System.out.println(value);

10 }

11

12 public static void nameArgValue(String name , double arg ,

13 double value)

14 {

15 System.out.print(name);

16 System.out.print("(" + arg + ")=");

17 System.out.println(value);

18 }

19

Listing 5.18 A program that demonstrates the use of trigonometric methods in Math (part 1)

In the remainder of the code, the program receives two integers, a and b, from the user. The two

integers are expected to represent the fraction r defined by a/b. The program then computes the sine,

cosine, and tangent of πr . These values are stored in sinVal, cosVal, and tanVal. The program

then applies the inverse functions to the three quantities, and stores the values returned in asinVal,

acosVal, and atanVal. After obtaining these values, the program uses nameArgValue methods

to report the results.

5.3 Class Math 131

20 public static void main(String [] args)

21 {

22 Scanner keyboard = new Scanner(System.in);

23 System.out.print("Enter integers a and b for Pi*(a/b): ");

24 int a = keyboard.nextInt ();

25 int b = keyboard.nextInt ();

26 double sinVal = Math.sin(Math.PI * a / b);

27 double cosVal = Math.cos(Math.PI * a / b);

28 double tanVal = Math.tan(Math.PI * a / b);

29 double asinVal = Math.asin(sinVal);

30 double acosVal = Math.acos(cosVal);

31 double atanVal = Math.atan(tanVal);

32 nameArgValue("sin", a, b, sinVal);

33 nameArgValue("cos", a, b, cosVal);

34 nameArgValue("tan", a, b, tanVal);

35 nameArgValue("asin", sinVal , asinVal);

36 nameArgValue("acos", cosVal , acosVal);

37 nameArgValue("atan", tanVal , atanVal);

38 }

39 }

Listing 5.19 A program that demonstrates the use of trigonometric methods in Math (part 2)

Here is an execution example of the code:

1 Enter integers a and b for Pi*(a/b): 2 3

2 sin(Pi *(2/3))=0.8660254037844387

3 cos(Pi *(2/3))= -0.4999999999999998

4 tan(Pi *(2/3))= -1.7320508075688783

5 asin (0.8660254037844387) =0.33333333333333337

6 acos (-0.4999999999999998) =0.6666666666666666

7 atan (-1.7320508075688783) = -0.3333333333333334

Note that there are many digits appearing after the decimal point.

5.3.2 Mortgage Calculation

Suppose we are to take out a mortgage for some n months, with the principal of p dollars and the

fixed annual rate of a%. Our loan starts on the first day of a month, and each monthly payment will

be on the last day of the month.

We want to use a computer program to calculate the monthly payment as well as the total payment

for various loan scenarios. Since we can compute the total payment by simply multiplying the monthly

payment by the total number of payments, the key thing to compute is the monthly payment.

One calculates the monthly payment as follows.

If the annual percentage interest rate is a%, then the monthly interest rate r is the twelfth root of

b = (1 + a/100). This is because the annual interest rate is calculated as the compound rate of its

monthly rate. In other words, the annual interest rate is the twelfth power of the monthly rate.

If the residual principal is x on the first day of a month, then on the last day of the same month, the

residual principal balloons to rx. Since the payment of m occurs on the last day of the same month,

on the first of the next month, the principal will be:

rx − m.

132 5 Passing Values to and from Methods

In the next month, the same calculation takes place and the new residual amount after the next payment

will be:

r(rx − m) − m.

Then, again one month after, the principal becomes:

r(r(rx − m) − m) − m.

Let {pi}ni=0 be a series representing the residual principals, such that for each i, 0 ≤ i ≤ n, the

residual after i months of payment is pi . The value of p0 is p since payments have not started yet and

the value of pn is 0 since the payment must be completed on the last day of the n-month period. By

using the calculation from the previous step, we obtain:

p1 = rp − m,p2 = r(rp − m) − m,p3 = r(r(rp − m) − m) − m, . . .

We can see that for all k ≥ 0,

pk = rkp − (rk−1 + rk−2 + · · · + r + 1)m.

We need to obtain the sum on the right-hand side. Define Q by:

Q = rk−1 + rk−1 + · · · + r + 1.

By multiplying Q by r then adding 1 to the product we have:

rQ + 1 = rk + rk−1 + · · · + r + 1.

Also, by adding rk to Q, we have:

rk + Q = rk + rk−2 + · · · + r + 1.

Since the right-hand sides are the same between the two equalities, we have:

rQ + 1 = rk + Q.

Solving this for Q, we obtain:

Q =
rk − 1

r − 1
.

5.3 Class Math 133

Thus,

pk = rkp −
rk − 1

r − 1
m.

Since the loan is paid off in exactly n months, we have pn = 0. Substituting k with n in the above

equation, we have:

pn = rnp −
rn − 1

r − 1
m = 0.

Solving this for m, we have:

m =
rn(r − 1)

rn − 1
p.

Noting that rn appears twice in the formula, we substitute rn with s. Then we have:

m =
s(r − 1)

s − 1
p.

We now have the following process for computing the monthly payment m from p, a, b, and n.

1. Compute b = (1 + a/100).

2. Compute r = b1/12.

3. Compute s = rn.

4. Compute m = ps(r − 1)/(s − 1).

5. Compute the total amount t = mn.

Here is the code based upon the above analysis.

The code uses the following variables for receiving information about the loan from the user:

• int nMonth: number of months (n in the above discussion);

• int principal: the principal amount in dollars (p in the above discussion);

• double aRate: annual rate in percentage (a in the above discussion).

Then the code uses the following variables for calculating the parameters:

• double bRate: the rate of annual increase (b in the above discussion);

• double rRate: the rate of monthly increase (r in the above discussion);

• double power: the n-th power of r (s in the above discussion);

• double mPay: the monthly payment (m in the above discussion);

• double totalPay: the total payment (t in the above discussion).

The declarations of these variables appear in Lines 8 through 12. In Line 7 we also declare a Scanner
variable.

134 5 Passing Values to and from Methods

1 import java.util .*;

2

3 public class Loan

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard;

8 int nMonth , principal;

9 double aRate , bRate , rRate;

10 double power;

11 double mPay , totalPay;

12

13 keyboard = new Scanner(System.in);

14

15 System.out.print("Enter nMonth , principal , annual rate: ");

16 nMonth = keyboard.nextInt ();

17 principal = keyboard.nextInt ();

18 aRate = keyboard.nextDouble ();

19

20 bRate = (1 + aRate / 100);

21 rRate = Math.pow(bRate , 1.0 / 12);

22 power = Math.pow(rRate , nMonth);

23 mPay = principal * power * (rRate - 1) / (power - 1);

24 totalPay = mPay * nMonth;

25 System.out.print("monthly = " + mPay);

26 System.out.println(", total = " + totalPay);

27 }

28 }

Listing 5.20 A program that calculates mortgage payments

Lines 13–18 are for receiving input from the user. Notice that the use of nextInt is for the int
variables, and the use of nextDouble is for the double variable. Notice, also, the use of 1.0
/ 12 for 1/12 in Line 21. The .0 is essential here, since 1 / 12 would produce 0 as the integer

quotient. Such treatment is not necessary for Line 20, because aRate is double.

Here is how the code runs2:

1 Enter nMonth, principal, annual rate: 360 100000 3.65
2 monthly = 454.10190144665336, total = 163476.6845207952

The code we have just seen does not use rounding. Since we cannot make payments carrying a

fraction of a cent, it is natural for us to round each currency amount with a fraction of a cent to one

without. In presenting currencies, we want to present exactly two digits after the decimal point.We

2So about 63.5% more over the period of 30 years. Not bad, I think.

5.3 Class Math 135

can make the number of digits to be printed after the decimal point to exactly two in the following

manner. We multiply mPay by 100 and then round it down to a whole number using the floor function.

We then split the number into two parts, as the quotient divided by 100 and the remainder divided by

100. The result looks like this:

1 Enter nMonth, principal, annual rate: 360 100000 3.65
2 monthly = 454.1, total = 163476.0

The number of digits after the decimal point has been reduced, but in this case, there appears only one

digit after the decimal point for both numbers.

Java has a convenient way of adjusting the numbers to appear on the screen: a special print

command System.out.printf. The printf stands for “print with formatting” and it takes a

format String and a series of data as parameters.

System.out.printf(FORMAT_STRING, DATA_1, ..., DATA_k);

Here FORMAT_STRING is a String that contains some k placeholders, where each placeholder

starts with a symbol % and ends with a letter specifying the type of data required for the position, e.g.,

s, d, and f. Between the % and the type-specifying letter may appear characters that specify how the

value of the data may appear when printed. Examples include the number of character spaces to use

and whether the value appears flush left or flush right.

In our particular case, we need to print two real values with exactly two digits after the decimal

point. A bonus would be to have a punctuation with every three digits, since the two values are

currencies.

System.out.printf(

"monthly = $%,.2f, total = $%,.2f%n", mPay , totalPay);

The format String contains two placeholders. Both place holders are %,.2f. The letter f means

that the data is a floating point number. The character , means that the currency punctuation must

appear. The character sequence .2 specifies that exactly two digits must after the decimal point.

The remaining parts, monthly = $, , total = $, and %n, print as they appear in the format

String. The %n specifies the newline and is essentially the same as \n. Using this formatting, the

output becomes:

monthly = $454.10, total = $163,476.00

The complete code of the program that computes the loan payments and produces a fancy output is

shown next. Just for comparison, the code includes the somewhat incomplete truncation print line that

we previously used.

136 5 Passing Values to and from Methods

1 import java.util .*;

2

3 public class LoanFancy

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard;

8 int nMonth , principal;

9 double aRate , bRate , rRate;

10 double power;

11 double mPay , totalPay , mPay2 , totalPay2;

12

13 keyboard = new Scanner(System.in);

14

15 System.out.print("Enter nMonth , principal , annual rate: ");

16 nMonth = keyboard.nextInt ();

17 principal = keyboard.nextInt ();

18 aRate = keyboard.nextDouble ();

19

20 bRate = (1 + aRate / 100);

21 rRate = Math.pow(bRate , 1.0 / 12);

22 power = Math.pow(rRate , nMonth);

23 mPay = principal * power * (rRate - 1) / (power - 1);

24 totalPay = mPay * nMonth;

25 System.out.print("monthly = " + mPay);

26 System.out.println(", total = " + totalPay);

27

28 mPay2 = Math.floor(mPay * 100) / 100.0;

29 totalPay2 = mPay2 * nMonth;

30 System.out.printf("monthly = $%,.2f, total = $%,.2f%n",

31 mPay2 , totalPay2);

32 }

33 }

Listing 5.21 A new program that computes mortgage payments with fancy output

Summary

The formal parameters are those parameters that appear in a method declaration. In the declaration,

each formal parameter is specified with its type and name.

When a method A calls a method B, the values appearing in the method call are transferred to the

formal parameters of B. These values are called actual parameters.

The mechanism used in Java for transferring parameter values to methods is call-by-reference. If

an object data is given to a method as a formal parameter, executing an instance method on the

parameter may affect the contents/status of the object.

The parameter type signature of a method is the sequence of the parameter types appearing in its

parameter specification.

Method overloading refers to the concept in which a class may define multiple methods having

the same name, so long as the type signatures are distinct.

A method may return a value. The type of the return value of a method is specified in the method

declaration immediately before the method name. If there is no return value, a special keyword

void is used in the return type specification.

Exercises 137

When a program makes a method call and no version of the method available through method

overloading has a completely matching parameter type signature, a close match, if available, is

used.

Class Math provides a number of methods for mathematical and analytical functions as well as

mathematical constants.

The method Math.random returns a random double between 0 and 1. Using this method, it is

possible to generate an integer within a finite range.

Exercises

1. Concept check What do you call the concept that states that, in one class, multiple methods

with identical names can be declared, so long as the required parameters among them are

different?

2. Concept check Can void methodX(int a, int b) and int methodX(int c,
int d) coexist in the same Java class?

3. Concept check For each mathematical function, state the name of the method from class Math

used for calculating the function.

(a) the sine function

(b) the cosine function

(c) the inverse of the tangent function

(d) the natural logarithm

(e) the square root

(f) the cubic root

4. Ceil, floor, and round Let x be a double variable with value 3.5 and let y be a double
variable with value 4.0. Find the values of the following:

(a) Math.ceil(x) and Math.ceil(y)
(b) Math.floor(x) and Math.floor(y)
(c) Math.max(x, y) and Math.min(x, y)
(d) x % y

5. Feeding the output of a method to a method Consider the following three methods:

1 public static int method1(int a, int b)

2 {

3 return 2 * a * b;

4 }

5 public static int method2(int a)

6 {

7 return a / 2;

8 }

9 public static int method3(int a)

10 {

11 return a * 3;

12 }

What is the value of method1(method2(3), method3(3))?

What is the value of method3(method2(method1(3, 4)))?

138 5 Passing Values to and from Methods

6. Write a method named getInt that takes one Scanner parameter s and one String
parameter prompt, prints the prompt on the screen, receives an int from the user using the

Scanner type s, and then returns the int received from the user.

7. Write a void method named message that receives a String name and a double v as

parameters and prints on the screen

The value of [name] is [v]

where [name] is the value of the variable name and [v] is the value of v
8. Combining methods Suppose a method cross is defined as follows:

1 public static int cross(int a, int b)
2 {
3 return a - b;
4 }

State what value is returned by cross(10, cross(9, 4)).

9. Combining method Suppose a method cute is defined as follows:

1 public static int cute(int a, int b)
2 {
3 return a * b + b;
4 }

State what value is returned by cute(cute(10, 4), 5). Also, state the value of

cute(cute(10, 5), 4).

10. The volume of a cylinder Write a public static method named cylinderVolume (including

its method declaration) that receives two double values dValue and hValue as parameters,

and then returns the volume of the cylinder whose diameter is equal to dValue and whose height

is equal to hValue.

11. Solving a quadratic equation Write a program named SimpleQuadraticEq that receives

three double value coefficients a, b, and c from the user, and then solves the equation ax2 +

bx + c = 0 using Math.sqrt. If the equation has no real solution, the code may halt with a

run-time error. If the two solutions are identical to each other, the program may print the unique

solution twice.

For example, the program may execute as follows:

1 Enter the coefficients a, b, and c: 2 -5 2
2 The roots are 2.0 and 0.5

12. Computing the radius of a ball given its volume Write a program named RadiusFromCube
Volume that receives the volume of a ball in cubic meters from the user, and then computes the

radius of the ball.

Programming Projects

13. Summing numbers Write a program named SimpleSumGauss that receives an integer top
from the user and returns the sum from 1 to top, using the formula by Gauss. The program

should contain a method computeSum that takes an int as its formal parameter and returns the

sum. The program may not work correctly if the input the user provides is not positive.

14. Coordinate system conversion There are two coordinate systems for a point on the two-

dimensional space with the origin. One system, the Cartesian system uses a pair of axes that

are perpendicular to each other and specifies the point suing the x and y values of that point.

Exercises 139

The other system, the polar system, has one axis and uses the distance from the origin and the

counter-clockwise angle from the axis in the range of −π to π degrees. Write a program named

CoordinateConversion that demonstrates the conversions between the two. The program

should have two methods, one for converting from the former type to the latter and the other

for converting from the latter type to the former. The method main prompts the user to enter

information and makes the calls to these methods, where the methods perform their respective

conversions and print the results on the screen. Use the fact that the angle (in radian) of (x, y) is

the sign of y times the arc-cosine of y/x and that the cosine is x/
√

x2 + y2. To compute the sign,

Math.signum can be used and to compute the arc-tangent Math.acos can be used.

15. Balancing a ship Determine how deep the bottom of a ship sinks when it is placed in water.

Assume that the shape of the ship is an elongated triangle (in the shape of a Toblerone package

for instance).

The front view of the ship is an isosceles with the base at the top. Use variables height and

base for the height and the base of the triangle. Use a variable length for the length of the

ship. All these quantities should be in meters. Use a variable weight for the weight of the ship

in tons. To describe how much of the ship will be in water, use a double variable ratio that

is between 0 and 1. The height of the ship under water is ratio * height. For the ship to

balance, the weight of the water it displaces should be equal to the weight of the ship. The first

quantity is:

0.5 * (ratio * height) * (ratio * base) * length

= 0.5 * ratio2* height * base * length

If the ship is balanced in water, then this quantity is equal to weight. By solving the equality,

the value for ratio can be obtained.

Write a program named BalancingShip that takes height, base, length, and

weight from the user, and computes the height of the ship above water.

16. Euclidean distance Write a program named Euclidean that takes six double numbers a1,
b1, c1, a2, b2, c2 as parameters, and then prints the Euclidean distance between the

points (a1, b1, c1) and (a2, b2, c2) as

√

(a1− a2)2 + (b1− b2)2 + (c1− c2)2.

17. String parameters Write a program named NamePermute that takes three String tokens

from the user. These tokens are supposed should be proper nouns. Print a statement in which the

three names appear in six possible orders.

140 5 Passing Values to and from Methods

1 % java NamePermute
2 Enter three names: Kris Luke Mike
3 Kris is friendly with Luke, but not with Mike
4 Kris is friendly with Mike, but not with Luke
5 Luke is friendly with Kris, but not with Mike
6 Luke is friendly with Mike, but not with Kris
7 Mike is friendly with Kris, but not with Luke
8 Mike is friendly with Luke, but not with Kris
9 %

To write the code, use a method that takes three String parameters and prints a single line with

the three parameter values. To present the common parts, String variables can be used.

18. This Old Man, again Previously we looked at decomposing “This Old Man”. Now we know

how to pass values. Write a method named oldManVerse that prints one verse of This Old

Man, given two formal parameters XXX and YYY, which are both String objects, and prints

1 This old man, he played XXX,
2 He played knick-knack on his YYY;
3 With a knick-knack paddywhack,
4 Give the dog a bone,
5 This old man came rolling home
6

Then, using the method oldManVerse, write a program ThisOldManPassing that prints

all ten verses of the rhyme, where the value of XXX goes from one to ten, while the value of

YYY goes:

drum, shoe, knee, door, hive, sticks, heaven, gate, spine, again

19. Area of a regular polygon having N vertices For an integer N ≥ 3, a polygon having N

vertices v1, . . . , vN is a shape formed by connecting vi and vi+1 for all i, 1 ≤ i ≤ N − 1, and

connecting v1 and vN , each with a straight line. A regular polygon is a polygon such that the

vertices are on a circle, the line segments connect between the two neighbors on the circle, and

the line segments are equal in length. Examples of a regular polygon are squares and equilaterals.

Write a program named PolygonArea that receives the number of vertices number and the

common length length, the latter of which is double, from the user and reports the area. In

the program, include a method computeArea that takes the two quantities as its parameters and

returns the area.

20. How far does a baseball go? If a baseball is thrown at an angle, how far will it reach? Simplify

the problem by assuming that the ball is released at height 0 above ground, there is no wind or

air resistance, and the ball flies on a plane. Under these assumptions, the ground distance that the

ball travels is determined by the speed and the angle when the ball is released. Let the ball be at

the speed of s at the start and the angle is θ in radian. The vertical speed of the ball, v, is s sin(θ)

and the horizontal speed of the ball, u, is s cos(θ). The time that it takes for the ball to reach the

highest point, t , is v/g, where g is the gravity constant (= 9.8). The height that it reaches, h, is

vt − gt2/2. The time that it takes for the ball to hit the ground, t ′, is
√

2h/g. Thus, the travel

distance is (t + t ′)u.

Write a program named HowFar that does this calculation. Design the code so that it contains

a method that does the calculation from s and θ , while printing the intermediate quantities on the

screen. Receive the values for the two variables from the user and call the method for calculation.

The user gives the angle, in degrees, between 0 and 90, so the program must convert the angle to

radian.

Here is a possibility of how the program may interact with the user:

Exercises 141

1 Enter the speed: 100 45
2 Enter the angle in degrees: The horizontal speed is 70.71067811865476
3 The vertical speed is 70.71067811865474
4 The time required to reach the top is 7.215375318230075
5 The height is 255.10204081632642
6 The time required to hit the ground is 7.215375318230075
7 The distance traveled is 1020.4081632653059

6Conditions and Their Use for Controlling the Flow of
Programs

6.1 Condition and Its Evaluation

A condition is a literal, a variable, a formula, or a method call whose value is boolean.1

Conditional evaluation is the action of obtaining the value of a condition. Recall, as we studied

in Sect. 2.2, that boolean is a primitive data type with just two possible values, true and false,

which are opposite to each other. System.out.print and its variants print these two values as the

String literals "true" and "false", respectively, as demonstrated in the next code:

1 public class BooleanPrint

2 {

3 public static void main(String [] args)

4 {

5 boolean t = true;

6 boolean f = false;

7 System.out.println(t);

8 System.out.println(f);

9 }

10 }

Listing 6.1 An program that prints boolean literals and variables

The code produces the following result:

1 true
2 false

To build a boolean formula, conditional or logical operators can be used. There are three

conditional operators, the negation, conjunction (or logical-and), and disjunction (or logical-or).

Negation The negation of a condition has the opposite value of the original; that is, if x has the

value of true, !x has the value of false; and if x has the value of false, !x has the value of

true. The negation operator must be attached immediately in front of the condition it acts upon.

1The name “boolean” comes from George Boole (November 2, 1815 to December 8, 1864), a nineteenth century
English mathematician who did fundamental work in logic and algebra.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_6

143© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_6

144 6 Conditions and Their Use for Controlling the Flow of Programs

The negation can be applied multiple times. When the negation is applied to something that is

already negated, a pair of matching parentheses is needed before attaching the additional negation.

In other words, for any condition x, the double negation !!x must be written as !(!x). The

double negation of a condition has the same value as the original.

Disjunction The disjunction asks whether or not at least one of the conditions given as the operands

have the value of true. For operands x1, . . . , xk such that k is greater than or equal to 2,

x1 || ... || xk

has the value of true if and only if for some i, xi has the value of true.

Conjunction The conjunction asks whether or not all of the conditions given as the operands have

the value of true. For operands x1, . . . , xk such that k is greater than equal to 2,

x1 && ... && xk

has the value of true if and only if for all i, xi has the value of true.

De Morgan’s laws state2:

!(x && y) is equivalent to !x || !y and

!(x || y) is equivalent to !x && !y

Since the double negation flips the value back to the original, we have:

x && y is equivalent to !(!x || !y) and

x || y is equivalent to !(!x && !y)

The evaluation of conditional formulas with more than two operands follows rules analogous to the

rules used in evaluating mathematical formulas, with !, ||, and && acting as -, +, and *, respectively.

The next code demonstrates the effect of the three boolean operations. In this program, we

make a number of conditional evaluations. To make the code look simpler, we use the method

nameAndValue. The method receives a String data name and a boolean data value as formal

parameters and prints them in a single line with a String literal ": " in between:

1 public class BooleanConnectivesNew

2 {

3 public static void nameAndValue(String name , boolean value)

4 {

5 System.out.println(name + ": " + value);

6 }

Listing 6.2 A program that demonstrates the use of boolean operators (part 1)

We use the method nameAndValue as follows. Line 9 of the program goes:

9 System.out.println("---------- NOT --------------");

Here, the first parameter "true && true" is a String literal that presents as a String literal

a conditional formula to be made and the second parameter true && true is the actual formula to

be evaluated. Note that the first actual parameter is a String literal and the second is a boolean
formula.

The method nameAndValue simplifies the somewhat awkward single println statement of

the form:

2Augustus De Morgan (27 June 1806 to 18 March 1871) was a British mathematician and logician, a contemporary of
George Boole. He worked on logic and algebra.

6.1 Condition and Its Evaluation 145

System.out.println("true && true: " + (true && true));

To execute this statement, println evaluates the conditional formula (true && true). The

value of the formula is true. After the evaluation, println converts the boolean value to

a String literal "true", and appends it to "true && true: ". As the results, println
produces the output:

true && true: true

The method main that is shown next demonstrates how the three logical operators work by

applying them to boolean literals:

1 public static void main(String [] args)

2 {

3 System.out.println("---------- NOT --------------");

4 nameAndValue("!true", !true);

5 nameAndValue("!false", !false);

6 nameAndValue("!!true", !!true);

7 nameAndValue("!! false", !! false);

8 System.out.println("---------- AND --------------");

9 nameAndValue("true && true", true && true);

10 nameAndValue("true && false", true && false);

11 nameAndValue("false && true", false && true);

12 nameAndValue("false && false", false && false);

13 System.out.println("---------- OR ---------------");

14 nameAndValue("true || true", true || true);

15 nameAndValue("true || false", true || false);

16 nameAndValue("false || true", false || true);

17 nameAndValue("false || false", false || false);

18 }

Listing 6.3 A program that demonstrates the use of boolean operators (part 2)

The execution of the code produces the following result:

1 ---------- NOT --------------

2 !true: false

3 !false: true

4 !!true: true

5 !! false: false

6 ---------- AND --------------

7 true && true: true

8 true && false: false

9 false && true: false

10 false && false: false

11 ---------- NO ---------------

12 true || true: true

13 true || false: true

14 false || true: true

15 false || false: false

Two conditions can be compared for equality and inequality. Given two conditions x and y,

x == y tests whether or not the value of x is equal to the value of y, and x != y tests whether

or not the value of x is not equal to the value of y. If x (or y) is a formula, it may be necessary to

surround it with a pair of parentheses.

146 6 Conditions and Their Use for Controlling the Flow of Programs

Numbers and char data can be compared for equality and inequality. Let x and y be data of some

non-boolean primitive data types, where the data type of x may be different from the data type of

y. We can apply six different comparisons to them:

• x > y tests whether or not the value of x is strictly greater than the value of y.

• x >= y tests whether or not the value of x is greater than or equal to the value of y.

• x < y tests whether or not the value of x is strictly less than the value of y.

• x <= y tests whether or not the value of x is less than or equal to the value of y.

• x == y tests whether or not the value of x is equal to the value of y.

• x != y tests whether or not the value of x is not equal to the value of y.

In the case where either x or y is char, the char type is treated as an unsigned 16-bit number. For

this treatment, we use the character table called Unicode.3 An important subset of the character set is

the set of characters whose values are between 0 and 127. We call the subset the ASCII Table.4

The equality and inequality tests can be applied to object data types, e.g., String data, but the

tests do not compare the contents of the objects, but the data locations. A special value for object type

data is null. null means that the value is undefined. The following program:

1 boolean flag;
2 String unknown;
3 flag = (unknown == null);
4 System.out.print(flag);
5 unknown = "abc";
6 flag = (unknown == null);
7 System.out.print(flag);

produces two lines of output:

1 true
2 false

Many object types in Java offer a method specifically for comparisons. They are usually called

equals and compareTo. We shall see such methods for the String type in Chap. 9.

In the next code, the program prompts the user to enter two integers, receives two numbers, and

then performs the six comparisons between the two values entered. The program then executes the

same series of action by receiving two real numbers from the user. The results of the six comparisons

are stored in six boolean variables using the statement of the form:

BOOLEAN_VARIABLE = OPERAND1 OPERATOR OPERAND2;

For variable naming, the code uses the form eqXXX, neXXX, gtXXX, geXXX, ltXXX, and leXXX
for ==, !=, >, >=, <, and <=, with Int for XXX for integers and Double for floating point numbers.

Here is the header part of the program. It states what variables will be used:

3For example, https://unicode-table.com/en/#control-character.
4For example, http://www.asciitable.com.

6.1 Condition and Its Evaluation 147

1 import java.util .*;

2 // various comparisons

3 public class Comparisons0

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 int int1 , int2;

9 double double1 , double2;

10 boolean eqInt , neInt , gtInt , geInt , ltInt , leInt;

11 boolean eqDouble , neDouble , gtDouble , geDouble , ltDouble , leDouble;

Listing 6.4 A program that shows comparisons between numbers (part 1)

In the next part, the program receives two int data from the user, compares them in six different

ways, saves the outcomes in their respective variables, and prints the outcomes along with the

numbers:

12 // ------------- enter int values

13 System.out.print("Enter two int: ");

14 int1 = keyboard.nextInt ();

15 int2 = keyboard.nextInt ();

16 // ------------- compare the int values

17 eqInt = (int1 == int2);

18 neInt = (int1 != int2);

19 gtInt = (int1 > int2);

20 geInt = (int1 >= int2);

21 ltInt = (int1 < int2);

22 leInt = (int1 <= int2);

23 // ------------- print the results

24 System.out.printf("int1 = %d, int2 = %d%n", int1 , int2);

25 System.out.printf("int1 == int2 returns %s%n", eqInt);

26 System.out.printf("int1 != int2 returns %s%n", neInt);

27 System.out.printf("int1 > int2 returns %s%n", gtInt);

28 System.out.printf("int1 >= int2 returns %s%n", geInt);

29 System.out.printf("int1 < int2 returns %s%n", ltInt);

30 System.out.printf("int1 <= int2 returns %s%n", leInt);

Listing 6.5 A program that shows comparisons between numbers (part 2)

To print the outcome, we use System.out.printf that we saw earlier in Sect. 5.3.2. The

method printf follows the syntax:

printf(FORMAT_STRING, PARAMETER1, ..., PARAMETERk);

where k represents the number of placeholders for data values appearing in FORMAT_STRING.

FORMAT_STRING is a String data. We call the first parameter of printf the formatting String.

In System.out.printf, each data placeholder takes the form of %XXXt, where t is a letter that

refers to the expected data type and XXX is a character sequence that specifies the way in which the

data value is printed. In this book we will see five types for t: c for char, d for any whole number,

f for any floating point number, s for String and boolean, and, much later, e for exponential

representation. If the XXX part is empty, System.out.printf uses the default formatting for the

type t (see Chap. 8).

The first printf statement in our code is:

148 6 Conditions and Their Use for Controlling the Flow of Programs

System.out.printf("int = %d, int2 = %d%n", int1, int2);

The format String of the statement is "int = %d, int2 = %d%n". Two placeholders appear

in it. Both placeholders are %d and thus meant for printing integers. The %n is equivalent to \n and is

for printing the newline character. Since two placeholders appear, the printf statement works if and

only if exactly two whole numbers appear after the format String. In our case, those numbers are

int1 and int2. When printing the values, printf formats use the minimum number of characters

required to print the values. Suppose the value of int1 is 987 and the value of int2 is −456. Then

printf produces the output:

int = 987, int2 = -456

According to the rule, if the values are 10 and −98, respectively, the output is:

int = 10, int2 = -98

In the ensuing six lines, the placeholder is %s and printf substitutes each placeholder with the

value of the boolean variable appearing in the statement.

The last part of the code uses %f for printing the double values:

31 // ------------- enter double values

32 System.out.print("Enter two floating point numbers: ");

33 double1 = keyboard.nextDouble ();

34 double2 = keyboard.nextDouble ();

35 // ------------- compare the Double values

36 eqDouble = (double1 == double2);

37 neDouble = (double1 != double2);

38 gtDouble = (double1 > double2);

39 geDouble = (double1 >= double2);

40 ltDouble = (double1 < double2);

41 leDouble = (double1 <= double2);

42 // ------------- print the results

43 System.out.printf("double1 = %f, double2 = %f%n",

44 double1 , double2);

45 System.out.printf("double1 == double2 returns %s%n", eqDouble);

46 System.out.printf("double1 != double2 returns %s%n", neDouble);

47 System.out.printf("double1 > double2 returns %s%n", gtDouble);

48 System.out.printf("double1 >= double2 returns %s%n", geDouble);

49 System.out.printf("double1 < double2 returns %s%n", ltDouble);

50 System.out.printf("double1 <= double2 returns %s%n", leDouble);

51 }

52 }

Listing 6.6 A program that shows comparisons between numbers (part 3)

Here is one execution example of the program:

1 Enter two int: -9834 5343
2 int1 = -9834, int2 = 5343
3 int1 == int2 returns false
4 int1 != int2 returns true
5 int1 > int2 returns false
6 int1 >= int2 returns false
7 int1 < int2 returns true
8 int1 <= int2 returns true
9 Enter two floating point numbers: -194.5 -34.5

6.2 The If Statements 149

10 double1 = -194.500000, double2 = -34.500000
11 double1 == double2 returns false
12 double1 != double2 returns true
13 double1 > double2 returns false
14 double1 >= double2 returns false
15 double1 < double2 returns true
16 double1 <= double2 returns true

6.2 The If Statements

6.2.1 If

Using conditional evaluations, we can control the flow of programs. We can create a code that adjoins

two sequences of statements, A and B, with the evaluation of a condition C, in the following format:

“if C then execute A; otherwise, execute B”

We call this conditional execution. All programming languages, including Java, have conditional

executions. The standard expression of a conditional execution is the use of the keyword if, so we

call it an if-statement. For the alternate action (which corresponds to “otherwise”), the accompanying

keyword is else.

The primary structure for an if-statement in Java, with no action to perform in C, is:

1 if (CONDITION)
2 {
3 STATEMENTS
4 }
5 AFTER_IF_PART

Here, the CONDITION is the condition to be evaluated and AFTER_IF_PART is the actions to be

performed after completing the if-statement. If the evaluation of CONDITION produces the value

false, the execution jumps to this part.

In other words, this code fragment is executed as follows:

• CONDITION produces true: STATEMENTS followed by AFTER_IF_PART.

• CONDITION produces false: AFTER_IF_PART.

We can draw a diagram that describes this action (see Fig. 6.1).

A special feature of if-statements is that the pair of curly brackets following the conditional

evaluation can be omitted if there is only one statement in the block. While the ability to omit the

curly brackets is convenient, the omission can lead to logical errors.

The next code is our first example of using if-statements. The program receives a temperature value

from the user and makes a comment.

150 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.1 The execution
diagram of an if-statement Does

CONDITION

hold?

STATEMENTS

AFTER_IF_PART

NO

YES

1 import java.util.Scanner;

2 // ask about temperature and respond

3 public class Temperature01

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 //-- prompt answer

9 System.out.print("What is the average high temperature in "

10 + "August in your area? : ");

11 double temp = keyboard.nextDouble ();

12 //-- response

13 if (temp > 90.0)

14 {

15 System.out.println("Wow! That must be very hot!");

16 }

17 }

18 }

Listing 6.7 A program that receives a temperature value and makes a comment when appropriate

Here is the if-statement appearing the code:

1 if (temp > 90.0)
2 {
3 System.out.println("Wow! That must be very hot!");
4 }

6.2 The If Statements 151

The program prints the statement "... very hot!" if the value the user has entered is strictly

greater than 90.0 and prints nothing otherwise.

Here are three separate executions of the program.

In the first round of execution, the value is 85 and strictly greater than 90.0, so no message appears,

as shown next:

What is the average high temperature in August in your area? : 85

In the second round, the value is 90 and not strictly less than 90.0, so no message appears, as shown

next:

What is the average high temperature in August in your area? : 90

In the third round, the value is 91 and is strictly greater than 90.0, so the message appears, as shown

next:

1 What is the average high temperature in August in your area? : 91
2 Wow! That must be very hot!

Figure 6.2 shows the diagram of the program.

Our next code example uses two if-statements. The first if-statement tests if the value entered is

strictly greater than 90.0 as before. The second one tests if the temperature value is less than or equal

to 70.0 (notice the equality sign placed on the second one). There are two messages from which the

program chooses to print. The program prints the first message if and only if the temperature is strictly

greater than 90.0, and the second message if and only if the temperature is less than or equal to 70.0.

The program prints no statement if the temperature is strictly greater than 70.0 and less than or equal

to 90.0:

1 import java.util.Scanner;

2 // ask about temperature and respond

3 public class Temperature02

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 //-- prompt answer

9 System.out.print("What is the average high temperature in "

10 + "August in your area? : ");

11 double temp = keyboard.nextDouble ();

12 //-- response no.1

13 if (temp > 90.0)

14 {

15 System.out.println("Wow! That must be very hot!");

16 }

17 //-- response no.2

18 if (temp <= 70.0)

19 {

20 System.out.println("Wow! That must be very cold!");

21 }

22 }

23 }

Listing 6.8 Another program that receives a temperature value and makes a comment when appropriate

152 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.2 The execution
diagram of
Temperature01.java

temp > 90.0 ?

PRINT THE

“WOW!”

STATEMENT

END OF
PROGRAM

NO
YES

PRINT A PROMPT

temp = keyboard

.nextDouble();

Here are three separate executions of the program:

1 What is the average high temperature in August in your area? : 60
2 Wow! That must be very cold!

What is the average high temperature in August in your area? : 80

1 % java Temperature02
2 What is the average high temperature in August in your area? : 91
3 Wow! That must be very hot!

In the next code example, the program asks the user to enter a temperature value and then a

humidity value. The if-statements of the program combine the tests on the temperature and humidity

values using the conjunction operator &&:

6.2 The If Statements 153

1 import java.util.Scanner;

2 // ask about temperature and humidity and provide response

3 public class Temperature03

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 //-- prompt answer

9 System.out.print("What is the average high temperature in "

10 + "August in your area? : ");

11 double temp = keyboard.nextDouble ();

12 System.out.print("How about the average humidity? : ");

13 double humidity = keyboard.nextDouble ();

14 //-- response no.1

15 if (temp >= 90.0 && humidity >= 90.0)

16 {

17 System.out.println("Wow! That must be hot and humid!");

18 }

19 //-- response no.2

20 if (temp >= 90.0 && humidity <= 50.0)

21 {

22 System.out.println("Wow! That must be hot and dry!");

23 }

24 //-- response no.3

25 if (temp <= 70.0)

26 {

27 System.out.println("Wow! That must be cool!");

28 }

29 //-- response no.4

30 if (temp > 70.0 && humidity < 90.0)

31 {

32 System.out.println("Wow! That must be very comfortable!");

33 }

34 }

35 }

Listing 6.9 A program that receives a temperature value and a humidity value, and then makes a comment when
appropriate

Here are some execution examples:

1 What is the average high temperature in August in your area? : 80
2 How about the average humidity? : 100

1 What is the average high temperature in August in your area? : 70
2 How about the average humidity? : 50
3 Wow! That must be cool!

1 What is the average high temperature in August in your area? : 91
2 How about the average humidity? : 90
3 Wow! That must be hot and humid!

154 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.3 The
combinations of
temperature and humidity
considered in
Temperature03 43

2

1

humidity=90

humidity=50

temperature=90temperature=70

1 What is the average high temperature in August in your area? : 95
2 How about the average humidity? : 40
3 Wow! That must be hot and dry!
4 Wow! That must be very comfortable!

What are the cases in which the program produces no output? Also, what are the cases in which

the program produces more than one statement?

The four cases the program tests are as follows:

Case 1 temp >= 90.0 && humidity >= 90.0
Case 2 temp >= 90.0 && humidity <= 50.0
Case 3 temp <= 70.0
Case 4 temp > 70.0 && humidity < 90.0

We can draw a diagram shown in Fig. 6.3 to discern these four cases with the temperature as the

x-axis, the humidity as the y-axis, and the rectangles representing the cases.

We thus have:

• the program produces no comments if and only if the temperature is strictly greater than 70.0 and

is strictly less than 90.0 and the humidity is greater than or equal to 90.0

and

• the program produces two comments if the temperature is strictly greater than 70.0 and the

humidity is less than or equal to 50.0.

Here is one more example of the use of if-statements.

The program presents a list of four colors indexed 1, . . . , 4 to the user. It then asks the user to select

a number that represents her favorite color. Upon receiving the input, the program produces a message

based upon the choice that the user has made. The program stores the response from the user in an

int variable, answer, by assigning the value that the nextInt method returns.

There are four if-statements in the code. In the order of appearance, they have the following roles.

1. if (answer < 1 || answer > 4) checks whether or not the user’s selection is

invalid—the selection has to be one of 1, 2, 3, and 4. This one thus checks whether or not

the number is either (strictly less than 1) or (strictly greater than 4). If either is the case, the

program produces a message that says the choice is invalid.

2. if (answer >= 1 && answer <= 4) tests the validity of the choice. It uses the

condition exactly opposite to the first one.

6.2 The If Statements 155

3. if (answer == 1 || answer == 2) is for producing a special message when the

choice corresponds to one of the University of Miami (UM) colors (orange and green).

4. if (answer == 3 || answer == 4) is for producing a special message when the

choice corresponds to one of the University of Michigan (UM) colors (maize and blue).

Note that the messages that the first two if-statements generate use printf for formatting:

1 import java.util.Scanner;

2 // ask about a color and respond

3 public class ColorSelection

4 {

5 public static void main(String [] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner(System.in);

9 System.out.println("What is your favorite color?");

10 System.out.println(

11 "1. Orange , 2. Green , 3. Maize , 4. Blue");

12 System.out.print("Select from 1 to 4 : ");

13 int answer = keyboard.nextInt ();

Listing 6.10 An interactive program that responds to the user’s color selection (part 1)

14 if (answer < 1 || answer > 4)

15 {

16 System.out.printf("Your choice %d is invalid .%n", answer);

17 }

18 if (answer >= 1 && answer <= 4)

19 {

20 System.out.printf("Your choice %d is excellent .%n", answer);

21 }

22 if (answer == 1 || answer == 2)

23 {

24 System.out.println("It is a U. Miami color!");

25 }

26 if (answer == 3 || answer == 4)

27 {

28 System.out.println("It is a U. Michigan color!");

29 }

30 }

31 }

Listing 6.11 An interactive program that responds to the user’s color selection (part 2)

Following is an example of executing the program:

1 What is your favorite color?
2 1. Orange, 2. Green, 3. Maize, 4. Blue
3 Select from 1 to 4 : 6
4 Your choice 6 is invalid.

1 What is your favorite color?
2 1. Orange, 2. Green, 3. Maize, 4. Blue
3 Select from 1 to 4 : 3
4 Your choice 3 is excellent.
5 It is a U. Michigan color!

156 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.4 The execution
diagram of an if-else
statement

Does

CONDITION

hold?

STATEMENTS1

AFTER_IF_ELSE_PART

NO

YES

STATEMENTS1

1 What is your favorite color?
2 1. Orange, 2. Green, 3. Maize, 4. Blue
3 Select from 1 to 4 : 1
4 Your choice 1 is excellent.
5 It is a U. Miami color!

6.2.2 Else

Now we look at the if-statements having the “otherwise” part, which we call if-else statements:

1 if (CONDITION)
2 {
3 STATEMENTS1
4 }
5 else
6 {
7 STATEMENTS2
8 }
9 AFTER_IF_ELSE_PART

Figure 6.4 shows the execution diagram of an if-else statement as it appears in the above hypothetical

code.

In an if-else statement, an if and an else work as a pair. For each if-else pair, the if part

must appear before the else part. Furthermore, the if part and the else part must be at the same

depth. Furthermore, there must be no other statements or code blocks between the paired if and

else parts.

The following example shows syntactically incorrect if-else statements:

1 public static void SOME_METHOD()
2 {
3 else
4 {
5 ...
6 }
7 if (CONDITION1)
8 {

6.2 The If Statements 157

9 ...
10 }
11 System.out.println("Wow!");
12 else
13 {
14 ...
15 }
16 }

Similar to the case of if-statements, the curly brackets for the else-part can be omitted if there is only

one statement in it. In other words,

1 if (CONDITION)
2 FIRST_STATEMENT;
3 else
4 SECOND_STATEMENT;
5 AFTER_IF_ELSE_PART

is the same as:

1 if (CONDITION)
2 {
3 FIRST_STATEMENT;
4 }
5 else
6 {
7 SECOND_STATEMENT;
8 }
9 AFTER_IF_ELSE_PART

The code:

1 if (CONDITION)
2 FIRST_STATEMENT;
3 ADDITIONAL_STATEMENT;
4 else
5 SECOND_STATEMENT;

is syntactically incorrect, because the code is basically saying:

1 if (CONDITION)
2 {
3 FIRST_STATEMENT;
4 }
5 ADDITIONAL_STATEMENT;
6 else
7 {
8 SECOND_STATEMENT;
9 }

meaning ADDITIONAL_STATEMENT is wedged between the if-part and the else-part.

Using else we can rewrite ColorSelection as follows:

158 6 Conditions and Their Use for Controlling the Flow of Programs

1 import java.util.Scanner;

2 // ask about a color and respond

3 public class ColorSelectionElse

4 {

5 public static void main(String [] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner(System.in);

9 System.out.println("What is your favorite color?");

10 System.out.println(

11 "1. Orange , 2. Green , 3. Maize , 4. Blue");

12 System.out.print("Select from 1 to 4 : ");

13 int answer = keyboard.nextInt ();

14 if (answer < 1 || answer > 4)

15 {

16 System.out.printf("Your choice %d is invalid .%n", answer);

17 }

18 else

19 {

20 System.out.printf("Your choice %d is excellent .%n", answer);

21 }

22 if (answer == 1 || answer == 2)

23 {

24 System.out.println("It is a U. Miami color!");

25 }

26 if (answer == 3 || answer == 4)

27 {

28 System.out.println("It is a U. Michigan color!");

29 }

30 }

31 }

Listing 6.12 A program that responds to a color selection of the user. The program uses else

6.2.3 If-Else Inside If/Else

Any number of if-statements and/or if-else statements can be placed in an if-block and in an else-

block to build complex flow control.

The next code utilizes two if-else blocks, with the second one appearing inside the else block

of the first, to accomplish exactly the same task as before:

1 import java.util.Scanner;

2 // ask about a color and respond

3 public class ColorSelectionInside

4 {

5 public static void main(String [] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner(System.in);

Listing 6.13 A color-selection program that uses two if-else blocks (part 1)

6.2 The If Statements 159

In the second occurrence of if-else (Lines 21–28), if the code reaches Line 20, the value of

answer is guaranteed to be one of 1, 2, 3, and 4. Therefore if the code reaches the second else
(Line 25), the value of answer is guaranteed to be either 3 or 4. This implies that the code works as

we intended.

9 System.out.println("What is your favorite color?");

10 System.out.println(

11 "1. Orange , 2. Green , 3. Maize , 4. Blue");

12 System.out.print("Select from 1 to 4 : ");

13 int answer = keyboard.nextInt ();

14 if (answer < 1 || answer > 4)

15 {

16 System.out.printf("Your choice %d is invalid .%n", answer);

17 }

18 else

19 {

20 System.out.printf("Your choice %d is excellent .%n", answer);

21 if (answer == 1 || answer == 2)

22 {

23 System.out.println("It is a U. Miami color!");

24 }

25 else

26 {

27 System.out.println("It is a U. Michigan color!");

28 }

29 }

30 }

31 }

Listing 6.14 A color-selection program that uses two if-else blocks (part 2)

A special case of successive if-else statements is else if as follows:

1 if (CONDITION1) { STATEMENTS1 }
2 else if (CONDITION2) { STATEMENTS2 }
3 else if (CONDITION3) { STATEMENTS3 }
4 else { STATEMENTS4 }

Because of the rule allowing the omission of the curly-brackets after else (if the section has only one

statement), and because a single-pair of if-else is an inseparable block of code, this is syntactically

equivalent to:

1 if (CONDITION1) { STATEMENTS1 }
2 else {
3 if (CONDITION2) { STATEMENTS2 }
4 else { if (CONDITION3) { STATEMENTS3 }
5 else { STATEMENTS4 }
6 }
7 }

In the above if-else statement, the evaluation of CONDITION2 occurs only if the evaluation of

CONDITION1 produces false and the evaluation of CONDITION3 occurs only if both the

evaluation of CONDITION1 and the evaluation of CONDITION2 produces false. In general, if

an if-statement is followed by a series of else-if statements, the condition evaluation terminates at

the point where the result is true and evaluations beyond that point never take place. If there is no

condition producing true, the statements corresponding to the final else will run.

160 6 Conditions and Their Use for Controlling the Flow of Programs

Using this option, we can rewrite the previous code as follows:

1 import java.util.Scanner;

2 // ask about a color and respond

3 public class ColorSelectionWithElse

4 {

5 public static void main(String [] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner(System.in);

9 System.out.println("What is your favorite color?");

10 System.out.println("1. Orange , 2. Green , 3. Yellow , 4. Blue");

11 System.out.print("Select from 1 to 4 : ");

12 int answer = keyboard.nextInt ();

13 if (answer < 1 || answer > 4)

14 {

15 System.out.printf("Your choice %d is invalid .%n", answer);

16 }

17 else if (answer == 3 || answer == 4)

18 {

19 System.out.printf("Your choice %d is great , but%n", answer);

20 System.out.println("it is not a UM color!");

21 }

22 else

23 {

24 System.out.printf("Your choice %d is great .%n", answer);

25 }

26 }

27 }

Listing 6.15 A color-selection program that uses else-if

The benefit of else is that when the flow control uses more than two mutually exclusive

conditions, the expression can be simplified without having to spell out each condition succinctly.

To explain this a little, consider the hypothetical situation in Fig. 6.5. If we are to write the code

without the use of else, it may look like:

Fig. 6.5 A hypothetical
situation with interwoven
conditions

A

B

C

D

E

6.2 The If Statements 161

1 if (cond_A) { ... }
2 if (!cond_A)
3 {
4 if (cond_B) { ... }
5 else (!cond_B)
6 {
7 if (cond_C) { ... }
8 if (!cond_C)
9 {

10 if (cond_D) { ... }
11 if (!cond_D)
12 {
13 if (cond_E) { ... }
14 if (!cond_E) { ... }
15 }
16 }
17 }
18 }

or:

1 if (cond_A) { ... }
2 if (!cond_A && cond_B) { ... }
3 if (!cond_A && !cond_B && cond_C) { ... }
4 if (!cond_A && !cond_B && !cond_C && cond_D) { ... }
5 if (!cond_A && !cond_B && !cond_C && !cond_D && cond_E) { ... }

On the other hand, if we use else, we can simplify it as:

1 if (cond_A) { ... }
2 else if (cond_B) { ... }
3 else if (cond_C) { ... }
4 else if (cond_D) { ... }
5 else if (cond_E) { ... }

Here is an example that demonstrates the benefit of else.

Suppose we are to write a program that receives an int value from the user and produces an output

line depending on the value: message X for values 0, 4, 8, and 12, message Y for values less than 0

and values greater than 12, and message Z for the rest. Without using else the code may look like:

1 if (value == 0 || value == 4 || value == 8 || value == 12)
2 {
3 System.out.println(X);
4 }
5 if (value < 0 || value > 12)
6 {
7 System.out.println(Y);
8 }
9 if (value > 0 && value < 4

10 || value > 4 && value < 8
11 || value > 8 && value < 12)
12 {
13 System.out.println(Z);
14 }

162 6 Conditions and Their Use for Controlling the Flow of Programs

Using else, we can avoid using one conditional evaluation:

1 if (value == 0 || value == 4 || value == 8 || value == 12)
2 {
3 System.out.println(X);
4 }
5 else if (value < 0 || value > 12)
6 {
7 System.out.println(Y);
8 }
9 else

10 {
11 System.out.println(Z);
12 }

By swapping the order between the first and the second conditions, we can further simplify the code,

since 0, 4, 8, and 12 are all multiples of 4, as shown next:

1 if (value < 0 || value > 12)
2 {
3 System.out.println(Y);
4 }
5 else if (value % 4 == 0)
6 {
7 System.out.println(X);
8 }
9 else

10 {
11 System.out.println(Z);
12 }

6.2.4 Truncation of Conditional Evaluations

The evaluations of a conditional formula generally proceeds from left to right and stops immediately

when the value of the formula has been determined. For example, in the evaluation of a formula

(A || B || C), the evaluation order of the operands is A, B, and C. If the value of A is found

to be true, regardless of the values of B and C, the value of the formula is true, so neither B nor C
are evaluated. For a similar reason, if the value of A is found to be false and the value of B is found

to be true, C is not evaluated. Similarly, in the condition (A && B && C), if the value of A is

found to be false, neither B nor C are evaluated, and if the value of A is found to be true and the

value of B is found to be false, C is not evaluated.

This feature can be taken advantage of in many ways. Here is a simple example.

Suppose we are to write an application in which we receive two integers, a and b, from the user and

test whether or not a is divisible by b. We can test the divisibility using the condition a % b == 0.

1 Scanner keyboard = new Scanner(System.in);
2 int a, b;
3 System.out.print("Enter two integers a and b: ");
4 a = keyboard.nextInt();
5 b = keyboard.nextInt();
6 if (a % b == 0)
7 {
8 System.out.println(a + " divides " + b);
9 }

6.2 The If Statements 163

With this code, if the user enters 0 for b, the execution results in a run-time error of

ArithmeticException.

To prevent this error from happening, we can test b != 0 first to ensure that the division is

performed only if b is not 0:

1 Scanner keyboard = new Scanner(System.in);
2 int a, b;
3 System.out.print("Enter two integers a and b: ");
4 a = keyboard.nextInt();
5 b = keyboard.nextInt();
6 if (b != 0)
7 {
8 if (a % b == 0)
9 {

10 System.out.println(a + " divides " + b);
11 }
12 }

We can apply the “truncation rule” to this code:

1 Scanner keyboard = new Scanner(System.in);
2 int a, b;
3 System.out.print("Enter two integers a and b: ");
4 a = keyboard.nextInt();
5 b = keyboard.nextInt();
6 if (b != 0 && a % b == 0)
7 {
8 System.out.println(a + " divides " + b);
9 }

If b == 0, the conditional evaluation halts immediately with the outcome of false, so the

remainder operator a % b will not occur. Thus, the program works the same way.

Another nice feature of conditional evaluation is that each of the six comparisons can be combined

with an assignment. For example, consider the following code fragment:

1 int a, b
2 ...
3 if ((a = 2 * b) > 17)
4 {
5 ...
6 }

Here, a acquires the value of 2 * b, and then the value is compared with 17.

In a little more complicated situation, an assignment of a value obtained by a Scanner object can

be subjected to a test:

1 Scanner keyboard = new Scanner(System.in);
2 int a;
3 System.out.println("Enter an integer: ");
4 if ((a = keyboard.nextInt()) % 2 == 0)
5 {
6 System.out.println(a + " is an even number.");
7 }

164 6 Conditions and Their Use for Controlling the Flow of Programs

Summary

A condition is a formula, a variable, a literal, or a method call that has a boolean value.

Numbers, including char, can be compared using mathematical comparisons x > y, x >= y,

x < y, x <= y, x == y, and x != y.

!, ||, and && are boolean operators.

if and if-else statements control the flow of the program.

Multiple else-if blocks may appear after one if.

The evaluation of a conditional formula involving multiple operands terminates as soon as the value

of the formulas has been found.

Exercises

1. Flattening multi-level if-then statements Consider the following code:

1 if (x > 10)

2 {

3 if (x > 20)

4 {

5 methodA ();

6 }

7 else

8 {

9 methodB ();

10 }

11 }

12 else if (x < -10)

13 {

14 if (x < -20)

15 {

16 methodA ();

17 }

18 else

19 {

20 methodB ();

21 }

22 }

23 else

24 {

25 if (x == 0)

26 {

27 methodA ();

28 }

29 else

30 {

31 methodB ();

32 }

33 }

Rewrite the code in the form of:

Exercises 165

1 if (CONDITION_X)

2 {

3 methodA ();

4 }

5 else

6 {

7 methodB ();

8 }

2. Flattening multi-level if-then statement, alternate

1 if (x > 10)

2 {

3 if (x < 20)

4 {

5 methodA ();

6 }

7 else

8 {

9 methodB ();

10 }

11 }

12 else if (x < -10)

13 {

14 if (x > -20)

15 {

16 methodA ();

17 }

18 else

19 {

20 methodB ();

21 }

22 }

23 else

24 {

25 if (x == 0)

26 {

27 methodA ();

28 }

29 else

30 {

31 methodB ();

32 }

33 }

Rewrite the code in the form of:

1 if (CONDITION_X)

2 {

3 methodA ();

4 }

5 else

6 {

7 methodB ();

8 }

166 6 Conditions and Their Use for Controlling the Flow of Programs

3. Tracing a nested if-statement Consider the following code:

1 public static String test(int primary , int secondary)

2 {

3 if (primary > 0)

4 {

5 if (secondary > 0)

6 {

7 return "1";

8 }

9 }

10 return "0";

11 }

State:

• for which input combinations the method returns "1";

• for which input combinations the method returns "0".

4. Tracing a nested if-statement Consider the following code:

1 public static String test(int primary , int secondary)

2 {

3 if (primary > 0)

4 {

5 if (secondary == primary)

6 {

7 return "1";

8 }

9 else if (secondary == 2 * primary)

10 {

11 return "2";

12 }

13 return "X";

14 }

15 return "O";

16 }

The return value of the method is "1", "2", "X", or "0". For each of the four possible return

values, state one combination of the values of primary and secondary for which the method

returns the value.

5. Divisibility testing Write a program, Divisibility, that receives two int values from the

user and asserts whether the first number is a multiple of the second. The method asserts that the

answer is in the negative if the second number happens to be 0.

6. Boolean evaluation Suppose a, b, and c are boolean variables. Then (a == b) != c
is a valid formula, since a == b evaluates to a boolean. There are eight possible combinations

for the values of the three variables. For each of the combinations, state the value of the condition.

7. Discriminant of a quadratic formula Write a program, DiscriminantTest, that receives

three real values a, b, and c from the user, and returns the number of real solutions of the equation

ax2 + bx + c = 0 as an int.

8. Following the code execution to determine the output State the value that the method

method123 below returns with each of the values below as the actual parameter:

Exercises 167

1 public static double method123(double input)

2 {

3 if (input < 11.0)

4 {

5 return input + 1;

6 }

7 if (input < 12.0)

8 {

9 return input + 2;

10 }

11 return input - 5;

12 }

(a) 10.0
(b) 11.0
(c) 12.0
(d) 13.0

9. Following the code execution to determine the output State the value the method

methodABC below returns with each of the values below as the actual parameter:

1 public static double methodABC(int input)

2 {

3 if (input == 10)

4 {

5 return input * 2;

6 }

7 if (input < 11)

8 {

9 return input * 3;

10 }

11 return input * 7;

12 }

(a) 9
(b) 10
(c) 11

10. Return value determination 1 Let a method cute be defined as follows:

1 public static boolean cute(boolean x, boolean y, boolean z)

2 {

3 return x == (y == z);

4 }

For each of the eight possible input values, state the value the method returns.

11. Return value determination 2 Let the method neat be defined as follows:

1 public static boolean neat(boolean x, boolean y, boolean z)

2 {

3 return x != y || y != z || z != x;

4 }

168 6 Conditions and Their Use for Controlling the Flow of Programs

State, for each of the eight possible value combinations for the three parameters, the return

value of the method.

Programming Projects

12. Triangle validity Write a method, isValidTriangle, that receives three double values

sideA, sideB, and sideC as parameters and returns whether or not each value is strictly less

than the sum of the other two. The return type must be boolean.

13. Right angle Write a method, isRightAngleTriangle, that receives three double values

sideA, sideB, and sideC as parameters, and returns whether or not the three edges form a

right-angled triangle. The return type must be boolean.

14. Checking whether or not three values are all positive Write a public static method named

allPositive that receives three double values valueA, valueB, and valueC as

parameters, and returns whether or not the three values are all strictly positive. The return type

must be boolean.

15. What does this function compute? Analyze the following code, and state what this method

computes.

1 public static int mystery (int a, int b, int c)

2 {

3 if (a == Math.max(a, Math.max(b, c)))

4 {

5 return Math.max(b, c);

6 }

7 return Math.max(a, Math.min(b, c));

8 }

16. Solving a system of linear equations with two unknowns Consider solving the system of

linear equations with two unknowns x and y:

ax + by = s

cx + dy = t

To solve the problem, we first check the value of the determinant of the system: h = ad − bc. If

h is not 0, we have x = (ds − bt)/h and y = (−cs + at)/h. If h is 0, the system is degenerate,

and falls into one of the following four cases:

• the system is unsolvable;

• the system is equivalent to one linear equation;

• the value of x is arbitrary and the value of y is fixed;

• the value of y is arbitrary and the value of x is fixed

Write a program, LinearEquation2, that receives the six coefficients from the user and solves

the problem if the determinant h is not 0. The program should state, in the case that h = 0, that it

cannot solve the system.

17. Fully solving a system of linear equations with two unknowns Continuing on the previous

problem, write a program LinearEquation2Full that completely solves the problem

including the cases in which only x or only y is determined. Here are five examples that show

the behavior of the program.

1 Enter a, b, s for number 1: 1 2 3
2 Enter c, d, t for number 2: 3 1 2
3 x = 0.2, y = 1.4.

Exercises 169

1 Enter a, b, s for number 1: 0 0 0
2 Enter c, d, t for number 2: 0 0 0
3 Both x and y are arbitrary.

1 Enter a, b, s for number 1: 1 0 2
2 Enter c, d, t for number 2: 2 0 4
3 y is arbitrary and x = 2.0.

1 Enter a, b, s for number 1: 1 2 3
2 Enter c, d, t for number 2: 2 4 6
3 Any point on 1.0x+2.0y=3.0.

1 Enter a, b, s for number 1: 1 2 3
2 Enter c, d, t for number 2: 2 4 5
3 Unsolvable.

Implement a series of cases to consider, which can be expressed as a series of if-else-if:

• “if” h 	= 0: solve it as before;

• “else if” either a = b = 0 and s 	= 0 or c = d = 0 and t 	= 0: unsolvable;

• “else if” either a = b = s = c = d = t = 0: arbitrary x and y;

• “else if” a = b = s = 0: equivalent to cx + dy = t ;

• “else if” c = d = t = 0: equivalent to ax + by = s;

• “else if” a = c = 0 and s/b = t/c: equivalent to ax + by = s.

• “else if” b = d = 0 and s/b = t/c: equivalent to ax + by = s.

• “else if” either a = c = 0 or b = d = 0: unsolvable;

• “else if” s/a 	= t/b: unsolvable;

• “else”: equivalent to ax + by = s.

Write a method named justOne(double p, double q, double r) that handles

the situation in which the system is equivalent to just one equation, where it is guaranteed that

either p 	= 0 or q 	= 0. Using this method, the series of actions can be handled in a slightly

simpler manner.

Part II

Loops

7For-Loops

7.1 Using For-Loops for Repetition

A loop is a program structure for executing a block of code repeatedly. The code for a loop usually

comes with a specification of when to stop the repetition. Java has four loop structures: the for-loop,

the while-loop, the do-while loop, and the for-each loop. We study the for-loop in this chapter, the

while-loop and do-while loop in Chap. 11, and the for-each loop in Chaps. 17 and 18.

In Sect. 5.2, we studied computing the BMI value on height and weight values that the user

enters. In BMIInteractive.java (List 7.1) we used a method named oneInteraction that

received one pair of height and weight from the user and reported the BMI value with respect to the

combination. The action of the method main in the program was to call oneInteraction twice.

Suppose we want to increase the number of repetitions from two to a much larger number, for

example, ten. We can accomplish this by adding eight more lines of oneInteraction():

1 public static void main(String [] args)

2 {

3 oneInteraction ();

4 oneInteraction ();

5 oneInteraction ();

6 oneInteraction ();

7 oneInteraction ();

8 oneInteraction ();

9 oneInteraction ();

10 oneInteraction ();

11 oneInteraction ();

12 oneInteraction ();

13 }

Now what should we do if we wanted to increase the number of repetitions to 20? Should we add

ten more lines of the same oneInteraction()? Using a loop, it is possible to state the 20-time

repetitions in just a few lines.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_7

173© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_7

174 7 For-Loops

1 public static void main(String [] args)

2 {

3 int i;

4 for (i = 1; i <= 10; i = i + 1)

5 {

6 oneInteraction ();

7 }

8 }

Line 4 of the code,

for (i = 1; i <= 10; i = i + 1)

is the for-loop. It means

“repeat the following as long as i <= 10 by first assigning the value of 1 to i and then adding 1 to

i each time.”

The “following” refers to the block of code between Lines 5–7. We call this block the loop-body.

The actions that take place in the above for-loop are as follows:

• The value of 1 is stored in i.

• As long as the value of i is less than or equal to 10,

– execute oneInteraction and

– increase the value of i by 1.

The use of a for-loop in stating the repetition makes it easy to change the number of repetitions.

Furthermore, if the name of the method changes, we only have to replace just one call, which appears

in the body of the loop.

The variable i that refers to the “round” in the repetition can be used in the body of the loop. For

example, before calling oneInteraction we can announce the round:

1 public static void main(String [] args)

2 {

3 int i;

4 for (i = 1; i <= 10; i = i + 1)

5 {

6 System.out.println("This is round " + i + ".");

7 oneInteraction ();

8 }

9 }

The code with the round announcement appears next:

7.1 Using For-Loops for Repetition 175

1 import java.util.Scanner;

2 public class BMIRepetitive

3 {

4 public static final double BMI_SCALE = 703.0;

5 public static final int FEET_TO_INCHES = 12;

6

7 public static double bmiFormula(double weight , double height)

8 {

9 return BMI_SCALE * weight / (height * height);

10 }

11

12 public static void oneInteraction ()

13 {

14 Scanner keyboard = new Scanner(System.in);

15 System.out.print("Enter weight: ");

16 double weight = keyboard.nextDouble ();

17 System.out.print("Enter height in feet and inches: ");

18 double feet = keyboard.nextDouble ();

19 double inches = keyboard.nextDouble ();

20 double height = FEET_TO_INCHES * feet + inches;

21 double bmi = bmiFormula(weight , height);

22 System.out.println("Your BMI is " + bmi + ".");

23 }

24 public static void main(String [] args)

25 {

26 int i;

27 for (i = 1; i <= 10; i = i + 1)

28 {

29 System.out.println("This is round " + i + ".");

30 oneInteraction ();

31 }

32 }

33 }

Listing 7.1 A program that repeatedly computes BMI using a for-loop. The program announces each round

The execution of the code, with some input from the user, produces the following:

1 This is round 1.
2 Enter weight: 150
3 Enter height in feet and inches: 5 6
4 Your BMI is 24.207988980716255.
5 This is round 2.
6 Enter weight: 150 5 7
7 Enter height in feet and inches: Your BMI is 23.490755179327245.
8 This is round 3.
9 Enter weight: 160 5 7

10 Enter height in feet and inches: Your BMI is 25.056805524615726.
11 This is round 4.
12 ...

As we have seen in the above, the header part of a for-loop has three components with a semicolon

in between:

• initialization,

• continuation (termination) condition,

• update

176 7 For-Loops

Fig. 7.1 A generic flow
chart of for-loops

LOOP-BODY

CONTINUATION

CONDITION

true

TERMINATE

false

INITIALIZATION

UPDATE

In other words, the header part of a for-loop takes the form of:

for (INITIALIZATION; CONTINUATION CONDITION; UPDATE) { ... }

The roles of these components are as follows:

• The initialization of a for-loop is a statement that is executed prior to entering the repetition.

• The continuation condition is one that must hold for the loop-body to execute. Before executing

the loop-body, this condition is tested. If the condition does not hold, the loop is terminated

immediately.

• The update is a statement that is executed after each execution of the loop-body.1

The roles of the three components are summarized in Fig. 7.1. Most typically, in a for-loop, the

initialization is an assignment to a variable (usually an integer), the termination condition is a

comparison involving the variable, and the update is a modification to the variable. We call such a

variable an iteration variable.

The next program contains a for-loop with an interaction that changes its value from 0 to 7.

1 public class ForExample

2 {

3 public static void main(String [] args)

4 {

5 int count;

6 for (count = 0; count < 8; count ++)

7 {

8 System.out.println("The value of count is " + count);

9 }

10 }

11 }

Listing 7.2 An iteration over the sequence 0, ..., 7

1Both the initialization and the update can be composed of multiple statements. Those statements must be separated by
a comma in between.

7.1 Using For-Loops for Repetition 177

Fig. 7.2 The code
execution diagram of
ForExample

count = 0

count < 8?

System.out.println("The value of count is " + count);

count ++

END OF LOOP
EXECUTION

NO

YES

The iteration variable of the for-loop is count. Since the initial value of the iteration variable is 0,

the termination condition is count < 8, and the update is count ++, the last value of count for

which the loop-body is executed is 7. Figure 7.2 summarizes the above observation.

Running the code produces the following:

1 The value of count is 0
2 The value of count is 1
3 The value of count is 2
4 The value of count is 3
5 The value of count is 4
6 The value of count is 5
7 The value of count is 6
8 The value of count is 7

Consider changing the initialization to:

count = 8

while retaining the other two components of the loop header.

1 public class ForExampleNoOutput

2 {

3 public static void main(String [] args)

4 {

5 int count;

6 for (count = 8; count < 8; count ++)

7 {

8 System.out.println("The value of count is " + count);

9 }

10 }

11 }

Listing 7.3 A for-loop that never executes its body

Since the new initial value already fails to satisfy the termination condition, the loop terminates

without executing its body once.

Consider further changing the comparison in the termination condition to count <= 8, as shown

next:

178 7 For-Loops

1 public class ForExampleJustOnce

2 {

3 public static void main(String [] args)

4 {

5 int count;

6 for (count = 8; count <=8; count ++)

7 {

8 System.out.println("The value of count is " + count);

9 }

10 }

11 }

Listing 7.4 A for-loop that never executes its body

The loop-body will then execute just once, producing the output line:

The value of count is 8

Remember that the existence/absence of the equal sign often makes a significant difference in the

behavior of a for-loop.

The variable type declaration of the iteration variable can be inserted in the initialization, like this:

1 public static void main(String [] args)

2 {

3 // int count;

4 for (int count = 0; count < 8; count ++)

5 {

6 System.out.println("The value of count is " + count);

7 }

8 }

This requires the removal of the declaration of the variable count appearing in Line 3; otherwise,

the scopes of the two declarations of the identical variable names overlap. Retaining the declaration

(i.e., not adding the two forward slashes) will result in an error message during compilation, e.g.:

1 ForExample.java :6: error: variable count is already defined in method

main(String [])

2 for (int count = 0; count < 8; count ++)

3 ˆ

4 1 error

Here, the code uses // to make the line a comment.

If the iteration variable is declared in the initialization of a for-loop, then its scope is the entire

for-loop, including the header-part. The scope of the variable count becomes the entire for-loop, not

the entire main.

Let us go back to the use of a for-loop to repeat an action.

Suppose we want to generate a random number between 0 and 1 (using Math.random) N times

and take the average of the random numbers. What can we expect? To compute the average, we only

have to compute the total of the random numbers and then divide it by N. According to the statistical

principal called the law of large numbers, if the random number generation is fair, the larger the

value of N is, the closer the average is to 0.50.

7.1 Using For-Loops for Repetition 179

Suppose we use a modest value, 20, for N and run an experiment to examine how close the average

gets to the expected average of 0.50. Our program uses a double variable named random to record

the random number Math.random produces at each round, an int variable named round to record

the number of times a random number has been generated, and a double variable named sum to

record the sum of the random numbers. At each round, the program announces the round number and

the random number that has been generated. After the for-loop, the program divides the total by 20

and then prints the average.

Here is the code that follows this algorithm:

1 public class RandomAverage

2 {

3 public static void main(String [] args)

4 {

5 double random , sum;

6 sum = 0;

7 for (int round = 1; round <= 20; round ++)

8 {

9 random = Math.random ();

10 sum += random;

11 System.out.print("round=" + round);

12 System.out.println(", number=" + random);

13 }

14 sum /= 20;

15 System.out.println("average=" + sum);

16 }

17 }

Listing 7.5 A program that computes the average of 20 random numbers

Here is the result of one execution. Since the program uses a random number generator, it is

unlikely that the same output result occurs twice:

1 round=1, number=0.8157853753717103
2 round=2, number=0.46775040606117546
3 round=3, number=0.8441866465531849
4 round=4, number=0.5829690931048322
5 round=5, number=0.5599437446060029
6 round=6, number=0.8672105406302983
7 round=7, number=0.33033589637735683
8 round=8, number=0.5881510375862207
9 round=9, number=0.38566559572527037

10 round=10, number=0.31425625823536696
11 round=11, number=0.3286394398265723
12 round=12, number=0.9437308791253096
13 round=13, number=0.8607491030785093
14 round=14, number=0.008072130126899335
15 round=15, number=0.0477975147654055
16 round=16, number=0.2659779860979148
17 round=17, number=0.5987723989794204
18 round=18, number=0.8369910748406596
19 round=19, number=0.25924195790278215
20 round=20, number=0.005168580596320194
21 average=0.4955697829795607

Here is another run:

180 7 For-Loops

1 java RandomAverage
2 round=1, number=0.8920844233690451
3 round=2, number=0.3288527172059581
4 round=3, number=0.4933769583576755
5 round=4, number=0.8788336888081347
6 round=5, number=0.6212225634348153
7 round=6, number=0.7371533245256305
8 round=7, number=0.7485906839518522
9 round=8, number=0.5634098385103024

10 round=9, number=0.22549810357332067
11 round=10, number=0.8546489284189476
12 round=11, number=0.2905654125567769
13 round=12, number=0.24907615852772835
14 round=13, number=0.5800520831995266
15 round=14, number=0.2043575262026217
16 round=15, number=0.25741759539019937
17 round=16, number=0.4710648380419118
18 round=17, number=0.04850748397632787
19 round=18, number=0.6508157292281656
20 round=19, number=0.33074890481577923
21 round=20, number=0.7833542508320545
22 average=0.5104815606463388

In both cases, the average is quite close to 0.50.

7.2 Iteration

7.2.1 Simple Iteration

We formally call the process of generating a series of values using a loop an iteration. For-loops are

useful for iteration. In many cases of iterations with a for-loop, the series is generated as the values of

its iteration variable.

Using different initializations, termination conditions, and updating actions, it is possible to

produce a wide variety of sequences. Here are some examples:

1 for (int count = 10; count >= 1; count --);

2 for (int count = 10; count > 0; count -= 2);

3 for (int count = 89; count <= 100; count += 3);

4 for (int count = 1; count <= 100; count *= 2);

5 for (int count = 3; count <= 80; count = count * 2 - 1);

These are all syntactically correct. Their iteration variables are named count. Each line ends with a

semicolon, which indicates that there is no loop-body. The learners of Java often attach a semicolon

after the closing parenthesis, which may produce a source code that compiles but does not run as

anticipated.

The sequences generated by the for-loops are:

1 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
2 10, 8, 6, 4, 2
3 89, 92, 95, 98
4 1, 2, 4, 8, 16, 32, 64
5 3, 7, 15, 31, 63

7.2 Iteration 181

The next code executes the for-loop (now without the semicolon after the closing parenthesis) and

prints the values generated in one single line for each loop, with a single white space character inserted

before each value. To do this, the code uses print instead of println. Because print does not

add the newline character at the end of its loop, the code must execute one println statement to go

to the next line.

Furthermore, the two lines preceding each for-loop have the role of producing the three components

of the loop on the screen:

1 public class IterationSamples

2 {

3 public static void main(String [] args)

4 {

5 int count;

6 System.out.println("----- Loop Number 1 ----- ");

7 System.out.println("count = 10; count >= 1; count --");

8 for (count = 10; count >= 1; count --)

9 {

10 System.out.print(" " + count);

11 }

12 System.out.println("\n----- Loop Number 2 ----- ");

13 System.out.println("count = 10; count > 0; count -= 2");

14 for (count = 10; count > 0; count -= 2)

15 {

16 System.out.print(" " + count);

17 }

Listing 7.6 Examples of iteration (part 1)

18 System.out.println("\n----- Loop Number 3 ----- ");

19 System.out.println("count = 89; count <= 100; count += 3");

20 for (count = 89; count <= 100; count += 3)

21 {

22 System.out.print(" " + count);

23 }

24 System.out.println("\n----- Loop Number 4 ----- ");

25 System.out.println("count = 1; count <= 100; count *= 2");

26 for (count = 1; count <= 100; count *= 2)

27 {

28 System.out.print(" " + count);

29 }

30 System.out.println("\n----- Loop Number 5 ----- ");

31 System.out.println(

32 "count = 3; count <= 80; count = count * 2 - 1");

33 for (count = 3; count <= 80; count = count * 2 - 1)

34 {

35 System.out.print(" " + count);

36 }

37 System.out.println ();

38 }

39 }

Listing 7.7 Examples of iteration (part 2)

182 7 For-Loops

The code produces the following output:

1 ----- Loop Number 1 -----
2 count = 10; count >= 1; count --
3 10 9 8 7 6 5 4 3 2 1
4 ----- Loop Number 2 -----
5 count = 10; count > 0; count -= 2
6 10 8 6 4 2
7 ----- Loop Number 3 -----
8 count = 89; count <= 100; count += 3
9 89 92 95 95 98

10 ----- Loop Number 4 -----
11 count = 1; count <= 100; count *= 2
12 1 2 4 8 16 32 64
13 ----- Loop Number 5 -----
14 count = 3; count <= 80; count = count * 2 - 1
15 3 5 9 17 33 65

Using an iteration that decreases the value of its iteration variable from its start value, as well

as a Scanner object that receives the start value, we can write the following simple program for

executing a countdown from the start number to 0.

Note the following specifics of the code:

• The program uses a Scanner object. Line 1 is an import statement for using a Scanner. We

use a generic java.util.* here.

• In Line 9, the program receives the start value and stores it in a variable named start. The

variable start is declared in Line 6.

• The iterator has value > 0 as the termination condition. Thus, the last value of value in which

the loop-body executes is greater than 0. Since value is an integer, the smallest integer that

satisfies value > 0 is 1, so the condition is equivalent to value >= 1.

1 import java.util.* ;

2

3 public class CountDown

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard;

8 int start , value;

9 keyboard = new Scanner(System.in);

10 System.out.print("Enter start: ");

11 start = keyboard.nextInt ();

12 for (value = start; value > 0; value --)

13 {

14 System.out.println(".." + value);

15 }

16 System.out.println("BOOOOOOOOOOOOOOOOOOOOOOOOM !");

17 }

18 }

Listing 7.8 A program that counts down from an input number to 0

Executing the code produces the following result:

7.2 Iteration 183

1 Enter start: 10
2 ..10
3 ..9
4 ..8
5 ..7
6 ..6
7 ..5
8 ..4
9 ..3

10 ..2
11 ..1
12 BOOOOOOOOOOOOOOOOOOOOOOOOM!

Another run produces this result:

1 Enter start: 13
2 ..13
3 ..12
4 ..11
5 ..10
6 ..9
7 ..8
8 ..7
9 ..6

10 ..5
11 ..4
12 ..3
13 ..2
14 ..1
15 BOOOOOOOOOOOOOOOOOOOOOOOOM!

We can accelerate the speed at which the number decreases by using “dividing by 2” instead of

“decreasing by 1” in the iteration, a shown next:

1 import java.util. * ;

2

3 public class CountDownFast

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard;

8 int start , value;

9 keyboard = new Scanner(System.in);

10 System.out.print("Enter start: ");

11 start = keyboard.nextInt ();

12 for (value = start; value > 0; value /= 2)

13 {

14 System.out.println(".." + value);

15 }

16 System.out.println("BOOOOOOOOOOOOOOOOOOOOOOOOM!");

17 }

18 }

Listing 7.9 A program that counts down from an input number to 0 by dividing the number by 2

184 7 For-Loops

Here is one execution:

1 Enter start: 1000
2 ..1000
3 ..500
4 ..250
5 ..125
6 ..62
7 ..31
8 ..15
9 ..7

10 ..3
11 ..1
12 BOOOOOOOOOOOOOOOOOOOOOOOOM!

Here is another:

1 Enter start: 10000
2 ..10000
3 ..5000
4 ..2500
5 ..1250
6 ..625
7 ..312
8 ..156
9 ..78

10 ..39
11 ..19
12 ..9
13 ..4
14 ..2
15 ..1
16 BOOOOOOOOOOOOOOOOOOOOOOOOM!

The next program receives the value for an int variable, n, from the user, and then computes the

sum of integers between 1 and n. In Chap. 2, we have seen the program performing this calculation,

using Gauss’s approach for a fixed value of n (as n * (n - 1) / 2). The version here computes

the sum by adding the numbers one after another:

1 import java.util .*;

2 public class LimitedGauss

3 {

4 public static void main(String [] args)

5 {

6 int n, sum;

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter n: ");

9 n = keyboard.nextInt ();

10 sum = 0;

11 for (int i = 1; i <= n; i ++)

12 {

13 sum += i;

14 }

15 System.out.println("The sum = " + sum);

16 }

17 }

Listing 7.10 A program that calculates the sum of all integers between 1 and n by adding one number after another

7.2 Iteration 185

The iteration variable i produces the sequence 1, ..., n for a positive integer n. The program

adds the value of i to a variable, sum, whose initial value is 0. Thus, the value of sum becomes 1, 3,

6, 10, and so on, ending with n*(n-1)/2.

Here is one execution example:

1 Enter n: 10
2 The sum = 55

Note that if the value of n is less than or equal to 0, the loop-body is never executed, and so the value

sum retains its initial value, 0:

1 Enter n: -10
2 The sum = 0

In a similar vein, we can write a program that computes the product of all integers between 1 and n,

where n is a value that the user enters. The mathematical name for the product of consecutive numbers

starting from 1 is the factorial of n, written n!. Since the factorial is a function that increases very

quickly as the value of n increases, we use long instead of int. We compute the value of the factorial

in a long variable named product. Then, we initialize product with the value of 1. During the

loop, we update the value of product by multiplying it with the value of the iteration variable i.

1 import java.util .*;

2 public class Factorial

3 {

4 public static void main(String [] args)

5 {

6 int n;

7 long product;

8 Scanner keyboard = new Scanner(System.in);

9 System.out.print("Enter n: ");

10 n = keyboard.nextInt ();

11 product = 1;

12 for (int i = 1; i <= n; i ++)

13 {

14 product *= i;

15 }

16 System.out.println("The product = " + product);

17 }

18 }

Listing 7.11 A program that computes the factorial function using a for-loop

Here is one execution example:

1 Enter n: 34
2 The product = 4926277576697053184

Note that if the value of n is less than or equal to 0, the loop-body is never executed, and so the value

product retains its initial value, 1, as shown next:

1 Enter n: -10
2 The product = 1

The next program receives values for two variables, start and end, from the user. Using these

two values, the program computes the sum of all numbers of the form start + 3 * i that fall

in the range from start to end. At the end, the program prints the sum.

186 7 For-Loops

1 import java.util.Scanner;

2 public class SumEveryThird

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard;

7 int sum , count , start , end;

8 keyboard = new Scanner(System.in);

9 System.out.print("Enter start and end: ");

10 start = keyboard.nextInt ();

11 end = keyboard.nextInt ();

12 //-- initialize the sum

13 sum = 0;

14 //-- iterate the value of j from 1 to 100

15 for (count = start; count <= end; count += 3)

16 {

17 sum += count;

18 }

19 //-- output the result

20 System.out.println("the sum = " + sum);

21 }

22 }

Listing 7.12 A program that computes the sum of every third number within a range

We use two successive calls to nextInt (Lines 8 and 9) to receive the input value of the user.

The user may hit the return key after entering the first number, but at that point the program will still

be waiting for the second number, meaning nothing will happen. After receiving the two numbers,

the program executes an iteration with the initialization of count = start and the termination

condition of count <= end (Line 15).

The execution of the code with three different pairs of input results is shown next.

1 Enter start and end: 100 10000
2 the sum = 16670050

1 Enter start and end: 599 599
2 the sum = 599

1 Enter start and end: 1000
2 100
3 the sum = 0

Note the following:

• In the second case, the loop-body executes exactly once, since start is equal to end.

• In the last case, the value of end is strictly smaller than the value of start, so the loop terminates

before executing the loop-body.

7.2.2 Iteration with an Auxiliary Variable

The sequences that we produced through of iteration had no repetitions and were either monotonically

increasing or monotonically decreasing. Is it possible to use a simple iteration to generate a sequence

containing repetitions? Is it possible to use a simple iteration to generate a sequence that is not

monotonic?

The answer to both questions is “yes”. Such sequences can be generated using an auxiliary variable.

For examples, consider the sequence

7.3 Double For-Loops 187

[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]

For all nonnegative integers k, 3k / 3, (3k + 1) / 3, and (3k + 2) / 3 are all equal to

k. Therefore, the above sequence is identical to a / 3 for a = 0..14. We can then generate the

sequence in an auxiliary variable, i, as follows:

1 int i, a;

2 for (a = 0; a <= 14; a ++)

3 {

4 i = a % 3;

5 }

By attaching an output statement to the body of the loop:

1 int i, a;

2 for (a = 0; a <= 14; a ++)

3 {

4 i = a / 3;

5 System.out.print(" " + i);

6 }

7 System.out.println ();

we can verify the output:

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

In the above, if we use % instead of /, we generate the sequence:

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Furthermore, by changing the operation to i = (a % 3) - 1, we have the following code:

1 int i, a;

2 for (a = 0; a <= 14; a ++)

3 {

4 i = (a % 3) - 1;

5 System.out.print(" " + i);

6 }

7 System.out.println ();

This code produces the sequence:

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

7.3 Double For-Loops

The double for-loop is a special for-loop structure that comprises of two for-loops, with one loop

appearing inside the other. Here is the general structure of the double for-loop:

188 7 For-Loops

1 for (INITIALIZATION1; CONDITION1; UPDATE1)

2 {

3 SOME_CODE;

4 for (INITIALIZATION2; CONDITION2; UPDATE2)

5 {

6 LOOP_BODY;

7 }

8 SOME_OTHER_CODE;

9 }

We call the first loop the external loop and the second loop the internal loop.

Suppose we have the following double for-loop:

1 int start1 , start2 , end1 , end2 , diff1 , diff2 , count1 , count2;

2 ...

3 for (count1 = start1; count1 <= end1; count1 += diff1)

4 {

5 for (count2 = start2; count2 <= end2; count2 += diff2)

6 {

7 System.out.println(count1 + ":" + count2);

8 }

9 }

The code uses two iteration variables, count1 and count2. Iteration by count1 follows values

start1, start1 + diff1, start1 + 2 * diff1, etc., until it reaches a value greater than

end1. For each value of count1, a similar iteration takes places for count2.

1 import java.util.Scanner;

2 // --- print a rectangular box with "#"

3 public class DarkBox

4 {

5 //-- main method

6 public static void main(String [] args)

7 {

8 int height , width , vertical , horizontal;

9 Scanner keyboard;

10 keyboard = new Scanner(System.in);

11 // set height and width

12 System.out.print("Enter height: ");

13 height = keyboard.nextInt ();

14 System.out.print("Enter width: ");

15 width = keyboard.nextInt ();

16 // exterior loop

17 for (vertical = 1; vertical <= height; vertical ++)

18 {

19 // interior loop

20 for (horizontal = 1; horizontal <= width; horizontal ++)

21 {

22 System.out.print("#");

23 }

24 //-- newline is needed

25 System.out.println ();

26 }

27 }

28 }

Listing 7.13 A program that generates a rectangle drawn with hash marks

7.3 Double For-Loops 189

Double for-loops such as this one can be incorporated in the following example. The program

receive two integers from the user and produces a rectangle made up of ’#’’s on the screen. The

dimensions of the rectangle are equal to the numbers the user has entered.

The external loop is for counting the number of lines, and the internal loop is for counting the

number of ’#’’s appearing in each line. Also, for both loops, if we change the start value to 1 and

the termination condition to <, we still get the same result. This is because prior to the change, the

vertical value iteration generates the sequence:

0, 1, 2, ..., height - 1

and the horizontal value iteration generates the sequence:

0, 1, 2, ..., width - 1

After the change, the vertical value iteration generates the sequence:

1, 2, ..., height

and the horizontal value iteration generates the sequence:

1, 2, ..., width

Here is an execution example of the code:

1 Enter height: 10
2 Enter width: 50
3 ##
4 ##
5 ##
6 ##
7 ##
8 ##
9 ##

10 ##
11 ##
12 ##

Here is another:

1 Enter height: 8
2 Enter width: 60
3 ##
4 ##
5 ##
6 ##
7 ##
8 ##
9 ##

10 ##

Here is one more execution example:

1 Enter height: 7
2 Enter width: 0

Since the width of the rectangle was 0, seven empty lines appeared.

The next code produces lines surrounding the rectangle, with - for the horizontal lines, | for the

vertical lines, and ’+’ for the four corners.

The first part of the code consists of declarations and the user input. The values that the user enters

are height and width (same as before).

190 7 For-Loops

1 import java.util.Scanner;

2 public class FramedBox

3 {

4 // --- print a rectangular box with "#" with a frame

5 //-- main method

6 public static void main(String [] args)

7 {

8 int height , width , horizontal , vertical;

9 Scanner keyboard;

10 keyboard = new Scanner(System.in);

11 // set height and width

12 System.out.print("Enter height: ");

13 height = keyboard.nextInt ();

14 System.out.print("Enter width: ");

15 width = keyboard.nextInt ();

Listing 7.14 A program that generates a rectangle of hash marks with surrounding lines (part 1)

The second part consists of three components. The first component is for printing the top line,

which is a ’+’, a line of ’-’ having length width, and another ’+’ in the order of appearance. The

second component is similar to the previous double for-loop, but has one ’|’ at the beginning and

at the end. In addition, the program prints the second ’|’ with System.out.println instead of

System.out.print. The third component is identical to the first one.

16 // * * * * the top line * * * * //

17 System.out.print("+");

18 for (horizontal = 1; horizontal <= width; horizontal ++)

19 {

20 System.out.print("-");

21 }

22 System.out.println("+");

23 // * * * * the middle lines * * * * //

24 for (vertical = 1; vertical <= height; vertical ++)

25 {

26 System.out.print("|");

27 for (horizontal = 1; horizontal <= width; horizontal ++)

28 {

29 System.out.print("#");

30 }

31 System.out.println("|");

32 }

33 // * * * * the bottom line * * * * //

34 System.out.print("+");

35 for (horizontal = 1; horizontal <= width; horizontal ++)

36 {

37 System.out.print("-");

38 }

39 System.out.println("+");

40 }

41 }

Listing 7.15 A program that generates a rectangle of hash marks with surrounding lines (part 2)

Here is one example of executing the code.

7.3 Double For-Loops 191

1 java FramedBox
2 Enter height: 10
3 Enter width: 20
4 +--------------------+
5 |####################|
6 |####################|
7 |####################|
8 |####################|
9 |####################|

10 |####################|
11 |####################|
12 |####################|
13 |####################|
14 |####################|
15 +--------------------+

Specifying one of the two dimensions as 0 results in the following. This is when the height is 0:

1 Enter height: 0
2 Enter width: 10
3 +----------+
4 +----------+

and this is when the width is 0:

1 Enter height: 7
2 Enter width: 0
3 ++
4 ||
5 ||
6 ||
7 ||
8 ||
9 ||

10 ||
11 ++

By using the value of the external iteration variable in the header of the internal iteration, it is

possible to perform a complicated task. The next example shows this. The goal is to print an upside

down triangle with the right angle at the upper-left corner, like this one:

1 **********
2 *********
3 ********
4 *******
5 ******
6 *****
7 ****
8 ***
9 **

10 *

The number of ’*’ printed in one line starts from some number and decreases one by one, until it

becomes 1. The start number is equal to the number of ’*’ printed in the first line. Suppose an int
variable named down contains the number of ’*’s that must be in a give line. Using an iteration

variable, across, the task of printing that specific line can be accomplished as:

192 7 For-Loops

1 for (across = 1; across <= down; across ++)

2 {

3 System.out.print("*");

4 }

5 System.out.println ();

By enclosing this for-loop in another for-loop that generates the sequence 10, 9, ..., 1 with

the iteration variable down, the triangle can be generated:

1 for (down = 10; down >= 1; down --)

2 {

3 for (across = 1; across <= down; across ++)

4 {

5 System.out.print("*");

6 }

7 System.out.println ();

8 }

We want this program to receive the length of the first line (or the number of lines) from the user. We

will store the value in a variable named height. We modify the internal loop so that the last output

of "*" is part of println. This reduces the number of times the inner loop-body is executed by 1.

These changes result in the following code:

1 import java.util.Scanner;

2 //-- print a triangle

3 public class TriangleFlipped

4 {

5 //-- main method

6 public static void main(String [] args)

7 {

8 int height , down , across;

9 Scanner keyboard;

10 keyboard = new Scanner(System.in);

11 System.out.print("Enter height: ");

12 height = keyboard.nextInt ();

13 for (down = height; down >= 1; down --)

14 {

15 for (across = 1; across <= down - 1; across ++)

16 {

17 System.out.print("*");

18 }

19 System.out.println("*");

20 }

21 }

22 }

Listing 7.16 A program that prints an upside right-angled triangle of a given height

Here is an execution example of the code:

7.4 Computing the Maximum and Minimum in a Series of Numbers 193

1 Enter height: 17
2 *****************
3 ****************
4 ***************
5 **************
6 *************
7 ************
8 ***********
9 **********

10 *********
11 ********
12 *******
13 ******
14 *****
15 ****
16 ***
17 **
18 *

7.4 Computing the Maximum and Minimum in a Series of Numbers

Here, we combine for-loops and conditional executions to write an application.

Our first application MaxAndMin receives a series of integer data from the user and computes

the maximum and minimum of the series. Prior to receiving the series, the program asks the user

to specify the series length: in other words, how many elements are in the series. The length, which

is stored in a variable nData. The program then generates a sequence 1, ..., nData using a

for-loop and receives the elements in the series.

We use if-statements in three places.

First, we use it to check if nData is greater than 0. If nData is less than or equal 0,

the program terminates itself by announcing a run-time error. The type of the run-time error is

IllegalArgumentException. We generate the error with a special statement of throw in the

following manner:

throw new IllegalArgumentException(

"\n " + nData + " is not positive");

The second line of the statement is interpreted as a String and printed as an error message before

termination. Since it begins with "\n ", the error message will start in a fresh newline with four

white space characters.

In general,

throw new ERROR_TYPE_NAME(MESSAGE);

is the syntax of terminating a program by generating a run-time error of type ERROR_TYPE_NAME
with an error message of MESSAGE. The word new is a keyword indicating that this is a creation

of an object data of type ERROR_TYPE_NAME, and MESSAGE is the actual parameter given to the

constructor.

The second and third if-statements appear when the element that the user has entered is compared

with the present maximum and minimum values for updates.

194 7 For-Loops

1 import java.util .*;

2 public class MaxAndMin

3 {

4 public static void main(String [] args)

5 {

6 int nData , max , min , input;

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter # of data: ");

9 nData = keyboard.nextInt ();

10 if (nData <= 0)

11 {

12 throw new IllegalArgumentException(

13 "\n " + nData + " is not positive");

14

15 }

Listing 7.17 A program for computing the maximum and the minimum of an integer series (part 1). A part that is
responsible for receiving the length and running a check

Next, the program receives the first element of the series and stores this in the variable input.

Since this is the very first element, the program stores its value in both maximum and minimum. The

declarations of all these variables appear in Line 6. If the value of nData is 1, then there will be no

further input, and so the first number the user enters is both the maximum and the minimum.

16 System.out.print("Enter Data No. 1: ");

17 input = keyboard.nextInt ();

18 max = input;

19 min = input;

Listing 7.18 A program for computing the maximum and the minimum of an integer series (part 2). A part that is
responsible for receiving the first number

Since the program has set the initial value to the variables for the maximum and the minimum, the

for-loop iterates over 2, ..., nData with the variable round. If we change the initialization to

round = 1, the program will prompt the user to enter one extra element.

The prompt that the program uses in the for-loop is

"Enter Data No. " + round + ": "

This is consistent with the prompt

"Enter Data No. 1: "

that the program uses for the very first number. This way, the user sees no difference between the

prompt for the first number and the prompt for the remaining numbers.

In the for-loop, the program compares the input that the user enters with the present maximum

(Lines 25–28) and the minimum (Lines 29–32). If the input is greater than the maximum, the program

stores the value of the input in the maximum. If the input is smaller than the minimum, the program

stores the values of the input in the minimum. Note that we can substitute the if for the minimum

with else if, because if the input is greater than the present maximum, then there is no way for the

input to be smaller than the minimum.

Finally, the program uses printf to produce the result on the screen, using the placeholder %d
for both the maximum and the minimum.

7.5 A Betting Game 195

20 for (int round = 2; round <= nData; round ++)

21 {

22 System.out.print("Enter Data No. " + round + ": ");

23 input = keyboard.nextInt ();

24 if (max < input)

25 {

26 max = input;

27 }

28 if (min > input)

29 {

30 min = input;

31 }

32 }

33 System.out.printf("max=%d, min=%d%n", max , min);

34 }

35 }

Listing 7.19 A program for computing the maximum and the minimum of an integer series (part 3). A part that is
responsible for receiving the remaining numbers and printing the result

Here is an execution example where the run-time error IllegalArgumentException occurs:

1 Enter # of data: 0
2 Exception in thread "main" java.lang.IllegalArgumentException:
3 0 is not positive
4 at MaxAndMin.main(MaxAndMin.java:12)

The third line, " 0 is not positive" is the actual parameter of throw new Illegal
Argument Exception.

Here is an execution example of the code in which the calculation is successful:

1 Enter # of data: 8
2 Enter Data No. 1: -1546
3 Enter Data No. 2: 345
4 Enter Data No. 3: 98035
5 Enter Data No. 4: -876
6 Enter Data No. 5: 5121
7 Enter Data No. 6: 100001
8 Enter Data No. 7: -4
9 Enter Data No. 8: -200000

10 max=100001, min=-200000

7.5 A Betting Game

7.5.1 For-Loops with Skipped Execution

The next application is a simple betting game, where the user is asked to throw a die and bet which

side is facing up.

There are two bet types: specify the exact number of dots or specify odd/even of the number. Here

are some rules:

• The player starts with 50 chips and plays 10 times. However, if the player has lost all his/her chips,

the game ends, regardless of which round the player is on.

• The number of chips that can be bet is between 1 and the number of chips the player possesses at

that moment.

• After throwing a die, the following occurs:

196 7 For-Loops

– If the player has bet on the exact number of dots and the side that has shown has the same

number of dots, the player retains the bet chips and receives, as a reward, chips in the amount

equal to five times the number of chips that have been bet.

– If the player has bet on even/odd parity and the number of dots on the side that has shown has

the same parity as the player’s bet, the player retains the bet chips and receives, as a reward,

chips in the amount equal to the number of chips that have been bet.

– If neither is the case, the player loses the bet chips.

We design the code using the following algorithm:

• A for-loop is used to repeat a single round of action ten times.

• The loop-body takes its action only if the number of chips in possession at the start of the body is

strictly positive. The body consists of the following sequence events.

– The player is advised of the number of chips currently in possession and asked the number of

chips to be bet.

– The player enters the bet amount. If it is less than or equal to 0, the amount is adjusted to 1

(the body being executed guarantees that the number of chips in possession is at least 1). If the

bet amount is greater than the number of chips in possession, the bet amount is reduced to the

number of chips is possession.

– The player is asked to enter the type of bet: −1 for the odd parity, 0 for the even parity, and one

of 1, . . . 6 for the exact number of dots.

– The player enters the type. If the type is less than −1, then it is adjusted to −1, and if the type

is greater than 6, then it is adjusted to 6.

– Using Math.random, an int between 1 and 6 is generated to represent the number of dots

on the face that is up.

– The player is told if he/she has won the bet and is advised on the change has been made on the

number of chips in possession.

• After completing the loop, the final number of chips in possession is reported.

Here is the program that implements this idea.

We use int variables possession to record the number of chips in possession, betType to

record the bet type, betAmount to record the bet amount, and number to record the result after

throwing the dice (Line 7).

1 import java.util .*;

2 public class BettingGame

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int betType , betAmount , number , possession = 50;

8

Listing 7.20 A betting game (part 1). The part that sets up the variables

Next is the for-loop and the beginning of its loop-body. The for-loop iterates the sequence

1, ..., 10 using an iteration variable, i (Line 9). For each round, an action is to be performed

only if possession is positive (Line 11). The action is as follows:

• Inform the player of the round number and the current chip amount (Lines 13–15).

• Ask for the bet amount, receive it, and store it in betAmount (Lines 16 and 17).

• Make an adjustment to the amount if necessary as follows:

7.5 A Betting Game 197

– If its value is not positive, raise it to 1 (Lines 18–21);

– if its value is greater than possession, reduce it to possession, since a player cannot bet

more than what he/she has (Lines 22–25).

• After that, state the [possibly altered] bet amount (Line 26).

9 for (int i = 1; i <= 10; i ++)

10 {

11 if (possession > 0)

12 {

13 System.out.println("=============================== ");

14 System.out.println("This is round " + i);

15 System.out.println("You have " + possession + " chips");

16 System.out.print("How much do you want to bet? ");

17 betAmount = keyboard.nextInt ();

18 if (betAmount < 1)

19 {

20 betAmount = 1;

21 }

22 else if (betAmount > possession)

23 {

24 betAmount = possession;

25 }

26 System.out.println("Your bet amount is " + betAmount);

27

Listing 7.21 A betting game (part 2). The part that processes the bet amount

The next part is for determining the betting type. The program does the following:

28 System.out.print("Enter your bet type: ");

29 System.out.println(" -1 for odd , 0 for even ,");

30 System.out.print("1..6 for an exact bet: ");

31 betType = keyboard.nextInt ();

32 if (betType < -1)

33 {

34 betType = -1;

35 }

36 else if (betType > 6)

37 {

38 betType = 6;

39 }

40

Listing 7.22 Betting game (part 3). The part that determines the bet type

• Ask the player to enter the bet type (Lines 28–30).

• Receive the bet type and store the value in betType (Line 31).

• Make an adjustment if necessary:

– If the type is less than −1, raise it to −1 (Lines 32–35);

– if the type is greater than 6, reduce it to 6 (Lines 36–39).

198 7 For-Loops

Next comes the part where a die is thrown. This is the end of the big if-statement as well as the

for-loop.

• Generate the value for number using the formula 1 + (int)(6 * Math.random())
(Line 41) and report this number (Line 42).

• Check win/loss and make adjustments as follows (Lines 43–58):

– If either (betType == -1 (odd) and number % 2 == 1) or (betType == 0 (even)

and number % 2 == 0), then the player has won an odd/even bet, so add betAmount to

possession (Lines 43–48).

– Otherwise, if betType == number, then the player has won an exact-face bet, so add

5 * betAmount to possession (Lines 49–53).

– Otherwise, subtract betAmount from possession (Lines 54–58).

• Line 59 is the end of the if-statement.

• Line 60 is the end of the for-loop.

41 number = 1 + (int)(6 * Math.random ());

42 System.out.println("The number is " + number);

43 if (betType == -1 && number % 2 == 1 ||

44 betType == 0 && number % 2 == 0)

45 {

46 System.out.println("You’ve won!");

47 possession += betAmount;

48 }

49 else if (betType == number)

50 {

51 possession += 5 * betAmount;

52 System.out.println("You’ve won big time !!!!!!");

53 }

54 else

55 {

56 possession -= betAmount;

57 System.out.println("You’ve lost!");

58 }

59 }

60 }

Listing 7.23 A betting game (part 4). The part that throws a dice and reports the result

At the end of the ten rounds, the program concludes by reporting the final amount of

possession.

61

62 System.out.println("=============================== ");

63 System.out.println("You ended with " + possession + " chips");

64

Listing 7.24 A betting game (part 5). The part that produces the final reporting

The logical formula in Lines 43 and 44:

betType == -1 && number % 2 == 1 || betType == 0 && number % 2 == 0

7.5 A Betting Game 199

is equivalent to:

betType + (number % 2) == 0

as well as to:

Math.abs(betType) == (number % 2)

7.5.2 The Statements continue and break

Two important statements that can be used in a for-loop body are continue and break. The

statement continue instructs the program to skip the remainder of the loop-body and move on

to the next round of the loop. The statement break instructs the program to terminate the execution

of the loop immediately, ignoring the remainder of the present round and all the remaining rounds. If

these statements appear inside an interior loop of multiple loops, their actions apply to the innermost

loop that contains the statements.

Consider the following code block:

1 Scanner keyboard = new Scanner(System.in);

2 int sum = 0;

3 for (int i = 1; i <= 30; i ++)

4 {

5 if (i % 7 == 0)

6 {

7 continue;

8 }

9 int input = keyboard.nextInt ();

10 if (input == 0)

11 {

12 break;

13 }

14 sum += i * input;

15 }

The program generates a sequence 1, ..., 30 with the iteration variable i, receives an input

from the user if i is not a multiple of 7, and computes the sum of i multiplied by the input. However,

if the user enters 0, the loop is terminated immediately.

Here is another example. In the following code, a is an int variable.

1 for (int count = 1; count <= 100; count ++)

2 {

3 a += 10;

4 System.out.println(count + ", " + a);

5 if (a > 1000)

6 {

7 break;

8 }

9 }

The program repeatedly increases a by 10 until the value of a exceeds 1000.

In the betting game program, we enclosed the entire action inside the for-loop in the if-statement

whose condition was possession > 0, i.e.,

200 7 For-Loops

1 for (int i = 1; i <= 10; i ++)

2 {

3 if (possession > 0)

4 {

5 THE_ACTION

6 }

7 }

where THE_ACTION refers to the action to be performed. We can use continue to take

THE_ACTION outside the if-block.

1 for (int i = 1; i <= 10; i ++)

2 {

3 if (possession > 0)

4 {

5 continue;

6 }

7 THE_ACTION;

8 }

Once possession becomes 0, there will be no action to be performed in the loop-body.

Therefore, we can use break to terminate the loop as soon as possession becomes 0.

1 for (int i = 1; i <= 10; i ++)

2 {

3 THE_ACTION;

4 if (possession == 0)

5 {

6 break;

7 }

8 }

Because possession is decreased only at one location, we can move the if-statement containing

the break statement inside after the statement for printing the message "You’ve lost!".

1 for (int i = 1; i <= 10; i ++)

2 {

3 ...

4 else

5 {

6 possession -= betAmount;

7 System.out.println("You’ve lost!");

8 if (possession == 0)

9 {

10 break;

11 }

12 }

13 }

7.6 Computing the Fibonacci Sequence 201

7.6 Computing the Fibonacci Sequence

The Fibonacci sequence F0, F1, F2, . . . is an infinite integer sequence defined by: F0 = F1 = 1 and

for all n ≥ 2, Fn = Fn−1 + Fn−2. The sequence is as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Consider receiving an integer n from the user and printing the value of Fi for i = 2, . . ., n. To

determine the value of Fi , we only need the values of Fi−1 and Fi−2. Therefore, we can accomplish

the task by using a for-loop and memorizing just the two previous values in the sequence.

Using a for-loop that iterates the sequence 2, ..., n with a variable named i, we compute the

value of Fi . To record the values of Fi and its two predecessors, we use three long variables, instead

of three int variables. This is because the values of the elements of the Fibonacci sequence increase

very quickly. The three variables are f, fp, and fpp. They represent Fi , Fi−1, and Fi−2 respectively.

At the start of the loop body, it is ensured that the value of fp is equal to Fi−1 and the value of

fpp is equal to Fi−2. We obtain the value of Fi by f = fp + fpp and print its value. When the

program returns to the start of the loop-body, the value of i has been increased by 1. Therefore, we

must make sure that fpp and fp hold the values of Fi−1 and Fi−2 for the new value of i. This can be

accomplished by first replacing the value of fpp with the value of fp, and then replacing the value

of fp with the value of f. Also, before entering the loop, since the value of i starts with 2, we need

to assign the value of F1 to fp and F0 to fpp.

The next code encapsulates the above ideas and prints the value of f, along with the values of fp
and fpp.

1 import java.util .*;

2 public class FibonacciProgress

3 {

4 public static void main(String [] args)

5 {

6 long f, fp = 1, fpp = 1;

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter n: ");

9 int n = keyboard.nextInt ();

10 for (int i = 2; i <= n; i ++)

11 {

12 f = fp + fpp;

13 System.out.println(

14 i + "\tf=" + f + "\tfp=" + fp + "\tfpp=" + fpp);

15 fpp = fp;

16 fp = f;

17 }

18 }

19 }

Listing 7.25 A program that computes the Fibonacci sequence

Note that the order of execution is (a) computing f; (b) printing the values of i, f, fp, and fpp;

(c) updating fpp; (d) updating fp. Here is an execution example:

1 Enter n: 30
2 2: 2 fp=1, fpp=1
3 3: 3 fp=2, fpp=1
4 4: 5 fp=3, fpp=2

202 7 For-Loops

5 5: 8 fp=5, fpp=3
6 6: 13 fp=8, fpp=5
7 7: 21 fp=13, fpp=8
8 8: 34 fp=21, fpp=13
9 9: 55 fp=34, fpp=21

10 10: 89 fp=55, fpp=34
11 11: 144 fp=89, fpp=55
12 12: 233 fp=144, fpp=89
13 13: 377 fp=233, fpp=144
14 14: 610 fp=377, fpp=233
15 15: 987 fp=610, fpp=377
16 16: 1597 fp=987, fpp=610
17 17: 2584 fp=1597, fpp=987
18 18: 4181 fp=2584, fpp=1597
19 19: 6765 fp=4181, fpp=2584
20 20: 10946 fp=6765, fpp=4181
21 21: 17711 fp=10946, fpp=6765
22 22: 28657 fp=17711, fpp=10946
23 23: 46368 fp=28657, fpp=17711
24 24: 75025 fp=46368, fpp=28657
25 25: 121393 fp=75025, fpp=46368
26 26: 196418 fp=121393, fpp=75025
27 27: 317811 fp=196418, fpp=121393
28 28: 514229 fp=317811, fpp=196418
29 29: 832040 fp=514229, fpp=317811
30 30: 1346269 fp=832040, fpp=514229

After the first round, the value of fp is transferred to fpp and the value of f to fp.

Summary

The format for a for-loop is:

for (INITIALIZATION; CONTINUATION CONDITION; UPDATE) { ... }

The initialization is the action to be performed before entering the loop. The update is the action to

be performed after each execution of the loop-body.

The declaration of the iteration variable may appear in the initialization part of a for-loop. The

scope of an iteration variable whose declaration appears in the header of the loop is the entire loop.

We formally call the process of generating a series of index values loop an “iteration”. The variable

we use in iteration is an iteration variable.

A for-loop can be used for counting repetitions. The value of the iteration variable can be referred

to in the loop-body to produce results that are dependent on the iteration variable.

A double-loop is a loop inside a loop. Using a double-loop, one can manipulate a block of data that

has two dimensions.

The continue statement instructs the program to skip the present round of for-loop and move on

the next round.

The break statement instructs the program to terminate the execution of the for-loop immediately.

Exercises 203

Exercises

1. Evaluating a for-loop How many lines of output will be generated by the code below?

1 for (int i = 1; i < 1000; i *= 2)

2 {

3 System.out.println(i);

4 }

2. Evaluating double loops State the output generated by each of the following for-loops:

1 for (int i = 0; i < 4; i ++)

2 {

3 for (int j = i + 1; j <= 4; j ++)

4 {

5 System.out.print(j);

6 }

7 System.out.println("x");

8 }

1 for (int i = 0; i <= 4; i ++)

2 {

3 System.out.print("=");

4 for (int j = 0; j <= i; j ++)

5 {

6 System.out.print(j);

7 }

8 System.out.println ();

9 }

1 for (int s = 5; s >= 1; s --)

2 {

3 for (int t = 5; t > s; t --)

4 {

5 System.out.print(t);

6 }

7 System.out.println("@");

8 }

1 for (int s = 33; s >= 0; s -= 6)

2 {

3 for (int t = 33 - s; t <= s; t += 5)

4 {

5 System.out.print(t);

6 }

7 System.out.println("#");

8 }

3. Double for-loop Write a double for-loop that produces the following output:

1 123456789
2 3456789
3 56789
4 789
5 9

204 7 For-Loops

4. Another double for-loop Write a double for-loop that produces the following output:

1 987654321
2 8765432
3 76543
4 654
5 5

5. Number iterations For each of the number sequences below, write a for-loop with an iteration

variable, n, that generates the sequence:

(a) 1, 2, 3, 4, 5

(b) 1, 10, 100, 1000, 10,000

(c) 10, 8, 6, 4, 2, 0

(d) 12, 9, 6, 3, 0, -3, -6, -9

6. Generating a series of squares Write a program named Squares that receives an integer

from the user, stores the value in an int variable n, and uses a for-loop to produce the following

output lines:

1 1
2 4
3 9
4 ...
5 n^2

We can expect the value the user enters to be positive. Noting that (m+1)2 −m2 = 2m+1, write

an alternative version that keeps producing the squares by cumulatively adding odd integers to a

variable that is initially 0.

7. Printing a diamond of variable sizes Write a program named Diamond2 that receives an

integer value from the user (that is guaranteed to be positive and even) and prints a filled diamond

with the input value as the height and width. (For the shape below the input value is 10.) The

program may run by calculating one half of the input number and using it in iteration.

1 /\
2 //\\
3 ///\\\
4 ////\\\\
5 /////\\\\\
6 \\\\\/////
7 \\\\////
8 \\\///
9 \\//

10 \/

8. Number sequence with decreasing repetitions Write a triple for-loop that produces the output

below.

1 543210
2 554433221100
3 555444333222111000
4 555544443333222211110000
5 555554444433333222221111100000
6 555555444444333333222222111111000000
7 555555544444443333333222222211111110000000
8 555555554444444433333333222222221111111100000000
9 555555555444444444333333333222222222111111111000000000

10 555555555544444444443333333333222222222211111111110000000000

Exercises 205

9. Number pyramid Write a program that produces the output in the shape of a pyramid as shown

next using one double for-loop:

1 1
2 22
3 333
4 4444
5 55555
6 666666
7 7777777
8 88888888
9 999999999

10. Output generated by for-loops 1 State the output the following code generates:

1 int gap = 1, n = 1;

2 for (int count = 1; count <= 10; count ++)

3 {

4 System.out.println(n);

5 n += gap;

6 gap ++;

7 }

11. Output generated by for-loops 2 State the output the following code generates:

1 int gap = 1, n = 1;

2 for (int count = 1; count <= 10; count ++)

3 {

4 System.out.println(n);

5 n += gap;

6 gap += 2;

7 }

12. Output generated by for-loops 3 State the output the following code generates:

1 int gap = 1, n = 1;

2 for (int count = 1; count <= 10; count ++)

3 {

4 System.out.println(n);

5 n += gap;

6 gap *= 2;

7 }

13. Output generated by for-loops 4 State the output the following code generates:

1 int gap = 10, n = 100;

2 for (int count = 1; count <= 10; count ++)

3 {

4 System.out.println(n);

5 n -= gap;

6 gap --;

7 }

206 7 For-Loops

14. Partial sums Write a program, PartialSums, that receives an integer top from the user and

returns the sum of all the sums (m + ... + 2 * m) such that m is between 1 and top. The

return value must be 0 if top is less than equal to 0. By appropriately designing the components

of the loops, this requirement can be met without having to check whether or not top <= 0.

15. Double iteration, A Write a program named AllIJ1 that receives an integer top from the

user and produces on the screen the output

(i,j)
for all values of i and j between 1 and top. Configure the loops so that in the output, the value

of i does not decrease, and for each fixed i, the value of j is strictly decreasing.

Here is an execution example:

1 Enter one number: 4
2 (1,1)
3 (1,2)
4 (1,3)
5 (1,4)
6 (2,1)
7 (2,2)
8 (2,3)
9 (2,4)

10 (3,1)
11 (3,2)
12 (3,3)
13 (3,4)
14 (4,1)
15 (4,2)
16 (4,3)
17 (4,4)

16. Double iteration, B Write a program named AllIJ2 that receives an integer top from the

user and produces on the screen the output

(i,j)
for all values of i and j between 1 and top such that i is no greater than j. Configure the loops

so that in the output, the value of i does not decrease, and for each fixed i, the value of j is

strictly increasing.

Here is an execution example:

1 Enter one number: 4
2 (1,1)
3 (1,2)
4 (1,3)
5 (1,4)
6 (2,2)
7 (2,3)
8 (2,4)
9 (3,3)

10 (3,4)
11 (4,4)

17. Double iteration, C Write a program named AllIJ3 that receives an integer top from the

user and produces of the screen the output

(i,j)
for all values of i and j between 1 and top such that i is strictly less than j. Configure the

loops so that in the output, the value of i does not decrease, and for each fixed i, the value of j
is strictly increasing.

Exercises 207

Here is an execution example:

1 Enter one number: 4
2 (1,1)
3 (1,2)
4 (1,3)
5 (2,1)
6 (2,2)
7 (2,3)
8 (3,1)
9 (3,2)

10 (3,3)
11 (4,1)
12 (4,2)
13 (4,3)

18. Coordinated iteration Suppose we want to print the coordinates of an N by N table, where N is

greater than or equal to 2, and the rows and columns have indexes from 1 to N. The combination

of a row number x and a column number y should be printed as (x,y). For each row, the

coordinates should be printed in one line. Write CoordinatedIteration that accomplishes

this task. The program receives the value for N from the user. The output for N = 3 is as follows:

1 Series 1
2 (1,1)(1,2)(1,3)
3 Series 2
4 (2,1)(2,2)(2,3)
5 Series 3
6 (3,1)(3,2)(3,3)

19. Powers of a power Write a program named IntPowers that receives three integers, a, p, and

k, from the user and prints the values of ap, a2p, a3p, · · · , akp, where these values are double
and appear one value per line. Use Math.pow to compute the powers.

Programming Projects

20. The size of a toilet paper Consider determining the length of toilet paper dispensed from a

roll of toilet paper. To determine the length three parameters are needed: the radius of the core

coreRadius, the maximum radius of the resulting roll of paper maxRadius, and the thickness

of paper thickness. The way we will determine the length is as follows:

• Each time the paper goes around the roll in one full circle, the radius increases by

thickness. Therefore, for each round >= 1, if the paper goes around the roll round
times, then the radius increases by round * thickness.

• We want the resulting radius to be as large as possible, but not larger than maxRadius.

• Based upon the above, we determine the exact number of times that the paper goes around the

roll, represented by a variable numberOfRounds.

• We assume that when the paper goes around the roll, which has radius radius, the length of

the paper used for that particular round is 2π times radius.

• The length of the roll generated is two times π times the sum of the radiuses of the roll from

all rounds.

Write a Java program named ToiletPaper.java that receives user coreRadius,

maxRadius, and thickness from the user, and prints the length of the paper. Note that

the integer part of any double y can be obtained by (int)(Math.floor(y)).

21. BMI for ranges of weights and heights Write a program named RangeBMI that computes

the BMI for a range of weights and heights. The user will specify the maximum and minimum

208 7 For-Loops

of the weights. He/she will also specify the maximum and minimum of heights. Furthermore, the

user will specify the sizes of increments in weights and heights. The maximums, the minimums,

and the increments are all integers. The program must use a double for-loop. In the external loop,

the program generates an increasing sequence of weights to be considered. In the internal loop,

the program generates an increasing sequence of heights to be considered. For each combination

of weight and height, the program prints the weight, the height, and the BMI.

22. Points on a circle Write a program named PointsOnCircle that receives two positive

quantities, a double data myRadius and an int data myFraction, from the user and prints

the coordinates of the points on a circle with radius myRadius, whose rotation angles from the

x-axis is between −180◦ and 180◦ (with the degree incremented by 360 / myFraction). The

following is an example of running the program:

1 Enter the radius: 3
2 Enter the fraction: 8
3 (-3.6739403974420594E-16,-3.0)
4 (-2.121320343559643,-2.1213203435596424)
5 (-3.0,1.8369701987210297E-16)
6 (-2.1213203435596424,2.121320343559643)
7 (0.0,3.0)
8 (2.1213203435596424,2.121320343559643)
9 (3.0,1.8369701987210297E-16)

10 (2.121320343559643,-2.1213203435596424)
11 (3.6739403974420594E-16,-3.0)

23. Computing the combinatorial numbers Write a program named Combinatorial that

computes combinatorial numbers after receiving two integers, n and k, from the user.

For integers n ≥ k ≥ 0, C(n, k) is the number of possible ways to select k distinct elements

from a group of n distinct elements. C(n, k) is given as:

C(n, k) =
n!

k!(n − k)!

Here, n! denotes the factorial of n. The factorial of n is n(n − 1) · · · 1 if n ≥ 1 and 1 otherwise.

Implement three ways to compute C(n, k) on the values of n and k that the user enters.

(a) Write a method named public static long factorial(int m) that computes

the factorial of m as a long data. Write a method named combinatorial that receives n

and k as parameters and computes C(n, k) using three calls to the method factorial.

(b) For all n and k, we know that C(n, k) = C(n, n − k).

n!
k!(n − k)!

=
n(n − 1) · · · 1

(k(k − 1) · · · 1)((n − k)(n − k − 1) · · · 1)

Let q be the smaller of k and n − k. Then we have

n!
k!(n − k)!

=
n(n − 1) · · · 1

(q(q − 1) · · · 1)((n − q)(n − q − 1) · · · 1)

We can simplify the fraction to obtain

C(n, k) =
n(n − 1) · · · (n − q + 1)

q(q − 1) · · · 1

Exercises 209

Write a method, public static long product(int start, int end),

that returns the product of all the integers between start and end, where end >= start.

Write a method named combinatorial2 that computes the two products using the method

product.

(c) By reversing the order of appearance of the terms in the denominator n(n−1) · · · (n−q +1),

we have

C(n, k) =
n(n − 1) · · · (n − q + 1)

1 · 2 · · · (q − 1)q

Write an additional method named combinatorial3 that computes the factorial. For i =
1, . . . , q, combinatorial3 executes the multiplication by the i-th term in the numerator

and the division by the i-th term in the denominator.

The combinations of n and k for which the program computes C(n, k) correctly increases, as

follows:

1 Enter n and k: 20 10
2 With method 1, C(20,10)=184756
3 With method 2, C(20,10)=184756
4 With method 3, C(20,10)=184756

1 Enter n and k: 22 11
2 With method 1, C(22,11)=-784
3 With method 2, C(22,11)=705432
4 With method 3, C(22,11)=705432

1 Enter n and k: 40 20
2 With method 1, C(40,20)=0
3 With method 2, C(40,20)=-1
4 With method 3, C(40,20)=137846528820

24. Treasure hunting Write a program named TreasureHunting, that plays a game defined

as follows: The player’s goal is to find a treasure hidden at a location between 1 and 100.

The player can make at most ten guesses. If the guess is correct, the program announces

"You have found the treasure!" and halts. In every round, if the player makes an

incorrect guess, based upon the distance between the true location and the guess, the program

announces the following:

(a) If the distance is between 1 and 3, the program announces

"The treasure is very close.".

(b) If the distance is between 4 and 6, the program announces

"The treasure is somewhat close.".

(c) If the distance is greater than 6, the program announces

"The treasure is not close.".

Starting in the second round, if the player makes an incorrect guess, the program informs

the player whether the guess is closer than the previous one. The message printed is:

"You are closer.", "You are farther.", or "The same distance.". If the

user fails to find the treasure, the program should reveal the true location.

8Formatted Printing Using printf

8.1 General Rules for printf

This chapter discusses the syntax of printf, which we have already seen before. The general usage

of printf is

System.out.printf("u0w1u1w2 ...wkuk", d1, ..., dk);

where w1, . . . , wk are placeholders that each specify the formatting of a single data, d1, . . . , dk are

the data to be formatted with the placeholders w1, . . . , wk in this order, and u0, . . . , uk are character

sequences without formatting placeholders. For each i, the data di must be of the type specified in

wi; if not, it must be converted to a data of that type. Any data can be interpretable as a String data,

and any whole number data can be interpretable as a floating point data.

If a data supplied to a placeholder cannot be converted to the required type (for example, a String
is supplied to a placeholder for a whole number), a run-time error occurs.

1 %d|Exception in thread "main" java.util.IllegalFormatConversionException:
d != java.lang.String

2 at java.util.Formatter$FormatSpecifier.failConversion(Formatter.java:4302)
3 at java.util.Formatter$FormatSpecifier.printInteger(Formatter.java:2793)
4 at java.util.Formatter$FormatSpecifier.print(Formatter.java:2747)
5 at java.util.Formatter.format(Formatter.java:2520)
6 at java.io.PrintStream.format(PrintStream.java:970)
7 at java.io.PrintStream.printf(PrintStream.java:871)
8 at PrintFString.printStringWithFormat(PrintFString.java:28)
9 at PrintFString.main(PrintFString.java:22)

The same IllegalFormatConversionException error also occurs when the number of data

supplied and the number of placeholders do not agree, as well as when a placeholder is incorrectly

written.

Since each placeholder starts with a percent character, to include the percent character in a part that

is not a placeholder, the %% is used via escaping. In printf, the newline character can be specified

as %n.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_8

211© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_8

212 8 Formatted Printing Using printf

8.2 Formatted Printing of StringData

Next, we learn how to format String data using printf.

The general expression for String formatting is %Xs, where X consists of three options that can

be selected independently of each other. Here are the three options, which must appear in this order:

1. The flush left positioning can be specified using a single minus sign -.

If this option is not present, the data is automatically printed in flush right.

2. The minimum number of character spaces allocated for the data can be specified with a positive

integer without leading 0’s.

If this option is not present, the default character space allocated is the exact number of character

spaces required to print the data.

If this option is present and the length of the data to be printed is smaller than the specified

number of character spaces, the space character ’ ’ is added so as to make the length exactly

the specified number. The adding of the space character occurs at the beginning of the data if the

positioning is flush right (default), and at the end if flush left.

However, if this option is present and the length of the String data to be printed is greater

than the specified minimum character space, the entire data is printed with no padding.

3. It is possible to print only a prefix of the String data. The length of the prefix to be printed can

be specified with a period immediately before the length.

If this option is not present, the entire character sequence of the String data is printed.

However, if the specified prefix length is greater than the length of the String data to be

printed, the prefix length is automatically reduced to the exact length of the String data.

For example, "%-10s" specifies that the String data must be printed in flush left using at least ten

character spaces, and "%10.5s" specifies that only the first five characters must be printed in flush

right using at least ten character spaces. Thus, in

System.out.printf("Message=%-10.5s-Mike", "Table tennis is fun!");

the 10-space formatting of the String "Table tennis is fun!" will appear after

"Message=", and "-Mike" after that. This results in:

Message=Table --Mike

The next program shows different effects in printf for String. The program presents the

results in a two-column table, with the left column showing the format used and the right column

showing the formatting generated. To print a row of the table, the program uses a method named

printStringWithFormat. The method takes two String parameters, fmt and message,

where the first formal parameter is used to format the second parameter. The formatting of the second

parameter using the first parameter can be accomplished by

System.out.printf(fmt, message);

This will be the second column of the row.

8.2 Formatted Printing of String Data 213

For the first column, we want to print the first parameter fmt. Assuming that the length of fmt
is no more than 10, we allocate exactly ten character spaces in flush right and print the vertical line

character | after that as follows:

"System.out.printf("%10s|", fmt);"

We also want to show if padding appears in the formatting of message using fmt as the

formatting. Since the white space is invisible, we add a colon at the end to indicate the end of the

line for this purpose.

Altogether, the method has the following code:

19 public static void printStringWithFormat(

20 String fmt , String message)

21 {

22 System.out.printf("%10s|", fmt);

23 System.out.printf(fmt , message);

24 System.out.println(":");

25 }

The method main prints the String variable t using various formats. The method first stores the lit-

eral "Welcome to the Club!" to t (Line 5). The method then prints the header lines (Lines 7–

9). The method then prints t in seven different formats by calling the printStringWithFormat
method (Lines 10–16). At the end, in Line 17, the method prints a line identical to the one that it

printed in Line 9.

1 public class PrintFString

2 {

3 public static void main(String [] args)

4 {

5 String t = "Welcome to the Club!";

6 System.out.println("theString =\" Welcome to the Club !\"");

7 System.out.println("Format |Position");

8 System.out.println("String |01234567890123456789012345 ");

9 System.out.println(" ----------+-------------------------");

10 printStringWithFormat("%s:", t);

11 printStringWithFormat("%25s:", t);

12 printStringWithFormat("%-25s:", t);

13 printStringWithFormat("%10s:", t);

14 printStringWithFormat("%-10s:", t);

15 printStringWithFormat("% -25.14s:", t);

16 printStringWithFormat("%25.14s:", t);

17 System.out.println(" ----------+-------------------------");

18 }

Listing 8.1 A code that shows various output formatting for String data. The main method

214 8 Formatted Printing Using printf

Executing the code produces the following:

1 theString="Welcome to the Club!"
2 Format |Position
3 String |01234567890123456789012345
4 ----------+-------------------------
5 %s:|Welcome to the Club!:
6 %25s:| Welcome to the Club!:
7 %-25s:|Welcome to the Club! :
8 %10s:|Welcome to the Club!:
9 %-10s:|Welcome to the Club!:

10 %-25.14s:|Welcome to the :
11 %25.14s:| Welcome to the:
12 ----------+-------------------------

%c is used to format a char data. Only two options are available: the number of character spaces

allocated and the flush left positioning.

8.3 Formatted Printing of Integers

To use printf for printing a whole number, we use a format String of the form %Xd, where the

part X consists of four options that can be selected independently of each other. Here are the four

options (the fourth option must appear the last):

1. The forced plus sign for a strictly positive value can be specified with a single plus sign +.

If this option is not present, a strictly positive value appears without the plus sign.

2. A single comma , specified the forced currency punctuation. If the option is present, the

punctuation appears with every three digits if the environment information the JVM has access

to state that the country where the computer is running is the United States of America.

If this option is not present, there will be no punctuation.

3. Either the flush left or leading 0s can be specified with a single minus sign - or a single 0
respectively.

At most one of the two can be specified.

If neither options are present, the data is printed in flush right.

4. The minimum number of character spaces allocated for the data can be specified with a positive

integer without leading 0s.

If this option is not present, the character space allocated is the exact number of character spaces

required to print the data, meaning that the “leading-0” option will be ignored.

Note that the comma, the plus sign, and the minus sign are counted towards the number of characters

used.

Here is a code that demonstrates the different formatting of a whole number. The method

responsible for printing a row of the table is very much similar to the previous one, except that the

second parameter is an int data named n.

8.3 Formatted Printing of Integers 215

1 public class PrintFDecimal

2 {

3 public static void main(String [] args)

4 {

5 int num = 456789;

6 System.out.println("number=" + num);

7 System.out.println("Format |Position");

8 System.out.println("String |01234567890123456789 ");

9 System.out.println(" ----------+--------------------");

10 printDecimalWithFormat("%d:", num);

11 printDecimalWithFormat("%+d:", num);

12 printDecimalWithFormat("%,d:", num);

13 printDecimalWithFormat("%+,d:", num);

14 printDecimalWithFormat("%20d:", num);

15 printDecimalWithFormat("%+20d:", num);

16 printDecimalWithFormat("%,20d:", num);

17 printDecimalWithFormat("%+,20d:", num);

18 printDecimalWithFormat("%-20d:", num);

19 printDecimalWithFormat("%+-20d:", num);

20 printDecimalWithFormat("%,-20d:", num);

21 printDecimalWithFormat("%+-,20d:", num);

22 printDecimalWithFormat("%020d:", num);

23 printDecimalWithFormat("%+020d:", num);

24 printDecimalWithFormat("%,020d:", num);

25 printDecimalWithFormat("%+,020d:", num);

26 System.out.println(" ----------+--------------------");

27 }

28 public static void printDecimalWithFormat(String fmt , int n)

29 {

30 System.out.printf("%-10s|", fmt);

31 System.out.printf(fmt , n);

32 System.out.println ();

33 }

34 }

Listing 8.2 A code that shows various output formatting for whole number data

The code produces the following output:

1 01234567890123456789
2 ---------+--------------------
3 %d: |456789:
4 %+d: |+456789:
5 %,d: |456,789:
6 %+,d: |+456,789:
7 %20d: | 456789:
8 %+20d: | +456789:
9 %,20d: | 456,789:

10 %+,20d: | +456,789:
11 %-20d: |456789 :
12 %+-20d: |+456789 :
13 %,-20d: |456,789 :
14 %+-,20d: |+456,789 :
15 %020d: |00000000000000456789:
16 %+020d: |+0000000000000456789:
17 %,020d: |0000000000000456,789:
18 %+,020d: |+000000000000456,789:
19 ---------+--------------------

216 8 Formatted Printing Using printf

8.4 Formatted Printing of Floating Point Numbers

To use printf for printing a floating point number, we use a format String of the form %Xf,

where the part X consists of five options that can be selected independently of each other. The first

four options are the same as the options for %d. The last option specifies the exact number of digits

printed after the decimal point. It is specified with a single period followed by a strictly positive

integer, which is the number of digits.

Since there are so many options to apply to a floating number, we demonstrate the effect using two

programs.

Here is the first program.

1 public class PrintFFloat

2 {

3 public static void main(String [] args)

4 {

5 double num = 1974.9215;

6 System.out.println("number =1974.9215");

7 System.out.println("Format |Position");

8 System.out.println("String |01234567890123456789 ");

9 System.out.println(" ----------+--------------------");

10 printFloatWithFormat("%f:", num);

11 printFloatWithFormat("%+f:", num);

12 printFloatWithFormat("%,f:", num);

13 printFloatWithFormat("%+,f:", num);

14 printFloatWithFormat("%20f:", num);

15 printFloatWithFormat("%+20f:", num);

16 printFloatWithFormat("%,20f:", num);

17 printFloatWithFormat("%+,20f:", num);

18 printFloatWithFormat("%-20f:", num);

19 printFloatWithFormat("%+-20f:", num);

20 printFloatWithFormat("%,-20f:", num);

21 printFloatWithFormat("%+-,20f:", num);

22 printFloatWithFormat("%020f:", num);

23 printFloatWithFormat("%+020f:", num);

24 printFloatWithFormat("%,020f:", num);

25 printFloatWithFormat("%+,020f:", num);

26 System.out.println(" ----------+--------------------");

27 }

Listing 8.3 A code that shows various output formatting for floating point data (part 1). The main method

The auxiliary method is similar to the one from the previous programs.

28 public static void printFloatWithFormat(String fmt , double v)

29 {

30 System.out.printf("%-10s|", fmt);

31 System.out.printf(fmt , v);

32 System.out.println ();

33 }

34 }

Listing 8.4 A code that shows various output formatting for floating point data (part 2). A method used for printing
the format String and the formatted data together

8.4 Formatted Printing of Floating Point Numbers 217

Here is the second program.

1 public class PrintFFloat2

2 {

3 public static void main(String [] args)

4 {

5 double num = 1974.9215;

6 System.out.println("number =1974.9215");

7 System.out.println("Format |Position");

8 System.out.println("String |01234567890123456789 ");

9 System.out.println(" ----------+--------------------");

10 printFloatWithFormat("%.3f:", num);

11 printFloatWithFormat("%+.3f:", num);

12 printFloatWithFormat("%,.3f:", num);

13 printFloatWithFormat("%+,.3f:", num);

14 printFloatWithFormat("%20.3f:", num);

15 printFloatWithFormat("%+20.3f:", num);

16 printFloatWithFormat("%,20.3f:", num);

17 printFloatWithFormat("%+ ,20.3f:", num);

18 printFloatWithFormat("%-20.3f:", num);

19 printFloatWithFormat("%+ -20.3f:", num);

20 printFloatWithFormat("%,-20.3f:", num);

21 printFloatWithFormat("%+-,20.3f:", num);

22 printFloatWithFormat("%020.3f:", num);

23 printFloatWithFormat("%+020.3f:", num);

24 printFloatWithFormat("% ,020.3f:", num);

25 printFloatWithFormat("%+ ,020.3f:", num);

26 System.out.println(" ----------+--------------------");

27 }

Listing 8.5 A code that shows various output formatting for floating point data (part 3). The main method of the
second program

The auxiliary methods between the two programs are identical.

28 public static void printFloatWithFormat(String fmt , double v)

29 {

30 System.out.printf("%-10s|", fmt);

31 System.out.printf(fmt , v);

32 System.out.println ();

33 }

34 }

Listing 8.6 A code that shows various output formatting for floating point data (part 4). A method used for printing
the format String and the formatted data together

Executing the two programs, PrintFFloat and PrintFFloat2, results in the following

output.

The following is from PrintFFloat:

1 01234567890123456789
2 ---------+--------------------
3 %f: |1974.921500:
4 %+f: |+1974.921500:
5 %,f: |1,974.921500:
6 %+,f: |+1,974.921500:

218 8 Formatted Printing Using printf

7 %20f: | 1974.921500:
8 %+20f: | +1974.921500:
9 %,20f: | 1,974.921500:

10 %+,20f: | +1,974.921500:
11 %-20f: |1974.921500 :
12 %+-20f: |+1974.921500 :
13 %,-20f: |1,974.921500 :
14 %+-,20f: |+1,974.921500 :
15 %020f: |0000000001974.921500:
16 %+020f: |+000000001974.921500:
17 %,020f: |000000001,974.921500:
18 %+,020f: |+00000001,974.921500:

The following is from PrintFFloat2.

1 01234567890123456789
2 ----------+--------------------
3 %.3f: |1974.922:
4 %+.3f: |+1974.922:
5 %,.3f: |1,974.922:
6 %+,.3f: |+1,974.922:
7 %20.3f: | 1974.922:
8 %+20.3f: | +1974.922:
9 %,20.3f: | 1,974.922:

10 %+,20.3f: | +1,974.922:
11 %-20.3f: |1974.922 :
12 %+-20.3f: |+1974.922 :
13 %,-20.3f: |1,974.922 :
14 %+-,20.3f:|+1,974.922 :
15 %020.3f: |0000000000001974.922:
16 %+020.3f: |+000000000001974.922:
17 %,020.3f: |000000000001,974.922:
18 %+,020.3f:|+00000000001,974.922:
19 ----------+--------------------

8.5 Printing the Fibonacci Sequence (Reprise)

In Chap. 7, we learned how to compute the Fibonacci numbers using two variables to record two

immediate predecessors in the sequence. Now, consider printing the square and cubic roots of the

numbers obtained as a table, where we generate the sequence up to F80:

1 Enter n: 30
2 i F_i sqrt cbrt
3 ---
4 2 2 1.41421 1.25992
5 3 3 1.73205 1.44225
6 4 5 2.23607 1.70998
7 5 8 2.82843 2.00000
8 6 13 3.60555 2.35133
9 7 21 4.58258 2.75892

10 8 34 5.83095 3.23961
11 9 55 7.41620 3.80295
12 10 89 9.43398 4.46475
13 11 144 12.00000 5.24148
14 12 233 15.26434 6.15345
15 13 377 19.41649 7.22405
16 14 610 24.69818 8.48093

8.5 Printing the Fibonacci Sequence (Reprise) 219

17 15 987 31.41656 9.95648
18 16 1597 39.96248 11.68876
19 17 2584 50.83306 13.72242
20 18 4181 64.66065 16.10992
21 19 6765 82.24962 18.91280
22 20 10946 104.62313 22.20335
23 21 17711 133.08268 26.06640
24 22 28657 169.28379 30.60156
25 23 46368 215.33230 35.92577
26 24 75025 273.90692 42.17632
27 25 121393 348.41498 49.51437
28 26 196418 443.19070 58.12912
29 27 317811 563.74728 68.24272
30 28 514229 717.09762 80.11593
31 29 832040 912.16227 94.05489
32 30 1346269 1160.28833 110.41904
33 31 2178309 1475.90955 129.63029
34 32 3524578 1877.38595 152.18402
35 33 5702887 2388.07182 178.66175
36 34 9227465 3037.67427 209.74622
37 35 14930352 3863.98137 246.23891
38 36 24157817 4915.06022 289.08079
39 37 39088169 6252.05318 339.37651
40 38 63245986 7952.73450 398.42293
41 39 102334155 10116.03455 467.74254
42 40 165580141 12867.79472 549.12272
43 41 267914296 16368.08773 644.66184
44 42 433494437 20820.52922 756.82333
45 43 701408733 26484.12228 888.49923
46 44 1134903170 33688.32394 1043.08477
47 45 1836311903 42852.21001 1224.56587
48 46 2971215073 54508.85316 1437.62195
49 47 4807526976 69336.33229 1687.74661
50 48 7778742049 88197.17710 1981.38919
51 49 12586269025 112188.54231 2326.12119
52 50 20365011074 142706.03027 2730.83137
53 51 32951280099 181524.87460 3205.95506
54 52 53316291173 230903.20737 3763.74314
55 53 86267571272 293713.41691 4418.57798
56 54 139583862445 373609.23763 5187.34425
57 55 225851433717 475238.29151 6089.86433
58 56 365435296162 604512.44500 7149.40935
59 57 591286729879 768951.70842 8393.29931
60 58 956722026041 978121.68264 9853.60747
61 59 1548008755920 1244189.99993 11567.98733
62 60 2504730781961 1582634.12764 13580.64357
63 61 4052739537881 2013141.70835 15943.47179
64 62 6557470319842 2560755.81027 18717.39668
65 63 10610209857723 3257331.70827 21973.94288
66 64 17167680177565 4143389.93791 25797.07926
67 65 27777890035288 5270473.41662 30285.38401
68 66 44945570212853 6704145.74818 35554.58645
69 67 72723460248141 8527805.12489 41740.55105
70 68 117669030460994 10847535.68609 49002.78069
71 69 190392490709135 13798278.54151 57528.52933
72 70 308061521170129 17551681.43427 67537.63032
73 71 498454011879264 22326083.66640 79288.16470
74 72 806515533049393 28399217.12036 93083.11578
75 73 1304969544928657 36124362.20792 109278.18137
76 74 2111485077978050 45950898.55463 128290.94539

220 8 Formatted Printing Using printf

77 75 3416454622906707 58450445.87432 150611.64511
78 76 5527939700884757 74350115.67499 176815.81168
79 77 8944394323791464 94574808.08223 207579.11010
80 78 14472334024676221 120301014.22962 243694.76088
81 79 23416728348467685 153025253.95655 286093.99305
82 80 37889062373143906 194651129.90462 335870.05549

We can generate this output using two coordinated formats, one for the first line of the header and the

other for the data rows of the table. Both types have four entries, and the numbers of spaces allocated

for them are 5, 20, 20, and 20 in this order. For the header line, all the entries are String data, so

we use the place holders "%5s", "%20s", "%20s", and "%20s". For each data line, the first two

entries are integers and the last entries are floating point numbers with five digits after the decimal

point, so we use the placeholders "%5d", "%20d", "%20.5f", and "%20.5f". Each time a new

element of the Fibonacci sequence is calculated, the element is stored in the variable f. The new

element is calculated as the sum of the two variables, fp and fpp. fp and fpp hold the values of the

previous Fibonacci number and the number right before the previous Fibonacci number. We calculate

the two roots using the Math functions sqrt and cbrt.

Here is the code for this task, FibonacciClean.

1 import java.util .*;

2 public class FibonacciClean

3 {

4 public static void main(String [] args)

5 {

6 long f, fp = 1, fpp = 1;

7 double sqroot , cbroot;

8 Scanner keyboard = new Scanner(System.in);

9 System.out.print("Enter n: ");

10 int n = keyboard.nextInt ();

11 System.out.printf("%5s%20s%20s%20s\n",

12 "i", "F_i", "sqrt", "cbrt");

Listing 8.7 A program that prints the Fibonacci numbers and their square and cubic roots neatly (part 1)

13 for (int i = 1; i <= 65; i ++)

14 {

15 System.out.print("-");

16 }

17 System.out.println ();

18 for (int i = 2; i <= n; i ++)

19 {

20 f = fp + fpp;

21 sqroot = Math.sqrt(f);

22 cbroot = Math.cbrt(f);

23 System.out.printf("%5d%20d%20.5f%20.5f\n",

24 i, f, sqroot , cbroot);

25 fpp = fp;

26 fp = f;

27 }

28 }

29 }

Listing 8.8 A program that prints the Fibonacci numbers and their square and cubic roots neatly (part 2)

Exercises 221

Summary

The formatting options that are available for printing a String data with a printf statement

include the choice between the flush left and the flush right positioning, the number of character

spaces allocated, and the length of the prefix to be printed.

The formatting options that are available for printing a whole number with a printf statement

include the choice among flush left, flush right, and flush right with leading 0s, the forced plus sign,

the forced punctuation, and the number of character spaces allocated.

The formatting options that are available for printing a floating point number with a printf
statement include the choice among flush left, flush right, and flush right with leading 0s, the

forced plus sign, the forced punctuation, the number of character spaces allocated, and the number

of digits after the decimal point.

The formatting options that are available for printing a char data with a printf statement are

the choice between flush left and flush right, and the number of character spaces allocated.

To include % in the format, use %%.

Exercises

1. Printf output Let myVar be a double variable with the value of 10.345678. State what

output the following printf statements generate.

(a) System.out.printf("value=%4.1f", myVar);
(b) System.out.printf("value=%5.2f", myVar);
(c) System.out.printf("value=%.3f", myVar);

2. (Approximately) simulating printf for a real number Write a method named dot2f that

acts as if it were printf with "%.2f" as the format. The method does not return a value. The

method has one formal parameter input, which is a double. The method must print the value

of input.

The strategy for achieving the goal is as follows:

• Execute Math.round of input * 100.0 and convert it to an integer by casting (long),

and then store its value into a long variable input100.

• Divide input100 into two long values a and b, which are respectively the quotient of

input100 by 100 and the remainder of input100 by 100.

• Print a, the period, b / 10, and b % 10 in this order.

3. (Approximately) simulating printf for a real number, continued Using the idea from the

previous question, write a void method dot4f that takes a double variable input as its

parameter and prints the value of input in "%.4f" format.

4. A simple for-loop, leading 0s Using a for-loop whose body consists of just one printf
statement, write a code that produces the following output:

1 001:
2 003:
3 005:
4 007:
5 009:

222 8 Formatted Printing Using printf

5. Two values per line for-loop Using a for-loop whose body consists of just one printf
statement, write a code that produces the following output:

1 001,002
2 003,004
3 005,006
4 007,008
5 009,010

6. A simple for-loop Using a for-loop whose body consists of just one printf statement, write

a code that produces the following output:

1 100!
2 88!
3 76!
4 64!
5 52!
6 40!
7 28!
8 16!

7. Powering Write a method named powerList that takes two parameters, a double d and

an int k, and prints the i-th power of d for i = 1, . . . , k. The output for each value of i appears

in a single line along with the value of i, with r digits for i and four digits after the decimal point

for the powers. The following is an example of the output produced by such a method:

1 1 3.1000
2 2 9.6100
3 3 29.7910
4 4 286.2915

Programming Projects

8. Mimicking the simple formatting of a floating point number without rounding Write a

program named PseudoPrintfF that receives a double number x and a nonnegative int
number d from the user, and then prints the absolute value of x with exactly d digits after the

decimal point. If the user enters a negative integer for d, the program terminates with an error

of IllegalArgumentException. If d == 0, the program prints only the integer part of

the absolute value of x without a period. If d > 0, the program prints the integer part of the

absolute value, prints a period, and prints d digits as follows: Let y be the absolute value of x
minus the integer part of the absolute value. y is greater than or equal to 0 and strictly less than

1. The program repeats the following d times:

• Multiply y by 10.

• Print the integer part of y.

• Subtract the integer part of y from y.

9. Printing the calendar of a month Write a program named CalOfAMonth that produces the

calendar of a month. The program receives the number of days in the month and the position at

which the first day of the month starts (0 for Sunday, 1 for Monday, etc.), and then prints the

calendar in the example below, where the inputs are 31 and 2.

Exercises 223

1 Sun Mon Tue Wed Thu Fri Sat
2 +------+------+------+------+------+------+------+
3 | | | 1 | 2 | 3 | 4 | 5 |
4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
5 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
6 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
7 | 27 | 28 | 29 | 30 | 31 | | |
8 +------+------+------+------+------+------+------+

The number of days must be 28, 29, 30, or 31. Let numberOfDays and startDay be

the number of days and the position of the first day of the month. A key calculation to make is

(excluding the fixed lines) how many rows are in the table. The minimum number of cells required

to produce the table is the sum of numberOfDays and startDay. If the sum is a multiple of

7, then the number of rows is the sum divided by 7; otherwise, it is the quotient plus 1. Based on

this observation, we can write the code using a double for-loop. The exterior loop of the double

for-loop produces the row values in a variable row starting from 0. The interior loop of the double

for-loop produces the column values in a variable col between 1 and 7. The cell at (row,col)
corresponds to the day index 7 * row + col - startDay. If the day index is greater than

or equal to 0 and less than or equal to numberOfDays, we need to print the value of the index;

otherwise, the index is invalid, so the cell should be six white spaces.

10. Parsing Prinrtf parameter Write a program named ParsePrintfD that receives a

String data, w (which is a syntactically correct integer format placeholder for printf), and

produces the answers to the following questions on the screen:

• Does it contain ’+’?

• Does it contain ’,’?

• Does it contain ’-’?

• Does it contain a sequence of numerals?

• Does it contain a sequence of numerals and the sequence start with a ’0’?

Here is an execution example:

1 Enter your format string: +-,45
2 Has a ’+’ = true
3 Has a ’-’ = true
4 Has a ’,’ = true
5 Has a number = true
6 Has a zero = false

Here is one more:

1 Enter your format string: 034,3
2 Has a ’+’ = false
3 Has a ’-’ = false
4 Has a ’,’ = true
5 Has a number = true
6 Has a zero = true

224 8 Formatted Printing Using printf

11. Generating a BMI table Write a program named BMITable that generates a table of BMI

values for a range of weights in pounds and for a range of heights in inches. The weight range is

from 260 pounds down to 80 pounds with the value gap decreasing by 5 (the values are 260, 255,

250, . . . , 80). The height range is from 56 to 76 with the value increasing by 2 (the values are 56,

58, . . . , 76). The rows are the weights and the columns are the heights. Use the printf format

of "%5.1f" to print the values. The output of the program should start with:

1 -------+---
2 Weight | height (in.)
3 (lbs.) | 56 58 60 62 64 66 68 70 72 74 76
4 -------+---
5 260 | 58.3 54.3 50.8 47.5 44.6 42.0 39.5 37.3 35.3 33.4 31.6
6 255 | 57.2 53.3 49.8 46.6 43.8 41.2 38.8 36.6 34.6 32.7 31.0
7 250 | 56.0 52.2 48.8 45.7 42.9 40.3 38.0 35.9 33.9 32.1 30.4

and end with:

1 95 | 21.3 19.9 18.6 17.4 16.3 15.3 14.4 13.6 12.9 12.2 11.6
2 90 | 20.2 18.8 17.6 16.5 15.4 14.5 13.7 12.9 12.2 11.6 11.0
3 85 | 19.1 17.8 16.6 15.5 14.6 13.7 12.9 12.2 11.5 10.9 10.3
4 80 | 17.9 16.7 15.6 14.6 13.7 12.9 12.2 11.5 10.8 10.3 9.7
5 -------+---

Write and use a method for printing the separator line, a method for printing the two header lines,

and a method for printing the rest of the table.

9Classes String and StringBuilder

9.1 Methods for Obtaining Information from StringData

Java provides a variety of methods for extracting information from a String data. Since String
is an object class, like Scanner, we execute a method on a String data by attaching a period, the

name of the method, and the parameters:

STRING_DATA.METHOD_NAME(PARAMETERS)

A wide variety of methods are available for String. We can divide them roughly into four types:

1. the methods for obtaining information about the String data;

2. the methods for comparing the String data with another String data;

3. the methods for locating a pattern in the String data; and

4. the methods for producing a new String data from the String data.

Table 9.1 summarizes the String methods we will study. The table has two additional methods,

toCharArray and split. We will study these methods later.

The first String method we lean is length(). This method belongs to the first category and

returns the character length as int. The following code assigns the String literal "the earth"
to a String variable named message. Next, the code obtains the character length of message
and stores it in an int variable named characterCount. Finally, the code prints the values of

message and characterCount using a printf statement.

1 String message = "the earth";
2 int characterCount = message.length();
3 System.out.printf("\"\%s\" has length %d%n", message, characterCount);

The output generated by the code is:

"the earth" has length 9

Another method in the first category is charAt. charAt receives an int value as a parameter,

and returns the character of the String data at the character position represented by the parameter.

In Java, a position count starts from 0, instead of from 1. We see this in String and in arrays (see

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_9

225© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_9

226 9 Classes String and StringBuilder

Table 9.1 A list of String methods

Name Return type Parameters Action

length int None Returns the character length of s

charAt char int p Returns the character of s at position p

toCharArray char[] void Returns the character array representation

of s

Split String[] String p Returns the String array generated by

splitting with s as the delimiter

equals boolean String o Returns whether or not s is equal to o

compareTo int String o Returns the result of comparing s with o

startsWith boolean String o Returns whether or not s starts with o

endsWith boolean String o Returns whether or not s ends with o

indexOf int String w Returns the lowest position where w occurs in s;

if w does not occur in s, returns -1

lastIndexOf int String w Returns the highest position where w occurs in s;

if w does not occur in s, returns -1

indexOf int String w, Returns the lowest position >= p where w occurs

int p in s; if w does not occur in s at positions

>= p, returns -1

lastIndexOf int String w, Returns the highest position < p where w occurs

int p in s; if w does not occur in s at positions

< p, returns -1

trim String None Returns a new String without the leading

and trailing white space characters

substring String int i Returns the suffix of s

starting from position i

substring String int i, Returns the substring of s

int j between position i and position j - 1

toUpperCase String None Returns a new String generated from s

by converting all lowercase letters to uppercase

toLowerCase String None Returns a new String generated from s

by converting all uppercase letters to lowercase

replace String String a, Returns a new String generated from s by

String b substituting all occurrences of a by b

replaceFirst String String a, Returns a new String generated from s by

String b substituting the first occurrence of a by b

Here s represents the String data to which the methods appearing in the table are applied. For methods indexOf
and lastIndexOf, a char value is also accepted as the first parameter

Chap. 12). For each String object having length N, its first character is at position 0, its second

character is at position 1, and so on. The last character is at position N - 1. If s is a String data

and p is an int value between 0 and s.length() - 1, then s.charAt(p) returns the char
of s at position p.

Consider the following code fragment:

1 String message = "the sun";
2 System.out.println("char at 1 is " + message.charAt(1));
3 System.out.println("char at 5 is " + message.charAt(5));
4 System.out.println("char at 6 is " + message.charAt(6));

9.1 Methods for Obtaining Information from String Data 227

This code produces the output:

1 char at 1 is h
2 char at 5 is u
3 char at 6 is n

If we call charAtwith a position value outside the valid range, a run-time error, StringIndexOut
OfBoundsException, occurs. The following program demonstrates the use of length and

charAt, and generates StringIndexOutOfBoundsException. The program receives an

input line from the user using the method nextLine of Scanner, and stores it in a String
variable named line. The program then executes a for-loop that iterates over the sequence

0, ..., input.length() with an index variable named i. For each value of i, the program

prints the value of i as well as the value of input.chatAt(i).

1 import java.util.Scanner;

2 public class StringIndices

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter string: ");

8 String input = keyboard.nextLine ();

9 for (int i = 0; i <= input.length (); i ++)

10 {

11 System.out.print("position = " + i);

12 System.out.println(" .. char is " + input.charAt(i));

13 }

14 }

15 }

Listing 9.1 An example of StringIndexOutOfBoundsException

Since the valid range of the parameter for input.chatAt is from 0 to input.length() - 1,

the program makes an invalid method call at the last round of the iteration. At that round, the value of

i is equal to input.length(). Here is how the program runs and how the error is generated.

1 Enter string: Hello, World!
2 position = 0 .. char is H
3 position = 1 .. char is e
4 position = 2 .. char is l
5 position = 3 .. char is l
6 position = 4 .. char is o
7 position = 5 .. char is ,
8 position = 6 .. char is
9 position = 7 .. char is W

10 position = 8 .. char is o
11 position = 9 .. char is r
12 position = 10 .. char is l
13 position = 11 .. char is d
14 position = 12 .. char is !
15 position = 13Exception in thread "main"

java.lang.StringIndexOutOfBoundsException: String index out of range:
13

16 at java.lang.String.charAt(String.java:646)
17 at StringIndices.main(StringIndices.java:12)

The error message starts immediately after the output position = 13.

228 9 Classes String and StringBuilder

9.2 Methods for Comparing StringData with Another

9.2.1 The Equality Test and the Comparison in Dictionary Order

As mentioned earlier, the mathematical equality and inequality tests work correctly only for primitive

data types. String has two methods for content equality and content comparison. They are

methods equals and compareTo. Let s and t be two String objects. s.equals(t)
returns a boolean that represents whether or not s and t have the same character sequences. The

relation computed by equals is symmetric and reflexive. In other words, s.equals(t) and

t.equals(s) have the same values, and for all s that is not null, s.equals(s) is true.

The method s.compareTo(t) returns an int value representing the result of performing

character-by-character comparison from start to end between the two String objects. The is based

upon the indexes of the characters in the Unicode table. The comparison is terminated when either all

the characters of either s or t have been examined or the character of s at the present position has

been found to be different from the character of t at the same position.

In the former situation, there are three possible outcomes.

1. If all the characters have been complete examined for both s and t, the method returns 0.

2. If s has at least character remaining, it means that t is a proper prefix of s and the method returns

a strictly positive integer.

3. If t has at least character remaining, it means that s is a proper prefix of t and the method returns

a strictly negative integer.

In the latter situation, there are two possible outcomes.

1. If the character of s has a higher position than the character of t in the Unicode character indexes,

he method returns a strictly positive integer.

2. If the character of s has a lower position than the character of t in the Unicode character indexes,

the method returns a strictly negative integer.

The relation defined by the method compareTo of String data is transitive, in the

sense that if s.compareTo(t) and t.compareTo(u) are both positive, then

s.compareTo(u) is positive, and if s.compareTo(t) and t.compareTo(u)
are both negative, then s.compareTo(u) is negative. Because of the transitive property,

the method compareTo induces a complete ordering of all String values. This property is

used in the method sort of class Arrays that we will see later in Sect. 13.1. Furthermore,

s.compareTo(t) + t.compareTo(s) is equal to 0.

It is practically impossible to remember the position of each character in the Unicode table, but the

following information may be helpful:

• the numerals appear consecutively in ten positions, starting with ’0’ and ending with ’9’;

• the uppercase letters appear consecutively in 26 positions, starting with ’A’ and ending with ’Z’;

• the lowercase letters appear consecutively in 26 positions, starting with ’a’ and ending with ’z’;

• the numerals precede the uppercase letters and the uppercase letters precede the lowercase letters.

The next program, StringCompExample, receives three String data, text1, text2, and

text3, from the user and compares them. The program has two methods, performEquals and

9.2 Methods for Comparing String Data with Another 229

1 import java.util .*;

2 public class StringCompExample

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter #1: ");

8 String text1 = keyboard.nextLine ();

9 System.out.print("Enter #2: ");

10 String text2 = keyboard.nextLine ();

11 System.out.print("Enter #3: ");

12 String text3 = keyboard.nextLine ();

13

Listing 9.2 An example of String comparison (part 1). This section is for receiving the input data

performCompareTo. performEquals receives two String data, s and t, and reports the

result of comparing s with t using equals. performCompareTo receives two String data,

s and t, and reports the result of comparing s with t using compareTo. Both methods use

printf for reporting the result. The method performEquals uses %s as the placeholder for

printing the return value of the equals method, while the method performCompareTo uses %d
as the placeholder for printing the return value of the compareTo. Using the two methods, the

method main executes equals between text1 and text1 itself, between text1 and text2,

and between text2 and text3. The method then executes comparesTo between text1 and

text1 itself, and all distinct pairs (in this case, there are six of them).

14 performEquals(text1 , text1);

15 performEquals(text1 , text2);

16 performEquals(text2 , text3);

17

18 performCompareTo(text1 , text1);

19 performCompareTo(text1 , text2);

20 performCompareTo(text2 , text1);

21 performCompareTo(text2 , text3);

22 performCompareTo(text3 , text2);

23 performCompareTo(text3 , text1);

24 performCompareTo(text1 , text3);

25 }

26 public static void performEquals(String s, String t)

27 {

28 boolean result = s.equals(t);

29 System.out.printf("\"%s\" equals \"%s\": %s%n", s, t, result);

30 }

31 public static void performCompareTo(String s, String t)

32 {

33 int result = s.compareTo(t);

34 System.out.printf("\"%s\" compareTo \"%s\": %d%n", s, t, result);

35 }

36 }

Listing 9.3 An example of String comparison (part 2). This section is for executing comparisons

230 9 Classes String and StringBuilder

Here is an execution example of the program:

1 Enter #1: New Hampshire
2 Enter #2: New Mexico
3 Enter #3: New York
4 "New Hampshire" equals "New Hampshire": true
5 "New Hampshire" equals "New Mexico": false
6 "New Mexico" equals "New York": false
7 "New Hampshire" compareTo "New Hampshire": 0
8 "New Hampshire" compareTo "New Mexico": -5
9 "New Mexico" compareTo "New Hampshire": 5

10 "New Mexico" compareTo "New York": -12
11 "New York" compareTo "New Mexico": 12
12 "New York" compareTo "New Hampshire": 17
13 "New Hampshire" compareTo "New York": -17

The ordering among the three input data, from the smallest to the largest is:

"New Hampshire", "New Mexico"", "New York"

Here is another example. This time, the input contains numerals:

1 Enter #1: ZeroOne
2 Enter #2: zeroone
3 Enter #3: 01
4 "ZeroOne" equals "ZeroOne": true
5 "ZeroOne" equals "zeroone": false
6 "zeroone" equals "01": false
7 "ZeroOne" compareTo "ZeroOne": 0
8 "ZeroOne" compareTo "zeroone": -32
9 "zeroone" compareTo "ZeroOne": 32

10 "zeroone" compareTo "01": 74
11 "01" compareTo "zeroone": -74
12 "01" compareTo "ZeroOne": -42
13 "ZeroOne" compareTo "01": 42

The ordering among the three inputs, from the smallest to the largest is:

"01", "ZeroOne", "zeroone"

9.2.2 The Prefix and Suffix Tests

The class String offers prefix and suffix tests, called startsWith and startsWith. Let s and

t be String data.

• s.startsWith(t) returns a boolean value that represents whether or not t is a prefix of

s.

• s.endsWith(t) returns a boolean value that represents whether or not t is a suffix of s.

The next code compares the String literal "Computer Science" with three other literals,

"Computer", "Science", and "Engineering", with respect to prefixes and suffices. The

program uses methods, prefixTest and suffixTest, that receive two String parameters,

performs either the prefix or the suffix tests, and reports the result.

9.3 Methods for Searching for a Pattern in a String Data 231

1 public class PrefixSuffix {

2 public static void main(String [] args)

3 {

4 String cs = "Computer Science";

5 String comp = "Computer";

6 String sci = "Science";

7 String eng = "Engineering";

8

9 prefixTest(cs, comp);

10 prefixTest(cs, sci);

11 prefixTest(cs, eng);

12 suffixTest(cs, comp);

13 suffixTest(cs, sci);

14 suffixTest(cs, eng);

15 }

16 public static void prefixTest(String line , String pattern)

17 {

18 String neg = "";

19 if (!line.startsWith(pattern))

20 {

21 neg = "not ";

22 }

23 System.out.printf("\"%s\" is %sa prefix of \"%s\".%n",

24 pattern , neg , line);

25 }

26 public static void suffixTest(String line , String pattern)

27 {

28 String neg = "";

29 if (!line.endsWith(pattern))

30 {

31 neg = "not ";

32 }

33 System.out.printf("\"%s\" is %sa suffix of \"%s\".%n",

34 pattern , neg , line);

35 }

36 }

Listing 9.4 A program that demonstrates the use of beginsWith and endsWith

The execution of the code produces the following result:

1 Is "Computer" a prefix of "Computer Science"? true
2 Is "Science" a prefix of "Computer Science"? false
3 Is "Engineering" a prefix of "Computer Science"? false
4 Is "Computer" a suffix of "Computer Science"? false
5 Is "Science" a suffix of "Computer Science"? true
6 Is "Engineering" a suffix of "Computer Science"? false

9.3 Methods for Searching for a Pattern in a StringData

For two String data s and t, and an integer q, we say that t appears in s at position q,

if the character sequence of s starting from position q has t as a prefix. More precisely, t
appears in s at position q if q + t.length() <= s.length() and the character sequence

s.charAt(q), ..., s.charAt(q + t.length() - 1) is equal to the characters

of t. For instance, in "Panama", "a" appears at 1, 3, and 5.

232 9 Classes String and StringBuilder

indexOf and lastIndexOf are methods for pattern search. Both methods receive the pattern

to search for as a parameter. The pattern is either a String data or a char data. Both methods may

take a second parameter. The second parameter, if present, is an int data and represents the region of

search. The return type is int for both. The return value represents the position at the pattern appears.

If the pattern does not appear, the return value is -1. The method indexOf returns the lowest position

at which the pattern appears. If the second parameter is present, the method indexOf returns the

lowest position at which the pattern appears among the positions greater than or equal to the value of

the second parameter. The method lastIndexOf returns the highest position at which the pattern

appears. If the second parameter is present, the method lastIndexOf returns the highest position at

which the pattern appears among the positions less than the value of the second parameter. If there is

no match in the specified region, both two-parameter versions return -1. Let seq be a String data

that contains opening lines from the hymn “Swing Low, Sweet Chariot” in all lower case, as follows:

"swing low, sweet chariot, comin’ for to carry me home"

We can present the characters of seq with their positions in a table-like format as follows:

1 char: swing low, sweet chariot, comin’ for to carry me home
2 ten: 00000000000111111111112222222222233333333333444444444
3 one: 01234556789012345567890123455678901234556789012345567

In the table, the row starting with "char" shows the character sequence of seq, and the next

two rows show their character positions. The row starting with "ten" represents the digit in the

tens place, and the row starting with "one" represents the digit in the ones place. We can see

that seq contains four occurrences of the letter ’e’, at positions 12, 13, 43, and 47. The method

call seq.indexOf(’e’) returns the smallest among the four, namely 12. The method call

seq.indexOf(’e’, 20) returns the smallest among those that are greater than or equal to

20, namely 43. The method call seq.lastIndexOf(’e’) returns the largest among the four

values, namely 47. The method call seq.lastIndexOf(’e’, 30) returns the largest among

those that are strictly less than 30, namely 13. The method call seq.lastIndexOf(’e’, 12)
returns -1 since none of the positions are smaller than 12. If the pattern to search for is "sw",

the positions at which the pattern occurs are 0 and 11. Therefore, seq.indexOf("sw")
returns 0, seq.indexOf("sw", 7) returns 11, seq.indexOf("sw", 12) returns

−1, seq.lastIndexOf("sw", 7) returns 0, and seq.lastIndexOf("sw", 12)
returns 11.

The next program, IndexOf, receives an input line, a pattern to search for in the input line, and

a position that represents a search range, and then prints the result of executing the search methods.

Here is the part for receiving the input from the user:

1 import java.util .*;

2 public class IndexOf

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter the input: ");

8 String input = keyboard.nextLine ();

9 System.out.print("Enter the pattern: ");

10 String pat = keyboard.nextLine ();

11 System.out.print("Enter the position ");

12 int pos = keyboard.nextInt ();

13

Listing 9.5 A program that demonstrates the use of pattern search methods of String (part 1). The part that receives
the input

9.3 Methods for Searching for a Pattern in a String Data 233

The program presents the input and the character positions using the table-like format shown above.

If the input from the user has length between 0 and 100, the decimal representation of each character

position requires at most two digits. If a value between 0 and 99 is represented by an int variable

i, its digit in the tens place is i / 10 and its digit in the ones place is i % 10. Based upon this

observation, the program uses the following code to produce the header.

14 System.out.println ();

15 for (int i = 0; i <= input.length () - 1; i ++)

16 {

17 System.out.print((i / 10) % 10);

18 }

19 System.out.println ();

20 for (int i = 0; i <= input.length () - 1; i ++)

21 {

22 System.out.print(i % 10);

23 }

24 System.out.println ();

25 System.out.println(input);

26 for (int i = 0; i <= input.length () - 1; i ++)

27 {

28 System.out.print(’-’);

29 }

30 System.out.println ();

31

Listing 9.6 A program that demonstrates the use of pattern search methods of String (part 2). The part that prints
the header of the output

The program then executes pattern search. There are four different calls. The program announces

the method it is about to call, and then prints the return value.

32 System.out.print("indexOf (\"" + pat + "\"): ");

33 System.out.println(input.indexOf(pat));

34 System.out.print("lastIndexOf (\"" + pat + "\"): ");

35 System.out.println(input.lastIndexOf(pat));

36 System.out.print("indexOf (\"" + pat + "\"," + pos + "): ");

37 System.out.println(input.indexOf(pat , pos));

38 System.out.print("lastIndexOf (\"" + pat + "\"," + pos + "): ");

39 System.out.println(input.lastIndexOf(pat , pos));

40 }

41 }

Listing 9.7 A program that demonstrates the use of pattern search methods of String (part 3). The part that calls the
search methods and prints the results

Here is the result of executing the code with the two lines from “Swing Low, Sweet Chariot”:

1 Enter the input: swing low, sweet chariot, comin’ for to carry me home
2 Enter the pattern: e
3 Enter the position 20
4
5 00000000001111111111222222222233333333334444444444555
6 01234567890123456789012345678901234567890123456789012
7 swing low, sweet chariot, comin’ for to carry me home

234 9 Classes String and StringBuilder

8 ---
9 indexOf("e"): 13

10 lastIndexOf("e"): 52
11 indexOf("e",20): 47
12 lastIndexOf("e",20): 14

Here is another example with the two lines from the second verse of the hymn “Jerusalem”.

1 Enter the input: bring me my bow of burning gold! bring me my arrows of
desire!

2 Enter the pattern: ow
3 Enter the position 10
4
5 00000000001111111111222222222233333333334444444444555555555566
6 01234567890123456789012345678901234567890123456789012345678901
7 bring me my bow of burning gold! bring me my arrows of desire!
8 --
9 indexOf("ow"): 13

10 lastIndexOf("ow"): 48
11 indexOf("ow",10): 13
12 lastIndexOf("ow",10): -1

9.4 Methods for Creating New StringData from Another

The final group of String methods that we learn consists of those that generate a new String data.

Let s be a String object.

1. s.toUpperCase() returns a copy of s in which each lowercase letter is switched to its

uppercase version; if no lowercase letter appears in s, the method returns the exact copy of s.

2. s.toLowerCase() returns a copy of s in which each uppercase letter is switched to its

lowercase version; if no uppercase letter appears in s, the method returns the exact copy of s.

3. s.substring(int startIndex) returns a copy of s starting from position

startIndex; if the index value is negative or greater than the length of s, the method produces

a run-time error StringIndexOutOfBoundsException.

4. s.substring(int startIndex, int endIndex) returns a copy of s start-

ing at position startIndex and ending at position endIndex - 1; if either index

value is negative or greater than the length of s, the method produces a run-time error

StringIndexOutOfBoundsException.

5. s.replace(String x, String y) returns a copy of s in which all the occurrences

of x are replaced with y; if x does not occur in s, the method returns the exact copy of s. If

there is only one occurrence of x in s, that occurrence is substituted with y. If there are multiple

occurrences of x in s and if some consecutive occurrences overlap, the occurrences are chosen

without overlap in a “greedy” fashion, as follows: The first occurrence chosen is the occurrence at

the lowest position. From the second occurrence on, the occurrence chosen is the one at the lowest

position that overlaps none of the previously chosen occurrences. For instance, "abababa" has

three occurrences of "aba", at positions 0, 2, and 4. The second occurrence overlap the first and

the last. Given "aba" as the first parameter, replace chooses the positions 0 and 4.

6. s.replaceFirst(String x, String y) is a variant of replace where the substi-

tution applies only to the first occurrence of x.

7. s.trim() returns a copy of s without all of its leading and trailing white space characters.

9.4 Methods for Creating New String Data from Another 235

The next program demonstrates the use of the String generation methods. The method main of

the program calls three methods names changesOne, changesTwo, and changesThree (Lines

6–8).

1 import java.util .*;

2 public class ModifyString

3 {

4 public static void main(String [] args)

5 {

6 changesOne ();

7 changesTwo ();

8 changesThree ();

9 }

Listing 9.8 A program that demonstrates the use of String methods for generating new String data (part 1). The
method main

The first method of three, changesOne, demonstrates the use of toLowerCase(),

toUpperCase(), and trim(). The method receives an input line from the user, stores it in a

variable named input (Lines 13 and 14), and then executes input.toLowerCase() (Lines 15

and 16), input.toUpperCase() (Lines 17 and 18), and input.trim() (Lines 19 and 20).

The program uses a String variable named result to receive the return values of these methods.

10 public static void changesOne ()

11 {

12 Scanner keyboard = new Scanner(System.in);

13 System.out.print("Enter the input String: ");

14 String input = keyboard.nextLine ();

15 String result = input.toLowerCase ();

16 System.out.println("lower: " + result);

17 result = input.toUpperCase ();

18 System.out.println("upper: " + result);

19 result = input.trim();

20 System.out.println("trim: " + input.trim());

21 }

Listing 9.9 A program that demonstrates the use of String methods for generating new String data (part 2). The
method changesOne

In changesTwo, the program receives an input line (Lines 25 and 26) and two position values

(Lines 27–30) from the user, and then calls the method substring. To announce the action that has

been performed and its result, the program uses printf, with the format:

substring(%d)=%s%n

for the one-parameter version, and the format:

substring(%d,%d)=%s%n

for the two-parameter version. Each %d is the placeholder for the actual parameter, and each %s is the

placeholder for the return value.

The nextLine appearing in Line 30 is necessary, for the following reason: After changesTwo,

the method changesThree is called. The first action changesThree performs with a Scanner
is to read an input line with nextLine. To receive the two position values, changesTwo uses

236 9 Classes String and StringBuilder

nextInt. If there is no nextLine after the two calls of nextInt in changesTwo, the first

nextLine in changesThree returns the sequence of characters entered between the last numeral

of the second integer retrieved with nextInt in changesTwo and the return key that has been

pressed to enter the numbers.

22 public static void changesTwo ()

23 {

24 Scanner keyboard = new Scanner(System.in);

25 System.out.print("Enter the input String: ");

26 String input = keyboard.nextLine ();

27 System.out.print("Enter start and end positions ");

28 int pos1 = keyboard.nextInt ();

29 int pos2 = keyboard.nextInt ();

30 keyboard.nextLine ();

31 String result = input.substring(pos1);

32 System.out.printf("substring(%d): %s%n", pos1 , result);

33 result = input.substring(pos1 , pos2);

34 System.out.printf("substring(%d, %d): %s%n", pos1 , pos2 , result);

35 }

Listing 9.10 A program that demonstrates the use of String methods for generating new String data (part 3). The
method changesTwo

In changesThree, the program receives an input line (Lines 39 and 40) and two additional

lines representing the patterns (Lines 41–44) from the user, and then executes the pattern replacement

(Lines 45–48).

36 public static void changesThree ()

37 {

38 Scanner keyboard = new Scanner(System.in);

39 System.out.print("Enter the input String: ");

40 String input = keyboard.nextLine ();

41 System.out.print("Enter pattern 1: ");

42 String pat1 = keyboard.nextLine ();

43 System.out.print("Enter pattern 2: ");

44 String pat2 = keyboard.nextLine ();

45 String result = input.replaceFirst(pat1 , pat2);

46 System.out.printf("replaceFirst(%s,%s): %s%n",

47 pat1 , pat2 , result);

48 result = input.replace(pat1 , pat2) ;

49 System.out.printf("replace(%s,%s): %s%n", pat1 , pat2 , result);

50 }

51 }

Listing 9.11 A program that demonstrates the use of String methods for generating new String data (part 4). The
method changesThree

Here is one execution example of the code.

1 Enter the input String: Sorry, Professor. My phone’s alarm didn’t
work...

2 lower: sorry, professor. my phone’s alarm didn’t work...
3 upper: SORRY, PROFESSOR. MY PHONE’S ALARM DIDN’T WORK...
4 trim: Sorry, Professor. My phone’s alarm didn’t work...
5 Enter the input String: We have caught a possum resembling Fairway Frank.
6 Enter start and end positions 10 20

9.5 Class StringBuilder 237

7 substring(10)=ught a possum resembling Fairway Frank.
8 substring(10,20)=ught a pos
9 Enter the input String: I’ve received an A in BIO101 and CHM101.

10 Enter pattern 1: A
11 Enter pattern 2: A+
12 replaceFirst(A,A+)=I’ve received an A+ in BIO101 and CHM101.
13 replaceF(A,A+)=I’ve received an A+ in BIO101 and CHM101.

9.4.1 String.format

There is one static String method that is used often. The method is format. We can use this

method to mimic the action of printf and receive the result as a return value, instead of printing it

on the screen. For example,

1 int x = 10;

2 double y = 1.7956;

3 String output = String.format("x=%d,y=%.2f", x, y);

stores the character sequence x=10,y=1.80 in the String variable output (because the

rounding for y occurs at the third position after the decimal point).

9.5 Class StringBuilder

Quite often, we need to produce a long String output spreading over multiple lines, either on

the screen or to some file. We can build such an output using String concatenation, by adding

components one after another. A StringBuilder object can be used to build a String data

through insertion, deletion, and concatenation. To create a StringBuilder object, we use a

constructor, either with a String as its initial contents or without, as shown next:

1 StringBuilder builder1 = new StringBuilder ();

2 StringBuilder builder2 = new StringBuilder("Hello , World!");

A String data that a StringBuilder object represents can be obtained by calling the method

toString. Some methods of String are available for StringBuilder too. They include

length, charAt, indexOf, lastIndexOf, and substring. The StringBuilder versions

of these methods are applied to the String data that the StringBuilder object represents.

There are methods that are available in StringBuilder but not in String. They include

append, insert, and delete:

• The method append receives one formal parameter and appends its value to the contents. The

type of the parameter can be boolean, char, double, float, int, long, or String.

• The method insert receives two formal parameters. The first parameter is an int and specifies

where, in the contents of the StringBuilder object, an insertion must be made. The second

parameter specifies the actual data to insert. The type of the second parameter can be boolean,

char, double, float, int, long, or String.

• The method delete receives two int parameters, start and end, and removes the characters

at positions between start and end - 1 from the contents. The use of an invalid index results

in the run-time error of StringIndexOutOfBoundsException occurs. There is a one-

parameter version of delete. This version removes all the characters starting from the position

that the parameter specifies.

238 9 Classes String and StringBuilder

Here is a demonstration of how the methods of StringBuilder work. The program receives an

input line from the user, and then collects all the lowercase letters appearing in the input line. The

collected letters are simply connected without spacing in between and turned into a String data.

The method main stores its input in a variable named input (Lines 7 and 8) and calls the method

collect. The method stores the returned value in a variable named output (Line 9). The method

then presents the two values (Line 11).

The method collect receives a String data as a formal parameter, and returns a String
object (Line 13). The method instantiates a StringBuilder object (Line 15). It then goes through

the characters of the input line one after another (Line 16). For each character encountered, if

the character is a lowercase letter (Lines 18 and 19), the method appends the character to the

builder (Line 21). After completing the examination, the method inserts the sequence -\n after

every ten characters of the output. To accomplish this task, the method iterates the sequence

builder.length(), ..., 1 with the variable i (Lines 24 and 25). At each round of the

iteration, if the value of i is a multiple of 10 (Line 26), the method inserts the sequence at position

i (Line 28). The values of i appear in decreasing order because an insertion changes the character

positions of all the existing characters appearing after the position of insertion.

1 import java.util .*;

2 public class AlphabetCollection

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter: ");

8 String input = keyboard.nextLine ();

9 String output = collect(input);

10 System.out.println("========");

11 System.out.printf("Input :%n%s%nhas become :%n%s%n", input , output);

12 }

13 public static String collect(String input)

14 {

15 StringBuilder builder = new StringBuilder ();

16 for (int i = 0; i < input.length (); i ++)

17 {

18 char c = input.charAt(i);

19 if (c >= ’a’ && c <= ’z’)

20 {

21 builder.append(c);

22 }

23 }

24 int ell = builder.length ();

25 for (int i = ell; i >= 1; i --) {

26 if (i % 10 == 0)

27 {

28 builder.insert(i, "-\n");

29 }

30 }

31 return builder.toString ();

32 }

33 }

Listing 9.12 A program that demonstrates the use of StringBuilder objects

Exercises 239

Here is an execution example of the code:

1 Enter: The title of this album is "Sgt. Pepper ’s Lonely Hearts Club Band"

2 ========

3 Input:

4 The title of this album is "Sgt. Pepper ’s Lonely Hearts Club Band"

5 has become:

6 hetitleoft -

7 hisalbumis -

8 gtepperson -

9 elyeartslu -

10 band

Summary

String has a wide variety of methods. None of them change the contents of the String to

which the methods are applied.

StringBuilder is a class for building a String object. Many methods of String can be

applied to StringBuilder objects.

length and charAt provide the character length of the String and the character at the

specified position.

The use of actual parameters outside the range for the charAt method produces StringIndex
OutOfBoundsException.

indexOf and lastIndexOf can be used to search for patterns in a String data and in a

StringBuilder data. Both methods return -1 if the pattern does not exist.

String data and StringBuilder data can be compared using compareTo, equals,

startsWith, and endsWith.

substring generates a substring.

toUpperCase and toLowerCase return a new String data after changing the cases.

trim returns a new String data without leading and trailing white space characters.

replace and replaceFirst return a new String data generated by substitution.

String.format is a static method for generating the output of System.out.printf as a

String.

The methods available for StringBuilder but not for String include append, delete,

and insert.

Exercises

1. String arithmetic Write a program named ReceiveAndPrint that receives a String
value s, an int value m, and a double value d from the user, and then prints the following:

• s
• m
• d
• m + d + s
• m + s + d
• s + m + d

240 9 Classes String and StringBuilder

2. Concept check

(a) Name the String method for comparing a String with another just for equality.

(b) Name the String method for substituting all occurrences of one pattern with another.

(c) State whether or not the following statement is true: For a String word having length 10,

word.substring(1) and w.substring(1, 9) produce an identical result.

(d) State whether or not the following statement is true: The compareTo method for String
always produces +1, 0, or -1.

(e) Name the String method that returns, when applied to a String data, a new String
without leading and trailing whitespace characters.

3. Connecting String values Write a public static method named connect. The method

receives two String formal parameters: word1 and word2. The method must return a

boolean. The return value must represent whether or not the last character of word1 is equal

to the first character of word2, or the last character of word2 is equal to the first character of

word1. If either word1 or word2 has length 0, the method must return false.

4. String methods Let word be a String data whose value is "School.of.Progressive.
Rock" (not including the quotation marks). State the return value of each of the following:

(a) word.length()
(b) word.substring(22)
(c) word.substring(22, 24)
(d) word.indexOf("oo")
(e) word.toUpperCase()
(f) word.lastIndexOf("o")
(g) word.indexOf("ok")

5. Understanding Stringmethods Suppose String variables w and pat are given as follows:

1 w = "Singin’_in_the_rain";
2 pat = "in";

State the return value of each of the following:

(a) w.indexOf(pat)
(b) w.indexOf(pat, 3)
(c) w.indexOf(pat, 6)
(d) w.lastIndexOf(pat)
(e) w.length()
(f) w.toUpperCase()
(g) w.charAt(0)

6. Printing the letters of a String variable Suppose word is a String variable. Using a for-

loop, write a code that prints the letters of word from the start to the end, one letter per line with

no indentation. For example, if the value of word is equal to the literal "hurricanes", the

output of the code is:

1 h
2 u
3 r
4 r
5 i
6 c
7 a
8 n
9 e

10 s

Exercises 241

7. Printing the suffixes of a String variable Suppose word is a String variable. Using a

for-loop, write a code that prints the suffixes of word starting from the longest to the shortest,

one substring per line with no indentation. For example, if the value of word is equal to the literal

"hurricanes", the output of the code is:

1 hurricanes
2 urricanes
3 rricanes
4 ricanes
5 icanes
6 canes
7 anes
8 nes
9 es

10 s

8. Concept check Let s be a String variable whose value is the literal "Mississippi". State

the return value of each of the following:

(a) s.length()
(b) s.indexOf("si")
(c) s.toUpperCase().indexOf("si")
(d) s.toLowerCase().indexOf("si")
(e) s.substring(0,s.indexOf("i"))
(f) s.substring(s.lastIndexOf("i"))

9. Character order reversal Write a program named StringReverse that receives a String
data from the user, and then creates the reverse of the input. For example, the program may run

as follows:

1 Enter an input String: Computer-Programming
2 The reverse of Computer-Programming is gnimmargorP-retupmoC.

The first line consists of the prompt (ending with ": ") and the input. The second line is the

output of the program after receiving the input. Try to use printf in producing the output.

10. Sum of all digits Write a program named NumeralSum that receives a String data from the

user, and then computes the sum of the values of all the numerals appearing in it. For example, if

the input is BIO542L, the sum is 5 + 4 + 2 = 11.

Programming Projects

11. Cyclic shifts Suppose w is a String variable such that w.length() is greater than or equal

to 1. For a positive integer k whose value is between 0 and w.length(), the k-th left cyclic

shift of w is the String constructed from w by moving the first k characters of w after the last

character of w while preserving the order of the k characters. For instance, if w has the value

"abcdefgh" and k is 3, then the k-th left cyclic shift of w is "efghabc". If the value of

k is either equal to 0 or equal to w.length(), the k-th left cyclic shift produces a String
value equal to the value of w. Write a program named CyclicShift that does the following:

The program receives an input line from the user, and stores the input line in a variable w. The

program receives a nonnegative integer from the user, and stores it in an int variable k. The

program then constructs the k-th cyclic shift of w and prints it. Design your code so that the

program is able to receive a line that contains the whitespace as input. If the value of k is out of

range, the program reports that the value is invalid and stop. Here are execution examples of such

a program.

242 9 Classes String and StringBuilder

1 Enter your input line: How are you?
2 Enter the shift value k: 4
3 The 4-th cyclic shift of
4 "How are you?"
5 is
6 "are you?How "

1 Enter your input line: How are you?
2 Enter the shift value k: 34
3 Invalid value for k

12. Factor of a String data The “minimum factor” of a character sequence w is the shortest prefix

s of w such that w is a repetition of s. For example, the minimum factor of "ababababab" is

"ab" and the minimum factor of "abcdef" is "abcdef". Put differently, the length of the

minimum factor of w is the smallest positive k such that the k-th left cyclic shift of w is equal to

w.

Consider computing the minimum factor of a given String object w using a for-loop that

iterates over the sequence 1, ..., w.length() with the variable k. At each round of the

for-loop, the program checks if the k-th left cyclic shift of w is equal to w. The smallest value of

k at which the shift produces the same String is the length of the factor.

Write a program named StringFactor that receives an input line from the user, and then

reports its minimum factor along with the length of the factor. Design the program so that it uses

a method that returns the minimum factor.

13. Enumerating all occurrences of a character pattern, part 1 Consider finding all occurrences

of a pattern pat in a String data input. We can solve the problem by checking at each

position of input, whether or not pat appears at the position. Write a program named

AllOccurrences that receives the values for pat and input from the user, finds all the

matching positions, and prints the total number of occurrences.

Here is an example of how such a code may work.

1 Input some text: I’m singin’ in the rain, I’m singin’ in the rain
2 Input pattern: in
3 Found at position 5.
4 Found at position 8.
5 Found at position 12.
6 Found at position 21.
7 Found at position 30.
8 Found at position 33.
9 Found at position 37.

10 Found at position 46.
11 The number of occurrences is 8.

The smallest position possible for i is 0.

14. Enumerating all occurrences of a character pattern, part 2 Write another program named

AllOccurrencesAlt that solves the previous problem with character-by-character compar-

isons between the input and the pattern. The task can be accomplished using a double for-loop.

15. Switching between two neighbors Write a program named SwitchingBetweenNeighbors
that executes the following: The program receives a String value from the user. From the input,

the program creates a new String value by switching between every pair of the characters in

the input. The switching occurs between positions 0 and 1, between positions 2 and 3, and so. If

the input the user provides has an odd length, the last character will remain in the same position.

For example, the method should produce "cseicne" from "science".

Exercises 243

16. Playing with StringBuilder Write a program named DoubleInsertion that receives

a String value from the user using nextLine, and then builds a new String using

StringBuilder as follows:

• Initially the builder is empty.

• The program scans the characters of the input, from the beginning to the end, and executes the

following:

– If the position of the character is 2m for some nonnegative integer m, the program inserts

the character at position m.

– If the position is 2m + 1 for some nonnegative integer m, the program appends the

character at the very end.

The program must print the input in one line, and then the output in the next line. For example, if

abcdefghijkl is the input, the contents of the StringBuilder change as follows:

1 a
2 ab
3 acb
4 acbd
5 acebd
6 acebdf
7 acegbdf
8 acegbdfh
9 acegibdfh

10 acegibdfhj
11 acegikbdfhj
12 acegikbdfhjl

17. All substrings Write a program named AllSubstrings that receives a String from the

user and produces all its nonempty substrings along with their ranges of character positions. Use a

double for-loop to generate all pairs of index values (i,j) to provide the substring method

as its actual parameters. Allocate three character spaces to each coordinate value. The output of

the program may look like:

1 Enter your input string: karma
2 (0, 1):k
3 (0, 2):ka
4 (0, 3):kar
5 (0, 4):karm
6 (1, 2):a
7 (1, 3):ar
8 (1, 4):arm
9 (2, 3):r

10 (2, 4):rm
11 (3, 4):m

18. All anti-substrings Write a program named AllAntiSubstrings that receives a String
from the user, and then produces all strings generated from the input by removing some substring.

Use a double for-loop that iterates over all possible index pairs (i,j) such that i < j. For each

pair, remove from the input the characters having indexes between i and j - 1. Allocate three

character spaces to each coordinate value. Here is an example of how the code may work:

244 9 Classes String and StringBuilder

1 Enter your input string: walking
2 (0, 1):alking
3 (0, 2):lking
4 (0, 3):king
5 (0, 4):ing
6 (0, 5):ng
7 (0, 6):g
8 (1, 2):wlking
9 (1, 3):wking

10 (1, 4):wing
11 (1, 5):wng
12 (1, 6):wg
13 (2, 3):waking
14 (2, 4):waing
15 (2, 5):wang
16 (2, 6):wag
17 (3, 4):waling
18 (3, 5):walng
19 (3, 6):walg
20 (4, 5):walkng
21 (4, 6):walkg
22 (5, 6):walkig

19. All anti-substrings no.2 Write a program named AllAntiSubstrings2 that receives a

String from the user, and then produces all strings generated from the input by connecting two

substrings. The substrings are generated using index triples (i,j,k) such that i < j < k
and connecting substring(0, i)with substring(j, k). Allocate three character

spaces to each coordinate value. Here is how the code may work.

1 Enter your input string: Davis
2 (0, 1, 2):a
3 (0, 1, 3):av
4 (0, 1, 4):avi
5 (0, 2, 3):v
6 (0, 2, 4):vi
7 (0, 3, 4):i
8 (1, 2, 3):Dv
9 (1, 2, 4):Dvi

10 (1, 3, 4):Di
11 (2, 3, 4):Dai

20. Conversion to decimal Write a program named ToDecimal that receives a binary integer

from the user, and then prints its decimal representation. For example, 1111000 in binary is 120

in decimal and 11111011111 in binary is 2015 in decimal. Assume that the binary input is given

as a String value.

10The Switch Statements

10.1 The Syntax of Switch Statements

The switch statement is a mechanism for controlling the flow of the program based on exact values

of one data. Often a switch statement is used in a menu, where the action to be performed is selected

based on a value.

A switch statement has three components, the header, the body, and the anchors. The header takes

the form of:

switch (x)

where x is a data and its type must be int, char, short, long, or String. The body is a series

of statements encompassed in a pair of curly brackets. An anchor is either in the form of default:
or case A: for some literal A whose type is the same as the type of x. Anchors appear between the

statements in the body. Multiple case-type anchors may appear in the body, but no two of them can

have the same associated literals. The anchor default: may or may not appear, but it cannot appear

more than once. Furthermore, break can be used as a valid statement.

For instance, with an int variable x, the following switch statements can be written:

1 // Example No.1

2 switch (x)

3 {

4 case 11: System.out.print("Eleven");

5 default: System.out.print("Other");

6 case 8: System.out.print("Eight");

7 }

1 // Example No.2

2 switch (x)

3 {

4 case 11: System.out.print("Eleven"); break;

5 default: System.out.print("Other"); break;

6 case 8: System.out.print("Eight");

7 }

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_10

245© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_10

246 10 The Switch Statements

Table 10.1 The output
generated by the three
examples of switch

Example no. The value of x

11 8 Others

1 ElevenOtherEight Eight OtherEight

2 Eleven Eight Other

3 Eleven Eight

1 // Example No.3

2 switch (x)

3 {

4 case 11: System.out.print("Eleven"); break;

5 case 8: System.out.print("Eight");

6 }

The anchors specify the entry points into the body. case A: means

“if the value of x is equal to A, start the execution of the body from here”

and default: means

“if none of the associated values of the case anchors match the value of x, start the execution of

the body from here”.

The execution of the body is terminated either when the execution reaches the end of the body or

when the execution encounters break. For this reason, the break appearing at the end of the body

is redundant and thus can be removed.

The above three examples produce the following results: In the first example, break does not

appear in the body. Therefore, after entering the body, the execution continues until the very end. In

the second example, each System.out.print statement is followed by break. Therefore, after

entering the body, the program executes the System.out.print following the anchor, and then

terminates the execution of the body. In the last example, if the value of x is either 11 or 8, the action

to be performed is the same as that of the second example. However, if the value of x is neither, there

is no action to perform, so nothing occurs.

Table 10.1 summaries this analysis.

To see how we can utilize a switch statement for a menu, consider printing various shapes on the

screen upon the user’s request. This program asks the user to choose, from a menu of possible shapes,

one shape to print:

1 **
2 This program prints a shape of your choice
3 Select by entering number
4 0. Right-angle triangle
5 1. Isosceles
6 2. Square
7 3. Parallelogram
8 Enter your choice: 3
9 Enter height: 10

10.1 The Syntax of Switch Statements 247

10 Here is your figure!
11 ##########
12 ##########
13 ##########
14 ##########
15 ##########
16 ##########
17 ##########
18 ##########
19 ##########
20 ##########
21

In Lines 8 and 9, the program prompts the user to choose the shape and its size, and receives 3 and

10 from the user. The output of the shape appears after receiving the size parameter.

As shown in the example, there are four possible shapes to choose in the menu. The user can

choose the size of each shape. The generation of the four shapes are accomplished by four methods,

rightAngle, isosceles, square, and parallelogram. Each of the four receives a size

parameter. The task of directing the flow to the generation of the shape chosen by the user can be

accomplished as follows using an if-else statement:

1 if (choice == 0)

2 {

3 rightAngle(height);

4 }

5 else if (choice == 1)

6 {

7 isosceles(height);

8 }

9 else if (choice == 2)

10 {

11 square(height);

12 }

13 else if (choice == 3)

14 {

15 parallelogram(height);

16 }

The switch statement replaces these if and else if conditional tests with case names:

1 switch (choice)

2 {

3 case 0: rightAngle(height); break;

4 case 1: isosceles(height); break;

5 case 2: square(height); break;

6 case 3: parallelogram(height); break;

7 }

This probably makes it clearer that the choices are 0 through 3.

The entire program of the selective shape generation appears next. First comes the part in the

method main that receives the input from the user: the value for the selection variable choice (Lines

18 and 19) and the value for the height variable height (Lines 20 and 21). The switch statement we

discussed appears in Lines 25–31. This version lacks the final break, since a break statement at

the end of the body of a switch statement is redundant.

248 10 The Switch Statements

1 import java.util .*;

2

3 public class ShapeSelection

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 int choice , height;

9

10 System.out.println("** ");

11 System.out.println("This program prints a shape of your choice");

12 System.out.println("Select by entering number ");

13 System.out.println("0. Right -angle triangle ");

14 System.out.println("1. Isosceles ");

15 System.out.println("2. Square ");

16 System.out.println("3. Parallelogram ");

17 System.out.println("** ");

18 System.out.print("Enter your choice: ");

19 choice = keyboard.nextInt ();

20 System.out.print("Enter height: ");

21 height = keyboard.nextInt ();

22

23 System.out.println("Here is your figure!");

24

25 switch (choice)

26 {

27 case 0: rightAngle(height); break;

28 case 1: isosceles(height); break;

29 case 2: square(height); break;

30 case 3: parallelogram(height);

31 }

32 }

33

Listing 10.1 A program that uses a switch statement to generate a shape (part 1). The part for receiving an input from
the user

The four shape-generation methods receive an int parameter height and print height lines

using a for-loop that iterates over the sequence 1, ..., height with a variable named i. The

action of the loop-body is to call a method named line with two parameters. Depending of the

relations of the values of the two parameters to i, different shapes are printed.

The line receives two int parameters, whiteWidth and blackWidth (Line 34), and prints

blackWidth hash marks after an indentation of length whiteWidth. The indentation is generated

using a for-loop in Lines 36–39 and the hash marks are printed using a for-loop in Lines 40–43.

10.1 The Syntax of Switch Statements 249

34 public static void line(int whiteWidth , int blackWidth)

35 {

36 for (int i = 1; i <= whiteWidth; i ++)

37 {

38 System.out.print(" ");

39 }

40 for (int i = 1; i <= blackWidth; i ++)

41 {

42 System.out.print("#");

43 }

44 System.out.println ();

45 }

Listing 10.2 A program that uses a switch statement to generate a shape (part 2). A method line that produces a line
of "#" after some indentation

For rightAngle (Line 47), the actual call is line(0, i) (Line 51). This produces i hash

marks with no indentation. Since the value of i is increasing, a right-angled triangle is produced. For

isosceles (Line 55), the actual call is line(height - i, i * 2 - 1) (Line 59). As

the value of i increases from 1 to height, the length of indentation decreases from height - 1 to

0 while the number of hash marks increases from 1 to 2 * height - 1 by 2 at a time. Therefore,

an isosceles triangle is produced. For square (Line 63), the actual call is line(0, height)
(Line 67). This produces height hash marks with no indentation. Therefore, a square is produced.

For parallelogram (Line 71), the actual call is line(i - 1, height) (Line 75). The

length of indentation increases from 0 to height - 1 while the number of hash marks is height.

Therefore, a parallelogram is produced.

46

47 public static void rightAngle(int height)

48 {

49 for (int i = 1; i <= height; i ++)

50 {

51 line(0, i);

52 }

53 }

54

55 public static void isosceles(int height)

56 {

57 for (int i = 1; i <= height; i ++)

58 {

59 line(height - i, i * 2 - 1);

60 }

61 }

62

Listing 10.3 A program that uses a switch statement to generate a shape (part 3). Two shape-producing methods

250 10 The Switch Statements

63 public static void square(int height)

64 {

65 for (int i = 1; i <= height; i ++)

66 {

67 line(0, height);

68 }

69 }

70

71 public static void parallelogram(int height)

72 {

73 for (int i = 1; i <= height; i ++)

74 {

75 line(i - 1, height);

76 }

77 }

78 }

Listing 10.4 A program that uses a switch statement to generate a shape (part 4). The two remaining shape-producing
methods

Here are execution examples of the program.

1 **
2 This program prints a shape of your choice
3 Select by entering number
4 0. Right-angle triangle
5 1. Isosceles
6 2. Square
7 3. Parallelogram
8 Enter your choice: 0
9 Enter height: 10

10 #
11 ##
12 ###
13 ####
14 #####
15 ######
16 #######
17 ########
18 #########
19 ##########
20 **
21 This program prints a shape of your choice
22 Select by entering number
23 0. Right-angle triangle
24 1. Isosceles
25 2. Square
26 3. Parallelogram
27 Enter your choice: 1
28 Enter height: 5
29 #
30 ###
31 #####
32 #######
33 #########

10.1 The Syntax of Switch Statements 251

34 **
35 This program prints a shape of your choice
36 Select by entering number
37 0. Right-angle triangle
38 1. Isosceles
39 2. Square
40 3. Parallelogram
41 Enter your choice: 2
42 Enter height: 7
43 #######
44 #######
45 #######
46 #######
47 #######
48 #######
49 #######
50 **
51 This program prints a shape of your choice
52 Select by entering number
53 0. Right-angle triangle
54 1. Isosceles
55 2. Square
56 3. Parallelogram
57 Enter your choice: 3
58 Enter height: 20
59 ####################
60 ####################
61 ####################
62 ####################
63 ####################
64 ####################
65 ####################
66 ####################
67 ####################
68 ####################
69 ####################
70 ####################
71 ####################
72 ####################
73 ####################
74 ####################
75 ####################
76 ####################
77 ####################
78 ####################

Multiple anchors can be assigned to the same entry points. Recall the program from Chap. 6 that

shows four colors and produces statements based upon the choice made (List 6.10). In that code, 1 and

2 were the official University of Miami colors and 3 and 4 were the official University of Michigan

colors. Using a switch statement with default as an anchor, we can write the following code that

behaves exactly the same way:

252 10 The Switch Statements

1 import java.util.Scanner;

2 // ask about a color and respond

3 public class ColorSelectionSwitch

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 System.out.println("What is your favorite color?");

9 System.out.println("1. Orange , 2. Green , 3. Maize , 4. Blue");

10 System.out.print("Select from 1 to 4 : ");

11 int answer = keyboard.nextInt ();

12

13 switch (answer)

14 {

15 case 1:

16 case 2:

17 System.out.printf("Your choice %d is excellent .%n", answer);

18 System.out.println("It is a U. Miami Color!");

19 break;

20 case 3:

21 case 4:

22 System.out.printf("Your choice %d is excellent .%n", answer);

23 System.out.println("It is a U. Michigan Color!");

24 break;

25 default:

26 System.out.printf("Your choice %d is invalid .%n", answer);

27 }

28 }

29 }

Listing 10.5 A program that responds to a color choice

The actions to be performed are identical between the choices 1 and 2, the actions to be performed

are identical between the choices 3 and 4.

10.2 Using a char Data in a Switch-Statement

Consider computing the number of occurrences of six punctuation marks (the period, the comma, the

question mark, the exclamation mark, the colon, and the semicolon) and everything else in an input

character sequence. We can use seven int variables corresponding to the seven categories. After

initializing the variables with the value of 0, we examine each character of the input sequence and

increase the variable corresponding to the character. The following program executes this, using a

switch-statement for handling the selection of the variable.

The program consists of three methods:

1. The method receiveInput receives a multiple-line input from the user.

2. The method printInfo prints the name of a punctuation mark and the number of its occurrences.

3. The method main handles the task of counting.

The program receives multiple lines of input from the user. The number of lines that the user enters is

defined as a constant LINENUMBER. The value of the constant is 10 (Line 4).

The method receiveInput receives LINENUMBER lines from the user and returns a String
that connects them with the newline at the end of each line. The method uses a StringBuilder

10.2 Using a char Data in a Switch-Statement 253

object named builder to build the String to be returned (Line 11). The method announces the

actions to be performed and instantiates a Scanner object for reading the keyboard (Lines 8–10).

The method uses a for-loop to count the number of lines entered (Line 12). At each round of iteration,

the method reads one line of input (Line 14), and then appends the line and the newline to builder
(Line 15). At the end, the method converts the contents of builder to a String value and returns

it.

1 import java.util .*;

2 public class CountPunctuations

3 {

4 public static final int LINENUMBER = 10;

5

6 public static String receiveInput ()

7 {

8 System.out.printf("Enter text of %d lines .%n", LINENUMBER);

9 System.out.println("The program will count each punctuation.");

10 Scanner keyboard = new Scanner(System.in);

11 StringBuilder builder = new StringBuilder ();

12 for (int count = 1; count <= LINENUMBER; count ++)

13 {

14 String line = keyboard.nextLine ();

15 builder.append(line + "\n");

16 }

17 return builder.toString ();

18 }

19

Listing 10.6 A program that counts punctuations (part 1). The program header and a program for receiving a multiple-
line input

The method printInfo receives a String representing the name of a punctuation marks and

an int representing the count, and prints the two values using printf (Line 22). The String
appears in 20 character spaces and the count in three character spaces. The two are separated by a

colon and one white space. The method main first calls the method receiveInput to obtain a

20 public static void printInfo(String name , int count)

21 {

22 System.out.printf("%20s: %3d times%n", name , count);

23 }

24

Listing 10.7 A program that counts punctuations (part 2). The method printInfo

multiple-line input from the user. The method stores the input in a variable input (Line 27). The

method then declares the variables for counting the occurrences of the six punctuation marks. The six

variables are nPeriod, nComma, nQuestion, nExclamation, nColon, and nSemicolon.

They correspond to the period, the comma, the question mark, the exclamation mark, the colon, and

the semicolon. In addition, the method declares a variable, nOthers, for counting the occurrences

of everything else. These seven variables are initialized with the value of 0 (Lines 28 and 29). The

method then executes a for-loop that iterates over the sequence 0, ..., input.length() - 1
with a variable named i (Line 30). The body of the loop is a switch statement. The switch statement

254 10 The Switch Statements

examines input.charAt(i) (Line 32), and then depending on the value of the char data,

it increases the value of one counter by 1. There are six case anchors corresponding to the six

punctuation marks (Lines 34–39), and default that handles the remainder (Line 40).

25 public static void main(String [] args)

26 {

27 String input = receiveInput ();

28 int nPeriod = 0, nComma = 0, nQuestion = 0, nExclamation = 0;

29 int nColon = 0, nSemicolon = 0, nOthers = 0;

30 for (int i = 0; i <= input.length () - 1; i ++)

31 {

32 switch (input.charAt(i))

33 {

34 case ’.’: nPeriod ++; break;

35 case ’,’: nComma ++; break;

36 case ’?’: nQuestion ++; break;

37 case ’!’: nExclamation ++; break;

38 case ’:’: nColon ++; break;

39 case ’;’: nSemicolon ++; break;

40 default: nOthers ++;

41 }

42 }

43

Listing 10.8 A program that counts punctuations (part 3). The part for counting the characters

The last part of the code handles the reporting of the result. First, the program prints a header

(Lines 44 and 45). The header includes the input lines that the user enters. The %s appearing in the

format String

Your input:%n%s%nThe counts:%n

serves as the placeholder for the input. Since receiveInput adds the newline after each input line

received, each input line is printed in an individual line. After printing the input lines, the program

prints the seven counts using the print method (Lines 46–52).

44 System.out.println("\n======================== ");

45 System.out.printf("Your input :%n%s%nThe counts :%n", input);

46 printInfo("Period", nPeriod);

47 printInfo("Comma", nComma);

48 printInfo("Question Mark", nQuestion);

49 printInfo("Exclamation Mark", nExclamation);

50 printInfo("Colon", nColon);

51 printInfo("Semicolon", nSemicolon);

52 printInfo("Others", nOthers);

53 }

54 }

Listing 10.9 A program that counts punctuations (part 4). The part for generating a report

10.2 Using a char Data in a Switch-Statement 255

Here is an execution example of the program. The user enters ten lines from Adventures of

Huckleberry Finn by Mark Twain.1

1 Enter text of 10 lines.
2 The program will count each punctuation.
3 "Well, who said it was?"
4 "Why, you did."
5 "I DIDN’T nuther."
6 "You did!"
7 "I didn’t."
8 "You did."
9 "I never said nothing of the kind."

10 "Well, what DID you say, then?"
11 "Said he come to take the sea BATHS--that’s what I said."
12 "Well, then, how’s he going to take the sea baths if it ain’t on the sea?"
13 ========================
14 Your input:
15 "Well, who said it was?"
16 "Why, you did."
17 "I DIDN’T nuther."
18 "You did!"
19 "I didn’t."
20 "You did."
21 "I never said nothing of the kind."
22 "Well, what DID you say, then?"
23 "Said he come to take the sea BATHS--that’s what I said."
24 "Well, then, how’s he going to take the sea baths if it ain’t on the sea?"
25
26 The counts:
27 Period: 6 times
28 Comma: 6 times
29 Question Mark: 3 times
30 Exclamation Mark: 1 times
31 Colon: 0 times
32 Semicolon: 0 times
33 Others: 279 times

Here is another program that uses a switch statement. This time, the program uses a char data

for directing the flow. This program receives four pieces of information about a person (name, age,

gender, and phone number) from the user, and stores the information in four variables. The program

then receives a text input from the user. The program examines the first character of the text input,

obtained using charAt(0). If the character matches one of the four letters (’N’, ’A’, ’G’, and

’P’) representing the four pieces of information, the program prints the information; otherwise, the

program prints an error message.

The program uses String variables, name, gender, and phone, to store information about

the name, gender, and phone number (Line 6). The program uses a String variable, choice, to

record the input the user enters as the choice of information to recall (Line 6). The program uses

an int variable, age, to record the age (Line 7). The program uses interactions with the user

to receive values for the four variables (Lines 11–18). To recall information, the program prints a

prompt, and then receives input in the variable choice (Lines 20–22). Then, the program examines

choice.charAt(0) in a switch statement to decide which variable to recall (Lines 26–33).

Any invalid choice is directed to the default: in Line 34.

1Samuel Langhorne Clemens (November 30, 1835 to April 21, 1910), known by his pen name Mark Twain, was an
American writer.

256 10 The Switch Statements

1 import java.util .*;

2 public class SelectionByChar

3 {

4 public static void main(String [] args)

5 {

6 String name , gender , phone , choice;

7 int age;

8

9 Scanner keyboard = new Scanner(System.in);

10

11 System.out.print("Type name: ");

12 name = keyboard.next();

13 System.out.print("Type age: ");

14 age = keyboard.nextInt ();

15 System.out.print("Type gender: ");

16 gender = keyboard.next();

17 System.out.print("Type phone: ");

18 phone = keyboard.next();

19

20 System.out.println("Enter information to recall.");

21 System.out.print(" A(ge), G(ender), N(ame), P(hone): ");

22 choice = keyboard.next();

23

24 switch (choice.charAt(0))

25 {

26 case ’A’: System.out.println("The age is " + age);

27 break;

28 case ’G’: System.out.println("The gender is " + gender);

29 break;

30 case ’N’: System.out.println("The name is " + name);

31 break;

32 case ’P’: System.out.println("The phone is " + phone);

33 break;

34 default: System.out.println("Unsupported selection!");

35 }

36 }

37 }

Listing 10.10 A program that uses a switch statement for recalling memory

Here are some execution examples of the code. In the first example, the user asks to recall the age

by entering "A":

1 Type name: Emily
2 Type age: 30
3 Type gender: Feale
4 Type phone (use dash): 333-333-3333
5 A(ge), G(ender), N(ame), P(hone): A
6 The age is 30

In the second example, the user asks to recall the name by entering the prefix "Nam" of "Name":

1 Type name: Dwight
2 Type age: 32
3 Type gender: Male
4 Type phone (use dash): 123-123-1122
5 A(ge), G(ender), N(ame), P(hone): Nam
6 The name is Dwight

10.3 Using a String Data in a Switch Statement 257

In the third example, the user asks to recall the phone number by entering "Pine", whose first

letter is ’P’:

1 Type name: George
2 Type age: 40
3 Type gender: Male
4 Type phone (use dash): 343-343-3344
5 A(ge), G(ender), N(ame), P(hone): Pine
6 The phone is 343-343-3344

In the last example, the user enters "Q", but there is no matching choice, so the program prints the

error message:

1 Type name: Caroline
2 Type age: 23
3 Type gender: Female
4 Type phone (use dash): 333-222-1111
5 A(ge), G(ender), N(ame), P(hone): Q
6 Unsupported selection!

10.3 Using a StringData in a Switch Statement

An alternate version of the memory recall program show next uses a switch statement that examines

the value of a String data. In this version, to recall information, the user must type the exact name

of the information to recall. The program handles the input that the user enters in a non-case-sensitive

manner by converting it to all lowercase using the method toLowerCase() of String (Line 22).

1 import java.util .*;

2 public class SelectionByString

3 {

4 public static void main(String [] args)

5 {

6 String name , gender , phone , choice;

7 int age;

8

9 Scanner keyboard = new Scanner(System.in);

10

11 System.out.print("Type name: ");

12 name = keyboard.next();

13 System.out.print("Type age: ");

14 age = keyboard.nextInt ();

15 System.out.print("Type gender: ");

16 gender = keyboard.next();

17 System.out.print("Type phone: ");

18 phone = keyboard.next();

19

Listing 10.11 A program for recalling memory (part 1). The part responsible for receiving data from the user

258 10 The Switch Statements

20 System.out.println("Enter information to recall.");

21 System.out.print(" age , gender , name , phone: ");

22 choice = keyboard.next().toLowerCase ();

23

24 switch (choice)

25 {

26 case "age": System.out.println("The age is " + age);

27 break;

28 case "gender": System.out.println("The gender is " + gender);

29 break;

30 case "name": System.out.println("The name is " + name);

31 break;

32 case "phone": System.out.println("The phone is " + phone);

33 break;

34 default: System.out.println("Unsupported selection!");

35 }

36 }

37 }

Listing 10.12 A program for recalling memory (part 2). The part responsible for recalling information

Here are a couple execution examples of the code:

1 Type name: Darrell
2 Type age: 18
3 Type gender: Male
4 Type phone (use dash): 555-555-5555
5 Age, Gender, Name, Phone: age
6 The age is 18

1 Type name: Eden
2 Type age: 19
3 Type gender: Female
4 Type phone (use dash): 777-888-9999
5 Age, Gender, Name, Phone: name
6 The name is Eden

Summary

A switch statement allows selecting an action to perform based on the value of a data. The possible

data types that can be used in a switch statement are: char, int, long, short, and String.

Each case value in a switch statement is specified using case VALUE: where VALUE is a literal

matching the type of the variable examined in the switch statement.

No two cases appearing in a switch statement have the same values.

default: is a keyword that corresponds to “otherwise”.

If break is encountered during the execution of the body of a switch statement, the execution is

immediately terminated.

Exercises 259

Exercises

1. Converting to and from a switch statement, 1 Convert the following switch statement to an

equivalent if-else statement:

1 switch (a)

2 {

3 case 1: System.out.println("A"); break;

4 case 2: System.out.println("B"); break;

5 case 3: System.out.println("C"); break;

6 default:

7 }

2. Converting to and from a switch statement, 2 Convert the following switch statement to an

equivalent if-else statement:

1 switch (a)

2 {

3 case 1: System.out.println("X");

4 case 2: System.out.println("Y"); break;

5 case 3: System.out.println("Z"); break;

6 default:

7 }

3. Converting to and from a switch statement, 3 Convert the following switch statement to an

equivalent if-else statement:

1 switch (a)

2 {

3 case 1: System.out.println("i");

4 case 2: System.out.println("ii");

5 case 3: System.out.println("iii"); break;

6 default:

7 case 4: System.out.println("iv"); break;

8 }

4. Converting to and from a switch statement, 4 Convert the following if-else statement to an

equivalent switch statement:

1 if (a == 0)

2 {

3 System.out.println("A");

4 }

5 else if (a == 1)

6 {

7 System.out.println("B");

8 }

9 else

10 {

11 System.out.println("C");

12 }

260 10 The Switch Statements

5. Converting to and from a switch statement, 5 Convert the following if-else statement to an

equivalent switch statement:

1 if (a == 0)

2 {

3 System.out.println("F");

4 }

5 else if (a == 1)

6 {

7 System.out.println("T");

8 }

6. Converting to and from a switch statement, 6 Convert the following switch statement to an

equivalent if-else statement, where a is an int data:

1 switch (a)

2 {

3 case 0: System.out.println("X"); break;

4 case 1: System.out.println("Y"); break;

5 case 3: System.out.println("W");

6 case 2: System.out.println("Z"); break;

7 default: System.out.println("?");

8 }

Programming Projects

7. Processing a sequence of 2d movements Write a program named Movements2D that

receives a sequence of characters composed solely of ’U’, ’D’, ’L’, and ’R’ from the user,

and processes it as a sequence of moves in the two-dimensional grid, where the initial position

is (0, 0). The letters ’U’, ’D’, ’L’, and ’R’ correspond to increases the y-coordinate by 1,

decreases the y-coordinate by 1, increases the x-coordinate by 1, and decreases the x-coordinate

by 1. Use a switch statement to process an individual letter. Use a for-loop to go through the input,

and for each move made, print the new location. For instance, if the input sequence is "ULDDRU",

the output of the program must be:

1 (0,1)
2 (-1,1)
3 (-1,0)
4 (-1,-1)
5 (0,-1)
6 (0,0)

The characters other than ’U’, ’D’, ’L’, and ’R’ will be treated as “not moving”.

8. Processing a sequence of 3d movements Write a program named Movements3D that

receives a sequence of characters composed solely of ’F’, ’B’, ’U’, ’D’, ’L’, and ’R’ from

the user, and processes it as a sequence of moves in the three-dimensional grid, where the initial

position is (0, 0, 0). The letters ’F’, ’B’, ’U’, ’D’, ’L’, and ’R’ increases the x-coordinate

by 1, decreases the x-coordinate by 1, increases the z-coordinate by 1, decreases the z-coordinate

by 1, increases the y-coordinate by 1, and decreases the y-coordinate by 1. Use a switch-statement

to process an individual letter. Use a for-loop to go through the input, and for each move made,

print the new location. For example, if the input sequence is "UFLDDRUB", the output of the

program must be:

Exercises 261

1 (0,0,1)
2 (1,0,1)
3 (1,-1,1)
4 (1,-1,0)
5 (1,-1,-1)
6 (1,0,-1)
7 (1,0,0)
8 (0,0,0)

The characters other than the six letters will be treated as “not moving”.

9. Rotating vowels Write a program named RotateVowels that receives a String data from

the user, and replaces each letter in the input corresponding to a vowel to another vowel. The

replacing rule is as follows: ’a’ become ’e’, ’e’ become ’i’, ’i’ become ’o’, ’o’
become ’u’, ’u’ become ’a’, ’A’ become ’E’, ’E’ become ’I’, ’I’ become ’O’, ’O’
become ’U’, ’U’ become ’A’, and any other character stays the same. For example, the method

returns "Luaos" when given "Louis" as input, and returns "Iest" when given "East" as

input. Write the code so that the method builds its output using a StringBuilder object.

The program reads the examines the input character by character, and then appends the character

after conversion to the StringBuilder object. Use a switch statement in determining which

character must be appended.

10. Treasure hunting in 2D Write a program named TreasureHunting2D that plays the game

of finding a treasure hidden at a location on the 2D grid, where the coordinates are integers

between 1 and 10, where the player can make at most ten guesses and the program provides up to

two pieces of advice depending on the players’s guesses.

• The first piece of advice is based upon the Manhattan distance between the true location and

the guess, where the distance value is the sum of the absolute difference in the x-coordinates

and the absolute difference in the y-coordinates.

(a) If the distance is 0, the program announces:

"You have found the treasure!".

(b) If the distance is between 1 and 3, the program announces:

"The treasure is very close.".

(c) If the distance is between 4 and 6, the program announces:

"The treasure is somewhat close.".

(d) If the distance is greater than 6, the program announces:

"The treasure is not close.".

• The second piece of advice is given in the second round and onwards, and appears only

when the guess is still incorrect. The advice informs if the present guess is closer than the

previous guess with the statement, "You are closer.", "You are farther.", or

"The same distance.".

Make sure that after the user has correctly found the location, the execution of the loop-body will

skip even if there are more rounds remaining.

11While-Loops and Do-While Loops

11.1 Using While-Loops

11.1.1 The Syntax of While-Loops

The while-loop is a loop that only requires a continuation condition. The structure of a while-loop is

simple:

1 while (CONDITION)

2 {

3 STATEMENTS;

4 }

The meaning of this while-loop is “as long as CONDITION has the value of true, execute

STATEMENTS”. The diagram in Fig. 11.1 shows how a while-loop works. The for-loop and while-

loop can simulate each other. First,

1 while (CONDITION)

2 {

3 STATEMENTS;

4 }

is equivalent to the for-loop without initialization and update, as shown next:

1 for (; CONDITION;)

2 {

3 STATEMENTS;

4 }

Second,

1 for (INITIALIZATION ; CONDITION; UPDATE)

2 {

3 STATEMENTS;

4 }

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_11

263© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_11

264 11 While-Loops and Do-While Loops

Fig. 11.1 A diagram that
represents the while-loop

STATEMENTS

CONDITION

true

END-OF-LOOP

false

is equivalent to:

1 INITALIZATION;

2 while (CONDITION)

3 {

4 STATEMENTS;

5 UPDATE;

6 }

We saw earlier that executing next on a Scanner object after obtaining its last token results

in a run-time error of NoSuchElementException. In our example (List 3.1), we attempted to

obtain five tokens from a String data with only four tokens, thereby intentionally produced the

run-time error. It is possible to prevent an attempt to read beyond the last token by using the method

hasNext() mentioned in Chap. 3. This method returns a boolean that represents whether or not

at least one token is remaining.

The next program demonstrates the use of hasNext for reading all the tokens from an input

String with an indefinite number of tokens. The method hasNext appears in the continuation

condition (Line 7):

1 import java.util.Scanner;

2 public class BeyondLimitNew

3 {

4 public static void main(String [] args)

5 {

6 Scanner tokens = new Scanner("My age is 20");

7 while (tokens.hasNext ())

8 {

9 String aToken = tokens.next();

10 System.out.println(aToken);

11 }

12 }

13 }

Listing 11.1 A program that reads all tokens from a String using a Scanner object

Here is an interactive version of the program, where the tokens are obtained from a String that

the user enters:

The formal study of programming languages categorizes loops into two types, definite loops and

indefinite loops, depending on whether the number of repetition is determined at the start of the loop

or it is dynamically determined during the execution of the loop. The former type includes the for-loop

and the latter includes the while-loop. Although for-loops and while-loops are interchangeable, there

are situations where the use of one type appears more appropriate than the user of the other type.

11.1 Using While-Loops 265

1 import java.util.Scanner;

2 public class TokenReadingWithInput

3 {

4 public static void main(String [] args)

5 {

6 String aToken , tokens;

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter a String: ");

9 tokens = keyboard.nextLine ();

10 while (keyboard.hasNext ())

11 {

12 aToken = keyboard.next();

13 System.out.println(aToken);

14 }

15 }

16 }

Listing 11.2 A program that reads all tokens from a String obtained from the user

11.1.2 Summing Input Numbers Until the Total Reaches a Goal

Our next example is a program that receives a series of integers from the user, and presents its running

total after receiving each number. The program keeps receiving numbers from the user until the total

reaches a preset goal. The program uses three int variables (input, total, and goal) to record

the input from the user, the total of the input values, and the goal. The program initializes total with

the value of 0 and uses the value of 1000 for goal. The process of receiving one integer and then

adding its value to value can be code as follows:

1 input = keyboard.nextInt();
2 total += input;

The program repeats this until the value of total exceeds goal. Using a while-loop, the repetition

can be coded as follows:

1 while (total <= goal)

2 {

3 input = keyboard.nextInt ();

4 total += input;

5 }

Following is a source code of the program. The program uses a Scanner object keyboard
instantiated with System.in (Line 6). The declarations of the int variables and their initializations

appear in Line 7. In the while-loop, the program prints a prompt (Line 10), receives an input (Line

11), updates the total (Line 12), and reports the present values of input and total (Line 13) using

printf. After exiting the loop, the program announces that the goal has been reached (Line 15).

Here is one execution example:

1 Enter input: 34
2 Input=34, Total=34
3 Enter input: 543
4 Input=543, Total=577
5 Enter input: 987
6 Input=987, Total=1564
7 The total has exceeded 1000.

266 11 While-Loops and Do-While Loops

1 import java.util .*;

2 public class UpToLimit

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int input , total = 0, goal = 1000;

8 while (total <= goal)

9 {

10 System.out.print("Enter input: ");

11 input = keyboard.nextInt ();

12 total += input;

13 System.out.printf("Input =%d, Total =%d%n", input , total);

14 }

15 System.out.printf("The total has exceeded %d.%n", goal);

16 }

17 }

Listing 11.3 A program that receives input numbers until the total exceeds a preset bound

The loop can be quickly finished by entering a large number:

1 Enter input: 355555
2 Input=355555, Total=355555
3 The total has exceeded 1000.

If the numbers entered, the loop lingers for a long time:

1 Enter input: 1
2 Input=1, Total=1
3 Enter input: 2
4 Input=2, Total=3
5 Enter input: 4
6 Input=4, Total=7
7 Enter input: 8
8 Input=8, Total=15
9 Enter input: 16

10 Input=16, Total=31
11 Enter input: 32
12 Input=32, Total=63
13 Enter input: 64
14 Input=64, Total=127
15 Enter input: 128
16 Input=128, Total=255
17 Enter input: 256
18 Input=256, Total=511
19 Enter input: 512
20 Input=512, Total=1023
21 The total has exceeded 1000.

11.1.3 Integer Overflow

The next example is a program that receives a positive initial value from the user, and then keeps

updating the value with the multiplication by 2. The program uses an int variable named number
to store the input number as well as the value after each update. Since the number of bits allocated

11.1 Using While-Loops 267

for int is finite, the repeated doubling will eventually produce a value greater than the largest value

an int can represent. We call such a phenomenon an overflow. If doubling is the cause of overflow,

the value of the int variable immediately after the overflow is negative. Therefore, the program

uses the continuation condition while (number >= 0) in the while-loop (Line 10). Lines

6–8 are responsible for receiving the initial value from the user. To ensure that the initial value is

strictly positive, the program substitutes a nonpositive input with 1. This conditional substitution

is accomplished using the assignment number = Math.max(1, number) (Line 9). In the

loop-body, the program reports the value of number (Line 12). An overflow will occur at Line

13, after reporting the value of number prior to doubling. Therefore, to report the negative value

generated, the program has another statement to report the value of number (Line 15).

1 import java.util .*;

2 public class IntegerOverflow

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter number number: ");

8 int number = keyboard.nextInt ();

9 number = Math.max(1, number);

10 while (number > 0)

11 {

12 System.out.println("The number is " + number);

13 number *= 2;

14 }

15 System.out.println("The number is " + number);

16 }

17 }

Listing 11.4 A program that demonstrates an overflow with multiplication by 2

Here is one execution of the code:

1 Enter number: 35
2 The number is 35
3 The number is 70
4 The number is 140
5 The number is 280
6 The number is 560
7 The number is 1120
8 The number is 2240
9 The number is 4480

10 The number is 8960
11 The number is 17920
12 The number is 35840
13 The number is 71680
14 The number is 143360
15 The number is 286720
16 The number is 573440
17 The number is 1146880
18 The number is 2293760
19 The number is 4587520
20 The number is 9175040
21 The number is 18350080
22 The number is 36700160

268 11 While-Loops and Do-While Loops

23 The number is 73400320
24 The number is 146800640
25 The number is 293601280
26 The number is 587202560
27 The number is 1174405120
28 The number is -1946157056

The last value -1946157056 is the result of multiplying 1174405120 by 2.

11.1.4 Vending Machines

Here is another example of the while-loop. In this example, we imitate the process of depositing coins

into a vending machine for a purchase. Acceptable coins are the nickel (5 cents), the dime (10 cents),

and the quarter (25 cents). While an actual vending machine takes one coin in one deposit, the program

here takes multiple coins of the same kind in one deposit.

To receive multiple coins of a kind in one deposit, we design the program so that it asks the user to

enter which coin she is depositing and how many. To specify the coin the user enters a String value.

Depending on whether the String starts with ’N’, ’D’, or ’Q’, the coin specification becomes

the nickel, the dime, or the quarter. After receiving this input, the program sets the value of an int
variable named inc to 5, 10, or 25, on the nickel, dime, and quarter. If the input is not one of the

three, the program sets the amount of inc to 0. After this, if the value of inc is not 0, the program

asks the user to enter how many coins of that kind she wants to deposit. The program increases the

deposit by the product of this quantity and inc. The program repeats this two-step depositing process

until the total deposit becomes greater than or equal to a target amount, target. target is an int
constant with the value of 175 (that is, a dollar and 75 cents).

The program uses a while-loop to build the deposit:

while (total < target)

To determine the value of inc, the program uses a switch statement:

1 switch (token.charAt(0))

2 {

3 case ’N’: inc = 5; break;

4 case ’D’: inc = 10; break;

5 case ’Q’: inc = 25; break;

6 default: inc = 0;

7 }

Here, token is the input that the user enters when given a prompt for the coin type, and so

token.charAt(0) is the very first character of the input. The switch statement examines this

character and takes an appropriate action. The user may enter more characters after the first one, but

those extraneous characters are ignored. After exiting the loop, the program reports the total deposit

(Line 28) and announces that the user can make a purchase (Line 29).

Here is an execution example of the program:

11.1 Using While-Loops 269

1 import java.util .*;

2 public class VendingDeposit

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int total = 0, inc , count , target = 175;

8 String token;

9 while (total < target)

10 {

11 System.out.printf("Deposit is %d cents%n", total);

12 System.out.println("What coin do you deposit? ");

13 System.out.print("N for Nickel , D for Dime , Q for Quarter: ");

14 token = keyboard.next();

15 switch (token.charAt(0))

16 {

17 case ’N’: inc = 5; break;

18 case ’D’: inc = 10; break;

19 case ’Q’: inc = 25; break;

20 default: inc = 0;

21 }

22 if (inc > 0) {

23 System.out.print("How many? ");

24 count = keyboard.nextInt ();

25 total += inc * count;

26 }

27 }

28 System.out.printf("Deposit is %d cents%n", total);

29 System.out.println("Now you can make a selection.");

30 }

31 }

Listing 11.5 A program that mimics the process of depositing coins in a vending machine

1 Deposit is 0 cents

2 What coin do you deposit?

3 N for Nickel , D for Dime , Q for Quarter: N

4 How many? 5

5 Deposit is 25 cents

6 What coin do you deposit?

7 N for Nickel , D for Dime , Q for Quarter: D

8 How many? 3

9 Deposit is 55 cents

10 What coin do you deposit?

11 N for Nickel , D for Dime , Q for Quarter: N

12 How many? 2

13 Deposit is 65 cents

14 What coin do you deposit?

15 N for Nickel , D for Dime , Q for Quarter: Q

16 How many? 2

17 Deposit is 115 cents

18 What coin do you deposit?

19 N for Nickel , D for Dime , Q for Quarter: D

20 How many? 3

21 Deposit is 145 cents

22 What coin do you deposit?

23 N for Nickel , D for Dime , Q for Quarter: N

24 How many? 2

25 Deposit is 155 cents

26 What coin do you deposit?

27 N for Nickel , D for Dime , Q for Quarter: Q

28 How many? 2

29 Deposit is 205 cents

30 Now you can make a selection.

270 11 While-Loops and Do-While Loops

It is possible to determine the value of inc using a switch-statement with no break appearing in

it, as follows:

1 inc = 0;

2 switch (token.charAt(0)

3 {

4 case ’Q’: inc += 15;

5 case ’D’: inc += 5;

6 case ’N’: inc += 5;

7 }

The amount 15 for ’Q’ is the difference between a quarter and a dime, and the amount 5 for ’D’
is the difference between a dime and a nickel.

11.1.5 The Collatz Conjecture

Our next example is the program for testing the Collatz Conjecture, also known as the 3x + 1

Problem, due to Lothar Collatz.1 The conjecture states that every positive integer can be transformed

to 1 by successively applying the following transformation:

(*) if the number is an even number, divide it by 2; otherwise, multiply it by 3 and then add 1 to it.

For example, 7 turns into 1 by following the procedure as follows:

7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 →

20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

Portuguese scholar Tomás Oliveira e Silva has been conducting extensive research on this conjecture.2

Through computer simulation, he has found that the conjecture is valid up to 5 × 260.

Consider receiving an input from the user and checking whether or not the conjecture holds for the

input by repeatedly applying the transformation rule until the number becomes 1. We design the code

using three methods, update, method, and main, as follows:

• The method update receives an integer as a formal parameter, applies the transformation rules

just once to the number, and returns the number generated.

• The method test receives a positive integer as a formal parameter, and performs the test on the

number. After each application of the rule, the method prints the number generated.

• The method main interacts with the user to receive input numbers, and then performs the test on

them. The user can test the conjecture on an indefinite number of inputs. The program terminates

when the user enters a non-positive number.

The source code of the program is shown next. After the program header, the method update
appears. The formal parameter of the method is an int named number. The method returns an

int value (Line 7). The actions to be performed by the method are as follows:

1Lothar Collatz (July 6, 1910 to September 26, 1990) was a German mathematician.
2The page of his work on this topic is: http://sweet.ua.pt/tos/3x_plus_1.html.

http://sweet.ua.pt/tos/3x_plus_1.html

11.1 Using While-Loops 271

• The method checks whether or not the input number is a multiple of 2 with number % 2 == 0
(Line 9).

• If the input number is a multiple of 2, then the method returns number / 2 (Line 11).

• Otherwise, the method returns number * 3 + 1 (Line 13).

Note that a return statement immediately terminates the execution of a method, so we do not need

else in Line 13.

1 // experimenting with Collatz Conjecture

2 import java.util .*;

3

4 public class Collatz

5 {

6 // execute update and return the value

7 public static int update(int number)

8 {

9 if (number % 2 == 0)

10 {

11 return number / 2;

12 }

13 return number * 3 + 1;

14 }

Listing 11.6 A program that tests the Collatz Conjecture (part 1). The method update

The method test has an int data named input as its formal parameter (Line 16). The method

uses a variable named number and applies the transformation rule to the value stored in number.

The initial value of number is equal to the value of input. The method uses a variable named

round to record how many times the transformation rule has been applied to the input. The initial

value of round is 0. The declarations and initializations of the two variables appear in Line 18.

After reporting the value of input (Line 19), the method enters a while-loop with the continuation

condition number > 1 (Line 20). The loop terminates when the value of number becomes less

than or equal to 1. In the loop-body, the method applies the transformation rule using the method

update, replaces the value of number with the value returned (Line 22), adds 1 to round (Line

23), and reports the values of round and number (Line 24). To report the value of round, the

method allocates 4 character spaces.

15 // test the conjecture

16 public static void test(int input)

17 {

18 int round = 0, number = input;

19 System.out.println("input = " + input);

20 while (number > 1)

21 {

22 number = update(number);

23 round ++;

24 System.out.printf("%4d: %d%n", round , number);

25 }

26 }

27

Listing 11.7 A program that tests the Collatz Conjecture (part 2). A part that performs the test on one number

272 11 While-Loops and Do-While Loops

We can expect the following different outcomes depending on the value of input:

• if input <= 1, the loop terminates without executing;

• if input >= 2 and the conjecture holds for input, the loop eventually terminates;

• if input >= 2 and the conjecture does not hold for input, the loop never terminates.

The method main uses a variable, input, to store the input from the user. The initial value of

input is 1 (Line 33). The while loop in the method continues so long as input >= 1 (Line 34).

Therefore, the initial value of the variable makes the loop run. In the loop-body, the method obtains a

new value for input (Lines 36 and 37). If the number entered is greater than or equal to 1 (Line 38),

the method calls test (Line 40). After quitting the loop, the method prints a message (Line 43).

28 public static void main(String [] args)

29 {

30 System.out.println("Testing the Collatz Conjecture");

31 Scanner keyboard = new Scanner(System.in);

32

33 int input = 1;

34 while (input >= 1)

35 {

36 System.out.print("Enter a positive integer: ");

37 input = keyboard.nextInt ();

38 if (input >= 1)

39 {

40 test(input);

41 }

42 }

43 System.out.println("... quitting");

44 }

45 }

Listing 11.8 A program that tests the Collatz Conjecture (part 3). The method main

Here are some execution examples of the program:

1 Testing the Collatz Conjecture
2 Enter a positive integer: 15
3 input = 15
4 1: 46
5 2: 23
6 3: 70
7 4: 35
8 5: 106
9 6: 53

10 7: 160
11 8: 80
12 9: 40
13 10: 20
14 11: 10
15 12: 5
16 13: 16
17 14: 8
18 15: 4
19 16: 2
20 17: 1

11.1 Using While-Loops 273

21 Enter a positive integer: 17
22 input = 17
23 1: 52
24 2: 26
25 3: 13
26 4: 40
27 5: 20
28 6: 10
29 7: 5
30 8: 16
31 9: 8
32 10: 4
33 11: 2
34 12: 1
35 Enter a positive integer: 0
36 ...quitting

11.1.6 Covnerting Decimal Numbers to Binary Numbers

The next program obtains the binary representation of a nonnegative decimal integer named value.

The program uses the following logic:

• If value is equal to 0, then the representation is 0.

• Otherwise, initialize a String variable with an empty String, and then repeatedly divide

value by 2, and insert the remainder of the division at the start of the String variable.

The next program incorporates this idea. The method main receives the input from the user (Line 14),

stores it in an int variable named number (Line 15), and then calls the method convert (Line

16). convert is the method for executing the conversion. The method main stores the returned

value in result (Line 16), and then prints the value of result (Line 17). This series of action is

in a while-loop. The loop is repeated until the user enters a negative integer as the value to convert to

binary.

The convert method receives an int value number as its formal parameter (Line 21). The

method works as follows:

• If the value number is 0, the method returns "0" immediately (Lines 25).

• The method initializes a String variable named binary with the value of "" (Line 27).

• The method repeats the following while number > 0 (Line 28).

– The method computes number % 2 and stores it in a variable named bit (Line 30).

– The method updates binary by inserting the value of bit (Line 31).

– The method divides number by 2 (Line 32).

• After exiting the loop, the method returns binary.

The method modifies the value of the formal parameter number, but not the value of the actual

parameter. If number < 0, the method returns an empty String.

274 11 While-Loops and Do-While Loops

1 import java.util .*;

2

3 public class ConvertToBinary

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8

9 int number = 0;

10 String result;

11

12 while (number >= 0)

13 {

14 System.out.print("Enter an integer: ");

15 number = keyboard.nextInt ();

16 result = convert(number);

17 System.out.printf("%d --> %s%n", number , result);

18 }

19 }

20

21 public static String convert(int number)

22 {

23 if (number == 0)

24 {

25 return "0";

26 }

27 String binary = "";

28 while (number > 0)

29 {

30 int bit = number % 2;

31 binary = bit + binary;

32 number /= 2;

33 }

34 return binary;

35 }

36 }

Listing 11.9 A program that obtains the binary representation of a nonnegative integer

Here is an execution example of the code:

1 Enter an integer: 0
2 0 --> 0
3 Enter an integer: 17
4 17 --> 10001
5 Enter an integer: 19
6 19 --> 10011
7 Enter an integer: 21
8 21 --> 10101
9 Enter an integer: 1027

10 1027 --> 10000000011
11 Enter an integer: 987654321
12 987654321 --> 111010110111100110100010110001
13 Enter an integer: -1
14 -1 -->

We can attach, to the conversion method, a line that shows the current value of number and the

current value of binary during the course of the conversion while-loop.

11.1 Using While-Loops 275

1 import java.util .*;

2

3 public class ConvertToBinaryInAction

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8

9 long number = 0;

10 String result;

11

12 while (number >= 0)

13 {

14 System.out.print("Enter an integer: ");

15 number = keyboard.nextLong ();

16 result = convert(number);

17 System.out.printf("%d --> %s%n", number , result);

18 }

19 }

20

21 public static String convert(long number)

22 {

23 if (number == 0)

24 {

25 return "0";

26 }

27 String binary = "";

28 while (number > 0)

29 {

30 int bit = (int)(number % 2);

31 binary = bit + binary;

32 number /= 2;

33 System.out.printf("%10d, %s%n", number , binary);

34 }

35 return binary;

36 }

37 }

Listing 11.10 A program that obtains the binary representation of a nonnegative integer while showing the progress
on the calculation

Here are some execution examples with additional output:

1 Enter an integer: 9
2 Digits, Binary
3 4, 1
4 2, 01
5 1, 001
6 0, 1001
7 9 --> 1001

276 11 While-Loops and Do-While Loops

8 Enter an integer: 1027
9 Digits, Binary

10 513, 1
11 256, 11
12 128, 011
13 64, 0011
14 32, 00011
15 16, 000011
16 8, 0000011
17 4, 00000011
18 2, 000000011
19 1, 0000000011
20 0, 10000000011
21 1027 --> 10000000011
22 Enter an integer: -1
23 -1 -->

11.1.7 Infinite Loops and Their Termination

An infinite loop is a loop that is designated to run forever. An infinite loop is constructed with true as

the continuation condition. An infinite loop usually has a condition for termination inside the body. In

Sect. 7.5.2, we saw the use of break to terminate a for-loop. break can be used to terminate a while-

loop as well. Consider computing the number of times a pattern represented by a String variable

named pattern appears in an input String variable named input. We can use an infinite loop for

the task. We use a variable named pos to maintain the start position of the search in input. We also

use a variable named count to record the number of occurrences of the pattern. The initial value is

0 for both pos and count. We use input.indexOf(pattern, pos) to check whether or

not pattern appears in input at or after position pos. If the return value of indexOf is negative,

we terminate the loop; otherwise, the return value is the position at which pattern appears, so we

add one to count and update the value of pos with the returned value plus 1. The following code

captures this idea:

1 int count = 0, pos = 0;

2 while (true)

3 {

4 int res = input.indexOf(pattern , pos);

5 if (res < 0)

6 {

7 break;

8 }

9 count ++;

10 pos = res + 1;

11 }

11.2 Using Do-While Loops

11.2.1 The Syntax of Do-While Loops

The do-while loop is a variant of while-loops, where the execution of the loop-body precedes the

termination condition evaluation.

11.2 Using Do-While Loops 277

The structure of a do-while loop is:

1 do

2 {

3 STATEMENTS

4 } while (CONDITION);

The semicolon that appears is necessary.

We can rewrite a do-while loop using a while-loop. The following do-while loop

1 do

2 {

3 STATEMENTS;

4 } while (CONDITION);

is equivalent to

1 STATEMENTS;

2 while (CONDITION)

3 {

4 STATEMENTS;

5 }

Since a while-loop is an indefinite loop, we can write the program so that it will run forever using

true as the termination condition.

1 while (true)

2 {

3 STATEMENTS;

4 if (CONDITION)

5 {

6 break;

7 }

8 }

11.2.2 “Waiting for Godot”

Here is a simple program that uses a do-while loop.

Consider receiving a series of tokens from the user until the user enters “Godot”, when the

execution terminates (where, of course, the “Godot” comes from a play by Samuel Beckett3 titled

Waiting for Godot). We store the user input to a String variable named input, and build a do-

while loop using the condition !input.equals("Godot"). In other words, the program will

run until the user enters "Godot".

3Samuel Barclay Beckett (April 13, 1906 to December 22, 1989) was an Irish novelist and playwright. Waiting for

Godot is an avant-garde play that features conversations between two men waiting for Godot, who never shows up.

278 11 While-Loops and Do-While Loops

If the code uses a while-loop, we need to assign some initial value other than the "Godot".

Otherwise, the loop terminates immediately without asking the user to enter an input. If the code uses

a do-while loop, the initialization is unnecessary.

Here is the version that uses a while-loop:

1 import java.util .*;

2 public class Godot

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 String input = "";

8 while (!input.equals("Godot"))

9 {

10 System.out.println("This program is called \"Godot \".");

11 System.out.print("Enter input: ");

12 input = keyboard.nextLine ();

13 }

14 System.out.println("Terminating the program.");

15 }

16 }

Here is the version that uses a do-while loop:

1 import java.util .*;

2 public class DoWhileGodot

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 String input;

8 do

9 {

10 System.out.println("This program is called \"Godot \".");

11 System.out.print("Enter input: ");

12 input = keyboard.nextLine ();

13 } while (!input.equals("Godot"));

14 System.out.println("Terminating the program.");

15 }

16 }

11.2.3 Converting Decimal Numbers to Binary Numbers (Reprise)

Let us look back at the decimal-to-binary conversion program. In that program, a while-loop is used

to repeat the interaction with the user indefinitely, and the loop was terminated when the user entered

a negative value as an input. To prevent the loop from terminating without executing its body, the

program assigned a nonnegative initial value to the variable. As in the case of the “Godot” program,

if we use a do-while loop, such initialization is unnecessary.

11.3 CTRL-D 279

1 import java.util .*;

2

3 public class ConvertToBinaryDoWhile

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8

Listing 11.11 A program that obtains the binary representation of a nonnegative integer using a do-while loop (part 1)

9 int number;

10 String result;

11

12 do {

13 System.out.print("Enter an integer: ");

14 number = keyboard.nextInt ();

15 result = convert(number);

16 System.out.printf("%d --> %s%n", number , result);

17 } while (number >= 0);

18 }

19

20 public static String convert(int number)

21 {

22 if (number == 0)

23 {

24 return "0";

25 }

26 String binary = "";

27 do

28 {

29 int bit = number % 2;

30 binary = bit + binary;

31 number /= 2;

32 System.out.printf("%10d, %s%n", number , binary);

33 } while (number > 0);

34 return binary;

35 }

36 }

Listing 11.12 A program that obtains the binary representation of a nonnegative integer using a do-while loop (part 2)

11.3 CTRL-D

Previously, to receive an indefinite number of input data from the user, we asked the user to enter a

specific value to indicate the end of input. For example, in the decimal-to-binary conversion program,

we asked the user to enter a negative integer to stop the program. Instead of using a special value, it is

possible to use a special key to detect the end of input. The special key is called CTRL-D. The key can

be entered by simultaneously pressing the “control” key and the ‘D’ key. When the method hasNext
is called, if CTRL-D pressed before any other key, the method hasNext immediately returns true.

Otherwise, hasNext waits until the return key is pressed, and then returns false.

Suppose keyboard is a Scanner object instantiated with System.in. We can write a while-

loop of the following form:

280 11 While-Loops and Do-While Loops

1 while (keyboard.hasNext ())

2 {

3 READ_TOKEN_AND_REACT;

4 }

The next code demonstrates the use of this code. The program receives an indefinite number of

integers from the user, and computes their total. The program accepts input until the user enters CTRL-

D. The program uses three int variables, input, total, and count, for recording the input, the

total, and the number of inputs. The last two variables have the initial value of 0. The program does

not produce a prompt for individual inputs. It only announces at the beginning:

"Enter inputs. End with a CTRL-D"

The while-loop appears in Lines 9–14. At the end, the program prints the number of inputs entered

and their total.

1 import java.util .*;

2 public class HasNextNoPrompt

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int input , total = 0, count = 0;

8 System.out.println("Enter inputs. End with a CTRL -D");

9 while (keyboard.hasNext ())

10 {

11 input = keyboard.nextInt ();

12 total += input;

13 count ++;

14 }

15 System.out.printf("Count =%d, Total =%d%n", count , total);

16 }

17 }

Listing 11.13 A program for computing the total of integer input values

Here is one execution of the program. The inputs are: 10, 11, 12, 13, and 14. Each input line is

followed by the return key. After entering 14 followed by the return key, the user presses CTRL-D.

The CTRL-D does not echo.

1 Enter inputs. End with a CTRL-D
2 10
3 11
4 12
5 13
6 14
7 Count=5, Total=60

Here is another execution. The user enters the same input numbers as before, but adds CTRL-D

after some numbers. The CTRL-D entered after a number is ignored but echoes as ^D.

11.3 CTRL-D 281

1 Enter inputs. End with a CTRL-D
2 10
3 11^D
4 12 ^D
5 13 ^D
6 14
7 Count=5, Total=60

The effect of CTRL-D as the end of input is permanent, meaning that once a Scanner object

encounters CTRL-D as the result of hasNext, the result of hasNext will always be false and

an attempt to read another token will result in a run-time error, NoSuchElementException. To

resume reading from the keyboard, a new Scanner object must be instantiated with System.in.

The next program is a variant of the previous program. This time, the program produces the

prompt "Enter input: " for each input number. The program accomplishes this by executing

System.out.print("Enter input: ") at two places (Lines 8 and 14). The one before

entering the while-loop is necessary because the loop begins by waiting for an input.

1 import java.util .*;

2 public class HasNext

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int input , total = 0;

8 System.out.print("Enter input: ");

9 while (keyboard.hasNext ())

10 {

11 input = keyboard.nextInt ();

12 total += input;

13 System.out.printf("Input =%d, Total =%d%n", input , total);

14 System.out.print("Enter input: ");

15 }

16 System.out.println("\nEnd of the program.");

17 }

18 }

Here is an execution example of the code:

1 Enter input: 340
2 Input=340, Total=340
3 Enter input: 35
4 Input=35, Total=375
5 Enter input: 98
6 Input=98, Total=473
7 Enter input: -180
8 Input=-180, Total=293
9 Enter input: ^D

10 End of the program.

In Line 9, the user enters CTRL-D, and the CTRL-D echoes as ^D. Whenever CTRL-D is followed by

the return key, it appear as ^D. In the program, the ensuing return key appears in the String literal

in Line 16.

282 11 While-Loops and Do-While Loops

To see the difference between having and not having the return key immediately after CTRL-

D, let us compare the following two new programs. The two programs are variants of the previous

program with slightly different Line 16: HasNext01 prints "...End of the program" and

HasNext02 prints "\n...End of the program".

1 import java.util .*;

2 public class HasNext01

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int input , total = 0;

8 System.out.print("Enter input: ");

9 while (keyboard.hasNext ())

10 {

11 input = keyboard.nextInt ();

12 total += input;

13 System.out.printf("Input =%d, Total =%d%n", input , total);

14 System.out.print("Enter input: ");

15 }

16 System.out.println("... End of the program.");

17 }

18 }

1 import java.util .*;

2 public class HasNext02

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int input , total = 0;

8 System.out.print("Enter input: ");

9 while (keyboard.hasNext ())

10 {

11 input = keyboard.nextInt ();

12 total += input;

13 System.out.printf("Input =%d, Total =%d%n", input , total);

14 System.out.print("Enter input: ");

15 }

16 System.out.println("\n... End of the program.");

17 }

18 }

Here are execution examples of the two programs. In both executions, the user enters: 10, 20, and

CTRL-D.

1 Enter input: 10
2 Input=10, Total=10
3 Enter input: 20
4 Input=20, Total=30
5 Enter input: ...End of the program.

11.4 Approximating the Square Root of a Real Number 283

1 Enter input: 10
2 Input=10, Total=10
3 Enter input: 20
4 Input=20, Total=30
5 Enter input: ^D
6 ...End of the program.

11.4 Approximating the Square Root of a Real Number

Let’s learn how to use a while-loop to approximate the square root of a number. Our goal is to write

an application that receives a positive floating point number from the user, and then calculates an

approximation of its square root. We will store the input in a variable named original and the

approximated square root in a variable named root. To accomplish the goal, we use a simple strategy

called binary search, that involves an indefinite loop. Later, we will see binary search in Sect. 13.5.2.

During the course of calculation, we manipulate two double variables, high and low. We ensure

that the two variables have the following properties:

• The value of high is greater than or equal to the actual value of the square root.

• The value of low is smaller than or equal to the actual value of the square root.

In other words, the two properties are:

high * high >= original and low * low <= original.

We call a condition that is sustained throughout the execution of an indefinite loop a loop invariant.

The conjunction of the above two properties is the loop invariant of the algorithm.

We initialize high with the value of original + 0.5 and low with the value of 0. Since the

square of (original + 0.5) is equal to original * original + original + 0.25
and original is positive, the first condition is met. Furthermore, since original is positive, the

second condition is met.

In the do-while loop, we execute the following:

Step 1 We obtain a candidate for the square root. This is the half-way point between high and

low, i.e., (high + low) / 2. We store the candidate in root.

Step 2 We store the square of root in a variable named square.

Step 3 We store the value of original - square in another variable, diff.

Step 4 If diff is equal to 0, the value of root is the square root we are looking for, so we

terminate the loop.

Step 5 If diff is positive, we update low with the value of root.

Step 6 If diff is negative, we update high with the value of root.

Step 7 We terminate the loop if diff becomes smaller than the value of a predetermined positive

constant, SMALL.

The loop invariant is sustained when the value of low or high is updated. Furthermore, if the value

of low or high is updated, then the value of high–low decreases to its half. We thus can anticipate

that the value of root gets close to the actual value of the square root very quickly.

284 11 While-Loops and Do-While Loops

Based upon these observations, we hope that the loop will terminate eventually by either finding the

actual value of the square root or finding that the value of diff has become smaller than the value of

SMALL. However, this is not always the case. This is because the floating point number representation

has a finite number of bits. To prevent such a situation from happening, we store the value of 10−12 in

SMALL.

Next is the code of SquareRoot that implements the above idea. The declaration of the constant

SMALL appears in Line 4. The input from the user is received in Line 9. The variables high and

low are declared and initialized as planned in Line 10. We use an int variable round to record the

number of rounds that have been executed (Line 12). The initial value of round is 0.

1 import java.util .*;

2 public class SquareRoot

3 {

4 public static double SMALL = 0.0000000000001;

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("> ");

9 double original = keyboard.nextDouble ();

10 double high = original + 0.5, low = 0;

11 double root , square , diff;

12 int round = 0;

Listing 11.14 A program for approximating the square root (part 1). The initialization of the variables

The continuation condition of the do-while loop is “the absolute value of diff is greater than or

equal to SMALL”. This is expressed as diff >= SMALL || diff <= -SMALL (Line 28). In the

loop-body, the program adds 1 to the count (Line 15), stores the value of (high + low) / 2
in root (Line 16), and prints the values of root and count. The program then stores the square of

root in square (Line 17) and stores the difference of the original from the square in diff (Line

18). Next, the program updates the values of high and low as follows: (Lines 20–27):

• If diff > 0, the program updates low with the value of root.

• If diff < 0, the program updates high with the value of root.

Finally, after exiting the loop, the program reports the values of the root and square (Line 29).

Here are execution examples of the program. First, we approximate the square root of 2.

1 > 2
2 Round=001,Value=1.250000000000000
3 Round=002,Value=1.875000000000000
4 Round=003,Value=1.562500000000000
5 Round=004,Value=1.406250000000000
6 Round=005,Value=1.484375000000000
7 Round=006,Value=1.445312500000000
8 Round=007,Value=1.425781250000000
9 Round=008,Value=1.416015625000000

10 Round=009,Value=1.411132812500000
11 Round=010,Value=1.413574218750000
12 Round=011,Value=1.414794921875000
13 Round=012,Value=1.414184570312500
14 Round=013,Value=1.414489746093750
15 Round=014,Value=1.414337158203125

11.4 Approximating the Square Root of a Real Number 285

13 do

14 {

15 round ++;

16 root = (high + low) / 2;

17 System.out.printf("Round =%03d,Value =%.15f%n", round , root);

18 square = root * root;

19 diff = original - square;

20 if (diff > 0)

21 {

22 low = root;

23 }

24 else if (diff < 0)

25 {

26 high = root;

27 }

28 } while (diff >= SMALL || diff <= -SMALL);

29 System.out.printf("Root =%.15f, Square =%.15f%n", root , square);

30 }

31 }

Listing 11.15 A program for approximating the square root (part 2). The loop for approximation

16 Round=015,Value=1.414260864257813
17 Round=016,Value=1.414222717285156
18 Round=017,Value=1.414203643798828
19 Round=018,Value=1.414213180541992
20 Round=019,Value=1.414217948913574
21 Round=020,Value=1.414215564727783
22 Round=021,Value=1.414214372634888
23 Round=022,Value=1.414213776588440
24 Round=023,Value=1.414213478565216
25 Round=024,Value=1.414213627576828
26 Round=025,Value=1.414213553071022
27 Round=026,Value=1.414213590323925
28 Round=027,Value=1.414213571697474
29 Round=028,Value=1.414213562384248
30 Round=029,Value=1.414213557727635
31 Round=030,Value=1.414213560055941
32 Round=031,Value=1.414213561220095
33 Round=032,Value=1.414213561802171
34 Round=033,Value=1.414213562093210
35 Round=034,Value=1.414213562238729
36 Round=035,Value=1.414213562311488
37 Round=036,Value=1.414213562347868
38 Round=037,Value=1.414213562366058
39 Round=038,Value=1.414213562375153
40 Round=039,Value=1.414213562370605
41 Round=040,Value=1.414213562372879
42 Round=041,Value=1.414213562374016
43 Round=042,Value=1.414213562373448
44 Round=043,Value=1.414213562373163
45 Round=044,Value=1.414213562373021
46 Round=045,Value=1.414213562373092
47 Root=1.414213562373092, Square=1.999999999999992

Next, we approximate the square root of 3.

286 11 While-Loops and Do-While Loops

1 > 3
2 Round=001,Value=1.750000000000000
3 Round=002,Value=0.875000000000000
4 Round=003,Value=1.312500000000000
5 Round=004,Value=1.531250000000000
6 Round=005,Value=1.640625000000000
7 Round=006,Value=1.695312500000000
8 Round=007,Value=1.722656250000000
9 Round=008,Value=1.736328125000000

10 Round=009,Value=1.729492187500000
11 Round=010,Value=1.732910156250000
12 Round=011,Value=1.731201171875000
13 Round=012,Value=1.732055664062500
14 Round=013,Value=1.731628417968750
15 Round=014,Value=1.731842041015625
16 Round=015,Value=1.731948852539063
17 Round=016,Value=1.732002258300781
18 Round=017,Value=1.732028961181641
19 Round=018,Value=1.732042312622070
20 Round=019,Value=1.732048988342285
21 Round=020,Value=1.732052326202393
22 Round=021,Value=1.732050657272339
23 Round=022,Value=1.732051491737366
24 Round=023,Value=1.732051074504852
25 Round=024,Value=1.732050865888596
26 Round=025,Value=1.732050761580467
27 Round=026,Value=1.732050813734531
28 Round=027,Value=1.732050787657499
29 Round=028,Value=1.732050800696015
30 Round=029,Value=1.732050807215273
31 Round=030,Value=1.732050810474902
32 Round=031,Value=1.732050808845088
33 Round=032,Value=1.732050808030181
34 Round=033,Value=1.732050807622727
35 Round=034,Value=1.732050807419000
36 Round=035,Value=1.732050807520864
37 Round=036,Value=1.732050807571795
38 Round=037,Value=1.732050807546330
39 Round=038,Value=1.732050807559062
40 Round=039,Value=1.732050807565429
41 Round=040,Value=1.732050807568612
42 Round=041,Value=1.732050807570204
43 Round=042,Value=1.732050807569408
44 Round=043,Value=1.732050807569010
45 Round=044,Value=1.732050807568811
46 Round=045,Value=1.732050807568911
47 Round=046,Value=1.732050807568861
48 Root=1.732050807568861, Square=2.999999999999943

Exercises 287

Summary

A while-loop is a loop whose control requires the continuation condition only.

A do-while loop is a variant of the while-loop, where the evaluation of the continuation condition

occurs at the end of loop-body.

An infinite loop takes the form of while (true) { ... }.

It is possible to use an infinite loop with a mechanism for terminating the loop.

CTRL-D is a key combination that indicates the end of input.

The method hasNext of Scanner shows whether or not the CTRL-D is at the start of the input

sequence.

Exercises

1. A while-loop for printing numbers with leading 0s Write a while-loop that produces the

following output:

1 002:
2 004:
3 006:
4 008:
5 010:

2. A do-while loop for printing two numbers per line Write a do-while loop that produces the

following output:

1 001.0,002.0
2 003.0,004.0
3 005.0,006.0
4 007.0,008.0
5 009.0,010.0

3. A while-loop that produces a bit complex number output Write a while-loop with a single

printf statement inside the loop-body, and produces the following output:

1 +1024?
2 +0512?
3 +0256?
4 +0128?
5 +0064?
6 +0032?
7 +0016?
8 +0008?
9 +0004?

10 +0002?
11 +0001?

4. Converting a for-loop to a do-while loop Convert the following for-loop to an equivalent do-

while loop:

1 for (int index = 1; index <= 15; index = index + 3)

2 {

3 System.out.println(index);

4 }

288 11 While-Loops and Do-While Loops

5. Converting a for-loop to a while-loop Convert the following for-loop to an equivalent while-

loop:

1 for (int index = 10; index >= 0; index = index - 2)

2 {

3 System.out.println(index);

4 }

6. Converting a while-loop to a do-while loop Suppose that the following while-loop is part of

a method that returns an int. Convert this loop to an equivalent do-while loop such that the

return statement appears only after the do-while loop.

1 Scanner keyboard = new Scanner(System.in);

2 int a, count = 0;

3 while (true)

4 {

5 count ++;

6 System.out.print("Enter an int: ");

7 a = keyboard.nextInt ();

8 if (a == 0)

9 {

10 return count;

11 }

12 }

7. Substrings with while-loop Suppose word is a String variable that is not null. Write

a while-loop that produces all the nonempty suffixes of word, starting with the shortest one

and ending with the longest one. Use an index variable that specifies the position where the

suffix begins. For example, if word has the value "sebastian-ibis", then the program

must produce the following output:

1 s
2 is
3 bis
4 ibis
5 -ibis
6 n-ibis
7 an-ibis
8 ian-ibis
9 tian-ibis

10 stian-ibis
11 astian-ibis
12 bastian-ibis
13 ebastian-ibis
14 sebastian-ibis

8. Random walk on a torus A torus is a three-dimensional structure resembling a doughnut. A

torus has a two-dimensional geometry. The points on the torus can be referred to using x- and

y-coordinates. We consider here the case where both coordinates are integers between 0 and

boundary - 1 for some integer boundary greater than or equal to 2. For both dimensions,

each coordinate value v has two neighbors. If v is between 1 and boundary - 2, the two

neighbors are v - 1 and v + 1. If v is equal to 0, the two neighbors are boundary - 1 and

1. If v is equal to boundary - 1, the two neighbors are v - 1 and 0. In this manner, each

point on the grid has exactly four direct neighbors.

Exercises 289

Consider the step-wise process where a point p that is located on such a grid randomly changes

its location by moving to one of the four direct neighbors at each step. For each neighbor, the

probability of moving to the neighbor is 25%. The initial location of p is the origin (0,0). Write a

program, RandomWalkTorus, that simulates this process. The program must receive the value

for boundary from the user and repeat the process until the point returns to the origin. After

each step, the program must report the location of the point along with the number of steps it has

executed.

The program may work as follows:

1 Enter the value for the boundary: 4
2 Round=1, Position=(3,1)
3 Round=2, Position=(2,2)
4 Round=3, Position=(3,1)
5 Round=4, Position=(0,0)

9. A simple number generation Using a do-while loop, write a program, WaitForZero, that

repeats the following: randomly generate an integer between 0 and 9 and print the number

generated, one per line. Use a do-while loop. Terminate the program when a 0 has been generated.

10. A simple number generation plus Using a while-loop, write a program, WaitForThree
Zeros, that repeats the following: randomly generate an integer between 0 and 9 and print

the number generated. The loop must be terminated when three 0’s have been generated

consecutively.

11. Waiting for a pattern, no.1 Using a while-loop, write a program, WaitForZeroOne, that

generates a random sequence of numbers between 0 and 9, and stops when a 1 is generated

after a 0. The program must report each number generated in one character space. The numbers

are printed in a single line, but after printing 60 characters, the program goes to the next line.

Furthermore, after printing the required number of random digits, if the last line has few than 60

characters, the program goes to the next line before ending the program.

The output of the program may look like this one:

1 % WaitForZeroOne
2 777330648687962933771263131311271180733257870261915397904279
3 313954419098344974921682097061190863460556325728765420418607
4 475305949271044338127842098973290463257596466804635930484292
5 1715082201
6 %

12. Waiting for a pattern, no.2 Using a do-while loop, write a program WaitForZeroOneTwo
that generates a random integer sequence of numbers between 0 and 9 and stops when the last

three numbers generated become 0, 1, and 2 in this order. The program must report each number

generated in one character space. The numbers are printed in a single line, but after printing 60

characters, the program goes to the next line. Furthermore, after printing the required number of

random digits, if the last line has few than 60 characters, the program goes to the next line before

ending the program.

13. Guessing game Write a program named Guess that plays a guessing game with

the user. The program randomly selects an integer from {1, . . . , 9} using the code

(int)(Math.floor(1 + Math.random() * 9)). The program then prompts

the player to keep entering guesses. Each time the player enters a guess, the program must report

the guess is correct or not. When the correct guess has been made, the program must terminate.

Before terminating, the program must report how many guesses the player has made to arrive at

the correct guess.

290 11 While-Loops and Do-While Loops

1 Enter your guess: 5
2 Your guess is not correct.
3 Enter your guess: 4
4 Your guess is not correct.
5 Enter your guess: 3
6 Your guess is not correct.
7 Enter your guess: 4
8 Your guess is not correct.
9 Enter your guess: 6

10 Your guess is correct.
11
12 You have found the answer with 5 guesses.

14. Max and min simultaneously Write a program named MaxAndMin.java that receives an

indefinite number of real numbers from the user (as double values) and computes the maximum

and the minimum of those that have been received. The program must terminate when the user

enters 0, ignoring the 0 in the calculation of max and min. The program must use a boolean
variable that is initialized with the value of false. Each time a number is received, the program

must store true to this variable. During the execution of the loop, if the value of this variable is

false, the program records the number that the user has entered as the maximum and minimum;

if the value of this variable is true and the number the user has entered is not 0, the program

compares the number with the maximum and the minimum to perform updates. After the loop, if

the value of the boolean variable is true, the program reports the maximum and the minimum.

15. Decimal to binary conversion Write a program named DecimalToBinaryWithBuilder
that receives a nonnegative long value from the user and produces its binary representation.

Use a StringBuilder object in constructing the representation. The bit insertion must use

the method insert of StringBuilder, and the return value must be the String that the

builder represents. The program also must check whether the input from the user is nonnegative.

If it is negative, the program must warn the user and halt immediately.

Here is one execution example.

1 Enter a nonnegative integer: 3445844276438276431
2 The binary representation of 3445844276438276431 is
3 10111111010010000110010001110011010000011010101001100101001111

Programming Projects

16. BMI with a while-loop Write a program named BMIWhile that repeats the following: receive

the weight and the height from the user, compute the BMI value determined by the two input

values, and print the result on the screen (weight, height, and the BMI) with exactly two digits

after the decimal point for each quantity. Use a while-loop in the code. Terminate the program

when the user enters a nonpositive value for either weight or height.

17. The area of triangle with a while-loop Write a program named TriangularAreaWhile
that repeats the following: receive three sides of a triangle, compute the area of the triangle

specified by the sides, and print the result on the screen (the lengths, and the area). The program

must use an infinite while-loop while (true) and exit the loop if either one of the values

entered is nonpositive or if one of the values entered is strictly greater than the sum of the other

two (since such a triangle is impossible). The condition for exiting the loop must be the disjunction

of six comparisons. To compute the area, use Heron’s formula:

√

s(s − a)(s − b)(s − c)

where s = (a + b + c)/2.

Exercises 291

18. The area of triangle with a while-loop, alternative In the previous problem, we used the

disjunction of six conditions as the condition for breaking the loop. Rewrite the program by

replacing this condition with the disjunction of just two conditions with some pre-computation.

Let min and max be the minimum and the maximum of the three sides. Then we have the

following properties:

• One of the sides is nonpositive if and only if min is nonpositive.

• One side is longer than the sum of the other two if and only if two times max is greater than

the sum of the three.

19. Three-digit Mastermind Mastermind is a game of two players. Mastermind is played as

follows: Each player initially selects a four-digit number consisting of numerals 1 through 9 in

which no digits appearing more than once. The players keep these numbers to themselves. After

the initialization, the two players take turns in guessing the number the other player has. The

player who guesses the number correctly first wins the game.

When the opponent of a player makes a guess, the player having the secret number must answer

whether or not the number matches the selected number; if not, the player must report the number

of “hits” and the number of “misses”, where a “hit” is a digit of the secret number appearing at

exactly the same position in the guess and a “miss” is a digit of the secret number appearing at a

different position in the guess. For example, for a secret number 9478, a guess 3417 has one hit

(the 4) and one miss (the 7).

We consider here a simplified version as follows:

• The number of digits is not four but three.

• The play is one-sided, meaning that only the first player selects a secret number and the second

player tries to guess it correctly.

• The first player is played by a computer program.

Since no two digits can be equal in a secret number, the smallest possible number is 123 and the

largest possible number is 987.

Write a program named MastermindSimple that plays the role of the first year (the player

that selects a secret number) as follows:

(a) The program has a method

public static boolean isLegit(int n)

that checks whether or not the number n is between 123 and 987, none of the three digits of

n are 0, and the three digits of n are pairwise distinct.

(b) The program has a method

public static int generate()

that generates a random integer between 123 and 987 that passes the test. The method uses an

infinite while-loop. In the loop, the method generates a random integer between 123 and 987,

and returns the number if it passes the isLegit test.

(c) The program has a method

public static int countHit(int number1, int number2)

that returns, assuming that number1 and number2 have already passed the isLegit test,

the number of hits when number1 is a guess and number2 is a secret.

(d) The program has a method

public static int countMiss(int number1, int number2)

that returns, assuming that number1 and number2 have already passed the isLegit test,

the number of hits when number1 is a guess and number2 is a secret.

292 11 While-Loops and Do-While Loops

(e) The program uses either a while-loop or a do-while loop. In the loop, the program receives an

integer guess from the user, stores the guess in an int variable named guess, and does the

following:

i It checks if the guess is legitimate using the isLegit method. If it is not legitimate, the

program informs that the guess is not legitimate.

ii Otherwise, if the guess is equal to the secret, the program congratulates the user and

terminates the loop.

iii Otherwise, the program counts the hits and the misses and reports the counts.

The program may work as follows:

1 Enter your guess: 123
2 No.Hits=0, No.Misses=0
3 Enter your guess: 456
4 No.Hits=2, No.Misses=0
5 Enter your guess: 457
6 No.Hits=1, No.Misses=1
7 Enter your guess: 467
8 No.Hits=0, No.Misses=2
9 Enter your guess: 478

10 No.Hits=0, No.Misses=1
11 Enter your guess: 567
12 No.Hits=0, No.Misses=3
13 Enter your guess: 756
14 Congratulations! You’ve guessed it right!

20. Count the number of occurrences of “the” Write a program, CountThe, that receives a

series of String data from the user by way of nextLine of the class Scanner, concatenates

the input lines into a single String data, and then in the concatenated data, counts the

occurrences of the three-letter pattern "the". To allow the user to enter any number of lines,

use a while-loop that terminates when the user enters CTRL-D. To identify all the occurrences

of "the", use a variable that represents the start position of the search. The initial value of this

variable is 0. When the search finds an occurrence at a position, the program updates the value of

this variable with the position value plus 3 (the length of the literal "the"). The loop continues

until either no more occurrence is found or the value of the variable representing the start position

of search becomes greater than or equal to the length of the input.

The program may run as follows:

1 Enter text (CTRL-D to stop) > Here is the program you need to write.
2 Enter text (CTRL-D to stop) > Your program solves the problem of finding
3 Enter text (CTRL-D to stop) > all the occurrences of the String literal

"the"
4 Enter text (CTRL-D to stop) > in the input character sequence that the

user
5 Enter text (CTRL-D to stop) > enters.
6 Enter text (CTRL-D to stop) > ^D
7 The number of occurrences is 7.

21. Count the number of occurrences of either “the” or “an” Extend the solution to the previous

problem and write a program CountTheAn that computes the number of occurrences of either

“the” or “an”.

Part III

Arrays and Objects

12Arrays

12.1 Arrays

12.1.1 The Structure of an Array

An array is a finite sequence of elements of some common data type, where an element of an array can

be accessed by combing the name given to the array and the position of the element in the sequence,

called index. Arrays are reminiscent of number sequence. In mathematics, an element of a number

sequence is specified by the name of the sequence and the subscript representing the position of the

element in the sequence, e.g., n0 and n9. In Java, numbers surrounded by square brackets specify

positions and the positions always start from 0.

To declare an array data type, a pair of matching square brackets is attached as a suffix, as shown

next. The first is an array of int values, the second is an array of String values, and the last

declaration is an array of double values.

1 int[] myIntegers;

2 String [] myWords;

3 double [] someNumbers;

Arrays are objects, so before accessing their individual elements, they must be instantiated. An

array is instantiated with its number of elements. We call the number of elements in an array the

length or size of the array. The length specification appears inside a pair of square brackets [] after

the type specification of the individual elements. Examples of the length specification are shown

next. Line 4 instantiates a 10-element array of int values, Line 5 instantiates a 17-element array of

String values, and Line 6 instantiates a 40-element array of double values.

1 int[] myIntegers;

2 String [] myWords;

3 double [] someNumbers;

4 myIntegers = new int[10];

5 myWords = new String[17];

6 someNumbers = new double[40];

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_12

295© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_12

296 12 Arrays

Fig. 12.1 A view of an
array. The array has length
11 and the indexes are 0
through 10 0 4 5 8 9 5 7 610

0 1 2 3 4 5 6 7 8 9

counts

indices

0

10

Given an array that has been instantiated, we can obtain the number of elements in the array by

attaching .length to the name of the array. Unlike the method length of String, the .length
attached to an array is something called an instance variable (we will learn in detail what instance

variables are in Chap. 16) that is publicly accessible but cannot be modified.

An individual element (or a slot) in an array can be specified with its name followed by a

pair of brackets that contains inside the index to the element, e.g., a[7] and b[9]. Since

the indexes in arrays always start from 0, given an array of some N elements, the index of the

last element is N - 1. This means that if x is the name of an array, its elements are thus

x[0], ..., x[x.length - 1].

Using the same examples as before, the code:

1 int[] myIntegers;

2 String [] myWords;

3 double [] someNumbers;

4 myIntegers = new int[10];

5 myWords = new String[17];

6 someNumbers = new double[40];

7 System.out.println(myIntegers.length);

8 System.out.println(myWords.length);

9 System.out.println(someNumbers.length);

produces the output:

1 10
2 17
3 40

We often use a drawing like the one in Fig. 12.1 to visualize an array. Each square is an element

of the array and counts is the name of the array. The numbers appearing above the elements are

indices to the elements.

12.1.2 Computing the Number of Occurrences

12.1.2.1 Computing Distributions

Consider receiving an indefinite number of exam scores and computing the score distribution. The

scores are integers between 0 and 100, so there are 101 possible scores. We group the scores into

eleven bins: 0..9, 10..19, . . . , 90..99, and 100, where the last bin is exclusively for 100, the highest

possible score. The task is to count, for each bin, the scores that belong to it, and then report the counts

and print a histogram.

We use an int array named counts for recording the counts.

int[] counts = new int[11];

12.1 Arrays 297

The elements of counts are assigned indexes from 0 to 10. Given a score, score, the index of

the bin that score belongs to can be obtained by the quotient by 10. We store this quotient in an int
variable, position, and then increase counts[position] by 1. The statement counts is

treated as an int variable.

1 int position = score / 10;

2 counts[position] ++;

At the time of instantiation, each element of the array is initialized with the default value of its data

type. The array counts is an array of int data, so the initial value of its elements is 0. No scores

have been entered yet at the time of instantiation, so the counts must be set to 0 for all the bins before

starting to receive the scores. Thus, there is no need for explicit initialization.

Here is the first part of the source code, where the program receives the scores. The program

declares an int array counts and instantiates it as an 11-element array (Line 8). The program asks

the user to start entering numbers and enter CTRL-D to report the end of input (Lines 10 and 11).

To receive input, the program uses a while-loop with keyboard.hasNext() as the continuation

condition. As we saw in Chap. 11, keyboard.hasNext() returns false only when the user

enters CTRL-D at the start of the input sequence. In the loop-body, the program receives a new score

using keyboard.nextInt(), and then stores it in the variable score (Line 14). The program

determines the index of the bin in the manner we have discussed, and then stores it in the variable

position (Line 15). The program then increases counts[position] by 1 (Line 16).

1 import java.util .*;

2 public class ScoreDist

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7

8 int[] counts = new int[11];

9

10 System.out.println("Enter scores in the range 0..100.");

11 System.out.println("When you are done , enter CTRL -D.");

12 while (keyboard.hasNext ())

13 {

14 int score = keyboard.nextInt ();

15 int position = score / 10;

16 counts[position] ++;

17 }

18

Listing 12.1 A program for computing the distribution of scores in range 0..100 (part 1).

The program must produce two types of output from the counts thus obtained, a numerical output

and a bar-histogram. In both outputs, the program uses the numbers 0, 10, . . . , 90, 100 as the

representatives of the bins. These representative numbers are equal to ten times the indexes to the

bins. In the bar-histogram output, the program prints a horizontal line of hash marks for each bin. The

lengths of the lines are equal to the counts. The histogram can be generated using a double for-loop.

298 12 Arrays

19 System.out.println("The histogram:");

20 for (int index = 0; index <= 10; index ++)

21 {

22 System.out.printf("%3d:%d%n", index * 10, counts[index]);

23 }

24

25 System.out.println("The bar histogram:");

26 for (int index = 0; index <= 10; index ++)

27 {

28 System.out.printf("%3d:", index * 10);

29 for (int i = 1; i <= counts[index]; i ++)

30 {

31 System.out.print("#");

32 }

33 System.out.println ();

34 }

35 }

36 }

Listing 12.2 A program for computing the distribution of scores in range 0..100 (part 2).

An execution example of the code appears next:

1 Enter scores in the range 0..100.
2 When done, enter either CTRL-D.
3 0 11 22 33 44 55 66 77 88 99 89 97 96 95 100 79 77 75 56 51 51 68
4 The histogram:
5 0:1
6 10:1
7 20:1
8 30:1
9 40:1

10 50:4
11 60:2
12 70:4
13 80:2
14 90:4
15 100:1
16 The bar histogram:
17 0:#
18 10:#
19 20:#
20 30:#
21 40:#
22 50:####
23 60:##
24 70:####
25 80:##
26 90:####
27 100:#

12.1 Arrays 299

We now change the histogram to a cumulative histogram, where the cumulative count at index i is

the number of all scores satisfying score / 10 <= i. In other words, each score value, score,

is counted in all the bins whose indexes are greater than or equal to score / 10.

We obtain the cumulative counts in an array named cumulative in two step. We obtain the

noncumulative counts, counts, as before, and then, for each value of index between 0 and 10, cal-

culate cumulative[index] as the total of counts[0], ..., counts[index].

In this two-step calculation, we use the fact that for each value of index between 1 and 10,

cumulative[index] is equal to cumulative[index - 1] + counts[index],

and compute the cumulative counts using a series of additions as shown next. Since 0 is the smallest

index value, cumulative[0] is equal to counts[0].

20 cumulative[0] = counts[0];

21 for (int index = 1; index <= 10; index ++)

22 {

23 cumulative[index] = cumulative[index - 1] + counts[index];

24 }

The next is the source code for producing a cumulative histogram. The program uses two arrays

(Lines 8 and 9). The program prints the same instruction as before (Lines 11 and 12), and generates

the counts in the same manner as before (Lines 13–18).

1 import java.util .*;

2 public class ScoreDistCumulative

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7

8 int[] counts = new int[11];

9 int[] cumulative = new int[11];

10

11 System.out.println("Enter scores in the range 0..100.");

12 System.out.println("When you are done , enter CTRL -D.");

13 while (keyboard.hasNext ())

14 {

15 int score = keyboard.nextInt ();

16 int position = score / 10;

17 counts[position] ++;

18 }

19

Listing 12.3 A program for computing a cumulative distribution (part 1).

After computing the cumulative counts, the program produces a cumulative bar-graph using the

same algorithm as before (Lines 27–35).

300 12 Arrays

20 cumulative[0] = counts[0];

21 for (int index = 1; index <= 10; index ++)

22 {

23 cumulative[index] = cumulative[index - 1] + counts[index];

24 }

25

26 System.out.println("The bar histogram:");

27 for (int index = 0; index <= 10; index ++)

28 {

29 System.out.printf("%3d:", index * 10);

30 for (int i = 1; i <= cumulative[index]; i ++)

31 {

32 System.out.print("#");

33 }

34 System.out.println ();

35 }

36 }

37 }

Listing 12.4 A program for computing a cumulative distribution (part 2).

With the same input sequence as before, the program produces the following output:

1 % java ScoreDistCumulative
2 Enter scores in the range 0..100.
3 When done, enter either CTRL-D.
4 34 5 6 7 88 99 100 98 80 78 67 88 98 99 87 77 61 76 38 48 95 85
5 The bar histogram:
6 0:###
7 10:###
8 20:###
9 30:#####

10 40:######
11 50:######
12 60:########
13 70:###########
14 80:################
15 90:#####################
16 100:######################

12.1.2.2 Simulating the Action of Throwing Two Dice

Our next example is a program for computing, by simulation, the probability distribution of the

number that is “rolled” by “throwing” two fair dice. The number that is “rolled” ranges from 2 to

12. The program simulates the action of throwing two dice repeatedly, and computes the frequencies

that these numbers are “rolled”. At the end, the frequencies are converted to percentages. The program

receives how many “rolls” must be made from the user.

The program uses a 13-element array of double data named rates to record the frequencies.

For each number i between 2 and 12, the program uses rates[i] to record the number of times

i is “rolled”. The counts are converted to percentages using the same array, so the data type of the

elements of the array are not int but double.

Here is the declaration of the array:

double [] rates = new double[13];

12.1 Arrays 301

Previously, in Sect. 7.5, we used the formula (int)(Math.random() * 6) + 1 to

simulate the throw of one die. Since we use a pair of dice, we use the sum of two copies of this

formula:

1 int pos = (int)(Math.random () * 6) + 1

2 + (int)(Math.random () * 6) + 1;

By combining the two occurrences of +1, we obtain:

1 int pos = (int)(Math.random () * 6)

2 + (int)(Math.random () * 6) + 2;

We cannot simplify the formula further. In other words, neither

int pos = (int)(Math.random () * 6 + Math.random () * 6) + 2;

nor

int pos = (int)(Math.random () * 12) + 1;

are equivalent to the formula used in the program.

Here is a source code for the program. As mentioned earlier, the program uses a 13-element array

of double, rates (Line 6). The program receives the number of times that the dice are “rolled”

from the user, and stores it in the variable rounds (Lines 10 and 11). The program uses a for-loop to

produce the required number of rolls (Line 13). At each round of the for-loop, the number generated

is stored in an int variable, pos (Lines 15 and 16). The value of pos is between 2 and 12. The

program increases rates[pos] by 1.

1 import java.util .*;

2 public class TwoDice

3 {

4 public static void main(String [] args)

5 {

6 double [] rates = new double[13];

7

8 Scanner keyboard = new Scanner(System.in);

9

10 System.out.print("Enter the no. of trials: ");

11 int rounds = keyboard.nextInt ();

12

13 for (int i = 1; i <= rounds; i ++)

14 {

15 int pos = (int)(Math.random () * 6)

16 + (int)(Math.random () * 6) + 2;

17 rates[pos] ++;

18 }

19

Listing 12.5 A program that simulated the action of throwing two dice (part 1).

302 12 Arrays

After finishing the simulation, the program converts the counts to percentages. The program

accomplishes this by multiplying each count by 100 and then dividing it by rounds (Lines 20–23).

Since the data type of the elements of the array is double, the value of rates[pos] * 100 is

already double, so although rounds is an int value, the division is correctly calculated. To print

the percentage values (Lines 25–28), the program uses the printf format of %2d:%6.2f%%%n,

where the %% instructs to print the percent sign. Since the numbers that are “rolled” are between 2 and

12, the iterations in the for-loops (Lines 20 and 25) start from 2, ignoring the indexes 0 and 1. In fact,

the first two elements rates[0] and rates[1] exist, but are not accessed at all.

20 for (int pos = 2; pos <= 12; pos ++)

21 {

22 rates[pos] = rates[pos] * 100 / rounds;

23 }

24

25 for (int pos = 2; pos <= 12; pos ++)

26 {

27 System.out.printf("%2d:%6.2f%%%n", pos , rates[pos]);

28 }

29 }

30 }

Listing 12.6 A program that simulated the action of throwing two dice (part 2).

Here is the result of running the program with 10,000 throws:

1 Enter the no. of trials: 10000
2 2: 2.83%
3 3: 5.43%
4 4: 8.13%
5 5: 11.25%
6 6: 14.11%
7 7: 16.90%
8 8: 13.67%
9 9: 10.82%

10 10: 8.56%
11 11: 5.41%
12 12: 2.89%

Here is the result of running the program with one million throws:

1 Enter the no. of trials: 1000000
2 2: 2.77%
3 3: 5.54%
4 4: 8.36%
5 5: 11.07%
6 6: 13.88%
7 7: 16.63%
8 8: 13.90%
9 9: 11.17%

10 10: 8.33%
11 11: 5.56%
12 12: 2.78%

12.1 Arrays 303

12.1.2.3 Initialization of an Array

As mentioned earlier, when an array of some type T is instantiated, the initial value of each element

of the array is the default value for the type T. Specifically, the initial value is 0 for each number

type, the character with index 0 for char (often denoted as \0), false for boolean, and null
for all other types. The value null is printed as the String literal "null" when processed with

System.out.print, printf, or println. null is not an object, so no instance method can

be applied to it. For example, the code

1 String [] data = new String[10];

2 System.out.println(data[0]. length ());

produces a run-time error NullPointerException at the second line.

12.1.3 ArrayIndexOutOfBoundsException

An attempt to access an element of an array using an invalid index leads to a run-time error

ArrayIndexOutOfBoundsException.

Suppose we have a program that receives a series of String values from the user, stores the

elements of the series in an array, and then interactively recalls an element of the data at the index

the user specifies. The interaction with the user is repeated using a do-while loop that is terminated

when the user enters a negative index for a query. The elements of the series may contain the

white space character, so the program uses nextLine to read the elements of the series. While

any negative value is interpreted as the signal for termination, the program treats any nonnegative

value as a valid index. Given such a program, the user may enter a large index value to make

ArrayIndexOutOfBoundsException occur.

A source code for this program is shown next. The programs asks for the number of elements in

the series at the start (Line 8). To receive an integer input from the user, we have exclusively used

nextInt in the past. However, now that the elements of the array are to be read using nextLine,

it is a good idea to read every input with nextLine. Unfortunately, there is no Scanner method

that reads an input line, coverts it to an integer, and returns the integer. Fortunately, we can use the

method Integer.parseInt for converting a String data to an integer. Integer.parseInt
is a static method of class Integer. If the String does not represent an integer, for example,

"#$%", the method produces a run-time error and the execution halts at that point. The program uses

Integer.parseInt to convert the input line to an integer, and stores the value in an int variable,

dim (Line 9).

The program then runs as follows: The program instantiates data as an array of String
data having length dim (Line 11). The program then uses a for-loop that iterates the sequence

0, ..., dim - 1 using a variable named index, and receives the elements of the array, where

each element is read with nextLine (Lines 14–18). In the do-while loop (Lines 19–27), the program

receives an index to an element to recall (Lines 21–22), and if the index is nonnegative (Line 23),

prints the data stored at the index (Line 25). The continuation condition of the do-while loop is

index >= 0, so the loop terminates when index < 0.

304 12 Arrays

1 import java.util .*;

2

3 public class StringArrayPlain

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter the no. of data: ");

9 int dim = Integer.parseInt(keyboard.nextLine ());

10

11 String [] data = new String[dim];

12

13 int index;

14 for (index = 0; index < dim; index ++)

15 {

16 System.out.printf("Enter line at position %d: ", index);

17 data[index] = keyboard.nextLine ();

18 }

19 do

20 {

21 System.out.print("Enter position (negative to quit): ");

22 index = Integer.parseInt(keyboard.nextLine ());

23 if (index >= 0)

24 {

25 System.out.printf("At %d we have %s%n", index , data[index]);

26 }

27 } while (index >= 0);

28 }

29 }

Listing 12.7 A program that builds an array of String data and then presents its contents.

In the following execution example, the user enters a non-existing index 9 for a 9-element array,

thereby makes ArrayIndexOutOfBoundsException occur.

1 Enter the no. of data: 9
2 Enter line at position 0: Tomato
3 Enter line at position 1: Green Pepper
4 Enter line at position 2: Lettuce
5 Enter line at position 3: Pickle
6 Enter line at position 4: Black Olive
7 Enter line at position 5: Jalapeno Pepper
8 Enter line at position 6: Honey Mustard
9 Enter line at position 7: Mayonnaise

10 Enter line at position 8: Hot Sauce
11 Enter position (negative to quit): 0
12 The value at 0 is Tomato
13 Enter position (negative to quit): 2
14 The value at 2 is Lettuce
15 Enter position (negative to quit): 3
16 The value at 3 is Pickle
17 Enter position (negative to quit): 9
18 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 9
19 at StringArrayPlain.main(ArrayDataPlain.java:23)

The run-time error ArrayIndexOutOfBounds can be prevented from happening by changing the

condition in Line 23 to if (index >= 0 && index < dim).

12.2 Relative Indexing 305

12.2 Relative Indexing

12.2.1 The Concept of Relative Indexing

The program that simulates the “rolls” of two dice, uses an array consisting of 13 slots, ignoring the

first two slots. The code that appears next is an alternate one that uses an array of exactly 11 slots. In

the program, we think of a slot index i as representing i + 2 as the number that is “rolled”. The

changes from the previous program are highlighted. They are:

• The length of the array has been changed to 11 (Line 6).

• The + 2 in the formula for determining the number that is “rolled” has been removed, since 2 was

to be subtracted from the number generated by the formula (Lines 15 and 16).

• The range of index has been changed to 0, ..., 10 in the for-loops (Lines 20 and 25).

• The number represented by the index value pos has been changed to pos + 2 (Line 27).

1 import java.util .*;

2 public class TwoDiceExact

3 {

4 public static void main(String [] args)

5 {

6 double [] rates = new double[11];

7

8 Scanner keyboard = new Scanner(System.in);

9

10 System.out.print("Enter the no. of trials: ");

11 int rounds = keyboard.nextInt ();

12

13 for (int i = 1; i <= rounds; i ++)

14 {

15 int pos = (int)(Math.random () * 6)

16 + (int)(Math.random () * 6);

17 rates[pos] ++;

18 }

19

20 for (int pos = 0; pos <= 10; pos ++)

21 {

22 rates[pos] = rates[pos] * 100 / rounds;

23 }

24

25 for (int pos = 0; pos <= 10; pos ++)

26 {

27 System.out.printf("%2d:%6.2f%%%n", pos + 2, rates[pos]);

28 }

29 }

30 }

Listing 12.8 A program for simulating the action of throwing two dice that uses an array of eleven elements.

The idea we used can be summarized as: use the relative distance from a fixed number as an array

index. We call this idea relative indexing. To obtain a relative index from a given index, we subtract

a fixed number, called the base index. In the above simulation, the base index is 2. Relative indexing

allows programmers to avoid using slots that are not part of the computation.

306 12 Arrays

12.2.2 Calculating the BMI for a Range of Weight Values

Consider computing the BMI value for a fixed height (in inches) and a range of integer weight values

(in pounds), where the range is specified with its minimum and maximum. Suppose the minimum and

the maximum are stored in int variables, minWeight and maxWeight. Since the weight values

are integers, we can use an array of double data with maxWeight + 1 elements, and use only

the elements of array at indexes between minWeight and maxWeight. With the use of relative

indexing, the array length can be reduced to maxWeight - minWeight + 1, where the element

at an index i represents the BMI for the weight minWeight + i.

The following program uses this relative indexing. The program receives the minimum and

maximum weights from the user, and stores them in variables, minWeight and maxWeight
(Line 8 and 9). The program receives the height from the user and stores it in a variable, height
(Line 10). The program uses minWeight as the base index. The size of the range of weights,

maxWeight - minWeight + 1, is stored in an int variable, size (Line 11). The program

instantiates an array of double data, bmi (Line 12). Then, for each index value i between 0 and

size - 1 (Line 13), the program stores the BMI value for the height equal to height and the

weight equal to minWeight + i in bmi[i] (Line 15). At the end, the program prints the BMI

values thus calculated along with their weights (Lines 17–20).

1 import java.util .*;

2 public class BMIFixedHeight

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Minimum weight , maximum weight , height: ");

8 int minWeight = keyboard.nextInt ();

9 int maxWeight = keyboard.nextInt ();

10 double height = keyboard.nextDouble ();

11 int size = maxWeight - minWeight + 1;

12 double [] bmi = new double[size];

13 for (int i = 0; i < size; i ++)

14 {

15 bmi[i] = 703.0 * (minWeight + i) / height / height;

16 }

17 for (int i = 0; i < size; i ++)

18 {

19 System.out.printf("%3d:%5.2f%n", (minWeight + i), bmi[i]);

20 }

21 }

22 }

Listing 12.9 A program that computes the BMI value for a range of weights.

Here is an execution example of the code.

1 Minimum weight, maximum weight, height: 155 167 67
2 155:24.27
3 156:24.43
4 157:24.59
5 158:24.74
6 159:24.90
7 160:25.06

12.2 Relative Indexing 307

8 161:25.21
9 162:25.37

10 163:25.53
11 164:25.68
12 165:25.84
13 166:26.00
14 167:26.15

12.2.3 Counting the Occurrences of Characters

Next, consider computing the number of times each letter of the alphabet appears in an input line, after

converting each uppercase letter to lowercase. The program receives an input line from the user, and

then converts it to all lowercase with the method toLowerCase(). Since there are 26 letters in the

lowercase alphabet, the program uses a 26-element int array, count, for counting the occurrences

of the letters, where the elements 0, . . . , 25 correspond to the letters ’a’, ..., ’z’. In the ASCII

table, the 26 letters occupy consecutive positions starting from 97, so subtracting 97 from a lowercase

letter produces its position in the array count, and adding 97 to an index value produces the position

of the corresponding letter in the ASCII table. The number 97 can be substituted with the letter ’a’
wherever needed.

The program receives an input from the user, stores it in a variable named line (Line 8), and then

generates its lowercase version, lineLower (Line 9).

1 import java.util .*;

2 public class LetterCount

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter: ");

8 String line = keyboard.nextLine ();

9 String lineLower = line.toLowerCase ();

10

Listing 12.10 A program that counts the occurrences of letters (part 1). The part responsible for receiving input.

The program then instantiates an array of 26 elements, count (Line 11). The program uses a for-

loop to examine the characters of lineLower (Line 12). The program stores the character being

examined in a char variable named c (Line 14). The program then obtains the relative index of c
in a variable named index by subtracting ’a’ from c (Line 15). If c is a lowercase letter, then the

value of index must be between 0 and 25. The program checks if the value of index is between 0

and 25 (Line 16) and if so, increases count[index] by 1 (Line 18).

308 12 Arrays

11 int[] count = new int[26];

12 for (int pos = 0; pos <= lineLower.length () - 1; pos ++)

13 {

14 char c = lineLower.charAt(pos);

15 int index = c - ’a’;

16 if (index >= 0 && index <= 25)

17 {

18 count[index] ++;

19 }

20 }

21

Listing 12.11 A program that counts the occurrences of letters (part 2). The part responsible for generating counts.

To present the result, the program prints the input line (Line 22), the lowercase version (Line

23), and a header line (Line 24). The program then uses a for-loop that iterates over the sequence

0, ..., 25 with a variable named index (Line 25). The character represented by index is

obtained by converting the relative index to its absolute index with the addition of a’, and then casting

of (char) on the absolute index. In other words, (char)(’a’ + index) produces the letter

(Line 28). The count corresponding to the letter is count[index] (Line 28). The program prints

the letter and the count using printf with the format of "%6c: %2d%n" (Line 27). The format

instructs to allocate six character spaces to the letter and two character spaces to the count.

22 System.out.printf("Input: %s%n", line);

23 System.out.printf("Lower: %s%n", lineLower);

24 System.out.println("Letter:count");

25 for (int index = 0; index <= 25; index ++)

26 {

27 System.out.printf("%6c: %2d%n",

28 (char)(’a’ + index), count[index]);

29 }

30 }

31 }

Listing 12.12 A program that counts the occurrences of letters (part 3). The part responsible for printing the result.

Next is an execution example of the code:

1 Enter: I can write programs in Java. I want to learn more.
2 Input: I can write programs in Java. I want to learn more.
3 Lower: i can write programs in java. i want to learn more.

12.2 Relative Indexing 309

4 Letter:count
5 a: 6
6 b: 0
7 c: 1
8 d: 0
9 e: 3

10 f: 0
11 g: 1
12 h: 0
13 i: 4
14 j: 1
15 k: 0
16 l: 1
17 m: 2
18 n: 4
19 o: 3
20 p: 1
21 q: 0
22 r: 5
23 s: 1
24 t: 3
25 u: 0
26 v: 1
27 w: 2
28 x: 0
29 y: 0
30 z: 0

In this example, since the input line is short, several letters have 0 as their counts. Since each letter-

count pair does not require more than 12 character spaces, we can expect to be able to reduce the

number of output lines by skipping letters whose counts are 0 and by printing multiple letter-count

pairs in each line of output.

The program LetterCountNeat prints the result using this idea. Both LetterCount and

LetterCountNeat have the same code for receiving the input and generating counts (except

for the class declaration), so only the remaining part of the program for LetterCountNeat is

presented here.

LetterCountNeat prints up to four letter-count pairs in one line. The header for the letter-count

output has been revised to:

"Letter:count Letter:count Letter:count Letter:count"

(Lines 24 and 25). To emphasize that a count is associated with the letter it is printed together, the

format for the count has been changed to %-6d. This means that the number will be printed immediate

after the colon.

To print multiple letter-count pairs while ignoring letters that did not appear, the program uses a

new int variable named p. The variable p represents the number of letter-count pairs that have been

printed so far. We scan the elements, as before, using the variable index. Each time a letter with a

positive count is encountered, the program takes the following action: (a) it prints the letter-count pair,

(b) it increases p by 1, and (c) if the value of p is a multiple of 4, it prints the newline. Furthermore,

to ensure that the output of the program ends with a newline, if the value of p is not a multiple of 4

after exiting the loop, the program prints the newline.

The next code implements this idea. Line 29 is for checking if the count is positive, Lines 31 and

32 are for printing the letter-count pair, Line 33 is for increasing the value of p, and Lines 34–37 are

for adding the newline after printing four pairs. Lines 40–43 handle the last newline.

310 12 Arrays

22 System.out.printf("Input: %s%n", line);

23 System.out.printf("Lower: %s%n", lineLower);

24 System.out.println(

25 "Letter:count Letter:count Letter:count Letter:count");

26 int p = 0;

27 for (int index = 0; index <= 25; index ++)

28 {

29 if (count[index] > 0)

30 {

31 System.out.printf("%6c:%-6d",

32 (char)(’a’ + index), count[index]);

33 p ++;

34 if (p % 4 == 0)

35 {

36 System.out.println ();

37 }

38 }

39 }

40 if (p % 4 != 0)

41 {

42 System.out.println ();

43 }

44 }

45 }

Listing 12.13 A new version of the program that counts the occurrences of letters.

The output of the new program with the same input as before is shown next:

1 Enter: I can write programs in Java. I want to learn more.
2 Input: I can write programs in Java. I want to learn more.
3 Lower: i can write programs in java. i want to learn more.
4 Letter:count Letter:count Letter:count Letter:count
5 a:6 c:1 e:3 g:1
6 i:4 j:1 l:1 m:2
7 n:4 o:3 p:1 r:5
8 s:1 t:3 v:1 w:2

Here is the output with another input:

1 Enter: Old MacDonald Had a Farm
2 Input: Old MacDonald Had a Farm
3 Lower: old macdonald had a farm
4 Letter:count Letter:count Letter:count Letter:count
5 a:5 c:1 d:4 f:1
6 h:1 l:2 m:2 n:1
7 o:2 r:1

12.3 Arrays of booleanData

We often use a boolean variable as a check mark and an array of boolean data as a series of check

marks. Here, we study the use of an array of boolean data using a source code for a program that

finds prime numbers.

A non-zero integer m is a divisor of another integer n if the remainder of n divided by m is 0. If

m is a divisor of n, we say that n is divisible by m. A positive integer n ≥ 2 is a prime number (or

12.3 Arrays of boolean Data 311

simply a prime) if 1 and n are the only positive divisors of n. In other words, n is prime if and only if

for all m, 2 ≤ m ≤ n − 1, the remainder of n divided by m is 0. An integer n ≥ 2 that is not a prime

number is called a composite number. The 16 smallest prime numbers are as follows:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 33, 37, 41, 43, 47

It is known that there are infinitely many prime numbers.

Every positive integer n ≥ 2 can be expressed as the product of prime numbers, where the same

prime number may appear multiple times. This decomposition is unique, if the order of appearance of

the prime numbers is ignored. For example, 100 is the product of prime numbers 2, 2, 5, and 5. The

primality of a number n ≥ 3 thus can be tested by examining if any prime number less than n divides

n. In other words,

(⋆) a positive number n ≥ 3 is a prime number if and only if no prime number p between 2 and n−1

divides n.

Consider discovering, given some maximum number, limit, all the prime numbers between 2 and

limit. The property (⋆) suggests the following algorithm: Repeat (a) and (b) for all values of n
starting with 2 and ending with limit:

(a) Using a loop, test if n is divisible by any prime number less than n.

(b) If n is divisible by a prime number less than n, record n as composite; otherwise, record n as

prime.

We implement this algorithm using an array of boolean values, flags. flags has limit + 1
elements. At the end of the calculation, we establish a condition: for each index i >= 2,

flags[i] is true if and only if i is prime.

There are multiple ways to implement the determination of a primality of n by testing if any smaller

prime number divides n (such a strategy is called trial division). Here is a simple one. We tentatively

store true to flags[n]. We then execute trial divisions by the primes between 2 and n - 1.

If one of the primes in that range is found to be a divisor of n, we change the value of flags[n]
to false. The idea can be encoded as follows:

1 flags[n] = true;

2 for (int m = 2; m <= n - 1; m ++)

3 {

4 if (flags[m] && n % m == 0)

5 {

6 flags[n] = false;

7 }

8 }

Since the value of flags[n] does not change from false to true, the loop can be

terminated as soon as the value changes to false:

312 12 Arrays

1 flags[n] = true;

2 for (int m = 2; m <= n - 1; m ++)

3 {

4 if (flags[m] && n % m == 0)

5 {

6 flags[n] = false;

7 break;

8 }

9 }

If break is executed, the final value of m is strictly less than n; otherwise, the final value of m is

equal to n. Thus, the value of flags[n] is equivalent to the condition m < n.

1 for (int m = 2; m <= n - 1; m ++)

2 {

3 if (flags[m] && n % m == 0)

4 {

5 break;

6 }

7 }

8 flags[n] = m == n;

Using a while-loop, this can be written as:

1 int m = 2;

2 while (m <= n - 1 && !(flags[m] && n % m == 0))

3 {

4 m ++;

5 }

6 flags[n] = m == n;

Because of the truncation rule in conditional evaluation (see Sect. 6.2.4), the second term

!(flags[m] && n % m == 0) is evaluated only if m < n. By using DeMorgan’s laws,

we obtain:

1 int m = 2;

2 while (m <= n - 1 && (!flags[m] || n % m != 0))

3 {

4 m ++;

5 }

6 flags[n] = m == n;

This is the version that is used in the next program PrimeFinding.

The first part of the code executes the trial division algorithm as we have developed. The program

receives the value of limit from the user (Lines 7 and 8), instantiates the array flags as

boolean[limit + 1] (Line 10). Lines 11–19 are for determining the elements of flags.

When the value of n is equal to 2, no trivial division is made. Since the initial value of the array

elements is true and 2 is a prime number, the programs works when n is equal to 2.

To print the prime numbers that have been discovered, the program uses the idea from

LetterCountNeat. This time, the program prints each prime number with its position (represented

by p) (Line 30). The primes appear in increasing order.

12.3 Arrays of boolean Data 313

1 import java.util .*;

2 public class PrimeFinding

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter limit: ");

8 int limit = keyboard.nextInt ();

9 // ---- prime discovery

10 boolean [] flags = new boolean[limit + 1];

11 for (int n = 2; n <= limit; n ++)

12 {

13 int m = 2;

14 while (m < n && (!flags[m] || n % m != 0))

15 {

16 m ++;

17 }

18 flags[n] = m == n;

19 }

20 // ---- inventory

21 int p = 0;

22 for (int n = 2; n <= limit; n ++)

23 {

24 if (flags[n])

25 {

26 p ++;

27 System.out.printf("%5d:%-8d", p, n);

28 if (p % 4 == 0)

29 {

30 System.out.println ();

31 }

32 }

33 }

34 if (p % 4 != 0)

35 {

36 System.out.println ();

37 }

38 }

39 }

Listing 12.14 A program that finds all prime numbers less than or equal to a given bound.

Here is an execution example of the code:

1 Enter limit: 1000
2 1:2 2:3 3:5 4:7
3 5:11 6:13 7:17 8:19
4 9:23 10:29 11:31 12:37
5 13:41 14:43 15:47 16:53
6 17:59 18:61 19:67 20:71
7 21:73 22:79 23:83 24:89
8 25:97 26:101 27:103 28:107
9 29:109 30:113 31:127 32:131

10 33:137 34:139 35:149 36:151
11 37:157 38:163 39:167 40:173
12 41:179 42:181 43:191 44:193
13 45:197 46:199 47:211 48:223
14 49:227 50:229 51:233 52:239

314 12 Arrays

15 53:241 54:251 55:257 56:263
16 57:269 58:271 59:277 60:281
17 61:283 62:293 63:307 64:311
18 65:313 66:317 67:331 68:337
19 69:347 70:349 71:353 72:359
20 73:367 74:373 75:379 76:383
21 77:389 78:397 79:401 80:409
22 81:419 82:421 83:431 84:433
23 85:439 86:443 87:449 88:457
24 89:461 90:463 91:467 92:479
25 93:487 94:491 95:499 96:503
26 97:509 98:521 99:523 100:541
27 101:547 102:557 103:563 104:569
28 105:571 106:577 107:587 108:593
29 109:599 110:601 111:607 112:613
30 113:617 114:619 115:631 116:641
31 117:643 118:647 119:653 120:659
32 121:661 122:673 123:677 124:683
33 125:691 126:701 127:709 128:719
34 129:727 130:733 131:739 132:743
35 133:751 134:757 135:761 136:769
36 137:773 138:787 139:797 140:809
37 141:811 142:821 143:823 144:827
38 145:829 146:839 147:853 148:857
39 149:859 150:863 151:877 152:881
40 153:883 154:887 155:907 156:911
41 157:919 158:929 159:937 160:941
42 161:947 162:953 163:967 164:971
43 165:977 166:983 167:991 168:997

12.4 Using Multiple Arrays

We often use multiple arrays having the same lengths to manipulate a sequence of elements, where

each element consists of multiple data.

Consider writing a program that receives names (as String data) and scores (as double data)

for some number of people. The user specifies the number of people, and then, for each person,

enters the name and the score. The program records the names and scores, and retrieves them upon

user’s request. For retrieval, the user specifies a range of scores with its lower and upper bounds. The

program then finds all the scores that are in the range, and then prints the scores with their associated

names.

The program NameScore accomplishes this task. The initial part declares some variables that are

used throughout the program. num is the number of people to appear on the list (Line 10), names
and scores are the arrays to record the names and the scores (Lines 7 and 8). flags represents

which persons’ scores are in the range specified by the user (Line 9). Each time the user specifies

a range of scores, the elements of flags are recalculated as follows: for each index i, true is

stored in flags[i] if the value of scores[i] is in the specified range, and false is stored

otherwise.

12.4 Using Multiple Arrays 315

1 import java.util .*;

2 public class NameScore

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 String [] names;

8 double [] scores;

9 boolean [] flags;

10 int num;

11

Listing 12.15 A program that receives names and scores and performs search (part 1).

Next, the program receives the number of people to appear on the list, and then stores the number

in num (Lines 12 and 13). num is then used to instantiate the length for each of the three array

instantiations (Lines 14–16). Then, using a for-loop, the program receives the names and the scores

from the user (Lines 18–23).

12 System.out.print("Enter the number of people: ");

13 num = keyboard.nextInt ();

14 names = new String[num];

15 scores = new double[num];

16 flags = new boolean[num];

17

18 for (int i = 0; i < num; i ++)

19 {

20 System.out.printf("Enter name and score for person %d: ", i);

21 names[i] = keyboard.next();

22 scores[i] = keyboard.nextDouble ();

23 }

24

Listing 12.16 A program that receives names and scores and performs search (part 2).

The interaction for retrieval uses a String variable named answer (Line 25). The interaction is

repeated indefinitely using a do-while loop (Line 26). At the end of the loop-body, the user is asked

to respond to the question of whether or not the program should continue (Line 50). The response is

stored in a String variable named answer (Line 51). If the response does not start with ’y’, the

loop is terminated (Line 52).

To retrieve scores, the program receives two double values from the user, and stores them in

double variables, low and high (Lines 27–29). The program uses a variable named count to

record the number of scores that have passed the test (Line 31). The program uses a for-loop that iter-

ates over the sequence of valid index values with a variable named i (Line 32). For each index value of

i, the program stores the value of (scores[i] >= low && scores[i] <= high)
in flags[i] (Line 34), and then, if the value obtained is true (Line 35), increases the value of

count by 1 (Line 37). The program announces the value of count after completing the recalculation

of the elements in flags (Line 40). To report which scores are in the range, the program uses

a for-loop again with the iteration variable i (Line 42). If flags[i] has the value of true
(Line 44), the program prints i, names[i], and scores[i] in one line using the format

"%3d %10s %6.2f%n". This means that three character spaces are allocated for i, ten character

316 12 Arrays

spaces are allocated for names[i], and six character spaces with exactly two digits after the

decimal point are allocated for scores[i].

25 String answer;

26 do {

27 System.out.print("Enter the lower and upper limits: ");

28 double low = keyboard.nextDouble ();

29 double high = keyboard.nextDouble ();

30

31 int count = 0;

32 for (int i = 0; i < num; i ++)

33 {

34 flags[i] = (scores[i] >= low && scores[i] <= high);

35 if (flags[i])

36 {

37 count ++;

38 }

39 }

40 System.out.println("The count is " + count + ".");

41

42 for (int i = 0; i < num; i ++)

43 {

44 if (flags[i])

45 {

46 System.out.printf("%3d %10s %6.2f%n",

47 i, names[i], scores[i]);

48 }

49 }

50 System.out.print("Continue (y/n)? ");

51 answer = keyboard.next();

52 } while (answer.startsWith("y"));

53 }

Listing 12.17 A program that receives names and scores and performs search (part 3).

Here is an example of how the program works:

1 Enter the number of people: 15
2 Enter name and score for person 0: Anna 80.0
3 Enter name and score for person 1: Bill 90.5
4 Enter name and score for person 2: Christy 97.5
5 Enter name and score for person 3: Dave 79.5
6 Enter name and score for person 4: Emily 81.0
7 Enter name and score for person 5: Fred 86.0
8 Enter name and score for person 6: Gail 95.0
9 Enter name and score for person 7: Harry 92.5

10 Enter name and score for person 8: Irene 98.0
11 Enter name and score for person 9: Jack 99.0
12 Enter name and score for person 10: Kim 93.5
13 Enter name and score for person 11: Luis 74.5
14 Enter name and score for person 12: Mimi 76.0
15 Enter name and score for person 13: Nick 77.0
16 Enter name and score for person 14: Olga 84.5
17 Enter the lower and upper limits: 0 100
18 The count is 15.
19 0 Anna 80.00
20 1 Bill 90.50
21 2 Christy 97.50
22 3 Dave 79.50

12.5 String Methods That Return an Array 317

23 4 Emily 81.00
24 5 Fred 86.00
25 6 Gail 95.00
26 7 Harry 92.50
27 8 Irene 98.00
28 9 Jack 99.00
29 10 Kim 93.50
30 11 Luis 74.50
31 12 Mimi 76.00
32 13 Nick 77.00
33 14 Olga 84.50
34 Continue (y/n)? y
35 Enter the lower and upper limits: 0 50
36 The count is 0.
37 Continue (y/n)? y
38 Enter the lower and upper limits: 70 80
39 The count is 5.
40 0 Anna 80.00
41 3 Dave 79.50
42 11 Luis 74.50
43 12 Mimi 76.00
44 13 Nick 77.00
45 Continue (y/n)? n

12.5 StringMethods That Return an Array

In Chap. 9, we mentioned two String methods that each return an array, toCharArray and

split. For a String data w, the method call w.toCharArray() returns an array of char
that is equal to the character-by-character representation of w. The method split receives a

String parameter p. For a String data w and a String parameter p, the method call

w.split(p) returns an array of String generated by splitting w by viewing p as the delimiter.

For example, suppose w is equal to the String literal "-ab:cd::ef-". The return value of

w.toCharArray() is an 11-element array:

{ ’-’, ’a’, ’b’, ’:’, ’c’, ’d’, ’:’, ’:’, ’e’, ’f’, ’-’ }

The return value of w.split("::") is a 2-element array:

{ "-ab:cd", "ef-" }

The return value of w.split(":") is a 4-element array:

{ "-ab", "cd", "", "ef-" }

and the return value of w.split("-") is a 3-element array:

{ "", "-ab:cd::ef-", "" }

We can use the method split when multiple data values appear in one line and the values are

separated with some common delimiter. Suppose we need to convert a String data line into an

int array, assuming that line consists of some integer values separated by tab-stops in between

(for example, "10\t20\t30"). One approach to solving this problem is to read line twice using

Scanner as follows:

318 12 Arrays

1 Scanner sc = new Scanner(line);

2 int count = 0;

3 while (sc.hasNext ())

4 {

5 count ++;

6 sc.next();

7 }

8 int[] data = new int[count];

9 Scanner sc = new Scanner(line);

10 for (int i = 0; i < count; i ++)

11 {

12 data[i] = sc.nextInt ();

13 }

Since the tokens are separated by tab-stops, split can be used as follows:

1 String [] tokens = line.split("\t");

2 int[] data = new int[tokens.length];

3 for (int i = 0; i < tokens.length; i ++)

4 {

5 data[i] = Integer.parseInt(tokens[i]);

6 }

Summary

An array is a series of data of some common data type.

The declaration of an array type requires an empty pair of matching brackets at the end, such as

int[] and String[].

An array data type is an object data type, so requires an instantiation.

The instantiation of an array requires the specification of the number of elements in the series that

it represents. The number is provided in a pair of brackets after he type of the individual elements,

such as new int[10].

The value of the length specified in an instantiation must be nonnegative.

For an array x, x.length returns the number of elements in x.

An individual element in an array can be accessed by combining the name of the array and its index

in the form: name[index].

When a program tries to access an element of an array at an invalid index, an run-time error

ArrayIndexOutOfBoundsException occurs.

Relative indexing is a concept that represents the absolute index with the combination of the base

index and the distance from the base index.

Exercises

1. Simple questions about an array Suppose an array dataValues has been constructed using

the following code fragment:

1 int[] dataValues = new int [20];

2 for (int index = 0; index < 20; index ++)

3 {

4 dataValues[index] = index + 1;

5 }

Exercises 319

State the value of each of the following after the execution of the code:

(a) dataValues.length
(b) dataValues[10]
(c) dataValues[15] - dataValues[5]

2. An array of random numbers with no duplication Write a program, RandomNumberArray,

that generates a random array of int data whose length, size, is specified by the user. The

elements in the array must satisfy the following conditions:

• The range of the array elements is 0 through 10 * size - 1.

• No two elements in the array are equal to each other.

The task can be accomplished by a series of, possibly repetitive, random number generation. To

generate a random number at index i, the program generates a candidate according the first rule,

and then checks whether the same number appears in any positions between 0 and i - 1. If

the number already appears, the program generates a new random number. It repeats this process

until a random number not appearing in positions 0 through i - 1 is generated.

Here is an execution example of the intended program:

1 Enter the size: 0:109
2 1:100
3 2:23
4 3:57
5 4:123
6 5:22
7 6:137
8 7:120
9 8:1

10 9:60
11 10:146
12 11:68
13 12:8
14 13:52
15 14:96

3. The second maximum in an array Write a program, SecondMaximum, that receives a

positive integer from the user, generates an array of random real numbers between 0 and 10,000,

whose length is equal to the integer that the user has entered, and then computes the second largest

number appearing in the array. The program may fail to work properly if the number that the user

enters is less than or equal to 0. If the number that the user enters is 1, the second largest number

is undefined, but the program must report the only element of the array as the second largest

number.

4. Random string Write a program, RandomString, that receives a positive integer from the

user, and then generates a String of random characters whose length is equal to the integer that

the user has specified. The program must use table look-up in the following manner. The program

instantiates a 26-element array of char values whose elements are ’a’ through ’z’. It then

creates a random String data of the specified length by selecting, for each character position of

the String, a random position between 0 and 25, and then appending the element in the table at

that random position to the String being generated.

Here is an execution example of the program:

1 Enter the length: 20
2 ylufdstaeldwbyvotdph

5. The standard deviation of elements in an array The standard deviation of a series of numbers,

a1, · · · , an, is given by the following formula:

320 12 Arrays

√

∑n
i=1(ai − the average)2

n − 1

Write a program, StdDev that generates an array of random real numbers greater than or equal

to 0 and less than 10,000, and then computes the standard deviation of the elements in the array.

The user specifies the length of the array. Since the formula has n − 1 in the denominator, the

length of the array must be greater than or equal to 2. To obtain an integer greater than or equal

to 2, the program keeps asking the user to enter a value for the length until the value entered is

greater than or equal to 2. After the calculation, the program must print the elements in the array,

the average, and the standard deviation. Each real number, when printed, must be formatted by

allocating four character spaces before the decimal point and ten digits after the decimal point.

The following is an execution example of the program:

1 Enter the length: 1
2 Enter the length: 0
3 Enter the length: 10
4 0: 8695.0374293399
5 1: 4425.0711045508
6 2: 187.4407268688
7 3: 6606.5239258968
8 4: 8713.3827987525
9 5: 1437.1711093935

10 6: 2549.7630539290
11 7: 7171.4009860844
12 8: 6077.1461415774
13 9: 7729.9647709803
14 average = 5359.2902047373
15 stddev = 3059.5779033118

6. Counting decimals Write a program, CountDecimals, that receives an indefinite number of

tokens from the user, and then, in the series of tokens, computes the number of occurrences of

each decimal. The program must report the count of each decimal on the screen at the end.

The program may work as follows:

1 > CSC120
2 > CSC220
3 > BIL169H
4 > ECO101
5 > 0: 3
6 1: 4
7 2: 3
8 3: 0
9 4: 0

10 5: 0
11 6: 1
12 7: 0
13 8: 0
14 9: 1

The ’>’ appearing at the start of the first four lines is the prompt.

7. Modification to the prime number finding problem The prime number discovery program

we discussed in this chapter prints all the primes it has discovered. Write a new version,

PrimeFindingNew, where the program produces an array of int data consisting of the prime

numbers that have been discovered, and then prints the elements in the array.

Exercises 321

One way to generate such an array is to collect all the indexes at which the elements of flags
are true. To accomplish this, the program may scan the flags to obtain the number of times

true appears as an element. This is the length of the array to be returned. After that, the program

can instantiate an array of int data whose length is equal to the count that just has been obtained.

Then, the program stores in the array the indexes at which the elements of flags are true.

8. toCharArray Write a program, MyToCharArray, that receives an input line from the user,

converts it to an array of char values, and prints the elements in the array. The program must

generate the output with six elements per line with three character spaces allocated to the indexes

and one character space allocated for the element, as shown in the example below.

The program may work as follows:

1 Enter your input: This is a test of toCharArray.
2 0:T, 1:h, 2:i, 3:s, 4: , 5:i
3 6:s, 7: , 8:a, 9: , 10:t, 11:e
4 12:s, 13:t, 14: , 15:o, 16:f, 17:
5 18:t, 19:o, 20:C, 21:h, 22:a, 23:r
6 24:A, 25:r, 26:r, 27:a, 28:y, 29:.

Programming Projects

9. The distribution of token lengths Write a program, TokenLengthDist, that receives an

indefinite number of tokens from the user, and then computes the distribution of the lengths of

the tokens. Treat any token having length greater than 15 as having length exactly 16. The user

specifies the end of input by entering CTRL-D. To count, the program uses an array of length 17

and ignores slot 0.

The program may work as follows:

1 Below enter any number of tokens. At the end enter CTRL-D.
2 I am writing a program by the name of TokenLengthDist. This is an

interesting problem to solve.
3 1:2
4 2:6
5 3:1
6 4:2
7 5:0
8 6:1
9 7:3

10 8:0
11 9:0
12 10:0
13 11:1
14 12:0
15 13:0
16 14:0
17 15:0
18 16:1

10. The Birthday Paradox The “Birthday Paradox” states: the chances are 50–50 for a group

of random 23 people to contain a pair of people having the same birthdays. Write a program,

BirthdayParadox, that tests this paradox as follows: The program creates a 365-element

array of boolean values (initially the elements are all false). The program also initializes

an int variable that plays the role of a counter to 0. For an indefinite number of times, the

program generates a random integer between 0 and 364. After generating each random integer, if

the element of the array at the randomly generated index is false, then the program changes the

322 12 Arrays

element of the array to true, and increases the value of the counter by 1; otherwise, the program

exits the loop. After exiting the loop, the program reports the final value of the counter.

The program may work as follows (two runs):

1 % java BirthdayParadox
2 Found a collision at round 27
3 % java BirthdayParadox
4 Found a collision at round 48

11. More on the Birthday Paradox As a continuation of the previous problem, write a program

BirthdayParadoxStats that receives a positive integer r from the user, executes the

experiment as described in the previous question r times, stores the r counter values thus

generated in an array of int data having r elements, and then reports the contents of this r-

element array. The output of the result must produce 15 elements per line, as follows:

1 Enter the number of rounds: 200
2 33 21 33 26 36 51 47 44 34 29 4 21 23 19 10
3 21 33 13 48 59 37 12 11 31 30 54 8 28 19 29
4 40 4 9 26 33 19 10 30 16 60 5 34 16 31 25
5 38 30 19 44 31 48 43 30 20 25 4 16 50 15 32
6 13 19 25 30 48 35 26 38 20 33 6 20 26 33 54
7 25 6 37 27 35 11 10 28 29 6 21 7 7 30 43
8 20 22 14 30 14 16 23 37 25 47 38 15 25 27 9
9 19 15 27 31 29 25 10 33 15 13 15 30 44 34 39

10 15 50 10 22 9 14 28 38 31 37 8 23 21 31 34
11 30 30 28 18 17 36 12 14 32 22 40 18 44 35 10
12 31 81 11 20 21 21 33 12 48 21 12 23 26 30 15
13 7 20 41 14 12 27 27 10 36 6 32 38 35 34 22
14 47 18 3 14 6 33 20 34 24 20 51 11 10 20 30
15 24 21 21 21 31

12. Random permutation of N things Write a program, RandomNThings, that receives a

positive integer num from the user, and then generates a random permutation of indexes

0, ..., N - 1. The following algorithm can be used to accomplish this task:

• Instantiate an array, perm, having length num.

• For each index i between 0 and N - 1, store i in perm[i].

• Use a for-loop that iterates over the sequence 0, ..., num - 2with a variable, j. At each

round, generate a random integer between j and num - 1, store the integer in a variable, k,

and then exchange the values between perm[j] and perm[k].

13. Generating a random rectangle in a range Write a program, RandomRectangle, that

receives a positive integer from the user, and then prints a rectangle. Let size be the variable

in which the integer that the user enters is recorded. The coordinates of the rectangle should be

integers between 0 and size (that is, the value size is included in the range). Each side of the

rectangle should be either parallel to the horizontal axis or parallel to the vertical axis.

To represent the rectangle generated, use the coordinates of the lower left corner and the upper

right corner. Since there are four values total in the representation, use a four-element array of

int values for the representation, where the four elements in the array are the x-coordinate of

the lower left corner, the y-coordinate of the lower left corner, the x-coordinate of the upper right

corner, and the y-coordinate of the upper right corner in this order.

Exercises 323

The following algorithm can be used for the task.

• Select four random integers between 0 and size and store them in a four-element array of

int values, coord.

• If either coord[0] == coord[2] or coord[1] == coord[3], go back

to the first step.

• If either coord[0] > coord[2], exchange the values between them.

• If either coord[1] > coord[3], exchange the values between them.

13The Class Arrays and Resizing Arrays

13.1 The Class Arrays

Arrays is a class that provides static methods for manipulating and examining arrays. The class

Arrays belongs to the package java.util, so the class must be imported, using one of the

following two:

import java.util.Arrays;

import java.util .*;

Here are some methods of Arrays. Let T be any data type.

• boolean Arrays.equals(T[] x, T[] y)
This method returns a boolean value representing whether or not the two arrays x and y have

the same lengths, and the elements are equal between x and y at all positions. If T is a primitive

data type, the equality between elements is tested with ==. If T is an object data type, the result

depends on how the equality method, equals, is executed in the class T.

• void Arrays.fill(T[] x, T v)
This method fills the array x with the value v.

• void Arrays.fill(T[] x, int fromIndex, int toIndex, T v)
The method stores v in the elements x[fromIndex], ..., x[toIndex - 1].

• T[] Arrays.copyOf(T[] x, int copyLength)
This method returns an array consisting of the first copyLength elements of the array x.

If the copyLength is greater than x.length, the method stores the default value of the data

type T in the remaining copyLength - x.length elements of the returned array.

• void Arrays.sort(T[] x)

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_13

325© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_13

326 13 The Class Arrays and Resizing Arrays

This method rearranges the elements of x in increasing order. If T is a primitive data type, < is

used for comparison, but a tie can be broken arbitrarily. If T is an object data type, T must admit

comparison with a method named compareTo (see Chap. 17 for comparable data types).

• void Arrays.sort(T[] x, int fromIndex, int toIndex)
This is a variant of sort. Sorting is applied only on the elements having indexes between

fromIndex and toIndex - 1.

The next program demonstrates the use of the methods through a series of actions.

Step 1: The program instantiates a String array of ten elements.

Step 2: The program fills the array with a String literal "abc" using Arrays.fill.

Step 3: At each index of the array, the program generates a random four-letter String data and

stores it at the index.

Step 4: The program creates a copy of the array having the same length as the original using

Arrays.copyOf.

Step 5: The program compares the original and the copy using Arrays.equals.

Step 6: The program sorts the elements of the copy using Arrays.sort.

Step 7: The program compares the original and the copy using Arrays.copyOf.

After each action, the program announces the action that has been performed, and then prints the

contents of the relevant arrays. To print the contents of an array, the program uses a method named

print. The method receives an array as its formal parameter, and then prints all the elements in the

array in just one line, with one white space attached in front of each element (Line 8).

1 import java.util .*;

2 public class ArraysMethods

3 {

4 public static void printArray(String [] data)

5 {

6 for (int p = 0; p < data.length; p ++)

7 {

8 System.out.print(" " + data[p]);

9 }

10 System.out.println ();

11 }

12

Listing 13.1 A program that demonstrates the use of methods from class Arrays (part 1). The method for printing
an array

To generate a random String in Step 3, the program uses a method named randomString.

The method randomString receives an int value as its formal parameter, len, and returns a

random String object having length len (Line 13). To accomplish this, the method generates len
random lowercase letters and connects them into one String data. A for-loop is used to count from

1 to len (Line 16). To generate a single random letter, the method generates a random relative index

between 0 and 25 with the formula appearing in Line 18:

int diff = (int)(Math.random () * 26);

13.1 The Class Arrays 327

The method then converts the relative index value, diff, to the absolute index in the ASCII table by

adding it to ’a’, and then casting (char) to the sum, as appearing in the right-hand side of Line 19:

(char)(’a’ + diff)

The value of this char is appended directly to a String variable, value. The initial value of this

variable is "" (Line 15). The method at the end returns this value (Line 21). If the value of len is

negative, the method does not execute the loop-body, so the return value of the method is an empty

String.

13 public static String randomString(int len)

14 {

15 String value = "";

16 for (int j = 1; j <= len; j ++)

17 {

18 int diff = (int)(Math.random () * 26);

19 value += (char)(’a’ + diff);

20 }

21 return value;

22 }

23

Listing 13.2 A program that demonstrates the use of methods from class Arrays (part 2). The method for randomly
generating a (gibberish) character sequence of length len

The remainder of the code is the method main. The method main performs the following seven-

step action.

1. After creating the initial array named data (Line 26), the program announces that it has created

an array (Line 27), and then prints the contents of data (Line 28).

2. The program fills data with "abc" (Line 30), announces that it has filled data (Line 31), and

then prints the contents of data (Line 32).

3. The program fills data with random elements (Lines 34–37), announces that it has stored random

elements (Line 38), and then prints the contents of data (Line 39).

4. The program creates a copy of data having the same length, stores it in copied (Line 41),

announces that it has created a copy (Line 42), and then prints the contents of copied (Line 43).

5. The program prints the result of comparing between data and copied (Line 45).

6. The program sorts copied (Line 47), announces that it has sorted copied (Line 48), and then

prints the contents of copied (Line 49).

7. The program prints the result of comparing between data and copied (Line 50).

The probability that an 10-element array of random String data is already sorted is 10!/1010. The

probability that the value of the equality test is still true in (7) is thus approximately 0.000363. This

means that we can anticipate that the result of the equality test is very likely to change from true to

false.

328 13 The Class Arrays and Resizing Arrays

The code for the method main is presented next, with the calls to Arrays methods highlighted:

24 public static void main(String [] args)

25 {

26 String [] data = new String[10];

27 System.out.println("Before assignment");

28 printArray(data);

29

30 Arrays.fill(data , "abc");

31 System.out.println("Filled with \"abc\"");

32 printArray(data);

33

34 for (int pos = 0; pos < 10; pos ++)

35 {

36 data[pos] = randomString(4);

37 }

38 System.out.println("Filled with random Strings");

39 printArray(data);

40

41 String [] copied = Arrays.copyOf(data , data.length);

42 System.out.println("A copy has been generated");

43 printArray(copied);

44

45 System.out.printf("Equality :%s%n", Arrays.equals(data , copied));

46

47 Arrays.sort(copied);

48 System.out.println("The copy has been sorted");

49 printArray(copied);

50 System.out.printf("Equality :%s%n", Arrays.equals(data , copied));

51 }

52 }

Listing 13.3 A program that demonstrates the use of methods from class Arrays (part 3). The method main

Here is an execution example of the code:

1 Before assignment

2 null null null null null null null null null null

3 Filled with "abc"

4 abc abc abc abc abc abc abc abc abc abc

5 Filled with random Strings

6 sbbo zgqz qzwa wgjj kvii nyff tcot ided hugg ndgj

7 A copy has been generated

8 sbbo zgqz qzwa wgjj kvii nyff tcot ided hugg ndgj

9 Equality:true

10 The copy has been sorted

11 hugg ided kvii ndgj nyff qzwa sbbo tcot wgjj zgqz

12 Equality:false

13.2 Reordering Elements in an Array 329

13.2 Reordering Elements in an Array

Programmers often encounter a situation where the order of some elements in an array must be

rearranged. Such a task can be accomplished by:

• instantiating a new array with the same length as the original,

• storing the elements of the original in the new array at their respective new positions, and then,

• replacing the original array with the new array.

In addition, if either the number of elements that are affected by the rearrangement is small or

the rearrangement is highly regular, the task can be accomplished without using another array. We

call rearranging the order without using another array reordering elements in place. A key idea in

reordering elements in place is the element swap. The element swap is exchanging values between

two elements.

Suppose x and y are variables of some type T. To swap the values between x and y, we can use a

temporary storage, say temp of the same type T, and execute:

1 T temp = x;
2 x = y;
3 y = temp;

or in the reverse order:

1 T temp = y;
2 y = x;
3 x = temp;

We can use this technique for exchanging values between two elements of an array. Suppose myData
is an array of type T. Suppose, also, p and q are valid indexes of this array. In other words, the values

of p and q are between 0 and myData.length - 1. We can swap values between myData[p]
and myData[q] using a temporary storage, temp, of type T as follows:

1 T temp = myData[p];
2 myData[p] = myData[q];
3 myData[q] = temp;

The following program demonstrates the use of this technique for element swapping.

The program uses an array literal. The syntax for creating an array literal of elements of type T is:

new T[]{ ELEMENT_1, ..., ELEMENT_K }

where ELEMENT_1, ..., ELEMENT_K are the elements of the array. For example, the code:

1 String [] a;

2 int[] b;

3 a = new String []{ "ABC", "DEF", "GHI" };

4 b = new int []{ 10, 9, 8, 7, 6 };

instantiates an array of String data having length three and stores it in a, and then instantiates an

array of int data having length five and stores it in b.

330 13 The Class Arrays and Resizing Arrays

In the program, we use a 16-element array of String data, words. Initially, the elements of

the array are the words from the title of a Pink Floyd tune: Several Species of Small Furry Animals

Gathered Together in a Cave and Grooving With a Pict from their album Ummagumma.1 We then

swap elements between indexes 3 and 5.

The code demonstrates the modification by printing the elements of the array each time a change

takes place on it. To print the contents, it uses a method named printArray (Line 3). The formal

parameter of the method is an array of String data named words. The method uses a for-loop that

iterates over the sequence 0, ..., words.length - 1 with a variable named i (Line 5), and

prints each element with one white space preceding it. As we have done previously, the format to be

used for inserting the white space is " " + words[index]. Since the length of words can be

possibly large, the program prints the newline after printing eight elements successively in one line as

well as after printing all the elements. Since the value of i starts from 0, after printing eight elements

successively in one line, the value of i has the remainder 7 when divided by 8. Since the last valid

index is words.length - 1, the condition for testing if the newline character must be printed is

i % 8 == 7 || i = words.length - 1

1 public class ArraySwap

2 {

3 public static void print(String [] words)

4 {

5 for (int i = 0; i < words.length; i ++)

6 {

7 System.out.print(" " + words[i]);

8 if (i % 8 == 7 || i == words.length - 1)

9 {

10 System.out.println ();

11 }

12 }

13 }

Listing 13.4 A program that swaps elements between two positions in an array (part 1). The method print

The main part of the program goes as follows:

1. Create a String[] literal words that holds the words from the title of the song, using the syntax

for creating an array literal (Lines 16–19), and then print the contents of the array (Line 20).

2. Copy the value at position 3 to a temporary variable named temp (Line 22).

3. Copy the value at position 5 to position 3 (Line 24), and then print the contents of the array (Line

24).

4. Finalize the swap by copying the value from temp to position 5 (Line 26), and then print the

contents (Line 27).

1Pink Floyd is a British Rock band that was formed in 1968 and disbanded in 2012. It is one of the most successful rock
bands in history. Ummagumma is their double vinyl album that was issued in 1969.

13.2 Reordering Elements in an Array 331

14 public static void main(String [] args)

15 {

16 String [] words = new String []{

17 "Several", "Species", "of", "Small", "Furry", "Animals",

18 "Gathered", "Together", "in", "a", "Cave", "and",

19 "Grooving", "With", "a", "Pict" };

20 print(words);

21

22 String temp = words[3];

23 words[3] = words[5];

24 print(words);

25

26 words[5] = temp;

27 print(words);

28 }

29 }

Listing 13.5 A program that swaps elements between two positions in an array (part 2). The method main

Figure 13.1 illustrates the series of actions performed on the array elements.

Fig. 13.1 Swapping
values between two array
elements Several

species

of

Small

Furry

Animals

Gathered

Together

in

a
temporary

words words words

Small
Cave

and

Grooving

with

a

Pict

and

Grooving

with

a

Pict

and

Grooving

with

a

Pict

Several

species

of

Furry

Animals

Gathered

Together

in

a

Cave

Several

species

of

Small

Furry

Animals

Gathered

Together

in

a

Cave

Animals

332 13 The Class Arrays and Resizing Arrays

Fig. 13.2 Reversing the
order of appearance of
elements in an array

. . .

0 1 2 3 LENGTH-1

LENGTH-2

LENGTH-3

LENGTH-4

The result of executing the code is as follows:

1 Several Species of Small Furry Animals Gathered Together
2 in a Cave and Grooving With a Pict
3 Several Species of Animals Furry Animals Gathered Together
4 in a Cave and Grooving With a Pict
5 Several Species of Animals Furry Small Gathered Together
6 in a Cave and Grooving With a Pict

13.2.1 Reversing the Order of Elements

Suppose data is an array of type T and we want to reverse the order in which the elements

appear in data. To accomplishing the task, we swap elements between indexes i and

data.length - 1 - i for all values of i between 0 and data.length / 2 - 1.

1 T temp;

2 for (int i= 0; i <= data.length / 2 - 1; i ++)

3 {

4 temp = data[i];

5 data[i] = data[data.length - 1 - i];

6 data[data.length - 1 - i] = temp;

7 }

Figure 13.2 visualizes the action of the reversal by exchange. The choice of the maximum value

data.length / 2 - 1 is important. In the case where data.length is an even number,

say 2 * m, the innermost exchange is between the indexes m - 1 and m. In the case where

data.length is an odd number, say 2 * m + 1, the innermost exchange is between the indexes

m - 1 and m + 1, so the unique middle element, the one located at index m, is untouched.

13.2.2 Cyclic Shifting

Another application of element swapping is cyclic shifting. Cyclic shifting is to move all the elements

in one direction and placing the displaced element at the other end. Depending on whether the

elements move to lower indexes or higher indexes, we call the action the left cyclic shift and the

right cyclic shift. Here is the more formal definition of cyclic shifting. Suppose we have an array

named x having length n at hand.

13.2 Reordering Elements in an Array 333

Fig. 13.3 The results
obtained by executing
cyclic shifts

A B C D E F G HmyStrings

B C D E F G H
A

after left

cyclic shiftingmyStrings

HB C D E F GAmyStrings

B C D E F GA
after right

cyclic shiftingmyStrings
H

• By left cyclic shifting of x, we mean to move, concurrently, x[1], ..., x[n - 1] to

x[0], ..., x[n - 2] and x[0] to x[n - 1].

• By right cyclic shifting of x, we mean to move, concurrently, x[0], ..., x[n - 2]
to x[1], ..., x[n - 1] and x[n - 1] to x[0].

Figure 13.3 visualizes the two cyclic shifts.

An in-place cyclic shift can be accomplished as follows:

1. Save the element that needs to rotate around (that is, the element that needs to move from one end

to the other) in a temporary storage. This creates an unoccupied slot in the array.

2. While the destination of the element in the temporary storage becomes unoccupied, find the

element that needs to move into the slot that is presently unoccupied, and move the element to

its destination.

3. Moving the displaced element to its destination.

The program ArrayCyclicShifting demonstrates both left and right cyclic shifting using

the above algorithm of successive relocation (Fig. 13.4). The program creates an array of random

integers between 0 and 99, and then performs a series of cyclic shifts while printing the contents of

the array at the beginning and after each cyclic shift. The first part of the source code is the method

printArray. This method prints the elements of an array of int data that is given as the parameter

(Line 3). The method prints all the elements of the array in one line by using the printf format of

" %2d". Since the elements of the array are between 0 and 99, exactly three character spaces will be

used for an element.

334 13 The Class Arrays and Resizing Arrays

Fig. 13.4 An algorithm
for left cyclic shift 1 3 5 7 9 11 13 15

1 3 5 7 9 11 13 151

temporary

3 3 5 7 9 11 13 151

3 5 5 7 9 11 13 151

3 15 7 9 11 13 151

initial

save element 0

copy element 1

to element 0

copy element 2

to element 1

copy temporary

to element 7

more copying

.

.

.

1 public class ArrayCyclicShift

2 {

3 public static void printArray(int[] numbers)

4 {

5 for (int index = 0; index < numbers.length; index ++)

6 {

7 System.out.printf(" %2d", numbers[index]);

8 }

9 System.out.println ();

10 }

11

Listing 13.6 A program that performs cyclic shifting (part 1). The method printArray

Next, we present the method for left cyclic shift, leftCyclicShift. The method has an array

of int data, numbers, as its formal parameter (Line 12). The algorithm that method executes is as

follows:

1. Store numbers[0] in an int variable named temporary (Line 15).

2. Using a for-loop that iterates over the sequence 1, ..., numbers.length - 1 with a

variable named index, store the value of numbers[i] in numbers[i - 1] (Lines

16–19).

3. Store the value in temporary in numbers[numbers.length - 1] (Line 20).

After completing the shift, the method prints the contents of the array using the method printArray
(Line 21).

13.2 Reordering Elements in an Array 335

12 public static void leftCyclicShift(int[] numbers)

13 {

14 System.out.println("Left Cyclic Shift");

15 int temporary = numbers[0];

16 for (int index = 1; index < numbers.length; index ++)

17 {

18 numbers[index - 1] = numbers[index];

19 }

20 numbers[numbers.length - 1] = temporary;

21 printArray(numbers);

22 }

23

Listing 13.7 A program that performs cyclic shifting (part 2). The method for left cyclic shifting

The method for right cyclic shifting, rightCyclicShift, moves the elements in the opposite

direction (Line 24), by executing the following algorithm:

1. Store numbers[numbers.length - 1] in an int variable named temporary (Line

27).

2. Using a for-loop that iterates over the sequence numbers.length - 2, ..., 0 with a

variable named index, store the value of numbers[i] in numbers[i + 1] (Lines

28–31).

3. Store the value saved in temporary in numbers[0] (Line 32).

24 public static void rightCyclicShift(int[] numbers)

25 {

26 System.out.println("Right Cyclic Shift");

27 int temporary = numbers[numbers.length - 1];

28 for (int index = numbers.length - 1; index >= 1; index --)

29 {

30 numbers[index] = numbers[index - 1];

31 }

32 numbers[0] = temporary;

33 printArray(numbers);

34 }

35

Listing 13.8 A program that performs cyclic shifting (part 3). The method for right cyclic shifting

The last part of the code is the method main. The method main does the following:

1. Instantiate an array of 20 elements (Line 38) with random integers in the range 0..99 (Lines 39–42).

2. Print the contents of the array (Line 44).

3. Execute the right cyclic shift method twice (Lines 46 and 47). (The right cyclic method prints the

contents of the array before returning.)

4. Execute the left cyclic shift once (Line 48). (The left cyclic method prints the contents of the array

before returning.)

336 13 The Class Arrays and Resizing Arrays

36 public static void main(String [] args)

37 {

38 int[] numbers = new int[20];

39 for (int index = 0; index < numbers.length; index ++)

40 {

41 numbers[index] = (int)(Math.random () * 100);

42 }

43 System.out.println("Original");

44 printArray(numbers);

45

46 rightCyclicShift(numbers);

47 rightCyclicShift(numbers);

48 leftCyclicShift(numbers);

49 }

Listing 13.9 A program that performs cyclic shifting (part 4). The method main

Here is the result of executing the program:

1 Original
2 1 49 24 90 46 58 56 2 58 27 34 64 73 20 33 48 15 0 12 10
3 Right Cyclic Shift
4 10 1 49 24 90 46 58 56 2 58 27 34 64 73 20 33 48 15 0 12
5 Right Cyclic Shift
6 12 10 1 49 24 90 46 58 56 2 58 27 34 64 73 20 33 48 15 0
7 Left Cyclic Shift
8 10 1 49 24 90 46 58 56 2 58 27 34 64 73 20 33 48 15 0 12

13.3 Modifications of an Array That Require Resizing

13.3.1 Insertion and Deletion

Once an array has been instantiated, its length cannot be changed. To add an element to an existing

array or to remove an element from an array, one must create a new array where the elements appear

in their designated places, and then replace the array is currently used with the new one. Suppose the

array that is currently used has the name oldArray. Here are specific steps to follow to insert an

element, say x, to this array at some index p.

1. Instantiate a new temporary array, say newArray.

2. For all indexes i that are strictly smaller than p, copy oldArray[i] to newArray[i].

3. Place x in newArray[p].

4. For all indexes i that are strictly greater than p, copy oldArray[i] to newArray[i + 1].

5. Assign newArray to oldArray.

Figure 13.5 visualizes this action. In the middle three steps, there is no overlap among the destinations

of the elements, so the orders of the three steps can be permuted.

To remove the element at some index p, we execute the following algorithm:

1. Instantiate a new temporary array with a different name, say newArray.

2. For all indexes i that are strictly smaller than p, copy oldArray[i] to newArray[i].

13.3 Modifications of an Array That Require Resizing 337

Fig. 13.5 Insertion of an
element in an array

index

oldOne

newOne

new element

Fig. 13.6 Deleting an
element from an array

oldOne

index

newOne

3. For all indexes i that are strictly greater than p, copy oldArray[i] to newArray[i - 1].

4. Set newArray to oldArray.

We can visualize this action in a figure like Fig. 13.6. In the middle two steps, there is no overlap

among the destinations of the elements, so the order of the two steps can be switched.

The following program, ResizeArray, demonstrates the methods for insertion and removal we

have just discussed using arrays of String values. The program uses an array, data, for maintaining

a list of String values. The program initializes the array by receiving its length and individual

elements from the user. The program then repeats interactions with the user to (a) insert an element

to the array, (b) remove an element from the array, or (c) present the elements of the array. This is

repeated until the user instructs the program to terminate. The insertion and removal are carried out

by methods, insert and remove. Both insert and remove return a new array constructed from

the original by making the requested modifications. The method main calls these two methods, and

replaces data with the array that the methods return.

The first part of the code is the method insert. The formal parameters of the method are a

String array named data, an int value named target, and a String object w. As mentioned

above, the return type of the method is an array of String data (Line 4). The task to be performed

is to return an array created from data by inserting w at index target. The method executes the

following algorithm to accomplish the task:

1. Create a new array named newArray whose length is data.length + 1 (Line 6).

2. Copy each element data[pos] whose index, pos, is smaller than target to

newArray[pos] (Lines 7–10).

3. Store w in newArray[target] (Line 11).

4. Copy each element data[pos] whose index, pos, is greater than target to

newArray[pos + 1] (Lines 12–15).

5. Return newArray (Line 16).

338 13 The Class Arrays and Resizing Arrays

1 import java.util .*;

2 public class ResizeArray

3 {

4 public static String [] insert(String [] data , int target , String w)

5 {

6 String [] newArray = new String[data.length + 1];

7 for (int pos = 0; pos < target; pos ++)

8 {

9 newArray[pos] = data[pos];

10 }

11 newArray[target] = w;

12 for (int pos = target; pos < data.length; pos ++)

13 {

14 newArray[pos + 1] = data[pos];

15 }

16 return newArray;

17 }

18

Listing 13.10 A program that demonstrates resizing of an array (part 1). The class header and the method insert

The next part is the method, remove. The formal parameters of the method are a String array

data and an int value target (Line 19). The task to be performed is to return an array created

from data by removing the element at index target. To accomplish the required task, the method

does the following:

1. Create a new array newArray whose length is data.length - 1 (Line 21).

2. Copy each element data[pos] whose index, pos, is smaller than target to

newArray[pos] (Lines 22–25).

3. Copy each element data[pos] whose index, pos, is greater than target to

newArray[pos - 1] (Lines 26–29).

4. Return newArray (Line 30).

19 public static String [] remove(String [] data , int target)

20 {

21 String [] newArray = new String[data.length - 1];

22 for (int pos = 0; pos < target; pos ++)

23 {

24 newArray[pos] = data[pos];

25 }

26 for (int pos = target + 1; pos < data.length; pos ++)

27 {

28 newArray[pos - 1] = data[pos];

29 }

30 return newArray;

31 }

32

Listing 13.11 A program that demonstrates resizing of an array (part 2). The method remove

13.3 Modifications of an Array That Require Resizing 339

In the method main, the program receives the initial length of the array from the user (Line 37),

instantiates a new array with the number of elements specified by the user (Line 38), and then receives

the initial elements that to be stored in the array from the user (Lines 40–44). The variable pos to

specify a position in the array is declared outside the for-loop (Line 39). This variable is used in other

places of the code.

33 public static void main(String [] args)

34 {

35 Scanner keyboard = new Scanner(System.in);

36 System.out.print("Enter size: ");

37 int size = keyboard.nextInt ();

38 String [] data = new String[size];

39 int pos;

40 for (pos = 0; pos < data.length; pos ++)

41 {

42 System.out.printf("Enter element %d: ", pos);

43 data[pos] = keyboard.next();

44 }

45

Listing 13.12 A program that demonstrates resizing of an array (part 3). The part responsible creating the initial array

Two String variables, value and answer, are used for interaction (Line 46). The available

actions are presented with the first letters of the names of the actions. The first letters of the action

names are ’I’, ’R’, ’V’, and ’Q’ (Lines 49). The user enters an action to be performed as a

String value, and this is stored in answer (Line 50). To direct the execution, the program uses an

if-else statement (Line 51)

In the case where the first character is ’I’ (Line 51), the action to be performed is insertion. The

program receives the position of insertion, pos, and the element, value, to be inserted (Lines 53–

56). The program then calls insert(data, pos, value), and then substitutes data with

the array that the method returns (Line 57).

In the case where the first character is ’R’ (Line 59), the action to be performed is removal. The

program receives the position where the element to be removed is located, and stores it in the variable

pos (Lines 61 and 62). The program then calls remove(data, pos), and then substitutes

data with the array that the method returns (Line 63).

In the case where the first character is ’V’ (Line 65), the action to be performed is showing the

data. Using a for-loop, the program prints the elements, one element per line, with their indexes (Lines

67–70).

In all other cases, there will be no action to be performed, but in the case where the first character

is ’Q’, the program exits the loop and terminates (Line 72).

340 13 The Class Arrays and Resizing Arrays

46 String value , answer;

47 do

48 {

49 System.out.print("(I)nsert , (R)emove , (V)iew , (Q)uit? ");

50 answer = keyboard.next();

51 if (answer.startsWith("I"))

52 {

53 System.out.print("Enter position: ");

54 pos = keyboard.nextInt ();

55 System.out.print("Enter value: ");

56 value = keyboard.next();

57 data = insert(data , pos , value);

58 }

59 else if (answer.startsWith("R"))

60 {

61 System.out.print("Enter position: ");

62 pos = keyboard.nextInt ();

63 data = remove(data , pos);

64 }

65 else if (answer.startsWith("V"))

66 {

67 for (pos = 0; pos < data.length; pos ++)

68 {

69 System.out.printf("%3d:%s%n", pos , data[pos]);

70 }

71 }

72 } while (!answer.startsWith("Q"));

73 }

74 }

Listing 13.13 A program that demonstrates resizing of an array (part 4). The do-while-loop

In the following execution example, the user enters the last names of eight of his favorite operatic

singers: George London, Dietrich Fischer-Dieskau, Astrid Varnay, Karita Mattila, Renee Fleming,

Birgit Nilsson, Wolfgang Windgassen, and Ben Heppner. The user makes some changes by adding

Christa Ludwig, removing Windgassen, and then adding Elisabeth Schwartzkopf.2 Note that the array

length is 8 at the start and the index position of the last element is 7, so to append the element at the

end, the user enters 8.

2George London (May 30, 1920 to March 24, 1985) was a Canadian concert and operatic bass-baritone. Dietrich
Fischer-Dieskau (May 28, 1925 to May 18, 2012) was a German concert and operatic baritone. Ibolyka Astrid Maria
Varnay (April 25, 1918 to September 4, 2006) was a Swedish-born American operatic soprano. Karita Marjatta Mattila
(born September 5, 1960) is a Finnish concert and operatic soprano. Renée Fleming (born February 14, 1959) is an
American concert and operatic soprano. Birgit Nilsson (May 17, 1918 to December 25, 2005) was a Swedish concert
and operatic soprano. Wolfgang Windgassen (June 26, 1914 to September 8, 1974) was a heldentenor. Thomas Bernard
Heppner (born January 14, 1956) is a retired Canadian tenor. He is a Companion of the Orders of Canada. Christa
Ludwig (March 16, 1928–) is a retired German concert and operatic mezzo-soprano. Dame Olga Maria Elisabeth
Friederike Schwarzkopf (9 December 1915 to 3 August 2006) was a German soprano. She was a Dame Commander of
the Most Excellent Order of the British Empire.

13.3 Modifications of an Array That Require Resizing 341

1 Enter size: 8
2 Enter element 0: London
3 Enter element 1: Fischer-Dieskau
4 Enter element 2: Varnay
5 Enter element 3: Mattila
6 Enter element 4: Fleming
7 Enter element 5: Nilsson
8 Enter element 6: Windgassen
9 Enter element 7: Heppner

10 (I)nsert, (R)emove, (V)iew, (Q)uit? I
11 Enter position: 8
12 Enter value: Ludwig
13 (I)nsert, (R)emove, (V)iew, (Q)uit? V
14 0:London
15 1:Fischer-Dieskau
16 2:Varnay
17 3:Mattila
18 4:Fleming
19 5:Nilsson
20 6:Windgassen
21 7:Heppner
22 8:Ludwig
23 (I)nsert, (R)emove, (V)iew, (Q)uit? R
24 Enter position: 6
25 (I)nsert, (R)emove, (V)iew, (Q)uit? V
26 0:London
27 1:Fischer-Dieskau
28 2:Varnay
29 3:Mattila
30 4:Fleming
31 5:Nilsson
32 6:Heppner
33 7:Ludwig
34 (I)nsert, (R)emove, (V)iew, (Q)uit? I
35 Enter position: 2
36 Enter value: Schwartzkopf
37 (I)nsert, (R)emove, (V)iew, (Q)uit? V
38 0:London
39 1:Fischer-Dieskau
40 2:Schwartzkopf
41 3:Varnay
42 4:Mattila
43 5:Fleming
44 6:Nilsson
45 7:Heppner
46 8:Ludwig
47 (I)nsert, (R)emove, (V)iew, (Q)uit? Q

13.3.2 Adjoining Two Arrays

Next, we consider adjoining two arrays. Suppose we have at hand two arrays, list1 and list2,

whose elements are of some data type T, and we want to create a new array list3 by appending

the elements of list2 after the elements of list1. This task can be accomplished by instantiating

list3 as an array of length list1.length + list2.length, copying the elements from

list1 to the positions 0, ..., list1.length-1, and then copying the elements of list2
to the positions list1.length, ..., list1.length+list2.length-1.

342 13 The Class Arrays and Resizing Arrays

1 T[] list3 = new T[list1.length + list2.length];

2 for (int index = 0; index < list1.length; index ++)

3 {

4 list3[index] = list1[index];

5 }

6 for (int index = 0; index < list2.length; index ++)

7 {

8 list3[list1.length + index] = list2[index];

9 }

This code can be shorten slightly with the use of the method copyOf of the class Arrays. The

method call Arrays.copyOf(list1, list1.length + list2.length) returns an

array of length list1.length + list2.length, whose first list1.length elements form

an exact copy of list1. We obtain the array returned by the method call, and then copy the elements

of list2 to their respective positions.

1 // java.util.Arrays must be imported

2 T[] list3 = Arrays.copyOf(list1 , list1.length + list2.length);

3 for (int index = 0; index < list2.length; index ++)

4 {

5 list3[list1.length + index] = list2[index];

6 }

13.4 args

The formal parameter of the method main, String[] args, is an array that represents the tokens

that appear after the command, when a Java program is executed from a command line interface. The

array holds the tokens that follow the name of the Java program in the command line. For example, if

Foo is a Java class name and java Foo c1 c2 is typed as a command line, the array args of the

method main of Foo has length two with elements, "c1" and "c2". The character sequence that

appears after the command are interpreted with the syntax of the command line interface. In the case of

Unix-like environments, characters including ’|’, ’>’, ’<’, and ’;’, serve as some type of punc-

tuation. All the tokens appearing after any of these characters will be ignored when creating args.

Here is a program that simply prints the elements of the array one by one:

1 public class Args

2 {

3 public static void main(String [] args)

4 {

5 System.out.printf("args has length %d.%n", args.length);

6 for (int index = 0; index < args.length; index ++)

7 {

8 System.out.printf("args[%d] = %s%n", index , args[index]);

9 }

10 }

11 }

Listing 13.14 A program that prints the length and the elements of args

13.5 Searching for an Element in an Array 343

We present one execution example of the code. In the example, "% " is the prompt,

"java Args" is the execution command, and "10.0 -k, -n abc" is the sequence that

follows the command.

1 % java Args 10.0 -k, -n abc
2 args has length 4.
3 args[0] = 10.0
4 args[1] = -k,
5 args[2] = -n
6 args[3] = abc

If a semicolon appears, the part that follows is considered to be another command. In the following

case, the semicolon splits the command into two separate commands, and so the program is executed

twice.

1 % java Args 10.0 -k, -n abc; java Args -foobar -x
2 args has length 4.
3 args[0] = 10.0
4 args[1] = -k,
5 args[2] = -n
6 args[3] = abc
7 args has length 2.
8 args[0] = -foobar
9 args[1] = -x

13.5 Searching for an Element in an Array

13.5.1 Sequential Search

Searching in an array is the problem of checking, given some array a and a data key, if key is already

an element of a. A simple solution to the problem is to examine the elements of the array in order.

Such search is called the sequential search. Suppose that a is an array of String data and key is a

String value. A sequential search can be executed as follows:

1 boolean found = false;

2 int i;

3 for (i = 0; i < a.length; i ++)

4 {

5 if (a[i]. equals(key))

6 {

7 found = true;

8 break;

9 }

10 }

The value of found represents whether or not a match has been found. The value of i at the end

is the location of the first match. If there is no match, the value of i at the end is a.length. We

can convert the code fragment to a method that reports the outcome with an int return value. The

conversion needs two return statements. One substitutes the action inside the if-statement and the

other substitutes the action after the for-loop. Typically, the internal one returns the index at which a

match is found, the external one returns a special value, e.g., -1.

344 13 The Class Arrays and Resizing Arrays

1 for (int i = 0; i < a.length; i ++)

2 {

3 if (a[i]. equals(key))

4 {

5 return i;

6 }

7 }

8 return -1;

13.5.2 Binary Search

In the case where the data type of the elements of the array permits comparison and the array elements

are already sorted, binary search can be used to speed up the search.

A typical binary search executes a loop with two indexes, say low and high, and maintains the

following loop invariant:

(*) 0 <= low, low <= high, high <= names.length, and if a key appears in the array,

its index is between low and high - 1.

The loop goes as follows:

(A) Initialize low with 0 and high with names.length. The condition (*) holds.

(B) If low == high, because of (*), it can be guaranteed that the key does not appear in the array,

so report that key does not appear in the array.

(C) If low < high, compute (low + high)/2 and store the value in an int variable, mid.

(i) If names[mid].equals(key), the key has been found, so report the discovery

and terminate the search.

(ii) If names[mid].compareTo(key) < 0, it means that all the elements at indexes

<= mid are smaller than key, so update low with the value of mid + 1. The condition

(*) still holds.

(iii) Similarly, if names[mid].compareTo(key) > 0, it means that all the elements

at indexes >= mid are greater than key, so update high with the value of mid. The

condition (*) still holds.

The number of elements in the search range (between the indexes low and high - 1) is

high - low. Because mid is chosen to be a half-way point between low and hight, when either

low or high is updated in Steps C-ii or C-iii, the number of elements in the search range decreases

at least by one half. This means that for an initial range size of N , the number of times the loop-body

is executed is at most ⌈log2 N⌉. Even if there are one million elements in the array, it will require at

most 20 probes to complete the search.

Suppose the result of comparing between the search key and the array element is stored in an

int variable named result. We can use the following code for binary search. The loop terminates

when the value of result becomes 0 (meaning a match has been found) or the value of low
becomes high (meaning the search range has size 0). After the loop, the outcome of the search

can be determined based on the value of result. Furthermore, if it is 0, the value of mid is the

location of the match that has been found.

13.6 Arrays with Capacity and Size 345

1 int mid , low = 0, high = names.length , result = -1;

2 while (result != 0 && low < high)

3 {

4 mid = (low + high) / 2;

5 result = names[mid]. compareTo(key);

6 if (result < 0)

7 {

8 low = mid + 1;

9 }

10 else if (result > 0)

11 {

12 high = mid;

13 }

14 }

15 if (result == 0)

16 {

17 System.out.println (key + " was found at " + mid);

18 }

19 else

20 {

21 System.out.println (key + " was not found");

22 }

13.6 Arrays with Capacity and Size

Instead of resizing an array each time an element is inserted or removed, a fixed array can be used by

remembering how many slots of the array are currently occupied. We call it an array with capacity

and size. An array with capacity and size employs the following principles:

• We call the length of the array the capacity. This is the maximum number of elements you can

store in the array.

• The length of the array is greater than or equal to the largest possible number of elements that need

to be present in the array at the same time.

• An int variable is used to record the number of data being stored. We call it the size of the storage.

• The elements being stored in the array appear consecutively, at indexes between 0 and size - 1.

• A more data can be stored in the array if and only if the size is strictly less than the capacity.

• The element order in the array need not be preserved.

Figure 13.7 shows a drawing of such an array.3 Since the element order need not be preserved, the

following strategies can be used for implementing addition and removal.

• If size < capacity, a new element can be added to the array. To accomplish this, store the

new element at index size, and then increase the value of size by 1.

• If 0 <= p and p < size, the element at p can be eliminated. To accomplish this, copy the

element at size - 1 (the last element) to p, and then decrease the value of size by 1.

Both operations require just one element change in the array. Figure 13.8 shows these ideas.

3Joanne Brackeen (born July 26, 1938) is an American jazz pianist and composer. Terri Lyne Carrington (born August 4,
1965) is an American jazz drummer, composer, and producer. Carmen Mercedes McRae (April 8, 1922 to November 10,
1994) was an American jazz singer. Linda May Oh (born 1984 in Malaysia) is a Jazz bassist and composer. Esperanza
Emily Spalding (born October 18, 1984) is an American jazz bassist and singer. Blossom Dearie (April 28, 1924 to
February 7, 2009) was an American jazz singer, composer, and pianist.

346 13 The Class Arrays and Resizing Arrays

Fig. 13.7 The concept of
an array with capacity 8
and size 5. The slots 0
through 4 are presently
occupied

"Spalding,

Esperanza"

null

null

null

"Backeen,

Joanne"

"Carrington,

Terri Lyn"

"McRae,

Carmen"

"Oh, Linda

May"

String[] theNames;

int size;

capacity == theNames.length == 8

size == 5

Fig. 13.8 The concept of
an array with capacity and
size. The figure shows the
result of two consecutive
actions: to insert
"Dearie, Blossom"
and then to remove
"McRae, Carmen".
"Dearie, Blossom"
appears in two position
after the removal, but the
one at position 5 will not
be accessed because size
is now equal to 5

"Spalding,

Esperanza"

null

null

"Brackeen,

Joanne"

"Carrington,

Terri Lyn"

"McRae,

Carmen"

"Oh, Linda

May"

size == 6

"Dearie,

Blossom"

"Spalding,

Esperanza"

null

"Brackeen,

Joanne"

"Carrington,

Terri Lyn"

"Oh, Linda

May"

size == 5

"Dearie,

Blossom"

null

add "Dearie,

Blossom"

remove

"McRae,

Carmen"

"Spalding,

Esperanza"

null

null

"Brackeen,

Joanne"

"Carrington,

Terri Lyn"

"McRae,

Carmen"

"Oh, Linda

May"

size == 5

the beginning

null
"Dearie,

Blossom"

0

1

2

3

4

5

6

7

The program FixedSizeUnsorted is an example of arrays with capacity and size. The

application receives an initial set of String data from the user, and then interacts with the user

to make modifications and perform examinations on the data. The operations that are available on the

data are adding elements in succession, removing one element, viewing the collection, and searching

for all the elements matching a key specified by the user. The program uses four global variables,

String[] theNames, int capacity, int size, and Scanner keyboard (Lines 6–10).

The variables represent the array, the capacity of the array, the size of the array, and the keyboard

with which to receive input from the user. The method main consists of two method calls: setup
(Line 12), for setting up the initial array, and action (Line 13), for performing the interaction with

the user.

13.6 Arrays with Capacity and Size 347

1 import java.util .*;

2 // Using an array of fixed size

3 public class FixedSizeUnsorted

4 {

5 // global variables

6 public static int size , capacity;

7 public static String [] theNames;

8 public static Scanner keyboard;

9 // main

10 public static void main(String [] args)

11 {

12 setup();

13 action ();

14 }

Listing 13.15 A program that uses an array with capacity and size (part 1). The global variables and the method main

The method setUp instantiates the array after receiving the capacity from the user (Lines 19–21),

and then sets size to 0 (Line 22). The method uses Integer.parseInt for converting a String
data to an integer.

15 // initial set up

16 public static void setup()

17 {

18 keyboard = new Scanner(System.in);

19 System.out.print("Enter capacity: ");

20 capacity = Integer.parseInt(keyboard.nextLine ());

21 theNames = new String[capacity];

22 size = 0;

23 }

Listing 13.16 A program that uses an array with capacity and size (part 2). The method for the initial set up

The method action is for interacting with the user. The user chooses one from five actions: ’A’
for adding multiple elements, ’R’ for removing an element, ’P’ for printing all the elements, ’S’
for searching for an element with a key, and ’Q’ for quitting the program. The method uses a char
variable, c, to record the choice of action (Line 27). This is the first letter of the user input (Lines 30–

32). By choosing ’Q’, the user can terminate the loop that starts in Line 28. The flow is controlled

with a switch statement.

• For the action of adding elements, the program receives an indefinite number of lines from the user,

and calls add for each line entered (Lines 36–46). The user can stop the addition by entering an

empty line (Line 47). The empty line is not added to the array.

• For the action of removing and element, the program receives the index of the element to be

removed, and then calls the method remove. The input line that the user enters for the index

is converted to an integer using Integer.parseInt (Lines 50–51).

• For the action of searching for elements with a key, the program receives a search key from the

user, and then calls search (Lines 54–55).

• For the action of printing the array, the program calls print (Line 58).

348 13 The Class Arrays and Resizing Arrays

After quitting the loop, the method prints a message stating that it is terminating the program (Line

61).

24 // action

25 public static void action ()

26 {

27 char c;

28 do

29 {

30 System.out.print(

31 "A(dd), R(emove), P(rint), S(earch), Q(uit): ");

32 c = (keyboard.nextLine ()).charAt(0);

33 switch (c)

34 {

35 case ’A’:

36 System.out.println(

37 "Enter new names , empty line to finish: ");

38 String name;

39 do

40 {

41 System.out.print("> ");

42 name = keyboard.nextLine ();

43 if (name.length () != 0)

44 {

45 add(name);

46 }

47 } while (name.length () != 0);

48 break;

49 case ’R’:

50 System.out.print("Enter an index for removal: ");

51 remove(Integer.parseInt(keyboard.nextLine ()));

52 break;

53 case ’S’:

54 System.out.print("Enter a search key: ");

55 search(keyboard.nextLine ());

56 break;

57 case ’P’:

58 print ();

59 }

60 } while (c != ’Q’);

61 System.out.println("Closing ...");

62 }

Listing 13.17 A program that uses an array with capacity and size (part 3). The method that interacts with the user for
modifications and examinations

The method search (Line 63) executes sequential search for elements containing a given search

key. Like the example in Sect. 13.5.1, the program uses an indicator variable, found, to record

whether or not any match has been found. The initial value of the variable is false (Line 54).

The program uses a for-loop that iterates over all the valid indexes with a variable named pos (Line

67). In the loop-body, a match is tested with theName[pos].indexOf(key) >= 0 (Line

69). If this condition is true, the program stores true in the variable found, and then prints the

element theName[pos] with the value of pos (Lines 72 and 73). The value change of found is

only from false to true. After the loop, if the indicator variable found remains false, it means

that no match has been found, so the program reports that no match has been found (Line 76–78).

13.6 Arrays with Capacity and Size 349

In the method print, the programs uses a for-loop that iterates over the sequence of valid indexes,

0, ..., size - 1, to print the elements with their indexes (Lines 84–87).

63 // method for searching

64 public static void search(String aName)

65 {

66 boolean found = false;

67 for (int pos = 0; pos < size; pos ++)

68 {

69 if (theNames[pos]. indexOf(aName) >= 0)

70 {

71 found = true;

72 System.out.printf(

73 "Found at %04d in %s\n", pos , theNames[pos]);

74 }

75 }

76 if (!found)

77 {

78 System.out.println("Not found");

79 }

80 }

81 // method for printing data

82 public static void print()

83 {

84 for (int pos = 0; pos < size; pos ++)

85 {

86 System.out.printf("%04d:%s%n", pos , theNames[pos]);

87 }

88 }

Listing 13.18 A program that uses an array with capacity and size (part 4). The methods for searching and printing

The method add (Line 90) is for adding a single element. The program first checks if there is space

left in the array with the condition size < capacity (Line 92). If there is space left, the program

places the new element in the array at index size, and then increases the size by 1 (Line 94). The

two actions can be compressed into a single line:

theNames[size ++] = aName
.If there is no space left, the program prints an error message (Line 98).

89 // method for insertion

90 public static void add(String aName)

91 {

92 if (size < capacity)

93 {

94 theNames[size ++] = aName;

95 }

96 else

97 {

98 System.out.println("The storage is full.");

99 }

100 }

Listing 13.19 A program that uses an array with capacity and size (part 5). The method for adding a single element

350 13 The Class Arrays and Resizing Arrays

The method remove (Line 102) is for removing an element. The program checks if the value of

index is valid with the condition index >= 0 && index < size (Line 103). If the value is

valid, the program copies the last element to the suggested position, and then decreases size by 1.

The two actions can be combined into a single statement (Line 105):

theNames[index] = theNames[- size].

Since the - appears before size, the decrement occurs before the assignment to theName[index].

101 // method for removal

102 public static void remove(int index) {

103 if (index >= 0 && index < size)

104 {

105 theNames[index] = theNames[-- size];

106 }

107 else

108 {

109 System.out.println("The specified position does not exist.");

110 }

111 }

Listing 13.20 A program that uses an array with capacity and size (part 6). The method for removing an element

Here is an execution example of the code, where the names of several notable female jazz musicians

appear as data to be stored.4

1 java FixedSizeUnsorted
2 Enter capacity: 100
3 A(dd), R(emove), P(rint), S(earch), Q(uit): A
4 Enter new names, empty line to finish:
5 > Joanne Brackeen
6 > Terri Lyn Carrington
7 > Blossom Dearie
8 > Diana Krall
9 > Carmen McRae

10 > Linda May Oh
11 > Sarah Vaughan
12 > Dianne Reeves
13 > Norma Winstone
14 > Nancy Wilson
15 >
16 A(dd), R(emove), P(rint), S(earch), Q(uit): P
17 0000:Joanne Brackeen
18 0001:Terri Lyn Carrington
19 0002:Blossom Dearie
20 0003:Diana Krall
21 0004:Carmen McRae
22 0005:Linda May Oh

4Diana Jean Krall (born November 16, 1964) is a Canadian jazz pianist and singer. She is an Officer of the Order of
Canada and an officer of the Order of British Columbia, Canada. Dianne Reeves (born October 23, 1956) is an American
jazz singer. Sarah Lois Vaughan (March 27, 1924 to April 3, 1990) was an American jazz singer. Cassandra Wilson (born
December 4, 1955) is an American jazz musician, vocalist, songwriter, and producer. Nancy Wilson (born February 20,
1937) is an American singer, who has won three Grammy awards. Norma Ann Winstone (born 23 September 1941) is
a British jazz singer and lyricist. She has the rank Most Excellent Order of the British Empire.

13.6 Arrays with Capacity and Size 351

23 0006:Sarah Vaughan
24 0007:Dianne Reeves
25 0008:Norma Winstone
26 0009:Nancy Wilson
27 A(dd), R(emove), P(rint), S(earch), Q(uit): A
28 Enter new names, empty line to finish:
29 > Cassandra Wilson
30 > Norma Winstone
31 >
32 A(dd), R(emove), P(rint), S(earch), Q(uit): S
33 Enter a search key: Wilson
34 Found at 0009 in Nancy Wilson
35 Found at 0010 in Cassandra Wilson
36 A(dd), R(emove), P(rint), S(earch), Q(uit): R
37 Enter an index for removal: 0
38 A(dd), R(emove), P(rint), S(earch), Q(uit): P
39 0000:Norma Winstone
40 0001:Terri Lyn Carrington
41 0002:Blossom Dearie
42 0003:Diana Krall
43 0004:Carmen McRae
44 0005:Linda May Oh
45 0006:Sarah Vaughan
46 0007:Dianne Reeves
47 0008:Norma Winstone
48 0009:Nancy Wilson
49 0010:Cassandra Wilson
50 A(dd), R(emove), P(rint), S(earch), Q(uit): Q
51 Closing...

Summary

The class Arrays provides a number of useful methods.

Using a temporary variable, the values can be exchanged between two variables. Similarly, using a

temporary variable, the values can be exchanged between two array elements.

Using the idea of temporary variables, the elements of an array can be circularly moved and the

appearance order of elements in an array can be reversed.

Changing the length of an array requires an instantiation of a new array.

Sequential search is the standard search method of an element in an array.

If the elements are sorted, binary search can be used in place of sequential search.

An array with capacity and size can be used to store an indefinite number of elements in an array.

352 13 The Class Arrays and Resizing Arrays

Exercises

1. A method that checks some property of an array, 1

1 public static int matched(int[] a)

2 {

3 int count = 0;

4 for (int pos = 0; pos < (a.length + 1) / 2; pos ++)

5 {

6 if (a[pos] == a[a.length - pos - 1])

7 {

8 count ++;

9 }

10 }

11 return count;

12 }

For each of the following int arrays, state the value returned by the method:

(a) [0, 1, 2, 3, 3, 2, 1, 0]
(b) [0, 1, 2, 3, 0, 1, 2]
(c) [0, 1, 2, 3, 4, 3, 2, 1, 0]

2. A method that checks some property of an array, 2 For each of the following int arrays,

state the value returned by the method:

1 public static int matched(int[] a)

2 {

3 int count = 0;

4 int offset = a.length /2;

5 for (int position = 0; position < offset; position ++)

6 {

7 if (a[position] == a[offset + position])

8 {

9 count ++;

10 }

11 }

12 return count;

13 }

(a) {8, 7, 6, 8, 7, 6, 5}
(b) {0, 1, 4, 7, 1, 4}
(c) {0, 1, 2, 3, 4, 3, 2, 1, 0}

3. Copying and then sorting Write a method named copyAndSort(double[] data)
that returns the sorted version of data. Use methods from Arrays so that the source code does

not have loops.

4. Search for a key Write a public static method, searchForProbe, that returns if an array

contains a search key, where the method receives an array of String data and a String data

as the search key. If the array contains the key, method must return one of the indexes at which

the key appears; otherwise, the method must return -1.

5. Count matches in an array Write a public static method named countMatches that returns

the number of elements in an array of String data that are equal to a given key. The method

has two formal parameters. One is the array in which the key is searched for, and the other is the

search key.

13.6 Arrays with Capacity and Size 353

6. Counting elements in an array whose values are in a range Write a public static method

named searchInRange that returns the number of elements in an array of int values that are

strictly greater than a given int value and strictly less than another given int value. The formal

parameters of the method are the array in which the numbers are sought, the lower bound, and the

upper bound.

7. Counting elements in an array whose values are outside a range Write a public static method

named searchOutOfRange that receives an array of int values and two additional int
values as formal parameters, and returns the number of elements in the array that are either less

than the first int value or greater than the second int value.

8. Is a sequence increasing? Write a public static method named isIncreasing that returns

a boolean representing whether or not the elements in an array of int values are strictly

increasing. The method receives the array as its formal parameter.

9. Is a sequence decreasing? Write a public static method named isNondecreasing that

returns a boolean representing whether or not the elements of an array of int values are

non-decreasing. The method receives the array as its formal parameter.

10. Is a sequence pairwise distinct? Write a public static method named isDistinct that

returns a boolean representing whether or not two arrays of int values have no elements

in common. The arrays are given as formal parameters. The elements in the array and their order

of appearance must be preserved, so Arrays.sort cannot be performed on the parameters.

11. Even number checking Write a public static method named evenParityCheck that returns

a boolean representing whether or not any even number appears in an array. The method

receives the array as its formal parameter.

12. lastIndexOf an element Write a method named lastIndexInArray that computes the last

position at which a given key appears in the array, where the type of the elements and the key is

char. If the key does not appear in the array, the method should return -1. The method receives

the array and the key as its formal parameters.

13. secondToLastIndexOf an element Write a method named secondToLastIndexInArray
that computes the second to last position at which a given key appears, where the type of the

elements and the key is char. If the key does not appear in the array more than once, the method

should return -1. The method receives the array and the key as its formal parameters.

14. Computing (max–min) of array elements Write a method named valueWidth that returns

the difference between the largest and the smallest numbers appearing in an array, where the array

elements are int values. The method receives the array as its formal parameter.

15. Characters occurring only once Write a method named singlyOccurringCharCount
that receives a String data, and then returns, of those characters appearing in the String,

how many appear just once in it. Use the method toCharArray of String to obtain an array

version of the class String, and then use the method sort of the class Arrays to obtain a

sorted list of the characters in the array.

16. Sorting Write a program, RandomArraySort, that generates an array of random int data,

and then sorts the array. The user specifies the length of the array as well as the value range of

the elements in the array with its minimum and maximum. After generating the array randomly,

the program prints the elements of the array, sorts the elements using Arrays.sort, and then

prints the elements again. Design and use a method for printing the elements of an array of int
values. The format is five elements per line, 12 character spaces per element, flush right, and

without currency punctuation. Since the longest int without punctuation requires 11 character

spaces, this should put at least once space between the elements in the same line.

354 13 The Class Arrays and Resizing Arrays

The program may run as follows:

1 Enter size, the smallest, and the largest: 20 -1000000 1000000
2 ********Before sorting
3 817304 -680967 580358 698246 -552187
4 401077 -481882 -967384 664908 839001
5 185968 -462035 341899 -940863 -260153
6 -832638 225017 136135 -310982 -391535
7 ********Before sorting
8 -967384 -940863 -832638 -680967 -552187
9 -481882 -462035 -391535 -310982 -260153

10 136135 185968 225017 341899 401077
11 580358 664908 698246 817304 839001

17. A simple merge of three arrays Write a program, SimpleThreeMerge, that generates three

arrays of random integers with identical lengths, and then merges the three into one. The user

specifies the length as well as the range of the values of the array elements. The array generated

by merging should be three times as long as the individual arrays. The array should contain the

elements of the first array in the first third in the order they appear, the elements of the second

array in the second third in the order they appear, and the elements of the third array in the last

third in the order they appear. The program must print the elements of the individual arrays as

well as the elements of the array that contains all three. Design and use a method for printing the

elements of an array of int values. The format is five elements per line, 12 character spaces per

element, flush right, and without currency punctuation. Since the longest intwithout punctuation

requires 11 character spaces, this should put at least once space between the elements in the same

line. The program may run as follows:

1 Enter size, the smallest, and the largest: 10 -100000000 100000000
2 ********Data 1
3 -33384206 -28969551 47024306 -33694198 -6858007
4 84681217 -72689949 -60679845 -99988760 -1229077
5 ********Data 2
6 -21488327 66203194 -60898244 31539203 -45065541
7 71798105 3208921 -12009976 -91486999 86835731
8 ********Data 3
9 -22300371 -18684131 46783358 6312420 -20064955

10 -42988143 59528769 62786162 -43964318 -65677842
11 ********Merged
12 -33384206 -28969551 47024306 -33694198 -6858007
13 84681217 -72689949 -60679845 -99988760 -1229077
14 -21488327 66203194 -60898244 31539203 -45065541
15 71798105 3208921 -12009976 -91486999 86835731
16 -22300371 -18684131 46783358 6312420 -20064955
17 -42988143 59528769 62786162 -43964318 -65677842

Programming Projects

18. Merging three sorted arrays so that there are no duplicates Write a method named

threeMerge that receives three sorted arrays of int values, and then returns a new array,

in which all the elements of the three arrays appear in nondecreasing order. Let a, b, and c be the

three arrays and let merged be the array to be returned. Suppose we use three int variables p,

q, and r as indexes to the elements of the three arrays. The initial value is 0 for each of the three

index variables. We can write a source code for merging as follows:

13.6 Arrays with Capacity and Size 355

1 for (int i = 0; i < merged.length; i ++)

2 {

3 if (X) { merged[i] = a[p ++]; }

4 else if (Y) { merged[i] = b[q ++]; }

5 else { merged[i] = c[r ++]; }

6 }

Assuming a tie can be broken arbitrary, figure out what conditions can be used where indicated

with X and Y.

19. Write-in election Write a program, Election, that computes the tally in a write-in election,

and announces the winner. Since the votes are write-in, there is no predetermined set of

candidates. Whoever appears the most in the votes is the winner. The user enters the individual

votes, one vote per line, and ends entering with either typing an empty line or pressing CTRL-

D. To compute the tally, the program uses two arrays, a String[] variable, names, and an

int[] variable, counts. Upon receiving a single vote, the program checks if the name on the

vote appears in names, and if it does, the program adds 1 to the value of the element in count
at the position corresponding to the name; if the name does not appear in names, the program

extends both arrays by one element, stores the name in names at the last position and stores 1 in

counts at the last position. In this manner, the two arrays will have the same lengths. The initial

length is 0 for both arrays.

Here is an example of how the program may run:

1 ###
2 # Enter the votes, one vote per line. #
3 # End with either CTRL-D or an empty line.#
4 ###
5 Frodo
6 Sam
7 Pippin
8 Frodo
9 Frodo

10 Pippin
11 Pippin
12 Pippin
13 Sam
14 Sam
15 Pippin
16
17 Frodo received 3 votes.
18 Sam received 3 votes.
19 Pippin received 5 votes.
20 --------
21 The winner is Pippin!

20. Sorting two arrays and merging them into one sorted array Write a program, TwoMerge,

that generates two arrays of an identical length that are filled with random integers, sorts them,

and merges the sorted two arrays into one sorted array. The user specifies the length and the range

of the numbers to be generated with its minimum and maximum. The program must print the

elements of the individual and the merged arrays. Write a method for printing the elements of

an array of int values. The format is five elements per line, 12 character spaces per element,

flush right, and without currency punctuation. Also, write a method for merging two sorted arrays

having the same lengths into one. Merging two sorted arrays can be accomplished using the

356 13 The Class Arrays and Resizing Arrays

following idea: Concurrently examine the elements of the two arrays in the order they appear, one

element at a time from each array, selecting whichever the smaller of the two as the next element

in the merged array. The program may run as follows:

1 Enter size, the smallest, and the largest: 20 -100 100
2 ********Data 1
3 -94 -84 -82 -81 -73
4 -68 -62 -50 -49 -47
5 -31 -24 -20 11 21
6 23 51 53 59 66
7 ********Data 2
8 -86 -84 -79 -75 -71
9 -64 -53 -45 -30 -28

10 -25 -24 3 6 42
11 48 50 65 69 87
12 ********Merged
13 -94 -86 -84 -84 -82
14 -81 -79 -75 -73 -71
15 -68 -64 -62 -53 -50
16 -49 -47 -45 -31 -30
17 -28 -25 -24 -24 -20
18 3 6 11 21 23
19 42 48 50 51 53
20 59 65 66 69 87

21. Reading double tokens and quantifying changes Write a program, NumberTokens, that

receives a sequence of floating point numbers of an indefinite length from the user, and reporting

the results of comparing the numbers after the first one to their immediate predecessors. The

comparison has three outcomes: ’U’ to mean “significantly greater than the predecessor", ’D’ to

mean “significantly smaller than the predecessor", and “neither”. The “significance” of difference

is measured by the absolute difference compared to a fixed positive threshold. In other words, the

present value is significantly greater than its predecessor if the present value is greater than the

predecessor plus the threshold, and the present value is significantly smaller than its predecessor

if the present value is smaller than the predecessor minus the threshold. The threshold is entered

after the input number sequence is entered, so the input sequence must be stored in an array.

The program may run as follows:

1 Enter numbers, empty line to stop
2 > 3.4 5.3 9.0 -1.7 -24.5 -23 -22 -21 -19 0 18
3 > 17 19 20 23.7 8.5 7.5 2.5
4 >
5 Enter threshold (a negative to stop): 5
6 --DD----UU----D-D
7 Enter threshold (a negative to stop): 10
8 --DD----UU----D--
9 Enter threshold (a negative to stop): 20

10 ---D-------------
11 Enter threshold (a negative to stop): -1

14Multidimensional Arrays

14.1 Rectangular Arrays

14.1.1 Defining Multi-Dimensional Arrays

Arrays may have more than one dimension. We call arrays having more than one dimension multi-

dimensional arrays. For an integer N ≥ 1, an N -dimensional array as a type is declared with N pairs

of brackets []. In the following code, mDouble is declared as a two-dimensional array of double
and myFlags is declared as a three-dimensional array of boolean.

1 double [][] myDouble;

2 boolean [][][] myFlags;

In an instantiation of a multi-dimensional array, the length must be specified for at least one

dimension, but not necessarily for all of them. In the following code, the first line instantiates a two-

dimensional array whose first dimension has length 11 and whose second dimension has length 35,

and the second line instantiates a three-dimensional array whose first dimension has length 3. In

the second array, the three elements myFlags[0], myFlags[1], and myFlags[2] are

expected to be two-dimensional arrays, but they are presently null and so their shapes are unknown

yet.

3 myDouble = new double[11][35];

4 myFlags = new boolean[3][][];

In an instantiation of a multi-dimensional array, if one dimension is without length specification,

so must be its subsequent dimensions. Therefore,

myDouble = new double [][7];

myFlags = new boolean[5][][4];

are both syntactically incorrect.

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_14

357© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_14

358 14 Multidimensional Arrays

myFlags

myFlags[0] myFlags[1] myFlags[2] : null

myFlags[0][0]

myFlags[0][1]

myFlags[0][2]

myFlags[0][3]
myFlags[0][0][0]

myFlags[0][0][5]

myFlags[0][3][0]

myFlags[0][3][5]

myFlags[1][1] : null

myFlags[0][1] : null

Fig. 14.1 The structure of a multi-dimensional array. The word “null|” indicates subarrays that are null

After Line 4 of the above code example, possibly different two-dimensional arrays can be assigned

to the three elements of myFlags. For example,

5 myFlags[0] = new boolean[4][6];

6 myFlags[1] = new boolean[2][];

assigns a 4-by-6 array to myFlag[0] and a two-dimensional array with first dimension having

length 2 to myFlag[1], but keeps myFlags[2] as null. A sub-array element of a multi-

dimensional array can be accessed by specifying indexes to consecutive dimensions, where the values

of the indexes start from 0 in every dimension that is already defined. Each sub-array element of a

multi-dimensional array that is not equal to null can be inquired for the length of its first dimension

using .length. In other words, after Line 6, myFlags.length, myFlags[0].length,

and myFlags[1].length produce the values 3, 4, and 7 respectively, and for all i between

0 and 3, myFlags[0][i].length produces the value 6. For other index specification,

such as myFlags[1][0], whose subarray is null leads to NullPointerException.

Figure 14.1 shows the structure of myFlags.

For a multi-dimensional array with length specifications for all of its possible dimensions, if its

length specifications are uniform (for example, 3-by-5-by-6), we call it a regularly shaped array;

otherwise, we call it an irregularly shaped array or a jagged array. We call a two-dimensional

regularly shaped array a rectangular array, and a rectangular array whose dimensions have the same

lengths a square array.

14.1.2 Summing the Elements in Subsequences

Consider computing the summation of elements for all subsequences of a number sequence

a0, . . . , aN−1. The task is to obtain

s(i, j) =
j

∑

k=i

ak = ai + . . . + aj

14.1 Rectangular Arrays 359

for all i and j such that 0 ≤ i ≤ j ≤ N − 1. For all 0 ≤ j < i ≤ N − 1, s(i, j) is defined to

be 0. Including the cases where the value is trivially 0, there are N possibilities for both i and j , so

we can view the task as calculating the elements of a regularly-shaped two-dimensional array, both of

whose dimensions have length N . Suppose the input sequence is represented by an array of int, a,

whose length is n. The goal is to produce a two-dimensional array of int, sums[n][n]. The

declaration and the instantiation of the two-dimensional array can be as follows:

1 int [][] sums;

2 sums = new int[a.length][a.length];

We note the following three properties:

• For all i and j such that i > j, sum[i][j] must become 0. Since the default value of

int is 0, this property is already satisfied.

• For all i, sums[i][i] must become a[i].

• For all i and j such that i < j, summust satisfy the condition sum[i][j] == a[j]
+ sums[i][j - 1].

These properties suggest the following strategy for computing the table. For each row i,

store a[i] in sums[i][i], and then using a for-loop that iterates over the

sequence i + 1, ..., a.length - 1 with another int variable named j, store

a[j] + sums[i][j - 1] in sums[i][j].

The following source code is based upon these observations. The method readData is for

obtaining an input number sequence from the user. The method has the return type of int[] (Line 9).

The user first specifies the length of the sequence. This value is stored in an int variable named len
(Line 11). After instantiating an array numbers with new int[len] (Line 12), the program

receives the elements of the array from the user (Lines 13–17), and then returns the array (Line 18).

1 import java.io. * ;

2 import java.util. * ;

3 // computer all partials sums of an array

4 public class PartialSumsAll

5 {

6 // read an array from a given scanner

7 public static int[] readData ()

8 {

9 Scanner keyboard = new Scanner(System.in);

10 System.out.print("Enter the length: ");

11 int len = keyboard.nextInt ();

12 int[] numbers = new int[len];

13 for (int pos = 0; pos < len; pos ++)

14 {

15 System.out.printf("Enter element at %d: ", pos);

16 numbers[pos] = keyboard.nextInt ();

17 }

18 return numbers;

19 }

20

Listing 14.1 A program that computing partial sums using a two-dimensional array (part 1). The method readData

The method partialsAll receives a one-dimensional int array, oneD, as its formal parameter,

and returns a two-dimensional array whose elements are the values of the summations. The

360 14 Multidimensional Arrays

program instantiates a two-dimensional array as oneD.length by oneD.length (Line 24). The

method then executes a double for-loop to fill this array. The external for-loop generates the row

index with a variable named rowPos (Line 25). For each value of rowPos, the method stores

oneD[rowPos] in twoD[rowPos][rowPos] (Line 27), and then using an internal

for-loop, generates the column index values rowPos + 1, ..., oneD.length - 1 with a

variable named colPos (Line 28), and stores twoD[rowPos][colPos - 1] +oneD
[colPos] in twoD[rowPos][colPos] (Lines 30 and 31). After the double for-loop,

the method returns twoD (Line 34).

21 // compute the partial sums of an input array

22 public static int [][] partialsAll(int[] oneD)

23 {

24 int [][] twoD = new int[oneD.length][oneD.length];

25 for (int rowPos = 0; rowPos < oneD.length; rowPos ++)

26 {

27 twoD[rowPos][rowPos] = oneD[rowPos];

28 for (int colPos = rowPos + 1; colPos < oneD.length; colPos ++)

29 {

30 twoD[rowPos][colPos]

31 = twoD[rowPos][colPos - 1] + oneD[colPos];

32 }

33 }

34 return twoD;

35 }

36

Listing 14.2 A program that computing partial sums using a two-dimensional array (part 2). The method
partialsAll

The method print is for printing the data of a two-dimensional array (Line 38). The program uses

a double for-loop to generate row-column index pairs with variables rowPos and colPos (Lines 40

and 42), and then prints twoD[rowPos][colPos] using the format %5d (Line 44). At the

end of each row, the method prints the newline (Line 46).

37 //-- print

38 public static void print(int [][] twoD)

39 {

40 for (int rowPos = 0; rowPos < twoD.length; rowPos ++)

41 {

42 for (int colPos = 0; colPos < twoD.length; colPos ++)

43 {

44 System.out.printf("%5d", twoD[rowPos][colPos]);

45 }

46 System.out.println ();

47 }

48 }

49

Listing 14.3 A program that computing partial sums using a two-dimensional array (part 3). The method print

14.2 Jagged Arrays 361

The method main obtains a one-dimensional array from the user by calling readData (Line 53),

computes the partial sums by calling partialsAll (Line 54), and then prints the contents of the

partial sums by calling print (Line 55).

50 //-- main

51 public static void main(String [] args)

52 {

53 int[] a = readData ();

54 int [][] sums = partialsAll(a);

55 print(sums);

56 // print(partialsAll(readData ()));

57 }

58 }

Listing 14.4 A program that computing partial sums using a two-dimensional array (part 4). The main part

Alternatively, the three method calls appearing in the method main can be combined into one:

print(partialsAll(readData()));

Here is an execution example of the program:

1 Enter the length: 5
2 Enter element at 0: 10
3 Enter element at 1: 13
4 Enter element at 2: 17
5 Enter element at 3: -30
6 Enter element at 4: -5
7 10 23 40 10 5
8 0 13 30 0 -5
9 0 0 17 -13 -18

10 0 0 0 -30 -35
11 0 0 0 0 -5

14.2 Jagged Arrays

Consider receiving the names and scores for a number of people, and then computing the average

score for each person, where the numbers of scores available can be different from person to person.

We can use a two-dimensional jagged array for recording the scores, an array of String data to

record names, and an array of double data to record the average scores.

The first part deals with the instantiation of the arrays. The user enters the number of people whose

records are available. The program stores this number in a variable named nPeople (Lines 8 and 9),

and then instantiates the three arrays (Lines 11–13).

362 14 Multidimensional Arrays

1 import java.util. *;

2 public class Jagged

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7

8 System.out.print("Enter # of people: ");

9 int nPeople = keyboard.nextInt ();

10

11 double [][] data = new double[nPeople][];

12 String [] names = new String[nPeople];

13 double [] average = new double[nPeople];

14

Listing 14.5 A program that receives the names and scores for a number of students and reports the averages of the
scores (part 1). The part responsible for receiving the number of people and creating array variables

The next is the part for receiving the names and scores. The program uses a for-loop that

iterates over the sequence 0, ..., nPeople - 1 with a variable named index. At each

round, the program receives the name of the person (Lines 17 and 18), receives the number of

scores for that person, stores the number in a variable named size (Lines 19 and 20), instantiates

data[index] with new double[size] (Line 21), and then uses an interior for-loop to

generate column indexes 0, ..., size - 1 with a variable named col (Line 23) to receive the

elements data[index][0], ..., data[index][size - 1] (Line 25).

15 for (int index = 0; index < nPeople; index ++)

16 {

17 System.out.printf("Enter name for %d: ", index);

18 names[index] = keyboard.next();

19 System.out.printf("Enter #entries %d: ", index);

20 int size = keyboard.nextInt ();

21 data[index] = new double[size];

22 System.out.printf("Enter %d data: ", size , index);

23 for (int col = 0; col < size; col ++)

24 {

25 data[index][col] = keyboard.nextDouble ();

26 }

27 }

28

Listing 14.6 A program that receives the names and scores for a number of students and reports the averages of the
scores (part 2). The part responsible for receiving the names and the scores

14.2 Jagged Arrays 363

The calculation of the averages requires a double for-loop. The external for-loop iterates over the

sequence 0, ..., nPeople - 1 with a variable named index (Line 29). The internal for-loop

iterates over the sequence 0, ..., data[index].length - 1with a variable named col
(Line 31). The program stores the total of the scores appearing in that row in average[index]
(Line 33). Then, with the division by data[index].length, the program scales the total

stored in average[index] to the average.

29 for (int index = 0; index < nPeople; index ++)

30 {

31 for (int col = 0; col < data[index]. length; col ++)

32 {

33 average[index] += data[index][col];

34 }

35 average[index] /= data[index]. length;

36 }

37

Listing 14.7 A program that receives the names and scores for a number of students and reports the averages of the
scores (part 3). The part responsible for computing the averages

The last part of the code handles the output. Again, the program uses a double for-loop (Lines

38 and 42) for accessing the individual scores. The program also prints the name (Line 40) and the

average (Line 47) for each person.

38 for (int index = 0; index < nPeople; index ++)

39 {

40 System.out.printf("Name at %d is %s%n", index , names[index]);

41 System.out.print("The data are: ");

42 for (int col = 0; col < data[index]. length; col ++)

43 {

44 System.out.printf(" %.3f", data[index][col]);

45 }

46 System.out.println ();

47 System.out.printf("Average is %.3f%n", average[index]);

48 }

49 }

50 }

Listing 14.8 A program that receives the names and scores for a number of students and reports the averages of the
scores (part 4). The part responsible for reporting the results

Here is an execution example of the code.

364 14 Multidimensional Arrays

Summary

By attaching multiple bracket pairs, [], to a data type, multi-dimensional arrays can be declared.

An instantiation of a multi-dimensional array requires the length specification for the first

dimension.

In an instantiation of a multi-dimensional array, if the length specification of one dimension is

skipped, then the length specification must be skipped for all the dimensions that follow.

Exercises

1. Creating and printing a jagged array Write a program, CreatePrintJagged, that

instantiates a two-dimensional jagged array of double values that has ten rows. The lengths

of the ten rows should be 0, ..., 9 in this order. For each individual element of the array, the

program generates a random real number between 100 and 200. After generating the array, the

program prints the elements of the array, one row per line. For printing the numbers, the program

must use %9.4f. In this manner, without additional spacing, one whitespace appears before each

number.

2. Converting a square array to a one-dimensional array, part1 Write a method,

rectangularArrayToLinear, that converts a two-dimensional rectangular array of int
values to a one-dimensional array of int values by concatenating the elements of the rows of the

array.

3. Converting a square array to a one-dimensional array, part2 Write a method,

rectangularArrayToLearnAlt, that converts a two-dimensional rectangular array of

Exercises 365

int values to a one-dimensional array of int values by concatenating the elements of the

columns of the array.

4. Converting a one-dimensional array to a square array, part 1 Write a method,

breakIntoSquareArray, that converts a one-dimensional array of int values, to a two-

dimensional square array of int, where the length of the one-dimensional array may not be

a perfect square. The return type of the method is int[][]. Find the largest perfect square

that is less than or equal to the length of the one-dimensional array. Use the square root of the

largest square as the length of each dimension of the square array. Place the elements of the

one-dimensional array should be placed in the two-dimensional array in the row major order. If

the length of the one-dimensional array is not a perfect square, there will be elements that are not

included in the square array.

5. Converting a one-dimensional array to a square array, part 2 Write a method,

breakIntoSquareArrayAlt, that converts a one-dimensional array of int to a two-

dimensional square array of int, where the length of the one-dimensional array may not be

a perfect square. The return type of the method is int[][]. Find the largest perfect square

that is less than or equal to the length of the one-dimensional array. Use the square root of the

largest square as the length of each dimension of the square array. Place the elements of the

one-dimensional array should be placed in the two-dimensional array in the column major order.

6. Square array Write a method, isArraySquare, that receives a two-dimensional array of

double values, and then returns a boolean value representing whether or not the array is a

square array. The method must return true if the array has 0 rows.

7. Rectangular array Write a method, isArrayRectangle, that receives a two-dimensional

array of double values, and then returns a boolean value representing whether or not the array

is a rectangular array. The method must return true if the array has 0 rows.

8. Diagonal array A square matrix is said to be a diagonal matrix if its all 0 except where the row

index is equal to the column index. Write a method, isDiagonal, that checks whether or not a

two-dimensional array is a diagonal array. The formal parameter of a method is a two-dimensional

array of double values. The method must return a boolean value representing whether or not

the array is a diagonal array.

9. Upper-triangular array A two-dimensional array is an upper-triangular array if it is a square

array and is all 0 except where the column index is greater than or equal to the row index. Write

a method, isUpperTriangular, that checks if a two-dimensional array is a upper-triangular

array. The formal parameter of a method is a two-dimensional array of double values. The

method must return a boolean value representing whether or not the array is an upper-triangular

array.

Programming Projects

10. Sudoku checking Sudoku is a number puzzle in which the goal is to complete a 9-by-9 table

that is partially filled. When completed, the table must satisfy the following conditions:

• In each row, 1 through 9 must appear exactly once each.

• In each column, 1 through 9 must appear exactly once each.

• The 9-by-9 table can be naturally divided into nine 3-by-3 subtables. The third requirement is

that in each 3-by-3 subtable, 1 through 9 must appear exactly once each.

Write a method, sudokuSolutionCheck, that receives a 9-by-9 two-dimensional array of

int values as its formal parameter, and then returns whether or not the array represents a Sudoku

solution. The method may halt with ArrayIndexOutOfBoundsExceptions if the row or

column dimension of the array is smaller than 9 or the array contains an element smaller than 1

or greater than 9.

366 14 Multidimensional Arrays

11. Sudoku checking with holes Continuing on the previous problem, suppose that a partial

solution to a Sudoku puzzle is represented by a 9-by-9 array of int values, where the elements

are from 0 through 9 with 0 means that the value of the square is yet to be determined. Write a

method, sudokuPartialSolutionCheck, that receives a 9-by-9 array of int values as its

formal parameter, and then returns whether or not the partial solution represented by the array

contains no violations of the three rules given in the statement of the previous question.

12. Bingo card generation Bingo is a game played by any number of players and one master. Each

player has a card on which a 5-by-5 table of numbers is printed, where the numbers are chosen

from 1, . . . , 99 with no duplication and the center of the table has no number written. No two

players have the same tables. To play the game, the master generates a random permutation of

the number sequence 1, . . . , 99, and then announces the numbers as they appear in the permuted

sequence. Each time the master announces a number, each player checks if the number that just

has been announced appears on her card. If so, she crosses out the number on her card. The center

is thought of as being crossed out. If one row, one column, or one diagonal has been completely

crossed out on her card, a player receives a prize and leaves the game.

Suppose we use a 5 × 5 array of int values to encode a Bingo card, with −1 representing

any number that has already been crossed out. Write a program, BingoCardGenerate, that

generates a random Bingo card where the center is the only place that the number has been crossed

out. A simple solution will be to conduct a random exchange on an array { 1, ..., 99 }
25 times, fill the array with the first 25 numbers on the permuted sequence, and then change the

center to −1.

Here is a possible output of the program:

1 23 9 15 77 67
2 64 19 86 7 45
3 24 68 -1 74 22
4 78 34 63 59 40
5 39 25 8 1 2

13. Bingo checking Continuing on the previous question, suppose we use a 5×5 array of boolean
values to encode the places of a card that have been crossed out. In the encoding, true means

“crossed out” and false means “has not been crossed out”. Write a method, bingoCheck,

that receives a 5-by-5 boolean table, and then determines whether or not the player can claim

the completion to receive a prize.

15Class File

15.1 Class File

15.1.1 The File Path and the Instantiation of a File Object

As mentioned in Chap. 3, data can be read from text files with methods applied to Scanner objects

instantiated with objects of type File. File is a class that represents files (including non-text files

and file folders). To use File in a program, File must be imported by one of the following two

import statements:

import java.io.File;

import java.io.*;

The * appearing the second import statement is a wildcard.

A File object can be instantiated with a file path as a parameter. A file path is a character

sequence that represents a series of relative movements from a folder to another, starting with the

present working folder and ending with a folder or a non-folder file (called a regular file).

Each “relative” movement specifies moving to a specific child folder, staying in the present folder,

or moving to the parent folder. The specification of the child folder in the first case is by its name. The

present folder and the parent folder are represented by . and .., respectively. For example, the folder

name sequence

[.., Documents, programs, test]

specifies: moving to the parent folder, moving to the Documents folder, and then moving to the

programs folder. The last entry test refers to a file or a folder named test residing in the folder

programs. A String representation of a path is the concatenation of the movements and the name

at the end with a special delimiter appearing in between. The delimiter is the backslash, \, in the case

of the Windows and the forward slash, /, in the case of the others. Thus, the String representation

of the file path is

"..\Documents\programs\test"

for the Windows, and

"../Documents/programs/test"

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_15

367© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_15

368 15 Class File

for the other systems. If the separator character appears consecutively (for instance, ///), it is treated

as just one separator.

The absolute file path to a file is the path that starts from the root of the file system. In the case of

Windows, the root is specified by a single letter corresponding to the drive name (quite often, the drive

name is C) followed by :\. In the case of other operating systems, the root is specified by the forward

slash, /. An absolute file path may depend on how the file system is built and how the path is created

in the program, so it may contain ., .., or consecutive appearances of the folder separator character.

An absolute file path with such occurrences is redundant, and can be simplified into one that contains

no such occurrences. We call such an absolute path without redundancy a canonical path. If p is a

file path ending with a folder and q is a relative path, the concatenation p and q with the separator

character between them is also a file path.

File has three constructors that receive a String data as a parameter. They are

File(String p), File(File f, String p), and File(String f, String p).

In the last two, f and p are expected to represent a folder and a relative file path respectively.

Let us take a look at an example. Suppose a file records.txt has the canonical path

/Users/maria/docs/records.txt (in a non-Windows system), and this file is accessed

from a Java program located in a folder whose canonical path is /Users/maria/javacode.

Then, File objects representing records.txt can be instantiated using any one of the following

f0, ..., f5:

File f0 = new File("/Users/maria/docs/records.txt");

File f1 = new File("../ docs/records.txt");

File f2 = new File(new File("../ docs", "records.txt"));

File f3 = new File("../ docs", "records.txt");

File f4 = new File("../../ maria", "docs/records.txt");

File f5 = new File("../../ maria/docs", "records.txt");

The absolute paths of the five File objects, in the order of appearance, are as follows:

f0: /Users/maria/docs/records.txt
f1: /Users/maria/javacode/../docs/records.txt
f2: /Users/maria/javacode/../docs/records.txt
f3: /Users/maria/javacode/../docs/records.txt
f4: /Users/maria/javacode/../../maria/docs/records.txt
f5: /Users/maria/javacode/../../maria/docs/records.txt

The instantiation of a File object does not guarantee the validity of the path, let alone the existence

of the file specified by the path.

15.1.2 File Methods

Class File has many instance methods. Table 15.1 summarizes the instance methods that are covered

in this chapter.

There are methods that inquire about the properties of the file represented by the File object.

exists returns a boolean value representing whether or not the file indeed exists. canRead
returns a boolean value representing if the file represented by the File object is readable.

canWrite returns a boolean value representing if the file represented by the File object can be

overwritten. canExecute returns a boolean value representing if the file represented by the File
object can be executed. isDirectory returns a boolean value representing if the file represented

by the File object is a folder. isFile returns a boolean value representing if the file represented

by the File object is a regular file.

15.1 Class File 369

Table 15.1 A list of File methods

Name Return Action

type

exists() boolean Returns whether or not f exists

canRead() boolean Returns whether or not f exists and can be read

canWrite() boolean Returns whether or not f exists and can be overwritten

canExecute() boolean Returns whether or not f exists and can be executed

isDirectory() boolean Returns whether or not f exists as a folder

isFile() boolean Returns whether or not f exists as a regular file

getName() String Returns the name of f

getAbsolutePath() String Returns the absolute path to f

getAbsoluteFile() File Returns a File object instantiated with the absolute path

to f

getCanonicalPath() String Returns the canonical path to f

getCanonicalFile() File Returns a File object instantiated with the canonical path

to f

getParentPath() String Return the paths to the parent of f, where the

parent is determined based on the absolute path to f

getParentFile() File Returns the parent of f as a File object, where the

parent is determined based on the absolute path to f

length() long Returns the byte size of f

createNewFile() boolean Attempts to create the file f; returns whether or not the

attempt was successful

delete() boolean If f exists, attempts to remove f; returns whether or not

the attempt was successful

mkdir() boolean Attempts to create f as a folder; returns whether or not

the attempt was successful

renameTo(File g) boolean In the case where f exists, attempts to change the path

to f to the path specified in g; returns whether or not

the attempt was successful

listFiles() File[] If f exists and is a folder, return an array of File objects

consisting of all the files in f; otherwise, return null

To simplify the description, we assume that the methods are applied to a File object f. All methods on this list take
no parameters, except for renameTo

There is a group of File methods that provide information related to the file paths of the file rep-

resented by the File object. getName returns a String object that is equal to the name of the file.

getAbsolutePath returns a String object representing the absolute path to the file represented

by the file object. getAbsoluteFile returns a File object instantiated with the absolute path

obtained by getAbsolutePath. getCanonicalPath returns a String object representing

the canonical path to the file represented by the file object. getCanonicalFile returns a File
object instantiated with the canonical path obtained by getCanonicalPath, getParent returns

a String object representing the canonical path to the parent. getParentFile returns a File
object instantiated with the path returned by getParent. Furthermore, if the File object represents

a file folder, listFiles returns an array of File objects representing the files in the folder. If the

File object does not represent a file folder, listFiles returns null.

Finally, there is a group of methods used for creating, removing, and renaming. createNewFile
attempts to create the file represented by the File object as a regular file. mkdir attempts to create

370 15 Class File

the file represented by the File object as a file folder. delete() attempts to remove the file

represented by the File object. renameTo(File g) attempts to change the path to the file

represented by the File object to that of g. These four methods return a boolean value representing

whether or not the attempt was successful.

15.1.3 Exception Handling

15.1.3.1 Error Handling Imposed by the Compiler

A throws declaration is a declaration attached to the header of a method. It formally associates a run-

time error type with the method. For an error type E, the declaration takes the form of throws E
and appears immediately after the closing parenthesis of the parameter declaration in the method

header. If a method M calls another method N, and N has a throws E declaration, then the Java

compiler enforces that the code of M specifies how to handle a run-time error of type E originating

from N. Thus, if a throws declaration in a method of an imported class, every method that calls the

method must specify how to handle the error. One of the File methods introduced in Sect. 15.1.1,

createNewFile, declares throws IOException.

Suppose we have the following program that attempts to create a folder named "testDir", and

then in the folder, attempts to create a file named "testFile.txt".

1 import java.io.*;

2 public class FileTest

3 {

4 public static void main(String [] args)

5 {

6 File dir = new File("testDir");

7 boolean success = dir.mkdir();

8 File testFile = new File(dir , "testFile.txt");

9 success = testFile.createNewFile ();

10 }

11 }

An attempt to compile the program results in the following error message:

1 FileTest.java:9: error: unreported exception IOException; must be caught
or declared to be thrown

2 success = testFile.createNewFile();
3 ^
4 1 error

The message states that the method createNewFile has a throws IOException declaration

but the present source code does not specify how to handle the error.

15.1.3.2 “Throwing” a Run-Time Error

There are two ways to handle a formally declared error that may result from a method call. One is to

attach a throws declaration of the same error type to the method declaration:

public ... M(...) throws E

With this declaration, if an error of type E occurs during the execution of its code, M reports the error

back to its direct superior. If the present execution of M is due to a method call to M appearing in

another method Q, then the superior is Q. If there is no such Q, M must be the method main of some

program, so the superior is JVM. In the latter case, JVM terminates the program after reporting the

error on the screen.

15.1 Class File 371

Fig. 15.1 The mechanism
for handling run-time
errors

A Runtime Error of type E

Is the method call encased

in a try-catch?

Is there a catch whose type

contains E?

Jump to the matching clause

Resume from the statement after the

try-catch

Terminate the execution of the method

and throw the exception

yes

yes

no

no

A method cannot have more than one throws declaration. This limitation creates an issue when

a method makes calls to multiple methods and they have different error types in their throws
declarations. Fortunately, the Java run-time error types are organized as a tree, so any common

ancestor of the different error types can be used as the error type in the throws declaration.

Exception is the error type at the root of the tree, so in a situation where different run-time errors

need to be handled, Exception can be used.

15.1.3.3 “Catching” a Run-Time Error

The other way to handle a formally declared run-time errors is to “catch” the error. The syntax for

“catching” a run-time error of type E that originates from a method call to N is as follows: enclose

a code block that includes the method call to N in a pair of curly brackets with a keyword try
preceding the open bracket, and then immediately after the close bracket, add another pair of brackets

preceded by a phrase catch (E e). Some code can be placed inside the second pair of brackets.

The lowercase letter e appearing in the parentheses represents an object representing the error that

has occurred.

1 try

2 {

3 ... N(...)

4 }

5 catch (E e)

6 {

7 ...

8 }

If an error of type E occurs during the execution of the try block, the execution of the block is

immediately terminated, and then the execution of the catch block begins. After completing the

code in the catch block, the execution jumps to the section immediately after the catch block.

If an error of type E does not occur and no other run-time error occurs, the execution of the try-

372 15 Class File

block completes, and the execution reaches the section immediately after the catch block. Multiple

catch clauses can be attached to one try block, if none of the error types appearing in the multiple

catch clauses are ancestors of another.

Figure 15.1 summarizes the mechanism used to handle run-time errors.

Returning to the previous code example that failed to compile, any run-time error originating from

createNewFile can be handled using a try-catch as follows:

1 import java.io.*;

2 public class FileTestCatch

3 {

4 public static void main(String [] args)

5 {

6 try

7 {

8 File dir = new File("testDir");

9 boolean success = dir.mkdir();

10 File testFile = new File(dir , "testFile.txt");

11 success = testFile.createNewFile ();

12 }

13 catch (IOException e)

14 {

15 System.out.println("Error!");

16 }

17 }

18 }

Listing 15.1 A program that demonstrates the use of try and catch

The difference between throwing and catching is that the former immediately terminates the

execution of the method while the latter does not. Regardless of which approach is used to handle

IOException, the class IOException needs to be imported. IOException is in the java.io
package.

15.1.3.4 A Demonstration of Try-Catch

The following program demonstrates the use of try-catch for handling run-time errors.

The program receives two file paths from the user. The program instantiates a File object f with

the first path and another File object g with the second path, and then executes a series of actions

using two methods. The first method is called showExistence (Line 5). The method receives two

File objects, f and g, as its formal parameters. The method prints information about the existence

of the two files using the format "Existence: %s=%s, %s=%s%n" (Lines 7 and 8). The first

and the third %s placeholders are for the file names, and the second and the fourth %s placeholders

are for the return values of exists.

The second method of the program is called creationPlay (Line 10). This method has

a throws IOException declaration. The method receives two File objects, f and g, as

its formal parameters, and executes a series of actions. After each action, the method calls

showExistence(f, g) to print the existence status of the two files. Here is the series of

actions creationPlay performs:

1. Print the canonical paths of f and g obtained by calling getCanonicalPath (Lines 13 and 14).

2. Try to create the files specified by f and g using createNewFile (Lines 19 and 21).

3. Try to move f to itself using renameTo (Line 25).

15.1 Class File 373

1 import java.util .*;

2 import java.io.*;

3 public class FileCreate

4 {

5 public static void showExistence(File f, File g)

6 {

7 System.out.printf("Existence: %s=%s, %s=%s\n\n",

8 f.getName (), f.exists (), g.getName (), g.exists ());

9 }

Listing 15.2 A program that demonstrates the use of File methods for creating, deleting, and renaming files (part
1). The method showExistence

4. Try to move f to g using renameTo (Line 27).

5. Try to create the files specified by f and g as folders using mkdir (Lines 31–34).

6. Try to delete the files specified by f and g using delete (Lines 37–40).

In Steps 2 through 6, creationPlay announces the action it is about take. Since each method that

is called returns a boolean value, the call is placed in System.out.println. This has the effect

of printing the return value on the screen.

10 public static void creationPlay(File f, File g) throws IOException

11 {

12 System.out.println("The two input files");

13 System.out.println("File1 = " + f.getCanonicalPath ());

14 System.out.println("File2 = " + g.getCanonicalPath ());

15 System.out.println("----Their initial state");

16 showExistence(f, g);

17

18 System.out.print("----Create File1 -> ");

19 System.out.println(f.createNewFile ());

20 System.out.print("----Create File2 -> ");

21 System.out.println(g.createNewFile ());

22 showExistence(f, g);

23

24 System.out.print("----Rename File1 to File1 -> ");

25 System.out.println(f.renameTo(f));

26 System.out.print("----Rename File1 to File2 -> ");

27 System.out.println(f.renameTo(g));

28 showExistence(f, g);

29

30 System.out.print("----Create File1 as a folder -> ");

31 System.out.println(f.mkdir());

32 System.out.print("----Create File2 as a folder -> ");

33 System.out.println(g.mkdir());

34 showExistence(f, g);

35

36 System.out.print("----Delete File1 -> ");

37 System.out.println(f.delete ());

38 System.out.print("----Delete File2 -> ");

39 System.out.println(g.delete ());

40 showExistence(f, g);

41 }

Listing 15.3 A program that demonstrates the use of File methods for creating, deleting, and renaming files (part 2).
The method creationPlay

374 15 Class File

The method main (Line 42) receives two file paths from the user (Lines 46 and 47). The method

instantiates a File object from each path, and then calls the method creationPlay with two

File objects as actual parameters. Since the two File objects are not used anywhere else in the

method main, this group of actions can be compressed into one line by placing the constructor calls

inside the call to creationPlay (Line 50). A constructor does not have a return statement (see

Chap. 16), but can be viewed as a method that returns an object of the type the constructor represents.

The call appearing in Line 50 takes advantage of this fact. If the method call to creationPlay is

successful, the method main prints a message (Line 51) and halts.

The program handles IOException that may originate from creationPlay (Line 53) using

try-catch. If creationPlay produces a run-time error of IOException, the execution

jumps to Line 53 without executing Line 51. There are two actions to be performed in the catch
block. One is to print the information stored in e. This is accomplished by the method call

e.printStackTrace() (Line 55). This method is available for all data types representing run-

time errors. The method prints the series of method calls, starting from main, that have ultimately

resulted in the run-time error at hand. The other action to be performed is to print a message to inform

that a run-time error has occurred (Line 56). After producing the message on the screen, the program

terminates because there is no statement after the catch block.

42 public static void main(String [] args)

43 {

44 Scanner keyboard = new Scanner(System.in);

45 System.out.print("Enter two paths: ");

46 String p1 = keyboard.next();

47 String p2 = keyboard.next();

48 try

49 {

50 creationPlay(new File(p1), new File(p2));

51 System.out.println("Operations completed without errors");

52 }

53 catch (IOException e)

54 {

55 e.printStackTrace ();

56 System.out.println("---Program terminated ---");

57 }

58 }

59 }

Listing 15.4 A program that demonstrates the use of File methods for creating, deleting, and renaming files (part 3).
The method main

Here are two examples of executing the program. The first example shows a case where the program

executes the tasks without run-time errors.

15.1 Class File 375

1 Enter two paths: tmp1 tmp2

2 The two input files

3 File1 = /Users/ogihara/file/tmp1

4 File2 = /Users/ogihara/file/tmp2

5 ----Their initial state

6 Existence: tmp1=false , tmp2=false

7

8 ----Create File1 -> true

9 ----Create File2 -> true

10 Existence: tmp1=true , tmp2=true

11

12 ----Rename File1 to File1 -> true

13 ----Rename File1 to File2 -> true

14 Existence: tmp1=false , tmp2=true

15

16 ----Create File1 as Directory -> true

17 ----Create File2 as Directory -> false

18 Existence: tmp1=true , tmp2=true

19

20 ----Delete File1 -> true

21 ----Delete File2 -> true

22 Existence: tmp1=false , tmp2=false

23

24 Operations completed without errors

Note that (i) immediately after moving the first file to the second file, the first file ceases to exist (Line

14), and (ii) the attempt to create the second file as a directory returns false (Line 17) because the

second file already exists as a regular file.

The second example shows a case where the creation of the new file at the beginning of the series

produces IOException. In this specific case, the error occurs because the directory foo1 that

appears in the first path does not exist.

1 Enter two paths: foo1/foo2 foo3

2 The two input files

3 File1 = /Users/ogihara/file/foo1/foo2

4 File2 = /Users/ogihara/file/foo3

5 ----Their initial state

6 Existence: foo2=false , foo3=false

7 ----Create File1 -> java.io.IOException: No such file or directory

8 at java.io.UnixFileSystem.createFileExclusively(Native Method)

9 at java.io.File.createNewFile(File.java :1012)

10 at FileCreate.creationPlay(FileCreate.java :19)

11 at FileCreate.main(FileCreate.java :47)

12 ---Program terminated ---

The printout generated by the call e.printStackTrace() starts in the middle of Line

7, after "-> " and ends in Line 11. Line 12 is the output produced by the print state-

ment appearing in the catch block. Lines 8 through 10 present the chain of method

calls that has led to the run-time error. The elements in the sequence appear one method

call per line, starting from the most recent ones. By following the sequence from the

end, we learn that the method main called the method creationPlay in Line 47 of

the source code, the method creationPlay called the method createNewFile of

java.io.File in Line 19 of the source code, the method createNewFile called the method

createFileExclusively of java.io.UnixFileSystem in Line 1012 of the source code,

and that method createFileExclusively generated the run-time error.

376 15 Class File

15.1.4 File Listing

The next program uses the method listFiles to take an inventory of the parent directory of the file

specified in args[0]. After that, for each file appearing in the list, the program tests its properties

using canExecute, canRead, canWrite, isDirectory, and isFile, and then reports the

results. For each file, the program prints the results of the five tests. It also prints the name and the

size of each file.

The first part of the source code is the method directoryPlay. The formal parameter of the

method is a File object, home (Line 5). The method obtains the parent folder of home by using the

method getParentFile, and stores the File object that is returned in a File variable named

parent (Line 7). Next, the method obtains an array consisting of all the files residing in the folder

parent using the method listFiles, and stores the returned array in an array of File objects

named list (Line 8). The method then instantiates a rectangular array of boolean values named

flags. In flags, the method stores the results of executing the five property tests for all files in the

folder parent. The length of the first dimension of flags is the length of list and the length of

the second dimension is 5, since the number of tests to be performed is 5 (Line 9). The method also

instantiates an array of long values, size (Line 10), and an array of String values, name (Line

11). The method stores the file lengths in size and the file names in name for all files in the list.

The length is thus list.length for both arrays.

After these array instantiations, the method examines the files appearing in the list. Using

a for-loop, the method generates the index sequence 0, ..., list.length - 1 with

a variable named i. At each round, the method executes the five tests, canExecute,

canRead, canRead, isDirectory, and isFile, in this order, and stores the results in

flags[i][0], ..., flags[i][4] (Lines 14–18). The program also obtains

the file length and the file name using the methods length and getName, and stores the returned

values in their respective arrays, size and name.

1 import java.io.*;

2 import java.util .*;

3 public class FileExplore

4 {

5 public static void directoryPlay(File home)

6 {

7 File parent = home.getParentFile ();

8 File[] list = parent.listFiles ();

9 boolean [][] flags = new boolean[list.length][5];

10 long[] size = new long[list.length];

11 String [] name = new String[list.length];

12 for (int i = 0; i < list.length; i ++)

13 {

14 flags[i][0] = list[i]. canExecute ();

15 flags[i][1] = list[i]. canRead ();

16 flags[i][2] = list[i]. canWrite ();

17 flags[i][3] = list[i]. isDirectory ();

18 flags[i][4] = list[i]. isFile ();

19 size[i] = list[i]. length ();

20 name[i] = list[i]. getName ();

21 }

Listing 15.5 A program that demonstrates the use of File methods for examining properties of files (part 1). The
part responsible for taking the inventory

15.1 Class File 377

The method prints the inventory thus obtained, but before that, the method prints the name of

home, the absolute path to home, the name of parent, and the absolute path to parent that are

obtained using the methods getName and getAbsolutePath (Lines 22–25). The method prints

the inventory one file per line. The information that it prints consists of the index to the file in the file

list, the five boolean values stored in the array flags, the file length, and the file name. The format

it uses is the following:

%05d:%6s%6s%6s%6s%6s%8d %s%n

The first placeholder, %05d, is for the index, the next five occurrences of %6s are for the five

boolean values, the next one, %8d, is for the file length, and the very last one, %s, is for the file

name. To beautify the table, the program prints header lines (Line 26–28).

22 System.out.printf("Home: %s%n", home.getName ());

23 System.out.printf("Absolute Path: %s%n", home.getAbsolutePath ());

24 System.out.printf("Parent: %s%n", parent.getName ());

25 System.out.printf("Absolute Path: %s%n", parent.getAbsolutePath ());

26 System.out.println("Parent ’s File List\n------------------");

27 System.out.println(

28 "Index: Exec? Read?Write?IsDir?IsFil? Size Name");

29 for (int i = 0; i < list.length; i ++)

30 {

31 System.out.printf("%05d:%6s%6s%6s%6s%6s%8d %s%n",

32 i, flags[i][0], flags[i][1], flags[i][2],

33 flags[i][3], flags[i][4], size[i], name[i]);

34 }

35 }

Listing 15.6 A program that demonstrates the use of File methods for examining properties of files (part 2). The
part responsible for printing the results

The last part of the code is the method main. The method has a throws IOException
declaration (Line 37). The program needs one file path to start. The actions that the method main
performs are as follows:

• Ask the user to enter a path (Line 38).

• Instantiate a Scanner object (Line 39).

• Receive a file path from the user and store it in a String variable named path (Line 40).

• Instantiate a File object f with the path (Line 41).

• Instantiate a File object g with the canonical path obtained from f (Line 42).

• Call the method directoryPlay with g as the actual parameter.

36 public static void main(String [] args) throws IOException

37 {

38 System.out.print("Enter path: ");

39 Scanner keyboard = new Scanner(System.in);

40 String path = keyboard.nextLine ();

41 File f = new File(path);

42 File g = f.getCanonicalFile ();

43 directoryPlay(g);

44 }

45 }

Listing 15.7 A program that demonstrates the use of File methods for examining properties of files (part 3). The
method main

378 15 Class File

Here is one execution example:

1 Enter path: ../..
2 Home: CSC120
3 Absolute Path: /Users/nancy/Documents/CSC120
4 Parent: Documents
5 Absolute Path: /Users/nancy/Documents
6 Parent’s File List
7 ------------------
8 Index: Exec? Read?Write?IsDir?IsFil? Size Name
9 00000: false true true false true 18436 .DS_Store

10 00001: false true true false true 0 .localized
11 00002: true true true true false 476 archives
12 00003: true true true true false 204 classical.txt
13 00004: true true true true false 136 cranium
14 00005: true true true true false 714 CSC120
15 00006: true true true true false 578 CSC527
16 00007: true true true true false 204 easy
17 00008: false true true false true 132102 eceSeminarOct2017.docx
18 00009: true true true true false 272 fiances
19 00010: true true true true false 306 frank
20 00011: true true true true false 612 globaltheme
21 00012: true true true true false 204 india.txt
22 00013: true true true true false 102 letters
23 00014: true true true true false 204 Microsoft User Data
24 00015: true true true true false 204 MitsuCollection.txt
25 00016: false true true false true17438298 Mult_Pattern_2_EdXX.docx
26 00017: true true true true false 204 MyCollection.txt
27 00018: true true true true false 170 papers
28 00019: true true true true false 782 pdfs
29 00020: true true true true false 340 Projects
30 00021: true true true true false 1020 Resume
31 00022: true true true true false 442 reviews
32 00023: true true true true false 578 temp
33 00024: true true true true false 374 temporary

15.2 Using ScannerObjects to Read from Files

Suppose theFile is a File object that refers to a text file. Then, the Scanner object

instantiated with new Scanner(theFile) makes it possible to read the contents of

theFile. Since the constructors of File do not check the validity of the file paths provided,

the file represented by theFile may not exist. In such a case, the constructor throws

a run-time error FileNotFoundException. FileNotFoundException belongs to

java.io and is a descendant of IOException. To handle FileNotFoundException,

java.io.FileNotFoundException must be imported by one of the following two import

statements:

1 import java.io.*;

2 import java.io.FileNotFoundException;

The next program demonstrates how to read from a text file that contains scores for a group of

students. The number of scores available differs from student to student. The file begins with an

integer token that specifies the number of students whose scores appear in the file. This is followed by

the information for individual students. The information for an individual student consists of the name

15.2 Using Scanner Objects to Read from Files 379

of the student, the number of scores available for the students, and the individual scores for the student.

The actual number of scores that appear must match the stated number of scores. Furthermore, the

actual number of students whose records appear in the file must match the number of students stated

in the first line of the file. The names are free of delimiters, so can be read with the method next.

Here is a sample score file:

1 8
2 Judy 5 80.5 82.0 85.0 92.0 95.0
3 King 6 89.0 87.5 77.5 100.0 95.5 98.0
4 Linda 3 94.5 95.5 96.5
5 Monty 4 75.5 80.0 90.0 65.0
6 Nancy 2 100.0 100.0
7 Oliver 1 99.0
8 Patty 3 97.5 95.0 92.5
9 Quincy 2 84.0 89.0

Listing 15.8 A sample data file for the score reading data program

Here is a program that reads a file whose contents are in this format. The program receives a path to

the file from the user, and then stores it in a String variable named path (Lines 7–9). The program

instantiates a File object with the file path, and then stores it in a variable named theFile (Line

10). The program instantiates a Scanner object fileScanner with theFile (Line 13). Since

the instantiation of a Scanner object may result in FileNotFoundException, the instantiation

is placed in a try-catch. The try block contains the instantiation of the Scanner object and all

the remaining actions of the program. The corresponding catch appears much later (Line 37). The

program reads the first token of the file using nextInt, and stores the number in an int variable

named lineNumber (Line 14). The program instantiates an array of String data having length

equal to lineNumber, and stores the array in a variable, names (Line 14). The program instantiates

a jagged array having length lineNumber, and stores the array in a variable, scores (Line 15).

Each row of scores is null immediately after the instantiation. The program then reads the data for

individual students using a double for-loop. The exterior loop iterates over the indexes to the students,

0, ..., lineNumber - 1, with a variable named i (Line 17). The internal loop iterates over

the indexes to the scores (Line 22). The actions to be performed in the double for-loop are as follows:

• Read the name and store it in names[i] (Line 18).

• Read the number of scores, and store it in an int variable named size (Line 20).

• Instantiate the row data[i] with new double[size] (Line 21).

• Use a for-loop to read the individual scores and store them in data[i][0], ...,
data[i][size - 1] (Lines 22–25).

The number of students can be obtained with names.length. To obtain the number of scores

available for the student at index i, data[i].length is used. To print the data, the program

allocates ten character spaces for the name (Line 29), and ten character spaces with two digits after

the decimal point (in other words, %10.2f) for each score (Line 32).

380 15 Class File

1 import java.util .*;

2 import java.io.*;

3 public class ReadTable

4 {

5 public static void main(String [] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter file path: ");

9 String path = keyboard.nextLine ();

10 File theFile = new File(path);

11 try

12 {

13 Scanner fileScanner = new Scanner(theFile);

14 int lineNumber = fileScanner.nextInt ();

15 String [] names = new String[lineNumber];

16 double [][] data = new double[lineNumber][];

17 for (int i = 0; i < lineNumber; i ++)

18 {

19 names[i] = fileScanner.next();

20 int size = fileScanner.nextInt ();

21 data[i] = new double[size];

22 for (int col = 0; col < size; col ++)

23 {

24 data[i][col] = fileScanner.nextDouble ();

25 }

26 }

27 for (int i = 0; i < names.length; i ++)

28 {

29 System.out.printf("%10s", names[i]);

30 for (int col = 0; col < data[i]. length; col ++)

31 {

32 System.out.printf("%10.2f", data[i][col]);

33 }

34 System.out.println ();

35 }

36 }

37 catch (FileNotFoundException e)

38 {

39 System.out.printf("The file %s does not exist%n", path);

40 }

41 }

42 }

Listing 15.9 A program that reads the names and scores of students from a file

Here is the result of executing the code on the data file presented earlier.

1 Enter file path: dataTable.txt
2 Judy 80.50 82.00 85.00 92.00 95.00
3 King 89.00 87.50 77.50 100.00 95.50 98.00
4 Linda 94.50 95.50 96.50
5 Monty 75.50 80.00 90.00 65.00
6 Nancy 100.00 100.00
7 Oliver 99.00
8 Patty 97.50 95.00 92.50
9 Quincy 84.00 89.00

The try-catch of the program is designed to handle FileNotFoundException. It does not

handle other types of run-time errors. For example, consider a file dataTableErroneous.txt
that was created by changing the number appearing at the very start of the file to 9 and retaining the

15.2 Using Scanner Objects to Read from Files 381

remaining contents of the file. Since the number of students that is stated is larger than the actual

number of students, the program results in a run-time error of NoSuchElementException as

follows:

1 Enter file path: dataTableErroneous.txt

2 Exception in thread "main" java.util.NoSuchElementException

3 at java.util.Scanner.throwFor(Scanner.java :862)

4 at java.util.Scanner.next(Scanner.java :1371)

5 at ReadTable.main(ReadTable.java :20)

However, if the user provides a file path to a non-existing file, the program prints the error message

in the catch clause and halts as follows:

1 java ReadTable
2 Enter file path: fooBar.txt
3 The file fooBar.txt does not exist
4 % ...

People often use the “tab-delimited” format for data files. The following is a “tab-delimited”

version of the data file we have just used, where the number of people or the numbers of scores

does not appear. However, the information is presented one person per line and the entries in each line

are separated by a tab-stop.

1 Judy 80.5 82.0 85.0 92.0 95.0
2 King 89.0 87.5 77.5 100.0 95.5 98.0
3 Linda 94.5 95.5 96.5
4 Monty 75.5 80.0 90.0 65.0
5 Nancy 100.0 100.0
6 Oliver 99.0
7 Patty 97.5 95.0 92.5
8 Quincy 84.0 89.0

Listing 15.10 A sample data file for the score reading data program. The file is without dimensional information

Suppose we must read from the tab-delimited version instead, and generate names and data, what

should we do?

To decompose one line of data, we can choose from two strategies, as we discussed in Sect. 12.5.

One strategy is to process the line twice with Scanner, the other is to use the method split of

String. Regardless of which strategy is to be used, we must read the entire line using the method

nextLine. Suppose we have just obtained one line of the file, and the student is at index i. Suppose

that the line is stored in a String variable named w. With the first strategy, the performed actions

will be as follows:

1. Instantiate a Scanner object with w as the parameter.

2. Run a while-loop with hasNext as the continuation condition, and obtain the number of tokens,

say m, appearing in w.

3. Instantiate data[i] by new double[m - 1].

4. Instantiate the Scanner object again, and read the tokens from w. Store the very first token in

names[i] and store the rest in data[i].

The second strategy takes advantage of the fact that the entries in each line are separated by a tab.

With that strategy, the actions to be performed are as follows:

1. Split w into an array of String data using w.split("\t"), and store it in an array, say

tokens.

2. Store tokens[0] in names[i].

382 15 Class File

3. Instantiate data[i] by new double[tokens.length - 1].

4. Using Double.parseDouble, convert tokens[1], ..., tokens[tokens.
length - 1] to double values, and then store them in data
[i][0], ..., data[i][tokens.length - 2]. Double.parseDouble
is the double version of Integer.parseInt.

We use the latter strategy in our program.

The source code has the method main at the beginning. The method declares throws
IOException. As before, the program obtains a file path from the user, and then instantiates

a new File object (Lines 7–10). However, this time, the program verifies the existence and the

readability of the specified file (Line 11). The program calls the method theWork only when the two

tests return true (Line 13).

1 import java.util .*;

2 import java.io.*;

3 public class ReadTableGuess

4 {

5 public static void main(String [] args) throws FileNotFoundException

6 {

7 Scanner keyboard = new Scanner(System.in);

8 System.out.print("Enter file path: ");

9 String path = keyboard.nextLine ();

10 File theFile = new File(path);

11 if (theFile.exists () && theFile.canRead ())

12 {

13 theWork(theFile);

14 }

15 }

16

Listing 15.11 A program that reads the score data from a file without dimensional information (part 1). The method
main

The next method, getLineNumber, is for obtaining the number of lines in a file. The method

getLineNumber executes the following series of action:

• Instantiate a Scanner object (Line 19).

• Store the value of 0 to an int variable lineNumber (Line 20).

• While there is a line remaining in the file (Line 21), read one line without saving it (Line 23) and

increase lineNumber by 1 (Line 24).

17 public static int getLineNumber(File f) throws FileNotFoundException

18 {

19 Scanner fileScanner = new Scanner(f);

20 int lineNumber = 0;

21 while (fileScanner.hasNextLine ())

22 {

23 fileScanner.nextLine ();

24 lineNumber ++;

25 }

26 fileScanner.close();

27 return lineNumber;

28 }

29

Listing 15.12 A program that reads the score data from a file without dimensional information (part 2). The method
getLineNumber

15.2 Using Scanner Objects to Read from Files 383

• Close the Scanner object (Line 26) and return the value of lineNumber (Line 27).

The formal parameter of the method theWork is a File object named theFile. The method

obtains the number of lines in the file with a call to getLineNumber, and then stores the returned

value in its a variable, lineNumber (Line 32). The method instantiates the arrays names and

data as before (Lines 33 and 34). The method then reads the individual lines. The line numbers

are generated in the variable line. At each line, the method executes the following:

• Read one full line and store it in oneLine (Line 40).

• Call oneLine.split("\t") to obtain an array of String data, and store it in tokens
(Line 41).

• Store tokens[0] in names[line] (Line 42).

• Store tokens.length - 1 in size (Line 43).

• Instantiate (data[line]) with new double[size] (Line 44).

• Use a for-loop that iterates over the sequence 0, ..., size - 1 with a variable named col,

store Double.parseDouble(tokens[col + 1]) in data[line][col]
(Lines 45–48).

After this, a section for printing the data appears. The source code is exactly the same as before.

30 public static void theWork(File theFile) throws FileNotFoundException

31 {

32 int lineNumber = getLineNumber(theFile);

33 String [] names = new String[lineNumber];

34 double [][] data = new double[lineNumber][];

35

36 Scanner fileScanner = new Scanner(theFile);

37

38 for (int line = 0; line < lineNumber; line ++)

39 {

40 String oneLine = fileScanner.nextLine ();

41 String [] tokens = oneLine.split("\t");

42 names[line] = tokens[0];

43 int size = tokens.length - 1;

44 data[line] = new double[size];

45 for (int col = 0; col < size; col ++)

46 {

47 data[line][col] = Double.parseDouble(tokens[col + 1]);

48 }

49 }

50 for (int row = 0; row < names.length; row ++)

51 {

52 System.out.printf("%10s", names[row]);

53 for (int col = 0; col < data[row]. length; col ++)

54 {

55 System.out.printf("%10.2f", data[row][col]);

56 }

57 System.out.println ();

58 }

59 }

60 }

Listing 15.13 A program that reads the score data from a file without dimensional information (part 3). The part
responsible for data reading and printing

384 15 Class File

15.3 Using PrintStream to Write to Files

Java has a number of classes for writing data to files. PrintStream is one of them. The class

belongs to java.io, so the class must be imported. A PrintStream object can be instantiated

with a File object as the parameter. Like the constructors of Scanner, the PrintStream
constructor that takes a File object as the parameter has a throws FileNotFoundException
declaration. This error occurs when the file path to the File object has a non-existing file

folder. We are already very much familiar with PrintStream, because System.out has type

PrintStream. We can use methods print, printf, and println on any PrintStream
object that is instantiated with a File object. The way the methods work is exactly the same as the

way they work for System.out. The only difference is that the output is generated not on the screen,

but in a file.

Here is a program that converts the contents of a text file to all uppercase and saves the result in

another file. The method main has a throws FileNotFoundException declaration (Line 6).

The program obtains two file paths from the user (Lines 10 and 12), instantiates two File objects

with the paths (Lines 14 and 15), opens the first file as an input file (Line 16), and opens the second

file as an output file (Line 17). Then, the program enters a loop for converting the texts line by line

(Line 18). The single statement appearing in the loop-body combines three actions: reading one line,

applying toUppercase to the line, and writing the line in the output file (Line 20).

1 import java.util.Scanner;

2 import java.io. * ;

3 // Convert a file contents to all upper case

4 public class ToUpper

5 {

6 public static void main(String [] args) throws FileNotFoundException

7 {

8 Scanner keyboard = new Scanner(System.in);

9 System.out.print("Enter input file path: ");

10 String fInName = keyboard.next();

11 System.out.print("Enter output file path: ");

12 String fOutName = keyboard.next();

13 assert !fInName.equals(fOutName) : "The file names are equal!";

14 File fIn = new File(fInName);

15 File fOut = new File(fOutName);

16 Scanner scanner = new Scanner(fIn);

17 PrintStream stream = new PrintStream(fOut);

18 while (scanner.hasNext ())

19 {

20 stream.println(scanner.nextLine ().toUpperCase ());

21 }

22 }

23 }

Listing 15.14 A program that turns file contents of a file to all upper case and saves it to a new file

The Assert Statement In Line 13 of the program, we see

assert !fInName.equals(fOutName): "The file names are equal!"

This line must be interpreted as:

15.3 Using PrintStream to Write to Files 385

if the condition !fInName.equals(fOutName) is false (equivalently, fInName is equal to
fOutName), produce an error message "The file names are equal!", and halt immediately after
that.

This is almost identical to the IllegalArgumentException we have used before. The

difference is that the assert statements are active only if the program is executed with a special

option -ea of the command java. In other words, in the two executions

1 java -ea ToUpper
2 java ToUpper

the first one executes the assert statement and the second one ignores it. The type of a run-time

error generated by assert is AssertionError. We show the result of executing the code on

the following file. The file contains the lyrics to the original 1892 version of the song America the

Beautiful:

1 O beautiful for halcyon skies,
2 For amber waves of grain,
3 For purple mountain majesties
4 Above the enameled plain!
5 America! America!
6 God shed His grace on thee,
7 Till souls wax fair as earth and air
8 And music-hearted sea!
9

10 O beautiful for pilgrim feet
11 Whose stern, impassioned stress
12 A thoroughfare for freedom beat
13 Across the wilderness!
14 America! America!
15 God shed His grace on thee
16 Till paths be wrought through wilds of thought
17 By pilgrim foot and knee!
18
19 O beautiful for glory-tale
20 Of liberating strife,
21 When once or twice, for man’s avail,
22 Men lavished precious life!
23 America! America!
24 God shed His grace on thee
25 Till selfish gain no longer stain,
26 The banner of the free!
27
28 O beautiful for patriot dream
29 That sees beyond the years
30 Thine alabaster cities gleam
31 Undimmed by human tears!
32 America! America!
33 God shed His grace on thee
34 Till nobler men keep once again
35 Thy whiter jubilee!

Listing 15.15 The lyrics to America the Beautiful

Here is the result of executing the code:

386 15 Class File

1 O BEAUTIFUL FOR HALCYON SKIES,
2 FOR AMBER WAVES OF GRAIN,
3 FOR PURPLE MOUNTAIN MAJESTIES
4 ABOVE THE ENAMELED PLAIN!
5 AMERICA! AMERICA!
6 GOD SHED HIS GRACE ON THEE,
7 TILL SOULS WAX FAIR AS EARTH AND AIR
8 AND MUSIC-HEARTED SEA!
9

10 O BEAUTIFUL FOR PILGRIM FEET
11 WHOSE STERN, IMPASSIONED STRESS
12 A THOROUGHFARE FOR FREEDOM BEAT
13 ACROSS THE WILDERNESS!
14 AMERICA! AMERICA!
15 GOD SHED HIS GRACE ON THEE
16 TILL PATHS BE WROUGHT THROUGH WILDS OF THOUGHT
17 BY PILGRIM FOOT AND KNEE!
18
19 O BEAUTIFUL FOR GLORY-TALE
20 OF LIBERATING STRIFE,
21 WHEN ONCE OR TWICE, FOR MAN‘’‘S AVAIL,
22 MEN LAVISHED PRECIOUS LIFE!
23 AMERICA! AMERICA!
24 GOD SHED HIS GRACE ON THEE
25 TILL SELFISH GAIN NO LONGER STAIN,
26 THE BANNER OF THE FREE!
27
28 O BEAUTIFUL FOR PATRIOT DREAM
29 THAT SEES BEYOND THE YEARS
30 THINE ALABASTER CITIES GLEAM
31 UNDIMMED BY HUMAN TEARS!
32 AMERICA! AMERICA!
33 GOD SHED HIS GRACE ON THEE
34 TILL NOBLER MEN KEEP ONCE AGAIN
35 THY WHITER JUBILEE!

When the program is run with the -ea option, if we provide identical file paths for the two files,

the program halts with an error message as follows:

1 Enter input file path: foo

2 Enter output file path: foo

3 Exception in thread "main" java.lang.AssertionError: The file names are

equal!

4 at ToUpper.main(ToUpper.java :13)

When the program is run without the option of -ea, if we provide identical files paths for the files,

the programs halts with an error, but the error message is different:

1 Enter input file path: foo

2 Enter output file path: foo

3 Exception in thread "main" java.io.FileNotFoundException: foo (No such

file or directory)

4 at java.io.FileInputStream.open(Native Method)

5 at java.io.FileInputStream.<init >(FileInputStream.java :131)

6 at java.util.Scanner.<init >(Scanner.java :611)

7 at ToUpper.main(ToUpper.java :16)

15.3 Using PrintStream to Write to Files 387

Summary

File is a class for specifying files with file paths. The class offers many methods for obtaining the

properties of the files as well as obtaining paths to the files. They include canRead, canWrite,

isDirectory, isFile, length, listFiles, getName, getCanonicalPath, and

getAbsolutePath. Furthermore, the class offers methods for creating and removing actual

files specified in File objects. They include mkdir, delete, and createNewFile.

A Scanner object can be used to read data from a file specified by a File object.

Instantiation of a Scanner object with a File object has a throws FileNotFound
Exception declaration.

A PrintStream object can be used to write data to a file specified by a File object.

System.out is a PrintStream object.

The constructor of a PrintStream object with a File object as the parameter has a

throws FileNotFoundException declaration.

The declaration, throws ERROR_TYPE, attached to a method header officially announces that

the method may throw a run-time error of the type. A method that calls such a method must handle

a run-time error of the type generated as a result of the method call.

Attachment of a throws declaration can be used to resolve the requirement to handle formally

declared run-time errors.

A try-catch clause can be used to handle run-time errors.

Multiple catch clauses can be attached to a single try clause.

An assert statement generates a run-time error if a condition does not hold.

An assert is active only when the program that contains it is executed with the -ea option.

The run-time errors in Java form a tree.

Exercises

1. Questions about File methods

(a) Is the following statement true? If a File is instantiated with a file path and if the file specified

the path does not exist, then FileNotFoundException is thrown.

(b) Name the File method that returns whether or not a given file is a directory.

(c) Name the File method that attempts to create a given file as a directory.

(d) Name the File method that returns whether or not a given file exists.

(e) Name the File method that returns whether or not a given file can be read.

(f) Name the File method that returns whether or not a given file can be overwritten.

(g) Name the File method that returns whether or not a given file can be executed.

(h) Name the File method that, when the file specified by the File object is a folder, provides

an array of File objects representing the files in the folder.

2. Reading from a file Suppose a file, FooBar.txt, consists of the following four lines:

1 a______10.5_
2 __bb_____20.5_
3 __
4 __ccc___-30.5

where each _ represents the whitespace. Suppose a Scanner object reader has been

instantiated with a constructor call new Scanner(new File("FooBat.txt")),

and then the following has been executed:

388 15 Class File

1 while (reader.hasNext ())

2 {

3 System.out.println(reader.next());

4 }

State how many lines of output are produced by this code.

3. Reading a two-dimensional array Write a program, ReadMatrix, that reads the elements

of a two-dimensional matrix of floating point values stored in a file into a two-dimensional array,

and then prints the elements of the array on the screen. The file name should be supplied in

args[0]. Assume that, in the data file, the first token is the number of rows, the second

token is the number of columns, and after these two tokens, the elements of the matrix appear in

the row-major order. In the output, print the dimensions of the matrix, and then print the elements

of the matrix, one row per line, with the entries appearing in the line same, where the entries

appear with exactly three digits after the decimal point and exactly one whitespace in between.

For example, if the contents of the input file are:

1 3
2 4
3 0.1
4 0.4
5 0.7
6 1.0
7 3.5
8 3.4
9 3.3

10 3.2
11 -1.0
12 1.0
13 -2.0
14 2.0

the output must look like:

1 3
2 4
3 0.100 0.400 0.700 1.000
4 3.500 3.400 3.300 3.200
5 -1.000 1.000 -2.000 2.000

4. Reading a two-dimensional array and computing the row- and column-wise averages

Write a program, MatrixAverage, that reads the elements of a two-dimensional matrix of

floating point values stored in a file into two-dimensional array, and then computes the row- and

column-wise averages of the matrix. The file name is given as args[0]. The format used in

the input file is:

• the number of rows,

• the number of columns, and

• the entries of the matrix in the row-major order.

5. Reading and printing Write a program, Punctuate, that reads the tokens appearing in a

text file, and prints the tokens on the screen as follows:

• If the token ends with one of the following punctuation marks, print the newline after the token:

the period, the exclamation mark, the question mark, the colon, the semicolon, and the comma.

• Otherwise, print one whitespace after the token.

15.3 Using PrintStream to Write to Files 389

6. Reading numbers while calculating their running total Write a program, RunningTotal,

that reads data from file, and computes and prints the running total of the numbers it encounters.

All the tokens appearing in the file are integers. The program receives the file path from the user

using Scanner.

7. Searching for a key in a text file Write a program named ReadAndSearch that receives a

keyword and a file path from the user, and looks for all the occurrences of the key in the file. The

program processes the contents of the file by reading them line by line. The program keeps track

of the number of lines that have been read and uses it as the line number. Each time it finds that the

line has an occurrence of the search key in it, the program prints the line number corresponding

to the line.

Programming Projects

8. Character counting Write a program named ASCIICounting that receives a file path from

the user, and then reads the contents of the file to produce the number of occurrences of each

character in the region of characters with indexes 0–127 in the ASCII table. The ’\n’ appearing

at the end of each line will be ignored when counting the character occurrences. After reading

the file, the program prints the characters and their counts for all the characters that have been

found in the file. The character with a count of 0 will be ignored in the output. The format to be

used in producing the character-count pair on the screen is ’%c’:%-6d. The code must use a

try-catch to handle the case in which the file path that the user specifies is not valid.

Here is an execution example:

1 Enter file name: ASCIICounting.java
2 ’ ’:402 ’!’:1 ’"’:6 ’%’:4 ’&’:2 ’’’:2
3 ’(’:20 ’)’:20 ’*’:2 ’+’:10 ’,’:2 ’-’:1
4 ’.’:17 ’/’:4 ’0’:9 ’1’:3 ’2’:3 ’6’:2
5 ’7’:2 ’8’:2 ’:’:1 ’;’:19 ’<’:3 ’=’:14
6 ’>’:2 ’A’:2 ’C’:3 ’E’:2 ’F’:4 ’I’:3
7 ’L’:1 ’N’:2 ’O’:1 ’S’:9 ’[’:10 ’]’:10
8 ’a’:29 ’b’:2 ’c’:19 ’d’:11 ’e’:32 ’f’:7
9 ’g’:8 ’h’:10 ’i’:58 ’j’:2 ’l’:12 ’m’:7

10 ’n’:46 ’o’:35 ’p’:20 ’r’:33 ’s’:23 ’t’:56
11 ’u’:13 ’v’:4 ’w’:7 ’x’:5 ’y’:6 ’{’:11
12 ’}’:11

9. Character distribution As an extension of the previous question, write a program

ASCIIDistComparison that compares the ASCII character distributions of two files. The

user specifies the paths to the files. For each file, the program produces a 128-dimensional array

of int values representing the frequencies of the 128 characters. The program computes the

difference between the two 128-dimensional arrays, and reports the differences on the screen.

Use the same printing format as in the previous problem.

Here is an execution example of such a program:

1 Enter file name 1: file1.txt
2 Enter file name 2: file2.txt
3 ’ ’:7 ’!’:5 ’"’:-30 ’%’:5 ’&’:2 ’’’:8
4 ’(’:-10 ’)’:-10 ’*’:-6 ’+’:4 ’,’:-14 ’-’:-1
5 ’.’:-27 ’/’:9 ’0’:12 ’1’:5 ’2’:2 ’3’:-7
6 ’4’:-4 ’5’:-4 ’6’:2 ’7’:5 ’8’:4 ’9’:-7
7 ’:’:-1 ’;’:-21 ’<’:2 ’=’:-6 ’>’:1 ’A’:3
8 ’B’:-8 ’C’:17 ’D’:5 ’E’:-1 ’F’:13 ’G’:-1
9 ’I’:-2 ’L’:-1 ’M’:-5 ’N’:9 ’O’:-3 ’P’:-2

10 ’R’:-10 ’S’:-19 ’T’:-3 ’W’:-4 ’[’:4 ’\’:-230
11 ’]’:4 ’a’:-26 ’b’:-53 ’c’:2 ’d’:-18 ’e’:-63

390 15 Class File

12 ’f’:35 ’g’:-27 ’h’:-39 ’i’:8 ’j’:2 ’k’:-21
13 ’l’:-37 ’m’:-22 ’n’:-9 ’o’:13 ’p’:7 ’q’:-1
14 ’r’:-16 ’s’:-31 ’t’:-30 ’u’:-29 ’v’:-3 ’w’:-1
15 ’x’:3 ’y’:-27 ’{’:5 ’|’:-2 ’}’:5

10. Character distribution plus Revise the previous program to write a new one named

ASCIIDistComparisonPlus. This time, the program additionally reports the character for

which the difference is the largest.

With the same input files, the output may be as follows:

1 Enter file name 1: file1.txt
2 Enter file name 2: file2.txt
3 ’ ’:7 ’!’:5 ’"’:-30 ’%’:5 ’&’:2 ’’’:8
4 ’(’:-10 ’)’:-10 ’*’:-6 ’+’:4 ’,’:-14 ’-’:-1
5 ’.’:-27 ’/’:9 ’0’:12 ’1’:5 ’2’:2 ’3’:-7
6 ’4’:-4 ’5’:-4 ’6’:2 ’7’:5 ’8’:4 ’9’:-7
7 ’:’:-1 ’;’:-21 ’<’:2 ’=’:-6 ’>’:1 ’A’:3
8 ’B’:-8 ’C’:17 ’D’:5 ’E’:-1 ’F’:13 ’G’:-1
9 ’I’:-2 ’L’:-1 ’M’:-5 ’N’:9 ’O’:-3 ’P’:-2

10 ’R’:-10 ’S’:-19 ’T’:-3 ’W’:-4 ’[’:4 ’\’:-230
11 ’]’:4 ’a’:-26 ’b’:-53 ’c’:2 ’d’:-18 ’e’:-63
12 ’f’:35 ’g’:-27 ’h’:-39 ’i’:8 ’j’:2 ’k’:-21
13 ’l’:-37 ’m’:-22 ’n’:-9 ’o’:13 ’p’:7 ’q’:-1
14 ’r’:-16 ’s’:-31 ’t’:-30 ’u’:-29 ’v’:-3 ’w’:-1
15 ’x’:3 ’y’:-27 ’{’:5 ’|’:-2 ’}’:5
16 Max. difference of -230 for ’\’.

11. Printing the text shape to a file Write a program, TextShape, that reads a text file and

prints the “shape” of the text line into another file. For a String data w, by “shape” of w, we

mean a String data generated from w by converting each character occurring between the first

non-space character and the last non-space character to ’#’.

The user specifies the input file and the output file to execute this program.

For example, the “shape” of

1 A BCDEFG
2 HIJKLM
3 NOPQ RS T UV
4 W X Y Z

is

1 #######
2 ######
3 ############
4 #######

Make sure that the program works when the input file contains a nonempty line consisting solely

of ’ ’.

12. Converting each tab-stop to an equivalent series of ’ ’ Write a program named

TabConvert that reads from a file and produces an output where each tab-stops appearing

in the input file is substituted with a series of ’ ’, so that when printed the appearance of

the input file and the appearance of the output are exactly the same. Assume that the tab-stop

positions are multiples of 8. The program receives the paths to the input and output files from

the user. In the program, write a method convert whose action is to receive a String value

without the newline character as the formal parameter, and then return a tab-stop free String
value that has the same appearance as the parameter when printed with no indentation.

16Designing Object Classes

16.1 Packaging a Group of Data as an Object

16.1.1 The Position of a Game Piece

In Java, object classes are used to assemble a set of data as a unit.

The header of the source code for an object class is the same as the header of the source code

for a non-object class. Specifically, the header takes the form of public class CLASS_NAME.

Declarations about implementation and extension (see Chap. 17) may appear after the class name.

The possible components of an object class are: instance variables (defined as if they were global

variables), instance methods, constructors, constants, and static methods.

In this chapter, we explore how to write a source code for an object class. We start with a series of

programs for manipulating the position of a game piece placed on a game board. We assume that the

board has two-dimensional integral coordinates (that is, the position of a piece is represented as a pair

of integers), for instance, as shown in Fig. 16.1.

The user specifies the initial position of the piece, and then interacts with the program to change

its position. The new position of the piece is specified with the numbers of squares that the piece must

move along the x- and y-axes. If the move is possible, the program updates the position. The program

then asks whether or not the user wants to move the piece again. If the user answers “yes”, the series

of actions is repeated; otherwise, the program terminates.

The following program, UsePositionZero, is the initial version of the program. The program

does not use a custom object class. It uses two int variables, xPos and yPos, for representing the

position (Line 7). The program receives the initial values for the two variables in Lines 9–11. Then

the program enters a do-while loop (Line 14). In the loop-body, the program first reports the present

position of the piece. In reporting the position, the program uses the format (%d,%d) with xPos
and yPos supplied to the two placeholders (Line 15). The program then asks the user to enter the

amounts of move, and changes the coordinates with the amounts that the user enters (Lines 17–19).

The program then reports the new position using the same format (Line 21). The program then asks

the user whether or not the program should continue (Line 23). The response is stored in a String
variable named answer (Line 24). The loop is terminated if the response does not start with "y"
(Line 25).

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_16

391© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_16

392 16 Designing Object Classes

Fig. 16.1 An 8 × 8 game
board. The X represents a
position of a game piece

X

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 import java.util .*;

2 public class UsePositionZero

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int xPos , yPos;

8

9 System.out.print("Enter the initial x y: ");

10 xPos = keyboard.nextInt ();

11 yPos = keyboard.nextInt ();

12

13 String answer = "";

14 do {

15 System.out.printf("The current position: (%d,%d)%n", xPos , yPos);

16

17 System.out.print("By how much do you want to shift x and y? ");

18 xPos += keyboard.nextInt ();

19 yPos += keyboard.nextInt ();

20

21 System.out.printf("The new position: (%d,%d)%n", xPos , yPos);

22

23 System.out.print("Continue (y/n)? ");

24 answer = keyboard.next();

25 } while (answer.startsWith("y"));

26 }

27 }

Listing 16.1 The initial version of the program that manipulates the position of a game piece

Here is an example of executing UsePositionZero:

16.1 Packaging a Group of Data as an Object 393

1 Enter the initial x y: 1 3

2 The current position: (1,3)

3 By how much do you want to shift x and y? 2 7

4 The new position: (3,10)

5 Continue (y/n)? y

6 The current position: (3,10)

7 By how much do you want to shift x and y? 10 -8

8 The new position: (13 ,2)

9 Continue (y/n)? y

10 The current position: (13,2)

11 By how much do you want to shift x and y? -1 -1

12 The new position: (12,1)

13 Continue (y/n)? n

We want to write new versions of UsePositionZero, where the two coordinates are treated

as one unit. To accomplish this, we define an object class PositionFirst. An object of

PositionFirst has two data components, x and y, representing the x- and y-coordinates of

the position. Both x and y are int variables. They are declared as instance variables. Figure 16.2

visualizes the way PositionFirst encompasses the two instance variables in it.

Fig. 16.2 The instance
variables of a
PositionFirst object

PositionFirst pos

int x : 15

int y : 30

Here is the source code of PositionFirst. The declarations of x and y are given in Line 3 of

the source

3 int x, y;

The lack of the static attribute signifies that they are instance variables.

The constructor for PositionFirst starts at Line 4.

4 public PositionFirst(int xValue , int yValue)

5 {

6 x = xValue;

7 y = yValue;

8 }

The constructor stores the values xValue and yValue given as the formal parameters in the instance

variables x and y.

The general format of a constructor is

public CLASS_NAME(PARAMETERS)

This format is different from the format of method declarations, since there is no return type.

394 16 Designing Object Classes

There is only one instance method in PositionFirst. The method is named shift (Lines

9–12). The method shift has two formal parameters, xDiff and yDiff, and adds their values to

the instance variables. The header of the method does not have the static attribute. The lack of the

attribute signifies that the method is an instance method.

1 public class PositionFirst

2 {

3 int x, y;

4 public PositionFirst(int xValue , int yValue)

5 {

6 x = xValue;

7 y = yValue;

8 }

9 public void shift(int xDiff , int yDiff)

10 {

11 x += xDiff;

12 y += yDiff;

13 }

14 }

Listing 16.2 Class PositionFirst

Recall that the use of a constructor requires the special keyword of new. For a pair of int data

startX and startY,

new PositionFirst(startX, startY)

produces a new PositionFirst object whose instance variables x and y have values startX
and startY. For example,

PositionFirst myPos = new PositionFirst(1, 3);

constructs a PositionFirst object with coordinates (1,3) and assigns it to myPos.

The class PositionFirst does not have the method main. We write a separate class,

UsePositionFirst, for handling the interactions with the user. To run UsePositionFirst,

both PositionFirst.java and UsePositionFirst.java need to be compiled. The two

files can be compiled individually:

1 % javac PositionFirst.java
2 % javac UsePositionFirst.java

or jointly:

% javac PositionFirst.java UsePositionFirst.java

The source code of UsePositionFirst is an adaptation of the source code of UsePosition
Zero. The program uses a PositionFirst object, pos, to store coordinates (Line 7). To

instantiate pos, the constructor of PositionFirst is called (Line 10). The actual parameters

of the constructor are two calls of keyboard.nextInt() (Line 10). The return value of the first

call keyboard.nextInt() becomes the first actual parameter, ad the return value of the second

call keyboard.nextInt() becomes the second actual parameter. The x- and y- coordinates of

pos are accessed with pos.x and pos.y (Lines 14 and 18). Moving the position is accomplished

by calling the method shift (Line 16). The actual parameters of the method call are two calls to

keyboard.nextInt() (Line 16).

16.1 Packaging a Group of Data as an Object 395

1 import java.util .*;

2 public class UsePositionFirst

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 PositionFirst pos;

8

9 System.out.print("Enter the initial x y: ");

10 pos = new PositionFirst(keyboard.nextInt (), keyboard.nextInt ());

11 String answer = "";

12 do {

13 System.out.printf("The current position: (%d,%d)%n",

14 pos.x, pos.y);

15 System.out.print("By how much do you want to shift x and y? ");

16 pos.shift(keyboard.nextInt (), keyboard.nextInt ());

17

18 System.out.printf("The new position: (%d,%d)%n", pos.x, pos.y);

19 System.out.print("Continue (y/n)? ");

20 answer = keyboard.next();

21 } while (answer.startsWith("y"));

22 }

23 }

Listing 16.3 A program that plays with the position of a game piece using an object of type PositionFirst

Here is an execution example of the program:

1 Enter the initial x y: -100 -100

2 The current position: (-100,-100)

3 By how much do you want to shift x and y? 1000 1000

4 The new position: (900 ,900)

5 Continue (y/n)? y

6 The current position: (900 ,900)

7 By how much do you want to shift x and y? 345 9870

8 The new position: (1245 ,10770)

9 Continue (y/n)? y

10 The current position: (1245 ,10770)

11 By how much do you want to shift x and y? -1397 760

12 The new position: (-152 ,11530)

13 Continue (y/n)? n

16.1.2 Private Instance Variables and the toString Method

The class PositionFirst permits direct access to the instance variables via the attachment of

their names, for instance, pos.x. This direct access is utilized in Lines 14 and 18 of the source code

of UsePositionFirst, where the program reports the position of the piece. However, the direct

accessibility of instance variables can be problematic for the following reasons:

396 16 Designing Object Classes

• If the name and/or type of an instance variable changes, all the direct accesses to the variable

appearing in other source codes must be updated accordingly. For instance, if the name x in

PositionFirst changes to xxx, the two occurrences of pos.x in UsePositionFirst
must be changed to pos.xxx.

• In the case where an instance variable is a number and is directly accessible, an attachment of a

short-hand expression to a direct access to the variable may modify the value inadvertently. Such an

error is often difficult to identify. For instance, suppose that a programmer intends to store the value

of pos.x + 1 in r, but accidentally writes r = pos.x ++ instead of r = pos.x + 1. The

execution of the assignments stores the value of pos.x in r and adds 1 to pos.x.

These problems can be avoided by making the instance variables inaccessible from any class other

than PositionFirst, and providing alternatives for accessing and modifying their values. To make

an instance variable inaccessible from other source codes, an attribute of private must be attached

in its declaration as follows:

private int x, y;

Suppose this modification has been applied to the instance variables, x and y, of PositionFirst.

Then, PositionFirst compiles, but UsePositionFirst does not. Here is the compilation

error message:

1 UsePositionFirst.java :13: error: x has private access in PositionFirst

2 System.out.printf("The current position: (%d,%d)%n", pos.x, pos.y

);

3 ˆ

4 UsePositionFirst.java :13: error: y has private access in PositionFirst

5 System.out.printf("The current position: (%d,%d)%n", pos.x, pos.y

);

6 ˆ

7 UsePositionFirst.java :18: error: x has private access in PositionFirst

8 System.out.printf("The new position: (%d,%d)%n", pos.x, pos.y);

9 ˆ

10 UsePositionFirst.java :18: error: y has private access in PositionFirst

11 System.out.printf("The new position: (%d,%d)%n", pos.x, pos.y);

12 ˆ

13 4 errors

The message states that the instance variables of PositionFirst are private and so cannot be

accessed.

By reading the error message, we learn that the errors originate from the places where the program

attempts to access the values of x and y. To resolve the problem, we introduce instance methods,

getX and getY, that return the values of x and y.

Here is the class PositionPrivate in which the above modifications have been incorporated.

The methods getX and getY appear in Lines 14–17 and Lines 18–21. Both take no parameters and

execute just one statement. The actions to be performed by the constructor are the same as before

(Lines 6 and 7). The method shift is untouched (Lines 9–13).

16.1 Packaging a Group of Data as an Object 397

1 public class PositionPrivate

2 {

3 private int x, y;

4 public PositionPrivate(int xValue , int yValue)

5 {

6 x = xValue;

7 y = yValue;

8 }

9 public void shift(int xDiff , int yDiff)

10 {

11 x += xDiff;

12 y += yDiff;

13 }

14 public int getX()

15 {

16 return x;

17 }

18 public int getY()

19 {

20 return y;

21 }

22 }

Listing 16.4 Class PositionPrivate

We call methods that offer access to the values of instance variables getters (or accessors),

and methods that offer ways to change the values of instance variables setters (or modifers). In

PositionPrivate, getX and getY are getters and shift is a setter.

The program UsePositionPrivate is derived from UsePositionFirst by changing the

type of pos to PositionPrivate (Lines 7 and 10) and changing the direct accesses pos.x and

pos.y to their respective instance methods pos.getX() and pos.getY() (Lines 14 and 20).

1 import java.util .*;

2 public class UsePositionPrivate

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 PositionPrivate pos;

8

9 System.out.print("Enter the initial x y: ");

10 pos = new PositionPrivate (keyboard.nextInt (), keyboard.nextInt ());

11 String answer = "";

Listing 16.5 Class UsePositionPrivate (part 1)

398 16 Designing Object Classes

12 do

13 {

14 System.out.printf("The current position: (%d,%d)%n",

15 pos.getX(), pos.getY());

16 System.out.print("By how much do you want to shift x and y? ");

17 pos.shift(keyboard.nextInt (), keyboard.nextInt ());

18

19 System.out.printf("The new position: (%d,%d)%n",

20 pos.getX(), pos.getY());

21 System.out.print("Continue (y/n)? ");

22 answer = keyboard.next();

23 } while (answer.startsWith("y"));

24 }

25 }

Listing 16.6 Class UsePositionPrivate (part 2)

Again, from the user’s point of view, the program works exactly the same way as before.

1 Enter the initial x y: -23 54

2 The current position: (-23,54)

3 By how much do you want to shift x and y? 23 -54

4 The new position: (0,0)

5 Continue (y/n)? y

6 The current position: (0,0)

7 By how much do you want to shift x and y? 0 4

8 The new position: (0,4)

9 Continue (y/n)? y

10 The current position: (0,4)

11 By how much do you want to shift x and y? 4 -100

12 The new position: (4,-96)

13 Continue (y/n)? n

16.1.3 Using Constants in an Object Class

The position programs we have seen so far allow an arbitrary value for each coordinate. However,

in a real game, the area in which the game pieces are placed is finite. For instance, in Chess, the

area is 8 by 8, and in the Japanese Chess, Shogi, the area is 9 by 9. Based on this observation, we

modify PositionPrivate to create a new version, PositionConfined, where the coordinates

have an upper bound and a lower bound. The constants that define the lower and upper bounds are

MINIMUM and MAXIMUM. They are defined as follows:

1 public static final int MINIMUM = 1;

2 public static final int MAXIMUM = 8;

These constants are public, so their values can be accessed from outside by attaching their names to

PositionConfined. For example, an external program can print the values of these constants by:

1 System.out.println("The maximum is " + PositionConfined.MAXIMUM);

2 System.out.println("The minimum is " + PositionConfined.MINIMUM);

16.1 Packaging a Group of Data as an Object 399

The code produces the following output:

1 The maximum is 8
2 The minimum is 1

Having bounds on the coordinates means that we need to enforcing the bounds. There are two places

for the user to suggest an invalid position, when the user specifies the initial position and when the

user specifies the amounts of movement. We handle the two situations as follows:

• If the suggested initial position is outside the boundary, we use some default position.

• If the suggested movement will push the position outside the boundary, we do not move the piece.

The default coordinates are defined with two additional constants, DEFAULT_X and DEFAULT_Y.

Both are int type and have the value of 1. In the program, they are defined as follows:

1 public static final int DEFAULT_X = 1;

2 public static final int DEFAULT_Y = 1;

We introduce a new method inRange (Line 10) for checking if a suggested value for a coordinate

is in the range of valid coordinate values. inRange receives an int value z as its formal parameter,

and returns a boolean value representing whether or not z is in the range. More precisely, the

method returns z >= MINIMUM && z <= MAXIMUM (Line 12). The variable z can be for x or

for y. We make inRange a public static method. This means that the method is available to other

source codes without having to instantiate a PositionConfined object. The usage of the message

from outside should be like: PositionConfined.inRange(10).

Using inRange, the constructor now works as follows:

• Tentatively assign the default values to the instance variables (Lines 17 and 18).

• If both parameters are valid (Line 19), assign the values of the parameters to the instance variables.

The new version of shift uses inRange to check whether or not the suggested coordinates,

x + xDiff and y + xDiff, are valid (Line 28). If both are valid, the method updates the instance

variables with the suggested coordinates, and returns true (Lines 30–32). Otherwise, the method

retains the present values and returns false (Line 34). The return type of shift has been changed

from void to boolean.

The methods getX and getY are the same as before (Lines 36–43). A new method has been intro-

duced in PositionConfined. The name of the method is toString. The method toString
returns the String that presents the two coordinate values in the format we have been using to print

the positions (Lines 44–47). The formatted String is produced using String.format.

400 16 Designing Object Classes

1 public class PositionConfined

2 {

3 public static final int MINIMUM = 1;

4 public static final int MAXIMUM = 8;

5 public static final int DEFAULT_X = 1;

6 public static final int DEFAULT_Y = 1;

7

8 private int x, y;

9

10 private static boolean inRange(int z)

11 {

12 return z >= MINIMUM && z <= MAXIMUM;

13 }

14

15 public PositionConfined(int xValue , int yValue)

16 {

17 x = DEFAULT_X;

18 y = DEFAULT_Y;

19 if (inRange(xValue) && inRange(yValue))

20 {

21 x = xValue;

22 y = yValue;

23 }

24 }

25

26 public boolean shift(int xDiff , int yDiff)

27 {

28 if (inRange(x + xDiff) && inRange(y + yDiff))

29 {

30 x += xDiff;

31 y += yDiff;

32 return true;

33 }

34 return false;

35 }

36 public int getX()

37 {

38 return x;

39 }

40 public int getY()

41 {

42 return y;

43 }

44 public String toString ()

45 {

46 return String.format("(%d,%d)", x, y);

47 }

48 }

Listing 16.7 Class PositionConfined

Now that we have revised PositionPrivate to PositionConfined, we revise

UsePositionPrivate too. The new program is UsePositionConfined. The new version

uses PositionConfined instead of PositionPrivate. The program captures the return value

of the method shift, and stores it in a boolean variable, res (Line 18). If the value of res is

true, the program prints the new position (Lines 19–22). Otherwise, it prints a special message

"-----UNSUCCESSFUL-----" (Lines 23–26).

16.1 Packaging a Group of Data as an Object 401

1 import java.util .*;

2 public class UsePositionConfined

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 PositionConfined pos;

8

9 System.out.print("Enter the initial x y: ");

10 pos = new PositionConfined(

11 keyboard.nextInt (), keyboard.nextInt ());

12 String answer = "";

13 do

14 {

15 System.out.println("The current position: " + pos.toString ());

16 System.out.print("By how much do you want to shift x and y? ");

17

18 boolean res = pos.shift(keyboard.nextInt (), keyboard.nextInt ());

19 if (res)

20 {

21 System.out.println("The new position: " + pos.toString ());

22 }

23 else

24 {

25 System.out.println("--------UNSUCCESSFUL --------");

26 }

27 System.out.print("Continue (y/n)? ");

28 answer = keyboard.next();

29 } while (answer.startsWith("y"));

30 }

31 }

Listing 16.8 Class UsePositionConfined

Here is an execution example of the program. The error message is generated two times during the

execution.

1 Enter the initial x y: 4 4

2 The current position: (4,4)

3 By how much do you want to shift x and y? 3 3

4 The new position: (7,7)

5 Continue (y/n)? y

6 The current position: (7,7)

7 By how much do you want to shift x and y? 10 20

8 --------UNSUCCESSFUL --------

9 Continue (y/n)? y

10 The current position: (7,7)

11 By how much do you want to shift x and y? -7 -7

12 --------UNSUCCESSFUL --------

13 Continue (y/n)? y

14 The current position: (7,7)

15 By how much do you want to shift x and y? 1 -2

16 The new position: (8,5)

17 Continue (y/n)? n

402 16 Designing Object Classes

Fig. 16.3 A black box.
What is inside the box
cannot be seen from the
user

pos

getX()

x

16.1.4 Information Hiding

An important concept in the design of object classes is information hiding (or black box). Informa-

tion hiding refers to the idea that, by making its instance variables private, the users of an object class

can be oblivious to how the information is represented in the object class and how the information

is manipulated (see Fig. 16.3). For instance, a programmer of UsePositionConfined needs to

know how to call the constructor and instance methods of PositionConfined, but does not need

to know how the two coordinates are represented in the class. Using information hiding, the task of

writing a source code for a program can be easily split among multiple programmers.

To demonstrate how information hiding works, we rewrite the class PositionConfined into

PositionFancy. PositionFancy combines the two coordinate values, x and y, into a single

int variable using the formula 16 * x + y. The first part of the code defines the same constants

and the inRange method as PositionConfined:

1 public class PositionFancy

2 {

3 public static final int MINIMUM = 1;

4 public static final int MAXIMUM = 8;

5 public static final int DEFAULT_X = 1;

6 public static final int DEFAULT_Y = 1;

7

8 private static boolean inRange(int z)

9 {

10 return z >= MINIMUM && z <= MAXIMUM;

11 }

12

Listing 16.9 Class PositionFancy (part 1). The constants and the method inRange

The second part of the source code presents how to go back and forth between two values and on

value. The name of our only instance variable is w (Line 11). In representing the multiplicative factor

of 16, the program uses a constant named SCALE (Line 13). Given x and y, the program combines

the two using the formula x * SCALE + y. The method combine is a private instance method

that combines two coordinate values, and stores the result in w (Lines 17–20). Because of the change

in the encoding, both getX and getY need different codes. The method getX returns w / SCALE
(Lines 19–22), and the method getY returns w % SCALE (Lines 23–26).

16.1 Packaging a Group of Data as an Object 403

1 private int w;

2

3 private static final int SCALE = 16;

4

5 private void combine(int x, int y)

6 {

7 w = x * SCALE + y;

8 }

9 public int getX()

10 {

11 return w / SCALE;

12 }

13 public int getY()

14 {

15 return w % SCALE;

16 }

17

Listing 16.10 Class PositionFancy (part 2). The part responsible for combining the two coordinate values and
splitting the combined number into two coordinate values

Next we see the constructor (Lines 30–37) and the method shift (Lines 39–47). The ac-

tions of the form x = VALUE1 and y = VALUE2 have been substituted with a method call,

combine(VALUE1, VALUE2).

30 public PositionFancy(int xValue , int yValue)

31 {

32 combine(DEFAULT_X , DEFAULT_Y);

33 if (inRange(xValue) && inRange(yValue))

34 {

35 combine(xValue , yValue);

36 }

37 }

38

39 public boolean shift(int xDiff , int yDiff)

40 {

41 if (inRange(getX() + xDiff) && inRange(getY() + yDiff))

42 {

43 combine(getX() + xDiff , getY() + yDiff);

44 return true;

45 }

46 return false;

47 }

48

Listing 16.11 Class PositionFancy (part 3). The constructor and the method shift

Next we see the new version of the method toString. In building the String to be returned,

toString uses the instance methods getX and getY.

404 16 Designing Object Classes

49 public String toString ()

50 {

51 return String.format("(%d,%d)", getX(), getY());

52 }

53

Listing 16.12 Class PositionFancy (part 4). The method toString

The last part of the code is a new method, toTable, that produces the position of the piece

using eight lines of String, where the position appears as a ’#’ in an 8-by-8 square of ’.’. The

eight lines correspond to the y-coordinates of 8, 7, ..., 1 from top to bottom. For example, (7,2) is

represented as:

........

........

........

........

........

........

......#.

........

and (3,8) is represented as:

..#.....

........

........

........

........

........

........

........

To generate this visual encoding, PositionFancy uses two char constants, HERE and

ELSEWHERE (Lines 54 and 55). HERE is the character that appears at the position represented

by the PositionFancy object pos and ELSEWHERE is the character that appears at other places

in the 8-by-8 diagram. Defining the two types of characters as constants makes it easy to make

changes in the future.

To build the output, the program uses a StringBuilder object, builder. First, the program

obtains the coordinate values using the getters and stores them in variables x and y (Lines 59

and 60). The program uses a double for-loop in building the contents of the StringBuilder
object. The external loop iterates over the decreasing sequence MAXIMUM, ..., MINIMUM
with a variable named i (Line 62). The internal loop iterates over the increasing sequence

MINIMUM, ..., MAXIMUM with a variable named j (Line 64). In the body of the internal

loop, if (i == y && j == x) (Line 66), the method appends HERE to builder (Line 68);

otherwise, it appends ELSEWHERE (Line 72). Each time the internal loop concludes, the method

appends ’\n’ (Line 75). At the conclusion of the external loop, the method returns the String
represented by builder, obtained by calling the method toString (Line 77).

16.1 Packaging a Group of Data as an Object 405

54 public static final char HERE = ’#’;

55 public static final char ELSEWHERE = ’.’;

56

57 public String toTable ()

58 {

59 int x = getX();

60 int y = getY();

61 StringBuilder builder = new StringBuilder ();

62 for (int i = MAXIMUM; i >= MINIMUM; i --)

63 {

64 for (int j = MINIMUM; j <= MAXIMUM; j ++)

65 {

66 if (i == y && j == x)

67 {

68 builder.append(HERE);

69 }

70 else

71 {

72 builder.append(ELSEWHERE);

73 }

74 }

75 builder.append("\n");

76 }

77 return builder.toString ();

78 }

79 }

Listing 16.13 Class PositionFancy (part 5). The toTable method

The application written with PositionFancy is UsePositionFancy. In this application, the

movement of the position is limited to one space, either only horizontally or only vertically. The four

possible movements are thus left, up, down, and right, and they are represented with the letters ’h’,

’j’, ’k’, and ’l’. In addition, the letter ’q’ represents the termination of the program.

As before, the program asks the initial position from the user (Line 9), and then instantiates a

PositionFancy object with the input from the user (Line 10). After this, the program enters a

do-while loop (Line 13). To report the present position, the program uses the method toTable
(Line 14). Since the String data that the method returns has the newline at the end, the program

uses System.out.print instead of System.out.println. The program then prompts the

user to enter the action to be performed (Lines 15 and 16), and receives input from the user (Line

17). The program uses a switch statement (Line 18) to perform the action. The method shift
takes two parameters. The program calls shift(-1, 0) for ’h’, shift(0, -1) for

’j’, shift(0, +1) for ’k’, and shift(+1, 0) for ’l’ (Lines 20–23). Since the y-

coordinate in the visual encoding decreases from MAXIMUM to MINIMUM, “down” (the letter ’j’)

must be represented with the decrease in the value of y, and “up” (the letter ’k’) must be represented

with the increase in the value of y. The return value of the method shift is ignored. Since the

position is visually presented and the visual presentation takes up many lines, the reporting of the

new position immediately after making a move has been eliminated. The program terminates if the

command chosen is ’q’ (Line 25).

406 16 Designing Object Classes

1 import java.util .*;

2 public class UsePositionFancy

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 PositionFancy pos;

8

9 System.out.print("Enter the initial x y: ");

10 pos = new PositionFancy(keyboard.nextInt (), keyboard.nextInt ());

11

12 String answer = "";

13 do {

14 System.out.print(pos.toTable ());

15 System.out.print(

16 "Enter h,j,k,l to move left , down , up , right; q to quit: ");

17 answer = keyboard.next();

18 switch(answer.charAt(0))

19 {

20 case ’h’: pos.shift(-1, 0); break;

21 case ’j’: pos.shift(0, -1); break;

22 case ’k’: pos.shift(0, +1); break;

23 case ’l’: pos.shift(+1, 0); break;

24 }

25 } while (!answer.startsWith("q"));

26 }

27 }

Listing 16.14 Class UsePositionFancy

Here is an execution example of the code:

1 Enter the initial x y: 1 2
2
3
4
5
6
7
8 #.......
9

10 Enter h,j,k,l to move left, down, up, right; q to quit: j
11
12
13
14
15
16
17
18 #.......

16.1 Packaging a Group of Data as an Object 407

19 Enter h,j,k,l to move left, down, up, right; q to quit: j
20
21
22
23
24
25
26
27 #.......
28 Enter h,j,k,l to move left, down, up, right; q to quit: k
29
30
31
32
33
34
35 #.......
36
37 Enter h,j,k,l to move left, down, up, right; q to quit: k
38
39
40
41
42
43 #.......
44
45
46 Enter h,j,k,l to move left, down, up, right; q to quit: l
47
48
49
50
51
52 .#......
53
54
55 Enter h,j,k,l to move left, down, up, right; q to quit: l
56
57
58
59
60
61 ..#.....
62
63
64 Enter h,j,k,l to move left, down, up, right; q to quit: l
65
66
67
68
69
70 ...#....
71
72

408 16 Designing Object Classes

73 Enter h,j,k,l to move left, down, up, right; q to quit: l
74
75
76
77
78
79#...
80
81
82 Enter h,j,k,l to move left, down, up, right; q to quit: l
83
84
85
86
87
88#..
89
90
91 Enter h,j,k,l to move left, down, up, right; q to quit: l
92
93
94
95
96
97#.
98
99

100 Enter h,j,k,l to move left, down, up, right; q to quit: l
101
102
103
104
105
106#
107
108
109 Enter h,j,k,l to move left, down, up, right; q to quit: l
110
111
112
113
114
115#
116
117
118 Enter h,j,k,l to move left, down, up, right; q to quit: q

16.2 An Object Class Representing a Bank Account

Here, we write an application for keeping track of the balances of bank accounts. The application

allows the user to create a list of bank accounts, and then execute transactions on individual accounts

or between two accounts on the list. An account is represented by the account name and the balance.

We select String as the data type for the former and int as the data type for the latter. We assume

that the balance is represented in cents. The largest balance that an int can represent is greater than

2 billion cents, or 20 million dollars. The amount is sufficient for our application.

16.2 An Object Class Representing a Bank Account 409

The class BankAccount has two instance variables. They are a String variable, name, and an

int variable, balance. The class has the following five instance methods:

• getName() returns a String data representing the account name.

• getBalance() returns an int data representing the balance.

• getBalanceString() returns a String data representing the balance in dollars, with the

dollar sign and the currency punctuation.

• deposit(int amount) attempts to deposit the amount represented in the parameter and

returns a boolean value representing whether or not the deposit was successfully made. The

method does not change the balance if the amount is not positive.

• withdraw(int amount) attempts to withdraw the amount represented in the parameter

and returns a boolean value representing whether or not the withdrawal was successfully made.

The method does not change the balance if the amount is either nonpositive or greater than the

balance.

A source code for the class BankAccount appears next. All the instance variables are private.

The constructor receives two formal parameters, a String value, name, and an int value,

startBalance. The latter represents the initial balance of the account. The constructor stores

these values in their respective instance variables. However, the value provided for balance may be

nonpositive. If that happens, the constructor uses 1 cent as the initial balance. This choice is expressed

as the assignment balance = Math.max(1, startBalance) appearing in Line 9. As for

the account name, since the instance variable and the parameter have the same names, they have to

be distinguished. This is accomplished by attaching the prefix this. to the instance variable. This

appears in Line 8:

this.name = name;

The assignment without this., i.e.,

name = name;

stores the value of the formal parameter name to itself (this is legitimate, since formal parameters can

be treated as variables). This means that the instance variable name retains its default value null.

The prefix this. means “the instance method or the instance variable of this class”. In the source

code of an object class, the prefix this. can be attached to any reference to its instance variable and

any reference its instance methods.

The five instance methods are written as follows: The method getName returns the value of

name (Lines 12–15) and the method getBalance returns the value of balance (Line 18). For

getBalanceString, the program splits the amount into the dollar amount and the residual dollar

amount by dividing balance by 100. The quotient is used as the former, and the remainder is used

as the latter. These two quantities are given to String.format with the format of $%,d.%02d,

and the String generated is returned (Line 22). In deposit (Line 25), if the value of amount at

most 0 (Line 27), false is immediately returned (Line 28). Otherwise, the method adds the amount

to balance (Line 30) and returns true (Line 31). In withdraw, if the amount is strictly negative

or the amount exceeds the balance (Line 36), the method returns false (Line 38). Otherwise, the

method subtracts the amount from the balance, and then returns true (Lines 39 and 40).

410 16 Designing Object Classes

1 public class BankAccount

2 {

3 private String name;

4 private int balance; // in cents

5

6 BankAccount(String name , int startBalance)

7 {

8 this.name = name;

9 balance = Math.max(1, startBalance);

10 // since the balance have to be positive

11 }

12 public String getName ()

13 {

14 return name;

15 }

16 public int getBalance ()

17 {

18 return balance;

19 }

20 public String getBalanceString ()

21 {

22 return String.format("$%,d.%02d", balance / 100, balance % 100);

23 }

24

25 public boolean deposit(int amount)

26 {

27 if (amount <= 0) {

28 return false;

29 }

30 balance += amount;

31 return true;

32 }

33

34 public boolean withdraw(int amount)

35 {

36 if (amount <= 0 || amount > balance) {

37 return false;

38 }

39 balance -= amount;

40 return true;

41 }

42 }

Listing 16.15 Class BankAccount

SomeBankAccounts is our application program. SomeBankAccounts receives information

for some bank accounts from the user, and then interacts with the user to make transactions on the

accounts. At the start of the program, the user specifies how many bank accounts are to be handled.

The user then provides the names and the initial balances of the accounts. The program enters a loop

in which it interacts with the user to perform transactions. The available actions in each round are:

(a) making a deposit to one account, (b) making a withdrawal from one account, and (c) transferring

money from one account to another. If the requested action fails, the program reports the failure. Here

are the methods that perform the three actions.

16.2 An Object Class Representing a Bank Account 411

The method deposit attempts to make a deposit of an amount given in the second parameter to

the account given in the first parameter (Line 4). To accomplish this, the method calls the instance

method deposit on the specified account, and then checks its return value (Line 6). If the return

value is false, the method prints an error message (Line 8).

The method withdraw works in a similar manner. The method attempts to make a withdrawal of

the amount given in the second parameter from the account given in the first parameter (Line 12). To

accomplish this, the method calls the instance method deposit on the specified account, and then

checks its return value (Line 14). If the return value is false, the method prints an error message

(Line 16).

The method transfer attempts to withdraw the amount given in the third parameter from the

account given in the first parameter, and then deposits it to the account given in the second parameter

(Line 20). To accomplish the task, the method first attempts the withdrawal (Line 23). If this attempt

is successful, the deposit can be made without checking, so the method makes the deposit (Line 25).

Otherwise, the method prints an error message (Line 29).

1 import java.util .*;

2 public class SomeBankAccounts

3 {

4 public static void deposit(BankAccount acc , int amount)

5 {

6 if (!acc.deposit(amount))

7 {

8 System.out.println("Deposit unsuccessful");

9 }

10 }

11

12 public static void withdraw(BankAccount acc , int amount)

13 {

14 if (!acc.withdraw(amount))

15 {

16 System.out.println("Withdrawal unsuccessful");

17 }

18 }

19

20 public static void transfer(BankAccount from , BankAccount to,

21 int amount)

22 {

23 if (from.withdraw(amount))

24 {

25 to.deposit(amount);

26 }

27 else

28 {

29 System.out.println("Transfer unsuccessful");

30 }

31 }

32

Listing 16.16 A program that manipulates with a list of bank accounts (part 1). The methods deposit, withdraw,
and transfer

412 16 Designing Object Classes

The method initial handles the initialization of the individual accounts on the list. The method

returns a BankAccount object (Line 33). The parameter of the method index is an int value

presumably representing the index to the bank account that is to be generated. The value index is

used just for presenting a prompt (Line 37). The method receives the name using nextLine (Line

38), and the initial balance (Lines 39 and 40). The method uses nextLine to receive an input line,

and then converts the input line to an int value using Integer.parseInt. The method then

combines the values to instantiate a BankAccount object, and then returns this object.

The method actionPrompt prints the prompt. The method receives an array of BankAccount
objects as its formal parameter (Line 44). The method prints the name and the balance of all

the accounts (Lines 46–52). To obtain the name and the balance, the method uses getName and

getBalanceString of BankAccount. After printing the account information, the method

presents the available actions (Lines 53–57). The actions have numbers from 1 to 4, where 4 is for

terminating the program.

33 public static BankAccount initial(int index)

34 {

35 Scanner keyboard = new Scanner(System.in);

36

37 System.out.printf("Enter name for account #%d: ", index);

38 String name = keyboard.nextLine ();

39 System.out.printf("Enter amount for account #%d: ", index);

40 int amount = Integer.parseInt(keyboard.nextLine ());

41 return new BankAccount(name , amount);

42 }

43

44 public static void actionPrompt(BankAccount [] allAccounts)

45 {

46 System.out.println("------");

47 for (int i = 0; i < allAccounts.length; i ++)

48 {

49 System.out.printf("%2d: %s has the balance of %s%n", i,

50 allAccounts[i]. getName (),

51 allAccounts[i]. getBalanceString ());

52 }

53 System.out.println("-----Select action");

54 System.out.println("1. Deposit to an Account");

55 System.out.println("2. Withdrawal from an Account");

56 System.out.println("3. Transfer Between Accounts");

57 System.out.println("4. Quit");

58 }

59

Listing 16.17 A program that manipulates with a list of bank accounts (part 2). The methods initial and
actionPrompt

The final part of the program is the method main (Line 60). The method receives the number of

accounts, size, from the user (Lines 64 and 65), and instantiates an array of BankAccount objects,

theAccounts, having size elements (Line 66). The method uses a for-loop that iterates over the

16.2 An Object Class Representing a Bank Account 413

sequence 0, ..., size - 1 with a variable named i. For each value of i, the method calls

initial(i), and stores the returned BankAccount object in theAccounts[i] (Lines

67–70).

60 public static void main(String [] args)

61 {

62 Scanner keyboard = new Scanner(System.in);

63 int choice , amount , size , index , index2;

64 System.out.print("Enter the Number of Accounts: ");

65 size = Integer.parseInt(keyboard.nextLine ());

66 BankAccount [] theAccounts = new BankAccount[size];

67 for (int i = 0; i < size; i ++)

68 {

69 theAccounts[i] = initial(i);

70 }

Listing 16.18 A program that manipulates with a list of bank accounts (part 3). The preparation in the method main

The method then commences a do-while loop (Line 72). The action to be performed in the do-while

loop is as follows:

Step 1: The method prints the prompt using actionPrompt (Line 73).

Step 2: The method prompts the user to enter the choice (Line 75) and obtains the choice of the user.

The choice is converted to an int using Integer.parseInt (Line 75).

Step 3: If the choice is 1, the action to be performed is a deposit (Line 76). The method receives the

index to the account (Lines 78 and 79), receives the amount to deposit (Lines 80 and 81), and

performs the task by calling the method deposit with the element of the BankAccount
array at the index and the amount specified (Line 82).

Step 4: If the choice is 2, the action to be performed is a withdrawal (Line 84). The method receives

the index to the account (Lines 86 and 87), receives the amount to deposit (Lines 88 and

89), and performs the task by calling the method withdraw with the element of the

BankAccount array at the index and the amount specified (Line 90).

Step 5: If the choice is 3, the action to be performed is a transfer (Line 92). The method obtains

the index to the destination account of the transfer and the index to the source account

of the transfer (Lines 94–97), and then obtains the amount of transfer (Lines 98 and 99).

The transaction is performed by calling the method transfer with the elements of the

BankAccount array at the two indexes and the amount specified as the actual parameters

(Line 100). The two indexes can be equal to each other. If the two indexes are equal to each

other, the money is withdrawn (if the amount specified is valid) from the account specified

by the two identical indexes and deposited back to it.

Step 6: The program terminates if the choice is 4 (Line 102).

414 16 Designing Object Classes

71 do

72 {

73 actionPrompt(theAccounts);

74 System.out.print("Enter your choice: ");

75 choice = Integer.parseInt(keyboard.nextLine ());

76 if (choice == 1)

77 {

78 System.out.print("Enter account index: ");

79 index = Integer.parseInt(keyboard.nextLine ());

80 System.out.print("Enter amount: ");

81 amount = Integer.parseInt(keyboard.nextLine ());

82 deposit(theAccounts[index], amount);

83 }

84 else if (choice == 2)

85 {

86 System.out.print("Enter account index: ");

87 index = Integer.parseInt(keyboard.nextLine ());

88 System.out.print("Enter amount: ");

89 amount = Integer.parseInt(keyboard.nextLine ());

90 withdraw(theAccounts[index], amount);

91 }

92 else if (choice == 3)

93 {

94 System.out.print("Enter account origination index: ");

95 index = Integer.parseInt(keyboard.nextLine ());

96 System.out.print("Enter account destination index: ");

97 index2 = Integer.parseInt(keyboard.nextLine ());

98 System.out.print("Enter amount: ");

99 amount = Integer.parseInt(keyboard.nextLine ());

100 transfer(theAccounts[index], theAccounts[index2], amount);

101 }

102 } while (choice != 4);

103 }

104 }

Listing 16.19 A program that manipulates with a list of bank accounts (part 4). The loop in the method main

Here is an execution example of the program, presented in two parts:

1 Enter the Number of Accounts: 3
2 Enter name for account #0: My Saving
3 Enter amount for account #0: 10000000
4 Enter name for account #1: My Checking
5 Enter amount for account #1: 100000
6 Enter name for account #2: Her Saving
7 Enter amount for account #2: 20000000
8 ------
9 0: My Saving has the balance of $100,000.00

10 1: My Checking has the balance of $1,000.00
11 2: Her Saving has the balance of $200,000.00
12 -----Select action
13 1. Deposit to an Account
14 2. Withdrawal from an Account
15 3. Transfer Between Accounts
16 4. Quit

16.3 Array with Capacity and Size (Reprise) 415

17 Enter your choice: 1
18 Enter account index: 0
19 Enter amount: 5000000
20 ------
21 0: My Saving has the balance of $150,000.00
22 1: My Checking has the balance of $1,000.00
23 2: Her Saving has the balance of $200,000.00
24 -----Select action
25 1. Deposit to an Account
26 2. Withdrawal from an Account
27 3. Transfer Between Accounts
28 4. Quit
29 Enter your choice: 3
30 Enter account origination index: 2
31 Enter account destination index: 1
32 Enter amount: 5000000
33 ------
34 0: My Saving has the balance of $150,000.00
35 1: My Checking has the balance of $51,000.00
36 2: Her Saving has the balance of $150,000.00
37 -----Select action
38 1. Deposit to an Account
39 2. Withdrawal from an Account
40 3. Transfer Between Accounts
41 4. Quit
42 Enter your choice: 2
43 Enter account index: 2
44 Enter amount: 999900
45 ------
46 0: My Saving has the balance of $150,000.00
47 1: My Checking has the balance of $51,000.00
48 2: Her Saving has the balance of $140,001.00
49 -----Select action
50 1. Deposit to an Account
51 2. Withdrawal from an Account
52 3. Transfer Between Accounts
53 4. Quit
54 Enter your choice: 4

16.3 Array with Capacity and Size (Reprise)

In Sect. 13.6, we studied arrays with capacity and size. We wrote an application using an array with

capacity and size to manipulate a list of names String, where we enabled the user to add an element,

remove an element, search for an element, and see all the elements. In this section, we study how to

convert the class to a general purpose object class for maintaining an indefinite number of String
objects.

To develop the general purpose class, we do the following:

• We will turn the global variables into instance variables.

• We will remove main and action methods, since they are irrelevant.

• We will convert the method setup to a constructor, where the constructor takes int data,

capacity, as its formal parameter, instead of asking for input from the user.

• We will convert the method add to an instance method that adds just one element.

• We will convert the remaining methods (search, remove, and print) to instance methods. We

will remove the static attribute from the header of the methods.

416 16 Designing Object Classes

• We will add new methods, getCapacity and getSize, as getters.

Here is a code for ArrayWithCapacity. The global variables are now private instance variables

(Lines 4 and 5). They are int variables, size and capacity, and a String[] variable,

theNames. The constructor takes an int value, capacity, as the formal parameter (Line 7).

The constructor saves the value of the parameter to the instance variable, capacity. Here we use

this. for distinction (Line 9). The constructor then instantiates the array using the capacity value as

the length (Line 10) and assigns 0 to size (Line 11). The getters getCapacity (Lines 14–17) and

getSize (Lines 19–22) return the values of capacity and size.

1 // Using an array of fixed size

2 public class ArrayWithCapacity

3 {

4 private int size , capacity;

5 private String [] theNames;

6

7 public ArrayWithCapacity(int capacity)

8 {

9 this.capacity = capacity;

10 theNames = new String[capacity];

11 size = 0;

12 }

13 public int getCapacity ()

14 {

15 return capacity;

16 }

17 public int getSize ()

18 {

19 return size;

20 }

Listing 16.20 The first part of class ArrayWithCapacity

The method search (Lines 21–36) is the same as before, except that it is now an instance

method. Since the previous version used the variables as global variables, just removing the attribute

of static is enough to make this adjustment.

21 public void search(String aName)

22 {

23 boolean found = false;

24 for (int pos = 0; pos < size; pos ++)

25 {

26 if (theNames[pos]. indexOf(aName) >= 0)

27 {

28 found = true;

29 System.out.printf("Found %s at %d%n", theNames[pos], pos);

30 }

31 }

32 if (!found)

33 {

34 System.out.println("Not found");

35 }

36 }

Listing 16.21 The search method of the class ArrayWithCapacity

16.3 Array with Capacity and Size (Reprise) 417

The way the method print works (Lines 37–43) is the same as before:

37 public void print()

38 {

39 for (int pos = 0; pos < size; pos ++)

40 {

41 System.out.printf("%4d:%s%n", pos , theNames[pos]);

42 }

43 }

Listing 16.22 The method for printing the data in class ArrayWithCapacity

The method add (Lines 44–54) is now designed to take only one element to add:

44 public void add(String aName)

45 {

46 if (size < capacity)

47 {

48 theNames[size ++] = aName;

49 }

50 else

51 {

52 System.out.println("The storage is full.");

53 }

54 }

Listing 16.23 The method for adding an element in ArrayWithCapacity

The method remove (Lines 55–65) is the same as before, except that the instance variables appear

in place of the global variables:

55 public void remove(int index)

56 {

57 if (index >= 0 && index < size)

58 {

59 theNames[index] = theNames[-- size];

60 }

61 else

62 {

63 System.out.println("The specified position does not exist.");

64 }

65 }

Listing 16.24 The method for removing an element in class ArrayWithCapacity

Now we can use this new class to rewrite the application. Important points to note are:

• This time, we use an ArrayWithCapacity object, since we have packed all the relevant

components in it (Line 9). We use

ArrayWithCapacity array = new ArrayWithCapacity(capacity);

for instantiation.

418 16 Designing Object Classes

• We use method calls array.add(name) (Line 19), array.remove(index) (Line

23), array.search(key) (Line 27), and array.print() (Line 29) for actions.

1 import java.util .*;

2 // Using an array of fixed size

3 public class UseArrayWithCapacity {

4 // main

5 public static void main(String [] args) {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter capacity: ");

8 int capacity = Integer.parseInt(keyboard.nextLine ());

9 ArrayWithCapacity array = new ArrayWithCapacity(capacity);

10 char c;

11 do {

12 System.out.print("What do you want to do?\n"

13 + "A(dd), R(remove), P(rint), S(earch), Q(uit): ");

14 c = keyboard.nextLine ().charAt(0);

Listing 16.25 A new version of the program that uses an array with capacity and size (part 1)

15 switch (c)

16 {

17 case ’A’:

18 System.out.println(

19 "Enter new names , empty line to finish: ");

20 String name;

21 do

22 {

23 System.out.print("> ");

24 name = keyboard.nextLine ();

25 if (name.length () != 0)

26 {

27 array.add(name);

28 }

29 } while (name.length () != 0);

30 break;

31 case ’R’:

32 System.out.print("Enter index: ");

33 array.remove(Integer.parseInt(keyboard.nextLine ()));

34 break;

35 case ’S’:

36 System.out.print("Enter a key: ");

37 array.search(keyboard.nextLine ());

38 break;

39 case ’P’:

40 array.print();

41 break;

42 }

43 } while (c != ’Q’);

44 System.out.println("Closing ...");

45 }

46 }

Listing 16.26 A new version of the program that uses an array with capacity and size (part 2)

Exercises 419

By appropriately modifying the key matching criterion, indexOf(key) >= 0, it is possible

to design a class for maintaining a list of objects of a type other than String.

Summary

If the instance variables of an object class are public, the program of the object class may access

the variable by attaching the names of the instance variables to the object name with a comma in

between.

To prohibit access to instance variables from any outside class, the attribute of private can be

attached.

To distinguish between an instance variable and a formal parameter having the same name, the

attribute of this. can be attached to it.

Information hiding refers to the idea that an object class can be written so that the user of the object

class does not need to know what the instance variables of the object class are.

Methods for accessing values of instance variables (not necessarily as they are) are called getters

(or accessors).

Methods for changing values of instance variables (not necessarily as they are) are called setters

(or modifiers).

It is possible to convert an existing program to a container class that has a certain functionality by

changing the global variables to instance variables.

Exercises

1. Terminology question State the differences between “private” instance variables and “public”

instance variables.

2. Class Car Write a class named Car for recording information about a car. The class has three

getters:

• getMake() returns the make of the car as a String value,

• getModel() returns the model of the car as a String value, and

• getYear() that returns the year the car was made as an int value.

The class has four setters:

• setMake(String make),

• setModel(Sting model),

• setYear(String year), and

• setYear(int year) (by way of method overloading).

Write two constructors for the class,

• Car(String make, String model, String year) and

• Car(String make, String model, int year).

Choose appropriate instance variables.

3. An object class DoDo Suppose DoDo is an object class that provides access to two in-

stance variables, a String value, word, and an int value, quantity. Write a constructor

public DoDo(String word, int quantity) that instantiates an object of the

class by storing the first value in the instance variable word and the second value in the instance

variable quantity. Also, write getters for word and quantity.

420 16 Designing Object Classes

4. Using instance methods Let Stats be a class designed for maintaining the statistics of some

collection of real numbers. The class does not necessary have to maintain the numbers in the

collection, but has to satisfy the following properties:

• There is one constructor. The constructor has no formal parameters. The constructor initializes

the collection of as the empty set.

• The class has a void method add(double x) that incorporates the value x into the

collection.

• The class has an int method size() that returns the number of values that have been

incorporated.

• The class has a double method average() that returns the average of the numbers that

have been incorporated.

• The class has a double method variance() that returns the variance of the numbers that

have been incorporated, where the variance is the mean of the square of the difference between

the individual values from the average. Note that the variance is given as:

(the sum of the square of the values) − (the square of the average)

In this exercise, write a Java program CalcStats that

• opens a data file whose name is given as args[0],

• uses a Stats object to incorporate all the numbers appearing in the file, and then

• prints the three pieces of information that can be obtained from the object using the accessor

methods.

For example, if the contents of the file numbers.txt are:

1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10

the program runs as follows

1 % java CalcStats numbers.txt
2 The count is 8
3 The average is 6.500000
4 The variance is 5.250000

5. Writing class Stats Write the class Stats whose function was defined in the previous

question.

6. A class for a point in the three-dimensional space Write a class named ThreeDPoint
for recording a point in a three-dimensional real space, where the instance variables are in

double. There should be methods for individually accessing the three coordinates and methods

for individually modifying them.

Programming Projects

7. A class for a linear equation over three unknowns Write a class named ThreeDLinear
for recording a linear equation ax + by + cz = d, where x, y, z are unknowns and a, b, c, d are

coefficients. The class has only one constructor that takes values for a, b, c, and d and stores the

values in their respective instance variables. The class has four accessors to obtain the values of

the coefficients. The class has three other instance methods:

Exercises 421

• public ThreeDLinear scale(double s): This method returns a new

ThreeDLinear object in which all the coefficients are scaled by s.

• public ThreeDLinear plus(ThreeDLinear o): This method returns a new

ThreeDLinear object that corresponds to the equation whose coefficients are generated

by adding the coefficients of this and those of o.

• public ThreeDLinear minus(ThreeDLinear o): This method returns a new

ThreeDLinear object that corresponds to the equation whose coefficients are generated by

subtracting the coefficients of o from the coefficients of this.

8. Class for a complex numbers Write a class named ComplexNum for recording a complex

number. The class must have two double instance variables, real and imaginary. An

object of this class represents the complex number real + imaginary * i (where i is the

root of
√

−1). Write the instance method size that returns, in double, the value of real2−
imaginary2.

9. Class MilitaryTime Write a class named MilitaryTime for representing the time

of a day in 24 h. The class must have two accessors, getHours() and getMinutes().

Both of them must return an integer. The class has two additional instance methods,

advance(MilitaryTime o) and rewind(MilitaryTime o). The former advances

the time by the amount of time represented by o. The latter rewinds the time by the amount of

time represented by o.

10. Class TicTacToe Write a class named TicTacToe for representing a configuration of Tic-

Tac-Toe. Tic-Tac-Toe is a game played by two people on a 3 × 3 grid. The two players take

turns and mark one square of the grid with letters assigned to them (O and X). The player who

has produced a row, a column, or a diagonal of the same letters wins the game. We view a

configuration of the game as a 3 × 3 two-dimensional array of char. We use two characters,

’O’ and ’X’, for the markings and the whitespace for available squares. The constructor of

TicTacToe creates the blank configuration (that is, the configuration in which no square has

been marked). We use a pair of integers between 0 and 2 to specify a square. The class has the

following methods:

• boolean isAvailable(int x, int y): returns whether or not the row x column

y square of the grid is blank.

• boolean isO(int x, int y): returns whether or not the row x column y square of

the grid is an ’O’.

• boolean isX(int x, int y): returns whether or not the row x column y square of

the grid is an ’X’.

• void setO(int x, int y): sets the row x column y square of the grid to ’O’.

• void setX(int x, int y): sets the row x column y square of the grid to ’X’.

11. The 15 puzzle The 15 Puzzle is a puzzle played with 15 pieces placed on a 4×4 grid. The sizes

of the pieces are equal to the size of any square of the grid. The pieces are numbered 1 through

15. At the start of the game the pieces are placed on one of the 16 squares of the grid with no

overlap, so there is only one open square. During the course of the puzzle, the player can move

a piece from any one of the neighboring squares (from left, right, above, or below) to the open

square. The goal of the puzzle is to reorder the pieces so that 1..4 appear in the top row from left

to right, 5..8 appear in the next row from left to right, 9..12 appear in the next row, and 13..15 in

the bottom row, with the rightmost square open, as shown in the following diagram:

422 16 Designing Object Classes

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

To play the puzzle, the player herself scrambles the order of the pieces, by randomly

moving the pieces according to the rule. Every 15 puzzle configuration generated from the goal

configuration in this manner is solvable.

Write a class named Config15 whose object represents a configuration of the 15 puzzle.

The class must have three instance variables. The first is a 4 × 4 array of int values, where the

numbers 0, . . . , 15 appear exactly once. In this array, 0 represents the open square. The second and

the third instance variables are the row and the column indexes of the open square. The constructor

takes an array in this format and copies the contents of the array to the instance variable, and then

search for an open square to assign values to the row and column instance variables.

There should be the following instance methods.

• boolean isSolved(): This method returns whether or not the configuration represented

by the object is the final configuration.

• boolean pullDown(): This method pulls the piece above the open square into the open

square. The move is not possible if the open square is in the first row. The method returns as a

boolean value indicating whether or not the move was successful.

• boolean pullUp(): This method moves the piece in the square immediately above the

open square. The move is not possible if the open square is in the last row. The method returns

whether or not the move has been successful.

• boolean pullLeft(): This method moves the piece in the square immediately to the left

of the open square. The move is not possible if the open square is in the first column. The

method returns whether or not the move has been successful.

• boolean pullRight(): The method moves the piece in the square immediately to the

right of the open square. The move is not possible if the open square is in the last column. The

method returns whether or not the move has been successful.

• int get(int i, int j): The method returns the value of the array at row i and

column j.

• int getOpenRow(): The method returns the value of the row index of the open space.

• int getOpenCol(): The method returns the value of the column index of the open space.

12. File exploration using an array with capacity Modify the code for ArrayWithCapacity
to write a code FileArrayWC for maintaining a list of File objects. The class has the following

instance methods:

• int getCapacity(): returns the capacity.

• int getSize(): returns the size.

• File get(int index): returns the object at position index.

• void add(File f): adds f.

• void remove(int index): removes the file at index.

• int[] search(String key): returns an array of indexes at which the canonical path

to the File object has key appearing in it.

Using this class, write an application UseFileArrayWC that allows the user to do the

following:

(a) Adding one file by specifying its file path.

(b) Adding all files in a folder by specifying a path to the folder.

Exercises 423

(c) Removing a file at a specific index.

(d) Searching for files with a key.

(e) Viewing all files.

(f) Writing the data to a file.

For searching and viewing, write a method named present that receives a FileArrayWC
object named data and an int[] object named indexes as parameters, and then prints all the

files in datawhose positions appear in indexes. To print an item, present the index, readability,

writability, executability, whether it is a folder or not, along with the canonical path. The four

boolean properties are represented by the letters ’r’, ’w’, ’x’, and ’d’. For each of the

four properties, if the file does not possess the property, we print ’ ’. Here is an example of the

output, where the array has only three elements, 0, 1, and 2.

1 0 rwxd /Users/ogihara/Documents/CSC120/codeVer1
2 1 rwxd /Users/ogihara/Documents/CSC120/bookDraft
3 2 rw /Users/ogihara/Documents/CSC120/code/UseFileArrayWC.classVer1

To view the data, define a one-parameter version of the method present that takes a

FileArrayWC object data and calls the two-parameter version, where the second parameter is

an array whose elements are 0, ..., data.getSize() - 1. That way, all the elements

will be printed. Each time the program writes the data into a file, it receives a name of the data

file from the user. The very first line of the output is the size. After the first line, the canonical

paths of the elements appear, one file per line. A throws IOException declaration can

be added to each method that makes a call to some File method that has the declaration of

throws IOException.

Part IV

Advanced Concepts

17Interfaces, Inheritance, and Polymorphism

17.1 Interface

17.1.1 The Structure of an Interface

An interface is a template for building a Java class. The components of an interface are static methods,

constants, and abstract methods. An abstract method is a method header followed by a semicolon

and is without a body. All abstract methods have public visibility. An abstract method specifies only

its syntax, but not its semantics.

A class written based upon an interface must turn each abstract method into one with a body having

the same visibility, the same return type, the same name, the same parameter type signature, and the

same throws declaration (if any) as the abstract one. We call this action overriding. A class C
implements an interface I if its header formally states so, in the following manner:

public class C implements I

If the source code of C has this declaration, the constants and the methods (both static and abstract)

appearing in I are automatically included in the source code of C, so they can be used without

specifying the name of the interface. We call this mechanism inheritance. It is not possible to

instantiate an object of I, but it is possible to declare the data type of an object to be I. We call

this mechanism polymorphism.

An object class may implement multiple interfaces. If a class C implements interfaces

I1, ..., Ik, the declaration uses the keyword implements only once and places the interfaces

with commas in between in the following manner:

public class C implements I1, ..., Ik

The names of the interfaces may appear in any order.

17.1.2 A Simple Pizza Application

17.1.2.1 A Simple Pizza Class

Let us learn how to write and use interfaces by working on an application for building a menu at

a pizza shop. The application will consist of (a) a class for an individual pizza, (b) a class for a

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_17

427© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_17

428 17 Interfaces, Inheritance, and Polymorphism

menu, and (c) a main application class. The information available for a pizza is its name and price. To

simplify the problem, we assume that pizzas can be added to the menu, or removed from the menu,

but cannot be edited, meaning that it is not possible to change the names or prices of pizzas. In such

a setting, changing the name or price of a pizza on the menu must be accomplished by removing the

pizza from the menu, and then adding a revised version to the menu. Since the names or prices of

pizza objects cannot be changed, we need only two functions in our pizza objects. The two functions

are obtaining their names and obtaining their prices. We encode these requirements in our interface,

PizzaSimpleint, that is shown next. The required functions, getName and getPrice, are

stated in Lines 3 and 4 as abstract methods.

1 public interface PizzaSimpleInt

2 {

3 public String getName ();

4 public double getPrice ();

5 }

Listing 17.1 The code for PizzaSimpleInt

We write an implementation, PizzaSimple, of the interface. The coding idea for

PizzaSimpleInt is straightforward. We use a String instance variable, name, for the name and

a double instance variable, price, for the price. We assume that the value of price represents

the price in dollars.

The class has a declaration, implements PizzaSimpleInt (Line 1). The instance variables

are declared in Lines 3 and 4 as private variables. The constructor receives the name and price as

parameters, and stores their values in the instance variables. Since the parameters and the instance

variables have the same names, the prefix this. is attached to the instance variables to distinguish

between the two (Line 8 and 9). The getters are overridden in Lines 11–18.

1 public class PizzaSimple implements PizzaSimpleInt

2 {

3 private String name;

4 private double price;

5

6 public PizzaSimple(String name , double price)

7 {

8 this.name = name;

9 this.price = price;

10 }

11 public String getName ()

12 {

13 return name;

14 }

15 public double getPrice ()

16 {

17 return price;

18 }

19 }

Listing 17.2 The code for PizzaSimple

17.1 Interface 429

17.1.2.2 Using an Interface as a Data Type

PizzaSimpleCollection is an object class representing a collection of pizzas, and

PizzaSimpleMain is the main application program. Before halting, PizzaSimpleMain
records the menu in a text data file. A path to the data file can be specified at the start of the

program as args[0]. If the program starts with no such argument, PizzaSimpleMain asks

for a file path from the user. Before starting interactions for building the menu, PizzaSimpleMain
checks if the file specified by the file path exists, and if so, reads the data from the file. If the file does

not exist, the program starts with no pizzas on the menu, and uses the file only for recording data.

Since the file may be used at the start and at the end, we memorize the file path as an instance variable

of PizzaSimpleCollection.

PizzaSimpleInt is an interface, so has no constructor. However, PizzaSimpleInt can be

used as a data type. For instance, we can declare a PizzaSimpleInt variable, and then assign a

PizzaSimple object to the variable, as shown next:

1 PizzaSimpleInt pizzaX;

2 pizzaX = new PizzaSimple(Hawaiian , 15.50);

PizzaSimpleCollection uses an array of PizzaSimpleInt as the list of pizzas on the menu:

private PizzaSimpleInt [] list;

To get started, the constructor instantiates list as a 0-element array of PizzaSimpleInt:

list = new PizzaSimpleInt[0];

The format of the data files is as follows:

• The first line of the data file is the number of pizzas recorded in the file.

• Following the first line, the information appears for the individual pizzas on the menu. Each pizza

is recorded in two lines. The first line for the name and the second line for the price. The number

of pizzas recorded appear in this manner must match the number of pizzas stated in the first line.

Here is a sample data file:

1 5
2 Four Cheese
3 12.5
4 Nettuno
5 11.0
6 Capriccioso
7 14.0
8 Alfredo
9 14.5

10 Meat Lover’s
11 13.5

In addition to reading from the data file (at the start of the program) and saving the information to

the data file (at the end of the program), PizzaSimpleCollection has three functions, adding a

pizza, deleting a pizza, and viewing the entire collection.

430 17 Interfaces, Inheritance, and Polymorphism

17.1.2.3 Instance Variables and Constructors

The class PizzaSimpleCollection involves file access, so needs imports. They are stated in

Lines 1 and 2. In addition to the instance variable list of type PizzaSimpleInt[], the class has

a File instance variable named theFile (Lines 5 and 6). The file path to the data file is recorded

using this File object. During the execution of the program, list.length will be equal to the

number of pizzas on the menu.

The class PizzaSimpleCollection has two constructors. The first constructor (Line 8)

receives a File data, f, as its formal parameter. The constructor stores the value of f to the instance

variable theFile (Line 10), instantiates list as a 0-element array of PizzaSimpleInt, and

then calls the method read to add from the data stored in the data file f.

The method read has a throws FileNotFoundException declaration, so the constructor

has the same declaration.

1 import java.util .*;

2 import java.io.*;

3 public class PizzaSimpleCollection

4 {

5 private PizzaSimpleInt [] list;

6 private File theFile;

7

8 PizzaSimpleCollection(File f) throws FileNotFoundException

9 {

10 theFile = f;

11 list = new PizzaSimpleInt[0];

12 read();

13 }

14 PizzaSimpleCollection(String name) throws FileNotFoundException

15 {

16 this(new File(name));

17 }

18

Listing 17.3 The code for PizzaSimpleCollection (part 1). The instance variables and the constructors

The second constructor (Line 14) receives a String data name as its formal parameter.

The required action of the constructor is to execute the code for the first constructor with

new File(name) in place of f:

1 theFile = new File(name);

2 list = new PizzaSimpleInt[0];

3 read();

In writing this code, we can recycle the code for the first constructor by calling it, as shown in Line

16:

this(new File(name));

17.1 Interface 431

If a constructor calls another constructor of the same class, the keyword of this is used as the name

of the constructor. The call of another constructor from the same class has to appear in the first line of

the code. The code like:

1 File g = new File(name);

2 this(g);

makes sense, but is syntactically incorrect.

17.1.2.4 Reading Data

The method read checks if the file specified by theFile exists, and if so, reads the data

from the file. Despite this check, there still remains the possibility that the constructor of a

Scanner throws FileNotFoundException. Therefore, the method read has the throws
FileNotFoundException declaration (Line 19). If theFile passes this existence check (Line

21), the program instantiates a Scanner object to read data from the file (Line 23). The method

reads the number of pizzas recorded in the file using nextLine and Integer.parseInt (Line

24). The method then instantiates an array of PizzaSimpleInt data whose length is equal to the

number of elements specified in the first line (Line 25).

After the initialization, the method read uses a for-loop to read the remainder of the file contents

in pairs of lines. The first line of a pair is the name of the pizza (Line 28) and the second line is the

price (Line 29). The method uses Double.parseDouble to convert the second line to a double
value, instantiates a PizzaSimple object with the name and price, and stores it in its designated

position in the array (Line 30). After completing the process of reading information, the method closes

the Scanner object (Line 32).

19 public void read() throws FileNotFoundException

20 {

21 if (theFile.exists ())

22 {

23 Scanner scanner = new Scanner(theFile);

24 int size = Integer.parseInt(scanner.nextLine ());

25 list = new PizzaSimpleInt[size];

26 for (int index = 0; index < size; index ++)

27 {

28 String name = scanner.nextLine ();

29 double price = Double.parseDouble(scanner.nextLine ());

30 list[index] = new PizzaSimple(name , price);

31 }

32 scanner.close();

33 }

34 }

35

Fig. 17.4 The code for PizzaSimpleCollection (part 2). The method read

17.1.2.5 Writing Data

The method write records the data in the file specified by theFile. The method has a throws
FileNotFoundException declaration (Line 36). The method instantiates a PrintStream
object with theFile (Line 38). The method writes the length of the array list in one line, and then

432 17 Interfaces, Inheritance, and Polymorphism

uses a for-loop to write the information of the individual pizzas in two lines. To accomplish this, the

method uses the getters of PizzaSimpleInt. After completing the process of writing the data into

the data file, the method closes the PrintStream object by calling the method close (Line 33).

36 public void write () throws FileNotFoundException

37 {

38 PrintStream stream = new PrintStream(theFile);

39 stream.println(list.length);

40 for (int index = 0; index < list.length; index ++)

41 {

42 stream.println(list[index]. getName ());

43 stream.println(list[index]. getPrice ());

44 }

45 stream.close();

46 }

47

Listing 17.5 The code for PizzaSimpleCollection (part 3). The method write

17.1.2.6 Adding a Pizza to the List

The method add receives a String data, name, and a double data, price, as formal parameters

(Line 48). These parameters represent the name and price of a new pizza to be added to the menu.

Since list.length must be equal to the number of pizzas on the menu, the array must be

extended. The method generates a new array of PizzaSimpleInt to increase its capacity by

one. This is accomplished by calling Arrays.copyOf. The copy length is list.length + 1
(Line 50). The array returned by copyOf is stored in listNew. The designated position of the

new pizza is list.length. The method stores a new PizzaSimple object instantiated with the

two parameters in the designated position (Line 51). After that, the method stores the array in list
(Line 52).

48 public void add(String name , double price)

49 {

50 PizzaSimpleInt [] listNew = Arrays.copyOf(list , list.length + 1);

51 listNew[list.length] = new PizzaSimple(name , price);

52 list = listNew;

53 }

54

Listing 17.6 The code for PizzaSimpleCollection (part 4). The method add

17.1.2.7 Removing a Pizza from the List

The method delete receives an int data, index. This is the index to the element to be

removed (Line 55). The removal necessitates resizing of the array. Like add, the method uses

Arrays.copyOf. This time, the copy length is list.length - 1 (Line 57). The array

copyOf returns has the elements correctly at their designated positions for all indexes before index.

Therefore, the elements located after index are copied manually (Line 58-61).

17.1 Interface 433

55 public void delete(int index)

56 {

57 PizzaSimpleInt [] listNew = Arrays.copyOf(list , list.length - 1);

58 for (int pos = index + 1; pos < list.length; pos ++)

59 {

60 listNew[pos - 1] = list[pos];

61 }

62 list = listNew;

63 }

64

Listing 17.7 The code for PizzaSimpleCollection (part 5). The method delte

17.1.2.8 Viewing the Elements of the List

The method view (Line 65) is for printing the menu. For each pizza, the method prints its position in

the collection, its name, and its price using the format %3d:%s:$%.2f%n (Lines 69 and 70).

65 public void view()

66 {

67 for (int index = 0; index < list.length; index ++)

68 {

69 System.out.printf("%3d:%s:$%.2f%n", index ,

70 list[index]. getName (), list[index]. getPrice ());

71 }

72 }

73 }

Listing 17.8 The code for PizzaSimpleCollection (part 6). The method view

The source code of PizzaSimpleCollection, has only two occurrences of PizzaSimple
(Lines 30 and 51). If there is an alternate implementation of PizzaSimpleInt, using the alternate

in place of PizzaSample is easy. We only have to rewrite the two places where PizzaSimple
appears.

17.1.2.9 The Pizza Collection Main Class

PizzaSimpleMain is the main class that handles interactions with the user. The method main has

a throws FileNotFoundException declaration, because it uses PizzaSimpleCollect-
ion. At the start, if the length of args is positive (Line 8), the program instantiates PizzaSimple
Collection object named data with args[0] (Line 10); otherwise, the program asks the

user to enter a file path, and then uses the input for instantiation (Lines 14 and 15). In both cases, the

constructor of PizzaSimpleCollection attempts to read the data from the specified file only if

the file exists, so if the user provides an invalid file path, no data will be read at the start. The program

uses a String variable named input to record the input from the user. The initial value of input
is an empty String (Line 17).

The interactions with the user are repeated using a do-while loop until the user enters an input

starting with "Q" as her choice of action (Lines 18 and 38). In the loop-body, the program prompts

the user to enter the choice of action to be performed (Lines 20 and 21), receives an input, and stores

it in input (Line 22). The execution is then directed using a switch statement based upon the

first character of the input from the user (Line 24). If the character is ’V’, the method executes

434 17 Interfaces, Inheritance, and Polymorphism

data.view() (Line 26). If the character is ’A’, the method receives the name (Lines 28 and 29)

and the price (Lines 30 and 31) from the user, stores them in variables, name and price, and

calls data.add(name, price) (Line 32). If the character is ’D’, the method receives an

input line from the user, converts it to an integer on the fly using Integer.parseInt, and

calls data.delete with this integer as the actual parameter (Lines 35 and 36). If the character

is ’Q’, nothing happens inside the switch statement, and the loop is terminated (Line 38). Before

halting the program, the program calls data.write() to save the data. Double.parseInt and

Integer.parseInt are used to read the price of the new pizza and the index to the element to be

removed.

1 import java.util .*;

2 import java.io.*;

3 public class PizzaSimpleMain

4 {

5 public static void main(String [] args) throws FileNotFoundException {

6 Scanner keyboard = new Scanner(System.in);

7 PizzaSimpleCollection data;

8 if (args.length > 0)

9 {

10 data = new PizzaSimpleCollection(args[0]);

11 }

12 else

13 {

14 System.out.print("Enter data file name: ");

15 data = new PizzaSimpleCollection(keyboard.nextLine ());

16 }

17 String input = "";

18 do

19 {

20 System.out.println("Enter your choice by first letter");

21 System.out.print("View , Add , Delete , Quit: ");

22 input = keyboard.nextLine ();

23

24 switch (input.charAt(0))

25 {

26 case ’V’: data.view(); break;

27 case ’A’:

28 System.out.print("Enter name: ");

29 String name = keyboard.nextLine ();

30 System.out.print("Enter price: ");

31 double price = Double.parseDouble(keyboard.nextLine ());

32 data.add(name , price);

33 break;

34 case ’D’:

35 System.out.printf("Enter index: ");

36 data.delete(Integer.parseInt(keyboard.nextLine ()));

37 }

38 } while (!input.startsWith("Q"));

39 data.write();

40 }

41 }

Listing 17.9 The code for PizzaSimpleMain

17.2 Subclasses and Superclasses 435

Suppose that the name of the previous sample data file is pizzaSimpleData.txt. The

program can be initiated with the file path to the file as args[0] as follows:

1 % java PizzaSimpleMain pizzaSimpleData.txt
2 Enter your choice by first letter
3 View, Add, Delete, Read, Quit: V
4 0:Peperoni:$10.50
5 1:Four Cheese:$12.50
6 2:Nettuno:$11.00
7 3:Meat Lovers:$13.00
8 Enter your choice by first letter
9 View, Add, Delete, Quit: A

10 Enter name: Capricciosa
11 Enter price: 14
12 Enter your choice by first letter
13 View, Add, Delete, Quit: D
14 Enter index: 0
15 Enter your choice by first letter
16 View, Add, Delete, Quit: V
17 0:Four Cheese:$12.50
18 1:Nettuno:$11.00
19 2:Meat Lovers:$13.00
20 3:Capricciosa:$14.00
21 Enter your choice by first letter
22 View, Add, Delete, Quit: Q

The data file has been updated. If we execute the cat command on the file, we see that there are

now five pizzas.

1 % cat pizzaSimpleData.txt
2 5
3 Four Cheese
4 12.5
5 Nettuno
6 11.0
7 Capriccioso
8 14.0
9 Alfredo

10 14.5
11 Meat Lover’s
12 13.5

17.2 Subclasses and Superclasses

17.2.1 Extending Existing Classes and Interfaces

The pizza menu building program that we have just seen has only the name and the price as

information for a pizza. We will extend the program by adding information about the ingredients.

We also add a search function that allows the user to look for pizzas having an ingredient.

In developing this program, we will recycle PizzaSimpleInt and PizzaSimple and

develop a new interface PizzaComplexInt an its implementation PizzaComplex. We

will then slightly modify PizzaSimpleCollection and PizzaSimpleMain to obtain

PizzaComplexCollection and PizzaComplexMain. To recycle the source code for

PizzaSimpleInt and the source code for PizzaSimple, we use the keyword of extends
as follows:

436 17 Interfaces, Inheritance, and Polymorphism

PizzaSimpleInt

PizzaComplexIntPizzaSimple

PizzaComplex

interfaces
classes

String getName()

double getPrice()

boolean hasIngredient(String c)

String[] getIngredients()

String encodeIngredients(String del)

abstract methods

implements

implements
extends

extends

Fig. 17.1 The two interfaces and the two classes. The pointy arrows represent extensions and the circle-head arrows
represent implementations

public interface PizzaComplexInt extends PizzaSimpleInt

and

public class PizzaComplex extends PizzaSimple implements PizzaComplexInt

When X extends Y, the unit type must agree between X and Y, meaning that X is a class if and

only if Y is a class, and that X is an interface if and only if Y is an interface. If the type of the

two units is class, we say that X is a subclass of Y and Y is a superclass of X. If the type is

interface, we say that X is a sub-interface of Y and Y is a super-interface of X. As for the source

codes we have at hand, PizzaComplex is a subclass of PizzaSimple, PizzaSimple is a

superclass of PizzaComplex, PizzaComplexInt is a sub-interface of PizzaSimpleInt, and

PizzaSimpleInt is a super-interface of PizzaComplexInt.

By declaring X extends Y, all non-private components that appear in Y are automatically

included in X. This means that the two abstract methods of PizzaSimpleInt are already declared

(as abstract methods) in PizzaComplexInt, and all the public parts of PizzaSimple (the

constructor and the two getters) are available in PizzaComplex. This phenomenon is called

inheritance too.

If a class X extends a class Y, the constructor of Y can be referenced using the keyword of super.

The class X may override public methods in Y. If X does that, the pre-override version of the method

can be referred to by attaching the prefix of super.
Figure 17.1 presents the relations among the two interfaces and the two classes.

Here is the code for PizzaComplexInt. Three new abstract methods are introduced.

17.2 Subclasses and Superclasses 437

1 public interface PizzaComplexInt extends PizzaSimpleInt

2 {

3 public boolean hasIngredient(String in);

4 public String [] getIngredients ();

5 public String encodeIngredients(String del);

6 }

Listing 17.10 The code for PizzaComplexInt

We expect these abstract methods, when implemented, to operate as follows:

1. hasIngredient(String c) returns a boolean value representing whether or not the

pizza has an ingredient whose name matches the keyword c.

2. getIngredients() returns the list of ingredients as an array of String data.

3. encodeIngredients(String del) returns a one-line encoding of the ingredients of the

pizza, with the String represented by del appearing in between.

The reason that the method encodeIngredients receives a delimiter as a parameter is that

one-line encodings of ingredients are generated in two different situations. One is when presenting

the information of a pizza on the screen. The other is when recording the information of a pizza

in a data file. For the former, we may want to use a very short delimiter so that there will be

wraparounds. For the latter, we may want to use a delimiter (such as the tab-stop) that does not

appear in the names of pizzas. By parameterizing the delimiter, it is possible to handle the two

different situations using just one method.

17.2.2 Writing Extensions

17.2.2.1 Writing a Subclass

Including the two abstract methods declared in PizzaSimpleInt, PizzaComplexInt has a

total of five abstract methods. Since PizzaComplex has the extends PizzaSimple decla-

ration, PizzaComplex only has to implement the three abstract methods that are introduced in

PizzaComplexInt. We will use a private String[] instance variable named ingredients
to represent the ingredients, where each element of the array is the name of one ingredient

(Line 3). The constructor of PizzaSimple requires two parameters, name and price. The

constructor of PizzaComplex has one more parameter. This parameter is an array of String
data, ingredients (Line 5). Because PizzaComplex is a subclass of PizzaSimple, a

PizzaSimple object is automatically included in a PizzaComplex object (as shown in Fig. 17.2).

If the constructor of PizzaComplex does not call the PizzaSimple, the instance variables

declared in PizzaSimple will have their default values (that is, null for name and 0 for price).

Since PizzaSimple does not have setters for name or price, it is thus necessary to call the

constructor of PizzaSimple to assign values to name and price. The way to call for the

PizzaSimple constructor is:

super(name , price)

This is reminiscent of this(...) that is used to refer to another constructor of the same object

class. The remaining action of the constructor PizzaComplex is to copy the value of the parameter

438 17 Interfaces, Inheritance, and Polymorphism

Fig. 17.2 A
PizzaComplex object

String name

double price

String[] ingredients

Internal PizzaSimple Object

PizzaComplex Object

ingredients to the instance variable ingredients. Because the parameter and the instance

variable have the same names, the code attaches the prefix this. to the instance variable to

distinguish it from the parameter. As in the case of the constructor call this(...), the constructor

of the superclass super(...) must be called at the start of the constructor.

1 public class PizzaComplex extends PizzaSimple implements PizzaComplexInt

2 {

3 private String [] ingredients;

4

5 public PizzaComplex(String name , double price , String [] ingredients)

6 {

7 super(name , price);

8 this.ingredients = ingredients;

9 }

10

Listing 17.11 The code for PizzaComplex (part 1). The header, the instance variable, and the constructor

The three abstract methods appearing in PizzaComplexInt are overridden in PizzaComplex
as follows: The method getIngredients returns the array ingredients (Lines 11–14).

A program that receives an ingredient list through the method getIngredients from a

PizzaComplex object cannot shrink or extend the array, but can change the individual ingredients

of the array. This is because the method provides a reference to the instance variable ingredients.

To ensure that such modifications will never occur, the method can return a copy of the array

instead of the array itself. Such a copy can be generated by Arrays.copyOf(ingredients,
ingredients.length).

17.2 Subclasses and Superclasses 439

11 public String [] getIngredients ()

12 {

13 return ingredients;

14 }

15

Listing 17.12 The code for PizzaComplex (part 2). The implementation of the method getIngredients

To implement hasIngredient, the program uses a for-loop called a “for-each” loop. Given an

array a whose elements are of type T,

for (T x : a) { ... }

means to iterate over the elements of a with the iteration variable x. A for-each loop is available

for all arrays and all classes that implement an interface Iterable. We will discuss the interface

Iterable in the next chapter. In the case of arrays, the elements appear in the increasing order of

their indexes.

In the source code of PizzaComplex, we use a for-each loop with the following expression

(Line 18): for (String in : ingredients) This loop retrieves the elements of the array

ingredients one after another and stores them in the variable in. The method checks whether or

not the keyword c appears somewhere in the name in. However, since the user may switch between

the lowercase and the uppercase on some letter when typing the search key, the method uses the

uppercase version of c and the uppercase version of in instead (Line 20). This means that the search

is not case-sensitive. If there is a match, the method returns true immediately (Line 22). Completing

the loop without returning means that there was no match. For this reason, the method returns false
(Line 24).

16 public boolean hasIngredient(String c)

17 {

18 for (String in : ingredients)

19 {

20 if (in.toUpperCase ().indexOf(c.toUpperCase ()) >= 0)

21 {

22 return true;

23 }

24 }

25 return false;

26 }

27

Listing 17.13 The code for PizzaComplex (part 3). The implementation of the method
hasIngredientsPizzaComplexInt

The implementation of encodeIngredients (Line 28) uses a StringBuilder (Line 30).

The method uses a for-loop to iterate over the sequence 0, ..., ingredients.length - 1
with a variable named j (Line 31). The method appends the String ingredients[j] (Line

33), and then if j is not the last one (Line 34), appends the delimiter del (Line 36). This has the

effect of concatenating all the ingredients with del in between. After completing the loop, the method

returns the String represented by the StringBuilder object (Line 39).

440 17 Interfaces, Inheritance, and Polymorphism

28 public String encodeIngredients(String del)

29 {

30 StringBuilder builder = new StringBuilder ();

31 for (int j = 0; j <= ingredients.length - 1; j ++)

32 {

33 builder.append(ingredients[j]);

34 if (j < ingredients.length - 1)

35 {

36 builder.append(del);

37 }

38 }

39 return builder.toString ();

40 }

41 }

Listing 17.14 The code for PizzaComplex (part 4). The implementation of the method encodeIngredients

17.2.2.2 A Class for a Collection of PizzaComplex Data

In PizzaComplexCollection, the type of the pizza array is PizzaComplexIt[] (Line 5).

The class defines two delimiters to be used as a parameter for the method encodeIngredients
of PizzaComplexInt. The delimiters are called SEPARATOR and COMMA. SEPARATOR is used

when recording the data in a file and its value is "\t" (Line 8). COMMA is used when printing the

ingredients on the screen, and its value is ", " (Line 9). As before, there are two constructors, one

that receives a file path (Line 11) and the other that takes a File object (Line 15). The order between

the two is deliberately switched in this version, to emphasize that the order of appearance of the two

constructors can be arbitrary.

1 import java.util .*;

2 import java.io.*;

3 public class PizzaComplexCollection

4 {

5 private PizzaComplexInt [] list;

6 private File theFile;

7

8 private static final String SEPARATOR = "\t";

9 private static final String COMMA = ", ";

10

11 PizzaComplexCollection(String name) throws FileNotFoundException

12 {

13 this(new File(name));

14 }

15 PizzaComplexCollection(File f) throws FileNotFoundException

16 {

17 theFile = f;

18 list = new PizzaComplexInt[0];

19 read();

20 }

21

Listing 17.15 The code for PizzaComplexCollection (part 1). The header, the constants, the instance variables,
and the constructor

17.2 Subclasses and Superclasses 441

The data file now has three lines for each pizza. The third line is an encoding of the ingredients

generated by calling encodeIngredients(SEPARATOR). The data file looks like this one:

1 6
2 Four Cheese
3 14.0
4 Mozzarella Parmesan Ricotta Gorgonzola
5 Pepperoni
6 10.0
7 Pepperoni
8 Nettuno
9 14.0

10 Tuna Pasta Sauce Onion Green Pepper
11 Capricciosa
12 14.5
13 Olive Ham Mozzarella Artichoke
14 Meat Lovers
15 15.0
16 Pepperoni Ham Sausage Bacon Mozzarella
17 Veggie
18 12.5
19 Onion Green Pepper Tomato Mozzarella Olive

The method read is similar to the previous one. To split the ingredient line to an array, read calls

the method split for String with SEPARATOR as the delimiter (Line 33). The name, price, and

ingredients that are read from the file are then given to the constructor of PizzaComplex, and the

PizzaComplex object generated by the constructor is stored in the list (Line 34).

22 public void read() throws FileNotFoundException

23 {

24 if (theFile.exists ())

25 {

26 Scanner scanner = new Scanner(theFile);

27 int size = Integer.parseInt(scanner.nextLine ());

28 list = new PizzaComplexInt[size];

29 for (int index = 0; index < size; index ++)

30 {

31 String name = scanner.nextLine ();

32 double price = Double.parseDouble(scanner.nextLine ());

33 String [] ingredients = scanner.nextLine ().split(SEPARATOR);

34 list[index] = new PizzaComplex(name , price , ingredients);

35 }

36 scanner.close();

37 }

38 }

39

Listing 17.16 The code for PizzaComplexCollection (part 2). Reading from file

442 17 Interfaces, Inheritance, and Polymorphism

The method write works similarly to the method write of PizzaSimple. It records

the data in the file specified by theFile (Line 40). The difference from the previous

version is that there is the third line for each a pizza. The method uses the method call

encodeIngredients(SEPARATOR) to generate the encoding for the third line (Line 48).

40 public void write () throws IOException

41 {

42 PrintStream stream = new PrintStream(theFile);

43 stream.println(list.length);

44 for (int index = 0; index < list.length; index ++)

45 {

46 stream.println(list[index]. getName ());

47 stream.println(list[index]. getPrice ());

48 stream.println(list[index]. encodeIngredients(SEPARATOR));

49 }

50 stream.close();

51 }

52

Listing 17.17 The code for PizzaComplexCollection (part 3). The method write

The method add (Line 53) works similarly to the method add that is defined in PizzaSimple.

It receives the name, price, and ingredients for a new pizza and adds the PizzaComplex object

instantiated with the three values at the end of the list (Lines 56–57). It uses Arrays.copyOf to

generate a copy of the present list with one additional slot (Line 55). The method delete (Line 61)

works in the same manner as before.

53 public void add(String name , double price , String [] ingredients)

54 {

55 PizzaComplexInt [] listNew = Arrays.copyOf(list , list.length + 1);

56 listNew[list.length]

57 = new PizzaComplex(name , price , ingredients);

58 list = listNew;

59 }

60

61 public void delete(int index)

62 {

63 PizzaComplexInt [] listNew = Arrays.copyOf(list , list.length - 1);

64 for (int pos = index + 1; pos < list.length; pos ++)

65 {

66 listNew[pos - 1] = list[pos];

67 }

68 list = listNew;

69 }

70

Listing 17.18 The code for PizzaComplexCollection (part 4). The methods add and delete

17.2 Subclasses and Superclasses 443

The method view works in a very similar manner to the method view in PizzaSimple
(Line 71). This time, there is an ingredient list to be attached after the price. The list is generated

using encodeIngredients with COMMA as the delimiter (Line 77). The method search takes

String data c as the search key (Line 81). For each element in the list, search calls the method

hasIngredientwith c as the search key (Line 85), and if hasIngredient returns true, prints

the pizza contents using the same format as the format view uses (Lines 87–89).

71 public void view()

72 {

73 for (int index = 0; index < list.length; index ++)

74 {

75 System.out.printf("%3d:%s:$%.2f:%s\n", index ,

76 list[index]. getName (), list[index]. getPrice (),

77 list[index]. encodeIngredients(COMMA));

78 }

79 }

80

81 public void search(String c)

82 {

83 for (int index = 0; index < list.length; index ++)

84 {

85 if (list[index]. hasIngredient(c))

86 {

87 System.out.printf("%3d:%s:$%.2f:%s\n", index ,

88 list[index]. getName (), list[index]. getPrice (),

89 list[index]. encodeIngredients(COMMA));

90 }

91 }

92 }

93 }

Listing 17.19 The code for PizzaComplexCollection (part 5). The methods view and search

The main class PizzaComplexMain works in a very similar manner to PizzaSimpleMain.

The major differences are as follows:

• The pizza menu is now represented by a PizzaComplexCollection object (Line 6).

• The menu for actions that is presented to the user now includes an option for searching (Line 21).

• To add a new pizza, the user is asked to enter the name, the price, and then the ingredients with

commas in between (Line 32). The input is then split using the comma as the delimiter (Line 33).

The array becomes the third parameter of the method call to add.

• The switch statement has one additional anchor with the literal ’S’ (Line 40). This anchor is for

directing the action to search. The program receives a search key from the user (Line 41), and calls

the method search (Line 42).

444 17 Interfaces, Inheritance, and Polymorphism

1 import java.util .*;

2 import java.io.*;

3 public class PizzaComplexMain

4 {

5 public static void main(String [] args) throws IOException {

6 PizzaComplexCollection data;

7 Scanner keyboard = new Scanner(System.in);

8 String input = "";

9 if (args.length > 0)

10 {

11 data = new PizzaComplexCollection(args[0]);

12 }

13 else

14 {

15 System.out.print("Enter data file name: ");

16 data = new PizzaComplexCollection(keyboard.nextLine ());

17 }

18

19 do {

20 System.out.println("Enter your choice by first letter");

21 System.out.print("View , Add , Delete , Search , Quit: ");

22 input = keyboard.nextLine ();

23

24 switch (input.charAt(0))

25 {

26 case ’V’: data.view(); break;

27 case ’A’:

28 System.out.print("Enter name: ");

29 String name = keyboard.nextLine ();

30 System.out.print("Enter price: ");

31 double price = Double.parseDouble(keyboard.nextLine ());

32 System.out.print("Enter ingredients separated by comma: ");

33 String [] ing = keyboard.nextLine ().split(",");

34 data.add(name , price , ing);

35 break;

36 case ’D’:

37 System.out.printf("Enter index: ");

38 data.delete(Integer.parseInt(keyboard.nextLine ()));

39 break;

40 case ’S’:

41 System.out.printf("Enter key: ");

42 data.search(keyboard.nextLine ());

43 }

44 } while (!input.startsWith("Q"));

45 data.write();

46 }

47 }

Listing 17.20 The code for PizzaComplexMain

Suppose the name of the PizzaComplex menu data file is pizzaComplexData.txt. Here

is an execution example that starts with this file as the data file:

17.3 Polymorphism 445

1 % java PizzaComplexMain
2 Enter data file name: pizzaComplexData.txt
3 Enter your choice by first letter
4 View, Add, Delete, Search, Quit: V
5 0:Four Cheese:$14.00:Mozzarella, Parmesan, Ricotta, Gorgonzola
6 1:Pepperoni:$10.00:Pepperoni
7 2:Nettuno:$14.00:Tuna, Pasta Sauce, Onion, Green Pepper
8 3:Capricciosa:$14.50:Olive, Ham, Mozzarella, Artichoke
9 4:Meat Lovers:$15.00:Pepperoni, Ham, Sausage, Bacon, Mozzarella

10 5:Veggie:$12.50:Onion, Green Pepper, Tomato, Mozzarella, Olive
11 Enter your choice by first letter
12 View, Add, Delete, Search, Quit: A
13 Enter name: Hawaiian
14 Enter price: 13.00
15 Enter ingredients separated by comma: Ham,Pineapple
16 Enter your choice by first letter
17 View, Add, Delete, Search, Quit: V
18 0:Four Cheese:$14.00:Mozzarella, Parmesan, Ricotta, Gorgonzola
19 1:Pepperoni:$10.00:Pepperoni
20 2:Nettuno:$14.00:Tuna, Pasta Sauce, Onion, Green Pepper
21 3:Capricciosa:$14.50:Olive, Ham, Mozzarella, Artichoke
22 4:Meat Lovers:$15.00:Pepperoni, Ham, Sausage, Bacon, Mozzarella
23 5:Veggie:$12.50:Onion, Green Pepper, Tomato, Mozzarella, Olive
24 6:Hawaiian:$13.00:Ham, Pineapple
25 Enter your choice by first letter
26 View, Add, Delete, Search, Quit: S
27 Enter key: ham
28 3:Capricciosa:$14.50:Olive, Ham, Mozzarella, Artichoke
29 4:Meat Lovers:$15.00:Pepperoni, Ham, Sausage, Bacon, Mozzarella
30 6:Hawaiian:$13.00:Ham, Pineapple
31 Enter your choice by first letter
32 View, Add, Delete, Search, Quit: Q

17.3 Polymorphism

An object of class PizzaComplex can be treated as a data of type PizzaComplex, type

PizzaComplexInt, type PizzaSimple, and of PizzaSimpleInt. To treat it as a different

(but legitimate) type, we use casting. Casting is accomplished by placing, in front of the data,

the alternate data type in parentheses. For example, to treat a PizzaComplex object p as a

PizzaSimple object, we write: (PizzaSimple)p When a data is treated as a super-type,

we call it up-casting. When a data is treated as a subtype, we call it down-casting. Up-casting

is always possible, but down-casting may not be possible. To treat a PizzaSimple object

as a PizzaComplex object, we need to ensure that the object is indeed a PizzaComplex
object. Suppose we have an array of PizzaSimpleInt type, some of whose elements may be

PizzaComplex objects. To see if an element can be treated as a PizzaComplex object, we can

use a special operation instanceof:

(x instanceof T)

The operation examines the type of x, and returns true if the actual type of x can be treated as

type T.

We can write, for instance, the following code to utilize the casting and instanceof:

446 17 Interfaces, Inheritance, and Polymorphism

1 public void pizzaTest(PizzaSimpleInt p)

2 {

3 System.out.println(p.getName ());

4 System.out.println(p.getPrice ());

5 if (p instanceof PizzaComplex)

6 {

7 String [] in = ((PizzaComplex)p).getIngredients ();

8 }

9 }

We call the idea that an object can be treated as more than one type polymorphism. In Java, every

object is a subclass of class Object. This organizational structure comes in handy when one wants

to create an array of objects with mixed types.

As mentioned earlier, the run-time errors are in a tree. For instance, FileNotFoundException
is a subclass of IOException, IOException is a subclass of Exception, Exception is a

subclass of Throwable, and Throwable is a subclass of Object.

17.4 Boxed Data Types

The primitive data types are not object types, so they are not subclasses of Object. The Java

Development Kit contains many useful classes and interfaces that take data types parameters (see the

next chapter). Those parameters cannot be primitive data types. To make such classes and interfaces

available for primitive data types, Java offers eight object data types that correspond to the eight

primitive data types. We call these data types the boxed data types. The eight boxed data types are:

Boolean, Byte, Character, Double, Float, Integer, Long, and Short. They correspond

to: boolean, byte, char, double, float, int, long, and short. Java provides automatic

conversions from each primitive data type to its boxed type, and vice versa. For example, if a data

of type int is supplied where a data of type Integer is demanded, Java automatically converts

the int data to an equivalent Integer data, and if a data of type Integers is supplied where

a data of type int is demanded, Java automatically converts the Integer data to an equivalent

int data. We call the automatic conversion from a primitive data type to its boxed type auto-boxing,

and the automatic conversion from a boxed data type to its un-boxed data type auto-unboxing. The

automatic conversion fails to work in the case where the value of null needs to be unboxed. This

results in NullPointerException.

We can write programs using the boxed type of integers with null being interpreted as

“undefined”. For example, consider computing, with a Scanner object named sc, the maximum

of the numbers appearing in an indefinitely long sequence of int values. Suppose we use a variable

named max to record the maximum of the numbers we have received so far. For each number received,

the program will compare it with max to update max. When the first number arrives, there is no

previous number. Therefore, the first number must be used as the initial value of max. By using a

boolean variable named noNumbersYet that records whether or not at least one number has been

received, we can distinguish the case between the first number and the rest as follows:

17.5 Interface Comparable 447

1 boolean noNumbersYet = true;

2 int max;

3 while (sc.hasNext ())

4 {

5 int nextNumber = sc.nextInt ();

6 if (noNumbersYet || max < nextNumber)

7 {

8 max = nextNumber;

9 }

10 noNumbersYet = false;

11 }

12 if (noNumbersYet)

13 {

14 System.out.println("max is undefined");

15 }

16 else

17 {

18 System.out.println("max is " + max);

19 }

We use the disjunction || in the first condition inside the while-loop to truncate the conditional

evaluation. At the end of the loop-body, we set the value of noNumbersYet to false, so the

second time around, the second condition, max < number, is tested.

By using Integer instead, we can make max assume the role of the boolean variable.

1 Integer max = null;

2 while (sc.hasNext ())

3 {

4 int nextNumber = sc.nextInt ();

5 if (max == null || max < nextNumber)

6 {

7 max = nextNumber;

8 }

9 }

10 if (max == null)

11 {

12 System.out.println("max is undefined");

13 }

14 else

15 {

16 System.out.println("max is " + max);

17 }

17.5 Interface Comparable

Comparable is a frequently used interface. Objects of a class implementing this interface can be

compared with each other using the method compareTo. If a class T implements this interface, an

array of elements of T can be sorted using Arrays.sort. Since the compareTo method takes as

its parameter another object to compare to, the specification of Comparable in the declaration of a

class is a bit complicated. Instead of simply stating:

public class T implements Comparable

448 17 Interfaces, Inheritance, and Polymorphism

the declaration must state:

public class T implements Comparable <T>

The <T> part is called the generic type parameter. We study generic parameters in Chap. 18.

We extend PizzaComplex so that its objects are comparable with each other by adding an

implementation of Comparable. The new class is called PizzaUltra.

Since PizzaUltra does not have an additional instance variable, the constructor of

PizzaUltra calls the constructor of the superclass PizzaComplex (Line 5) with super.

All the instance methods in PizzaComplex are available in PizzaUltra.

The header of the new class is:

1 public class PizzaUltra extends PizzaComplex implements

2 Comparable <PizzaUltra >

3 {

4 public PizzaUltra(String name , double price , String [] ingredients)

5 {

6 super(name , price , ingredients);

7 }

8 }

The code does not compile in the above form, because the class has not yet overridden the method

compareTo. The error message shown next is generated when an attempt is made to compile the

code.

1 PizzaUltra.java:1: error: PizzaUltra is not abstract and does not override
abstract method compareTo(PizzaUltra) in Comparable

2 public class PizzaUltra extends PizzaComplex implements
Comparable<PizzaUltra>

3 ^

To resolve the problem, we must write a public int method compareTo that takes another

PizzaUltra object as a parameter. The header of the method must look like this one:

public int compareTo(PizzaUltra o)

There are three instance variables in PizzaComplex. They are a String variable, name, a

double variable, price, and a String[] variable, ingredients. Assuming that no two pizzas

on the menu have the same names, we naturally choose to compare pizzas by their names. Because

the instance variables are declared to be private variables, PizzaUltra does not have direct access

to the names. For this reason, the following code for compareTo fails:

1 ...

2 public int compareTo(PizzaUltra o)

3 {

4 return this.name.compareTo(o.name);

5 }

6 ...

with the following error message:

17.5 Interface Comparable 449

1 PizzaUltra.java :11: error: name has private access in PizzaSimple

2 return this.name.compareTo(o.name);

3 ˆ

4 PizzaUltra.java :11: error: name has private access in PizzaSimple

5 return this.name.compareTo(o.name);

6 ˆ

7 2 errors

To resolve the problem, we use the getter, getName, as follows:

1 public class PizzaUltra extends PizzaComplex implements

2 Comparable <PizzaUltra >

3 {

4 public PizzaUltra(String name , double price , String [] ingredients)

5 {

6 super(name , price , ingredients);

7 }

8

9 public int compareTo(PizzaUltra o)

10 {

11 return getName ().compareTo(o.getName ());

12 }

13 }

Listing 17.21 The code for PizzaUltra

Now that we have implemented Comparable, we can sort any pizza list. We specifically

use the capability at two occasions. One is after reading the data from the data file. The

other is after adding a new pizza. The code for the collection class is essentially the same as

before, with the use of PizzaUltra. Since the elements of the array are now PizzaUltra,

at the end of the methods add and read, the array is sorted using Arrays.sort. The

source code for PizzaUltraCollection is presented next with the differences from

PizzaComplexCollection highlighted:

1 import java.util .*;

2 import java.io.*;

3 public class PizzaUltraCollection

4 {

5 private PizzaUltra [] list;

6 private File theFile;

7

8 private static final String SEPARATOR = "\t";

9 private static final String COMMA = ", ";

10

11 PizzaUltraCollection(String name) throws IOException

12 {

13 this(new File(name));

14 }

Listing 17.22 The code for PizzaUltraCollection (part 1)

450 17 Interfaces, Inheritance, and Polymorphism

15 PizzaUltraCollection(File f) throws IOException

16 {

17 theFile = f;

18 list = new PizzaUltra[0];

19 read();

20 }

21

22 public void read() throws FileNotFoundException

23 {

24 Scanner scanner = new Scanner(theFile);

25 int size = Integer.parseInt(scanner.nextLine ());

26 list = new PizzaUltra[size];

27 for (int index = 0; index < size; index ++)

28 {

29 String name = scanner.nextLine ();

30 double price = Double.parseDouble(scanner.nextLine ());

31 String [] ingredients = scanner.nextLine ().split(SEPARATOR);

32 list[index] = new PizzaUltra(name , price , ingredients);

33 }

34 Arrays.sort(list);

35 scanner.close();

36 }

37

38 public void write () throws IOException

39 {

40 PrintStream stream = new PrintStream(theFile);

41 stream.println(list.length);

42 for (int index = 0; index < list.length; index ++)

43 {

44 stream.println(list[index]. getName ());

45 stream.println(list[index]. getPrice ());

46 stream.println(list[index]. encodeIngredients(SEPARATOR));

47 }

48 stream.close();

49 }

50

51 public void add(String name , double price , String [] ingredients)

52 {

53 PizzaUltra addition = new PizzaUltra(name , price , ingredients);

54 PizzaUltra [] listNew = Arrays.copyOf(list , list.length + 1);

55 listNew[list.length] = addition;

56 Arrays.sort(listNew);

57 list = listNew;

58 }

59

60 public void delete(int pos)

61 {

62 PizzaUltra [] listNew = new PizzaUltra[list.length - 1];

63 for (int i = 0; i < pos; i ++)

64 {

65 listNew[i] = list[i];

66 }

Listing 17.23 The code for PizzaUltraCollection (part 2)

17.5 Interface Comparable 451

67 for (int i = pos + 1; i < list.length; i ++)

68 {

69 listNew[i - 1] = list[i];

70 }

71 list = listNew;

72 }

73

74 public void view()

75 {

76 for (int index = 0; index < list.length; index ++)

77 {

78 System.out.printf("%3d:%s:$%.2f:%s%n", index ,

79 list[index]. getName (), list[index]. getPrice (),

80 list[index]. encodeIngredients(COMMA));

81 }

82 }

83

84 public void search(String c)

85 {

86 for (int index = 0; index < list.length; index ++)

87 {

88 if (list[index]. hasIngredient(c))

89 {

90 System.out.printf("%3d:%s:$%.2f:%s%n", index ,

91 list[index]. getName (), list[index]. getPrice (),

92 list[index]. encodeIngredients(COMMA));

93 }

94 }

95 }

96 }

Listing 17.24 The code for PizzaUltraCollection (part 3)

The main class, PizzaUltraMain, has the same code as PizzaComplexMain, except that it

now uses PizzaUltraCollection instead of PizzaComplexCollection.

1 import java.util .*;

2 import java.io.*;

3 public class PizzaUltraMain

4 {

5 public static void main(String [] args) throws IOException {

6 PizzaUltraCollection data;

7 Scanner keyboard = new Scanner(System.in);

8 String input = "";

9 if (args.length > 0)

10 {

11 data = new PizzaUltraCollection(args[0]);

12 }

13 else

14 {

15 System.out.println("Enter data file name: ");

16 data = new PizzaUltraCollection(keyboard.nextLine ());

17 }

18

Listing 17.25 The code for PizzaUltraMain (part 1)

452 17 Interfaces, Inheritance, and Polymorphism

19 do {

20 System.out.println("Enter your choice by first letter");

21 System.out.print("View , Add , Delete , Search , Quit: ");

22 input = keyboard.nextLine ();

23

24 switch (input.charAt(0))

25 {

26 case ’V’: data.view(); break;

27 case ’A’:

28 System.out.print("Enter name: ");

29 String name = keyboard.nextLine ();

30 System.out.print("Enter price: ");

31 double price = Double.parseDouble(keyboard.nextLine ());

32 System.out.print("Enter ingredients separated by comma: ");

33 String [] ing = keyboard.nextLine ().split(",");

34 data.add(name , price , ing);

35 break;

36 case ’D’:

37 System.out.printf("Enter index: ");

38 data.delete(Integer.parseInt(keyboard.nextLine ()));

39 break;

40 case ’S’:

41 System.out.printf("Enter key: ");

42 data.search(keyboard.nextLine ());

43 }

44 } while (!input.startsWith("Q"));

45 data.write();

46 }

47 }

Listing 17.26 The code for PizzaUltraMain (part 2)

Summary

An interface is a template for a class.

An interface may declare static methods and constants.

Each instance method declared in an interface is abstract.

Each component appearing an interface must have the public visibility.

An interface cannot declare instance variables.

An interface cannot be instantiated, but can be used as a data type.

To declare formally that a class is built upon an interface, the keyword implements must be

used.

The keyword implements appears after the class name in the class declaration.

A class that implements an interface must override all the abstract methods appearing in the

interface.

All the components of an interface are available to each class that implements it.

An interface can be extended to another interface.

A class can be extended to another class.

The keyword to use in declaring an extension is extends.

The prefixes of “super-” and “sub-” are used to refer to the original unit that is extended and the

unit that extends the original respectively.

Exercises 453

The public components of a superclass are available to its subclasses. They can be accessed as if

they are part of the subclasses.

The private components of a superclass are not available to its subclasses.

Inheritance refers to a concept that an implementation has all the public components of an interface

it implements and that a subclass can use all the public components of a subclass.

When a class has multiple constructors and one constructor uses another, the other constructor is

referenced to by this(...).

For a class to initialize the instance variables defined in its superclass, super(...) is used to

call the constructor of the superclass.

this(...) and super(...) must appear at the start of the constructor.

An instance method of a superclass can be called with the prefix of super.
It one class/interface X extends another, Y, a data of type X can be treated as type of Y. We call this

phenomenon polymorphism.

To check whether or not an object x can be treated as a data of type T, the operator instanceof
can be used as: x instanceof T.

A boxed data type is an object-class version of a primitive data type. There are eight boxed data

types corresponding to the eight primitive data types.

Java automatic converts between a primitive data type and its boxed type. The automatic conversion

from a primitive data type to its boxed type is called auto-boxing and the conversion in the reverse

direction is called auto-unboxing.

Comparable is an interface that defines an abstract method compareTo. If a class implements

this interface, the objects from the class can be compared.

Declaring an implementation of Comparable requires a type parameter.

Exercises

1. Implementing an Interface MyCarInt Let MyCarInt be an interface defined as follows:

1 public interface MyCarInt

2 {

3 public int getYear ();

4 public String getMake ();

5 public String getModel ();

6 }

Write a class named MyCar that implements this interface.

2. Implementing an Interface DogInt Let DogInt be an interface defined as follows:

1 public interface DogInt

2 {

3 public int getAge ();

4 public String [] getBreed ();

5 public boolean hasBlood(String key);

6 }

454 17 Interfaces, Inheritance, and Polymorphism

We assume that the age of a dog is represented in months. The first method returns the age of the

dog as an int representing the number of months. The method returns an array of String data

representing the names of the breeds in the mix, for instance, { "Yorkshire Terrier",}
{"Dachshund", "Maltese" }. The method hasBlood checks if a breed name given as the

parameter matches one of the elements in the breed list. Write a class named Dog that implements

this interface.

3. Writing an interface for BankAccount We previously studied a class BankAccount for

recording the name and the balance of a bank account. Suppose that the class is one that implements

an interface BankAccountInt in which all the instance methods appear as abstract methods.

Write this interface.

4. Writing an interface DateInt Consider the following interface, which is for recording the

year, the month, and the day value of a date on or after January 1, 1900.

1 public interface DateInt

2 {

3 public int getYear ();

4 public int getMonth ();

5 public int getDay ();

6 public static boolean isLeapYear(int year)

7 {

8 ...

9 }

10 }

The static method isLeapYear returns a boolean representing whether or not the year that the

formal parameter specifies is a leap year. After the introduction of the Gregorian calendar in the

year 1582, the determination of a leap year is made using the following rule: a year Y is a leap

year if and only if Y is either a multiple of 400 or a multiple of 4 and not a multiple of 100. For

example, the year 2000 is a leap year but 2100 is not one. Assuming the year to be tested for a leap

year is greater than 1582, write the static method isLeapYear.

5. Implementing an interface DateInt Write a class named DataZero that implements the

interface DateInt from the previous question. The class has one constructor. The constructor

receives three int values as parameters. The three values represent the year, the month, and the

day. Write the constructor so that if the combination of year, month, and day is invalid, it throws

an IllegalArgumentException.

6. Implementing an interface DateInt Continuing on the previous question, write a new class

DateNew that extends Date and implements Comparable<DateNew>.

Programming Projects

7. Comparable class StudentBasicInt Write an interface named StudentBasicInt for

recording information of a single student. The interface has three abstract methods that are expected

to be implemented as getters, String getFamilyName(), String getOtherNames(),

and int getRank(). The expected actions of these methods are to return the family name, the

other names, and an integer representing the academic rank (1 for freshman, 2 for sophomore, 3 for

junior, and 4 for senior). The interface should define int constants, FRESHMAN, SOPHOMORE,

JUNIOR, and SENIOR representing these four ranks. The interface must define setters

Exercises 455

void setFamilyName(String o), void setOtherNames(String o), and

void setRank(int o), which store the names and the rank.

8. Implementing the interface StudentBaseInt Write a class named StudentBase
that implements the interface StudentBaseInt from the previous question. Furthermore,

write a class StudentBaseMaster with just one static method public static
StudentBaseInt create(String a, String b, int c) that returns a

StudentBaseInt object instantiated with the three parameters a, b, and c, that represent

the family name, the other names, and the rank.

9. Writing an application for reading and presenting StudentBaseInt data Write an

application class named StudentBaseApp that reads StudentBaseInt data from a file, and

stores it in the same file after modifications. Possible modifications are adding a new student and

changing information of a student. The file path must be received from the user. The data file must

contain the number of students in the first line. After stating the number of students in the data

file, the information for each student appears in three lines. The three lines representing the family

name, the other names, and the rank. The program should store the student record in an array of

StudentBaseInt and use StudentBaseMaster to instantiate each element of the array.

18Generic Class Parameters and the Java Collection
Framework

18.1 ArrayList

18.1.1 Maintaining a Collection of Merchandise Items

Consider writing an application that interacts with the user to build a list of merchandise items. Each

item is represented by its name and price (in dollars). Like the pizza applications from the previous

chapter, the application must allow the user to read data from a file, write the data to a file, add an

item, remove an item, and view the data. In addition, the program must allow the user to revise the

name as well as the price of an item. Furthermore, the program must allow the user to rearrange the

items on the list in the increasing order of the names or in the increasing order of the prices.

In building the application, we write the following classes:

• an object class named Merchandise whose objects represent a merchandise item,

• an object class named PriceComparison whose objects perform price comparison between

Merchandise objects,

• an object class named MerchandiseCollection whose objects are collections of

Merchandise objects, and

• an application class named MerchandiseMain that provides the method main.

18.1.2 The Class for Merchandise Item

Merchandise objects are compared with respect to their names using the compareTo method of

Merchandise. Here is the initial part of the code for Merchandise. The class header (Line 1) has

the implements Comparable<Merchandise> declaration. We plan to use a private String
variable, name, and a private int variable, price, as the instance variables. The two variables

represent the name and the price of a merchandise item. The constructor receives the values for these

two variables, and then stores them in the instance variables. Since the parameters have the same

names as the instance variables, this. is used for distinguishing between the instance variables and

the parameters (Lines 8 and 9).

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_18

457© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_18

458 18 Generic Class Parameters and the Java Collection Framework

1 public class Merchandise implements Comparable < Merchandise >

2 {

3 // instance variables

4 private String name;

5 private int price;

6 // constructor

7 public Merchandise(String name , int price)

8 {

9 this.name = name;

10 this.price = price;

11 }

Listing 18.1 The class Merchandise (part 1). The class header, the instance variables, and the constructor

Next we show the getters, the setters, and the method compareTo. The method compareTo
relies on the method compareTo of the class String.

12 // getters

13 public String getName ()

14 {

15 return name;

16 }

17 public int getPrice ()

18 {

19 return price;

20 }

21 // setters

22 public void setName(String name)

23 {

24 this.name = name;

25 }

26 public void setPrice(int price)

27 {

28 this.price = price;

29 }

30 // for implementing Comaparable

31 public int compareTo(Merchandise o)

32 {

33 return name.compareTo(o.name);

34 }

35 }

Listing 18.2 The class Merchandise (part 2). The getters, the setters, and the comparator

18.1.3 The Comparator Class

PriceComparator is an object class that implements an interface Comparator. Comparator
is similar to Comparable, and is defined with a generic type parameter, say <T>. However,

unlike Comparable, Comparator must be imported, and it is in the java.util package.

18.1 ArrayList 459

Comparator has only one abstract method, compare. The method compare receives two data of

type T and returns an int value. This is not from the actual source code for Comparator, but after

removing the comments, we can imagine that the source code is like this one:

1 public interface Comparator <T>

2 {

3 public int compare(T o1, T o2);

4 }

The generic type parameter is highly complex topic. We only see a small fraction of coding with

generic type parameters in this book. We mention the following general rules about generic type

parameters:

• Any single capital letter can be used as a generic type parameter, so there are only 26 possibilities

for a type parameter.

• Classes and interfaces that require multiple type parameters can be defined.

• To declare a class or an interface with multiple generic type parameters, assign distinct letters to

the generic types, use a single pair of <> where the parameters appear together with commas in

between (for instance, <T,K,E>).

Here is a source code for PriceComparator. The first line of the code is the required import
statement. In Line 2, the generic type parameter appearing in Comparator is substituted with

the actual data type, Merchandise. The method compare receives two Merchandise objects,

and compares their prices by simply subtracting one price value from the other. Like the method

compareTo of Comparable, the method compare is expected to report the result of comparison

by the sign of the return value. In other words, the return value is strictly positive if o1 is greater than

o2, strictly negative if o1 is smaller than o2, and 0 if o1 is equal to o2.

1 import java.util.Comparator;

2 public class PriceComparator implements Comparator < Merchandise >

3 {

4 public int compare(Merchandise o1, Merchandise o2)

5 {

6 return o1.getPrice () - o2.getPrice ();

7 }

8 }

Listing 18.3 The class PriceComparator

The code for PriceComparator does not have an instance variable. There is no need to define

a constructor, but still a constructor can be called with new PriceComparator().

18.1.4 The Collection of Merchandise Items That Uses ArrayList

18.1.4.1 ArrayList
To write the class MerchandiseCollection, we use the class ArrayList, from the

java.util package. ArrayList is a class for maintaining a list of objects. ArrayList
improves upon the arrays with capacity and size from Sect. 13.6. Following are some features of

ArrayList:

460 18 Generic Class Parameters and the Java Collection Framework

• The elements in the list are given unique indexes starting from 0, and can be retrieved or changed

with their indexes.

• It is possible to insert an element at a specific position, while preserving the order of appearance of

other elements.

• For removing an element at a specific index, ArrayList shifts all the elements appearing after

the index. The order of appearance of the remaining elements is thus preserved.

• There is no explicit limit on the number of elements to store the list.

• The class implements an interface List. List is in the package java.util. Because

ArrayList implements List, for-each loops can be used to iterate over the elements in an

ArrayList.

• An ArrayList object takes a generic type parameter with it. An instantiation of an ArrayList
requires the specification of the type of the elements stored in the list.

If T is an object type, the declaration of an ArrayList data type, list, for storing elements of type

T, and its instantiation will be as follows:

1 ArrayList <T> list;

2 list = new ArrayList <T>();

ArrayList offers many instance methods, here is a short list:

• int size(): The method returns the number of elements currently stored in the list.

• boolean add(T e): The method attempts to add the element e at the end of the list, and

then returns whether or not the operation was successful.

• boolean add(int index, T e): The method attempts to inserts the element e at the

position index in the list, and then returns whether or not the operation was successful.

• void clear(): The method removes all the elements from the list.

• T get(int index): The method returns the element at position index.

• T remove(int index): The method attempts to remove the element at position index,

and then returns the element removed.

• T set(int index, T e): The method replaces the element at position index with e,

and then returns the element that was stored at index prior to the replacement.

18.1.4.2 The Instance Variables, the “Getters”, and the “Setters”

Here is a source code for MerchandiseCollection. The class has two imports, java.util.*
and java.io.*. There is only one instance variable, theList. The type of the instance

variable is ArrayList<Merchandise>. The variable is instantiated with new ArrayList
<Merchandise>(). The instantiation produces an object of ArrayList<Merchandise> with

no elements being stored in the list.

18.1 ArrayList 461

1 import java.io.*;

2 import java.util .*;

3 public class MerchandiseCollection

4 {

5 // ---- instance variable

6 private ArrayList <Merchandise > theList;

7 // ---- constructor

8 public MerchandiseCollection ()

9 {

10 theList = new ArrayList <Merchandise >();

11 }

Listing 18.4 The class MerchandiseCollection (part 1). The class header, the instance variable, and the
constructor

The “getters” and “setters” appear next. The method size() (Lines 13) returns theList.size()
(Line 15). The returned value is the number of merchandise items stored in the list. The

method getName(int i) (Lines 17) obtains the element at index i and returns its

names. This is accomplished by theList.get(i).getName() (Line 19). The method

getPrice(int i) (Lines 21) obtains the element at index i and returns its price. This is

accomplished by theList.get(i).getPrice() (Line 23).

12 // ---- getters

13 public int size()

14 {

15 return theList.size();

16 }

17 public String getName(int i)

18 {

19 return theList.get(i).getName ();

20 }

21 public int getPrice(int i)

22 {

23 return theList.get(i).getPrice ();

24 }

Listing 18.5 The class MerchandiseCollection (part 2). The “getters”

The method add(String name, int price) (Line 26) adds a merchandise item com-

posed of name and price at the end of the list (Line 28). The method remove(int i) (Line

30) removes the element at i (Line 32). The method set(int i, String name, int price)
(Line 34) replaces the name and price of the element at i with the values given as parameters (Lines

36 and 37).

462 18 Generic Class Parameters and the Java Collection Framework

25 // ---- setters

26 public void add(String name , int price)

27 {

28 theList.add(new Merchandise(name , price));

29 }

30 public void remove(int i)

31 {

32 theList.remove(i);

33 }

34 public void set(int i, String name , int price)

35 {

36 theList.get(i).setName(name);

37 theList.get(i).setPrice(price);

38 }

Listing 18.6 The class MerchandiseCollection (part 3). The “setters”

18.1.4.3 The File Read/Write

The data format for a merchandise collection requires two lines per item, with the first line

representing the name and the second line representing the price. The name may contain the white

space character. Since the length of an ArrayList is not fixed, the data file does not need to provide

information about how many elements are in the list.

Reading the data from a file is accomplished using the method read. The method read receives

a file path as its formal parameter (Line 40). The method opens a Scanner to read from the File
object instantiated with the file path (Line 42). So long as there is a token remaining in the file (Line

43), the method reads one line as the name, and then another line as the price. The second line is

converted to an int value using Integer.parseInt. These two values are passed to the method

add. This sequence of actions is compressed into a single statement appearing in Line 45. The method

has a throws FileNotFoundException declaration because the constructor of a Scanner
may throw an exception of the type. After reading is completed, the Scanner is closed using the

method close (Line 47).

Writing the data to a file is accomplished using the method write. The method receives a file path

as its parameter (Line 49). The method opens a PrintStream with the file specified in the formal

parameter (Line 51). Then, the method uses a for-each loop to iterate over the elements in the list.

The loop header for (Merchandise m : theList) (Line 52) implies that the elements

are retrieved in sequence from the list theList, the type of the elements is Merchandise, and

the element can be referred to by the variable m. For each element retrieved, the method writes two

lines into the file. The first line is the name and the second is the price. The printf in Line 54

accomplishes both using the format %s\n%d\n, where the first placeholder is for the name and the

second is for the price. After finishing to write the information of the elements, the method closes the

stream using the method close. This method also has a throws FileNotFoundException
declaration.

18.1.4.4 The Sorting Methods

The last part of MerchandiseCollection has two methods for rearranging the elements in the

list. In the case of arrays, sorting is accomplished using the method sort in the class Arrays.

In the case of ArrayList, the class that provides the functions for sorting is Collections.

The method sortByName (Lines 59–62) sorts the elements using the method compareTo that

is natively available in the class Merchandise.

18.1 ArrayList 463

39 // ---- read & write

40 public void read(String fileName) throws FileNotFoundException

41 {

42 Scanner sc = new Scanner(new File(fileName));

43 while (sc.hasNext ())

44 {

45 add(sc.nextLine (), Integer.parseInt(sc.nextLine ()));

46 }

47 sc.close();

48 }

49 public void write(String fileName) throws FileNotFoundException

50 {

51 PrintStream st = new PrintStream(new File(fileName));

52 for (Merchandise m : theList)

53 {

54 st.printf("%s\n%d\n", m.getName (), m.getPrice ());

55 }

56 st.close();

57 }

Listing 18.7 The class MerchandiseCollection (part 4). The methods read and write

The method sortByPrice (Lines 63–66) sorts the elements using the method compare
defined in the class PriceComparator. The method sort of Collections has a version

that receives the comparison method as an additional parameter. The accepted type for the

parameter is a Comparator<T> where T is the type of the elements in list. Since we

have written a class PriceComparator that implements Comparator<Merchandise>,

an object of PriceComparator can be used as the method for comparison. Line 65 has

new PriceComparator() as the second parameter, and the object returned by the constructor is

passed to the method sort.

58 // --- sorting

59 public void sortByName ()

60 {

61 Collections.sort(theList);

62 }

63 public void sortByPrice ()

64 {

65 Collections.sort(theList , new PriceComparator ());

66 }

67 }

Listing 18.8 The class MerchandiseCollection (part 5). The methods sortByName and sortByPrice

18.1.5 The Main Class

18.1.5.1 The Method for Printing Prompt

In MerchandiseMain, the user is presented with as many as 11 choices for an action to be

performed, including one to terminate the program. The class has a method, printPrompt, to print

464 18 Generic Class Parameters and the Java Collection Framework

these choices neatly. The choices are presented in a table-like manner with three choices appearing in

one line, as shown next:

1 ----Choose action to be performed----
2 1. add an item 2. remove an item 3. view list
3 4. sort by name 5. sort by price 6. change item
4 7. change name 8. change price 9. read from a file
5 10. write to a file 0. quit

The source code of printPrompt appears next.

1 import java.util .*;

2 import java.io.*;

3 public class MerchandiseMain

4 {

5 public static void printPrompt ()

6 {

7 System.out.println("----Choose action to be performed ----");

8 System.out.printf(

9 " %-20s%-20s%-20s\n %-20s%-20s%-20s\n"

10 + " %-20s%-20s%-20s\n %-20s%-20s\n",

11 "1. add an item", "2. remove an item", "3. view list ",

12 "4. sort by name", "5. sort by price", "6. change item",

13 "7. change name", "8. change price", "9. read from a file",

14 "10. write to a file", "0. quit");

15 }

16

Listing 18.9 The class MerchandiseMain (part 1). The method printPrompt

18.1.5.2 The Method main
The method main of MerchandiseMain uses a MerchandiseCollection variable, data,

to record the collection (Line 19), a Scanner variable, keyboard, to receive input from the

keyboard (Line 20), a String variable, name, to store the name information (Line 21), and three

int variables, choice, price, and pos, for storing the index to the action to be performed, the

price value, and the position of a merchandise item in the list (Line 22). The method is a large while-

loop whose continuation condition is choice != 0 (Line 23). The initial value of choice is 1, so

the loop-body is executed at least once.

The loop-body is placed in a try-catch. The try-part conducts all the necessary action. The

catch-part is for recovering from some anticipated run-time errors. The choice of action is received

after presenting the prompt (Lines 26–28).

18.1.5.3 Adding and Removing

After receiving the number indicating the action to be performed, the program uses a switch-statement

to direct the flow to the required method. The choice 1 is for adding an item (Line 31). The program

receives the name (Lines 32 and 33) and the price (Lines 34 and 35), and then calls the method add
of the MerchandiseCollection variable data with the name and price received (Line 36). The

program uses nextLine exclusively to receive input from the user. To interpret the input from the

user as an integer, the program uses Integer.parseInt. If the user enters a String data that

18.1 ArrayList 465

17 public static void main(String [] args)

18 {

19 MerchandiseCollection data = new MerchandiseCollection ();

20 Scanner keyboard = new Scanner(System.in);

21 String name;

22 int choice = 1, price , pos;

23 while (choice != 0)

24 {

25 try {

26 printPrompt ();

27 System.out.print("Enter your choice: ");

28 choice = Integer.parseInt(keyboard.nextLine ());

Listing 18.10 The class MerchandiseMain (part 2). The start of the method main, including the variable
declarations, the start of the loop, and the try-clause

cannot be converted to an integer, a run-time error of NumberFormatException occurs. This

error is handled by a catch-clause appearing in Lines 91 and 92. NumberFormatException may

occur in other places of the code, and all of them are handled by this catch-clause. For removing
an item (Line 38), the program receives the position of the item to be removed (Lines 39 and 40), and

then calls the method remove (Line 41).

29 switch (choice)

30 {

31 case 1: // add

32 System.out.print("Enter the name: ");

33 name = keyboard.nextLine ();

34 System.out.print("Enter the price: ");

35 price = Integer.parseInt(keyboard.nextLine ());

36 data.add(name , price);

37 break;

38 case 2: // remove

39 System.out.print("Enter the position: ");

40 pos = Integer.parseInt(keyboard.nextLine ());

41 data.remove(pos);

42 break;

Listing 18.11 The class MerchandiseMain (part 3). The part that handles adding and removing an item

18.1.5.4 Viewing and Sorting

Choices 3, 4, and 5 are for viewing and sorting the elements. The program presents the data on the

screen after sorting, so the choice 3 can be thought of as a special case where sorting is not performed

at all. The three cases have the same entry points (Lines 43–45) and the following series of actions is

performed:

• If the action is sorting by the name (i.e., the choice is 4), call sortByName (Lines 46–49).

• If the action is sorting by the price (i.e., the choice is 5), call sortByPrice (Lines 50–53).

• If the action is viewing the data (i.e., the choice is 3), call neither.

466 18 Generic Class Parameters and the Java Collection Framework

After sorting the elements, the program prints the items on the list using a for-loop, where the number

of items in the list is obtained using the method size (Line 54). For each item, the program prints

the index, the name, and the price (Lines 56–58).

43 case 3: // view

44 case 4: // sort by name

45 case 5: // sort by price

46 if (choice == 4)

47 {

48 data.sortByName ();

49 }

50 else if (choice == 5)

51 {

52 data.sortByPrice ();

53 }

54 for (pos = 0; pos < data.size(); pos ++)

55 {

56 System.out.printf("%3d: %s : $%,d\n", pos ,

57 data.getName(pos), data.getPrice(pos));

58 }

59 break;

Listing 18.12 The class MerchandiseMain (part 4). The part that handles sorting and viewing the data

18.1.5.5 Making Changes

The choices 6, 7, and 8 are for making changes on an element in the list. The three cases have the

same entry points (Lines 60–62). If the choice is 6, the change is for both the name and the price. If

the choice is 7, the change is for the name only. If the choice is 8, the change is for the price only. The

program first obtains the index to the item to be updated, and stores it in the variable pos (Lines 63

and 64). To handle the three possibilities in one place, the program obtains the present values of the

name and price of the item at pos, and stores them in name and price (Lines 65 and 66). The idea

is that the item at pos will be updated with the values of name and price, but prior to the update,

the user will be asked to provide new values for the two variables. Which of the two variables the user

can update depends on the choice of the action.

• If the choice is not 8 (i.e., the choice is either 6 or 7), the new name is obtained and stored in name
(Lines 68–72).

• If the choice is not 7 (i.e., the choice is either 6 or 8), the new price is obtained and stored in price
(Lines 73–77).

Finally, the program stores the values of name and price by calling the method set (Line 78).

18.1 ArrayList 467

60 case 6: // change

61 case 7: // change name

62 case 8: // change price

63 System.out.print("Enter the position: ");

64 pos = Integer.parseInt(keyboard.nextLine ());

65 name = data.getName(pos);

66 price = data.getPrice(pos);

67 System.out.printf("The item is: %s : $%,d\n", name , price);

68 if (choice != 8)

69 {

70 System.out.print("Enter the new name: ");

71 name = keyboard.nextLine ();

72 }

73 if (choice != 7)

74 {

75 System.out.print("Enter the new price: ");

76 price = Integer.parseInt(keyboard.nextLine ());

77 }

78 data.set(pos , name , price);

79 break;

Listing 18.13 The class MerchandiseMain (part 5). The part that is responsible for changing the name and the
price

18.1.5.6 File Read/Write

If the choice is 9, the program receives a file path from the user, and then calls the method read
(Lines 80–83). If the choice is 10, the program receives a file path from the user and calls the method

write (Lines 84–87). In the case where the choice is 0, the program prints a message to inform that

the program will terminate (Lines 88 and 89).

80 case 9: // read from a file

81 System.out.print("Enter an input file path: ");

82 data.read(keyboard.nextLine ());

83 break;

84 case 10: // write to a file

85 System.out.print("Enter an output file path: ");

86 data.write(keyboard.nextLine ());

87 break;

88 case 0: // quit

89 System.out.println("... Terminating");

90 }

Listing 18.14 The class MerchandiseMain (part 6). The part responsible for reading from a data file and writing
to a data file

There are two catch-clauses. One is for catching a run-time error that occurs when the

user enters a line that cannot be interpreted as an integer, and the other is for catching

FileNotFoundException (Lines 93 and 94). The program prints an error message stating

the error, and then returns to the loop.

Here is an example of using the program. Consider maintaining a list of real estate properties, with

the address and the price. Suppose a text file, propertyData.txt, has seven properties in the

format readable by the program, as follows:

468 18 Generic Class Parameters and the Java Collection Framework

91 } catch (NumberFormatException e) {

92 System.out.println("Incorrect input !!!");

93 } catch (FileNotFoundException e) {

94 System.out.println("No such file found |!!");

95 }

96 }

97 }

98 }

Listing 18.15 The class MerchandiseMain (part 7). The catch clauses

1 10 Wilkinson Road
2 343450
3 11 Wilkinson Drive
4 766000
5 34 Coral Way
6 807500
7 7900 Plainview Drive
8 195500
9 7000 Flamingo Drive

10 790000
11 1 Presidential Place
12 1535000
13 2 Marigold Terrace
14 615000

Starting with this file, we can manipulate the data as follows:

1 ----Choose action to be performed----
2 1. add an item 2. remove an item 3. view list
3 4. sort by name 5. sort by price 6. change item
4 7. change name 8. change price 9. read from a file
5 10. write to a file 0. quit
6 Enter your choice: 9
7 Enter an input file path: propertyData.txt
8 ----Choose action to be performed----
9 1. add an item 2. remove an item 3. view list

10 4. sort by name 5. sort by price 6. change item
11 7. change name 8. change price 9. read from a file
12 10. write to a file 0. quit
13 Enter your choice: 5
14 0: 7900 Plainview Drive : $195,500
15 1: 10 Wilkinson Road : $343,450
16 2: 2 Marigold Terrace : $615,000
17 3: 11 Wilkinson Drive : $766,000
18 4: 7000 Flamingo Drive : $790,000
19 5: 34 Coral Way : $807,500
20 6: 1 Presidential Place : $1,535,000
21 ----Choose action to be performed----
22 1. add an item 2. remove an item 3. view list
23 4. sort by name 5. sort by price 6. change item
24 7. change name 8. change price 9. read from a file
25 10. write to a file 0. quit
26 Enter your choice: 1
27 Enter the name: 71 Canary Drive
28 Enter the price: 199700

18.1 ArrayList 469

29 ----Choose action to be performed----
30 1. add an item 2. remove an item 3. view list
31 4. sort by name 5. sort by price 6. change item
32 7. change name 8. change price 9. read from a file
33 10. write to a file 0. quit
34 Enter your choice: 1
35 Enter the name: 2 Atkins Road
36 Enter the price: 280000
37 ----Choose action to be performed----
38 1. add an item 2. remove an item 3. view list
39 4. sort by name 5. sort by price 6. change item
40 7. change name 8. change price 9. read from a file
41 10. write to a file 0. quit
42 Enter your choice: 4
43 0: 1 Presidential Place : $1,535,000
44 1: 10 Wilkinson Road : $343,450
45 2: 11 Wilkinson Drive : $766,000
46 3: 2 Atkins Road : $280,000
47 4: 2 Marigold Terrace : $615,000
48 5: 34 Coral Way : $807,500
49 6: 7000 Flamingo Drive : $790,000
50 7: 71 Canary Drive : $199,700
51 8: 7900 Plainview Drive : $195,500
52 ----Choose action to be performed----
53 1. add an item 2. remove an item 3. view list
54 4. sort by name 5. sort by price 6. change item
55 7. change name 8. change price 9. read from a file
56 10. write to a file 0. quit
57 Enter your choice: 2
58 Enter the position: 2
59 ----Choose action to be performed----
60 1. add an item 2. remove an item 3. view list
61 4. sort by name 5. sort by price 6. change item
62 7. change name 8. change price 9. read from a file
63 10. write to a file 0. quit
64 Enter your choice: 3
65 0: 1 Presidential Place : $1,535,000
66 1: 10 Wilkinson Road : $343,450
67 2: 2 Atkins Road : $280,000
68 3: 2 Marigold Terrace : $615,000
69 4: 34 Coral Way : $807,500
70 5: 7000 Flamingo Drive : $790,000
71 6: 71 Canary Drive : $199,700
72 7: 7900 Plainview Drive : $195,500
73 ----Choose action to be performed----
74 1. add an item 2. remove an item 3. view list
75 4. sort by name 5. sort by price 6. change item
76 7. change name 8. change price 9. read from a file
77 10. write to a file 0. quit

470 18 Generic Class Parameters and the Java Collection Framework

78 Enter your choice: 8

79 Enter the position: 7

80 The item is: 7900 Plainview Drive : $195 ,500

81 Enter the new price: 205000

82 ----Choose action to be performed ----

83 1. add an item 2. remove an item 3. view list

84 4. sort by name 5. sort by price 6. change item

85 7. change name 8. change price 9. read from a file

86 10. write to a file 0. quit

87 Enter your choice: 5

88 0: 71 Canary Drive : $199 ,700

89 1: 7900 Plainview Drive : $205 ,000

90 2: 2 Atkins Road : $280 ,000

91 3: 10 Wilkinson Road : $343 ,450

92 4: 2 Marigold Terrace : $615 ,000

93 5: 7000 Flamingo Drive : $790 ,000

94 6: 34 Coral Way : $807 ,500

95 7: 1 Presidential Place : $1 ,535 ,000

96 ----Choose action to be performed ----

97 1. add an item 2. remove an item 3. view list

98 4. sort by name 5. sort by price 6. change item

99 7. change name 8. change price 9. read from a file

100 10. write to a file 0. quit

101 Enter your choice: 10

102 Enter an output file path: propertyData2.txt

103 ----Choose action to be performed ----

104 1. add an item 2. remove an item 3. view list

105 4. sort by name 5. sort by price 6. change item

106 7. change name 8. change price 9. read from a file

107 10. write to a file 0. quit

108 Enter your choice: 0

109 ... Terminating

The execution example has resulted in the following revised data file, propertyData2.txt:

1 71 Canary Drive
2 199700
3 7900 Plainview Drive
4 205000
5 2 Atkins Road
6 280000
7 10 Wilkinson Road
8 343450
9 2 Marigold Terrace

10 615000
11 7000 Flamingo Drive
12 790000
13 34 Coral Way
14 807500
15 1 Presidential Place
16 1535000

18.2 The Dynamic Maintenance of the Largest K Values 471

18.2 The Dynamic Maintenance of the Largest K Values

We often encounter a problem of writing a code for selecting, from an indefinite number of elements,

a fixed number of, say k, best ones. A straightforward solution to this problem is to store all the

elements in a list, sort the list, and then select the k best ones. However, if the total number of elements

considered is much larger than k, this approach may be slightly wasteful of memory. An alternative to

this approach is to use a shorter list, whose length will be no more than k + 1. At the start the list has

0 elements. Each element is added to the list, and the elements in the list are sorted. After that, if the

list has k + 1 elements, the “worst” of the k + 1 elements is removed, thereby bringing the length of

the list back to k. When all the elements have been processed, the list consists of the k best ones.

Using ArrayList, this idea can be easily implemented. Let E be a generic data type that

represents the data type of the elements to be processed, such that E is comparable. We use an

ArrayList<E> variable, theList, to maintain the best elements that have seen so far. We

initialize theList with new ArrayList<E>(). To process a new element, say o, we add o
to theList, use Collections.sort to sort the list, and if theList.size() is equal to k +

1, remove the candidate at position 0, because sort sorts the element in increasing order. After all

the candidates have been processed, we may need to access the best ones. The access is provided by

the method get(int i) that returns the element at rank i in the list.

Here is the class TopK written based upon the above discussion. The syntax for stating that E has

compareTo is <E extends Comparable<E». Since E is the parameter associated with TopK,

the overall class declaration becomes the one in Line 2:

public class TopK<E extends Comparable<E»

The class has two instance variables (Lines 4 and 5). One is an ArrayList<E> named theList
and the other is an int variable, k. The variable k specifies the number of elements to keep. The

constructor receives the value for k, stores it in this.k (Line 9), and instantiates the list (Line 10).

1 import java.util .*;

2 public class TopK < E extends Comparable < E > >

3 {

4 private ArrayList <E> theList;

5 private int k;

6

7 public TopK(int k)

8 {

9 this.k = k;

10 theList = new ArrayList <E>();

11 }

Listing 18.16 The class TopK (part 1)

The method get receives an int value named i as the parameter (Line 12), and returns the

element at rank i. This is accomplished by returning the element obtained through get(k - i)
of the list because the elements appear in the decreasing order of their ranks (Line 14). The method

add receives an element o of type E (Line 16), adds it to theList using the method add of

ArrayList, sorts the list using Collections.sort, and then, if the length of theList is equal

to k + 1 (Line 20), removes the element at index 0 using the method remove of ArrayList (Line

22).

472 18 Generic Class Parameters and the Java Collection Framework

12 public E get(int i)

13 {

14 return theList.get(k - i);

15 }

16 public void add(E o)

17 {

18 theList.add(o);

19 Collections.sort(theList);

20 if (theList.size() == k + 1)

21 {

22 theList.remove(0);

23 }

24 }

25 }

Listing 18.17 The class TopK (part 2)

Here is a source code for testing the class TopK. The program instantiates a TopK<Integer>
object top with the value of k set to 10 (Line 6). The program then adds integers 1, . . . , 10,000

one after another in top (Lines 7–10), and then retrieves the recorded top ten elements (Line 11–

14). Since the elements appear in increasing order. The program generates ranks from 1 to 10 with a

variable named i (Line 11), and prints the element located at rank i (Line 13).

1 public class TopKTest

2 {

3 public static void main(String [] arg)

4 {

5 System.out.println("Test using integers 1..10000");

6 TopK <Integer > top = new TopK <Integer >(10);

7 for (int i = 1; i <= 10000; i ++)

8 {

9 top.add(i);

10 }

11 for (int i = 1; i <= 10; i ++)

12 {

13 System.out.printf("%2d: %d\n", i, top.get(i));

14 }

Listing 18.18 The class TopKTest (part 1). Top 10 of 1, . . . , 10,000

The program then repeats the same action, this time with a 10,000 random real number with values

0 and 1,000,000 (Lines 17–20). The instantiation (Line 16) uses new TopK<Double>(10).

18.3 The Java Collection Framework 473

15 System.out.println("Test using random double");

16 TopK <Double > newtop = new TopK <Double >(10);

17 for (int i = 1; i <= 10000; i ++)

18 {

19 newtop.add(Math.random () * 1000000);

20 }

21 for (int i = 1; i <= 10; i ++)

22 {

23 System.out.printf("%2d: %f\n", i, newtop.get(i));

24 }

25 }

26 }

Listing 18.19 The class TopKTest (part 2). Testing with random real numbers

Here is an execution example of the code. In the first test, the top ten numbers are 10,000, . . . ,

9991 and the program correctly identifies them. In the second test, the top ten numbers are expected

to be close to the upper bound, 1,000,000. In the example, the top ten numbers are indeed greater than

999,000.

1 Test using integers 1..10000
2 1: 10000
3 2: 9999
4 3: 9998
5 4: 9997
6 5: 9996
7 6: 9995
8 7: 9994
9 8: 9993

10 9: 9992
11 10: 9991
12 Test using random double
13 1: 999990.863047
14 2: 999867.865257
15 3: 999831.136887
16 4: 999685.778237
17 5: 999663.635342
18 6: 999629.397141
19 7: 999591.778661
20 8: 999538.840688
21 9: 999424.382109
22 10: 999248.272207

18.3 The Java Collection Framework

18.3.1 The Framework

The List and its implementation ArrayList belong to a large group of interfaces, abstract

classes, and concrete classes, called the Java Collection Framework. The Java Collection Framework

provides various tools for dynamically maintaining a collection of data through such actions as

adding, removing, and searching. Some interfaces and classes in the framework are shown in Fig. 18.1.

Like ArrayList, all interfaces and classes in the framework take a generic type parameter. In the

following description, we use E to refer to the generic type parameter.

474 18 Generic Class Parameters and the Java Collection Framework

Iterable

Collection

List Queue Set

Deque

LinkedList

ArrayList

PriorityQueue

ArrayDeque

Vector

Stack

SortedSet

LinkedHashSet

HashSet

TreeSet

Fig. 18.1 The Java Collection Framework. The squashed rectangles represent interfaces and the rectangles represent
classes. The arrows represent extensions and the round-head arrows represent implementations

An interface Iterable<E> is at the top of the hierarchy in the diagram. Iterable<E> defines

only one method, iterator. The method iterator returns an object of type Iterator<E>.

Iterator<E> is an interface that defines two abstract methods that enable iterative access to the

elements in some collection of data of type E. The two methods are hasNext and next. The method

hasNext returns a boolean value. The return value of hasNext is interpreted as the indication of

whether or not there is any element remaining in the iteration. The method next returns an object of

type <E> and is interpreted as the next element in the iteration. If a class implements Iterable<E>,

for-each loops are available. The two methods are reminiscent of the methods having the same

names in Scanner. Although the methods have the same names, Scanner does not implement

Iterable<String>.

In the diagram, an interface Collection<E> appears immediately under Iterable<E>.

Collection<E> is a collection of data of type E. The elements in the collection may not appear

sequentially. Here are some methods of Collection<E>.

• add(E o): This method attempts to add the data o of type E to the collection, and then returns

a boolean indicating whether or not the attempt was successful.

• clear(): This method empties the collection. The return type is void.

• contains(Object o): This method returns a boolean value representing whether or not

the collection contains an element matching o.

• isEmpty(): This method returns a boolean representing whether or not the collection is empty.

18.3 The Java Collection Framework 475

• remove(Object o): This method removes one occurrence of an object matching o. The

method returns a boolean representing whether or not such an element has been removed.

• size(): This method returns an int representing the number of elements in the collection.

The interfaces List<E>, Queue<E> (pronounced “cue” as in the “billiard cue”), Deque<E>
(pronounced “deck” as in the “deck of cards”), Set<E>, and SortedSet<E> extend

Collection<E>, and represent certain organizations of the elements in the collections.

• List<E> is a sequential list of data. Like arrays, List<E> assigns sequential indexes starting

from 0 are assigned to its elements. The elements are accessible with their indexes.

• Queue<E> is a sequential list of data, but only the element at one end can be examined or removed,

elements can be added only at the other end.

• Deque<E> is a sub-interface of Queue<E> and is a “double-ended” version of Queue<E>.

Addition, examination, and removal can be made at each end, but nowhere else in the collection.

• Set<E> is a set of data without duplication.

• SortedSet<E> is a sub-interface of Set<E>, where the elements are in order.

18.3.2 Some Classes from the Framework

ArrayList<E> we studied earlier in the chapter is a class that implements List<E>.

Here we explore two additional classes, LinkedList<E> and HashSet<E>, from the diagram.

The former implements List<E>, Queue<E>, and Deque<E>. The latter implements Set<E> and

SortedSet<E>. LinkedList<E> uses a chain of objects. Each object in the chain holds a value

of type E, a reference to its next object, and a reference to its previous object. The chain has two

ends, the “head” and the “tail”. The “previous” object of the “head” is null and the “next” object

of the “tail” is null. As in the case of ArrayList<E>, LinkedList<E> provides the methods

add(E o), get(int i), set(int i, E o), and remove(int i). In addition,

the class offers access to the “head” and the “tail” (see Fig. 18.2). Here are some methods available in

LinkedList<E> beyond those defined in List<E>.

• addFirst(E o) inserts o to the chain as its “head” element (the present “head”, if it exists,

will become the “next” element of the new “head”). The return type of this method is void.

• addLast(E o) inserts o to the chain as its “tail” element (the present “tail”, if it exists, will

become the ‘previous” element of the new “tail”). The return type of this method is void.

• getFirst() returns the “head” element of the chain, if it exists.

• getLast(E o) returns the “tail” element of the chain, if it exists.

• removeFirst() removes the “head” element of the chain, if it exists, and returns it.

• removeLast(E o) removes the “tail” element of the chain, it if exists, and returns it.

Because LinkedList<E> offers access to each end of the list, the function to be performed in

Deque<E> are already available in LinkedList<E>. The abstract methods of Queue<E> and of

Deque<E> are overridden in LinkedList<E> through adaptations of the above methods. Here are

some of such methods. For Queue<E>, we have the following:

476 18 Generic Class Parameters and the Java Collection Framework

X

next
previous

Y

next
previous

Z

next
previous

W

next
previous

head tail

Fig. 18.2 A LinkedList. X, Y, Z,and W are the data elements in the collection. next and previous present the
references to the “next” and “previous” elements

• offer(E o) adds the element o at the “head” of the queue, and returns a boolean
representing whether or not the attempt was successful.

• peek() returns, without removing, the element at the “head” of the queue. If the queue is empty,

the method returns null.

• poll() removes the element at the “head” of the queue and returns it. If the queue is empty, the

method returns null.

The methods for Deque<E> that are overridden in LinkedList<E> include the following:

• offerFirst(E o) adds the element o at the “head” of the queue, and returns a boolean
representing whether or not the element has been added.

• offerLast(E o) adds the element o at the “tail” of the queue and returns a boolean
representing whether or not the element has been added.

• peekFirst(E o) returns, without removing it, the “head” element of the queue.

• peekLast(E o) returns, without removing it, the “tail” element the queue.

• pollFirst(E o) removes and returns the “head” element of the queue.

• pollLast(E o) removes and returns the “tail” element of the queue.

HashSet<E> uses a structure called a hash table to record the elements in the collection. A hash

table is an array. Each element has an assigned index in the array. The assigned index is calculated

from a value given by a so-called hash function. The index of an element is the remainder of the

value of the hash function of the element when divided by the length of the array. Adding an element,

removing an element, and search for an element are carried out by examining the array at the assigned

index of the element. Since the assigned indexes are based upon the hash function, it may happen

that two elements to be stored in the hash-table have the same indexes. We call such a phenomenon a

collision. Collisions are usually resolved by allocating a list of E to each slot of the array, rather than

making each slot available for one element exclusively (see Fig. 18.3). Adding an element, removing

an element, and searching for an element are executed on the list at the index assigned to the element.

The order in which the elements appear in the HashSet<E> depends on the length of the hash table,

the hash function, and the mechanisms used for adding an element and removing an element on the

lists representing the slots of the hash table. HashSet<E> implements add(E o), clear(),

contains(Object o), remove(Object o), isEmpty(), and size().

18.3 The Java Collection Framework 477

Fig. 18.3 A hash table null

null

null

null

null
null
null

18.3.3 A Demonstration

We present a program that demonstrates how the interfaces List, Queue, and Set operate. List
and Queue are implemented with LinkedList and Set is implemented with HashSet. For the

type parameter, String is chosen.

The method main of the class calls three methods, listExperiment, queueExperiment,

and setExperiment (Lines 6–8). They demonstrate the use of List<String>, Queue
<String>, and Set<String>. The three methods have common tasks: (i) add the elements

from a String array constant SEQUENCE (appearing in Lines 11–13), (ii) remove some elements,

and then (iii) print the contents of the collection.

The task (iii) is accomplished by the method printInfo. The method printInfo receives

a Collection<String> data named c as its parameter (Line 15). The methods executes the

following:

• The method reports the size of c obtained by the method size of Collection<String>
(Line 18).

• The method reports the contents of c using the for-each loop (Lines 19–24).

• The method prints, for each element from SEQUENCE, whether or not the element appears in

the collection c. The method contains of Collection<String> is used for this purpose

(Lines 25–29).

The method listExperiment (Line 32) instantiates a LinkedList<String> object, and

then assigns the object to a List<String> variable named myList (Line 35). The method then

adds each element of SEQUENCE successively twice using the method add of List<String>
(Lines 36–40). Next, the method removes the element at position 3 (the position indexes start from 0)

three times successively (Lines 41–47). To remove an element, the method uses the method remove
of List<String> (Line 43). Since the method remove of List<String> returns the element

that has been removed, listExperiment reports the element returned after each removal (Line

44). Furthermore, immediately after each removal, using the method get of List<String>,

the method prints the element at index 3 (Lines 45 and 46). Next, listExperiment replaces

the element at position 3 with a new String literal, "jackie", using the method set of

List<String>, and reports the element at index 3 after the modification (Lines 48–51). Finally,

the method calls printInfo to print the information about myList (Line 52).

478 18 Generic Class Parameters and the Java Collection Framework

1 import java.util .*;

2 public class CollectionExperiment

3 {

4 public static void main(String [] args)

5 {

6 listExperiment ();

7 queueExperiment ();

8 setExperiment ();

9 }

10

11 public static final String [] SEQUENCE = new String []{

12 "suzie", "grace", "carol", "deborah", "janis"

13 };

14

15 public static void printInfo(Collection <String > c)

16 {

17 System.out.println ();

18 System.out.printf("The collection has %d elements\n", c.size());

19 System.out.print("The elements are:");

20 for (String w : c)

21 {

22 System.out.print(" " + w);

23 }

24 System.out.println ();

25 System.out.println("The results of membership tests are:");

26 for (String w : SEQUENCE)

27 {

28 System.out.printf("%20s:%s\n", w, c.contains(w));

29 }

30 }

31

Listing 18.20 The class CollectionExperiment (part 1). The method main, the array constant SEQUENCE,
and the method printfInfo

After the initial insertion of the elements, the contents of myList are expected to be:

"suzie", "suzie", "grace", "grace", "carol", "carol", "deborah",
"deborah","janis", "janis"

with the second occurrence of "grace" at position 3. Removing the element at position 3 three times

successively must turns this to:

"suzie", "suzie", "grace", "deborah", "deborah", "janis", "janis"

and changing the element at position 3 to "jackie" must change the contents to:

"suzie", "suzie", "grace", "jackie", "deborah", "janis", "janis"

The method queueExperiment (Line 54) instantiates a LinkedList<String> object,

and then assigns the object to a Queue<String> variable named myQueue (Line 58). The

method then adds each element of SEQUENCE successively twice using the method offer of

Queue<String> (Lines 59–63). Next, the method examines the head element using the method

peek of Queue<String> (Lines 66 and 67) and then removes the head element of myQueue
using the method poll of Queue<String> (Lines 68 and 69). The method repeats this action

three times. Finally, the method calls printInfo to print the information about myQueue
(Line 71).

18.3 The Java Collection Framework 479

32 public static void listExperiment ()

33 {

34 System.out.println("-----Linked List Demo -----");

35 List <String > myList = new LinkedList <String >();

36 for (String w : SEQUENCE)

37 {

38 myList.add(w);

39 myList.add(w);

40 }

41 for (int i = 1; i <= 3; i ++)

42 {

43 String y = myList.remove(3);

44 System.out.printf("Removed the element at 3 %s\n", y);

45 y = myList.get(3);

46 System.out.printf("The new element at 3 is %s\n", y);

47 }

48 myList.set(3, "jackie");

49 String z = myList.get(3);

50 System.out.println("Changed the element at 3 to \" jackie \"");

51 System.out.printf("The new element at 3 is %s\n", z);

52 printInfo(myList);

53 }

54

Listing 18.21 The class CollectionExperiment (part 2). The experiment with a List<String> data

55 public static void queueExperiment ()

56 {

57 System.out.println("-----Queue Demo -----");

58 Queue <String > myQueue = new LinkedList <String >();

59 for (String w : SEQUENCE)

60 {

61 myQueue.offer(w);

62 myQueue.offer(w);

63 }

64 for (int i = 1; i <= 3; i ++)

65 {

66 String y = myQueue.peek();

67 System.out.printf("The head is %s\n", y);

68 y = myQueue.poll();

69 System.out.printf("The head %s has been removed\n", y);

70 }

71 printInfo(myQueue);

72 }

73

Listing 18.22 The class CollectionExperiment (part 3). The experiment with a Queue<String> data

After the initial insertion of the elements, the contents of myQueue are expected to be:

"suzie", "suzie", "grace", "grace", "carol", "carol", "deborah",

Removing the head element three times in a row must turn this set to:

"grace", "carol", "carol", "deborah", "deborah", "janis", "janis"

480 18 Generic Class Parameters and the Java Collection Framework

The method setExperiment (Line 74) instantiates a HashSet<String> object, and then

assigns the object to a Set<String> variable named myQueue (Line 77). The method then adds

each element of SEQUENCE successively twice using the method add of Set<String> (Lines 78–

82). Next, the method removes "suzie" using the method remove and Set<String> (Lines 83

and 84). Finally, the method calls printInfo to generate a report about mySet (Line 85).

74 public static void setExperiment ()

75 {

76 System.out.println("-----Set Demo -----");

77 Set <String > mySet = new HashSet <String >();

78 for (String w : SEQUENCE)

79 {

80 mySet.add(w);

81 mySet.add(w);

82 }

83 mySet.remove("suzie");

84 System.out.printf("Removed %s\n", "suzie");

85 printInfo(mySet);

86 }

87 }

Listing 18.23 The class CollectionExperiment (part 4). The experiment with a Set<String> data

After the initial insertion of the elements, the contents of the list are expected to be the set

consisting of:

"suzie", "grace", "carol", "deborah", "janis"

Removing "suzie" must turn this set to:

"grace", "carol", "deborah", "janis"

Here is the result of executing the program.

1 -----Linked List Demo -----

2 Removed the element at 3 grace

3 The new element at 3 is carol

4 Removed the element at 3 carol

5 The new element at 3 is carol

6 Removed the element at 3 carol

7 The new element at 3 is deborah

8 Changed the element at 3 to "jackie"

9 The new element at 3 is jackie

10

11 The collection has 7 elements

12 The elements are: suzie suzie grace jackie deborah janis janis

13 The results of membership tests are:

14 suzie:true

15 grace:true

16 carol:false

17 deborah:true

18 janis:true

Summary 481

19 -----Queue Demo -----

20 The head is suzie

21 The head suzie has been removed

22 The head is suzie

23 The head suzie has been removed

24 The head is grace

25 The head grace has been removed

26

27 The collection has 7 elements

28 The elements are: grace carol carol deborah deborah janis janis

29 The results of membership tests are:

30 suzie:false

31 grace:true

32 carol:true

33 deborah:true

34 janis:true

35 -----Set Demo -----

36 Removed suzie

37

38 The collection has 4 elements

39 The elements are: carol janis grace deborah

40 The results of membership tests are:

41 suzie:false

42 grace:true

43 carol:true

44 deborah:true

45 janis:true

Note that the order in which the elements are retrieved from the set is different from the order in

which the elements are added to the set.

Summary

A generic type parameter is a parameter for an object type.

A generic type parameter is represented with an upper case letter inside a pair of “greater than” and

“less than” symbols, < >.

Comparable<E> is an interface with one abstract method compareTo.

Comparator<E> is an interface that defines an abstract method compare that compares two

items of type E.

Iterable<E> is an interface with one abstract method iterator that returns a data of type

Iterator<E>.

Iterator<E> is an interface with two abstract methods hasNext and next.

For-each loops can be applied to an object of a class implementing Iterable<E>.

ArrayList<E> is a class that builds a list of an indefinite length.

The Java Collection Framework is a large body of interfaces and classes. The framework provides

ways to maintain dynamic collections of data. Major units in the framework include interfaces

Iterable<E>, Iterator<E>, Collection<E>, List<E>, Queue<E>, Dequeue<E>,

Set<E>, and SortedSet<E> and classes ArrayList<E>, LinkedList<E>, and

HashSet<E>.

482 18 Generic Class Parameters and the Java Collection Framework

Exercises

1. A class for a bottom K list The class TopK was designed to maintain the largest k elements in a

sequence of an indefinite number of elements of some type E, where E is a class parameter, where

E extends Comparable<E>. Write a class, BottomK, for maintaining the smallest k elements

instead.

2. A class for a pair of values Write a class, Pair, that takes two class parameters, K and E, where

K extends Comparable<K>. An object of the class has a pair of instance variables, one being of

type K and the other being of type E. A constructor for Pair<K,E> receives values for the two

variables and stores them in the instance variables. The class has a “getter” for each of the two

variables, getOne and getTwo. The class is also expected to be comparable with respect to the

first instance variable. The header for the class is:

1 public class Pair < E extends Comparable <E>, K> implements

2 Comparable < Pair < E,K > >

3. A Collatz Conjecture competition Recall that Collatz Conjecture states that every positive

integer can be converted to 1 with successive applications of the following transformation rule:

if the number is even, divide it by 2; otherwise, multiply it by 3 and then add 1. Write a program,

CollatzCompetition, that receives three input integers, say num, max, and k, from the user,

generates num random integers between 1 and max, and among the random numbers generated,

finds which k numbers require the most transformation steps before becoming 1. The minimum

possible value for k is 3. If the user enters a number less than 3, the number must be adjusted to 3.

Here is a possible output of the program:

1 Testing the Collatz Conjecture
2 Enter #Trials, Max, K: 10000 1000000 10
3 rank=10 length=436 number=775035
4 rank=9 length=369 number=900093
5 rank=8 length=361 number=772009
6 rank=7 length=361 number=781862
7 rank=6 length=357 number=293199
8 rank=5 length=356 number=815273
9 rank=4 length=348 number=747070

10 rank=3 length=344 number=270847
11 rank=2 length=344 number=270222
12 rank=1 length=343 number=789302

In keeping the top 10, use the class Pair<Integer,Integer> written in the previous

question, where the first element of the pair is the number of steps that the first number had to

undergo before becoming 1.

4. The set of unique tokens Write a program, UniqueTokens, that produces an ordered list of

tokens that appear in a file, where the path to the file is given by args[0]. The program

must use a Set<String> variable instantiated with HashSet<String> to record the tokens.

After opening the file, the program scans all the tokens in the file, and adds the tokens to the

set using the method set of the class Set<String>. After finishing collecting the tokens, the

program generates an ArrayList<String> consisting of all the tokens appearing in the set.

To accomplish this, the program retrieves all the tokens in the set using a for-each loop, and adds

it to the list. After building the list, the program sorts it using Collections.sort. Finally, the

program prints the tokens, say three tokens per line, to produce the output.

Exercises 483

Here is the output generated by supplying the source code of TopK.java that was presented

in this textbook:

1 ());
2 + 0 1
3 = == >
4 ArrayList<E> ArrayList<E>(); Collections.sort(
5 Comparable< E TopK(
6 TopK< add(class
7 extends get(i
8 if import int
9 java.util.*; k k;

10 new o private
11 public return theList
12 theList.add(theList.get(theList.remove(
13 theList.size() theList; this.k
14 void { }

To produce this output, the program uses printf with 22 character spaces allocated for each

token.

5. The set of unique tokens, keeping only the alphabet, the apostrophe, and the dash As a

variation of the previous question, write a program, UniqueTokensAlt, that generates a sorted

list of the tokens appearing in a given file, where all the characters other than the letters of the

alphabet, the apostrophe, and the dash are converted to the whitespace during the process of reading

tokens, and each uppercase letter is converted to lowercase.

To accomplish the task, the program reads the input file line by line, transforms the line to

a new String that contains only the letters, the apostrophe, the dash, and the whitespace, and

then reads the tokens from the newline using a Scanner. The transformation should be done

as follows: convert the line to all lowercase, instantiate a StringBuilder object, append the

characters of the lowercase version after replacing each character that is not a lowercase letter, an

apostrophe, or a dash to a whitespace. For example,

System.out.printf("\%s\n", "abc");

must be converted to:

system out printf s n abc

The tokens obtained from this String are "system", "out", "printf", "s", "n", and

"abc". Here is the output of the program with the source code of TopK.java as the input.

1 add arraylist class
2 collections comparable e
3 extends get i
4 if import int
5 java k new
6 o private public
7 remove return size
8 sort thelist this
9 topk util void

6. A comparator for File Write a class, CompareFile, that implements Comparator
<File>. The comparison should be based upon the names of the File objects accessed with

getName.

484 18 Generic Class Parameters and the Java Collection Framework

Programming Projects

7. Name and count Write a class named NameAndCount for recording a String data named

name and an int data named count. A constructor for the class takes two values, one for the

name and the other for the count, and stores the two values in the instance variables. The class

must be comparable, with the declaration of implements Comparable<NameAndCount>.

The class has a “getter” for the name, named getName, and a “getter” for the count, named

count. For “setters”, there is a method named increment that increases the value of count
by 1. There is another instance method equals, which receives a String data as its parameter,

and returns a boolean value indicating whether or not the contents of the String data is equal

to the contents of name. Additionally, the class must implement the compareTo method, which

returns the result of comparing the values of count.

8. A comparator for the NameAndCount Write a class named CompareNameAndCount that

implements Comparator<NameAndCount>. The comparison should be based upon the names.

9. Taking an inventory Using the NameAndCount class from the previous question, write a

program NameInventory that takes an inventory of the tokens appearing in a file, where the file

path is given by args[0]. The program instantiates a LinkedList of NameAndString
objects and retrieves all the tokens from the file. For each token it retrieves, the program scans the

list for a match with the token using the equalsmethod. If there is a match, the program increases

the count by calling the method increment of the NameAndCount object that matches the

token. If there is no match found, the program adds a new NameAndCount object with the token

and the initial count of 1. After incorporating all the tokens, the program sorts the collection, and

prints the names with their counts.

The program can be used to count votes in a write-in election. Here is the result of processing

the file containing one million random tokens that are chosen from a set of five names:

1 Ron:19799 Dudley:19883 Hermione:20058
2 Draco:20125 Harry:20135

19Online and Recursive Algorithms

19.1 Online Algorithms

19.1.1 The Definition of Online Algorithms

Online algorithms are those that process an indefinite amount of data using a fixed number of

variables. Sections 7.6 and 8.5 presented programs for computing the Fibonacci sequence {Fi}i≥0

defined by: F0 = 1, F1 = 1, and for all i ≥ 2, Fi = Fi−1 + Fi−2. In generating the values of

F2, F3, . . ., the programs used three long variables, f, fp, and fpp, where they represented the

values of Fi , Fi−1, and Fi−2. Prior to computing the value of Fi , the programs copied the value of fp
to fpp and then the value of f to fp. In this manner, regardless of how many elements of the sequence

needed to be generated, the program needed just three variables (and an index variable representing

i). The two programs represent the concept of online algorithms.

An online algorithm uses a set of variables that is initialized and updated during the execution of

the algorithm. Their initialization is very important. For the computation of Fibonacci numbers, the

initialization consists of storing the value of 1 to both fp and fpp. Here we recall the program from

Chap. 7 that we used to compute the Fibonacci numbers.

1 long f, fp = 1, fpp = 1;

2 Scanner keyboard = new Scanner(System.in);

3 System.out.print("Enter n: ");

4 int n = keyboard.nextInt ();

5 for (int i = 2; i <= n; i ++)

6 {

7 f = fp + fpp;

8 System.out.println(

9 i + "\tf=" + f + "\tfp=" + fp + "\tfpp=" + fpp);

10 fpp = fp;

11 fp = f;

12 }

Listing 19.1 The initialization and the update in the computation of the Fibonacci numbers

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_19

485© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1_19

486 19 Online and Recursive Algorithms

Another example of online algorithms is the computation of the maximum and the minimum in

the series of numbers. This example was presented in Sect. 7.4. The program initialized the variables

that represent the maximum and the minimum with the first number entered. After that, the program

updated the two variables each time a new number arrived.

1 System.out.print("Enter Data No. 1: ");

2 input = keyboard.nextInt ();

3 max = input;

4 min = input;

5 for (int round = 2; round <= nData; round ++)

6 {

7 System.out.print("Enter Data No. " + round + ": ");

8 input = keyboard.nextInt ();

9 if (max < input)

10 {

11 max = input;

12 }

13 if (min > input)

14 {

15 min = input;

16 }

17 }

Listing 19.2 A program that computes the maximum and the minimum in a series of numbers. This part of the code
is from Chap. 7

19.1.2 Computing Recurrences

We generalize the online computation for the Fibonacci numbers and write programs for computing

the elements of sequences generated by linear recurrences. We first consider first-order recurrences.

Suppose a sequence s0, s1, s2, . . . is defined by the linear recurrence:

sn = asn−1 + b for all n ≥ 1

where a, b, and s0 are integers. Consider computing s1, . . . , sn, given a, b, s0, and n as input. This

problem can be solved using an online algorithm. In addition to a, b, and s0, our program receives n,

and then generates the sequence s1, . . . , sn and reports their values. Since si may quickly grow, we

use long for storing the value of si .

Here is a source code for our solution. We use a long variable, previous, to record si−1

and a long variable, sValue, to record si (Line 8). The value of sValue is updated using the

assignment sValue = a * previous + b (Line 21). The update occurs immediately before

the assignment to sValue (Line 20). The coefficients, a and b, are stored in variables named a and

b. Their values are received in Lines 12 and 13. The initial value, s0, is received as the value for

sValue in Line 11. After receiving the value for n in Line 15, the program enters a while-loop

(Line 17).

19.1 Online Algorithms 487

1 import java.util .*;

2 public class RecurrenceFirst

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int a, b, i, n;

8 long sValue , previous;

9

10 System.out.print("Enter s_0 , a, b for s_n = a * s_{n-1} + b: ");

11 sValue = keyboard.nextInt ();

12 a = keyboard.nextInt ();

13 b = keyboard.nextInt ();

14 System.out.print("Enter n: ");

15 n = keyboard.nextInt ();

16 i = 0;

17 while (i < n)

18 {

19 i ++;

20 previous = sValue;

21 sValue = a * previous + b;

22 System.out.printf("%3d: %d%n", i, sValue);

23 }

24 }

25 }

Listing 19.3 A program for computing a first-order linear recurrence

Here is an execution example of the code:

1 Enter s_0 , a, b for s_n = a * s_{n-1} + b: 1 3 2

2 Enter n: 20

3 1: 5

4 2: 17

5 3: 53

6 4: 161

7 5: 485

8 6: 1457

9 7: 4373

10 8: 13121

11 9: 39365

12 10: 118097

13 11: 354293

14 12: 1062881

15 13: 3188645

16 14: 9565937

17 15: 28697813

18 16: 86093441

19 17: 258280325

20 18: 774840977

21 19: 2324522933

22 20: 6973568801

We extend the program to handle second-order recurrences of the form:

sn = asn−1 + bsn−2 + c, for all n ≥ 2

488 19 Online and Recursive Algorithms

where s0 and s1 are integers, and a, b, and c are integer coefficients.

Like the programs for computing the Fibonacci sequence, the computation is dependent on

two previous numbers in the sequence. We use two long variables, previous for sn−1, and

previousPrevious for sn−2.

1 import java.util .*;

2 public class RecurrenceSecond

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int a, b, c, i, n;

8 long previousPrevious , previous , sValue;

9

10 System.out.print("Enter s_0 , s_1 , "

11 + "a, b, c for s_n = a * s_{n-1} + b * s_{n-2} + c: ");

12 previous = keyboard.nextInt ();

13 sValue = keyboard.nextInt ();

14 a = keyboard.nextInt ();

15 b = keyboard.nextInt ();

16 c = keyboard.nextInt ();

17 System.out.print("Enter n: ");

18 n = keyboard.nextInt ();

19 i = 1;

20 while (i < n)

21 {

22 i ++;

23 previousPrevious = previous;

24 previous = sValue;

25 sValue = a * previous + b * previousPrevious + c;

26 System.out.printf("%3d: %d%n", i, sValue);

27 }

28 }

29 }

Listing 19.4 A program for computing a second-order linear recurrence

Here is one execution example:

1 Enter s_0 , s_1 , a, b, c for s_n = a * s_{n-1} + b * s_{n-2} + c: 1 2 1 1

0

2 Enter n: 20

3 2: 3

4 3: 5

5 4: 8

6 5: 13

7 6: 21

8 7: 34

19.1 Online Algorithms 489

9 8: 55
10 9: 89
11 10: 144
12 11: 233
13 12: 377
14 13: 610
15 14: 987
16 15: 1597
17 16: 2584
18 17: 4181
19 18: 6765
20 19: 10946
21 20: 17711

If the program receives 1 for each of s0, s1, a, and b, and receives 0 for c, the sequence generated is

equal to the Fibonacci sequence.

19.1.3 Computing the Factorial Function

For a positive integer n, the factorial of n, denoted by n!, is the product of all integers between 1 and

n. For integers n less than or equal to 0, the factorial of n is defined to be 1. Here are some first few

values of the factorial:

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

Consider computing the factorial of a given positive integer n.

It is easy to see that to compute n! for n ≥ 1, we only have to multiply the value of (n − 1)! by n.

The next code implements this idea. The value of factorial increases very quickly. There is a formula

called formula!Stirling’s that provides an approximate real value for the factorial as follows:

n! ≈
√

2πn
(n

e

)n

Therefore, we use a long to store the value of the factorial.

Here is the source code of our program. The program receives the value for n from the user (Line

8). If the value of n is positive, the program enters the process of computing the factorial (Line 9). To

compute the factorial, the program initializes a long variable, factorial, with the value of 1 (Line

11), and then enters a for-loop that iterates over the sequence 1, ..., n with a variable named i
(Line 12). At each round, the program updates the value of factorial with factorial * i,

and then prints the value of i and factorial using the format %2d:%d (Line 15).

490 19 Online and Recursive Algorithms

1 import java.util .*;

2 public class Factorial

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter a positive integer: ");

8 int n = keyboard.nextInt ();

9 if (n > 0)

10 {

11 long factorial = 1;

12 for (int i = 1; i <= n; i ++)

13 {

14 factorial *= i;

15 System.out.printf("%2d:%d%n", i, factorial);

16 }

17 }

18 }

19 }

Listing 19.5 A program that computes the factorial function using an online algorithm

Here is an execution example of the program:

1 Enter a positive integer: 20
2 1:1
3 2:2
4 3:6
5 4:24
6 5:120
7 6:720
8 7:5040
9 8:40320

10 9:362880
11 10:3628800
12 11:39916800
13 12:479001600
14 13:6227020800
15 14:87178291200
16 15:1307674368000
17 16:20922789888000
18 17:355687428096000
19 18:6402373705728000
20 19:121645100408832000
21 20:2432902008176640000

The program computes the value of n! correctly for the values of n up to 20. As shown next, the

value that the program produces for 21 is negative:

1 Enter a positive integer: 22
2 1:1
3 2:2
4 3:6
5 4:24
6 5:120
7 6:720
8 7:5040

19.1 Online Algorithms 491

9 8:40320
10 9:362880
11 10:3628800
12 11:39916800
13 12:479001600
14 13:6227020800
15 14:87178291200
16 15:1307674368000
17 16:20922789888000
18 17:355687428096000
19 18:6402373705728000
20 19:121645100408832000
21 20:2432902008176640000
22 21:-4249290049419214848
23 22:-1250660718674968576

If computing approximate values of factorials (instead of their exact values) is acceptable, we

can use double instead of long to obtain factorials for much larger values of n. To generate an

output that is easy to read, we use the printf format of %e. This is a format for the exponential

representation, where a floating point number is presented as AeB, where A is a real number with

precisely one digit before the decimal point and B is an integer. A and B collective mean “A × 10

raised to the power of B”. For instance, 1.346201e+241 means 1.346201 × 10241. The format for

the number i is changed from %2d to %3d.

1 import java.util .*;

2 public class FactorialDouble

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 System.out.print("Enter a positive integer: ");

8 int n = keyboard.nextInt ();

9 if (n > 0)

10 {

11 double factorial = 1;

12 for (int i = 1; i <= n; i ++) {

13 factorial *= i;

14 System.out.printf("%3d:%e%n", i, factorial);

15 }

16 }

17 }

18 }

Listing 19.6 A program that approximates the factorial function using double in place of long

Here is how the program computes the factorial, with the middle 130 lines of output omitted:

1 Enter a positive integer: 150
2 1:1.000000e+00
3 2:2.000000e+00
4 3:6.000000e+00
5 4:2.400000e+01
6 5:1.200000e+02
7 6:7.200000e+02
8 7:5.040000e+03
9 8:4.032000e+04

492 19 Online and Recursive Algorithms

10 9:3.628800e+05
11 10:3.628800e+06
12 ...
13 140:1.346201e+241
14 141:1.898144e+243
15 142:2.695364e+245
16 143:3.854371e+247
17 144:5.550294e+249
18 145:8.047926e+251
19 146:1.174997e+254
20 147:1.727246e+256
21 148:2.556324e+258
22 149:3.808923e+260
23 150:5.713384e+262

The program can compute the approximate factorial if n as large as 170, which is the limit.

1 % java FactorialDouble
2 Enter a positive integer: 173
3 ...
4 151:8.627210e+264
5 152:1.311336e+267
6 153:2.006344e+269
7 154:3.089770e+271
8 155:4.789143e+273
9 156:7.471063e+275

10 157:1.172957e+278
11 158:1.853272e+280
12 159:2.946702e+282
13 160:4.714724e+284
14 161:7.590705e+286
15 162:1.229694e+289
16 163:2.004402e+291
17 164:3.287219e+293
18 165:5.423911e+295
19 166:9.003692e+297
20 167:1.503617e+300
21 168:2.526076e+302
22 169:4.269068e+304
23 170:7.257416e+306
24 171:Infinity
25 172:Infinity
26 173:Infinity
27 %

Infinity is a special value of the boxed class Double that represents the positive infinity.

19.2 Recursive Algorithms

19.2.1 Computing the Factorial Function Recursively

We say that a problem has a “recursive solution” if it has the following properties:

1. The “size” of each input to the problem can be measured as a nonnegative integer.

19.2 Recursive Algorithms 493

2. It is easier to solve the problem for an input having a smaller size than to solve the problem for an

input having a larger size.

3. The problem for inputs having the smallest sizes is trivial.

4. For solving the problem for a non-trivial input, the following strategy can be used: generate inputs

having smaller sizes, solve the problem for the smaller inputs, and then integrate the solutions to

generate a solution for the input at hand.

If the above action of solving the problem is coded as a method whose parameter represents the input,

the code for the method contain calls to itself. We such calls recursive calls. Java permits programs

to have recursive calls.

Consider, again, computing the factorial of a positive integer n. Since the factorial of n is the

factorial of n − 1 times n for all n ≥ 2, a recursive algorithm for computing the factorial can be stated

as follows:

• If n <= 1, return 1. This is the trivial case.

• If n >= 2, compute the factorial of n-1 using a recursive call, compute the product of the value

returned by the recursive call and n, and then return the product.

Next appears a program that computes the factorial using recursive methods.

In the method main (Line 16), the program receives an input number from the user, and then stores

it in an int variable named number (Lines 18–20). If the value of number is between 0 and 20

(Line 19), the program calls the method compute with number as the actual parameter.

The method compute (Line 4) performs the following actions:

1. Print the value of the formal parameter n (Line 6).

2. Declare a long variable, returnValue, and store 1 in it (Line 7).

3. If n > 1, replace the value of returnValue with the product of compute(n - 1) and n
(Lines 8–11). A recursive call appears in Line 10.

4. Print the values of n and returnValue using the format n=%-4dn!=%30d.

494 19 Online and Recursive Algorithms

1 import java.util .*;

2 public class FactorialRecursive

3 {

4 public static long compute(int n)

5 {

6 System.out.printf("input =%d%n", n);

7 long returnValue = 1;

8 if (n >= 2)

9 {

10 returnValue = compute(n - 1) * n;

11 }

12 System.out.printf("n=%-4dn!=%30d\n", n, returnValue);

13 return returnValue;

14 }

15

16 public static void main(String [] args)

17 {

18 Scanner keyboard = new Scanner(System.in);

19 System.out.print("Enter value between 0 and 20: ");

20 int number = keyboard.nextInt ();

21 if (number >= 0 && number <= 20)

22 {

23 compute(number);

24 }

25 }

26 }

Listing 19.7 A program that computes the factorial function recursively double in place of long

Here is one execution of the program:

1 Enter value between 0 and 20: 10
2 input=10
3 input=9
4 input=8
5 input=7
6 input=6
7 input=5
8 input=4
9 input=3

10 input=2
11 input=1
12 n=1 n!= 1
13 n=2 n!= 2
14 n=3 n!= 6
15 n=4 n!= 24
16 n=5 n!= 120
17 n=6 n!= 720
18 n=7 n!= 5040
19 n=8 n!= 40320
20 n=9 n!= 362880
21 n=10 n!= 3628800

Line 12 where the program prints the values n and returnValue does not occur until the recursive

call is completed. The following series of figures illustrates how the recursive calls are handled

(Figures 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7, 19.8, 19.9, 19.10, and 19.11).

19.2 Recursive Algorithms 495

Give me 5!

Fig. 19.1 The value passing that occurs during the computation of the factorial (part 1)

Give me 5! Give me 4!

Fig. 19.2 The value passing that occurs during the computation of the factorial (part 2)

Give me 5! Give me 4! Give me 3!

Fig. 19.3 The value passing that occurs during the computation of the factorial (part 3)

Give me 5! Give me 4! Give me 3! Give me 2!

Fig. 19.4 The value passing that occurs during the computation of the factorial (part 4)

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

Fig. 19.5 The value passing that occurs during the computation of the factorial (part 5)

496 19 Online and Recursive Algorithms

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

1

Fig. 19.6 The value passing that occurs during the computation of the factorial (part 6)

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

12

Fig. 19.7 The value passing that occurs during the computation of the factorial (part 7)

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

126

Fig. 19.8 The value passing that occurs during the computation of the factorial (part 8)

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

12624

Fig. 19.9 The value passing that occurs during the computation of the factorial (part 9)

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

12624
120

Fig. 19.10 The value passing that occurs during the computation of the factorial (part 10)

19.2 Recursive Algorithms 497

Give me 5! Give me 4! Give me 3! Give me 2! Give me 1!

12624
120

6! is 720

Fig. 19.11 The value passing that occurs during the computation of the factorial (part 11)

19.2.2 The Greatest Common Divisor of Two Integers

The greatest common divisor (GCD) of two integers is the largest positive integer that divides both

numbers. For example:

• GCD(20, 35) = 5,

• GCD(14, 5) = 1,

• GCD(−121,−143) = 11, and

• GCD(0, 191) = 191.

There is an algorithm for computing the GCD efficiently, called Euclid’s Algorithm.1 Given two

nonnegative integers, m and n, Euclid’s algorithm performs the following updates until n becomes 0:

1. Store the value of m%n to r .

2. Replace m with n.

3. Replace n with r .

When the repetition terminates (which is when n becomes 0), the value of m is the GCD of m and n.

For instance, using the algorithm, the GCD of 14 and 35 is obtained as follows:

m n r = m%n

14 35 14

35 14 7

14 7 0

7 0 N/A

The GCD is 7. Here is the GCD between 10,458 and 2505 is calculated using Euclid’s algorithm.

1Euclid is a mathematician who was born in the mid-fourth century, BCE.

498 19 Online and Recursive Algorithms

m n r = m%n

10,458 2505 438

2503 438 315

438 315 123

315 123 69

123 69 54

69 54 15

54 15 9

15 9 6

9 6 3

6 3 0

3 0 N/A

This means that the GCD of the two numbers is 3.

Euclid’s algorithm can be implemented as follows, using a while-loop whose continuation

condition is m >= 1 && n >= 1.

1 import java.util.Scanner;

2 public class GCD

3 {

4 public static void main(String [] args)

5 {

6 Scanner keyboard = new Scanner(System.in);

7 int m, n, r;

8 System.out.print("Enter two numbers: ");

9 m = keyboard.nextInt ();

10 n = keyboard.nextInt ();

11 if (m >= 1 && n >= 1)

12 {

13 System.out.printf("The GCD of %d and %d is ", m, n);

14 while (n > 0)

15 {

16 r = m % n; // obtain residual

17 m = n; // m is the divisor

18 n = r; // r is the residual

19 }

20 System.out.println(m);

21 }

22 }

23 }

Listing 19.8 A program that computes the GCD using a while-loop

We can encode Euclid’s algorithm as a recursive algorithm. In this recursive algorithm, the input

consists of two numbers. Our implementation uses two parameters, a and b, whose values are

nonnegative. The input size is the value of the second parameter. If the input size is 0, the method

returns the first number as the GCD. Otherwise, the method makes a recursive call with the first and

second parameters simultaneously substituted with b and a % b.

Here is a program GCDRecursive that computes the GCD of two positive input numbers using

recursive calls. The recursive version has a method named GCD for computing the GCD. The method

returns the value of the GCD of its two parameters, a and b. At the start of the method, it prints the

19.2 Recursive Algorithms 499

parameters (Line 6). Then, if the value of b is 0, the method returns 0 (Lines 7–10); otherwise, it

makes a recursive call (Line 11).

1 import java.util.Scanner;

2 public class GCDRecursive

3 {

4 public static int GCD(int a, int b)

5 {

6 System.out.println("a = " + a + ", b = " + b);

7 if (b == 0)

8 {

9 return a;

10 }

11 return GCD(b, a % b);

12 }

13 public static void main(String [] args)

14 {

15 Scanner keyboard = new Scanner(System.in);

16 System.out.print("Enter two numbers: ");

17 int m = keyboard.nextInt ();

18 int n = keyboard.nextInt ();

19 if (m >= 1 && n >= 1)

20 {

21 int r = GCD(m, n);

22 System.out.printf("The GCD of %d and %d is %d%n", m, n, r);

23 }

24 }

25 }

Listing 19.9 A program that computes the GCD using recursive calls

Here are some execution examples of the program.

1 Enter two numbers: 2435 98643
2 a = 2435, b = 98643
3 a = 98643, b = 2435
4 a = 2435, b = 1243
5 a = 1243, b = 1192
6 a = 1192, b = 51
7 a = 51, b = 19
8 a = 19, b = 13
9 a = 13, b = 6

10 a = 6, b = 1
11 a = 1, b = 0
12 The GCD of 2435 and 98643 is 1

1 Enter two numbers: 108 81
2 a = 108, b = 81
3 a = 81, b = 27
4 a = 27, b = 0
5 The GCD of 108 and 81 is 27

500 19 Online and Recursive Algorithms

Fig. 19.12 An example of
the tower of Hanoi

1 Enter two numbers: 35986 56789
2 a = 35986, b = 56789
3 a = 56789, b = 35986
4 a = 35986, b = 20803
5 a = 20803, b = 15183
6 a = 15183, b = 5620
7 a = 5620, b = 3943
8 a = 3943, b = 1677
9 a = 1677, b = 589

10 a = 589, b = 499
11 a = 499, b = 90
12 a = 90, b = 49
13 a = 49, b = 41
14 a = 41, b = 8
15 a = 8, b = 1
16 a = 1, b = 0
17 The GCD of 35986 and 56789 is 1

19.2.3 The Tower of Hanoi

19.2.3.1 The Problem Statement

Legend says that there is a temple in a remote place in Hanoi, where the monks are counting the time

by moving 64 disks (Fig. 19.12). The monks can move one disk at a time on the tick of a clock. The

disks have a hole in the middle, and they are placed on a pole through their holes. There are three

poles at the site. The 64 disks were originally placed on the first pole, in the decreasing order of their

diameters, with the smallest disk at the top. The monks have been given the task of moving all 64

disks to the second pole. In moving the disks, the monks have to abide by the following rule: no disk

can be placed on a disk with a smaller diameter. In other words, during the execution of the task, on

each of the three poles, the disks are placed in the decreasing order of their diameters.

Legend has it that the world ends when the monks have completed the task.

The monks have been working on the task, generation after generation, but they have not

finished yet.

When will the world end?

19.2.3.2 Our Solution

Let’s see if we can determine the actions of the monks by computation.

19.2 Recursive Algorithms 501

We formalize the problem as follows: We assign the position numbers 0, 1, and 2 to the three poles.

We assign the names L, M, and R to them. We use the phrase “move 2 to L and R” to mean the action

of moving the 2nd smallest disk from Pole L to Pole R. We envision that M is the final destination of

the disks.

The solution for moving two disks is as follows:

1 Move 1 from L to R
2 Move 2 from L to M
3 Move 1 from R to M

The solution for moving four disks is as follows:

1 Move 1 from L to R
2 Move 2 from L to M
3 Move 1 from R to M
4 Move 3 from L to R
5 Move 1 from M to L
6 Move 2 from M to R
7 Move 1 from L to R
8 Move 4 from L to M
9 Move 1 from R to M

10 Move 2 from R to L
11 Move 1 from M to L
12 Move 3 from R to M
13 Move 1 from L to R
14 Move 2 from L to M
15 Move 1 from R to M

Figure 19.13 shows the process.

We can generalize these solutions to the following general solution:

• The smallest disk can be moved freely.

• To move N ≥ 2 disks to a designated location, all of the top N − 1 disks must be moved to a pole

that is neither the present pole nor the designated pole. The N -th disk then must be moved to the

designated location. After that, the top N − 1 disks that were previously moved to the temporary

pole must be moved to the designated location.

We encode this idea into our program. Our program receives the input (the number of disks to move)

as args[0] and produces the solution.

We use a static String array constant NAMES that contains the names "L", "M", and "R"
(Line 4). We use a void method named solve for producing a solution on the screen (Line 5).

The method solve receives three int parameters. The first one, number, is the number of disks

to be moved. The second parameter, fromPole, is the current location (0, 1, or 2) of the disks to

be moved. The third parameter, toPole, is the target location (0, 1, or 2) of the disks to move. We

anticipate that the value of fromPole to be different form the value of toPole. Since the poles are

numbered 0, 1, and 2, the sum of the three possible pole indexes is 3. Thus, given the two indexes,

fromPole and toPole, we can identify the index to the remaining pole using the formula:

3 - fromPole - toPole

The actions to be performed in solve are as follows:

502 19 Online and Recursive Algorithms

Fig. 19.13 The solution
to a small Tower of Hanoi
problem. The top two
drawings of disks and
poles represent the first
four moves. The bottom
two drawings of disks and
poles represent the next
three moves. The numbers
appearing on the arrows
represent the step numbers

• If the number of disks to be moved (stored in the parameter number) is equal to 1 (Line 7),

print the solution: move number from NAMES[fromPole] to NAMES[toPole] (Lines

9 and 10).

• If the number of disks to be moved is greater than 1 (Line 12), execute the following:

– Obtain the index to the remaining pole and store it in a variable named remainder (Line 14).

– Print the solution for moving number - 1 disks from NAMES[fromPole] to

NAMES[remainder] using a recursive call solve(number - 1, fromPole,
remainder) (Line 15).

– Print the action for moving the disk number from NAMES[fromPole] to

NAMES[toPole]. (Lines 16 and 17).

– Print the solution for moving number - 1 disks from NAMES[remainder] to

NAMES[toPole] using a recursive call solve(number - 1, remainder,
toPole) (Line 18).

19.2 Recursive Algorithms 503

1 import java.util .*;

2 public class Hanoi

3 {

4 static final String [] NAMES = { "L", "M", "R" };

5 static void solve(int number , int fromPole , int toPole)

6 {

7 if (number == 1)

8 {

9 System.out.printf("Move %d from %s to %s%n", number ,

10 NAMES[fromPole], NAMES[toPole]);

11 }

12 else

13 {

14 int remainder = 3 - fromPole - toPole;

15 solve(number - 1, fromPole , remainder);

16 System.out.printf("Move %d from %s to %s%n", number ,

17 NAMES[fromPole], NAMES[toPole]);

18 solve(number - 1, remainder , toPole);

19 }

20 }

21 public static void main(String [] args)

22 {

23 solve(Integer.parseInt(args[0]), 0, 1);

24 }

25 }

Listing 19.10 A program that solves the Tower of Hanoi problem

19.2.3.3 Will the World End Soon?

Let’s return to the legend and figure out when the world ends according to the legend. Suppose the

number of disks is n. How many moves must the monks make to complete the task? The number of

moves is 1 for n = 1 and 3 for n = 2. In general, for n ≥ 2, the required number of moves is:

the required number of moves for n − 1 disks +
1(for the n-th disk)+

the required number of moves for n − 1 disks.

If we use Tn to represent the required number of moves for n disks, the above observation gives:

T1 = 1 and for n ≥ 2, Tn = 2Tn−1 + 1.

By adding the value of 1 to both sides of the recurrence, we obtain

Tn + 1 = 2(Tn−1 + 1).

Since T1 + 1 = 2, we have

Tn + 1 = 2n,

and thus,

Tn = 2n − 1.

For n = 64, this is

18,446,744,073,709,551,615

504 19 Online and Recursive Algorithms

Even if the monks are able to move one disk per second, it will take 585 billion years to complete the

task. Luckily, we will not live to see the end of the world.

Summary

An online algorithm is an algorithm that computes some values on an indefinite series of data using

a fixed number of variables.

A recursive algorithm is one that uses a call to itself to reduce a bigger input to a smaller input.

Exercises

1. Computing the parity of a number sequence Write a program named CumulativeParity
that receives an indefinite number of integers from the user, and computes the parity (odd or

even) of the total of the numbers. It is possible to express the parity of a single integer num by

Math.abs(num) % 2. Write the code so that it computes the total and, at the end, prints the

parity of the number.

2. Computing the parity of number sequence, using boolean Write a program named

CumulativeParityAlt that receives an indefinite number of integers from the user, and

computes the “even parity” (whether or not the total is even). This time, the solution should be

different from the one for the previous problem.

The parity can be expressed as a boolean value using the condition num % 2 == 0. With

this conversion, true represents the even parity, and false represents the odd parity. For two

parity values, p1 and p2, of two numbers in boolean, the parity of the sum of the two numbers

can be computed by the condition p1 == p2. Assume that the parity before the user starts

entering input is true. For example, if the user enters 10,−4, 5, 8, 9, and 1 in this order, the

parity changes as follows: true, true, false, false, true, false.

3. Computing the total of the number tokens in a file Write a program named TotalNumberToken
that reads the tokens appearing in a file, and computes the total of all the tokens that can be

treated as integers. The user will specify a file path as args[0]. The program must read

each token as a String, and then convert it to an integer using Integer.parseInt. An

attempt to convert a token that does not represent an integer results in a run-time error of

NumberFormatException. The run-time error can be processed using a try-catch so

the program execution will continue.

4. Top two numbers Write a program named ComputeTopTwo that receives a series of integers

from the user, and computes the largest two of the numbers. Use Integer variables to record the

largest two of the numbers that have been entered so far.

5. Testing if an input is a palindrome A word is a palindrome if the word reads the same forwards

and backwards. Write a method named recursivePalindrome that receives a String object

word as the formal parameter. The method must return a boolean value representing whether or

not the word is a palindrome. We can use the following rules in making the decision:

• If word has length 0 or 1, then it is a palindrome.

• If word has length 2 or higher, then it is a palindrome if and only if (a) the first character of

word is equal to the last character of word and (b) wordwithout the first and the last characters

is a palindrome.

To incorporate the second rule in the recursive calculation, test (a) first and if that test fails, return

false immediately.

Exercises 505

6. GCD of many integers We can extend the idea of computing the GCD recursively to compute

the GCD of two or more integers. The GCD of (n1, . . . , nk), k ≥ 2, is the largest positive integer

that is a divisor of all of them. Design a recursive method multiGCD that takes an int array

series as its formal parameter, and returns the GCD of the numbers in the sequence. We assume

that all the numbers in the series, except for the last one, are strictly positive.

Programming Projects

7. Computing a list of all primes recursively Consider computing a list of all primes less

than or equal to a given number using a recursive method. Suppose we use a method

allPrimes(int n) to accomplish this task. The return type of the method is

List<Integer>. The List<Integer> object contains all the primes less than or equal to n.

The list that the method returns is empty if n <= 1 and is a list containing only 2 if n == 2. If

n > 2, the method first calls allPrimes(n - 1) to obtain a list of all the primes less than

or equal to n - 1 . The method then determines whether or not n is a prime by examining the

remainder of n by each member in the list. If none of the divisions produce 0 as the remainder, the

method adds n at the end of the list, since n is found to be a prime. Otherwise, the method keeps the

list as it is. Finally, the method returns the list. Write a program named RecursiveFindPrimes
that receives the value for n from the user, calls allPrimes(n) to obtain the list of primes,

and then prints the members of the list thus obtained. Use either LinkedList<Integer> or

ArrayList<Integer> as an implementation of List<Integer>.

8. Top-3 numbers Write a program named TopThreeIntegers that receives an indefinitely

long series of integers from the user, and computes the largest three numbers appearing in the series.

After some initial prompting, the user starts entering the elements in the sequence, terminating the

sequence with CTRL-D. There will be no prompting during the input of the sequence. The program

expects that the user will enter at least three numbers before entering CTRL-D. To compute the

largest three, the program may use the following online algorithm:

• Use three variables, first, second, and third, to store the largest, the second largest, and

the third largest numbers among the numbers that the user has entered so far.

• Store the very first input in first.

• Receive the second number. Compare it with the value of first to determine the larger and

the smaller of the first two numbers, and update the values of first and second accordingly.

• Receive the third number. Compare it with the values of first and second to determine the

ranking of the first three numbers to determine the values of the three variables. Update the

values of the three variables accordingly.

• Receive the remaining numbers one after another using a while-loop. After receiving a new

number, compare the new number with first, second, and third to perform updates.

Index

&&, 36, 143, 152
’, 37
\, 6, 18, 26, 37, 367
\\, 19
\", 18
\n, 19, 20, 60
\t, 19
^, 8
^D, 280
{}, 9, 11

omission, 149, 157
/, 39
", 10, 18
=, 33
++, 325
==, 145, 146
!=, 145, 146
!, 36, 143
/, 6, 26, 367
//, 11
/*, 12
/**, 12
>, 146, 342
>=, 146
<, 4, 146, 342
<=, 146
-, 39
-=, 51
-, 51
%, 4, 10, 40
%c, 147, 214, 308
%d, 147, 214, 308
%e, 147, 491
%=, 51
%f, 147, 216
%n, 147, 211
%%, 211
%s, 147, 212, 229
., 367
.class, 6
.java, 6
.., 6, 367
+, 39, 59, 214
+=, 51, 62
++, 51
;, 10, 32, 342

/=, 51
[], 295

*/, 12

*, 39

*=, 51
_, 21
|, 21, 213, 342
||, 36, 143
3x + 1 Problem, 270

A

ABC Song, 15
abs, 125
abstract class, 7
accessor, 396
Adventures of Huckleberry Finn, 19, 254
algorithm, 179

greedy, 234
online, 485
recursive, 492

Alma Mater, 25
America the Beautiful, 385
approximation, 489
args, 9, 342, 376, 429, 501
arithmetic, 37, 82
arithmetic operation, 39
ArithmeticException, 163
array, 295

diagonal, 365
index of an element in, 295
initialization of elements, 303
instantiation of, 295
irregularly shaped, 358
jagged, 358, 379
length of, 295, 296
multi-dimensional, 357
rectangular, 358, 365
regularly shaped, 358
reordering in place, 329
reversing element order, 332
size of, 295
slot of, 296
square, 358, 365
swapping elements, 329
upper-triangular, 365

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1

507© Springer Nature Switzerland AG 2018

https://doi.org/10.1007/978-3-319-89491-1

508 Index

array (cont.)
with capacity and size, 345

ArrayIndexOutOfBoundsException, 303
ArrayList, 459

add, 460
clear, 460
get, 460
remove, 460
set, 460
size, 460

Arrays, 228, 325, 342
copyOf, 325, 342, 382, 432, 438
equals, 325
fill, 325
sort, 228, 325, 326, 353, 447, 449, 462

ASCII, 307, 389, 390
assert, 384
AssertionError, 385
assignment, 33
auto-boxing, 446
auto-unboxing, 446
Autumn, 16
average, 151, 178, 388, 420

B

bank account, 408, 454
baritone, 340
baseball, 140
bass-baritone, 340
Beamer, vii
Beatles, 108
Becket, Samuel Barclay, 277
betting, 264
bin, 296
binary search, 283, 344
Bingo, 366
Birthday Paradox, 321, 322
bit, 29
black box, 402
BMI, see Body-Mass Index
Body-Mass Index, 46, 119, 173, 207, 224, 290, 306
Boole, George, 143
Boolean, 446
boolean, 29, 35, 143, 446
boundary, 289, 399
Brackeen, Joanne, 345
Brady, Thomas Edward Patrick, Jr., 31
break, 199, 245, 276
bridge, 108
Byte, 446
byte, 29, 35, 36, 446
bytecode, 3

C

C, 3
C++, 3
calendar, 222
call by reference, 115

car, 419, 453
Carrington, Terri Lyne, 345
case, 245
casting, 46, 63, 126, 445
cat, 6
catch, 371
cd, 4, 6
char, 29, 35, 37, 245, 404, 446
Character, 446
character space allocation, 212, 214
chdir, 6
Chess, 398
Children, 25
circle, 41, 208

area of, 41
perimeter of, 41

class, 7
declaration, 69
object, 30, 225

class file, 6
cmd, 3
Collatz Conjecture, 270, 482
Collatz, Lother, 270
Collection, 474

contains, 477
size, 477

Collections, 462
sort, 462, 463, 471

collision, 476
combinatorial number, see number, combinatorial
command, 3, 6
command line interface, 3, 342

window size, 59
comment, 11, 178

Javadoc, 12
multiple-line, 12

Comparable, 447, 454, 457
compareTo, 146, 447, 458, 462
equals, 146

Comparator, 458, 483, 484
compare, 459, 463

compilation, 3, 6, 13
compiler, 11
complex number, see number, complex
composite number, see number, composite
concatenation, 59, 237

conversion to String, 61
condition, 143

continuation, 263, 297
termination, 276

conditional evaluation, 143
combination with assignment, 163
truncation, 162

conjunction, 36, 143, 144
constant, 29, 34, 42, 391

global, 34, 44
local, 34

constructor, 56, 70, 193, 237, 391
continue, 199
coordinate, 138, 288, 322, 391

Index 509

Cartesian, 138
polar, 138

copy, 6
countdown, 182
cp, 6
CTRL-D, 74, 279
currency punctuation, 214
cyclic shift, 241, 332

left, 332
right, 332

cylinder, 138

D

data, 29
data type, 29

boxed, 446
generic, 448, 458
object, 29, 56, 325, 326
primitive, 29, 56, 325, 326
range of, 35

date, 454
De Morgan’s laws, 144
De Morgan, Augustus, 144
Dearie, Blossom, 345
declaration, 32

combination with an assignment, 33
multiple variables, 32
variable, 32, 47

default, 245
del, 6
delimiter, 69, 76
Denver Broncos, 31
depth, 9, 32, 89
Deque, 475

offerFirst, 476
offerLast, 476
peekFirst, 476
peekLast, 476
pollFirst, 476
pollLast, 476

determinant, 168
diamond, 25, 204
die, 107, 195, 300
digit, 108
dir, 6
discriminant, 166
disjunction, 36, 143, 144
divisible, 166, 310
divisor, 310
do-while loop, 173, 276, 303, 315, 340
dog, 453
Double, 446

parseDouble, 382, 431
double, 29, 35, 36, 446
down-casting, 445
Drougas, Paul, vii

E

e, 124
echo, 3, 77, 280
Eclipse, 4, 13
election, 355
emacs, 3
enum, 7
enumeration, 242–244
equality, 145
equation, 131

linear, 168, 420
quadratic, 83, 138

error, 4, 6
compilation, 18
logic, 14
run-time, 14, 103, 193, 370
syntax, 13

error message, 193
escaping, 19, 24, 37, 211

backslash, 19
newline, 19
tab-stop, 19

Euclid, 497
Euclidean distance, 139
Exception, 370, 446
exponent, 36
expression

simplified, 51
extends, 435

F

factorial, 185, 208, 489, 493
false, 35
Fifteen Puzzle, 421
File, 367, 462, 483

canExecute, 368, 376
canRead, 368, 376
canWrite, 368, 376
createNewFile, 368
delete, 368
exists, 368
getAbsoluteFile, 368
getAbsolutePath, 368
getCanonicalFile, 368
getCanonicalPath, 368
getName, 368
getParent, 368
getParentFile, 368
isDirectory, 368, 376
isFile, 368, 376
length, 368
listFiles, 368
mkdir, 368
renameTo, 368

FileNotFoundException, 378, 384, 430, 431, 446,
462

510 Index

final, 42, 43
final, 34
fine, 66, 85
Fischer-Dieskau, Dietrich, 340
flag, 314
Fleming, Renée, 340
Float, 446
float, 29, 35, 36, 446
floating point number, 45
floating point representation, 36
flush left, 212, 214
flush right, 212, 214
folder, 367, see directory

separator of, 6
working, 4

foot, 121
for-each loop, 173, 439, 460, 462, 474, 477
for-loop, 173

continuation condition, 175
double, 187
initialization of, 175
iteration variable declaration in the initialization, 178
termination, 177
termination condition, 175
update, 175

format
tab-delimited, 381

format String, 147
fraction, 85
function

trigonometric, 130

G

game, 391
betting, 195
board, 391
guessing, 289
piece of, 391

Gauss, Johann Carl Friedrich, 48, 184
GCD, see greatest common divisor
getter, 396, 461
Gettysburg Address, 60
global variable, see variable, global
gravity, 66, 83, 140
greatest common divisor, 497, 504
Gregorian calendar, 454
grid, 260

three-dimensional, 260
two-dimensional, 260, 288

H

Hanoi, 500
hash function, 476
hash table, 476
HashSet, 475, 476

add, 476
clear, 476
contains, 476

isEmpty, 476
remove, 476
size, 476

heldentenor, 340
Heppner, Thomas Bernard, 340
Heron’s Formula, 290
hexadecimal encoding, 36
histogram, 297

cumulative, 299
noncumulative, 299

I

I Want To Hold Your Hand, 108
IDE, see interactive development environemtn
if-else statement, 156, 247
if-statement, 149
IllegalArgumentException, 193, 385, 454
IllegalFormatConversionException, 211
implements, 427, 457
import, 69, 367
inch, 121
indentation, 11
index, 296

base, 305
relative, 305, 326

Indianapolis Colts, 31
inequality, 145
infinite loop, see loop, infinite
infinity, 492
information hiding, 402
inheritance, 427
InputMismatchException, 75
instance method, see method, instance
instance variable, 457, see variable, instance
instanceof, 445
instantiation, 70
int, 29, 35, 36, 245, 446
Integer, 303, 446

parseInt, 303, 347, 412, 431, 462
interactive development environment, 4, 14
interface, 7, 427, 458

declaration, 69
IOException, 370, 423, 446
Iterable, 439, 473

iterator, 473
iteration, 180
Iterator, 473

hasNext, 473
next, 473

J

Java, 3
package, 69
project, 69

Java Collection Framework, 473
Java Development Kit, 3
java file, 6

Index 511

Java Running Environment, 3
Java Virtual Machine, 3
java.io, 367
java.io.File, 367
java.lang, 69
java.util, 325
java.util.Arrays, 325
java.util.Scanner, 69
javac, 6
javadoc, see comment, javadoc
JDK, 69, see Java Development Kit
Jerusalem, 234
JRE, see Java Running Environment
JVM, see Java Virtual Machine

K

Krall, Diana Jean, 350

L

LATEX, vii
law of large numbers, 178
leap year, 454
length, 295, 296
Lincoln, Abraham, 60
line break, 60
LinkedList, 475

add, 475
addFirst, 475
addLast, 475
get, 475
getFirst, 475
getLast, 475
remove, 475
removeFirst, 475
removeLast, 475
set, 475

List, 460, 475
add, 477
get, 477
remove, 477
set, 477

list, 475, 476
head of, 475
tail of, 475

literal, 29
array, 329
char, 37
float, 37
long, 36
number, 31
String, 10, 30, 56

local variable, see variable, local
logarithm, 124, 344
logical-and, 143
logical-or, 143
London, George, 340
Long, 446

long, 29, 35, 36, 185, 245, 446, 489
Longfellow, Henry Wadsworth, 16, 25
loop, 173

definite, 264
do-while, see do-while loop
double, 297, 404
external, 188, 359, 363
for, see for-loop
for-each, see for-each loop
indefinite, 264, 277
infinite, 103, 276
internal, 188, 360, 363
while, see while-loop

loop variant, 283
loop-body, 174, 196
lowercase letter, 228
ls, 6
Ludwig, Christa, 340

M

Manning, Peyton Williams, 31
Mastermind, 291
Math

max, 267, 409
random, 178, 198, 300

Math, 124
abs, 125
acos, 125
asin, 125
atan, 125
cbrt, 125
ceil, 125, 129
cos, 125
E, 124
exp, 125
floor, 125, 129
log, 125
log10, 125
max, 125
min, 125
PI, 124
pow, 125
random, 124
round, 125, 126
signum, 125
sin, 125
sqrt, 125
tan, 125

matrix, 388
diagonal, 365
upper-triangular, 365

Mattila, Karita Marjatta, 340
max, 125
maximum, 193, 446

second, 319
McRae, Carmen Mercedes, 345
menu, 245, 246
merge, 354, 355

512 Index

method, 9, 71
abstract, 427, 436
call, 89, 111, 121
dependency, 101
instance, 71, 368, 391, 419
main, 9
order of appearance, 90
overloading, 115, 127
public, 9
static, 9, 32, 44, 391, 399, 427

method call, 71
mezzo-soprano, 340

concert, 340
Milenkovic, Victor, vii
min, 125
minimum, 193
mkdir, 6
modifier, 397
more, 6
mortgage, 131
move, 6
mv, 6

N

National Football League, 30, 31, 83
negation, 35, 143

double, 144
Netbeans, 4
new, 56
New England Patriots, 31
newline, 11
NFL, see National Football League
Nilsson, Birgit, 340
NoSuchElementException, 73, 264, 281, 381
null, 146, 303, 446
NullPointerException, 303, 358, 446
number, 29

combinatorial, 208
complex, 421
composite, 310
prime, 310, 320, 505
random, 178

NumberFormatException, 465, 504
numeral, 228

O

Object, 446
equals, 325

object-oriented programming, 3
Ogihara, Ellen, vii
Oh, Linda May, 345
Old MacDonald Had A Farm, 109
Old MacDonald Had A Farm, 95
Oliveira e Silve, Tomás, 270
operand, 39
operator, 39

binary, 39
bit, 39

concatenation, 59
conditional, 143
logical, 143
priority of, 41
unary, 39

ordering, 228
overflow, 266
override, 427

P

package, see visibility, package
pairwise distinct, 353
palindrome, 504
parameter, 9, 111

actual, 111, 193, 235
formal, 111, 144
generic type, 448
passing of, 115
type signature, 115

parentheses, 39
parity, 504
path, 6, 367

absolute, 368
canonical, 368
concatenation, 368
relative, 368
separator, 367

Pawlicki, Taddeus, vii
PDF, vii
pencil calculation, 50
permutation, 139, 322
π , 42, 43, 124
Pink Floyd, 330
polygon, 140

area of, 140
polymorphism, 427, 446
pound, 121
power, 207, 222
prefix, 228, 230

length of, 212
prime number, see number, prime
printf, 225
printStackTrace, 374
PrintStream, 72, 384, 462

close, 432, 462
print, 384
printf, 384
println, 384

private, see visibility, private
procedural decomposition, 90, 91
product, 185
program, 3

interactive, 3
programming language, 3, 264
prompt, 4, 320

after the execution of a program, 10
protected, see visibility, protected
public, see visibility, public
punctuation mark, 252, 388

Index 513

pwd, 6
pyramid, 204

Q

quarterback, 31
rating, 31

Queue, 475
offer, 476, 478
peek, 476, 478
poll, 478

R

radius, 41, 207
random, 124
random walk, 289
rectangle, 322
rectilinear, 85
recurrence, 486

first-order, 486
second-order, 487

recursive call, 493, 494
Reeves, Dianne, 350
reference, 32, 114
Regan, Kenneth W., vii
regular file, 367
relation, 228

reflexive, 228
symmetric, 228
transitive, 228

remainder, 40
representation

binary, 273
reserved names, 38
return, 120
return type, 119

boolean, 228
double, 119
String, 120
void, 9

return value, 9, 29, 114, 119, 167, 168
rm, 6
rmdir, 6
round, 125
Row, Row, Row Your Boat, 61
running total, 265, 389

S

San Francisco 49ers, 31
Scanner, 69, 367, 462

close, 431, 462
hasNext, 75, 264, 474
next, 72, 474
nextBoolean, 75
nextByte, 75
nextDouble, 75
nextFloat, 75
nextInt, 75, 379

nextLine, 235, 381, 431
nextLong, 75
nextShort, 75

Scanner, 121
next, 121

Schwarzkopf, Dame Olga Maria Elisabeth Friederike,
340

search, 231, 343, 352, 353
sequential, 343, 348

semantics, 427
sequence, 4, 204, 260

character, 4
decreasing, 353
Fibonacci, 201, 218, 485
increasing, 353
iteration, 176
number, 504

Set, 475
add, 480
remove, 480

setter, 397, 461
Several Species of Small Furry Animals Gathered

Together in a Cave and Grooving With a Pict, 330
Sgt. Pepper’s Lonely Hearts Club Band, 239
ship, 139
Shogi, 398
Short, 446
short, 29, 35, 36, 245, 446
sign, 36
significand, 36
soprano, 340

concert, 340
sort, 352, 353, 355
SortedSet, 475
source code, 3, 11
spacing, 11, 32
Spalding, Esperanza Emily, 345
speeding, 66, 85
sphere, 41

surface area of, 41
volume of, 41, 138

square root, 283
StackOverflowError, 103
standard deviation, 319
statement, 10

combined, 349
static method, see method, static
statistics, 420
Stirling’s Formula, 489
String, 56, 245

character position, 225
charAt, 225, 255
compareTo, 228, 458
endsWith, 230
equals, 228
format, 399, 409
indexOf, 231, 276
lastIndexOf, 231
length, 225
nextLine, 464

514 Index

String (cont.)
replace, 234
replaceFirst, 234
split, 225, 317, 381, 441
startsWith, 230
substring, 234
toCharArray, 225, 317, 321
toLowerCase, 234, 257, 307
toUpperCase, 234, 384, 439
trim, 234

StringBuilder, 237, 252, 404, 439
append, 237
charAt, 237
delete, 237
indexOf, 237
insert, 237
lastIndexOf, 237
length, 237
substring, 237

StringIndexOutOfBoundsException, 227, 234,
237

student, 454
sub-interface, 436
subclass, 436
sublime, 3
Sudoku, 365
suffix, 230, 288
summation, 48, 184, 185

partial, 205, 358
super, 437, 448
Super Bowl, 31
super-interface, 436
superclass, 436
Sutcliffe, Geoffrey, vii
Swing Low, Sweet Chariot, 232
switch, 245, 433, 464
syntax, 3, 427
System, 10
System.err, 10
System.in, 10
System.in.print, 57
System.out, 10, 384
System.out.print, 10
System.out.printf, 147, 229, 333
System.out.printf, 135
System.out.println, 10

T

tab-stop, 11, 26, 390
table loop-up, 319
tax, 66, 84
Terminal, 3
this, 409, 416, 428, 437
This Old Man, 140
This Old Man, 107
throw, 193
Throwable, 446
throws, 370, 430

Tic-Tac-Toe, 421
time, 84

military, 421
Toblerone, 139
toilet paper, 207
token, 71
torus, 288
Tower of Hanoi, 500
trapezoid, 67

area of, 67
triangle, 168, 290

area of, 290
isosceles, 22
right-angled, 20, 168

true, 35
try, 371
try-catch, 74, 389
Twain, Mark, 19, 254
type, 6

U

Ummagumma, 330
Unicode, 228
United States of America, 214
up-casting, 445
uppercase letter, 228

V

variable, 29
field, 30
global, 30, 346
indicator, 348
instance, 30, 391, 393, 428
iteration, 176, 180
local, 30, 32
permitted characters for, 32
private, 396, 428
scope of, 38, 178
static, 391, 427

variance, 420
Varnay, Ibolyka Astrid Maria, 340
Vaughan, Sarah Lois, 350
vending machine, 268
verse, 108
vim, 3
visibility, 7, 34

package, 7
private, 7, 34, 448, 457
protected, 7, 34
public, 7, 34, 436

vowel, 261

W

Waiting for Godot, 277
Watanabe, Osamu, vii
while-loop, 173, 381, 447, 486, 498

Index 515

white space, 11
wildcard, 70, 367
Wilson, Cassandra, 350
Wilson, Nancy, 350
Windgassen, Wolfgang, 340
Windows, 6

Winstone, Norma Ann, 350
wraparound, 59, 60

Y

Young, Jon Steven “Steven”, 31

	Preface
	Contents
	List of Figures
	List of Tables
	Part I Programming Basics
	1 ``Hello, World!''
	1.1 The Programming Environment for Java
	1.1.1 The Java Virtual Machine (JVM)
	1.1.2 Changing Folders in a Command Line Interface
	1.1.3 Source Codes, Bytecodes, and Compilation

	1.2 The First Program, ``Hello, World!''
	1.2.1 Methods and Their Declarations
	1.2.2 System.out.println and System.out.print
	1.2.3 Spacing in the Source Code
	1.2.4 Commenting
	1.2.5 Errors

	1.3 Using Multiple Statements
	1.3.1 System.out.println and System.out.print (Reprise)
	1.3.2 Printing Multiple-Line Texts on the Screen
	1.3.3 Escaping Characters
	1.3.4 Printing Shapes

	Summary
	Exercises

	2 Using Data for Computation
	2.1 Data
	2.1.1 Data and Their Taxonomy
	2.1.2 Number Literals
	2.1.3 Variable Declarations
	2.1.4 Assigning Values to Variables

	2.2 The Primitive Data Types
	2.3 Using Variables for Computation
	2.3.1 Quarterbacks Program (Reprise)
	2.3.2 Number Arithmetics
	2.3.2.1 Number Operations
	2.3.2.2 Evaluation of Formulas
	2.3.2.3 Mixing Different Number Types in a Formula

	2.3.3 Computing the Body-Mass Index
	2.3.4 Sum of Integers from 1 to 100 à la Gauss
	2.3.4.1 Truncation of Real Numbers

	2.3.5 Simplified Expressions

	2.4 An Introduction to the String Data Type
	2.4.1 The String Data Type
	2.4.2 String Concatenation
	2.4.2.1 Concatenating Two String Data
	2.4.2.2 Concatenating String Data with Other Types of Data

	Summary
	Exercises

	3 Reading Keyboard Input
	3.1 Class Scanner
	3.1.1 Importing Source Codes
	3.1.2 The Instantiation of a Scanner Object

	3.2 Reading Data with a Scanner Object
	3.3 Reading Input from the Keyboard
	Summary
	Exercises

	4 Decomposing Code into Components
	4.1 Procedural Decomposition
	4.1.1 Printing Rectangles
	4.1.2 Printing Quadrangles
	4.1.3 ``Old MacDonald Had a Farm''
	4.1.4 A General Strategy for Procedural Decomposition

	4.2 Using Multiple Program Files
	Summary
	Exercises

	5 Passing Values to and from Methods
	5.1 Passing Values to Methods
	5.1.1 Methods That Work with Parameters
	5.1.2 Method Overloading

	5.2 Receiving a Value from a Method
	5.3 Class Math
	5.3.1 Mathematical Functions in Java
	5.3.2 Mortgage Calculation

	Summary
	Exercises

	6 Conditions and Their Use for Controlling the Flow of Programs
	6.1 Condition and Its Evaluation
	6.2 The If Statements
	6.2.1 If
	6.2.2 Else
	6.2.3 If-Else Inside If/Else
	6.2.4 Truncation of Conditional Evaluations

	Summary
	Exercises

	Part II Loops
	7 For-Loops
	7.1 Using For-Loops for Repetition
	7.2 Iteration
	7.2.1 Simple Iteration
	7.2.2 Iteration with an Auxiliary Variable

	7.3 Double For-Loops
	7.4 Computing the Maximum and Minimum in a Series of Numbers
	7.5 A Betting Game
	7.5.1 For-Loops with Skipped Execution
	7.5.2 The Statements continue and break

	7.6 Computing the Fibonacci Sequence
	Summary
	Exercises

	8 Formatted Printing Using printf
	8.1 General Rules for printf
	8.2 Formatted Printing of String Data
	8.3 Formatted Printing of Integers
	8.4 Formatted Printing of Floating Point Numbers
	8.5 Printing the Fibonacci Sequence (Reprise)
	Summary
	Exercises

	9 Classes String and StringBuilder
	9.1 Methods for Obtaining Information from String Data
	9.2 Methods for Comparing String Data with Another
	9.2.1 The Equality Test and the Comparison in Dictionary Order
	9.2.2 The Prefix and Suffix Tests

	9.3 Methods for Searching for a Pattern in a String Data
	9.4 Methods for Creating New String Data from Another
	9.4.1 String.format

	9.5 Class StringBuilder
	Summary
	Exercises

	10 The Switch Statements
	10.1 The Syntax of Switch Statements
	10.2 Using a char Data in a Switch-Statement
	10.3 Using a String Data in a Switch Statement
	Summary
	Exercises

	11 While-Loops and Do-While Loops
	11.1 Using While-Loops
	11.1.1 The Syntax of While-Loops
	11.1.2 Summing Input Numbers Until the Total Reaches a Goal
	11.1.3 Integer Overflow
	11.1.4 Vending Machines
	11.1.5 The Collatz Conjecture
	11.1.6 Covnerting Decimal Numbers to Binary Numbers
	11.1.7 Infinite Loops and Their Termination

	11.2 Using Do-While Loops
	11.2.1 The Syntax of Do-While Loops
	11.2.2 ``Waiting for Godot''
	11.2.3 Converting Decimal Numbers to Binary Numbers (Reprise)

	11.3 CTRL-D
	11.4 Approximating the Square Root of a Real Number
	Summary
	Exercises

	Part III Arrays and Objects
	12 Arrays
	12.1 Arrays
	12.1.1 The Structure of an Array
	12.1.2 Computing the Number of Occurrences
	12.1.2.1 Computing Distributions
	12.1.2.2 Simulating the Action of Throwing Two Dice
	12.1.2.3 Initialization of an Array

	12.1.3 ArrayIndexOutOfBoundsException

	12.2 Relative Indexing
	12.2.1 The Concept of Relative Indexing
	12.2.2 Calculating the BMI for a Range of Weight Values
	12.2.3 Counting the Occurrences of Characters

	12.3 Arrays of boolean Data
	12.4 Using Multiple Arrays
	12.5 String Methods That Return an Array
	Summary
	Exercises

	13 The Class Arrays and Resizing Arrays
	13.1 The Class Arrays
	13.2 Reordering Elements in an Array
	13.2.1 Reversing the Order of Elements
	13.2.2 Cyclic Shifting

	13.3 Modifications of an Array That Require Resizing
	13.3.1 Insertion and Deletion
	13.3.2 Adjoining Two Arrays

	13.4 args
	13.5 Searching for an Element in an Array
	13.5.1 Sequential Search
	13.5.2 Binary Search

	13.6 Arrays with Capacity and Size
	Summary
	Exercises

	14 Multidimensional Arrays
	14.1 Rectangular Arrays
	14.1.1 Defining Multi-Dimensional Arrays
	14.1.2 Summing the Elements in Subsequences

	14.2 Jagged Arrays
	Summary
	Exercises

	15 Class File
	15.1 Class File
	15.1.1 The File Path and the Instantiation of a File Object
	15.1.2 File Methods
	15.1.3 Exception Handling
	15.1.3.1 Error Handling Imposed by the Compiler
	15.1.3.2 ``Throwing'' a Run-Time Error
	15.1.3.3 ``Catching'' a Run-Time Error
	15.1.3.4 A Demonstration of Try-Catch

	15.1.4 File Listing

	15.2 Using Scanner Objects to Read from Files
	15.3 Using PrintStream to Write to Files
	Summary
	Exercises

	16 Designing Object Classes
	16.1 Packaging a Group of Data as an Object
	16.1.1 The Position of a Game Piece
	16.1.2 Private Instance Variables and the toString Method
	16.1.3 Using Constants in an Object Class
	16.1.4 Information Hiding

	16.2 An Object Class Representing a Bank Account
	16.3 Array with Capacity and Size (Reprise)
	Summary
	Exercises

	Part IV Advanced Concepts
	17 Interfaces, Inheritance, and Polymorphism
	17.1 Interface
	17.1.1 The Structure of an Interface
	17.1.2 A Simple Pizza Application
	17.1.2.1 A Simple Pizza Class
	17.1.2.2 Using an Interface as a Data Type
	17.1.2.3 Instance Variables and Constructors
	17.1.2.4 Reading Data
	17.1.2.5 Writing Data
	17.1.2.6 Adding a Pizza to the List
	17.1.2.7 Removing a Pizza from the List
	17.1.2.8 Viewing the Elements of the List
	17.1.2.9 The Pizza Collection Main Class

	17.2 Subclasses and Superclasses
	17.2.1 Extending Existing Classes and Interfaces
	17.2.2 Writing Extensions
	17.2.2.1 Writing a Subclass
	17.2.2.2 A Class for a Collection of PizzaComplex Data

	17.3 Polymorphism
	17.4 Boxed Data Types
	17.5 Interface Comparable
	Summary
	Exercises

	18 Generic Class Parameters and the Java Collection Framework
	18.1 ArrayList
	18.1.1 Maintaining a Collection of Merchandise Items
	18.1.2 The Class for Merchandise Item
	18.1.3 The Comparator Class
	18.1.4 The Collection of Merchandise Items That Uses ArrayList
	18.1.4.1 ArrayList
	18.1.4.2 The Instance Variables, the ``Getters'', and the ``Setters''
	18.1.4.3 The File Read/Write
	18.1.4.4 The Sorting Methods

	18.1.5 The Main Class
	18.1.5.1 The Method for Printing Prompt
	18.1.5.2 The Method main
	18.1.5.3 Adding and Removing
	18.1.5.4 Viewing and Sorting
	18.1.5.5 Making Changes
	18.1.5.6 File Read/Write

	18.2 The Dynamic Maintenance of the Largest K Values
	18.3 The Java Collection Framework
	18.3.1 The Framework
	18.3.2 Some Classes from the Framework
	18.3.3 A Demonstration

	Summary
	Exercises

	19 Online and Recursive Algorithms
	19.1 Online Algorithms
	19.1.1 The Definition of Online Algorithms
	19.1.2 Computing Recurrences
	19.1.3 Computing the Factorial Function

	19.2 Recursive Algorithms
	19.2.1 Computing the Factorial Function Recursively
	19.2.2 The Greatest Common Divisor of Two Integers
	19.2.3 The Tower of Hanoi
	19.2.3.1 The Problem Statement
	19.2.3.2 Our Solution
	19.2.3.3 Will the World End Soon?

	Summary
	Exercises

	Index

