Mitsunori Ogihara

Fundamentals
of Java
Programming

2 Springer

Fundamentals of Java Programming

Mitsunori Ogihara

Fundamentals of Java
Programming

@ Springer

Mitsunori Ogihara

Department of Computer Science
University of Miami

Miami, FL, USA

ISBN 978-3-319-89490-4 ISBN 978-3-319-89491-1 (eBook)
https://doi.org/10.1007/978-3-319-89491-1

Library of Congress Control Number: 2018940440

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true
and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied,
with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-89491-1

To my family

Preface

This book was born from the desire of having an introductory Java programming textbook whose
contents can be covered in one semester. The book was written with two types of audience in mind:
those who intend to major in computer science and those who want to get a glimpse of computer
programming. The book does not cover graphical user interfaces or the materials that are taught in a
data structure course. The book very quickly surveys the Java Collection Framework and the generics
in the penultimate chapter. The book also covers the concepts of online and recursive algorithms in
the last chapter. The instructors who choose to use this textbook are free to skip these chapters if
there is no sufficient time. Except for the code examples that receive parameters from the command
line, the code examples can be compiled and run in a command-line environment as well as in IDEs.
To execute those code examples in an IDE, the user must follow the step of provide args before
execution. The code examples appearing in the book have very few comments, since the actions of
the code are explained in the prose. The code examples with extensive comments are available for the
publisher. There are PDF lecture slides accompanying the book. They are prepared using the Beamer
environment of IATEX. The source codes of the lecture slides may be available through the publisher.

Acknowledgements I would like to take this opportunity to thank those who helped me in
writing this book: Paul Drougas (Springer), Victor Milenkovic (University of Miami), Ted Pawlicki
(University of Rochester), Ken Regan (University at Buffalo), Geoff Sutcliffe (University of Miami),
and Osamu Watanabe (Tokyo Institute of Technology). Huge thanks go to my daughter Ellen, who
painstakingly read through the draft and provided constructive criticisms.

Miami, FL, USA Mitsunori Ogihara

vii

Contents

PartI Programming Basics

1

“Hello, World!™”
1.1 The Programming Environment forJava
1.1.1 The Java Virtual Machine JVM)
1.1.2 Changing Folders in a Command Line Interface
1.1.3 Source Codes, Bytecodes, and Compilation
1.2 The First Program, “Hello, World!”
1.2.1 Methods and Their Declarationscooiiiiiiiinneen..
1.2.2 System.out.printlnand System.out.print................
1.2.3 Spacinginthe Source Code.o i
1.2.4 COomMMENtNG . ..o ottt ettt e e e e e e
125 BITOrS . .t
1.3 Using Multiple Statementsttt e e
1.3.1 System.out.printlnand System.out.print (Reprise)
1.3.2 Printing Multiple-Line Textsonthe Screen...........................
1.3.3 Escaping Charactersouuuutnin ettt
1.3.4 Printing Shapest
Using Data for Computation,
2.1 Data .
2.1.1 Data and Their TAXONOMYottt ettt e e e
2.1.2 Number Literals i
2.1.3 Variable Declarationst
2.14 Assigning Valuesto Variables. o ...
2.2 The Primitive Data Typesottt e e e
2.3 Using Variables for Computationc.ouiiuneiineiunneenneennnnn
2.3.1 Quarterbacks Program (Reprise).............ooiiiiiniiininnenn..
2.3.2 Number Arithmetics.ot e
2.3.3 Computing the Body-MassIndex,
2.34 Sum of Integers from 1 to 100alaGaussccoiieiennnn...
2.3.5 Simplified EXPressionsuieieiinn et
2.4 AnIntroduction to the StringDataType ...,
24.1 The StringDataTypecoouuiiiiiii ..
242 String Concatenation.ouueeneinernennenneeeeann

X Contents
3 Reading Keyboard Input. 69
3.1 ClaSS SCaAMIIET ittt ettt e et et e e e e 69
3.1.1 Importing Source Codesuuiirniiiineine i 69

3.1.2 The Instantiation of a Scanner Objectoiviiiiineinn..n. 70

3.2 Reading Data with a Scanner Objectc.oviiniiineiinneineennnn. 71

3.3 Reading Input from the Keyboard 71

4 Decomposing Code into Componentscoiuiiiniiineinnnennnann. 87
4.1 Procedural DecompoSitionouittuti e 87
4.1.1 Printing Rectangles i 87

4.1.2 Printing Quadrangles 92

4.1.3 “Old MacDonald Had a Farm” 95

4.1.4 A General Strategy for Procedural Decomposition..................... 101

4.2 Using Multiple Program Files i i, 104

5 Passing Values to and from Methods 109
5.1 Passing Valuesto Methods i i 109
5.1.1 Methods That Work with Parameters 109

5.1.2 Method Overloadingc.oiiuiiinniii i, 115

5.2 Receivinga Value fromaMethod i 119

53 Class Math 124
5.3.1 Mathematical FunctionsinJava iuiiiinain.. 124

5.3.2 Mortgage Calculation.ttt 131

6 Conditions and Their Use for Controlling the Flow of Programs 143
6.1 Condition and Its Evaluation 0 it 143

6.2 The If Statementst et 149
6.2 1 I 149

60.2.2 EISe ..o 156

6.23 If-Elselnside If/Elseo i, 158

6.2.4 Truncation of Conditional Evaluations. 162

PartII Loops

7

For-Loops 173
7.1 Using For-Loops for Repetition............ i, 173
T2 TMerationttt 180

7.2.1 Simple Iterationooii i 180

7.2.2 Tteration with an Auxiliary Variable, 186
7.3 Double FOor-Loopso oottt e 187
7.4 Computing the Maximum and Minimum in a Series of Numbers 193
7.5 ABetting Game.ottt 195

7.5.1 For-Loops with Skipped Execution 195

7.5.2 The Statements continue andbreak 199
7.6 Computing the Fibonacci Sequenceooiiiiiiiiiiiinneeeenn.. 201
Formatted Printing Using printf 211
8.1 General Rules for printf i 211
8.2 Formatted Printing of StringData L 212

8.3 Formatted Printing of Integers i i 214

Contents Xi

10

11

8.4 Formatted Printing of Floating Point Numbers 216
8.5 Printing the Fibonacci Sequence (Reprise). ..., 218
Classes Stringand StringBuilder...........c.coiiiiiiiniiiieiineinannn.. 225
9.1 Methods for Obtaining Information from StringData 225
9.2 Methods for Comparing String Data with Another.......................... 228
9.2.1 The Equality Test and the Comparison in Dictionary Order 228
922 ThePrefixand Suffix Testso 230
9.3 Methods for Searching for a Patternina StringData........................ 231
9.4 Methods for Creating New String Data from Another 234
9.4.1 String.format...... ...t 237
9.5 Class StringBuUilder ...ttt e 237
The Switch Statements. 245
10.1 The Syntax of Switch Statements iiiiiiiiiiiineeennn.. 245
10.2 Using a char Datain a Switch-Statement. 252
10.3 Using a String Datain a Switch Statement 257
While-Loops and Do-While Loops 263
I1.1 Using While-Loopsottt e e e e 263
11.1.1 The Syntax of While-Loopsc.ouiiriiiiiniiniinennennn. 263
11.1.2 Summing Input Numbers Until the Total ReachesaGoal 265
11.1.3 Integer Overflow.t et 266
11.1.4 Vending Machinesoouuuiiinniiiee it 268
11.1.5 The Collatz CONJEeCtureuuueeeuumnnn e, 270
11.1.6 Covnerting Decimal Numbers to Binary Numbers 273
11.1.7 Infinite Loops and Their Termination.coun... 276
11.2 Using Do-While Loops oo oot e e 276
11.2.1 The Syntax of Do-While Loops ..., 276
11.2.2 “Waiting for Godot” 277
11.2.3 Converting Decimal Numbers to Binary Numbers (Reprise) 278
I1.3 CTRL-D . o 279
11.4 Approximating the Square Root of a Real Number............................ 283

Part IIl Arrays and Objects

12

ALY oottt 295
L2010 ATTAYS . o vttt et et e e e 295
12.1.1 The Structure of an ATTayttt i, 295
12.1.2 Computing the Number of Occurrences.c.ooveiieernnen.. 296
12.1.3 ArrayIndexOutOfBoundsExceptioncovvviinnnn.. 303
12.2 Relative Indexingttt 305
12.2.1 The Concept of Relative Indexing, 305
12.2.2 Calculating the BMI for a Range of Weight Values 306
12.2.3 Counting the Occurrences of Characters 307
123 Arraysof booleanData 310
12.4 Using Multiple Arrayscoooui it e 314

12.5 String Methods That Returnan Array i, 317

xii Contents

13 The Class Arrays and Resizing Arrays, 325

13,1 The Class AT ray S « oottt et ettt et e e e e e ettt et 325

13.2 Reordering Elements in an Arrayuueunneineiineenneeneennnns 329

13.2.1 Reversing the Order of Elements, 332

13.2.2 Cyclic Shiftingt e 332

13.3 Modifications of an Array That Require Resizing 336

13.3.1 Insertion and Deletion, 336

13.3.2 Adjoining TWO AITAYSottt ettt et e e 341

134 BTG S ot e 342

13.5 Searching for an Elementin an Arrayooiiiuinneiiinneeeenn.. 343

13.5.1 Sequential Search......... 343

13.52 Binary Search 344

13.6 Arrays with Capacity and Size......... ... i 345

14 Multidimensional ATTays ittt 357

14.1 Rectangular AITAYSottt ettt e e e e e et 357

14.1.1 Defining Multi-Dimensional Arrays...............ccoiiiiiiiinnn... 357

14.1.2 Summing the Elements in Subsequences................ccooviine.... 358

14.2 Jaged AITAYS . .ottt ittt et e ettt e e e 361

IS Class Fade ..ot e 367

I5.1 Class FAde ottt it e e e e e 367

15.1.1 The File Path and the Instantiation of a File Object 367

15.1.2 FileMethodscoouunii e 368

15.1.3 Exception Handling 370

15.1.4 File LiStingttt e e 376

15.2 Using Scanner Objects to Read from Files......... i, 378

15.3 Using PrintStreamto WritetoFiles......... 384

16 Designing Object Classes.ttt 391

16.1 Packaging a Group of DataasanObject 391

16.1.1 The Positionof aGame Piece 391

16.1.2 Private Instance Variables and the toString Method................. 395

16.1.3 Using Constants in an Object Classccooviiiiiiinennnenn.. 398

16.1.4 Information Hiding.t i 402

16.2 An Object Class Representing a Bank Account................., 408

16.3 Array with Capacity and Size (Reprise)ooeuuinneiinneeennnn. 415
Part IV Advanced Concepts

17 Interfaces, Inheritance, and Polymorphism 427

17.1 INterfaceo vttt 427

17.1.1 The Structure of an Interface. 427

17.1.2 A Simple Pizza Applicationcoiiiiiiiiiiniiinn... 427

17.2 Subclasses and SUPEICIasSesttt e 435

17.2.1 Extending Existing Classes and Interfaces 435

17.22 Writing EXtensions 437

17.3 PolymorphiSm 445

Contents xiii

18

19

17.4 Boxed Data TYPeso o vttt e 446
17.5 Interface Comparalbleottt e e e et 447
Generic Class Parameters and the Java Collection Framework 457
18,1 ArrayLid St oottt e 457
18.1.1 Maintaining a Collection of Merchandise Items 457
18.1.2 The Class for Merchandise Item oo iiiiin.... 457
18.1.3 The Comparator Classccvuiitiineiiieiieiineaeennn. 458
18.1.4 The Collection of Merchandise Items That Uses ArrayList 459
18.1.5 The Main Classoutuun ettt et 463
18.2 The Dynamic Maintenance of the Largest K Values 471
18.3 The Java Collection Framework i, 473
18.3.1 The Framework. i i 473
18.3.2 Some Classes from the Framework 475
18.3.3 A DemoOnStrationuuuuetue ettt 477
Online and Recursive Algorithms 485
19.1 Online AIZOTItNMSttt e e e e 485
19.1.1 The Definition of Online Algorithms oo oo, 485
19.1.2 Computing ReCUITences.ottt 486
19.1.3 Computing the Factorial Function, 489
19.2 Recursive Algorithms 492
19.2.1 Computing the Factorial Function Recursively........................ 492
19.2.2 The Greatest Common Divisor of Two Integers 497
19.2.3 TheTower of Hanoicoiiii i 500

List of Figures

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

1.1
1.2
1.3
1.4

3.1
3.2

4.1
4.2
43
4.4
4.5

5.1

6.1
6.2
6.3

6.4
6.5

7.1
7.2

11.1

12.1

13.1
13.2
13.3
13.4
13.7

The program layers, JVM, JRE,

A screen short of Terminal on a
An IDE screen of Eclipse

andJDK
Mac OS Xmachine

The compilation and execution of HelloWorld.javac.c.......

The results of five consecutive callsof next
The results of executing a program that uses next and nextLine

The method calls in Rectangle0louiiiiineineineiinennnn.
The method calls in Rectangle02 ..ot iie i
The decomposition of actions in the generation of the quadrant
The dependency among methods in O1dMacDonaldDecomposed. java ..
The dependency among methods in the two source code

The call-by-reference concept .

The execution diagram of an if-statementccuun...
The execution diagram of Temperature0l.javac.ooveeeeennn...

The combinations of temperature and humidity considered in Temperature03

The execution diagram of an if-else statement
A hypothetical situation with interwoven conditions

A generic flow chart of for-loops i
The code execution diagram of ForExamplec........

A diagram that represents the while-loop

Aview of anarray

Swapping values between two array elements
Reversing the order of appearance of elements in an array
The results obtained by executing cyclic shifts
An algorithm for left cyclic shift

An array with capacity and size

[©) WO, RN SN N

73
77

91
93
94
101
104

116

150
152

154
156
160

176
177

264
296
331
332
333

334
346

XV

XVi List of Figures
Fig. 13.8 The concept of a array with capacity andsize 346
Fig. 14.1 The structure of a multi-dimensional array 358
Fig. 15.1 = The mechanism for handling run-time errors 371
Fig. 16.1 An8 x 8gameboard i 392
Fig. 16.3 A black boXt 402
Fig. 17.1 Two interfaces and their implementationsoo.o... 436
Fig. 172 A PizzaComplex ODJECtttt i e e 438
Fig. 18.1 = The Java Collection Framework 474
Fig. 182 A LInKeALd St ...ttt ittt e e e e e 476
Fig. 183 Ahashtableo 477
Fig. 19.1 The value passing that occurs during the computation of the factorial (part 1) .. 495
Fig. 19.2 The value passing that occurs during the computation of the factorial (part 2) .. 495
Fig. 19.3 The value passing that occurs during the computation of the factorial (part 3) .. 495
Fig. 19.4 The value passing that occurs during the computation of the factorial (part4) .. 495
Fig. 19.5 The value passing that occurs during the computation of the factorial (part5) .. 495
Fig. 19.6 ~ The value passing that occurs during the computation of the factorial (part6) .. 496
Fig. 19.7 The value passing that occurs during the computation of the factorial (part7) .. 496
Fig. 19.8 The value passing that occurs during the computation of the factorial (part8) .. 496
Fig. 19.9 The value passing that occurs during the computation of the factorial (part 9) . 496
Fig. 19.10 The value passing that occurs during the computation of the factorial (part 10) 496
Fig. 19.11 The value passing that occurs during the computation of the factorial (part 11) . 497
Fig. 19.12 Anexample of the tower of Hanoi 500
Fig. 19.13 The solution to a small Tower of Hanoi problem 502

List of Tables

Table 1.1 Ashortlistof commands......... ... i 5
Table 1.2 The list of meaningful symbolsinJava it 21
Table 2.1 The primitive data tyPe vvvn ettt ittt 35
Table 2.2 The list of reserved words inJava i iiiinnnaon. 39
Table 2.3 The selection of number typesottt 45
Table 3.1 Selected methods of Scannero i 75
Table 5.1 One-parameter functions in Mathot 125
Table 5.2 Two-parameter functionsinMath 125
Table 9.1 Alistof Stringmethodsc. it i 226
Table 10.1 The output generated by the three examples of switch 246
Table 15.1 Alistof Filemethods 369

Xvii

Partl

Programming Basics

“Hello, World!” 1

1.1 The Programming Environment for Java
1.1.1 The Java Virtual Machine (JVM)

Java is one of the most popular programming languages. It is a descendant of the programming
language C and is much related to C++. Java, like C++, embodies the concept of object-oriented
programming, which allows a programmer to define a type of data with its permissible set of
operations.

To execute a Java program on a machine, the machine needs an installation of the Java Running
Environment (JRE). A major part of JRE is the Java Virtual Machine (JVM). JVM creates an
environment where Java programs interact with the hardware.

A programmer creates a Java program by writing its source code. A source code is a text file that
describes the program according to the syntax of Java and has the file name extension .java. An
executable Java program generated from a source code is called Java bytecode, and has the file
name extension .class. To generate a Java program from a source code, the machine needs an
extension of JRE called the Java Development Kit (JDK) (see Fig. 1.1).

The Java language that comes with JDK consists of two parts. The first part, called java.lang,
is an essential component of Java. The second part is a collection of source codes that can be selected
and added to the Java program being written.

To write and edit a Java source code, a text editor is needed. Some editors understand the syntax of
Java and offer a variety of assistance. Popular text editors, which can be used for editing general text,
include: vim, emacs, and sublime.

The process of generating Java bytecode from a Java source code is called compilation. A primitive
way to compile a Java source code is to execute a compilation command in a command line interface.
Modern computers usually come with command line interfaces. For example, Mac OSX has Terminal
and Windows has emd. There are other downloadable command line interfaces. A command line
interface is a program that interacts with the user on a text screen (see Fig. 1.2). The user types,
according to the syntax of the command line interface, a character sequence representing an action
he/she wishes to take. This sequence is called a command or a command line. On the interface screen,
the characters that the user types appear (or “echo”) as they are being typed. After completing the
command, the user hits the return key. The command line interface then attempts to parse the entered

© Springer Nature Switzerland AG 2018 3
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_1

https://doi.org/10.1007/978-3-319-89491-1_1

1 “Hello, World!"

Fig. 1.1 The program

TN "
layers, JVM, JRE, and JDK Source Codes & Editing Tools, o
Byte Codes IDE Application
Program
Other Layer
Applications .
A —_
. X Operating
) Vo System
Operating System o Layer
A JRAN
\4 © . Hardware
Hardware : Program
Programs ' Layer
\ & -
| Hardware
Fig. 1.2 A screen shot of . 3
Terminal on a Mac OS X :: 'ig LAkl
machine. The prompt is the of bookDraft/ exercisesPre2017/
percent sign followed by waif bookDraftArchive.zip figures/
one white space .DS_Store bookProposal/ instructorManual/
2017F/ codeVerd/ lectureSave/
2018F/ codeVerl/ lectureSlides/
README. txt codeVer2/ nfl/
Springer/ ellenShots/ temp/
allArchive.x* exams/
bookArchive. x* exercises/

%

command according to its syntax. If the command is syntactically correct, the interface executes the
action represented by the command. When the action occurs, some characters may appear on the
screen after the command line. If there are many such characters, the text screen scrolls down to show
however many characters will fit on the screen, starting with the most recent. If the command is not
syntactically correct, the command line interface prints an error message. To inform the user that it is
ready to accept a new command, the command line interface prints a special sequence of characters,
called prompt, e.g., the “percent” symbol % followed by one white space, or the “greater than” symbol
>. Table 1.1 is a select list of commands.

An interactive development environment (IDE) is a program that combines a program editor and a
command line interface with many additional features that make it easy to write (in particular, large)
computer programs (see Fig. 1.3). The most famous IDEs for Java are Eclipse and Netbeans.

1.1.2 Changing Folders in a Command Line Interface
A command line interface (such as the program Finder for Mac and the program Folder for Windows)

works in one specific file folder. The specific folder is called the working folder (or the working
directory). In Finder and Folder, switching to a different folder is done by clicking icons. In a

1.1 The Programming Environment for Java 5

Table 1.1 A short list of commands available in the Terminal programs for Mac OSX and Linux, as well as their
counterparts in the Windows cmd

Terminal

(Mac OSX/Linux)
cd FOLDER

cd

cd

pwd

1ls

ls FILE

rm FILE

rmdir FOLDER
mv FILEl1l FILE2
cp FILEl1l FILE2
mkdir FOLDER

cmd Function

(Windows)

cd FOLDER Change folder to FOLDER

cd Change to the home folder

cd Change to the parent folder

chdir Print the working folder

dir Listing of all files in the folder

ls FILE Listing of FILE in the folder

del FILE Remove the file FILE

del FOLDER Remove the folder FOLDER (must be empty)

move FILEl1l FILE2
copy FILEl FILE2
mkdir FOLDER

Rename FILE1 to FILE2
Copy FILEI to FILE2
Create the folder FOLDER

cat FILE type FILE Show the contents of FILE
more FILE more FILE Show the contents of FILE in chunks
enon (1) Java - €5€220/src/chapter05 [ArrayStack.java - Eclipse - [Users/mogihara/work e e

[y M
LT

Qi (e BN RS0 HEG OO P S g [5Gl

Crr

75 | §dlava Browsing &f1Java | 45 Debug

2 Package Explorer 22
» 210
» 527
» (= Classics
¥ (= cscaz0
¥ (Brc
[alphaPrefix
» [bloomFilter
> i chapter0l
b [chapter02
* £ chapter03
» i chapter03supplement
» i chapter04
¥ [chapter0s
1] ArrayStack java
¥)] InfixToPostfix.java
®] LinkedStack java
ListStack java

» [I] InfixToPostfixParens.java

ixedParenMatching. java
[4) PalindromeFinder.java
[4] ParenChecker.java
» [1] PostfixEvaluator.java
» [1] PostFixTest java
» [stackint java
X KWsOChapter5.zip
> [chapter06
b [§ chapter07
» [chapter08
¥ B chapter09
» [chapterl0
» [chapterll
» B chapterl2
¥ [directory
* i examples
& M iakOn

[
>
L

) ArrayStack java 82 =0
1 package chapterds;
i@ import jove.util.EmptyStockException;
soe
* Implementation of the interface StockInt<E» using an array.
. t Koffman & Wolfgeng
public claoss ArrayStock<E> implements StockInt<E> {
// Data Fields
/** Storage for stock. */
E[] theData;
/** Index to top of stack. */
int topOfStack = -1; // Initially empty stack
private stotic final int INITIAL_CAPACITY = 19;
Joe
* Construct an empty stock with the defoult initial cepacity.
L7
24 public ArrayStack() {
& 25 theData = (E[1) new Obiect[INITIAL_CAPACITY];
s
* Insert o new item on top of the stock. post: The new item is the top item
* on the stack. All other items are one position lower
. obj
. The itam ta ke incantad
B console 22 O-= 0o
No consoles to display at this time.
Writable Smart Insert 1:1

Fig. 1.3 An IDE screen of Eclipse

command line interface, this switch is made by typing a special command. The name of the command
is cd (which stands for “change directory”). The syntax of cd is:

cd FOLDER_PATH

6 1 “Hello, World!"

Here, FOLDER PATH specifies how to get to the target folder from the working folder. In Chap. 15,
we study the general concept of file paths.

The folder moves are composed of two basic moves: moving to one of the folders that belong to
the present folder or moving to the parent (that is, the folder that the working folder belongs to as a
subfolder). To move to a child folder, the path that is specified is this child folder’s name. To move to
the parent, the path that is specified is . . (i.e., two periods).

It is possible to combine successive folder moves into one path. For a non-Windows system like
Mac OSX and Linux, this is done by inserting / between the individual moves. For Windows, \ is the
folder separator. For example, in Mac OSX,

cd ../foo/bar

changes the working folder to the parent, to a child of the parent named foo, and then to a child of
the child named bar. bar is thus a grandchild folder of the parent of the present working folder.

To check what the working folder directly is, the command pwd can be used for a non-Windows
system, and chdir for Windows. These commands print the path to the working folder, starting from
the “home” folder on the screen. It is also possible to take the inventory of the files in the working
folder using the command 1s for a non-Windows system, and dir for Windows. This command
produces a list of all the files in the working folder.

1.1.3 Source Codes, Bytecodes, and Compilation

As mentioned earlier, all Java source files must have the file name extension .java. We call them
Java files. To compile the source code Foo . java in a command line interface, one must type the
command:

javac Foo.java

If the source code compiles without error, a file named Foo. class is created. This is the bytecode
of the program. We call it a class file. If the class file already exists, then the file is overwritten
upon successful compilation. In the case of IDE, .class files are generated only during the
execution process. If Foo.java has compiled successfully, the program can be executed by using
the command:

java Foo

after the prompt.

Here is an example of a user interaction with a command line interface, where the user tries to
compile and then execute a program whose source code is HelloWorld. java (Fig.1.4). The
prompt of the command line interface is the percent symbol followed by one white space. The first
line is the compilation command, the second line is the execution command, the third line is the result
of executing the code, and the fourth line is the command prompt after the execution.

Fig. 1.4 The compilation .
and execution of % javac HelloWorld.java

. % java Helloworld
HelloWorld. java Hello, World!
%

1.2 The First Program, “Hello, World!" 7

1.2 The First Program, “Hello, World!”

Let us start writing Java programs. Our first program is the popular Hello, World! program.

1 |public class HelloWorld

2 |4

3 public static void main(Stringl[] args)
4 {

5 System.out.println("Hello, World!");
6 }

7}

Listing 1.1 HelloWorld.java

Executing this program produces a single line of output:

Hello, World!

Using this code, we shall learn some important ingredients of Java programs.
The three words in the first line:

public class HelloWorld
state that:

(a) this is a program unit of type class,
(b) the unit is named HelloWorld, and
(c) the unit is accessible from all other Java program units.

There are four kinds of program units: class, interface abstract class, and enum. This
book covers class and interface only.

The keyword public specifies that the unit is accessible from other program units. A keyword
that specifies the accessibility of program units and their components is called a visibility attribute.
There are three explicit visibility types: public, private, and protected. The default visibility
type, when there is no explicit visibility attribute, is the package visibility.

The order of appearance of the three components,

VISIBILITY TYPE UNIT TYPE NAME

applies to all Java source code files.

Every source file in Java has the file extension .java. In a single . java file, multiple classes
can be defined, simply by concatenating their source codes. In such a case, at most one class may be
public. In addition, if a source file contains a unit with the public visibility, the name of the unit
must match the file name. For example,

class Foo

{

3

class Bar

{

0N O U W

3

is okay, but

1 “Hello, World!"

[0O~ O U W

00O~ O Ut W+

S not.

public class Foo

{
X
public class Bar

{

¥

public class Foo

{

}
class Bar

{

3

is acceptable as well, but the source file must be Foo . java.

Let us do an experiment. If the class name is changed from HelloWorld to Hello while

preserving the file name HelloWorld. java:

N O Ut W N

public class Hello
{
public static void main(Stringl[] args)
{
System.out.println("Hello, World!");
}
}

attempting to compile the source code (that is, the command javac HelloWorld.java)
produces the following error message:

DU W N

HelloWorld. java:1: error: class Hello is public, should be
declared in a file named Hello. java

public class Hello

{

1 error

The first two lines of the error message state the nature of the error, which is that, to define a class by
the name of Hello, the file name must be Hello. java. The next three lines of the error message
specify the location of the error using the “caret” symbol *. According to the marking, the error is
at the class declaration. The last line of the error message is the total number of errors found in the
source code.

If the source file name HelloWorld. java is retained but the public attribute is removed, like

this one:

1.2 The First Program, “Hello, World!" 9

1 |class Hello

2 |{

3 public static void main(String[] args)
4 {

5 System.out.println("Hello, World!");
6 }

7T}

the code compiles, but the . class generated is Hello.class, not HelloWorld.class.

1.2.1 Methods and Their Declarations

In Java, curly brackets { } are used to enclose units, components, and code blocks. For example, the
declaration of each program unit (such as class and interface) should be followed by a matching pair
of curly bracket. Two matching pairs appear either one after the other or one inside the other; that is,

either { ... { ...} ... } o { ...} ... { ...}

For a source file to compile successfully, all of its curly brackets must have unique matching partners.
Thus, the depth of a text in a source code can be defined as the number of matching pairs enclosing
it. Multiple methods may appear in one source code.

In the source code of HelloWorld. java, the opening line public class HelloWorld
is at depth 0, public static void main(String[] args) is at depth 1, and
System.out.println(...) isatdepth 2. The component appearing between lines 3 and 6
is called a method.

A method has a name and defines a set of actions needs to be performed. Some methods process
information given to the in the form of parameters. Some methods report the results through the use
of return values. We cover this topic in Chap. 5.

A special kind of method is the method main. Each method main takes the form of:

public static void main(String[] args)

as its declaration. The term args appearing in the parentheses represents the sequence of characters
that the user types in the command line after the name of the program. We study args in Sect. 13.4.
Only Java classes with a method main can be executed.

The general method declaration consists of the following, where the parts in boxes are optional.

[VISIBILITY| [static| RETURN_TYPE NAME (| PARAMETERS |)| THROWS |

Optional Required for Required Required Required Optional
Static Methods

In the case of the method main, the attribute public states that the method is accessible from
outside, the attribute static states that the method is part of some executable program, the return
type void states that the method has no return value, and String[] args specifies that the
parameter is args and its data type is String[]. We study the meaning of square brackets in
Chap. 12. The last component is about handling errors that occur during the execution of the program.
We study this in Chap. 15.

10 1 “Hello, World!"

1.2.2 System.out.printlnandSystem.out.print

The method main has only one action:
System.out.println("Hello, World!");

This produces the output of Hello, World!. A sequence of characters that defines one unit of
action is called a statement.

Generally, a statement ends with a semicolon. The role of a statement is to perform a certain task.
A method can contain any number of statements, including none. The statements are executed in the
order they appear.

The period plays a special role in Java; it implies possession. System.out .printlnreferstoa
method (by the name of print1n) associated with System. out, which is part of a group of virtual
hardware components named System. The siblings of System.out include: System.err, for
printing error messages, and System. in, for keyboard input.

The method println converts the data appearing inside its parentheses to a series of characters,
and then prints the series on the screen with the newline character (the equivalent of the return key) at
the end. The sequence "Hello, World!" is the thirteen character sequence:

'H' ‘e’ '1’ '1’ ‘o’ ‘,' ' ' YW ‘o’ 'xr’ r1' rdr '’
The double quotation mark " that surrounds the thirteen-character sequence is for marking the start
and the end of the sequence. A character sequence encased in a pair of double quotation marks is
called a String literal.

The method System.out.println automatically prints the newline character at the
end. Sometimes the attachment of the newline is not desirable, e.g., when a single line of
output is built by combining multiple outputs. The method System.out.print, a sibling of
System.out.println, is helpful in such an occasion. The method System.out .print does
the same as System.out.println, except that it does not append the newline character at the
end. Furthermore, System.out .println () has the effect of typing the return key (that is, going
to the next line without printing any other character), while System.out .print () is syntactically
incorrect because System.out . print () means “print nothing”.

If the method call is changed from System.out .printlnto System.out.print, how will
the output change? Here is the new code. The program has a new name HelloWorldO1l.

1 |public class HelloWorldO1l

2 |1

3 public static void main(Stringl[] args)
4 {

5 System.out.print("Hello, World!");
6 }

7T}

Listing 1.2 A version of Hel1oWorld that uses System.out .print in place of System.out.println

The execution produces the following:

1 Hello, World!%

Listing 1.3 The result of executing HelloWorld. java

Note that the prompt % appears at the end line because of the use of System.out .print.

1.2 The First Program, “Hello, World!" 11

1.2.3 Spacingin the Source Code

In Java source code, the white space, the tab-stop, and the newline all serve as spacing characters. The
following spacing rules must be followed in Java:

* There should be some spacing between two consecutive occurrences of any of the following: type,
attribute, and name.

* Some mathematical and logical symbols run together to mean special operations. In this situation,
there should not be spacing between symbols.

* There should not be any newlines appearing inside a St ring literal (a character sequence within
a pair of double quotation marks).

Proper spacing makes Java source codes easy to read. For example, it is possible to write:

1 |System . out . println ("Hello, World!"
)
3 ;

instead of the plain

System.out.println("Hello, World!");

Although the Java compiler finds no problem in understanding this line of code, a human may find it
to be a bit difficult to parse.

It is advisable to limit the number of characters per line and work within that limit, breaking up long
lines into multiple smaller ones. The spacing, indentation, and the line width are up to the programmer.

Furthermore, indenting from the left end proportionally to the depth of code is good practice (recall
the discussion in Sect. 1.2.1). In other words, using some fixed quantity M, the code at depth D
receives an indentation of M - D white spaces. The code in this book utilizes this scheme with M = 2.!
Most code examples that appear in this book present each curly bracket as a stand-alone in one line.

1.2.4 Commenting

It is possible to insert texts that have no relevance to how the code runs. Such texts are called
comments. Comments are free-form texts. Java compilers ignore comments when producing class
files and so they exist only in the source file. A programmer can use comments to make notes to
him or herself. For example, comments can be about the expected behavior of the program and about
the underlying algorithms. To save space, the code examples presented in this book use comments
sparingly.

Java has three kinds of comment formats.

The first kind starts with two forward slashes / / appearing outside St ring literals. If two side-by-
side forward slashes appear outside multiple-line comments (see below) and outside St ring literals,
the two characters and all the characters appearing after them are treated as comments.

ISome people use M = 4 or M = 8. The latter is equivalent to the tab-stop; i.e., a tab-stop with a depth of 1.

12 1 “Hello, World!"

Because a programmer tends to limit the number of characters per line in the source code,
the comments that start with two forward slashes are naturally suitable for short comments. For
example, in

1 System.out.println("Hello!"); // first line
System.out.println("How are you!"); // second line

// first lineand // second line are comments.
To place longer comments, multiple consecutive lines starting with two forward slashes after some
indentation can be used, e.g.,

117777777777 77777777777777777777771717777777

// This program receives two numbers from

// the user and prints the result of performing
// addition, subtraction, multiplication, and
// subtraction on the two.

1177777777777 77777777777777777777777777777

U W N

are long comment lines.

There is a special way of specifying multiple-line comments. If a line starts with /% after an
indentation, then all the characters starting from the /% and ending with the next x/ are comments.
Using this option, a comment can be stated as:

1 /*

2 * This program receives two numbers from

3 * the user and prints the result of performing
4 * addition, subtraction, multiplication, and

5 * subtraction on the two.

6 */

The » appearing in the middle four lines are extraneous, but programmers tend to put that character
to make the vertical array of + look like the left border of the comments.
Be mindful of the following:

e /% appearing inside a matching pair of double quotation marks behaves as part of the String
literal. The same holds for =/ and //.

* All characters appearing between /+ and the matching %/ are comments. Therefore, / « appearing
in a matching pair of /* and «/ is part of the comment represented by the pair.

This means that the code

public class Foo
{
public static void main(Stringl[] args)
{
/* here is a comment
/* one more comment? x*/
*/
System.out.println("/*//");

O © 00~ U WN -

[

has no matching / % for the =/ in Line 7.

1.2 The First Program, “Hello, World!" 13

The last kind of comment is the Javadoc. The Javadoc is a variant of the aforementioned multiple-
line comment and uses a pair of /% and */ in place of /% and */. Javadocs are for publicizing
information about methods and classes and are written using a special syntax. IDEs such as Eclipse
are capable of presenting information available through Javadocs.

The following code shows some examples of commenting.

1 | /*

2 * Class for showing comment examples

3 * Written by Mitsunori Ogihara

4 */

5 |public class Comments

6 |{

7 /**

8 * main method

9 * Q@param args the arguments

10 */

11 public static void main(String[] args)
12 {

13 // There are two lines in the program
14 System.out.println("A code needs comments!");
15 }

16 | X

Listing 1.4 Examples of comments. Lines 1-4 form a multiple-line comment. Lines 7-10 form a Javadoc comment.
Line 13 is a single-line comment

1.2.5 Errors

A syntax error is a part of source code that fails to conform to the Java syntax. If a source code
contains syntax errors, the Java compiler, instead of producing the bytecode, produces an error
message stating that there are syntax errors. If there is a bytecode generated from the prior successful
compilation, that code remains the same without being updated.

The syntax error that a compiler produces is a bit cryptic and takes some experience to comprehend.
Mainly because the compiler is not aware of the true intension of the programmer who wrote the
erroneous code, the stated number of syntax errors does not necessarily agree with the actual number
of syntax errors.

Consider the following code, which is intended to execute three println statements successively.

1 |//---- This is the class name

2 |public class BuggyHelloWorld

3 /===

4 //---- Main method of the code

5 /] --=-

6 public static void main(String[] args)
7 {

8 System.out.pritnln("Hello, World!);
9 System.out.printin(Hello, Class!");
10 System.out.printin("Hello, its’ me!"):
11 ¥

12 |}

13 |}

Listing 1.5 A buggy version of the HelloWorld program. The intended class name is BuggyHelloWorld

14 1 “Hello, World!"

There are four syntax errors in the code:

1. the forward slash in line 3 should be a double forward slash,

2. the String literal in line 7 does not have a closing double quotation mark,
3. the colon at the end of line 7 should be a semicolon, and
4. There should be one more “}” at the end.

At the compilation step, we encounter the following error messages:

1 |BuggyHelloWorld.java:2: error: ’'{’ expected

2 |public class BuggyHelloWorld

3 ~

4 |BuggyHelloWorld.java:8: error: unclosed string literal
5 System.out.pritnln("Hello, World!);

6 A

7 |BuggyHelloWorld.java:8: error: ’;’ expected

8 System.out.pritnln("Hello, World!);

9 ~

10 |BuggyHelloWorld.java:9: error: illegal start of expression
11 System.out.printin(Hello, Class!");

12 »

13 |BuggyHelloWorld.java:9: error: ';’ expected

14 System.out.printin(Hello, Class!");

15 »

16 |BuggyHelloWorld.java:9: error: ')’ expected

17 System.out.printin(Hello, Class!");

18 »

19 |BuggyHelloWorld.java:9: error: unclosed string literal
20 System.out.printin(Hello, Class!");

21 »

22 |BuggyHelloWorld.java:10: error: ’;’ expected

23 System.out.printin("Hello, its’ me!"):

24 »

25 |BuggyHelloWorld.java:10: error: ’';’ expected

26 System.out.printin("Hello, its’ me!"):

27 »

28 |BuggyHelloWorld.java:13: error: class, interface, or enum expected
29 |}

30 |*°

31 |10 errors

Each error message consists of the source file name, the line number of the error, the nature of the
error, and the actual location of the error (indicated by the caret symbol). In the case of an IDE, instead
of presenting the errors in its command line interface screen, these errors are highlighted in the source
code editor screen.

As can be seen, the number of error messages is greater than the actual number of errors. Although
the number of error messages may exceed the number of true errors, it is always the case that the very
first error message corresponds to the very first syntax error. In the above example, “illegal start of
type” pointing to /- - - is a true syntax error. Fixing the very first syntax error in the source code first
is a good strategy.

There are two other types of errors: run-time errors and logic errors. Runtime errors are those
that occur during the execution of code, interrupting the execution. They often result in a premature
termination of the program. Logic errors do not necessarily result in run-time errors, but occur due to
misconception or flaws in the logic of the programmer.

1.3 Using Multiple Statements 15

1.3 Using Multiple Statements
1.3.1 System.out.printlnand System.out.print (Reprise)

As mentioned earlier, a method can contain multiple statements. If multiple statements appear in a
method, they act in the order of appearance. Multiple statements can be used to write a program that
executes a complex task.

Consider the following program that prints the “ABC Song”:

1 |public class MultilLines

2 1

3 public static void main(Stringl[] args)

4 {

5 System.out.println("A B C D E F G");

6 System.out.println("H I J KL M N 0O P");

7 System.out.println("Q R S and T U V");

8 System.out.println("W X Y and Z");

9 System.out.println("Now I know my A B C");
10 System.out.println("Won’t you sing along with me");
11 ¥

12 |}

Listing 1.6 A source code with multiple println statements

The program executes the six System.out.println statements from top to bottom, and
produces the following six-line output.

1 A BCDETFG

2 [HIJKLMNOTP

3 QRS and TUYV

4 |W X Y and Z

5 |Now I know my A B C

6 |Won’t you sing along with me

Recall that System.out.print is the version of System.out.println without the
newline at the end.

The next code is a variant of the previous code. We have changed the first, third, and fifth
System.out .println statements to System.out .print statements.

1 |public class MultiLinesO1

2 |{

3 public static void main(Stringl[] args)

4 {

5 System.out.print("A B C D E F G");

6 System.out.println("H I J KL M N 0O P");
7 System.out.print("Q R S and T U V");

8 System.out.println("W X Y and Z");

9 System.out.print("Now I know my A B C");
10 System.out.println("Won’t you sing along with me");
11 ¥

12 |}

Listing 1.7 A source code with multiple print and println statements

16 1 “Hello, World!"

The result of executing the code is as follows:

1 ABCDEFGHIJKLMNOP
QRS and T U VW X Y and Z
3 |Now I know my A B CWon’t you sing along with me

The use of System.out .print at three places has reduced the number of output lines from six to
three. In each of the three lines, two outputs appear side-by-side with no gaps in between. Thus, to
make the connections appear correct, some characters are needed in between. The next code example
fixes this spacing issue by appending the command and the space (i.e., ", ") to the first, third, and
fifth sequences.

1 |public class MultiLines02

2 {

3 public static void main(String[] args)

4 {

5 System.out.print("A B C D E F G, ");

6 System.out.println("H I J K L M N O P");

7 System.out.print("Q R S and T U V, ");

8 System.out.println("W X Y and Z");

9 System.out.print("Now I know my A B C, ");
10 System.out.println("Won’t you sing along with me");
11 }

12 |}

Listing 1.8 A source code with multiple print and println statements with some punctuation

The result of executing the code is as follows:

—

ABCDEFG HIJKLMNOTP
2 |/OR S and TUV, WX Y and Z
3 |Now I know my A B C, Won’'t you sing along with me

1.3.2 Printing Multiple-Line Texts on the Screen

In a manner similar to the code for the ABC song, we can write a program that produces some
selected texts on the screen, for example, the poem “Autumn” by an American poet Henry Wadsworth
Longfellow (February 27, 1807 to March 24, 1882).

Thou comest, Autumn, heralded by the rain

With banners, by great gales incessant fanne
Brighter than brightest silks of Samarcand,

And stately oxen harnessed to thy wain!

Thou standest, like imperial Charlemagne,

Upon thy bridge of gold; thy royal hand
Outstretched with benedictions o’er the land,
Blessing the farms through all thy vast domain!
Thy shield is the red harvest moon, suspended

So ‘long’ beneath the heaven’s o’er-hanging eaves;
Thy steps are by the farmer’s prayers attended;
Like flames upon an altar shine the sheaves;

And, following thee, in thy ovation splendid,

Thine almoner; the wind, scatters the golden leaves!

The code Autumn.java that appears next produces this poem on the screen by combining
System.out.print and System.out.println statements, where each line of the poem is
split into two statements.

1.3 Using Multiple Statements

)

H

>

1 |public class Autumn

2 |{

3 public static void main(String[] args)

4 {

5 System.out.println("Autumn, by Longfellow");

6 System.out.println();

7 System.out.print("Thou comest, Autumn, ");

8 System.out.println("heralded by the rain");

9 System.out.print("With banners, ");

10 System.out.println("by great gales incessant fanne"
11 System.out.print("Brighter than brightest ");

12 System.out.println("silks of Samarcand,");

13 System.out.print("And stately oxen ");

14 System.out.println("harnessed to thy wain!");

15 System.out.print("Thou standest, ");

16 System.out.println("like imperial Charlemagne,");
17 System.out.print("Upon thy bridge of gold; ");

18 System.out.println("thy royal hand");

19 System.out.print ("Outstretched with benedictions ");
20 System.out.println("o’er the land,");

21 System.out.print("Blessing the farms through ");
22 System.out.println("all thy vast domain!");

23 System.out.print("Thy shield is the red harvest moon
24 System.out.println("suspended");

25 System.out.print("So long beneath the heaven’s ");
26 System.out.println("o’er-hanging eaves;");

27 System.out.print("Thy steps are by the farmer’s ");
28 System.out.println("prayers attended;");

29 System.out.print("Like flames upon an altar ");

30 System.out.println("shine the sheaves;");

31 System.out.print("And, following thee, ");

32 System.out.println("in thy ovation splendid,");

33 System.out.print("Thine almoner, the wind, ");

34 System.out.println("scatters the golden leaves!");
35 }

36 |}

);

Listing 1.9 A source code for Autumn. java

The program produces the following output:

1

2 | Thou comest, Autumn, heralded by the rain

3 |With banners, by great gales incessant fanne

4 |Brighter than brightest silks of Samarcand,

5 |And stately oxen harnessed to thy wain!

6 |Thou standest, like imperial Charlemagne,

7 |Upon thy bridge of gold; thy royal hand

8 |Outstretched with benedictions o’er the land,

9 |Blessing the farms through all thy vast domain!
10 |Thy shield is the red harvest moon, suspended

11 |So long beneath the heaven’s o’er-hanging eaves;
12 |Thy steps are by the farmer’s prayers attended;
13 |Like flames upon an altar shine the sheaves;

14 |And, following thee, in thy ovation splendid,

15 |Thine almoner, the wind, scatters the golden leaves!

18 1 “Hello, World!"

1.3.3 Escaping Characters

Suppose we wish to print the following character sequence:
abc"def

To print a character sequence directly with System.out .print and System.out.println,
we attach the double quotation mark before and after the sequence. What if the sequence were
abc"def and we wrote out the statement as follows?

System.out.println("abc"def");

This would produce a compilation error.
The next code is one that has triple double quotation marks.

1 |public class TripleQuote

2 |

3 public static void main(String[] args)
4 {

5 System.out.println("abc"def");

6 1

7

}

Listing 1.10 A code that attempts to use a quotation mark inside a character sequence

The compiler produces the following error messages:

1 |TripleQuote.java:3: error: ')’ expected

2 System.out.println("abc"def");

3 A

4 |TripleQuote.java:3: error: unclosed string literal
5 System.out.println("abc"def");

6 ~

7 |TripleQuote.java:3: error: ’;’ expected

8 System.out.println("abc"def");

9 A

10 |TripleQuote.java:5: error: reached end of file while parsing
11

12 »

13 |4 errors

What happened during the compilation attempt? The Java compiler tried to pair the first double
quotation mark with another. It chose, however, to pair the second quotation mark with the first.
The compiler then tried to make sense of the remainder def ", but it could not.

To correct this problem, we need to tell the compiler that the middle double quotation mark is not
the end marker. Attaching a backslash \ before the quotation mark accomplishes this.

n abc\ ndef"

With this modification, the code looks like:

public class TripleQuoteCorrect

{

public static void main(Stringl[] args)

{
}

System.out.println("abc\"def");

NN AW =

}

Listing 1.11 A code that prints a quotation mark inside a character sequence

1.3 Using Multiple Statements 19

and the code generates the output as intended:

abc "def

We call the action of attaching the backslash to relieve a symbol of its regular duties escaping.

With escaping, we can insert a newline character using the combination \n. To include a tab-stop
character, we can use \ t instead of using of the actual tab-stop. The benefit of using the \ t is that the
character is visible; if we use the tab-stop character as it is, it is difficult to tell later whether a gap we
see is indeed a tab-stop or just a series of the white space.

Finally, to escape the backslash character, we use the double backslash \ \.

Assuming that the tab-stop positions of a terminal program are at every eighth position starting
from the left end, the statement:

System.out.println("abcdefgh\n\"\\i\tj\nk");

produces the following output:

1 |abcdefgh
2 ll\i j
3 |k

We can use escaping to print texts with quotation marks and backward slashes. Listing 1.12 is a
program that prints a quotation from Mark Twain’s Adventures of Huckleberry Finn. In one line of
the quote, the addition of System.out .println and the indentation makes the line too long to
fit in the width of 72 characters. To solve this issue, we split the line into two: the first half with
System.out.print and the second half with System.out.println (Lines 17 and 18).

1 |public class HuckleberryFinn

2 |{

3 public static void main(Stringl[] args)

4 {

5 System.out.println("\\Quoted from Huckleberry Finn\\");

6 System.out.println("I broke in and says:");

7 System.out.println("\"They’re in an awful peck of trouble, and\"");

8 System.out.println("\"Who is?\"");

9 System.out.println("\"Why, pap and mam and sis and Miss Hooker;");

10 System.out.println("\tand if you’d take your ferryboat and go up
there\"");

11 System.out.println("\"Up where? Where are they?\"");

12 System.out.println("\"On the wreck.\"");

13 System.out.println("\"What wreck?\"");

14 System.out.println("\"Why, there ain’t but one.\"");

15 System.out.println("\"What, you don’t mean the Walter Scott?\"");

16 System.out.println("\"Yes.\"");

17 System.out.print("\"Good land! what are they doin’ there, ");

18 System.out.println("for gracious sakes?\"");

19 System.out.println("\"Well, they didn’t go there a-purpose.\"");

20 }

21 |}

Listing 1.12 A program that prints a quotation from Mark Twain’s Adventures of Huckleberry Finn

Executing the code produces the following output.

20 1 “Hello, World!”
1 |\Quoted from Huckleberry Finn\

2 |I broke in and says:

3 |"They’'re in an awful peck of trouble, and"

4 | "Who is?"

5 | "Why, pap and mam and sis and Miss Hooker;

6 and if you’d take your ferryboat and go up there"

7 | "Up where? Where are they?"

8 |"On the wreck."

9 | "What wreck?"

10 "Why, there ain’t but one."

11 | "What, you don’'t mean the Walter Scott?"

12 | "Yes."

13 | "Good land! what are they doin’ there, for gracious sakes?"
14 | "Well, they didn’t go there a-purpose."

00~ O Utk W

[e e e e el e
O © 00U W~ OO

Using \n as the newline, we can print multiple short lines into single statements, as shown in
List 1.13. Note that most of the lines contain \n in the character sequence that needs to be printed.

public class HuckleberryFinnO1
{
public static void main(Stringl[] args)
{
System.out.print ("\\Quoted from Huckleberry Finn\\\n");
System.out.print("I broke in and says:\n\"They’re in");
System.out.print(" an awful peck of trouble, and\"\n");
System.out.print("\"Who is?\"\n\"Why, pap and mam and ");
System.out.print("sis and Miss Hooker;\n\tand if you’d ");
System.out.print("take your ferryboat and go up there\"");
System.out.print("\n\"Up where? Where are they?\"\n");
System.out.print("\"On the wreck.\"\n\"What wreck?\"\n");
System.out.print("\"Why, there ain’t but one.\"\n");
System.out.print("\"What, you don’t mean the Walter ");
System.out.print("Scott?\"\n\"Yes.\"\n\"Good land! ");
System.out.print("what are they doin’ there, for ");
System.out.print("gracious sakes?\"\n\"Well, they ");
System.out.print("didn’t go there a-purpose.\"\n");
}
}

Listing 1.13 A program that uses squeezed print statements to produce the same quotation from Mark Twain’s
Adventures of Huckleberry Finn as before

The execution produces exactly the same result as before.

Java uses many symbol sequences, including escaping. Table 1.2 summarizes all such symbol
sequences.

1.3.4 Printing Shapes

Previously, we used multiple System. out . println statements to produce multiple-line texts on
the terminal screen. Expanding on the idea, now we write Java programs that print shapes on the
terminal screen.

1.3 Using Multiple Statements 21

Tablg 1.2 The list qf [1 Arrays () Parameters
;r;;z;mngful symbols in {} Code block <> Type parameter
Class membership = Assignment
; Statement separator , Parameter separator
? If-then-else value selection g Case presentation
+ Addition/concatenation - Subtraction, negative sign
* Multiplication / Quotient
% Remainder, format type parameter
++ Increment - Decrement
+= Direct addition -= Direct subtraction
+= Direct multiplication /= Direct quotient
%= Direct remainder
== Equality != Inequality
> Greater than < Smaller than
>= Greater than or equal to >=Smaller than or equal to
&& Logical AND || Logical OR
! Negation
« Signed left shift » Signed right shift
«< Unsigned left shift »> Unsigned right shift
& Bit-wise AND | Bit-wise OR
* Bit-wise XOR
&= Direct bit-wise AND | = Direct bit-wise OR
*= Direct bit-wise XOR
@ Javadoc keyword // Line comment
/% Multiple-line comment start /%% Javadoc start
*/ Multiple-line comment/Java end
\ Escape \\ Backslash character
\n The newline character \t The tab-stop character
\’ Single quote in a char literal %% the % Character in format strings

$n The newline character in format strings

Suppose we want to print the figure of a right-angled triangle like the one appears next:

/1
/|
/|
/]
|

|

/
/
/

NN AW =

In the drawing, we use the forward slash / for the left side of the triangle, the vertical | for the right
side of the triangle, and the underscore _ for the bottom side.

22

1

“Hello, World!"”

The following code will do the job:

1 |//-- print a triangle

2 |public class Triangle

3 €

4 public static void main(Stringl[] args)
5 {

6 System.out.println(" AREDN
7 System.out.println(" /AN DN
8 System.out.println(" /o)
9 System.out.println(" / [")
10 System.out.println(" / [)5
11 System.out.println(" / [s
12 System.out.println("/______ [)5
13 ¥

14 |}

Listing 1.14 The code for producing a right-angled triangle

How about an isosceles triangle, like this one?

/\

NN R W~
~
—~

Using the \ for the right edge, we come up with the following code:

1 |//-- print an isosceles

2 |public class Isosceles

3 |4

4 //-- main method

5 public static void main(String[] args)

6 {

7 System.out.println(" /\\"); // line 1

8 System.out.println(" / \\"); // line 2

9 System.out.println(" / \\"); // line 3
10 System.out.println(" / \N\")5 // line 4
11 System.out.println(" / \\"); // line 5
12 System.out.println(" / \\"); // line 6
13 System.out.println("/____________ \\" D); // line 7
14 ¥

15 |}

Listing 1.15 A code for printing on the screen an isosceles triangle

Let’s try printing an isosceles upside down, as shown next:

NN AW =
—~
~

Summary 23

The shape looks a bit unwieldy, since we are using the dash to draw the top line. The triangle will
look better if we draw the top line using an over-line bar character, but unfortunately, such a character
does not exist in our standard character set, so the dash is our only option.

O~ O UL W~

e}

10
11
12
13
14
15

//-- print an isosceles upside down
public class UpsideDownIsoscelesCorrect
{
//-- main method
public static void main(Stringl[] args)
{
System.out.println("\\------------ /"); // line 7
System.out.println(" \\ /"); // line 6
System.out.println(" \\ /"); // line 5
System.out.println(" \\ /"); // line 4
System.out.println(" \\ /"); // line 3
System.out.println(" AN VAL I // line 2
System.out.println(" \AVARDH // line 1
¥

Listing 1.16 The code for producing an upside-down isosceles triangle on the screen

Try writing programs that draw other interesting shapes!

Summary

A command line interface is an environment in which the user, through typing commands after a
prompt, interacts with the system.

In command line interfaces and programming environments, there exists a “working folder”.

The standard header of a Java class is public class CLASS NAME. Its file name should be
CLASS NAME.java.

An executable Java class has public staticvoid main(Stringl[] arg).

To compile a Java program, use the command javac CLASS NAME.java.

The Java compiler may produce compilation errors due to syntax errors.

The command to use when executing a Java bytecode by the name of CLASS NAME is
java CLASS NAME.

A code that compiles may produce terminating errors. Such terminating errors are called run-time
eITorS.

A code that compiles and is free of run-time errors may still not run correctly. Logical errors are
the culprits.

Java programs use pairs of curly braces to define code blocks.

Unless they are appearing in the source code for an object class, methods need to have the static
attribute.

Methods and classes may have a visibility attribute.

Method declarations must have both a return value specification and a parameter specification.

In a method, multiple statements may appear. Each statement ends with a semicolon.
System.out.println is a method that produces the value of its parameter on the screen and
then prints a newline.

System.out .print is a method that produces the value of its parameter on the screen.

24

1 “Hello, World!"

To print the double quotation mark, the escape sequence of \ " is used.
To print the backslash as a character, the escape sequence of \\ is used.
There are three types of comments: single line comments, multiple-line comments, and Javadocs.

Exercises

1

DT W N~

. Terminology Answer the following questions:
(a) What is the formal name of the process for creating an executable Java code from a .java file?
What about the command used in the Unix environment for creating such an executable code?
(b) What is the file extension of a Java byte code?
(c) What is the command used for executing a Java byte code?
(d) In a java file two words usually appear before its class name. What are they?
(e) What are the three words that precede the main method in a .java file?
(f) State the differences between System .out .print and System.out.println.
(g) What are the three categories of errors in programming?
(h) In String literals, what sequences of characters must you use to print the double quote, the
backslash, and the newline?
. Main Declaration Of the following possible declarations for the method main, which ones
will compile?
(a) public static void main(String[] args)
(b) static void main(Stringl[] args)
(c) public static main(Stringl[] args)
(d) public static void(Stringl[] args)
(e) public static void main()
(f) public static void main(Stringl[])
(g) public static void main(args)
. Fixing errors The following code contains some errors and will not compile. State what we
must fix so that it will compile.

public class MyBuggyProgram {
public static main([]String args)
[
System.out.prink(’Hello!’):
]
¥

. Escaping Which of the following require a backslash when being included in a St ring literal
(i.e., a series of characters flanked by a pair of double quotation marks)?
e A
c/
(i.e., the forward slash)
*\

(i.e, the backslash)

(i.e., the percentage symbol)
e @
(i.e., the at sign)

Exercises 25

OO X I N AW~ @)} EOOO\IO\LII-PUJI\.)H

—_

~

SO 00NN W RN =

—_

OO AW — I

Nl

Programming Projects

. Alma Mater Write a program named AlmaMater that upon execution prints the Alma Mater
of your school. For the University of Miami, the output of the program should look like:

UM ALMA MATER

Southern suns and sky blue water,
Smile upon you Alma mater;
Mistress of this fruitful land,
With all knowledge at your hand,
Always just to honor true,

All our love we pledge to you.
Alma Mater, stand forever

On Biscayne’s wondrous shore.

. Printing a Diamond Write a program named Diamond.java that prints the shape of a
diamond of height 10 and width 10 as shown:
/\
/A
/ \
/ \
/ \
\ /
\ /
\ /
N/
\/

. Printing a Filled Diamond Write a program named DiamondFilled. java that prints the
shape of a diamond of height 10 and width 10 with the white space filled with forward slashes on
the left-hand side and backward slashes on the right-hand side, as shown:

/\
//\\
777NN\
/77 7NN\
/777 7ANNNAN
\N\\N///77
\N\\N///7
\\\///
\\//

\/

. Printing an X with *°X’
Write a program, XwithXs, that produces the following shape on the screen:

. Cascaded printing Write a program, CascadedChildren, that prints the first two verses of
“Children” by Henry Wadsworth Longfellow with increasing indentations:

26

1 “Hello, World!"

—_
O VUL AL

[« RNRN-LREN B Y N N N S

—_—

—_
SOOI R W —

—_

p—
[\

— O © 00~ Uk W~

—

S N R S

. Backlashes Write a program, BackSlashes, that produces the following shape on the screen:

. Tabstop You can use the tab-stop character \ t to line things up (to improve the readability of

Come to me, O ye children!
For I hear you at your play,
And the questions that perplexed me
Have vanished quite away.

Ye open the eastern windows,
That look towards the sun,
Where thoughts are singing swallows
And the brooks of morning run.

Slashes Write a program, Slashes, that produces the following shape on the screen:

A A A A A
A A A A
A A A A A
A A A A
A A A A
A A A A
A A A
A A A A
A A A
AV VA A VAV

AU W W UV W W W W U
AV WV N VO W U O W WO
AU W W UV W W W W W
AV VN VO W U O W W
AU Y W UV W W W W W
AV WV N VW U O W WO
AU W W W W W W W
AV WV N VO W U O W WO
AU W W U W W W W W
AV VO N W O O W O

the text output). Consider the following code:

public class TestTabStop
{
public static void main(Stringl[] args)
{
System.out.println("Abbie Zuckerman 23yrs Soccer");
System.out.println("Brittany Ying 21yrs Swimming");
System.out.println("Caty Xenakis 22yrs Softball");
System.out.println("Dee Wick 20yrs Basketball");
System.out.println("Eva Venera 19yrs Polo");

The code produces the following output:

Abbie Zuckerman 23yrs Soccer
Brittany Ying 21lyrs Swimming
Caty Xenakis 22yrs Softball
Dee Wick 20yrs Basketball
Eva Venera 19yrs Polo

Exercises 27

[)NV, IS SO S

AN R W=

Revise the program so that it uses the same code, but replaces the whitespace (inside each pair
of double quotation marks) with the tab-stop. Run the program to see how it changes the way the
information appears on the screen.

. Self introduction Write a program named SelfIntro that introduces yourself as follows:

My name is NAME.
I was born in PLACE.
My favorite television program is PROGRAM.
I woke up at HOUR:MINUTE today.
I own NUMBER books.
My target grade point average is GPA.

The uppercase words NAME, PLACE, PROGRAM, HOUR, MINUTE, NUMBER, and GPA, are
placeholders, so you must substitute them with appropriate text. PROGRAM must appear with
double quotation marks. For example,

My name is Mitsu Ogihara.
I was born in Japan.
My favorite television program is "Parks and Recreation".
I woke up at 6:30 today.
I own 1000 books.
My target grade point average is 4.0.

Using Data for Computation 2

2.1 Data
2.1.1 Data and Their Taxonomy

The previous chapter presented how to write programs using only System.out.println and
System.out.print statements. This chapter introduces how to store, modify, and retrieve
information. The medium in which information is stored is called data.'

In Java, every data has its type, which specifies how the data encodes its information, as well as
what operations can be performed on the data. There are two broad classifications of data types in
Java: primitive data types and object data types.

A primitive data type is one that uses only a predetermined number of bits in representation, where
a bit is the fundamental unit of information and has two possible values (0 and 1). There are eight
primitive data types: boolean for the logical values, char for the characters, byte, short, int,
and long for whole numbers of various capacities, and £1loat and double for real numbers of
various capacities.

On the other hand, an object data type is a custom-designed data type. A programmer designs a
new object data type by putting together existing data types and defining the permissible operations
for acting on the information stored. Some object data types require an indefinite number of bits for
representation.

In addition to the major difference between primitive and object data types, the following
distinctions can be made among data.

1. There are data with names referencing and data without these names.
(a) The former kind is a variable. A special variable is one whose value cannot be changed during
the course of program. Such a variable is called a constant
(b) The latter kind consists of literals and return values. A literal is a data whose value is exactly
specified. A return value is a value that a method returns.

IThe term data is used for both singular and plural forms. The original singular form of “data” is “datum”, but this is
rarely used nowadays.

© Springer Nature Switzerland AG 2018 29
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_2

https://doi.org/10.1007/978-3-319-89491-1_2

30

2 Using Data for Computation

2.

Some variables and constants are accessible only inside the method in which they appear; others

are accessible from everywhere in the class. The former ones are local, and the latter ones are

global.

(a) Some global variables in an object class play the role of storing information for individual
objects of the class. Those variables are instance variables (or field variables).

(b) Each global constant, as well as each instance variable, has a specific visibility type (public,
private, protected, and package).

2.1.2 Number Literals

The sequence "Hello, World!" is a literal of the data type String. Literals are available not
only for String but also for all the primitive data types.

0 O U W

=)

10
11
12
13
14

The following is an example of a code using literals:

public class Literals
{
public static void main(Stringl[] args)
{
System.out.print ("Rank number ");
System.out.print(1);
System.out.print(" in my all-time favorite NFL QB list is ");
System.out.print("Steve Young");
System.out.println(".");
System.out.print("His overall quarterback rating is ");
System.out.print(96.8);
System.out.println(".");

Listing 2.1 A program that produces a comment about an NFL quarterback

In Lines 5, 7-9, and 12, String literals appear inside the parentheses. In Lines 6 and 11, literals

1 and 96 . 8 appear inside the parentheses. These are number literals (an int literal and a double
literal, to be precise).

When this program runs, System.out.print converts these two numbers to character

sequences, then prints those sequences on the screen.

Rank number 1 in my all-time favorite NFL quarterbacks is Steve Young.
His overall quarterback rating is 96.8.

By adding the same sequence of statements for two more quarterbacks, the following program is

obtained.

2.1 Data 31

1 |public class LiteralsO1

2 |{

3 public static void main(Stringl[] args)

4 {

5 System.out.print ("Rank number ");

6 System.out.print(1);

7 System.out.print(" in my all-time favorite NFL QB list is ");
8 System.out.print("Steve Young");

9 System.out.println(".");

10 System.out.print("His overall (B rating is ");
11 System.out.print(96.8);

12 System.out.println(".");

13

Listing 2.2 A program that produces comments about three NFL quarterbacks (part 1). The program header and the
part that produces comments about the first player

For these additional two players, number literals appear in Lines 15, 20, 24 and 29.

14 System.out.print ("Rank number ");

15 System.out.print(2);

16 System.out.print(" in my all-time favorite NFL QB list is ");
17 System.out.print("Peyton Manning");

18 System.out.println(".");

19 System.out.print("His overall (B rating is ");

20 System.out.print(96.5);

21 System.out.println(".");

22

23 System.out.print ("Rank number ");

24 System.out.print(3);

25 System.out.print(" in my all-time favorite NFL QB list is ");
26 System.out.print("Tom Brady");

27 System.out.println(".");

28 System.out.print("His overall (B rating is ");

29 System.out.print(97.0);

30 System.out.println(".");

31 ¥

32 |}

Listing 2.3 A program that produces comments about three NFL quarterbacks (part 2). The part that produces
comments about the second and the third players

The program produces the following output:

Rank number 1 in my all-time favorite NFL quarterbacks is Steve Young.
His overall quarterback rating is 96.8.

Rank number 2 in my all-time favorite NFL quarterbacks is Peyton Manning.
His overall quarterback rating is 96.5.

Rank number 3 in my all-time favorite NFL quarterbacks is Tom Brady.

His overall quarterback rating is 97.0.

(o A S

2Jon Steven “Steve” Young (born October 11, 1961) is a former NFL quarterback and a sportscaster. He played 13
seasons with the San Francisco 49ers, and led the team to three Super Bowl wins. Peyton Williams Manning (born March
24, 1976) is a former NFL quarterback who played with the Indianapolis Colts and later with the Denver Broncos. He
led each team to one Super Bowl win. Thomas Edward Patrick Brady Jr. (born August 3, 1977) is an NFL quarterback
for the New England Patriots. He led the team to five Super Bowl wins.

32 2 Using Data for Computation

2.1.3 Variable Declarations

A variable is a type of data with a reference name. Simply by putting its name in the code, the value
of the data in that specific moment can be looked up.

Since each data has a unique type, a variable is specified with its name and its type. This is called
a declaration. A declaration takes the following form:

DATA TYPE VARIABLE NAME;

Remember that the tab-stop can be used in place of the white space, and adding more tab-stops or
white space after that is possible as well.
One example is the following:

public static
{

int myInteger;

T W=

Here, int is the data type and myInteger is the name of the data. Notice the semicolon ;
appearing at the end. Each line of local/global variable/constant declarations requires a semicolon at
the end. The above is an instance in which the variable is a local variable. A local variable belongs to
a method and its declaration appears inside the method that it belongs to. The “locality” of variables
becomes important when multiple methods are written in a source code.

To declare a global variable, its declaration is placed outside the methods, at depth 1. For example,
the following declares a global variable named myInteger of data type int.

static int myInteger;

public static
{

DU W N~

}

The attachment of static is required for the declaration of a global variable.
It is possible to join declarations of multiple variables of the same type in one line via separating
the names with commas, as shown next:

int onelInteger , anotherInteger, yetAnotherInteger;

Here, oneInteger, anotherInteger, and yetAnotherInteger are all of the int data
type. This single-line declaration is equivalent to:

1 int onelnteger;
int anotherInteger;
3 |int yetAnotherInteger;

To name a variable, a sequence of contiguous characters chosen from the alphabet, numerals, the
underscore , and the dollar sign $ must be used. In addition, the first character of the sequence
must be a letter of the alphabet.3 Thus, according to this rule, 55 cannot be a variable name. The

3Technically, a variable name can start with the underscore or the dollar sign, but the convention is to start a variable
name with a lowercase letter.

2.1 Data 33

variable names, method names, and class names are all case-sensitive. The following conventions are
generally used:

¢ The name of a variable must start with a lowercase letter.
¢ The name of a constant must contain no lowercase letter.
e The name of a class must start with an uppercase letter.

2.1.4 Assigning Values to Variables
As mentioned earlier, variables (or constants) are places where information is stored. The action of

giving a value to a variable/constant is called an assignment.
The syntax for an assignment is:

VARIABLE = VALUE;

Here, the equal sign = appearing in the middle symbolizes the assignment. The left-hand side of the
assignment, VARIABLE, is the name of the variable in which a value is to be stored. The right-hand
side of an assignment, VALUE, is the value being stored. JVM can interpret this as a data having the
same type as the variable. The value in an assignment can be:

* aliteral of the same type;

* avariable of the same type;

e acall to a method that returns with data of the same type; or
* aformula of the same type.

Next is an example of assigning a value to a variable:

1 |int myInteger;
myInteger = 55;

The first line here is a variable declaration. The type of the data is int and the name of the data is
myInteger. The second line is an assignment. The right-hand side of the assignment is an int
literal with the value of 55. This action stores the value of 55 into the variable myInteger.

It is possible to combine a declaration of a variable and an initial value assignment to the variable
all in a single statement, like this one:

int myInteger = b55; ‘

It is also possible to combine multiple declarations and assignments of multiple variables in one line,
so long as they all have the same type. The following is an example of such combinations:

int onelInteger = 17, anotherInteger, yetAnotherInteger = 23; ‘

This single line of code declares int variables, oneInteger, anotherInteger, and
yetAnotherInteger, and assigns the value of 17 to oneInteger and the value of 23 to
yetAnotherInteger (note that 17 and 23 are literals).

Here, anotherInteger does not have an assignment. Does it have a value? Yes, the default
value of a variable of a primitive number type immediately after declaration is 0.

34 2 Using Data for Computation

This one-line code is equivalent to:

1 |int oneInteger, anotherInteger, yetAnotherInteger;
onelnteger = 17;
3 |yetAnotherInteger = 23;

as well as to:

1 |int oneInteger, anotherInteger, yetAnotherInteger;
onelnteger = 17, yetAnotherInteger = 23;

For the code to compile, the value assigned to a variable must match the data type of the variable.
In the above code fragment, an attempt to assign numbers with a decimal point,

1 |int oneInteger, anotherInteger, yetAnotherInteger;
onelnteger = 17.5;
3 |yetAnotherInteger = 23.0;

results in a syntax error, because neither 17 .5 nor 23 . 0 are integers.

The Attribute final

By attaching £inal in front of the data type specification in a variable declaration, any future value
assignments to the variable are prohibited. Thus, by the attachment of £inal, a variable becomes a
constant.

static final int YOUR_INTEGER = 20;

public static void main(Stringl[] args)

{
final int MY_NUMBER = 17;

N O Ut WN

The first variable, YOUR_INTEGER, is a global constant and the second variable, MY NUMBER, is
a local constant. Java requires that a value must be assigned to a constant using a combined declaration
and assignment. Therefore, in the above code example, splitting the declaration and assignment of
either constant into a standalone declaration and a standalone assignment is rejected as a syntax error.

A global constant may have an explicit visibility specification. As mentioned in Chap. 1, there are
three explicit visibility specifications: public, private, and protected. In the source code:

1 |public class PubConstEx

2 [{

3 public static final int COMMONINTEGER = 20;
4

5 public static void main(Stringl[] args)

6 {

7 final int MY_NUMBER = 17;

8

9 ¥

0

—_

2.2 The Primitive Data Types 35

COMMONINTEGER is a global constant accessible from outside and MY NUMBER is declared
to be a local constant. By combining the class name and the global variable name, as in
PubConstEx.COMMONINTEGER, the value 20 can be accessed from other source codes.

Reassignment
If a variable is not a constant, the value of the variable can be updated any number of times. Consider
the next code:

int myInteger;
myInteger = 63;

myInteger = 97;

DU W N

myInteger = 20;

The dotted parts represent some arbitrary code. Assuming that no assignments to my Integer appear
in the dotted part, the value of myInteger changes from 63 to 97 in Line 4 and from 97 to 20 in
Line 6.

2.2 The Primitive Data Types

Java has eight primitive data types. They are boolean, byte, short, int, long, float, double, and char.
Table 2.1 shows the range of possible values for each type.

boolean

The boolean is a data type for storing a logical value. There are only two possible values for a
boolean data type: true and false. Here is an example of declaring boolean variables and
assigning values to them.

1 |boolean logicA, logicB, logicC;
logicA = true;
3 |logicB = false;

Table 2.1 The primitive data type

Type No. bits Data representation
boolean 1 Logical value, true or false
byte 8 Integer, [—128, 127]
short 16 Integer, [—32,768, 32,767]
int 32 Integer, [—2,147,483,648, 2,147,483,647]
long 64 Integer, [—9,223,372,036,854,775,808, 9,223,372,036,854,775,807]
float 32 Floating point number, approximately

from 1.4013 - 10~* to 3.4028 - 10738 (positive or negative)
double 64 Floating point number, approximately

from 4.9407 - 10~3%* to 1.7977 - 10138 (positive or negative)
char 16 UNICODE character, [0, 65,535]

(unsigned)

36 2 Using Data for Computation

There are three operators available for boolean: the negation !, the conjunction &&, and the
disjunction | |. The boolean data type will be discussed in Chap. 6.

byte
The data type byte consists of eight bits, so there are 28 = 256 possible values. The value range
of byte is between —27 = —128 and 27 — 1 = 127. The hexadecimal encoding is an encoding

that is often used for specifying a byte literal. This is the encoding that divides the bits into groups
of four and uses a unique character to represent each of the 16 possible values for each group. The
value range of four bits is between 0 and 15, so naturally the numerals 0 through 9 are used for
representing numbers O through 9. For the numbers 10 through 15, the letters a through £ (or their
upper case letters A through F) are used. In hexadecimal encoding, a byte must be represented with
two characters. The combination YZ represents

The number Y represents multiplied by 16, plus the number Z represents.

Thus, “5f” in hexadecimal is not 65 (= 5% 10+ 15) but 95 (= 16 x5+ 5) and “dc” in hexadecimal
is 220 in decimal (= 13 164 12). Hexadecimal encoding makes it possible to represent bit sequences
compactly: four characters for sixteen bits, eight characters for 32 bits, and sixteen characters for 64
bits. In hexadecimal encoding, to indicate that a literal is presented, the prefix 0x must be attached.
For example, 0x33 is 33 in hexadecimal, which is equal to 51 in decimal.

byte myByteValue = 0x3f;

short
The data type short consists of sixteen bits. It has 65,536 possible values. The value range is
between —2!> = —32,768 and 215 — 1 = 32,767.

int

int is a data type that consists of 32 bits. It has 4,294,967,296 possible values. The value range is
between —23! = —2,147,483,648 and 2°! — 1 = 2,147,483,647. The default data type of a whole
number literal is int.

long

The data type 1ong consists of 64 bits. It has 18,446,744,073,709,551,616 possible values. The value
range is between —293 = —9,223,372,036,854,775,808 and 26° — 1 = 9,223,372,036,854,775,807.
When presenting a literal in 1ong, if the value that the literal represents goes beyond the range of
int, the letter L must be attached as a suffix at the end of the number sequence, like this one:

long myLongNumber = 1234567890987654321L;

float and double

float and double are data types for real numbers. They use floating point representations.
Basically, a floating point representation divides the available bits into three parts: the sign, the
significand, and the exponent. Let S be the sign (+1 or —1). The number of bits for the sign is one,
and the bit is at the highest position of the bits allocated for the data type. The bits of the significand
represent a number between 0 and 1. If that part has m bits and the bit sequence is by - - - b, that part
represents the sum of all 2~/ such that b; = 1. Let C be this fractional number. Each floating point

2.3 Using Variables for Computation 37

encoding system uses a fixed “base” for exponentiation, which is either 2 or 10. Let B be this base. If
there are n bits in the exponent, that part encodes a number between —2"~! and 2"~! — 1 (for whole
number types). Let E be this number. Now, the bits of the floating number altogether represent

S-(1+C)- B~
To designate that a floating point number literal is a £ 1oat, the letter F must be attached as a suffix.

Here is an example of declaring and assigning a literal value to one variable for each primitive
number type:

1 |byte myByte;

2 |short myShort;

3 |int myInt;

4 |long myLong;

5 |float myFloat;

6 |double myDouble;

7 |myByte = 0x3d;

8 |myShort = 1345;

9 |myInt = 90909;

10 |myLong = 1234567890123456789L;
11 |myFloat = -3.145F;

12 |myDouble = 1.7320504;

The numbers appearing after ’ =’ in lines 7—12 are all literals.

char
The last primitive data type is char. The representation of char requires sixteen bits. By attaching
the apostrophe before and after of a character, a char literal is specified, asin *A’ and ' x’.

7A);

rx 7,

1 |char myCharil
char myChar2

The default value of a char type variable is \ 0. This is the character corresponding to the number
0. This must not be confused this with the numeral 0. There is no direct arithmetic operation that can
be applied to char data for producing another char, but if a char data appears in a mathematical
formula, it acts as if it were an int. Since the single quotation mark is used for a char literal, to
specify the single quotation mark itself as a char literal, attaching a backslash as is must be done to
represent the double quotation mark in String literals; that is, * \” represents the single quotation
mark. Because of this special use of backslash, two backslashes are used to mean the backslash itself
as a literal, as in * \\ ’ . The other escape sequences, ' \t’ and ‘' \n’, are valid for char literals too.

2.3 Using Variables for Computation
2.3.1 Quarterbacks Program (Reprise)
Using the fact that reassignments of values can be made to non-final variables, the previous three-

favorite-quarterback program can be rewritten using three variables:

* an int variable, rank, for specifying the rank in the list
* a String variable, name, for the name of the quarterback, and
e adouble variable, gbr, for the quarterback rating.

38 2 Using Data for Computation

1 |public class Literals02

2 |4

3 public static void main(Stringl[] args)

4 {

5 int rank;

6 String name;

7 double gbr;

8

9 rank = 1;

10 name = "Steve Young";

11 gbr = 96.8;

12 System.out.print ("Rank number ");

13 System.out.print (rank);

14 System.out.print(" in my all-time favorite NFL QB list is ");
15 System.out.print (name);

16 System.out.println(".");

17 System.out.print("His overall QB rating is ");
18 System.out.print (gbr);

19 System.out.println(".");

20

Listing 2.4 A program that produces comments about three NFL quarterbacks using variables (part 1). The variable
declarations and the part that produced the comments about the first player

Note that the variable declarations appear in Lines 4, 5, and 7. The variable declarations are
followed by three blocks of the same format, each consisting of eleven lines. The first lines of each
block assign values to the variables. For example, the first lines of the first block are:

1 rank = 1;
name = "Steve Young";
3 gbr = 96.8;

The next eight lines of code make the presentation, with the three literals for rank, name, and rating
substituted with their respective names.

System.out.print (rank);

System.out.print (name) ;

System.out.print (gbr);

0NN W

In these three lines, the values of these variables substitute their respective locations into the print

statements. Note that the action order is:
declaration — assignment — reference

Since assignments can be made multiple times to non-final variables, a variable declaration is
effective until the end of the innermost pair of curly brackets that contains it. This means that two
declarations of the same variables cannot intersect. In the above program, the innermost matching
pair containing a variable declaration appears at Lines 4 and 44. Thus, the declarations are valid until
Line 44. Formally, the range of lines in which a variable declaration is valid is called the scope of the
variable.

2.3 Using Variables for Computation 39

21 rank = 2;

22 name = "Peyton Manning";

23 gbr = 96.5;

24 System.out.print("Rank number ");

25 System.out.print (rank);

26 System.out.print(" in my all-time favorite NFL QB list is ");
27 System.out.print (name);

28 System.out.println(".");

29 System.out.print("His overall QB rating is ");
30 System.out.print(gbr);

31 System.out.println(".");

32

33 rank = 3;

34 name = "Tom Brady";

35 gbr = 97.0;

36 System.out.print ("Rank number ");

37 System.out.print(rank);

38 System.out.print(" in my all-time favorite NFL QB list is ");
39 System.out.print (name);

40 System.out.println(".");

41 System.out.print("His overall QB rating is ");
42 System.out.print (gbr);

43 System.out.println(".");

44 }

45 |}

Listing 2.5 A program that produces comments about three NFL quarterbacks using variables (part 1). The part that
produces the comments about the second and the third players

Reserved Names
The names appearing in Table 2.2 cannot be used as the name of a variable, a method, or a class.
These are called the reserved names.

2.3.2 Number Arithmetics

2.3.2.1 Number Operations

In Java, the four standard arithmetic operations in mathematics (addition, subtraction, multiplication,
and division) are represented with the standard mathematical symbols (+, -, %, and /, respectively).
The negative sign - can be used for flipping the sign. The regular parentheses () can be used for
flipping the sign. There is no symbol for representing exponentiation.

The symbols that represent binary operations are called operators. The values that are evaluated
with an operator are called operands. Since - acts on a single value, it is a unary operator. Since +,
-, %, /,and % take two values, they are binary operators.

There are other additional operator types, such as unary bit shift («, », and »>), unary bit
complement (™), and unary bit-wise (", |, and &). This textbook does not use these bit operators
(see Table 1.2)

Table 2.2 The list of abstract boolean break case catch char class

reserved words in Java const continue default do double else enum
extends final finally float for goto if
import implements import instanceof int interface long
native new package private protected public short
static strictfp super return switch synchronized this

throw throws transient try void volatile while

40 2 Using Data for Computation

In addition to using actual values (as represented by literals), variables can be used in mathematical
formulas. When evaluating a formula that contains a variable, the value of the variable at the moment
of evaluation is used. Consider the following code fragment:

1 |double x, y, z;

2 |x = 3.5;

3 |y = 4.5;

4 |z = -x +y + 1.0;
5

System.out.println(z);

In the fourth line of the program,

4 |z = -x+y + 1.0;

the values that x and y hold (that is, 3.5 and 4 . 5, respectively) substitute their respective locations
into the right-hand side of the formula. The result of the evaluation is 2 . 0. Since there is =, this value
is assigned to the variable z. So, when the program executes System.out .println(z), this
new value of 2. 0 emerges in output:

2.0

It is possible to write more complicated formulas. For example, in

double x, w;

x = 2.0;

w=0_(x+1.0) * (-1.0 + x);
System.out.println(w);

=~ W N

the value of x becomes 2 . 0 in Line 2. The value of the formula (x + 1.0) + (-1.0 + x)
then becomes 3 . 0. This value is assigned to w. So, the output of the program is:

3.0

Alternatively, the code could be written as either

1 |double x, w;

2 |x = 2.0;

3 |lw=xx*x-1.0*x x + 1.0 x x - 1.0;
4 |System.out.println(w);

or

1 |double x, w;

2 |x = 2.0;

3 |lw=(Cx*x) - 1.0;

4 |System.out.println(w);

Both produce the same output as the original.

The Remainder Operator

The remainder operator $ works as follows. Let a and b be two numbers. If the value of bis0,a % b
is undefined, an attempt to execute the operation produces a run-time error. Otherwise, if a and b have
the same signs, the value of a % bisa - d x b, where d is the integer part of a divided by b,

[)

and if a and b have opposite signs, the value of a % bisa + d % b, where d is the integer part

2.3 Using Variables for Computation 41

of |a| divided by |b|. For example, 10 % 3isequalto land -17.0 % 5.01is -2.0 since the
integer partof -17.0 / 5.0 isequalto -3.

2.3.2.2 Evaluation of Formulas
To evaluate formulas with more than two operations, Java prioritizes these operators in the same way
we would in arithmetics.

* *,/,and % have the same level of priority.
e + and - have the same level of priority.
e The - for switching the sign has the highest priority. Next in priority is the { *, /, % } group. Last
is the { +, - } group.
e The evaluation of a formula is from left to right using the following principles:
— If there are parentheses in the formula, evaluate the leftmost and innermost parenthetical clause
to reduce it to a single value.
— If the formula does not have parentheses and has one of %, /, and %, process the leftmost one of
the three kinds.
— If the formula does not have parentheses and has no *, /, and %, process the leftmost operation.

In the code

1 |double myDouble = 10.5;
int myInt = 11;
3 |myDouble = -3 % 2 + (3 * 8 + myDouble * myInt) 7% 6;

the evaluation proceeds as follows:

1 -3 %2+ (3 8+ 10.5 % 11) % 6
2 |-1 + (3 » 8 + 10.5 % 11) % 6

3 /-1 + (24 + 10.5 * 11) % 6

4 |-1 + (24 + 115.5) % 6

5 |-1 + 139.5 % 6

6 [-1 + 1.5

7 |0.5

0.5 becomes the value of myDouble.

Here is how to use data (and some arithmetics on the data) to perform computation. Consider a
program that evaluates several formulas involving a set of unknowns (which may appear in more than
one formula). The user enters the values for the unknowns. It is possible to ask the user to enter the
value of a variable whenever the calculation needs to use the value. However, since some variables
are used more than once and there is no guarantee that the user enters a consistent value to a variable,
the program instead stores the values of the unknowns into variables.

This first example is for computing various geometric values with respect to a radius R. A double
variable, radius, is used to represent the value of the radius. Suppose the following four quantities
are to be computed from R:

. the perimeter of a circle having radius R,

. the area of a circle having radius R,

. the surface area of a sphere having radius R, and
. the volume of a sphere having radius R.

A W N =

The following mathematical formulas can be used in calculating the four quantities:

27 R, R, 47 R?, and %nR3.

42 2 Using Data for Computation

The program uses four variables, circlePerimeter, circleArea, ballArea, and
ballvolume, to record the quantities. Lines 5 and 6 of the code declare these variables.

In Line 8, the value of radius is set to 10.0. The program then successively computes the four
quantities in Lines 10 through 13, and uses the literal 3.14159265 for . Lines 15 through 18 print
the four quantities.

1 |public class RadiusPrimitive

2 |4

3 public static void main(Stringl[] args)

4 {

5 double radius;

6 double circlePerimeter, circleArea, ballArea, ballVolume;
7

8 radius = 10.0;

9

10 circlePerimeter = 2.0 *x 3.14159265 * radius;

11 circleArea = 3.14159265 * radius * radius;

12 ballArea = 4.0 * 3.14159265 * radius * radius;

13 ballVolume = 4.0 * 3.14159265 * radius * radius * radius / 3.0;
14

15 System.out.println(circlePerimeter);

16 System.out.println(circleArea);

17 System.out.println(ballArea);

18 System.out.println(ballVolume) ;

19 ¥

20 |}

Listing 2.6 A preliminary version of the program for computing values for a given radius

This code produces the following output:

1 |62.831853
2 |314.159265
3 |1256.63706
4 |4188.7902

Two changes will be made to the program to obtain the next code. First, noticing that the value
3.14159265 as w appears in multiple formulas, a variable can be used to store a value for . Second,
the four quantities that are calculated will be printed with their names.

Line 8 declares a new variable, pi, in which the value of 7 is stored (Line 10). In the ensuing
calculation, the variable pi is used in places where the value of 7 is needed. Also, the attribute of
final is attached to the variable so as to make it a local constant and prevent value changes.

// compute values given a radius
public class Radius
{
public static void main(Stringl[] args)
{
double radius;
double circlePerimeter, circleArea, ballArea, ballVolume;
double pij;
//--- set the values of pi and radius
pi = 3.14159265;
radius = 10.0;

—_
— O © 00O Utk W~

—

Listing 2.7 The code for computing values for a given radius (part 1). Quantity calculation

2.3 Using Variables for Computation 43

The second part of the code is for reporting the results of the calculation.

12 // calculcate the values

13 circlePerimeter = 2.0 * pi * radius;

14 circleArea = pi * radius * radius;

15 ballArea = 4.0 * pi * radius * radius;

16 ballVolume = 4.0 * pi * radius * radius * radius / 3.0;
17 //-- output the values

18 System.out.print("circlePerimeter = ");
19 System.out.println(circlePerimeter);

20 System.out.print("circleArea = ");

21 System.out.println(circleArea);

22 System.out.print("ballArea = ");

23 System.out.println(ballArea);

24 System.out.print("ballVolume = ");

25 System.out.println(ballVolume);

26 }

27 |}

Listing 2.8 The code for printing the values of the four quantities. The part for calculating the quantities and printing
the results

To make clear which value represents which quantity, the program uses a print statement. The
program prints the name of the quantity preceding the presentation of the value. The statement

System.out.println(circlePerimeter) ;

prints the value of the variable circlePerimeter and proceeds to the next line.
This code produces the following output:

circlePerimeter = 62.831853
circleArea = 314.159265
ballArea = 1256.63706
ballvVolume = 4188.7902

NN =

With this arrangement, the correspondence between the value and the meaning will be clear to the
user when reading the output.

Here is another, more obscure, way of calculating the four quantities in a row. The program uses
the facts that, for a fixed radius value,

(a) the area of the circle is the perimeter times the radius divided by 2,
(b) the surface area of the ball is four times the area of the circle, and
(c) the volume of the ball is the area of the ball times the radius divided by 3.

Based upon these facts, the program obtains the value for the variable circleArea with a formula
that contains circlePerimeter, obtains the value for the variable ballArea with a formula
that contains circleArea, and obtains the value for the variable ballVolume with a formula
that contains ballArea. Note that the variable pi is now a constant named PI with the attribute of
final (with its name in all uppercase according to the naming convention).

44 2 Using Data for Computation

1 |// compute values given a radius

2 |public class RadiusAlternative

3 <

4 public static void main(Stringl[] args)

5 {

6 double radius;

7 double circlePerimeter, circleArea, ballArea, ballVolume;
8 final double PI = 3.14159265;

9 //--- set the values of PI and radius

10 radius = 10.0;

11 // calculcate the values

12 circlePerimeter = 2.0 * PI * radius;

13 circleArea = radius * circlePerimeter / 2.0;
14 ballArea = 4.0 * circleArea;

15 ballVolume = ballArea * radius / 3.0;

16 //-- output the values

17 System.out.print("circlePerimeter = ");
18 System.out.println(circlePerimeter);

19 System.out.print ("circleArea = ");

20 System.out.println(circleArea);

21 System.out.print("ballArea = ");

22 System.out.println(ballArea);

23 System.out.print("ballVolume = ");

24 System.out.println(ballVolume) ;

25 }

26 |}

Listing 2.9 An alternative for the calculation of values associated with a circle and a ball

Yet another modification will be made by moving the constant PT outside the method, thereby
changing it from a local constant to a global constant.
Note that the static attribute must be attached to the declaration.

1 |// compute values given a radius

2 |public class RadiusAlternative2

3 <

4 static final double PI = 3.14159265;

5 public static void main(String[] args)

6 {

7 double radius;

8 double circlePerimeter, circleArea, ballArea, ballVolume;
9 //--- set the values of PI and radius

10 radius = 10.0;

11 // calculcate the values

12 circlePerimeter = 2.0 * PI * radius;

13 circleArea = radius * circlePerimeter / 2.0;
14 ballArea = 4.0 *x circlelArea;

15 ballVolume = ballArea * radius / 3.0;

16 //-- output the values

17 System.out.print("circlePerimeter = ");
18 System.out.println(circlePerimeter);

19 System.out.print("circleArea = ");

20 System.out.println(circleArea);

21 System.out.print ("ballArea = ");

22 System.out.println(ballArea);

23 System.out.print("ballVolume = ");

24 System.out.println(ballVolume) ;

25 }

26 |}

Listing 2.10 The radius code with the value of 7 as the global constant

2.3 Using Variables for Computation 45

2.3.2.3 Mixing Different Number Types in a Formula
There are two rules that Java applies when two different number types appear as operands.

 Either one of them is a floating point number type (i.e., £1oat or double) if and only if the result
is a floating point number type.

* The number of bits of the resulting data type is the maximum of the numbers of bits for the two
number types.

For example, if the operands are byte and f1loat, the result will be a f£1oat. Table 2.3 shows the
primitive data type that results by mixing data types.

The next code attempts to compute the product and division between two numbers, 11 and 3. Each
number is either an int or a double. In each of the statements in Lines 14, 15, 18, 19, 22, 23, 26,
and 27, there appears an unfamiliar use of System. out .println. For example, Line 14 goes:

14 System.out.println(aInt / bInt);

Appearing inside the parentheses is a formula. Conveniently, if a formula appears inside the paren-
theses, both System.out .print and System.out .println evaluate the formula, convert the
result to a character sequence, and print the sequence on the screen.

The program first declares the variables it is going to use:

1 |public class NumberTest

2 |{

3 //--- try four possible cases of "11 divided by 3"
4 public static void main(Stringl[] args)
5 {

6 int alInt, bInt;

7 double aDouble, bDouble;

8 alnt = 11;

9 bInt = 3;

10 aDouble = 11.0;

11 bDouble = 3.0;

Listing 2.11 A program that demonstrates the use of operators on double and/or int variables (part 1)

The program then executes a number of operations on the variables.

Table 2.3 The number
types chosen when two
primitive data types are
processed in binary short short short int long float double
arithmetic operations int int int int long float double
long long long long long double double
float float float float float double double

double double double double double double double

Type byte short int long float double
byte byte short int long float double

46 2 Using Data for Computation

12 // case 1

13 System.out.println("aInt vs bInt. / and %");

14 System.out.println(alnt / bInt);

15 System.out.println(aInt % bInt);

16 // case 2

17 System.out.println("aInt vs bDouble. / and %");
18 System.out.println(aInt / bDouble);

19 System.out.println(aInt % bDouble);

20 // case 3

21 System.out.println("aDouble vs bInt. / and %");
22 System.out.println(aDouble / bInt);

23 System.out.println(aDouble % bInt);

24 // case 4

25 System.out.println("aDouble vs bDouble. / and %");
26 System.out.println(aDouble / bDouble);

27 System.out.println(aDouble % bDouble);

28 ¥

29 |}

Listing 2.12 A program that demonstrates the use of operators on double and/or int variables (part 1)

The result of executing the code is as follows:

1 |aInt vs bInt. / and %

2 |3

3 |2

4 |aInt vs bDouble. / and %
5 3.6666666666666665

6 2.0

7 |aDouble vs bInt. / and %
8 3.6666666666666665

9 2.0

10 |aDouble vs bDouble. / and %
11 3.6666666666666665

12 2.0

When a literal of a primitive number type appears, its default type is int for a whole number and
double for a floating point number. To treat a data as an alternate type, attach, in front of it, the
alternate type enclosed in a matching pair of parentheses. For example, (byte) 12 instructs to treat
the int type value of 12 as a byte type. The action of attaching a data type to treat a data as a
different type is called casting.

Using casting, a floating point number can be truncated to an integer; that is, for a floating point
number x, (int)x is a 32-bit whole number that is equal to the integer part of x.

2.3.3 Computing the Body-Mass Index

The next example is a program for computing the Body-Mass Index for multiple combinations of
weight and height. The Body-Mass Index measures the balance between the height and weight of
a human body. The lower the index is, the lighter the person is. The following formula defines the
Body-Mass Index:

BMI = 703 % weight (in pounds) / (height x height) (in inches)

2.3 Using Variables for Computation 47

In the program, the computation is carried out in the following steps:

» declare variables for storing weight, height, and the BMI value;

* assign a value to weight and a value to height;

e compute the BMI value;

 print the result;

* reassign a value to weight and a value to height;

* compute the BMI value with respect to the reassigned weight and height;
* print the result.

Next is the program BMI . java that does this.

1 |public class BMI

2 |{

3 public static void main(Stringl[] args)

4 {

5 // first time

6 double weight = 140.0; // weight

7 double height = 67.0; // height

8 double bmi = 703.0 * weight / (height * height);
9 System.out.print("BMI = ");

10 System.out.println(bmi);

11 // second time

12 weight = 150.0; // weight

13 height = 70.0; // height

14 bmi = 703.0 * weight / (height * height);
15 System.out.print("BMI = ");

16 System.out.println(bmi);

17 }

18 |}

Listing 2.13 The code for computing the BMI for predetermined combinations of height and weight

Here is what happens in the code:

* What appears after the first comment is the declaration of a double variable weight (Line 6).
Here, the program assigns the value of 140.0 immediately to the variable. The next line (Line 7)
does the same for height with the value of 67.0. Both these lines use the idea of combining a
variable declaration and a value assignment in one line.

e The next line (Line 8) declares a double variable bmi and assigns to it a value using the formula
703.0 x weight / (height % height). This line also uses the idea of combining a
variable declaration and a value assignment in one line. Furthermore, the line takes advantage of
the fact that by the time the code execution reaches this third declaration and assignment, both
weight and height have acquired new values.

* The parentheses surrounding the second multiplication line designate that the multiplication must
take place before the division (again, Java follows our common sense evaluation of mathematical
formulas). If the parentheses are removed, the last multiplication symbol must be replaced with the
division symbol; that is,

double bmi = 703.0 x weight / height / height;

48 2 Using Data for Computation

Otherwise, the code
double bmi = 703.0 x weight / height * height;

will divide the product of 703 .0 and the value of weight by the value of height and then
multiply it by the value of height.

e The ensuing two lines are for producing the result on the screen. The first of the two is for printing
the String literal "BMI = ", and the second is for printing the value and proceeding to the next
line.

e Then the program assigns new values to weight and height and then recomputes the BMI
value. Since these lines are in the scope of the three variables, the type declaration double must
not appear again.

The execution of the code results in the following:

1 |BMI = 21.92470483403876
BMI = 21.520408163265305

Note the difference, between the two lines, in the number of digits after the decimal point. The first
one has fourteen digits and the second one has fifteen. In both cases the actual BMI value has infinitely
many digits and thus the floating point expression cannot correctly represent the value. The value that
appears on the screen is only an approximation. Chapter 8 describes how to control the number of
digits appearing after the decimal point.

2.3.4 Sum of Integers from 1 to 100 a la Gauss

Johann Carl Friedrich Gauss (April 30, 1777 to February 23, 1855) is a German mathematician who
made important contributions to many fields of mathematics. There is a famous story stating that he
was a genius even as a school kid. The story goes like this.
One day a teacher asked the class to calculate, on a sheet of paper, the sum of integers from 1 to 100. While all
the other classmates were adding the numbers one after another, Gauss raised his hand to tell his teacher he had
completed the task. Miraculously, the answer he gave was correct. Stunned, the teacher asked Gauss to explain
how he had gotten to his answer. Gauss explained: If you add the first number, 1, and the last number, 100, the
result is 101. If you add the second number, 2, and the second to last number, 99, the result is 101. If you keep

going this way, the smaller number increases by 1 and the larger number decreases by 1, and so the sum is always
101. Since there are 100 numbers to add, there are 50 such pairs. Thus, the total is 101 * 50 = 5050.

Based upon his observation, the sum of all integers between 1 and n > 1 can be quickly computed. If
n is an even number, the total is given as the following formula

n+1)xn/2

If n is an odd number, the middle number (n 4 1)/2 does not pair with other numbers, and since there
are (n — 1)/2 pairs, the total is

m+Dxm—-—DR2+m+1D)2=n0+Dx((n—=1/2+1/2)y=m+1)*n/2
Thus, regardless of whether n is even or odd, the total is (n + 1) * n/2.

The following program demonstrates the use of integer variables, which computes the sum of
integer sequences a la Gauss.

2.3 Using Variables for Computation 49

1 |public class Gauss

2 |4

3 public static void main(Stringl[] args)

4 {

5 int n, sum;

6 n = 100;

7 sum = (n + 1) *x n / 2;

8 System.out.print ("The sum of integers from 1 to ");
9 System.out.print(n);

10 System.out.print(" = ");

11 System.out.println(sum);

12 n = 1000;

13 sum = (n + 1) *x n / 2;

14 System.out.print("The sum of integers from 1 to ");
15 System.out.print(n);

16 System.out.print(" = ");

17 System.out.println(sum);

18 }

19 |3}

Listing 2.14 The code for computing 1 + - - - + n for n = 100 and n = 1000

The code uses two int variables, n and sum. The program assigns the value of 100 and then the
value of 1000 to the variable n. The five lines that appear after the first assignment are identical to the
five lines that appear after the second assignment. With these identical five lines, the program does the
following:

(a) it computes the sum using the formula,

(b) it prints a String literal "The sum of integers from 1 to ",
(c) it prints the value of n,

(d) it prints another String literal " = ", and

(e) it prints the value of sum.

The output of the program is as follows:

1 |The sum of integers from 1 to 100 = 5050
2 |The sum of integers from 1 to 1000 = 500500

2.3.4.1 Truncation of Real Numbers

Each of the floating point data types, float and double, has a finite number of bits for
representation. This limitation sometimes results in odd output. The next program shows such an
example. It works with two variables, v and a. The program assigns the initial value of 17.0 to v,
fixes the value of a to 3.42567824 (many digits!) and then updates the value v four times by: dividing
by a, subtracting 1.0, multiplying by a, and adding a. Before starting the series of modifications,
as well as after each of the four modifications, the program prints the value of v with additional
information regarding what value v represents. Since (((v/a)—1)*a)+a = v, the value is anticipated
to return, at the end, to the original value, 17 . 0.

50 2 Using Data for Computation

1 |public class RepresentationTest

2 |4

3 public static void main(Stringl[] args)
4 {

5 double v = 17.0;

6 double a = 3.42567824;

7

8 System.out.print ("Start: ");
9 System.out.println(v);

10

11 v =v / a;

12 System.out.print("/ a : ");
13 System.out.println(v);

14

15 v=v - 1.0;

16 System.out.print("- 1.0: ");
17 System.out.println(v);

18

19 v = VvV % a;

20 System.out.print("* a : ");
21 System.out.println(v);

22

23 v = Vv + a;

24 System.out.print("+ a : ");
25 System.out.println(v);

26 }

27 |}

Listing 2.15 A program that shows the limitation of using a finite number of bits for representating real numbers

The result is the following:

Start: 17.0

/ a : 4.96252094008689

.0: 3.9625209400868897

: 13.574321760000002
17.0

[I O I

[NV

The first line of the output is the original value of 17.0. The second is the value immediately
after v = v / a. The third is the value immediately after v = v - 1.0. The fourth is the value
immediately after v = v % a. The last is the value immediately afterv = v + a.

Notice that there is a difference between the length of the second output line (noted as / a) and
the length of the third output line (noted as - 1.0). Again, the difference is due to the fact that the
correct value of v/ a requires an infinite number of digits. Also notice the 0000002 at the end the
fourth line. With a pencil calculation, the value is 13.57432176, but the representation does not
capture this correctly, hence the extra seven digits appearing at the end. Even though there are some
discrepancies, when the output moves to the last line, the tiny quantity of 0.000000000000002 at
the end vanishes, and so the outputis 17. 0 instead of 17.000000000000002.

2.3 Using Variables for Computation 51

2.3.5 Simplified Expressions

There is a way to simplify a mathematical formula that updates a variable using its current value. For
a formula of the type

a = a o b;

where o is one of the five operations {+, —, /, *, %}, the expression:

a o= b;

can be used instead. For example,

Uk W N =~

int a, b;

[o 2NN N o B

20;
= 13;
a + b;
b * 3;

can be simplified as

T W N =

int a, b;

T e O e

= 20;
= 13;
+= b;
*= 3;

A special case of this short-hand is when the intended operation is either adding 1 to a or subtracting
1 from a. In this situation, the short-hand of either a++ or ++a can be used for adding 1 and the
short-hand of either a- or -a can be used for subtracting 1. The difference between having the ++
or - before or after the variable name is based on whether the change (i.e., adding 1 or subtracting 1)
takes place before or after the evaluation of the entire formula takes place. For example, in the next
code, adding 1 to b occurs before setting the value of a to the product of the value of b and the value
of ¢, and adding 1 to e occurs after setting the value of d to the product of the value of e and the
value of £.

1

a
d

= ++b * cC
= e++ x f

The following program demonstrates the use of the simplified operations. The program uses two

int variables, myInt and other, and initializes the two variables with the values 10 and 13. The
program updates myInt five times using

~

o\°

other,
other,
other,
other, and
other

in this order, and reports the action it has performed, as well as the outcome.

52 2 Using Data for Computation
1 |public class ShortHandExperiment

2 |{

3 public static void main(Stringl[] args)

4 {

5 int myInt, other;

6 myInt = 10;

7 other = 13;

8 System.out.print("myInt is ");

9 System.out.print (myInt);

10 System.out.print(", other is ");

11 System.out.println(other);

12

13 myInt += other;

14 System.out.print("Executed myInt += other\tmyInt is ");
15 System.out.println(myInt);

16

17 myInt *= other;

18 System.out.print ("Executed myInt #*= other\tmyInt is ");
19 System.out.println(myInt);

20

21 myInt -= other;

22 System.out.print("Executed myInt -= other\tmyInt is ");
23 System.out.println(myInt);

24

25 myInt /= other;

26 System.out.print("Executed myInt /= other\tmyInt is ");
27 System.out.println(myInt);

28

29 myInt %= other;

30 System.out.print ("Executed myInt %= other\tmyInt is ");
31 System.out.println(myInt);

32

Listing 2.16 A program that demonstrates the use of mathematical short-hand expre

ssions (part 1)

In the second part, the program executes myInt += other four times while modifying the value

of other with

++other,
other++,
-other, and
other-

in this order, and reports the action it has performed and the outcome.

2.3 Using Variables for Computation

53

other is now

other is now

other is now

other is now

33 myInt += ++other;

34 System.out.print (

35 System.out.print(myInt);
36 System.out.print("

37 System.out.println(other);
38

39 myInt += other++;

40 System.out.print (

41 System.out.print(myInt);
42 System.out.print("

43 System.out.println(other);
44

45 myInt += --other;

46 System.out.print(

47 System.out.print (myInt);
48 System.out.print("

49 System.out.println(other);
50

51 myInt += other--;

52 System.out.print(

53 System.out.print (myInt);
54 System.out.print ("

55 System.out.println(other);
56 }

57 |}

"Executed myInt

"Executed myInt

"Executed myInt

"Executed myInt

+= ++other\tmyInt is "
")
+= other++\tmyInt is "
")
+= --other\tmyInt is "

")

+= other--\tmyInt

")

is

Listing 2.17 A program that demonstrates the use of mathematical short-hand expressions (part 2)

The program produces the following output:

1 |myInt is 10, other is 13

2 |Executed myInt += other myInt
3 |Executed myInt %= other myInt
4 |Executed myInt -= other myInt
5 |Executed myInt /= other myInt
6 |Executed myInt %= other myInt
7 |Executed myInt += ++other

8 |Executed myInt += other++

9 |Executed myInt += --other

10 |Executed myInt += other--

is
is
is
is
is

23

299

286

22

9
myInt
myInt
myInt
myInt

is 23, other is now
is 37, other is now
is 51, other is now
is 65, other is now

14
15
14
13

The next code uses two variables, int myInt and double myReal, to store an integer and a
floating point number, respectively. The program computes the product of the two variables and stores
the value of the product in a double variable, result. In addition, in the assignment of the product,
the program executes one of ++ or - either before or after the two variables:

1 |result = myReal++ » myInt++;
2 |result = ++myReal % ++myInt;
3 |result = myReal-- % myInt--;
4 |result = --myReal % --myInt;

These actions appear in Lines 19, 35, 51, and 66.

54 2 Using Data for Computation

Before each operation, the program prints the values of myInt and myReal, using four
statements:

System.out.print("myReal = ");
System.out.print(myReal);
System.out.print(" and myInt = ");
System.out.println(myInt);

=W N

The first and third lines announce the variables whose values are to be printed and the second and the
fourth lines print their values.

After the operation, the program reports the action it has performed and the values of the three
variables, and then draws a bunch of dashes.

Here is the code, presented in multiple parts. ++ or - appears in Lines 19, 35, 51, and 67.

1 |public class ShortHandNew

2 |{

3 public static void main(Stringl[] args)

4 {

5 [177
6 // declaration and initialization

7 [177777777171777
8 int myInt;

9 double myReal, result;

10 myReal = 89.5;

11 myInt = 17;

12 [177
13 // first round

14 [17777777771777
15 System.out.print("myReal = ");

16 System.out.print (myReal);

17 System.out.print(" and myInt = ");

18 System.out.println(myInt);

19 result = myReal++ * myInt++;

20 System.out.println("Execute myReal++ * myInt++");

21 System.out.print("The result is ");

22 System.out.println(result);

23 System.out.print("Now myReal = ");

24 System.out.print (myReal);

25 System.out.print(" and myInt = ");

26 System.out.println(myInt);

27 System.out.println("-----------------—-——-——-—————————————— ")

Listing 2.18 A program that demonstrate the use of ++ and —— (part 1)

2.3 Using Variables for Computation

55

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"

[1110777
// second round
[1710777
System.out.print("myReal = ");

System.out.print(myReal);

System.out.print(" and myInt = ");

System.out.println(myInt);

result = ++myReal * ++myInt;

System.out.println("Execute ++myReal * ++myInt");
System.out.print ("The result is ");

System.out.println(result);

System.out.print("Now myReal = ");
System.out.print (myReal);
System.out.print(" and myInt = ")

System.out.println(myInt);

System.out.println("------------------—---— - ")
1171777 7777777777777777777777777777777777777/7777777777777777
// third round

1171777 7777777777777777777777777777777777777/7777777777777777

System.out.print ("myReal = ");
System.out.print (myReal);
System.out.print(" and myInt = ");

System.out.println(myInt);

result = myReal-- * myInt--;

System.out.println("Execute myReal-- * myInt--");
System.out.print("The result is ");
System.out.println(result);

System.out.print("Now myReal = ");
System.out.print (myReal);
System.out.print(" and myInt = ");

System.out.println(myInt);

System.out.println("----------------—-—-——————— - ")
[11170777
// fourth round
[17170777
System.out.print("myReal = ");

System.out.print(myReal);

System.out.print("and myInt = ");

System.out.println(myInt);

result = --myReal * --myInt;

System.out.println("Execute --myReal * --myInt");
System.out.print("The result is ");

System.out.println(result);

System.out.print("Now myReal = ");

System.out.print (myReal);

System.out.print(" and myInt = ");

System.out.println(myInt);

System.out.println("------------------------—--—-—-————-—— ")

Listing 2.19 A program that demonstrate the use of ++ and —— (part 2)

56 2 Using Data for Computation

Executing the program produces the following result:

1 |myReal = 89.5 and myInt = 17

2 |Execute myReal++ * myInt++

3 |The result is 1521.5

4 |Now myReal = 90.5 and myInt = 18

6 |myReal = 90.5 and myInt = 18

7 |Execute ++myReal * ++myInt

8 |The result is 1738.5

9 |Now myReal = 91.5 and myInt = 19

11 |myReal = 91.5 and myInt = 19

12 | Execute myReal-- * myInt--

13 |The result is 1738.5

14 |Now myReal = 90.5 and myInt = 18

16 |myReal = 90.5and myInt = 18

17 |Execute --myReal % --myInt

18 |The result is 1521.5

19 |Now myReal = 89.5 and myInt = 17

24 Anlintroduction to the String Data Type
2.4.1 The string Data Type

Recall that "Hello, World!"isa String literal. String is not a primitive data type. Rather,
String is an object type that encompasses a series of char data along with an int value
representing the length of the series. To create data of an object type, a special method called
constructor must be used. The use of any constructor requires a special keyword new. However,
since String is such an important data type, the Java language designers have made it possible to
create a String literal by specifying the character sequence that it encapsulates (using the double
quotation mark at the beginning and end of the sequence). The way to declare a St ring variable and
assign a value to it is the same as the other data types. The following source code is a new version of
the previous quarterback program, with the use of St ring variables.

The program decomposes the messages into the variable parts and the common parts. The first line
of the message takes the format of:

Rank No. 1’ in my all-time favorite NFL QB list is |Steve Young[-]

where the texts in a box are the unchanged parts. Thus, the first line is split into five parts total: the
three parts in a box, the rank number, and the name of the quarterback. The boxed parts are character
sequences. So is the name of the quarterback. The rank number can be thought of as an integer. The
variable names, rankText, favText, and period, are given to the three unchanged text parts
respectively, and the variable names, rank and name, are assigned to the remaining two. The output
of the line is:

rankText rank favText name period

The texts appearing in the boxes, including all the white space, are stored in the variables rankText,
favText, and period. The integer literal 1 is stored in the int variable rank and the String
literal "Steve Young" is assigned to the variable name. By printing the first four of the five
components (rankText, rank, favText, and name) successively with System.in.print

2.4 An Introduction to the St ring Data Type 57

and then the last of the five components, period, with System.out .println, the same output
can be generated.
To be more precise, the following code will be used:

1 String rankText, favText, period;
2 int rank;

3 String name;

4

5 rankText = "Rank number ";

6 favText = " in my all-time favorite NFL QB’s is ";
7 period = ".";

8

9 rank = 1;

10 name = "Steve Young";

11 System.out.print (rankText);

12 System.out.print(rank);

13 System.out.print (favText);

14 System.out.print (name);

15 System.out.println(period);

This series of actions produces the desired output line:

Rank number 1 in my all-time favorite NFL QB’s is Steve Young.

The second line can be decomposed in the same manner. The line is

His overall OB rating is 96.8[]

Again, the texts in a box are the unchanged parts. Since we already have declared the variable period
and assigned a literal consisting of a period to the variable, we will introduce only one new variable,
overText, which holds the other unchanged part His overall QB rating is.

The variable part in this line is a floating point number, so a double variable is used. The name
of the variable is gbr. By assigning the value 96 .8 to gbr and printing the three components
successively, the second line of the output is reproduced.

The following is the code that represents this decomposition:

System.out.print(overText);
System.out.print (gbr);
System.out.println(period);

1 String overText;

2 double gbr;

3 overText = "His overall QB rating is ";
4

5 gbr = 96.8;

6

7

8

the code will produce the output:

His overall QB rating is 96.8.

By grouping the same type of variables together, rearranging the assignments and the declarations,
and making an assignment to each unchanged part immediately after declaring it, the next code is
obtained. In the next code, Lines 57 are the variable declarations, Lines 8—11 are the assignments to
the unchanged parts, Lines 13—15 are the assignments to the variable parts, and Lines 16-23 are the
print statements.

58 2 Using Data for Computation

1 |public class Literals03

2 1

3 public static void main(Stringl[] args)
4 {

5 int rank;

6 String name, rankText, favText, overText, period;
7 double gbr;

8 rankText = "Rank number ";

9 favText = " in my all-time favorite NFL QB list is ";
10 overText = "His overall QB rating is ";
11 period = ".";

12

13 rank = 1;

14 name = "Steve Young";

15 gbr = 96.8;

16 System.out.print (rankText);
17 System.out.print(rank);

18 System.out.print (favText);
19 System.out.print (name);

20 System.out.println(period);
21 System.out.print(overText);
22 System.out.print (gbr);

23 System.out.println(period);
24

25 rank = 2;

26 name = "Peyton Manning";

27 gbr = 96.5;

28 System.out.print(rankText);
29 System.out.print (rank);

30 System.out.print (favText);
31 System.out.print (name);

32 System.out.println(period);
33 System.out.print (overText);
34 System.out.print(gbr);

35 System.out.println(period);
36

37 rank = 3;

38 name = "Tom Brady";

39 gbr = 97.0;

40 System.out.print (rankText);
41 System.out.print(rank);

42 System.out.print (favText);
43 System.out.print (name);

44 System.out.println(period);
45 System.out.print (overText);
46 System.out.print (gbr);

47 System.out.println(period);
48 ¥

49 |}

Listing 2.20 A program that produces comments about some NFL quarterbacks using variables and literals

2.4 An Introduction to the St ring Data Type 59

Here is the output of the code:

Rank number 1 in my all-time favorite NFL QB’s is Steve Young.
His overall QB rating is 96.8.

Rank number 2 in my all-time favorite NFL QB’s is Peyton Manning.
His overall QB rating is 96.5.

Rank number 3 in my all-time favorite NFL QB’s is Tom Brady.

His overall QB rating is 97.0.

AN AW =

2.4.2 StringConcatenation

2.4.2.1 Concatenating Two String Data

A String object can represent a very, very long sequence.* To specify a String, the beginning
and ending double quotation marks must appear in the same line. Therefore, to define a long (say, 900
characters) St ring literal, the width of the terminal screen is too small; viewing it on a screen results
in wraparound, i.e., the character sequence flows into the next line. For example, if a command line
interface window has the width of 64 characters (this quantity may change as the window is resized)
and a String has 900 characters in a single line, the line will be divided into much smaller segments
on the screen.

Fortunately, in Java, it is possible to concatenate St ring literals and variables using the + sign
to mean concatenation. It is also possible to concatenate between a String data and data of other
data types. Using concatenation, the process of generating output can be simplified.

The following code is a new version of the “favorite quarterbacks” program that uses the
concatenation operator:

1 |public class Literals04

2 | {

3 public static void main(String[] args)

4 {

5 int rank;

6 String name;

7 double gbr;

8 String rankText = "Rank number ";

9 String favText = " in my all-time favorite NFL QB list is ";
10 String overallText = "His overall QB rating is ";

11 String period = ".";

12

13 rank = 1;

14 name = "Steve Young";

15 gbr = 96.8;

16 System.out.println(rankText + rank + favText + name + period);
17 System.out.println(overallText + qbr + period);

18

Listing 2.21 A program that produces comments about three NFL quarterbacks using St ring concatenation (part 1)

4Since int is the data type for specifying the position of a character letter in a character sequence, the limit on the
length is 23" — 1.

60 2 Using Data for Computation
19 rank = 2;

20 name = "Peyton Manning";

21 gbr = 96.5;

22 System.out.println(rankText + rank + favText + name + period);
23 System.out.println(overallText + gbr + period);

24

25 rank = 3;

26 name = "Tom Brady";

27 gbr = 97.0;

28 System.out.println(rankText + rank + favText + name + period);
29 System.out.println(overallText + gbr + period);

30 }

31 |}

Listing 2.22 A program that produces comments about three NFL quarterbacks using String concatenation (part 2)

Here is another example of using the concatenation operator. The program prints a quote from

Gettysburg Address by Abraham Lincoln (February 12, 1809 to April 15, 1865):

“Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty,
and dedicated to the proposition that all men are created equal.”

It is possible to declare a String variable and store this sentence in one line. If the width of the
screen is 64, the declaration and assignment will appear as:

T W N =

String addressl = "Four score and seven years ago our fathers b
rought forth on this continent, a new nation, conceived in Libe
equal.";

with two mid-word breaks. Using the connector +, the code can be made easier to recognize:

String addressl = "Four score and seven years ago our'
+ " fathers brought forth on this continent,"
+ " a new nation, conceived in Liberty, and"
+ " dedicated to the proposition that all men"
+ " are created equal.";

Because of the white space appearing at the start of the second, the third, the fourth, and the fifth

literals, System.out .println(addressl) has the same effect as before:

NN =

To avoid wraparound, the newline character \n to force line breaks can be inserted, e.g.,

Tk W N =

Four score and seven years ago our fathers brought forth
on this continent, a new nation, conceived in Liberty,
and dedicated to the proposition that all men are create

d equal.

String addressl =
"Four score and seven years ago our fathers brought forth\n"
+ "on this continent, a new nation, conceived in Liberty,\n"

+

"and dedicated to the proposition that all men are\n"
+ "created equal.\n";

2.4 An Introduction to the St ring Data Type 61

The output of System.out .println(addressl) then changes to:

Four score and seven years ago our fathers brought forth
on this continent, a new nation, conceived in Liberty,
and dedicated to the proposition that all men are
created equal.

EESIONEN SR

Here is another example. The example uses a String variable named row. The variable row has
the four lines of the song “Row, row, row your boat”. The literal has the newline at the end of each
line, so printing it produces the four lines, as shown next:

Row, row, row your boat,

Gently down the stream.

Merrily, merrily, merrily, merrily,
Life is but a dream.

EUSIE NS R

The code for defining the String is as follows:

String row "Row, row, row your boat,\n"
"Gently down the stream.\n"
"Merrily, merrily, merrily, merrily,\n"

"Life is but a dream.\n"

S o
+ o+ o+

‘When printing many short lines, the lines can be connected into a single line with a " \n in between,
thereby reducing the number of lines in the program. For example,

1 |String count = "One\nTwo\nThree\nFour\nFive\n"
+ "Six\nSeven\nEight\nNine\nTen\n";
3 |System.out.print(count);

produces the output

One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Ten

OO0 JNWNR W=

—_

2.4.2.2 Concatenating String Data with Other Types of Data

When multiple number data are connected with a String object using the plus sign, the con-
catenation shows some peculiar behavior. This is because the plus sign has two roles as both the
addition operator of numbers and the String connector. Suppose the concatenation has more than
two terms and is free of parentheses. The java compiler interprets this from left to right, and in each
concatenation, if both terms are numbers, then the compiler treats it as the number addition.

62

2 Using Data for Computation

In the following code fragment:

1 |String word1l

String word2 =

"cscl20";
4 + 5 + 6 + "ab" + wordl;

The value of word2 becomes the literal "15abcsc120", but not "456abcsc120". This is
because the first and the second concatenations are additions.
Consider the following example:

1

2

3

4

5

6 double

7 System.out.
8 System.out
9 System.out.
10

11 System.out.
12 System.out.
13

14 System.out
15 System.out
16

17 System.out
18 System.out.
19

20 System.out.
21 System.out
22 }

23 |}

//-- examples of string manipulation
public class StringVariables {
public static void main(Stringl[] args) {
String myString = "abcde";
int myInteger = 10;
myDouble = 9.5;

print ("myString = " + myString);

.print(", myInteger = " + myInteger);
println(", myDouble = " + myDouble);

print ("myString + myInteger + myDouble = ");

.print("myString + (myInteger + myDouble) = ");

.print("myInteger + myString + myDouble = ");

println(myString + myInteger + myDouble);

.println(myString + (myInteger + myDouble));

println(myInteger + myString + myDouble);

print ("myInteger + myDouble + myString =)
.println(myInteger + myDouble + myString);

Listing 2.23 A program that contains print statements that print values of String data generated by concatenation

In this code, both System.out.print and System.out.println have one or two
concatenations appearing in their parentheses. The execution of the code produces the following

result:

1 |myString = abcde, myInteger = 10, myDouble = 9.5
2 |myString + myInteger + myDouble = abcdel09.5

3 |myString + (myInteger + myDouble) = abcdel9.5

4 |myInteger + myString + myDouble = 1l0abcde9.5

5 |myInteger + myDouble + myString = 19.5abcde

For String concatenation, the short-hand expression of += is available. In other words, w += x
can be used in place of w = w + x.

Exercises 63

Summary

Data carries information.

A data with a name is a variable. An example of data without a name is a literal.

A variable declaration requires the type and the name of the variable.

It is possible to declare multiple variables of the same type with just one type specification.

A variable declaration with £inal is a declaration of a constant.

Each variable declaration is valid until the end of the innermost pair of matching curly brackets
that contain it. This is the scope of the variable.

Two declarations having the same variable name must not have overlapping scopes.

The declaration of a variable must appear before an assignment to the variable.

A variable name must consist of letters and numerals, and must start with a letter.

The reserved words of Java cannot be used for names.

All the methods in a class have access to global variables.

Global variable declarations appear at depth 1 with the attribute of static while local variable
declarations appear at depth 2.

There are eight primitive data types. Other data types are object data types.

+, -, =, /, and % are five elementary mathematical operations.

Five shorthand expressions are available for self-updating. They are +=, -=, x=, /=, $=, ++, and
It is possible to attach ++ or - to a variable, and the position of the attachment can be either before
or after the variable.

When a binary operator operates on two numbers of different types, the program chooses to
represent both with a floating number if and only if one of them is of a floating number.
Furthermore, for two numbers of different types, the program will choose the type with the larger
number of bits to represent both numbers.

It is possible to concatenate St ring literals and String variables with the + sign.

When a number concatenates with a String, the resultis a String.

Exercises

1. Memory size The following are the four primitive data types in Java that represent whole
numbers. State how many bits are required to represent each of them.
(a) byte
(b) short
(¢) int
(d) long

2. Memory size The following are the two primitive data types in Java that represent floating point

numbers. State how many bits are required to represent each of them.
(a) float
(b) double

3. Casting State whether or not the following statements are correct.

(a) To represent a whole number literal as a short, attach S at the end, e.g., as in 1208S.

(b) To represent a whole number literal as a byte, attach B at the end, e.g., as in 120B.

(c) To represent a floating point number literal as a £loat, attach F at the end, e.g., as in
120.5F.

64

2 Using Data for Computation

© 00 3O Uk W~ Tk W N~

T W~

DN =

. Data type Suppose a is a long variable, b is an int variable, and c is a double variable.

State the data types of the following formulas:
(@a/b
b a/c
(©b / c

. Declaring variables Write a program, MyFavorites, that declares two variables,

String word and int lucky, assigns some literals to them, and then prints the values
as follows:

My favorite word is "XXX".
My lucky number is YYY.

where XXX is for the value of word and YYY is for the value of 1ucky.

. Value assignments to variables Consider the following series of statements:

11;

3;

=a / b+ a i b;
b
b

B

.
[=]
ct

M P o T e
I

B

What are the values of a, b and c after the very last statement?

. Cyclic value assignments

Consider the following series of statements:

int a, b, c, d;
a = 11;
b = 12;
c = 13;
d = 14;
a = b;
b = c;
c = d;
d = a;

What are the values of the variables a, b, ¢, and d after each of the eight assignments?

. What’s wrong with the code? Assume that the code below is part of the method main of a

class. State what is wrong with the code:

int numberX = 0, numberY = 2;
int numberX += numberY, numberZ;
numberZ = 0.5;

realW = 71.5;

double realW *= realW;

. What’s wrong with the code? Assume that the code below is part of the method main of a

class. State what is wrong with the code:

Exercises 65

=W N

Uk W N =

11.

U W N~

12.

UL W N =

13.

14.

15.

AN R W =

c =a-17;

. Variable evaluation, ++ and —— After executing the code below, what are the values of x, v,

z and w?

int x, y, z, w;
= 10;

3;

= x % y--;

= --x * --y;

= N < M
]

Variable evaluation, ++ and —— with division After executing the code below, what are the
values of z and w?

int x, y, z, W;
= -11;

4;

= x / ++y;

= ++x % y--;

= N< M
]

Variable evaluation, String and number After executing the code below, what are the values
of z and w?

String x, y, 2z, Ww;

x = "emerson";

y = "palmer";

z = x + "lake" + y;
w=1+2+2z+ 3 + 4;

Value exchanging Let a and b be int variables. Write a code for exchanging the values of a
and b. For example, when a has the value of 10 and b has the value of 7, the exchange will make
the value of a equal to 7 and b equal to 10. Assume that a and b have been already declared in
the code and have been assigned values, so the task at hand is to swap the values of the two.
Value exchanging, again Let a, b, and ¢ be int variables. Write a code for exchanging the
values of the three (the original value of a goes to b, the original value of b goes to ¢, and the
original value of ¢ goes to a).

Short-hand Suppose a and b are int variables. What are the values of a and b after executing
the following?

3;
2.

7

7

[oRN NN o NV I o R V]

* ok X X |l
1}

b
a;
b
a

7

66

2 Using Data for Computation

Programming Projects

16. Gravity again Recall that if an object is released so that it falls, the speed of the object at

17.

18.

t seconds after its release is gt and the distance the object has travelled in the ¢ seconds after
release is % gt>. Here, g is the gravity constant. Its value is approximately 9.8. Write a program,
Gravity, in which the method main performs the following actions:

(a) The program declares variables t for the travel time, speed for the speed, and distance

for the distance traveled;

(b) The program assigns some value to t;

(c) The program calculates the speed and the distance;

(d) The program prints the calculated values.

(e) The program assigns a different value to t and repeats Steps 1-4.

Computing the tax from a subtotal and then the total Write a program,

ComputeTaxAndTotal, that computes the tax and the total in the following manner:

» The program uses an int variable subtotal to store the subtotal in cents. Since we do not
know (yet) how to receive an input from the user, assign some int literal to this variable in the
code.

* The program use a double variable taxPercent to store the tax rate in percent. Again,
since we do not know (yet) how to receive an input from the user, assign some int literal to this
variable in the code (for example, the tax rate is 5.5% in the state of Massachusetts).

* The program then computes the tax amount as a whole number in cents, in an int variable
tax. Using the casting of (int), a floating point number can be converted to a whole number
by rounding it down.

* The program then computes the total, and stores it in an int variable total. (Again, this
quantity is in cents.)

* The program reports the result of the calculation in dollars and cents for the subtotal, the tax,
and the total, and then reports the tax rate.

The output the code may look like:

The subtotal = 110 dollars and 50 cents.
The tax rate = 5.5 percent.

The tax = 6 dollars and 7 cents.

The total = 116 dollars and 57 cents.

AN W N -

Speeding fine In the town of Treehead, the speeding fines are $20 times the mileage beyond
the speed limit. For example, if a driver was driving at 36 mph on a 30 mph road, his fine is
$120. Write a program, SpeedingFine, that produces the speeding fines for the following
combinations of speed and speed limit:
* (50 mph, 35 mph)
* (30 mph, 25 mph)
* (60 mph, 45 mph)
In the program, declare int variables, speed, 1imit, and £ ine. Compute the fine by assigning
values to the first two variables and multiplying it by the rate of 20. To report the results, write
a series of print/println statements in which the speed, the limit, and the fine appear as
variables. The code should execute this series three times and, before each series, the assignment
to the three variables must appear.

Here is an execution example of the program.

1 | The fine for driving at 50 mph on a 35 mph road is 300 dollars.
2 |The fine for driving at 30 mph on a 25 mph road is 100 dollars.
3 | The fine for driving at 60 mph on a 45 mph road is 300 dollars.

Exercises 67

19. The area of a trapezoid Write a program, Trapezoid, that computes the area of a trapezoid
when given the top and bottom lengths and the height. The program specifies the top, the
bottom, and the height of the trapezoid in individual System.out .println statements. The
program computes the area by directly putting the formula (bottom + top) * height / 2 inside a
System.out.println statement. Freely choose the variables for the top, the bottom, and the height.

For example, the output of the program can be:

Top: 10.0

Bottom: 20.5

Height: 24.4

Area: 372.09999999999997

AW N~

Split each line of the output into two parts: the first part prints the text, including the
whitespace, using a System.out .print statement, and the second part prints the quantity
using a System.out . print1ln statement. For example, the first line should use the following
two statements:

1 System.out.print("Top: ");
2 System.out.println(10.0);

Reading Keyboard Input 3

3.1 Class Scanner
3.1.1 Importing Source Codes

The class Scanner enables reading data from the keyboard, a St ring object, or a text file using the
characters (the white space character * ', the tab-stop ’ \t’, and the newline ' \n’) as separators
(such characters are called delimiters). The character sequences separated by the delimiters can be
read not only as String data but also as data of other types (when such interpretations are possible).
The class will play an important role in the programs presented in this book. The source code for
Scanner is available as part of JDK but not part of java.lang. Therefore, to write a source
code for a program that uses Scanner, the source code of Scanner must be included. To include
Scanner, an import statement must be used. If a class FooBar uses Scanner, the declaration
must take the following form:

1 |import java.util.Scanner;
2 |public class FooBar

3 |4

4 | ...

5 |}

Here, java.util is the group called package that contains the source code for Scanner.

The source code library of JDK is a hierarchical (tree-like) structure. We call the top-level of the
hierarchy the root. Underneath the root exists a number of projects. A project is a collection of
packages, where a package is a collection of classes and/or hierarchies of classes serving common
purposes. Popular projects include java and javax. Popular packages in the project java are
lang, io, and util. The standard Java package 1ang belongs to the project java. The period .
appearing in the import statement refers to these hierarchical relations, so java.util.Scanner
means:

“the class Scanner in the package util of the project java”.

Some packages have sub-packages, and so the actual number of times that the separator . appears in
an import statement is more than two for some packages.

© Springer Nature Switzerland AG 2018 69
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_3

https://doi.org/10.1007/978-3-319-89491-1_3

70 3 Reading Keyboard Input

Multiple import statements may appear in the header. For example, the following code:

import java.util.Scanner;

import java.util.ArraylList;

import java.util.LinkedList;

import java.io.File;

import java.io.FileNotFoundException;
class FooBar

{

© 00O U W~

}

imports five distinct classes. Multiple import statements for classes from the same package can be
substituted with a universal import statement.

1 |import java.util.x;
2 |class FooBar

3 |4

4 |...

5 |}

The asterisk, meaning “everything”, is called the wildcard.

3.1.2 The Instantiation of a Scanner Object

To use the functions of the class Scanner, one needs a Scanner object. A Scanner object is
created through a process called instantiation. The instantiation of an object of a type CLASS NAME
takes the form of:

new CLASS_NAME(PARAMETERS)

where CLASS NAME is a special method called constructor. Each object class has its own
constructors. The name of a constructor matches the name of the class it belongs to. Here,
PARAMETERS represents the information given to the instantiation procedure. Many classes,
including Scanner, accept more than one kind of parameter specification. In this book, we study
three Scanner constructors: one that takes a String object, one that takes System. in, which
refers to the keyboard, and one that takes a File object, which refers to a file.! The next code
fragment uses the three Scanner constructors and assign them to Scanner variables.

1 Scanner strScanner, fileScanner, keyboard;

2 |strScanner = new Scanner("My GPA is 4.00!");

3 | fileScanner = new Scanner(new File("theFile.txt"));
4 |keyboard = new Scanner(System.in);

IAlthough we do not use them in this book, String has many constructors (for various examples, see https://docs.
oracle.com/javase/7/docs/api/java/lang/String.html).

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

3.2 Reading Data with a Scanner Object 71

The first Scanner object strScanner scans the String literal "My GPA is 4.00!", the
second Scanner object fileScanner scans a file named "theFile.txt", and the last
Scanner object keyboard scans input from the keyboard. We will study the last type extensively
in this chapter.

3.2 Reading Data with a Scanner Object

Regardless of whether the input source may be a String, a File, or System. in, the chief
function of a Scanner is to read from the input source using a delimiter sequence as a separator.
Scanner does this by scanning the input character sequence from the beginning to the end and
discovering the longest stretch of characters free of delimiters. The delimiters are our usual suspect of
spacing characters: the white space character, the tab-stop, and the newline. We call such a delimiter-
free stretch of characters a token. When reading from a String and when reading from a File,
the contents of the input are fixed, so dividing the contents into tokens and delimiters is easy. When
reading from System. in, dividing the contents into tokens is a dynamic process, since the user
can use the delete key (or backspace key) to change the contents dynamically until the return key is
pressed, upon which no more changes are permitted.
Imagine that a String object myStringSource has contents

" Programming\t\tis fun, \nisn’t it?\n"

where \t and \n are the tab-stop, and the newline and the other gaps consist of the white space
characters. We can break this String data into an alternating series of delimiters and tokens, as
follows:

a delimiter " ",

atoken "Programming",
a delimiter "\ t\t",
atoken "is™",

a delimiter " ",

atoken "fun, ",

a delimiter "\n",

atoken "isn’t™",

a delimiter " ",

atoken "it?"

e e A ol e

_
e

If we have instantiated a Scanner object myInput from this String literal, then myInput
produces the five tokens in order of appearance.

To read data from the input source of a Scanner object, we apply a method to the object. Formally,
a method applied to an object data is called an instance method. To execute an instance method on an
object of an object class, we attach a period and the name of the method to the object, and then attach
a pair of parentheses after the method name. Each execution of the method is called a method call.

72 3 Reading Keyboard Input

This period has the same role as the second periods in System.out.println and
System.out.print, since System.out is an object of type PrintStream (which we will
study in Chap. 15).

The instance method used for reading a token as a String data from the input source of a
Scanner object is called next. Here is a code that uses the method:

String myStringSource;

Scanner mylInput;

myStringSource = " Programming\t\tis fun, \nisn’t it?";
myInput = new Scanner (myStringSource);

myInput.next () ;

Uk W N =~

myInput.next () produces the first token of the String object, "Programming". If there
is no action that utilizes this token, the token disappears. The token that next produces in a String
variable can be saved via assignment; that is, after

String myStringSource, myFirstToken;

Scanner mylInput;

myStringSource = " Programming\t\tis fun, \nisn’t it?";
myInput = new Scanner (myStringSource);

myFirstToken = myInput.next();

U W N~

the variable firstToken has the value "Programming".

Earlier we quickly went over the return type of a method. In the case of the method next of
Scanner, its return type is String. In the case of the method next, the method comes back with
a String. We can obtain that value by assigning it to a String value. In a similar manner, we can
place the method call in a System.out .println, as shown next:

1 |myInput = new Scanner(myStringSource);
System.out.println(myInput.next());

The System.out .println receives the return value of myInput .next () and prints it on
the screen. Since the first token retrieved is "Programming", the code produces the output:

Programming

By executing the next () four more times, we are able to retrieve all the tokens appearing in
mySourceText. For example,

3.2 Reading Data with a Scanner Object 73

?

Ll [efzlolsf=]aln]n]s]alsfvefnefsfo | [[e]afnf [[w]sfofn] e [s]¢

LI [efelefslefaln]n]sfn]s]sele]sfo] [| [efafn].[Jofsfsfn]-Je] [sfe

[el=[ofsl=]afn]n]s]n]s

LI [efzlolsf=]aln]n]slalsfefnefsfo | [[e]ufnf [wfsfofn] -] [s]e
i]]

Ll [efelolsfelaln]n]slalsfvefnefsfe | [[efufnf [[wfsfofn]-[e] [s[efe]
HEEE

LI [efelefslefaln]n]sfn]s]se]elsfo] [| [efafn].[Jofsfefa]-Je] [sfe
HENER

LI [efzlolsf=]aln]n]slalsfefnefsfo | | [e]afnf [[w]sfofn] e [s]e

?

?

?

?

HER

Fig. 3.1 The results of five consecutive calls of next. The arrows show the start positions of the Scanner object for
the next read. The sequences immediately to the left of the arrows are the tokens that have been read

String myStringSource, tokenl, token2, token3, token4, tokenb
Scanner mylInput;

myStringSource = " Programming\t\tis fun, \nisn’t it?";
myInput = new Scanner (myStringSource);

tokenl myInput.next ();

© 00 U WN -

token2 = myInput.next();
token3 = myInput.next();
token4 = myInput.next();
token5 = myInput.next();

retrieves the five tokens as five variables in the order they appear.

The results of the five calls of next are shown in Fig. 3.1.

It is impossible to scan beyond the last token. If an attempt is made to read beyond the last token,
a run-time error of NoSuchElementException occurs. The code appearing in the next source
code demonstrates an attempt to read beyond the last token, as well as the resulting run-time error.

74 3 Reading Keyboard Input

1 |import java.util.Scanner;

2 |public class BeyondLimit

3 |4

4 public static void main(String[] args)

5 {

6 String aToken, tokens = new String("My age is 20");
7 Scanner keyboard = new Scanner(tokens);
8 aToken = keyboard.next();

9 System.out.println(aToken);

10 aToken = keyboard.next ();

11 System.out.println(aToken);

12 aToken = keyboard.next();

13 System.out.println(aToken);

14 aToken = keyboard.next();

15 System.out.println(aToken);

16 aToken = keyboard.next();

17 System.out.println(aToken);

18 ¥

19 |}

Listing 3.1 A program that attempts to read a token that does not exist

Since there are five keyboard.next () calls and there are only four tokens, an error occurs at
the fifth keyboard.next () call, as shown next:

My

age

is

20

Exception in thread "main" java.util.NoSuchElementException
at java.util.Scanner.throwFor (Scanner.java:862)
at java.util.Scanner.next (Scanner.java:1371)
at BeyondLimit.main (BeyondLimit.java:16)

0NN AW —

The fifth line of the output is the start of the error message. The type of the error appears, at the end,
as java.util.NoSuchElementException.

It is vital to prevent attempts to read beyond the last token. When reading from the keyboard,
because the texts are generated dynamically and the length of the text is indefinite, we usually do not
encounter the error. (The error does not occur unless the user simultaneously presses the CTRL-key
and the letter A’ to indicate the end of the input. This combination is called CTRL-D. We will study
the use of CTRL-D in Chap. 11.)

When reading tokens from a String data or from a file, however, some proactive measures are
needed to prevent the error from happening. There are three possible approaches:

(a) know beforehand how many tokens are in the input source;
(b) check for the existence of a token before attempting to read;

(c) recover from NoSuchElementException using a special mechanism, called try-catch.

We will study the second approach in Chap. 11 and the third in Chap. 15.

3.2 Reading Data with a Scanner Object 75

Table 3.1 Selected Name Return type Action
methods of Scanner next String Obtains the next token
nextBoolean boolean Obtains the next boolean token
nextByte byte Obtains the next byte token
nextDouble double Obtains the next double token

nextFloat float Obtains the next £1oat token

nextInt int Obtains the next int token

nextLong long Obtains the next 1ong token

nextShort short Obtains the next short token

nextLine String Obtains the String before the next newline
hasNext boolean Checks whether or not the next token exists

All the methods in this table are usually called with an empty parameter,
i.e., with () attached after the method names. We will study hasNext in
Chap. 11

Using Scanner, we can fetch the next token not only as a St ring data but also as a token of a
specific primitive data type, given that the token can be interpreted as a literal of that type. The type-
specific fetch methods are: nextBoolean, nextByte, nextDouble, nextFloat, nextInt,
nextLong, and nextShort. Note that there is no method corresponding to reading a char. If
one of these methods is called and the next token cannot be interpreted as the type associated with
the method, a run-time error of InputMismatchException occurs. For example, suppose the
next token in the input sequence is -1 . 0. The token can be interpreted as a double data, a float
data, and a String data, but not as a whole number data or as a boolean data. Thus, the use of
nextBoolean, nextByte, nextDouble, nextFloat, nextInt, or nextLong will fail (and
a run-time error will subsequently appear).

Table 3.1 presents a list of Scanner methods that appear in this textbook. We will study hasNext
in Chap. 11.

There is one particularly interesting “next” method in Scanner and this is nextLine. If the
remaining (or upcoming) character sequence has at least one occurrence of the newline character, the
nextLine returns the entire character sequence appearing before the first newline character in the
upcoming character sequence. After completing nextLine, the Scanner object scans the sequence
starting from the character immediately after the identified newline character.

If a Scanner object is instantiated with either a String data or a File object, the remaining
sequence may not contain any newline characters. If the nextLine method is called in such a
situation, the method returns the String data corresponding to all the remaining characters. After
that, no characters remain in the sequence.

Consider the following code:

76 3 Reading Keyboard Input
1 |import java.util.x;

2 |public class NextLine

3 1

4 public static void main(Stringl[] args)

5 {

6 String myStringSource =

7 "My lucky number is 17 , \n how about yours? ";
8 Scanner mylInput = new Scanner (myStringSource) ;

9 System.out.println(myInput.next());

10 System.out.println(myInput.next());

11 System.out.println(myInput.next());

12 System.out.println(myInput.next());

13 System.out.println(myInput.nextInt());

14 System.out.println(myInput.nextLine());

15 System.out.print (myInput.nextLine());

16 System.out.println(":::::")

17 }

18 |}

Listing 3.2 A program that combines next and nextLine

The source of the Scanner object is the St ring literal

"My lucky number is 17 , \n how about yours? "

The fifth token of the input source is the String literal "17". We can treat this as either a
String type or an int (or any other number type since 17 can be represented as a byte data).
The delimiter sequence that follows this number token consists of five characters, represented as
" , \n ". (the double quotation marks are attached so as to clarify the beginning and the ending
of the character sequence. If the method that is called at that point is next, then the Scanner
will skip to the next token ", ". However, if the method that is called is nextLine instead, the
"\n" appearing as the fourth character of the five-character sequence becomes the delimiter. When
this happens, the Scanner object returns " " as the result of executing nextLine, and then
the Scanner object positions itself to the fifth character of the sequence, i.e., the " " after the
newline. If nextLine and next are called successively, the method call to next returns "how".
If nextLine is called twice successively, the first call returns " , " as in the previous case, and
the second call returns the remainder of the sequence, " how about yours? ", because is no
additional appearance of \n. Based upon this analysis, the output of the program is expected to be:

1 |% java NextLine
2 |My
3 |lucky
4 | number
5 |is
6 |17
7 ,
8 how about yours? :::::
9 | %
The ":::::" appearing at the end is not part of the String literal, but is a marking that this

program attaches to indicate the end of its output. Figure 3.2 shows the progress that the Scanner
object makes during the execution of the program.

3.3 Reading Input from the Keyboard 77

[Ix[Taleleles] [nfalnfelele] Tafo] [2[o] [.] Tw] [afofw] [alefofue] sfefal=]o] []

f

[Ix[Talelelels [afalnfolele] [afs] [2[o] [.] Tw] [afofw] [alefofue] s[efol=]o] []
T

[Ix[Taleleles [nfalnfelele] Tafo] [2[o] [.] Tw] [afofw] [alefofue sfefol=]o] []
[ely[[alelelelo [ofulnlolele] Tfe] [a[o[[.] Tl [ofofw] [alolofule] [vfeful=Tsz] []
[ely[[aleleles [ofulnlolele] Tsfe] [a[o] [.] Tl [ofofw] [alolofule] [vfeful=]ss] []
[[x[[aleleles] [afalnlolele] [sfs] [2[o] [.] Tw] [afofw] [alelofue] [s[efol=]o]] []

T
[Ix[[aleleles [nfalnfelele] Tafo] [2[o] [.] Tw] [afofw] [alefofue] [sfefol=]o]] []
DﬂjT

[ely[[alelelels] [ofulnlolels] Tefe [a[o[[.] Tl [ofofw] [alolofue vfeful=Ts-] []
f
[Iefelv] Telefolule] Tslolul=l=l=] T]

Fig. 3.2 The results of executing the program. The arrows show the positions of the Scanner object for the next read.
The sequences immediately to the left of the arrows are the tokens that have been read. Note that the last two reads are
done by nextLine so the delimiters other than the newline characters, if any, are included in the returned String
data that are returned

3.3 Reading Input from the Keyboard
We will now explore how to read data from the keyboard. Note two things:

1. The Scanner objects instantiated with System. in cannot take action until the return key is
pressed. This means that, depending on what actions are awaiting with the Scanner object, the
single line of input may offer a return value to multiple next methods of the Scanner object.

2. When reading the output generated by a program that scans keyboard input, the coexistence of the
output of the program and the echo of the keyboard input makes it difficult to distinguish between
the two different types of screen output.

The next code demonstrates the use of the type-specific token reading methods. The program stores
the result of each token it reads in a variable of an appropriate type, and then prints the value.

Notice that nextLine appears at the very beginning of the series of calls to next methods. This
is because if nextLine comes after another call to the next method, then the result of nextLine
will be an empty String.

78 3 Reading Keyboard Input

Furthermore, when a Scanner object is instantiated with System. in, because the white space
and the tab-stop are erasable after typing, nothing occurs until the return key is entered. For example,
if the character sequence ABC 17 5.4 is typed and the return key is entered, the sequence includes
three tokens, but none of the three tokens can be read until the pressing of the return key. Using this

1 |import java.util.Scanner;

2

3 |public class Nexts

4 |{

5 public static void main(Stringl[] args)

6 {

7 Scanner keyboard;

8 boolean myBoolean;

9 byte myByte;

10 double myDouble;

11 float myFloat;

12 int myInt;

13 long myLong;

14 short myShort;

15 String myString;

16 keyboard = new Scanner(System.in);

17 // Nextline

18 System.out.print("Enter any String: ");

19 myString = keyboard.nextLine();

20 System.out.println("You’ve entered: " + myString);
21 // String

22 System.out.print("Enter a String with no space: ");
23 myString = keyboard.next ();

24 System.out.println("You’ve entered: " + myString);
25 // boolean

26 System.out.print("Enter a boolean: ");

27 myBoolean = keyboard.nextBoolean();

28 System.out.println("You’ve entered: " + myBoolean);
29 // byte

30 System.out.print("Enter a byte: ");

31 myByte = keyboard.nextByte () ;

32 System.out.println("You’ve entered: " + myByte);
33 // double

34 System.out.print("Enter a double: ");

35 myDouble = keyboard.nextDouble ();

36 System.out.println("You’ve entered: " + myDouble);
37 // float

38 System.out.print ("Enter a float: ");

39 myFloat = keyboard.nextFloat ();

40 System.out.println("You’ve entered: " + myFloat);
41 // int

42 System.out.print("Enter an int: ");

43 myInt = keyboard.nextInt ();

44 System.out.println("You’ve entered: " + myInt);

45 // long

46 System.out.print("Enter a long: ");

47 myLong = keyboard.nextLong();

48 System.out.println("You’ve entered: " + myLong);
49 }

50 |}

Listing 3.3 A program that demonstrates the use of various “next” methods of Scanner

3.3 Reading Input from the Keyboard 79

information, if the user knows what types of tokens the program is expecting to receive, she can enter
multiple tokens in succession.

In the next code, the program expects three input tokens from the keyboard, a String, an int,
and a double. The program receives these input tokens and then prints them. Knowing what happens
in the code, the user can type ABC 10 4.5 to enter all the tokens required by the program at once.

1 |import java.util.Scanner;

2 |// an example of using Scanner

3 |public class ScannerExample

4 | {

5 public static void main(Stringl[] args)
6 {

7 Scanner console;

8 String theWord;

9 int theWholeNumber;

10 double theRealNumber;

11 console = new Scanner(System.in);

12 System.out.print("Enter a string: ");
13 theWord = console.next();

14 System.out.print("Enter an int: ");
15 theWholeNumber = console.nextInt();

16 System.out.print("Enter a double: ");
17 theRealNumber = console.nextDouble();
18 System.out.print ("You have entered ");
19 System.out.print (theWord);

20 System.out.print(", ");

21 System.out.print (theWholeNumber);

22 System.out.print(", and ");

23 System.out.print (theRealNumber);

24 System.out.println();

25 }

26 |}

Listing 3.4 A program that reads a String data, an int data, and a double data using methods of Scanner

The next program asks the user to enter two integers and then two real numbers. The program
then multiplies the two integers and divides the first real number by the second. Finally, the program
produces the output showing the results of the arithmetic operations.

80 3 Reading Keyboard Input
1 |import java.util.Scanner;

2 |// an example of using Scanner

3 |public class ScannerMath

4 |{

5 public static void main(Stringl[] args)

6 {

7 Scanner console;

8 int intl, int2, product;

9 double reall, real2, quotient;

10

11 console = new Scanner(System.in);

12

13 System.out.print("Enter int no. 1: ");
14 intl = console.nextInt ();

15 System.out.print ("Enter int no. 2: ");
16 int2 = console.nextInt();

17 product = intl * int2;

18

19 System.out.print("Received ");

20 System.out.print(intil);

21 System.out.print(" and ");

22 System.out.println(int2);

23 System.out.print("The product is ");
24 System.out.println(product);

25

26 System.out.print("Enter double no. 1: ");
27 reall = console.nextDouble();

28 System.out.print("Enter double no. 2: ");
29 real2 = console.nextDouble();

30 quotient = reall / real2;

31

32 System.out.print("Received ");

33 System.out.print(reall);

34 System.out.print(" and ");

35 System.out.println(real2);

36 System.out.print("The quotient is ");
37 System.out.println(quotient);

38 }

39 |}

Listing 3.5 A program that performs arithmetic operations on the numbers received from the user

Again, when running this code, all the numbers can be typed at once. Such “ahead of the game”
typing saves the wait time.

Summary

We construct an object by calling a constructor new CLASS NAME (PARAMETERS).

A class may have more than one constructor, with each taking a unique set of parameters.

To use a Scanner object in the source code, the class Scanner must be imported.

To execute a method on an object, the method name along with parameters must be attached to
the object, with a period before the method name.

Scanner offers a variety of token reading methods: next, nextBoolean, nextByte,
nextDouble, nextFloat, nextInt, nextLine, nextLong, and nextShort.

Exercises 81

B An attempt to read beyond the last token results in a run-time error.
B The keyboard echo and the output of the program share the same screen.

Exercises

1. Terminology test

0~ U W

(a) To be able to use a Scanner, which class must be imported?

(b) To create a Scanner object that receives input from the keyboard, what statement is needed?

(c) Write the names of the Scanner methods necessary for receiving a String, an int, and
a double, respectively.

(d) When a user types a floating point number into a location where the program has just called
the next Int method of a Scanner method, will an error occur? If so, what kind of error
is it?

(e) Does an int value of 15 pass for a double?

(f) What is the formal term that refers to the process of creating an object of an object type?

(g) What is the special keyword used in the source code when creating an object?

(h) For one primitive data type, the class Scanner does not have the next method designated
to read tokens of that type. Which type is this?

. Scanning errors Consider the following program:

import java.util.x*;
public class SimpleInputOutput
{
public static void main(Stringl[] args)
{
Scanner keyboard = new Scanner(System.in);
String word;
double real;
int value;
System.out.print("Enter a real number (for a double): ");
real = keyboard.nextDouble();
System.out.print("Enter a word: ");
word = keyboard.next ();
System.out.print("Enter an integer (for an int): ");
value = keyboard.nextInt ();
System.out.print("Your have entered: ");
System.out.println(real + ", " + word + ", " + value);
}
}

Suppose the user is considering the following key strokes when the code is compiled and run,
where the strokes are presented as St ring literals, with \ t and \n representing the tab-stop and
newline respectively. Do they have enough tokens to finish the code? Which ones will run without
causing an error? For those that lead to an error, where will its error occur, and what is the nature
of the error?

(a) "\t0.5\tprogramming\t10\n"
(b) "\t5\tprogramming\t10.5\n"
(¢) "\n\n5\n\n5\n"

(d "™ 00 0.5"

()™ 0 0 0.5\n"

82

3 Reading Keyboard Input

3. Scanning errors when nextLine is involved Consider the following program:

0~ Uk W

import java.util.*;
public class SimpleInputOutput
{
public static void main(Stringl[] args)
{
Scanner keyboard = new Scanner(System.in);
String wordl, word2;
double real;
int value;
System.out.print("Enter a real number (for a double): ");
real = keyboard.nextDouble();
System.out.print("Enter a word: ");
wordl = keyboard.nextLine();
System.out.print("Enter an integer (for an int): ");
value = keyboard.nextInt();
System.out.print("Enter another word: ");
word2 = keyboard.nextLine () ;
System.out.print("Your have entered: ");
System.out.println(
real + ", " + wordl+ ", " + value + ", " + word2);
}
¥

Suppose the user is considering the following key strokes when the code is compiled and run,
where the strokes are presented as St ring literals with \ t and \n representing the tab-stop and
newline respectively. Do they have enough tokens to finish the code? Which ones will run without
causing an error? For those that lead to an error, where will its error and what is the nature of the
error?

(@) "\t0.5\tprogramming\t10\tJava\n"
(b) "\t5\tprogramming\n10.5\tJava\n"
(¢) "5\nprogramming\n10.5\nJava\n"
(d) "\n\n5\n\n5\n"

() " -3 -3\n-3.7 -3.5\n"

) " 0.5 0.5\n6 6\n"

Programming Projects

. Inferences Write a program named Inference that receives three names, namel, name2,

and name3, from the user and prints the following statements.

namel is senior to name2
name2 is senior to name3
so

namel is senior to name3

name3 1s senior to name2
name2 is senior to namel
so

name3 1is senior to namel

O 001NN W~

The output of the program is composed of the names entered, " is senior to ,and "so".
Declare the last two as constants. Use three variables to store the entered names. Use these
components to produce the output.

Exercises 83

—

—

NN R W=

. Arithmetic short-hand Write a program named ArithmeticShortHand that receives two

double numbers x and y from the user and then executes x *= y,y = x/y,andx /= y.
The program should print the values of x and y after each of the three actions. Try running the
program with various values for x and y. Also, see what happens when the value of y is set to 0.

. Receiving five numbers Write a program named FiveNumbers that prompts the user to enter

five whole numbers, receives five numbers (u, v, x, VY, and z) using nextInt, computes
the product of the five numbers as a Long data, and produces the values of the five values and the
product on the screen. For example, the result could look like:

Enter five integers: 12 34 56 78 90
The five numbers are: 12, 34, 56, 78, 90
The product is: 160392960

. Adding six numbers with four variables Write a program named Miser that prompts the

user to enter six whole numbers and produces the following output:

°

% java Miser
Enter sgix numbers: 1 10 3 4 -12 -6
You’ve entered: 1 10 3 4 12 -6 with the total sum of 0

Here, the numbers entered are 1, 10, 3, 4, -12, and -6. The program should be written so that it
uses only four variables: one variable for the scanner, one variable for the number received, one
variable for the total, and one variable for the message. The initial value of the variable storing
the total is 0, and the initial value of the variable storing the message is "You'’'ve entered:".
After these initializations, the program should receive the input value from the user, add the value
to the total, and update the value of the message variable by adding one white space followed by
the input value.

. Favorite football player, an interactive program Write a program named FavoriteFoot

ballPlayer that receives the name, the position, the team, and the jersey number from the
user, and then produces the following message on the screen:

Enter name: Larry Fitzgerald

Enter position: Wide Receiver

Enter team: The Arizona Cardinals

Enter jersey number: 11

Your favorite football player is Larry Fitzgerald.

His position is Wide Receiver.

He is with The Arizona Cardinals and wears the jersey number 11.

Here, the first four lines show the interaction with the user. Since we do not need to perform math
operations, treat all the four values as String. The name may have spaces, so read each input
using nextLine.

. Gravity again Recall that if an object is released to fall, the speed of the object at ¢ seconds

after its release is gt and the distance the object has travelled in the ¢ seconds after release is % gt2.

Here, g is the gravity constant, which is approximately 9.8 (the unit is 7/s%) on Earth. Write a

program named GravityInput whose method main does the following:

(a) It declares variables t for the travel time, speed for the speed, and distance for the
distance traveled,;

(b) It receives a value for t from the user;

(c) It calculates the speed and the distance;

(d) It prints the calculated speed and distance.

(e) Repeat the last three steps two more times.

84

3 Reading Keyboard Input

10.

11.

L I O R

12.

AN N AW =

Quadratic evaluation Write a program named QuadraticEvaluation that declares four
variables (a, b, ¢, x),receives values for the four from the user, calculates ax? + bx + ¢ and
a/x* + b/x + ¢, and prints the values.

Adding time Write a program named AddTime that receives minutes and seconds from the
user four times, and then computes the total in hours, minutes, and seconds. The user must specify
the minutes and the seconds separately. Ideally, we want to be able to check if the values are valid
(that is, the minutes and the seconds have to be between 0 and 59), but because we have not
learned yet how to write code that does this, we will assume that the user always enters valid
values. The interactions with the user can be as follows:

Enter time #1: 10 50
Enter time #2: 26 35
Enter time #3: 37 30
Enter time #4: 41 50
The total is 1 hours 56 minutes 45 seconds.

We may want to print "hour" instead of "houxrs™" for this particular case, but again, we do not

know yet how to identify that the number of hours is 1, so we will thus use "hours" throughout.

The task can be accomplished as follows:

* Compute the total seconds and the total minutes from the input.

* Add the quotient of the seconds divided by 60 to the minutes and then replace the seconds with
the remainder of the seconds divided by 60.

* Set the quotient of the minutes divided by 60 to the hour and then replace the minutes with the
remainder of the minutes divided by 60.

Programming Projects

Computing the tax, again Write a program named ComputeTaxAndtotalInteractive

that computes the tax and the total in the following manner:

* The program uses an int variable subtotal to store the subtotal in cents. The program
receives the value from the user.

* The program uses a double variable taxPercent to store the tax rate in percent. The
program receives the value from the user.

* The program then computes the tax amount as a whole number in cents, in an int variable
tax. Using the casting of (int) , afloating point number can be truncated to a whole number.

* The program then computes the total and stores it in an int variable total. (Again, this
quantity is in cents.)

* The program reports the result of the calculation in dollars and cents for the subtotal, the tax,
and the total, and then reports the tax rate.

The output of the code may look like:

Enter subtotal in cents: 11050

Enter tax percentage: 5.5

The subtotal = 110 dollars and 50 cents.
The tax rate = 5.5 percent.

The tax = 6 dollars and 7 cents.

The total = 116 dollars and 57 cents.

Exercises 85

13.

o —

14.

15.

o —

16.

Speeding fines, part 1 In the town of Silver Hollow, the speeding fines are $20 times the
mileage beyond the speed limit. For example, if a driver was driving at 36 mph on a 30 mph
road, his fine is $120. Write a program named SpeedingFineNewl that receives the speed
and the limit from the user, and then computes the fine in Silver Hollow. The result could look
like:

Enter the speed and the limit: 50 35
The fine for driving at 50 mph on a 35 mph road is 300 dollars.

Speeding fines, part 2 In the town of Golden Valley, the speeding fines are $15 times the
percentage of the speed exceeding the limit. The percentage is rounded down to a whole number.
For example, if a driver was driving at 35 mph on a 30 mph road, the percentage of excess is the
integer part of (35 - 30) / 30, which is 16. Thus, the fine is 16 times $5 = $80. Write a
program named SpeedingFineNew?2 that receives the speed and the limit from the user and
then computes the fine. The result could look like:

Enter the speed and the limit: 35 30
The fine for driving at 35 mph on a 30 mph road is 80 dollars.

Fractional difference Write a program named FractionalDif ference that receives four
integers a, b, ¢, and d from the user, and then computes the difference (a/b) - (c/d).
Compute the difference by treating the four numbers as integers and then as floating point
numbers. To convert an integer to double, use casting of (double), e.g., (double) a.
The result could look like:

Enter the four numbers: 10 3 20 7
The difference is 1 using int and 0.4761904761904763 using double.

Volume of a rectilinear box Write a program named RectilinearBox that receives three
quantities, height, width, and length, from the user, and then computes the volume of the
rectilinear box whose dimensions are represented by these quantities. Assume that these quantities
are double (so the volume should be double).

Decomposing Code into Components 4

4.1 Procedural Decomposition

4.1.1 Printing Rectangles

In this chapter, we learn how to decompose a source code into multiple methods.

We previously studied programs that draw shapes using multiple System.out.println

statements. Consider, this time, drawing a rectangle. Suppose we draw a rectangle with 3 x 3 white
space characters and surrounding borders, as shown next:

1

[N SNV 5]

-+

-+

We can accomplish the task using five System.out.println statements correspond-

ing to the five horizontal strips of the shape, as shown next.! For clarification, the five
System.out.println statements are marked with line comments indicating their correspon-
dence to the strips.

1 |public class Rectangle

2 |{

3 public static void main(String[] args)

4 {

5 System.out.println("+---+"); // top line

6 System.out.println("| ") // middle section 1
7 System.out.println("| [") // middle section 2
8 System.out.println("| [") // middle section 3
9 System.out.println("+---+"); // bottom line

10 ¥

11 |

Listing 4.1 The source code for a program that produces a 3 x 3 white space rectangle with encompassing borders

IThe program name for this is Rectangle, not Square, although the size of the white-area is 3 x 3. This is because the
shape does not look like a square, which is because the computer characters have longer height than width.

© Springer Nature Switzerland AG 2018 87

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_4

https://doi.org/10.1007/978-3-319-89491-1_4

88 4 Decomposing Code into Components

Suppose, instead of just one rectangle, we want to print the same rectangle three times, on top of
one another, as shown next.

-t

[ceBR N B Y R
+
1
1
1
+

=)

10 | +---+
11 [+---+
12 || |
13 || |
14 || |
15 |+---+

We can accomplish the task by repeating the five statements two more times:

1 |public class Rectangle0O

2 |{

3 public static void main(Stringl[] args)

4 {

5 System.out.println("+---+"); // top line

6 System.out.println("| [") // middle section 1
7 System.out.println("| ["™) // middle section 2
8 System.out.println("| [") // middle section 3
9 System.out.println("+---+"); // bottom line

10 System.out.println("+---+"); // top line

11 System.out.println("| [") // middle section 1
12 System.out.println("| ") // middle section 2
13 System.out.println("| ") // middle section 3
14 System.out.println("+---+"); // bottom line

15 System.out.println("+---+"); // top line

16 System.out.println("| [m) // middle section 1
17 System.out.println("| ["™)5 // middle section 2
18 System.out.println("| ") // middle section 3
19 System.out.println("+---+"); // bottom line

20 }

21 |}

Listing 4.2 A program that produces three rectangles

Alternatively, the same output can be generated using a source code that uses, three times, a method
that prints just one rectangle.

A method that prints a single rectangle can be defined as follows (where we use the name
oneRectangle for the method):

public static void oneRectangle ()

{

System.out.println("+---+"
System.out.println("| [
System.out.println("| [
System.out.println("| [
System.out.println("+---+"

0N O U WN
[N NS AN

4.1 Procedural Decomposition 89

The method declaration conforms to the format we saw in Chap. 1:
ATTRIBUTES RETURN TYPE METHOD NAME (PARAMETERS)

oneRectangle is a public executable method requiring no parameters, with the return type of
void.

As mentioned earlier, one can define multiple methods in a source code. If oneRectangle is
the name of a method defined in a source code, all the methods appearing in the same source code
can execute the code oneRectangle. This is done by stating the name, and then attaching a pair of
parentheses followed by a semicolon:

public static ... fooBar(...)
{

oneRectangle () ;

DU W N

We call the action of executing a code (written in a method) by stating its name a method call.

Unlike the concept of method calls that we saw in Chap. 3, the method call oneRectangle
stands alone and does not require an instantiation of an object.

When a method call occurs, the present execution of the code is suspended temporarily, and the
code of the method that has been called is executed. Once the execution of the method is completed,
the suspended execution resumes.

Returning to the task of printing the three rectangles: now that we have written oneRectangle
as he method for printing one rectangle, the task can be accomplished by three successive calls of
oneRectangle, as shown next:

public static void main(Stringl[] args)
{

oneRectangle ();

oneRectangle ();

oneRectangle ();

U W N

}

Remember that the declaration of a method in a class appears at depth 1 of a source code. If a class
has some k methods, the source code of the class will look like:

1 |public class Foo

2 |{

3 ATTRIBUTES_1 METHOD_1(...)
4 {

5

6 }

7 ATTRIBUTES_2 METHOD_2(...)
8 {

9

10 ¥

11 R

12 ATTRIBUTES_k METHOD_k(...)
13 {

14

15 }

16 |}

920 4 Decomposing Code into Components

Here, ATTRIBUTES i is a series of attributes for Method _i. These methods may appear in any
order.
Here is a complete source code for printing three rectangles using the method oneRectangle:

1 |public class RectangleO1l

2 |{

3 public static void oneRectangle () {
4 System.out.println("+---+");

5 System.out.println("| "

6 System.out.println("| ")

7 System.out.println("| ")

8 System.out.println("+---+");

9 }

10 public static void main(String[] args)
11 {

12 oneRectangle () ;

13 oneRectangle () ;

14 oneRectangle () ;

15 }

16 |}

Listing 4.3 A program that produces three rectangles. An alternate version

Since the order in which the two methods, oneRectangle and main, appear in the source does
not affect the way the source code works, the following code, in which the order of their appearances
is reversed, behaves exactly the same:

1 |public class RectangleOl_Rev

2 |4

3 public static void main(String[] args)
4 {

5 oneRectangle () ;

6 oneRectangle () ;

7 oneRectangle () ;

8 ¥

9 public static void oneRectangle ()
10 {

11 System.out.println("+---+");
12 System.out.println("| ["™)5
13 System.out.println("| [")
14 System.out.println("| ")
15 System.out.println("+---+");
16 }

17 |}

Listing 4.4 A program that produces three rectangles. The order of the two methods have been switched

Figure 4.1 shows how the two methods work together. Each method is visualized in a column,
where the statements appearing in it are presented from top to bottom. When the first call of
oneRectangle occurs, C is recorded as the return location after completion of oneRectangle,
and then the execution of oneRectangle starts. When the execution of oneRectangle
completes, the return location of C is retrieved, and from there the execution of main resumes
(Fig. 4.2). We call the concept of using multiple methods with specific roles assigned to the methods a
procedural decomposition. The procedural decomposition of the three-rectangle program has three
benefits:

4.1 Procedural Decomposition 91

A startOfMain
. _ execute oneRectangle | |
B oneRectangle(); “| | when done, jump to C
- ————

C oneRectangle(); > execute oneRectangle | |
when done, jump to D

D oneRectangle(); | |execute oneRectangle| |
when done, jump to E

E endOfMain <

0 startOfOneRectagle

1 System.out.print(...);

2 System.out.print(...);

3 System.out.print(...);

4 System.out.print(...);

5 System.out.print(...);

6 endOfOneRectagle

Fig. 4.1 The method calls in Rectangle0l

1. In the source code of main, it is clear that some set of actions is repeated three times.

2. To change the shape, only one shape (i.e., the shape printed with oneRectangle) needs to be
modified.

3. To change the number of times the shape is printed, only the number of calls of oneRectangle ()
needs to be modified.

Procedural decompositions improve the understanding of the code and make modifications easy.
Procedural decompositions can be made in a bottom-up manner, building a new method out of already
existing ones, as in case of the three identical rectangles. Procedural decompositions can be made in a
top-down manner as well, dividing an existing method into smaller components, as we will see now.

We notice that there are only two distinct strips in the rectangle: +--+ and |--|. We define
methods, 1ine and section, that present these strips, respectively:

1 public static void line ()
2 {
3 System.out.println("+---+");
4 }
and
1 public static void section()
2 {
3 System.out.println("| [)5
4 }

We can then rewrite oneRectangle as:

92 4 Decomposing Code into Components

public static void oneRectangle ()
{

line();

section () ;

section () ;

section () ;

line();

0O U W

The overall program looks like this:

1 |public class Rectangle02

2 {

3 public static void limne ()

4 {

5 System.out.println("+---+");
6 }

7 public static void section()

8 {

9 System.out.println("| ["™)5
10 ¥

11 public static void oneRectangle ()
12 {

13 line () ;

14 section();

15 section();

16 section();

17 line () ;

18 }

19 public static void main(String[] args)
20 {

21 oneRectangle () ;

22 oneRectangle ();

23 oneRectangle () ;

24 ¥

25 |}

Listing 4.5 A program that produces three rectangles. The final version

The way the method calls are handled is now two-tiered. Added benefits of using this structure
are:

1. To change the width of the rectangle, the programmer only needs to edit the String literals
appearing in 1ine and section.

2. To modify the number height of the rectangle, the programmer only needs to change the number
of times oneRectangle calls section.

4.1.2 Printing Quadrangles

Consider drawing four rectangles of same dimensions, two on top of the other two, where neighboring
rectangles share their adjacent sides and corners, as shown next:

4.1 Procedural Decomposition

93

execute oneRectangle

when done, jump to C

> execute oneRectangle

when done, jump to D

FE e —

| | execute oneRectangle

when done, jump to E

execute line

™| | when done, jump to 2

execute section

L —— ™| | whendone, jumpto 5

I execute line

-~ when done, jump to 6

A startOfMain

B oneRectangle();

C oneRectangle();

D oneRectangle();

E endOfMain

0 startOfOneRectagle

1 line();

2 section();

3 section();

4 section();

5 line();

6 endOfOneRectagle

10 startOfLine

11 System.out.print(“+- - -+“);
12 endOfLine

20 startOfSection

21 System.out.print(“+ +“);
22 endOfSection

Fig. 4.2 The method calls in Rectangle02

1 [+---+---+
200
3000
A
5 |+---+---+
6 |1 |
[N N
O N
9 |+---+---+

With all the actions placed in the main method, the code will look like:

94 4 Decomposing Code into Components

1 |public class QuadrantO1l

2 {

3 public static void main(String[] args)

4 {

5 System.out.println("+---+---+"); // top line

6 System.out.println("| | "); // top section 1

7 System.out.println("| | ["); // top section 2

8 System.out.println("| | "); // top section 3

9 System.out.println("+---+---+"); // middle line

10 System.out.println("| | ["); // bottom section 1
11 System.out.println("| | ["); // bottom section 2
12 System.out.println("| | "); // bottom section 3
13 System.out.println("+---+---+"); // bottom line

14 }

15 | X

Listing 4.6 A program that prints four rectangles with two on top of the other two

As in the case of the three rectangles, there are only two different printed strips that are printed:
(a) the pattern appearing at the top, in the middle, and at the bottom of the shape and (b) the pattern
appearing elsewhere. So, as before, we define two methods representing the patterns: 1ine for the
former and side for the latter. We can decompose the drawing of the shape as the following sequence:

line, side, side, side, 1line, side, side, side, 1line
We can group the series of side into one and assign the name section to this group. The whole
sequence then becomes:
line, section, line, section, 1ine

The above discussion is summarized in the diagram shown in Fig.4.3. We then use this analysis to
decompose the original source code to a new one that employs multiple methods, Quadrant03.

Appearing first in the program is the method 1ine that prints the line corresponding to the top, the
middle, and the bottom lines. Appearing next is the method side, which prints the line corresponding
to one line of the middle section.

Fig. 4.3 The B>
decomposition of actions Program Flow

in the generation of the ,

quadrant main

line (section) line (section) line

side / side /

side I side /

side side

4.1 Procedural Decomposition 95

1 |public class QuadrantDecomposed

2 |{

3 // the horizontal line

4 public static void line ()

5 {

6 System.out.println("+---+---+"); // border line
7 ¥

8 // the side 1limne

9 public static void side ()

10 {

11 System.out.println("| | ["); // one line of section
12 }

Listing 4.7 A program that produces four rectangles using method class (part 1). The methods that are responsible for
producing single lines

Appearing next is the method section that calls side three times. At the end, the method main
appears and calls 1ine, section, line, section, and 1ine in this order.

13 // the middle block between the horizontal lines
14 public static void section ()

15 {

16 side(); // sectiomn 1

17 side(); // section 2

18 side(); // section 3

19 }

20 // the main

21 public static void main(Stringl[] args)
22 {

23 line) ;

24 section(); // top section

25 line () ;

26 section(); // bottom section

27 line ();

28 ¥

29 |}

Listing 4.8 A new version of the quadrant generation program that uses method calls (part 2). The methods for printing
the middle section and the method main

4.1.3 “Old MacDonald Had a Farm”

Suppose we are to write a code that produces on the screen the lyrics to a popular nursery rhyme
“Old MacDonald Had A Farm”. Each verse of the song introduces one new animal and then presents
the sound that the animal makes as well as the sounds of all the other animals in the reverse order of
introduction.

There are many variations of this rhyme, with regards to the number of animals and the order of
appearance. Here is one version with four animals (a cow, a pig, a duck, and a horse) with no “repeats”
from previous verses.

0ld MacDonald had a farm
E-I-E-I-O

And on his farm he had a cow
E-I-E-I-O

With a moo moo here
And a moo moo there
Here a moo, there a moo
Everywhere a moo moo

[BEN Be N R O R S

96 4 Decomposing Code into Components
9 |0ld MacDonald had a farm
10 |E-I-E-I-O

11

Listing 4.9 The lyrics to the rhyme “Old MacDonald Had A Farm” with four animals. Presented without repeats

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44

0ld MacDonald had a farm
E-I-E-I-O

And on his farm he had a pig
E-I-E-I-O

With a oink oink here

And a oink oink there

Here a oink, there a oink
Everywhere a oink oink

0ld MacDonald had a farm
E-I-E-I-O

0ld MacDonald had a farm
E-I-E-I-0O

And on his farm he had a duck
E-I-E-I-0O

With a quack quack here

And a quack quack there

Here a quack, there a quack
Everywhere a quack quack

0ld MacDonald had a farm
E-I-E-I-0O

0ld MacbDonald had a farm
E-I-E-I-O

And on his farm he had a horse
E-I-E-I-0O

With a neigh neigh here

And a neigh neigh there

Here a neigh, there a neigh
Everywhere a neigh neigh

0ld MacDonald had a farm
E-I-E-I-0O

Listing 4.10 The lyrics to the rhyme “Old MacDonald Had A Farm” with four animals. Presented without repeats
(cont’d)

With the repeats from previous verses, the rhyme looks like:

0~ N B W -

o

10
11
12
13
14
15

O0ld MacDonald had a farm
E-I-E-I-0

And on his farm he had a cow
E-I-E-I-0

With a moo moo here

And a moo moo there

Here a moo, there a moo
Everywhere a moo moo

0ld MacDonald had a farm
E-I-E-I-0

0ld MacbDonald had a farm
E-I-E-I-0O

And on his farm he had a pig
E-I-E-I-0O

Listing 4.11 The lyrics to the thyme “Old MacDonald Had A Farm” with four animals (part 1)

4.1 Procedural Decomposition

16 |With a oink oink here

17 |And a oink oink there

18 |Here a oink, there a oink
19 |Everywhere a oink oink

20 |With a moo moo here

21 |And a moo moo there

22 |Here a moo, there a moo
23 |Everywhere a moo moo

24 | 0ld MacDonald had a farm
25 E-I-E-I-O

26
27 |01d MacDonald had a farm

28 E-I-E-I-0O

29 |And on his farm he had a duck
30 E-I-E-I-0O

31 |wWith a quack quack here

32 |And a quack quack there

33 |Here a quack, there a quack
34 |Everywhere a gquack quack

35 |With a oink oink here

36 |And a oink oink there

37 |Here a oink, there a oink

38 |Everywhere a oink oink

39 |With a moo moo here

40 |And a moo moo there

41 |Here a moo, there a moo

42 |Everywhere a moo moo

43 | 0l1d MacDonald had a farm

44 E-I-E-I-0

45
46 |0ld MacDonald had a farm

47 E-I-E-I-O

48 |And on his farm he had a horse
49 E-I-E-I-O

50 |With a neigh neigh here

51 |And a neigh neigh there

52 |Here a neigh, there a neigh

53 |Everywhere a neigh neigh

54 |With a quack quack here

55 |And a quack quack there

56 |Here a quack, there a quack

57 |Everywhere a quack quack

58 |With a oink oink here

59 |And a oink oink there

60 |Here a oink, there a oink

61 |Everywhere a oink oink

62 |With a moo moo here

63 |And a moo moo there

64 |Here a moo, there a moo

65 |Everywhere a moo moo

66 |0ld MacDonald had a farm

67 E-I-E-I-0O

68

Listing 4.12 The lyrics to the thyme “Old MacDonald Had A Farm” with four animals (part 2)

The structure of these verses is simple. Each verse consists of four parts:

4 Decomposing Code into Components

98
part number the lines
1 “Old MacDonald ... -O”
2 “And ... had a XXX ... -O”
3 “Witha YYY ... Everywhere a YYY”
4 “0Old MacDonald ... -O”

Based upon this observation, we design the following code:

characteristic
common among all the verses

unique to each verse

cumulative
the first block, then one empty line

1 |public class 0ldMacDonaldDecomposed

2 |{

3 // start and end of each verse

4 public static void macDonald ()

5 {

6 System.out.println("0ld MacDonald had a farm"
7 System.out.println("E-I-E-I-0");

8 ¥

9 // possession of a cow

10 public static void cowPossession()

11 {

12 System.out.println("And on his farm he had
13 System.out.println("E-I-E-I-0");

14 ¥

15 // possession of a pig

16 public static void pigPossession ()

17 {

18 System.out.println("And on his farm he had
19 System.out.println("E-I-E-I-0");

20 ¥

21 // possession of a duck

22 public static void duckPossession ()

23 {

24 System.out.println("And on his farm he had
25 System.out.println("E-I-E-I-0");

26 }

27 // possession of a horse

28 public static void horsePossession()

29 {

30 System.out.println("And on his farm he had
31 System.out.println("E-I-E-I-0");

32 }

)

cow");

pig")J;

duck");

horse"

)

Listing 4.13 A program that print the lyrics to “Old MacDonald Had A Farm” using decomposition (part 1). The
method that produces the opening and ending lines of the verses and the methods for producing the lines about the

animals

4.1 Procedural Decomposition

99

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

// the sound of a cow
public static void cowSound ()

{

}

System.
System.
System.
System.

out
out
out

.println(
.println(
.println(
out.

println(

// the sound of a pig
public static void pigSound ()

{

}

System.
System.
System.
System.

out

out.
.println(

out

// the sound
public static void duckSound ()

{

}

System.
System.
System.
System.

out .
out .
out .
out .

// the sound
public static void horseSound ()

{

System.
System.
System.
System.

out

out

.println(
out.

println(
println(

of a duck

println(
println(
println(
println(

"With a moo moo here");
"And a moo moo there");
"Here a moo, there a moo"
"Everywhere a moo moo");

)

"With an oink oink here");

"And an oink oink there");
"Here an oink, there an oink"

) .

"Everywhere an oink oink"

"With a quack quack here"
"And a quack quack there"

"Here a quack, there a quack"

"Everywhere a quack quack"

of a horse

.println(
out.

println(

.println(
out.

println(

"With a neigh neigh here"
"And a neigh neigh there"

"Here a neigh, there a neigh"

"Everywhere a neigh neigh"

H

>

)
)

)

)
)

)

)

);

)

Listing 4.14 A program that print the lyrics to “Old MacDonald Had A Farm” using decomposition (part 2). The
methods for printing the lines that introduce the sounds that the animals make

100 4 Decomposing Code into Components
65 // the cow verse

66 public static void cowVerse ()
67 {

68 macDonald () ;

69 cowPossession () ;

70 cowSound () ;

71 macDonald () ;

72 }

73 // the pig verse

74 public static void pigVerse ()
75 {

76 macDonald () ;

7 pigPossession () ;

78 pigSound () ;

79 cowSound () ;

80 macDonald () ;

81 }

82 // the duck verse

83 public static void duckVerse ()
84 {

85 macDonald () ;

86 duckPossession () ;

87 duckSound () ;

88 pigSound () ;

89 cowSound () ;

90 macDonald () ;

91 }

92 // the horse verse

93 public static void horseVerse ()
94 {

95 macDonald () ;

96 horsePossession();

97 horseSound () ;

98 duckSound () ;

99 pigSound () ;

100 cowSound () ;

101 macDonald () ;

102 ¥

103 // main

104 public static void main(Stringl[] args)
105 {

106 cowVerse () ;

107 System.out.println();

108 pigVerse) ;

109 System.out.println();

110 duckVerse () ;

111 System.out.println();

112 horseVerse () ;

113 }

114 |}

Listing 4.15 A program that produces the lyrics to the thyme “Old MacDonald Had A Farm” (part 3). The methods

that build individual verses and the method main

4.1 Procedural Decomposition

101

end
start
cow
Possession

cow
Calling
pigMain
I:" end
start
pig
Possession
pig
Calling
cow
Calling

horseMain

horse
Possession
horse
duckMain Calling
duck
Callin
end 9
start
duck
Possession
duck
Calling
pig
Calling
cow
Calling

Fig. 4.4 The dependency among methods in O1dMacDonaldDecomposed. java

Figure 4.4 presents the dependencies among the methods.

4.1.4 A General Strategy for Procedural Decomposition

pig
Calling

end

cow
Calling

While procedural decomposition helps better understand the code and makes future revisions easier,
it does not necessarily reduce the length of the source code because each additional method has its
own header and encompassing curly brackets.
In the next chapter, Chap. 5, we will study methods that take parameters and/or return a value. By
combining procedural decomposition and the use of multiple source code files, we will be able to
write a program divided into reasonably small units that are all easy to understand.
Since each method appearing in a source code can call each method appearing in the same source
code, it is possible to create a circle of method calls.
Suppose we have the program:

102 4 Decomposing Code into Components
1 |public class Parts123
2 [{
3 public static void partOne ()
4 {
5 System.out.println("One");
6 partTwo () ;
7 ¥
8 public static void partTwo ()
9 {
10 System.out.println("Two");
11 partThree () ;
12 ¥
13 public static void partThree ()
14 {
15 System.out.println("Three");
16 ¥
17 public static void main(Stringl[] args)
18 {
19 partOne () ;
20 }
21 |}

Listing 4.16 A program with methods that print 1, 2, and 3

The action of the entire code is simple: main calls partOne, partOne calls partTwo, and
partTwo calls partThree. This produces the output of "One", "Two", and "Three". The

execution of the program produces the output:

1 |One
Two
3 | Three

By making a slight change to the code we can produce a bizarre effect.

1 |public class InfiniteCalls

2 |{

3 public static void partOne ()

4 {

5 System.out.println("One");
6 partTwo () ;

7 }

8 public static void partTwo ()

9 {

10 System.out.println("Two");
11 partThree () ;

12 }

Listing 4.17 A program that produces a bizarre effect (part 1)

4.1 Procedural Decomposition 103
13 public static void partThree ()
14 {
15 System.out.println("Three");
16 partOne () ;
17 }
18 public static void main(String[] args)
19 {
20 partOne () ;
21 }
22 |}
Listing 4.18 A program that produces a bizarre effect (part 2)
The code produces the following:
1 |% javac InfiniteCalls.java
2 % java InfiniteCalls
3 | One
4 | Two
5 | Three
6
Tl
8 |Exception in thread "main" java.lang.StackOverflowError
9 at sun.nio.cs.UTF_8%$Encoder.encodeLoop (UTF_8. java:691)
10 at java.nio.charset.CharsetEncoder.encode(CharsetEncoder.java:579)
11 at sun.nio.cs.StreamEncoder.implWrite(StreamEncoder. java:271)
12 at sun.nio.cs.StreamEncoder.write(StreamEncoder. java:125)
13 at java.io.OutputStreamWriter.write(OutputStreamWriter.java:207)
14 at java.io.BufferedWriter.flushBuffer (BufferedWriter.java:129)
15 at java.io.PrintStream.write(PrintStream.java:526)
16 at java.io.PrintStream.print(PrintStream.java:669)
17 at java.io.PrintStream.println(PrintStream.java:806)
18 at InfiniteCalls.partOne(InfiniteCalls.java:3)
19 at InfiniteCalls.partThree(InfiniteCalls.java:12)
20 at InfiniteCalls.partTwo(InfiniteCalls.java:8)
21 at InfiniteCalls.partOne(InfiniteCalls.java:4)
22 ..
23 at InfiniteCalls.partThree(InfiniteCalls.java:12)
24 at InfiniteCalls.partTwo(InfiniteCalls.java:8)
25 at InfiniteCalls.partOne(InfiniteCalls.java:4)
26 | %
The actual output of the code is much longer. The . . . signifies the visual cut made to the output.

The import thing to notice is the line

Exception in thread "main" java.lang.StackOverflowError

The error message states that the method calls have used up all the memory space available for JVM
to run, so JVM had to abort the execution of the code. The direct cause of this termination is due to
the method call structure from Fig. 4.5. You can see that there is a loop going from one to three. This
loop repeats over and over again, which results in the exhaustion of the memory space. In general, we
call a loop structure that makes the program run forever an infinite loop. Thus, we say that the code
InfiniteClass.java has an infinite loop.
The word “Exception” appearing in the error message is a word that refers to a run-time error.

104 4 Decomposing Code into Components

Fig. 4.5 The dependency

among methods in the two main
source code. Left panel: the main ‘L
original code. Right panel:
the modified code & partOne <t——
partOne $
$ partTwo
partTwo $
& partThree
partThree

4.2 Using Multiple Program Files

We extend the idea of extracting components from a method to create another method, and write
multiple classes and use methods from one in another Java class.

The benefits of reusing existing source codes are twofold. First, the use of recycling code from
another class saves the coder from having to write the same code from scratch again. Second, sharing
the code among applications may make it easier to revise the code.

Consider the following class Signature.

1 |public class Signature

2 [{

3 public static void sign()

4 {

5 System.out.println();

6 System.out.println(

7 e il b b +")
8 System.out.println(

9 "| THIS PROGRAM IS CODED BY MITSU OGIHARA [")
10 System.out.println(

11 B e St +") 5
12 }

13 |2}

Listing 4.19 A program that produces a signature

Signature.java has one method, sign, which produces four lines of output as follows:

E N USI NS I
H
jas]
H
n
g
A
o
g
=
H
n
Q
o
g
=
]
w
<
=
H
H
n
a
o
@
H
ja s
:

There is no main method in this class, so we cannot execute the code by itself. By attaching the
class name Signature and a period before the method name, we can call this method from outside:

Signature.sign() ;

Knowing this capability we can write a new version of HelloWorld, which produces the signature
lines along with the "Hello, World!" message.

Exercises 105

0O U WN

public class HelloWorldCall
{
public static void main(Stringl[] args)
{
System.out.println("Hello, World!");
Signature.sign();
}
}

Listing 4.20 A HelloWorld program that print a signature at the end

To run the above code, you need both HelloWorldCall and Signature. Since the former

used the latter, one can compile the latter first and then compile the former. Alternatively, we may
simply compile both at the same time:

javac Signature.java HelloWorldCall.java

Summary

A class can have any number of methods in it.

Methods are defined at depth 1 of the class in which they appear.

Methods can appear in any order in a class.

The process of creating a method that is in charge of performing a certain part of the actions another
method performs is called procedural decomposition.

The benefits of procedural decomposition include better readability and easier code modification.
It is possible to write multiple classes with methods making calls across classes. When using
multiple program files, the files can be compiled either individually or all at once.

Exercises

1.

Number manipulation Suppose we are writing a program P1ayWithNumbersDecomposed,

in which we have two tasks:

(a) The program receive two integers, a and b, from the user and then prints a + b, a - b,
a * b,a / b,and a % b (we anticipate that the user will not enter 0 for the second
number).

(b) The program receives three integers, a, b, and ¢, from the user and then prints the result of
(a - b) / cforeach of the six possible permutations among the three numbers.

Write the code for this program so that it has two separate methods that handle the two tasks. The

method main calls the two methods one after the other. Each non-main method instantiates its

own Scanner object with System. in. Here is an example of how the program may interact
with the user.

106 4 Decomposing Code into Components

1 |Enter two integers: 1000435 345

2 |a + b is equal to 1000780

3 |a - b is equal to 1000090

4 |a » b is equal to 345150075

5 |a / b is equal to 2899

6 |a % b is equal to 280

7 |Enter three integers: 34325 79 -40

8 | (a - b)/c is equal to -856

9 (a - ¢)/b is equal to 435

10 | (b - ¢)/a is equal to 0

11 (b - a)/c is equal to 856

12 | (¢ - a)/b is equal to -435

13 (c - b)/a is equal to 0

2. Shape Presentation Suppose we are writing a program HouseShape that produces the
following output on the screen:

1 /\

2 / A\

3 / \

4 / +--+ \

5 /TN

6 |/ +--+ \

T | -4-------- +-

8 | | |

9 | +--+ |

o

11 | +--+ |

12 | |

13 | -+-------- +-

14 |This is my house!

The action of the program can be divided into three parts:
* printing the roof (including the bottom of the roof),
 printing the body of the house, and

* printing the message.

Write a program with three methods (in addition to main) which correspond to the above three

tasks, where the method main simply calls the three methods in order.
Forward slashes Previously we wrote a program that produced on the screen:

et

A A A A
A A A A
A A A A A
A A A A
A A A A
A A A A
A A A A
A A A VA
A A A A A
AV VA A A VAV

[«RNR-LEEN B Y N N O N S

—

This output consists of five repetitions of the pattern of the first two lines. Write an alternate version,
SlashesWithMethodCalls, that performs this task with five identical method calls (in the
method main) to a method, twoLines. The method twoLines produces the consecutive pair
of two lines.

Exercises 107

4.

(O R

Programming Projects

This Old Man “This Old Man” is a popular children rhyme that consists of ten verses. All the
verses are identical, except for the two words, which we present below as XXX and YYY, where
XXX goes from one to ten

This old man, he played XXX,

He played knick-knack on his YYY;
With a knick-knack paddywhack,
Give the dog a bone,

This old man came rolling home

Here is the list of ten words for YYY:
drum, shoe, knee, door, hive, sticks, heaven, gate, spine, again

We can decompose the common parts of the verses into:

(a) The first line excluding XXX, . In other words, itis "This old man, he played "

(b) The second line excluding YYY;. In other words, it is "He played knick-knack
on his "

(c) The third to fifth lines plus one empty line.

Let first, second, and rest be methods that print the three parts, where first and second

use System.out .print and rest uses System.out . println. Using this decomposition,

write a program that prints the first three verses of the rhyme.

. Die face printing Consider printing the six sides of a die using ina 5 x 5 grid as follows:

+———t
| |
| o |
| |
+—t
+———t
| |
lo ol
| |
+—t
+—t
| ol
| o |
lo |
+——t
+—t
lo ol
| |
lo ol

+—t

108 4 Decomposing Code into Components

(O R R

AN AW =

+—t
lo ol
| o |
lo ol
+——t

+——t
lo ol
lo ol
lo ol
+——t

Write a program named Dice that prints the six faces using a method call to print each line of the
faces.

. Digits in 5x 5 rectangles Consider writing a program that prints digits 0, ..., 9 in 5x 5 rectangles
using the following design: Here is the code:
-4 | ----+ ----+ | | 4---- - —--- e T Bt
I | | L | [
| | [et T et T et S s | +---+ +---+
I || | | Ll L |
-4 | +---- ---- + | ----+ +---+ | +---+ |

To save space, the digits are placed side by side, but in the actual code, the digits will be stuck on
top of each other. There are only six patterns appearing in the digits:

-+
PR
-+

} |

|
We can give these six patterns unique pattern names and write six methods that print the individual
six patterns. With the addition of one more method that prints one empty line, the seven methods
can be used as the building blocks for digit printing. Write a program named Digits that
accomplishes this task. The program should have the seven building blocks as methods, ten

methods that print the ten digits with one blank line as their sixth lines, and the method main
that calls the ten methods one after another.

. A Pop song Select one of the No. 1 hits by The Beatles (e.g., “I Want To Hold Your Hand”) and

write a program that prints the lyrics to the song line by line. A popular song lyrics search engine

can be used to find the lyrics. Consider the following points:

» If a line is repeated more than once, define a method for printing that line alone.

e If aseries of lines are repeated more than once, find a maximally long stretch for that series and
define a method for printing that series.

e It is natural to define a method for each verse or bridge (a verse and a bridge are the units that
are presented with no blank lines in them).

Passing Values to and from Methods 5

5.1 Passing Values to Methods
5.1.1 Methods That Work with Parameters

In this chapter, we will advance the concept of method decomposition and learn how to exchange
information with methods.

Recall the rhyme “Old MacDonald Had a Farm” that we examined in Chap. 4. The verses of the
song became longer and longer as each new verse introduced one new animal. The contents of the
verses are repetitive because they have the same principal structures. We now consider a new program
in which the song introduces only three animals: a cow, a pig, and a dog in this order. With slight
changes in capitalization and punctuation, our goal is to generate this output:

01ld MacDonald had a farm, E-I-E-I-O
And on his farm he had a cow, E-I-E-I-O
With a Moo, Moo here

And a Moo, Moo there

Here a Moo, there a Moo

Everywhere a Moo, Moo

01ld MacDonald had a farm, E-I-E-I-O

0NN W=

9 |0l1d MacDonald had a farm, E-I-E-I-0O
10 |And on his farm he had a pig, E-I-E-I-O
11 |With an Oink, Oink here

12 |And an Oink, Oink there

13 |Here an Oink, there an Oink

14 | Everywhere an Oink, Oink

15 |With a Moo, Moo here

16 |And a Moo, Moo there

17 |Here a Moo, there a Moo

18 | Everywhere a Moo, Moo

19 |01d MacDonald had a farm, E-I-E-I-0

Listing 5.1 The expected output our new “Old MacDonald Had A Farm” program (part 1)

© Springer Nature Switzerland AG 2018 109
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_5

https://doi.org/10.1007/978-3-319-89491-1_5

110 5 Passing Values to and from Methods

21 |0ld Macbhonald had a farm, E-I-E-I-0
22 |And on his farm he had a dog, E-I-E-I-O
23 |With a Bow, Wow here

24 |And a Bow, Wow there

25 |Here a Bow, there a Bow

26 |Everywhere a Bow, Wow

27 |With an Oink, Oink here

28 |And an Oink, Oink there

29 |Here an Oink, there an Oink

30 |Everywhere an Oink, Oink

31 |With a Moo, Moo here

32 |And a Moo, Moo there

33 |Here a Moo, there a Moo

34 |Everywhere a Moo, Moo

35 |01d MacDhonald had a farm, E-I-E-I-0O

Listing 5.2 The expected output our new “Old MacDonald Had A Farm” program (part 2)

Look at the lines that introduce the animal names:

And on his farm he had a cow, E-I-E-I-0O

And on his farm he had a pig, E-I-E-I-O

(O R S

And on his farm he had a dog, E-I-E-I-O

The three lines appear in all the verses with their unique animal names, "a cow", "a pig", and

"a dog". By hiding the variable part with . . ., the lines are:
And on his farm he had ..., E-I-E-I-0O
We thus construct a method that takes the . . . and replaces it with the input when printing the line.

Suppose name is a String variable whose value is one of the three possible values and, for what it
is worth, any String. We can be substitute the line with:

System.out.println("And on his farm he had + name

+ ", E-I-E-I-0");

Based upon what we have learned so far, we know that this statement accomplishes the required
task. We can turn this into a method by the name of “had,” since it is about an animal.

public static void had ()
{
System.out.println("And on his farm he had " + name
+ ", E-I-E-I-0");

T W N =

Note that the declaration of name is missing in the code for had. Thus, for this code to function
correctly, the declaration must appear in the method or appear outside the method as the declaration
of a global variable. To make the declaration appear in the method, one can think of defining it as:

+ ", E-I-E-I-0");

1 public static void had()

2 {

3 String name;

4 System.out.println("And on his farm he had " + name
5

6

5.1 Passing Values to Methods 111

Unfortunately, this does not allow the code outside the method to assign a value to name. The
correct way to do so, according to the Java syntax, is to place it inside the parentheses of the method
header, as shown next:

1 public static void had(String name)

2 {

3 System.out.println("And on his farm he had " + name
4 + ", E-I-E-I-0");

5 }

We call the variables appearing in the parentheses of a method declaration parameters, or formal
parameters, to be more precise.
The way we call this method is the same as the way we call the print methods of System. out,

e.g.,

1 -

2 public static void main(Stringl[] args)
3 {

4 had("a cow");

5 -

6 String name = "a pig";

7 had(name);

8

9 }

10 public static void had(String name)

11 {

12 System.out.println("And on his farm he had " + name
13 + ", E-I-E-I-0");

14 }

The first method call is had ("a cow"). Before executing this call, JVM stores the value of
the String literal "a cow" to the method had. To pass the value, JVM stores the value in the
formal parameter name of the method had.

The second method call is had (name). This time, JVM stores the value of the variable name
appearing in the main method, which is "a pig", in the formal parameter name of the method
had.

As opposed to the term formal parameter, we call the variables that the JVM transfers to the formal
parameters of a method call actual parameters.

1 R

2 public static void main(Stringl[] args)
3 {

4 had("a cow");

5

6 String name = "a pig";

7 had (name);

8

9 ¥

10 public static void had(String name)

11 {

12 System.out.println("And on his farm he had " + name
13 + ", E-I-E-I-0");

14 }

112 5 Passing Values to and from Methods

Note that the name appearing in the second method call is different from the name appearing in
the method itself due to their scopes. The range of the first name starts at the { immediately after the
main declaration and ends at the } before the had declaration. The range of the second name starts
at the { immediately after the had declaration and ends at the last }. Therefore, we can safely change
the names stored in the variables without causing any problems.

We apply a similar decomposition to the section that prints the calling of the animals. In this
section, the output for the pig is:

With an Oink, Oink here

And an Oink, Oink there
Here an 0Oink, there an 0Oink
Everywhere an Oink, Oink

NN =

and the output for the dog is:

With a Bow, Wow here
And a Bow, Wow there
Here a Bow, there a Bow
Everywhere a Bow, Wow

B LN =

We can identify the following pattern:

With xxx, yyy here
And xxx, yyy there
Here xxx, there xxx
Everywhere xxx, yyy

B~ W N =

where xxx and yyy are respectively "an Oink" and "Oink" for the pig and respectively "a
Bow" and "Wow" for the dog. (Naturally, we wish we could dispose of the article appearing in each
xxx, but unfortunately that appears impossible, since the article is "an" for the pig and "a" for the
others.) The pattern is encode in a method named with as follows:

1 public static void with(String xxx, String yyy)

2 {

3 System.out.println("With " + xxx + ", " + yyy + " here");
4 System.out.println("And " + xxx + ", " + yyy + " there");
5 System.out.println("Here " + xxx + ", there " + xxx);

6 System.out.println("Everywhere " + xxx + ", " + yyy);

7 }

Unlike had, which takes just one formal parameter, the method with has two formal parameters.
Both are St ring data. When there is more than one formula parameter, we use a comma to separate
them. For variable declaration, we can combine multiple declarations of the same type by connecting
the variable names with a comma inserted between two variable names. Such abbreviations are not
permissible in formal parameter specifications; each parameter must have its own type specification.

5.1 Passing Values to Methods 113

In general, the parameter part of a method declaration is a list of parameter types and parameter
names.

’ (TYPE 1 NAME 1, ..., TYPE k NAME k) ‘

If there is no parameter that the method takes, this part is empty; if there is only one parameter, there
will be no comma, since the number of commas is one fewer than the number of parameters. We call
the sequence of the types

’ [TYPE 1, ..., TYPE k] ‘

the parameter type signature of the method. The entire code appears next, shown in two parts:

1 |public class 0ldMacDonaldPassing
2 |{

3 //-- the cow verse

4 public static void cowVerse ()
5 {

6 macDonald () ;

7 had("a cow");

8 with("a Moo", "Moo");

9 macDonald () ;

10 }

11 //-- the pig verse

12 public static void pigVerse ()
13 {

14 macDonald () ;

15 had("a pig");

16 with("an Oink", "Oink");
17 with("a Moo", "Moo");

18 macDonald () ;

19 ¥

20 //-- the dog verse

21 public static void dogVerse ()
22 {

23 macDonald () ;

24 had("a dog");

25 with("a Bow", "Wow");

26 with("an Oink", "Oink");
27 with("a Moo", "Moo");

28 macDonald () ;

29 T

30 //-- start and end of each verse
31 public static void macDonald ()
32 {

33 System.out.println("0ld MacDonald had a farm, E-I-E-I-0");
34 ¥

Listing 5.3 A source code for the parameterized version of the “Old MacDonald” program (part 1)

114 5 Passing Values to and from Methods

35 //-- the "Had" line

36 public static void had(String name)

37 {

38 System.out.println("And on his farm he had " + name

39 + ", E-I-E-I-0");

40 }

41 //-- the "With a" lines

42 public static void with(String xxx, String yyy)

43 {

44 System.out.println("With " + xxx + ", " + yyy + " here");
45 System.out.println("And " + xxx + ", " + yyy + " there");
46 System.out.println("Here " + xxx + ", there " + xxx);
47 System.out.println("Everywhere " + xxx + ", " + yyy);
48 }

49 //-- main

50 public static void main(Stringl[] args)

51 {

52 cowVerse () ;

53 System.out.println();

54 pigVerse () ;

55 System.out.println();

56 dogVerse () ;

57 }

58 |}

Listing 5.4 A source code for the parameterized version of the “Old MacDonald” program (part 2)

Note that, in this version, main appears as the very first method. As mentioned earlier, methods
are free to call others regardless of their order of appearance in the source code.

The formal parameters of a method are local variables. The method can use them in the computation
by making modifications to them. If they are primitive data, the values of the corresponding actual
parameters are copied to the formal parameters. This means that the modifications that occur to the
formal parameters in the method do not reflect on the value of the actual parameters. In contrast,
if they are object data, the actual parameters inform the method the locations of the object data in
the computer memories. We call the locational information the reference. If the method assigns a
value to the formal parameter, the reference of the formal parameter changes, but the reference of
the actual parameter does not and the method loses the reference to the original data. From that
point on, any actions taken on the formal parameter will have no effect on the actual parameter.
If the method executes an instance method on the formal parameter without assigning a new
value, and that method modifies the status/contents of the object data, the actual parameter will be
affected.

To see how this mechanism works, consider the following code. The two assignments in test
have no effect on word or radius in main. The t.next (), on the other hand, because t and
textScanner are referring to the same Scanner object, has the effect of advancing the scanning
position. This means that, when main executes text Scanner .next (), the method next returns
the second token of "Madman across the water!", across.

5.1 Passing Values to Methods 115

1 |import java.util.x;

2 | public class Levon

3 [{

4 public static void main(Stringl[] args)

5 {

6 String word = "Tiny Dancer";

7 double radius = 19.7;

8 Scanner textScanner = new Scanner ("Madman across the water!");
9 test (word, textScanner, radius);

10 System.out.println(radius);

11 System.out.println(word);

12 System.out.println(textScanner.next());

13 }

14 public static void test(String w, Scanner t, double r)
15 {

16 w = "Levon";

17 r = 4.5;

18 System.out.println(t.next());

19 }

20 |}

Listing 5.5 A code that demonstrates call-by-reference

Executing the code produces the following result:

Madman

19

Tiny Dancer
across

Figure 5.1 explains this effect. w, r, and t appearing in the lower part of the picture are the formal
parameters of test. word, radius, and textScanner appearing in the higher part of the picture
are the variables of main. The solid arrows originating from them represent the values they have at
the end of test. The dashed arrows originating from these variables represent the values they used
to have. The start positions for obtaining the next tokens are shown with big arrows. At the start of
test, w and r have the same values as word and radius. When the assignments to w and r are
made in test, the values of w and r change, but the values of word and radius are preserved. The
effect of t .next is different. While t and textScanner still have the Scanner object as their
values, the call t .next changes the position of the next available token.

We call the mechanism in which Java handles parameter passing call by reference.

5.1.2 Method Overloading

Java permits multiple methods having the same names appear in the same code unit as long as their
parameter type signatures are different. We call this method overloading.

The following code example demonstrates method overloading. The program defines seven
methods by the name of response. The first six of the seven methods take one parameter each:
a String, aboolean, a int, a byte, a double, and a £1loat. The last of the seven takes no
parameter. These methods simply print on the screen what the parameter type is, as well as the value
of its parameter.

116 5 Passing Values to and from Methods

word radius textScanner

“Tiny Dancer” 19 [M[a[d[m[a[n] [aJc]r[o]s]s] Jt[n]e] [w[aJt]e]r]

L] L

“Levon” 3000

Fig. 5.1 The call-by-reference concept. On the top side, the boxes are actual parameters

1

2 /% skokok sk ok ok ok ok ok ok ok ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok k

3 * A toy example of method overloading

4 s skok ok ok ok ok ok ok ok sk sk sk ok sk ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok /
5

6 |public class ResponseOverload

74

8 /% koo ok ok ok ok sk sk ok sk ok ok ok ok ok ok 5k

9 * the String version

10 % kokokokokok kokokkokokokkk ok /

11 public static void response(String data)

12 {

13 System.out.println("The data is a String \"" + data + "\".");
14 }

15

16 /% ok kok ok ok sk ok ok ok ok ok ok ok ok ok ok ok k

17 * the boolean version

18 *kokokokokok kokok ok ok okokk ok ok /

19 public static void response(boolean data)
20 {

21 System.out.println("The data is a boolean " + data + ".");
22 }

23

24 /% ok kok ok ok sk ok ok ok ok ok ok ok ok ok ok ok

25 * the int version

26 K kokokokokokokokokokokokkkk x/

27 public static void response(int data)

28 {

29 System.out.println("The data is an int " + data + ".");
30 }

31

32 /% ok kok ok ok sk ok ok ok ok ok ok sk ok ok ok ok k

Listing 5.6 A program that demonstrates the use of method overloading (part 1)

5.1 Passing Values to Methods

117

33 * the byte version

34 *kkokokkokokkkokkkokkk ok /

35 public static void response(byte data)
36 {

37 System.out.println("The data is a byte " + data + ".
38 ¥

39

40 /% ok kok ok ok sk ok ok ok ok ok ok ok ok ok ok ok k

41 * the float version

42 % kokokokokok kokok ok ok okokk ok ok /

43 public static void response(float data)
44 {

45 System.out.println("The data is a float " + data +
46 }

47

48 /% kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

49 * the double version

50 ko okokokokok ok okok ok ok okok ok ok ok ok /

51 public static void response(double data)
52 {

53 System.out.println("The data is a double " + data +
54 ¥

55

56 /% ok kok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok

57 * the empty version

58 % skokokokokok kokok ok ok okokk ok ok /

59 public static void response ()

60 {

61 System.out.println("There is no data.");
62 ¥

63

64 /% Kok ok ok ok ok ok ok ok ok ok ok k ok K k

65 * the main method

66 ko okokokokok ok okok ok ok okok ok ok ok ok /

67 public static void main(Stringl[] args)
68 {

69 String myString = "hello";

70 boolean myBoolean = false;

71 int myInteger = 10;

72 byte myByte = 0x7f;

73 double myDouble = -98.5;

74 float myFloat = 99.9F;

75

76 response (myString);

7 response (myBoolean) ;

78 response (myInteger);

79 response (myByte);

80 response (myDouble);

81 response (myFloat);

82 response () ;

83 ¥

84 |}

) .

B

)

);

Listing 5.7 A program that demonstrates the use of method overloading (part 2)

118 5 Passing Values to and from Methods

The method main appearing at the end of the source code declares variables of six different types,
assigns values to them, and then makes seven calls. Six out of the seven take one variable each. The
one appearing at the end takes none.

The Java compiler assigns these calls to their respective types. Because each version announces
itself, it is possible to tell which one of the seven is called by looking at the output generated. Note
that if the letter F that appears at the end of the assignment to myFloat, this indicates that the literal
isa float.

Here is the result of executing the code:

The data is a String "hello".
The data is a boolean false.
The data is an int 10.

The data is a byte 127.

The data is a double -98.5.
The data is a float 99.9.
There is no data.

N O U W N~

Notice that the output for myByte is in decimals, although the value specified is hexadecimal.

If the type signature of a method call does not match the type signature of any method having the
same name, a compiler checks if the data types of the actual parameter can be interpreted as different
types so that the interpreted type signature has a match. The interpretation is applied to number types,
by treating a whole number type as a floating point number type and/or by treating a number type
as a larger number type. If no match can be found even with the parameter type interpretation, the
compiler produces a syntax error.

The next code is a new version of ResponseOverload. The number of type signa-
tures for response has been reduced from seven to just two. The types are int and
double.

1

2 /% koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok K ok ok o ok ok ok o oK ok ok ok oK ok ok ok K

3 * A toy example of method overloading

4 Kok ok ok ok oK ok ok oK oK oK K K oK ok K K oK kR K K K KKK R Kk kR Kk Rk ok kR kk % /
5

6 |public class ResponseOverloadLimited

7€

8 /% ok k ok ok sk %k ok sk k %k ok k %k K ok k kK

9 * the int version

10 K ckokokokokok kokok ok ok okokk ok ok /

11 public static void respomnse(int data)

12 {

13 System.out.println("The data is an int " + data + ".");
14 }

15

16 /% skok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok

17 * the double version

18 % kokokokokok kokok kokokokk ok ok /

19 public static void response(double data)

20 {

21 System.out.println("The data is a double " + data + ".");
22 }

23

Listing 5.8 A program with method overloading in which available methods are fewer than the method call types
(part 1)

5.2 Receiving a Value from a Method 119

24 /% sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok

25 * the main method

26 K kokokokokok kokok ok ok okokk ok ok /

27 public static void main(Stringl[] args)
28 {

29 int myInteger = 10;

30 byte myByte = 0x7f;

31 double myDouble = -98.5;
32 float myFloat = 99.9F;
33

34 response (myInteger);
35 response (myByte);

36 response (myDouble);

37 response (myFloat);

38 }

39 |}

Listing 5.9 A program with method overloading in which available methods are fewer than the method call types
(part 2)

For myByte, the compiler uses the int version as its surrogate, and for myFloat, the compiler
uses the double version as its surrogate. These substitutions come naturally, since both int and
byte are for whole numbers with more bits in int, and both double and f£loat are for floating
point numbers with more bits in double. Here is the result of executing the program.

The data is an int 10.

The data is an int 127.

The data is a double -98.5.
The data is a double 99.9.

=W N =

If we take this further and eliminate the int version, then double will be used for all number
types.

5.2 Receiving a Value from a Method

It is possible to receive a value from a method as the outcome of its calculation. A method returns a
value of a specific data type (and that specific data type must appear in the method declaration). All
the methods we have seen so far had void as the return type. By changing it to something else, we
can write a declaration with a real return type.

ATTRIBUTES RETURN_TYPE METHOD NAME (PARAMETERS)

For example, we can define a method named bmiCalculate that calculates the BMI value of
a person (given the weight value and the height value, where the return type is double) as
follows:

public static double bmiCalculate(double weight, double height)

Here is another example. Suppose we want to write a method calculateSum that computes the
sum of integers from 1 to n for an integer n. We can declare the method as follows:

120 5 Passing Values to and from Methods

public static int calculateSum(int n)

When a method that returns a value finishes its computation, the program execution goes back to
the location where the call took place, carrying the return value. Upon returning, JVM completes the
statement in which the method call appears, using the value it is carrying back from the method. For
example, in the case of calculateSum, if the method call appears in the form of:

int mySum = calculateSum(10);

and if the method returns some value (in this case 55 is the value we wish to receive), the end result is
the same as:

int mySum = 55;

We can use the data that a method returns in an assignment. We can also use it as a formal
parameter. If the data is an object type, we can directly apply a method for the type to the data that the
method returns. Consider the following two hypothetical methods:

1 public static Scanner generateScanner (int inputData)
2 {

3 String phrase;

4 // some computation to determine the value of phrase
5 // from inputData

6 Scanner yourScanner = new Scanner(phrase);

7 return yourScanner;

8 }

9 public static String firstToken(int inputInt)

10 {

11 Scanner myScanner = generateScanner (inputInt);

12 String myToken = yourScanner.next();

13 return(myToken);

14 ¥

The statement return has the role of returning a value. The parentheses surrounding the data to
be returned can be omitted.

The first method, generateScanner, determines the value of a String variable, phrase,
based upon the value of the parameter inputData. The method then calls the constructor for a
Scanner with the phrase as the parameter (i.e., new Scanner (phrase)). This call come
back with a Scanner object. The method stores this Scanner object in yourScanner. The
method concludes by returning yourScanner.

The second method, firstToken, calls the first method, generateScanner, with
inputInt as the actual parameter (note that there is transfer of value from inputInt to
inputData) and stores the Scanner that the first method returns in myScanner. Then, the
method executes next on myScanner to obtain its first token and stores the token in the variable
myToken. The method concludes by returning myToken.

We can simplify this code by disposing of the three variables, yourScanner, myScanner, and
myToken, as follows:

5.2 Receiving a Value from a Method

121

1 public static Scanner generateScanner (int inputData)
2 {

3 String phrase;

4 // some computation

5 return new Scanner (phrase);

6 }

7 public static String firstToken(int inputData)

8 {

9 return generateScanner (inputData).next();

10 }

In the first method, the return statement returns the Scanner object that the constructor
generates. In the second method, the program executes the method next directly on the Scanner

object that the first method returns.

Method calls can appear in another method call. If a method methodA takes some k parameters of
types TYPE 1,...,TYPE k and methods METHOD 1, ..., METHOD_ k return the same types of data

respectively, and the value sequence to pass to these methods is SEQUENCE_1, ..., SEQUENCE k,
then:

1 TYPE 1 value 1 = method 1(SEQUENCE 1);

2 .

3 TYPE k value k = method k(SEQUENCE k);

4 methodA(value 1, ..., value k);

can be substituted with:

methodA(method 1 (SEQUENCE 1), ..., method k(SEQUENCE k));

Here is an illustration of how we may use this feature. In the previous code for computing BMI

values, we used pounds for the weight unit and feet and inches for the height units.

1 |import java.util.Scanner;

2 |public class BMIInteractive

3 |1

4 public static final double BMI_SCALE = 703.0;

5 public static final int FEET_TO_INCHES = 12;

6

7 public static double bmiFormula(double weight, double height)

8 {

9 return BMI_SCALE * weight / (height * height);
10 ¥

1

—

Listing 5.10 A program for computing the BMI values interactively. Reprise (part 1)

122 5 Passing Values to and from Methods

12 public static void oneInteraction ()

13 {

14 Scanner keyboard = new Scanner(System.in);

15 System.out.print("Enter weight: ");

16 double weight = keyboard.nextDouble();

17 System.out.print("Enter height in feet and inches: ");
18 double feet = keyboard.nextDouble () ;

19 double inches = keyboard.nextDouble () ;

20 double height = FEET_TO_INCHES * feet + inches;
21 double bmi = bmiFormula(weight, height);

22 System.out.println("Your BMI is " + bmi + ".");
23 }

24 public static void main(Stringl[] args)

25 {

26 oneInteraction () ;

27 oneInteraction () ;

28 }

29 |}

Listing 5.11 A program for computing the BMI values interactively. Reprise (part 2)

To compute the BMI value using these three values, we convert the feet and the inches to a single
value named height using the formula (Line 20), and then use the method bmiFormula to obtain
the BMI value (Line 21).

We can develop methods to conduct these calculations. One method, combineFeetAndInches,
takes the feet and inches for height and returns its inch-only value as follows:

public static double combineFeetAndInches(double feet, double inches)

{
return FEET_TO_INCHES * feet + inches;

}

=W N

The other method we introduce is a three-parameter version of bmi Formula. The method takes
three values, the weight, the feet, and the inches. The method computes the inch-based representation
of the height using combineFeetAndInches with feet and inches as the actual parameters.
Then, the method calls the two-parameter version of bmiFormula to obtain the BMI, and returns
the BMI. Since the inch-based representation of height is used nowhere else, we can dispose of the
variable for storing the inch-based value, as follows:

1 public static double bmiFormula(double weight, double feet,

2 double inches)

3 {

4 return bmiFormula(weight, combineFeetAndInches(feet, inches));
5 }

The return value of the method call to combineFeetAndInches is used as the second actual
parameter of the call to bmiFormula.

The following is a version of the program with these new features. The output of the program is
different from that of the previous, and the program states what the input values are. The first part of
the code consists of the constants and the methods for computing the BMI values.

5.2 Receiving a Value from a Method 123

1 |import java.util.Scanner;

2 |public class BMIFeeding

3 [{

4 public static final double BMI_SCALE = 703.0;

5 public static final int FEET_TO_INCHES = 12;

6

7 public static double bmiFormula(double weight, double height)
8 {

9 return BMI_SCALE * weight / (height * height);

10 ¥

11

12 public static double combineFeetAndInches(double feet, double inches)
13 {

14 return FEET_TO_INCHES * feet + inches;

15 ¥

16

17 public static double bmiFormula(double weight, double feet,

18 double inches)

19 {

20 return bmiFormula(weight, combineFeetAndInches(feet, inches));
21 ¥

22

Listing 5.12 A new version of the program for computing the BMI values for the input provided by the user (part 1)

The next part consists of the method for interacting with the user and the method main.

23 public static void oneInteraction ()

24 {

25 Scanner keyboard = new Scanner(System.in);

26 System.out.print ("Enter weight: ");

27 double weight = keyboard.nextDouble () ;

28 System.out.print ("Enter height in feet and inches: ");
29 double feet = keyboard.nextDouble();

30 double inches = keyboard.nextDouble();

31 double bmi = bmiFormula(weight, feet, inches);

32 System.out.println("Weight = " + weight + " pounds");
33 System.out.println("Height = " + feet + " feet and "
34 + inches + " inches");

35 System.out.println("BMI = " + bmi);

36 }

37 public static void main(String[] args)

38 {

39 onelnteraction();

40 onelnteraction () ;

41 }

42 |}

Listing 5.13 A new version of the program for computing the BMI values for the input provided by the user (part 2)

124 5 Passing Values to and from Methods

Here is an execution example of the new program:

Enter weight: 170

Enter height in feet and inches: 5 7
Your BMI is 26.62285586990421.

Enter weight: 160

Enter height in feet and inches: 5 7
Your BMI is 25.056805524615726.

AN AW =

5.3 Class Math
5.3.1 Mathematical Functions in Java

In the very early days of computing, programmers had to write the code for mathematical functions
from scratch (even fundamental ones, such as the square root and the logarithm). Fortunately, modern
programming languages offer a plethora of pre-written mathematical functions allowing programmers
to skip that tedious process.

In Java, the class Math provides mathematical functions. To use a mathematical function in Math,
we attach a period and the name of the function to the class name, e.g., Math . sin. The class Math
is available without writing import. Since all important mathematical functions are available under
a single class and the web documentation of Java comes in classes, it is easy for a programmer who
needs mathematical functions to explore the Java provision of the functions.'

There are two constants in Math.

* Math.PI is a double constant that provides the value of 7.
* Math.E is a double constant that provides the value of the base of the natural logarithm.

Since these quantities are irrational, the values that the class Math provides are
approximations.

Next, we present some of the methods in Math. The order of presentation is based on the number
of formal parameters.

There is only one Math method that takes no parameters: Math.random (). The method
Math.random () returns under a uniform distribution a random double value between O and 1.
The value is strictly less than 1 and greater than or equal to 0. Since double has finite length, the
number of values that Math . random may generate is finite.

IThe link for the class Math is:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html .

5.3 Class Math 125

Tablg 5.1‘ One-parameter Name What it computes

functions in Math sin The sine of the parameter value (radian)
cos The cosine of the parameter value (radian)
tan The tangent of the parameter value (radian)

asin The inverse of sine, return value in [—%, %
acos The inverse of sine, return value in [0, 7]

atan The inverse of sine, return value in [-7, 7]
sgrt The square root

cbrt The cubic root

log The natural logarithm

logl0 The logarithm base 10

signum The sign of the number, —1.0, 0.0, or 4+1.0

exp The exponential function base the natural logarithm.
ceil The smallest whole number that is >= parameter
floor The largest whole number <= parameter

round The rounded whole number, as an int

abs The absolute value

Table 5.2 Two-parameter max The maximum of two numbers given as parameters
functions in Math 3 e, .
min The minimum of two numbers given as parameters

pow The first parameter raised to the power of the second

Table 5.1 presents selected methods in Math that take just one parameter. For all but two of
the methods on the table, the return type is double. For Math. round, there are two versions.
The return type of Math.round that takes a double parameter is long, and the return type
of Math.round that takes a float parameter is int. For Math.abs, there are four versions.
The types of their input parameters are double, float, long, and int. For each version of
Math. abs, the return type is identical to the parameter type.

Table 5.2 presents some two-parameter methods of Math.

As in the case of abs, both max and min have four versions. The parameter types of the four
versions are double, float, long, and int. They compute the maximum (respectively, minimum)
of its two parameters.

Here is a code example that shows the use of the constants and the random number generator.

126 5 Passing Values to and from Methods

1 |public class MathNoParameters

2 |{

3 public static void main(Stringl[] args)

4 {

5 System.out.println("PI: " + Math.PI);

6 System.out.println("E: " + Math.E);

7 System.out.println("Random round 1: " + Math.random());
8 System.out.println("Random round 2: " + Math.random());
9 System.out.println("Random round 3: " + Math.random());
10 System.out.println("Random round 4: " + Math.random());
11 System.out.println("Random round 5: " + Math.random());
12 }

13 |}

Listing 5.14 A program that demonstrates the use of constants and the method random of the class Math

Running the code produces the following result:

1 Math.PI = 3.141592653589793

2 |Math.E= 2.718281828459045

3 Round 1: Math.random() = 0.056618315818746656
4 |Round 2: Math.random() = 0.30658632116385387
5 Round 3: Math.random() = 0.07808433189065977
6 |Round 4: Math.random() = 0.27893273824439646
7 |Round 5: Math.random() = 0.752651071169672

Another execution produces the following result:

1 Math.PI = 3.141592653589793

2 |Math.E= 2.718281828459045

3 |Round 1: Math.random() = 0.2509009548325596
4 |Round 2: Math.random() = 0.2199297628318726
5 |Round 3: Math.random() = 0.4874309775816027
6 |Round 4: Math.random() = 0.830865085635181
7 |Round 5: Math.random() = 0.8592438408895406

The value Math.round generates is random, so we can expect the results to be different
each time.

Since the number that Math.random produces is between O and 1 (not including 1), by
multiplying the result of Math . random with a positive integer b and then adding another integer a,
a random real number between a and b can be generated. By applying the casting (int) to such a
number, it is possible to generate a random integer between a and a + b.

‘(int)(a + b * Math.random());

Since a is an int parameter, the effect is the same if we take a outside the parentheses:

a + (int)(b * Math.random()); ‘

The following code uses this idea. The program receives two values and produces a random integer
using the latter formula four times.
The program execution produces the following result:

5.3 Class Math 127

1 |import java.util.Scanner;

2

3 |public class MathRandomInt

4 |{

5 public static void main(String[] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 int a, b;

9 System.out.print("Enter the size of the interval: ");
10 b = keyboard.nextInt ();

11 System.out.print("Enter the smallest number: ");

12 a = keyboard.nextInt ();

13 System.out.println(a + (int)(b * Math.random()));
14 System.out.println(a + (int)(b * Math.random()));
15 System.out.println(a + (int)(b * Math.random()));
16 System.out.println(a + (int)(b * Math.random()));
17 }

18 |}

Listing 5.15 A program that generates random integers using Math . random

1 |Enter the size of the interval: 5
2 |Enter the smallest number: 4

3 |5

4 |8

5 |7

6 |5

Here is another run:

1 |Enter the size of the interval: 10
2 |Enter the smallest number: 20

3 28

4 26

5 22

6 |27

The next code example shows the use of methods for algebraic and analytical functions that
return a double value. The program receives a real number from the user and then executes
the methods for the functions. For each function, the program produces an output line in the
format of:

’mmg(xxx):zzz ‘

where NAME is the name of the function, XXX is the value the user has entered, and ZZZ is the value
the method has returned. The program also demonstrates the use of a two-parameter method pow. For
that method, we want to produce the output in the format of:

’NAME(XXX,YYY):ZZZ

For this purpose, the program uses two methods named nameArgValue via method overloading.
The first version takes three parameters. The three parameters are expected to be the name of the
function, the value of the input given to the function, and the value of the function. The second version
takes four parameters. The four parameters are expected to be the name of the function, the values of
the two inputs to the function, and the value of the function. The parameter type signatures of the two
methods are:

[String, double, double] and [String, double, double, double]

128 5 Passing Values to and from Methods

Next is the code for the method main. The program receives one floating point number from the user,
and then makes a series of calls to nameArgValue. In each call, the program passes the name of
the Math method it is using, the real number that the user has entered, and the return value of the call
to the Math method. To print the return value, the program executes System.out .println with
the method calls as the actual parameters.

1 |import java.util.Scanner;

2

3 |public class MathPoly

4 |{

5 public static void nameArgValue(String name, double argument,
6 double value)

7 {

8 System.out.print (name);

9 System.out.print (" (");

10 System.out.print (argument);

11 System.out.print(")=");

12 System.out.println(value);

13 ¥

14

15 public static void nameArgValue(String name, double argl,
16 double arg2, double value)

17 {

18 System.out.print (name);

19 System.out.print(" (");

20 System.out.print (argl);

21 System.out.print(",");

22 System.out.print(arg2);

23 System.out.print(")=");

24 System.out.println(value);

25 }

26

27 public static void main(String[] args)

28 {

29 Scanner keyboard = new Scanner (System.in);

30 double real, real2;

31

32 System.out.print("Enter a positive real number: ");
33 real = keyboard.nextDouble();

34

35 nameArgValue ("sqrt", real, Math.sqrt(real));

36 nameArgValue("cbrt", real, Math.cbrt(real));

37 nameArgValue("loglO", real, Math.loglO(real));

38 nameArgValue("log", real, Math.log(real));

39 nameArgValue("exp", real, Math.exp(real));

40 nameArgValue("exp", -real, Math.exp(-real));

41 nameArgValue("abs", real, Math.abs(real));

42 nameArgValue("abs", -real, Math.abs(-real));

43 nameArgValue("signum", real, Math.signum(real));
44 nameArgValue("signum", -real, Math.signum(-real));
45

46 System.out.print("Enter another real number: ");

47 real2 = keyboard.nextDouble();

48 nameArgValue("pow", real, real2, Math.pow(real, real2));
49 }

50 |}

Listing 5.16 A program that demonstrates the use of algebraic and analytical functions of Math

5.3 Class Math

The next code shows an example of rounding numbers. As before, the source code has two versions
of nameArgValue via method overloading. In the first version, the third parameter is double, and

in the second version, the third parameter is 1ong.

The action of the method main is very similar to the action of the previous program. The program
receives input from the user, and then calls the three functions twice each. The first call is with the

value entered, and the second call is with the value having the opposite sign.

1 |import java.util.Scanner;

2

3 |public class MathRounding

4 |{

5 public static void nameArgValue(String name, double argument,
6 double value)

7 {

8 System.out.print (name);

9 System.out.print(" (");

10 System.out.print (argument);

11 System.out.print(")=");

12 System.out.println(value);

13 ¥

14

15 public static void nameArgValue(String name, double argument,
16 long value)

17 {

18 System.out.print (name);

19 System.out.print (" (");

20 System.out.print (argument);

21 System.out.print(")=");

22 System.out.println(value);

23 }

24

25 public static void main(String[] args)

26 {

27 Scanner keyboard = new Scanner(System.in);

28 System.out.print("Enter a real number: ");

29 double real = keyboard.nextDouble();

30 nameArgValue("ceil", real, Math.ceil(real));

31 nameArgValue("ceil", -real, Math.ceil(-real));
32 nameArgValue("floor", real, Math.floor(real));
33 nameArgValue("floor", -real, Math.floor(-real));
34 nameArgValue("round", real, Math.round(real));
35 nameArgValue("round", -real, Math.round(-real));
36 ¥

37 |}

Listing 5.17 A program that demonstrates the use of rounding methods in Math

Here is an execution example of the code. Note that while the ceiling of 45.78 produces
46.0, the ceiling of —45.78 produces —45.0, not —46.0. The same difference exists for the

flooring.

130 5 Passing Values to and from Methods

Enter a real number: 45.78
ceil (45.78)=46.0

ceil (-45.78)=-45.0

floor (45.78)=45.0
floor(-45.78)=-46.0

round (45.78) =46

round (-45.78) =-46

NN R W~

The next code demonstrates the use of the trigonometric functions. Again, the program uses
methods named nameAndValue. The first method has four parameters, name, argl, arg2, and
value, and produces the output in a new format:

xxxX (Pix (yyy/zzz))=vvv

with xxx, yyy, zzz, and vvv replaced with the values of name, argl, arg2, and value,
respectively. Previously, we had a comma in place of the forward slash. Both nameArgvValue
methods in this program combine some components to be printed into a single line with the use
of concatenation. As the result, the codes are shorter.

1 |import java.util.Scanner;

2 |public class MathTrigonometry

3 | <

4 public static void nameArgValue(String name, int argl, int arg2,
5 double value)

6 {

7 System.out.print (name);

8 System.out.print("(Pi*(" + argl + "/" + arg2 + "))=");
9 System.out.println(value);

10 }

11

12 public static void nameArgValue(String name, double arg,

13 double value)

14 {

15 System.out.print (name);

16 System.out.print("(" + arg + ")=");

17 System.out.println(value);

18 }

19

Listing 5.18 A program that demonstrates the use of trigonometric methods in Math (part 1)

In the remainder of the code, the program receives two integers, a and b, from the user. The two
integers are expected to represent the fraction r defined by a/b. The program then computes the sine,
cosine, and tangent of wr. These values are stored in sinvVal, cosVal, and tanval. The program
then applies the inverse functions to the three quantities, and stores the values returned in asinval,
acosVal, and atanval. After obtaining these values, the program uses nameArgValue methods
to report the results.

5.3 Class Math 131

20 public static void main(Stringl[] args)

21 {

22 Scanner keyboard = new Scanner(System.in);
23 System.out.print ("Enter integers a and b for Pix(a/b): ");
24 int a = keyboard.nextInt () ;

25 int b = keyboard.nextInt ();

26 double sinVal = Math.sin(Math.PI * a / b);
27 double cosVal = Math.cos(Math.PI * a / b);
28 double tanVal = Math.tan(Math.PI * a / b);
29 double asinVal = Math.asin(sinVal);

30 double acosVal = Math.acos(cosVal);

31 double atanVal = Math.atan(tanVal);

32 nameArgValue("sin", a, b, sinVal);

33 nameArgValue("cos", a, b, cosVal);

34 nameArgValue("tan", a, b, tanVal);

35 nameArgValue ("asin", sinVal, asinVal);

36 nameArgValue("acos", cosVal, acosVal);

37 nameArgValue("atan", tanVal, atanVal);

38 }

39 [}

Listing 5.19 A program that demonstrates the use of trigonometric methods in Math (part 2)

Here is an execution example of the code:

Enter integers a and b for Pix(a/b): 2 3
sin(Pix*(2/3))=0.8660254037844387
cos(Pi*(2/3))=-0.4999999999999998

tan (Pi*(2/3))=-1.7320508075688783

asin (0.8660254037844387)=0.33333333333333337
acos (-0.4999999999999998) =0.6666666666666666
atan(-1.7320508075688783)=-0.3333333333333334

N O U W N

Note that there are many digits appearing after the decimal point.

5.3.2 Mortgage Calculation

Suppose we are to take out a mortgage for some n months, with the principal of p dollars and the
fixed annual rate of a%. Our loan starts on the first day of a month, and each monthly payment will
be on the last day of the month.

We want to use a computer program to calculate the monthly payment as well as the total payment
for various loan scenarios. Since we can compute the total payment by simply multiplying the monthly
payment by the total number of payments, the key thing to compute is the monthly payment.

One calculates the monthly payment as follows.

If the annual percentage interest rate is a%, then the monthly interest rate r is the twelfth root of
b = (1 4+ a/100). This is because the annual interest rate is calculated as the compound rate of its
monthly rate. In other words, the annual interest rate is the twelfth power of the monthly rate.

If the residual principal is x on the first day of a month, then on the last day of the same month, the
residual principal balloons to rx. Since the payment of m occurs on the last day of the same month,
on the first of the next month, the principal will be:

rx —m.

132 5 Passing Values to and from Methods

In the next month, the same calculation takes place and the new residual amount after the next payment
will be:
r(rx —m) —m.

Then, again one month after, the principal becomes:
r(r(rx —m) —m) — m.
Let {p;}7_, be a series representing the residual principals, such that for each i, 0 < i < n, the
residual after i months of payment is p;. The value of pg is p since payments have not started yet and

the value of p, is O since the payment must be completed on the last day of the n-month period. By
using the calculation from the previous step, we obtain:

pr=rp—m,pr=r(rp—m)—m,p3 =r(r(rp —m) —m) —m, ...
We can see that for all k > 0,

I+ Dm.

pr=rp— (T +
We need to obtain the sum on the right-hand side. Define Q by:
O=r"trr L
By multiplying Q by r then adding 1 to the product we have:
rQ+1=rfF 4+ 41
Also, by adding r* to Q, we have:
Q= L
Since the right-hand sides are the same between the two equalities, we have:

rO+1=rf+0.

Solving this for Q, we obtain:

5.3 Class Math 133

Thus,
X rk—1
Pk=71"p—
r—1

m.

Since the loan is paid off in exactly n» months, we have p, = 0. Substituting k& with n in the above
equation, we have:

m = 0.

r
n
=7r —_
Pn p F—1

Solving this for m, we have:
r(r—1)
m=————-—-
rn —1

Noting that r" appears twice in the formula, we substitute " with s. Then we have:

s(r—1)

s—1

We now have the following process for computing the monthly payment m from p, a, b, and n.

. Compute b = (1 4 a/100).

. Compute r = b'/12,

. Compute s = r".

. Compute m = ps(r — 1)/(s — 1).
. Compute the total amount ¢ = mn.

whn A W=

Here is the code based upon the above analysis.
The code uses the following variables for receiving information about the loan from the user:

e int nMonth: number of months (n in the above discussion);
e int principal: the principal amount in dollars (p in the above discussion);
* double aRate: annual rate in percentage (a in the above discussion).

Then the code uses the following variables for calculating the parameters:

¢ double bRate: the rate of annual increase (b in the above discussion);
* double rRate: the rate of monthly increase (r in the above discussion);
e double power: the n-th power of r (s in the above discussion);

* double mPay: the monthly payment (m in the above discussion);

* double totalPay: the total payment (¢ in the above discussion).

The declarations of these variables appear in Lines 8 through 12. In Line 7 we also declare a Scanner
variable.

134 5 Passing Values to and from Methods

1 |import java.util.x;

2

3 |public class Loan

4 |4

5 public static void main(Stringl[] args)

6 {

7 Scanner keyboard;

8 int nMonth, principal;

9 double aRate, bRate, rRate;

10 double power;

11 double mPay, totalPay;

12

13 keyboard = new Scanner(System.in);

14

15 System.out.print("Enter nMonth, principal, annual rate: ");
16 nMonth = keyboard.nextInt();

17 principal = keyboard.nextInt ();

18 aRate = keyboard.nextDouble();

19

20 bRate = (1 + aRate / 100);

21 rRate = Math.pow(bRate, 1.0 / 12);

22 power = Math.pow(rRate, nMonth);

23 mPay = principal * power * (rRate - 1) / (power - 1);
24 totalPay = mPay * nMonth;

25 System.out.print("monthly = " + mPay);

26 System.out.println(", total = " + totalPay);
27 }

28 |}

Listing 5.20 A program that calculates mortgage payments

Lines 13-18 are for receiving input from the user. Notice that the use of next Int is for the int
variables, and the use of nextDouble is for the double variable. Notice, also, the use of 1.0
/ 12 for 1/12 in Line 21. The . 0 is essential here, since 1 / 12 would produce O as the integer
quotient. Such treatment is not necessary for Line 20, because aRate is double.

Here is how the code runs?:

Enter nMonth, principal, annual rate: 360 100000 3.65
monthly = 454.10190144665336, total = 163476.6845207952

o =

The code we have just seen does not use rounding. Since we cannot make payments carrying a
fraction of a cent, it is natural for us to round each currency amount with a fraction of a cent to one
without. In presenting currencies, we want to present exactly two digits after the decimal point.We

2S0 about 63.5% more over the period of 30 years. Not bad, I think.

5.3 Class Math 135

can make the number of digits to be printed after the decimal point to exactly two in the following
manner. We multiply mPay by 100 and then round it down to a whole number using the floor function.
We then split the number into two parts, as the quotient divided by 100 and the remainder divided by
100. The result looks like this:

1 |Enter nMonth, principal, annual rate: 360 100000 3.65
monthly = 454.1, total = 163476.0

The number of digits after the decimal point has been reduced, but in this case, there appears only one
digit after the decimal point for both numbers.

Java has a convenient way of adjusting the numbers to appear on the screen: a special print
command System.out .printf. The printf stands for “print with formatting” and it takes a
format St ring and a series of data as parameters.

System.out.printf (FORMAT STRING, DATA 1, ..., DATA k);

Here FORMAT STRING is a String that contains some k placeholders, where each placeholder
starts with a symbol % and ends with a letter specifying the type of data required for the position, e.g.,
s, d, and £. Between the % and the type-specifying letter may appear characters that specify how the
value of the data may appear when printed. Examples include the number of character spaces to use
and whether the value appears flush left or flush right.

In our particular case, we need to print two real values with exactly two digits after the decimal
point. A bonus would be to have a punctuation with every three digits, since the two values are
currencies.

System.out.printf (
"monthly = $%,.2f, total = $%,.2f%n", mPay, totalPay);

The format String contains two placeholders. Both place holders are %, . 2f. The letter £ means
that the data is a floating point number. The character , means that the currency punctuation must
appear. The character sequence .2 specifies that exactly two digits must after the decimal point.
The remaining parts, monthly = $, , total = $, and %n, print as they appear in the format
String. The %n specifies the newline and is essentially the same as \n. Using this formatting, the
output becomes:

monthly = $454.10, total = $163,476.00

The complete code of the program that computes the loan payments and produces a fancy output is
shown next. Just for comparison, the code includes the somewhat incomplete truncation print line that
we previously used.

136 5 Passing Values to and from Methods
1 |import java.util.x;

2

3 |public class LoanFancy

4 11

5 public static void main(String[] args)

6 {

7 Scanner keyboard;

8 int nMonth, principal;

9 double aRate, bRate, rRate;

10 double power;

11 double mPay, totalPay, mPay2, totalPay2;

12

13 keyboard = new Scanner(System.in);

14

15 System.out.print("Enter nMonth, principal, annual rate: ");
16 nMonth = keyboard.nextInt ();

17 principal = keyboard.nextInt ();

18 aRate = keyboard.nextDouble();

19

20 bRate = (1 + aRate / 100);

21 rRate = Math.pow(bRate, 1.0 / 12);

22 power = Math.pow(rRate, nMonth);

23 mPay = principal * power * (rRate - 1) / (power - 1);
24 totalPay = mPay * nMonth;

25 System.out.print ("monthly = " + mPay);

26 System.out.println(", total = " + totalPay);

27

28 mPay2 = Math.floor (mPay * 100) / 100.0;

29 totalPay2 = mPay2 * nMonth;

30 System.out.printf ("monthly = $%,.2f, total = $%,.2f%n",
31 mPay2, totalPay2);

32 ¥

33 |}

Listing 5.21 A new program that computes mortgage payments with fancy output

Summary

The formal parameters are those parameters that appear in a method declaration. In the declaration,
each formal parameter is specified with its type and name.

When a method A calls a method B, the values appearing in the method call are transferred to the
formal parameters of B. These values are called actual parameters.

The mechanism used in Java for transferring parameter values to methods is call-by-reference. If
an object data is given to a method as a formal parameter, executing an instance method on the
parameter may affect the contents/status of the object.

The parameter type signature of a method is the sequence of the parameter types appearing in its
parameter specification.

Method overloading refers to the concept in which a class may define multiple methods having
the same name, so long as the type signatures are distinct.

A method may return a value. The type of the return value of a method is specified in the method
declaration immediately before the method name. If there is no return value, a special keyword
void is used in the return type specification.

Exercises 137

B When a program makes a method call and no version of the method available through method

overloading has a completely matching parameter type signature, a close match, if available, is
used.

B Class Math provides a number of methods for mathematical and analytical functions as well as

mathematical constants.

M The method Math . random returns a random double between 0 and 1. Using this method, it is

possible to generate an integer within a finite range.

Exercises

0~ O U= W N =

. Concept check What do you call the concept that states that, in one class, multiple methods

with identical names can be declared, so long as the required parameters among them are
different?

. Concept check Can void methodX (int a, int b) and int methodX (int c,

int d) coexist in the same Java class?

. Concept check For each mathematical function, state the name of the method from class Math

used for calculating the function.

(a) the sine function

(b) the cosine function

(c) the inverse of the tangent function
(d) the natural logarithm

(e) the square root

(f) the cubic root

. Ceil, floor, and round Let x be a double variable with value 3.5 and let y be a double

variable with value 4.0. Find the values of the following:
(a) Math.ceil (x) and Math.ceil (y)

(b) Math.floor (x) and Math.floor (y)

(c) Math.max (x, y) andMath.min (x, Vy)

dx %y

. Feeding the output of a method to a method Consider the following three methods:

public static int methodl1(int a, int b)
{
return 2 * a * b;
}
public static int method2(int a)
{
return a / 2;
}
public static int method3(int a)
{
return a * 3;
}
What is the value of methodl (method2(3), method3(3))?
‘What is the value of method3 (method2 (methodl(3, 4)))?

138 5 Passing Values to and from Methods

6. Write a method named getInt that takes one Scanner parameter s and one String
parameter prompt, prints the prompt on the screen, receives an int from the user using the
Scanner type s, and then returns the int received from the user.

7. Write a void method named message that receives a String name and a double v as
parameters and prints on the screen

The value of [name] is [v]

where [name] is the value of the variable name and [v] is the value of v
8. Combining methods Suppose a method cross is defined as follows:

public static int cross(int a, int b)

{
}

return a - b;

AW =

State what value is returned by cross (10, cross(9, 4)).
9. Combining method Suppose a method cute is defined as follows:

public static int cute(int a, int b)

{
}

return a * b + b;

AW =

State what value is returned by cute(cute(10, 4), 5). Also, state the value of
cute(cute(10, 5), 4).

10. The volume of a cylinder Write a public static method named cylinderVolume (including
its method declaration) that receives two double values dValue and hValue as parameters,
and then returns the volume of the cylinder whose diameter is equal to dValue and whose height
is equal to hvalue.

11. Solving a quadratic equation Write a program named SimpleQuadraticEqg that receives
three double value coefficients a, b, and ¢ from the user, and then solves the equation ax? +
bx + ¢ = 0 using Math. sqgrt. If the equation has no real solution, the code may halt with a
run-time error. If the two solutions are identical to each other, the program may print the unique
solution twice.

For example, the program may execute as follows:

Enter the coefficients a, b, and c: 2 -5 2
The roots are 2.0 and 0.5

D

12. Computing the radius of a ball given its volume Write a program named RadiusFromCube
Volume that receives the volume of a ball in cubic meters from the user, and then computes the
radius of the ball.

Programming Projects

13. Summing numbers Write a program named SimpleSumGauss that receives an integer top
from the user and returns the sum from 1 to top, using the formula by Gauss. The program
should contain a method computeSum that takes an int as its formal parameter and returns the
sum. The program may not work correctly if the input the user provides is not positive.

14. Coordinate system conversion There are two coordinate systems for a point on the two-
dimensional space with the origin. One system, the Cartesian system uses a pair of axes that
are perpendicular to each other and specifies the point suing the x and y values of that point.

Exercises 139

15.

16.

17.

The other system, the polar system, has one axis and uses the distance from the origin and the
counter-clockwise angle from the axis in the range of —m to 7 degrees. Write a program named
CoordinateConversion that demonstrates the conversions between the two. The program
should have two methods, one for converting from the former type to the latter and the other
for converting from the latter type to the former. The method main prompts the user to enter
information and makes the calls to these methods, where the methods perform their respective
conversions and print the results on the screen. Use the fact that the angle (in radian) of (x, y) is
the sign of y times the arc-cosine of y/x and that the cosine is x /1/x2 + y2. To compute the sign,
Math.signum can be used and to compute the arc-tangent Math .acos can be used.
Balancing a ship Determine how deep the bottom of a ship sinks when it is placed in water.
Assume that the shape of the ship is an elongated triangle (in the shape of a Toblerone package
for instance).

The front view of the ship is an isosceles with the base at the top. Use variables height and
base for the height and the base of the triangle. Use a variable 1ength for the length of the
ship. All these quantities should be in meters. Use a variable weight for the weight of the ship
in tons. To describe how much of the ship will be in water, use a double variable ratio that
is between 0 and 1. The height of the ship under water is ratio * height. For the ship to
balance, the weight of the water it displaces should be equal to the weight of the ship. The first
quantity is:

0.5 » (ratio * height) x (ratio * base) x length

=0.5 * ratio®’+ height % base * length

If the ship is balanced in water, then this quantity is equal to weight. By solving the equality,
the value for ratio can be obtained.

Write a program named BalancingShip that takes height, base, length, and
weight from the user, and computes the height of the ship above water.
Euclidean distance Write a program named Euclidean that takes six double numbers al,
bl, cl, a2, b2, c2 as parameters, and then prints the Euclidean distance between the
points (al, bl, cl) and (a2, b2, c2) as

V(a1 —a2)2+ (bl —b2)2 + (c1 — c2)2.

String parameters Write a program named NamePermute that takes three St ring tokens
from the user. These tokens are supposed should be proper nouns. Print a statement in which the
three names appear in six possible orders.

140 5 Passing Values to and from Methods
1 |% java NamePermute
2 |Enter three names: Kris Luke Mike
3 |Kris is friendly with Luke, but not with Mike
4 |Kris is friendly with Mike, but not with Luke
5 |Luke is friendly with Kris, but not with Mike
6 |Luke is friendly with Mike, but not with Kris
7 |Mike is friendly with Kris, but not with Luke
8 |Mike is friendly with Luke, but not with Kris
9 |%

18.

AN N AW =

19.

20.

To write the code, use a method that takes three St ring parameters and prints a single line with
the three parameter values. To present the common parts, St ring variables can be used.

This Old Man, again Previously we looked at decomposing “This Old Man”. Now we know
how to pass values. Write a method named oldManVerse that prints one verse of This Old
Man, given two formal parameters XXX and YYY, which are both String objects, and prints

This old man, he played XXX,

He played knick-knack on his YYY;
With a knick-knack paddywhack,
Give the dog a bone,

This old man came rolling home

Then, using the method oldManVerse, write a program ThisOldManPassing that prints
all ten verses of the rhyme, where the value of XXX goes from one to ten, while the value of
YYY goes:

drum, shoe, knee, door, hive, sticks, heaven, gate, spine, again

Area of a regular polygon having N vertices For an integer N > 3, a polygon having N
vertices vi, ..., vy is a shape formed by connecting v; and v;4 foralli, 1 <i < N — 1, and
connecting vy and vy, each with a straight line. A regular polygon is a polygon such that the
vertices are on a circle, the line segments connect between the two neighbors on the circle, and
the line segments are equal in length. Examples of a regular polygon are squares and equilaterals.
Write a program named PolygonArea that receives the number of vertices number and the
common length length, the latter of which is double, from the user and reports the area. In
the program, include a method computeArea that takes the two quantities as its parameters and
returns the area.
How far does a baseball go? If a baseball is thrown at an angle, how far will it reach? Simplify
the problem by assuming that the ball is released at height 0 above ground, there is no wind or
air resistance, and the ball flies on a plane. Under these assumptions, the ground distance that the
ball travels is determined by the speed and the angle when the ball is released. Let the ball be at
the speed of s at the start and the angle is 6 in radian. The vertical speed of the ball, v, is s sin(6)
and the horizontal speed of the ball, u, is s cos(0). The time that it takes for the ball to reach the
highest point, ¢, is v/g, where g is the gravity constant (= 9.8). The height that it reaches, 4, is
vt — gt*/2. The time that it takes for the ball to hit the ground, ’, is /2k/g. Thus, the travel
distance is (¢ + t")u.

Write a program named HowFar that does this calculation. Design the code so that it contains
a method that does the calculation from s and 6, while printing the intermediate quantities on the
screen. Receive the values for the two variables from the user and call the method for calculation.
The user gives the angle, in degrees, between 0 and 90, so the program must convert the angle to
radian.

Here is a possibility of how the program may interact with the user:

Exercises

141

NN AW -

Enter the speed: 100 45
Enter the angle in degrees: The horizontal speed is 70.71067811865476

The
The
The
The
The

vertical speed is 70.71067811865474

time required to reach the top is 7.215375318230075
height is 255.10204081632642

time required to hit the ground is 7.215375318230075
distance traveled is 1020.4081632653059

Conditions and Their Use for Controlling the Flow of 6
Programs

6.1 Condition and Its Evaluation

A condition is a literal, a variable, a formula, or a method call whose value is boolean.!
Conditional evaluation is the action of obtaining the value of a condition. Recall, as we studied
in Sect. 2.2, that boolean is a primitive data type with just two possible values, true and false,
which are opposite to each other. System.out . print and its variants print these two values as the
String literals "true" and "false™", respectively, as demonstrated in the next code:

public class BooleanPrint
{
public static void main(String[] args)
{
boolean t = true;
boolean f = false;
System.out.println(t);
System.out.println(f);

O © 00~ U WN -

[

Listing 6.1 An program that prints boolean literals and variables

The code produces the following result:

true
false

[N

To build a boolean formula, conditional or logical operators can be used. There are three
conditional operators, the negation, conjunction (or logical-and), and disjunction (or logical-or).

Negation The negation of a condition has the opposite value of the original; that is, if x has the
value of true, !x has the value of false; and if x has the value of false, !x has the value of
true. The negation operator must be attached immediately in front of the condition it acts upon.

I'The name “boolean” comes from George Boole (November 2, 1815 to December 8, 1864), a nineteenth century
English mathematician who did fundamental work in logic and algebra.

© Springer Nature Switzerland AG 2018 143
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_6

https://doi.org/10.1007/978-3-319-89491-1_6

144 6 Conditions and Their Use for Controlling the Flow of Programs

The negation can be applied multiple times. When the negation is applied to something that is
already negated, a pair of matching parentheses is needed before attaching the additional negation.
In other words, for any condition x, the double negation ! ! x must be written as ! (!x). The
double negation of a condition has the same value as the original.

Disjunction The disjunction asks whether or not at least one of the conditions given as the operands
have the value of true. For operands x1, ..., xk such that k is greater than or equal to 2,

x1 || ... || %k

has the value of true if and only if for some i, xi has the value of true.
Conjunction The conjunction asks whether or not all of the conditions given as the operands have
the value of true. For operands x1, ..., xk such that k is greater than equal to 2,

x1l && ... && xk
has the value of true if and only if for all 1, xi has the value of true.
De Morgan’s laws state’:

| (x && y) isequivalentto !x || !vyand
1(x || y) isequivalentto !x && !y

Since the double negation flips the value back to the original, we have:

X && yisequivalentto ! (!x || !y) and
x || yisequivalentto ! (!x && !y)

The evaluation of conditional formulas with more than two operands follows rules analogous to the
rules used in evaluating mathematical formulas, with !, | |, and && acting as -, +, and =, respectively.

The next code demonstrates the effect of the three boolean operations. In this program, we
make a number of conditional evaluations. To make the code look simpler, we use the method
nameAndValue. The method receives a St ring data name and a boolean data value as formal

parameters and prints them in a single line with a String literal ": " in between:
1 |public class BooleanConnectivesNew

2 | {

3 public static void nameAndValue (String name, boolean value)
4 {

5 System.out.println(name + ": " + value);

6 }

Listing 6.2 A program that demonstrates the use of boolean operators (part 1)

We use the method nameAndvalue as follows. Line 9 of the program goes:

9 System.out.println("---------- NOT -------------- ")

Here, the first parameter "true && true" isa String literal that presents as a String literal
a conditional formula to be made and the second parameter true && true is the actual formula to
be evaluated. Note that the first actual parameter is a St ring literal and the second is a boolean
formula.

The method nameAndvalue simplifies the somewhat awkward single println statement of
the form:

2 Augustus De Morgan (27 June 1806 to 18 March 1871) was a British mathematician and logician, a contemporary of
George Boole. He worked on logic and algebra.

6.1 Condition and Its Evaluation 145

System.out.println("true && true: " + (true && true));

To execute this statement, print1ln evaluates the conditional formula (true && true).The
value of the formula is true. After the evaluation, println converts the boolean value to
a String literal "true", and appends it to "true && true: ". As the results, println
produces the output:

true && true: true

The method main that is shown next demonstrates how the three logical operators work by
applying them to boolean literals:

1 public static void main(Stringl[] args)

2 {

3 System.out.println("---------- NOT -------------- ")
4 nameAndValue("!true", !'true);

5 nameAndValue ("!false", !false);

6 nameAndValue("!!true", !!true);

7 nameAndValue("!!false", !!false);

8 System.out.println("---------- AND -------------- ")
9 nameAndValue("true && true", true && true);

10 nameAndValue ("true && false", true && false);

11 nameAndValue("false && true", false && true);

12 nameAndValue ("false && false", false && false);

13 System.out.println("---------- OR ----=-======—--~ ")
14 nameAndValue ("true || true", true || true);

15 nameAndValue("true || false", true || false);

16 nameAndValue ("false || true", false || true);

17 nameAndValue("false || false", false || false);

18 ¥

Listing 6.3 A program that demonstrates the use of boolean operators (part 2)

The execution of the code produces the following result:

S R NOT ------==----=--
2 'true: false

3 |!false: true

4 |!'ltrue: true

5 I1false: false

6 | --—------- AND -==----=--———-
7 |true && true: true

8 |true && false: false

9 |false && true: false

10 |false && false: false

11 | -=--=-===-=-= NO -----=-======-=-—--
12 |true || true: true

13 |true || false: true

14 |false || true: true

15 | false || false: false

Two conditions can be compared for equality and inequality. Given two conditions x and vy,
x == vy tests whether or not the value of x is equal to the value of y, and x != vy tests whether
or not the value of x is not equal to the value of y. If x (or y) is a formula, it may be necessary to
surround it with a pair of parentheses.

146 6 Conditions and Their Use for Controlling the Flow of Programs

Numbers and char data can be compared for equality and inequality. Let x and y be data of some
non-boolean primitive data types, where the data type of x may be different from the data type of
y. We can apply six different comparisons to them:

x > Yy tests whether or not the value of x is strictly greater than the value of y.

x >= Yy tests whether or not the value of x is greater than or equal to the value of y.
X < vy tests whether or not the value of x is strictly less than the value of y.

* x <= y tests whether or not the value of x is less than or equal to the value of y.

x == Yy tests whether or not the value of x is equal to the value of y.

x 1= vy tests whether or not the value of x is not equal to the value of y.

In the case where either x or y is char, the char type is treated as an unsigned 16-bit number. For
this treatment, we use the character table called Unicode.> An important subset of the character set is
the set of characters whose values are between 0 and 127. We call the subset the ASCII Table.*

The equality and inequality tests can be applied to object data types, e.g., String data, but the
tests do not compare the contents of the objects, but the data locations. A special value for object type
dataisnull. null means that the value is undefined. The following program:

1 boolean flag;

2 String unknown;

3 flag = (unknown == null);
4 System.out.print(flag);

5 unknown = "abc";

6 flag = (unknown == null);
7

System.out.print (flag);

produces two lines of output:

1 |true
false

Many object types in Java offer a method specifically for comparisons. They are usually called
equals and compareTo. We shall see such methods for the St ring type in Chap. 9.

In the next code, the program prompts the user to enter two integers, receives two numbers, and
then performs the six comparisons between the two values entered. The program then executes the
same series of action by receiving two real numbers from the user. The results of the six comparisons
are stored in six boolean variables using the statement of the form:

BOOLEAN VARIABLE = OPERAND1 OPERATOR OPERAND2;

For variable naming, the code uses the form egXXX, neXXX, gt XXX, geXXX, 1tXXX, and 1eXXX
for ==, ! =, >, >=, <, and <=, with Int for XXX for integers and Double for floating point numbers.
Here is the header part of the program. It states what variables will be used:

3Forexample,https://unicode—table.com/en/#control—character
4Forexmnpb,http://www.asciitable.com.

6.1 Condition and Its Evaluation 147

import java.util.x*;
// various comparisons
public class ComparisonsO
{
public static void main(Stringl[] args)
{
Scanner keyboard = new Scanner(System.in);
int intl, int2;
double doublel, double2;
boolean eqInt, neInt, gtInt, gelnt, 1ltInt, lelnt;
boolean eqDouble, neDouble, gtDouble, geDouble, ltDouble, leDouble;

—_
= O © 00 Ut s W

—_

Listing 6.4 A program that shows comparisons between numbers (part 1)

In the next part, the program receives two int data from the user, compares them in six different
ways, saves the outcomes in their respective variables, and prints the outcomes along with the
numbers:

12 [/ === enter int values

13 System.out.print("Enter two int: ");

14 intl = keyboard.nextInt();

15 int2 = keyboard.nextInt ();

16 [/ === compare the int values

17 eqInt = (intl == int2);

18 neInt = (intl != int2);

19 gtInt = (intl > int2);

20 geInt = (intl >= int2);

21 1tInt = (intl < int2);

22 leInt = (intl <= int2);

23 [/ === print the results

24 System.out.printf ("intl = %d, int2 = %d%n", intl, int2);
25 System.out.printf("intl == int2 returmns %s%n", eqlnt);
26 System.out.printf("intl != int2 returns %s%n", nelnt);
27 System.out.printf("intl > int2 returns %s%n", gtlnt);
28 System.out.printf("intl >= int2 returmns Y%s%n", gelnt);
29 System.out.printf("intl < int2 returns %s%n", ltInt);
30 System.out.printf("intl <= int2 returms Y%s%n", leInt);

Listing 6.5 A program that shows comparisons between numbers (part 2)

To print the outcome, we use System.out.printf that we saw earlier in Sect.5.3.2. The
method printf follows the syntax:

printf (FORMAT STRING, PARAMETER1l, ..., PARAMETERk);

where k represents the number of placeholders for data values appearing in FORMAT STRING.
FORMAT STRING is a String data. We call the first parameter of print £ the formatting String.

In System.out .printf, each data placeholder takes the form of $XXXt, where t is a letter that
refers to the expected data type and XXX is a character sequence that specifies the way in which the
data value is printed. In this book we will see five types for t: ¢ for char, d for any whole number,
f for any floating point number, s for String and boolean, and, much later, e for exponential
representation. If the XXX part is empty, System.out . printf uses the default formatting for the
type t (see Chap. 8).

The first print £ statement in our code is:

148 6 Conditions and Their Use for Controlling the Flow of Programs

System.out.printf("int = %d, int2 = %d%n", intl, int2);

The format String of the statement is "int = %d, int2 = %d%n".Two placeholders appear
in it. Both placeholders are $d and thus meant for printing integers. The %n is equivalent to \n and is
for printing the newline character. Since two placeholders appear, the printf statement works if and
only if exactly two whole numbers appear after the format String. In our case, those numbers are
int1 and int2. When printing the values, print f formats use the minimum number of characters
required to print the values. Suppose the value of int1 is 987 and the value of int2 is —456. Then
printf produces the output:

int = 987, int2 = -456
According to the rule, if the values are 10 and —98, respectively, the output is:
int = 10, int2 = -98

In the ensuing six lines, the placeholder is $s and printf substitutes each placeholder with the
value of the boolean variable appearing in the statement.
The last part of the code uses $ £ for printing the double values:

31 [/ === —————— enter double values

32 System.out.print("Enter two floating point numbers: ");

33 doublel = keyboard.nextDouble();

34 double2 = keyboard.nextDouble();

35 [/ === compare the Double values

36 eqDouble = (doublel == double2);

37 neDouble = (doublel != double2);

38 gtDouble = (doublel > double2);

39 geDouble = (doublel >= double2);

40 1tDouble = (doublel < double2);

41 leDouble = (doublel <= double2);

42 [/ === print the results

43 System.out.printf("doublel = %f, double2 = Jf%n",

44 doublel, double2);

45 System.out.printf("doublel == double2 returns %s%n", eqDouble);
46 System.out.printf ("doublel != double2 returns %s%n", neDouble);
47 System.out.printf ("doublel > double2 returns %s%n", gtDouble);
48 System.out.printf ("doublel >= double2 returns %s%n", geDouble);
49 System.out.printf ("doublel < double2 returns %s%n", ltDouble);
50 System.out.printf ("doublel <= double2 returns Y%s%n", leDouble);
51 }

52 |}

Listing 6.6 A program that shows comparisons between numbers (part 3)

Here is one execution example of the program:

Enter two int: -9834 5343
intl = -9834, int2 = 5343
intl == int2 returns false
intl != int2 returns true

intl > int2 returns false

intl >= int2 returns false

intl < int2 returns true

intl <= int2 returns true

Enter two floating point numbers: -194.5 -34.5

O 0N AW =

6.2 The If Statements 149

10 doublel = -194.500000, double2 = -34.500000
11 |doublel == double2 returns false
12 |doublel != double2 returns true

13 |doublel > double2 returns false
14 |doublel >= double2 returns false
15 |doublel < double2 returns true

16 |doublel <= double2 returns true

6.2 The If Statements
6.2.1 If

Using conditional evaluations, we can control the flow of programs. We can create a code that adjoins
two sequences of statements, A and B, with the evaluation of a condition C, in the following format:

“if C then execute A; otherwise, execute B”

We call this conditional execution. All programming languages, including Java, have conditional
executions. The standard expression of a conditional execution is the use of the keyword if, so we
call it an if-statement. For the alternate action (which corresponds to “otherwise”), the accompanying
keyword is else.

The primary structure for an if-statement in Java, with no action to perform in C, is:

if (CONDITION)

{
}

AFTER IF PART

STATEMENTS

(O R

Here, the CONDITION is the condition to be evaluated and AFTER_IF_ PART is the actions to be
performed after completing the if-statement. If the evaluation of CONDITION produces the value
false, the execution jumps to this part.

In other words, this code fragment is executed as follows:

* CONDITION produces true: STATEMENTS followed by AFTER IF PART.
* CONDITION produces false: AFTER IF PART.

We can draw a diagram that describes this action (see Fig. 6.1).

A special feature of if-statements is that the pair of curly brackets following the conditional
evaluation can be omitted if there is only one statement in the block. While the ability to omit the
curly brackets is convenient, the omission can lead to logical errors.

The next code is our first example of using if-statements. The program receives a temperature value
from the user and makes a comment.

150 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.1 The execution
diagram of an if-statement

NO

Does
CONDITION
hold?

STATEMENTS

Y

AFTER_IF_PART

1 |import java.util.Scanner;

2 |// ask about temperature and respond

3 |public class TemperatureO1l

4 |{

5 public static void main(Stringl[] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 //-- prompt answer

9 System.out.print("What is the average high temperature in "
10 + "August in your area? : ");

11 double temp = keyboard.nextDouble();

12 //-- response

13 if (temp > 90.0)

14 {

15 System.out.println("Wow! That must be very hot!");
16 }

17 ¥

18 |}

Listing 6.7 A program that receives a temperature value and makes a comment when appropriate

Here is the if-statement appearing the code:

if (temp > 90.0)

{
}

System.out.println("Wow! That must be very hot!");

NN =

6.2 The If Statements 151

The program prints the statement " ... very hot!" if the value the user has entered is strictly
greater than 90.0 and prints nothing otherwise.

Here are three separate executions of the program.

In the first round of execution, the value is 85 and strictly greater than 90.0, so no message appears,
as shown next:

‘What is the average high temperature in August in your area? : 85

In the second round, the value is 90 and not strictly less than 90.0, so no message appears, as shown
next:

‘What is the average high temperature in August in your area? : 90

In the third round, the value is 91 and is strictly greater than 90.0, so the message appears, as shown
next:

1 |What is the average high temperature in August in your area? : 91
Wow! That must be very hot!

Figure 6.2 shows the diagram of the program.

Our next code example uses two if-statements. The first if-statement tests if the value entered is
strictly greater than 90.0 as before. The second one tests if the temperature value is less than or equal
to 70.0 (notice the equality sign placed on the second one). There are two messages from which the
program chooses to print. The program prints the first message if and only if the temperature is strictly
greater than 90.0, and the second message if and only if the temperature is less than or equal to 70.0.
The program prints no statement if the temperature is strictly greater than 70.0 and less than or equal
to 90.0:

1 |import java.util.Scanner;

2 |// ask about temperature and respond

3 |public class Temperature02

4 |{

5 public static void main(Stringl[] args)

6 {

7 Scanner keyboard = new Scanner(System.in);

8 //-- prompt answer

9 System.out.print("What is the average high temperature in "
10 + "August in your area? : ");

11 double temp = keyboard.nextDouble () ;

12 //-- response mno.l1

13 if (temp > 90.0)

14 {

15 System.out.println("Wow! That must be very hot!");
16 }

17 //-- response mno.2

18 if (temp <= 70.0)

19 {

20 System.out.println("Wow! That must be very cold!");
21 }

22 }

23 |}

Listing 6.8 Another program that receives a temperature value and makes a comment when appropriate

152 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.2 The execution
diagram of PRINT A PROMPT
TemperatureOl.java

temp = keyboard
.nextDouble();

temp >90.0 ?

NO

PRINT THE
“WOW!”
STATEMENT

\

END OF
PROGRAM

Here are three separate executions of the program:

What is the average high temperature in August in your area? : 60
Wow! That must be very cold!

o =

What is the average high temperature in August in your area? : 80

o

% java Temperature02
2 |What is the average high temperature in August in your area? : 91
3 |Wow! That must be very hot!

—

In the next code example, the program asks the user to enter a temperature value and then a
humidity value. The if-statements of the program combine the tests on the temperature and humidity
values using the conjunction operator &&:

6.2 The If Statements 153

1 |import java.util.Scanner;

2 |// ask about temperature and humidity and provide response

3 |public class Temperature03

4 |11

5 public static void main(String[] args)

6 {

7 Scanner keyboard = new Scanner (System.in);

8 //-- prompt answer

9 System.out.print("What is the average high temperature in "
10 + "August in your area? : ");

11 double temp = keyboard.nextDouble();

12 System.out.print ("How about the average humidity? : ");
13 double humidity = keyboard.nextDouble();

14 //-- response mno.l1

15 if (temp >= 90.0 && humidity >= 90.0)

16 {

17 System.out.println("Wow! That must be hot and humid!");
18 }

19 //-- response no.2

20 if (temp >= 90.0 && humidity <= 50.0)

21 {

22 System.out.println("Wow! That must be hot and dry!");
23 }

24 //-- response no.3

25 if (temp <= 70.0)

26 {

27 System.out.println("Wow! That must be cool!");

28 }

29 //-- response no.4

30 if (temp > 70.0 && humidity < 90.0)

31 {

32 System.out.println("Wow! That must be very comfortable!");
33 }

34 ¥

35 |}

Listing 6.9 A program that receives a temperature value and a humidity value, and then makes a comment when
appropriate

Here are some execution examples:

—

What is the average high temperature in August in your area? : 80
2 |How about the average humidity? : 100

What is the average high temperature in August in your area? : 70
How about the average humidity? : 50
3 |Wow! That must be cool!

o —

What is the average high temperature in August in your area? : 91
How about the average humidity? : 90
3 |Wow! That must be hot and humid!

[N

154 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.3 The
combinations of 1
temperature and humidity

<«— humidity=90

considered in
Temperature03 3 4
- <«— humidity=50
temperature=70 T Ttemperature:go
1 |What is the average high temperature in August in your area? : 95
2 |How about the average humidity? : 40
3 |Wow! That must be hot and dry!
4 |Wow! That must be very comfortable!

What are the cases in which the program produces no output? Also, what are the cases in which
the program produces more than one statement?
The four cases the program tests are as follows:

Casel temp >= 90.0 && humidity >= 90.0
Case2 temp >= 90.0 && humidity <= 50.0
Case3 temp <= 70.0

Case4 temp > 70.0 && humidity < 90.0

We can draw a diagram shown in Fig. 6.3 to discern these four cases with the temperature as the
x-axis, the humidity as the y-axis, and the rectangles representing the cases.
We thus have:

¢ the program produces no comments if and only if the temperature is strictly greater than 70.0 and
is strictly less than 90.0 and the humidity is greater than or equal to 90.0

and

* the program produces two comments if the temperature is strictly greater than 70.0 and the
humidity is less than or equal to 50.0.

Here is one more example of the use of if-statements.

The program presents a list of four colors indexed 1, ..., 4 to the user. It then asks the user to select
a number that represents her favorite color. Upon receiving the input, the program produces a message
based upon the choice that the user has made. The program stores the response from the user in an
int variable, answer, by assigning the value that the next Int method returns.

There are four if-statements in the code. In the order of appearance, they have the following roles.

1. if (answer < 1 || answer > 4) checks whether or not the user’s selection is
invalid—the selection has to be one of 1, 2, 3, and 4. This one thus checks whether or not
the number is either (strictly less than 1) or (strictly greater than 4). If either is the case, the
program produces a message that says the choice is invalid.

2. if (answer >= 1 && answer <= 4) tests the validity of the choice. It uses the
condition exactly opposite to the first one.

6.2 The If Statements 155

3. if (answer == 1 || answer == 2) is for producing a special message when the
choice corresponds to one of the University of Miami (UM) colors (orange and green).

4. if (answer == 3 || answer == 4) is for producing a special message when the
choice corresponds to one of the University of Michigan (UM) colors (maize and blue).

Note that the messages that the first two if-statements generate use print £ for formatting:

1 |import java.util.Scanner;

2 |// ask about a color and respond

3 |public class ColorSelection

4 |{

5 public static void main(String[] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner(System.in);

9 System.out.println("What is your favorite color?");
10 System.out.println(

11 "1. Orange, 2. Green, 3. Maize, 4. Blue");
12 System.out.print("Select from 1 to 4 : ");

13 int answer = keyboard.nextInt();

Listing 6.10 An interactive program that responds to the user’s color selection (part 1)

14 if (answer < 1 || answer > 4)

15 {

16 System.out.printf ("Your choice %d is invalid.%n", answer);
17 }

18 if (answer >= 1 && answer <= 4)

19 {

20 System.out.printf ("Your choice %d is excellent.’%n", answer);
21 }

22 if (answer == 1 || answer == 2)

23 {

24 System.out.println("It is a U. Miami color!");

25 }

26 if (answer == 3 || answer == 4)

27 {

28 System.out.println("It is a U. Michigan color!");

29 }

30 }

31 |}

Listing 6.11 An interactive program that responds to the user’s color selection (part 2)

Following is an example of executing the program:

What is your favorite color?

1. Orange, 2. Green, 3. Maize, 4. Blue
Select from 1 to 4 : 6

Your choice 6 is invalid.

NN =

What is your favorite color?

1. Orange, 2. Green, 3. Maize, 4. Blue
Select from 1 to 4 : 3

Your choice 3 is excellent.

It is a U. Michigan color!

[O I

156 6 Conditions and Their Use for Controlling the Flow of Programs

Fig. 6.4 The execution
diagram of an if-else

Does

N
CONDITION 9

statement

hold?

\J \/
STATEMENTS1 STATEMENTS1
\/
AFTER_IF_ELSE_PART

1 |What is your favorite color?
2 |1. Orange, 2. Green, 3. Maize, 4. Blue
3 |Select from 1 to 4 : 1
4 |Your choice 1 is excellent.
5 |It is a U. Miami color!

6.2.2 Else

Now we look at the if-statements having the “otherwise” part, which we call if-else statements:

}

AFTER IF ELSE_PART

1 if (CONDITION)
2 1|

3 STATEMENTS1

4 |}

5 |else

6 |

7 STATEMENTS2

8

9

Figure 6.4 shows the execution diagram of an if-else statement as it appears in the above hypothetical
code.

In an if-else statement, an 1f and an else work as a pair. For each if-else pair, the if part
must appear before the else part. Furthermore, the if part and the else part must be at the same
depth. Furthermore, there must be no other statements or code blocks between the paired if and
else parts.

The following example shows syntactically incorrect if-else statements:

public static void SOME_METHOD ()

{

else

{
}

if (CONDITION1)

{

[ceBR N Be RV B

6.2 The If Statements

157

9
10
11
12
13
14
15
16

Similar to the case of if-statements, the curly brackets for the else-part can be omitted if there is only

}

System.out.println("Wow!") ;
else

{

}
}

one statement in it. In other words,

(O R

if (CONDITION)
FIRST STATEMENT;

else
SECOND_STATEMENT;

AFTER IF ELSE PART

is the same as:

O 0N N AW —

(S S S

is syntactically incorrect, because the code is basically saying:

O 0N N A~ W=

meaning ADDITIONAL STATEMENT is wedged between the if-part and the else-part.
Using else we can rewrite ColorSelection as follows:

if (CONDITION)

{
}

else

{
}

AFTER IF ELSE PART

FIRST STATEMENT;

SECOND_STATEMENT;

The code:

if (CONDITION)
FIRST STATEMENT;
ADDITIONAL STATEMENT;
else
SECOND_STATEMENT;

if (CONDITION)

{

1
ADDITIONAL STATEMENT;
else

{
}

FIRST STATEMENT;

SECOND_STATEMENT;

158 6 Conditions and Their Use for Controlling the Flow of Programs

1 |import java.util.Scanner;

2 |// ask about a color and respond

3 |public class ColorSelectionElse

4 |4

5 public static void main(Stringl[] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner(System.in);

9 System.out.println("What is your favorite color?");
10 System.out.println(

11 "1. Orange, 2. Green, 3. Maize, 4. Blue");

12 System.out.print("Select from 1 to 4 : ");

13 int answer = keyboard.nextInt();

14 if (answer < 1 || answer > 4)

15 {

16 System.out.printf ("Your choice %d is invalid.’%n", answer);
17 ¥

18 else

19 {

20 System.out.printf ("Your choice %d is excellent.n", answer);
21 ¥

22 if (answer == 1 || answer == 2)

23 {

24 System.out.println("It is a U. Miami color!");

25 }

26 if (answer == 3 || answer == 4)

27 {

28 System.out.println("It is a U. Michigan color!");
29 ¥

30 }

31 |}

Listing 6.12 A program that responds to a color selection of the user. The program uses else

6.2.3 If-Else Inside If/Else

Any number of if-statements and/or if-else statements can be placed in an if-block and in an else-
block to build complex flow control.

The next code utilizes two if -else blocks, with the second one appearing inside the e1 se block
of the first, to accomplish exactly the same task as before:

import java.util.Scanner;
// ask about a color and respond
public class ColorSelectionInside
{
public static void main(Stringl[] args)
{
//-- scanner
Scanner keyboard = new Scanner(System.in);

0O U WN

Listing 6.13 A color-selection program that uses two if-else blocks (part 1)

6.2 The If Statements 159

In the second occurrence of if-else (Lines 21-28), if the code reaches Line 20, the value of

answer is guaranteed to be one of 1, 2, 3, and 4. Therefore if the code reaches the second else
(Line 25), the value of answer is guaranteed to be either 3 or 4. This implies that the code works as
we intended.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

System.out.println("What is your favorite color?");
System.out.println(
"1. Orange, 2. Green, 3. Maize, 4. Blue");
System.out.print("Select from 1 to 4 : ");
int answer = keyboard.nextInt();
if (answer < 1 || answer > 4)
{
System.out.printf ("Your choice %d is invalid.%n", answer);
}
else
{
System.out.printf ("Your choice %d is excellent.’%n", answer);
if (answer == |l answer == 2)
{
System.out.println("It is a U. Miami color!");
}
else
{
System.out.println("It is a U. Michigan color!");
}
}
}
}

Listing 6.14 A color-selection program that uses two if -else blocks (part 2)

EESIONEN SR

A special case of successive 1f-else statements is else 1if as follows:

if (CONDITION1) { STATEMENTS1 }
else if (CONDITION2) { STATEMENTS2 }
else if (CONDITION3) { STATEMENTS3 }
else { STATEMENTS4 }

Because of the rule allowing the omission of the curly-brackets after e1se (if the section has only one
statement), and because a single-pair of i f -else is an inseparable block of code, this is syntactically
equivalent to:

1

N O\ R W

In

if (CONDITION1) { STATEMENTS1 }
else {
if (CONDITION2) { STATEMENTS2 }
else { if (CONDITION3) { STATEMENTS3 }
else { STATEMENTS4 }

}

}

the above if-else statement, the evaluation of CONDITION2 occurs only if the evaluation of

CONDITION1 produces false and the evaluation of CONDITION3 occurs only if both the
evaluation of CONDITION1 and the evaluation of CONDITION2 produces false. In general, if
an if-statement is followed by a series of else-if statements, the condition evaluation terminates at
the point where the result is true and evaluations beyond that point never take place. If there is no
condition producing true, the statements corresponding to the final else will run.

160

6 Conditions and Their Use for Controlling the Flow of Programs

1 |import java.util.Scanner;

2 |// ask about a color and respond

3 |public class ColorSelectionWithElse

4 |{

5 public static void main(Stringl[] args)

6 {

7 //-- scanner

8 Scanner keyboard = new Scanner (System.in);

9 System.out.println("What is your favorite color?");

10 System.out.println("1. Orange, 2. Green, 3. Yellow, 4. Blue");
11 System.out.print("Select from 1 to 4 : ");

12 int answer = keyboard.nextInt ();

13 if (answer < 1 || answer > 4)

14 {

15 System.out.printf ("Your choice %d is invalid.%n", answer);
16 }

17 else if (answer == 3 || answer == 4)

18 {

19 System.out.printf ("Your choice %d is great, but’%n", answer);
20 System.out.println("it is not a UM color!");

21 }

22 else

23 {

24 System.out.printf ("Your choice %d is great.%n", answer);
25 }

26 }

27 |}

Using this option, we can rewrite the previous code as follows:

Listing 6.15 A color-selection program that uses else-1if

The benefit of else is that when the flow control uses more than two mutually exclusive
conditions, the expression can be simplified without having to spell out each condition succinctly.

To explain this a little, consider the hypothetical situation in Fig. 6.5. If we are to write the code
without the use of else, it may look like:

Fig. 6.5 A hypothetical
situation with interwoven
conditions

6.2 The If Statements

161

1 |if (cond &) { }
2 |if (!'cond A)
3
4 if (cond B) { }
5 else (!cond B)
6 {
7 if (cond C) { }
8 if (!cond C)
9 {
10 if (cond D) { ... }
11 if (!cond D)
12 {
13 if (cond E) { ... }
14 if (!cond E) { }
15 }
16 }
17 }
18 }
or.
1 if (cond A) { Ce }
2 |if (!cond A && cond B) { ... }
3 |if (!'cond A && !cond B && cond C) { .}
4 |if (!cond A && !cond B && !cond C && cond D) }
5 |if (!cond A && !cond B && !cond C && !cond D && cond E) { }
On the other hand, if we use else, we can simplify it as:
1 |if (cond a) { ... }
2 |else if (cond B) { ... }
3 |else if (cond C) { }
4 |else if (cond D) { }
5 |else if (cond E) { }

Here is an example that demonstrates the benefit of else.

Suppose we are to write a program that receives an int value from the user and produces an output
line depending on the value: message X for values 0, 4, 8, and 12, message Y for values less than 0
and values greater than 12, and message Z for the rest. Without using else the code may look like:

1 |if (value == || value == || value ==
2 | {

3 System.out.println(X);
41}

5 |if (value < 0 || value > 12)
6 |{

7 System.out.println(Y);

8 |}

9 |if (value > 0 && value < 4

10 || value > 4 && value < 8

11 || value > 8 && value < 12)
12 |

13 System.out.println(Z);

14 |}

|| value == 12)

162 6 Conditions and Their Use for Controlling the Flow of Programs

Using else, we can avoid using one conditional evaluation:

1 |if (value == || value == || value == || value == 12)
2|

3 System.out.println(X);

4 |}

5 |else if (value < 0 || value > 12)
6 |{

7 System.out.println(Y);

8 |}

9 |else

10 |

11 System.out.println(Z);

12 |}

By swapping the order between the first and the second conditions, we can further simplify the code,
since 0, 4, 8, and 12 are all multiples of 4, as shown next:

1 |if (value < 0 || value > 12)
2

3 System.out.println(Y);
41}

5 |else if (value % 4 == 0)
6 |{

7 System.out.println(X);
8 |}

9 |else

10 |{

11 System.out.println(Z);
12 |}

6.2.4 Truncation of Conditional Evaluations

The evaluations of a conditional formula generally proceeds from left to right and stops immediately
when the value of the formula has been determined. For example, in the evaluation of a formula
(A || B || C),theevaluation order of the operands is A, B, and C. If the value of A is found
to be true, regardless of the values of B and C, the value of the formula is t rue, so neither B nor C
are evaluated. For a similar reason, if the value of A is found to be £alse and the value of B is found
to be true, C is not evaluated. Similarly, in the condition (A && B && C), if the value of A is
found to be false, neither B nor C are evaluated, and if the value of A is found to be true and the
value of B is found to be false, C is not evaluated.

This feature can be taken advantage of in many ways. Here is a simple example.

Suppose we are to write an application in which we receive two integers, a and b, from the user and
test whether or not a is divisible by b. We can test the divisibility using the conditiona % b == 0.

Scanner keyboard = new Scanner(System.in);

int a, b;

System.out.print ("Enter two integers a and b: ");
a = keyboard.nextInt () ;

b = keyboard.nextInt () ;

if (a % b ==0)

{
}

System.out.println(a + " divides " + b);

O 0N N A~ W=

6.2 The If Statements 163

With this code, if the user enters 0 for b, the execution results in a run-time error of
ArithmeticException.

To prevent this error from happening, we can test b != 0 first to ensure that the division is

performed only if b is not 0:

[oBEN Be NV I O R S

o

We can apply the “truncation rule” to this code:

O 0N AW =

If

Scanner keyboard = new Scanner(System.in) ;
int a, b;
System.out.print ("Enter two integers a and b: ");
a = keyboard.nextInt () ;
b = keyboard.nextInt () ;
if (b !=0)
{
if (a % b ==10)
{
System.out.println(a + " divides " + b);
}
}

Scanner keyboard = new Scanner(System.in);
int a, b;
System.out.print ("Enter two integers a and b: ");
a = keyboard.nextInt () ;
b = keyboard.nextInt () ;
if (b !=0 & a $ b == 0)
{
System.out.println(a + " divides " + b);
}
b == 0, the conditional evaluation halts immediately with the outcome of false, so the

°

remainder operator a % b will not occur. Thus, the program works the same way.

Another nice feature of conditional evaluation is that each of the six comparisons can be combined

with an assignment. For example, consider the following code fragment:

AN AW =

int a, b

if.((a=2*b)>17)

Here, a acquires the value of 2 * b, and then the value is compared with 17.

be

NN R W=

In a little more complicated situation, an assignment of a value obtained by a Scanner object can
subjected to a test:

Scanner keyboard = new Scanner (System.in);
int a;

System.out.println("Enter an integer: ");
if ((a = keyboard.nextInt()) % 2 == 0)

{
}

System.out.println(a + " is an even number.");

164

6 Conditions and Their Use for Controlling the Flow of Programs

Summary

A condition is a formula, a variable, a literal, or a method call that has a boolean value.
Numbers, including char, can be compared using mathematical comparisons x > y,x >= vV,

X < V,X <= Y, X == y,andx != y.

!, ||, and && are boolean operators.

if and if-else statements control the flow of the program.
Multiple else-1f blocks may appear after one if.
The evaluation of a conditional formula involving multiple operands terminates as soon as the value

of the formulas has been found.

Exercises

1. Flattening multi-level if-then statements

0~ O U WN

Consider the following code:

if (x > 10)
{
if (x > 20)
{
methodA () ;
}
else
{
methodB () ;
}
¥
else if (x < -10)
{
if (x < -20)
{
methodA () ;
}
else
{
methodB () ;
¥
}
else
{
if (x == 0)
{
methodA () ;
}
else
{
methodB () ;
¥
¥

Rewrite the code in the form of:

Exercises 165

if (CONDITION_X)
{
methodA () ;
}
else
{
methodB () ;
}

WO T WD~

2. Flattening multi-level if-then statement, alternate

1 |if (x > 10)

2 | {

3 if (x < 20)
4 {

5 methodA () ;
6 }

7 else

8 {

9 methodB () ;
10 }

11 |}
12 |else if (x < -10)
13 | {

14 if (x > -20)
15 {

16 methodA () ;
17 }

18 else

19 {
20 methodB () ;
21 }
22 |}
23 |else
24 | {
25 if (x == 0)
26 {
27 methodA () ;
28 }
29 else
30 {
31 methodB () ;
32 }
33 |}

Rewrite the code in the form of:

1 |if (CONDITION_X)
2 1{

3 methodA () ;
4 ¥

5 |else

6 |{

7 methodB () ;

8 |}

166 6 Conditions and Their Use for Controlling the Flow of Programs

3. Tracing a nested if-statement Consider the following code:

1 |public static String test(int primary, int secondary)

2

3 ¢ if (primary > 0)

4 {

5 if (secondary > 0)

6 {

7 return "1";

8 }

9 }

10 return "0";

11 |3
State:
» for which input combinations the method returns "1";
 for which input combinations the method returns "0".

4. Tracing a nested if-statement Consider the following code:

1 |public static String test(int primary, int secondary)

2

3 ¢ if (primary > 0)

4 {

5 if (secondary == primary)

6 {

7 return "1";

8 }

9 else if (secondary == 2 * primary)

10 {

11 return "2";
12 }

13 return "X";
14 }

15 return "0";

16 |}

The return value of the method is "1", "2", "X", or "0". For each of the four possible return
values, state one combination of the values of primary and secondary for which the method
returns the value.

5. Divisibility testing Write a program, Divisibility, that receives two int values from the
user and asserts whether the first number is a multiple of the second. The method asserts that the
answer is in the negative if the second number happens to be 0.

6. Boolean evaluation Suppose a, b, and ¢ are boolean variables. Then (a == b) != ¢
is a valid formula, since a == b evaluates to a boolean. There are eight possible combinations
for the values of the three variables. For each of the combinations, state the value of the condition.

7. Discriminant of a quadratic formula Write a program, DiscriminantTest, that receives
three real values a, b, and ¢ from the user, and returns the number of real solutions of the equation
ax? + bx + ¢ = Oasanint.

8. Following the code execution to determine the output State the value that the method

methodl123 below returns with each of the values below as the actual parameter:

Exercises 167

00~ O UL W

0~ O U W

10.

=W N =

11.

=W N

public static double method123(double input)
{
if (input < 11.0)
{
return input + 1;
}
if (input < 12.0)
{
return input + 2;
¥

return input - 5;

}

(a) 10.
(b) 11.
() 12.
(d) 13.0

o O O

. Following the code execution to determine the output State the value the method

methodABC below returns with each of the values below as the actual parameter:

public static double methodABC(int input)
{
if (input == 10)
{
return input * 2;
}
if (input < 11)
{
return input * 3;
}

return input * 7;

}

(a) 9

(b) 10

(c) 11

Return value determination 1 Let a method cute be defined as follows:

public static boolean cute(boolean x, boolean y, boolean z)
{
return x == (y == z);

}

For each of the eight possible input values, state the value the method returns.
Return value determination 2 Let the method neat be defined as follows:

public static boolean neat(boolean x, boolean y, boolean z)

{
return x !=y || y !'= z || z !'= x;

¥

168

6 Conditions and Their Use for Controlling the Flow of Programs

12.

13.

14.

15.

State, for each of the eight possible value combinations for the three parameters, the return
value of the method.

Programming Projects

Triangle validity Write a method, 1sValidTriangle, that receives three double values
sideA, sideB, and sideC as parameters and returns whether or not each value is strictly less
than the sum of the other two. The return type must be boolean.

Right angle Write a method, isRightAngleTriangle, that receives three double values
sideA, sideB, and sideC as parameters, and returns whether or not the three edges form a
right-angled triangle. The return type must be boolean.

Checking whether or not three values are all positive Write a public static method named
allPositive that receives three double values valueAd, valueB, and valueC as
parameters, and returns whether or not the three values are all strictly positive. The return type
must be boolean.

What does this function compute? Analyze the following code, and state what this method
computes.

0O Uk W~

public static int mystery (int a, int b, int c)
{
if (a == Math.max(a, Math.max(b, c)))
{
return Math.max(b, c);
}

return Math.max(a, Math.min(b, c));

b

—_
[@))

17.

. Solving a system of linear equations with two unknowns Consider solving the system of

linear equations with two unknowns x and y:

ax+by=s
cx+dy =t

To solve the problem, we first check the value of the determinant of the system: 7 = ad — bc. If
hisnot 0, we have x = (ds — bt)/h and y = (—cs 4+ at)/h. If h is O, the system is degenerate,
and falls into one of the following four cases:

* the system is unsolvable;

* the system is equivalent to one linear equation;

* the value of x is arbitrary and the value of y is fixed;

* the value of y is arbitrary and the value of x is fixed

Write a program, LinearEquat ion2, that receives the six coefficients from the user and solves
the problem if the determinant / is not 0. The program should state, in the case that 4 = 0, that it
cannot solve the system.

Fully solving a system of linear equations with two unknowns Continuing on the previous
problem, write a program LinearEquation2Full that completely solves the problem
including the cases in which only x or only y is determined. Here are five examples that show
the behavior of the program.

Enter a, b, s for number 1: 1 2 3
Enter ¢, d, t for number 2: 3 1 2
x =0.2, vy =1.4.

Exercises 169

—

o
o
o

Enter a, b, s for number 1:
Enter ¢, d, t for number 2:
Both x and y are arbitrary.

o
o
o

Enter a, b, s for number 1: 1 0 2
Enter c, d, t for number
y is arbitrary and x = 2.0.

N
N
o
IS

Enter a, b, s for number 1: 1 2 3
Enter ¢, d, t for number 2: 2 4 6
Any point on 1.0x+2.0y=3.0.

Enter a, b, s for number 1: 1 2 3
Enter ¢, d, t for number 2: 2 4 5
Unsolvable.

Implement a series of cases to consider, which can be expressed as a series of if-else-if:

e “if” h # 0: solve it as before;

o “elseif” eithera =b =0ands # 0 or c = d = 0 and ¢ # 0: unsolvable;

o “elseif” eithera = b =5 =c =d =t = 0: arbitrary x and y;

e “elseif” a = b =s = 0: equivalent to cx + dy = t;

e “elseif” ¢ =d =t = 0: equivalent to ax + by = s;

* “elseif”a =c=0and s/b =t/c: equivalent to ax + by = s.

* “elseif” b =d =0and s/b = t/c: equivalent to ax + by = s.

e “else if” eithera = ¢ = 0 or b = d = 0: unsolvable;

» “elseif” s/a # t/b: unsolvable;

* “else”: equivalent to ax + by = s.

Write a method named justOne (double p, double g, double r) that handles
the situation in which the system is equivalent to just one equation, where it is guaranteed that
either p # 0 or g # 0. Using this method, the series of actions can be handled in a slightly
simpler manner.

Partll

Loops

For-Loops 7

7.1 Using For-Loops for Repetition

A loop is a program structure for executing a block of code repeatedly. The code for a loop usually
comes with a specification of when to stop the repetition. Java has four loop structures: the for-loop,
the while-loop, the do-while loop, and the for-each loop. We study the for-loop in this chapter, the
while-loop and do-while loop in Chap. 11, and the for-each loop in Chaps. 17 and 18.

In Sect.5.2, we studied computing the BMI value on height and weight values that the user
enters. In BMIInteractive.java (List 7.1) we used a method named oneInteraction that
received one pair of height and weight from the user and reported the BMI value with respect to the
combination. The action of the method main in the program was to call oneInteraction twice.

Suppose we want to increase the number of repetitions from two to a much larger number, for
example, ten. We can accomplish this by adding eight more lines of oneInteraction ():

1 public static void main(Stringl[] args)
2 {

3 onelnteraction() ;
4 oneInteraction();
5 onelnteraction();
6 onelnteraction();
7 onelnteraction() ;
8 onelnteraction();
9 onelnteraction () ;
10 onelnteraction () ;
11 onelnteraction() ;
12 onelnteraction();
13 }

Now what should we do if we wanted to increase the number of repetitions to 20? Should we add
ten more lines of the same oneInteraction () ? Using a loop, it is possible to state the 20-time
repetitions in just a few lines.

© Springer Nature Switzerland AG 2018 173
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_7

https://doi.org/10.1007/978-3-319-89491-1_7

174 7 For-Loops

1 public static void main(Stringl[] args)
2 {

3 int i

4 for (i =1; i <= 10; i =i + 1)

5 {

6 onelnteraction();

7 ¥

8 }

Line 4 of the code,
for (1 =1; 1 <= 10; 1 =1 + 1)
is the for-loop. It means

“repeat the following as long as 1 <= 10 by first assigning the value of 1 to i and then adding 1 to
i each time.”

The “following” refers to the block of code between Lines 5—7. We call this block the loop-body.
The actions that take place in the above for-loop are as follows:

e The value of 1 is stored in 1.

¢ As long as the value of 1 is less than or equal to 10,
— execute oneInteraction and
— increase the value of i by 1.

The use of a for-loop in stating the repetition makes it easy to change the number of repetitions.
Furthermore, if the name of the method changes, we only have to replace just one call, which appears
in the body of the loop.

The variable i that refers to the “round” in the repetition can be used in the body of the loop. For
example, before calling oneInteraction we can announce the round:

1 public static void main(Stringl[] args)

2 {

3 int i;

4 for (i =1; i <= 10; i =1 + 1)

5 {

6 System.out.println("This is round " + i + ".");
7 onelnteraction () ;

8 ¥

9 }

The code with the round announcement appears next:

7.1 Using For-Loops for Repetition

175

1 |import java.util.Scanner;

2 |public class BMIRepetitive

3 |4

4 public static final double BMI_SCALE = 703.0;

5 public static final int FEET_TO_INCHES = 12;

6

7 public static double bmiFormula(double weight,

8 {

9 return BMI_SCALE #* weight / (height * height);
10 }

11

12 public static void onelInteraction()

13 {

14 Scanner keyboard = new Scanner(System.in);

15 System.out.print("Enter weight: ");

16 double weight = keyboard.nextDouble () ;

17 System.out.print("Enter height in feet and inches:
18 double feet = keyboard.nextDouble();

19 double inches = keyboard.nextDouble () ;

20 double height = FEET_TO_INCHES * feet + inches;
21 double bmi = bmiFormula(weight, height);

22 System.out.println("Your BMI is " + bmi + ".");
23 }

24 public static void main(Stringl[] args)

25 {

26 int 1i;

27 for (i = 1; i <= 10; i = i + 1)

28 {

29 System.out.println("This is round " + i + ".");
30 oneInteraction () ;

31 }

32 ¥

33 |}

double height)

")

Listing 7.1 A program that repeatedly computes BMI using a for-loop. The program announces each round

The execution of the code, with some input from the user, produces the following:

1 |This is round 1.

2 |Enter weight: 150

3 |Enter height in feet and inches: 5 6
4 |Your BMI is 24.207988980716255.
5 |This is round 2.

6 |Enter weight: 150 5 7

7 |Enter height in feet and inches:
8 |This is round 3.

9 |Enter weight: 160 5 7

10 |Enter height in feet and inches:
11 |This is round 4.

12

Your BMI is 23.490755179327245.

Your BMI is 25.056805524615726.

As we have seen in the above, the header part of a for-loop has three components with a semicolon

in between:
¢ initialization,

continuation (termination) condition,
* update

176 7 For-Loops

Fig. 7.1 A generic flow
chart of for-loops INITIALIZATION

v

CONTINUATION

CONDITION
\
LOOP-BODY TERMINATE
\
UPDATE
In other words, the header part of a for-loop takes the form of:
for (INITIALIZATION; CONTINUATION CONDITION; UPDATE) { e }

The roles of these components are as follows:

* The initialization of a for-loop is a statement that is executed prior to entering the repetition.

e The continuation condition is one that must hold for the loop-body to execute. Before executing
the loop-body, this condition is tested. If the condition does not hold, the loop is terminated
immediately.

 The update is a statement that is executed after each execution of the loop-body.!

The roles of the three components are summarized in Fig.7.1. Most typically, in a for-loop, the
initialization is an assignment to a variable (usually an integer), the termination condition is a
comparison involving the variable, and the update is a modification to the variable. We call such a
variable an iteration variable.

The next program contains a for-loop with an interaction that changes its value from 0 to 7.

1 |public class ForExample

2 | {

3 public static void main(Stringl[] args)
4 {

5 int count;

6 for (count = 0; count < 8; count ++)
7 {

8 System.out.println("The value of count is " + count);
9 }

10 }

11 |3

Listing 7.2 An iteration over the sequence 0, ..., 7

Both the initialization and the update can be composed of multiple statements. Those statements must be separated by
a comma in between.

7.1 Using For-Loops for Repetition 177

Fig. 7.2 The code
execution diagram of count=0
ForExample
- NO END OF LOOP
EXECUTION
YES

System.out.printin("The value of count is " + count);

\4

count ++

The iteration variable of the for-loop is count. Since the initial value of the iteration variable is O,
the termination condition is count < 8, and the update is count ++, the last value of count for
which the loop-body is executed is 7. Figure 7.2 summarizes the above observation.

Running the code produces the following:

The value of count is
The value of count is
The value of count is
The value of count is
The value of count is
The value of count is
The value of count is
The value of count is

0NN W~
N oYUk W NP o

Consider changing the initialization to:
count = 8

while retaining the other two components of the loop header.

1 |public class ForExampleNoOutput

2 |{

3 public static void main(Stringl[] args)
4 {

5 int count;

6 for (count = 8; count < 8; count ++)
7 {

8 System.out.println("The value of count is " + count);
9 }

10 ¥

11 |}

Listing 7.3 A for-loop that never executes its body

Since the new initial value already fails to satisfy the termination condition, the loop terminates
without executing its body once.

Consider further changing the comparison in the termination condition to count <= 8, as shown
next:

178 7 For-Loops

1 |public class ForExampleJustOnce

2 [{

3 public static void main(Stringl[] args)
4 {

5 int count;

6 for (count = 8; count <=8; count ++)
7 {

8 System.out.println("The value of count is " + count);
9 }

10 }

11 |}

Listing 7.4 A for-loop that never executes its body

The loop-body will then execute just once, producing the output line:

The value of count is 8

Remember that the existence/absence of the equal sign often makes a significant difference in the
behavior of a for-loop.
The variable type declaration of the iteration variable can be inserted in the initialization, like this:

public static void main(Stringl[] args)
{
// int count;
for (int count = 0; count < 8; count ++)
{
System.out.println("The value of count is " + count);

}

0O U W

}

This requires the removal of the declaration of the variable count appearing in Line 3; otherwise,
the scopes of the two declarations of the identical variable names overlap. Retaining the declaration
(i.e., not adding the two forward slashes) will result in an error message during compilation, e.g.:

1 |ForExample.java:6: error: variable count is already defined in method
main(String[])
2 for (int count = 0; count < 8; count ++)

w

4 |1 error

Here, the code uses // to make the line a comment.

If the iteration variable is declared in the initialization of a for-loop, then its scope is the entire
for-loop, including the header-part. The scope of the variable count becomes the entire for-loop, not
the entire main.

Let us go back to the use of a for-loop to repeat an action.

Suppose we want to generate a random number between 0 and 1 (using Math.random) N times
and take the average of the random numbers. What can we expect? To compute the average, we only
have to compute the total of the random numbers and then divide it by N. According to the statistical
principal called the law of large numbers, if the random number generation is fair, the larger the
value of N is, the closer the average is to 0.50.

7.1 Using For-Loops for Repetition 179

Suppose we use a modest value, 20, for N and run an experiment to examine how close the average
gets to the expected average of 0.50. Our program uses a double variable named random to record
the random number Math . random produces at each round, an int variable named round to record
the number of times a random number has been generated, and a double variable named sum to
record the sum of the random numbers. At each round, the program announces the round number and
the random number that has been generated. After the for-loop, the program divides the total by 20
and then prints the average.

Here is the code that follows this algorithm:

1 |public class RandomAverage

2 |4

3 public static void main(Stringl[] args)

4 {

5 double random, sum;

6 sum = 0;

7 for (int round = 1; round <= 20; round ++)
8 {

9 random = Math.random() ;

10 sum += random;

11 System.out.print("round=" + round);

12 System.out.println(", number=" + random);
13 }

14 sum /= 20;

15 System.out.println("average=" + sum);

16 }

17 |}

Listing 7.5 A program that computes the average of 20 random numbers

Here is the result of one execution. Since the program uses a random number generator, it is
unlikely that the same output result occurs twice:

1 round=1, number=0.8157853753717103

2 |round=2, number=0.46775040606117546
3 | round=3, number=0.8441866465531849

4 | round=4, number=0.5829690931048322

5 round=5, number=0.5599437446060029

6 |round=6, number=0.8672105406302983

7 |round=7, number=0.33033589637735683
8 |round=8, number=0.5881510375862207

9 round=9, number=0.38566559572527037
10 round=10, number=0.31425625823536696
11 |round=11, number=0.3286394398265723
12 round=12, number=0.9437308791253096
13 | round=13, number=0.8607491030785093
14 round=14, number=0.008072130126899335
15 | round=15, number=0.0477975147654055
16 round=16, number=0.2659779860979148
17 | round=17, number=0.5987723989794204
18 round=18, number=0.8369910748406596
19 | round=19, number=0.25924195790278215
20 round=20, number=0.005168580596320194
21 |average=0.4955697829795607

Here is another run:

180 7 For-Loops
1 |java RandomAverage

2 | round=1, number=0.8920844233690451

3 | round=2, number=0.3288527172059581

4 | round=3, number=0.4933769583576755

5 |round=4, number=0.8788336888081347

6 |round=5, number=0.6212225634348153

7 round=6, number=0.7371533245256305

8 round=7, number=0.7485906839518522

9 round=8, number=0.5634098385103024
10 | round=9, number=0.22549810357332067
11 round=10, number=0.8546489284189476
12 | round=11, number=0.2905654125567769
13 round=12, number=0.24907615852772835
14 | round=13, number=0.5800520831995266
15 round=14, number=0.2043575262026217
16 | round=15, number=0.25741759539019937
17 round=16, number=0.4710648380419118
18 | round=17, number=0.04850748397632787
19 round=18, number=0.6508157292281656
20 | round=19, number=0.33074890481577923
21 round=20, number=0.7833542508320545
22 |average=0.5104815606463388

In both cases, the average is

quite close to 0.50.

7.2 Iteration

7.2.1 Simple Iteration

We formally call the process of generating a series of values using a loop an iteration. For-loops are
useful for iteration. In many cases of iterations with a for-loop, the series is generated as the values of

its iteration variable.

Using different initializations, termination conditions, and updating actions, it is possible to
produce a wide variety of sequences. Here are some examples:

1 for (int count = 10; count >= 1; count --);

2 for (int count = 10; count > 0; count -= 2);

3 for (int count = 89; count <= 100; count += 3);

4 for (int count = 1; count <= 100; count *= 2);

5 for (int count = 3; count <= 80; count = count * 2 - 1);

These are all syntactically correct. Their iteration variables are named count. Each line ends with a
semicolon, which indicates that there is no loop-body. The learners of Java often attach a semicolon
after the closing parenthesis, which may produce a source code that compiles but does not run as

anticipated.

The sequences generated by the for-loops are:

10, 9, 8, 7, 6, 5,
10, 8, 6, 4, 2

89, 92, 95, 98

1, 2, 4, 8, 16, 32
3, 7, 15, 31, 63

(S S S

4, 3, 2, 1

, 64

7.2 lteration 181

The next code executes the for-loop (now without the semicolon after the closing parenthesis) and
prints the values generated in one single line for each loop, with a single white space character inserted
before each value. To do this, the code uses print instead of println. Because print does not
add the newline character at the end of its loop, the code must execute one print1n statement to go
to the next line.

Furthermore, the two lines preceding each for-loop have the role of producing the three components
of the loop on the screen:

1 |public class IterationSamples

2 |{

3 public static void main(Stringl[] args)

4 {

5 int count;

6 System.out.println("----- Loop Number 1 ----- ")

7 System.out.println("count = 10; count >= 1; count --");
8 for (count = 10; count >= 1; count --)

9 {

10 System.out.print(" " + count);

11 }

12 System.out.println("\n----- Loop Number 2 ----- ")

13 System.out.println("count = 10; count > 0; count -= 2");
14 for (count = 10; count > 0; count -= 2)

15 {

16 System.out.print(" " + count);

17 ¥

Listing 7.6 Examples of iteration (part 1)

18 System.out.println("\n----- Loop Number 3 ----- ")
19 System.out.println("count = 89; count <= 100; count += 3");
20 for (count = 89; count <= 100; count += 3)

21 {

22 System.out.print(" " + count);

23 }

24 System.out.println("\n----- Loop Number 4 ----- ")
25 System.out.println("count = 1; count <= 100; count *= 2");
26 for (count = 1; count <= 100; count *= 2)

27 {

28 System.out.print(" " + count);

29 ¥

30 System.out.println("\n----- Loop Number 5 ----- ")
31 System.out.println(

32 "count = 3; count <= 80; count = count * 2 - 1");
33 for (count = 3; count <= 80; count = count * 2 - 1)
34 {

35 System.out.print(" " + count);

36 }

37 System.out.println();

38 ¥

39 |}

Listing 7.7 Examples of iteration (part 2)

182 7 For-Loops

The code produces the following output:

1 [----- Loop Number 1 -----

2 |count = 10; count >= 1; count --

3 10 9 87 654321

4 |----- Loop Number 2 -----

5 |count = 10; count > 0; count -= 2

6 10 8 6 4 2

7 |----- Loop Number 3 -----

8 |count = 89; count <= 100; count += 3
9 89 92 95 95 98

10 | ----- Loop Number 4 -----

11 count = 1; count <= 100; count = 2
12 1 2 4 8 16 32 64

13 [----- Loop Number 5 -----

14 |count = 3; count <= 80; count = count = 2 - 1
15 359 17 33 65

Using an iteration that decreases the value of its iteration variable from its start value, as well
as a Scanner object that receives the start value, we can write the following simple program for
executing a countdown from the start number to O.

Note the following specifics of the code:

* The program uses a Scanner object. Line 1 is an import statement for using a Scanner. We
use a generic java.util. x here.

e In Line 9, the program receives the start value and stores it in a variable named start. The
variable start is declared in Line 6.

¢ The iterator has value > 0 asthe termination condition. Thus, the last value of value in which
the loop-body executes is greater than 0. Since value is an integer, the smallest integer that
satisfies value > 0 is 1, so the condition is equivalent to value >= 1.

1 |import java.util.x ;

2

3 |public class CountDown

4 |11

5 public static void main(String[] args)

6 {

7 Scanner keyboard;

8 int start, value;

9 keyboard = new Scanner(System.in);

10 System.out.print("Enter start: ");

11 start = keyboard.nextInt ();

12 for (value = start; value > 0; value --)
13 {

14 System.out.println(".." + value);

15 }

16 System.out.println("B0O00000000000000000O00O0OOOM!");
17 }

18 |}

Listing 7.8 A program that counts down from an input number to 0

Executing the code produces the following result:

7.2 lteration 183

1 |Enter start: 10
2 |..10
3 .9
4 .8
5 |..7
6 |..6
7 1..5
8 |..4
9 |..3
10 .2
11 |..1
12 | BOOOOOOOOOO00000000000000M !
Another run produces this result:
1 |Enter start: 13
2 |..13
3]..12
4 |..11
5 |..10
6 .9
7 .8
8 |..7
9 |..6
10 |..5
11 |..4
12 |..3
13 |..2
14 |..1
15 | BOOOOOOOOOOO0000000000000M !

We can accelerate the speed at which the number decreases by using “dividing by 2” instead of

“decreasing by 1” in the iteration, a shown next:

0O U W

Ne)

10
11
12
13
14
15
16
17
18

import java.util. * ;
public class CountDownFast
{
public static void main(Stringl[] args)
{
Scanner keyboard;
int start, value;
keyboard = new Scanner(System.in);
System.out.print("Enter start: ");
start = keyboard.nextInt ();
for (value = start; value > 0; value /= 2)
{
System.out.println(".." + value);
}
System.out.println("B0O000000000000000O000O0O0COOM!");
}
}

Listing 7.9 A program that counts down from an input number to 0 by dividing the number by 2

184 7 For-Loops

Here is one execution:

1 Enter start: 1000
2 ..1000

3 .500

4 ..250

5 ..125

6 ..62

7 ..31

8 ..15

9 |..7

10 .3

11 .1

12 BOOOOOOOO0OO00000000000000OM !

Here is another:

1 |Enter start: 10000
2 ..10000
3 ..5000
4 ..2500
5 ..1250
6 ..625

7 ..312

8 ..156

9 ..78

10 ..39

11 ..19

12 |..9

13 |..4

14 1..2

15 1

16 | BOOOOOOOOOO00000000000000M !

The next program receives the value for an int variable, n, from the user, and then computes the
sum of integers between 1 and n. In Chap. 2, we have seen the program performing this calculation,
using Gauss’s approach for a fixed valueof n(asn = (n - 1) / 2).The version here computes
the sum by adding the numbers one after another:

1 |import java.util.x;

2 |public class LimitedGauss

3 1

4 public static void main(Stringl[] args)

5 {

6 int n, sum;

7 Scanner keyboard = new Scanner(System.in);
8 System.out.print("Enter n: ");

9 n = keyboard.nextInt ();

10 sum = O0;

11 for (int i = 1; i <= n; i ++)

12 {

13 sum += 1i;

14 }

15 System.out.println("The sum = " + sum);
16 }

17 |}

Listing 7.10 A program that calculates the sum of all integers between 1 and n by adding one number after another

7.2 lteration 185

The iteration variable i produces the sequence 1, ..., n for a positive integer n. The program
adds the value of i to a variable, sum, whose initial value is 0. Thus, the value of sum becomes 1, 3,
6, 10, and so on, ending with n* (n-1) /2.

Here is one execution example:

1 |Enter n: 10
The sum = 55

Note that if the value of n is less than or equal to 0, the loop-body is never executed, and so the value
sum retains its initial value, O:

1 |Enter n: -10
The sum = 0

In a similar vein, we can write a program that computes the product of all integers between 1 and n,
where n is a value that the user enters. The mathematical name for the product of consecutive numbers
starting from 1 is the factorial of n, written n!. Since the factorial is a function that increases very
quickly as the value of n increases, we use long instead of int. We compute the value of the factorial
in a long variable named product. Then, we initialize product with the value of 1. During the
loop, we update the value of product by multiplying it with the value of the iteration variable 1.

1 |import java.util.x*;

2 |public class Factorial

3 1

4 public static void main(Stringl[] args)

5 {

6 int n;

7 long product;

8 Scanner keyboard = new Scanner(System.in);
9 System.out.print("Enter n: ");

10 n = keyboard.nextInt ();

11 product = 1;

12 for (int i = 1; i <= n; i ++)

13 {

14 product *= ij;

15 }

16 System.out.println("The product = " + product);
17 ¥

18 | *

Listing 7.11 A program that computes the factorial function using a for-loop

Here is one execution example:

1 |Enter n: 34
The product = 4926277576697053184

Note that if the value of n is less than or equal to 0, the loop-body is never executed, and so the value
product retains its initial value, 1, as shown next:

1 |Enter n: -10
The product = 1

The next program receives values for two variables, start and end, from the user. Using these
two values, the program computes the sum of all numbers of the form start + 3 » i thatfall
in the range from start to end. At the end, the program prints the sum.

186 7 For-Loops

1 |import java.util.Scanner;

2 |public class SumEveryThird

3 |4

4 public static void main(Stringl[] args)

5 {

6 Scanner keyboard;

7 int sum, count, start, end;

8 keyboard = new Scanner(System.in);

9 System.out.print ("Enter start and end: ");
10 start = keyboard.nextInt ();

11 end = keyboard.nextInt ();

12 //-- initialize the sum

13 sum = 0;

14 //-- iterate the value of j from 1 to 100
15 for (count = start; count <= end; count += 3)
16 {

17 sum += count;

18 }

19 //-- output the result

20 System.out.println("the sum = " + sum);
21 ¥

22 |}

Listing 7.12 A program that computes the sum of every third number within a range

We use two successive calls to next Int (Lines 8 and 9) to receive the input value of the user.
The user may hit the return key after entering the first number, but at that point the program will still
be waiting for the second number, meaning nothing will happen. After receiving the two numbers,
the program executes an iteration with the initialization of count = start and the termination
condition of count <= end (Line 15).

The execution of the code with three different pairs of input results is shown next.

—

Enter start and end: 100 10000
2 |the sum = 16670050

1 |Enter start and end: 599 599
the sum = 599

1 |Enter start and end: 1000
100
3 |the sum = 0

Note the following:

* In the second case, the loop-body executes exactly once, since start is equal to end.
* Inthe last case, the value of end is strictly smaller than the value of start, so the loop terminates
before executing the loop-body.

7.2.2 lteration with an Auxiliary Variable

The sequences that we produced through of iteration had no repetitions and were either monotonically
increasing or monotonically decreasing. Is it possible to use a simple iteration to generate a sequence
containing repetitions? Is it possible to use a simple iteration to generate a sequence that is not
monotonic?
The answer to both questions is “yes”. Such sequences can be generated using an auxiliary variable.
For examples, consider the sequence

7.3 Double For-Loops 187

[0,0,0,1,1,1,2,2,2,3,3,3,4,4,4]

For all nonnegative integers k, 3k / 3, (3k + 1) / 3,and (3k + 2) / 3 are all equal to
k. Therefore, the above sequence is identical toa / 3 fora = 0..14. We can then generate the
sequence in an auxiliary variable, i, as follows:

1 |int i, a;

2 |for (a = 0; a <= 14; a ++)
3 | {

4 i=a 3;

5 |}

By attaching an output statement to the body of the loop:

1 |int i, a;

2 |for (a = 0; a <= 14; a ++)

3 |4

4 i=a/ 3

5 System.out.print(" " + i);
6 |

7 |System.out.println();

we can verify the output:

’ 000111222332324434

In the above, if we use % instead of /, we generate the sequence:

’ 012012012012012 ‘

Furthermore, by changing the operationtoi = (a % 3) - 1, we have the following code:
1 int i, a;

2 |for (a = 0; a <= 14; a ++)

3 |4

4 i=(Ca®%3)-1;

5 System.out.print(" " + i);

6 |

7 |System.out.println();

This code produces the sequence:

-101-101-101-101-101

7.3 Double For-Loops

The double for-loop is a special for-loop structure that comprises of two for-loops, with one loop
appearing inside the other. Here is the general structure of the double for-loop:

188 7 For-Loops

© 00 O Uk W

for (INITIALIZATION1; CONDITION1; UPDATE1)
{
SOME_CODE;
for (INITIALIZATION2; CONDITION2; UPDATE2)
{
LOOP_BODY;

}
SOME_OTHER_CODE ;

We call the first loop the external loop and the second loop the internal loop.

© 00U WN

Suppose we have the following double for-loop:

int startl, start2, endl, end2, diffil1, diff2, countl, count2;

for (countl = startl; countl <= endl; countl += diff1l)
{
for (count2 = start2; count2 <= end2; count2 += diff2)
{
System.out.println(countl + ":" + count2);

}

The code uses two iteration variables, count1 and count?2. Iteration by count1 follows values

startl, startl + diffl, startl + 2 » diff1l, etc., until it reaches a value greater than
endl. For each value of count1, a similar iteration takes places for count2.

0O U W

[I N I N R N R o B e e i e e R R
B WNFE O OO Uke W~ OO

25
26
27
28

import java.util.Scanner;

//--- print a rectangular box with "#"
public class DarkBox
{

//-- main method

public static void main(Stringl[] args)

{
int height, width, vertical, horizontal;
Scanner keyboard;

keyboard = new Scanner (System.in);
// set height and width
System.out.print("Enter height: ");
height = keyboard.nextInt();
System.out.print("Enter width: ");

width = keyboard.nextInt ();
// exterior loop

for (vertical = 1; vertical <= height; vertical ++)
{
// interior loop
for (horizomtal = 1; horizontal <= width; horizontal ++)
{
System.out.print("#");
}
//-- newline is needed

System.out.println();

Listing 7.13 A program that generates a rectangle drawn with hash marks

7.3 Double For-Loops 189

Double for-loops such as this one can be incorporated in the following example. The program
receive two integers from the user and produces a rectangle made up of ’#’’s on the screen. The
dimensions of the rectangle are equal to the numbers the user has entered.

The external loop is for counting the number of lines, and the internal loop is for counting the
number of ‘ #’’s appearing in each line. Also, for both loops, if we change the start value to 1 and
the termination condition to <, we still get the same result. This is because prior to the change, the
vertical value iteration generates the sequence:

0, 1, 2, ..., height - 1
and the horizontal value iteration generates the sequence:
0, 1, 2, ..., width - 1
After the change, the vertical value iteration generates the sequence:
1, 2, ..., height
and the horizontal value iteration generates the sequence:
1, 2, ..., width

Here is an execution example of the code:

Enter height: 10

Enter width: 50

HEHHHHHHH A R
HHHHHHHHHFHH A HH AR
HEHHHHHH R
HHHHHHHAHFHH A HH AR
HEHHHHHH R
HHHHHHHHHFHH A HH AR
HEHHHHHHH R
10 | #HHHHHH #HHHH
LT | s S
12 | # S

0NN W~

=)

Here is another:

Enter height: 8

Enter width: 60

H#HHHHH A FHH A H R R R R R R
HHHHFHHHHFHH R R R R
H#HHHHH A FHH A H R R A R R
HHHHFHHHHFHH R R R R R
H#HHHHH A FHH A H R R R R A A R R
H#HHFHH S HH S R R R R
HEHHHHHHH A R R
HHHHFHHEHFHH R R R R R

OO XN W=

—

Here is one more execution example:

1 |Enter height: 7
2 |Enter width: 0

Since the width of the rectangle was 0, seven empty lines appeared.

The next code produces lines surrounding the rectangle, with - for the horizontal lines, | for the
vertical lines, and ’ +’ for the four corners.

The first part of the code consists of declarations and the user input. The values that the user enters
are height and width (same as before).

190 7 For-Loops

1 |import java.util.Scanner;

2 |public class FramedBox

3 |4

4 |//--- print a rectangular box with "#" with a frame
5 //-- main method

6 public static void main(Stringl[] args)

7 {

8 int height, width, horizontal, vertical;
9 Scanner keyboard;

10 keyboard = new Scanner(System.in);

11 // set height and width

12 System.out.print("Enter height: ");

13 height = keyboard.nextInt();

14 System.out.print("Enter width: ");

15 width = keyboard.nextInt();

Listing 7.14 A program that generates a rectangle of hash marks with surrounding lines (part 1)

The second part consists of three components. The first component is for printing the top line,
whichisa ’+’,aline of ’ -’ having length width, and another ’ +’ in the order of appearance. The
second component is similar to the previous double for-loop, but has one ’ |’ at the beginning and
at the end. In addition, the program prints the second ’ |/ with System.out .println instead of
System.out.print. The third component is identical to the first one.

16 // * * x x the top line * * *x x //

17 System.out.print ("+");

18 for (horizontal = 1; horizontal <= width; horizontal ++)
19 {

20 System.out.print("-");

21 }

22 System.out.println("+");

23 // * x x *x the middle lines * * * * //

24 for (vertical = 1; vertical <= height; vertical ++)

25 {

26 System.out.print("|");

27 for (horizontal = 1; horizontal <= width; horizontal ++)
28 {

29 System.out.print ("#");

30 }

31 System.out.println("|");

32 }

33 // * x * x the bottom line * * *x *x //

34 System.out.print("+");

35 for (horizomtal = 1; horizontal <= width; horizontal ++)
36 {

37 System.out.print("-");

38 }

39 System.out.println("+");

40 T

41 |}

Listing 7.15 A program that generates a rectangle of hash marks with surrounding lines (part 2)

Here is one example of executing the code.

7.3 Double For-Loops 191

1 |java FramedBox

2 |Enter height: 10

3 |Enter width: 20

4 |4----mmmmm - +
S| | |
6 | | HHHEHH R |
T || |
8 | | HHHHHHHHHHH R IR |
O | | |
10 | | #H#H#HEHHEHH SRR |
L1 | | |
12| | #HHEHH R |
13| [|
14| | SHHHHHHHHEHHEE |

—
W
+
1
1
1
|
|
1
I
1
|
|
1
1
I
|
|
|
I
1
1
|
+

Specifying one of the two dimensions as 0 results in the following. This is when the height is O:

1 |Enter height: 0
2 |Enter width: 10
3 |4 +
4 | +---------- +

and this is when the width is O:

Enter height: 7
Enter width: 0

— O 00 JN Nk W~

++
'l
N
'l
N
'l
N
I

++

—_——

By using the value of the external iteration variable in the header of the internal iteration, it is
possible to perform a complicated task. The next example shows this. The goal is to print an upside
down triangle with the right angle at the upper-left corner, like this one:

khkkkkkkkkk

*kkkkkkkk

*hkkkkkkk

*kkkkkk

*kkkkk

* k k kK

* Kk k

* % %

* %

OO X I N B WN—

—_

*

The number of ‘ +’ printed in one line starts from some number and decreases one by one, until it
becomes 1. The start number is equal to the number of ‘ «* printed in the first line. Suppose an int
variable named down contains the number of ’ x’ s that must be in a give line. Using an iteration
variable, across, the task of printing that specific line can be accomplished as:

192 7 For-Loops

1 for (across = 1; across <= down; across ++)

2 {

3 System.out.print("*");

4 }

5 System.out.println();

By enclosing this for-loop in another for-loop that generates the sequence 10, 9, ..., 1 with

the iteration variable down, the triangle can be generated:

1 for (down = 10; down >= 1; down --)

2 {

3 for (across = 1; across <= down; across ++)
4 {

5 System.out.print ("*");

6 }

7 System.out.println();

8 ¥

We want this program to receive the length of the first line (or the number of lines) from the user. We

will store the value in a variable named height. We modify the internal loop so that the last output

of "« " is part of print1n. This reduces the number of times the inner loop-body is executed by 1.
These changes result in the following code:

1 | import java.util.Scanner;

2 |//-- print a triangle

3 |public class TriangleFlipped

4 |{

5 //-- main method

6 public static void main(String[] args)
7 {

8 int height, down, across;

9 Scanner keyboard;

10 keyboard = new Scanner(System.in);
11 System.out.print("Enter height: ");
12 height = keyboard.nextInt ();

13 for (down = height; down >= 1; down --)
14 {

15 for (across = 1; across <= down - 1; across ++)
16 {

17 System.out.print("x");

18 }

19 System.out.println("x");

20 }

21 }

22 |}

Listing 7.16 A program that prints an upside right-angled triangle of a given height

Here is an execution example of the code:

7.4 Computing the Maximum and Minimum in a Series of Numbers 193

1 |Enter height: 17
2 PR R R R EEEEEEEEE S S
3 [kkkkkkkkkkok ok ok kk
4 LR R R R EEEEE S SRS S
5 | kkkkkkkkkrkhkkk

6 LR R R R R RS SRR

T | kkkkkkkkkrhK

8 *khkkkkhkhkkkkkk

O | dkxrkkhhnhn

10 | sxskxsorxn

|) [v pnpnpepege

12 [xxsxxsx

13 | *xxxxx

14 | xx %%

15 | #*%xx

16 | x*x

17 | %%

18 | *

7.4 Computing the Maximum and Minimum in a Series of Numbers

Here, we combine for-loops and conditional executions to write an application.

Our first application MaxAndMin receives a series of integer data from the user and computes
the maximum and minimum of the series. Prior to receiving the series, the program asks the user
to specify the series length: in other words, how many elements are in the series. The length, which
is stored in a variable nData. The program then generates a sequence 1, ..., nData using a
for-loop and receives the elements in the series.

We use if-statements in three places.

First, we use it to check if nData is greater than 0. If nData is less than or equal 0,
the program terminates itself by announcing a run-time error. The type of the run-time error is
IllegalArgumentException. We generate the error with a special statement of throw in the
following manner:

throw new IllegalArgumentException(
"\n " + nData + " is not positive");

The second line of the statement is interpreted as a String and printed as an error message before
termination. Since it begins with "\n ", the error message will start in a fresh newline with four
white space characters.

In general,

throw new ERROR_TYPE NAME (MESSAGE) ;

is the syntax of terminating a program by generating a run-time error of type ERROR_TYPE NAME
with an error message of MESSAGE. The word new is a keyword indicating that this is a creation
of an object data of type ERROR_TYPE NAME, and MESSAGE is the actual parameter given to the
constructor.

The second and third if-statements appear when the element that the user has entered is compared
with the present maximum and minimum values for updates.

194 7 For-Loops

1 |import java.util.x*;

2 |public class MaxAndMin

3 |4

4 public static void main(Stringl[] args)

5 {

6 int nData, max, min, input;

7 Scanner keyboard = new Scanner(System.in);
8 System.out.print("Enter # of data: ");

9 nData = keyboard.nextInt ();

10 if (nData <= 0)

11 {

12 throw new IllegalArgumentException(

13 "\n " + nData + " is not positive");
14

15 }

Listing 7.17 A program for computing the maximum and the minimum of an integer series (part 1). A part that is
responsible for receiving the length and running a check

Next, the program receives the first element of the series and stores this in the variable input.
Since this is the very first element, the program stores its value in both maximum and minimum. The
declarations of all these variables appear in Line 6. If the value of nData is 1, then there will be no
further input, and so the first number the user enters is both the maximum and the minimum.

16 System.out.print ("Enter Data No. 1: ");
17 input = keyboard.nextInt ();

18 max = input;

19 min = input;

Listing 7.18 A program for computing the maximum and the minimum of an integer series (part 2). A part that is
responsible for receiving the first number

Since the program has set the initial value to the variables for the maximum and the minimum, the
for-loop iterates over 2, ..., nData with the variable round. If we change the initialization to
round = 1, the program will prompt the user to enter one extra element.

The prompt that the program uses in the for-loop is

"Enter Data No. " + round + ": "

This is consistent with the prompt
"Enter Data No. 1: "

that the program uses for the very first number. This way, the user sees no difference between the
prompt for the first number and the prompt for the remaining numbers.

In the for-loop, the program compares the input that the user enters with the present maximum
(Lines 25-28) and the minimum (Lines 29-32). If the input is greater than the maximum, the program
stores the value of the input in the maximum. If the input is smaller than the minimum, the program
stores the values of the input in the minimum. Note that we can substitute the if for the minimum
with else 1if,because if the input is greater than the present maximum, then there is no way for the
input to be smaller than the minimum.

Finally, the program uses printf to produce the result on the screen, using the placeholder $d
for both the maximum and the minimum.

7.5 A Betting Game

195

20 for (int round = 2; round <= nData; round ++)

21 {

22 System.out.print("Enter Data No. " + round + ": ");
23 input = keyboard.nextInt ();

24 if (max < input)

25 {

26 max = input;

27 }

28 if (min > input)

29 {

30 min = input;

31 }

32 }

33 System.out.printf ("max=Yd, min=%d%n", max, min);
34 }

35 |}

Listing 7.19 A program for computing the maximum and the minimum of an integer series (part 3). A part that is

responsible for receiving the remaining numbers and printing the result

Here is an execution example where the run-time error I11egalArgument Exception occurs:

Enter # of data: 0
Exception in thread "main" java.lang.IllegalArgumentException:
0 is not positive
at MaxAndMin.main (MaxAndMin.java:12)

NN =

The third line, " 0 is not positive" is the actual parameter of throw new Illegal

Argument Exception.
Here is an execution example of the code in which the calculation is successful:

Enter # of data: 8
Enter Data No. 1: -1546
Enter Data No. 2: 345
Enter Data No. 3: 98035
Enter Data No. 4: -876
Enter Data No. 5: 5121
Enter Data No. 6: 100001
Enter Data No. 7: -4
Enter Data No. 8: -200000
max=100001, min=-200000

OO0 JNWNR W=

—_

7.5 ABetting Game

7.5.1 For-Loops with Skipped Execution

The next application is a simple betting game, where the user is asked to throw a die and bet which

side is facing up.

There are two bet types: specify the exact number of dots or specify odd/even of the number. Here

are some rules:

e The player starts with 50 chips and plays 10 times. However, if the player has lost all his/her chips,

the game ends, regardless of which round the player is on.

* The number of chips that can be bet is between 1 and the number of chips the player possesses at

that moment.
» After throwing a die, the following occurs:

196

7 For-Loops

— If the player has bet on the exact number of dots and the side that has shown has the same

number of dots, the player retains the bet chips and receives, as a reward, chips in the amount
equal to five times the number of chips that have been bet.

— If the player has bet on even/odd parity and the number of dots on the side that has shown has

the same parity as the player’s bet, the player retains the bet chips and receives, as a reward,
chips in the amount equal to the number of chips that have been bet.

— If neither is the case, the player loses the bet chips.

We design the code using the following algorithm:

* A for-loop is used to repeat a single round of action ten times.

» The loop-body takes its action only if the number of chips in possession at the start of the body is
strictly positive. The body consists of the following sequence events.
— The player is advised of the number of chips currently in possession and asked the number of

chips to be bet.

— The player enters the bet amount. If it is less than or equal to 0, the amount is adjusted to 1

(the body being executed guarantees that the number of chips in possession is at least 1). If the
bet amount is greater than the number of chips in possession, the bet amount is reduced to the
number of chips is possession.

— The player is asked to enter the type of bet: —1 for the odd parity, O for the even parity, and one

of 1, ...6 for the exact number of dots.

— The player enters the type. If the type is less than —1, then it is adjusted to —1, and if the type

is greater than 6, then it is adjusted to 6.

— Using Math.random, an int between 1 and 6 is generated to represent the number of dots

on the face that is up.

— The player is told if he/she has won the bet and is advised on the change has been made on the

number of chips in possession.

» After completing the loop, the final number of chips in possession is reported.

Here is the program that implements this idea.

We use int variables possession to record the number of chips in possession, bet Type to
record the bet type, bet Amount to record the bet amount, and number to record the result after
throwing the dice (Line 7).

0~ O U W N

import java.util.x*;
public class BettingGame
{
public static void main(Stringl[] args)
{
Scanner keyboard = new Scanner(System.in);
int betType, betAmount, number, possession = 50;

Listing 7.20 A betting game (part 1). The part that sets up the variables

Next is the for-loop and the beginning of its loop-body. The for-loop iterates the sequence

ll

., 10 using an iteration variable, 1 (Line 9). For each round, an action is to be performed

only if possession is positive (Line 11). The action is as follows:

* Inform the player of the round number and the current chip amount (Lines 13-15).
¢ Ask for the bet amount, receive it, and store it in bet Amount (Lines 16 and 17).
* Make an adjustment to the amount if necessary as follows:

7.5 A Betting Game

197

— If its value is not positive, raise it to 1 (Lines 18-21);

— 1ifits value is greater than possession, reduce it to possession, since a player cannot bet

more than what he/she has (Lines 22-25).
* After that, state the [possibly altered] bet amount (Line 26).

9 for (int i = 1; i <= 10; i ++)

10 {

11 if (possession > 0)

12 {

13 System.out.println("===s============================"),
14 System.out.println("This is round " + i);

15 System.out.println("You have " + possession + " chips"
16 System.out.print("How much do you want to bet? ");

17 betAmount = keyboard.nextInt ();

18 if (betAmount < 1)

19 {

20 betAmount = 1;

21 }

22 else if (betAmount > possession)

23 {

24 betAmount = possession;

25 }

26 System.out.println("Your bet amount is " + betAmount);
27

)

Listing 7.21 A betting game (part 2). The part that processes the bet amount

The next part is for determining the betting type. The program does the following:

28 System.out.print("Enter your bet type: ");
29 System.out.println("-1 for odd, 0 for even,");
30 System.out.print("1..6 for an exact bet: ");
31 betType = keyboard.nextInt ();

32 if (betType < -1)

33 {

34 betType = -1;

35 }

36 else if (betType > 6)

37 {

38 betType = 6;

39 }

40

Listing 7.22 Betting game (part 3). The part that determines the bet type

* Ask the player to enter the bet type (Lines 28-30).
* Receive the bet type and store the value in bet Type (Line 31).
* Make an adjustment if necessary:

— If the type is less than —1, raise it to —1 (Lines 32-35);

— if the type is greater than 6, reduce it to 6 (Lines 36-39).

198 7 For-Loops

Next comes the part where a die is thrown. This is the end of the big if-statement as well as the
for-loop.

e Generate the value for number using the formula 1 + (int) (6 * Math.random())

(Line 41) and report this number (Line 42).

e Check win/loss and make adjustments as follows (Lines 43-58):

— If either (betType == -1 (odd) and number % 2 == 1) or (betType == 0 (even)
and number % 2 == 0), then the player has won an odd/even bet, so add bet Amount to
possession (Lines 43-48).

— Otherwise, if betType == number, then the player has won an exact-face bet, so add
5 * betAmount to possession (Lines 49-53).

— Otherwise, subtract bet Amount from possession (Lines 54-58).

¢ Line 59 is the end of the if-statement.
* Line 60 is the end of the for-loop.

41 number = 1 + (int)(6 * Math.random());

42 System.out.println("The number is " + number);
43 if (betType == -1 && number 7 == 1 ||

44 betType == 0 && number % 2 == 0)

45 {

46 System.out.println("You’ve won!");

47 possession += betAmount;

48 }

49 else if (betType == number)

50 {

51 possession += 5 * betAmount;

52 System.out.println("You’ve won big time!!!!l1!l")
53 }

54 else

55 {

56 possession -= betAmount;

57 System.out.println("You’ve lost!");

58 }

59 }

60 }

Listing 7.23 A betting game (part 4). The part that throws a dice and reports the result

At the end of the ten rounds, the program concludes by reporting the final amount of
possession.

61

62 System.out.println(o=z =—=—=—=—======================= !);

63 System.out.println("You ended with " + possession + " chips");
64

Listing 7.24 A betting game (part 5). The part that produces the final reporting

The logical formula in Lines 43 and 44:
betType == -1 && number % 2 == 1 || betType == 0 && number % 2 == 0

7.5 A Betting Game 199

is equivalent to:
betType + (number % 2) == 0
as well as to:

Math.abs(betType) == (number % 2)

7.5.2 The Statements continue andbreak

Two important statements that can be used in a for-loop body are continue and break. The
statement continue instructs the program to skip the remainder of the loop-body and move on
to the next round of the loop. The statement break instructs the program to terminate the execution
of the loop immediately, ignoring the remainder of the present round and all the remaining rounds. If
these statements appear inside an interior loop of multiple loops, their actions apply to the innermost
loop that contains the statements.

Consider the following code block:

1 Scanner keyboard = new Scanner(System.in);
2 int sum = O0;
3 for (int i = 1; i <= 30; i ++)
4 {
5 if (1 %7 ==20)
6 {
7 continue;
8 }
9 int input = keyboard.nextInt();
10 if (input == 0)
11 {
12 break;
13 }
14 sum += i * input;
15 }
The program generates a sequence 1, ..., 30 with the iteration variable i, receives an input

from the user if 1 is not a multiple of 7, and computes the sum of 1 multiplied by the input. However,
if the user enters 0, the loop is terminated immediately.
Here is another example. In the following code, a is an int variable.

1 for (int count = 1; count <= 100; count ++)
2 {

3 a += 10;

4 System.out.println(count + ", " + a);

5 if (a > 1000)

6 {

7 break;

8 }

9 }

The program repeatedly increases a by 10 until the value of a exceeds 1000.
In the betting game program, we enclosed the entire action inside the for-loop in the if-statement
whose condition was possession > 0,i.e.,

200 7 For-Loops

1 for (int i = 1; i <= 10; i ++)
2 {

3 if (possession > 0)

4 {

5 THE_ACTION

6 ¥

7

where THE ACTION refers to the action to be performed. We can use continue to take
THE ACTION outside the if-block.

1 for (int i = 1; i <= 10; i ++)
2 {

3 if (possession > 0)

4 {

5 continue;

6 ¥

7 THE_ACTION;

8

}

Once possession becomes 0, there will be no action to be performed in the loop-body.
Therefore, we can use break to terminate the loop as soon as possession becomes 0.

1 for (int i = 1; i <= 10; i ++)
2 {

3 THE_ACTION;

4 if (possession == 0)

5 {

6 break;

7 ¥

8 }

Because possession is decreased only at one location, we can move the if-statement containing
the break statement inside after the statement for printing the message "You’ve lost!".

1 for (int i = 1; i <= 10; i ++)
2 {

3 R

4 else

5 {

6 possession -= betAmount;

7 System.out.println("You’ve lost!");
8 if (possession == 0)

9 {

10 break;

11 }

12 }

13 }

7.6 Computing the Fibonacci Sequence 201

7.6 Computing the Fibonacci Sequence

The Fibonacci sequence Fy, F1, F», ... is an infinite integer sequence defined by: Fy = F; = 1 and
foralln > 2, F,, = F,,_1 + F,—>. The sequence is as follows:

1,1,2,3,5,8,13,21, 34,55, 89, 144, ...

Consider receiving an integer n from the user and printing the value of F; fori = 2,...,n. To
determine the value of F;, we only need the values of F;_; and F;_;. Therefore, we can accomplish
the task by using a for-loop and memorizing just the two previous values in the sequence.

Using a for-loop that iterates the sequence 2, ..., n with a variable named i, we compute the
value of F;. To record the values of F; and its two predecessors, we use three 1ong variables, instead
of three int variables. This is because the values of the elements of the Fibonacci sequence increase
very quickly. The three variables are £, £p, and £pp. They represent F;, F;_1, and F;_; respectively.
At the start of the loop body, it is ensured that the value of fp is equal to F;_; and the value of
fpp is equal to F;_,. We obtain the value of F; by £ = fp + fpp and print its value. When the
program returns to the start of the loop-body, the value of i has been increased by 1. Therefore, we
must make sure that fpp and f£p hold the values of F;_| and F;_; for the new value of i. This can be
accomplished by first replacing the value of £pp with the value of £p, and then replacing the value
of f£p with the value of £. Also, before entering the loop, since the value of i starts with 2, we need
to assign the value of F; to £p and Fy to £pp.

The next code encapsulates the above ideas and prints the value of £, along with the values of fp
and fpp.

1 |import java.util.sx;

2 |public class FibonacciProgress

3 |4

4 public static void main(Stringl[] args)

5 {

6 long f, fp = 1, fpp = 1;

7 Scanner keyboard = new Scanner(System.in);
8 System.out.print ("Enter n: ");

9 int n = keyboard.nextInt ();

10 for (int i = 2; i <= n; i ++)

11 {

12 f = fp + fpp;

13 System.out.println(

14 i+ "\tf=" + £ + "\tfp=" + fp + "\tfpp=" + fpp);
15 fpp = fp;

16 fp = £;

17 }

18 }

19 |}

Listing 7.25 A program that computes the Fibonacci sequence

Note that the order of execution is (a) computing £; (b) printing the values of i, £, £p, and fpp;
(c) updating £pp; (d) updating £p. Here is an execution example:

1 |Enter n: 30

2 |2: 2 fp=1, fpp=1
3 [3: 3 fp=2, fpp=1
4 |4: 5 fp=3, fpp=2

202 7 For-Loops

[BEN N WV |

=)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

8 fp=5, fpp=3

13 fp=8, fpp=5

21 fp=13, fpp=8

34 fp=21, fpp=13
9: 55 fp=34, fpp=21
10: 89 fp=55, fpp=34
11: 144 fp=89, fpp=55
12: 233 fp=144, fpp=89
13: 377 fp=233, fpp=144

0 J o Ul

14: 610 fp=377, fpp=233

15: 987 fp=610, fpp=377

16: 1597 fp=987, fpp=610

17: 2584 fp=1597, fpp=987

18: 4181 fp=2584, fpp=1597

19: 6765 fp=4181, fpp=2584

20: 10946 fp=6765, fpp=4181

21: 17711 fp=10946, fpp=6765
22: 28657 fp=17711, fpp=10946
23: 46368 fp=28657, fpp=17711
24: 75025 fp=46368, fpp=28657
25: 121393 fp=75025, fpp=46368
26: 196418 fp=121393, fpp=75025
27: 317811 fp=196418, fpp=121393
28: 514229 fp=317811, fpp=196418
29: 832040 fp=514229, fpp=317811
30: 1346269 fp=832040, fpp=514229

After the first round, the value of fp is transferred to £pp and the value of f to fp.

Summary

The format for a for-loop is:
for (INITIALIZATION; CONTINUATION CONDITION; UPDATE) { . }

The initialization is the action to be performed before entering the loop. The update is the action to
be performed after each execution of the loop-body.

The declaration of the iteration variable may appear in the initialization part of a for-loop. The
scope of an iteration variable whose declaration appears in the header of the loop is the entire loop.
We formally call the process of generating a series of index values loop an “iteration”. The variable
we use in iteration is an iteration variable.

A for-loop can be used for counting repetitions. The value of the iteration variable can be referred
to in the loop-body to produce results that are dependent on the iteration variable.

A double-loop is a loop inside a loop. Using a double-loop, one can manipulate a block of data that
has two dimensions.

The cont inue statement instructs the program to skip the present round of for-loop and move on
the next round.

The break statement instructs the program to terminate the execution of the for-loop immediately.

Exercises 203

Exercises

1. Evaluating a for-loop How many lines of output will be generated by the code below?

1 |for (dint i = 1; i < 1000; i #*= 2)
2 |A{

3 System.out.println(i);

4 |}

2. Evaluating double loops State the output generated by each of the following for-loops:

1 |for (int i = 0; i < 4; i ++)

2 |{

3 for (int j = i + 1; j <= 4; j ++)
4 {

5 System.out.print(j);

6 }

7 System.out.println("x");

8 |}

1 |for (int i = 0; i <= 4; i ++)

2 |{

3 System.out.print("=");

4 for (int j = 0; j <= i; j ++)
5 {

6 System.out.print(j);

7 }

8 System.out.println();

9 |}

1 |for (int s = 65; s >= 1; s --)

2 |4

3 for (int t = 5; t > s; t --)
4 {

5 System.out.print(t);

6 }

7 System.out.println("@");

8 |}

1 |[for (int s = 33; s >= 0; s -= 6)
2 |{

3 for (int t = 33 - s; t <= s; t += 5)
4 {

5 System.out.print(t);

6 }

7 System.out.println("#");

8 |}

3. Double for-loop Write a double for-loop that produces the following output:

1 |123456789
2 | 3456789

3 | 56789

4 |789

5 |9

204 7 For-Loops

4. Another double for-loop Write a double for-loop that produces the following output:

1 987654321
2 | 8765432

3 | 76543

4 | 654

5 |5

5. Number iterations For each of the number sequences below, write a for-loop with an iteration
variable, n, that generates the sequence:
(@ 1,2,3,4,5
(b) 1,10, 100, 1000, 10,000
(c) 10,8,6,4,2,0
(d 12,9,6,3,0,-3,-6,-9

6. Generating a series of squares Write a program named Squares that receives an integer
from the user, stores the value in an int variable n, and uses a for-loop to produce the following
output lines:

1 1
2 |4
3 |9
4 A
5 [n*2

We can expect the value the user enters to be positive. Noting that (m + 1)? —m? = 2m + 1, write
an alternative version that keeps producing the squares by cumulatively adding odd integers to a
variable that is initially 0.

7. Printing a diamond of variable sizes Write a program named Diamond2 that receives an
integer value from the user (that is guaranteed to be positive and even) and prints a filled diamond
with the input value as the height and width. (For the shape below the input value is 10.) The
program may run by calculating one half of the input number and using it in iteration.

/\
//\N\
ZANY
/777N \N\\
/777 /N NN\
\N\N\N///77
\N\\N///7
\\\///
\\//

\/

OO X I N AW =

—_

*®

Number sequence with decreasing repetitions Write a triple for-loop that produces the output
below.

543210

554433221100

555444333222111000

555544443333222211110000

555554444433333222221111100000
555555444444333333222222111111000000
555555544444443333333222222211111110000000
555555554444444433333333222222221111111100000000
555555555444444444333333333222222222111111111000000000
555555555544444444443333333333222222222211111111110000000000

OO X I B W=

—_

Exercises 205

9.

O 00O W=

10.

Number pyramid Write a program that produces the output in the shape of a pyramid as shown
next using one double for-loop:

1

22

333

4444
55555
666666
7777777
88888888
999999999

Output generated by for-loops 1 State the output the following code generates:

N O U W N

int gap = 1, n = 1;
for (int count = 1; count <= 10; count ++)
{
System.out.println(n);
n += gap;
gap *+;
}

. Output generated by for-loops 2 State the output the following code generates:

int gap = 1, n = 1;
for (int count = 1; count <= 10; count ++)
{
System.out.println(n);
n += gap;
gap += 2;
}

. Output generated by for-loops 3 State the output the following code generates:

N O U W N

int gap = 1, n = 1;
for (int count = 1; count <= 10; count ++)
{
System.out.println(n);
n += gap;
gap *= 2;
}

. Output generated by for-loops 4 State the output the following code generates:

N OOt W N

int gap = 10, n = 100;
for (int count = 1; count <= 10; count ++)
{
System.out.println(n);
n -= gap;
gap --;
}

206

7 For-Loops

14.

15.

O 001NN BN =

16.

— OO0 I N WN =

—_

—_
=

Partial sums Write a program, PartialSums, that receives an integer t op from the user and
returns the sum of all the sums (m + ... + 2 *x m) such thatmis between 1 and top. The
return value must be 0 if top is less than equal to 0. By appropriately designing the components
of the loops, this requirement can be met without having to check whether or not top <= 0.
Double iteration, A Write a program named A11IJ1 that receives an integer top from the
user and produces on the screen the output
(i,3)
for all values of 1 and j between 1 and top. Configure the loops so that in the output, the value
of i does not decrease, and for each fixed i, the value of j is strictly decreasing.

Here is an execution example:

Enter one number: 4
1,1)

B R W W W W NDNNDNNNDR R
B W NERE P WNRERE D ONDREDWN

Double iteration, B Write a program named A11IJ2 that receives an integer top from the
user and produces on the screen the output
(i,3)
for all values of i and j between 1 and top such that 1 is no greater than j. Configure the loops
so that in the output, the value of i does not decrease, and for each fixed i, the value of j is
strictly increasing.

Here is an execution example:

Enter one number: 4
1,1)

[}
N

B W wNDNDND R R

BB W W N W

. Double iteration, C Write a program named A11IJ3 that receives an integer top from the

user and produces of the screen the output

(1,3)

for all values of i and j between 1 and top such that i is strictly less than j. Configure the
loops so that in the output, the value of i does not decrease, and for each fixed i, the value of j
is strictly increasing.

Exercises 207

—_
S V0NN R W~

[
W N =

—_
oo

AN N W=

19.

20.

21.

Here is an execution example:

Enter one number: 4
1,1)

[
N

B W W W NN
WNE WNDE WP W

. Coordinated iteration Suppose we want to print the coordinates of an N by N table, where N is

greater than or equal to 2, and the rows and columns have indexes from 1 to N. The combination
of a row number x and a column number y should be printed as (x,y). For each row, the
coordinates should be printed in one line. Write CoordinatedIteration that accomplishes
this task. The program receives the value for N from the user. The output for N = 3 is as follows:

Series 1
(1,1)(1,2)(1,3)
Series 2
(2,1) (2,2) (2,3)
Series 3
(3,1) (3,2) (3,3)

Powers of a power Write a program named Int Powers that receives three integers, a, p, and
k, from the user and prints the values of a?, a’l,a3?, ... a*P where these values are double
and appear one value per line. Use Math . pow to compute the powers.

Programming Projects

The size of a toilet paper Consider determining the length of toilet paper dispensed from a

roll of toilet paper. To determine the length three parameters are needed: the radius of the core

coreRadius, the maximum radius of the resulting roll of paper maxRadius, and the thickness
of paper thickness. The way we will determine the length is as follows:

e FEach time the paper goes around the roll in one full circle, the radius increases by
thickness. Therefore, for each round >= 1, if the paper goes around the roll round
times, then the radius increases by round * thickness.

* We want the resulting radius to be as large as possible, but not larger than maxRadius.

* Based upon the above, we determine the exact number of times that the paper goes around the
roll, represented by a variable numberOfRounds.

* We assume that when the paper goes around the roll, which has radius radius, the length of
the paper used for that particular round is 27 times radius.

* The length of the roll generated is two times 7 times the sum of the radiuses of the roll from
all rounds.

Write a Java program named ToiletPaper.java that receives user coreRadius,

maxRadius, and thickness from the user, and prints the length of the paper. Note that

the integer part of any double y can be obtained by (int) (Math.floor (y)).

BMI for ranges of weights and heights Write a program named RangeBMI that computes

the BMI for a range of weights and heights. The user will specify the maximum and minimum

208 7 For-Loops

of the weights. He/she will also specify the maximum and minimum of heights. Furthermore, the
user will specify the sizes of increments in weights and heights. The maximums, the minimums,
and the increments are all integers. The program must use a double for-loop. In the external loop,
the program generates an increasing sequence of weights to be considered. In the internal loop,
the program generates an increasing sequence of heights to be considered. For each combination
of weight and height, the program prints the weight, the height, and the BMI.

22. Points on a circle Write a program named PointsOnCircle that receives two positive
quantities, a double data myRadius and an int data myFraction, from the user and prints
the coordinates of the points on a circle with radius myRadius, whose rotation angles from the
x-axis is between —180° and 180° (with the degree incremented by 360 / myFraction). The
following is an example of running the program:

Enter the radius: 3

Enter the fraction: 8
(-3.6739403974420594E-16,-3.0)
-2.121320343559643,-2.1213203435596424)
-3.0,1.8369701987210297E-16)
-2.1213203435596424,2.121320343559643)
0.0,3.0)
2.1213203435596424,2.121320343559643)
3.0,1.8369701987210297E-16)
2.121320343559643,-2.1213203435596424)
3.6739403974420594E-16,-3.0)

—_— O 0 0NN WA W=

(
(
(
(
(
(
(
(

—_—

23. Computing the combinatorial numbers Write a program named Combinatorial that
computes combinatorial numbers after receiving two integers, n and k, from the user.
For integers n > k > 0, C(n, k) is the number of possible ways to select k distinct elements
from a group of n distinct elements. C(n, k) is given as:

n!

Here, n! denotes the factorial of n. The factorial of n isn(n — 1)---1if n > 1 and 1 otherwise.

Implement three ways to compute C (n, k) on the values of n and k that the user enters.

(a) Write amethod named public static long factorial(int m) thatcomputes
the factorial of m as a 1ong data. Write a method named combinatorial that receives n
and k as parameters and computes C (#, k) using three calls to the method factorial.

(b) For all n and k, we know that C(n, k) = C(n,n — k).

n! nn—1)---1

Kn—k)! (k=1 D((n—k)(n—k—1)---1)

Let g be the smaller of k and n — k. Then we have

n! nn—1)---1

K=o (gq=1--D((=g)n—g—1)---1)

We can simplify the fraction to obtain

nmn—1)---n—q+1)
qlg—1)---1

C(}’l, k) =

Exercises 209

A WN = A WN =

AW —

24.

Write a method, public static long product(int start, int end),
that returns the product of all the integers between start and end, where end >= start.
Write a method named combinatorial?2 that computes the two products using the method
product.

(c) By reversing the order of appearance of the terms in the denominatorn(n — 1) - - - (n —q + 1),

we have
m—1)---n—qg+1)

12:(g— g
Write an additional method named combinatorial3 that computes the factorial. For i =
1,...,q, combinatorial3 executes the multiplication by the i-th term in the numerator

and the division by the i-th term in the denominator.
The combinations of n and k for which the program computes C(n, k) correctly increases, as

Cn k) ="

follows:

Enter n and k: 20 10

With method 1, C(20,10)=184756
With method 2, C(20,10)=184756
With method 3, C(20,10)=184756
Enter n and k: 22 11

With method 1, C(22,11)=-784
With method 2, C(22,11)=705432
With method 3, C(22,11)=705432

Enter n and k: 40 20

With method 1, C(40,20)=0

With method 2, C(40,20)=-1

With method 3, C(40,20)=137846528820

Treasure hunting Write a program named TreasureHunting, that plays a game defined
as follows: The player’s goal is to find a treasure hidden at a location between 1 and 100.
The player can make at most ten guesses. If the guess is correct, the program announces
"You have found the treasure!" and halts. In every round, if the player makes an
incorrect guess, based upon the distance between the true location and the guess, the program
announces the following:
(a) If the distance is between 1 and 3, the program announces

"The treasure is very close.".
(b) If the distance is between 4 and 6, the program announces

"The treasure is somewhat close.".
(c) If the distance is greater than 6, the program announces

"The treasure is not close.".
Starting in the second round, if the player makes an incorrect guess, the program informs
the player whether the guess is closer than the previous one. The message printed is:
"You are closer.", "You are farther.", or "The same distance.". If the
user fails to find the treasure, the program should reveal the true location.

Formatted Printing Using print £ 8

8.1 General Rules forprint£f

This chapter discusses the syntax of printf, which we have already seen before. The general usage
of printf is

System.out.printf ("uOwlulw2 ...wkuk", di1, ..., dk);
where wl, ..., wk are placeholders that each specify the formatting of a single data, d1, ..., dk are
the data to be formatted with the placeholders w1, ..., wk in this order, and u0, ..., uk are character

sequences without formatting placeholders. For each i, the data di must be of the type specified in
wi; if not, it must be converted to a data of that type. Any data can be interpretable as a St ring data,
and any whole number data can be interpretable as a floating point data.

If a data supplied to a placeholder cannot be converted to the required type (for example, a String
is supplied to a placeholder for a whole number), a run-time error occurs.

1 |%d|Exception in thread "main" java.util.IllegalFormatConversionException:
d != java.lang.String

at java.util.Formatter$FormatSpecifier.failConversion (Formatter.java:4302)

at java.util.Formatter$FormatSpecifier.printInteger (Formatter.java:2793)

at java.util.Formatter$FormatSpecifier.print (Formatter.java:2747)

at java.util.Formatter.format (Formatter.java:2520)

at java.io.PrintStream.format (PrintStream.java:970)

at java.io.PrintStream.printf (PrintStream.java:871)

at PrintFString.printStringWithFormat (PrintFString.java:28)

at PrintFString.main (PrintFString.java:22)

NelieBEN Be WU, N -NRUS I)

The same I1legalFormatConversionException error also occurs when the number of data
supplied and the number of placeholders do not agree, as well as when a placeholder is incorrectly
written.

Since each placeholder starts with a percent character, to include the percent character in a part that
is not a placeholder, the %% is used via escaping. In print£, the newline character can be specified
as ¥n.

© Springer Nature Switzerland AG 2018 211
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_8

https://doi.org/10.1007/978-3-319-89491-1_8

212 8 Formatted Printing Using printf

8.2 Formatted Printing of String Data

Next, we learn how to format String data using printf.
The general expression for St ring formatting is $Xs, where X consists of three options that can
be selected independently of each other. Here are the three options, which must appear in this order:

1. The flush left positioning can be specified using a single minus sign -.

If this option is not present, the data is automatically printed in flush right.

2. The minimum number of character spaces allocated for the data can be specified with a positive
integer without leading 0’s.

If this option is not present, the default character space allocated is the exact number of character
spaces required to print the data.

If this option is present and the length of the data to be printed is smaller than the specified
number of character spaces, the space character * ‘ is added so as to make the length exactly
the specified number. The adding of the space character occurs at the beginning of the data if the
positioning is flush right (default), and at the end if flush left.

However, if this option is present and the length of the String data to be printed is greater
than the specified minimum character space, the entire data is printed with no padding.

3. It is possible to print only a prefix of the St ring data. The length of the prefix to be printed can
be specified with a period immediately before the length.

If this option is not present, the entire character sequence of the St ring data is printed.

However, if the specified prefix length is greater than the length of the String data to be
printed, the prefix length is automatically reduced to the exact length of the String data.

For example, "$-10s" specifies that the St ring data must be printed in flush left using at least ten
character spaces, and "$10.5s" specifies that only the first five characters must be printed in flush
right using at least ten character spaces. Thus, in

System.out.printf ("Message=%-10.5s-Mike", "Table tennis is fun!");

the 10-space formatting of the String "Table tennis is fun!" will appear after
"Message=",and "-Mike" after that. This results in:

Message=Table --Mike

The next program shows different effects in printf for String. The program presents the
results in a two-column table, with the left column showing the format used and the right column
showing the formatting generated. To print a row of the table, the program uses a method named
printStringWithFormat. The method takes two String parameters, fmt and message,
where the first formal parameter is used to format the second parameter. The formatting of the second
parameter using the first parameter can be accomplished by

System.out.printf(fmt, message);

This will be the second column of the row.

8.2 Formatted Printing of St ring Data 213

For the first column, we want to print the first parameter £mt. Assuming that the length of fmt
is no more than 10, we allocate exactly ten character spaces in flush right and print the vertical line
character | after that as follows:

"System.out.printf("%10s|", fmt);"

We also want to show if padding appears in the formatting of message using fmt as the
formatting. Since the white space is invisible, we add a colon at the end to indicate the end of the
line for this purpose.

Altogether, the method has the following code:

19 public static void printStringWithFormat (
20 String fmt, String message)

21 {

22 System.out.printf("%10s|", fmt);

23 System.out.printf (fmt, message);

24 System.out.println(":");

25 }

The method main prints the St ring variable t using various formats. The method first stores the lit-
eral "Welcome to the Club!" tot (Line 5). The method then prints the header lines (Lines 7—
9). The method then prints t in seven different formats by calling the printStringWithFormat
method (Lines 10-16). At the end, in Line 17, the method prints a line identical to the one that it
printed in Line 9.

1 |public class PrintFString

2 [{

3 public static void main(String[] args)

4 {

5 String t = "Welcome to the Club!";

6 System.out.println("theString=\"Welcome to the Club!\"");

7 System.out.println("Format |Position");

8 System.out.println("String 101234567890123456789012345") ;
9 System.out.println("---------- Fommmmmm—m e ")
10 printStringWithFormat ("%s:", t);

11 printStringWithFormat ("%25s:", t);

12 printStringWithFormat("%-25s:", t);

13 printStringWithFormat ("%10s:", t);

14 printStringWithFormat ("%-10s:", t);

15 printStringWithFormat ("%-25.14s:", t);

16 printStringWithFormat ("%25.14s:", t);

17 System.out.println("---------- Fmm - ")
18 }

Listing 8.1 A code that shows various output formatting for St ring data. The main method

214 8 Formatted Printing Using printf

Executing the code produces the following:

1 |theString="Welcome to the Club!"

2 |Format | Position

3 |String |01234567890123456789012345
4 |---------- o

5 %$s:|Welcome to the Club!:

6 %$25s: | Welcome to the Club!:
7 %-25s: |Welcome to the Club!

8 %10s: |Welcome to the Club!:

9 %-10s: |Welcome to the Club!:

10 %$-25.14s: |Welcome to the :
11 $25.14s: | Welcome to the:
12 | ---------- B et

%c is used to format a char data. Only two options are available: the number of character spaces
allocated and the flush left positioning.

8.3 Formatted Printing of Integers

To use print £ for printing a whole number, we use a format St ring of the form $Xd, where the
part X consists of four options that can be selected independently of each other. Here are the four
options (the fourth option must appear the last):

1. The forced plus sign for a strictly positive value can be specified with a single plus sign +.
If this option is not present, a strictly positive value appears without the plus sign.

2. A single comma , specified the forced currency punctuation. If the option is present, the
punctuation appears with every three digits if the environment information the JVM has access
to state that the country where the computer is running is the United States of America.

If this option is not present, there will be no punctuation.

3. Either the flush left or leading Os can be specified with a single minus sign - or a single 0

respectively.
At most one of the two can be specified.
If neither options are present, the data is printed in flush right.

4. The minimum number of character spaces allocated for the data can be specified with a positive
integer without leading Os.

If this option is not present, the character space allocated is the exact number of character spaces
required to print the data, meaning that the “leading-0" option will be ignored.

Note that the comma, the plus sign, and the minus sign are counted towards the number of characters
used.

Here is a code that demonstrates the different formatting of a whole number. The method
responsible for printing a row of the table is very much similar to the previous one, except that the
second parameter is an int data named n.

8.3 Formatted Printing of Integers

215

1 |public class PrintFDecimal

2 |{

3 public static void main(String[] args)

4 {

5 int num = 456789;

6 System.out.println("number=" + num);

7 System.out.println("Format |Position");

8 System.out.println("String 101234567890123456789")
9 System.out.println("---------- Fommm - ")
10 printDecimalWithFormat("%d:", num);

11 printDecimalWithFormat ("%+d:", num);

12 printDecimalWithFormat ("%,d:", num);

13 printDecimalWithFormat ("%+,d:", num);

14 printDecimalWithFormat ("%20d:", num);

15 printDecimalWithFormat ("%+20d:", num);

16 printDecimalWithFormat ("7%,20d:", num);

17 printDecimalWithFormat ("7%+,20d:", num);

18 printDecimalWithFormat ("%-20d:", num);

19 printDecimalWithFormat ("%+-20d:", num);

20 printDecimalWithFormat ("%,-20d:", num);

21 printDecimalWithFormat ("%+-,20d:", num);

22 printDecimalWithFormat ("%020d:", num);

23 printDecimalWithFormat ("%+020d:", num);

24 printDecimalWithFormat ("7%,020d:", num);

25 printDecimalWithFormat ("%+,020d:", num);

26 System.out.println("---------- Fom e ")
27 ¥

28 public static void printDecimalWithFormat(String fmt, int n)
29 {

30 System.out.printf("%-10s|", fmt);

31 System.out.printf(fmt, n);

32 System.out.println();

33 }

34 |}

Listing 8.2 A code that shows various output formatting for whole number data

The code produces the following output:

1 01234567890123456789
2 |-------=- B
3 |%d: |456789:

4 | %+d: | +456789:

5 |%,d: |456,789:

6 |[%+,d: | +456,789:

7 |%204: | 456789:
8 |%+20d: | +456789:
9 |%,204 | 456,789:
10 |%+,20d | +456,789:
11 |%-204d: | 456789 :
12 | %+-20d | +456789

13 |%,-20d: |456,789

14 |%+-,20d: |+456,789 :
15 |%020d: |00000000000000456789:
16 |%+020d: |+0000000000000456789:

—_
-
o°
o
N
o
Q.

|0000000000000456,789:
| +000000000000456,789:

-
© o
ES
+
o
IN]
o
Q.

216

8 Formatted Printing Using printf

8.4 Formatted Printing of Floating Point Numbers

To use printf for printing a floating point number, we use a format String of the form $X£,
where the part X consists of five options that can be selected independently of each other. The first
four options are the same as the options for $d. The last option specifies the exact number of digits
printed after the decimal point. It is specified with a single period followed by a strictly positive

integer, which is the number of digits.

Since there are so many options to apply to a floating number, we demonstrate the effect using two

programs.
Here is the first program.

1 |public class PrintFFloat

2 |{

3 public static void main(String[] args)

4 {

5 double num = 1974.9215;

6 System.out.println("number=1974.9215");

7 System.out.println("Format |Position");

8 System.out.println("String 101234567890123456789");
9 System.out.println("---------- Fommm - ")
10 printFloatWithFormat ("%f:", num);

11 printFloatWithFormat ("%+f:", num);

12 printFloatWithFormat ("%,f:", num);

13 printFloatWithFormat ("%+,f:", num);

14 printFloatWithFormat ("%20f:", num);

15 printFloatWithFormat ("%+20f:", num);

16 printFloatWithFormat ("% ,20f:", num);

17 printFloatWithFormat ("%+,20f:", num);

18 printFloatWithFormat ("%-20f:", num);

19 printFloatWithFormat ("%+-20f:", num);

20 printFloatWithFormat ("7%,-20f:", num);

21 printFloatWithFormat ("%+-,20f:", num);

22 printFloatWithFormat ("%020f:", num);

23 printFloatWithFormat ("%+020f:", num);

24 printFloatWithFormat("7%,020f:", num);

25 printFloatWithFormat ("%+,020f:", num);

26 System.out.println("---------- Fomm e m e ")
27 ¥

Listing 8.3 A code that shows various output formatting for floating point data (part 1). The main method

The auxiliary method is similar to the one from the previous programs.

28 public static void printFloatWithFormat(String fmt, double v)
29 {

30 System.out.printf("%-10s|", fmt);

31 System.out.printf (fmt, v);

32 System.out.println();

33 }

34 |}

Listing 8.4 A code that shows various output formatting for floating point data (part 2). A method used for printing

the format String and the formatted data together

8.4 Formatted Printing of Floating Point Numbers

217

Here is the second program.

1 |public class PrintFFloat2

2 |{

3 public static void main(String[] args)

4 {

5 double num = 1974.9215;

6 System.out.println("number=1974.9215");

7 System.out.println("Format |Position");

8 System.out.println("String 101234567890123456789") ;
9 System.out.println("---------- Fommmmmmmmmom oo ")
10 printFloatWithFormat("%.3f:", num);

11 printFloatWithFormat ("%+.3f:", num);

12 printFloatWithFormat ("%,.3f:", num);

13 printFloatWithFormat ("%+,.3f:", num);

14 printFloatWithFormat ("%20.3f:", num);

15 printFloatWithFormat ("%+20.3£f:", num);

16 printFloatWithFormat ("7%,20.3f:", num);

17 printFloatWithFormat ("%+,20.3f:", num);

18 printFloatWithFormat ("%-20.3f:", num);

19 printFloatWithFormat ("%+-20.3f:", num);

20 printFloatWithFormat("7%,-20.3f:", num);

21 printFloatWithFormat ("%+-,20.3f:", num);

22 printFloatWithFormat ("%020.3f:", num);

23 printFloatWithFormat ("%+020.3f:", num);

24 printFloatWithFormat("%,020.3f:", num);

25 printFloatWithFormat ("%+,020.3f:", num);

26 System.out.println("---------- Fom e ")
27 ¥

Listing 8.5 A code that shows various output formatting for floating point data (part 3). The main method of the

second program

The auxiliary methods between the two programs are identical.

28 public static void printFloatWithFormat(String fmt,
29 {

30 System.out.printf ("%-10s|", fmt);

31 System.out.printf (fmt, v);

32 System.out.println();

33 }

34 |}

double v)

Listing 8.6 A code that shows various output formatting for floating point data (part 4). A method used for printing

the format St ring and the formatted data together

Executing the two programs, PrintFFloat and PrintFFloat2, results in the following

output.
The following is from PrintFFloat:

1 01234567890123456789
2 |--------- R T
3 |sE: |1974.921500:

4 | %+£: | +1974.921500:

5 |%,£E: |1,974.921500:

6 |%+,£f: |+1,974.921500:

218 8 Formatted Printing Using printf

7 | %20f: | 1974.921500:
8 |%+20f: | +1974.921500:
9 |%,20f: | 1,974.921500:

|

10 |%+,20f: +1,974.921500:
11 |%-20f: |1974.921500 :
12 | %+-20f: |+1974.921500

13 |%,-20f: |1,974.921500

14 |%+-,20f: |+1,974.921500 :
15 |%020f: | 0000000001974 .921500:
16 |%+020f: |+000000001974.921500:
17 |%,020£: |000000001,974.921500:

18 |%+,020f: |+00000001,974.921500:

The following is from PrintFFloat2.

1 01234567890123456789
2 |-----mmm-- B e
3 |%.3f: |1974.922:

4 |%+.3f: | +1974.922:

5 |%,.3f |1,974.922:

6 |%+,.3f: |+1,974.922:

7 |%20.3f | 1974.922:
8 |%+20.3f | +1974.922:
9 |%,20.3f | 1,974.922:
10 |%+,20.3f: | +1,974.922:
11 |%-20.3f |1974.922 :
12 |%+-20.3f: |+1974.922

13 |%,-20.3f: |1,974.922

14 |%$+-,20.3f:|+1,974.922 :
15 |%020.3f: |0000000000001974.922:

—
o)}
o°
+
o
N
o
w
h

| +000000000001974.922:

17 |%,020.3f: |000000000001,974.922:
18 |%+,020.3£:|+00000000001,974.922:
19 |---------- Fmmm e

8.5 Printing the Fibonacci Sequence (Reprise)

In Chap.7, we learned how to compute the Fibonacci numbers using two variables to record two
immediate predecessors in the sequence. Now, consider printing the square and cubic roots of the
numbers obtained as a table, where we generate the sequence up to Fgo:

1 |Enter n: 30

2 i F i sqgrt cbrt
3 | oo oo o
4 2 2 1.41421 1.25992
5 3 3 1.73205 1.44225
6 4 5 2.23607 1.70998
7 5 8 2.82843 2.00000
8 6 13 3.60555 2.35133
9 7 21 4.58258 2.75892
10 8 34 5.83095 3.23961
11 9 55 7.41620 3.80295
12 10 89 9.43398 4.46475
13 11 144 12.00000 5.24148
14 12 233 15.26434 6.15345
15 13 377 19.41649 7.22405
16 14 610 24.69818 8.48093

8.5 Printing the Fibonacci Sequence (Reprise)

219

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

987

1597

2584

4181

6765

10946

17711

28657

46368

75025

121393

196418

317811

514229

832040

1346269

2178309

3524578

5702887

9227465
14930352
24157817
39088169
63245986
102334155
165580141
267914296
433494437
701408733
1134903170
1836311903
2971215073
4807526976
7778742049
12586269025
20365011074
32951280099
53316291173
86267571272
139583862445
225851433717
365435296162
591286729879
956722026041
1548008755920
2504730781961
4052739537881
6557470319842
10610209857723
17167680177565
27777890035288
44945570212853
72723460248141
117669030460994
190392490709135
308061521170129
498454011879264
806515533049393
1304969544928657
2111485077978050

31

82

169

348

1160

42852

230903
293713
373609
475238
604512

5270473

17551681

36124362

.41656
39.
50.
64.
.24962
104.
133.
.28379
215.
273.
.41498
443.
563.
717.
912.
.28833
1475.
1877.
2388.
3037.
3863.
4915.
6252.
7952.
1011e6.
12867.
16368.
20820.
26484 .
33688.
.21001
54508.
69336.
88197.
112188.
142706.
181524.
.20737
.41691
.23763
.29151
.44500
768951.
978121.
1244189.
1582634.
2013141.
2560755.
3257331.
4143389.
.41662
6704145.
8527805.
10847535.
13798278.
.43427
22326083.
28399217.
.20792
45950898.

96248
83306
66065

62313
08268

33230
90692

19070
74728
09762
16227

90955
38595
07182
67427
98137
06022
05318
73450
03455
79472
08773
52922
12228
32394

85316
33229
17710
54231
03027
87460

70842
68264
99993
12764
70835
81027
70827
93791

74818
12489
68609
54151

66640
12036

55463

9.
11.
13.
16.
18.
22.
26.
30.
35.
42.
49.
58.
68.
80.
94 .
.41904
129.
152.
178.
209.
246.
289.
339.
.42293
467.
549.
644 .
756.
.49923
1043.
1224.
1437.
1687.
1981.
2326.
2730.
3205.
3763.
4418.
5187.
6089.
.40935

8393.

9853.
11567.
13580.
.47179

110

398

888

7149

15943

18717.
21973.
25797.
30285.
35554.
41740.
49002.
57528.
67537.
79288 .
93083.
.18137
128290.

109278

95648
68876
72242
10992
91280
20335
06640
60156
92577
17632
51437
12912
24272
11593
05489

63029
18402
66175
74622
23891
08079
37651

74254
12272
66184
82333

08477
56587
62195
74661
38919
12119
83137
95506
74314
57798
34425
86433

29931
60747
98733
64357

39668
94288
07926
38401
58645
55105
78069
52933
63032
16470
11578

94539

220 8 Formatted Printing Using printf

77 75 3416454622906707 58450445.87432 150611.64511
78 76 5527939700884757 74350115.67499 176815.81168
79 77 8944394323791464 94574808.08223 207579.11010
80 78 14472334024676221 120301014 .22962 243694.76088
81 79 23416728348467685 153025253.95655 286093.99305
82 80 37889062373143906 194651129.90462 335870.05549

We can generate this output using two coordinated formats, one for the first line of the header and the
other for the data rows of the table. Both types have four entries, and the numbers of spaces allocated
for them are 5, 20, 20, and 20 in this order. For the header line, all the entries are String data, so
we use the place holders "$5s™", "$20s", "$20s", and "$20s". For each data line, the first two
entries are integers and the last entries are floating point numbers with five digits after the decimal
point, so we use the placeholders "%$5d", "$20d", "$20.5f", and "$20.5£". Each time a new
element of the Fibonacci sequence is calculated, the element is stored in the variable £. The new
element is calculated as the sum of the two variables, £p and fpp. £p and £pp hold the values of the
previous Fibonacci number and the number right before the previous Fibonacci number. We calculate
the two roots using the Math functions sgrt and cbrt.
Here is the code for this task, FibonacciClean.

1 |import java.util.x;

2 |public class FibonacciClean

3 14

4 public static void main(String[] args)
5 {

6 long f, fp = 1, fpp = 1;

7 double sqroot, cbroot;

8 Scanner keyboard = new Scanner(System.in);
9 System.out.print("Enter n: ");

10 int n = keyboard.nextInt ();

11 System.out.printf("%5s%20s%20s%20s\n",
12 i, "F_i", "sqrt", "cbrt");

Listing 8.7 A program that prints the Fibonacci numbers and their square and cubic roots neatly (part 1)

13 for (int i = 1; i <= 65; i ++)
14 {

15 System.out.print("-");

16 }

17 System.out.println();

18 for (int i = 2; i <= n; i ++)
19 {

20 f = fp + fpp;

21 sqroot = Math.sqrt(f);

22 cbroot = Math.cbrt(f);

23 System.out.printf ("%5d%20d%20.5£%20.5f\n",
24 i, f, sqroot, cbroot);

25 fpp = fp;

26 fp = £;

27 }

28 }

29 |}

Listing 8.8 A program that prints the Fibonacci numbers and their square and cubic roots neatly (part 2)

Exercises 221

Summary

M The formatting options that are available for printing a String data with a printf statement
include the choice between the flush left and the flush right positioning, the number of character
spaces allocated, and the length of the prefix to be printed.

B The formatting options that are available for printing a whole number with a printf statement
include the choice among flush left, flush right, and flush right with leading Os, the forced plus sign,
the forced punctuation, and the number of character spaces allocated.

B The formatting options that are available for printing a floating point number with a printf
statement include the choice among flush left, flush right, and flush right with leading Os, the
forced plus sign, the forced punctuation, the number of character spaces allocated, and the number
of digits after the decimal point.

B The formatting options that are available for printing a char data with a printf statement are
the choice between flush left and flush right, and the number of character spaces allocated.

B To include % in the format, use $%.

Exercises

1. Printf output Let myVar be a double variable with the value of 10.345678. State what
output the following print f statements generate.

(a) System.out.printf("value=%4.1f", myVar);
(b) System.out.printf("value=%5.2f", myVar);
(c) System.out.printf("value=%.3f", myVar);
2. (Approximately) simulating print£ for a real number Write a method named dot2f that
acts as if it were printf with "% .2£f" as the format. The method does not return a value. The
method has one formal parameter input, which is a double. The method must print the value
of input.
The strategy for achieving the goal is as follows:

* Execute Math.roundof input x 100.0 and convert it to an integer by casting (long),
and then store its value into a 1ong variable input100.

* Divide input100 into two long values a and b, which are respectively the quotient of
input100 by 100 and the remainder of input100 by 100.

* Print a, the period, b / 10,andb % 10 in this order.

3. (Approximately) simulating printf for a real number, continued Using the idea from the
previous question, write a void method dot4f that takes a double variable input as its
parameter and prints the value of input in "%.4£" format.

4. A simple for-loop, leading O0s Using a for-loop whose body consists of just one printf
statement, write a code that produces the following output:

1 001:
2 |003:
3 |005:
4 1007:
5 |009:

222

8 Formatted Printing Using printf

[N N R

0NN AW~

~

AW N =

8.

. Two values per line for-loop Using a for-loop whose body consists of just one printf

statement, write a code that produces the following output:

001,002
003,004
005,006
007,008
009,010

A simple for-loop Using a for-loop whose body consists of just one printf statement, write
a code that produces the following output:

100!
88!
76!
64!
52!
40!
28!
16!

Powering Write a method named powerList that takes two parameters, a double d and
an int k, and prints the i-th power of d fori = 1, ..., k. The output for each value of i appears
in a single line along with the value of i, with r digits for i and four digits after the decimal point
for the powers. The following is an example of the output produced by such a method:

1 3.1000
9.6100
29.7910
286.2915

B W N

Programming Projects

Mimicking the simple formatting of a floating point number without rounding Write a
program named PseudoPrint f£F that receives a double number x and a nonnegative int
number d from the user, and then prints the absolute value of x with exactly d digits after the
decimal point. If the user enters a negative integer for d, the program terminates with an error
of I1llegalArgumentException. If d == 0, the program prints only the integer part of
the absolute value of x without a period. If d > 0, the program prints the integer part of the
absolute value, prints a period, and prints d digits as follows: Let y be the absolute value of x
minus the integer part of the absolute value. y is greater than or equal to 0 and strictly less than
1. The program repeats the following d times:

e Multiply y by 10.

* Print the integer part of y.

* Subtract the integer part of y from y.

. Printing the calendar of a month Write a program named CalOfAMonth that produces the

calendar of a month. The program receives the number of days in the month and the position at
which the first day of the month starts (0 for Sunday, 1 for Monday, etc.), and then prints the
calendar in the example below, where the inputs are 31 and 2.

Exercises 223

0NN AW~

10.

AN R W=

AN N AW =

Sun Mon Tue Wed Thu Fri Sat
+------ +------ +------ +------ +------ +------ +------ +
		2	2	3	a	s
6	7 8	9	10	11	12	
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		
+------ +------ +------ +------ +------ +------ +------ +

The number of days must be 28, 29, 30, or 31. Let numberOfDays and startDay be
the number of days and the position of the first day of the month. A key calculation to make is
(excluding the fixed lines) how many rows are in the table. The minimum number of cells required
to produce the table is the sum of numberOfDays and startDay. If the sum is a multiple of
7, then the number of rows is the sum divided by 7; otherwise, it is the quotient plus 1. Based on
this observation, we can write the code using a double for-loop. The exterior loop of the double
for-loop produces the row values in a variable row starting from 0. The interior loop of the double
for-loop produces the column values in a variable col between 1 and 7. The cell at (row, col)
corresponds to the day index 7 * row + col - startDay. If the day index is greater than
or equal to 0 and less than or equal to numberOfDays, we need to print the value of the index;
otherwise, the index is invalid, so the cell should be six white spaces.

Parsing Prinrtf parameter Write a program named ParsePrintfD that receives a
String data, w (which is a syntactically correct integer format placeholder for printf), and
produces the answers to the following questions on the screen:

* Does it contain * +” ?

* Does it contain * , * ?

* Does it contain * - ?

* Does it contain a sequence of numerals?

* Does it contain a sequence of numerals and the sequence start witha * 0’ ?

Here is an execution example:

Enter your format string: +-,45

Has a '+’ = true
Has a ’'-' = true
Has a ’',’ = true
Has a number = true
Has a zero = false

Here is one more:

Enter your format string: 034,3

Has a '+’ = false
Has a ’'-' = false
Has a ’',’ = true
Has a number = true
Has a zero = true

224 8 Formatted Printing Using printf

11. Generating a BMI table Write a program named BMITable that generates a table of BMI
values for a range of weights in pounds and for a range of heights in inches. The weight range is
from 260 pounds down to 80 pounds with the value gap decreasing by 5 (the values are 260, 255,
250, ..., 80). The height range is from 56 to 76 with the value increasing by 2 (the values are 56,
58, ..., 76). The rows are the weights and the columns are the heights. Use the print £ format
of "$5.1£" to print the values. The output of the program should start with:

1 |------- B e i
2 |Weight | height (in.)

3 (1bs.) | 56 58 60 62 64 66 68 70 72 74 76
4 | ------- B e
5 260 58.3 54.3 50.8 47.5 44.6 42.0 39.5 37.3 35.3 33.4 31.6
6 255 57.2 53.3 49.8 46.6 43.8 41.2 38.8 36.6 34.6 32.7 31.0
7 250 56.0 52.2 48.8 45.7 42.9 40.3 38.0 35.9 33.9 32.1 30.4

1 95 21.3 19.9 18.6 17.4 16.3 15.3 14.4 13.6 12.9 12.2 11.6
2 90 20.2 18.8 17.6 16.5 15.4 14.5 13.7 12.9 12.2 11.6 11.0
3 85 19.1 17.8 16.6 15.5 14.6 13.7 12.9 12.2 11.5 10.9 10.3
4 80 17.9 16.7 15.6 14.6 13.7 12.9 12.2 11.5 10.8 10.3 9.7
5 |------- B e

Write and use a method for printing the separator line, a method for printing the two header lines,
and a method for printing the rest of the table.

Classes Stringand StringBuilder 9

9.1 Methods for Obtaining Information from String Data

Java provides a variety of methods for extracting information from a String data. Since String
is an object class, like Scanner, we execute a method on a String data by attaching a period, the
name of the method, and the parameters:

STRING DATA.METHOD NAME (PARAMETERS)

A wide variety of methods are available for String. We can divide them roughly into four types:

. the methods for obtaining information about the St ring data;

. the methods for comparing the St ring data with another St ring data;
. the methods for locating a pattern in the St ring data; and

. the methods for producing a new St ring data from the String data.

RESELOS I S I

Table 9.1 summarizes the St ring methods we will study. The table has two additional methods,
toCharArray and split. We will study these methods later.

The first St ring method we lean is 1ength (). This method belongs to the first category and
returns the character length as int. The following code assigns the String literal "the earth"
to a String variable named message. Next, the code obtains the character length of message
and stores it in an int variable named characterCount. Finally, the code prints the values of
message and characterCount using a printf statement.

1 |String message = "the earth";
2 |int characterCount = message.length() ;
3 |System.out.printf("\"\%s\" has length %d%n", message, characterCount);

The output generated by the code is:

"the earth" has length 9

Another method in the first category is charAt. charAt receives an int value as a parameter,
and returns the character of the St ring data at the character position represented by the parameter.
In Java, a position count starts from 0, instead of from 1. We see this in String and in arrays (see

© Springer Nature Switzerland AG 2018 225
M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_9

https://doi.org/10.1007/978-3-319-89491-1_9

226 9 C(lasses Stringand StringBuilder

Table 9.1 A list of String methods

Name Return type Parameters Action

length int None Returns the character length of s

charAt char int p Returns the character of s at position p

toCharArray char[] void Returns the character array representation
of s

Split String[] String p Returns the String array generated by

splitting with s as the delimiter

equals boolean String o Returns whether or not s is equal to o
compareTo int String o Returns the result of comparing s with o
startsWith boolean String o Returns whether or not s starts with o
endsWith boolean String o Returns whether or not s ends with o
indexOf int String w Returns the lowest position where w occurs in s;
if w does not occur in s, returns -1
lastIndexOf int String w Returns the highest position where w occurs in s;
if w does not occur in s, returns -1
indexOf int String w, Returns the lowest position >= p where w occurs
int p in s; if w does not occur in s at positions
>= p,returns -1
lastIndexOf int String w, Returns the highest position < p where w occurs
int p in s; if w does not occur in s at positions
< p,returns -1
trim String None Returns a new String without the leading
and trailing white space characters
substring String int 1 Returns the suffix of s
starting from position i
substring String int i, Returns the substring of s
int j between position i and position j - 1
toUpperCase String None Returns a new String generated from s
by converting all lowercase letters to uppercase
toLowerCase String None Returns a new String generated from s
by converting all uppercase letters to lowercase
replace String String a, Returns a new String generated from s by
String b substituting all occurrences of a by b
replaceFirst String String a, Returns a new String generated from s by
String b substituting the first occurrence of a by b

Here s represents the String data to which the methods appearing in the table are applied. For methods indexOf
and lastIndexOf, a char value is also accepted as the first parameter

Chap. 12). For each String object having length N, its first character is at position 0, its second
character is at position 1, and so on. The last character is at position N - 1.If sisa String data
and pis an int value between O and s.length () - 1,thens.charAt (p) returnsthe char
of s at position p.

Consider the following code fragment:

1 |String message = "the sun";

2 |System.out.println("char at 1 is " + message.charAt(1));
3 |System.out.println("char at 5 is " + message.charAt(5));
4 |System.out.println("char at 6 is " + message.charAt(6));

9.1 Methods for Obtaining Information from St ring Data 227

This code produces the output:

1 |char at 1 is h
char at 5 is u
3 |char at 6 is n

If we call charAt with a position value outside the valid range, a run-time error, StringIndexOut
OfBoundsException, occurs. The following program demonstrates the use of length and
charAt, and generates StringIndexOutOfBoundsException. The program receives an
input line from the user using the method nextLine of Scanner, and stores it in a String
variable named line. The program then executes a for-loop that iterates over the sequence
0, ..., input.length() with an index variable named i. For each value of i, the program
prints the value of i as well as the value of input.chataAt (i).

1 |import java.util.Scanner;

2 |public class StringlIndices

3 |4

4 public static void main(Stringl[] args)

5 {

6 Scanner keyboard = new Scanner(System.in);
7 System.out.print("Enter string: ");

8 String input = keyboard.nextLine();

9 for (int i = 0; i <= input.length(); i ++)
10 {

11 System.out.print ("position = " + i);

12 System.out.println(" .. char is " + input.charAt(i));
13 }

14 }

15 |}

Listing 9.1 An example of StringIndexOutOfBoundsException

Since the valid range of the parameter for input . chatAt is from 0 to input.length() - 1,
the program makes an invalid method call at the last round of the iteration. At that round, the value of
iisequal to input.length (). Here is how the program runs and how the error is generated.

1 Enter string: Hello, World!

2 |position = 0 .. char is H

3 |position = 1 char is e

4 |position = 2 char is 1

5 |position = 3 char is 1

6 |position = 4 char is o

7 |position = 5 char is ,

8 |position = 6 char is

9 |position = 7 char is W

10 |position = 8 char is o

11 |position = 9 .. char is r

12 |position = 10 .. char is 1

13 |position = 11 .. char is d

14 |position = 12 .. char is !

15 |position = 13Exception in thread "main"
java.lang.StringIndexOutOfBoundsException: String index out of range:
13

16 at java.lang.String.charAt (String.java:646)

17 at StringIndices.main(StringIndices.java:12)

The error message starts immediately after the output position = 13.

228 9 C(lasses Stringand StringBuilder

9.2 Methods for Comparing String Data with Another
9.2.1 The Equality Test and the Comparison in Dictionary Order

As mentioned earlier, the mathematical equality and inequality tests work correctly only for primitive
data types. String has two methods for content equality and content comparison. They are
methods equals and compareTo. Let s and t be two String objects. s.equals(t)
returns a boolean that represents whether or not s and t have the same character sequences. The
relation computed by equals is symmetric and reflexive. In other words, s.equals(t) and
t.equals (s) have the same values, and for all s thatisnotnull, s.equals(s) istrue.

The method s.compareTo(t) returns an int value representing the result of performing
character-by-character comparison from start to end between the two String objects. The is based
upon the indexes of the characters in the Unicode table. The comparison is terminated when either all
the characters of either s or t have been examined or the character of s at the present position has
been found to be different from the character of t at the same position.

In the former situation, there are three possible outcomes.

1. If all the characters have been complete examined for both s and t, the method returns 0.

2. If s has at least character remaining, it means that t is a proper prefix of s and the method returns
a strictly positive integer.

3. If t has at least character remaining, it means that s is a proper prefix of t and the method returns
a strictly negative integer.

In the latter situation, there are two possible outcomes.

1. If the character of s has a higher position than the character of t in the Unicode character indexes,
he method returns a strictly positive integer.

2. If the character of s has a lower position than the character of t in the Unicode character indexes,
the method returns a strictly negative integer.

The relation defined by the method compareTo of String data is transitive, in the
sense that if s.compareTo(t) and t.compareTo(u) are both positive, then
s.compareTo(u) is positive, and if s.compareTo(t) and t.compareTo(u)
are both negative, then s.compareTo(u) is negative. Because of the transitive property,
the method compareTo induces a complete ordering of all String values. This property is
used in the method sort of class Arrays that we will see later in Sect. 13.1. Furthermore,
s.compareTo(t) + t.compareTo(s) isequaltoO.

It is practically impossible to remember the position of each character in the Unicode table, but the
following information may be helpful:

 the numerals appear consecutively in ten positions, starting with * 0’ and ending with * 97

* the uppercase letters appear consecutively in 26 positions, starting with A’ and ending with ' Z";
 the lowercase letters appear consecutively in 26 positions, starting with * a’ and ending with ' z*;
* the numerals precede the uppercase letters and the uppercase letters precede the lowercase letters.

The next program, StringCompExample, receives three String data, textl, text2, and
text3, from the user and compares them. The program has two methods, performEquals and

9.2 Methods for Comparing St ring Data with Another 229

1 |import java.util.x*;

2 |public class StringCompExample

3 |4

4 public static void main(String[] args)
5 {

6 Scanner keyboard = new Scanner(System.in);
7 System.out.print ("Enter #1: ");

8 String textl = keyboard.nextLine();

9 System.out.print ("Enter #2: ");

10 String text2 = keyboard.nextLine();

11 System.out.print("Enter #3: ");

12 String text3 = keyboard.nextLine();

13

Listing 9.2 An example of String comparison (part 1). This section is for receiving the input data

performCompareTo. performEquals receives two String data, s and t, and reports the
result of comparing s with t using equals. performCompareTo receives two String data,
s and t, and reports the result of comparing s with t using compareTo. Both methods use
printf for reporting the result. The method performEquals uses $s as the placeholder for
printing the return value of the equals method, while the method performCompareTo uses $d
as the placeholder for printing the return value of the compareTo. Using the two methods, the
method main executes equals between textl and textl itself, between textl and text2,
and between text2 and text3. The method then executes comparesTo between textl and
text1l itself, and all distinct pairs (in this case, there are six of them).

14 performEquals (textl, textl);

15 performEquals (textl, text2);

16 performEquals (text2, text3);

17

18 performCompareTo(textl, textl);

19 performCompareTo(textl, text2);

20 performCompareTo (text2, textl);

21 performCompareTo (text2, text3);

22 performCompareTo (text3, text2);

23 performCompareTo (text3, textl);

24 performCompareTo (textl, text3);

25 ¥

26 public static void performEquals(String s, String t)

27 {

28 boolean result = s.equals(t);

29 System.out.printf ("\"%s\" equals \"%s\": %s%n", s, t, result);
30 }

31 public static void performCompareTo(String s, String t)
32 {

33 int result = s.compareTo(t);

34 System.out.printf ("\"%s\" compareTo \"%s\": %d%n", s, t, result);
35 ¥

36 |}

Listing 9.3 An example of String comparison (part 2). This section is for executing comparisons

230 9 C(lasses Stringand StringBuilder

Here is an execution example of the program:

1 |Enter #1: New Hampshire

2 |Enter #2: New Mexico

3 |Enter #3: New York

4 | "New Hampshire" equals "New Hampshire": true
5 | "New Hampshire" equals "New Mexico": false

6 | "New Mexico" equals "New York": false

7 | "New Hampshire" compareTo "New Hampshire": 0
8 | "New Hampshire" compareTo "New Mexico": -5

9 | "New Mexico" compareTo "New Hampshire": 5

10 | "New Mexico" compareTo "New York": -12

11 "New York" compareTo "New Mexico": 12

12 | "New York" compareTo "New Hampshire": 17

13 | "New Hampshire" compareTo "New York": -17

The ordering among the three input data, from the smallest to the largest is:
"New Hampshire", "New Mexico"", "New York"

Here is another example. This time, the input contains numerals:

1 |Enter #1: ZeroOne

2 |Enter #2: zeroone

3 |Enter #3: 01

4 "ZeroOne" equals "ZeroOne": true
5 |"ZeroOne" equals "zeroone": false
6 | "zeroone" equals "01": false

7 | "ZeroOne" compareTo "ZeroOne": 0
8 "ZeroOne" compareTo "zeroone": -32
9 |"zeroone" compareTo "ZeroOne": 32
10 | "zeroone" compareTo "01": 74

11 | "01" compareTo "zeroone": -74

12 | "01" compareTo "ZeroOne": -42

13 | "ZeroOne" compareTo "01": 42

The ordering among the three inputs, from the smallest to the largest is:

"ol", "ZeroOne", "zeroone"

9.2.2 The Prefix and Suffix Tests

The class String offers prefix and suffix tests, called startsWith and startsWith. Let s and
t be String data.

* s.startsWith(t) returns a boolean value that represents whether or not t is a prefix of
S.
* s.endsWith(t) returns a boolean value that represents whether or not t is a suffix of s.

The next code compares the String literal "Computer Science" with three other literals,
"Computer", "Science", and "Engineering", with respect to prefixes and suffices. The
program uses methods, prefixTest and suffixTest, that receive two String parameters,
performs either the prefix or the suffix tests, and reports the result.

9.3 Methods for Searching for a Pattern in a String Data 231

1 |public class PrefixSuffix {

2 public static void main(Stringl[] args)

3 {

4 String cs = "Computer Science";

5 String comp = "Computer";

6 String sci = "Science";

7 String eng = "Engineering";

8

9 prefixTest(cs, comp);

10 prefixTest(cs, sci);

11 prefixTest (cs, eng);

12 suffixTest (cs, comp);

13 suffixTest(cs, sci);

14 suffixTest (cs, eng);

15 ¥

16 public static void prefixTest(String line, String pattern)
17 {

18 String neg = "";

19 if (!'line.startsWith(pattern))

20 {

21 neg = "mot ";

22 }

23 System.out.printf ("\"%s\" is Ysa prefix of \"%s\".%n",
24 pattern, neg, line);

25 }

26 public static void suffixTest(String line, String pattern)
27 {

28 String neg = "";

29 if (!'line.endsWith(pattern))

30 {

31 neg = "mot ";

32 }

33 System.out.printf ("\"%s\" is Ysa suffix of \"%s\".%n",
34 pattern, neg, line);

35 ¥

36 |}

Listing 9.4 A program that demonstrates the use of beginsWith and endsWith

The execution of the code produces the following result:

Is "Computer" a prefix of "Computer Science"? true

Is "Science" a prefix of "Computer Science"? false

Is "Engineering" a prefix of "Computer Science"? false
Is "Computer" a suffix of "Computer Science"? false

Is "Science" a suffix of "Computer Science"? true

Is "Engineering" a suffix of "Computer Science"? false

AN N AW =

9.3 Methods for Searching for a Pattern in a String Data

For two String data s and t, and an integer g, we say that t appears in s at position q,
if the character sequence of s starting from position g has t as a prefix. More precisely, t
appears in s at position g if ¢ + t.length() <= s.length() and the character sequence
s.charAt(g), ..., s.charAt(g + t.length() - 1) isequal to the characters
of t. For instance, in "Panama", "a" appears at 1, 3, and 5.

232 9 C(lasses Stringand StringBuilder

indexOf and lastIndexOf are methods for pattern search. Both methods receive the pattern
to search for as a parameter. The pattern is either a String data or a char data. Both methods may
take a second parameter. The second parameter, if present, is an int data and represents the region of
search. The return type is int for both. The return value represents the position at the pattern appears.
If the pattern does not appear, the return value is - 1. The method indexOf returns the lowest position
at which the pattern appears. If the second parameter is present, the method indexOf returns the
lowest position at which the pattern appears among the positions greater than or equal to the value of
the second parameter. The method 1astIndexOf returns the highest position at which the pattern
appears. If the second parameter is present, the method 1ast IndexOf returns the highest position at
which the pattern appears among the positions less than the value of the second parameter. If there is
no match in the specified region, both two-parameter versions return -1. Let seq be a String data
that contains opening lines from the hymn “Swing Low, Sweet Chariot” in all lower case, as follows:

"swing low, sweet chariot, comin’ for to carry me home"

We can present the characters of seq with their positions in a table-like format as follows:

1 char: swing low, sweet chariot, comin’ for to carry me home
2 ten: 00000000000111111111112222222222233333333333444444444
3 one: 01234556789012345567890123455678901234556789012345567

In the table, the row starting with "char" shows the character sequence of seq, and the next
two rows show their character positions. The row starting with "ten" represents the digit in the
tens place, and the row starting with "one" represents the digit in the ones place. We can see
that seq contains four occurrences of the letter ' e’ at positions 12, 13, 43, and 47. The method
call seq.indexOf ("e’) returns the smallest among the four, namely 12. The method call
seq.indexOf ('e’, 20) returns the smallest among those that are greater than or equal to
20, namely 43. The method call seq.lastIndexOf (‘e’) returns the largest among the four
values, namely 47. The method call seq.lastIndexOf (‘e’, 30) returns the largest among
those that are strictly less than 30, namely 13. The method call seg.lastIndexOf (’e’, 12)
returns -1 since none of the positions are smaller than 12. If the pattern to search for is "sw",
the positions at which the pattern occurs are 0 and 11. Therefore, seq.indexOf ("sw")
returns 0, seq.indexOf ("sw", 7) returns 11, seq.indexOf ("sw", 12) returns
—1, seq.lastIndexOf ("sw", 7) returns 0, and seq.lastIndexOf("sw", 12)
returns 11.

The next program, IndexOf, receives an input line, a pattern to search for in the input line, and
a position that represents a search range, and then prints the result of executing the search methods.
Here is the part for receiving the input from the user:

1 |import java.util.x*;

2 |public class IndexO0f

3 |4

4 public static void main(Stringl[] args)

5 {

6 Scanner keyboard = new Scanner(System.in);
7 System.out.print("Enter the input: ");

8 String input = keyboard.nextLine();

9 System.out.print("Enter the pattern: ");
10 String pat = keyboard.nextLine();

11 System.out.print("Enter the position ");
12 int pos = keyboard.nextInt ();

13

Listing 9.5 A program that demonstrates the use of pattern search methods of String (part 1). The part that receives
the input

9.3 Methods for Searching for a Pattern in a String Data 233

The program presents the input and the character positions using the table-like format shown above.
If the input from the user has length between 0 and 100, the decimal representation of each character
position requires at most two digits. If a value between 0 and 99 is represented by an int variable
i, its digit in the tens place is 1 / 10 and its digit in the ones place is i % 10. Based upon this
observation, the program uses the following code to produce the header.

14 System.out.println();

15 for (int i = 0; i <= input.length() - 1; i ++)
16 {

17 System.out.print((i / 10) % 10);

18 }

19 System.out.println();

20 for (int i = 0; i <= input.length() - 1; i ++)
21 {

22 System.out.print(i % 10);

23 }

24 System.out.println();

25 System.out.println(input);

26 for (int i = 0; i <= input.length() - 1; i ++)
27 {

28 System.out.print(’-’);

29 }

30 System.out.println();

31

Listing 9.6 A program that demonstrates the use of pattern search methods of String (part 2). The part that prints
the header of the output

The program then executes pattern search. There are four different calls. The program announces
the method it is about to call, and then prints the return value.

32 System.out.print("indexOf (\"" + pat + "\"): ");

33 System.out.println(input.index0f(pat));

34 System.out.print("lastIndex0f (\"" + pat + "\"): ");

35 System.out.println(input.lastIndex0f(pat));

36 System.out.print("indexOf (\"" + pat + "\"," + pos + "): ");

37 System.out.println(input.index0f (pat, pos));

38 System.out.print("lastIndex0f (\"" + pat + "\"," + pos + "): ");
39 System.out.println(input.lastIndex0f(pat, pos));

40 }

41 |}

Listing 9.7 A program that demonstrates the use of pattern search methods of St ring (part 3). The part that calls the
search methods and prints the results

Here is the result of executing the code with the two lines from “Swing Low, Sweet Chariot”:

Enter the input: swing low, sweet chariot, comin’ for to carry me home
Enter the pattern: e
Enter the position 20

00000000001111111111222222222233333333334444444444555
01234567890123456789012345678901234567890123456789012
swing low, sweet chariot, comin’ for to carry me home

~N NN AW =

234 9 C(lasses Stringand StringBuilder

10
11
12

NN AW

(o]

11
12

indexOf ("e"): 13
lastIndexOf ("e"): 52
indexOf ("e",20) : 47
lastIndexOf ("e",20): 14

Here is another example with the two lines from the second verse of the hymn “Jerusalem”.

Enter the input: bring me my bow of burning gold! bring me my arrows of
desire!

Enter the pattern: ow

Enter the position 10

00000000001111111111222222222233333333334444444444555555555566
01234567890123456789012345678901234567890123456789012345678901
bring me my bow of burning gold! bring me my arrows of desire!
indexOf ("ow") : 13

lastIndexOf ("ow") : 48

indexOf ("ow",10) : 13

lastIndexOf ("ow",10): -1

9.4 Methods for Creating New String Data from Another

The final group of St ring methods that we learn consists of those that generate a new String data.
Let s be a String object.

1.

2.

7.

s.toUpperCase () returns a copy of s in which each lowercase letter is switched to its
uppercase version; if no lowercase letter appears in s, the method returns the exact copy of s.
s.toLowerCase () returns a copy of s in which each uppercase letter is switched to its
lowercase version; if no uppercase letter appears in s, the method returns the exact copy of s.

. s.substring(int startIndex) returns a copy of s starting from position

startIndex; if the index value is negative or greater than the length of s, the method produces
arun-time error StringIndexOutOfBoundsException.

. s.substring(int startIndex, int endIndex) returns a copy of s start-

ing at position startIndex and ending at position endIndex - 1; if either index
value is negative or greater than the length of s, the method produces a run-time error
StringIndexOutOfBoundsException.

. s.replace(String x, String y) returns a copy of s in which all the occurrences

of x are replaced with y; if x does not occur in s, the method returns the exact copy of s. If
there is only one occurrence of x in s, that occurrence is substituted with y. If there are multiple
occurrences of x in s and if some consecutive occurrences overlap, the occurrences are chosen
without overlap in a “greedy” fashion, as follows: The first occurrence chosen is the occurrence at
the lowest position. From the second occurrence on, the occurrence chosen is the one at the lowest
position that overlaps none of the previously chosen occurrences. For instance, "abababa" has
three occurrences of "aba", at positions 0, 2, and 4. The second occurrence overlap the first and
the last. Given "aba" as the first parameter, replace chooses the positions 0 and 4.

. s.replaceFirst (String x, String y) isa variant of replace where the substi-

tution applies only to the first occurrence of x.
s.trim() returns a copy of s without all of its leading and trailing white space characters.

9.4 Methods for Creating New St ring Data from Another 235

The next program demonstrates the use of the St ring generation methods. The method main of
the program calls three methods names changesOne, changesTwo, and changesThree (Lines
6-8).

import java.util.x*;
public class ModifyString
{
public static void main(Stringl[] args)
{
changesOne () ;
changesTwo () ;
changesThree () ;

© 0O U W~

}

Listing 9.8 A program that demonstrates the use of St ring methods for generating new String data (part 1). The
method main

The first method of three, changesOne, demonstrates the use of toLowerCase (),
toUpperCase (), and trim (). The method receives an input line from the user, stores it in a
variable named input (Lines 13 and 14), and then executes input . toLowerCase () (Lines 15
and 16), input.toUpperCase () (Lines 17 and 18), and input.trim() (Lines 19 and 20).
The program uses a String variable named result to receive the return values of these methods.

10 public static void changesOne ()

11 {

12 Scanner keyboard = new Scanner(System.in);
13 System.out.print("Enter the input String: ");
14 String input = keyboard.nextLine();

15 String result = input.toLowerCase();

16 System.out.println("lower: " + result);

17 result = input.toUpperCase();

18 System.out.println("upper: " + result);

19 result = input.trim();

20 System.out.println("trim: " + input.trim());
21 ¥

Listing 9.9 A program that demonstrates the use of St ring methods for generating new String data (part 2). The
method changesOne

In changesTwo, the program receives an input line (Lines 25 and 26) and two position values
(Lines 27-30) from the user, and then calls the method substring. To announce the action that has
been performed and its result, the program uses printf, with the format:

)

substring (%d) =%s%n
for the one-parameter version, and the format:
substring (%d, $d) =%s%n

for the two-parameter version. Each %d is the placeholder for the actual parameter, and each % s is the
placeholder for the return value.

The nextLine appearing in Line 30 is necessary, for the following reason: After changesTwo,
the method changesThree is called. The first action changesThree performs with a Scanner
is to read an input line with nextLine. To receive the two position values, changesTwo uses

236 9 C(lasses Stringand StringBuilder

nextInt. If there is no nextLine after the two calls of nextInt in changesTwo, the first
nextLine in changesThree returns the sequence of characters entered between the last numeral
of the second integer retrieved with nextInt in changesTwo and the return key that has been
pressed to enter the numbers.

22 public static void changesTwo ()

23 {

24 Scanner keyboard = new Scanner(System.in);

25 System.out.print("Enter the input String: ");

26 String input = keyboard.nextLine();

27 System.out.print("Enter start and end positions ");

28 int posl = keyboard.nextInt ();

29 int pos2 = keyboard.nextInt();

30 keyboard.nextLine ();

31 String result = input.substring(posl);

32 System.out.printf ("substring(%d): %s%n", posl, result);
33 result = input.substring(posl, pos2);

34 System.out.printf ("substring(%d, %d): %s%n", posl, pos2, result);
35 }

Listing 9.10 A program that demonstrates the use of St ring methods for generating new St ring data (part 3). The
method changesTwo

In changesThree, the program receives an input line (Lines 39 and 40) and two additional
lines representing the patterns (Lines 41-44) from the user, and then executes the pattern replacement
(Lines 45-48).

36 public static void changesThree ()

37 {

38 Scanner keyboard = new Scanner(System.in);

39 System.out.print("Enter the input String: ");
40 String input = keyboard.nextLine();

41 System.out.print("Enter pattern 1: ");

42 String patl = keyboard.nextLine();

43 System.out.print("Enter pattern 2: ");

44 String pat2 = keyboard.nextLine();

45 String result = input.replaceFirst(patl, pat2);
46 System.out.printf ("replaceFirst(%s,%s): %shn",
47 patl, pat2, result);

48 result = input.replace(patl, pat2) ;

49 System.out.printf("replace(%s,%s): %s%n", patl, pat2, result);
50 }

51 |}

Listing 9.11 A program that demonstrates the use of St ring methods for generating new St ring data (part 4). The
method changesThree

Here is one execution example of the code.

1 |Enter the input String: Sorry, Professor. My phone’s alarm didn’t
work. ..

2 |lower: sorry, professor. my phone’s alarm didn’t work...

3 |upper: SORRY, PROFESSOR. MY PHONE’S ALARM DIDN’'T WORK...

4 |trim: Sorry, Professor. My phone’s alarm didn’t work...

5 |Enter the input String: We have caught a possum resembling Fairway Frank.

6 |Enter start and end positions 10 20

9.5 Class StringBuilder 237

7 |substring(10)=ught a possum resembling Fairway Frank.

8 |substring(10,20)=ught a pos

9 |Enter the input String: I’'ve received an A in BIO101 and CHM101.
10 |Enter pattern 1: A

11 |Enter pattern 2: A+

12 |replaceFirst (A,A+)=I've received an A+ in BIO101l and CHM101l.

13 |replaceF (A,A+)=I've received an A+ in BIO101 and CHM101.

9.4.1 String.format

There is one static String method that is used often. The method is format. We can use this
method to mimic the action of printf and receive the result as a return value, instead of printing it
on the screen. For example,

1 |int x = 10;
double y = 1.7956;
3 |String output = String.format("x=Yd,y=%.2f", x, y);

stores the character sequence x=10,y=1.80 in the String variable output (because the
rounding for y occurs at the third position after the decimal point).

9.5 ClassStringBuilder

Quite often, we need to produce a long String output spreading over multiple lines, either on
the screen or to some file. We can build such an output using String concatenation, by adding
components one after another. A StringBuilder object can be used to build a String data
through insertion, deletion, and concatenation. To create a StringBuilder object, we use a
constructor, either with a String as its initial contents or without, as shown next:

1 |StringBuilder builderl = new StringBuilder();
StringBuilder builder2 = new StringBuilder("Hello, World!");

A String data that a StringBuilder object represents can be obtained by calling the method
toString. Some methods of String are available for StringBuilder too. They include
length, charAt, indexOf, lastIndexOf, and substring. The StringBuilder versions
of these methods are applied to the St ring data that the St ringBuilder object represents.

There are methods that are available in StringBuilder but not in String. They include
append, insert, and delete:

* The method append receives one formal parameter and appends its value to the contents. The
type of the parameter can be boolean, char, double, float, int, long, or String.

e The method insert receives two formal parameters. The first parameter is an int and specifies
where, in the contents of the StringBuilder object, an insertion must be made. The second
parameter specifies the actual data to insert. The type of the second parameter can be boolean,
char, double, float, int, long, or String.

e The method delete receives two int parameters, start and end, and removes the characters
at positions between start and end - 1 from the contents. The use of an invalid index results
in the run-time error of StringIndexOutOfBoundsException occurs. There is a one-
parameter version of delete. This version removes all the characters starting from the position
that the parameter specifies.

238 9 C(lasses Stringand StringBuilder

Here is a demonstration of how the methods of StringBuilder work. The program receives an
input line from the user, and then collects all the lowercase letters appearing in the input line. The
collected letters are simply connected without spacing in between and turned into a String data.
The method main stores its input in a variable named input (Lines 7 and 8) and calls the method
collect. The method stores the returned value in a variable named output (Line 9). The method
then presents the two values (Line 11).

The method collect receives a String data as a formal parameter, and returns a String
object (Line 13). The method instantiates a St ringBuilder object (Line 15). It then goes through
the characters of the input line one after another (Line 16). For each character encountered, if
the character is a lowercase letter (Lines 18 and 19), the method appends the character to the
builder (Line 21). After completing the examination, the method inserts the sequence -\n after
every ten characters of the output. To accomplish this task, the method iterates the sequence
builder.length(), ..., 1 with the variable i (Lines 24 and 25). At each round of the
iteration, if the value of i is a multiple of 10 (Line 26), the method inserts the sequence at position
i (Line 28). The values of i appear in decreasing order because an insertion changes the character
positions of all the existing characters appearing after the position of insertion.

1 |import java.util.x*;

2 |public class AlphabetCollection

3 |4

4 public static void main(String[] args)

5 {

6 Scanner keyboard = new Scanner(System.in);
7 System.out.print("Enter: ");

8 String input = keyboard.nextLine();

9 String output = collect(input);

10 System.out.println("========");

11 System.out.printf ("Input:%n’s’nhas become:%n%s%n", input, output);
12 ¥

13 public static String collect(String input)
14 {

15 StringBuilder builder = new StringBuilder ();
16 for (int i = 0; i < input.length(); i ++)
17 {

18 char ¢ = input.charAt(i);

19 if (¢ >= ’a’ && ¢ <= ’z’)

20 {

21 builder.append(c);

22 }

23 }

24 int ell = builder.length();

25 for (int i = ell; i >= 1; i --) {

26 if (i % 10 == 0)

27 {

28 builder.insert(i, "-\n");

29 }

30 }

31 return builder.toString();

32 }

33 |}

Listing 9.12 A program that demonstrates the use of StringBuilder objects

Exercises 239

N =

O © 00U W

—_

Here is an execution example of the code:

Enter: The title of this album is "Sgt. Pepper’s Lonely Hearts Club Band"

Input:

The title of this album is "Sgt. Pepper’s Lonely Hearts Club Band"
has become:

hetitleoft -

hisalbumis -

gtepperson-

elyeartslu-

band

Summary

String has a wide variety of methods. None of them change the contents of the String to
which the methods are applied.

B StringBuilder is a class for building a String object. Many methods of String can be
applied to StringBuilder objects.

M length and charAt provide the character length of the String and the character at the
specified position.

B The use of actual parameters outside the range for the charAt method produces St ringIndex
OutOfBoundsException.

B indexOf and lastIndexOf can be used to search for patterns in a String data and in a
StringBuilder data. Both methods return -1 if the pattern does not exist.

B String data and StringBuilder data can be compared using compareTo, equals,
startsWith, and endsWith.

B substring generates a substring.

B toUpperCase and toLowerCase return a new String data after changing the cases.

B trimreturns a new String data without leading and trailing white space characters.

B replace and replaceFirst return a new String data generated by substitution.

B String.format is a static method for generating the output of System.out.printf asa
String.

B The methods available for StringBuilder but not for String include append, delete,
and insert.

Exercises

1. String arithmetic Write a program named ReceiveAndPrint that receives a String

value s, an int value m, and a double value d from the user, and then prints the following:
* s

*m

e d

*m+ d + s

*m+ s + d

* s +m+ d

240

9 C(lasses Stringand StringBuilder

2. Concept check

—_

—

[«>RNeRR0 LN B Y O I S

(a) Name the String method for comparing a String with another just for equality.

(b) Name the String method for substituting all occurrences of one pattern with another.

(c) State whether or not the following statement is true: For a String word having length 10,
word.substring(1) andw.substring(1, 9) produce an identical result.

(d) State whether or not the following statement is true: The compareTo method for String
always produces +1, 0, or -1.

(e) Name the String method that returns, when applied to a String data, a new String
without leading and trailing whitespace characters.

. Connecting String values Write a public static method named connect. The method

receives two String formal parameters: wordl and word2. The method must return a
boolean. The return value must represent whether or not the last character of word1 is equal
to the first character of word2, or the last character of word?2 is equal to the first character of
wordl. If either wordl or word2 has length 0, the method must return false.

. String methods LetwordbeaStringdata whose valueis "School.of .Progressive.

Rock" (not including the quotation marks). State the return value of each of the following:
(a) word.length()

(b) word.substring(22)

(c) word.substring(22, 24)

(d) word.indexOf ("oo")

(e) word.toUpperCase ()

(f) word.lastIndexOf ("o")

(g) word.indexOf ("ok")

. Understanding String methods Suppose String variables w and pat are given as follows:

w = "Singin’_in_the_rain";
pat = "in";

State the return value of each of the following:
(a) w.indexOf (pat)

(b) w.indexOf (pat, 3)

(¢) w.indexOf (pat, 6)

(d) w.lastIndexOf (pat)

(e) w.length ()

(f) w.toUpperCase ()

(g) w.charAt (0)

. Printing the letters of a String variable Suppose word is a String variable. Using a for-

loop, write a code that prints the letters of word from the start to the end, one letter per line with
no indentation. For example, if the value of word is equal to the literal "hurricanes", the
output of the code is:

a3

n o8B QFrRKRC

Exercises 241

7. Printing the suffixes of a String variable Suppose word is a String variable. Using a

—_

oo

SO 0N W —

for-loop, write a code that prints the suffixes of word starting from the longest to the shortest,
one substring per line with no indentation. For example, if the value of word is equal to the literal
"hurricanes", the output of the code is:

hurricanes
urricanes
rricanes
ricanes
icanes
canes

anes

nes

es

s

. Concept check Let s bea String variable whose value is the literal "Mississippi". State

the return value of each of the following:

(a) s.length()

(b) s.indexOf ("si")

(c) s.toUpperCase () .indexOf ("si")

(d) s.toLowerCase () .indexOf ("si")

() s.substring(0,s.indexOf ("i"))

(f) s.substring(s.lastIndexOf("i"))

. Character order reversal Write a program named StringReverse thatreceives a String

[N

10.

11.

data from the user, and then creates the reverse of the input. For example, the program may run
as follows:

Enter an input String: Computer-Programming
The reverse of Computer-Programming is gnimmargorP-retupmoC.

The first line consists of the prompt (ending with " : ") and the input. The second line is the
output of the program after receiving the input. Try to use printf in producing the output.
Sum of all digits Write a program named NumeralSum that receives a St ring data from the
user, and then computes the sum of the values of all the numerals appearing in it. For example, if
the input is BIO542L, the sumis 5 +4 + 2 = 11.

Programming Projects

Cyclic shifts Suppose w is a String variable such that w. length () is greater than or equal
to 1. For a positive integer k whose value is between 0 and w. length (), the k-th left cyclic
shift of w is the String constructed from w by moving the first k characters of w after the last
character of w while preserving the order of the k characters. For instance, if w has the value
"abcdefgh" and k is 3, then the k-th left cyclic shift of w is "efghabc". If the value of
k is either equal to O or equal to w. length (), the k-th left cyclic shift produces a String
value equal to the value of w. Write a program named CyclicShift that does the following:
The program receives an input line from the user, and stores the input line in a variable w. The
program receives a nonnegative integer from the user, and stores it in an int variable k. The
program then constructs the k-th cyclic shift of w and prints it. Design your code so that the
program is able to receive a line that contains the whitespace as input. If the value of k is out of
range, the program reports that the value is invalid and stop. Here are execution examples of such
a program.

242 9 C(lasses Stringand StringBuilder

Enter your input line: How are you?
Enter the shift value k: 4

The 4-th cyclic shift of

"How are you?"

is

"are you?How "

AN N AW =

—

Enter your input line: How are you?
2 |Enter the shift value k: 34
3 |Invalid value for k

12. Factor ofa Stringdata The “minimum factor” of a character sequence w is the shortest prefix
s of w such that w is a repetition of s. For example, the minimum factor of "ababababab" is
"ab" and the minimum factor of "abcdef" is "abcdef". Put differently, the length of the
minimum factor of w is the smallest positive k such that the k-th left cyclic shift of w is equal to
W.

Consider computing the minimum factor of a given String object w using a for-loop that
iterates over the sequence 1, ..., w.length() with the variable k. At each round of the
for-loop, the program checks if the k-th left cyclic shift of w is equal to w. The smallest value of
k at which the shift produces the same St ring is the length of the factor.

Write a program named StringFactor that receives an input line from the user, and then
reports its minimum factor along with the length of the factor. Design the program so that it uses
a method that returns the minimum factor.

13. Enumerating all occurrences of a character pattern, part 1 Consider finding all occurrences
of a pattern pat in a String data input. We can solve the problem by checking at each
position of input, whether or not pat appears at the position. Write a program named
AllOccurrences that receives the values for pat and input from the user, finds all the
matching positions, and prints the total number of occurrences.

Here is an example of how such a code may work.

Input some text: I’'m singin’ in the rain, I’'m singin’ in the rain
Input pattern: in

Found at position 5.

Found at position 8.

Found at position 12.

Found at position 21.

Found at position 30.

Found at position 33.

Found at position 37.

Found at position 46.

The number of occurrences is 8.

— OO0 0NN WNBA W=

—_—

The smallest position possible for i is 0.

14. Enumerating all occurrences of a character pattern, part 2 Write another program named
AllOccurrencesAlt that solves the previous problem with character-by-character compar-
isons between the input and the pattern. The task can be accomplished using a double for-loop.

15. Switching between two neighbors Write a program named SwitchingBetweenNeighbors
that executes the following: The program receives a String value from the user. From the input,
the program creates a new String value by switching between every pair of the characters in
the input. The switching occurs between positions 0 and 1, between positions 2 and 3, and so. If
the input the user provides has an odd length, the last character will remain in the same position.
For example, the method should produce "cseicne" from "science".

Exercises

243

16. Playing with StringBuilder Write a program named DoubleInsertion that receives
a String value from the user using nextLine, and then builds a new String using

StringBuilder as follows:
¢ Initially the builder is empty.

* The program scans the characters of the input, from the beginning to the end, and executes the

following:

— If the position of the character is 2m for some nonnegative integer m, the program inserts

the character at position m.

— If the position is 2m + 1 for some nonnegative integer m, the program appends the

character at the very end.

The program must print the input in one line, and then the output in the next line. For example, if

abcdefghijkl is the input, the contents of the StringBuilder change as follows:

a
ab

acb

acbd
acebd
acebdf
acegbdf
acegbdfh
acegibdfh

—_
S VO R W=

—_—
N —

acegibdfhj
acegikbdfhj
acegikbdfhijl

p—
3

. All substrings

Write a program named A11Substrings that receives a String from the

user and produces all its nonempty substrings along with their ranges of character positions. Use a
double for-loop to generate all pairs of index values (i, j) to provide the substring method
as its actual parameters. Allocate three character spaces to each coordinate value. The output of
the program may look like:

0,

—_ O 0 XN AW =
WNNMNRFREF PP OOO

—_—

Enter your input string: karma
:k

:ka

:kar

:karm

1)

N

B W dWw

:ar
rarm
:r
:rm
:m

18. All anti-substrings

Write a program named A11AntiSubstrings that receives a String

from the user, and then produces all strings generated from the input by removing some substring.
Use a double for-loop that iterates over all possible index pairs (1, j) suchthati < j.Foreach

pair, remove from the input the characters having indexes between i and j -

1. Allocate three

character spaces to each coordinate value. Here is an example of how the code may work:

244 9 C(lasses Stringand StringBuilder
1 |Enter your input string: walking
2 [(0, 1):alking
3 |(o0, 2):lking
4 | (o0, 3):king
5 (0, 4):ing
6 (0, 5):ng
7 (0, 6):g
8 (1, 2):wlking
9 (1, 3):wking
10 (1, 4):wing
11 (1, 5):wng
12 (1, 6):wg
13 (2, 3):waking
14 | (2, 4):waing
15 (2, 5):wang
16 (2, 6):wag
17 (3, 4):waling
18 | (3, 5):walng
19 (3, 6):walg

20 (4, 5):walkng
21 (4, 6):walkg
22 (5, 6):walkig
19. All anti-substrings no.2 Write a program named Al11AntiSubstrings2 that receives a

—_ O N0 0O N AW =

—_—

\e}
[}

String from the user, and then produces all strings generated from the input by connecting two
substrings. The substrings are generated using index triples (i,7j,k) suchthat i < j < k
and connecting substring(0, i) withsubstring(j, k).Allocate three character
spaces to each coordinate value. Here is how the code may work.

Enter your input string: Davis
(o, 1, 2):a

(o, 1, 3):av
(0, 1, 4):avi
(0, 2, 3):v

(o, 2, 4) :vi
(0, 3, 4):i

(1, 2, 3) :Dv
(1, 2, 4):Dvi
(1, 3, 4):Di
(2, 3, 4):Dai

. Conversion to decimal Write a program named ToDecimal that receives a binary integer

from the user, and then prints its decimal representation. For example, 1111000 in binary is 120
in decimal and 11111011111 in binary is 2015 in decimal. Assume that the binary input is given
as a String value.

The Switch Statements 1 0

10.1 The Syntax of Switch Statements

The switch statement is a mechanism for controlling the flow of the program based on exact values
of one data. Often a switch statement is used in a menu, where the action to be performed is selected
based on a value.

A switch statement has three components, the header, the body, and the anchors. The header takes
the form of:

switch (x)

where x is a data and its type must be int, char, short, long, or String. The body is a series
of statements encompassed in a pair of curly brackets. An anchor is either in the form of default:
or case A: for some literal A whose type is the same as the type of x. Anchors appear between the
statements in the body. Multiple case-type anchors may appear in the body, but no two of them can
have the same associated literals. The anchor default : may or may not appear, but it cannot appear
more than once. Furthermore, break can be used as a valid statement.

For instance, with an int variable x, the following switch statements can be written:

1 |// Example No.1

2 |switch (x)

3 |4

4 case 11: System.out.print("Eleven");

5 default: System.out.print("Other");

6 case 8: System.out.print("Eight");

7T}

1 |// Example No.2

2 |switch (x)

3 |4

4 case 11: System.out.print("Eleven"); break;
5 default: System.out.print("Other"); break;
6 case 8: System.out.print("Eight");

7T}

© Springer Nature Switzerland AG 2018 245

M. Ogihara, Fundamentals of Java Programming,
https://doi.org/10.1007/978-3-319-89491-1_10

https://doi.org/10.1007/978-3-319-89491-1_10

246 10 The Switch Statements

Table 10.1 The output

Example no. The value of x
generated by the three

examples of switch L v Others
ElevenOtherEight Eight OtherEight
2 Eleven Eight Other
3 Eleven Eight

1 |// Example No.3

2 |switch (x)

3 |4

4 case 11: System.out.print("Eleven"); break;
5 case 8: System.out.print("Eight");

6 |

The anchors specify the entry points into the body. case A: means
“if the value of x is equal to A, start the execution of the body from here”

and default : means

“if none of the associated values of the case anchors match the value of x, start the execution of
the body from here”.

The execution of the body is terminated either when the execution reaches the end of the body or
when the execution encounters break. For this reason, the break appearing at the end of the body
is redundant and thus can be removed.

The above three examples produce the following results: In the first example, break does not
appear in the body. Therefore, after entering the body, the execution continues until the very end. In
the second example, each System.out .print statement is followed by break. Therefore, after
entering the body, the program executes the System.out .print following the anchor, and then
terminates the execution of the body. In the last example, if the value of x is either 11 or 8, the action
to be performed is the same as that of the second example. However, if the value of x is neither, there
is no action to perform, so nothing occurs.

Table 10.1 summaries this analysis.

To see how we can utilize a switch statement for a menu, consider printing various shapes on the
screen upon the user’s request. This program asks the user to choose, from a menu of possible shapes,
one shape to print:

khkkhkhkkkdhhhkhkdhhkhddhhkhddhhkhdhhdddhddrdddrxrrdhxx
This program prints a shape of your choice
Select by entering number

0. Right-angle triangle

1. Isosceles

2. Square

3. Parallelogram

Enter your choice: 3

Enter height: 10

O 001NN B W=

10.1 The Syntax of Switch Statements

247

10
11
12
13
14
15
16
17
18
19
20
21

Here is your figure!

HHHHHHHHHH
HH#HHHHHHRS
HH#HHHHH RS

HHAHHHHHHH
HAHHHHHHHH
HHFFHHHHHH
HHEHHHHHHHH
HHFHHHHHHH
HHHHHH#HHHH
HHAHHHHHHH

In Lines 8 and 9, the program prompts the user to choose the shape and its size, and receives 3 and
10 from the user. The output of the shape appears after receiving the size parameter.

As shown in the example, there are four possible shapes to choose in the menu. The user can

choose the size of each shape. The generation of the four shapes are accomplished by four methods,
rightAngle, isosceles, square, and parallelogram. Each of the four receives a size
parameter. The task of directing the flow to the generation of the shape chosen by the user can be
accomplished as follows using an if-else statement:

0~ O Uk W

The switch statement replaces these 1 £ and else 1if conditional tests with case names:

N O Ut WN

if (choice == 0)
{

rightAngle (height);
}
else if (choice == 1)
{

isosceles(height);
}
else if (choice == 2)
{

square (height)

}

else if (choice

{

3)

parallelogram(height);

}

switch

case
case
case
case

(

W N = O

choice)

rightAngle (height); break;
isosceles(height); break;
square (height); break;
parallelogram(height); break;

This probably makes it clearer that the choices are 0 through 3.

The entire program of the selective shape generation appears next. First comes the part in the

method ma in that receives the input from the user: the value for the selection variable choice (Lines
18 and 19) and the value for the height variable height (Lines 20 and 21). The switch statement we
discussed appears in Lines 25-31. This version lacks the final break, since a break statement at
the end of the body of a switch statement is redundant.

248 10 The Switch Statements

1 |import java.util.x*;

2

3 |public class ShapeSelection

4 |{

5 public static void main(Stringl[] args)

6 {

7 Scanner keyboard = new Scanner (System.in);

8 int choice, height;

9

10 System.out . pramtLm (" sk ok sk ok sk sk sk o sk ok ok ok ok ok sk ok sk sk ok ok sk ok ok sk ok ook okok 1)
11 System.out.println("This program prints a shape of your choice");
12 System.out.println("Select by entering number ")
13 System.out.println("O. Right-angle triangle ")
14 System.out.println("1. Isosceles ")
15 System.out.println("2. Square ")
16 System.out.println("3. Parallelogram ")
17 System.out . pramtLm (" sk sk sk ok sk sk sk s sk ok sk ok kok sk ok sk sk ok ok sk ok ok