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Preface

This book is an outgrowth of lectures given at the University of Michigan at various
times from 1966-1996 in a first-year graduate course on quantum mechanics. It
is meant to be at a fairly high level. On the one hand, it should provide future
research workers with the tools required to solve real problems in the field. On the
other hand, the beginning graduate courses at the University of Michigan should
be self-contained. Although most of the students will have had an undergraduate
course in quantum mechanics, the lectures are intended to be such that a student
with no previous background in quantum mechanics (perhaps an undergraduate
mathematics or engineering major) can follow the course from beginning to end.

Part I of the course, Introduction to Quantum Mechanics, thus begins with a
brief background chapter on the duality of nature, which hopefully will stimulate
students to take a closer look at the two references given there. These references
are recommended for every serious student of quantum mechanics. Chapter 1 is
followed by a review of Fourier analysis before we meet the Schrddinger equation
and its interpretation. The dual purpose of the course can be seen in Chapters 4 and
5, where an introduction to simple square well problems and a first solution of the
one-dimensional harmonic oscillator by Fuchsian differential equation techniques
are followed by an introduction to the Bargmann transform, which gives us an
elegant tool to show the completeness of the harmonic oscillator eigenfunctions
and enables us to solve some challenging harmonic oscillator problems, (e.g., the
case of general n for problem 11). Early chapters (7 through 12) on the eigenvalue
problem are based on the coordinate representation and include detailed solutions
of the spherical harmonics and radial functions of the hydrogen atom, as well
as many of the soluble, one-dimensional potential problems. These chapters are
based on the factorization method. It is hoped the ladder step-up and step-down
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operator approach of this method will help to lead the student naturally from
the Schrédinger equation approach to the more modern algebraic techniques of
quantum mechanics, which are introduced in Chapters 13 to 19. The full Dirac
bra, ket notation is introduced in Chapter 13. These chapters also give the full
algebraic approach to the general angular momentum problem, SO(3) or SU(2),
the harmonic oscillator algebra, and the SO(2,1) algebra. The solution for the latter
is given in problem 23, which is used in considerable detail in later chapters. The
problems often amplify the material of the course.

Part II of the course, Chapters 20 to 26, on time-independent perturbation theory,
is based on Fermi’s view that most of the important problems of quantum mechan-
ics can be solved by perturbative technigues. This part of the course shows how
various types of degeneracies can be handled in perturbation theory, particularly
the case in which a degeneracy is not removed in lowest order of perturbation
theory so that the lowest order perturbations do not lead naturally to the symmetry-
adapted basis; a case ignored in many books on quantum mechanics and perhaps
particularly important in the case of accidental ncar-degeneracies. Chapters 25
and 26 deal with magnetic-field perturbations, including a short section on the
Aharanov—-Bohm effect, and a treatment on fine structure and Zceman perturbations
in one-electron atoms.

Part III of the course, Chapters 27 to 35, then gives a detailed treatment of
angular momentum and angular momentum coupling theory, including a derivation
of the matrix elements of the general rotation operator, Chapter 29; spherical
tensor operators, Chapter 31; the Wigner—Eckart theorem, Chapter 32; angular
momentum recoupling coefficients and their use in matrix elements of coupled
tensor operators in an angular-momentum-coupled basis, Chapter 34; as well as
the use of an SO(2,1) algebra and the stretched Coulombic basis and its power in
hydrogenic perturbation theory without the use of the infinite sum and continuum
integral contributions of the conventional hydrogenic basis, Chapter 35.

Since the full set of chapters is perhaps too much for a one-year course, some
chapters or sections, and, in particular, some mathematical appendices, are marked
in the table of contents with an asterisk (*). This symbol designates that the chapter
can be skipped in a first reading without loss of continuity for the reader. Chapters
34 and 35 are such chapters with asterisks. Because of their importance, however,
an alternative is to skip Chapters 36 and 37 on the WKB approximation. These
chapters are therefore placed at this point in the book, although they might well
have been placed in Part II on perturbation theory.

Part IV of the lectures, Chapters 38 to 40, gives a first introduction to systcms
of identical particles, with the emphasis on the two-electron atom and a chapter
on variational techniques.

Parts I through IV of the coursc deal with bound-state problems. Part V on scat-
tering theory, which might constitute the beginning of a second semester, begins
the treatment of continuum problems with Chapters 41 through 56 on scattering
theory, including a treatment of inelastic scattering processes and rearrangement
collisions, and the spin dependence of scattering cross sections. The polarization
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of particle beams and the scattering of particles with spin are used to introduce
density matrices and statistical distributions of states.

Part V1 of the course gives a conventional introduction to time-dependent per-
turbation theory, including a chapter on magnetic resonance and an application of
the sudden and adiabatic approximations in the reversal of magnetic fields.

Part VII on atom-photon interactions includes an expansion of the quantized
radiation field in terms of the full set of vector spherical harmonics, leading to a
detailed derivation of the general electric and magnetic multipole-transition matrix
elements needed in applications to nuclear transitions, in particular.

Parts V through IX may again be too much material for the second semester of
a one-year course. At the University of Michigan, curriculum committees have at
various times insisted that the first-year graduate course include either an introduc-
tion to Dirac theory of relativistic spin %—particles or an introduction to many-body
theory. Part VIII of the course on relativistic quantum mechanics, Chapters 69
through 77, and Part IX, an introduction to many-body theory, Chapters 78 and
79, are therefore written so that a lecturer could choose either Part VIII or Part IX
to complete the course.

The problems are meant to be an integral part of the course. They are often
meant to build on the material of the lectures and to be real problems (rather than
small exercises, perhaps to derive specific equations). They are, therefore, meant
to take considerable time and often to be somewhat of a challenge. In the actual
course, they are meant to be discussed in detail in problem sessions. For this reason,
detailed solutions for a few key problems, particularly in the first part of the course,
are given in the text as part of the course (e.g., the results of problem 23 are very
much used in later chapters, and problem 34, actually a very simple problem in
perturbation theory is used to illustrate how various types of degeneracies can be
handled properly in perturbation theory in a case in which the underlying symmetry
leading to the degeneracy might not be easy to recognize). In the case of problem
34, the underlying symmetry is easy to recognize. The solution therefore also
shows how this symmetry should be exploited.

The problems are not assigned to specific chapters, but numbered 1 through 55
for Parts I through IV of the course, and, again, 1 through 51 for Parts V through
IX, the second semester of the course. They are placed at the point in the course
where the student should be ready for a particular set of problems.

The applications and assigned problems of these lectures are taken largely from
the fields of atomic and molecular physics and from nuclear physics, with a few
examples from other fields. This selection, of course, shows my own research
interests, but I believe, is also because these fields are fertile for the applications
of nonrelativistic quantum mechanics.

I first of all want to acknowledge my own teachers. I consider myself extremely
fortunate to have lcarned the subject from David M. Dennison and George E.
Uhlenbeck. Among the older textbooks used in the development of these lectures,
Iacknowledge the books by Leonard 1. Schiff, Quantum Mechanics, McGraw-Hill,
1949; Albert Messiah, Quantum Mechanics, Vol. I and 11, John Wiley and Sons,
1965; Eugene Merzbacher, Quantum Mechanics, John Wiley and Sons, 1961; Kurt
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Gottfried, Quantum Mechanics, W. A. Benjamin, Inc., 1966; and L. D. Landau
and E. M. Lifshitz, Quantum Mechanics. Nonrelativistic Theory. Vol. 3. Course of
Theoretical Physics, Pergamon Press 1958. Hopefully, the good features of these
books have found their way into my lectures.

References to specific books, chapters of books, or research articles are given
throughout the lectures wherever they seemed to be particularly useful or relevant.
Certainly, no attempt is made to give a complete referencing. Each lecturer in
a course on quantum mechanics must give the student his own list of the many
textbooks a student should consult. The serious student of the subject, however,
must become familiar with the two classics: P. A. M. Dirac, The Principles of
Quantum Mechanics, Oxford University Press, first ed. 1930; and Wolfgang Pauli,
General Principles of Quantum Mechanics, Springer-Verlag, 1980, (an English
translation of the 1933 Handbuch der Physik article in Vol. 24 of the Handbuch).

Finally, I want to thank the many students at the University of Michigan who have
contributed to these lectures with their questions. In fact, it was the encouragement
of former students of this course that has led to the idea these lectures should
be converted into book form. I also thank Prof. Yasuyuki Suzuki for his many
suggestions after a careful reading of an early version of the manuscript. Particular
thanks are due to Dr. Sudha Swaminathan and Dr. Frank Lamelas for their great
efforts in making all of the figures.
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1
Background: The Duality of Nature

(Good references for this chapter on the historical background are the article
by Niels Bohr, entitled “Discussions with Einstein. Epistemological Problems in
Atomic Physics.” In Albert Einstein. Philosopher-Scientist. Vol. VII of Library of
Living Philosophers, Paul A. Schilpp, ed., Evanston, Illinois, 1949; and the lit-
tle book by Werner Heisenberg, The Physical Principles of the Quantum Theory,
Dover Publications, 1949.)

The results of the experimental developments of the late nincteenth and early
twentieth century led us to a picture of nature that showed the duality of nature on
the atomic scale. Both material particles and electromagnetic radiation show both
particle-like and wave-like aspects. However, particles can be localized in space-
time. In classical physics, x,y,z,t for a particle can be specified exactly. Particles are
also indivisible. Half an electron, or a fractional part of an electron, does not exist.
On the other hand, waves cannot be localized. They must be somewhat extended in
space-time to give a meaning to wavelength, A, and frequency, v. Waves are always
divisible. Partial reflection and transmission of a wave at an interface between two
media can exist.

This duality poses a real dilernma: The particle picture seems incompatible
with that of waves, in particular, the interference effects. Yet, it is precisely the
interference effects that detcrmine A and v, which via the deBroglie relation, p =
h /A, and the Bohr relation, E = hv, determine the dynamical attributes of the
particle.
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A The Young Double Slit Experiment

To illustrate the paradoxical situation, consider the classical interference experi-
ment of the Young double slit. We could think either of light waves, electromagnetic
radiation, or of matter waves, electron deBroglie waves, going through the double
slit arrangement.

The incident beam can be made so weak that, on average, only one photon (or
electron) at a time will pass through the apparatus and be incident on the pho-
tographic plate. Because only one photon at a time goes through the apparatus,
the possibility of interference between different photons is eliminated. An inter-
ference pattern will still be on the photographic plate, however. Clearly, a photon
that has reached the photographic plate must have passed through either slit 1 or
slit 2. Imagine it was slit 1; then, if slit 2 had been closed, no interference pattern
would have occurred. Hence, the seemingly terrible paradox that the behavior of
the photon is influenced by the presence of a slit, through which it cannot have
passed.

The resolution of the paradox rests on the fact that the classical causal space-
time description of nature which rests on the “clear-cut separability between the
phenomena and the means of observing these phenomena,” does not apply. On the
atomic scale, an “uncontrollable interaction between the object and the measuring
instrument” exists. (The words in quotation marks are those of Niels Bohr.) As
a result, the above experiment can be set up in either of two “complementary”
ways; as above, and as shown in Fig. 1.1, to exhibit the interference fringes but in
a setup that makes it impossible to answer experimentally the question: “Through
which slit did the photon pass?”. Alternatively, we could alter the experimental
setup to answer experimentally the question: “Through which slit did the photon
pass?” In setting up the experiment in this second way, however, we have lost the
possibility of a precise wavelength measurement through the interference pattern.
The interference pattern will have been wiped out.

Becausc our knowledge of phenomena on the atomic scale is restricted, a wave-
ficld must be associated with the particle motion. For any wavefield, an uncertainty
relation exists connecting position and wavelength; AkAx = 2m, where k =
27 /A. This relation follows from straightforward Fourier analysis of a wave packet
of finite extent in space. Now, with the deBroglie relation, p = h/A, this leads to
ApAx = h, the Heisenberg uncertainty relation.

B More Detailed Analysis of the Double Slit
Experiment
In region I, to the left of the single slit (see Fig. 1.1), we assume we have a

plane wave effectively of infinite extent in the y direction and proceeding in the
x direction. Then, in region I, p, = 0; 1. €., p, is known precisely, so Ap, = 0;
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FIGURE 1.1. Conventional double slit experimental sctup. Rigidly fixed slits.

The y position of the particle is completely uncertain.

At the position of the double slit (with massive, rigidly fixed slits bolted to
massive apparatus; see the figures in the article by Bohr), no experimental means
of determining through which slit the photon is passing exist. It must go through
either of the two slits. Hence, at this x-position, Ay = d. In its passage through
one of the slits, the photon will interact with the slit jaw, which is massive, bolted
firmly to a huge apparatus, and it can absorb recoil momentum without moving,
Most of the photons end up within the first few bright fringes near the central
maximum. We cannot predict which fringe, however. Let us assume the photon
ends up in the n'” bright fringe, where n is a small integer. Then, the change in p,
at the double slit position is

h h v,

APy%Pd:Xa“'*X"E- )
Note
B=d-y)+1°
5 =0Gd+y)+L% 2
S0
I3 — 1 = 2y,d =~ (i — {,)2L, 3)
and

L= @)
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Therefore, at the x-position of the double slit, with Ay ~ d,
h h ni
a2 =, 5)
where the uncertainty in the y-component of the momentum at the position of the
double slit must be of the same order of magnitude as the change of y-component
of momentum of a photon that ends up at the interference maximum given by a
relatively small integer, n. Thus, at the double slit,

ApyAy = nh, 6)

where n is a relatively small number.

C Complementary Experimental Setup

The question now arises: Could we have modified the experimental setup at the
x-position of the double slit to narrow the uncertainty in y at this x-position? In
particular, could we have modified the experimental setup to answer experimentally
the question: Through which slit did the photon pass? We could do this by making
the slit jaws movable, so the momentum exchange between photon and slit jaw
could be detected. Bohr imagines the very light slit jaws being suspended from
springs, so the photon will jiggle the slit as it goes through the slit opening. (See
Fig. 1.2, drawn in the style of the Bohr article.) Imagine the photon ends up at
the position where the central interference maximum would have occured in the
conventional double slit experiment, (with the apparatus of Fig. 1.1, that is, at the
most likely final position of the photon for the experimental setup of Fig. 1.1).
Then,
N 9 R d h A h

Po = Prows S P X0 X T 2y 200 w0)]
where (y; — yo) is the distance between the first and zeroth (central) bright fringe in
the interference pattern of the conventional experimental setup. This actual change
in the photon’s momentum at the position of the slits would now lead to a recoil in
the slit jaws, which can be detected. An uncertainty will still exist in the y-position
of the photon as it passes through the slit, because of this jiggling of the slit; even
though our jiggle detectors can tell us through which slit the photon has passed (so
Ay < d). Now, let us use the uncertainty relation to determine the best possible
Ay caused by to the jiggling of the slit,

h ~ R x 2(y1 — o)
Apy h

(7

Ay =~ = 2(y1 — yo)- (8)
That is, Ay is of the order of the distance between bright fringes in the conventional
double slit setup. This Ay, however, is now due to the jiggling of the slit. If the
slit jiggles on average by an amount equal to the distance between interference
fringes, the intcrference pattern on the photographic plate will surely be washed out
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FIGURE 1.2. Complementary double slit experimental setup. Movable slits.

completely. In answering experimentally the question through which slit did the
photon pass, we have by altering the experimental setup destroyed those features
of the setup that previously made the precise wavelength measurement possible.
This illustrates Bohr’s complementarity principle. We can set up the double slit
experiment to get very precise wavelength (hence, momentum) information about
the photon. In this case, we cannot make a position measurement of the photon
precise enough to tell us through which slit the photon passed. Alternatively, if we
use the complementary experimental setup, which can answer this question about
the position of the photon experimentally, we cannot determine the wavelength
(hence, momentum) of the photon with sufficient accuracy.

Because we can have only partial position and partial momeuntum information
about a photon or a material particle on the atomic scale, it becomes natural to
associate a wave packet with the motion of the particle (either photon or material
particle). A wave packet can give us partial position and wavelength (or wave-
number k) information through the wave packet relation, Ak, Ay = 27, which
follows from the Fourier analysis of the wave packet, the subject of the next chapter,



2

The Motion of Wave Packets: Fourier
Analysis

Because we will need to work with wave packets of finite extent, it will be very
useful to first give a brief review of Fourier analysis.

A Fourier Series

We shall start by studying periodic functions of infinite extent in space. First con-
sider periodic functions f (x) with a periodicity interval 27, such that f(x +2m) =
J(x).Forreal functions f(x), we usually use Fourier expansions in cosine and sine
functions. For the complex functions of quantum theory, it will be advantageous
to use a Fourier expansion in exponential functions.

1. Fourier Expansion:

fe) =) ae™, (1)
where we will exploit the orthogonality of the exponential functions.
2. Orthogonality:

n
/ dx' e = 278, )
-7

which is expressed in terms of the usual Kronecker delta. With this orthogonality
relation, the expansion coefficients, a,, can be determined via the Fourier inversion
theorem. If we multiply f(x) by the complex conjugate of a specific exponential,
say, e "™ with some specific, fixed m, and integrate both sides of the resultant
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equation over the periodicity interval, say, from —x to 4, the orthogonality
property will pick out one specific a,,, with value given by the Fourier coefficients.

3. Fourier coefficients:

i " -
Ay = — | dx' f(xNe™ " . 3)
27 J_,

Substituting this coefficient back into the Fourier expansion, we get the

4, Fourier expression for f(x):

.1 f" : ,
fe= 3 5 / X e @
n=—oc
It will be convenient to introduce orthonormal functions, ¢,(x),
T
Pn(x) = e, 5
o (5)
The four basic Fourier equations can then be rewritten as
o0
fO =" bugu(x), (6)
n=-—00
g
/ dx,qb;(x,)(bm (xl) = 8um. N
b= [ ax fer8160, ®
-
o0 n
fo=3y f dx' f () (DB (x). ©)
n=—00Y T

Finally, it will be convenient to use a periodicity interval of length (27), where {
has the dimension of a length, where now f(x + 2[) = f(x) and the orthonormal
functions can be expressed as

,_—e i
/21
The four basic Fourier equations can then be rewritten as
> | R
(x) = e, (10
f ;,c "V )
L i(n—m)
. d llnfm‘T‘T(:Snm’ ]1
7)., x'e an
I
Cpn = —= dx’ f(xYe™ 7T, 12
7l 2
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+
P rx)
f) = 21”;0 | axrne (13)
It will now be useful to introduce the wavenumber, &,

2 21
ky == = Ey with A, = =, (14)

/ Ay n
50 ¢, (x) = ' e'** This relation will be particularly useful in making the tran-

sition from the Fourier series to the Fourier integral for a wave packet of finite
extent.

B Fousier Integrals

Now suppose the repeating function, with periodicity interval (2/), has the form of
a wave packet of extent ~ a, witha < [, which repeats from —o0 to 400, as shown
in Fig. 2.1. Now, suppose we let [ — oc, keeping the wave packet unchanged,
with a fixed. Then, by taking the limit { — oo, provided f(x) — O sufficiently
rapidly as x -+ o0, we can make the transition from a periodic function to a
nonperiodic one, i.e., a transition from an infinite wave train to a wave packet of
finite extent in space. As [ — oo, the spectrum of possible &, goes from a discrete
spectrum to a continuous one, because

k,!+1~kn:%—>0 as | — oo (15)

Because the number of spectral terms in a k-space interval dk is (see Fig. 2.2)
dk - dk
(interval between successive k,) /[’

the discrete sum over # in the Fourier series goes over to a continuous integral

,,,Z:oc / m/l

JAWIAN FANFAN FAWTAN FANTAN FAWAN

s Vo Vg Vo Vi Vo oss

-3l J\/\ -l J\/\' +/ J\-/k +31
—a—

M A

FIGURE 2.1. Periodic wave form, ! — o0, a fixed.

+
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FIGURE 2.2. The spectrum of k values, &, = nx/L. The number of spectral terms in the
dk interval = r:dk /ﬂ.

Thus, the Fourier expression for f(x) becomes
11 o . ,
fx) = —— f dk f dx’ f(x)e =), (16)
2AnJ 0 .

We can then think of the Fourier development in terms of a Fourier amplitude
function, g(k), as

1 o .
(x) = ———/ dkg(kye'™, a7
f V2 J o d
with amplitude function g(k), the so-called Fourier transform of f(x), given by

glk) = dx' f(x"e . (18)

1 [=.4]
2 [m
Note, however, the orthonormality integral becomes divergent when k = £/,

[ Ik
— dx'e* % = sk — k). (19)
2r o

The Kronecker delta becomes a Dirac delta function.

C The Dirac Delta Function

If we rewrite the Fourier series in terms of a limit of a sum over a finite number of
terms,

T +N
s = Jim [ axse) 3 e 20

or, similarly, if we rewrite the Fourier integral as

o0 1 [l : ,
f(x):klim / dx’f(x’)z— f dke'* =5, @2n
0> g T

_ko
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the function

+N 1 +ko . ,
K(x,x)= Z D) (x") or K(x,x") = 2——/ dke* =" (22)

n=-N TS —ky

becomes, in the limit of large N or large k¢, a function strongly peaked at x = x’
with oscillations of very small amplitude for x # x’. Keeping in mind that the
real limiting processes should be those expressed by egs. (20) and (21), physicists
blithely interchange the infinite sum or the infinte k-integral with the x’-integral,
through the definition of the Dirac delta “function”

Y g () = 8(x — x')

1 [ : :
— dke™ 7 = §(x — X)), (23)
2r J

where the Dirac delta “function” is not at all a function in the mathematician’s
sense. It is what mathematicians call a “distribution” (see, e.g., an appendix in Vol.
I of the books by Messiah). The Dirac delta function “picks out” the value x’ = x
for the function being integrated. It has meaning only through the integrals. By
itself, it diverges at the value x” = x. The Dirac delta function is defined through
the following properties:

Sx—xH)=0 for x' # x. 24

For x’ = x, the Dirac delta function becomes co in such a way that

b
f dx's(x —xy=1, if x'=x is in the interval (a, b), (25)

and
o
| axrase )= seo 26)
Our limiting process, given through eq. (21), e.g., would give
| A inko(x — x’
St —x) = lim —— [ dke ) — jim SR X))
ko—00 27T —ko ko—>oc T[(X - X/)

See Fig. 2.3 for a plot of this diffraction-like peaked function for finite ky. This
representation of the Dirac delta function is not, however, unique. Another example
(of the infinite number of possibilities) would be

€

S(x — x') = Liim (28)

Ter0[(x — x') + €]
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D Properties of the Dirac Delta Function
The Dirac delta function is an even function of its argument

3(—x) = §(x). (29)
Other properties, such as

d

x——8(x) = —&(x), (30)
dx

follow by integration by parts, because delta function relations have meaning only
through their applications within integrals
b

b b b
f dxx8'(x) = [xé(x)] —/ dxé(x) = —-[ dxd(x). (3hH
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If ¢ is a real number,
1
Slax) = —8(x). (32)
lal
Note the absolute value sign follows from

/OC dxé(ax) = éfoc d(ax)é(ax) = :x‘:al/c’o dx'8(x"), (33)

00 (o9}

where the upper sign applies for a > 0 and the lower sign applies for a < 0,
because the change of variable ax = x’ interchanges the limits in this latter case.
If the variable in the delta function is itself a function of x,

8(p(x)) = Z ,,¢,) 8~ 5 (34)

where the x, are the zeros of the function, ¢(x), and the sum is a sum over all such
zeros. As a very specific example,

s§(x*—a?) = 8(x —a) +8(x + a)). (35)

Tl

E Fourier Integrals in Three Dimensions

It is straightforward to generalize the Fourier series and Fourier integrals to
functions in our three-dimensional (3-D) space, f(x, y, z). For a 3-D wave packet,

(x >3f o[ an [ anc[ ax [ ar

dz’ f(x y z )et[k (= )k (y =V )k (-2 )l (36)

flx,y,2) =

-0
It will be useful to introduce the following shorthand notation for this Fourier
integral expression

O = G5 f dk f a7 f e, 37)
where
= 1 z(k r)
1O = ;= [ dkathre (3%)
)2
5(6) = (—2%)7 [ 5@, (39)

(Note, in particular, the symbol, dr, when it follows an integral sign, is merely a
shorthand notation for d7 = dxdydz and the single integral sign preceding dr is
shorthand for a triple integral over all of 3-D space.)
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F The Operation -2

i dx
We note

dkg()k,e'®D. (40)

7Ef()m(n)%

Thus, we see, if g(lz) is the Fourier transform of f(¥), /“(’g(IZ) is the Fourier transform

of [R? F(), similarly, —(k - k)g(k) is the Fourier transform of V2 f(x, y, z), and
S0 Oon.

G Wave Packets

A plane scalar wave propagating in the direction of the k vector can be given by
the scalar function

Y@, 0 = AeETn, (41)

with constant amplitude, A, where the circular frequency, o, is in general related
to k through the dispersion law

o=fE), o w=fk), wih k=k| (42)

where the latter is valid for an isotropic medium. Moreover, in a nondispersive
medium, in vacuum, e.g., w = ck.

To go from this infinite wave train to a wave packet of finite extent in space, we
need to form the wave packet from a superposition of amplitudes with different
k-values. For a 3-D wave packet,

. 1 o e ma

YiF, 6 = - / dk A(k)e' ¥ en, (43)

(27)2

To simplify the discussion, assume the wave packet proceeds in one dimension
p

only, say, the x-direction. Then,

1 fw e

I dkA(k)e’uu—w”. (44)
V2rJ -

To use a very simple example assume A(k) is different from zero only in an
interval, kg — —Ak =k <kytj ! Ak, and moreover, assume A(k) has the constant
value, A, in t]m. k-space 1nterval If the interval Ak is not too large, we can expand
w(k) about ko, and retain only the dominant terms,

‘ﬁ’(x, t) =

d
wik) = (ko) + k= ko)(2) + -+ (4s)

and the wave function can be written as
ko+ é Ak

W, 1) = —gillax—atiox] / dket k—kols—(%0]
2 k

0‘%[}/(
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Vigoup = (dw / dK),

onase = W(ko) 7 kg

FIGURE 2.4. The wave packet of eq. (46).

N dw
7 sin{ S+ {x — (———)Ot]
— ;Ael fkox "&)(ko)t] ( ) ) (4‘6)

(dk )Ot]

This wave packetis shown in Fig. 2.4. We note, in particular, the individual wavelets
travel with the phase velocity

w(ko)
Uphase = koo . 47)

The wave train itself, the envelope of the packet, however, travels with the group
velocity

Veroup = (%)0' )

If we assume most of the energy of the wave train lies in the large central peak of the
wave envelope, we can take the extent of the wave packet to be Ax =~ 2%. Even
for more sophisticated functions, A(k), we will find the Fourier integral analysis
always gives

AxAk ~= 2, (49)

neglecting factors of order 2 in this approximation. This is the uncertainty relation
for a wave packet. Note, in particular, it follows for all wave packets, merely from
the Fourier analysis.
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H Propagation of Wave Packets: The Wave Equation

The wave equation, the propagation law for the wave, is intimately related to the
dispersion law

w = f(k). (50)
In one dimension, with
1 .
(x, 1) = —— f dkAk)e'**n, (51)
v V2
13 1 ,
— - =¥ = —= [ dkwA(k)e'** ", 52
T = = [ dhwawe (52)
Iyn 3" 1 .
=) ¥ = — | dkk"A(k)e' 0, 53
(5) 5v ml ke 3)
For functions f(k) that can be given by Taylor expansions,
fl) = ank”,
n={}
we then have
13 1 .
—— W = ——= [ dkf(K)A(k)e"* . 54
1(G32)¥ = 7= [ arrwawe (54
Eqgs. (52) and (54) then lead to
13 19 1 ;
e = = —— | dklw — f()]AGK)' ™ 0 =0, (55
[ e f(l.ax)}ﬁ m/ [w — FIAKe (55)
so the dispersion law, w = f(k), leads to the wave equation
13 19
———— =0. 56
[ i ot f(iax)}"/ (56)
For the special case of a nondispersive medium, with w = ck, we would have
148 0 .
Y00 e ke — ekl Ao = o, (57)
i ot i dx

Sothat, seemingly, the wave equation in this simple case of anondispersive medium
becomes

13y oy

—— =

c ot dx
This equation looks like a strange wave equation, however. Its solutions would be
Y(x,t) = F(x —ct), where F is any arbitrary function. That is, this wave equation
would permit wave propagation only in the positive x-direction and, hence, would
correspond to a nonisotropic medium. The difficulty here is not with our method
of arriving at the wave equation, but that we have written the dispersion law in a

0. (58)
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way that builds in this anisotropy. For a nondispersive, isotropic medium, we have
to express the dispersion law in the form

w® — k=0, (59)
or in three dimensions
w* — Pk} + k] + k) =0. (60
The technique we have used to arrive at the wave equation would then give us

2 2
1oy %y (61)

in one dimension, and
—— — Vi =0 (62)

in three dimensions.

Note, finally, our method of arriving at the wave equation from the dispersion
law is not a derivation of the wave equation. Our method may also not give a unique
expression for the wave equation.



3

The Schrodinger Wave Equation and
Probability Interpretation

A The Wave Equation

With the Bohr relation fordthe energy, E = Aw, and the deBroglie relation for t{xe
momentum vector, p = fik, we sec the dispersion relation for waves, @ = f(k),
goes over to arelation between energy and momentum. For a conservative system,
this relation can be expressed through E = H(p, r), where H is the Hamiltonian
function. In particular, for a free, nonrelativistic particle, of mass m, this “dispersion
relation” becomes

E:(P'P).

1
2m )
Now, convert our wave packet expansion from an expansion in % 1o one in p
o 1 o e 1(5F
V(1) = ; f dpA(p)er 7T ED, )
(2nh)2
$0
how 1 " e temd
- = e f dPEA(p)erT™ Y, ©)
i dr (2mh):
K 1 AP P L iaz
=V = f a5 D) f(pei BrEn, )
2m (2nh)? 2m
As aresult, we get
hay A 1 R BB tiar g
e eV = s / 4p[E - e p“)“]””’"":” =0, (5
i ot 2m (27h)z 2m
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and the relation between E and p leads us to the wave equation for a free particle,
the Schrédinger equation for a free particle,

h v K2

e = —z—r;vzxw, 7). (6)
The group velocity of a wave packet now becomes
. do dE p .
Varoup = -d—]_(' = ?d—l—)- = ; = Vparticle- (N

The uncertainty relations for waves go over to the Heisenberg uncertainty relations

Ak Ax ~ 21 — Ap.Ax = h
Ak, Ay ~ 21 — Apy Ay~ h
Ak Az = 2w — Ap,Az = h. ®)

For a particle subject to a conservative force derivable from a potential V(x, y, z),
with

E:H(ﬁ’;):_-_'+v(xsyvz)s (9)
2m

this relation between E and p gives the wave equation

haw B,
— e m = — VW V(x, y, )W (10)
i at 2m

Finally, we end with a remark about relativistic wave equations. The relation
between energy and momentum for a relativistic particle, of rest mass my,

EZ
—_— p2 = mgcz’

(1n
would lead us to a wave equation both second order in time and space derivatives,
and again involving a single wave function W(7, ). (See Problem 2). This equa-
tion leads to the so-called Klein—Gordon equation. An alternative solution for the
relativistic wave equation was given by Dirac, whose wave equation is first order
in both time and space derivatives. Essentially, it comes from the square root of
the above dispersion relation and, therefore, leads to both positive and negative
energy solutions. It is based not on a single ¥, but on a number of v, actually,
witha = 1, ..., 4. We shall come back to the Dirac equation near the end of the
book.

B The Probability Axioms

To use the Schrodinger wave equation, we need to understand the physical meaning
of the wave function, W. We begin with a few remarks:

1. The particle and the wavefield are equally real. (The wavetfield is not a ghost
field guiding the particle.) Both are pictures in the human mind to account for
physical reality; both, however, have their limitations.
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2. In practice, the wavefield is used in the following way: The result of a certain
experiment lets us represent the particle motion by a wave packet at a certain time.
The wave equation is then used to predict how the experiment evolves in time.

3. Because of the uncontrollable interaction of object and measuring instrument,
we are led to a probability description.

The probability of finding a particle within a volume element dxdydz about a
point x, y, z at a time ¢, will be given by

Wix, vy, z;)dxdydz,

where W{x, y, z;¢) is a probability density. This probability density must satisfy
certain sensibility restrictions; i.e., W(x, y, z;f) must be a sensible probability
density:

W= 0. (12)

A negative probability density makes no sense. To make W patently positive, it
makes sense to let the probability density be given by

W 1) = W™, (13)

Note, in optics or electromagnetism, physically measurable quantities, such as
energy or intensity, are proportional to the square of the amplitude of the wave, or
if the amplitude can be complex to the absolute value squared. Also,

d

= di W, 1) =0. (14)
dt all space

The probability of finding the particle somewhere is independent of time. In non-
relativistic quantum mechanics, we are building a theory of indestructible particles.
Also,

/ di¥ W is Galilean invariant. (15)
all space

All observers agree one particle exists somewhere,
The conservation of probability leads to a continuity equation. Because W can
be complex, the Schrédinger equation is really two equations

K aw B,

——— = VX 4 VY
i ot m

+ﬁ oyt __# V2g* 4 VOt (16)
i 8 2m )

Multiplying the first of these equations by —¥*, the second equation by ¥, and
adding the two resultant equations, assuming also the potential function is real, we
get

fid

hZ
LWy = L dv (VW — w Y ), (17)
i ot 2m
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This relation has the form of a continuity equation
w + divS = 0, (18)
ar
if we choose

- i e -
S=—W" VUV - ¥V, (19)

2mi
where this equation must be interpreted as a probability density current; i.e., as the
probability per second per unit area normal to the direction of S that the particle
be streaming in the direction of S. The integral form of the continuity equation
could be written as

5{] dFu*w +/ dA(S -7) =0, (20)
dt Vol. Surf.
where the volume integral is over a finite volume and the surface integral is over the
surface surrounding this finite volume, d A being an element of surface area and #
being the outward normal to the surface. In integral form, this equation says: The
time rate of change of probability of finding the particle within the finite volume
must be the negative of the probability of the net outflow of the particle. If we let
the volume grow to include all of our 3-D space and if we assume ¥ and ¥* — 0
sufficiently fast as a function of r as the surface recedes to infinity, the surface
integral will go to zero and our second probability restriction is satisfied.

Finally, examine the Galilean invariance. Suppose observers in a primed
reference frame are moving with velocity, v, parallel to the x-direction. Then,

x =x 4+, y=y, z=12, =1, @n

with
d 0 0 b d d a d d b}
— =1l—4v—, —=1—+0—, =, —=—_ (22)
at’ ot dx ax’ dx at Jdy’  dy a7 9z
In addition, the wave function must also change under the Galilean transformation,
according to

\Il’(x’, y/’ Z,; t/) _ w(x, v, 2, t)e—é(mvx—%mu?t)' (23)

Comparing the Schrddinger equations in the primed and unprimed frames, we are
led to

W =W, § =5 - 3wrw. (24)

If observers in the unprimed frame see no streaming of probability to right or left,
(§) = 0, observers in the primed frame will see a streaming to the left, as they
should because a particle in a region with W # 0 will appear to be moving in the
direction of —u to an observer in the primed frame.

A final remark: If W is real everywhere, S is zero everywhere; then, no transport
of probability exists. A probability density with a real W corresponds to a situation
in which particles will stream in the +x and —x directions with equal probability.
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Note, we need complex W'’s to describe beams of particles streaming toward or
away from a target.

C The Calculation of Average Values of Dynamical
Quantities

On the atomic scale, we cannot give an exact orbit description, e.g., x(1), for the
motion of a particle. We can, however, give the probability theory average value
of dynamical variables, such as x, as functions of the time. Define this average or
expectation value of x through

{x) = fd?x W7, W, 1), (25)
or, similarly,
{ay = /d?x” W, OW(F, 1) (26)

The question then arises, how do we define the corresponding expectation value of
a momentum component, (p,)? It will be convenient to define a momentum space
probability density, so the probability of finding a particle in the momentum range
dp.dp,dp. about some value p;, p,, p, is given by

¢*(ﬁs t)¢(ﬁ, t)dpxdpydpz’
SO

(ps) = f dp ped* (3. 0GB 1), @7

where ¢(p, 1) is the Fourier transform of W (7, t). Comparing with eq. (2), and
letting ¢(p, 1) = A(Ple ™+ &,

$(F.1) = — 5 f dFU(F, e PT, (28)
(2rhi)2
1 -
U(F, 1) = ———x | dpo(p, er?”, 29
G0= f Bo(5. e 29)
B 1 Y R
W(F, 1) = Wfdpfdr W(r', DerP =) (30)

Note

N - R 1 " - - . pa_w
f dpe* (5, BB, 1) = —— f dp f GV, 1) f A7, et )
)}

= fd?\ll*(?, DW(F, 1), 3D
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where the underlined quantities in the first line of this equation give ¥ (F, 1)
via the use of eq. (30). This relation between W(#, t) and its Fourier transform
@(p, 1) is known as Parseval’s theorem. Note, the probability of finding the particle
somewhere, with some momentum, is equal to 1 for a theory of one particle.

The same type of Fourier transformation can also be used to express the
expectation value (p,) in terms of a space rather than a momentum integral

(px) :/dﬁ Px‘l’*(};sl)(b(ﬁ, r)
1 I
. e e PET 2 = =7 ;Tp'-(rfr)
= (2nﬁ)3/d /dr\Il (r,tn) pX/ dr’'¥(r’, t)e

=3 E)dep/ dru*(r, t)(~~/‘ dr' (i, t)eéﬁ'(”’))

fdr\lf # z)——\v(r ), 32)
50 (p.) can also be evaluated through
(ps) :fdr\ll F 1) ( W), (33)
Similarly,
< pte= / AP (7, t)(—h —\ll(r n). (34)

Finally, by the same technique, we could express (x) in terms of momentum rather
than space integrals

0 = [ dio . r)zﬁ( 5.1)). (35)

D Precise Statement of the Uncertainty Principle

Now that we have defined (x), < x?> >, and so on precisely in terms of the

probability densities, we can formulate the Heisenberg uncertainty principle more
precisely. Taking the usual statistical definition of the uncertainty, Ax,

(Ax)? = < (x — (x))? >=< x? > ~2{x){x) + {x)*
=< x?> —(x)?, (36)
and, similarly, for Ap,. The precise statement of the Heisenberg uncertainty
principle is then
Ap,Ax >
Ap,Ay > ;ii
Ap.Az = Ih. 37

For simplicity, give a derivation only for one-dimensional (1-D) motion and con-
sider the motion to be in the x-direction. To prove the uncertainty relation, consider
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the following integral, a function of a real parameter A,
o fi 3 2
1) zf dx | (x — (X)W +ix(ITE . (px)\ll) ! . (38)

Note, through its definition, f(X) > 0. Writing out all of the terms

IV = foo dxW*(x — {(x)*W

oo

vnif d (@~ waxy*)( (x))
X —_ X — (X
. d ax
® Gt g
+k252f d —
0 dx dx
Eo[e W+ W
+22p | dx[ W - wr ]
o a dx
+ x2<px>2f dxW* . (39)

Now, note term (2) (in the second line) can be rewritten

/‘“ ()

[e.o]

(x — () = ]:(x — (x))\ll*\ll] —f dx ¥ = —1, (40)

o

dx

el

where we have assumed ¥ — O sufficiently fast as x — Lo0, so the integrated
term is zero. Similarly, term (3) can be rewritten as

52 d il :ﬁz wr f dx* _ﬁz_ \ — 2 (41
[~m * dx dx l: dx :l_oc+ o * ( ax2/ < p;>. (4D

Finally, in term (4), rewrite

h o= aw* h co how
—.f ax o ="[ure]” - fde*f- — () (@)
1 i

iJ ax § ax

so the full expression of term (4) can be rewritten as —2{p, )2. Putting together all
of the terms, we then get

I(A) = (Ax)* —hx + (Ap A% > 0. (43)

With 7(A) = aA? + b + c, the requirement, /(1) > 0, is met if > — dac < 0.
Thus, A% — 4(Ax)*(Ap,)? < 0, and, therefore,

Ap Ax > %ﬁ 44

Thus, in the most favorable wave packet, the so-called minimum wave packet, we
can have the minimum uncertainty, %ﬁ. We shall see later this is true for a Gaussian
wave packet.
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E Ehrenfest’s Theorem: Equations of Motion

Classically, the Hamiltonian for a single particle of mass m,

72
H=_—+V(x,y,2), (45)
2m
leads to the equations of motion
dx OH dps 9H v
= == (46)
dt Iy dt dax dx

Quantum mechanically the velocity of the particle no longer has a precise meaning,

but we can ask: How does the expectation value of x change with time? Calculate
dix).
ar

d{x) _ . d o R
== fdrx E(w (r,t)‘l’(r,l)). (47)

(Note, in particular, the quantity x in the integrand is not a function of the time.
It is merely the dummy integration variable, which weights the time-dependent
function W*W . It says we must weight all values of x from —oc to +oo with x and
the probability density function to obtain (x).) Using the continuity equation, we
can rewrite this as

d(r) 3 . S, 95, a5
/d xdiv§ = fdr (8x+ y+dz)
/ dy[ dsz / dxf dsz
X=—0C =—0c
/ dx/ dy xS [dr Sy
'*_—OO
av aw*
o far( et
2mz ax 0x

= L e (B2 = L, (48)

n

where all integrated terms disappear, and we have done one more integration by
parts on the W 2L term in the last step. Therefore, we see
d{x)
di

which is the first equation of motion, provided we replace x and p, by their
expectation values {x) and (p,). In exactly the same fashion,

d d - oW

{pa) _ _/ aip 22

dt dt 1 0x

-/ (’Za“’* )+ [ e (5)
+/

/h d\IJ* o ﬁ LW o
oS Lo
i o0 00 z at |

1
= —{px) (49)
m
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* h oW
/""a:; (-7%)

K> RN A 3l Jwr
= vt 2 } ~-/d’[\ll*V— rrrrrrrrrrrrrrrrrrrrrrrrrr vw]
2m dr[: dx dx 1 d ox f dx

ﬁ2 (VW)
[0 ]+/drV .

/ dyf dz\IJ*LIJV:l /d w W(?}Z) (50)

where the term with V? operators disappears via integrations by parts, similarly
to the integrated terms shown explicitly. Thus,

d{px av
dip) (m) > (51)
dt dx

which is the quantum-mechanical analogue of the second classical equation of
motion, where again the classical quantities, p,, and, 2% 3 , have been replaced with
their quantum-mechanical expectation values.

H

F  Operational Calculus, The Linear Operators of
Quantum Mechanics, Hilbert Space

In the last few sections, we have met many operators acting on the Schrodinger .
In this section, we want to make a more systematic study of the linear operators of
quantum theory. The operator, O, is a command. Acting on a function, it produces
another function, (OW¥(x)). Examples include O = f(x). Acting on the function
W(x), it produces the new function, f(x)W¥(x). The command is: Multip]y the old
function by f(x). The second common example is the operator . When acting
on the function ¥, it produces the new function

d¥(x)
dx

The operators of quantum theory are linear operators. When acting on functions
W(x), which are linear combinations of functions, W(x) = AV (x) + A ¥(x),
where A, and X, are arbitrary complex numbers, the linear operator O yields

(OV(X)) = A (OW1(x)) + A (OWa(x)). (52)

Another type of operator is the parity or space-inversion operator, P. It is the
command: Change x to —x, y to —y, and z to —z in the function on which it acts

P¥(x,y, 2) = ¥(—x, ~y, —2).
Products of operators are operators acting in succession on our functions:

0,0¥ = 0,(0,¥).
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Because we deal with wave functions and operators acting on wave functions,
we need to define the function space on which the operators act. The wave functions
of quantum mechanics are square-integrable in coordinate space.

/d?‘v*\ll = finite. (53)

The space of all square-integrable functions is known as a Hilbert space. It will be
useful to define a Scalar Product of the functions @ and ¥ by

/d?CD*\II =< O, ¥ >, 54
The functions ® and W are said to be orthogonal to each other if < @, ¥ >= 0.
Note, the scalar product has the property
<OV >=< W, P >", (55)
Note also, the scalar product is linear in W,
<O, AV + P >=A <D, ¥ > +iy < &, W, >, (56)
but is antilinear in ®,
<A@+ AP, W >=A] <D,V > +4) < Py, ¥ > 57

Eq. (56) follows from the linear character of the unit operator.
An important concept is the Adjoint of an Operator, written as O".

/ did*(0OW) = f dF(0' d)* W (58)

for any arbitrary pair of functions ® and W of our function space.
A Hermitian Operator, O, is a self-adjoint operator. If

O = O, then O is hermitian. (59)

Note, the operator

— is not hermitian,
X

but the operator
hd
- — is hermitian,
idx
because
hdo A o A _dy*
/d?\y*(—_v) = —_//dydz\ll*fl)] - —_/dr ®
i dx i x=-oc ! dx
hdW¥\*
= | dr{-—} @, 60
_/ r(i dx) (60)

where the integrated term must be zero for square-integrable functions, ¥ and
®. Note also, the operator L is the momentum operator, p,, when acting on a
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function of the coordinates.
- N
(Pxlop W, 1) = - —W(r, 1) (61
i 9x
The product of two hermitian operators is in general not hermitian,
de\lf*OzO;(D = [d?(();"\lf)*()ld) = /d?(ofogm*q>, (62)
80

(0,00 = 0]0;. (63)

The product of the two hermitian operators is hermitian only if the operators
commute. In the general case (for noncommuting operators), if O; and O, are
both hermitian,

(0102 + 0,0)) and {010y — O y)

are hermitian.
The commutator of two operators is very important in quantum mechanics. It is
defined as

[0y, 02] = (0,0, — 0:0). (64)

G The Heisenberg Commutation Relations

The commutator

h
[pe,xl= - (65)
This commutator relation follows from
ka3 Ao h
(X —xp ¥ = - — (W) — x5 —(¥) = ¥ (66)
i ox i dx i

for all ¥ of the Hilbert space. Eq. (65) is known as the Heisenberg commutation
relation. Although we have demonstrated it here with the use of the wave function,
it was introduced into quantum theory by Heisenberg without the concept of a
wave function (see chapter 6D). Similarly, again using the technique of eq. (66),

haF

[pe, F(x, y, D) = 5 . (67)
1 dx
On the other hand,
[px, G(px, Py, P =0, (68)
but
oG

[G(Pn pys p.‘)* X] -7 (69)

idp,
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In particular, if H is a Hamiltonian, a function of the operators, p,, py, p., X, ¥, 2,

hoH hoH
[pr. Hl = - —; [x, H] = —=—.
I 9x i op,

(70)

Expectation values of Hermitian operators are real. If O = 07,
<V, 0V >=< OV, U >=< OU, ¥ >=< ¥, OW >*, (1)

o< 0 >=< 0 >,
IfO =0(p, 7 1),

d _o . 0]>+" <29 (72)
-— < >=<C > - ——
i di : i

where H is the Hamiltonian of the system, a hermitian operator, H = H T

dt ot

; 30
— ;;[< HY, 0V > + < W, 0(-H¥) >+ < == >

d aw v a0
—<\D,0\U>_(<—5Z—,O\D>+<ll!,0——~at>+<IIJ,*~\IJ>)
C

L ow (H'O—-O0OHWY > + 90
= - << - = < — >
ki ’ ot

; 30
:é<\l},(H()—0H)\U>+<—3t~>. (73)

H Generalized Ehrenfest Theorem

In the above relation, let O = g;, where g, is a generalized coordinate, and the
Hamiltonian of the system is expressed in terms of generalized coordinates, g,
and their canonically conjugate momenta, p,. Then,

hd (H. o] h oH

-— < g, > =< |H,g,] >= - < >

FPTIRS 7 i 3p,

hd h aH

s <pyr=<[H pl>=—7 < — >. (74)
idt [/ C)QS

These relations are the quantum analogues of the Hamiltonian form of the equations
of motion.

oH
— < gy >=< — >
g < .
d oH
— < ps>=—< > . (75)

dt ) aq;
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I Conservation Theorems: Angular Momentum,
Runge-Lenz Vector, Parity

In the last section, we showed

d o ! H,O 90 76
dt< >_h<{, ]>+<at>. (76)
Thus, if an operator, O, commutes with the Hamiltonian, A, and is not an explicit
function of the time, the time derivative of its expectation value in any state, W,
is equal to zero. This operator is the quantum-mechanical analogue of a classical
“integral” of the motion. The operator, O, is conserved.

The simplest example, as in classical physics, is the Hamiltonian operator itself,
provided it is not an explicit function of the time. For such a Hamiltonian, the
conserved value of H is the energy E, as in classical physics. As a second example,
consider single-particle motion in a central force field, with

1 . .
H = 5 p-p+ V@), an
144

where the potential function is a function of the scalar r only, where rf=x2+
y? + z%. (Note, we could also have chosen the two-body system with a central
interaction, provided we replace m by the reduced mass and 7 stands for the
relative vector, 7; — #»; see the next section). In this case, the three components of
the orbital angular momentum vector,

L =[x pl, (78)
are conserved quantities. For example,

[H, L} =1[H, (yp, . zpy)] = ylH, p. ]+ [H,zy}pz —z[H, p,] ~[H, 2]p,
=¥V, pl + 5:1py, YIp. — 2lV, py] — 557, 21py

£ aV  hp, ( hE)V) hop.
=—cy—+-=p -z~ ) - =py
i” 9z im i dy im
h dv z dv y
= |-y - g = 0.
i( ydrr+ dr r) (7
Similarly,
[H,L,]=1[H,L.]=0. 80y

In the above calculation, we have made use of the trivial but useful commutator
identities

[A, BC] = B[A,C]+[A, BIC; also [AB,C]= A{B,C]+[A,C]B. (8D)

From the_’commutators, [H, L;] = 0, we also have that H commutes with the
operator L?

[H.L*]= ) LyH, Ly +[H. LylLs = 0. (82)

=XV, 2
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As a third example, consider the hydrogen atom Hamiltonian

82

|
H=_—~(p-p)——. (83)
2u r
For the Hamlll()nldn with this 1/r potential, the three components of the Runge—
Lenz vector, ’R, are conserved, where classically R = [ p X L] — fr Quantum
mechanically, we must convert this into a hermitian operator by using the sym-
metrized form of the first term. Remembering the interchange of the order of the
two vectors in a vector product introduces a minus sign, the symmetrized form for
R is
= Vo - - e’

R:A—([prJ*[pr])———r. (84)
21 r

Note,
%([ﬁ X i]r - [Z S ﬁ]x) - %((P\-L: - p:L)f) - (Lypz - L.fpy))
= l((pr +L; P») —(p-L v+ Lyp; )) (85)

Note, p,L, is not a hermitian operator, because p, does not commute with
L. = (xp, — ypy). The symmetrized form of this operator, %(pyL: -+ L.p,).
however, is hermitian. In making the transition from classical physics quantities to
quantum-mechanical operators, the hermitian, symmetrized form of the classical
quantities will often give the needed quantum-mechanical operators. The proof
that [H, R] = 0, where H is the hydrogen atom Hamiltonian, will be left as an
exercise (part of problem 13).

As a final example of a conserved operator, consider the space inversion or parity
operator, P, where

PY(x,y,z,t) = W(—x,—y, —z,1). (86)

For a Hamiltonian,

ﬁZ
H:*2_V2+V(x,y,z), with  V(—x, -y, ~2) = V(x,y,2), (87)
Fit

that is, with a potential that is spacc-inversion invariant, we have

h— -
HPWU®F, 1) = H(—; v, r)\Il(~r, £
I
h—

PHWF, 1) = H(—}-:_-_v?, —?)\p(-F, 1) = H(T v, ?)\p(—?, 0, (88)

i

S0
(HP — PHYY(F,1) =0 (89)
for all W of our Hilbert space. Hence, [H, P] = 0, and P is a conserved quantity.

Finally, note also, P is a hermitian operator, because

/d?w*(?, DPY(F, 1) = /dr\l' F, DOW(=F, 1) _/drxp (—F, OW(F, 1)
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- + > * -
:fdr(P’\Ii(r,t)) )

where we have made the change of variables, x - —x, y = —y, z — —z,and
have changed the order of the integration limits in the three integrals implied by
our shorthand notation in the last step of the first line. We see P* = P. Therefore,
the expectation value of the operator P must also be real. Finally, because

P2, 1) = W(F),

the operator P? has an expectation value of 1. The real expectation value of the
operator P can thus be only either +1 or —1. The solutions of the Schridinger
equation for the space-inversion invariant Hamiltonian of eq. (87) must thus ei-
ther be unchanged or change sign under the space-inversion operation. The wave
function must have even or odd parity.

J  Quantum-Mechanical Hamiltonians for More General
Systems

As an example of a slightly more general system, consider a particle of mass, m,
and charge, e, moving in an electromagnetic field derivable from a vector potential,
A(F), and a scalar potential, ® (7). The classical Hamiltonian is given by

(P — £AY
2m

H= + e, (90)

This relation can be written in the form

_G-P)

A-Ated. ©1)
2m

H

e o, 2 -,
—~Em—C(P-A+A'p)+ch2
Note, because in general [p,, A;] # 0, we have written the scalar product of A
with 7 in symmetrized, hermitian form, so the Hamiltonian in the second form is
a candidate for the quantum-mechanical Hamiltonian of this system. This relation
is indeed the correct quantum-mechanical Hamiltonian. The predictions based on
this form of the Hamiltonian are in agreement with the experiment! (We shall
study this system in more detail later, where we will discuss the role of the gauge
of the potentials, the gauge transformation, the Aharanov—Bohm effect, etc.) For
more complicated systems, however, the simple process of symmetrization of a
classical Hamiltonian may not be sufficient, particularly if the physically relevant
coordinates are a set of complicated curvilinear coordinates, say, in the case of a
many-body system in which some of the degrees of freedom are “frozen” or do
not come into play at a region of low-energy excitations.
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K The Schrodinger Equation for an n-particle System

For the general n-particle system, with the Hamiltonian
H = Z(”" ”")+V(ﬂ,?z,...,ri,), ©92)
we are led (as in the case of the single-pamcle system) to the Schrodinger equation

how 2 .
4?'"37__2 VAW 4+ V(FL Py .., TV (93)
For the two-particle system with no external forces, in particular, it will be useful
to make a transformation to relative and center of mass coordinates

(m Py + mary)

r=ry —r, R= ) (94)
and
L S R W+ VEW 95)
i ot 2my +my) M2 '

where 1 is the reduced mass, 4 = mm,/(m, +m;) and the potential is a function
of the relative 7 only (no external fields). In this case, the center of mass motion
separates. With lIJ(R F. 1) = Wem (R NV, (7, 1), the center of mass term leads
to a plane wave solution

e (R, 1) = Aei (PRt (96)

where P is the linear momentum associated with the center of mass motion of the
system of mass (m, -+ m;) and Eyxm is the translational energy associated with
the center of mass motion, Eyanyg. = P2/2(m; +m;). The Schrédinger cquation is
then effectively an equation equivalent to a single-particle equation, provided the
mass is replaced by the reduced mass.
h W h?
— T = gy Ve e G+ VO 0. )
In n-particle systems, it will be useful to transform from the coordinates
Xi, ..., 2n 10 a set of generalized coordinates g,. Often, some of these will not
come into play. In a polyatomic molecule, e.g., the ammonia molecule, NH3, we
have a system with 4 atomic nuclei and 10 electrons, a 14-particle system with
42 degrees of freedom (assuming we can neglect the electron and nuclear spins).
These coordinates could be chosen as the 3 center of mass coordinates, which
merely describe the free-particle translation of the whole system in space: 3 angu-
lar coordinates, say, three Euler angles, ¢, 0, x, which describe the orientation of
the molecule in space and describe the rotational motion of the molecule; 6 rela-
tive coordinates, which describe the relative motions of the atomic nuclei, that is,
the vibrational motions of the molecule; and finally 3 x 10 electronic coordinates
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(again ignoring for the moment the electron spins), which describe the electron mo-
tions of the molecule. At very low excitation energies, only the rotational degrees
of freedom, ¢, €, x, may neced to be considered. Therefore, if we can transform
the general 3n = 42-dimensional Laplacian operator of this 14-particle system
from the 3 x 14 Cartesian coordinates to the physically relevant 42 generalized
coordinates, g, including ¢, 6, x, we arrive at the desired Schréddinger equation,
if the variations with all g, are neglected, except for the variations with the needed
¢. 6, x. Even for the 1-particle system, it will generally be useful to express the
Schrédinger equation not in terms of the Cartesian coordinates x, y, z, but in terms
of some set of curvilinear coordinates, e.g., spherical coordinates r, 8, ¢.

L The Schrodinger Equation in Curvilinear Coordinates

If we transform from the 3n Cartesian coordinates x,, .. ., z, t0 a new set of 3n
generalized coordinates g,, withs = 1, ..., 3n, through
x1= flg, g2, G, o . . Za = f3.(q1, Ga. ., G3) (98)

the classical kinetic energy expression can be written as a homogeneous quadratic
function of the g;,

T = %Zgijé’ié’j, 99
iy

where the g;; are in general functions of the g;. The classical Hamiltonian expressed
in the generalized momenta, p,, canonically conjugate to these g, can then be
written as

Hows = 3 8" pip; + Vg1, q2s -, g30), (100

i

where the g"/ matrix, that is, the superscripted g-matrix, is the inverse of the 8ij
matrix, that is, the subscripted g-matrix

D siwg” =3/, and Y gg, =4 (10D
&«

Note, the g/ are in general complicated functions of the ¢, and do not commute
with the p;. A large number of ways would exist of making the kinetic energy
term hermitian, so the hermiticity requircment alone does not lead to the correct
quantum-mechanical Hamiltonian. We know, however, how to transform the 3n-
dimensional Laplacian operator from its Cartesian form to the form involving
partial derivatives with respect to the new generalized g, . Therefore, we can write
the proper Schrodinger equation. We need, in addition to the g/, the function g,
given by the determinant of the subscripted g-matrix,

g = |gi;| = det(g;). (102)
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Writing the 3n-dimensional Laplacian V2 in the curvilinear coordinates, we arrive
at the Schrodinger equation
K ow I 1
T =TS 2 TR U /fg— |+ V. 103
i ot /8 9 ( f ) (199

If W is assumed to be a function of only a few of the g;, the equation will simplify.

Problems

1. A free particle moving in the x-direction, (1-D motion) has a momentum

distribution given by
¢( t) 1 __7 (p—go) A'Z :
N = e « e m
P a /T
L (o— u()) _LL[
¢(P7t): 5\/“(p PO)e A

For both cases, calculate the spatial probability density amplitude function, W (x, 1),
for this particle. Calculate < p >, < p* >, < Ap >, (x), < x2 >, and < Ax >,
and verify the uncertainty principle. Give an interpretation of Ax, in the limit
h — 0, in classical terms.

2. From the “dispersion law,”

2
S e 20
?*(P'P)—moc

for a relativistic free particle, derive a wave equation. (This equation is known as
the Klein—-Gordon equation.) If the probability density current is to have the form

with

o= OW
divS + — =0
at

to preserve conservation of probability, show how the probability density, W, must
be related to W, a:;u v, a;;; Is this an acceptable W? Is W > 0 everywhere, for
all £?

3. A particle of charge, e, and mass, m, in an electromagnetic field, derivable
from vector and scalar potentials, A, &, has a Hamiltonian

P e o2
H=-— - — A+A-
2m  2mc (p-A+ p)+2

/_{2 + ed.
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(Note the symmetrized form of the second term.) Write the Schrodinger equation
for this case. Find an expression for the probability density current, §, with W =
U\ Calculate

dix) d{py}
, and
dt di

3

and show how these are related to the classical equations of motion.
Also, show the wave equation is gauge invariant, and under the transformation

1dx

A'AA”:A*WL%)(, o - ¢ ,
¢ ot

where ¥ = x(x, y, z; 1), the wave cquation remains unchanged, provided
Y -y P = Perexxy.n

4. In describing scattering processes of complex projectiles from nuclei, it is
sometimes useful to use a fictitious complex potential

V=V +iV,

where Vi and V; are both real. Assume V, = constant = W, inside a sphere of
radius, ro = 1072 cm, and V, = O for 7 > rg. Determine, W, magnitude in eV
and sign, so the probability is 0.1 per 102 seconds for the loss of flux of incoming
projectile particles. (Incoming « particles, e.g., can be “lost” by conversion to *He
and neutrons, etc. Note, 107%' seconds is a typical traversal time for a fast but
nonrelativistic nuclear particle through a heavy nucleus.)

5. The classical kinetic energy for a rigid rotator, e.g., a polvatomic molecule
such as H,O to very good approximation, is given in terms of the three Euler
angles, ¢, 8, x, and the three principal moments of inertia, A, B, C, by

2T = A(6 cos x-+¢ sin 0 sin x>+ B(—86 sin x +¢ siné cos x )2 +C(x +¢ cos ).

Assuming other degrees of freedom, such as vibrational, translational, and elec-
tronic, in the case of the polyatomic molecule, can be neglected, then V = 0. Write
the Schrodinger equation for the rigid rotator (asymmetric case, A # B # C).
For the symmetric rotator, with A = B, show the time-independent wave function
separates via the Ansatz

T .., .
U, 0, x) = z—eMeFx0(0),
2
and write the differential equation for ®(8). (For the asymmetric case, the
differential equation approach may not be the best way to solve this problem.)
6. Transpose the Schrédinger equation for the hydrogenic atom, with
_Bb_7E

H —_-‘-———-’
21 r
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where the above p and 7, which are Ppnysical, and Fonysicar are transcribed into

dimensionless p and 7 via
- ko ith w?
Pphys. = —P» with ap = —=—
i ag nelZz’

Fphys. = Aol
wZet
€

uz 2g*
thys. - _;iz—Ha EphysA = h2
Transpose the Schrodinger equation for the hydrogenic atom, further, into an

equation written in terms of “stretched parabolic coordinates,” i, v, ¢, defined in
)

terms of the dimensionless ¥ = (x, y, z) by
p=yo+l-2¢%  v=Jr-l-2], ¢=tan" (;

where r = /x2 + y2 + 22, and € = E /(uZ%e* %), or

po (u? —v?)

sing, Z = ——————

2[—2¢]?

y = 1
[—2¢]?

X = T
where this transformation is useful for bound states, with € < 0. Transform the

Laplacian into these stretched parabolic coordinates.
Another set of useful coordinates for the hydrogenic atom are the conventional
parabolic coordinates, defined in terms of the dimensionless 7 = (x, y, z), by
n=r+z, ¢=tan7‘(z),
x
3(n — &)

E:’”“Z’
Z:i

y = &nsing,

X = \Y Sncosq&,
Transform the Laplacian into these curvilinear coordinates, and write the

Schrédinger equation for the hydrogenic atom in these parabolic coordinates.
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Schrodinger Theory: The Existence of
Discrete Energy Levels

A The Time-Independent Schrodinger Equation

The Schrodinger equation for a single particle moving under the influence of a
time-independent conservative force

ROw R VI 4V = HY €Y
i 8t  2m o
can be converted to the time-independent equation for the function ¥ (x, y, z) by
assuming

V= f(e)(x,y, z), @)

with

flide ¥ 2m

where we have converted a function of the time only on the left-hand side of the
equation into a function of x, y, z only on the right-hand side. Because this must
hold for all values of 7 and all x, y, z, the left-hand side and the right-hand side must
be equal to a constant. We have separated the equation. The physical significance
of the constant can be seen to be the energy, E.

2
_l{’?ﬁ}:l{gﬁ_vﬁervw}:%(Hw =: const, 3)

F(t) = exp(— ;:Ez) o
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and
ﬁ2
— V2 + Vi = Ey. 5)
2m
For a 1-D problem, in particular,
VM Ve =0 (©)
-5 5 - X = U.
dx2 ﬁ?

In this chapter, we shall show the Schrédinger equation, eq. (5), for potentials V,
for which the classical motion would be restricted to a bound region of space, will
lead to allowed (square-integrable) solutions, the so-called characteristic functions,
or “eigenfunctions,” of the equation only for certain discrete allowed energies, the
so-called “eigenvalues” or characteristic values of the energies.

B The Simple, Attractive Square Well

The 1-D Schrodinger equation, eq. (6), has particularly simple solutions in regions
a < x < b, where V(x) can be replaced by a constant, with simple sinusoidal
solutions for regions with £ > V and simple exponentials for regions with £ < V.
The simplest 1-D problem is that of a single, attractive square well of width 24,
with

Vix)=0 for —a <x < +a, Vx) =+Vy, for |x| > a, )

(see Fig. 4.1). The Schrodinger equation becomes

d* . 2mE

S AU =0, with & = Z’Z for —a < x < +a,

d? 2m(Vy — E

ng 777777 KP(x) =0, with % = —"ih%»l for [x|>a.  (8)
X

In order to have square-integrable solutions, the ¥ (x) must be restricted to
exponentially decaying solutions outside the potential well; i.e.,

Y(x) = Ce " for x > +a, Y(x) = De™™ for x < —a. (9)
In the interior, for —a < x < +a, the most general solution is
Y(x) = Acoskx + Bsinkx.

(For the moment, we have not made use of the symmetry of the potential.) In
order to have solutions with sensible probability densities, both the probability
density and the probability density currents must be continuous functions of x.
This solution can be ensured by requiring the continuity of both v (x) and its first
derivative at the discontinuities of the potential at x = -£a. The continuity of Y (x)
and its first derivative at x = +a leads to the boundary conditions

Acoska + Bsinka = Ce ™, (10)
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V()
Vo
- +a xr
FIGURE 4.1. The attractive square well potential.
— Aksinka + Bkcoska = —xCe™™?, (1D
and at x = —a, we are led to the boundary conditions

Acoska — Bsinka = De ™, (12)

Aksinka + Bkcoska = xDe ¢, (13)

Eliminating the constant C from eqs. (10) and (11) and the constant D from egs.
(12) and (13), we are led to the further restriction

AB =0,
with the two possible solutions:
B=0, D=C¢(, or A=0, D=-C. (14)

We see the solutions are either even or odd functions of x. This could have been
seen at once from the space-reflection symmetry of our potential, V(—x) = V(x).
Because the Schrodinger equation is invariant under the 1-D space-inversion op-
eration, x — —x, our solutions must have good parity; see Section I of Chapter 3.
The ¥ (x) must be either even or odd functions of x; either cos kx or sin kx func-
tions in the region |x] < a. It would have been sufficient to apply the boundary
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conditions at x = -+-a. The boundary conditions at x = —a follow from symmetry.
The two boundary conditions at x = +a, however, are consistent only if

ktanka = +«, for even ¥r(x),
kcotka = —«, for odd ¥ (x). (15)

Because £ and « are functions of the energy E, these relations arc transcendental
equations with solutions only for very specific values of E, the discrete allowed
values of the energy. To solve the transcendental equations, it will be convenient
to introduce dimensionless coordinates z and zg,

—_——
2mEa? 2mVya?
= ka = ———hT—, and zp = T, (16)

transforming eq. (15) into

ztanz = +,/(z§ — %) for even ¥ (x),

zeotz = —/(z5 —z2)  for odd ¥(x). (17)
These two relations are plotted in Fig. 4.2. The solutions z(E) at the intersections

of the curves ztanz with +,/(z3 — z2) and the curves z cotz with —/(z¢ — z?)
give the allowed values of E. Fig. 4.2 for the case zp = 4 shows a potential with this
depth has three bound states, two with solutions of even parity and only one with a
solution of odd parity. Note also, only one even bound state exists if zg < /2, but
at least this one bound state always exists, even in the limit of a shallow potential
well, with Vi - 0. Note, also, in the limit of an infinitely deep well, as Vy — oo,
the solutions are

z—>(2N+1)zr2~, N=0,1,2,..., for even ¥
z—>2N%, N=1,2,..., forodd v (18)
or
4 =ne, thus,  E,= ﬂ, with n=1,2,.... (19
2 2m(2a)?

Note, in the case, V) — o0, the wave functions are exactly 0 in the region |x| > a,
and the interior solutions obey ¥ (+a) = 0. In this case, the derivatives of the
wave function are discontinuous at x = *a. Both the probability density and the
probability density current, however, have the value zero at the boundaries and are
therefore still continuous at the boundaries.

Note, also, so far we have considered only bound states with E < V;. For
E > V,, the solutions of the Schrodinger equation are oscillatory for all values
of x, from —oco — +oo. Merely, a change of wavelength (“index of refraction”)
occurs as the wave traverses the region of the potential well. Because they reach
from x = —o0 to x = 400, the wave functions are no longer square integrable.
They still have, however, a sensible probability interpretation. The amplitudes of
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FIGURE 4.2. The transcendental egs. (17) for the case zg
Dashed lines for odd yr(x).

4. Solid lines for even ¥ (x)

the sinusoidal waves give the strengths of the probability density current and can

of the type

therefore be determined from the experimental flux of particles. Note, however, S
is zero for real ¥ (x). The physics of the problem dictates we use complex solutions

i (tkx -ED)
for particles moving in the dx direction. The amplitude of the wave Ae

i(kox—En)
for x < —a, with kg = [2m(E — Vp)/h?]"/?, is determined by the flux of particles
from a source at x = —oc0. These particles can be reflected or transmitted by the
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potential step, leading to a reflected wave, Be'~" %< ~/£1) in the region, x < —a,
and a transmitted wave Ce'®*~£1) in the region x > +a. This is a 1-D scattering
problem. Scattering of particles by square wells will be treated in Part V of these
lectures. For the moment, we content ourselves with noting that all energies for
E > V, are possible. In this energy regime, we therefore have a continuum of
allowed energies.

As a final remark, we note the solutions of the simple square well above can
also be used to solve a slightly different square well problem with

Vix) =00, for x <0, V(x)=0, for 0 <x <a,
Vix) =V, for x > a; (20

i.c., the left potential has been replaced by a very high (co) potential step. Therefore,
¥(x) = 0 for x < 0. This can therefore also be used for a 3-D spherically
symmetric square well leading to a 1-D Schrodinger equation of the above type,
where x is replaced by the radial coordinate, r. (Note, the region r < 0 is excluded
by the fictitious infinite potential for r < 0.) Because the boundary condition at
r = 0is ¢(r = 0) = 0, only the odd solutions of the above potential will be
allowed (see the dashed curves of Fig. 4.2). We see a bound state exists for this
problem, only if

T 2
o > 7 or Voa® > ——. 20

If the sinusoidal radial wave function starting with the value 0 at r = 0 does not
have enough curvature in the potential well region to have at least a first maximum
forr < a,itwill reach the barrier at r = a with a positive slope that cannot fit onto
a negative (decaying) exponential in the region r > a without a discontinuity in
slope and, hence, a discontinuity in the probability density current. If the potential
well is not deep enough or wide enough, no bound state will exist. The potential
of eq. (20) is a reasonably good approximation for the effective potential between
neutron and proton in the deuteron. [Note that the mass in eq. (21) must be replaced
by the reduced mass of this 2-body problem.] The deuteron has only a single bound
state in its 2-particle spin triplet (S = 1) state. Moreover, the binding energy of
this state, of 2.22 MeV (with £ = V; — 2.22 MeV) is small compared with the
expected value of Vy. The deuteron is therefore a barely bound system with

Voa’? ~ — —.
¢ 2u 4

The deuteron has no bound states with 2-particle spin § = 0. The potential must
therefore be spin dependent. The § = 0 potential just misses having a bound state.
This property makes itself felt in a large scattering cross section for E — Vy = 0, a
low-energy resonance. For a detailed discussion of proton-neutron scattering and
the bound or nearly bound states of the deuteron, see Chapter 44.
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Problems 7-8: Square Well Problems

More complicated square well problems can often be used to gain qualitative
solutions for more sophisticated problems. The following two problems can be
used to illustrate some interesting physics.

7. The double-minimum potential problem. The square well double-minimum
potential, shown in (c) of Fig. P7, can be used as a rough approximation for the
potential govemning the motion of the N atom relative to the Hj plane, one of
the vibrational degrees of freedom of the ammonia molecule, NH; (the degree
of freedom responsible for the transition used in the NH; MASER, the historical
forerunner of all LASERS and MASERS).

V=V, for x| <a Region 11,
V=0 fora<ixi<b Regions 1, II1,

V=00 for ix|>b Regions IV.

The mass, u, is the reduced mass for the N-Hj pair:
3m Hy
R
K= Gmn +ma)

Exploit V(x) is an even function of x, so the solutions, ¥ (x), must be cither even or
odd functions of x. It is therefore sufficient o find acceptable solutions for x > 0
and continue these appropriately into the region, x < 0. Find the transcendental
equations from which the eigenvalues of E, corresponding to both the even and
odd eigenfunctions, can be found for the states with £ < V. Show graphically
how the solutions can be found. Show, in particular, that for £ < Vj, the solutions
follow from

. 2 2
kib—a)=nnm— Ay, wih Ap <1, k, = P'—Em
with slightly different A¢ for the cigenvalues associated with the even and odd

solutions, so the eigenvalues of E occur in nearly degenerate pairs, when F & V.

FIGURE P7. (a) The NH; inversion coordinate, x.



46 4. Schrodinger Theory: The Existence of Discrete Energy Levels

V(x)

(b)

FIGURE P7. (b) Realistic V(x).
Show, in this case, the splitting, A E,, of the nearly degenerate pair is given by

3 .22
mn’n’v8 o~ BV E,)
9

(b—ayyp*(Vo — En)

AEn — (E’?dd . E’t:vcn) —

where
nin i’
" 2ub —a)

n

Retain only dominant terms in all expansions of A¢ and in powers of E, / V. Hints:
The even (odd) solutions in the central region, II, are of the form cosh « x, (sinh xx),
where «? = 2u(Vy — E)/A’. All solutions are of the form sin[k(x — b)] in region
1.

8. Virtually bound states. Assume the potential, V (r), shown in (a) of the Fig. P8,
which is an effective potential for the motion of an ¢-particle relative to a heavy
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nacleus, can be approximated by the simpler square well potential of (b}, Find

solutions, ¥ (r), for this square well problem for energies, £ > 0. The boundary

condition at r = 0 is ¥(r = 0) = 0. Note, all energies, £ > 0, lead to acceptable
oscillatory solutions in region IIL.

Show, in general, for arbitrary positive energies, E,
2
[ l’:% is of order e, with G = %@—’;ﬂﬁﬁ(‘ﬁ:}i‘)
1

For |y] and |y, take the amplitudes of the oscillatory functions in regions I and
III.

Show, however, the ratio
2

@ can be of order ¢ ©
¥
o0 V() oo
v 1 I i m v
V, !
|
. AE,
; f
| =
______ {
-b -a +a +b

(©)

FIGURE P7. (c) Square well analogue.
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FIGURE P8. (a) Realistic V.g (r) for the ¢-2**Th motion.

for certain, specific values of E = E. The factor e ¢ is known as the Gamow
penetrability factor. Find the transcendental equation from which these values of
E can be determined graphically in terms of the parameters, i, a, b, Vi, V;. Show
also, for each such solution, E.a range of energies exists, AE, about E, for which

and show
(Vi —E) [F(E + V) 1 G

- e
Vi + Vo) 2pa’  cos/2ua(E + Vo) /h>

Note: A realistic estimate of e” in a heavy nucleus, e.g., 23U, would be ¢ ~ 10%¥,

AE =~ 4

C The Periodic Square Well Potential

Another interesting case in which a square well approximation may shed consider-
able light on an important physical problem is that of an N-fold periodic potential.
For very large N, this leads to a basic problem in condensed matter physics, the
motion of an electron in a crystalline lattice with N lattice points. For very small
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N,suchas N = 2 or N = 3, examples of motions in an N-fold periodic po-
tential may be found in the hindered internal rotation of one atomic unit relative
to another in a molecule. A symmetrical X,Y, molecule, such as ethylene, C;Hy,
e.g., has one degree of freedom, ¢, which describes the highly hindered rotational
motion of one essentially rigid CHa unit relative to the other on a circle in a plane
perpendicular to the C — C symmetry axis, as shown in Fig. 4.3. The wave equation
separates approximately, so the hindered internal rotation can be described by the
one degree of freedom Schrédinger equation

h2 dzw
21 d¢?
with I = I L,/(I; + L), and I, = I, = 2myr}. The potential, V{(¢), could be
approximated by a purely sinusoidal potential,
V($) = 5Vo(1 — cos 2¢),

or, on the other hand, by a square well potential with potential valleys of V = O and
widths 2a centered at ¢ = Qand at ¢ = m, and potential barriers of constant heights
of Vy and widths w centered at ¢ = %n and at ¢ = %rr, where 4a + 2w = 2nry.

+ V(@) () = E¥(¢), (22)

[» o]
V, = 25 MeV
E 1 4.8 MeV
ol— J ! .
: b
- 15 fm -
Vo
Q (®)
7.4 fm

FIGURE P8. (b) Square well analogue.
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FIGURE 4.3. The X, Y, molecule and its internal rotational coordinate, ¢.

The true hindering potential is probably somewhere between these two extremes.
The square well approximation leads to the easiest solution; yet it contains the
essential physics of the problem. A symmetrical X,Ys molecule such as C;Hg
(ethane) leads to a similar Schrédinger equation with 3-fold periodicity, i.e., with
N = 3. The symmetrical CH;NO, molecule furnishes an example with N = 6-
fold periodicity. Here, the C—-N bond furnishes the symmetry axis for both the
CHj; and NO; units of the molecule. In these examples, the (N + 1) site of the
potential is truly the same point in 3-D space as the first site. In the condensed
matter problem with N lattice sites, one usually takes periodic boundary conditions
by assuming the (N + 1)* site is equivalent to the first site, in the limit N — oo.
In the square well approximation for the periodic potential, we assume

V=20 for Cm — Da+mw < x < 2m + Da + mw;
V=4+V for Cm + Da+mw <x < (2m+ a4+ (m+ Hw;
m=0,1,...,N. (23)

We see the m™ potential valley is centered at x = 2ma +mw, and the m'™" potential
barrier is centered at x = 2m + 1)a+ (m + %w); see Fig. 4.4. For the moment, we
shall seek only solutions for E < V;. (For the hindered internal rotation problems,
we can expect the barrier heights, V;, to be very large compared with the energies
of interest.) For this case, we define

N 2[LE 2 ZM(Vi) - E)

M=og A2

k]
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where u is an effective mass for the problem. We expect the following solutions.
In the m" valley centered at x = 2ma + mw:

under the m™ potential hill, centered at x = (2m + 1)a + (m + %w):

w(x) = Anm cosht((x —[@m+Da+m+ %w)])

+ By sinbic(x = [(2m + Da + (m + Hyul).

The potential is invariant under reflections in the planes centered at x = 2ma +mw
andatx = Qm+Da+(m+ % w). We might thus be tempted to assume our solutions
are either even or odd under these reflection operations and that either A,, = 0
or B,, = 0, and, similarly, either C,, = 0 or D,, = 0. These assumptions would
be good if all allowed energies were nondegenerate. We shall find, however, most
of the allowed energy values are doubly degenerate, with two allowed solutions.
We therefore retain the above linear combinations of even and odd functions. To
ensure the continuity of the probability density and the probability density currents
at the discontinuities of the potential, we shall again require the continuity of the
wave functions and their first derivatives at the boundaries between the potential
hills and valleys. With the solation under the (m — 1)% potential hill given by

Y(x) = Ap_; coshk:(x —[2m - Da + (m — %)wl)

+B,, sinhx(x —[@m — Da + (m — %)w]),

the continuity of ¥ and its first derivative at the left boundary of the m™ valley,
1e., atx = (Zm — Da + mw, leads to

Ay coshk¥ + By, sinhk ¥ = C, coska — Dy, sinka; 29

«(Am-y sinhc¥ + By..; coshk %) = k{C, sinka + D,, coska). (25)

The continuity of v and its first derivative at the right boundary of the m™ valley,
atx = (2m + Da + mw, leads to

Cpncoska + Dy sinka = A, coshkly — By, sinhk ¥, (26)

k(—Cusinka + D, coska) = k(— A, sinh« 2 + B, coshx ). 27

Solving egs. (24) and (25) for C,, and D,, and substituting into egs. (26) and (27)

leads to the relation
Am _ Am-
() -m(5:): @)



4. Schrodinger Theory: The Existence of Discrete Energy Levels

52

mE+w) +o(l+we) m(E-w) +0(1-we)

(M +o0z)w

0= A YUM ‘D7 ‘YIpIm Jo sAS[eA [enuajod pue ‘;m @pm 04 qySiey Joueq Y Jenusiod [jam asenbs opowed oyl vy TUNDIA

ve

()4




C The Periodic Square Well Potential 53

where the 2 x 2 matrix, M, is given by

_ P g+y
M—COSZka(Q_y p ) (29)

with

k
P = coshkw + %(% — —) tan 2ka sinh kw
K -

= %e"‘”[l + %(% — g) tan2ka] + %e*"w[l — %(% - S) tan2ka],
O = sinhxw + %(% - ;Iz—) tan 2ka cosh kw
~ %e“‘@ + %(:— - g)tanZka] —feof1- %(% . g)tanZka],
Kk k
v = 3(3 + ) tan2ka. (30)

The continuity of the probability density and the probability density current require

AvY _ v [ A0 _ A
B T A

In particular, the wave function is not single valued for the case of the minus
sign in the & above. The probability density and the probability density current,
however, are single valued. Also, the wave function would diverge as e”?V*¥ as
x —> pN(2a+w)inthe above,oras¢ — pN(2x)inthe wave function of eq. (22),
as p > oc; unless the coefficients of the 7" terms of P and Q above are precisely
equal to zero, or at most of order e™**. We are thus led to the requirement

(% ~ 5) tan 2ka = —1 + 2Be ¥, (32)

1

2 K
where the new parameter, 8, may, like k and «, in general, also be a function of the
energy E. Eq. (32) will thus lead to a transcendental equation for the determination
of the allowed values of the energy, E, where the parameter, 8, must also be fixed
to satisfy eq. (31). It will be instructive to examine first the case of high potential
barriers, Vo >> E. This case will actually be of interest for the problems of internal
hindered rotations in most molecules. In the limit V4 — 00, we have a problem
with N-potential wells with infinitely high walls. In that case we saw [eq. (19)]
ka = %nn. For the N-fold periodic square well with large V{, we shall therefore

try
2ka = nm + 2(Ak)a, 33
where (Ak)a are small quantities, dependent on the integer n. Terms of second
order in these small quantities will be negligible. Thus,
1
cos 2ka ~ (—1)", tan 2ka = 2(Ak)a = —2———(1 — 2Be™"). (34)

G-9
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In the high barrier approximation, we have
; k

e K-
K

With 8 ~ order(l), we might thus expect the fe ™" term to be negligible and
obtain an energy shift, given by (Ak)a =~ (—k/«), of the 2N-fold degenerate
zeroth-order energy of E = @*n’n?/8ua?). [The factor 2 in the degeneracy
factor, 2N, comes from the + sign in the boundary condition of eq. (31).] Even
though the splitting of the 2N -fold degenerate levels with E <« V will be smaller
than the above shifts by a factor of e **, this splitting is of primary interest. We will
therefore retain this factor in eq. (34). In the high barrier limit, e ™" « (k/x) < 1,
the 2 x 2 matrix M reduces to

M:(_l)”(ﬁ'il ﬁﬁl). (35)
For N = 2, the matrix needed for eq. (31) is
> (@B —1) 2B(B-1)
M= (2ﬁ(ﬂ+1) @f - 1))' (6

Eq. (31) then has allowed solutions for

T (0 (-6
S O A Rt
(- (8-

where now(gg)—(o) () -

For N = 2, three solutions exist for the allowed energies: two of them corre-
sponding to 8 = +1 and B = —1 with but a single eigenfunction, corresponding
to nondegenerate energy eigenvalues; and one with 8 = 0 with two independent
solutions (which could be any linear combination of the above solutions), corre-
sponding to a double degeneracy of this energy level. Expanding eq. (34) in powers
of (k/x), but retaining the dominant energy splitting term, we obtain for N = 2

R ( 22 +2nn(kn/’(n)efx"w)
| nixt ky

— a2t + 0 (38)

“n = 4 K
—2nm (k, /K, )e v

2ua?

where we can approximate (k, /«,) by / (ES 1 V), but will retain the £ term in
the exponential factor,

1
ekt g 2uCVo EX Yt )2

because of the sensitivity of the exponential factor on its exponent.
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Next, for the three-fold periodic potential with N = 3, we have

e BGF =3 4B -1
M’ = (1) ((4ﬁz_1)(ﬁ+1) B(4g* - 3) ) <

The boundary condition of eq. (31) is satisfied for 8 = +1 and 8 = —1, with
nondegenerate solutions

Aoy (O 1 ) -
(Bo) = (l) and (0) , respectively,

and for 8 = +3 and B = —3, where both of these lead to doubly degenerate levels
with a linear combination of the above two solutions. The energy E? is thus split
into four levels, a highest and a lowest nondegenerate level and two intermediate
doubly degenerate levels.

At this stage, it should be mentioned that the splittings of the ground-state
n = 0 internal rotation energies in the molecules, C> H; and C;Hg, are too
small to be observable. The factors, e 7%, are too small to be observable in these
molecules. In the methyl alcohol molecule, C H3 O H, however, the splittings of
the n = 0 and higher levels are observable and have been studied extensively by
microwave spectroscopy. In this molecule, the internal rotation degree of freedom
is strongly coupled with the rotational degrees of freedom of the whole molecule.
Since this molecule is an asymmetric rotator, (see Chapter 15), the combined
rotation—internal rotation spectrum is very complicated.

For the case of general N, it will be convenient to introduce the new parameter
o, via

B8 = cosa.

In terms of this new parameter, we have

sin Na

MN = (_l)nN ( cos Na sing (cosaor — 1)) . (40)

sinNa
2 (cosa + 1) cos No

Eqgs. (36) and (39) show this is satisfied for N = 2 and N = 3. Also,
cos(N — Du ‘—“m(fi\;%(cosa -1 cos o (cosa — 1)
sin(N —Da )

“aa (cosa+1)  cos(N — Do (cose+1)  cosa
cos Not e (cosor — 1) “n
e cosa + 1) cos Nor

so that the relation (40) is proved by induction. In this general case, two nonde-
generate levels again exist, with ¢ = 0, and @ = 7, and now (N — 1) doubly
degenerate levels with

The energies for the case £ « V; are given by

)

2 2.2 ; ;
E, = R (n il — B En [1 —2c¢os E—TFek[zﬂ(vo_"E'(‘d))wz/hz]7 })
2[1,6!2 4 VQ N
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£=0,1,...,N. (42)

For very large N in a crystalline lattice, therefore, we have a set of (N + 1)
finely spaced, discrete, allowed energy values, centered about a slightly downward-
shifted £, In the limit, N — oo, this becomes a continuous narrow band of
allowed energies of bandwidth

AE — inznz R ef[2m(V0—Ef,m)wz/EZ}% (43)
ma? 2ma?V, ’

where we have set i = m, the electron mass. These continuous bands of allowed
energies are separated by energy gaps of order (E\), — E®). As E® approaches
Vo, the bandwidths become larger and the gaps smaller. Of course, as EX — Vg,
our high V, approximations are no longer valid. The bandwidth and gap structure,
however, survives even into the region E > Vj. (For details, see, e.g., C. Kittel,
Introduction to Solid State Physics, New York: John Wiley, 1956.) In a real solid,
we must of course also deal with a 3-D structure. It is therefore perhaps interesting
to note that in a cooler ring of some modern generation heavy ion accelerators
we may approximate a truly 1-D crystal of cold (hence, nearly monoenergetic)
heavy ions. In the limit of temperature, T — 0, these form a 1-D crystal of equally
spaced monoenergetic heavy ions. Here, indeed, the (N + 1)* ion is the 1% ion,
and the periodic boundary condition of eq. (31) is no longer an approximation.
Although the square well solution has all of the qualitative features found with a
more realistic potential, an approximate solution for a more realistic V(x) can be
found through the WKB approximation to be treated in Chapters 36 and 37 (see,
in particular, problem 55).

D The Existence of Discrete Energy Levels: General
Vix)

For a V(x) that is such that V — oo for both large positive and large negative
values of x, the existence of a discrete set of allowed energy levels follows in a
general way from the requirement that the solutions be square-integrable, i.e.,
+00
Y* ¥ dx = finite, (44
—o0
and that ¢ and % be continuous. For the type of potential function shown in Fig.
4.5, with an arbitrary E, but E > V,,;, , we have in region I, with £ > V(x),
between the left and right classical turning points,
dZ
*1/’2— +Ex)Y =0. (45)
dx
Inregion], therefore, the solutions are oscillatory, but with a variable (x-dependent)
wavelength because k(x) = ZT”; i.e., the curvature is always toward the x-axis. In
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regions 1I, conversely, for X > Xmaxclass, OF fOr X < Xminclass., the Schrodinger
equation has the form
2

L ey =0, (46)
because £ < V(x). In regions II, therefore, the curvature is always away from
the axis. To find a solution, start with some assumed initial value for ¥ (x¢) and
% |- The equation then gives us the value of ¥(x) and % at the neighboring
points. We could numerically determine the solution, say, from some xg in the
classically allowed region to the right boundary, where the solution changes from
one with curvature toward the axis to one with curvature away from the axis. For
the solution, labeled 1, in Fig. 4.5, e.g., the curvature away from the axis will
be such that ¥ (x) never reaches negative values. The function and its derivative
will thus both get larger and larger as x reaches further away from the classically
allowed values of x; and both ¥ (x) and ‘;—'i’ will go to +00 as x — +o00. This is
a catastrophe. Such a function is surely not square-integrable. We can, however,
start the process over again. Starting with the same ¥ (xo) at xo, we can adjust the
first derivative at xg, as in the curve, labeled 2. Now, as we reach the right classical
turning point, the curvature away from the axis can be made less; perhaps we have
chosen a derivative at xo such that now the solution in the classically forbidden
region, T1a, reaches the value 0 and thereafter curves away from the axis becoming
more and more negative along with its first derivative, so now both v — —o0
and % — —oo as x —> +00. Again, we have a catastrophe. This solution cannot
be square-integrable. We can, however, continue to adjust the first derivative at xo
until it is just right, so both ¥(x) and % — 0 together as we penetrate into the
classically forbidden region, x — +00, as shown in the solution, labeled 3 in Fig.
4.5. This solution will have only a small probability the particle will be found in
the classically forbidden region. This solution can now be continued from xo to
more negative values of x, but because we have no further freedom of “fixing”
the first derivative at xo, when the solution reaches the left turning point, it will
undoubtedly curve away from the axis such that either both ¥ (x) and % — 400 0r
both — —oo as x — —oo. Again, a catastrophe: a nonsquare-integrable solution.
For arbitrary values of E, therefore, we will not get an allowed (square-integrable)
solution. We can now, however, further adjust the energy E such that once we have
fixed the proper behavior as x — +oo we will also have both ¥(x) and % — 0
as x — —oo. This unique situation can only occur for a discrete set of values of E,
the allowed values of E: Eg, Ei, E», ..., E,, .... This situation exists for a V(x),
which — -+oo for both x — Zoc0.

In Fig. 4.6, we show a potential function that for £ > V = V4 has only a
left classically forbidden region. For such a V(x), for £ > V, we can always fix
the solution such that both ¢ (x) and % together — 0 as x — —oco. For such a
potential, all values of £ > V are allowed. As x — -00, the solution remains
oscillatory. The ¥ (x) is not square integrable, but the solution has a sensible
probability interpretation. It now corresponds to a particle with finite kinetic energy
coming in from +oo being reflected near x = 0 and going back out to +0co. This
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is a scattering problem, associated with the continuum of allowed energies. The
wave function is now normalized to describe a definite flux (value of 3). Because
the solution ¥ (x) again has a sensible probability interpretation for values of x as
x — +oo for all values of E > V, all values of E > V are allowed leading to a
continuum of allowed energies.

Finally, in Fig. 4.7, another potential is shown, of the type perhaps describing
the motion of an «-particle relative to a heavy nucleus. For E > V = V., we
again have an energy continuum; for values of V < E < Viarier and arbitrary
values of E, however, we would expect a much greater probability the particle be
in region III, outside the barrier. Now, certain states will exist, with a narrow width
(narrow range AE) about a discrete E for which the probability of finding the
particle in region I rather than in region III is overwhelmingly large. These states
are the virtually bound states. They are, however, part of the energy continuum
and have a finite (perhaps very small) probability the particle will tunnel through
the barrier and stream out to 400 (see problem 8).

E The Energy Eigenvalue Problem: General
For potentials with a discrete spectrum of allowed energy values (as in Fig. 4.5),
the Schrodinger equation leads to the allowed solutions

den(x) - Enwn(x)’ (47)

with allowed energy values, E,, the so-called eigenvalues, or characteristic values

of E.
1. If the Hamiltonian operator is hermitian, H = H", the E,, are real.

<Y, HY, >= E, < Y, ¥, >= E,
=< (H'Y), ¥ >=< (HY,), ¥ >=< ¥, HY, >*= E*. (48)

2. The orthogonality of the eigenfunctions, ¥, follows from
HY, = E ¥, (49)
and
Hy, = Eni,,. (50)

By multiplying the first of these equations by 7, the second by ¥,,, and subtracting,
we get

< wmy H"/fn > — < wn, Hlbm >* = (En - Em) < I/fma 1//11 > (5])
The left-hand side of this equation is zero via the hermiticity of H, so
(Erz - Em) < l[/m’ WH > = 0. (52)

Thus, with E,, # E,, < ¥, ¥, >= 0. The cigenfunctions are orthogonal
to each other.
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62 4. Schrodinger Theory: The Existence of Discrete Energy Levels

F A Specific Example: The One-Dimensional
Harmonic Oscillator

The Schrédinger equation is
Rt d*
~ 2mdg?
As a first step in the solution, it will be convenient to introduce a dimensionless
coordinate x; i.e., to define appropriately scaled coordinates. Thus, the physical
displacement, ¢, will be transformed into a dimensionless coordinate, x, where the

“yardstick” for g can be obtained from the value of the potential energy which must
be proportional to the basic energy scale of the problem, mwjg® = const.fiwp), s

a natural yardstick for g is i/ mawy:
| &

ma)é 2 N
¥ig) + — 4 ¥ig) = E¥(g). (53)

q= ., ——xX. (54)
F({Z0N)
Similarly,
1d
p = hmwop,, Py =—-——, (55)
idx
E =Hhawyge, (56)
and the wave equation becomes
1dzl/f()Jrl Y(x) = e¥(x) (57
- = —x =€ .
242V TtV *

asymptotic form of the solution at 00. The ey (x) term of eq. (57) is negligible
compared with the x2v (x) term as x — +00. Because

K & )
vvvvvvv (g*?) =@ - 1e 7 = x%" 7T as x > +oo,

2

W(x) — e”7 as x — +oc. (58)

(The second possible solution with a + exponential is ruled out by the boundary
condition.) We transform the solution into

‘2
Y(x)=u(x)e 7, (59)
d%u du
yroin ZXE; + (2e — Du(x) = 0. (60)
For u(x), try a series solution
wx) =y apxt, (61)

k=<0
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where
Zakk(k —x* 2= Z(Zk + 1 — 26)arx®. (62)
k=2 k=0
Changing the dummy summation index on the left-hand side from & — (k + 2)
and equating coefficients of the k™ term leads to the two-term recursion relation

; 2412
Apyn _ + € ' (63)
ay k+2k+ D
To examine the behavior of this infinite series at large values of x, look at the
asymptotic form as & — oco. This form is

- 1.3 2
e N (64)
ay k
or
1
aym —> _‘1 (65)
so we would have
u(x) — et (66)

Thus, for general values of €, ¥(x) — o0, we do not have a square-integrable
solution. For the special value

2¢ =(2n+ 1), (67

the infinite series of eq. (61) can terminate at the n™ term. If n is an even integer and
ag # 0, the recursion formula of eq. (63) vields a,,.; = 0, and, therefore, a,, = 0
withm = n-+2k. If n is an even integer, and if we had a; # 0, however, all a,, with
odd integers m would survive up to m — 00, and the infinite series would again
diverge as e™*", If 1 is an even integer, we must therefore have a; = 0. Similarly,
if » is an odd integer, we must have ay = 0. The series therefore terminates

with n=even, ay#0, a =0, a,;=0,
with n=odd, a; #0, =0, a,=0. (68)

For these cases, the wave functions of egs. (59) and (61) are square-integrable and
lead to the discrete set of allowed energy eigenvalues

1
2e = (2n + 1); E =hay(n + 5). (69)
To find the coefficients of the polynomial of degree », invert the recursion relation:
k(k — 1
@2 K ) , (70)
ai 2n —k+2)

leading to

An-2j (_l)jn(n =1 - (n—=2j+2)(n—2j+1)
a, 2i2-4-..(2j —2)2j
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n!
— (=1 71
D (n -~ 2122 j! an
With a,, = 27, this solution is the standard Hermite polynomial, H,(x),
; n= 2j n! )
Hn n-2 i 792
(x) = Z( o=z (72)

The Hermite polynomial can be defined in three ways:
1. Through the regular solutions of the differential equation:

H!(x) — 2xH)(x) + 2nH,(x) = 0. (73)

2. Through a generating function, where the parameter, s, may be an arbitrary
complex number:

e NHL(X)
—s57 4250 n n
e Z_OTS . (74)

3. Through a differential relation, or a Rodrigues-type formula:
n

2 d 2
Hy) = (-1 (). (75)
X
Thus,
E, =fimon+ 1), yu(x) = NyHy()e % . (76)

The normalization constant, N,, can be evaluated most simply through the
Rodrigues-type formula

n

[N, |2f dxH(x)e ™ IN!/ dx Hy (x)(— 1) e “)

4"
= [N,| / dx(e™ )(d —H,(x)) = |N,| / dxe™ nla,
= [N, |*/mn'2" = 1. (77)
Here, we have integrated by parts n times and have used the fact that the integrated

parts, to be evaluated at o0, are all dominated by the factor e < Choosing N,
to be real

1
Ny = | e, 78
n!2" /7 (78)

Final note: Sometimes it is necessary to normalize the wave function in real,
physical space, i.e., with

f dq iy = 1. (79)
Then,

— (80)

er -
n!2"V hm
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Harmonic Oscillator Calculations

A The Bargmann Transform

For many calculations involving 1-D harmonic oscillator wave functions, it is
useful to introduce the Bargmann transform through the kernel function

1
Ak, x) = —vexp(~k* + V2kx — 37, (1)
e

where k is a complex number. Given a square-integrable function, ¥ (x), its
Bargmann transform, F(k), is given by

Fk) = f ” dxyr(x)Alk, x), @
where
Y(x) = % f d’ke ™ A(k*, x)F (k), ')

and the integral is over the 2-D complex k-plane; i.e., withk = a + ib,

fdzkﬁfooda/wdb. @

Now, from the definition of A(k, x) and the generating function definition for the
Hermite polynomials, with s = k/+/2,

i

_ AN AN Lk
A(k,x)_n;( h—‘nzzn\/_;e 2 )ﬁ! —éwn(x)m. (3)
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We therefore see
kﬂ

(6)

Yrn(x) has Bargmann transform

5

We can transform a scalar product from x-space into k-space, or from k-space
into x-space:
1 .
- / d*ke ™ F*(k)Fy(k)
b4
1 .
— f d*ke f dxy'V () Ak*, x) / dx'yP(xNAK, x)
i
= [axv v, )
where we have used, again with k = a + ib,
1 et
— f d*ke ™™ A, x)Alk, 1)
i
— L‘/-oo dae—[«/iﬂﬁ“;;l)]ze—[%]z_/m dbeiw/fb(x’fx)
N2 TJon

<) 12 1 oe e
- 67[( = )] _f db/ezb (x'—x) _ 5()(,'/ _x)' (8)
2n

—0C

In the last step, we have used
Sx)8(x) = f(0)3(x). &)

Eq. (7) thus permits us to evaluate a scalar product either in x-space or in k-space.
At times, the latter may lead to the easier integral.

B Completeness Relation

The delta-function property of the integral of eq. (8) is also useful to prove the
completeness of the set of harmonic oscillator eigenfunctions ¥, (x). An arbitrary
1-D square-integrable function, W(x), can be expanded in a generalized Fourier
series in oscillator eigenfunctions, ¥, (x),

o0
W)=Y cn¥ulx), (10)
n=0
with coefficient, c,, evaluated by the Fourier inversion theorem
oo
en = f XY, U7 (11
— o0

SO

W = Y[ ax e eowe). (12)
n=0v —%
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This requires

anu)w (') = 8(x - x). (13)

n=0

This is the completeness relation we want to prove. Substituting eq. (5) into the
Jeft-hand side of eq. (8), we get

*n oo

1/(1 ke ¢ Zw (x) Zwmm ,,,,,,,,,,,,,

" m=0
'“Z an(x)wm(x)de ~kk"k*nkm (14)

Doing the integral in polar coordinates, with k& = pe'?,

2
[dee—k*kk*nkm :foodppe,,,pZPn }nz/ Trd(pei(m—n)(ﬁ
0 0
oo

- f dppe ™ p" "2 8 = TN B (15)
Q

Combining eqs. (8) and (14) leads to the needed completeness relation given by
eq. (13).

C A Second Useful Application: The matrix (x),,

As a second example, we will use the Bargmann kernel to calculate the following
useful integral

foc dxw:(x))‘:l//m(x) =< :a XYm >= (X)pm. (16)

With m = n this integral would be needed to calculate the expectation value of x
in the n'" eigenstate. Because in that case the integrand is an odd function of x,
this expectation value is zero. The particle is equally likely to be in the right half
or the left half of the x domain. For general n, m, the two-index quantity defined
as (x)nm in eq. (16) will be shown to be a matrix in Chapter 6. For general n, m,
we can evaluate the needed integral by considering the integral

[00 dx A", x)x Ak, x) a7

[e.]

as a function of the arbitrary complex parameters £ and I* in two ways

N *H kl?l o0 .
f dxAQ*, x)x Ak, x) = Z DN f dx ) () Y (x)

vm!
= J——el k_/& dxxe W BCHOF Le”"‘ ” dx'(x" + —l—(l* +k))e
V5 B IVZR N2
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et - Ly e
72 Ak

1 ¥ -1 l*nkn+l
Al ) (%
n=1 n=0

The only surviving terms are those in which the powers of k, viz., m, differ from
n by 1. Therefore

/‘00 dxyr;(xX)xy,(x) =0 for m#(@®t1)

:\/@ for m=@m+1)
:\/g for m=(@m-—1). (19)

Problems

9. For the 1-D harmonic oscillator, calculate all nonzero matrix elements of qz, P,
and p? (for the nonzero matrix elements of g, see eq. (19) above). For a general
state

W(g.t) =Y catulg)e 75,

n

calculate < ¢ >, < g° >, < p >, < p? >, Aq, and Ap as functions of the ¢,.. Try
to determine values of ¢, for which the product (Ap)(Ag) is a minimum. (Hint:
Try ¢ = 1, all other ¢, = 0.) For the special case

1 i
V2
calculate < g >, < g? >, and Agq as functions of the time, . For this special case,
also calculate S; that is, calculate as a function of ¢ and 7 the probability per unit
time and unit area normal to the displacement, g, that the particle is streaming in
the direction of q.

10. A particle of mass, m, in a 1-D harmonic oscillator potential has a probability
density amplitude at ¢ = 0, specified by the initial value

Co =

1

H
W(g.t =0) = [mwo} e,
hm

that is, by the n = 0 eigenfunction displaced by a distance go. Calculate P(E),),
the probability the particle is in an energy eigenstate with energy E, at¢ = 0 as
a function of xq = qo/~/fi/mwy and n. [Check that P(E,) — 8,9, as go — 0.]
Calculate WW* at a later time, £, and discuss the motion of the particle. Note: You
may be able to sum an infinite serics by using the generating function definition
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of the Hermite polynomials, H,(x), or the Bargmann kernel expansion

A, =Y Y
n=0

11. Repeat problem 10 for the case when

et 2mwo(q qo)e 1T @’
hm

\If(q,t:0)=[

W(g,t =0) = ¥,(g — go)
for arbitrary n.

Solution for Problem 11

a. The case n = 1: Let us write ¥ at ¢ = O in terms of the dimensionless x and x,

I E N
2(x X - _ e Z(Jz) + N
(.0 = i/_ 202 X0) S - S — xpge i :

71'4 ][4

= /2(x — xp)e” 4X°A(7,x)—~/_(x—x)e 4‘02%

()

where we have used the expansion of the Bargmann kernel function, A(k, x), with
k = x9/+/2, in terms of the normalized Yy (x). If we further use

1
XUn() = (’”2“ )«/f,,+1(x>+\/§¢,,ﬂ1(x), %)

the above yields

S ST BV S ZO YA
W(x,0) = e 3 ( ﬁxo;drﬁ(ﬁ)

+ im%@(%) " iﬁwﬁgx)(%/%))

()

n=0
Va(x) Xg Ya(x)

() B () ®
where we have shifted indices n —> (n — 1) and n — (n + 1) in the last two sums
above. (The second sum is proportional to a factor » and thus begins at n = 1.)
We have therefore expanded our W(x, 0) in terms of the ¥, (x)

W, 0) = 3 cathn(x), with c, = e (—xo-)"fl(n - ;xg). (4)
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At a later time, we have

. ]
\D(X, t) - chwn(x)e—zwo(n+§)!

= e_‘i‘”o’;e_fllx%t\;/; (n — x_j)(xoe\;;"“r )" ”/:’}%) &)

We can now sum these infinite series, using the expansion of the Bargmann kemnel
function, through

o0
Zlbn(x K = Ak, x) = L}e—%kuﬁu—%x’
N 3
Z ¢n(x) dA(k,X)
dk

= (—k + V2x)A(k, x), ©)

now with k = (xoe~' /+/2). This yields

W(x,t) = e‘ﬁm’([—(%e"“’“’) + «/ix]e”i‘”“" - %)

x e 4%

- —ia i
gl e[ 4xze ZH’OI-FXXQE’ ILJOI_EX'Z]
I
b

R (e"i’”"’ [Z(x — Xg COS wot)])
V2

eﬁ%(x —xg cos wyt)? e—i.l’o sin wgt(x—%xo cos wot)

X
T 4
—f Zwot 2(x — xo cos a)()t) 2(x~x0 coswot)ze—ixo sin wot(x— %xo cos wot)' )

Jinl

=€

Therefore,

(x — xg cos a)()t)z
T

that is, the probability density is that of the n == 1 state, but it oscillates about the
origin with the oscillator frequency, (wg), with amplitude xg, and without change
of shape.

Our derivation so far has made use of some simple properties of harmonic
oscillator eigenfunctions, [see eq. (2)], and the expansion of the Bargmann kernel
function in terms of the ¥, (x), or, what would be equivalent, the generating function
definition of the Hermite polynomials.

b. The case of arbitrary n: To generalize our result to a function W (x, 0) = ¥, (x—
Xp) with arbitrary n, it may prove more convenient to work with the Bargmann
transform of ¥, (x — xo):

W(x, 0)? =2 e xocose® — jy (x — xgcosant)?; (8)

Foky = ]Oodxxlfn(x - x0) Ak, x) = / ‘dxlwn(X')A(k,X’ + xo)

o9}
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l 2 @ _.l_ 2__1_ 2 R
:e«/ik.ro—zx()/ dx,&’fn(xl)e 2k 2¢ +/2k ﬁ)x

o0

71,\-2 L w 7
S f ax' Y (A = 22, %)

V2
_lx2+;k/\’o o0 = 1!’\’(3‘/) X0 v
- 2 4002 / dx, nx, —" k,_.._.__._.
Al )Nzo VN ( «/2)

n
Lo, L (k - ﬁ)
- e'4x0+ﬁk"‘°m_t/_—2_,
vn!
where we have used the reality and the orthonormality of the harmonic oscillator
eigenfunctions. To obtain the expansion coefficients, ¢,

™ = f_:dxw,:(x)drn(x —xg) = lfdzke—kk* Fn(k)j;",!_, (10

i1

€))

it is sufficient to expand F), (k) in powers of & and use the k-space orthonormality

relation
1 e kT kM
— { dPke ™ e = S 11
ﬂf ¢ A m! ST ! (1)

For this purpose, therefore, we expand

vl
R 0 n . n—
— i LY 1 (% )" AN (-2) “
‘/'ﬁb:() tz:Ob! ‘\/j a!(fl‘a)‘ '\/i
o 1 1ot ! —1yte n-+m-—2a
- Z[w_ewé (1 Jk’”, (12)
| /nl “—alln—a) (m —a)! \/2
S0
1 T _1¢ n! m! Xg \Hm—2a
) C 3% —]y (—) . 13
W= Zmvmt LY e i ail vz =
For the time-dependent function, we then get
: I
Wi, 1) =Y cPPnlx)e 22N, (14)
and we could perform the m sums via
k' a 0 —imgt

Ak, x), now with k =

m!

_ = 15
;(m _a)!u'/m(x) == Tk 7 (15)
For small values of n, where the @ sum contributes only # + 1 terms, this method
works well, as you could again verify for the special case, n = 1. For arbitrary

values of #n, particularly for large values of n, we could use the summed form of
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the Bargmann transform, F),(k). From the above expansion in powers of k,

If W(x,0) has Bargmann transform F,(k),

then W(x,?) has Bargmann transform F,(k, 1) = e 3% F, (ke ).

Therefore, for us,

TN ( T e R
E,(k, I) — e~%wgle—%x(’;e \%ke ,%']L___L).
Vn!
Xge w0l
i 1 1.2 120 et (k - )
= ¢ Dt g =g L ake T L /—‘/,5 —. (16)
n.

The function, W(x, ), then follows at once from the inverse Bargmann transform
1 2y —kk* 4ok
W(x, 1) = — [ dke™ AK*, x)F,(k,1). an
7

To do this integral, it will now be convenient to make the substitution

K= (k - x”‘?imot),

V2
SO
o1
e—l(n+§)w0t Y i)luuol e xge 0!
\p(x’ l) — d2k!e (k'+ 7 )k +——ﬁ )
i
Logm g 2022000 P
e WU oAk gl =4 12 keen) L[ K"
X - e Vi e s [___]
A Vn!
e—i(n+—;)a)ot L e[~%k”‘2+\/§ "*(x—x0 €08 tpl)— 3 (x —xg cos wpt)]
— /dzk!ewk*k
/ 4 JT%
n
x [ k ]e—ixosinwor(x—-%"cosu)or)
Vn!
—i(n+Dywor 1 240 —k™k . k"
=e z — [ d*ke ™ F A(K™, (x — xp coswol)) [ —=]
b4 Vn!
e sin wpt (x—~ % cos wor)
= Yra(x — X COS wot)e—i(wr%)wore—ixo sin wo (x— ¢ cos wor)) (18)
For arbitrary »,

[ (x, 1)|* = [¢n(x — xo coswat)|, if W(x,0) = ynlx —x0). (19

For arbitrary #, therefore, the probability density oscillates without change of shape
about the origin with the oscillator frequency, (wp), and with amplitude xo, if the
initial state is the n'" oscillator state displaced in the x-direction through a distance
xp. This extremely simple property is unique for the harmonic oscillator and does
not follow for the energy eigenstates of more complicated Hamiltonians. Also, the
use of the Bargmann transform greatly facilitated the proof for general, n.
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12. The 2-D isotropic harmonic oscillator with Hamiltonian

H+—~(px+py)+ (x +3%)

has eigenfunctions

Yy (X, ¥) = Y, ()%, (3),
with eigenvalues, E,,,, =/Awg(n; + ny + 1). Show that H is invariant to rotations

x" = xcos@ + ysing,

¥ = —xsin8 + ycosé,

where 6 is a constant. Show by means of the Bargmann kernel that an eigenfunction
in which only the x’ degree of freedom is excited can be expanded in terms of the
above ¥, ,,; i.e., find the expansion coefficients, ¢(V) :

niny”
YN Wo(y) = D e ()9, ().
nyn,
13. For the conservation laws for the hydrogen atom, the three components of
the Runge-Lenz vector are

R 1 L= > Ze?
R=—I[pxL]—-Lxp]|—-—F
24

r

Show that they are hermitian when written in the above form. Also, show that they
commute with the hydrogen atom Hamiltonian

(ﬁ'ﬁ)*_ziz
21 ro

H =

In the above, R and H are expressed in terms of the physical quantities, rph\,\ , pph,g, ,
Lphys »and Hpyy . If these are expressed in terms of dimensionless quantities, 7, 3,
L H, through

- - - o > -
Yphys. = dol, Pphys. = ;—p, Lphys, =fL,
]

uZet A2
11physA = “_H with ag =  —
r? nZe?

the Runge vector in physical units, as given above, can be expressed in terms of a
dimensionless R by
Rphys, = Z€2R.

Show that this dimensionless R can also be expressed as

!

-

= 7 (g -, = > ;"
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Also,

®R-R)=(p"
and

2\ - o Lo
ﬁ;-)(L-L+1)+1=2H(L~L+1)+1,
-

R-

-

L

i

R

0.
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Further Interpretation of the Wave
Function

Consider a quantum-mechanical system with a Hamiltonian that has a discrete
spectrum only, with allowed energies, E,, and eigenfunctions, . In general, the
state of this quantum system can be specified by a wave function

V(1) =Y cat¥n(P), e i 5 M

describing a system for which the energy is not uniquely specified. If it is a single
particle,

<W W o>=]= Zc;’z‘(:n < Yy, Y > -;‘—Zc;cm < Y, Y > e BB (9
n n#m

Because < ¢, ¥, >=0forn # m,

< W W >= Y e, (3)
Similarly,
<E>=<W, HY >=) e, En, @
n
< EF >=< U, B >= ) "|c,’EL. &)
n

It is natural to interpret |c, | as P(E,), the probability the particle be found in the
state with energy E,. Without a coupling of our system to an outside field, that is,
without an outside perturbation, these P(E,) are independent of the time.
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A Application 1: Tunneling through a Barrier

As a simplest application, consider the NH; molecule system, where the motion of
the N-atom relative to the Hj plane is governed by the double-minimum potential
of problem 7. The lowest-energy eigenfunction was an even function of x; the first
excited state, at an excitation energy, A E, above the ground state (see Fig. 6.1), has
an eigenfunction that is an odd function of x, but otherwise almost identical with
the lowest-energy eigenfunction (see Fig. 6.2). If we actually make a measurement
of the position of the N-atom when the x-vibrational motion is not excited, we will
find the N-atom either above the Hs plane, x > 0, or below it, x < 0. Suppose at
t = 0 we make a measurement telling us the N-atom is above the Hy plane. Then,

L
V2

Note ¥, |c,|* = 1. At any later time,

W(x, 1 =0) = —=(Yoeven + Y0.04d) = YRight- ®

1 i i
Wx,1)= \/_j(wo.evene i Eovent + Yo.0a0€ "Eo‘m‘lt)

I . —i
- ﬁe 7 Bt (]IJO.even + ¢0,0dde A AE[)‘ (7)
In particular, when
hm
t=—, 8
N 3

1 .
Vix, 1) = Ee“ﬁa"“‘““'(lﬂoﬂm = Y0.0dd); W, O = Vel (9)

In this time, therefore, the N-atom has tunneled from the right potential minimum
through the barrier to the left potential minimum. In twice this time, we will again
find the N-atom in the right minimum. The N-atom tunnels back and forth through
the potential barrier with a frequency given by

AE
Viunncling = Eﬂ,’_ﬁ (10)
From the solution of problem 7, AE is proportional to the Gamow factor, e G,
with G = 2a+/[2u(Vo — E)/h*] for the square well barrier of width 2a. For a
more general V(x), this would be replaced by

+a
G= [ an/uwe - ey,

as will be shown in Chapter 37, where the Gamow factor, e, is the most crucial
part for the probability of tunneling through the barrier.

We end with a parenthetic remark: In the above discussion, we have used another
result of problem 7. The lowest-state eigenfunction for our symmetric potential,
with V(—x) = V(x), is an even function of x. This result seems to be universally
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V{x)

E Q. odd

0, even

Xy X X X

FIGURE 6.1. The ground-state doublet of the NH; double minimum potential.

true for symmetric potentials, which can be understood in terms of the curvature of
the eigenfunctions. For two similar eigenfunctions of opposite parity, the function
of odd parity must have a node in the center at x = 0 and must therefore have a
somewhat greater curvature to “fit” into the potential, leading to a greater positive
value of the expectation value of the kinetic cnergy. It is, however, not completely
clear this property could be negated by the expectation value of the potential energy
for a “pathological” potential perhaps having a large contribution to < V > from
the region near x = 0. In fact, the double minimum potential of this section, in
which the central potential barrier is sufficiently infinite, is such a “pathological”
case for which the ground state wave function is a degencrate doublet of an even
and odd function. The ground-state wave function is no longer a pure even function
of x.
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Y (x)

/\ Yier, (1)
ARN )

X X X X

FIGURE 6.2. The eigenfunctions ¥god¢ and ¥geen Of the ground state doublet and
Yright/lert = \/g (¥0.cven £ ¥0,000)-

B Application 2: Time-dependence of a general
oscillator < g >

The probability amplitudes ¢, can tell us the quantum mechanical expectation
value of any operator, O, through

<0 >= ZC:Cm < Y, Oy > ebEnEnd an
R.m

As a particular example, let O = g, the physical displacement coordinate of the
1-D harmonic oscillator. The two-index quantities (g ), =< ¥,, g, > for the
harmonic oscillator were nonzero only for m = n £ 1 (see Chapter 5). Thus,

Mg

'N [k . ‘
<g>=_[—x)= \/m;[c‘;cnq«/ﬁe‘w"‘ + chepv/n + 1e"“"“’]

hn . )
— E 5 [c,’fcn 1€ ¢t cqe “‘"”]
mda
K
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| kn . . .
= Z\/ [2Real(c}cy-1) cos wot — 2Tm(cjicy—1) sin wot |

2mcu0
hn
=y Ay cos(wot + n), (12)
- 2mawyg
where we have defined 2c’c,-; = A,e'®. If we use < g > to describe the

quantum-mechanical motion of the simple 1-D harmonic oscillator, the result is
very similar to the classical motion.

C Matrix Representations

For the expectation value, < O >, of eq. (11), it is tempting to interpret the
two-index quantity, Oy =< ¥n, O¥, >, as the nm'® matrix element of an
infinite-dimensional matrix. (The set of numbers, O,,,, contain all experimentally
observable information about the dynamical quantity represented by the operator,
0.) To prove O,,, is a matrix, all laws of matrix algebra must be satisfied:

1) multiplication by a scalar (a complex number or “c-number”), A0:

< Yy, AOYy >= A0,,. (13)
2) addition of two matrices, O + Oy:
< Y, (O1 + O >= (O1)am + (O2)um- (14)
3} matrix multiplication, 0, 0;:
< Yy, OyO1 Y, >=17 (15)

To prove the law of matrix-multiplication, the new function obtained by acting
with O on ¥, can be expanded in terms of the v, in a generalized Fourier series

OYn =) atr,  With & =<y 0¥ >= (0w,  (16)
k

SO

< Y 0201 >= Y < Y, Oa¥i >< Y, O1¥m >, an

k
ar

(0:01),,, = > (02),.(01),, (18)

k

This relation is the familiar law of matrix multiplication. The matrix elements,

Onm =< wno ()WM >= /dxw:(x)()l/fm(x),

were introduced here with the concept of the Schrodinger wave equation and the
use of the energy eigenfunctions of this wave equation. Heisenberg first introduced
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such matrix elements of dynamical quantities entirely without the concept of a wave
equation or a wave function.

D Heisenberg Matrix Mechanics

We are therefore now at a stage where we can make a short historical remark about
the Heisenberg derivation of the laws of quantum mechanics. Heisenberg did not
think in terms of a wave equation or in terms of a wave function. He started by
thinking about the laws of classical dynamics for a periodic (or more generally
a multiple-periodic or quasiperiodic system) in terms of a Fourier analysis of the
classical generalized coordinates, g. For a simple periodic system,

g =Y g.e"™,  with w = 2w, (19)

where g, is the Fourier amplitude for the n'" overtone of the classical fundamental
. (For a multiple-periodic system, nw would be replaced by nyw; +npwp +--- +
n s ¢, and the sum would be over f overtone indices, and the Fourier coefficients
would depend on f integers, gi = qn nyn;-)
Now, Heisenberg reasoned: Becausc the n'” overtone has to be replaced by a
two-index quantity, via the Bohr frequency relation,
En - Em

nw — 5 = Wy Bohr, 20)

the Fourier coefficient g, should also be replaced by a two-index quantity
40 >  Gum Heisenberg matrix. 20

Moreover, these g,,,, are the only observable (physically meaningful) quantities. In
addition, because matrices do not commute, the quantum mechanically meaningful
p and g matrices do not commute. In particular, Heisenberg introduced the Planck
constant into his matrix algebra with the simple assumption

Z(Pnk‘]km ~ Ynk pkm) = ﬁl".anm- (22)
k
In the limit,i — 0, p and g do commute as they should in the classical limit,
when /i becomes too small to matter. The genius of the Heisenberg approach is
contained in this Heisenberg relation, which we have already met in Section 3G
in the framework of the Schrodinger approach.

Using the p, ¢ matrix commutation relation, the relation between H(p, ¢) and
E, and the commutators [ p, H(p, g}l and [g, H(p, q)], which follow from eq. (22),
Heisenberg found the allowed energy values and the matrix elements of p and g via
matrix algebra for the 1-D harmonic oscillator and other simple dynamical systems,
without the use of a wave equation. The equivalence between the Heisenberg g,
and the Schridinger < ¥,, g¥, > was demonstrated by Schrodinger in 1926.
(Wolfgang Pauli in an unpublished letter to P. Jordan is reputed to have shown
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this equivalence even carlier). In these lectures, we shall give the Heisenberg
derivation for the energy eigenvalues, E,,, and the matrix elements g,,, and py,, of
the simple harmonic oscillator in Chapter 19 after we have gained some facility
in the calculation of matrix elements of dynamical quantities by both Schrodinger
and algebraic (Heisenberg) techniques.
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The Eigenvalue Problem

One of the basic problems needing to be solved in quantum theory is the general
eigenvalue problem, for some hermitian operator, say, A, with AT = A,

AYa(x) = Aga(x). ¢y

We shall learn how to solve such problems by purely algebraic techniques,without
introducing wave functions and differential equations. For the moment, however,
let us go back to the coordinate representation, and, in particular, let us choose
A = H, where H is the Hamiltonian for a single particle in three dimensions, or
for the two-particle problem after transformation to center of mass and relative
coordinates. Keeping the center of mass fixed, the eigenvalue problem for the
relative motion of the two-particle system is given by the Schrodinger equation

hZ
— 5 VY V&Y, 0¥ = EV. @
I

If the potential is a function of the scalar distance r only, spherical coordinates
will be natural and

32+2a+1 1 asynga+ 1 92 Wqu(V() Eyp 0
- - A I S — SI — 5 | 1YV T - r)y— = .
ar2  rdr r?|sinf 30 36  sin’ 0 3¢ B

3)

Now, let

Y(r,0,0) = R(rY (6, ¢) = R(r)O@)2(¢). C))
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Substituting into the equation, and subsequently dividing by ¥ = RO ®, and then
multiplying from the left with r?, leads to a separation of the wave equation

r2[d*R 2dR7 2ur? 171 8 R12) 1 3%®
— ==+= E~V(@F) = —— in6 ———— .
R I:dr2 +r dr} R ( ) [ ] ®sin? 9 8?2

(5)

©|smose" " 30
Now, we have a function of r only, on the left-hand side of the equation, equaling
a function of @ and ¢ only on the right. Hence, each function must be equal to
the same constant, to be named, A¢. By multiplying the right-hand side by sin’ 6,
we can further separate the 6 and ¢-dependent pieces. Letting the new separation
constant be named m?, we get the three separated equations

R [d°R  2dR h?
- '2—12[:1-;2* + ;E‘{I + ]:Z_WEAO + V(r):'R(r) = ER(r), (6)
d’e do m?
e COL G + ——— () = A O(F), 7
707 d9+sin26() 00(6) )
d*®
~ggE =@ ®)
The solution to the last equation is trivial
() = e, )

We shall prove later the separation constant, m, must be an integer. We shall defer
the proof to later, but we note that it does not follow from the requirement that
the wave function be single valued. It is ¥¥* and the probability density current,
S, that must be single valued, i.e., have the same value at ¢ and (¢ + 2n7). The
r and 6 equations can be simplified by eliminating the first derivative term to
make them have the form of a 1-I» Schrédinger equation. Because the volume
element in spherical coordinates has the weighting factor 7% sin , and we require
the normalization

oo b4 2
/ drrﬂR(r)Ff de sinB]G)lzf doid? =1, (10)
0 0 0

(we will find it convenient to make each integral separately equal to unity), it will
be useful to “one-dimensionalize” by transforming to new 1-D functions, u,

rR(r) = u(r), V/sin 6@(0) = u(6), D(P) = ule). (11
The 1-D equations are then

d>  2u
(i 31

) ]) ry= —-Eu(r) = Au(r), (12)

4> (=) B o
(‘W + m)u(g) = (ko + Z)u((}) = Au(6), (13)
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2

du 5
Tap " u(@) = ru(g). (14)
The generic cigenvalue problem we want to solve has the form

2

( dx?
The cffective potential term often contains a parameter, named m in the generic
equation, such as the parameter, m, in the § equation, or the parameter A, in the r
equation.

One of the methods used by Schrodinger to solve this type of problem is the
so-called factorization method, which naturally leads to a constructive process via
ladder operators. The introduction of such ladder operators will ease the transition
to the algebraic techniques, which we will use later to solve such eigenvalue prob-
lems, beginning with Chapter 14, where we reexamine many of these problems in
a new light.

+ r(x, m))u)\m(x) = )"ukm(x)' (15)

A The Factorization Method: Ladder Operators

[A good reference for this method is: L. Infeld and T. E. Hull, Reviews of Modern
Physics 23 (1951) 21. The table of factorizations at the end of the article gives a
listing of 31 wave equations for which solutions are known in analytic form.]

In the factorization method, an attempt is made to solve the eigenvalue problem
of eq. (15) by factoring the Schrddinger operator containing a second derivative op-
erator into a product of two factors, each containing only a first derivative operator.
Defining

d
O.(m)= T x + k(x, m),

d
O .-(m)=+— +k(x,m), (16)
dx
which through the basic second-order equation, cq. (15), satisfy the two equations
I: 04 (m)O (M (x) = [A — Lm)]u;,(x),
1 O (m+ DOL(m+ Dup(x) =[A — Lim + Dlugu(x). (A7)

For the specific case of the 8 equation, our ¢qg. (13), the function
1
k@, m) = (m — E)cot(-) (18)

will do the trick. Our equation (I) becomes

( d +( vl) t{))(+i+ ~~lct6) ()]
0 m 5 co 70 (m 2) 0 Wim

¢ (m' =) 1,
=\ "5 - T -z m 0
( @ e "2 )"A @
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1
=[r—(m~ E)zlum(@)- (19)

Equation (IT) becomes

d d
<+—+(m+ )cotf))(g*Jr(er )Lotﬁ)u,\m(G)

dae dé
> (m*— )
=4 - am g
(dgﬁlsw (m + ))u ©)

The proposed factorization works for the 6 equation and leads in this case to
Lm) = (m — )~ @D

We will postpone the question, treated in detail by Infeld and Hull, for which
“potentials” does the factorization work? Let us first prove a number of theorems.

Theorem I:

If u;,,(x) is an eigenfunction of the generic equation with parameter, m, and
eigenvalue A, then [ O_ (m)u,,(x)] is an eigenfunction of the equation with param-
eter, m — 1, and the same eigenvalue A, and [O+ (m+ Du,,y (x)] is an eigenfunction
of the equation with parameter, m + 1, and the same eigenvalue X.

That is,

O_(m)u; m(x) = const.u, g, . n(x),
O (m + Duym(x) = constuse; gy y(x). (22)

To see the first, act on equation (I) from the left with O _(m) to give
Of(m)0+(m)[0(m)uxm] = [~ E(m«)]{O-(m)um} (23)

that is, O_{(m)u,,, is a solution of equation (II), with m replaced by (m — 1).
Similarly, acting on equation (II) from the left with O (m -+ 1) gives

0+(m+1)0-(m+1){0+(m+1)u,\m:| = [Awf,(m—}1)][0+(m+1)um}; (24)

thatis, O (m + Du,,, is a solution of equation (I), now with m replaced by m + 1.
Thus, O_(m) and O, (m + 1) are m step-down, or step-up, operators that can
ladder from a known solution to other solutions. Still to be answered: Are the
new functions square-integrable if the original u;,, were square-integrable? Do
the m-ladders continue indefinitely to smaller or larger valucs? These questions
still need to be answered. To see these, we need additional theorems.

Theorem 1I:

0-(m) = 0., (m)', Oy (m) = O_(m)". (25)

These relations follow from the adjoint properties of the two parts of the operators
d . d .+

[ d=0t 10 kom) = kGom)'. (26)
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We can use this theorem to investigate the square-integrability of u;(u+1).
Assuming u;,, is square-integrable, over an interval from a to b, consider

b
/ d'xu;m—'rl (x)ulm+l(x)

43

b
= tconst.IZ/ dx[0+(m + l)u;_,,,(x)]*[0+(m + l)u,\m(x)]
b
= {const.lzf dxul, ()0 _(m + DO, (m + Dz (x)
a b
= |const.|*[A — L(m + 1)][ dxul,, (X)um(x). (27

If the number [A — L(m + 1)] is a positive number, the final result is a patently
positive quantity, and u;,, 1 is square-integrable and can be normalized to one by
an appropriate choice of the constant. If L(m) is an increasing function of m (see
Fig. 7.1), however, an m-value will come such that L(m + 1) will be greater than A.
Eq. (27) then would say that a patently positive quantity on the left-hand side of the
equation would have to be a patently negative quantity on the right-hand side. This
cannot be. Hence, the assumption that the solution u;,,, was square-integrable must
have been wrong. The only way out of the soup comes if the m step-up process
quits; i.e., if a maximum possible value of m exists, my,y, such that

Oy (Muax + Dy, (x) = 0, (28)
which would require
A= L(Mpax + 1) (29)

Eq. (28) is a first-order equation, which can in principle always be integrated

d T ma
— SR (kM A+ Dk, = 0. (30)
dx ’
For example, in the case of our 8 equation,
d 1
it — (o + =) cot 00, 31)
U hm mex 2
leading to
1
Inu,,,, = [In(sing)]"™ 2. (32)
If we name
Mpmax = 11 (33)

we can write this solution

M(G) — N[ sin(lH)U, @(9) = Nl Sil’ll a; (34)



A The Factorization Method: Ladder Operators 87

£ (m)

T
A Forbidden
_.Q
v
/ m
—] Mpax + 1
. ° * Spectrum
- m - mmax- 2 mmax

FIGURE 7.1. Case 1. A monotonically increasing L(m).

recalling that +/sinf@(@) = u(#). The normalization constant, N,, can be

evaluated to be
@I+DIY [1.3.5....U+1)
= = . 35
il \/2(21)!! \/2[2-4~6~-2]] )

These considerations lead us to theorem Ifa.

Theorem Hla:

If £(m)is an increasing function of m, a highest value of m exists, m,,,, such that
O4(Mumax + Dtym,,,, = 0, and the eigenvalue, A, is restricted by A = L(mpax + 1).
In this case, normalized square-integrable eigenfunctions u, ,, can be obtained from

Um-1(x) = O_(m)u;m(x), (36)
where
O_(m)
VIZ=Lim)]

That is, we can use a laddering process to ladder down from the eigenfunction with
maximum possible m to arbitrary m, by repeated application of this operation.

O_(m)= 37
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Theorem IIIb:

If L(m) is a decreasing function of m, (see, e.g., Fig. 7.2), a lowest value of m
eXiSts, Mmin, such that O_(Myin)itim,,, = 0, and the eigenvalue A is restricted by
A = L{my;,)- In this case, normalized, square-integrable eigenfunctions u;,, can
be obtained through a step-up procedure, starting with the eigenfunction with the
minimum possible value of m, via

wimp1(x) = Op(m + Dty (x), (38)
where
O,(m+1)
e ——
R ey S Tx )] &
Theorem IIIb follows from
b
f dxul, _ (Oum—1(x)
a b
= |const.|? f dx[ O (m)um (x)]" O (m)u;m (x)
ab
= |const.|? / dxul, ()] O+(m)O_(m)us,(x)]
“ b
= |const.|2[k - E(m)]/ dxu’,, (X)um(x). (40)

Now if [A — L(m)] is a positive quantity, u,,, is square-integrable, if u,,, is
square-integrable. If £(m) is a decreasing function of m, as in Fig. 7.2, however, a
value of m would (in general) come such that [A — L(m — 1)] would be a negative
quantity, and again we would have a patently positive quantity on the left-hand
side of the equation equal to a patently negative quantity on the right. The initial
assumption that u,,, be square-integrable must have been wrong. In the special
case when A = L(my;,), however, the laddering process quits at the value m;y,
and now no inconsistency exist.
In this case,

O_(mmin)u)xmmm =0, (41)

d .
+ ld;”— + (X, M)t () = 0. (42)

In this case, if L(m) is a monotonic, decreasing function of m, (see Fig. 7.2), the
spectrum of allowed m values runs from Mmin, Mmyin + 1, Mpin +2,..., On to
~+00; the functions with higher m values being generated by repeated action with
O, (m+ 1).

So far, we have considered cases with £(m) being monotonic increasing or
decreasing functions of m. Our special example of the 6 equation, however, with

and a decreasing function of m for negative m values. In this case, the laddering
process will lead to square-integrable functions only if both a minimum value of
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L (m)

i

Forbidden
B SO —

mmin
Spectrum e °
mmin mmin + 1 -

FIGURE 7.2. Case 2. A monotonically decreasing L({m).

m and a maximum value of m exist. The spectrum of allowed m values is restricted
to a finite number = (M — Mg -+ 1).
In the special case of the 8-equation, we have both

A= E(mmin) - E(mmax + 1) - (mmin - “2‘)2 = (mmu + %)2’ (43)
and thus m?nin — Plgin = mrznax + Mimax- (44)
This quadratic equation for my,;, has the two roots, mpy, = —mpya, and my; =

+{mmax + 1). Clearly, the last equation violates the meaning of #2p,;,. Thus, with
Mmax = I, the allowed m values range from +/ in steps of one down to —I. Because
(Mmax — Mmin) = 21 must be an integer, we have the result, 2/ must be an integer.
Thus, seemingly / can be either an integer or a %-integer. Later, we shall prove
only the integer values are allowed for the orbital or 6 equation.

Finally, the function L{m) could be a decreasing function of m for large positive
values of m and an increasing function of m for negative values of m (see Fig.
7.4). In this case fora A < L,,,,, now two ranges of m values exist, one beginning
at an mp;, and going in integer steps on to +-oc, and a second beginning at an
M. @nd going in integer steps onto —oo. If A > £, then all m values would
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L(m)
A
Forbidden | Forbidden
m
My My + 1
e o Spectrum o o
L Mg +1 My ~ 1 Mlpay

FIGURE 7.3. Case 3. An L{m) with an allowed spectrum such that m,;, < m < gy .

be allowed. In this last case, therefore, A also has a continuous spectrum for all
values of A > Lyax. In this case, the normalization integral should have the delta
function form

f dxul,, (Dum(x) = 82" — 4). (45)

With & > L{m) for all possible m, the normalized ladder operators, O.(m + 1)
and O_(m) exist. Moreover, they will preserve this normalization. If the u;,,(x)
are normalized according to eq. (45), then

/'00 ff:odxuj,m[OJF(m)O_(m)um]

dxus 1y (XUsm -1 (x) =

o VIV = Lm)][A — L(m)]

= W = #* — o
- \/ N — L(m)] /-oodxux’m(x)ulm(x) = 86(A" — A). (46)

In this case, however, it may be difficult to find a solution for a starting value,
Ujmg (x)
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FIGURE 7.4. Case 4. An L(m) with two allowed branches: m = mpu, — -—oc, and
m = My —> +00.
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Spherical Harmonics, Orbital Angular
Momentum

We are now in a position to calculate the full angular functions for the general
central force problem, using the laddering techniques for the 6 equation to construct
the full set of angular functions ©(8) via the normalized step-down operators.
Because the eigenvalue A = Ao + % is a function of m,., = [, we will replace
the index A by the integer [. [Recall that A = LM + 1) = (I + 5)*.] The full
angular functions are the spherical harmonics

ulm(e) eim¢

+/siné \/27r'

To get the standard (universally accepted) phases for the spherical harmonics, we
need to multiply the normalization coefficient in the starting function u;;, with
Mmax = [, by the phase factor (—1)

ey

Yim (91 ¢) = 0, (0)P (@) =

20+ DMt :
un(0) = (—1>f\/ (7[2% sin'*2 (6). )

In addition, we need to multiply the normalized step-operators O_(m) and O, (m +
1) of egs. (37) and (39) of Chapter 7 by a phase factor (—1). Thus,

ei% [(;,‘-ig + (m — %)cota)u,m((;):l Jimo

Y m—1y — . 3
ton-1) VY \/(1 AyIp—r N 3)
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Setting u;,,(#) = +/sin 68, (8) in this equation, this becomes

e i d e
Yion—1y = N T TS [(—E — mcot@)@;,ﬂ‘ﬁ)} m 4
Finally, putting
me™? — —i-{?—eim"’, &)}
¢
we obtain
Yin-1(6, ¢) = e’ [_i +i cotﬁi.]Ylm(B, ®). (6
JT+rm{I—m+1D a8 g
Similarly, using the normalized, standard-phase step-up operator —O, (m + 1),
Yigns1y(0, @) = i [+i + i cotﬁﬁ—-] Y@, ¢). (D)
JO—m{+m+1)| 20 a¢

A Angular Momentum Operators

It will now be useful to express the operators converting the Y, into Y,1 1y in
terms of dimensionless angular momentum operators, such as

L, 1/ 2 3
w:.(xé-y~). ®)

Transforming to spherical coordinates

x = rsinf cos ¢, y=rsinfsing, z =rcosé, e
and using
ar . ar . . ar
— = 8inf cos ¢, — =sinfsing, — = o086,
dx y az
96  cosfcos¢ 86  cosOsing a6  sing
ax r ’ ay r ’ 3z r’
a i a § ]
0 _ _sm¢ 00 _cosp 9P (10)
dx rsing@ dy  rsin® az
we get
Le gy 10 (1
S
(L,+iL,) & 3 . 9
AT S Ly = e e — th— 12
P +=e ae+1c068¢ , (12)
and
(- ., 1 1 a8 . 2 82
=L+ (L. L_+L_ L. )= | — — G — o e — ). (13
e ot (L ) smo a6 05t aaagr ) Y
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Hence, the spherical harmonics are simultaneous eigenfunctions of the operators,
(L-L),and L_, with

N é: Ylm(ea ¢) :ﬁmYlm(ga ¢)’
(L - L)Y (6, ) =h* Ao Y1 (0, ¢) =Ll + 1)Y,,,(0, $). (19

In addition, egs. (6) and (7) can be put into the form

L Y = U+m){—m+ DY), (15)
LY =~/U—m)I +m+ DYy, (16)

The ¥;,,(6, ¢) form an orthonormal complete set over the surface of the unit sphere.
Thus, the matrix elements of the operators L., are

Yoms L _Yim) = 80i8mim—1yy/ U+ m)I —m + 1), (17
Yoms LiYim) = 80i8mmin/( — m)(I +m + 1), (18)

and
(Yim', LoYim) = 8pi8pymm. (19)

These matrix elements can also be used to obtain the matrix elements of L, and
L.,.

kA
<Yl’m’a Lx YIm) - E(Yl’m'a (L+ + L*)Ylm)

h
= b5 Smimi i/ L —m)I +m + 1)

+ 8-V A +m)l —m + 1)). (20)
Similarly,

h
(Yrm, L_lem) - E(Y[’m‘, (_1L+ + il YY)

[
= 51'15 A8y — m) I +m + 1)
+ i8mim-nV/ U +m)I —m + f)’). @D

The infinite-dimensional matrices for L, L, and L, thus factor into (2/ + 1) by
(21 + 1) submatrices. As a simple, specific example, the submatrices for/ = 1 are
(in units of z),

=
I
|,.
S o8-
o4 o
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0 :f 0
U R =t
L=1% % %]
i
0o % 0

+1 0 0
Z:(O 0 0),
6 0 ~1

where rows and columns are labeled in the conventional order, m = +1, 0, —1.
Because the spherical harmonics form a complete orthonormal set, we can
translate the operators L into the following functional forms. For example,

o0 m=-{

Li =) Y Yisy@ 9,0, (U - m+m+ D). @)

1=0m=-—{

In our method of constructing the (2/ + 1) spherical harmonics for a particular
!, we have started with the eigenfunction with m = mp,, — I, and we have then
used the normalized step-down operators, O0_(m), to calculate the remaining 2/
eigenfunctions. Alternatively, we could have started with m = mp,, and laddered
with O, (m + 1). A third possibility would be to start with the spherical harmon-
ics with m = 0 and use successive application of L4 to calculate the spherical
harmonics with £m.

~ (L)Y
M- (-m+t DI+t D+ d+m
[ — m)!
- %F%(LJ" Yo, @3)
and
Vi — (LYY
T D U —m DI DAL D) - U+ m)
I —m)!
- ETJF—;%(L Y'Y (24)
Now, because
(L)' = —(L), (25)
WE 8C¢
Yiem(8, 6) = (= "V}, (6, ). (26)

remark, the three operators L,, Ly, L, are all hermitian, and hence,

Li=1L; L =1L, %))
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£-Step operators for the 6 Equation

In the last section, we calculated the matrix elements of the operators, L, Ly, L.
These operators are functions only of 6, ¢, and &, 2. It will also be extremely
useful to have the matrix elements of the angular parts of the position vector of
the particle, viz. £ = sinf cos ¢, % = sinf@sing, and £ = cos§. To get these,
it would be useful to interchange the role of the quantum numbers /, and m, in
the factorization method and derive expressions for ladder operators changing / to
[ + 1, keeping m fixed.
For this purpose, rewrite the 1-D 6 equation in the form

2

(-

de
.2 . -2 . 2
— sin Gdgz —schosBEEfl(lJrl)sm 00 = -m 0. €))]
If we can find a change of variable transforming the derivative operators into 1-D
form, we will have succeeded, because —m? can then play the role of the fixed A,
whereas the parameter/ is in a position to be stepped. The transformation achieving

the desired result is

6

z:ln(tan—z-), 6=0—>2z=-00, 8=mw—>z=+00. (2)

Note,
d dzd 1 d d2*00s9d+1 d? 3

do0 ~ dodz  sin0dz’ d6?  sin’@dz  sin?9 dz?’
50
d* d d’?

~sinf—— —sinfcosf— = —— (4)

de? de dz?’
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Also,
1
coshz = —, tanh z = —cos@. 5
sin &
Now, with
O(0(2)) = v(z), (6)

eq. (1) is transformed into

d? W+1
[_d_zz - Eés—l;(%)}”“(z:) = —mv(2) = Av(2). O

Now, with A = —m?Z, the role of m and ! have been interchanged, ! being a
parameter in the “potential function.” This equation is now factorizable with the
factors

d
04(l) = (¥-— +1Itanhz), ®)
dz
with
d d
O, .(OHO_(Dvyy =|—— +itanhz || +— +Itanhz jvy,
dz dz
42 1(1+1)] 2
Y I "2 2 e,
([ dz*>  cosh’z ! )vu
= [A — LD, &)
and

d d
O_(l + DO + Dy = [*E}" 4 (I + 1) tanh z][md—z +( + Dtanh z]v“

d> g+ 1)]
e el l+12)vg
dz?  cosh?z ( y )
= [A — LI + D]vu, (10)
50
Ly = —1°. (11)
L(1) is a decreasing function of / and, with the negative A = —m?, must be such
that a minimum value of [ exists, with
A= —m? = L) = —12,, (12)
The starting function, with ! = I,,;, = m, 1s obtained from
d
O. (lmin)vkl,,,,,,fm = (2‘“ + mtanh Z)lJAm, (13)
50
du;«.m . -
e = —mtanh zdz, with Invy, = [r(coshz) ™. (14)
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This leads to

N
= - = N, (sin )", 15
Vi = ooy (sin6) (15)
which agrees with our earlier solution for ®(8), with /[ = m. The remaining
solutions with / > m can be obtained through the normalized step-up operators,

via

1 d
ity = e [~ L L (¢ + Dtanh
D= LA+ 1)]( g (D Z)"”
1 d
= ——~+(l+1)tanhz>v- . 16)
JEmr+ I\ dz 5 (
Similarly,
1 d
Vig-1) = ———-—--(+— +ltanhz)vu. an
VI-m?2 + 121\ dz

Note, however, the normalization preserved by these v;;(z) is

f dzjvn @) = 1. (18)

oc

whereas, with &,,,(8(z2)) = vy(z), d6 = sinfdz, and coshz = :;1;5 we should

have normalized with a weighting factor in z-space

/n do sin6|©@B)> = f dz(cosh 2 (2)|vu(2)|* = 1. (19)
0

The lack of the weighting factor cosh™%(z) means our functions ©;,,(0(z)) can be
identified with the v;,,(z) only with the inclusion of an additional normalization

factor, ¢, via

O (0) = cimvn(2). (20)

With £ = sinf-<, and tanhz = — cos 8, eqs. (16) and (17) translate into

dz d6
{cusvm/Cim) [ . d
Ouaem(d) = — —sinf— — (I + 1)cos 8 |©;,(0),
a+1m(B) NESET ) sinf)— ( ) cos 1m(0)
(2D
(ca—tym/Ctm) . d

D ym(0) = — — O (6). 22
Bq-1ym(8) R sm@de {cosf |©,(0) (22)

We have again introduced an extra minus sign to agree with the standard phase con-
ventions for spherical harmonics. This minus sign is the analog of that introduced
in egs. (4) and (7) of Chapter 8.

To calculate the ratios of ¢, coefficients, we shall calculate ® 4 1)m+1)(#) in
two ways, by stepping from (/, m) to (! + 1, m + 1) along two different paths in
the [, m parameter space.
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For path (1), step first from ({, m) to ({, m + 1) via the m step-up operator of eq.
(7) of Chapter 8:

1 d
JSO=miim+tD [d@ " CM]’
and follow this relation withastepfrom ({,m 4+ Dto ({ + 1,m + 1) with the ]
step-up operator.

For path (2), step first from ({, m) to (! + 1, m) and follow this with a step from
+1,myrod+1,m+ 1)
Path (1) leads to:

sin®L (I + 1) cos 9} [-‘f— —m cotﬁ]
CU+D)(m+1) [ 40 a

ey NI+m 20 -m) ST-mT+m+1)

(23)

Ou+1)m+1y = (s

_ (Cq i 1yim 1 1)/ Cimi 1)) A (sin(} [_ﬂi n cotﬁ—d—}
Q-mJdiminlimtd 462 6
U —mycost L —ma P L ™ e 24)
—m)cosf@— —m —— 1O,
M7, sind | sing )

Now use

& L eotsd m? 10 -+1) 25
— -+ O — [
do do sin® 0 )

via the § equation, and simplify the above by factoring out the factor (I — m) to
yield

O 1y 1)

(Ca+rim+/Clemr1) [

d m
- 0= — 4 1)sind |0y,
JSIFmiDlimTD sng Ut Dsin J ’

dg

(26)
Similarly, using path (2), we get
CurimiCm) [ d m .
Q) ) = 0§ — — —— — {1+ 1)sing |©y,,.
) = T DA T m £ D) 46 smp T Dsin
27N
We sce
T m+ 1) — c(lr:»l)m’ (28)

Clim+1) Cim
That is, the ratio is independent of m, and we can calculate it by setting m = I

Ca+tm  Cl+i

(29

Cim Cy
Setting m = [ in eq. (26), and using egs. (28) and (29), leads to
Ousiyiry = Ny sin'™' @
d {
S 17TV PN ( + V)ysinf |N; sin' 0
SR+ DR+ 2)

df  siné
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: 2+ 1) .
:(,(H-l)l\/( + )lein;ﬁ g, (30)

(7] (2l -+ 2)

Therefore, with

N I+ (2l”+3“),
N \/(21+2)» )
[see eq. (2) of Chapter 8],

Curnt _ (21 +3) _ Curim (32)
Py QL+ o

Using this result, we can now rewrite the [-step equations [eqgs. (21) and (22)], as

- @2I+3)/Q+ 1 . i .
Outim = \/(l T rmi+1-—m [51n9d9 +(+ 1)0059:|Olm, (33)

_j@-per+nr a4 :
Ou—iyn = T md—m |: smGdO +Zcos()]0,m. (34)

Adding these two equations, after multiplication of each by the inverse of the
square root factor, leads to

cos ) &y,

_ e remarr-my [ m—m)
- @+ D2 +3) Grom TN QI+ D@L - 1

®(lwl)m- (35)

Also, using the c-ratio of eq. (32), eq. (26) can now be rewritten explicitly as

QL+ 3)/2+ 1) d m -
m = ° % sng U ! v '
O o \/(l+m+ 1)(l+m+2)[wsgd9 smg (PO ]le
(36)

Similarly, using step-operations from (/, m) to ({, m+ 1) and then from (/, m+1) to

(I — 1, m+ 1), eliminating the second derivative term via the differential equation,
as for eq. (26), we get the companion equation

20— 1)/ +1 d ]
®U D(m+1) = \/ ( )/( ) [Cosed—é - S'_m'“ + {sin 9]®lm- (37

(I—m){l —m~—1) ing
Egs. (36) and (37) can now be combined to give

sinf ®,, =

_ (l+m+2)(l+m+1)® . (lwm)(l—mvl)@
Q@I +3)H2A+ 1) P+ m+1) QI+ D1 (A=1)m+1)
(38)
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Finally, using the products of m step-down, and / step-up or down operators, we
get

@ +3)/QL+ 1) d m ‘
- — 08O — (4 1)sin6 | O,
O \/(l+2—m)(l+l—m)[ oS08 " sing T Dsiné |6,
(39

@ - 1)/@l+ 1) i m
ety = —C0SO= — — _5inB |@p,. (40
Ou-tom-n \/(z+m)(z+m—1) 0% " sing S0 |Om- (40)

Egs. (39) and (40) can now be combined to give
sing &, =
\/(l+2—m)(l+l—m) \/([+m)(l+m~l)
DU+ m-1) —

Bu-iym-n- (41)

@I+ + 1D 2+-Hai-n

Finally, by multiplying eq. (35) by ¢/™? /+/27, eq. (38) by £/ "¢/ /27, and eq.
(41) by €'~ Y% //25, these operators can be converted to equations involving the
full spherical harmonics, ¥, (8, ¢):

A+1+md+1—m)
QYm = Yo m
cose \/ T Bl

(- m) —m)
@i+ ha =

e?sind Y, =

\/(l+m+2)(1+1+m) J(Z-—m)(lm~1)
- (+Dim+1) T

QL EH2A+ 1) 2T D@ - 1) Yo tym+y, (43)

e ?sing Y, =

[€+2-ma+1-m _ Jematm -1
V@@ e Q2+ D2 -1

Now, because the Y,,,(8, ¢) form a complete orthonormal set over the surface of
a sphere, we can use eqs. (42)-(44) to find the matrix elements of the operators
cos 6, e*% sin §. These operators give us the matrix elements of the angular parts
of x, vy, z, because

Yi-tym-1. (44

= cosf. (45)

e B AN

Matrix elements of higher powers of x, y, and z (angular parts) can then be obtained
from these operators by matrix multiplication.

Final remark: The angular functions ©,,(6) are not by themselves orthogonal
for different values of m. Thus, in general,

f 46 sin 68, (0)Om(0) % Snm. (46)
¢}
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I'm Y. (6. @) Vim = r Yin
i i
00\ 7= N
10 V/“T cos 6 \/%:
1+1 xvg—mn&rm ENEICET
20 ie-(3cos’ 6 — 1) =2 —xT = yh)
2+1 q:\/: cos @ sin fe=*? JF\//_gfi—z(x +iy)
242 Jnsmefm ,g%utwf
30 V/;’_(S cos’@ — 3cosb) Vie [272 - 32+ yH)]
3&1 | /2 (5c08*6 — 1)singe=? Fy 2 (44 —x = yD(x £iy)
342 | /i cos @ sin® ge=2¢ ,/% (x £iy)?
343 ¥\//;: sin® ge=30 2 (x 2 iy)’

The orthogonality in m comes via the functions ®(¢). For this reason, egs. (38)
and (41) were set up so that both terms on the right-hand sides have the same

values of m.

A table of some of the simplest spherical harmonics is included here. These
harmonics can be calculated very trivially through egs. (1) and (2) of Chapter 8
with a few applications of the laddering operations of eq. (6) of Chapter 8 and the
use of the symmetry property, eq. (26) of Chapter 8. They are given here so they
can be combined with a tabulation of solid harmonics, defined by

Vi =1 Y16, 9).

These can be expressed as homogeneous polynomials of degree [ in x, y, z by

acting on
. _ [+
=N, h th N = (—1) | P,
Y 1(x +1iy) wi p = (—1) 200127

(I — m) times in succession with the m step-down operator, O_(m), where

l - +"’lc()‘.‘9 |
V ”l)(l m ‘ 1) aE

(x +iy)~ d d
*ﬂl+m)<lam+1>[Z(xﬂ+yd_y+m)_

(47)

(48)

O (m) =

o + yz)di} (49)
Z
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and
O-("l)yt‘m = y’m ~1- (50)

This relation leads to

=
[+ m)! 2 . o o
( ) chm)(x + ty)mzl m 2a(x2 + yZ) (51)

5 oy m
Yim = (=1 7" Ny O — )l 2

for the states with m > 0. The coefficients are related by

c;"if)l) = 2mcg"=)0, (52)
and, foro = ,[%]
"V = 2m + )™ — ( ~m — 20 +2)c,. (53)

The solution gives

[ (0 +m)l2{ + 1!

\,/ (¢ — m)!2DI20201 120
] 2!~~—m—2txl!(l . m)[

— 1) sV L -m=2a, 2 2ya
X L e T —m = 2ay T Y G

»))!m = (_l)m

i

,ﬁ
o

As an additional footnote, this result can also be used to find a solution to the
following useful problem: Express the solid spherical harmonics in the relative
motion vector, 7, — 7, as functions of the solid harmonics in 7, and 7;; i.c., express
the V. (| — F») as functions of Y, (7)) and Y, (72). It will be useful first to define
2 via

o | @Em@r+ D
Yim = =(1) \/(z—m)z(21)121+lz!2nz”"’ 43
SO
[(( m] i— 2¢
1\ 27N — m)! dosuymte . oo [—m~2a
""" Z( R 1 p— L U S
or

S I—m—2
L. 2-m=2eg1(f — |
ZinFi =) = 3 (=1)°
m(o =) ;O( T TI ——ay

x [(xl +iy) - (Xz iy e~ iy = G = iy)]¥(zy — z2) T

Flnte o -

a=0 f=0y=0 §—0
2[ m~2aly(l _m)y
* Blm+a — Byl — )8 —m 20 — )l
X (e i)™ PO = i) T T e i) — i)Y, (5T)
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where, renaming y = ap, wehavey = o, 8 = my+ap;andd = I, —my —2a;.1In
addition, withm = m, +m,,and! = [, +1», and, defining «; througha = o +a3,
we have

l-m—-20~8=10—m — 2a,.

m+toa—p=m +a, a—y =qo,
The above expression for Z;,,(#; — 72) can then be rewritten as
11];", ][lz—zrm]

Zn(Fr =P =) D D Y (=D

Ltma(my) =0 o;=0
N — m)12h—mi=2enth—my =D

x
aylopl(my + a)l(my + a)!(ly —my — 20)!(y — my — 20)!

X (e 4 iy — i) T
x (x2 + iyz)mzlaz(x2 _ iyz)azzlzg—rrtz~2az
11 = m)!

_ _1y2 i =
=3¢ LT St =y 2om F0Zam . (58)

L(l)yma(my)
Finally, using the definition of Z;,,, we get

ylm(;l - ;2) - Z[z(ll)z,nz(ml)(f1)llyl.m1(’_;l)ylzmz(;2)x

[ ( +m)d — m)UNQRL + DIQRINN2L) 4 ]
@D+ m)I ~ m))UNRL + DU +mo)l( — ma)th!(20 + DY (5'9)
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The Radial Functions for the
Hydrogenic Atom

Because we have solved the angular part of the one-body problem for a spherically
symmetric V(r) (or, equivalently, the angular part for the relative motion of a two-
body problem), it would be good to provide a detailed example for a particular
potential, V(r). Because the Coulomb problem is soluble via the factorization
method, let us solve the radial problem for the general hydrogenic atom, i.e., the
one electron atom (with Z = 1,2,3,...) for hydrogen, once-ionized Helium,
twice-ionized Lithium, and so on,where

Ze?
Vir)= ——. (H
’
The one-dimensionalized radial equation is
A d? Zer KA+ D
—_—— —_— e —— = F s 2
( 20 dr? + { 7t 2r? Du(r) u(r) 2

where the coordinate r in this equation is the “physical” r, measured in centimeters
or Angstrom units and E is the energy measured in eV, for example. Let us first
switch to dimensionless quantities, and let the ¥phys. and E of the above equation
be replaced by dimensionless quantities », and €

a A2 wZet

0 .
T phys, = 1, with ag = —, E = .
pas Tz e’ B

€, 3)

leading to the radial equation in dimensionless quantities

d? 2 Id+1
(_W — 24 (—;—-—))uu(r) = 2eu;(r) = Auyy(r). (4)
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This equation is factorizable via the factors

d [ 1
O ={F—+-—- 5
+=() (¢dr+r l)’ ®)
with
22 W+ 1 1
0, (HO_(Duy = («darﬁi ottt l—z)uu = [K + l—z]uu, (6)

ar? r r2 (+1)?

2
O_(l + DO( + Duyy = (,E___+l(l+l) n 1 )uxl
[A’i- —-——]u;\l, @)

so the factorization works, and
1
L) = —=. (3

Because £ is an increasing function of ! for positive /, and because € and, hence,
A must be a negative quantity for bound states, [A — L£({! + 1)] will be a positive
quantity only up through 2 maximum /-value. Thus,

1
A=LUp +1) = = 2¢. 9
( ) (Lnax + 1)? ©
Renaming the integer 1,0 lpar + 1 =n, or I, = (n— 1), we obtain the
hydrogen result

1 VATARS
=, =_£2f (10)
2n? R* 2n?
The starting function is obtained from
d n 1
O (bmax + Dutay,,, = Or(Wup -y ={ ==+~~~ Jpn 1 =0, (11
dr r n

leading to the normalized solution

, 2\
Upjopy = Nyr'e with N, = - . (12)
’ n (2n)!

The radial functions for the lower [ values for a definite # can be obtained from
these by action with the normalization-preserving step-down operators, O_(),

1 d [ 1 nl d [ 1
— B v ——— — - — e ————y — I . 13
-0 J[Aﬁﬁ(l)]<dr+r 1) \/(n~l)(n+l)(dr+r 1) (13)

For example, for n = 2, the starting function with [ = 1 is given by

n=r =1 (r) = —=r’e 1. (14)
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The eigenfunction with [ = 0 is obtained via

e 2 (4] 1, .
Up2i=0F) = ﬂ dr -; Qﬁr €
1 r
= ——r{2 —rje 1. (15
242 (2-r) )

We tabulate a few of the radial eigenfunctions obtained in this way for the lower
n values. With » R(r) = u(r), the R(r) are given by

For n=1,1=0:Ri(r)=2e",
1 .
For n=2,1=1:Ru(r)= —=re 2,
21(7) 2\1/5
For n=21=0:Ru()= —=(2~r)e1,
20 2\/5( )
24/2 .
For n=23,01=2:Rp()= i-ﬁe‘f,
3‘:/_\/15
24/2 .
For n=3,1=1:R3(r)=——=r(6—rjle 3,
31(r) 3423( )
For n=23,1=0:Rsy(r) = ——=(27 — 18r + 2r¥)e 5. 16
olr) 34\/5( ) (16)

Here, the dimensionless r is r = (Zrphys. /ap). To convert to a normalization in
physical space [;* drphy&rghy& |R(rphys. )2 = 1,the above results must be multiplied

with the additional normalization factor (Z /ag) :.
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Shape-Invariant Potentials: Soluble
One-Dimensional Potential Problems

Having seen and used a number of examples, let us now look at the factorization
method in a more general way. For the factorization method to work, we must have

[0+(m)O_(m) + L(M)|usn = A, (1

([—i + k(x, m)] [i + k(x, m)] + E(m))ui\m = Allim, (2
dx dx

2
(f L e m) — K m) + c(mn)um -
dx

d2
(-Ex-,z + Vix, m))u)\nz = A, 3)

where the potential function V(x, m) is expressed in terms of k(x, m) and its first
derivative is expresscd by a prime. We must also have

(O (m+ DOm + 1)+ L(m + D] = Atyn- (4)

Eqgs. (1) and (4) are the two conditions, I and II, of eq. (17) of Chapter 7, which
must be satisfied for the factorization method to work. Now, shifting the index m
to (m — 1) ineq. (4)

[O_(m)O(m) + LM s 4n-1) = Mtrm—1

d d
= ([8; + k(x, m)] l:‘zi‘; + k(x, m)] + E(’"))“A(nz~1) = Aitym—1y  (5)
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2
( d +[kz(x,m)+k'(x,m)+£(m)})u;(m,1)

dx?
2
:(—‘Jx—z‘ +Vix,m— 1))l¢).(m-1) = Al)(m-1), 6)
where
Vx,m) = k*(x,m) — k'(x, m) + L(m), (7)
V(x,m—1)=k*(x, m) + k'(x, m) + L(m), (8)
or
Vix,m)— V({x,m— 1) = -2k'(x, m). )]

In general, of course, this equation will not be satisfied for arbitrary k(x, m). The
factorization method works only if this condition is satisfied. Iterating this equation
form — 1, m —2,...,downtom = 1, we are lead to the relation

Vix,m)— Vix,0) = [k*(x, m) — K (x, m) + L) — k*(x, 0)

n=m

+ k' (x,0) — L(0)] = ~22k’(x, n). (10)

n=|

Infeld and Hull studied the question: Whatkind of k(x, ) can satisfy this equation?
Trying first a Taylor series in m

k(x, m) = ko(x) +ky(x)m + - - -, (n

they found the potential collapses to a constant independent of x (hence, a trivial
unimportant case), if terms quadratic in m or higher powers of m are included.
Nevertheless, the possible functions ko(x) and & (x) lead to a number of interesting
equations. Similarly, trying Laurent serics in m

k_1(x)
k(x,m):---+T+k0(x)+k1(x)m+---, (12)

they again found inverse quadratic and higher inverse powers of m lead to potentials
independent of x and, hence, trivial. With the inverse first power in m, however,
they found a number of new interesting cases.

It would of course be much nicer if we could immediately answer the question:
Given a potential, V' (x, m), can we find solutions for the Schridinger equation by
the factorization method, or, what is equivalent: Can we find expressions for its
eigenfunctions and eigenvalues in simple analytic form? Because this question has
no simple general answer, we shall be content to follow the backward approach of
Infeld and Hull, and starting with a set of possible k(x, m) discover quite a number
of soluble problems. Recall again that the factorization method involves nothing
more mathematically challenging than the integration of a first-order differential
equation and the taking of first derivatives in the laddering process.
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A Shape-Invariant Potentials

If the potentials V (x, m) and V(x, m — 1) are related as of eq. (9), the following
is true.

1. The factorization method works.

2. The spectrum of allowed eigenvalues, A, for the potential V(x, m — 1) is the
same as that for V (x, m), except the eigenvalue, A = L(m 0 ), does not exist in the
spectrum for V(x, m — 1), because u,,,  does not exist, assuming for now we
are dealing with a case for which L{#m) is a decreasing function of m. This follows
because the eigenvalue A does not change when we shift m to m — 1 in equation
.

3. The potentials V(x,m) and V(x, m — 1) are said to have the same shape,
because the dependence on x is the same, and only the value of m is replaced by
m — 1 (“Shape invariance” of the potential).

Now, had we written equation (I) of the factorized form with m replaced by
m — 1, and then shifted m — 1 to m — 2 in equation (II), we see the equation for
V(x, m — 2) has the same spectrum as that for V (x, m — 1), except the eigenvalue
A = L{my;, — 1) is now missing. Thus, we can have a whole set of potentials
with the same shape, all with the same spectrum, except the lowest eigenvalue of
V(x,m) is missing in V(x, m — 1), the lowest eigenvalue of V(x,m — 1), and
hence the two lowest eigenvalues of V(x, m) are missing for V(x, m — 2), and so
on. Thus, the spectrum for V(x, m — n) is the same as that for V(x, m), except
the lowest n eigenvalues of V (x, m) are missing in the spectrum for V(x, m — n),
provided the factorization is such that the eigenvalues are given by A = L(mpin),
that is, cases for which £(m) is a decreasing function of m. Similar arguments can
be made for the other case, i.e., if £(m) is an increasing function of m. In that case,
settingm — m-+1inegs. (3) and (6), we see V(x, m+ 1) has the same spectrum of
A values, now with A = L(mmax + 1), except A = L(mpyax. + 1), which exists in the
spectrum for V(x, m) with eigenfunction u; . ., does not exist in the spectrum
for V(x, m + 1), because u; ,, 11 does not exist. Similarly, in the spectrum for
V(x, m + n), the cigenvalues A = L(Mmax. + 1), LMmax. +2), -« ., L(Max. + 1)
do not exist. The lowest eigenvalue for V(x,m + n) is A = L{my +n + 1),
which is also the n'" eigenvalue for V(x, m).

B A Specific Example

As a very specific example, consider a 1-D Schrédinger equation for a particle
moving in the domain 0 < x < g under the potential

= 00, x <0, x>a, (13)
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)+ —2 ) = Euix) (14)
B /101 ———u(x) = Eu(x),
2m dx? sin” (%)
or, with
TX A2 Rt
Tx - . —V i 15
a 9, E E(Zmaz) Vo 0<2ma2) (15)
dzu Vg
_ — eu(®), 16
267 + Sinzeu eu(@) (16)

to be compared with our factorizable equation
du  [mf— ]

— o ————U = AU = €U. 17

de? sin? @ an

Now, we let
m? — 31
sin® @

In order to work in the m region near my,;,, we shall choose the negative root for

My
/ 1
my = — Vo+2=~—!mgl. (19)

(We will subsequently investigate the region of m values near the positive root to

1
Vo(8, mg) = , with V + i me. (18)

m — 1Y, and with my, = mg = —|mg|, we get the lowest eigenvalue, Ay = €,
3 g B

1 1 1 1
ho = L(mg) = (mo — =Y = (Imol + = =/ Vo +~ + =)*.  (20)
2 2 4 2

The eigenfunction for the ground state of V; is obtained from

du 1
O_(mo)usom, = 7 + (o — 5)0019u(6) =0, (21)
with the solution
L
Uigmy = N (sin(8))? ™. (22)
This is a square-integrable function, with mg = —[mg|. The companion potential

V@, mg—1) = V(8, (—|mop| — 1)) has ground-state eigenvalue L = (—|mg| — 1 —
$)* = (Img| + 1 + $)2. Let us name this potential V,, its ground state eigenvalue
A1, and note that this is the first excited state, A, for the potential Vy. Similarly, the
n' h—companion potential V{8, mg—n) = V(0, (—|mp| —n)) has lowest eigenvalue
Ay, where we name this potential V,:

1 1
AH:Mm—n—Ef:Umm+n+§ﬁ (23)



112 11. Shape-Invariant Potentials: Soluble 1-D Potential Problems

This is the ground state for the potential V,, and the n'" excited state for V;. The
ground state wave function for the potential V, is

r 2 .
A E 1(""0{ +n 4+ 2) Sin(|m0|+n+%)(9) — Nn Sin(|m0|+n+%)(9)’

a ')l (Imol +n+1)

(24
where we have now included the normalization factor explicitly. Recall
H N r(Hre + 4
f dosin® 8 = B(A,a + 1) = et ;)
0 - B [ +1)

where B is the Beta function expressed in terms of I" functions. To get the eigen-
function for the first excited state of the potential V,_,, with this energy A,, we
need to act with the normalized step-up operator O (my — n + 1),

Oilmol —n+1)
VI = Limg —n + 1)]

k]

Anlrzg n)s (25)

Uj, mg-—n+1) =

with
1
An = (mol +n4 20 Limo—n+ 1) =(mol +n— % (26)
Finally, to get the eigenfunction for the n'" excited state with this energy A, in the

potential V;), we need to act n-times with such step-up operators (laddering along
the horizontal A,-line in Fig. 11.1):

Ui,my(0) = O4(=imo)) - - - Op((—=lmol —n + DO (~Imo| —n + 1)
x N, sin("+7+2)g)

(—%—ﬂmm+%nme) (—%—Umd+n—%km9)
/O = Qo + £ VW — (mol + 0 — 372]

(—%—ﬂmﬂ+n~pr)
x N, sinmolFm+2) gy, Q7N
= (mol +n = 21

In Fig. 11.1, a family of shape-invariant potentials of this (1/sin®6) shape are
shown, where we have chosen my = —1.1, so the strength of V is (—1 1) — '}i =
0.96, leading to potentials V|, V,, V3, V, with strengths of 4.16, 9.36, 16.56, 25.76,
respectively. The energies given by eq. (23) are shown in the figure.

In particular, if we had tried to continue the laddering process of eq. (27) one
more time from mo = —1.1 to an mo = —0.1, we would be led to a potential of
strength (—0.1)% — % = —0.24, of the opposite sign from the potentials shown,
i.e., a repulsive potential, with no bound states. Therefore, the process has to stop
at V. No connection can exist from the problem with negative m values to the
branch with positive m values, as for the 6 equation for the spherical harmonics.

The negative and positive m values are connected only in two special cases: if my
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O.(-1myl-2+1)

R

21.16 A,

12.96 |4, 16.56

6.76 A,

ey | ) ||*€V
096V

1
y, - 096 y, - 216 v - 936 v . 1656

) - 3 - 3 -
sin’@ sin®0 sin®6 sin®@

0

FIGURE 11.1. The family of shape-invariant 1/ sin® 8 potentials, with mg = —1.1; m =

M min — +oc-

is integer or %—integer. For an arbitrary value of Vj, it remains to be shown that

the positive root, mg = +,/ Vg + }1, gives the same spectrum of eigenvalues and

cigenfunctions. In the region of positive m values, L(m) = (m— %)2 is an increasing
function of m and A = L(muax + 1). The shape-invariant partner potentials are

Vo0, mo), V18, mo + 1), ..., Va(®, mg + n), with mupax. = mo = +,/ Vo + } for
Vo and m .. = mg + n for V,,, so A, which is the ground-state eigenvalue for V,
and the n™ excited state for Vj, is given by

Ao=(mo+n-+3Y  with mg>0, (28)

in agreement with eq. (23). Now the ground-state eigenfunction for V,, is given by

d
O (mo+n+ D, mgrn = (‘;15 + (mg +n + %)COtg)u}&",mg-{»n =0, (29)
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leading again to
Wrympin = Nysin® o+ +9(9), (30)
and the n" excited state for V; is given by
Ur,my = O-(mo + 1)+ - O_(mo +n — 1)O_(mo + n)uz, (me+n)
(% + (mg + %)cotQ) (f—é +(m0+n—-%)cot9)

[hn = Omo + 1771 T — O +n = 3771

(3% + (mp+n— %)cotB)
X Uy, (motn)e 3

Jl — Omo 1 — 2]

Except for an overall phase factor (—1)", this function agrees with eq. (27), so the
positive branch of m values gives exactly the same results as the negative branch
and does not lead to anything new.

C Soluble One-Dimensional Potential Problems

1. The Péschi-Teller Potential.

All of the factorizable equations we have met so far lead to soluble 1-D potential
problems. One of these potentials is the so-called Poschl-Teller potential, which
leads to the 1-D Schrodinger equation

LR du) u(x) = Eu(x), (32)
2m  dx? cosh?(x/a)
or introducing dimensionless quantities
a’ R R
- dzlf) - ;;%;u(z) = eu(z) = hu2), (33)

where the case V > 0 leads to an attractive potential. With

V=Iil+1, o I=-1x /v,
Chapter 9 tells us
d
0s = F-- +lItanhz, with L) = —1% (34
Z

This equation corresponds to an L(/) of case 4 of Chapter 7 with allowed negative
values of € = X only for positive values of I = Iy, Ui, + 1), - -+, Umin. +72)5 - - -,
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and for negative values of I = lpax , (max. — 1), + -+, (max. — ), .. .. If we choose

the positive branch, with/ = —1 + /V + 1,

z:zmm_+n:—%+,/v+§. so with € = LUmin),

we have
2
€ =hn = Llmin) = = =P ==(yV+i-@+ D). 69
with shape-invariant potential partners Vo(z, lo), Vi(z, lo — 1), ..., Valz, lo — 1),

where now [y = —% +4V+ % Now a maximum possible value of 7 = Ay
exists, however, for which (ly — nyax.) is such that

(lo — Amax )0 — Aimax. + 1) > 0; but 0 < (o — npmax ) < 1.
In that case,
(to — Grmas. + 1) (Io = Gt + D +1) <0,

and this implies the potential V(z, lp — (nmax. + 1)) is repulsive and therefore has
no bound states. The condition 0 < (Iy — 7max.) < 1 determines ny.,. through

nmax.‘(“%fvv"{‘%fnmax.'*‘%s or

Pimax. (Bmax. + 1) €V < (Bmax. + D(Aimax. + 2).
ForO0 <V < g_ Nmax. = 0, and therefore only a single bound state with ¢y =

—(—3 + 4/ V + )" exists, but always at least this one bound state exists, even as
V —> 0. Note the similarity in this regard between the Poschl-Teller potential and

the square well potential with V = —V; for |z] <a,and V = Ofor [z] > a (see
section B of Chapter 4).
Finally, u;, ;... =(,—n) i determined from
=W lo-n) = —[(fo — n)tanh z]uy gy = 0, $0
dz

N, I'tlg —n+1) 1
Ui, lo—n) = - 1 s (36)
(cosh z)lo~ al’(3)I'(ly — n) (cosh z)o~"

where this is the ground-state eigenfunction for the potential, V,(z, ly — n), with

& = —(JV+ 1 — (n + 3))?, which is also the energy of the n™ excited state

for the potential, V, = —V/(cosh? z). The normalized eigenfunction for this n"
excited state of V is again given by
O+ () O llo—n+2)
”A,.t’u e s > =
\/{-(zﬁ — )2 + 12 VI(=Uo —n)? + (lo — n + 2)?]
Oills—n+1)
- o (37

o o —nt 1
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Finally, the negative branch of allowed / values, with [ = —i=JV+ 1,ie., with
1 < 0, gives no additional eigenvalues or eigenvectors. In this case, | = lhax. — 1,

and & = L(lpw. + 1) = —( +n+ 1> = —(—/V + § + n + 3)%, in agreement
with the result of eq. (35) for the positive branch of allowed [ values. Except for
a possible overall phase factor, the eigenfunctions again agree with those of the
other branch. We could again show this explicitly as in the previous example, but
also we note: Because we are dealing with a 1-D eigenvalue problem, we do not
expect degeneracies for the general ¢,.

The inverse sin®0 potential, V/ (sin2 ), and the Poschi-Teller potential,
—-V/ (cosh? z), are special cases of the general factorizable case, for which the
1-D Schrédinger equation can be written as

dZ
(~— + V(z, m))u(Z) = du(z), with
dz?
b*m+c)(m+c+ 1)+ d* +2bd(m +c + %)cosb(z +p)

V(z, m) = 38
(z. m) sin® b(z + p) 38)
and with
d
O+(m) = $21—z +(m +c)bcotb(z + p) + m,
L(m) = b*(m +¢)?, (39)

where b, ¢, d, and p are arbitrary constants. For example, the Poschl-Teller poten-
tial is obtained by settingb = —i,¢ = 0,d = 0, p = (im)/2. Other specializations
of this general case are listed by Infeld and Hull; see also problem 16, which treats
the 6 equation for the symmetric rigid rotator.
2. One-Dimensionalized Hydrogenic Potential.
The factorization of the radial equation for the hydrogen atom leads to a
factorizable Schrodinger equation for a 1-D hydrogen-like potential
K* d*u _ A B
e 2D 4 V(ou(x) = Eu(x), with Vx)=—-——+— for |x| =0,
2m dx? x x?
(40)
where we set V = oo for x < 0 and V(x) has a minimum for positive values of
x =2B/Aif both A > 0, B > 0. With dimensionless quantities

e F(-—h2 ) 1= g
= B = N il )
¢G*/mA) mA? K>
the Schrodinger equation becomes

2
<4d__wg+l(l+l)

Zz)mﬁﬁm@:mm, with (4D

1 2mB 1

I =+ =+

- 42
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The results of Chapter 10 tell us
04(1) = ;:—Z + (2 - %) with £() = 112 (43)
From Chapter 10, we also know this equation will have bound states with A =
2e < 0. For the branch of L£{I), which is an increasing function of [, i.e., the
positive branch with lo = —J + \/(EmB) /i* + 1, the allowed / values range from
Imaxs Umax. = 1o Umax, — 8), .., and A = L(la. + 1), 50, with A, = 2¢,,
1 1 1

6 1) 1 1)? B L 1 2
(bnax. + D @ n+ D) [+ +m+ )]

The shape-invariant partner potentials are Vo(z, L), Villo + 1), ..., Vi(z, lo + 1.
The ground-state eigenfunction of V,(z, [y + n), with eigenvalue ¢,, is given by

d + o+n+1) 1 ) 0
. - U ny =
dz z (o +n+ 1)) Pnletm

(45)

Oy + 1+ Dusgoany = ("

leading to a normalized
2 (Rla+n+3) 1 ; . A
) = - | S o/ 7(/0—;;‘1,\_ 46
Hhnlortn) [(lo+n+ 1)] TRl +2n+3)° ¢ (46)

The ground-state eigenfunction of Vy(z, [y) is obtained from this equation by setting
n = 0. The eigenfunction of the n™ excited state of Vo, with €,, is again given by

" _ O g+ 1 O g+n—~1)
B Ml — Lo £ D1 D — Lo 7 = D]
O_{lg +n)

(47

O = Lo T et

For an arbitrary value of Iy, not equal to an integer or %-integer, and a fixed Iy, ,
an n value will exist such that Il + 1) = (nax. — m){Umax. — 7 + 1) becomes a
negative quantity. Because the generalized hydrogenic potential remains attractive
even for this case, the value of the integer, n, can go to arbitrarily high values, and
an infinite number of bound states exist. The values for (I + 1) are positive for
all positive integers » in the shape-invariant partner potentials, V,(z, Iy + n). The
action of the n stepdown operators, O_,on u;,, (o Produce an eigenfunction of the
form, z'o* 1P, (z)e” @ | where P, (z) is a polynomial of degree n. This function
is square-integrable over the interval, 0 < z < oo, for all positive integers, n.
Because a second branch of allowed £({) values for negative values of [ exists, with
I=—5—2mB/ + { = ~(o+ D and ! = lnin., Umin. + 1), ..., Ui, + 1) - -,
we again need to examine the possibility this branch would lead to new eigenvalues.
For! < 0, £(I} is a decreasing function of /. Therefore, now, with A = 2¢,,

1 1 1
26 = Llmin) = =7~ = — == > (48)

2 — 2
foi, = n) [-4- JomBp> 1§ - q
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exactly the same result as that already obtained for the positive [ branch. Both the
eigenvalues and eigenfunctions obtained from this negative [ branch, thus, do not
give anything new.
3. The Morse Potential.

Another 1-D potential leading to a factorizable Schrodinger equation is the
Morse potential (see Fig. 11.2),

V(x) = D(e7*/9 — 2¢ /), (49)

2 2

[j_j_ + D(e™ Y — 26‘(“'/“))]u(x) = Eu(x). (50)
2u dx?

D gives the classical ionization or dissociation energy. The potential has a min-

imum value, Vy,;,, = —D, at x = 0. For £ > 0, a continuous spectrum exists.

The particle can proceed to x — +oo. With the introduction of dimensionless

quantities,

2ua? 2ua’
c=2 e=EEL 2 =p™L this function leads to
a h h
d*u 2 2. 1.
- + (8% " +28(m + Z)e ulz) = eu(z) = du(z), (1)
dz? 2
where the parameter, m, with
m+ 1
mt3) _ 1, (52)
é
has been introduced to put the equation into factorizable form, with
d -
O, (m) = Tt Be™ + m), and L(m) = —m”. (33)
z

Note, —6 — % = —/(Qua’DH*) — % and hence, m, is a patently negative quantity.
For m < 0, the above L(#n) is an increasing function of m. For bound states, with
A < 0, a maximum possible value of m = m,, exists. The allowed m values are

M = Mpax.s Mmax. — 1), -« (Mmax. — 1), ..., With
Ay = € = Lo + 1) = —(m+n+ 1) = ~(=8+n+3)’
=87 +28(n+ 1) —(n+ 1) (54)
S0

E D+2 hZD( +1) " ( +1)2 (55)
n = — — b n+ =)
2pLa2n 27 2ua? 2

For the case & >> 1, the last term, quadratic in (n + %), will be much smaller than
the linear term, and the excitation energy is that of a slightly anharmonic oscillator,
with

"D

B (56)

E, + D ~ha(n + 3), with fiw = 2
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Vx)

-D

FIGURE 11.2. The Morse potential.

The shape-invariant partner potentials are Vy(z, mo), Vi(z, mo+1), ..., Vu(z, mo+
n), with mo = —(8 + 1), so

V(2. mo +n) = (sze“'zl +25(—8 + n)e"'Z). 57

This potential has the form shown in Fig. 11.2, with an attractive minimum, only
for n < §; and the number of vibrational states is therefore limited. A maximum
possible n value, nig,y. exists.

The ground-state eigenfunction of V, is given by

d

o T e 4 =84 1) [ = 0, (5B)

O (mo+n+ 1)”,\,,(mg+n) = {

Ui y(mg 1y = Ny 1O 23, (59)

Successive action with the normalized step-down operators, O_(m), with m =
(mg +n), (mp +n —1),..., (mg + 1) yields the needed n™ excited-state eigen-
function of Vy. These u;, , are normalized in the interval —co < z < 4-o0.
Also, the u;, ,» are normalizable only for integers n such thatn < (8§ — %), which
determines, Amax. .

In the actual applications, the Morse potential is used for the relative motion of
the two atoms in a diatomic molecule, i.e., for the radial function of this two-body
problem. In that case, therefore, u is the reduced mass of the diatomic molecule,
and x = (r — r.), where, r, is the equilibrium value of the interatomic distance,
r. Thus, the eigenfunctions should apply to the interval, —(r./a) < z < +oc. For
realistic parameters for most diatomic molecules, however, the Morse potential
has such a large positive value at z = —(r,/a) that the Morse eigenfunctions are
effectively zero forz < —(r./a). The 1-D solutions found above for the full z-space
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Molecule Dops. 'h]_c Gi /zlLaz)obs. h{‘ 3 Nmax. Giw)obs, ;,Lc
H, 38,276 cm™! 118 cm™! 180 17  4395cm™!
HCI 37,257 cm™! 52.05cm™ 267 26 2990cm™!
0, 41,758 cm™! 12.07 cm™! 58.8 58 1580 cm ™!

are therefore a good approximation for most diatomic molecules. The parameters
D, %*/2ua?), and 8 are shown for a few molecules in the table provided here.
The Dy, and @2 /21a%)ops. have been extracted from the observed vibrational
spectra, [G. Herzberg; Molecular Spectra and Molecular Structure. 1. Spectra of
Diatomic Molecules, D. van Nostrand (1950)]. The hw predicted by the Morse-
potential energy relation, eq. (55), has the values 4128 cm™! for Hy, 2728 cm™!
for HCJ, and 1407 cm ™! for O, in reasonable agreement with the values extracted
from the observed specira. (Molecular spectroscopists in general give (energy/hc)
in wavenumbers, cm™'.)
4. The Rosen—Morse Potential.

A similar potential is the Rosen—Morse potential, which leads to the 1-D

Schrodinger equation
W d*u 14
—— —— 1 4 2V,tanh u(x) = Fu(x 60
2t (- F2Yeh(D) Ju) = Bt (60

With dimensionless quantities,
X 2ua’ 2ua’ 2ua?
z=-. €=k m(m+1) =V, PERE qzvz—gz—

this equation leads to

’

d?u m(m + 1)
e (g

This potential has an attractive well with a minimum at zo, given by

o, +2aanh z)u(z) — eu?). 61)

V'Z q
tanhzg = —-— = ————, 62
anfizo = v, m(m+ 1) (62)

which has a solution only for
lg/m(m + 1) < L. (63)

The equation is factorizable, with
2

d
Oi(m):(q:d—Zertanhz-}—%), and  L(m)= —m -%5. (64)

Choosing the branch of L(m) with positive values of m, this L(m) belongs to case
4. The maximum of the function £(m) occurs at m = /[g|, where L(m) has the
value —2|q|, which is also the ionization or dissociation value of V (z). Thus, bound
states will exist if € < —2|g/|, and the requirement [A — £(m)] = 0, together with

the requirement of eq. (63) leads to an allowed branch of m values withm > /|g|,
where L(m) is a decreasing function of m, S0 m = Muyin , (Mmin. + 1), . . ., (Mmin. +
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n), ..., with

q2

(m —n)?

2ua?V. 32 2
:'(\[%Z_l“"("*%’) “(/—zuﬁi;mzwcnw)z' ©

The shape-invariant partner potentials are Vo(z, mq), Vi{z, mo—1), ..., Vu(z, my—
n), with mg = —1 + /(2ua?V,i*) + ;. The ground-state eigenfunction of
V(z, mg — n) is determined by

d q
—— + (mp — n)tanhz + ——— —)u o (mg—ny = 0,
(dZ (mg ) (mo — 1) I (mo—n)

e e, (66)

Hostmo=n) = N
and the eigenfunction of the n'™ excited state of V; is obtained from this function
by the action of n operators O, (m) with m running from (mg — n -+ 1) to mg.
Again, a maximum r value exists beyond which the potential V{(z, my — n) ceases
to have an attractive minimum with bound states and square-integrable bound-state
eigenfunctions, so V; again has only a finite number of bound states.
5. The one-dimensional harmonic oscillator revisited.

The 1-D harmonic oscillator Schrodinger equation

4
(v dx?

with dimensionless, x and €, is factorizable, with

+x2)u(x) = eu(x), (67)

0, = (q:d—d; +x), (68)

The only parameter, however, is the energy, €, itself, and the factors, O, are not
functions of €. Now,

1 0.0 _u(x)=2¢ — Dulx) =[—1+ 2elulx),
I 0_0,u(x)= 2+ Du(x) = [-1+ 2(c + DJu(x), 69)

are to be compared with

I 0.0 wm = [A— Lin)|um,

O O Oiupym =X — Lm+ Dlttn. o
Therefore, A has the single-fixed eigenvalue, A = —1, and the parameter, m, is
replaced by €, with L(e) = —2e. Because L(¢) is a decreasing function of €, an

€min. €Xists, with

A= 1= L€nin) = —2€min., 80 €min, == % (71)



122 11. Shape-Invariant Potentials: Soluble 1-D Potential Problems

The allowed values of € are € = €pin, (Emin. + 1), - .., (€qin. + 1) = (-;— +n),....
Therefore, €, = (n + —;—). The starting eigenfunction is obtained from

d
O_u_i ¢y = (a +x)u*1.6mm. =0,
1 |2

U_1e,, = —e %, 72)
e
The excited-state eigenfunctions are obtained with the normalized step-up
operators

_d _4a
O+(n+1): ( dX+x) :( dx+X)a
VIET+ 26001 2+ 1)
SO
)= — ! ( d o0 73
u~l'€,!(x = m ‘;1; +x) e - ( )

Using the identities

(—~d~ +x) =¥ e‘%"z(——d— + x)e%"2 e 1Y = g2¥ _4 e 1%, (74)
dx B dx N dx ’

the normalized n'" eigenfunction becomes

() 1 %Xz( d)” _1,2 ‘%12
U1, X) = —F/————=¢€ —— 1 e i ¢
e NN dx
1,2 1,2
e " 2f d\ o e 2" Hy(x)
e e — e | = (75)
2"n!,/n[ ( dx) ] NN

where we have used the Rodriguez-type definition of the Hermite polynomial,
H, (x), [see eq. (75) of Chapter 4].

Finally, the radial equation for the 3-D harmonic oscillator can also be solved
by the factorization method. For details, see problem 15.

Altogether, Infeld and Hull list 31 generalizations or specializations of the
Poschl-Teller, hydrogenic, Morse, Rosen—Morse, 1-D harmonic oscillator, or 3-D
harmonic oschillator Schrédinger equations, which lead to eigenvalues and eigen-
functions in analytic form, where the eigenfunctions correspond to many of the
well-known functions of classical analysis. The question now arises: Do additional
potentials exist for which the 1-D Schrodinger problem can be solved exactly? This
question will be partially answered in the next chapter.

Problems

14. (a) Find the eigenvalues, €,, and the normalized eigenfunctions for all of the
bound states of a Poschl-Teller potential with dimensionless

Vo
b
cosh? z

V() =— with Vp =7.2.
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(b) A particle of mass & moves in one dimension subject to the Schrodinger
equation

R, d? mim + 1)
( dz’ sinh? z

where z is a dimensionless variable, restricted to z > 0, and m and v are dimen-
sionless potential constants. Find the conditions that must be satisfied by these
constants, so the potential has an attractive minimum for z > 0, and find an ex-
pression for the eigenvalues, £,, as a function of n. Does a maximum possible
value of n exist?

15. The 3-D harmonic oscillator. With u(r) = rR(r), and r = Ji/mwyp,
E = hwge, the radial wave equation for the 3-D harmonic oscillator (with [ =
0,1,2,...) takes the form

42 10+ 1
— J{ ( {2 )+pz}u(p) = 2eu(p).
dp P

Show that this equation is factorizable via

2Ha2 — 2vcoth Z)ll(z) e Eu(z)’

d { .

O.(h) = — 4:3’4"(——10) ;
o o

but the standard A must be interpreted as A = 2¢ + 2I; so O4(l) steps both [ and

€. Show that this equation is also factorizable via

- d )
OL(l) = (:Fd_ +{(—+ p)),
Y o
but now with A = 2¢ — 2[.
Use these results to show that

E =hwoo(N +3), with N=0,1,2,...
and that the allowed [ values for a particular, N, are

=NN-2,N—4 . .  Nor 1), for N=even (odd).

the four normalized step operators, which convert normalized uy, into normal-
ized uy1 1, BNy ir1s Uy y1a41s and wxy g _1. Construct all normalized radial
eigenfunctions for N < 3

Find relations giving puy; as a linear combination of (i) ux 141 and uy_1 41,
and as a linear combination of (i) uy,; -, and uy_ ;. Use these relations to
find matrix elements of the operators, p cos ¢ and p sin@e**? in the complete 3-
D oscillator basis, Yym. (The uy; and uy, with I/ # I, are not orthogonal to
each other in p-space, but the full energy eigenfunctions, ux;(0)Y;,.(8, ¢) form a
complete orthogonal set.)

Find all nonzero matrix elements of the operator, p?.

Note: The above matrix elements of pcosf and psin8et’? give the matrix
elements of the dimensionless z and (x = iy). The corresponding matrix elements
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of the dimensionless p, and (p, +ip,) can be obtained by utilizing the commutator
relations
p. =ilH. z], (pr £ ipy) =i[H, (x £iy)],

together with the known matrix elements of the dimensionless H and z, (x & iy).
Use this technique to find the expressions for the nonzero matrix elements of p,.

Solution for Problem 15
With
d l
0.y = “’(:F% + (; - P)),

(where the extra overall minus sign in this definition is added merely for con-
venience to gain phases for the final matrix elements in best agreement with the
“standard” phases for the 3-D oscillator), we have the two basic equations

a’ 1
0,0 m=-L D 2o,
dp p*
&2 i+,
O-U+ 00U+ D =5+ 5= +p —C+3), ¢y

and

0, (1)O-Dusy = [2e — @2 = Dluzy = [& — LDJus,
O_(I+ DO+ Duyy = [26 — @+ Ny = [A — LT+ Dluse- (2)

These two equations are satisfied only if £L(/ + 1) — L({I) = 4, and have a proper
solution only if

L) =4l +¢, A=2ec+2l+c+1, ¢ = a constant. (€))

We will find it convenient to choose, ¢ = —1 (this choice is quite arbitrary and
will not affect final results). With this choice,

Ly =@l-1), A= 2e +21. “4)

Because our / > 0, this £(!) is an increasing function of /. Thus, an /.. exists (to
be named N), Ipax. = N, with A = L(max. + 1) = (Qlmax. +3) = (4N + 3), and
therefore

2e = (2N + 3), Ey =hwo(N + 3). 5
The starting functions of u;;_ are given by

d N +1
(di AL p)uuv(p) =0, (©
0 P

where this first-order differential cquation has the solution

1,2
Ui =n(p) = Np¥tle 37, (N

0+(lmax. + 1)”)&!,,,” (,0) - O’
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o

with |\ [ dpp™ e " = SN f dqn™*ie = INPT(NV + 3) = 1.
0

@N + D!
[Note, ir(N+H=L1N+hHv-1).. '%%‘/“:”_Wil V.

O_(l)changes! — (I—1),butbecause it keeps A invariant, and A = 2¢-+2/, it must
simultaneously raise ¢ by one unit, and hence, shifts ¥ — (N + 1). Similarly,
O4( + 1) simultaneously changes i — (I + 1), N — (N — 1). To obtain the
possible [ values for a fixed N, we first examine the action of the operators

0:() = (?% +(=+ p)),
with
0, (DO Wy, = (—3‘; l“; D@ -0y
= (2¢ + 21 — Duz; = [ — LWDuy,
0+ 10,0+ Duy, = (- % + [(—liﬁ 0P+ @+ 3) )y,
= (2e + 2 + 3)% =[A — LU + Duy,, (8)
which can be satisfied by
Ly = —(41 — 1), X = (2¢ —20). 9)

% — L(I) remains positive for all possible values of /, even as [ is increased
indefinitely. No new limits are set on / by the operators O... Also,

o_() changes [ — (/ — 1) and simultaneously N — (N — 1), and

O.( + 1) changes [ — ({ + 1) and simultaneously N — (N + 1).

Starting with the maximum / value for a particular ¥, /., = N, successive action
with O_ (1) followed by O_(I — 1), or equally well O_(/) followed by O_( — 1),
will change a state with quantum numbers, N, / to a state with quantum numbers
N, (I — 2), skipping states with N, (/ — 1). The four operators, 0., O, do not
change the parity of (N +/). For a fixed energy (fixed N), the possible / values are

I=N,(N-2),(N—=4),---,0 (or 1), for N =¢ven (or odd).

It will now be convenient to define the four step operators preserving the normal-
ization of the uy,;, which will be denoted by O. [Also, we will characterize the
radial eigenfunctions by the quantum nurabers, N, /; that is, we will replace the A
(or &) with the quantum number N, which gives the energy eigenvalue, €.]

o_() . o.d+1

O (= rrm, O+ D= m,

with [A - L= Qe +20) — (4 - D= 2N +3 -2+ ).
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o029 _ o041y _2LLD

[ — L] h— LA+ )]

with =[A—L(D]=Qe ~2)+ @ —1)= QN +3+2 - 1).
Thus,

1 d {
wn+ni-1y = O_Duy; = m(—% 5 + p)um,
d
dp

1 ¢+
Uy -y+n = Opl + Duyy = T —l)( - + p)um,
_ 1 d l
un-nu-n = O_Duy; = m(dp — + p)um,
- 1 I+
uninary = Oy + Duyr = m(*@ + _,O— =+ P)uNl-

Combining the first and third of these relations, we get
e UV - - 1) (10)

[(N+2-D +
Uy = —_— U . — -T-
PUNI ) (N+D=1) )

Similarly, combining the second and fourth relation, we get

N-=-D /N+3+l

u +yf —U 1
3 w-nuen +yf (N +1)- (n

If we left-multiply the first of these equations with ufy . ),_,, and integrate over
p, and use the orthonormality of the uy; with the same [ value, we get

o0 o0
. 2 [(N+2-1D
./0 dpuiy 1y -1,PUNL = fo dpp”Riy i1y nP RNt = —

where we have used

pPUy; =

Both functions have the same [ value, viz., ({ — 1), and where we recall that the 1-D
unr(p) is related to the radial function, Ry(p), via un;(p) = pRwni(p), where we
also recall p is the dimensionless radial coordinate p = rpnys /+/fi/may. Finally, if
we combinc the dimensionless p with the angular functions, we get the components
of the (dimensionless) vector 71 z = pcosf; (x +iy) = psinfe™®?. With the
matrix elements of the angular functions given through eqs. (42)—(44) of Chapter
9, we have, e.g.,

(N+2—D 12 —m?)
thxy—n

(UN+1¢ Dms> PCOSOY N I) =
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NFi+h [ @-m)
—~1¥I--1ms 0 ml = /_—— ’
(Y1t 1ym» P COSOYnin) y ) \[(21 + 12l - D
A (N30 I+ 1) - m?]
(Fw+10+1ms P COSOYN) = ﬁ (2 + D)2 +3)

/ (N =D |14+ D? - m?]

(V=131 > P COS Oy ) = v \/ —, (12)

2 Y@+ D@l +3)

where the similar matrix elements of p sin @e*'¢ differ only in the [, m dependent
square root factors coming from the angular parts [which now also change m to
(m £ DI

To get the matrix elements of p%, we can combine egs. (10) and (11)

, N+2-Df [N+2-D (N +3+D)
puN = ) 3 Uy + —‘_——“(N+2)I
[(N+1+D( [(N=1 N 1“ )
+ \/( = + )(\/( : LI \/(—%—)um). (13)

This equation leads to the matrix elements

(Yims 07 ¥nim) = (N + 2),
(Wvaaums 0°Unim) = 2/ (N +2 = D(N +1+3),
(Wov—2m> 07U wim) = 3/ (N — DN +1+ 1), (14)

Finally, to obtain matrix elements of p, and (p, =% ip,), we can use the
commutator relations

p. = i[H,z], (px ® lP;) = i[H, (x £iy}],

80, e.8.,
(Wnrm, p¥nim) = il(N'+ 3) — (N + DU Nrm 2¥nim), (15)

giving

W +2-D | @2 - m?)
(YN 1= P NIm) = lf 3 VaTna -1’

(N +1 +1) 12— m?)
1 + el -1’
KN+3+1 (@ + 12 —m?]
21+ 1)1 + 3)
[+ 12 — m?]

(N
Y-+ tms PYNIm) = —iy AT DA D (16)

As our last result, we shall obtain explicit expressions for the normalized radial
eigenfunctions for N < 3. The functions with ! = /.., = N are given through

(U(N-1)=~Dm> P2V NIm) =

(U N1+ Dms P UNIm) =
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eq. (7). Functions with lower / values can be obtained with actions of @_ or O_:

2 4 .12 25 L
Un=3j=3 = e‘ip = 4eA§p s
V=== TG 105"
2 3 2 24 12
UNeojmn = | —=p e 27 = 3675‘0’
eI’ 5y
2 2 P2 23 2 12
Un=1i=1 = pe = ple P,
F(%) KWz 3
2 7%p2 22 *lpz
UN=0]=0 = pe = —=pe 27
re) T
1 d 2
uy-3=1 = O-(Duy-z4-2 = i(_% - ; + p)uN =2.0=2,
2p* — 5pY)e 1",
15ﬁ( P30
1 1
un=21=0 = O-(Duy=y.= 1—5(—%—;+p)u1\/ A1

‘/ 20° —3p)e *".

16. The symmetric top rigid rotator. In problem 35, the Schrédinger equation for

the symmetric top rigid rotator, with A = B # C, led to the 8 equation via the
assumed form of the solution

oMo
3 01 -
Yrmk (P x) «/2—7r «/2_."'[

This 6 equation is one-dimensionalized via

usmg (@) = Vsin60 ;¢ (0)

to give
d* M?+ K> —2MK cos6
—— + i 0) = Au; [¢] N
( 27 s wimk (0) mk(0)
where
2 ﬁ2
E=—@G-1-K»+ =K

2A 4 2C
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Show that this equation can be factorized in two ways, via

d i K
OL(M) = (:FEE + (M — §)C0t9 — ;;;‘5)

or
d : M

where A = (J + %)2, with J = Mpa = K- Assume M and K can only be
integers, so J is an integer.

Convert the above to normalized M step- and X step-operators, which preserve
the normalization

f d6sin 0O k() = 1.
0

Find the normalized O, (9) with M = J, but arbitrary allowed X, and
© ;5 7(0) with K = J but arbitrary allowed M.

Find the normalized J step-operators that step J — (J 4 1), butkeep M and K
fixed. These operators will require new normalization factor ratios, ¢y .1 yx /Cimk»
as for the corresponding spherical harmonic problem. Prove these ratios are
independent of K and, hence, can be taken over from the known case with X = 0.

Find all nonzero matrix elements of cos 8 and sin 8¢, sin §e*x:

(Vrmk,cosBY k),
(Yo sinBe Py px),

- i
(Yo, sin@e™ X i)
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The Darboux Method: Supersymmetric
Partner Potentials

Even if the two partner potentials, V (x, m) and V (x, m—1), of the form [k?(x, m)T
k'(x, m)+ L(m)] of egs. (7) and (8) of the last chapter do rnot have the same shape,
it may still be possible to say something about the eigenvalue spectrum of the
partner potential if the eigenvalues of one of the potentials are known. This will
be true whether or not the potentials are functions of a parameter, m. This has
been known since 1882 through the work of G. Darboux; (Comptes Rendus Acad.
de Sci. (Paris) 94(1882)1456). This 19" century work has only recently been
rediscovered by quantum theorists in connection with work in particle physics
on supersymmetry. Hence, the partner potentials are known as supersymmetric
partner potentials.
Suppose we have an eigenvalue problem with a potential V;(x)

2
(‘i + V1(x))ul(x) = (A%A + const.)u,\(x) = Au;(x), 1))

dx?
which is a solved problem and can be put in the form
d d
—— 4 k() || — +k(x)| + const. Ju;(x) = Au(x). 2)
dx dx

Because we have no parameter, m, we have named the two operators, A, and A",

d i d
A= [EE +k(x)], A" = [—E +k(x):l. (3)
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In addition, let u; be any solution of eq. (1), perhaps not a square-integrable
solution,

d* _
(_EF + V; (x))u;(x) = Auz(x). (4)
This equation is satisfied if we choose
us- _
kix) = ——(——’—) and const. = A, (5)
Uz
because
. 42 AN 4> uZ
A'A= —— -2 — 2= =4, 6
ax ( ‘;:) T (u,> i (u;,) ©
S0
+ dz“I ”
ATAuz = = up =0 = (A — const. Juz(x). (7
x‘, A
Therefore, the constant in the original equation must be A and the potential V;(x)
is given by
uZ _
Vikx) = (;ﬁ) + A (8)

Now, let us look at a different eigenvalue problem, with a different potential, and
different eigenfunctions, but with the same eigenvalues A

AA W (X)) = (A = Dws(x). [C)]

The order of the operators, A, and A’ isreversed from that in the original equation,
which was

AT A (x) = (A — Dz (x). (10

Now, because

(AA? + X)wx(x) = Aw;y(x)

4’ ) 4\’ “ A
SOOI

d2

- (“;172 + Vz(x))wl, (1n

we have
ul\? ull _
MI u;:
w2 _
:2(4) 2R~ Vi), (12)

uy
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where problem 1, with potential V;(x), is given by
AT Au; = (0 — Nus, (13)
whereas problem 2, with potential V;(x), is given by
AA W, = (L — Nw;. (14)
Now, acting on eq. (13) from the left with A yields
AA(Au) = (0 — D)(Aw,). (15)

Thus, we see: If u, is an eigenfunction of problem 1, with eigenvalue A, (A, ) is an
eigenfunction of problem 2, with the same eigenvalue, A. The question remains: Is
w, square-integrable, if u, is square-integrable ? To answer this question, calculate

400 +00 +00 .
f dxwiwy :/ dx(Aul)*Au-A :/ dxu;(ATAuA)
- - —oc

oQ oC

+oc
:u-h/ dxutu,. (16)

Thus, if u; is square-integrable over the domain from —oo to +o0 (as assumed
here, or over some domain from a to b), and if the value A lies below the lowest
allowed eigenvalue A of the original problem, the right-hand side is positive, and

d .
wi(x) = [(Tx - (Zfi)]um) an

will also be square-integrable, even if uy is not. A word of caution is needed
here. The above derivation required the property A = (A)", which required an
integration by parts over the domain from —oo to +oco. For the needed integrals to
exist, the logarithmic derivative, (”,I/ u7), which arises through the function k(x),
must not have any infinities; i.e., the function u; must not have any zeros. This
will be true in general if V(x) has both a left and a right classical turning point,
and if A lies below the lowest eigenvalue A. For the lowest possible eigenvalue,
the eigenfunction u; will have just enough curvature away from the x-axis in the
classically forbidden regions so both u; and its first derivative will go to zero
together as x — 400, as required for a square-integrable function. Moreover, the
lowest allowed eigenfunction will have no zeros. For a A below the lowest allowed
A, the curvature away from the x-axis in the classically forbidden regions will
be too great and the function uz(x) will approach oo for both x — =00 before
u;(x) can reach the value zero (see Fig. 12.1). Thus, for every eigenvalue X of
the potential V|(x), a square-integrable (calculable) eigenfunction of the potential
V,(x) exists. The potential V5(x), however, has an additional eigenvalue, A, below
the lowest A. Two candidates exist for square-integrable eigenfunctions associated
with this additional eigenvalue

1 X
: w = — fo dE Uz, (18)

I
* uy *
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To show these equations are solutions of eq. (11) with eigenvalue A = A, note
1 d ur 1
Al —)=|-——F—7—-|—= — } =0. (19)
us dx 25y 453

/

anw? = a(—2 - 55) L [astsr
Ll)\ 0

Also,

dx U

A

B - T
= )2) / dETus )] ui[m]

Il
T
| —
NN
s
jaE
(i8]

d u:
= —Auy = W[“ - —l]ui =0. (20)
dx  uy

If either w ) or w( ) are square-integrable, we have a valid eigenfunction for the

additional k of the spectrum. The arguments given in connection with Fig. 12.1

show the new eigenfunction , w£ = 1/uz will in general be square-integrable if

the potential V;(x) has both left and right classical turning points, and if & < A.
Thus, we have a prescription for finding an infinite number of new potentials V,(x)
with an eigenvalue spectrum given by the new A and the original full spectrum of
A’s. The eigenfunctions for the new potential are given by eq. (17) and (18). This
is the method of supersymmetric partner potentials.

In problem 17, we shall use the 1-D harmonic oscillator to find double minimum
potentials with a known spectrum of eigenvalues and eigenfunctions. Because the
process of finding a V,(x) from a V;(x) with a known spectrum can in principle
be iterated, we can find a potential with a spectrum of eigenvalues such that a
few low-lying eigenvalues are placed arbitrarily, but with a spectrum of higher
eigenvalues of the initial V;(x).

Problems

17. Supersymmetric partner potentials. Use a solution u;(x) of the 1-D harmonic
oscillator equation
d?u; -
a dxz)L + xzu;;(X) = Au;(x)
to find the eigenvalues and eigenfunctions for the wave equation for a particle
moving in the potential V,(x), the supersymmetric partner potential, where

_ u-\2 _ uN\?
Vz(x):2).+2(i) -V,(x):2A+2(k) — x?
Hj u;

in the case u; is an even function of x, and A< l,sou ; has no zeros. Show first
that the infinite series for u; can be put in the form

u;(x) = 1 Fi(
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where

2 (@), X2
1Fi(a; b; x°) = E &),
, !

n=0

and (a), =ale+Da+2)---la+n—1), (a)y=1,

and show that

;- ,\)3 5 Q=X 1 L\ _ie
;X)) — 1 F s 2

P x )— 1Fi( R ) je

The case with two nearly degenerate levels near A = 1 is of particular interest.

Plot the potential V,(x) together with the eigenvalue spectrum for the two cases:

u; —x((l — A Fi(

3 ! 7 1

A=1-4 R=1-4k

Also, plot the eigenfunctions for the two lowest energy cigenvalues.
18. Find the hydrogenic expectation values of (1/r, 1/r%, 1/r3):

(a) Use

do ‘[I 101+ a0
dt ot

to derive the quantum-mechanical form of the virial theorem, for an N-particle
system, including N = 1:

N N =7 N
P; 1 - 2
4dt <, DG Bk B FY) = (42 ) = 5 3 G VYY),

Use this theorem to find the expectation value of 1 /r for a state ,,;,, of the hydrogen
atom.

(b) Derive the Hellmann—Feynman theorem which applies to a system whose
Hamiltonian is a function of a parameter, v, and states

0, _ ., OH
81) - s av ‘z[in -

Use this theorem to calculate the expectation value of 1/r2 for a state ¥,;,, of the
hydrogen atom. Use [ as the parameter, (! = v). The quantum number, #, depends
on this parameter throughn = (n, +1 4+ 1);(n, = 0,1,2,...).

(c) The radial functions, w,,(r), u,p(r), with I’ # I, are by themselves not
orthogonal to each other

but show that, with n’ = n,

o0 1 O
/ dr —uy (g (r) = f drR, (@R, (r) =0, with I’ # 1.
0 r= 0
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Hint: Use the radial equation to evaluate
n? = 1
5;[1'([’ + D -+ 1)]'/.0 drr—zu;,u,,l,.

Now eliminate % from the hydrogen step-up and down operators, O, (I + 1),
O _(I), and combine the resulting expression for }u,,,(r) with the above to evaluate
the expectation value of 1/r* in the state ¥,,,.

19. Commutator algebra for the hydrogen atom.
_ (@) Use the dimensionless angular momentum and Runge-Lenz vectors, L and
R, as well as the dimensionless p, ¥, H, and € of problem 13 to show these
dimensionless operators satisfy the commutation relations

[Lj9 Lyl = iejkchas [Lj7 Ril = iéjkaRou

e 2. .
[Rj, Ril = (=p* + Di€jkaLa = (~2H)i€ o La.
(b) Definc
R
V(=2e)

V=

to show in the subspace of a fixed, #n,

[L;, L]l =i€jro L, [L;, Vil =1€io Vi, Vi, Vil = i€jiala-

. ] 3
LY L
i\ Max; T ax

so Ly = Ly3; Ly = L3y; Ly = Ly, V; can be defined through

v 1 a ]
== x;— —xg—— |.
/ P\ 8x, 43xj

Show that these operators satisfy the above commutation relations. That is, show
the six operators, I and V can be related to the six operators, L;;, with i, j =
1,...,4, which are the angular momentum operators in an abstract 4-D space
generating rotations in this abstract 4-D space, x;, X2, X3, X4, where x;, x3, X3 are
our 3-D real space.

(c) Show that M and N, defined by

L L e
M=iL+V), N=XL-V,

If we define

satisfy the commutation relations of two commuting angular momentum operators
[M;, M;] = i€;;u M, [Nj, Ni] = i€jia Ny, [M;, N =0.
(d) Show that
M- N = 3L )+ (VD)) =0,  see Problem 13,
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S, o, 2 o 1
2(M2+N‘)+1:(L2+V2+[}.—.—2_E.:n2_

{e) Show that the double angular momentum eigenfunctions, ¥; , jm,, With

e </
M ‘l’jlm;jzmz = .]1(]1 + l)wjnmljzmz’ Mﬂbjlmljzmz = mll/,jlmlj2m2’

N2 jims o = J2Ci2 + DWjimy jomas N3V jimy jymy = M2V jim, jumy s
are also eigenvectors of the hydrogen atom H, provided
(n—1)

h=h= 7
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The Vector Space Interpretation of
Quantum-Mechanical Systems

A Different “Representations” of the State of a
Quantum-Mechanical System

So far, we have specified the state of a quantum-mechanical system by the wave
function, ¥ (7, t), i.e., by specifying the value of the scalar function, ¥, for all
values of x, y, z, at a particular time, . ¥ could also be specified, however, at a
particular time by the infinite set of numbers, ¢, (1), in the expansion of W(7, 1) in
the compleete set of energy eigenfunctions of the system,

Cne H P =< g, W(F, 1) >= (1), %)
with
Cn =< Y, U(F, 1 =0) >= f dry (W, L = 0). 2)

Alternatively, W could just as well be specified by another set of numbers, a set of
Fourier coefficients of some other (complete) set of generalized Fourier functions.
For example, we might use the eigenfunctions of some other Hamiltonian, H,
not the Hamiltonian of our system, or possibly H could be some other Hermitian
operator, not a Hamiltonian. Let us assume, in particular, H has both a discrete
and a continuous spectrum, where the discrete spectrum is numbered by an index,
i =1,2,...,n, perhaps a finite number or perhaps an infinite number, whereas
the continuous eigenvalue spectrum is parameterized by a continuous variable, «,
such that

ﬁui(f:) = E,-u,»(?) (3)
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—ﬁwa(;) = E(Q')wa(;)’ @
where the eigenfunctions form an orthonormal set, with
< up,uj >= 6, < uj, Wy >=0, < Wy, Wy >=6d@ —a). (5)

The eigenfunctions must of course also form a complete set, where the
completeness relation is now

Zu;(?’)uf(?) + / dow} (7w, (F) = 8¢ — 7). (6)
Now, ¥ can be expanded in terms of this complete set via
W, 1) = Zciu,-(?)+ [ dac(@)wq (), )
where the ¢; and c(@) are given by
¢ =< u;, ¥ >= [d?'u}”(?')\ll(?',t), )
cla) =< wy, ¥ >= /d?’w;(?’)\y(?’, 1. 9)

The ¢; and c(e) are now implicitly time dependent. These ¢; and c(@) now give us
still another alternative for the description of our quantum-mechanical system.

So far, we have used Fourier expansions in a set of orthonormal functions that
themselves were square-integrable functions; i.e., they were themselves part of
our Hilbert space. The basis functions in the Fourier expansions, however, nced
not themselves be square-integrable. In fact, our original expansion in terms of
ordinary Fourier plane-wave functions was of this type. The plane-wave functions
(in the general notation of this chapter) are

1

L(p-F)
e (10

u 5(?) =
These functions are eigenfunctions simultaneously of the three operators (pr)op.,
(Py)op.» (P:)op., With eigenvalues p,, p,, p;, with, e.g.,
Ao S
lta—);u,;(r) = pup(r). an

Because the spectrum of possible p is continuous, the orthogonality is expressed
in terms of a Dirac delta function in place of a Kronecker delta
=7

<up,up >=38(p — p), (12)

and the completeness relation is given by

fdﬁ u;(?")uﬁ(?) =8’ ~ 7). (13)
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The Fourier expansion of W is the standard Fourier one, with expansion
coefficients, ¢(p, t), now the standard Fourier transform

VG0 = [d5 o ousd). (14
with
P, 1)y =<up, ¥V >. (15)
The ¢(p, t) now give us another alternative way of specifying the state of our
quantum-mechanical system.
Finally, we could even use a basis of Dirac delta functions for the generalized

Fourier expansion of our W, where these can be written, in analogy with the u 5,
or the ¥, as

u, (r) = 8(F — 7o), (16)

where these u’s are simultaneously the eigenfunctions of the three operators x, y,
z; with eigenvalues xg, yg, zo. For example,

xuy (F) = x8(F — 7o) = x08(F — 7o), (17)
where we have used the delta function relation
F(0)é(x) = f(0)5(x). (18)

The orthogonality of the u’s is now given by the delta function relation
f A7, (P () = / dFSG — P8 G — 7)) = 8Go — 7). (19)
The completeness relation is now given by the integral
fd?gu}‘o(F')u;O(?) = deOS(Fo —FN8(Fy — F)y = 8(F' — F). (20)

The Fourier expansion of a ¥ (let us make it time independent for simplicity), in
terms of Fourier amplitudes c¢;,, now leads to

v = / dFocs,(F) = f APl Go)SF - o). @)

Now the Fourier coefficients ¢y, the analogs of the ¢,, are just the wave functions
Y (Fo). Hence, this description of the state of our system is just the wave function
description, where we specify i at every point xg, yo, zo In space time.

To summarize, we have given a number of alternative ways to give a complete
description of the state of our system:

1) through specification of W at every point in space time;

2) through the coefficients ¢, through an expansion of ¥ in terms of the
eigenfunctions of the Hamiltonian of our system;

3) through the coefficients, ¢; and c{«), through an expansion of W in terms of the
eigenfunctions of an hermitian operator H with both a discrete and a continuous
eigenvalue spectrum;
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4) through the ¢(p, t) in a standard Fourier expansion of plane waves.
There are thus many “representations” of our quantum-mechanical system. This
will lead us to an introduction to the Dirac notation in the next section.

B The Dirac Notation

Many different “representations” exist that can specify the state of an atomic
quantum-mechanical system, described by the wave function, W(7, r). We can
specify ¥ at every point in space time; we can specify it through the ¢, or through
another set ¢; and c(o), or through the ¢(p, 1), and so on.

Because our ¥ (7, 1) belong to the space of square-integrable functions, a quan-
tum system specified by a W can be thought of as a vector in infinite-dimensional
vector space. The coefficients, ¢,, can be thought of as the components of this
vector along a particular set of coordinate axes, similarly, for the ¢; and c(e) for
a different set of coordinate axes. In the same way, the ¢(p, {) can be thought
of as the components of the state vector along the set of axes specified by the
momentum values, and the W(7, t) as the components of the state vector along a
set of axes specified by the values of the coordinates. The vector space of our ¥
with a well-defined complex scalar product is also called a Hilbert space. Just as
in ordinary finite-dimensional vector analysis, it will be convenient to specify a
vector by a generic symbol, not always by its coordinates along particular axes.
Dirac proposed to do this through his “ket” symbol. Thus, a state vector is specified
by 1¥). Because scalar products < ®, ¥ > are complex numbers, linear in ¥ but
antilinear in ®, with

< ¢, (k;‘l’l -f-}&.z‘yz) > = )\.1 < d:’, ‘pl > +)\.2 < (D, ‘J»’z >, but
< (AP +AP), W >=A] < P, ¥ > 4+ < Dy, ¥ >, 22)

where A, and A, are complex numbers, Dirac defines for every “ket” vector, | ¥},
a dual vector, the so-called “bra,” denoted by (¥|, where

(AW A+ AgWo) = A W) + A2 W),
(A1) + A Wa| = AT(¥ [ + A5 (W], (23)

The “bra” vector then permits us to write the scalar product of two vectors in terms
of a “bracket”

(@, V) = (D|W). 24)

In the new language, the Hilbert space is an infinite-dimensional vector space of
all vectors |\W) with a finite norm,

{¥|W) = finite rcal positive number.
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Because we are dealing with an infinite-dimensional vector space, we will also
insist on the absolute convergence of expansions, such as

N
Wy = Zc,,z/fn as N — oco.
=0

A linear operator, O, acting on a “ket,” |V}, converts this into a new “ket,” |¥') =
O|W¥), with a dual “bra,” given by (¥'| = (¥|07, so
(@W) = (B|O|W) = (W]0"|D)". (25)

(®|W) is a number, usually a complex number.
In this new language, an operator can be written as, e.g.,

[@)}{A| (26)
because
[®)(A|W) = (a complex number)|®); 27

that is, the operator |®){A|, acting on the vector [W¥}, converts it into a new vector
|®), multiplied by the complex number (A|W).

A very important type of operator is the projection operator, which projects an
arbitrary state vector, |¥), onto a basis vector, such as |i,). We will assume that
{¥,) is normalized such that

(Ynl¥n) = 1. (28)
Then,

Po = [} (¥al. 29)
Note,

Py = 19) (Y ¥n) (Wl = 1¥) (¥l = Py, via (Yl =1. (30

Once we have projected the arbitrary vector onto the n'” basis vector, projecting
once more will not alter this result, so P? = P,.

The completeness relation for the functions v, can be translated into the
“closure” relation in Dirac notation

D W (Wl = L. 31

If the n'* energy eigenvalue is degenerate, i.e., if g, independent eigenfunctions
v with i = 1,2,..., g, exist (assuming we have orthonormalized the states
with the same #, viz., (¢ |¥’) = &), it may be useful to define a projection
operator

i=g,

Py =Y W) (32)

i=1
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that projects onto the subspace of states with definite energy E,,. Now the closure
relation (completeness condition) becomes

I=gn

DO =1, (33)

n =1

For simplicity, let us for the moment assume no degeneracies exist. Then, P, acting
on an arbitrary state vector {W) yields

Po|W) = V) (Y| W) = [¢n)ca, (34

or, using the closure relation, an arbitrary state vector, |¥), can be expanded in
terms of base vectors, [¥,),

W) = 1W) = Y 1) (Yl W) = D _[¥)ca. (35)

This equation is the analog in the infinite-dimensional Hilbert space of the expan-
sion of a vector, V, in ordinary vector analysis in terms of base vectors, ; (unit
vectors along the i** direction),
V= &V (36)
i

If we use some of the other representations introduced in the previous section,
we can construct similar projection operators and similar projections. In a basis of
eigenvectors of the operator, H, with

Hu) = Eiluw), Hiw,) = E(@)|wy). (37)

The closure relation is given by
S+ [ datu) = 1. (38)
and a state vector |W) can be expanded in this basis by

w>-1|\11>~2|u u|W>+/da|wa> (| W) = Zlu i- /daawac(a).

Similarly, in the basis of eigenvectors of the momentum operator, p, <
) = [ dplus)ust®) = [ dpiuziocs.. (40)

Finally, in the basis of eigenvectors of the position operator, 7,
) = f{l?olu;0>(u;o!t/f)- (4D

The projection onto the base vector |u;,) is now just the Schrodinger wave function,
{uz, |¥) = ¥(¥o), where we have used the orthonormality of the 5, €q. (19).

In all of the above examples, we have expanded ket vectors in terms of ket
base vectors. We could of course have done the same with the bra versions of the



144 13. The Vector Space Intcrpretation of Quantum-Mechanical Systems

vectors. For example, multiplying with the unit operator from the right,

(W)=Y (W) (Yl = Y e} (Wl (42)

Finally, operators can be represented through their matrix elements via

0 =101= Y W)Vl OlWn) Wl = > W) (YUml(Ohpm,  (43)
O1W) = [ W) (Wl O1Ym) (Y [ W) = D [¥a) Oumem = W) = Y _[9hn)c,
| ' (44)
sSC

= OpmCn. (45)

C Notational Abbreviations

Often, we shall abbreviate the ket |,,) simply by |n}. If we have a one-degree of
freedom problem, a single quantum number n, associated with the eigenvalue E,,
is sufficient to specify the ket. For a particle moving in three dimensions, three
quantum numbers would be needed. For example, for a single particle (without
spin) moving in a 3-D harmonic oscillator well, the ket would be specified by
[nynyns). For a single particle with spin moving in a central potential V(r), the
specification |nlm;m;) would be natural. Thus, we abbreviate

[¥a) - lnlmmy). (46)
Similarly, for the momentum representation
lup) - 1P) = |pxpyp2), (47)
and, in the coordinate representation

ez, — 7o) = |x0¥0z0)- (48)
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The Angular Momentum Eigenvalue
Problem (Revisited)

A Simultaneous Eigenvectors of Commuting Hermitian
Operators

So far, we have solved the angular momentum eigenvalue problem very specifically
in the coordinate representation for the case of the orbital angular momentum
eigenfunctions, the well-known spherical harmonics. Let us look at this problem
once more from a much more general point of view, which can be taken over for any
angular momentum problem, or even more generally for any problem involving
three hermitian operators with the same commutation relations as the L,, L, and
L,. We want to solve the problem of finding the simultaneous eigenvalues and
eigenvectors of the two (commuting) operators L. i, and L,. We will now write
the eigenequations in the new language

(L - L)|Am) = A|Am)
L.|Am) = m|lm), (D

where we have purposely used the Dirac notation for the eigenvectors, so no
implication 1s made as to a choice of representation.

The problem of finding the simultaneous eigenvectors of a pair (or more gener-
ally a number) of commuting hermitian operators is a very general one, because
the complete specification of a base vector for an n-degree of freedom problem
will in general involve n quantum numbers, associated with the eigenvalues of n
commuting, hermitian operators. Let us first look at the case with n = 2. Let us
first prove a theorem as follows.
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Theorem: Two hermitian operators A and B have the same set of eigenvectors
if and only if they commute.
First, assume the set of vectors |o) are eigenvectors of both A and B:

Ala) = aqle),
Bla) = b,|a). @)

Now, let [A, B] = (AB — BA) act on an arbitrary state vector |{) of our vector
space. We shall assume the states o) form a complete set, and also note that a
particular |} may require more than one label for a complete specification, so a
may be a shorthand for two labels. Then, with

D eyl =1 3)

in the subspace in which A, and B act, we can project an arbitrary state vector |{)
onto the |&) basis to get

(AB - BA)|Y) = Z(AB BA)a)(a|¢) = Z(aa — beaa)lo){a|¥) =
4

because the a,, and b, are ordinary real numbers.
Conversely, if the |o) are eigenvectors of the operator A, and if [A, B] =0

(AB — BA)Y) =0
= (AB - BA)) |a)(aly)
=) (A~ a.)Bla)(al¥)
=Y (A —ay)le’) (e | Bla)(@|¥)

= (@w — au)(e/| Ble}{ely). o)

Because |y/) is an arbitrary vector and the |a) are assumed to form a basis for the
subspace of our vector space, we must have, for each pair of basis states |«), |a'),

(@ — aot)(allBla) =0. (6)
Hence,
(¢'|Bla) =0, if Ay # Q. @)

If the eigenvalues a, have no degeneracies, i.e., if but a single eigenvector as-
sociated with each a, exists, the matrix of B is diagonal in the |a) basis, and
{¢'|Bla) = 84 by The more common situation, however, is one in which de-
generacies associated with the eigenvalues of A exist. For example, if A = 12,
(21 + 1) eigenvectors associated with each eigenvalue of A exist. Then, with

Ay = agla®y, with i=1,2,...8,, ®)

(@9 |Bla®) = Su.a | Blot)y. 9
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In this case, it is still possible to take a linear combination of the ")}, with the same
eigenvalue, a, of the operator A, to make the matrix of the operator B diagonal in
this g, - dimensional subspace. To specify the basis completely, we then need the
simultancous eigenvalues of both operators A and B.

B The Angular Momentum Algebra

With this introduction, let us look at the eigenvalue problem of eq. (1) for the
operators L,, and L?, built from the three (dimensionless) operators, L., L ys Lz,
where these satisfy the commutation relations

(Ly Lyl =1iL,, and cyclically, or [L;, Li]=i€j,L,. (10

Our results will depend only on these commutation relations. Hence, other oper-
ators with these same commutation relations will also be interesting. The other
angular momentum example involves the three components of the spin operator,
Sy, 8y, §;. In the case of the orbital angular momentum operator, we were able
to write the operators in terms of functions of 8, ¢, 'a%’ and %, i.e., in terms of
explicit functions of the orbital coordinates. In the case of the electron, and other
fundamental particles, we know nothing about the intrinsic or internal coordinates
of such particles. In 1924, G. E. Uhlenbeck and S. Goudsmit had a picture in their
mind of an electron that was like a little rotating sphere, but to the best of our
ability to measure anything today to many significant figures, the electron is still
a point particle (with no observable internal structure). Hence, we cannot relate
the spin operators to internal “angles.” In the case of a rotating molecule, we can
write the rotational, internal angular momentum in terms of three Euler angles and
their partial derivatives (as we shall see). Even though we know nothing about the
internal structure of an electron, however, it will be reasonable to assume the three
components of § obey the same commutation relations as the three components
of L:

(S, Sil = i€k Sy an

In addition, because the spin-degree of freedom will involve only internal or intrin-
Sic gegrees of freedom of the electron, itﬁwill be natural to assume all components
of S commute wiith all components of L. With this additional relation, the three
components of J, the total angular momentum, with

J=L+35, (12)
will also have the basic commutation relations of angular momentum
[Jja-]k]:isjkv-lv- (13)

Still other operators exist, which may not be at all the three components of an
angular momentum, but have the same commutation relations. For example, the
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three operators
1
My =S [(p2+ %) = (B + D).

1
M, = ‘2‘(Pxpy +xy)’

1
M; = E(xpy — ¥Px)s (14)
where x and p, are dimensionless coordinate and momenta, with x and y measured

in appropriate length units, such that [p;, x;] = —i8 ;. From these commutation
relations, it follows that

[M;, Mi] =i€;1M,. (15)
Because we shall prove the eigenvalues of M3 (like those of S,, or J,) can only be
either integers or %-integers, and because Mz = %LZ, we now have the proof that
the orbital angular momentum quantum number m must be an integer. (It cannot be
a —;—-integer, as the corresponding m quantum number of an arbitrary “spin.”) The

operators M; of eq. (14), which are single-particle operators, can be generalized
to operators for a many-body system by summing over N particle indices, e.g.,

lnzN
M; = 3 (xnpy,, - ynpx,,)~ (16)

n=1

Thus, the result can be generalized to the m quantum number of an N-body system.

C General Angular Momenta

Let us consider the generic operators J,, J,, J,. Again, we define
Jo = £iJy), Jo = 7. 1))
The commutation relations translate to
[Jo, Jol= +J4, [Jo, J-1=—J_, Ji, -1 =2, (18)

It will be useful to rewrite J 2 in various ways

-

1 1
J?= SUe H 1)U =i + S = T +idy) + J?

1
=50+ J_ I+ J¢

=J_J +IE+ D
=J,J_ 4+ J;— Jo, (19)

where we have used [/, J.] = 2J, to write the operator in two basic forms. Now,
let us assume |Am) is simultaneously an eigenvector of J 2 and Jo, with eigenvalues
A and m, respectively, where these are (so far) arbitrary real numbers:

T2 am) = Alam),
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JolAm) = m|im). 20)
Acting on these two equations from the left with the operator J, and using the
commutation relations, [/, /%] = O and [J,., Jo] = —J,, we get
f2(1+_1xm)) - A(J.A)»m)),
JO(J+|Am)) = (m + 1)(J+1Am)). 2n

Similarly, acting on both equations from the left with J_, we get

fz(llkm)> - A(J,um)),

JO(J_Mm)) = (m — 1)(J.|Am)). (22)

Thus, if |Am) is an eigenvector of J? and Jo with eigenvalues A and m, two
possibilities exist. Either (J, |Am)) is an eigenvector of J 2 and Jg, with eigenvalues
X and (m + 1), or J,|Am) = Q. Similarly, either (J_|Am)) is an eigenvector of J 2

Let us assume the first possibility for the operator J,. Using eq. (19), let us
evaluate the diagonal matrix element of J_ J, for the eigenstate |Am)
(mld_ T \am) = (m|(J 2 — JE — Jo)am) = [A — m(m + 1)){(Am|Am)
= Z(Am!.],,.lk'm') (Mm'|J | am)

= D (Wm |2 hm)* (| T lhm) = 3 [ | Ty | )
Ao Alm’
=[x —m(m + D]. (23)

The state J, |Am} can existif A > m(m + 1). In that case, we could act with J, to
make the new state with (m -+ 1) and calculate the diagonal matrix element in the
state |A(m + 1)). Moreover, we could repeat this process to ladder our way up to
a state with (m + n), but the same A, s0

DM m [ Ledam 4 a)* = [A = (m + m)m + 0+ D). 24

Ao’
An integer n will then be large enough that the negative quantity —(m-+n)(m+n+1)
will overwhelm the positive A, and we will have a patently positive quantity on the
left-hand side of the equation equal to a negative quantity on the right. Therefore,
the assumption that (Am|Ant) = 1 for the starting value of m must have been wrong.
If the starting value of m is such that the laddering process has an upper bound,
however, we must come to a maximum value of m, such that (m + 1) = Mqax,
with

JelAmpa) =0, (25)

and, hence,

A = Mgax(Plgax + 1). (26)
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Similarly, using the last form of eq. (19), J, J_ = (J2 — JE + Jo), we arrive in
the same way at the result

(Am|JyJ_|km) = ZI(A"m"Il_Mm)IZ = [A — m(m — D). 27

&=

Now, we can repeat the step-down process and step-down m until it would become
such a large negative number, so the negative quantity —m(m —1) = —|{m|(Jjm|+1)
would overwhelm the positive A. Thus, again the step-down ladder must quit at a
value m = mpy,;, for which

J_{kmpn) =0, (28)
and
A = Mupin(Mmin — 1). 29
Hence,
A = Mupax(Mpax + 1) = Mpin(Mmin — 1), 30)
leading t0 Mumin. = +5 & \/(Mmax. + 3)2), SO Mmin. = —Mmax. The other root,
Mmin. = (Mmax. + 1), is of course meaningless. Let us now name mpax. = J.

Because now (Mmax. — Mmin,) = 2Mpax. = 2j = integer, the quantum number j
can only be an integer or a }-integer; with

A= j{+ 1), where =4+j,0U-D,...,—]J. 31

In addition, because the operators J. do not change the eigenvalue A, the sums over
A’ or A” inegs. (24) and (27) collapse to the single value A. Also, if the eigenvectors
are such that the state |Ampn. ) is nondegenerate, the state (J_|Amn,, ) will also
be nondegenerate; similarly for states with even lower m values. Then, the sum
over m’ in eq. (23) and m” in eq. (27) collapses to a single value. Thus, replacing
the label A with the quantum number j,

[(jm + DI jm) P = [j(j + D — m(m + 1)], (32)
[(jm — DIJ_|jm)[* = [j(j + 1) — m(m — 1)]. (33)
Choosing the matrix elements themselves to be real, we get
(jm + DiJyljm) = /(G —m)(j +m + 1), (34
(jm — DIJ_|jm) = /(j +m)(j —m + 1), (35)
and, with J, = $(Jy + J), Jy = 5(J_ — J}),
(jm'|Jc| jm) =
TGV U —m(G +m+ 1D + 8-/ +m)(G —m + 1)),
(jm'| Tyl jm) =

Hi8mmen/ G —m)(J +m + 1) + i8mn-ny/(j + m)(j —m + 1)),
(jml|J | jm) = m. (36)
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For j = %, these matrices are very simple 2 x 2 matrices with rows and columns
labeled by m = + %, m=— % in that order. It is convenient to factor out the factor
%, and to define the operator @, via

J= (37)

SR
Qi

where the matrices have the simple form

I Y ) B () I

These equations are the famous Pauli spin-matrices. They satisfy
g0 = ifjkuo-a +5j1(. (39)

As a final small exercise, let us calculate AJ, for an angular momentum system
is in a definite angular momentum eigenstate | jm). We note

(jmlJc|jm) =0, (40)

so the expectation value of this perpendicular component of J is zero in the
eigenstate with definite value of J,. Also,
(ml 2 m)y = Y (jmldljm’) jm' || jm)
mf=(mi1)

= Y m|Jdjm)?

m’'={(m=x1)
1
= (UG + D =mm+ DI+ +1) —m(m — D))
1 2
= UG+ D =m’]. (41)

Furthermore, the diagonal matrix elements of J, and J)? have the same values as
those for the x component. Thus, converting now to physical components with
angular momentum in units of 4,

T . 10— 2
AJy = AJ, =h J(J_+2)_"L (42)

in the state |jm) for which J, has the precise value fim, so AJ, = 0. This is
illustrated with the semiclassical vector model in which the vector J, now of length
A/ j(j + 1), is pictured to precess about its z-component with precise value Am,
which is less thanﬁm even in the state withm = j. Also,for j = 3, m =
iz, we have AJ, = AJ, = ﬁ the minimum quantum-mechanical unccrtamty

Final Remark: With our chmce of phase for egs. (34) and (35), we have made
the matrix elements of J, pure imaginary, and the matrix elements for J, real.
This is the standard angular momentum phase convention. All three components,
however, are of course equivalent. We could, e.g., have used a basis in which J,
is diagonal, J, real and off-diagonal, and J, pure imaginary and off-diagonal.
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Rigid Rotators: Molecular Rotational
Spectra

A The Diatomic Molecule Rigid Rotator

For a rotating molecule the angular momentum, associated with the rotation of
this “nearly rigid” body can be expressed in terms of Euler angles and their partial
derivatives. Hence, this may be a good first example. Consider the simplest case:
a diatomic molecule, e.g., the HCI molecule with one hydrogen and one Chlorine
nucleus and 1 + 17 electrons. The full 20-body problem is extremely complicated,
but at very low energies no excitations associated with the electron degrees of
freedom will come into play. The electron cloud binds the two atomic nuclei into
a nearly rigid structure. The position of the diatomic molecule in 3-D space can be
described by a radial coordinate, r, giving the distance between the H and Cl nuclei,
and two angles, ¢, and ¢, giving the orientation in space of the molecule axis, or
H-Cl1 line. The wave function can be written as ¥ (r, 8, ¢) = R(r)Y;,,(8, ¢). The
electron cloud gives rise to a potential, V(r), with a deep (nearly parabolic) well
with a minimum ar r = r,, where this is the equilibrium distance between the
two atomic nuclei. The radial problem is associated with the vibrational motion
of the molecule, a nearly harmonic oscillator motion to good first approximation.
The energy associated with this vibration, fwy, is approximately 30 times that
associated with the lower rotational excitations. Thus, at sufficiently low energies,
we can replace the radial coordinate with its constant equilibrium value, r., and
the Hamiltonian collapses to

p B [ 8? +eotal 4! a2 h? 72 "
= —; — tcotfl— + ———= | = ,
362 36 sin*9 8¢2)  2ur?
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with corresponding Schrddinger equation

2 2

- A
L*Yin(8, ¢) = EY1n (6, ¢) = =—1( + DY1a(8, §). @)
2ur? 2ur?

Here, u is the H-Cl reduced mass, and 7, is the moment of inertia about an axis
perpendicular to the molecular axis, through the center of mass of the system. The
energies are
B
E = w+1. 3
' 2 ¢+D 3)

e

The eigenfunctions are the standard spherical harmonics. Each level is (21 +1)-fold
degenerate, because the energy does not depend on m.

B The Polyatomic Molecule Rigid Rotator

For a polyatomic molecule, such as H, O, with an isosceles triangle equilibrium
structure, the rotational Hamiltonian is more complicated. We now need three Euler
angles to specify the orientation in space of the nearly rigid molecule: two angles,
@ and ¢, to give the direction of the triangle’s symmetry axis, and a third angle, x,
to describe the “spinning” of the two H atoms about this symmetry axis. Again,
assuming the energies to be considered are so low vibrational excitations can be
neglected, we can replace the coordinates of the atomic nuclei by their (constant)
equilibrium values and are led to the rigid rotator Hamiltonian

H:LP%+LP%+-1—P% (4)
24°% 2B Y 2

where P, is the component of the rotational angular momentumn vector along the
Z’, body-fixed principal axis, the H; O symimetry axis; similarly, the x” and y’ axes
can be taken as the remaining principal axes, one perpendicular to the plane of the
triangle, the other lying in the triangle plane, all going through the center of mass
of the molecule. The constants A, B, C are the three principal moments of inertia
in the equilibrium configuration: /., = A, /;, = B, I,;, = C. The principal or
primed axes components of the rotational angular momentum vector, P, must be
translated to operator form to write the above Hamiltonian in quantum-mechanical
form. Using the techniques of problem 5, these components are [converting from
the physical angular momentum components of eq. (4) to dimensionless ones, e.g.,
(Pz’)phys, :ﬁPz’],

p 1/siny 8 n d . > a
= P COS ¥ — ~— SInt ¥ CO —k,
¥ =5\ sin6 3¢ X XYL

I a6
1/cosx o d J
Py =~ — X——~sinx—~c0sxc019—— ,
i\ sinf 3¢ a8 ax
10
Py= - (3)

idyx’
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with

- 32 3 1 T a2 3? 32 9*
P?’= | — +coth— +——| — —2cosf 080 — |+ — |.
(392 36 sin26[3¢2 agox ox2 ] ax?
(6)
We can of course also write the space-fixed, x, y, and z components of the rotational
angular momentum in this operator form. The component of greatest interest to us
is the space-fixed z-component

10
P=-—.
i dg
The three operators P,, P, and 1’3 2. form a set of three commuting operators. In
addition, straightforward calculation gives the commutator algebra of the three

body-fixed or principal axis components of the rotational angular momentum
operator

[Px’v Rv’]:_ipz’y [Py’a Pz']:‘-iPx’, [Pz’ypx’lz“ipy’- (8)

)

Note the minus signs! These signs are the complex conjugates of the standard
angular momentum commutators. If we had taken the space-fixed components P,,
Py, and P,, we would have been led to the standard angular momentum commutator
algebra. In translating the standard results to their complex conjugates (needed for
the primed components), we must merely interchange P; and P/, where now

P, = (Po +iPy), Pl = (Py —iPy). ©)
Now
[P, P]=—P,, [Py, P.1=+P.. (10)

(Note the difference in sign compared with the standard angular momentum alge-
bra!) Also, now, the simultaneous eigenvectors of the three commuting operators,
P,, P, and P2, will yield a complete basis of the subspace of our Hilbert space,
corresponding to the three rotational degrees of freedom. (We need three quan-
tum numbers, and three commuting, hermitian operators.) The needed eigenvector
equations are

PYUIMK) = AJMK) = J(J + D|IMK),
PJMK) = M|JMK),
P.|JMK) = K|JMK), (11)

where the commutator algebra of the unprimed angular momentum components
leads to M.y = — My, = J, and the commutator algebra of the primed angular
momentum components leads t0 Kpyx = —Kpin = J, where A = J(J + 1).
Because we are dealing with orbital degrees of freedom of a many-body system,
the quantum numbers, J, M, K mustall beintegers, withM = J, (J-1),..., —J,
and, similarly, K = J,(J — 1),..., —J. (We use capital letters for the J, M, K
quantum numbers according to the usual convention by which capital letters are
used for many-body systems.)
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We will now write the rigid rotator Hamiltonian for the asymmetric top with
A # B # C (valid for the H, O molecule), by first introducing the energy constants
h2 hZ 52

— b= — = —, 12
7A 2B Vs (12)

, , 1 , 1
H = aP} +bP} +cP} = S@+b)(Pl + P))+ 5(@=b)X(Po = P)) + P}
1 = 1 ’ ’ 7 2
=5+ bYP? — PH+ G bY(P,.P,. + P P')+cP2 (13)

In the |J M K} basis, the nonzero matrix elements of the primed components of P
are

(JM(K + DIP |JMK) =/(J — K)(J + K + 1),
(JM(K — DIPLIIMK) = /(J + K)(J — K + 1),
(JMK|P,|JMK) =K. (14)

(P’ is now a K step-up operator, and P! is a K step-down operator. This results
because the commutation relations of the primed components of the rotational
angular-momentum operators are the complex conjugates of the standard ones.)
The Hamiltonian is not diagonal in the |J M K) basis. In this basis, the diagonal
matrix elements of the Hamiltonian are

(IMK|H|JMK) = %(a +BJ + 1)~ K3+ K2, (15)

With a # b, off-diagonal terms exist. For the special case of a symmetric rotator,
with a = b, however, these terms vanish, and the |J MK} are eigenstates of this
symmetric rotator. The rotational energies are

Eix = %(a + I + 1) — K2 + oK™, (16)

For the asymmetric rotator, with a 3# b, we need the matrix elements

(JMK'|P P |JMK)

=Sk~ K)J — K~ DU+ K+ DU +K +2),
(JMK'|P, P |JMK)

=8k + KT +K - D(J =K+ 1D({J - K +2). amn

When multiplied by (a-b)/4, these give the nonzero off-diagonal matrix elements.
To get the energy eigenvectors, we now need to make a transformation from the
|JMK) basis to a basis of the type |JME,), where these base vectors are si-
multanecusly eigenvectors of the threc commuting operators, P2, P, and H,
with

PAIME,) = J(J + DIIME,),
PIIME,) = M|JME,),
H|JME,) = E,JJME,), (18
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where « is a label that simply orders the energy eigenvalues for a particular J M.
To find the energy eigenvalues and eigenvectors, we need to make a transformation
from the |/ M K) basis to the |/ M E,) basis:

K=+4J K=+J
[IME,) = Z UMK (JMK|JME,) = Y cx(E)JMK).  (19)
K=-J K=-7J

If we substitute this linear combination of the | J M K ) into the energy eigenequation
HIJME,) = E,|JME,), (20)
we get

ZHlJMK)(JMKIJMEa):Ea|JMED,). 21)
K

Taking the scalar product of this with a particular (JMK’|, i.e., with left-
multiplication by the bra for a particular value of K’, we get

Y UMK |\HIIMK)(JMK|JME,) = Eo(JMK'|JME,). (22)
K
If we use the shorthand notation

(JMK'{H{JMK) = Hygg, cxk = (JMK|JME,), (23)
the above equation can be written as
ZHK’KCK = Eyckr, or Z(HK’K — Edxk)cx =0. (24)
K K

The H submatrix for a particular J, and some fixed M, has been abbreviated by its
matrix elements Hx g, where the common quantum numbers, J and M, have been
suppressed. [From egs. (15) and (17), these matrix elements are functions only of
J and K and are completely independent of M .] Eq. (24) is asetof (2 + 1) linear
equations in the unknown coefficients, cg, with K’ = +J,+(J — 1),...,—J.
These linear equations have solutions for the ck if/only if the determinant of the
coefficients is zero:

det|Hx'x — Eodxx| = 0. (25)

This determinantal relation leads to a polynomial in the unknown E, of degree
(2J + 1), which must be set equal to zero, leading to (2J+1) roots E,, with ¢ =
L,2,...,2J +1).

For example, for J = 1, the linear equations are

(Hyyo1 — E)eyy + Hypocg + Hyyojey =0,
Hyycpr + (Hoo — E)cg + Ho—1c1 =0,

H jyicoi+H oqoco+(H 11 — E)e ;1 =0, (26)
with the determinantal relation
(Hy141 — E) Hyyg Hiy_y,
Hyy (Hoo — E) Hy_y, = 0.

H_i4 H_j (Hoi-) — E)



B The Polyatomic Molecule Rigid Rotator 157

The Hamiltonian matrix for J = 1 follows from egs. (15) and (17). The J = 1
matrix is

(IMK'(H — E)lJMK) =

K =+1 K=0 K=-1
K=+1[(% +c—E) 0 ah
K=0 0 (a+b—E) 0
K=-1 b 0 (2 +c— E),

where it would have been advantageous to rearrange the columns and rows (taking
first all even K values, followed by all odd K values), because the matrix elements
of H are nonzero only for AK = £2. The determinant of the (H — E) matrix
will then always factor into two subdeterminants. For J = 1, the determinantal
relation leads to the requirement

[(a+b—E)]i:(fl—;:—lz+c—E)2—(a "zb)z] -0, 27N
with the three roots
Ey =(a+b),
Ezz(%£+c)+(a;b):(a+c),
E=( - (Y=o (28)

For E = E, = (a + b), the allowed ¢’s are given by ¢4y = ¢y == 0, ¢g = 1. For
E = Ej or E = E;, we must have ¢y = 0, and the remaining ¢’s follow from the
equations

a+b a—b
(--—5— +c - E)C«-l + (_*‘2—")C+1 =0
a—b a+b
( Yoo+ (—— +c— E)ci =0 29
2 2
For E = E; = {a + c), these equations have the solution ¢_| = ¢y = \/;

Conversely, for E = E; = (b + ¢), these equations lead to —~¢_| = ¢, = \/g .

We have normalized the solutions such that ) |cx]* = 1.
Thus, the energy cigenvalues and eigenvectors of the asymmetric rotator, with
J=1are

E|  =(a+b), J=I1ME)=|J=1MK =0,
and for
Ey = (a + ¢}, and E3=(b+c),

1
M=1ME)=—(J=1MK=+1)+|J =1 MK = —1}),
2 Jz—( > | /)

1
J=1IME) = —={(|J=1MK =+1) - |J =1TMK = -1)). 30
| 3) ﬁ(l +1) — | ) (30)



158 15. Rigid Rotators: Molecular Rotational Spectra

For arbitrary J, we are led to a (2/ + 1) x (2/ + 1) determinantal problem. The
(2J + 1) roots of eq. (24) will give us the eigenvalues E, and the eigenvectors
for arbitrary J. The energies are independent of M. All states are therefore still
(2J + 1)-fold degenerate. This degeneracy can be lifted only by an external field.
For the H,O molecule, which has a permanent electric dipole moment directed
along its symmetry axis, the degeneracy could be removed if the molecule is placed
in an external electric field (Stark effect).

In condensed-matter physics, effective Hamiltonians of the type of eq. (13) are
often useful. These may be functions, e.g., of the spin operators of an impurity ion
and have the general form

H = aSI+bS.+cS2+d(S:Sy+ Sy Se)+e(SeS: +S:S)+ f(8,5.+5:5,). 31)

The combinations, such as (S S, + SySy), are hermitian. Problems of this type can
be solved by the techniques illustrated in this section by the asymmetric rotator.

Problems

20. Find the allowed energies for the J = 2 states of the asymmetric rigid rotator
with Hamiltonian

H =aPl+bPl+cPl = Ya+b) (P = P})+ia~b)P,P,+P P )+cP}

as functions of a, b, c. Find the eigenvectors of these states as linear combinations
of the |JMK); i.c., find the coefficients, cg, for the allowed J = 2 states in the
expansions

IMEL) =) ¢ 1IMK).
K
21. For the asymmetric rigid rotator of problem 20, show from the symmetry of
the Hamiltonian, H, the eigenvectors split into four classes of the form

IMEdse0) = ) H5(IMK) 1M —K)),
K

where the e(0) states involve a sum over even or odd K values only. Using this
e+, e—, 0+, o— basis, show the 7 x 7 matrix of the Hamiltonian matrix for J = 3
factors into three 2 x 2 submatrices and one 1 x 1 submatrix, and find the allowed
energies for J = 3 as functions of a, b, c.

22. An impurity ion with a spin, § = % is imbedded in a magnetic crystal and
is subject to the local effective Hamiltonian

H = a(SS, + $,8.) + bS?2,

where S, Sy, S, are the three components of the spin operator and a and b are
constants. Find the Hamiltonian matrix in the basis, |SMs), where My is the eigen-
value of S,. Find the energy eigenvalues, E,, and the energy eigenvectors as linear
combinations of the |SMy).
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Transformation Theory

A General

In our example of the diagonalization of the asymmetric rotator Hamiltonian in
the last chapter, we encountered a very special case of a very general problem
in quantum theory, the transformation from one basis in Hilbert space to another.
In our example, it was a transformation from the |J M K) basis to the |JME,)
basis, involving two different complete sets of commuting operators to specify the
two different bases. In our specific example of the J = 1 energy eigenstates, the
transformation was a very simple one, in a 3-D subspace of the asymmetric rotator
subspace of the full Hilbert space of our problem, and thus it involved 2 3 x 3
transformation.

For a general state vector, |}, in the asymmetric rotator subspace of the Hilbert
space of the polyatomic molecule systermn, we could use either the representation

) = ZIJMK)(JMKIW H
IMK
or the representation
l¥) = D |TMa)(J Ma|y), 2
JMa

where we have used the abbreviation « for E,, and

(JMceh/f):Z(JMaI.IMK)(JMKh//), 3
K
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and

(JMKIY) =Y (JMK|JMa){J Maly). @

Here, egs. (1) and (2) are the analogs in Hilbert space of the relatlons in ordinary
n-dimensional vector space that give the specxﬁcatlon of avector V in terms of the
components along a set of axes defined by unit vectors €;, or in terms of components
along a set of é’;, which are unit vectors along a set of rotated coordinate axes.

V=3 av. ©)
X
Ve, 6)
with
VvV = ZO"" Vi, where Oy = E.; - & 7
k

The inverse gives

Vk - Z(O‘l)kavé’ with (0_])/(“ = Oaks (8)

a

showing the orthogonal character of the transformation matrix, i.e., the Oy satisfy
the orthogonality relations

D 0uOp =8ap. Y Ot Ouj = 5y ©)
k o
Now, cgs. (3) and (4) are the analogs in Hilbert space of the ordinary vector
relations, eqs. (7) and (8). If we name (JMa|y) = ¢, and (I MK|¥) = ck,
¢, = Z(JMO:UMK)CK = ZU,IKCK,

cx = Z(JMKuMa Z(U ) ko (10)

where now
(U™) g, = UMK|IMa) = (JMa|JMK)" = UZy. (an

That is, the transformation is now unitary, rather than just orthogonal. The U matrix
elements satisfy the unitary conditions

D UakUjx =8up. Y UakUlgr = Sxx. (12)
K o

Now, the inverse matrix is the complex conjugate of the transposed matrix. We
can also think of the U, not as a matrix, but as an operator, where

U =Y |/ Ma)(JMa|IMK){JMK]. (13)

o K
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That is, U/ is the operator converting a |/ M K} into a | J Ma) and multiplying it by
the complex number U, x. Similarly,

Ul = Z|JMK)(JMK|JM&)(JM¢V|, (14)
Ko

where now
U'l=U". (15)

For the very specific case of the J = 1 states of the asymmetric rotator, using the
ordering of energies of eqs. (28)—(30) of Chapter 15 for the index a, we have

K=+1 K=0 K= 1

o =1 0 1 0

U=@K=2=2] 0 +

=3\ 3 0 -

and

¢e=1 a=2 a=3

1 K =+1 0 _\% Zl/_i

Ul = (Kla)= K = 1 0 0

K=-1\ 0 5 -5

Combining this with the matrix, Hg x- of Chapter 15, we can see by straightforward
matrix multiplication that

D (o |K K HIK) (K@) = (o |H]e), (16)
KX

or, in matrix form,
Y UwkHe k(U ko = Hoa = Eabua. (17
K.K'

B Note on Generators of Unitary Operators and the
Transformation UHUT = H’

A unitary operator, U, can be generated by a hermitian operator, G = G', by
exponentiation
U =e““, (18)

where € is a real finite number and the operator G is called the generator of
the unitary transformation. To prove the unitary character of U, consider first an
infinitesimal transformation, with € = ¢q « 1, 50

U=1+ieG, U'=1-—igG, (19)



162 16. Transformation Theory

SO
UU" = (1 +ieG)(1 — i€gG) = 1 4 Order(e?) = 1. (20)
To convert this to a transformation with a finite €, write the exponential in the

limiting form

ieG : . € v
= lim (1+ —G)
e lN

N—oo

c Nk ok : I
~ lim Z(le) ¢ _N :Z(l;) G*. @
— k!

N—oolet NE kI (N — k)!

To prove the product of N factors (1 + i {;G) is unitary, we still need to show the
product of two unitary operators is unitary

iy’ = u,u; o
=) ' =U, U = U U] (22)
it Uy (- Uf and U, I = U; . Finally, it will be very useful to have a series

expansion in powers of € of the transformed Hamiltonian, H' = UHU?,

. N2 Y
H' = &0 Hei¢0 = (1+ieG+~—(l;) G2+---)H(1——ieG+( ) G2+---)

2!
. (ie)?
++%6,16,16,..16, HI, + - 23)

where we have used (G*H —2GHG + HG?) = [G, [G, H]] for the second term.
The n'" term, involving n commutators, can be seen to follow from the (n — 1)
term from the Taylor expansion in €,

_ _ o/ dn fle
ro=ecnee =3 () -
where
d-g? = ¢“CGi[G, H]e O,
and with
% = %" G, [G. - [G, Hlllim1e7C,
" n—1 ] -
i d(dd:i(f) - idize<n){n(>€)c =16, %ﬂl{%ﬂ]_ 25)

This expansion in multiple commutators of G with H is particularly useful, if (1)
the n’* commutator is zero for arelatively small n; (2) if H and H’ differ only by a
small term (perturbation theory), so the infinite series can, in good approximation,
be terminated after a few terms; or (3) if the n'* commutator is so simple the series
can be summed.
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Another Example: Successive
Polarization Filters for Beams of Spin
s = % Particles

So far, our first example of a unitary transformation from one basis to anocther
involved a finite-dimensional unitary submatrix. Let us consider one more example
of this type, an even simpler example involving spin 5§ = % particles, hence,
a 2 x 2-dimensional transformation. Suppose we have a beam of spin 5 = %
particles. They can be prepared, so all are in a state of definite spin orientation,
say, with m; = +%, or with m; = —%, along some specific z-direction in 3-D
space by passing the beam through a polarization filter. The historically first such
filter is that employed by Stern and Gerlach involving a set of three magnets, with
nonuniform magnetic fields, placed in succession along the beam line, so a set of
baffles can eliminate the particles with one of the two spin orientations. Other types
of sophisticated polarization filters exist. (For a reference to modemn polarization
filters, see, e.g., Polarized Beams and Polarized Gas Targets, Hans Paetz gen.
Schieck and Lutz Sydow, eds. World Scientific, 1996). We will assume the filter
is perfect and prepares particles in a pure state of very definite m, along a specific
z-direction. Suppose the first such filter is followed with a second filter, identical
to the first, but now with its new z’ axis oriented along some new direction, given
by polar and azimuth angles, € and ¢, relative to the original x, y, z axes, and set
for some definite m/ along the new direction. What fraction of the s = 1-particles
will pass through the second filter?

The first filter prepares particles in cigenstates |[m = ﬂ:%), which are eigenstates
of S% and §,:

§Yimy =31im),  Slim)=mlim). (1
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The second filter passes particles in the eigenstates @ = + %), which are eigenstates
of §? and S,
Sze) = glze),  Sylye) = ala). )

The answer to our problem is as follows: The probability a particle in the beam
with definite l%m) will pass through the second filter set to pass a specific |%a) is

P(m,a) = [{alim)]?, 3)

so we need to calculate the transformation coefficient (%al%m) = Uym. It will be
advantageous to switch to the operator 6, via § = 14, and to omit the common s

quantum number of % in all equations. Here, & is the Pauli spin operator, whose
components g,, gy, o, lead to the three Pauli spin matrices, we have already met
through eq. (38) of Chapter 14. Thus,

o lm) = Ay |m), oyla) = Agla), G

with A, = =1 for states with m = %3, and A, = =1 for states with @ = +3.
Now, we shall rewrite the relation o, |} = A,|e) as

Y “ovim)(mia) = Aala). )

Left-multiplying by a specific (m’| leads to
> mlosim) (mle) = hy(m'|a). ©6)

n

Now we can express o in terms of the original x, y, z components of &
0 = sinf cos ¢a; + sin 6 sin po, + cos o, @)

and use the 2 x 2 matrices

{01 o (0 —i A I
%=1 0) v o0 ) Vo 1)

to evaluate

cosf  sin@e?
sinfe'® —cos6 J°

(m'|oIm) = (

Then, ¢q. (6) can be rewritten in matrix form, where we shall also use the shorthand
notation (m|a) = ¢4 for ¢, withm = :l:%,

cosf  sinfe 0\ (cy (e
sinfe'® —cosf c_ “Ne_ )
leading to the two linear equations

(cos8 — Ay)cy +sinfe Pc =0,
sinfe'®c, — (cos@ + Ag)c_ = 0. (8)
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For A, = +1, these equations lead to

¢y _ sin fe™'¢ _ (I+cos) cos(g)e*f? .
e (l—cosf)  sinfeid sin(4)e* '
so, for A = +1:
0. o ..
cr =cos(z)e, o= sin(a)eﬂ%, (10)

where the undetermined normalization factor has been chosen, s0 ), |cn, 2 =1.
These two numbers give us the first column of the unitary 2 x 2 matrix (m|a),

witha = +%. In the same way, putting 1, = —1, we get the second column of
the (m|e) matrix with & = —1 to give
cos(2)e=if  — sin(%)e"%
(mla) = . “9 ie 6y i2 .
sin(3)e'? cos(3)e'

In our notation, this is the matrix for U", viz., U . To obtain the matrix for U,
{a|m) = U, we need to transpose and complex conjugate the above matrix to
get

Iz

a +i% inf(Eye—i%
@lm) = (cos(z)e sin(3 )e )

- ;e iy
~sin(§)e’2  cos($)e 2

Finally, this I/ matrix can be written as

[ . 8 i
y{ o3 sing ez 0 N e it
= 8 6 0 —i =e:ver .,
—sing cos3 e

The last operator form of this unitary transformation follows, for the z component,
from

[ST-N

1:03:0?:---:03",
SR . S 241
o, =0 =0 =---=a"", (1)
and, for the y component, from the similar relation
R . .
l—G'y——O'y— o;",
TR . B 2n+1
oy =0, =0, =-0,""", (12)

S0

(s ) (-@E@Ee)
R IGREEE

Finally, U" can be written in similar operator form as

Ut = e i gmito (13)
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Also, note the appearance of the half-angles, associated with the s = % character
of the particles. Thus, e.g., if both polarization filters are set for the spin-projection
m= +%, the fraction of the incoming particles that will pass through the second

filter is

0
Pim=+3,0=+3) = COSZ(E) (14)
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Transformation Theory for Systems
with Continuous Spectra

So far, we have studied transformations from one basis to another only for
basis vectors that are the eigenvectors of a set of commuting hermitian opera-
tors whose spectra are discrete. Moreover, we have studied finite-dimensional
subspaces of these vector spaces, S0 our unitary transformation matrices were
finite-dimensional. Commuting operators, however, such as the operators x, y,
z or the operators p;, py, p, exist with continuous spectra. Still other operators
have both discrete and continuous spectra. We need to study the transformation
theory for the base vectors of this type. In particular, the coordinate and momentum
representations are of great importance.

In the coordinate representation, we project state vectors |/) onto the base
vectors |Fp) that are simultaneous eigenvectors of the three operators x, v, z,

x|F) = xo|Fo), yI7o) = yolFo}, z|r) = zolFo). ¢y

The spectrum is continuous, so the orthogonality relation is given by a Dirac delta
function

(FglFo) = 8(Fy — 7o), 2
and the completeness condition is given by the closure relation
fd?0§70>(F0| =1, (3)

SO

) = f dFolfo) (Fol), @
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and
Oly) = / /d?éd?ol7é)(?éloi?o)(?oh/f)- (5)
Now, if the operator, O, is a function of the coordinate operators x, y, z, only,
with O =F(x,y,2), {Fo|OlFo) = F(xo, o, 20)8(Fg — 7o),  (6)
SO
2101 = [ diop Go)F Gk 3o, 2000 ™

If, on the other hand, an operator, O, is a function of the momentum operators p,,
Dy, Pz, it will be useful to transform to the momentum representation, with base
vectors that are the eigenvectors of the momentum operators

Px|ﬁ0) = Px0|ﬁo), py'ﬁO) = Pyolﬁo), leﬁo) = PquI;O)- (8)

We shall be particularly interested in the unitary transformation matrix (pg|Fo).
We could, of course, use Fourier integral analysis, from which we know the result.
Let us, however, rederive this transformation matrix to learn how to deal with
base vectors with continuous spectra. It will, in particular, be useful to introduce
a unitary operator, the translation operator, which will serve our purpose.

A The Translation Operator

Consider the operator
U =¢e i = U@), ®

where ¢ = (¢, ¢2, ¢3) and the ¢ ; are ordinary numbers, so-called “c-numbers,” the
components of p are operators. We then have the commutator relations

hoU
x,Ul=——=qal, (10)

[ Op,
with similar equations for the commutators [y, U], [z, U]. These relations lead to
xU|Fp) = (Ux + c;U)|Fy) = (x0 + c1)U|Fo). (1n

Thus, the new eigenvector obtained by acting with U on |#p) is an eigenvector of
the operator, x, with eigenvalue (xo + c), similarly, for the y and z components.
Therefore,

U@)lry) = Iro +c), 1z
or
U(7)I0) = [Fo). (13)

We see the translation character of the operator U. The translation operator, U =
e #%P can be regarded from two points of view as follows.
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(1) Passive point of view. Action on base vectors. From this point of view, of
eq. (12), the operator U (¢) acts on a base vector |rp) and converts it to a new base
vector |7 + &), but the physical system is not translated. This process is illustrated
by Fig. 18.1(a), where the physical system is illustrated by the maximum in its
probability density at x = a. By shifting the origin of the coordinate system to
the left a distance ¢}, the maximum of the probability density lies at a + ¢; in the
translated coordinate system.

(2) Active point of view. Action on the physical system. In this point of view, the
coordinate axes remain fixed, but the physical system is translated by the action of
the operator U(¢) from its original position given by a vector 4 to a new position
described by the vector @ -+ ¢. Now, we let I act on the original state vector 1)
to make a new, translated, state vector |¢')

U©ly) = 1¥'), (14)
so the original probability amplitude function v (7} is shifted to a new probability
amplitude function ¥'(7), with

V@) = (Y = FIU@W) = U7
= (Yle PR = (YIF — O = F - Yy =yF-0.  (15)

will have a maximum at (7 — ) = @, or at ¥ = (@ + ©); i.e., the physical system
has been translated along the positive direction of the vector ¢. This process is
illustrated in Fig. 18.1(b).

B Coordinate Representation Matrix Elements of p,

Having discovered the properties of the translation operator, U(¢), we shall now
use it to calculate the matrix elements of p, in the coordinate representation,

(Fol pxlFo).
In the relation

(FlU©)IFo) = (FglFo + 0, (16)
consider a vector ¢ = € = (¢, 0, 0), where ¢ is an infinitesimal, € <« 1, so eq. (16)
becomes, retaining only first-order quantities in €,
o, ie - S o ie , 5
(roll — Em)lm) = d8(ry —ro) — E(r()lpxlr())

. . . J -
= (FylFo + €) = 8(Fg — o — €) = 8(Fy — 7o) — {Eam] . a4
Py —Fo
SC

7ol r>—@[ﬂﬁrﬂ
ol pelro Cifax "

.
[
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ytransl y
1 3 Ar
P(7)
-~ xtransl @
] P
<——‘g - ;’ >
Yy
D (F) = WE-7)
Q).

FIGURE 18.1. The translation operator. (a) Passive point of view. (b) Active point of view.

h 33,.., - L B 18

= i (Fg — 10} = P 3x (Fy — Fo)- (18)

Note, in particular, the minus sign in the last entry. The Dirac delta function is
an even function of its argument, but its derivative is an odd function. We are
now in a position to calculate the quantity {y;| p,|¥.) by the use of the coordinate
representation. Projecting the states [vr;), and similarly (¥, |, onto their coordinate-



C Calculation of the Transformation Matrix (7| py) 171

space base vectors
Wlpslve) = [ dis [ diatuni) G i) ot
/ @i G [ (—fiia(% - Fo)) Yalio)
/ drgyt (?o’)[ f dyo / dzo8(Fg — Fo)y (ro>fi+:
f PGS f G -?0)5?011’2(?0)
f G O,wz@;). (19)

This relation is of course just our previous result. (As always, the integrated term
in the integration by parts has the value zero at the limits xy = £00.)

C Calculation of the Transformation Matrix (7o| po)

From the known matrix elements of p, in the coordinate representation, we can
now also calculate the unitary matrix { po|ro) or its inverse (7| po). We shall proceed
as in Chapters 16-17. From the eigenvector equations

Px Do} = po,|Po), pylBo) = po, | Po)s p:1Po) = po.|Po), (20)
we get, e.g.,
f dFop.lio) (Fol o) = po.|Bo), @1)

which is the exact analog of eq. (5) of Chapter 17, except the unit operator in the
form }, |m)(m| has been replaced by the unit operator in the form [ dry|7y)(7ol-
As in that case, left-multiplying with a specific (7| now leads to

f d7ol731p 7o) ol o) = o, (FLl o). 22)

Using the result of eq. (18), this relation leads, with an integration by parts, to

R (8 ., - N..
— < | dro| 7—38(ry — ro) }{rol Po)
i dxg
J N 3
= +l—.fdro5(ro - ro)( oo ("0!]’0))
k3
= +lfé‘x—6(("olpo))
= po, (3] Po)- 23)

Assuming we can factor the scalar product

(FoiPo) = (x5! Po,)(¥olpo, Y (2ol Po.), (24)
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the equation for (x,|po, ) becomes an ordinary differential equation
nod

l—.d—x,(x(/ﬂpox) = Po, (X(I)|P0X)- (25)
0
This equation can be integrated at once to yield
(x| po,) = const.e ' #Por (26)
with similar results for (yy|po, ) and (z4|po.), to give
. 1 i
{Fy|po) = erfohe @n
0 k)
where the integration constant has been chosen to satisfy the Dirac delta function
orthonormality
Sy o . 1 o iR (Fo—F -
{PolPo) = /dVO(Po|r0>(r0|PO) = W/droeﬁm (Po=po) 3(pg — po)- (28)

The results for (g} po) and (po|7o) are of course well known from Fourier analysis.
We have rederived them here to show how they can be derived from transformation

theory.
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Time-Dependence of State Vectors,
Algebraic Techniques, Coherent States

Before examining the time-dependence of state vectors it will be useful to
recapitulate and summarize the postulates of quantum theory.

A Recapitulation: The Postulates of Quantum Theory

I. The state of a physical system is specified by a vector, |¥), of the infinite-
dimensional Hilbert space. (We assume (¥ |y} = 1.)

II. Every physically observable quantity is described by a hermitian operator,
A.

HI. The only possible result of the actual measurement of this physically ob-
servable quantity is one of the eigenvalues of the corresponding operator, A. (a) If
a, is a nondegenerate eigenvalue of A (part of the discrete spectrum of A), with

Aley) = agla), with  (a,la,) =1, (1

the probability a measurement of the physical observable, A, of the system specified
by the state |¢) will yield the value a, is given by

Pay) = (o ¥) |2 2

(b) If a,, is a degenerate eigenvalue of A (again part of the discrete spectrum of
A), with

Ale) = a, ey, with i=1,2,....g,, (3)
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the corresponding probability a measurement of the observable A will yield the
value a,, is

P =8am

Plan) = Y el 1)1 (4)

i=1
(c) If A has a continuous spectrum {or if part of the spectrum of A is continuous),
with

Ala) = ala), (5)

the probability a measurement of the physical observable, A, will yield a value
between o and & + do is given by

P(a)da = do|{a|y) (6)

for the system specified by the state [1). Note: In the basis in which A is diagonal
A=) le)a, e + / dale)o(e| (7)

and

(WIAlY) = Z_anua,‘:’wz+/daa|<ai¢>s2
= Zanp(a,l)jL / daa P(a). (8)

The operators

Z*“"’> (a1, or  dala)al,

are projection operators onto a,, or o, respectively.

IV. Immediately after 2 measurement of the physical observable, A, the state of
the system is specified by a new state vector. If the system was originally specified
by the state vector |¢), and if the measurement of A performed on the system
specified by |y} yielded the specific value a,,, immediately after this measurement,
the state of the system is specified by the new state vector

3 la) @)
NI RIE

For a nondegenerate a,, on the other hand, the new state vector is simply o).
The measurement of A disturbs the system! In the case of the two successive
polarization filters of Chapter 17, after passing through the first filter, the state of
the system was specified by |m). If a measurement of the polarization along the
new direction z’ then yielded the value A, the particle comes out of the second
apparatus in the state |a).
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B Time Evolution of a state |/)

If at time #y the state of the system is specified by |y (), what is the state of
the system at a later time, 1; i.e., what is | (¢))? If a measurement is made on
the system of some observable A (or B, etc.), the time-evolution of the quantum
system is noncausal. The measurement of A (between times fg and ¢) disturbs the
system. The measurement process itself must be taken into account. If we enlarge
the system to include the whole measurement apparatus, this larger system would
have to be studied, and it may not be practical to consider this larger system. For an
isolated system (undisturbed by an observer and his apparatus in the time interval
from ¢, to t), however, the evolution in time from | (%)) to [¥(¢)) is completely
causal (though we are still tied to the probability description). The time evolution
is given by

hd
- l“.;i;h/'(f)) = H(t)| ¥ (1)). o

The Hamiltonian will often not be an explicit function of the time, but we have
here allowed for the possibility of an explicit time-dependence. We can also think
of the |¥(2)) being produced by the action of a unitary operator acting on | (o))

(1)) = U, 1)1y (%)), with  Ulto, 1) = 1, (10)

SO
hd
- le—t‘U(t, )Y (o)) = HOU (@, 10)19(10)), (11)

and because this is valid for any arbitrary |y (1)),
hod
— ;EU(t,to) = H@)U(t, t). 12)

This equation has the solution

i H
U@, tg) =1 _ﬁf di' H@OU (', 1). (13)
o
If H is an explicit function of the time, it may be difficult to do the integral. If H
is not an explicit function of the time, the equation for U can be integrated and

yields

Ui, tg) = e 70— .

U is unitary if H is hermitian, H' = H. The operator H is then the generator of
this unitary operator, which now gives a shift in time or a “time-translation.” Recall
the operator p, was the generator, G, for a space translation in the x-direction.
Now the time shift, (¢ — %), has taken the place of the space shift, ¢y, of Chapter
18. For an H, which is not an explicit function of time,

Y () = e FTOH [y (). (15)
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The description given here is the so-called Schrédinger picture of quantum theory,
in which (a) the state vectors |¢) change with time, but (b) all physical observables
A, such as p,, or x, or functions of 7, p, such as H(p, r), are assumed to have no
explicit time dependence.

An alternative point of view was taken by Heisenberg and is known by the name,
the Heisenberg picture. Now, (a) state vectors are assumed constant in time, but (b)
the physical observables are taken to vary with time. To make the transition from
the Schrodinger picture to the Heisenberg picture, consider the expectation value
of an operator, O( P, 7), where we use the subscript, S, to designate this operator,
not explicitly a function of 7, i.e., O = Og, similarly for the time-dependent or
Schrodinger state vector |Y(¢)) = |¥s). Then,

. (YOI (1) = (¥s|Osl¥rs)
= (Y )IU (t, 1) OU @, to)¥ (10)) = (¥u|Ou|¥n). (16)

where the subscript H now stands for Heisenberg. The time-independent state
vector is |¥(2)) = |¥x), and the time-dependent Heisenberg operator, Oy, is
given by

On = U'(t, 1) 05U, 1o). (17)

Note,

hdOy RdU" . hdU
= (o (%)
~UHOsU + U OsHU

—(UTHUYXU OsU) + (U OsUYU HU)

— —HOy + OyH, (18)

where we have used Oy = U’ OsU and that the Hamiltonian operator, H, com-
mutes with U, which is a function only of pure numbers and the operator H itself.
Thus, UTHU = HU'U = H. The time dependence of O is then given by the
equation

Il

i

hdOy
T dri
This relation is known as the Heisenberg equation. Even in the Schrodinger picture,
we sometimes introduce artificially an explicit time dependence, so Os = Os(?).
In that casc, the corresponding equation would be

hdOy /30 , 530 [ FE30s
401 ton HI+(-"27) . wim (o2} =Ui(—=2)u
i ar O ]+(i8t),, W (iat)H (iat)

(20)
In the Heisenberg picture, the kets and bras are time independent. We shall take
matrix elements of eq. (19) (assuming that 33—? = 0) in the energy representation,
i.e., between eigenstates of the Hamiltonian, |n), assuming for the moment H has
only a discrete spectrum. Then, eq. (19) leads to

=[Oy, H]. (19)

hd
- ;E(nloﬂ(t)lm) = (n|Op()|m)(Em — En), (2D



C Heisenberg Treatment of One-Dimensional Harmonic Oscillator 177

d(n|O®my) i
—— L =+ (E, — E,)dt, 22
W Onim) i it 22)

(n|Ox)im) = (n|O|m)es b= Enr (23)

where we have named the integration constant (n| O|m), which is time independent.
The Heisenberg matrix elements, Oy, = (n|O|m), are then just the (n] Os|m). Eq.
(23) was essentially the starting point in Heisenberg’s thinking. He started with the
Fourier time analysis of the classical quantity, O, and replaced the n'* overtone of
the classical @ with the two-index Bohr quantity w,, = (E, — E,,)/A. Similarly,
he replaced the n'* Fourier coefficient, 0,, in the Fourier time expansion with a
two-index quantity he interpreted as the nm'* matrix element of O, (n|Q|m).

C The Heisenberg Treatment of the One-Dimensional
Harmonic Oscillator: Oscillator Annihilation and
Creation Operators

Let us now briefly follow Heisenberg’s analysis of one of his simplest examples,
the 1-D harmonic oscillator. Again, we introduce scale factors to transform the
physical coordinate, momentum, energy, and so on, to dimensionless x, Do v

Xphys. = x\/ﬁ/mw( s Pphys. = p.t\/ﬁmwﬂ, thys. == tho; so

1 5 2
H = E(p" +x°). 24
Introduce the two operators
(x4 ipo) R 25)
a=——=(x+ipy), a' = —=(x —ipy).
V2 V2 i’

From the commutation relation, [p,, x] = —i, we get the commutator

fa,a’] =1, (26)

and the Hamiltonian can be expressed as
5 . . 1
H::E(a'a +aa’) = (a'a+i). X))

It will be useful to name the operator a’a = N. Then, we have the family of three
commutation relations

[N,a']l = +a", [N,a] = —a, [a,a’] = 1. (28)

These relations should be compared and contrasted with the standard angular
momentum commutation relations

[L0.~ L*] - +L+1 [LO! L*] - _I—'—ms [L—v L+] == _2L0 (29)
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The commutator algebra of a, a*, N, is known as the Heisenberg algebra. Note,
in particular, the difference from the angular momentum [or SO(3)] algebra in the
last entry. If the eigenvectors of the operator, N, are named |n), and its eigenvalues
N,, these |n) are also the eigenvectors of H, because H = N + %

Nop.In) = Ny|n}, and E, =hawo(N, + %), (30)
or
(1) a'aln) = Ny|n), (2) ad’|n) = (N, + Dn). €1
Acting with a on (1), and using aa’ = N,, + 1, we get
aa‘(aln)) = Nu(aln)),  or Ny (aln)) = (N, ~ D(aln)).  (32)
Similarly, acting with @’ on (2), we get
ad'a(a’im)) = (N, + D(@’|n)),  or Ny (a'in) = (N, + D(a'|n)). (33)
Eq. (32) tells us
either  (aln)) = const.|[(n — 1)), or  (aln)=0. (34
Similarly, eq. (33) tells us
either  (a’|n)) = const.’|(n + 1)), or  (a'ln)) =0, (35)

where |(n £ 1)) are shorthand notation for the eigenvectors of N, with eigenvalues
(N, £ 1). Now we take the diagonal matrix element of the operator, N, (note the
similarity of the procedure for the angular momentum algebra!),

N, = (n[a?aln)

=Y (nla’|k){(klain)

k
= l(klaln)?

k
> 0. (36)

Thus, N, is positive definite. Now, if (a|n)) exists, repeat this process by taking the
diagonal matrix element of N, between states |(n—1)). We conclude (N, —1) = 0.
We can repeat this process j times to conclude (N, — j) > 0,if(ajln—j+1)) # 0.If
N, is positive, however, an integer j will eventually come, which is big enough such
that (N, — j) would be negative unless we hit astate |, ), such that (a|nmin. ) = 0.
For this state, eq. (31) tells us N, = 0. Now, if we act on this state, with
eigenvalue N, = 0, n times in succession witha', we get a state with eigenvalue
(0+n),i.e., with N, = n. Also, continued operation with a’ leaves the eigenvalue
of Ngp. positive, no upper bound to this discrete set of eigenvalues exists. Thus,

1
E, =hwoln + 5). (37
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All that remains is the job of calculating the matrix elements of x and p,. From
eq. (36)
N, =n= |(klan)’
K
=@~ Dialn)*, (38)

where we have assumed the states for this one-degree-of-freedom problem are
nondegenerate, so there is just one state, with & = (n — 1). Except, for an arbitrary
phase, we have determined the matrix element of the operator, a. Choosing the
simplest (positive, real) value for this matrix element, we have

{(n = Dlaln) = +/n. (39)
Hermitian conjugation gives us
(nla’|(n — 1)) = V/n, or {(n+Dla’ln) =V +1.  (40)

a’ is an oscillator quantum creation operator, and a is an oscillator quantum
annihilation operator. Now, using

X = 715((1 +a’), and Dy = %(—a +ah), 4D
we also get
1 —
{mlx|n) = E(am(n_m/r? + BV F 1), (42)

(m|pe|n) = L(‘ifsm(n—l)\/ﬁ + i Va + 1_) (43)
NG

These relations are of course results we have obtained before; but the Heisenberg

method of calculation required no knowledge of wave functions or differential

equations. As before, we can build more complicated operators from powers of x

and p,, and then express any operator in Heisenberg (time-dependent) form

On(t) =Y _In)(n|Olm)(m|ei Fr 5. (44)

For x and p,, we could write the Heisenberg (time-dependent) form of these opera-
tors in terms of the Schrédinger (time-independent) oscillator quantum annihilation
and creation operators, g and a”, as

1 (ae—iwﬂl +afe+iwgl)’

xp(t) = 7
(PIu(t) = %(—iae_”’”’ +ia’ e, (45)

where we have used eq. (44) to get the time dependence, but have subsequently
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D Oscillator Coherent States

Remembering the physical displacement and momentum coordinates of the har-
monic oscillator are related to the dimensionless x and p, of the last section

by ¢ = i/mwox and p = Jhmwyp,, we can express the time-dependent
displacement and momentum operators through egs. (41) and (45) by

[ R ) . L
g(t) = (ae_””“’ + a‘e+“”°'),

\/ 2mwy

h il s T oot
p(t) = may e (-tae +ia'e ) (46)

If we compare this with the classical solution for the harmonic oscillator, g () =
qo cos(wot + @), with

907 i 99€ i
t) = ;I € “"’)
q(1) ( 7 ¢ . 5 3
e ! . ¢ .
Pty = mwo(—iq"Te*‘“’Of + iz‘)ze—e“'wﬂf), (47)

we are led to the idea that it might be very useful to replace the eigenvectors, |n), of
the harmonic oscillator hamiltonian (or the oscillator quantum number operator),
with eigenvectors of the operator, a (or alternatively a"), if we want to study the
transition from the quantum oscillator to the classical oscillator. Moreover, we
might expect the eigenvalue of the operator, g, to be given by a complex number,
where the squarc of the absolute value of this number is related to the energy or the
number of oscillator quanta, and the argument of this complex number is related to
the classical phase. The new oscillator representation in terms of the eigenvectors
of the oscillator annihilation operator, a, might be particularly useful if the physics
of interest involves a statistical distribution of states with different numbers of
oscillator quanta, particularly, if the average oscillator excitation number is large,
as in the classical limit. Later, when we quantize the electromagnetic field (see
Chapter 60), we shall write the hamiltonian of the electromagnetic field

— Co 1
H = Zﬁw(alz”ak” +3)
ko
in terms of an infinite number of oscillators with annihilation and creation op-
erators, ag, and aléy. These operators are interpreted as photon annihilation and

creation operators, where the vector k is the wave vector, corresponding to the
circular frequency @ = k¢ = |k|c, and u is a polarization index for the photon.
The generalization of the single-mode coherent state to be studied in this section
to the multimode coherent state of the electromagnetic field will be useful in the
study of optical beams whose proper quantum-mechanical description is given
by a statistical distribution of quantum states with different numbers of oscilla-
tor quanta. (The seminal papers by R. J. Glauber on quantum optics and optical
coherent states are all reprinted in an introduction to coherent states by John R,
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Klauder and Bo-Sture Skagerstam, Coherent States. Applications in Physics and
Mathematical Physics, Singapore: World Scientific, 1985.)

For the single-mode harmonic oscillator, two slightly different definitions of the
coherent states can be found in the literature, to be denoted by |z), where z is a
complex number giving the eigenvalue of the oscillator annihilation operator. In
the first definition of the coherent state

2 = e T T9|0) = U(2)]0), (48)

where |0}, the “vacuum state,” is the oscillator ground state and U(z) is a unitary
operator, because

U) =e &0 = (~2) =U(z) . (49)

The noncommuting operators, A = z*a’ and B = —za, have a very simple
commutator, [A, B] = zz*, a ¢ number commuting with both A and B. In this
very special case, when

[A,[A, Bl =0 and [B.[A, B]] =0, (50)
we can write the operator relation
eAB) e—%{Aﬁ]eAeB, (1)

as can be shown by direct verification. Note the so-called normal order of the
operators on the right-hand side, with creation operators, a', sitting to the left of
annihilation operators, a. The above result leads to

Zh= e 1T T 0y = o712 |0, (52)
because a|0} = 0. For some purposes, a somewhat simpler second definition of
the coherent state may therefore be useful

lZhn = 5 |0), (53)

which differs from the definition |z); by the simple ¢ number function, e=%¢"/2. This
second definition may be a particularly useful definition for generalized coherent
states, such as the angular momentum coherent states to be introduced in the next
section for which the commutator algebra no longer satisfies the simple relations
of eq. (50). To avoid confusion, we will denote the complex number z in the two
different definitions by two different symbols

l2h = la) = 67"5“*”6”*“%§0) = e*éa*az(a*)n |n)
M n=0 \ﬁl’ ’
- SR T N (Z*)n
Z =17y = 2 ¢ () = Z* ‘
o : ’ I) =0 \/f? i) 54)

Both are eigenvectors of the oscillator annihilation operator, a, with eigenvalue
given by the complex number o* or z*.

ala) = o’ |a},

alz) = 7%|z). (53)
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This follows, for the type 1I coherent state, from

B i n—1
alz) = ae¥ |0) :aZ(Z g - Z((Z )1)' j0) = 2% 10y, (56)

—aw*/2

n=0 n=1

For the type I coherent state, the ¢ number, e , is merely carried along in the
analagous derivation.

The coherent states |o) (or |z)) then give us another continuous representation
of an arbitrary state vector |y) of a physical system. Besides the discrete oscillator
quanta representation, (n|y), we already have two continuous representations, the
coordinate representation (x|¢) and the momentum representation {p, |¥), where
the operators x and p, have a continuous range of eigenvalues from —co — +oc0.
We can now add the coherent state representation {«|y), where « is a complex

number,
a=E+in=pe?,
and £ and 7 range from —oo — 400, and p ranges from 0 — oo and ¢ from

0 — 2. Unlike (xiy) and (p,|¥), however, which are orthonormal, continuous
representations of |{), with

(x'ix) = 8(x" — x), (PLipc) = 8(p, — ps),

the scalar product (¢’|e) does not lead to §-functions. Instead,

1y 2 L2 : oy —Lig"? —Lwi?
(a/|a> — g3l 5l (0|eaaeau 10) = e 5 la’| e 3 lal

;«/—f i)
(57)

L I 2 ’
= g 2l gl gere

so {a’le) is a complicated function of & and o/, even though (¢ja) = 1. Also,

(Z'l2) = e, with (z]z) = e # 1. (58)

The coherent states, however, are complete. In fact, with relations (57) or (58), in
place of the Dirac 8 functions, the coherent states are overcomplete. The complete-
ness can be seen from the existence of the unit operators. For the type I coherent
state, the unit operator is

1 27
lzn[d2a|a>< —f d&] dnla)(al = fpdpf dola)(al.

(59
With the use of eq. (54), this unit operator transforms into

[ /dz e ZZ (a*)n m (
—Omn-?-m-i-l
- Z d¢ei(’"'")¢in)(m|

0 vn' 0

oc n+m+1 2n+1

e p f e p .
= 24 d Sum ) (M 2 —-————nn
;; | dp—mbunIn)(m| = Z In) (n|
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= Inj{nl, (60)
n=0
where the completeness relation, Y, [n}(n| = 1, was in fact proved in detail in

Chapter 5, eq. (13), via

O

> i n(nlx) = Zw,,(xwf (1) = 8" —x) = (x'Ix). (61)

n=0

For the type II coherent state, conversely, the unit operator requires the Bargmann
weighting factor, e %%, so

1 . - 1 x "
1 e (12 Tz = ~fd2 -z E I
n/ 2e ™ fa) b4 “ i nim! o

oC

= In)nl, (62)

n=0

as above.
The type II coherent state realization {z|y) of an arbitrary state vector is simply
the Bargmann transform of Y (x): {z|¢) = F(2).

o0

7 NS X, "
= Wy =Y —= | dxy* ‘> 63
(zl¥) ;(nlml ) gm/_w XYy (Y (x) = 2 0\[— (63)

where ¥ (x) = (x|¥) is the coordinate representation of |y), so

(zl¥) = fdxA(x,Z)Vf(X) = F(2),

where A(x, z) is the Bargmann kernel function with the simple expansion in terms
of the real ¥, (x) [see eq. (5) of chapter 5],

o>
z
Alx,2) = ) Yn -
; /!
We therefore again have two possible forms of the scalar product of two state
vectors

(Walths) =f dxyg () Pp(x) = — fdzsz“” Fi(2)Fy(2). (64)

The complex k of Chapter 5 has here been renamed z, because k for the multi-
mode electromagnetic oscillator is reserved for the wavenumber of the mode. Note,
further, the natural appearance of the Bargmann measure, e~%*" /7, in the scalar
product. Finally, the coherent state realizations F(z) = (z|¥) are analytic func-
tions of z: We have mapped the coordinate functions, ), ¥, (x)c,, into analytic
functions, Y, (z" /+/n!)c,, in a 2-D complex domain.

Let us examine some further properties of the coherent state |o). From eq. (54),
(nla) = e 3@ (g*y" /~/n!. The probability of finding the oscillator in the n'™ level
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in the coherent state |«) is, therefore,

e*ialealbz

Pya) = )
n!

(65)
The expectation value of the oscillator quantum number operator in the state |o)
is

< N >= (ala’ala) = aa* = |a|?, (66)
so the probability

—~<N> 3
P(e) = 5—{}’31 (67)

is given by the familiar Poisson distribution. We also have the expectation values

(llo) = Kela +a'le) = /L@ +a) = V2,
(@|x?a) = Hal(@a +a’a’ +2a a + D) = i@ +a)* + 1],

(@l pale) = —iy/Lala —a'le) = —i\[L@" — ) = —v/2n,

(@iplle) = Hal(—aa —a'a” +2a"a + Vi) = 3[1 — (@* —a)’], (68)

)
(ax)i=4% (Ap)l=1i. (69)
In the coherent state, |«), we therefore have
h
ApAx = % and, thus, ApAg = 3 (70)

where dimensionless x and p, have been converted to physical ¢ and p. The
coherent state is therefore a state with the minimum possible uncertainty, despite
the seemingly complicated probability distribution, P,(@), spread over a range of
states |n) about the most likely n =< N >= |a|?. To understand this, we note
that the unitary operator, U (@) = e“"¢ ~%9, shifts the operators, a and a", hence,
x and p,, according to

U)aU (o) = a — o, Ua U @)=a —a, (71)
where we have used
> (ea — a*a’)y" o (aa — a*a’yr!
HZ:(;[”’ TR “Zl -0

Eq. (71) thus leads to
U@l '@ =x — /i@ +a") = (x - v/26),
U@p U™ @) = ps +iy/ 1@ — @) = (ps + V21 (712)
U(w) is a displacement operator shifting coordinate, x, and momentum, p,,

x = x = V2R@),  pe— p+V23).
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Also, the eigenvalue equation, ala) = o|a), leads to the following simple
differential equations in coordinate and momentum space:

_l_(x + E—)(xla) =a*(xla),

V2 dx
i ¢ d
75 (G o) pele) =" (pin, 3

with solutions

(x|a) = ./Ve""%(""‘fz"*)z, with A = e""z/n%,

(Pelor) = N 2PV’ - ih N7 = e s, (74)
SO
1 i
|<xia)l2 — ﬁe”(/\’—ﬁé)z, |<px'a)|2 — ﬁe_(ﬁx‘i’\/iﬂh‘ (75)

The minimum uncertainties for the coherent state can now be understood because
these are the probabilities for the space and momentum distributions of a displaced
oscillator in its n = ( lowest state, with a displacement +ﬁ§ﬁ(a) in coordinate

will move with time without change of shape (see problems 10 and 11). This is the
motion of a coherent wave packet.

Just as state vectors can be given in the coherent state representation, {o{y),
physical quantitics represented by operators, O, can also be given in the coherent
state representation. In the oscillator quantum number representation, we mul-
tiplied an operator, O, by unit operators on the left and on the right to yield,

1
0~ ;Efdza/dzﬁla)(amlﬁ)(ﬁl, (76)

where &) and |B) are coherent states. Using eq. (54), we have

1 ,
O = ;F_Z[dzafdzlge%(Ialzﬂﬁlz)ia)Z(

n.m

(1" ﬁ*m
(n10lm>~~—)(;3l- an
nt ~ml
The operator, O, in this form is two-sided, made up of operators, l«} {5/, involving
two different coherent states. In our earlier continuous representations, such as the
coordinate representation, €.g., operators were expressible in terms of functions
of a single x and its derivative. In coordinate representation, e.g., an operator,
O(x, py), which is a function of the basic operators, x and p,, was expressible as
O(x, %%) where we were able to use

19
(1O, p)lx) = 8(x' —x)O(x, ——),
i ox

so O becomes expressible as a function of a single x and its derivative through
the § function relation, {(x'|x} = 8(x” — x). Because this relation does not exist in
the coherent state representation, the analagous operator relations must be handled
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with some care. For the harmonic oscillator, an operator, O, can be expressed as
a function of the basic operators, a” and a, O(a’, a). We want to express such an
operator as a function of z and 8/3z. We have purposely chosen z in place of o
because a type II coherent state will be somewhat simpler for this purpose. For
type Il coherent states, z-space realizations of state vectors, (z|¢/), are given by the
Bargmann transforms, F(z) = ), c.2"/ +/n!. The scalar product in the complex z-
space involves the Bargmann measure, e %% /7. In this scalar product, the operator
d/0dz is the adjoint of the operator z. Given two Bargmann-space functions,

" z"
Fo(z) = {z|¥a) = Zn:anﬁ and  Fp(2) = (z|¥) = ;bnﬁ’
we have (using the orthonormality of the 7" /+/n!)
1
- /a’zze = F*(Z)( Fb(z)) = Za*bn+1\/(ﬂ +1

! / dze (@) BE.  (79)

Also, from
Z" R Z"+1 3 Zl’l Zn"l
Z(ﬁ) Ve n ./(n+1)z) az(m ﬁ(,/——(n_l)!)( .
7
we have
{n |Z|"> v+ Ddwpin = (n |a |n),
]
(n' Ia—zln = /181y = (W']aln). (80)
The z-space realizations of the operators, a” and a, are therefore
. a
y@)=z and y(a)= —. (1)

a9z

A more complicated operator, such as x> = 1(aa +a'a’ +2a'a + 1), e.g., has
the z-space realization
82
V(xz) = —(ﬁ + 77 +22— + 1)
Finally, with
(zl¥) = (Ole*|¥) = F(2)

{z|y"), with |¢') = Oy}, is given by (0le** O]y}, which we want to write in
the form ¢ (O)F(z), where y(O) is to be determined as a function of operators, z,
and d/9z. For this purpose, we rewrite (z| O}y) with the use of the unit operator,
e et =1, as

(/e 019) = (Ol(e" Oe ™) )
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Z2
= (010 +zla, 01 + S 1a. [a, O + ) [y, (82)

where we have used eq. (23) of Chapter 16 (renaming i€ = z) for the expansion
of e** Qe %, In particular, with O = a, we have

] g
(clalyr) = (Olae™y) = (0 =™ [y) = = (0le™*[¥)
3 z dz
= —{zly), (83)
Jz
leading to
y(a) ;— (84)
Similarly, with O = a', we have
(zla'|yr) = (Ol(a” + D)e™|¥r) = (0lze*|y) = z{zl¥), (85)
where we have used {Ola” = (a]0))" = 0, leading again to
y@") =z (86)

E Angular Momentum Coherent States

Because we can make an analogy between the operators

a.a,1 = [a,a?} of the oscillator algebra and

J_ Jo, Jo = f%[L, Ji] of the angular momentum algebra,

it is possible to define angular momentum coherent states in analogy with the
oscillator coherent states. Again, we will distinguish between two slightly different
definitions. For the type [ coherent state, using a complex variable o, we define

o)y = ) = T I, M = ). 87)
For the type II coherent state, using the complex variable z, we define
o =lz) = & |4, M = ). (88)

A generic |J, M) has been used for the angular momentum eigenvectors, and
the oscillator ground state, |0}, has been replaced with the angular momentum
eigenvector with the lowest possible eigenvalue of Jo, M = —~J,s0 J_|/, M =
—J) = 0 in analogy with a|0) = 0. For the type I coherent state, it will be useful
to relate the complex number « to the real angle variables 6 and ¢, via
I
2
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where 6, ¢ arc polar and azimuth angles giving the standard orientation of a unit
vector 7 /r in our 3-D world. With this choice of parameterization of the complex
variable, o, the type I coherent state becomes

lOl) o e*iQ(*SiﬂQﬁJr‘f‘COS;bf‘)'M — ——~J)

= e HFDIM = ), (89)

where 7 is a unit vector in the x, y-plane making an angle ¢ with the y-axis and
% — ¢) with the negative x-axis; i.e., 71 is a unit vector in the direction of the y’
axis after a rotation about the z-axis through an angle ¢. We shall return to the type
I coherent state in chapter 29 after studying rotation operators in our 3-D world in
greater generality.
For the type 11 coherent state, we can expand |z) in terms of angular momentum
eigenstates |J M), via

2 _sn

2) =M = —J) = ZOZ,T!”*)"'M =-J)

Q@n!

An arbitrary state vector |y) in the subspace of Hilbert space appropriate to our an-
gular momentum operator, J, can now be specified through its z-space realization,

{(z]¥),

Z/ 27)!
Gl = 1 = i) = 3 [0 =~ i)
n=0 °
Z
= —K, (M =—J . 91
gm { +nlY) o1

Except for a new numerical factor, K,,, we have expanded the coherent state in terms
of the orthonormal z-space oscillator basis. The orthonormality of the z*/+/n!
requires the Bargmann weighting function e %" /7 in the complex z-plane. We
will therefore find it convenient to use the unit operator in the Bargmann form

V[,
1= — jdze ™ |z)(z]
b4

for z-space scalar products. We have thus mapped the angular momentum states
onto oscillator states in the complex z-space realization. The oscillator excitation,
however, is now limited to n < 2J. Also, the angular momentum coherent state
|z} is not an eigenvector of the operator J_ because of the additional n-dependent
numerical factors, K.

To get the z-space realizations of operators, we use

(0 = (~J1e Og) = (~JI(e 0e e 1)
= (=Ji(0 +z1s . 01+ %[L, W0l - ) ), 0
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where we have used the abbreviation, |J, M = —J) = |- J), for the state of lowest
possible M. Let us choose O = J_, Jy, J; in tumn to get the z-space realizations
of the angular momentum operators themselves.

{ZlJ-|¥)

i

. d . 8 )
(I g) = (=TI W) = (=T )
9 : 9z

= -,
2 i F
(loly) = (=T 1Co +2J e 1) = (=T I(=] +25-)e 1Y),

d
= (~J + 252)<z|¢),

( 2 2R 28\
(2 4l9) = (~J\Us = 2z = 2200 19) = (—J1(22 = 22 = et )
'S
d
= (202 - 225- ) (el 93)
a9z
where we have used (—J|Jo = (Jo| — N = —J(—J|, and (—J|J; = 0, via the
hermitian conjugate of J_| — J) = 0. We have thus found z-space realizations of
the operators, J_, Jo, J.,
]
ryJ.)y=—,
(=) dz 3
T(o) = (—J +2+),
%
T/ =2z(2J - z:,j;). (94)

It is easy to verify these I'(J;) satisfy the angular momentum commutation rules,
which of course is just a check of our arithmetic. In addition,

T =3 UDTUD) +TUONUD]+ TP = JU + 1. (95)

T'(J.), however, is not the adjoint of I'(J_) with respect to the Bargmann measure,
where, as we have seen, 3/0z is the adjoint of z. This is related to the fact that
our z-space realization of the angular momenturmn operators is a nonunitary one. It
is the reason why we have used ['(J;) for the above z-space realization of the J;,
reserving ¥ (J;) for the unitary one. To calculate matrix elements of an operator,
O, through its z-space realization, built from operators z and 3/3z, we see from
the expansion of (z|¥) of eq. (91) that such a T'(0), acting on the n™ term of
the expansion will in general create Bargmann space orthonormal (2% /+/n’T) not
multiplied by the proper K. To attain the proper (K, z" / Vn'l), we can multiply
the resultant obtained from the action of I'(O) by (K,;1 x K,) = 1 and thereby
transform the nonunitary form of the operator, I'(0), into a unitary form, to be
denoted by y(0), where

¥(0) = K 'T(O)K = (y(o“'))i 96)

thus making y(O) unitary. The operators, K, are merely the command: Multiply
an orthonormal Bargmann space function z"/+/n! by the appropriate factor, K.
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For the most general, O, eq. (95) can be put in the form
y(0) = K~'T(O)K = (y(0)) = (K"'T(0HK) = K'(r©o") (&,
‘ 97)
or, via left-multiplication by K and right-multiplication by K",

T(O)KK™ = KK (I'(0)). (98)

For the specific operator, O = J,, of the angular momentum algebra, eq. (96)
becomes

v =K 'TUDK = (y(/ ) =K' (TU)) (KD, (99)
and eq. (98) becomes
o, . AN .
2/ 2 )KK' = KK (5) =KK'z. (100)

In eq. (91), the factor K, was evaluated from the known matrix elements of J,
acting » times in succession on the state | J, —J). If we had not had prior knowledge
of these matrix elements, we could now evaluate these by using eq. (100) to first
evaluate (K K7),. In particular, both the operator z and the operator I'(J,) =
z(2J — z8/8z) convert a z-space function, z”, into a z-space function, z"* ! so eq.
(100) becomes

224 = n)(KK'), = (KK oz
On the right-hand side of the equation, the action of K K follows the action of
the operator z and zd/0z(z") = n(z"). We therefore have
(KK
(KK,
Because the Bargmann state with n = 0 has the same normalization as the angular

momentum eigenstate, |J, M = —J), we have (KK "o = 1. Iterating the above
recursion relation for K K, starting with n = 0, we obtain

=(2J —n).

@J)

KKy =2JQ@1 = 1) Q) +1=m) = =

The hermitian operator, K K ¥ must have real eigenvalues. In our special case, K is

the simple command: Multiply (z”/+/n!) by an n-dependent factor. We can make
this renormalization factor real without loss of generality, so K,, becomes the real

number
en @it
K, =(K")y = = (101)

We can therefore rederive the matrix clements of J__, Jy, and J.. Egs. (94) and
(96) lead to

3 S
(= 1 fm) = (K Dami(n = Ug-In) Ky = V@I + 1= mn
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=VU +1=-M3 + M),
(niJolmin = (K™ a(nl(=J + 2-m) Ko = (I )
= M,
n 1Tl = (K (n + 11227 — z;-z)tn)xn

%;j” D a3 1@l ~n) = V@ ma T D

=J(J —MYJ +M+1), (102)

where the Bargmann space matrix elements

' |IT(O)In) = ~ fdz o ro)-=%
RV RV
have been denoted by round parentheses and we have used M = —J +n to express
all matrix elements in their standard form.
Final Notes:

(1). The technique used here to derive the matrix elements of the angular mo-
menium operators can be used to derive the matrix elements of more complicated
families of operators with more complicated commutator algebras. For coherent
state techniques of such generalized coherent states, see, e.g., A. Perelomov, Gen-
eralized Coherent States and Their Applications. Springer-Verlag, 1986, or K
T. Hecht, The Vector Coherent State Method and its Application to Problems of
Higher Symmetries. Lecture Notes in Physics 290. Springer-Verlag, 1987.

(2). The technique used here, which involved a mapping of angular momentum
cigenstates onto orthonormal harmonic oscillator z-space Bargmann eigenstates,
7" /+/n1, is useful if we have no a priori knowledge of the numerical values of the
K operator or the K K™ eigenvalues. Alternatively, we could have used a different
z-space measure to make the (z”/+/n)K, into an orthonormal set in the complex
z-space domain. This would have involved a change of measure

1 . @JI+D 1
e

Il 4
T T (1+Zz*)21+2’

as can be seen from the orthonormality integral

QI+ [, 1L 27K, 2K,
_ @i+ l)/OC dpp™tmt! fznd¢ itn-myo K Kn
(11 p2 2 J,
_, @rrnen /“ dpp?!
ol —m)t TSy (L4 pRR 2

via the integral

= dpp2n+1 o0 drt”
2/(; W:fo Tagpea = Be+12/+1-m

- ‘Smn y (103)
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_ I'e+DI'@J+1-n) al2J —n)!
- rQJ +2) Y

where B(p, q) is the Beta function expressed by I' functions and in terms of
factorials because 2J must be an integer.

(104)

Problems

23. Given three hermitian operators, T,, T», T3, with commutation relations
[T, T3] =iTy, (73, T1] = iT3, [Ty, 1] = —iTs,

which differ from the angular momentum commutator algebra because of the minus
sign in the last commutation relation! Show that the three T; all commute with the
operator

2 2 2
T =1/ -T}~T}.

Again, note the minus signs and the difference from the angular momentum case.
Convert the operators, 77, to the new set

T, = (T i), T, =T,
and show these equations satisfy the commutation relations
(T, Ti] = £ T4, {1, T-1= —2T.

Again, note the minus sign in the last commutation relation. Solve the simultaneous
eigenvalue problem

T*am) = Aam) = j(j + Dlam) = j(j + Dijm),
Tolim) = miAm) = m|jm), ey

where we have named A = j(j + 1). (No implication exists that j be an integer
or half-integer.) Show, in particular, that now:
(1) If 75 has positive eigenvalues, a minimum possible, m,;,. exists, such that

T |Amyin) = 0, m =My +n, withn=0,1,2,..., > o0,
where mp,. = (j + 1).
(2) If 75 has negative eigenvalues, a maximum possible #p.x. = —|Mmax | €Xists,
such that
Ty |Ampay ) =0, M= Mpax.—1 = —(|Mmax | +n), with n=0,1,... = o0,
where now mg, = —(j + 1) and we assume j is positive.

Find the nonzero matrix elements of 7, and 7,

(Jm/|Tyfjm) = (j(m + DTy |jm),

(m'|T_|jm) = (j(m — D|T_|jm),
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and note the differences and similarities with the corresponding angular momentum
case.

Note: The angular momentum operators, J;, generate the group SO(3) (the
special orthogonal transformations in three dimensions, with determinant = +1),
in the case when j are integers, or SU(2) (the special unitary transformations in
two dimensions) and in the case when j are half-integers. The three operators, 7,
on the other hand, generate the group SO(2,1). Note the two minus signs and the
one plus sign in the operator 7 2.

Solution for Problem 23: The SO(2,1) Algebra

The various commutator relations follow from the given commutation relations by
simple commutator algebra. For example,

[T5, T = ~TTs, V] = [T, TWT) — To[Ts, To] — [T3, 21T
= —iT\Ty —iTTy +iTyTy +iT, T = 0. 2)

We are interested in the simultaneous eigenvectors of the two commuting
hermitian operators, 75 and T2,

T?|Am) = AlAm),
T3|am) = m|im). 3

Let us consider the new vectors, T [Am). Acting on either of these with both 72
and T3, we get (with the use of the commutation relations),

T%numgzrﬂﬂmm:x@umm)

T(Tohm)) = T Tolim) + Ty [hm) = (m + D(To1am) ), (4)
Thus, if |Am) is simultaneously an eigenvector of 72 and T3, with eigenvalues
A and m, either (T+lf\m)) is simultaneously an eigenvector of 72 and 75 with

eigenvalues A and (m + 1) or | T, |Am) } = 0. Similarly,
¥y

TQ(TJAnQ>::TJTHAm)::A(Tﬁkm))

T{TJMM):YLEMm)—YJAm):On—l%TJMM), (5)
Thus, if |Am) is simultaneously an eigenvector of 72 and 73, with eigenvalues
A and m, either (T_ikm)) is simultaneously an eigenvector of 772 and 73 with

eigenvalues A and (m—1); or (T, Ikm)) = 0. To investigate these two possibilities,
let us rewrite 72
=T -T - =T - M T+ T.T) =T}~ T, T- ~ Ty
=T~ T-Ty +Tp, (6)

50 .7 =T}~ T~ T
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and T. Ty =T} + Ty — T2 7

Now, let us take the diagonal matrix element of these two relations between states
with the same A, m, assuming a state | Am) exists, viz., it leads to a square-integrable
eigenfunction. First,

(Am|ToT_|Am) = ((m2 —m)— A)
= (Am|Ty|am') (Am'|T_ |Am)

= ) 10 T-[am)* = 0, ®)

where we have used (Am|7.|Am’) = (Am'|T_|Am)* and have summed over a
complete set of intermediate states. We must have m’ = (m — 1). By including a
sum over states with m’ = (m — 1), we have allowed for the possibility more than
one independent state with that restriction exists. Similarly, we have

(om|T_ Ty |Am) = ((m2 4 m) — ;\)
= Z|(Am'lT+!km)|2 > 0. )

We have the two patently positive quantities of egs. (7) and (8) only if the two
functions, f(m) = ((m”—m)—A4) or ((m?+m)—1) are equal to or greater than zero.
The two functions of m, (m” 3 m), have minima at m = + %, both with a minimum
value of — }1 . Unlike the corresponding operator of the angular momentum algebra,
with its slightly different commutation relations, the operator, 72, is no longer
a sum of positive hermitian operators. Thus, the eigenvalue, A, could be either
positive or negative. In particular, if A < —%, the quantities [(m? 5 m) — A] are
positive for all values of m, positive or negative. Thus, all values of +m are possible,
and for any A, suchthatA < — %, we have a continuous spectrum of allowed values
for both A and m. Conversely, if A > 0, and if an eigenvalue, mg > 0 exists, such
that ((m% — mgp) — A) > 0, the step-down action of n operations with 7_ could
eventually lead to an (mq — #n) such that ((mo —n)mg—n—1)— A) < 0, and eq.
(7) would lead to an inconsistency. A patently positive quantity on one side of eq.
(7) would be equal to a negative quantity on the other side. Hence, our assumption
of the existence of a square-integrable |Am,) must have been incorrect. If my,
however, is such that an integer » exists such that (mg — n) = mu, , SO

(T M) ) = 0 and  [in (igin, — 1) =21 =0, (10)
an inconsistency never exists. If we name
A=jU+D, Iy

with j > 0, to be as close as possible to the language of the angular momentum
algebra, the solution to [# iy (Mmin. — 1) — A] = 0 gives us mpy;,. = (4 + 1). Only
the positive root has meaning in this case. Also, the quantum number j is only
a language to give us the eigenvaluc A. In this case, j may not be an integer or
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half-integer. The actual values of mpin, = (j+1)and A = j(j -+ 1) willdepend on
the detailed properties of the operators 72 and 73, i.e., on the specific nature of the
physics of the problem. If the nature of the problem is such that the eigenvalues of
772 and 75 must all be positive definite, we are done. The spectrum is given by

M = Mnin., (mmin. + 1)’ sy (mmind +n)’ ceey > 00,

m=(+0D,G+2),....,G+1+n),...,—> 00, with A = j(j + 1).

[The possible m-values can go to oo. This follows because for my,, > 0, the
quantity (m2 . +Mmin—A) = 2Mmin, > 0and thus [(Mupin, +1)(Mgin +n+1)—1] >
0 for any positive integer n, so the state (7 |A(myy, + 1)) exists; i.e., the state
MM 0. + 1 + 1)) also leads to a square-integrable eigenfunction.]

Let us next examine the possibility the operators 772 and T3 are such that & > 0,
but m < 0. Now let us suppose some mg = —|mg| exists; i.e., the state |A, —|mygl)
leads to square-integrable eigenfunctions. Now, if eq. (8) is satisfied for m =
—|mgl, i.e., Imol(Jmo| + 1) — & > 0, the state with m = (—|mg| — »n) leads to an
m(m—1)— X = (Imol +n)(jmo| +n+ 1) — A also > 0, so »n actions with 7_. would
lead to another allowed state. However, n actions with the step-up operator, 7,
would lead to a state with m = —|my| + n, for which the function [(m? +m) — A]
of eq. (9) would lead to the value [(|mo| — n)(Img| —n — 1) — 1], which for large
enough n could now be negative. Thus, eq. (9) would say that a patently positive
quantity is equal to a function that can become a negative quantity for a large
enough n. Now, a state |A, —{mg|) can be an allowed state only if an integer n
exists, such that m = (—|mg| + 1) = My and

(T4limma)) =0, 50 that (M (mas + D= 2) =0, (12)

where now m ., must be the negative root of the equation: (M, (Pgax, + 1) —
JU + 1) = 0; thatis, mmex. = —5 — /A + 1 = —(j + 1). In this case, therefore,
the spectrum of possible m-values is

—00, ..., —(j+1+n), ..., —(J+2), =(J+1) = mpax., again withi = j(j+1).

Now, however, for general L = j{j+1) > 0, the two branches of allowed m values
are unconnected, so the commutator algebra of the 7; does not lead to additional
restrictions on A and, hence, j. In particular, j need not be an integer or a half-
integer. The physics of the operators T3, 72, dictate the nature of the eigenvalues
m and A. Thus, for some physical applications for which the eigenvalues of 75 can
be positive only, only the positive branch of allowed m values can exist.

Letus now finally use egs. (7) and (8) to find the matrix elements of the operators
T.. We shall look at the simple case, in which the states

[A min. ) or [A#max )
are nondegenerate; i.e., the two relations

T |Amgin) =0 and Tolh, —|mmax ) =0
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are assumed to have only one allowed solution. This would of course be automatic
if these two relations lead to first-order differential equations. In this case, action
with Ty or T_, respectively, would lead to a single (nondegenerate) state with the
appropriate m value. Thus, all states in the ladder of either positive or negative m
values might be expected to be nondegenerate, and the sums over m’ in egs. (8)
and (9) would collapse to a single term with m’ = (m — 1) or m’ = (m + 1),
respectively. For branches of allowed m values, eq. (9) tells us

[0+ DITy [ jm)P =mm + 1) = jG+ D =0n—jm+j+1). (13)

This relation leads to no upper limit for positive m values with m > (j + 1), but
leads to a zero matrix element for m = —(j -+ 1) within the branch of negative m
values. Similarly, eq. (8) leads to

[{jm = DIT-|jm)P =m(m — D) = jG+ D) =(m+ jm—j—1. (14

Now, no zero matrix clements exist for the negative branch withm < —(j + 1), but
this matrix element is automatically zero if m = (j + 1). As for the corresponding
angular momentum problem, egs. (13) and (14) do not fix the phases of these matrix
elements. If we choose these phases such that the matrix elements of 7., 7T_ are
real, we have

(Jm + DIT | jm) = /(m — j)m + j + 1),
(jim — DIT_|jm) = /(m + j)(m — j — 1). (15)

(In particular, these equations satisfy (jm'|T_|jm) = (jm|T |[jm’}*.)

Final remark: The operators J, = J;,J, = J, J. = J3 of the angular-
momentum algebra, which commute with the operator J? = J2 + J} + J7 are the
generators of infinitesimal rotations in three-space about the x, y, and z axes and
thus connected with the group SO(3), the “special orthogonal group in three di-
mensions” {where the “special” means the 3 x 3 orthogonal rotation matrices have
determinant 41, leading to pure rotations and not including rotation reflections).
The operators 7}, 73, T3, which commute with the operator, 72 = T — T2 — T2,
conversely, are related in a similar way with a 3-D space with two space-like and
one time-like dimension and thus connected with the group SO(2,1). As for the
SO(3) group, most of the properties of the group SO(2,1) follow from the matrix
elements of the T;, which are now known to us.

Finally, the angular momentum operators, J,. are related to the ladder operators
of case 3 L(m) of the factorization method, whereas the 7-. of the SO(2,1) algebra
are related to the ladder operators of case 4 £(m) of the factorization method.

Problems 24-26 give some actual physical examples of the SO(2,1) algebra.
The signs of A and m are usually dictated by the nature of the problem.

24. The 3-D harmonic oscillator via the SO(2,1) algebra. For the 3-D harmonic
oscillator, define dimensionless quantities, ¥, H, etc., via

;phys, == \/E‘/I’IZJS; and thys. Iha)()H; .
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Show that the three operators

Ti = 307 = p) = 307 + V2,

4
where
A (A S
ar?  ror r2 T2

[with L2 given in terms of 6, ¢-dependent operators through eq. (13) of Chapter
8] are hermitian with respect to the conventional volume element and satisfy the
S50(2,1) commutation relations of problem 23.

Note that, with ¥ = R(r)Y,,(0, ¢), the operator V? is hermitian with respect
to the usnal measure, r2 sin 8,

SO
o1 AN s
Mpin, = E(l -+ 5) =(j+1),

where m and j refer to the quantum numbers as defined in problem 23. (m and j
are %-integers here!)
Use these results to show

E =hawo(l +2n + 3),
and the dimensionless operator r? is given by
Pt =21+ T+ T

Find the nonzero matrix elements of 2 as functions of n and [ or N and /. (Consult
the results of problem 15.)
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25. (a) For the SO(2,1) algebra with operators, 7_, T, Ty, satisfying the
commutation relations

(7o, Te] = +T,  and  [T..T_]= —2Ty,

with eigenvalues (Tp)eigen = M = Mpin. +1 = (j +1+n), wheren =0,1, ..., —
oo, show that coherent state z-space realizations of these operators can be given

by

0 d
F(T‘):a_z’ F(To):j+l+za—z,

3
(Ty) =2(j + )z +2252.

Find the eigenvalues, K,,, of the operator, K, which converts the above nonunitary
I'(T;) into unitary y (T;) for this algebra, and rederive the general expressions found
in problem 23 for the matrix elements of 7_, T, Ty, in a | jm) basis.

(b) For the 1-D harmonic oscillator, the oscillator annihilation and creation
operators, a,, aj, expressed in terms of the dimensionless x and p,, are

a, = %(x +ip) and 4 = :}—i(x —ipy).
Show that the three operators
T, =iaja], T =jaa, Th=jaa+3),
satisfy the SO(2,1) commutation relations
[To, Te] = +T and 7., T-]1= —-2T,.
Show that the two oscillator states, |0), and |1) = ajl()), satisfy

(1) T-10) =0, Tl0) = 10),

(2): T_|1) =0, To|l) = 2|1},

SO Mpin. = }‘ for case (1) and my;,. = % for case (2). Use these results together
with the results of problem 23, to calculate the matrix elements

(n'la,a;|n),

(nllaxaxln)-

26. For the hydrogen atom in stretched parabolic coordinates, w, v, ¢ (see
problem 6), the following operators are useful

T_1 al+1a m2+u2
T a\a T pan) a4

=l 1
2= 5\, ,
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Te = 1 82+18 +m2+,u2
T\ T pop 42 4

T - dz+13 +m2+v2

T4\ vav) 4?2 40
Show that both the T; and the TJ,.’ satisfy the SO(2,1) commutation relations
of problem 23. Show that the operators are hermitian with respect to the scalar

product
o0
[ dup U () U (1) for the 7},
0
and with respect to the scalar product

e o)
f dvv Vi (n)Va(v) for the 7.
0

Note: With (i, v, ) = U(u)V (0)B (), with ®,,(¢) = €% /+/27, the standard
scalar product would have been

n 2 2
]d?wrwz:/ d¢] du/ MR T
[~2¢]2

UT (Vi (21 (@) U2 () Vo (v)P2(9).

Show how the Schrédinger equation for the hydrogenic atom can be rewritten in

terms of the operators, 7, T;. For this purpose, rewrite the Schrodinger equation
(H —e)y =0,

1 (=2¢) 82+18+82+18+(1+1)32
2 (u? + v?) 2 pdp 8 vy w2 v/ ge? v

2./(—26)

W

ar

Y —ey =0,

by left-multiplying with $n?(u? + v?) to gain

182+18+82‘18+(1+1)82 v
4\ 8u2 " wop  8v: pgv wr v/ 9¢?
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15 1
+=p +v — et = 0
U - sy
Show
TP =T 17 = 1] = (T = T)(T + 1) + [T, Ts] = 75,
or
m? — 1
T =T -T)Ts+T)—iT,— 17 = (f‘f)
Similarly,
77 _ (m*>—1)
VR
where m is the eigenvalue of the operator
19
i 8¢
Show that for positive values of m:
(T3)eigen:%+%m+nla n=0,1,2,...,—> o0,
(T;)eigen:%+%m+n2, n,=0,1,2,...,— cc.

Find the corresponding ranges for (73 )eigen and (77 )cigen, valid for negative values
of m.

Find the energy, €, for the hydrogenic atom as a function of the quantum numbers,
i, ny, No.

In an |mnn;) basis, find expressions for the nonzero matrix elements of the
dimensionless variables

2 2

and r—z)=

(r+z)=- £

[—2€]? [—2€]z
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Perturbation Theory



20
Perturbation Theory

A Introductory Remarks

If we have a Hamiltonian for which we cannot find exact eigenvalues and eigenvec-
tors, we can in principle use the technique employed for the asymmetric rotator for
more challenging problems. If for the moment |n) is shorthand for the eigenvectors
for a complete set of commuting operators, including the Hamiltonian in question,
and |} is shorthand for the eigenvectors of another complete set of commuting op-
erators, spanning the same subspace of Hilbert space, but now including a simpler
Hamiltonian, Hy, for which we do know the eigenvalues and eigenvectors, we can
expand the unknown eigenvectors |n} in terms of the known o). From a knowl-
edge of the matrix elements, (¢'| H|a), we can in principle diagonalize the matrix
in this basis for Hy to find the eigenvalues and eigenvectors for the needed H.
The difficulty, of course, is that in general this matrix will be infinite-dimensional.
With modern computers, however, it may be possible to diagonalize this matrix in
an N x N limit, where N is taken to be a large number, and then test the possible
convergence as N grows even larger. This method will be particularly successful
if H differs from a known Fy by terms that can be classified by a parameter of
smallness, &, with A <« 1. Then, we can study the “corrections” to the eigenvalues
and eigenvectors in a very systematic way as a power series in A. This will be the
first detailed study of the next chapter, which will include:

(1) stationary-state or time-independent perturbation theory,

(a) Rayleigh—Schrodinger expansion,

(b) Wigner—Brillouin expansion.
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This study will be in contrast to time-dependent perturbation theory, which will
be covered in a later chapter; where we will make a similar expansion of the time-
dependent integral of eq. (13) of Chapter 19. Other approximation techniques, also
to be covered in later chapters, are the WKB or semiclassical approximation and
variational methods.

The WKB approximation will be treated only after a long excursion on angular
momentum theory, Part III of the course. Variational methods useful for the n
electron atom will be discussed in Part IV of the course on systems of identical
particles.

B Transition Probabilities

Before proceeding with stationary-state perturbation theory, it will be advanta-
geous to give a very brief first discussion of transition probabilities to answer the
question: What is the probability an atomic system in an excited eigenstate, E,,,
will make a transition to a lower state, E,,, through the spontaneous emission of
a photon? To answer this question in a rigorous way, we will have to study both
the atomic system and the electromagnetic field quantum mechanically; i.e., we
would have to quantize the electromagnetic field and then study the interaction
of the quantized electromagnetic field (photon) with the atomic system. Because
we will save the study of time-dependent perturbation theory for a later chapter,
we will do this in a rigorous fashion then. To have a formula for the transition
probability for the spontaneous emission of a photon, however, let us give a very
brief “plausibility” argument for the transition probability formula now. This will
actually be the historically first (the so-called Bohr correspondence principle) ar-
gument for this formula. (Keep in mind, however, the rigorous derivation will
come later. Historically, it also came later with a famous paper by Dirac on the
quantization of the electromagnetic field.)

The Bohr argument goes as follows: Classically, a charged particle in motion will
emit electromagnetic radiation only if the particle is accelerated. Quantitatively,
the classical result is given by the Larmor formula, which calculates the energy
loss per unit time of the charged particle (or a system of N charged particles) to
the emission of electromagnetic radiation (in c.g.s. units),

dE 2, dE 2 L2
o Taat o g g led) M

where d; is the acceleration vector of the i'" particle with charge ¢;. The classical

recipe for calculating this energy loss for a system of N moving particles involves
the Fourier time analysis for the three components of the electric dipole moment

N o0

X inwt —inwt
E eix; = E ufz)(e +e ),
i=l n
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Zezyl Z (V) mrul —-ma)z)’
Zeizi = Z'“Ef)(emwl + ewina)t), )
i=| n

assuming for the moment the time-dependent functions are real. Then, according
to classical theory, the frequencies radiated are the classical mechanical frequency
and its overtones, v = w/2m, and rv (or in the case of multiple-periodic systems,
the classical frequencies and their overtones or combination tones, 7,v; + nyv2,
etc.). Taking the second time derivatives of the x;, y;, z; of eq. (2), the classically
predicted energy loss to the n' overtone (time-averaged over one cycle) would
have been

_[4E] _ 2 4 (x))z ( (»)) ( (z))z)

[ = ]n 5 % 2() (( + () + (1)), ®
Of course, this classical result is incorrect. This is what troubled Niels Bohr from
1913 to 1925. First, this result does not predict the observed frequencies. The
hydrogen spectrum is not a fundamental frequency and its r overtones. Even
worse, this classical result predicts the frequencies should change with time. As
the system loses energy and the mechanical energy becomes more negative, the
Kepler frequencies (or the Bohr “1913 frequencies”) would increase with time;
the electron would spiral in to the proton and suffer a catastrophe in a time of the
order of 107% seconds. Bohr argued, however, the classically predicted frequency,
nw, should be replaced by the Bohr frequency, w,,,,, and the classically predlcted
Fourier coefficients, ,u("’ ) should be replaced by a two-index quantity, ,u,m,, which
he identified with the Heisenberg matrix element. Thus,

classical nv— (E, — E;)/h (Bohr),

classical pwl > (n|w, |m) (Heisenberg),

classical p = (nly|m) (Heisenberg),

classical WD~ (n|u,m) (Heisenberg). )

This argument is the Bohr correspondence principle, which yields the result

dE 647 )
-5 e [P R P A T T I ©)
where the operators are p, = vae;.ri, and so on. To convert this principle to a
transition probability, introduce the “Einstein A,”

dFE
- -d-l_ = AVpmAnosm Ny, (6)

Yerm

where hv,,, is the energy of the emitted photon, A, _,,,, gives the probability per
unit time for the spontaneous emission of a photon with this frequency, and N, is
the number of atoms in the initial state, n. The transition probability per second the
atom makes a transition from an excited state, n, (0 a lower state, m, is therefore
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given in terms of the matrix elements of the three components of the electric dipole
moment operator by

64n”
Anom = s Vi |l m) P+ |l Im) 2 o L nlac )P (7

If the matrix elements of the three electric dipole moment components are all zero,
the transition is “forbidden.” The correspondence principle argument then gives
the correct result. A rigorous derivation will be given in a later chapter, when
we shall quantize the electromagnetic field and introduce the interaction between
the quantized electromagnetic field (photons) and the isolated atomic system. The
above electric dipole result, however, is only the dominant term in an expansion
involving a series in powers of a /A, where a gives the size of the atomic system and
A is the wavelength of the emitted photon. Higher order terms will involve matrix
elements of magnetic moment operators, electric quadrupole moment operators,
and even higher magnetic and electric multipole moments. In nuclei, these higher
order terms are often important.

Finally, we make a remark about induced absorption and emission processes. If
the atomic system is in a beam or a bath of photons, the probability for induced
absorption and emission processes is given by the “Einstein B”’s and by o(v,n),
the energy density of the electromagnetic radiation (photon beam). Through his
study of the black-body radiation spectrum, Einstein found the relation

3

(o
Bypon = om = = Ansm, 8

where the probability per unit time of an induced absorption process is

Pnm) By Ny, )
and the probability per unit time of an induced emission process is
W) Bysm Ny, (10)

where p(v,,,) is the energy per unit volume of the photon beam at the transition
frequency, and N,, and N,, are the number of atoms in state n and m, respectively.

Problems

27. Find the lifetime 7 in seconds of the 2p state of the hydrogen atom

where A;,_, | is the Einstein A coefficient. Assume the three substates with m =
0, &1 are populated with equal probability initially.

28. For the diatomic molecule rigid rotator, the space-fixed components of the
electric dipole moment operator are

) — 1y, sinf cos ¢, ' = 1, sin@ sin ¢, pE = p, cos @,

ey
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where 1, is the permanent electric dipole moment of the molecule, oriented along
the molecular symmetry axis. (Homonuclear diatomic molecules, such as H; or
N3, have no permanent electric dipole moment. Their pure rotational transitions
can therefore only be seen in Raman spectroscopy.)
Recall the rotational cnergies and wave functions are given by
52
E; = EI—J(] +1), with I = pr], Ym0, @) = Yiu(0, ¢).

L
Give a general formula for the energy loss per second for an emission line for a
transition J — (J — 1), assuming the molecule is in a gaseous sample in thermail
equilibrium at temperature 7', where the number of molecules in the state with
energy I, is

QT + 1)eE/*D B

IE S BT T De e Now ¥ g2 F De DN .
7 - e

For example, for the HBr molecule with r, = 1.414 x 107% cm, and p, =
e(0.17 x 107% cm), make an estimate for the J = 3 — 2 transition in terms of
the number of photons emitted per second. Your numerical answer should explain
why such spectra are observed as absorption spectra rather than emission spectra.
That is, the spontaneous emission process is very unlikely, so diatomic molecule
rotational transitions are observed by utilizing the stimulated absorption and emis-
sion process for incident radiation of the appropriate frequency in the far infrared
or microwave region. To come to the same conclusion, also calculate the lifetime
in seconds of the first excited rotational state, with J = 1, and compare this result
for the HBr molecule with the result of problem 27 for the first excited state of the
hydrogen atom.
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A Rayleigh—Schrddinger Expansion

If a Hamiltonian, H, differs very little from a Hamiltonian, Hy, for which an exact
solution is known, an expansion procedure may give a good approximation for the
eigenvalnes and eigenvectors of the full H. Many physically interesting problems,
e.g., the Stark or Zeeman effects in an atom or a molecule, may involve a small
perturbation of an exactly soluble problem. Let us assume the full Hamiltonian

can be expanded about an Hy, with a known set of eigenvalues and cigenvectors,
through a parameter of smallness, A, with A <« 1

H=H9 374V 4+ 22HP £ PHO ... )
Sometimes, only a first-order term may exist, say, a perturbing potential, V. Then,
H=HY 4V, with HY = H® =... = 0. )
We want a systematic solution to the problem
H|n) = E,|n), ©)
assuming we know the solution

H(O)In(o)) — E,(;O)'"(O})~ (4
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B Case 1: Nondegenerate State

Let us first treat the simplest case in which the state |#?) is nondegenerate. We
will expand both E, and |r) in a power series in A.

E, =E9 + AEWD 4+ 22E@ 4 ... 5
in) = () + D) + 220Dy 4. ©®

The equation, (H — E,)n) =0, or
(H® = E?)+ MHO = E)+ W(HO = EP) + )
x (110} + Mn®) + 2@y + ) =0, %)
can now be solved order by order, peeling off one term at a time. Thus,
Al (H(O) _ E(O))|n(1)> + (H(l) _ E,(ll))ln(o)> =0,
A (HO = ED)In®) + HY = EDIn®) + (H - EP)n®) =0,
A (H(G) _ E(O))In(j)) + (H(l) - E,('I))'n(j*l)) e
+ (HY — ENn®) = 0. ®

To solve the first-order equation, first left-multiply this equation with (n©®|, to
convert it to matrix element form:

(nOUH — EDn®)y + (O UHD - ED)n®) = 0. ©
The first term can be scen to be zero, because
(nOHY — E® @My = o HOT — EQRpOy* = o, (10)

via (H® — EO)n®) = 0. Eq. (9) then gives the first-order correction to the
energy:

ED = (n(O)IH(nfﬂ(O)). 11

That is, E{V is given by the simple diagonal matrix clement of H"). For the
first-order corrections to the state vector, consider the first-order equation

H® ~ ED)nM) = ~(HY — ED)n®), (12)

which is of the form, On"¥) = |v), where the right-hand side is a known vector
that can be calculated. In coordinate representation, this equation could be written
in the form of an inhomogeneous differential equation for the unknown function,
¥ {D(#), with a known (calculable) function ¢,(r) = (7|v) on the right-hand side;

(HY — EMD@) = ¢ ().

The solution is of the form: a particular solution of the inhomogeneous equation
to which a solution of the homogeneous equation can be added. The latter is just
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a solution of the zeroth order Schrodinger equation. In vector (ket) form, this
equation is

n ) = ePin®) + 1), (13)
where the projection operator,

0 =1~ PO =10 n9 =3 kO, (14
k#n

projects onto the subspace of the Hilbert space excluding the state vector, [n©).
[The sum over k may have to include an integral, if the spectrum of H® includes
a continuum.] Now left-multiply eq. (11) with a specific (k9| # (n?| to yield

(k(O)I(H(O) = ES:O))I"(”) — —(k(O)IH“)In(D)), (]5)

leading to
Oy — EOTHDIRO) 16
nt) = ﬂ’ (16)

(En — E)
SO
, ; KO O

D) — DO 4 Z,k(O))LL_l’Ll a7

) ()
pars E," —E;

To determine ¢!, normalize the state vector |n) through first-order terms. With
n) = [n@) + AlnD), and jm) = m®) + Am®),
(m|n> - ‘Smn
= (MO +A((m‘°)1n(”) + (n(")lm(”)*)
= 8un (1 + A[cf,l) + cf,})*])

(m(O)IH(l)m(O)) (n(o)!H“)Im(“))*
)‘( oot o —w— ) m@1ein®)
E, — E, E, — E,

- 5,,,,,(1 + Afelh +c§,§’*]), (18)

where the §,,, term contributes only when n = m, whereas the second term, which
could in principle have contributed when m # n, is automatically zero. Hence,
we have orthonormality through first order in A, provided ¢! + ¢{* = 0. The
simplest choice is to make c{ real and, hence, ¢! = 0. Therefore,

QI {OIMON
My _ Yoy K n
) =D k) ©_ gO - (19
k;én n k
We could also have written this in operator form, in terms of the projection operator,
o,

inV) = 0 HWn). (20)

(EY — HO)
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Alternatively, using the properties of the projection operator

(Q(O))2 — 0O {Q(O) H(O)] =0 Q(O)|n(0)> =0 21n
n n* n s y n ?
we could also have written this as
. 1
My . /® O g7 (1,0
n) = O s QP H ), (22)

where the extra (redundant) 0 has been added as a safety factor to make sure
the inverse operator

1
EP - HO
has a meaning. Because this operator can never act on |n9}, either to the left or
to the right, we will never be plagued by zero denominators. This operator is a

function of H® and can be thought of as being expanded in a Taylor series in H©,
where H® acting on a k@) will simply yield E. [k©®).

C Second-Order Corrections
To get the second-order corrections to the energy, let us (always the first step!)
left-multiply the second-order equation by (n®| to get

—_- (nm)KH(O)-‘E(O))an)) — (n(o)]H(l) = E,(zl)ln(l)> + (n(ﬂ)!H(Z)!n(O)) _ E’SZ)_ 23)

The left-hand side is again zero [think of “left action” of (H® — E{9) on (n©|],
so, substituting for [nV) in the right-hand side,

O (@ (0} FF (1) (5 (0)
@) O DO Z (RLHDES) B H 1™
1
or
k(o) H(l) O)y2
ED — (nO|H®|nO) 4 Z [ H P In'™) 25)

()] Q)
ketn Eﬂ - Ek

This formula, together with the result for the first-order correction, £ ,(l”, eq. (11),
was named by Fermi as “Golden Rule 1.” (We shall meet an analagous “Golden
Rule I1” in time-dependent perturbation theory!), Fermi said most of the interesting
results of quantum theory can be calculated with these Golden Rules. (Note also:
If |n) is the ground state of the system, the perturbations caused by the higher
states will “push down” and lower the ground-state cnergy. The second term then
has patently positive numerators and negative denominators.)

To obtain the second-order correction to the state vector, @), we again
decompose this into a part proportional to [n¥) and a part orthogonal to (n?),

n@y = Pn®) + QP In®). (26)
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The ¢t* will again be determined in the end to preserve orthonormality through
second order. The piece Q@|n®) can be determined from the second-order
equation

(E,(ZU) . H(O)){n(z)) — (H(I) = Ef,”)\n(”) + (H(Z) . Eiz))|"(0)> @7

by inverting the operator, affer action with the projection operator Q©,

Q(O)ln(z))
— Q(ﬂ) F(O) P Q(O) ((H(l) . E,(ln)ln(”) + (H(2) _ E,(iz))l”w)))
1
—0oOW__ " o0 __ gy ©) y(1),,(0)
=0, O Ho Q, (H E, DG, EO _H(O)Q H"|n™)
©0) ©) £7(2)),, (O
+ O, E9 _ Ho O, H 7 n"™). (28)
Now, substituting for @, in the form
O = Y KOy k) = Oy, (29)
k#n I#£n

and using the result, £ = (n@1H " [n®), we get

0P In®) = 3 ) (K 1n), (30)
k fn

with

(D@ =3 (KOTHDEO) IO HO|n©)
ey = O gOy g0 p©
1#n (En k )(En =~y )
0)f g7 (1)1, (0
O g o KON 1R )
(I H ) O
(En - Ek )
(KO H® | n Oy
()] ~(0)y (31)
(En" — E)
Now, we still need to evaluate ¢ = (n@|n®), which is again chosen to normalize
In) through second order. In calculating (n|n) through second order, we get a
contribution 1 + ¢ + ¢@*, no contributions from (»¥]Q0?|n®), but now a
contribution from (n(l)ln“) ). Again, letting ¢?) be real, we get

(KO H DOy 2
e — _Z [HIn™)] G2)

n O _ (0)
k;én (E k )2

An alternative way to normalize the ket |n) through some order, which may be
particularly convenient if we want to go through some relatively high order in
2, would be to set all ¢/’ = 0 and then normalize the final result for |n®) +
pIFTY Q©nV). Through second order, this procedure would give the overall
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normalization constant as
1

K10 ) [y |2
1 A2 [{&9
\/ Zk;én (EO-EDy

When the square root is expanded in powers of A2, this result agrees with eq. {32).

By “turning the handle of the crank,” we can generalize the results of eq. (25)
and (31) for second order to arbitrarily high order. Clearly, the results become
more and more complicated.

Ny = (33)

D The Wigner—Brillouin Expansion

This slightly different expansion becomes particularly useful in the special (but
very common) case when HU = V and H® = H® = ... = 0, and particularly
if we want to go to very high order. In the Wigner—Brillouin expansion, the needed
E, is at first not expanded. The equation to be solved by successive approximation
is then

(E, — HP)ny = AV|n) (3%
and is to be solved by
in) = nP) + 0P n), (35)

with the state vector to be normalized in the very end. By inverting the operator
(E, — H®), after multiplication of eq. (34) by 0¥, we get

1
Oy — Ot 'O
OPIn) = O 5 @AV In). (36)
Now, we substitute for |#) through eq. (35) and iterate this process over and over
to get the expansion

1
0PI = O =5 072V In )
L

“HO

1 1
[ B— 1] O _____ 0O (W]
+ O, E _IH«,) 0,'AVQ, E "HO 0,2V n?)

(0) ()] ©)
PO e T e & VO T w

1
x Q’(’O)E — H® QYAVIn®) - G7
"

oYy

To get an expression for the correction to the energy, (E, — E©), left-multiply
eq. (34) by (n9] to get

(nOUE, — HN)n) = (n V1AV |n), (38)
leading to

E,~ E = (n"aVin®)
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(n(O)i)»VIk(O)) (k“’)lxvm“”)

7 (E, — E)
N Z(n“’)[xwk(m)<k<°>|xV|l(°>)(l<°>|Av;n<°>)
kstn I#n (En — EIEO))(E" - EI(O))
oo (39

Clearly, this can be generalized very easily to an arbitrarily high number of terms
in the expansion in powers of A. The unknown, E,, for which we are solving,
however, now appears in all energy denominators. To find this as a power series
in A, we must substitute

E, = EQ 4+ 2ED £ RED ... (40)

in all encrgy denominators. Then, expand these in powers of A peeling off, first
the first-order, then the second-order, and higher order terms. The final result will,
of course, be the same as that given by the Rayleigh-Schrédinger expansion, but
the simplicity of the first step may make the Wigner-Brillouin expansion useful
in the case when very high orders are needed.
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Example 1: The Slightly Anharmonic
Oscillator

In Chapter 15, we discussed the diatomic molecule, a complicated many-body
system. At low energies, however, we can neglect specific treatment of the elec-
tron degrees of freedom. The electron cloud can in first approximation be taken as
the source of a potential binding the two atomic nuclei into a nearly rigid, vibrat-
ing structure. The position of the atomic nuclei of the diatomic moelecule in 3-D
space can be described by the three coordinates: r, the radial distance between the
two atomic nuclei, and 4, and ¢, the two angles describing the orientation of the
molecule axis in our 3-D space. The electron cloud gives rise to a potential (see
Fig. 22.1) with a deep minimum at r = r,, where r, is the equilibrium distance
between the two nuclei. For very small values of r, the potential becomes strongly
repulsive and rises to 00. For very large values of r, the potential approaches a con-
stant value of V. If we can raise the energy above this value, ie., if £ > Vi,
the molecule will dissociate into two atomic fragments. For E € V. , however,
the potential will be nearly parabolic and can be expanded abour the value r = r,,

Vir) — v 1/d*V . 1 (dV 3 :
() = V() + 5(5,7 r((r—re) +§(-;;)re(r~n-) +oees (D

The Schrédinger equation for the wave function ¢ (r, 6, ¢) = u(r)Y,,,(0, ¢) sepa-
rates approximately (for the vibration—rotation perturbations, see problem 30) into
a radial equation describing the vibration of the molecule and an angular equation
describing the rotation of the molecule (see Chapter 15). The 1-D radial equation
can be described by the Hamiltonian

B 9

H= “aaae V(r). @
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V(r)

Te
FIGURE 22.1. Diatomic molecule potential function.

For low-energy vibrational excitations, V(r) can be approximated by the first few
terms of the above Taylor expansion. Then, if we replace the vibrational coordinate,
(r — r.), by a dimensionless coordinate, x,

A
(r—rJd= [—nx, (3)
o

the vibrational Hamiltonian can be rewritten as
1. 42
H =l (51— + X7+ Aax 4+ hex), 4
25 dx?

with

U (K \[/dV 1 [k \[d'V
= (— ) (55) . =g (=) (55) 0 ®
3%wo \ nwp dr v 4%iwo \ pwyg dart J,

In most molecules A; <« 1, and A, =~ order (i3;). Thus, we can write the
Hamiltonian of eq. (4)

H = H(U) + AH(” + XZH(z)
= HO £ hworsx® +Hwgrsx’. (6)
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The zeroth-order Hamiltonian is the simple 1-D harmonic oscillator Hamiltonian.
Its eigenvectors are all nondegenerate, so we can use the machinery of stationary-
state perturbation theory for an arbitrary nondegenerate state |n). We merely need
to calculate the matrix elements of the two operators x° and x*. These operators
follow by matrix multiplication from the simple (known) matrix elements of x.
Calculating first the matrix elements of x2, we can use these together with the
matrix elements of x to evaluate all needed matrix elements. We list some of the
needed results, as follows:

(n—2x*n) = 1/n(n — 1)
(n+20x*n) = 33/(n + D(n +2)
(nlx’In) = (n + )
(mx*n) = 0; for m+#n,(n+2); )

(n = 3(x’|n) = 1/ In(r — D(n - 2)/2]
(n+3x°n) = 1/I(n + D)n + 2)(n + 3)/2]
{(n —1|x%|n) = 3n/[n/2]

(n+ 11x°[n) = 2(n + DY + 1)/2]

(mlx3|n) = 0; for m#@=L3), nLl). (8

Through second order, we shall only need the diagonal matrix element of x*. This
matrix element has the value

(nlx*n) = 2(n* +n + §). ©

The terms cubic in x have no diagonal matrix elements. Therefore, H" has no
diagonal matrix element, and E{" = 0. The first correction to the energy is given
by the second-order term

0 1145, (0)y 12
VED = O HOnO) +3 :W”
n 5 5
k#n (Er(z ) E,E ))

KO A i’ [nO)
Hwo(n — k)

k#n
A2 9°  9(n+ 1)
= Miwos(n* +n+3) + —3"1"1100(—w + ( Rl

8 F1 1
nn— Dn -2 +1 2 3
+ ( X )+(n ¥+ 2)(n + 3) ‘ (10)
+3 3
The final result gives
AZE® :ﬁwo[g)\4(n2 1+ ) — 22(30n% + 30n + 11)}. (n

We will also need the corrected state vectors. Often, it is sufficient to know these
vectors to first order. For the slightly anharmonic oscillator, we have (to first order),

— |n©@ o, k012 In®)
In) = In )“3(;"‘ 0 H
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V/**___—-’t_
= 'Y + 43 (l(n —3)?) i 6\1/)5(’1 2

o NS +3)n+2)n+ 1)
Ui 62
3n/n 3n+ DJ/(n+1)
—_ o _ no . 2
+in—1 )2ﬁ [((n+ 1)) el ) (12)

These corrected state vectors will be needed to calculate the corrections to the
transition probabilities. For a diatomic molecule, the electric dipole moment along
the direction of the molecular symmetry axis can be given by

(el) du ___ﬁ
W = et (5F) == e X4, (13)
dr /e g

where the dipole moment derivative is expressed in terms of an effective charge,
ecs.- Also, both the permanent electric dipole moment, ., and the effective charge
(which gives the strength of the dipole moment change during the harmonic os-
cillation) are zero for a homonuclear diatomic molecule, such as H,, O,, or N,.
Off-diagonal matrix elements of the electric dipole moment operator are given by

rrrrr 2 +3)

h
(mO QY = puaeerr | —— (mPlxn?). (14)
Hwo

This equation leads to the zeroth-order vibrational selection rule, An = +1 anda
zeroth-order transition probability given by the Einstein A

3 _
8wy o2 7] n
3hc® M pwy 2°
If first-order anharmonic corrections are included in the state vector, the vibrational
selection rule An = =+1 is partially relaxed. For example, now transitions n —

(n — 2) may become possible. If we write the analog of eq. (12) for the bra ((n — 2)|
through first order

(15)

An——»(nal) -

((n—2) = ({(n =2+ u(«n -3 o= ?ﬁ(" =
3n— D= 1) N PR
,,,,, po2 vt L _ 50
( i 2«/5 + i aa 6\/5
Vi + Dan — 1))
- Do , 16
{(n + 1) 62 (16)

to first order in A3, the matrix element of {(n — 2)|x|n) gets contributions from
the zeroth-order component of |n) with the first-order components ((n — 1)¥] and
{(n + D) of ((n — 2)|, and from the zeroth-order component of {(n — 2)| with
the first-order components |(n — 3)@) and |(n — 1)) of |n), leading to

(el) A
((n — D n) = eesr. A3
My
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3(n — 1)«/(n— 1 «/(n+l)n(n-—l) '(n+1)
) (_ 2 o2V 2
w/n(n — 1)(n =) (n —2) 3nf n—1 )
2

= eefr. /mx3—ﬂ(ﬁ“—_15. an
pwy 2

This equation leads to the transition probability given by the Einstein A

8w (ao)’ , R X2n(n )

Weeff.;;;); 3 2 (18)

An-—»(n»Z) =
This transition probability is weaker by a factor of k% compared with the zeroth-
order allowed transition n — (n — 1).

A number of remarks are in order: (1) The formula given here for the transition
probabilities is for the true 1-D anharmonic oscillator. It therefore assumes the
diatomic molecule remains oriented in a specific direction in space, say, the x-
direction in a crystalline environment. In a free diatomic molecule, say, in a gaseous
sample in a microwave wave guide, the molecule is of course free to both rotate
and vibrate. To get the transition probabilities, we would need the matrix elements
of

(el) _

(el )
T ;

= u,sinf cos @, pi = p, sind cos ¢, p = p, cosd, (19)
with radial part, p,, given by eq. (13). The matrix elements given by egs. (14) and
(17) are just the radial (vibrational) part of the full electric dipole moment matrix
element. This must be augmented by the angular (rotational) matrix elements of
sin 8 cos ¢, sin 6 sin ¢, and cos 8. These matrix elements were actually evaluated
in Chapter 9. These matrix elements lead to the rotational selection rule, Al = 41

Therefore the actual transition in a free diatomic molccule involves both achange

number, Al = 41, leadingtoa v1branon~rotatlon rather than to a pure vibrational
transition.

{2): The actual numerical values of a vibrational transition probability, such as
that given by eq. (15), is very small, corresponding to inverse times of the order
of seconds or minutes, compared with an atomic electronic transition probability
corresponding to lifetimes of the order of 10~® seconds. Molecular vibrational
or vibrational-rotational transitions are thus usually too weak to be seen in
spontaneous cmission. They are easily observed, however, in induced absorption
processes, by placing the gaseous molecular sample in an electromagnetic beam of
the appropriate infrared or microwave frequency. The transition probabilities will
then be given by the Einstein B coefficients and the energy density of the incident
beam. Because the Einstein B coefficients are proportional to the Einstein A coef-
ficients, the results of this section will still be useful. Also, the induced cmission
probability for a transition » -» (n — 1) will be less than the induced absorption
probability for the transition(n — 1) — » if the number of molecules in the lower



220 22. Example 1: The Slightly Anharmonic Oscillator

state, N, 1y, is greater than the number of molecules in the upper state, N,,, the
usual situation for a gaseous sample in thermal equilibrium.
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Perturbation Theory for Degenerate
Levels

A Diagonalization of H": Transformation to Proper
Zeroth-Order Basis

Assume the eigenvector for the energy state with eigenvalue E, is degenerate; i.e.,
assume g, independent eigenvectors exist such that

HO\nr®y = E@ @y, with r=1,2,..., g ¢}

where the label r may just be an ordinal label identifying the different eigenvectors,
or it may be a shorthand notation for additional quantum numbers. Clearly, our
previous method might lead to difficulties, because now zeros could be in the
energy denominators (E® — Ei,o)). A state [ different from nr®) could now
include a state with the same zeroth-order energy. Note, however, if H") is made
diagonal within the g,-dimensional subspace, [nr®), withr = 1,2, ..., g,, this
difficulty will never arise. Therefore, the first step of the perturbation expansion
will involve a transformation from the subbasis [nr@) to the new subbasis |nr’ @),
with

n &En
nr' @) =3 " inr O inr Otnr @) =3 " inr®ie,, @)
r=1

F==l

such that

(ns"O1H OV |nr'®) = 5, E 3)

At
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Rewriting the first-order equation of the perturbation expansion for the transformed
state [nr' @) yields

(B — HOnr'D) = (HD — E)nr'®). )

Left-multiplying by (nr’| leads to a zero for the left-hand side of this equation,
)

(nr O HO [’y — EV e Qe ) = 0. )]

Introducing the unit operator Y |ns@) (ns?| for the subspace in question, we can
transform this equation into

&n 8u
D nr O HO s @) (nsOpnr ) = EDS 8, (ns @ nr @), ©)

s=1 s=1
or, in shorthand form, with (ns@}nr'©®) = ¢,,
gn
D HY - EPs e =0, with r=1,...,g,. (7)
s
This system of g, linear equations will have a solution for the ¢; if and only if the
determinant of the coefficients is equal to zero

[HD — EWs, | = 0. ®)

This equation leads to an equation of degree g, in the unknown E{" with g,
solutions E', such that

“nr's

HOnr'®) = EQ @), with  [nr'@) = 3" ns@)e,. ©
$

The first task in the case of degenerate-level perturbation theory then is to find
those linear combinations of the zeroth-order eigenvectors |ns®) that diagonalize
H®. These so-called proper or stabilized zeroth-order eigenvectors will be the
basis for the subsequent steps in the perturbation expansion. Three possibilities
need to be considered.

B Three Cases of Degenerate Levels

Case (1): The initial basis |nr”’) may aiready be such that H is diagonal in this
basis. (If higher order terms exist, such as H®, we assume they are also diagonal
in this basis.) This may not be such a fortuitous accident. Often, we choose the
initial basis to be adapted to the symmetry of the problem. Both H© and H") may
have symmetries that naturally lead to a proper choice of basis. The choice of this
proper or symmetry-adapted basis may obviate the first step in degenerate-level
perturbation theory, the diagonalization of ¢! in the initial zeroth-order basis.
Effectively, therefore, such a case can be treated by nondegencrate perturbation
theory.
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Other cases now exist in which the nondegenerate perturbation theory formu-
lae of Chapter 21 are sufficient to some order in the parameter of smallness, A.
For example, suppose two (or more) degenerate states |nr®) and |ns@) are not
connected with each other through second order. Assume they are connected with
each other only in third order, either through the action of H'" three times, or
through terms such as

(nS(O)!H(”In”u(O))(n”u(o)lH(l)ln[t(m)(n’[(O)JHU)I.VU‘O))

in the perturbation expansion (or similar terms combining a single action of both
HD and HP). In that case, if we are interested only in second-arder corrections
to the energy, the degenerate states |nr'®) and |ns™) are effectively unconnected
in second order and the nondegenerate perturbation theory formulae of Chapter
21 apply.

Case (2): The diagonalization of H'! in the initial zeroth-order basis may lead
to a set of g,-distinct eigenvalues Efql,), with Eff,) # E,(,ls) for r # s. In this
case, the subsequent steps in the perturbation expansion closely parallel those for
nondegenerate-level perturbation theory.

Case (3): The diagonalization of H") may not remove the zeroth-order degen-
eracy completely. In this case, a special treatment is necessary. This treatment is
similar to that discussed in a next chapter for two (or several) nearly (or precisely)
degenerate levels, the toughest of all cases. Again, this case is not as uncommon
as might have been thought. For example, the symmetries of H® and H" could
be such that all matrix elements of H") are zero in the |nr®) sub-basis. Perhaps
the |nr'®) all have the same parity and H'" has the opposite parity. In this case,
we cannot diagonalize HV to find the proper zeroth-order basis.

C Higher Order Corrections with Proper Zeroth-Order
Basis

Let us consider case (2). In this case, the first-order equation
(EQ — HO)nr'Dy = (HD — ED)|nr'®) (10)
leads to

0 i 0
sz )lnr/( )) — Q,(I) 5 Q;O)H(nmfw)}

E,S;O) - H
- o (ksOTHD |nr'®)
,,,,,, DD ks a
ks#n s (En” = Ek )

Upon left-multiplication with {nr®|, the second-order equation

(EQ — HMnr Oy = (HO — ED)nr'D) + (H? — ED)nr'®)y  (12)
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leads to
0 — Yy IH kD) (s H Ol )
s (EP _ £O)
+ (" H P nr') — ED, (13)
SO
O (1) O0 2
D (O Oy © ks H [nr' ™)
E, = arOHP ')+ 3 75 (EO Oy (14
k#n s n k

All steps in this and subsequent steps in the perturbation formalism parallel the
earlier nondegenerate-state perturbation theory, except state vectors |n?) or their
conjugate bras must be replaced by |nr"®) and the projection operators @ will
have to include besides the sum over k % n a sum over the degeneracy label s.
Note, in particular, that the states |ks?) need not be transformed to primed form.

D Application 1: Stark Effect in the Diatomic Molecule
Rigid Rotator

Let us consider a nonhomonuclear diatomic molecule, with a permanent electric
dipole moment, which is perturbed by an external electric field, £. Let us consider
only the lowest energies of this system, so the molecule can be considered as arigid
rotator, with zeroth-order energy eigenvalues and eigenfunctions (or eigenvectors)

E® — 51—1(1 +1, Y0, ¢) = (0, ¢llm), (s

with 7, = ur? and
HOUm®) = Eim©y, with m = +,.... L (16)

The I'* level, thus, has a (21 +1)-fold degeneracy, the general degeneracy associated
with rotationally invariant sytems. In the presence of an external electric field, E
we must add a term

HD = € £ = —py, cosBE, a7

where we have assumed the clectric field € is in the space-fixed z direction and
the symmetry axis of the molecule makes a polar angle 6 with this z direction.
This Stark perturbation (Stark effect) is often used to identify the / values of initial
states in purely rotational transitions. To show HV is a weak perturbation, assume
the electric field is 1,000 Volts/cm, a strong field. The permanent electric dipole
moments, (., of diatomic molecules are of order ¢ x 1078 ¢cm. Thus, even in this
strong field, HD can be expected to be of order 10~eV. Take the HCI molecule
as a specific example, S0 [ = Mprowon, With uc? = 10%V. Take r, ~ 10 8%cm
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(the precise value is known from the rotational spectrum to be 1.2746 x 10~ 8cm).
Then,

B’ Gicy’ _ (1.973 x 10 %eVem)?

= ~ ~ 2 x 1077V, 18
2urz - AupctHr: 2 x 10%V x 10-1%cm? x ¢ (18)

showing the Stark term, H"', can indeed be treated as a perturbation. To calculate
the matrix elements of H'V, recall (Chapter 9)

e —m [ w-my |
080 ¥m =\ a3y ¢ T e e -1y o U9

[+ 1?2 —m?]
Vet nei+3y
[I? — m?]
2+ Hel =1y

80
{({ + Dym|cosélim) =
(20)

Our HY does not have matrix elements diagonal in the quantum number, /. No first-
order contribution to the Stark energy shift occurs. At first, it appears this belongs
to case (3) of section B of this chapter and might require further treatment. All
matrix elements of the perturbing Hamiltonian, however, are diagonal in m. States
of a particular m are therefore completely unconnected from states of different
m. We can therefore treat states of a particular m by themselves, as if they were
unconnected from the rest, hence, by nondegenerate perturbation theory. This is
of course connected to the symmetry of our Hamiltonian, even, including the full
perturbation, our Hamiltonian has axial symmetry. Our zeroth-order state vectors,
of good eigenvalue m, are automatically the proper symmetry-adapted zeroth-
order state vectors. (If we had chosen to call the direction of the £ field the x
rather than the z direction, our H" would have been —pt, sin @ cos ¢£. If we had
diagonalized this H U we would essentially have effecied a rotation from our
original x direction to a new z direction. By choosing our z rather than our x
direction along the direction of the outside £, our zeroth-order state vectors have
automatically become the proper ones for the perturbation calculation.
The second-order contributions to the energy are then simply

RED = Y WmOHO M) p2e?
“im T

I'=i+1 E.V(O) - EF'O) B 52/215
9 ([l2 —mA R DA -1 [+ D w3+ 1))
i+ - -0 Bd+1D -+ DU+ 2)]
_ 2LplEt [* —m?] [ + 1) — m?]

TR (21(21 + D=1 20+ D@L+ D) f+3))
_ 2Lpuze? (I + 1) —3m?)

B0+ DR -1+ 3)

2y
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m=0
g +6
K m=+1
+3
1=2 7 - ===~ -r—
m=+2
-6
AE©
+2
m=0
I=1 v AU S -
.. m=z%1
-1

FIGURE 23.1. Second order Stark splitting of the / = 2 and / = 1 states of the diatomic
molecule rigid rotator. The energy shifts are in units of [7,u2&2 /A1l + 1)(2 — 1)(2 + 3)].
AEO® =%/,

The Stark splitting of the / = 2 and [ = 1 levels is shown in Fig. 23.1., where
energy shifts are shown in units of (Ieuf,f,'z /ﬁzl(l + 1)(2I — 1)(2I + 3). Note that
the /" rotational level is split into only (I + 1) levels since the second order energy
shift depends only on m?. The transition probabilities for the / = 2 — [ = 1
transitions are now given by the matrix elements of

1€ = ., sinf cos ¢; ugfl') = i, sin 6 sin ¢; € = p, cos6. (22)

These lead to the selection rules, Am = =1 for the x and y components, and
Am = 0 for the z component. Thus the / = 2 — [ = 1 transition is split into
five components, corresponding to the transitions m = 2 — 1,1 — 0,1 —
1,0 — 1,0 — 0. (Actually, the transition would be observed through an induced
absorption process). The line pattern, including relative intensities, is shown in Fig.
23.2, where the shifts in frequency from the unperturbed frequency, (h/2721,),
are given in units of A = (Ieu§€2/2nﬁ3210).
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6
4

3 3

2

[ i

=374 -32A +11A +26A +31A
m==+1"0 m=0—"0 m=2"*%1 m=0—z%}

m=%]"=%xl

FIGURE 23.2. The Stark splitting of the / = 2 — [ = 1 transition. The numbers above
the lines give the relative intensities. Frequency shifts from the zeroth-order frequency are
given in units of A = (/,u2E?/27A*210).

E Application 2: Stark Effect in the Hydrogen Atom

In an external electric field, £, the perturbing Hamiltonian is now
H(l) = —(—6?1 + 8?2) . é == e(i’} - ;2) . g = eqpr COS 65, (23)

where ag is the Bohr radius and we have again introduced a dimensionless r via
[Fretative] = apr. For an electric field £ of 1,000 Volts/cm, H( is again of order

[HD/H®| « 1, the ratio now being of order 10~°. Although the m quantum
number is again a good quantum number to all orders, because the perturbation
can not change m, several { values now exist for a given m [with the exception
of the states with m = +(n — 1)]. Let us take the four-fold degenerate state with
n = 2 as a special example. Now, a nonzero H‘" matrix element connecting the

(nlm = 210[AHV|nlm = 200) = eay€ (210|r cos ]200)
— Ea()glg(_jéo % 5 (24)

where the angular part of the matrix element, with value 1/+/3, follows from eq.
(19) and the radial part is given by

o0
Izr?fiéo Zf drr® Ry, =1 (r)r Ryma 1=o(r)
4] .
r
= — [ drri(l = =)e™"
4«/3/0 =2

1 5!
= ——(4! — =)= -3 2
4\/5( 2) ﬁ’ @5)
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leading to the 4 x 4 matrix

2'ma(HD — E2)20m) =

200 210 21+1 21—
200 —AE Beapt 0 0
210 | ~3eat -rEY 0 0
21 +1 0 o 2E" 0
21 -1 0 0 0 —AEY

The energy determinant leads to the values )LES) = +3eapgf, —3eapf, 0, and 0.
The corresponding proper zeroth-order eigenvectors are

1
For + 3eapf : —(]200) — |210))
v?
For — 3eapf : ——2—,,([200) +1210))
For 0: 21 + 1)
For 0: 121 — 1). (26)

Because the first-order Stark effect in atomic hydrogen is very small, thesc
first-order results may be sufficient. Because we have determined the proper
zeroth-order eigenvectors, we could now use eq. (14) to calculate the Stark en-
ergy corrections to second order. The sum over states with k # n, however, is now
a sum over an infinite number of discrete states and in fact includes a continuum
sum (i.e., an integral) over the hydrogenic continuum states, because the operator
r cos 0 has nonzero matrix elements connecting a state nlm to states n'( £ lym,
with all possible values of n’ # n. (We shall find the stretched parabolic coordi-
nates of problems 6 and 26 will give us an elegant way out of this computational
difficulty; see problem 37.)
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[Alternatively, the results of this section can also be used for precisely degenerate
levels in case (3), when HD does not remove the degeneracy and hence does not
give the proper or stabilized zeroth-order state vectors.]

If for some specific pair of levels, n and m, (E® — E{) is accidentally very
small (the case of an accidental near degeneracy), particularly if (m®|HO[n®) is
of the same order of magnitude as (E(” — E'?), our perturbation theory formulae
would give a very poor approximation for this pair of levels. A technique that can
deal with this situation is the following: We shall make a unitary transformation on
the original perturbed Hamiltonian, H, to transform it to a new Hamiltonian, ',
to eliminate the off-diagonal matrix elements that connect the nearly degenerate
Jevels to all other levels, or at least make these off-diagonal matrix elements small
enough in orders of powers of A, so they will not contribuie to the energies of states
n and m to some particular order in A. An elegant way to achieve this follows in
the next section.

A Perturbation Theory by Similarity Transformation

We shall try to find a unitary operator, U, generated by a hermitian operator, G,
such that H is transformed into H’

H =UHU =UHD+ HY + 2 *HD + .. U7, with U =%, (1)

where the parameter, A, in U is the parameter of smallness in the perturbation
expansion. (The eigenvalues of a hermitian operator are invariant to similarity



230 24, The Case of Nearly Degenerate Levels

transformations.) In particular, if we succeed in choosing a G such that the first-
order matrix elements of H’ connecting states n and m to states k # n, m are
all equal to zero, the 2 x 2 matrix for H' in the n, m subspace will give us the
energies correct to order A%, The surviving off-diagonal matrix elements (of order
1%) connecting states n and m to states k # n, m would contribute to the energies E,,
and E,, only through their squares, divided by zeroth-order energy differences. The
strategy then will be to find a G with matrix elements such that (k@ | H'D|n®) = 0,
and (k@ H'V|m©)y = 0 (with similar zeros for the transposed matrix elements of
H'D) for all k # n, m.

/'\.2
H =(1+iAG ~ 7G’*’ + o YHO 4 AHD + 22 HD 4.

A'2
x(l—iAG——2—G2+---)

= H® + A(HY +i[G, HO) + AHH® +i[G, HV]
- 3G, (G, HOM + - --
=HO+ H® + PH® ... @

Now, we shall choose G such that, with k # n, m,

(k(0)|H'(1)|n(0)) — (k(0)|H(1)|n(0)> + i(k(o)ﬂG, H(O)]{n(o)) =0
= (kOIHY ) +i(EY — EM)(VIGIn). ()
With a similar relation for the km™ matrix element, this equation leads to

KO HD RO kO HD | ©
it «I» VEO)“), (k(o)IGIm(O))="‘( '(E)) ln:m—),
(En - Ek ) (Em - Ek )

(n(O)[H(I)Ik(O)) ) (m(o)]H(l)lk(O))

k@1GIn®) =

(nOIGIk?) = i——m——" MPIGU) =i (@
(E” - ED) (EQ - E)
All remaining matrix elements of G will be set equal to zero. In particular,
g
(n1GIn?) = (mIGIm?) = (n@|GIm®) = 0. )
Now,
(n(o)]H’(l)In(O)) — (n(O)IH(l)In(O))
+i Z [(n(O)IGIk(O))(k(O)IH(O)]n(O)) _ (n(o)]H(O)fk(O))(k(O)lGln(O))]
k#n.m
— (n(0)|H(1)|n(0))_ )
Similarly,
(m(0)|H'(1)|m(0)) — (m(O)IH(1)|m(O)),
(n(0)|H’U)‘m(O)) — (n(O)IH(l)[m(o)). (N
For

Ly o
H'® = 1® +i(GHY - HVG) — 5(G*H? - 26H9G + HVG?), ()
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let us first calculate the nm* matrix element
<n(0)|H’(2)!m(0)) — (n(O)IH(Z)Im(O))
4 Z [(n(o)lle(O))(k(o)iH“)Im(G)) - (n(o)[H“)]k(O))(k"°)|G|m(0))]
k#n,m

— % Z [(n(o)[le(O))(k(o)[G[m(O))(m(O)IH(O)Im(O))
k#n.m
_ Z(H(O)IGIIC(O)) (k(O)'H{0)|k(0))(k(O)IGIm(O)>

4 (n(m[H(O)m(m)(n“”iG%km))(k(o)lGlm(O))}

= (nOH® MmOy + Z (n(o)§H(”|k(0))(k(°)|H“){m(o)) %
k#n.m
1

1
+
[(<E£‘” -E”)  (EX -
Now, using the trivial identity
1 1 (EQ + EO© —2E"

(]
) ‘1-( E,(,’Ol) - 2Ek -+ E,(IO) )j] ( )
2 - - ~

+ = ) (10)
& - ED) (ES-ED) (EY - EOXED - EY)
and defining the average energy for the pair of levels EO), = L(EQ® + ED), we
obtain
(n(0)|H'(2)§m(0)) — (n(O)IH(z)lm(O)) ,
(E(o) . E(ZO))
+ Z (n(O)IH(”lk(G))(k(o)iﬂ(‘)lmm)) nm k an

ot (EY — EONEY — EDY

By setting m = n in this expression, we can also immediately get the matrix
element (n'?|H"®n®) and similarly by setting n = m, we get (m@|H'@|m©®).
With these results, the 2 x 2 submatrix of H’ connecting the two states |n) and

tm) is
(I )
Hmn Hmm

where, with an obvious shorthand matrix notation for the matrix elements, we have
(through second order)

H(1)|2 -
1) 1 2 2 ot en
H,=E9 4280 + 1 [Hrf )+ Z (EO _ g0y 0 }
k#n, m E )
B HSED, - £0) |

H =iHD 1 A{H(Z) +

nm i (0 (4] (4] 0)
" igmm(En) — EONE — E)
H(UH“)(E(O) E'(O))
H, = H" + AZ]:H,(2) + ok }
mn mn nn k;n (bg(zm _ E(O))(E(O) EIEO))
H), = EY +1H) +A2[H<2’ + iyl } (12)
mm n mm mm 0 0 .
k#n,m (EPSI) - E]E ))
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To get the cnergies to second order, it is now only necessary to diagonalize this
2 x 2 matrix, leading to

1
E=FE; = E( nn mm) + \/( - Hr,nm +4|Hr;m 2)‘ (13)

This result is quite general. Note: If the two levels n and m are not nearly degenerate,
the result applies for a single level, say, the n’" one, and in that case, we have simply
regained the result of nondegenerate-level perturbation theory. The result also
applies to a pair of exactly degenerate levels. In that case, with E) = E© = EO)
the off-diagonal matrix element has a term

(1) gy (D)

Z an Hkm
0 0) "
k#n. m(E( ) EIE ))

This equation will be important in case (3), in which H{}) is zero and does not
remove the degeneracy in first order, and in the case in which H" does not lead to
the proper zeroth-order state vectors. Finally, the diagonal and off-diagonal matrix
elements given by eq. (12) can be used in the case in which the degeneracy or near
degeneracy is greater than two-fold.

B An Example: Two Coupled Harmonic Oscillators
with w; = 2w,

Let us consider the Hamiltonian for two coupled nearly harmonic oscillators with
cubic and quartic coupling terms

H= lﬁwx(pﬁ + x%) + Shan(p] + ¥7)
+ Miwxy? + M lwgx® +hw,y* +hox?y?), (14

where x, p,, y, p,, are dimensionless variables as for the 1-D oscillator. It is
assumed @, =~ 2w,. States with |n n;) are then nearly degenerate with states
|(n, — D(na + 2)). Using matrix elements of x, x, x* from earlier chapters, and

combining thesc to yield, e.g.,

D(ny +2
(1 — Dz + Dlxy?mimy) = \/ mi(ny + 8>(nz ).

we get, for the nearly degenerate levels n1ny = 10 and nyn, = 02, the 2 x 2 matrix
for H':

(15)

Fiw.)? W
H .. =3k e, — A2 S —
0.0 = Z1O1F heoy + 2wt + 27)

+ A (1w + Fw, +3ﬁw,)
Hy0 = Hyp o = ;Aﬁw(,

,Gw Y (é N 3w, )

H., o = ih iy — A
02.00 = 101 F 71 R, 2w, + 2wy)
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+ AL (Fiwy + 3%, + Swy). (16)

In particular, in this special example, H'" does not contribute a second-order term

to H,, , but it does contribute to the two diagonal terms, via
[{kiko| HD[10)|?
0 0 =
kik2#10,02 (Ego) - Eéll}cz)
[20[HPNO)P  [(22HPN0)? | (00| H|10)|?
-ﬁan (——han - 25&)2) ﬁw1
RSN 11 1
- G ( b ) a7
Aoy \4(—1) 8B(+1)  2(~(w1 +2a))
and

[(kika|lHDI02) 2 [(12]H102))7 [(14]HV102) )

) (0) - 5 _ y
kag10.02 (Egy — Epi) —ho (—hw — Zian)

_ (i) (_22 1 3 w )
ko \ 8 (=1 2(~(w +2m) /)

This example has been chosen as a simplified model for a real near degeneracy.
The linear symmetrical CO, molecule, with an O-C-O configuration, has three
vibrational frequencies, an in-phase and an out-of-phase stretching of the two CO
bonds with frequencies, named w; and ws, and a two-fold degenerate oscillation
in which the C atom moves in a direction perpendicular to the equilibrium line
relative to the O-O group, where this two-fold degenerate frequency has been
named w;. For CO,, the three observed frequencies are

(18)

P 1a51.0em, hen 672.2em™', " _2396.40m™".

he he he

(In molecular spectroscopy, “frequencies” are usually given in “wavenumbers,”
i.c.,in em™!, in waves per centimeter.) Note that iww; — Jiw, = 6.8¢m ™. This
difference is much less than the experimentally deduced coupling term %Iiwc =
50cm ™. The problem of this near degeneracy was first solved by Fermi. The near
degeneracy in CO; is known as the Fermi resonance. (Finally, we have made our
simplified Hamiltonian such that V(y) = +V(—y), so it mimicks the real potential
of CO,.)

Finally, we need to have a more explicit expression for the perturbed state vectors
|n) and |m). We have converted Hin) and H|m) into UH|n) = UHU(U|n))
and UH|m) = UHUY(U|m)}), where we now have H' = UHU? acting on
(@) = U|n) (similar for U|m)). Thus, we have

)\'2
i) = U~ ®) = (1 = iAG ~ - GHin®), (19)

leading to

iny = [n®) —in Y KOk IG1n)
k#n.m
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o Z (I”(O)) (O)Ile(O))( (0)}Gln(“))
k/tzm

+ 1m(0)) (m(O)lle(O)) (k(O)IG|n(0)))
= ln<°)>(1 B W)
2,50 (B —EQy
+ 1m (_1_2 (m(o)%H“’lk“’))(k<0)|HU)m(o>))
2.5 (ED - EO)ED - BD)

(G)JH(U]”(O)>

+ A |k<‘”) (20)
k;m ("~ E)

with a similar expression for |m). The final expression for the eigenvectors
associated with the energy eigenstates |E ;) of eq. (13) will be

|E4) = cln) +slm),

[E_) = —sin) + c|lm), (21)
N H’
with % - (—E+—”H~) with ¢ 4 s = L. (22)
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Magnetic Field Perturbations

So far, we have Jooked at a number of perturbation problems involving an external
electric field, £. We would like to look at similar problems involving external
magnetic fields.

A The Quantum Mechanics of a Free, Charged Particle
in a Magnetic Field

Classically, the Hamiltonian of a charged particle, of charge e and mass m, in a
magnetic field, B, derivable from a vector potential, A, via B = curlA, is given by

1 ., e- L e
H= 2_—(p~—A)'(p~—A). ey
" o (5

In a uniform field, By, e.g., with A = 1[By x 7], the classical equations of motion
in Hamiltonian formalism lead to

&7

e -
mZ[E = E[U x B()] (2)

The Schrodinger equation follows from eq. (1) via p — ’%€7 At first glance, this
equation seems to be dependent on the choice of gauge of the vector potential.
[With the choice of the so-called symmetric gauge for an electron in a uniform
magnetic field in the z-direction, see cq. (15) below.] If A gives rise to a magnetic
induction B, a vector potential A with A = A+ V f» where f is any function
f(x, y, z), will give rise to the same ficld B.To keep the Schrodmger equation
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form invariant to this gauge transformation, we must gauge not only A, but the
Schrodinger wave function as well. The quantum-mechanical form of eq. (1) is
form invariant under the gauge transformation (see problem 3),

A X/:K+§f(x,y,z)’
U Y = fer /03D, 5

B Aharanov—Bohm Effect

The above gauge transformation was exploited by Bohm and Aharanov in a famous
paper (Phys. Rev. 115 (1959) 485) to show that the quantum-mechanical wave
function describing the motion of electrons can be influenced by the presence of
magnetic fields, even if the electron trajectories are such that the electrons do not
experience the Lorentz force £[v x B, if the trajectories are limited to regions in
which B = 0. They proposed the following experiment: An electron beam from
an electron source is split into two identical beams, subsequently reflected from
identical reflectors to end in a detector, as shown in Fig. 25.1. If the electrons
in beam 1 are described by the wave function v, and the electrons in beam 2 are
described by the wave function yr,, the number of electrons arriving at the common
detector will be proportional to |1 +¥|*. Bohm and Aharanov proposed to place
a tightly wound, infinitely long solenoid of small radius, a, behind the screen. A
magnetic field B exists inside the solenoid, parallel to the solenoid axis, but the
field outside the solenoid is precisely zero. The electrons therefore traverse only
regions of space where the B field is precisely zero. (Of course, this infinitely
long, tightly wound solenoid is a “theorist’s” solenoid, but it can be approximated
very well in the actual experiment.) Because the electrons are always in regions of
zero field, choose a gauge in which the vector potential A’ is also zero outside the
solenoid; i.¢., choose a gauge for which

A=0=A+Vf(x,y2)
,'/jf — weﬁ—[f(x‘y.z)_ (4)

Therefore, taking a line integral of A’ around the exterior contour shown in Fig.

25.1,
osygzi-dhf%f-df
a 2 27 -
= " - d ] 91
:/ rdr/ dg[v xA]-n+f LUAGLL
0 0 0 ro¢
= Bora’ + (f(6,¢ =27) = £(r.0.4 = 0)). s)
where we have converted the first line integral to a surface integral via Stokes’s

theorem. The unit vector 7 is parallel to the solenoid axis. The above therefore
leads to

Bora® = —(f@m) ~ [©). (©)
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We have chosen a cylindrical coordinate system centered in the solenoid. The
electrons traveling along trajectory 1 are, therefore, specified by
¥ = lj,;ev;—if(¢=0), %)
S0, at the detector, D,
Y1 = Ypno fieldye =/, (8)

Similarly, electrons traveling along trajectory 2 will, at the detector, D, be specified
by the wave function

Y = Ypino field)e 7 f@, 9)
At the detector, therefore, the total wave function will be given by
U1+ ¥ = Yp(no field)e % f(O)[l 4 e——%(f@n)vfm»]
— yp(no fieldye f<°>[1 + eﬂfﬂo«’wz]. (10)
The number of particles reaching the detector will then be proportional to
2
)]

). (1)

eBorra
ol = 21¥p(no ﬁeld)|2[1 + cos( ;C

B 2
= 4jyrp(no field)|? cosz(e—O—Hf—

That is, the number of particles arriving at the detector depends on the magnetic
field strength in the solenoid, even though B = 0 in the region of the particle
trajectories. The experiment has been done, both with long solenoids and with
highly magnetized “magnetic whiskers.” Other experiments using the basic Bohm-
Aharanov idea have also been successfully done. [For a review of experiments and
ideas, see M. Peshkin and A. Tonomura, Lecture Notes in Physics 340, Springer-
Verlag (1989).]

C Zeeman and Paschen—Back Effects in Atoms

We shall start by studying the perturbations of magnetic fields, both external and
internal, on the energies of onc-electron atoms. We shall start, however, with al-
kali atoms, Li, Na, K, Cs, or Rb. In these one-valence-electron atoms, the n>-fold
degeneracy of hydrogen is removed. Levels with different [ have considerably dif-
ferent zeroth-order energies, each with a (2/ + 1)-fold degeneracy. The hydrogenic

potential, V = — %, is replaced by

) Zei (r)e’

¥

Vr) = (12)

The Z.i (r) removes the degeneracy of levels with the same n but different /. In
Na, e.g., with ground-state configuration (15°2s22p%3s), then = 3,1 = 0,1 = 1,
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0 eV o Hydrogenic n=3 level
~0.01 eV =2 3°D level
-1.56 eV 5
=1 3P level
—-3.61 eV
© 1=0 3%S level

FIGURE 25.2. The Na-valence electron spectrum.

and I = 2 valence electron levels (325, 32 P, 32D) are split in zeroth order, as
shown in Fig. 25.2. The s (/ = 0) and p (/ = 1) orbits are penetrating orbits. They
penetrate the spherically symmetric innershell electron cloud and see effectively
a Z > 1; hence, they lie at lower energy, with the s orbit having a considerably
larger Z.¢ than the p orbit. The d (I = 2) electron spends most of its time outside
the innershell electron cloud and thus sees an effective charge very nearly eqgual
to (11 -- 10) = 1. This level has been shifted to lower energy by only —.01 eV,
relative to a purely hydrogenic value with Z = 1.

In a uniform, external magnetic field, BO, with A = 3 [BO x #] (where we have
chosen a specific gauge, the so-called symmetric gauge), the Hamiltonian (ignoring
for the moment the spin of the electron) has the form

1 . e~ . €=
H = -2-—(17 —=A)-(p—-A)+ V() (13)
m c c
Choosing EO along the z-direction, so
1 1
AX = ~§Boy, A)- = JrEBQ)C. (14)
2 2 2 2
pytp,+p e B m{ eB ,
H= 22t o o apy = yp) + 5 (5 ) G2+ Y+ V()
2m 2 \2me
_pitp :
r};;w”' + mL(x +y )—HiwLL + —;- + Vix, vy, 2), 15

where we have used the Larmor frequency

B - B
le1 By with fiw, = 5.8 x 1075 —2-¢V,
2me’ tesla

wy =

and we have converted to a dimensionless, orbital angular momentum operator, L,.
(Remember the electron charge is negative.) For a free particle, with V(x, y,z) =
0, L, and p, commute with the Hamiltonian of eq. (15} and can be replaced by
their eigenvalues, my, and/ik,. The problem of a free particle in a uniform magnetic
field therefore reduces to a 2-D harmonic oscillator problem (see problem 42). For
an atomic problem with a central V(r), it will of course be useful to convert to
spherical coordinates and dimensionless atomic units, with a physical ¥ = (x, y, z),
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with |F| = aor, so

=HY +hw L. + EMH sin” 6. (16)
2 (me*/n*)

(th)/(ﬂﬁi:) ~ 10"%fora magnetic field of 1 tesla = 10* gauss, so the term pro-
portional tofiwy , the so-called paramagnetic term can be treated as H", whereas
the term proportional to (iw; )*, the diamagnetic term, can be treated as H®. The
paramagnetic term can be put in the form
& -

)y _ —(magn.) 5 . - (magn.} __
H = _(’u'orhilal : B) : with Horpital = 2me

In 1924, when Uhlenbeck and Goudsmit postulated the existence of electron spin,
with an associated spin magnetic moment, they added empirically a spin mag-
netic moment interaction to this paramagnetic term, but they found (empirically
by fitting the predicted Zeeman spectra to the experimentally observed data) the
gyromagnetic ratio for the spin magnetic moment requires an additional factor
g, = 2 relative to that predicted for the orbital magnetic moment, so

an

g -

- (magn.)

e 18
spin e 8 (18)

Although introduced empirically in 1924, the factor g = 2 comes out

automatically from the Dirac relativistic quantum theory of the electron. Thus,

orbital

HO = —(pleen) . oy (ﬁi},‘ﬁgn" - Bo) =hoy (L, +28,). (19)

This perturbation has extremely simple matrix elements in the |nlm;m;) basis,
where we have added the eigenvalue m; of the operator S to complete the basis,
leading to the first-order magnetic field correction to the energy

EY = hw(m; + 2m,). (20)

ninymg

This formula would be correct in the limit in which the external field By is large
compared with the internal atomic magnetic fields and their effects on the spin
magnetic moment. We shall look at these effects next.

D  Spin-Orbit Coupling and Thomas Precession

Because of the motion of the valence electron, the electron sees an effective internal
magnetic field that can interact with the spin magnetic moment of the electron. To
first order in 1—’ the magnetic field at the electron is

p 1 dvi

- 1 - 1 - . N
B=-[Ext]=—[VO x Z1= ——[F x pl, @n
c c m lelme dr r

where we have converted the electric scalar potential to the potential function V(r)
and have used the fact that the electron charge is negative. We could of course also
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think of an observer “sitting on the electron” seeing the nuclear and innerelectron
charge moving with a velocity - relative to the electron, therefore setting up a
current giving rise to the magnetic field at the site of the electron (see Fig. 25.3).
When the electron’s spin magnetic moment interacts with this internal magnetic
field, we get a new contribution to the perturbed Hamiltonian of the one-electron
atom

lefigs 1dV B - - " 1dv

)2l _ 5 ,§:+_;_u__ Sy =
spin—orbit s Ymc r dr leimc( ) mZCQ(r dr

)(S L), 22)

where L and S are dimensionless. Besides this magnetic spin-orbit term, a second
purely relativistic correction term exists, the Thomas precession term, which has
exactly the same form, but has an additional numerical factor of —2

HY = —HD (23)

Thomas 2 spin—orbit*

This purely relativistic term follows because two successive Lorentz transforma-
tions along different successive directions in the orbit are equivalent to a single
Lorentz transformation plus a rotation in 3-D space. This rotation causes a preces-
sion of the intrinsic spin vector of the electron, the so-called Thomas precession,

\/

72 Valence electron

(out)

/t—:\
VNN
//

e 1
\\ +Ze///
\\\ “

pu—y

[

Inner shell of electron cloud

FIGURE 25.3. Model of an alkali atom.
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which cancels half of the magnetic spin orbit term. Thus,

R [1dV - B [ Zere
(i} [¢3] eff.
HSPln ~orbit HThomas = zmzcz( dr )(S L)= émTCZ( )(S L)a (24

where Ze (r) = Zegr.(r) — r 4% in an alkali atom; but Z.¢ can be replaced by
I in hydrogen. Converting the physical r in this equation to a dimensionless r via
Fphys. = aor, we have

| (ﬂ?e_‘)z
2
HO = —”—( eff. )(S I)= mc2a4( )(S L), (25)
2 mc?
where r, S , and L. are now all dimensionless and « is the fine structure constant.
This term is of order
1 yme*\2 (et \? 5 4 1

— =) = — = ~05MeV(—=) ~ 107eV. (26

mcz( P ) mc (h'c) mc o e (137) e (26)
To this order of magnitude, we must also consider the first-order relativistic mass
correction. From

A
W = /m3c* + p2c? = moc* + —— — ~ 3 . @7
2my  8mjc?
we get the relativistic mass correction to the kinetic energy term
2 1 2 (2 2 E(O) . 74 2
Womeet = oo L (P BT VO,
2mo  2moc? \2myg 2myg 2moc?

To get the hydrogen energies correct to order mc’a®, we must include this rela-

tivistic mass correction term along with the combined spin—orbit and Thomas term
of eq. (25). This relativistic mass correction term, however, has been converted
to a function of r only in the last form of eq. (28). In an alkali atom, therefore,
it can be simply absorbed into the Z.g (r)/r term. This term merely establishes
the zeroth-order energies of the separated / = 0,/ = 1,/ = 2,...terms. These
terms are essentially taken from experiment and not calculated very precisely. We
shall calculate accurately the splitting of such a 2(2/ 4 1)-fold degenerate term into
fine structure and Zeeman components, but take the zeroth-order positions of the
different [ levels from experiment. For the alkali atoms, therefore, this perturbation
term can be absorbed into the zeroth-order terms.
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Fine Structure and Zeeman
Perturbations in Alkali Atoms

We shall now look in detail at the fine structure (magnetic spin orbit + Thomas) and
Zeeman perturbation terms; i.e., we shall diagonalize the first-order Hamiltonian,

HY =

2,4 7
meeo (Zeft‘s(r))(g . Z) +hw (L, +128;). M)

-
in the 2(21 + 1) degenerate subspace of a particular / sublevel of the valence n in
an alkali atom. The fine structure term is of order 10~ eV, and the Zeeman term
would be of this order of magnitude only for very strong fields, of the order of
~ 20 tesla, but both terms are smalil compared with the zeroth-order separation
of different / substates. (In Na, these terms were of the order of 1 — 2eV.) Matrix
elements are easy to calculate in the [nlm;m,) basis. Nonzero matrix elements are

{nlmymg|L, + 28, |nimpmg) = m; + 2m;. (2}
writing L - § = (LS. + L_S;) + LoSo,
(nlm;msllj : g]nlm,mi) = myms,
{(nl{m; + D{m, — DL - S|nim;m,)
= 30 - m)U+m+ Dis +ms)(s —mg + 1),
{nl(m; — )(m, + DL - S|nlm;m,)
= %‘/(l +m)(l —my 4+ (s — m)s +m; + 1), 3)

with s = 3. Now, if we introduce

J=L+S, with J =Lg+ S, 4)

where J, has eigenvalue m; = m; + m,, all terms of our H" do not change the
quantum number m ;. (In passing, lowercase letters are usually used for single-
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particle angular momentum quantum numbers.) Because the values m; =1 + %
andm; = —(I + %) can each be made in only one way, whereas all other possible
m ; values can be made in two ways, the full 2(2/ + 1) matrix of H" will split into
2 (1 x 1) and 2/ (2 x 2) submatrices. It is best to convert to m; and m, = :(:% in
the matrix element expressions, so, e.g.,

(nl,m) = (m; ¥ %), m, = :i:%iz . S’[nl,m, =(m; %), mg = ¢%) -

Latm + e Fm+ D=1 o+ b —m, ®)

In addition, we introduce the radial matrix element integral

mclat

3 /Odrf | Ru(r)I?

This number is common for all matrix elements of the full 2(21 + 1) x 221 + 1)
matrix of H". The general 2 x 2 submatrix for a given m; is

H.. H,_

H., H_)
where we have used the subscript + for the state with m, = -5, andm; = m; — 3,
and the subscript - for the state with m; = —1, and m; = m; + . In the mairix,

eff (r)

= ﬂnl - (6)

Hop = $Bulm; — 3) +hwy(m; + 1),

H, =H_,= ’3"’ [<l+ - ]
H__= h%ﬁnl(mj 2) +th(m] - i)- (7)
The 2 x 2 energy determinant leads to
E = (o + Ho) £ V(Hyr = Ho 7 + 4H. P, @®)

or

EY (—E—szm,)i \/ﬂ (4 3P+ Gon)? + 2mBuGior). ()

For the 1 x 1 submatrices with m; = £(/ + %), the energies are given by the
diagonal matrix elements

1
EV = Bz thorl +1). (10)
With no external magnetic field, i.e.,icw; = 0, we have
l
Ey = +Bu with (2l +2)—fold degeneracy
1+1
= - ,,1( +D with 2/—fold degeneracy. (an

These two levels correspond to the j values j = (I + %) respectlvely With

~ 8. S) (12)

e - -

J=L+S, so L-S=3iJ-J-

l‘u
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L - has eigenvalues
G+ -1+ -3,

leading to the eigenvalue +3/ for j = (I + }), and the eigenvalue —1(I + 1) for
i=a=5.

For the weak-field case, iw; <« B, the energies are (expanding the square
roots to first order)

I 1

(1) ; 3 P i
Em, == ﬁnli +ﬁwLm] (1 s C,Z?:X:]*)), for ] = (l + 3),

: (d+1 .
EW = g, I 11— . fi =@1-1. @13

il B > +hwpm; TR, or j={(-3) (13)

For the huge field case, conversely, withfiw, > B,
ED =hoy(m; £+ 1y + %imj - %’-’. (14)

These energies are shown as a function of the external field strength, By, (orfiw, ),
for an ] = 2 state in Fig. 26.1.

Finally, we need to find the eigenvectors as linear combinations of the two states
withm, = +4,m; = (m; — }), 10 be denoted by +, and m; = —3, m; = (m;+3),
to be denoted by -. In particular, for the special case with By = 0 (hence, Aw; = 0),
we get

ﬂnl

(5m; =5 = EVles +

With E{) = +B,l/2, for the state with j = (/ + §), we get

e, JUFiI+m)

Bu

At mp@ - mpe =0 (19

RO S S (16)
- \Al + % —m j)
This equation leads to the normalized coefficients
(+1+m, (+—m)
cy = (_,"_2___J_), c. — S__h_._l__ a7n
@+1 Q2+1)

With £, = —8,,{ + 1)/2, i.e., for the state with j = ({ — %), we get in the same
way

+1—m) [+ 1 +m))
PR - S LS b B L (18)
@+ \/ @+

In this special case, we have calculated the transformation coefficients from a basis
|rimsm;) that are eigenvectors of the four commuting operators

i
Lt
.

L L, L.,
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Bhuy+8  2he 4+ B/2 e,

m,

Asymptotic
Paschen—Back
Values

—> B,

m=—1/2 0-B72—
1!'3.=+1/2 0-B/2

—> huw,

~ T,

—3hw, + 8 —2hw, +ﬁ/2 —hw, B

FIGURE 26.1. Magnetic field splitting of an alkali atom > D level.

to a basis |nlsjm ;) that are eigenvectors of the four commuting operators
L-L, S-S, I, I
that is, we have calculated the transformation coefficients

{Imismgllsjm ;).
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These are known as angular momentum coupling coefficients or Clebsch—Gordan

coefficients. For the specific case with s = %, these coefficients are given by

. . 1
i=a+d i=0-h
Grz+m)  [ariom)
@in RIFD
(l+é“m]) (l+%+m,)
Q@i+1y QI+

We shall study this type of transformation coefficient in 2 much more general way
in the next chapter.

my = -+

N

Bofe—

m, = —

Problems

29. For a Hamiltonian (with parameter A < 1),
H=H9+iHYD +2H® 1 ’HO,
(a) derive expressions for
3 0),,.(3
EY and QU@
for a nondegenerate state, |n).
(b) Specialize the result of (a) to the Hamiltonian
H=HY v,

Use the Wigner-Brillouin expansion for this case, and verify the result of (a) as
applied to this simpler case.

(¢) For the Hamiltonian of (b), prove the second-order shift of the ground-state
energy is bounded by

| (OP1V210®) — (0@ V]0®))? |
ED BN

“n=1

2
|EQ | <

Note, Eﬁo < Q.
30. The vibrating-rotating diatomic molecule. The Hamiltonian for a vibrating—
rotating diatomic molecule is given by

K 32 A 1 8 ,nga 1 82
2p9r? 2ur?

SN
Sin6 30 30 | sinlg 3¢

B 32 B J-D
= V) 4+ [ D)
= (r)+2ur2( A )

Assume V(r) can be approximated by the quadratic term

) + V(@)

2 .
Vo) =5 ), Mm(r—n):JQKL

Hw
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If the 1/r? term of the angular part is expanded as
1 (1 _2(r*re)+3(r_re)2 n
Fe

3 ey
e

72 rz

the above Hamiltonian can be written as

0 0
H Ii\sxb)ratorjL H( t)zlt0r+)‘-H(l) +)\.2H(2)+ T
where
0) 2 ©
ny =S (g ) - (57)
with

2
HOniM) = (ﬁa)(n +3)+ w)l JM).
2ur?

€

(Note: We have used capital letters, J,and J,M,in place of the /, m, used earlier for
the diatomic molecule rigid rotator. This is in agreement with the convention that
lowercase letters are reserved for the single-particle angular momentum quantum
numbers, whereas capital letters are used for the angular momentum quantum
numbers of many-particle systems.) Take the parameter of smallness, A, as

B 1
2urtfio’
so the vibration—rotation interaction terms are perturbations, with
N - o
HO = 2f (J j) H® = A 6x* CAR)) .
2 ’ 2ur? K2

[To investigate the smallness of the parameter, A, take the HCl molecule as a typical
example. For HCI, (with Cl isotope 35),iw = hc(2989.74cm 1), 2 /(Zp,rez) =
hc(10.5909cm ™), so A = .06.]

Show that the [nJ M), with (FlnJ M) = ¥,(x)Y;4(0, ¢), are “proper” zeroth-
order eigenvectors, and find corrections to the zeroth-order energies, including
terms of order A>(%/2ur?).

Warning: We have taken as our zeroth-order Hamiltonian both the soluble vi-
brator and rotator Hamiltonians. Because their coefficients differ by the factor, A2,
second-order perturbation theory will here give both terms of order A%iw) and
terms of order A>@*/2ur?2).

31. A diatomic molecule rigid rotator with a permanent electric dipole moment
along the molecule axis is placed in a nonuniform electric field, £, so the zeroth-
order rigid rotator solutions are perturbed by
2

. = . . . A
AHD = — @Y € = 2k sin® 0 sin 2¢, with & = )\(21

For the states with J = 0, and / = |, find the perturbed energies correct to order
A2(#%/21,), and show how the J = 0 — J = 1 absorption transition is split by this

); A< 1.
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perturbation. Give the relative intensities of the Stark fine structure components
of this transition. (Calculate relative intensities only in dominant, zeroth-order
approximation.)

32. A diatomic molecule rigid rotator with a permanent electric dipole moment
is placed in a uniform electric field in the x-direction, so

}\H“):—ﬁ(el‘)‘gt <el)f,'|su'163c05¢

Because the Stark energy is independent of the direction of the electric field,
you know the result for the second-order energy correction (see Chapter 23). To
test yourself on your knowledge of perturbation theory, find the second-order
corrections for the energies of the J = 1 states by using the above H") and a
zeroth-order basis in which J? and J., perpendicular to the direction of 5 are
diagonal. This method is admittedly the bard way to do an easy problem. The
|7 M) are now not proper zeroth-order eigenvectors, because the above H‘) now
connects states with different M. Also, Y now does not remove the zeroth-order
degeneracy in first order. We are therefore dealing with case (3), as enumerated
in Chapter 23. Hint: The best way to solve such a problem is with the use of our
formulae for three nearly degenerate (or exactly degenerate) states and diagonalize
the 3 x 3 H’-matrix for J = 1 which to order A? is effectively disconnected from
states with J' £ J.
33. For a slightly asymmetric rotator, with

H=HO4+iHY = Ha +b)P2 + 12c~a —b)Pl+ La—b)(P P, + P P'),
use the parameter of smallness, A < 1,

(a—-b)

[ — M (1) __ _l - - ? 7 7 7
T Q@c—a—by with AHY = 3(2c —a — H)MP P, + PLP’).

Note,
A0 ) ] 2
Ejx = 5[((1 ) + 1D+ Q2c—a—-bK ]

To order A2, zeroth-order states with K = 0 and |K| > 3 can be treated by
nondegenerate perturbation theory. These states effectively belong to case (1), as
enumerated in Chapter 23. For these states, find E ;¢ correct to second order as
general functions of J and K. For states with | K| = 1 and | K| = 2, use degenerate-
level perturbation theory. Show, in particular, states with [K| == 1 belong to case
(2), as enumerated in Chapter 23, but states with | K| = 2 belong to case (3). For
the latter, therefore, use the treatment for two nearly (or exactly) degenerate levels
to find the energies correct to order A%. Use the results of problems 20 and 21
to expand the exact expressions for these energies in powers of A for states with
J = 2 and J = 3 to compare with the perturbation theory results. Also, verify
your perturbation theory results give the correct values for J = 1.

34. Two identical diatomic units on opposite ends of a long-chain molecule are
constrained to move on identical parallel circles of equal radins, but are almost
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free to rotate on these circles of equal radius, so they are subject to a Hamiltonian

3? 32
VIR

o9 ' 0¢?

where 1, is a constant and Vy = A(i?/21,), with A < 1, so the V, term can be
treated as a perturbation. The zeroth-order solutions are

2
H=HY9 4280 = _ + Vo cos(¢) — ¢2)
= — 21 4] 1 2}

mymy

hz
0 2 0 i 5
Emims = 57 Ig(m%+m2), with wﬁl,)mz(qm,fpz)— elmdr gtz

with
m =0,+1,42,..., my=0,+1,%2,....

Enumerate all states with zeroth-order energies, £ < 5¢2/21,), and find their
degeneracies. Indicate which states belong to cases (1), (2), or (3) of degenerate-
state perturbation theory, and find the perturbed energies for the above states correct
to order A2 /21,). [An alternative method of solution: Make use of the symme-
try of the Hamiltonian to find the proper zeroth-order wave functions as linear
combinations of the above ¥, . and show that these proper zeroth-order wave
functions reduce the calculatlon of the degenerate states to case (1) automatically.]

Solution for Problem 34

The Schrodinger equation in the dimensionless quantities, € = E/¢/21,) and
A = Vo/®i2/21,), has the simple form

92 3’
- ( 7t )llf(¢1,¢z)+ Acos(gr — D)V (@, ¢2) = €Y1, ¢2), (1)
d¢7  9¢;

with zeroth-order solutions
1 .
YOG ) = 50 with €P = (mltmd). @)

The needed matrix elements of H'") = cos(¢, — ¢») are extremely simple in this
basis. The only nonzero matrix elements are

((my + Dmay = DIHC|mimy) = 5,
((my = D)(my + DIHP|mmy) = 3. 3)

All other matrix elements are zero. Note: H'! is diagonal in the quantum number

= (m; +m;), so this quantum number is conserved to all orders of the perturba-
tion. We list in the table below the possible quantum numbers m, m,, M, as well
as the perturbation type and the total degeneracy number, g., for all states with
€ < 5. Degeneracies of 4 and 8 are common to most of the € for this problem.
Because HP, however, does not connect states of different total M, most of the
states of this system are effectively doubly degenerate or nondegenerate.

Among the states with a single m, m,-combination for a fixed M are the states
with ¢® = 2and M = +2, or M = —2, as well as the ground state. Also, a
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double action with H'" on a state |mm>) can convert it only to states with
my,my = my,my=(m +2),(my—2) or my,my or (m —?2),(my+2).

Therefore, states such as the pair of states withe® = 5, M = +1, withm,, mp =
+2, ~1,0r —1, +2, with Am,, Am, = —3, +3, are unconnected through second
order and can thus effectively be treated as if they were nondegenerate (if only
corrections through second order are significant). These states are therefore listed
as belonging to type (1), using the characterization of degenerate states given in
Chapter 23. For type (1) states, the m, m, basis is effectively the proper basis,
and the states can be treated as if they were nondegenerate.

€® g om my M type eV g m my M type
0 1 0 0 0 4 4 42 0 +2 3
1 4 +1 0 +1 (@ 0 +2 +2 (3
0 +1 +1 (@ 20 —2 @
10 -1 (2 0 -2 -2 (3)
0 -1 =1 (& 5 8 42 +1 +3 (@)
2 4 41 41 42 (D) F1 42 43 Q)
+1 -1 0 3 -2 =1 =3 @
rrrrr 1 +1 0 3 -1 -2 -3 (2
1 =1 =2 () 12 -1 41 1)

-1 42 +1 (1)
2 +1 -1 (1
+1 -2 -1 (D

Doubly degenerate states with a Am,, Am; = +1, 1, conversely, have their
degeneracy removed in first order. For such states, diagonalization of H‘" to find
the V) will also yield the proper linear combinations of the zeroth-order eigenvec-
tors to carry forward the higher order perturbations. Such states are characterized
as type (2) according to the catalog of Chapter 23.

Finally, doubly degenerate states witha Am,, Am; of £2, 52 have their degen-
eracy removed only in second order. Such states are best treated by transforming
the 2 x 2 Hamiltonian matrix H intoanew H' = UHU", as in Chapter 24 [see,
in particular, eq. (12) of Chapter 24]. These are states characterized as typc (3) in
Chapter 23.

For states of type (1), we get the second-order corrections, €@, via

© © 0] (@
(€mims = €y 4 1yomy 1)) (Emimr = €omy 1)z 4 1))

c@ _ 10m 4 Dma — DIH Y mymy)|? . [{(m1 ~ Dz + DIHD mimy)|?

Thus, for the state with ¢©@ = 0,
) 1 i
@ 1( + ) -
NO-2) ©0-2)

For the state with ¢ = 2, M = +2; and similarly for M = —2,

Pl

ISE

6‘2):3‘*((2i4)+(2i4)):- "
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For the state with €@ = 5, m,, my = +2, ~1, M = +1 (similarly for the other
state with M = +1, and the two states with M = —1),

i |
@ _ 1 - 4L
€ _4((5—13)+(5~1)) ti

For states of type (2), we first diagonalize H'". For example, for the states with
€® =1, M = +1, the 2 x 2 matrix for (H) — WD) is

+10 0+1

F10 [~ ]
041 1~ )

with eigenvalues and eigenvectors, given by

eV =43 M =+1,(H) = (1+10)+10+ 1),

V=31 IM=+1()=5(+10) -0+ 1),

where, now,

mmy HOIM = +1, ()
@=3 mim) [ HIM = +1, (£))]

e (1-€9 ) ’ @
172y myny

and the primed sum excludes the states with €/ = 1. For the M = +1 state,

therefore, m)m/, can only take the values mm), = +2, —1 [with only the +10

piece of |M = +1(&)) contributing to the matrix element], and m\m}, = —1, +2,

[with only the 0 + 1 piece of |M = +1(&)) contributing to the matrix element].

Thus,

1 1

@ _ _
(1-35) 16’

1
142

12
+H:2—ﬁ|

with the same result for the two states with M = —1. The 2 x 2 matrix (HV —e)),
has exactly the same form for any pair of states of type (2), so €'V = +] for all
type (2) states. For states with €@ = 5, M = +3, we have
1 1 1 1 1
@) 2 2
€ = | | + |+ | = ——.
N R I R W LN IS S T
Finally, for states of type (3), the matrix for H' = UHU" with zeroth-order
basis states |mm,) and |(m; — 2)(m; + 2)) now has the matrix elements

m | H O \mymy) |2

0 0 ’
(e,(,,,)m2 — € ,)m:)

mny

(mymy|H' |mym;y) = Z

T
my

(myma|H'|(m) — 2)(ma + 2)) = ((my — 2)(ma + 2)|H'|mim3) =
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(muma| H O |(my — Dma + D) {(mi = D(ma + DIHD|(m) — 2)(m +2))

© © ’
(€mims = €4m, —1y(my+1)

,;<m;m;m<i>s(m1 — 2)(my + )
(€(0> (0) ) ’

myy m oy

{1 =2)(ma + 2| H'{(my = 2)(ma+2) = »

[
mlmz

@ _ 0
where the primed sums again exclude the states with € miom, = € ,(m)mz

For states with €@ = 2, M = 0, therefore, the matrix (H'® — ¢@) is

11 141
1 1 1 (2) 11
+]-—1 Z(Q——_+ZZ~_)_6() Zm
1 1 1 1 ] 2
-1+1 fe=) a5+ ) — €@

+1-1 —-141

i 2 1
+1—1(1—2‘—I€() : 3 2))
~1+1 L L

with eigenvalues and eigenvectors

5

€@ =7 IM=0H) = H(+ LD+ L+,
1

€¥=—rn  IM=0) =50+ 1L -1) — [~ 1,+1).

Finally, for type (3) states with € = 4and M = +2,(or M = —2), we also have
€? = +5/24, —1/24, with similar () eigenvectors.

Through second order, therefore, the five lowest zeroth-order energy states of
our problem are split into 11 energies, with

€=0— 127 ge =1,
e=1+4r— 7 xz g =2 with M = +1,
e:—.lw-k—%kl, 8 =2 with M = +1,

e=2-12% g =2 with M =42,

e=2+ 4% g.=1 with M =0 (+),

€ =2— 327, ge=1 with M =0 (-,

€ =4+ 17, g =72 with M =42,

€=4- 5% g =2 with M = +2,
e=5+1k— 2% g =2 with M =43,
e=5-1a—%2, g =2 with M =43,

€=5+54% ge=4 with (M =£1)% (5)

Although the matrix elements of our H(V were extremely simple in the {mm2)
basis, the method seems to be somewhat complicated because we had to pay
attention to the perturbation type. Note, We could have written, however, a general
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matrix for the transformed Hamiltonian, ' = U H U, for which the 2 x 2 matrix
for the general case would split into two 1 x 1 matrices for states of type (1) (see
c.g., the states withe'¥ = 5, M = +1). Also, by including the off-diagonal matrix
elements of H", the full 2 x 2 matrix for /' at once gives both the eigenvalues
through second order and the eigenvectors as the correct linear combination of the
zeroth-order state vectors. For example, for the most general case of type (2), the

. © :
2 x 2 matrix for (H' — €, ,, /1)) is

(my + Dmy my(m; + 1)

H— 01y = (my + Dm — A2 Ia
mi(m; + 1) I -t )
wherc we have used the fact that e,(,? I)(ml oy e(‘,‘;’] “lym 12y = —41s independent of

m1. The above matrix leads to the eigenvalues :t%k — %AZ, with eigenvectors
S (0my + Dmy) & my(my + 1)),

as seen in the special cases above.

Similarly, for the most general case of type (3), the 2 x 2 matrix for (H' —
)

Emym, 12)) 18

(mi +2my; my(m, +2)

(H' — cO1) = (m; + 2)m, +%)LZ %Az
mi(my +2) \ +gA? +547 )
h . () (] & ©
where we have used the fact that €, . o) — €, 1) 43, = —6and €,
e((,?,i {1y, 11y = +2, are both independent of m;. Diagonalization of this matrix

leads to eigenvalues, (1 =+ §)A%, with eigenvectors
imimy +2)) £ |(my + 2)m)),

as seen in the special type (3) cases above.
The general 2 x 2 matrix for (H' — ¢

miomy +n))» With r > 3, will factor into two
1 x 1 matriccs

(my +nmym, m(m, +n)

(my +nym, (-h%)»za%n 0 )

my(my + n) 0 +§A2(n?1_”

(H/ . 6(0)1) —

again in agrcement with our special case above, with 6(7034 > =3, withn =3.In

this case, the degeneracy is not removed through second order. The proper linear
combination of zeroth-order state vectors would be discovered only in higher order
of perturbation theory
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Alternative Method: Symmetry-Adapted Eigenfunctions

Although the diagonalization of the H’ matrices is extremely simple, the ques-
tion arises: Is there a simpler way of discovering the proper linear combination of
zeroth-order state vectors that would automatically reduce the problem to nonde-
generate perturbation theory. In general, degeneracies (unless “accidental”) arise
because of some underlying symmetry. Sometimes, of course, this symmetry may
be very sophisticated and not so easy to discover. Therefore, if we have used
the wrong coordinates for our Schrodinger equation (which are not “symmetry
adapted™), we may have missed some of the simplicity of the problem. Conversely,
if we start with symmetry-adapted or proper zeroth-order wave functions or state
vectors, the perturbation problem may be reduced to nondegenerate perturbation
theory, in spite of the degeneracies of the zeroth-order problem. In our simple
example, we have not at all made use of the fact that the perturbing potential is an
even function of the relative coordinate, (¢, — ¢»). It will therefore be useful to
transform from the “single-particle” coordinates, ¢, ¢, to the relative coordinate
(¢1 — ¢»), and a “center of mass” coordinate, ®, via the transformation

¢ = (¢1 — ¢, D = 1(d + o). (6)

‘We have made the Jacobian of this transformation equal to one. In the new variables,
the Schrodinger equation is

2

[— (2;52‘ + %821)2) -+ A cos qb}[/((b, D) = e (g, D), @))]
with zeroth-order solutions

v O, ) = Elj;e"'"“’e“”“’ and €@ =2m® + IM2. ®
From the inverse of the above transformation, we have

(M1 + mag) = 5(my — m2)p + (my + m)® = mg + M®. )]

Thus, m = %(m; — my) and M = (m, + my),
So now m=0+1 +1,+3 42, ... and M =0,+1,42,....

The above exponentials, ¢/™?, however, are not yet symmetry adapted. We need
to replace them with functions that are even or odd functions of ¢, viz., with

1 os .
Vi) = = for m=0. v (@) = "\/';“5 for m=14,1,3,2,...
sin mg
Vo) = = form =5 1,3,2,

(We have now restricted the quantum number m such that m > 0.) Because our
perturbing Hamiltonian is independent of &, it again conserves the quantum num-
ber, M. Because it is an even function of ¢, it cannot connect even functions to
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odd functions. The only non-zero matrix elements of H" are now, first form > 0,
but excluding cases for which (m — 1) < O:

((m + 1), even| HV|m, even) = ((m + 1), odd|H" |m, odd) =

1
{(m — 1), even| H"V|m, even) = ((m — 1), odd|H"|m, odd) = z (10)
The additional special cases are
(1, even|H"|0, even) = (0, even| H"'|1, even) = %,
(%, even]H(”I%, even) = +%,
(3,0dd|HV[3, odd) = —1. (1

All full matrix elements must be diagonal in M. Nondegenerate perturbation theory
now gives

€m=0.even, M — E(O) — %)\,2 + e,
m=}.even M = P+ %}L - %AZ 4.,
€m=Loddm = €@ —la— L.
€m=|.even.M = 6(0) -+ %)_2 e,
Em—toddm =€V — LA7 4.
Em=4.even M = @+ %Az(nz_n +.-- for n>3,

€m=2.0dd M = €O 4+ [11)\2("2'71) 4 ... for n > 3. (12)

€

In particular, the eigenvalue for m = 1 for the even case gets contributions from
off-diagonal elements with m = 0 missing for the odd case. It is also easy to show
that A% terms contribute only to the energies of states with m = § and m = 3,

with contributions F 33 A° for the even (odd) states with m = 1, but +-1-2% for

the even (odd) states with m = %

35. Anatom of mass M in a long complicated molecule is constrained to move on
acircle of radius, r,, but is essentially free to move on this circle, with Hamiltonian

B 82
21, 897"

HY = with I, = Mr2,

with zeroth-order energies and eigenfunctions

ﬁ2
EY =om’,  and  yP@)=

1 ime
€ s
2
withm = 0, £1, 2, .. .. If this free rotational motion is perturbed by a potential
of the form

ﬁz
V(¢) = Vycos(2¢), with Vy = AZI , and A 1,

e

find corrections to the energy good through order A2(:%/21,). Pay particular at-
tention to the |m| values that may require special treatment. [Footnote: In this
case, some |m| values belonging to cases (2) or (3) will exist. We could again
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have reduced all calculations to case (1) by making use of the symmetry of the
Hamiltonian to find proper symmetry-adapted zeroth-order wave functions.]

36. (a) For the hydrogen atom, Z = 1, find the perturbation corrections to the
energy to order, mc?a®, caused by the magnetic spin orbit, Thomas (l §) term,
and the relativistic mass correction to the kinetic energy, but no external magnetic
fields, as a function of n, [, j, and show

E r 5, 1 a2[ 1 , 3]1‘
= suctet| -5+ | b )
T pked nt  nl (j+%) 4n

that is, show the states with the same j but different / are still degenerate. Here,
« is the fine structure constant. Use the results of problem 18 1o get some of the
needed matrix elements. Show |rijm ;) are the proper zeroth-order states and use
these for the calculation. [Footnote: For the states with = 0, j = (I + %) = %,
your method of calculation may not be rigorously correct, because it will involve
a factor ({/I) = (0/0). The rigorous derivation of this case will have to wait for
Dirac theory, Chapter 74, and the SO- called Darwin term.]

The helium nucleus, unhke the proton, has no nuclear spin, hence, no nucledr
magnetic moment and no so-called hyperfine perturbation terms. In this case,
find the additional first-order energy perturbation caused by a uniform external
magnetic field, By, assumingficw; <« mc?e®. Forthe special case, n = 2, calculate,
in addition, corrections of order ¢iw,; )?/mcle®.

37. The perturbed hydrogen atom in stretched parabolic coordinates: Stark
effect.

In stretched parabolic coordinates, we showed in problem 6 (H©® — ¢)y = 0
can be rewritten as

2 1/ 18 om 173> 138 m?
(—2€)—5—7t =l =t - — —
(u? + v?y Bly wap  u? 4\3v?  vovy W2

2./(—2¢
———2“(- rrrrr —2)—6 ¥ = 0. hH
(u* +v?)
For the hydrogen atom perturbed by a uniform external electric field, £, we have
(u? — v ) eag
H=HY43z=H®  x——Z with A = ——
2./(=2¢)’ (me* hi?)

all in dimensionless units, so
(HO +2HD —e)yyr =0

becomes

(20—t 2 1(8_2+18 +m2 132+1a
(2 + v 4\0u?  udp 4u? 4\ 3v? v v
mz] 2./(=2¢)

4,2 (u? + v2)
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+AHWY —e)w =0. )
Show, from the results of problem 26, we can rewrite this as
1 (n?* +v?)
T+ Ty — +AHY 2 )y = 0, 3
( SV &5 220 )V ®
2 2 A 4 4
with  ag0W ) A mv) 4
2(—2¢) 4 (-2¢)2
To carry through the perturbation formalism, expand
1
e=c¥ el 422D 4= o f A F XD ()
1
1 - n
V26 V1= 2xn2e® Z 20 n%e® 1
=n 4+ eV + 22 [ne@® 4 %ns(e(”)z] +---, (6)
— = an® + A% 4 D
(—2¢)?

and show eq. (3) can be rewritten as
((T3 ST - n)+ k[%nB(u“ SN n3e<”] + Az[}‘(u“ — 1*)3ne®
— e — 3 ()] + - ) ('"(0)> + Aln®) + 22n®) - ) =0 ®
in analogy with the standard perturbation expansion
((H(O) _ Er(:O)) + X(H(]) _ E;(zl)) + )\2(H(2) _ E’(12)) 4 .. >
x (m“’)) + AjnY) + 2% n®) +) =0. 9)

In eq. (8), the notation |n¥) is shorthand for |mn;n,) (see problem 26) with
n=(m|+n +n+ 1)

Express ;(u* — v*) in terms of the operators, T3, 7., T, and 75, T, T”.

(a) Derive the expression for the first-order Stark energy

M= Znn, —ny).

2

(b) For the nondcgenerate ground state, withn = 1, (m = n; = ny = 0), find
the second-order Stark correction; i.e., calculate eflzz)[.

(¢) States with |m| = (n — 1) (arbitrary n) can also be treated by nondegenerate
perturbation theory, and find €'® for such states as a function of .
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[Footnote: The evaluation of E? by standard perturbation theory, using eq.
(1) in the conventional [n®) = |nim) basis, would have required an infinite sum
over discrete states with n’ £ n and an integral over the continuum states of the
hydrogen atom, even to obtain the simple ground state, n = 1, result of (b).]

38. The Stark effect in the hydrogen atom for degenerate levels (arbitrary n, m)
in stretched parabolic coordinates.

(a) Using the parallel between

HO - 1+ 1, EQ - n,

HO — Lu* —vhn?, EYN — nPell erc,,

found in problem 37, make the parallel of the unitary transformation U HU' = H',
such that the (n — |m/)-fold degenerate states for fixed n and m (taking m > 0
without loss of generality) are “unhooked” from states with n’ # n to within
second order in A (cf., Chapter 24).

(b) Show that sums such as

3

3 3 (m(ny + k)(ny — k)| HS mn' nb) (mn)nly | H 1mn )

ot
ny ny.n's#n (n n)

with & = +1, 42 are zero, so, effectively, to second order in A, we can get e,(12>
from the diagonal matrix elements of H/; in the |mn n,) basis. Note: In the above,

1 i :
He(ff, = 3(u* —vhn’,
(c) Calculate the Stark energy corrections, €, €2, as functions of m, n;, n,,

s Sp e

for an arbitrary excited state of hydrogen. In particular, show
E,(ll) = )\%n(nl - nz),

and

R

4
@ _ -Az%(sct(n% +n3 —ning) + 17(n; + ny) + 18

+17m(ny +ny + 1) + 4m? — 27(n, — nz)z),

or

@ on' 2 2 2
€ = —A E(Un —3(rn; —ny)" ~9m +l9).

n
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Angular Momentum Theory



27
Angular Momentum Coupling Theory

In the last chapter, we calculated (for the special case s = %) the transformation
coefficient (nimsm;|nlsjm;) = (nisjm;|nlmsm;)* from a basis |nimsm,) in
which L, and S, are diagonal, which was a good basis for the case in which the
external By field was the dominant perturbation, to the basis {nisjm ), the proper
basis in the limit By = 0 in which the (Z . 3‘) term is the dominant perturbation
and in which the operators (J - J) and J, are diagonal. This was a special case of
an important and common problem, met in many applications of quantum theory.

Given two commuting angular momentum operators, J; and J,, each with
standard angular momentum commutation relations, i.e., with

[, 2] = 0, and L
[Jo, Ju} = £Jy, [, J_1=2J, for both J;, J,. 1

We construct the coupled angular momentum vector
J =T+ 5, (2)

which also satisfies the standard angular momentum commutation relations of
eq. (1). We will often need to make the transformation from the | jim, j,m») basis,
where these are simultaneously eigenvectors of the four commuting operators

i-J), W) (BB, (W),

to the |j jzjm) basis, where these are simultaneously eigenvectors of the four
commuting operators

h-J), (h-dy, (-0, 1,
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The possible m values are

my=j, Gi—D, Gi—2), ... —J,
mp; = j2s (.]2 - 1)9 (.]2 - 2)v LRI _j21
m=j, (G-, G=-2), ..., =], 3)

where m is an additive quantum number
m = mj + mj. 4)

First, we need to find the possible j values for a given j;, j,. We shall name the j,
Jja, such that j, > j,. To find the possible values of j, we simply count the number
of occurences for each possible value of m.

The maximum possible m value is m = j, + j,, which can be made in only one
way, with m, = j; and my = j». Hence, one j value must exist with j = j; + j>.

There are two ways of making m = (j; + j» — 1); either with m| = j;, my =
(jz — 1), or with m; = (j1 — 1), ma = j». One linear combination of these two
states will be the state with j = j, + j, and m = (j, + j» — 1). The other linear
combination of these two states must be a state withm = j = (j; + j» — 1). Thus,
one j value must exist with j = (j; + j» — ).

There are three ways of making states with m = (ji + j» — 2), viz., with
mi, my = ji, (G2 —2), (1 — 1), (j2 — 1), or (ji —2), j». One linear combination of
these three states is needed to make the state with j = ji+ j,andm = (i + j»—2).
A second linear combination of these three states is needed to make the state with
j = (i + j»— Dandm = (ji + j» — 2). This leaves one linear combination
to make a single state with m = j = (j; + j» — 2), so one j value exists with
J=U1+j—2).

This process can be continued for k < 2j, (recall we chose j; > j»), so that
there are (k 4 1) ways of making states with m = (j; + j» — k). Of these, & linear
combinations are needed to make the states with this » value, but with one of the
allowed j values with j > (j; + j» — k), leaving but a single linear combination of
these states withm = j = (ji; +j» —k), so asingle j value exists with (j; + j» — k).

This process quits withk = 2j,. Fork > 2j, andm > 0, there are only 2j,+1)
ways of making the m value m = (j; + j, — k) withk > 2>, and all (2jo + 1)
independent linear combinations of these states are needed to make the states with
j = (ji — j2), so no new j values arise, with j < (j; — j2). Finally, symmetry
exists between the positive and negative m values.

Thus, the possible j values are

G +Jj) Gi+tip=0, Gi+tip—=2, ..., 1Gi~ i

with each j value occuring once only. The total number of states is

(itj2) k=22
S @it+b= ) RGi+i-k+1]
[Gr =721 k=0

. 2, + 1)2)
= @+ D2+ 2+ 1) — z(wiz—zl—’2

=2ji + D@2+ D), &)
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as it should be.

A General Properties of Vector Coupling Coefficients

We shall need the transformation coefficients of the unitary transformation

Liiajmy =Y Livmijama) (jimy jamal i j2jm), 6)
my.(m2)
where (jim, jomz| 1 jojm) is the unitary transformation matrix, which could be
written as,

Umlmz.jma

where the row label is given by mm,, and the column label is specified by jm.
We sum over both m, and m; in eq. (6), but m is fixed and because m = m; + my,
m; is determined by m; and m, so it gets “dragged along” in the sum. This is why
we have put m; in parentheses in the summation symbol. Because j; and j, is
common to both bases, the unitary transformation coefficient is often abbreviated
by

{(Jimy jama|jm).

It is known as a “Clebsch—Gordan coefficient,” or as a “Wigner coefficient,” or as
a “vector coupling coefficient.”” Slightly different notations are used by different
people. Other commonly used notations are {ji jammo|jm) (note the different
order of the labels in the left-hand side), or C,/%,, or several others.

The inverse of the above transformation, eq. (6), is in Dirac notation

Ljimijama) =Y | jrizim) G jaim] jimy jama), 0
J
where the summation is one over j only, because m is fixed by the fixed values of
m and m; and

{rizimljimy jama} = (U™ Y jmmm, = Unimg.jm)*
= {jimy joma|jy jajm)* = {jim omy|jm)*. (8

The Clebsch~Gordan coefficients can all be made real. (This is the “world” standard
to which everyone adheres!) Therefore, the complex conjugate sign is not needed
for the inverse transformation, and we can write the inverse transformation, in
terms of the Clebsch-Gordan coefficient notation, as

imyjama) =) "L jajm)jimy jama) jm). ©)
J

(From the point of view of the Dirac notation, the transformation coefficient appears
to have bra and ket inverted. This inversion is because we have made use of the
unitary property of this real transformation coefficient. We shall always write
the Clebsch—Gordan coefficient in the Dirac-like notation, but with the m,, m,
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labels always on the left!) Using the unitary property of this real transformation
coefficient, we get the: Orthogonality relations of the Clebsch—Gordan coefficients:

> Uvmyjamal jm) iy jama|j'm') = 815 8,
my.(my)

D Gima jomal jm) (i jom)| jmY = S Smomy. (10)
J

B Methods of Calculation

For j;, = %, we have already found one method: diagonalize the operator (fl -
fz) in the |jym, jym;) basis. For j, > 1, however, this method would lead to
a diagonalization of 3 x 3, 4 x 4,..., matrices. Hence, we shall look for better
methods. One of these methods involves recursion formulae for the Clebsch—
Gordan coefficients. We shall derive a recursion formula for the Clebsch—~Gordan

coefficients by acting on the state vector | j; j, jm) with the operator,

Jo= (Jl)+ + (J2)+s

Teljijpjmy = ) ((m++(Jz)+)|j1majzm’z><j1m’.jzm'z|jm>, an

my.(m5)

or

VU =m)( +m+ Dljijaj(m + 1)
= 3 (U= mGi+m) + Dl + 1) jams)

m.(m)

+ \/(jz = my)(ja2 + my + Dl jim) ja(m) + 1)))(jlm'|jzm'2|jm)- (12)

Now, expanding | j; j> j(m + 1)) on the left-hand side of this relation, and renaming
the dummy summation indices m|, m, = (m, — 1), m; in the first term of the right-
hand side, and making the change m/, m, = mi, (m, — 1) in the second term of
the right-hand side, we get

VG =—m)G+m+1) Z | jimy jama) (jim jama|j(m + 1))

my,(m3)
=y ljlm1j2m2)(\/(j1 —my + Dy +m)(ji(my — 1) joma| jm)
my,(m2)
+ VG2 — ma + D(ja +ma)(fimy ja(my — 1)|jm)). (13)

Now, with left-multiplication by a (j;m, jom;| with a specific, fixed m, and m,,
this equation is converted to the recursion relation, as follows.

Recursion Formuia I:

VUG = my)(j +m+ D{im jama|j(m + 1)
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= /(i + m)(1 — my + D{jimy — 1) jama] jm)

+ (o + m) (2 — ma + D{jim, jalmy — 1) jm). (14)
For states with m = j, this three-term recursion formula is reduced to a two-term
recursion formula, which leads to

Uil = Djmalji) ‘/(jz + m)(ja — my + 1)

(imyjama = DIy~ Y Gi+m)Gi —mi + 1)

(15)

We can use this successively, starting withm; = jj, and, hence, m; = j — j; + 1,
to relate
(Jimy jalmy = j —mljj) to (Jvjrj2G = Joljis

and, thus, get

(himy (J —m)ljj)

{(Jijvi(J = J)liA)
[t =i+ Dt =i+ D Gatj —m)

2@ ~D (i +m+ 1)
[Go=j+ )=+ ji =1 Ga—j+m +1)
1-2--(j1 —my)

— (__l)jl_ml

_ ; - L — % i ; |
= (~1)m (J'z + i "?1) ({& J + 1) .(11 fm1) _ (16)
2+ 7=t o — J+m) 211G —my)!
Now we can calculate |{j, /) j2(j — ji)|jj}| by using the orthonormality
D Wiim G = m)lj P = 1. a”n
To do the sum, we will need an addition theorem for binomial coefficients
Z(a +m)b—m)!  (@a+b+ Dia—c)lb—d)! (18)

c+m)id—m)!  (c+da+b—c—d+ D

"y

Because this relation will only give us the absolute value of the starting coefficient
(j1j172(j — i) jJ), its phase must be chosen. The choice universally accepted, the
so-called Condon and Shortley phase convention, is the following: This starting
coefficient is chosen to be real and positive. Then,

/ 2j102j + 1)
VUi +a+i+DG—a+nY

i i(G = ol = (19
and, finally,
(Jimija(j — m)ljj) = (1) 7" x

\/ Ui+ m)lGa + J — mOWGr + ja — DIRJ + 1)!

Ur = mOle — J +m)Wa — ji + D = j2 + DG+ J2 + 7+ DY
(20
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Now we need to calculate coefficients with m < j. We can accomplish this by
deriving a recursion formula that steps down in m. By repeating the steps of eqs.
(11)~(14) by acting on the coupled state |j, j, jm) with the step-down operator
J- = (J1)- + (J2)-, we arrive at the analogue of eq. (14) as follows.

Recursion Formula II:

VU +m)(j —m + D(jim, omy| jim — 1))
= VUi = mDGr +my + D{i(my + 1) jama| jm)
+ V(o = ma)(jo + my + D{(jimy jo(my + 1)] jm). (21)

Repeated application of this recursion formula II will give us the coefficients with
arbitrary m, starting with the known coefficient with m = j. In practice, the most
widely used tables are those in which one of the angular momenta is reasonably
small, say, j, = %, 1, %, 2. (See problem 39.) To calculate some of these it will be
useful to first study the symmetries of the Clebsch—-Gordan coefficients.
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Symmetry Properties of
Clebsch—Gordan Coefficients

Clebsch—Gordan coefficients in which the three angular momenta, j;, j, and
J = J3, are reordered may be simply related to each other. The most trivial case
involves the exchange of the order of the quantum numbers, jim; and j;m;. The
state vector | fymt jams) is a direct product of two vectors involving separate sub-
spaces of the full Hilbert space, or in terms of the coordinate representation, the
wave function ;. ¥ ;,m, is a product of functions involving different variables.
For example, ¥ ,,, might be a function of orbital variables and ,,,, might be
a function of spin variables. Thus, the product of these two functions should not
depend on the order in which we write the two functions. Therefore, when we ex-
pand this product function in terms of the total angular momentum eigenfunctions
W; ;, jm, the result must be independent of the order in which we write the original
product function, ¥, ¥ j,m, , OF W jym, ¥, m, » With the possible exception of an over-
all phase factor. This phase factor comes in because our phase convention fixing
the overall sign of the Clebsch-Gordan coefficients gives preference to the angular
momenta sitting in the number 1 and number 3 positions of the Clebsch—Gordan
coefficient. Thus, (j; j| jama| j3 j3} must be positive by our phase convention. Sim-
ilarly, {j2 j2 jim,| j3 j3) must also be positive. On the contrary, the Clebsch-Gordan
coefficient (jim, jijz2]j3/3) has the sign (—1)/ ™" with m; = j3 — j». Hence,
its sign is (—1)/*J27 5, Thus, the coefficients in which the order of j; and j, is
exchanged will differ by this phase factor for all possible m’s. Thus, we have our
first symmetry property:

{jim) pma| jams) = (= 1)/ 25 omy jimy | jams). 4y
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Next, if we rearrange the vector addition equation,
L+ D=1, @)
to read
= F =1, 3)

we can see that the Clebsch—Gordan coefficient {j;m jom;| jzms) must be related
to the coefficient (jimsj, — my|jim;). In particular, if we make the substitution
Jjim <> jamjy and my — —my in recursion formula I (or II), we obtain recursion
formula IT (or I), provided the transformed coefficients are related to the original
ones via a phase factor proportional to (—1)™ and an m-independent factor; i.e.,
we expect

(jimy jama| jams) = (=)™ K (j1, j2, J3){jamajy — ma| jimy), 4

where K(ji, j2, j3) is the m-independent overall factor. This factor can be
determined via the orthonormality of the Clebsch—Gordan coefficients

3 Kimijamaljsma)P =Y 1= Qjs+ 1)

my my.(mz) ms
=3 Y 1K, o )PHGamada = maljimi) P =Y K Gt jas 531
my m3,(m3) my
= (2ji + DIK(, jo, J3)I% ®)
Thus,

o N TS
KUy, jo j3) = (— 1)) %’ 6)

where the j;-dependent phase ¢ can be determined because the coefficients with
both m; = j; and m3 = j; and hence m; = j3 — j, must both be positive, and
hence ¢ = j; — j3. Thus, we get a second symmetry property

o R TS .
Umuhmﬂnmﬁ=(—n““+ﬂ/%§:jﬂthz—MﬂhMQ- )

By combining this symmetry property with the first one, (1 < 2) exchange, we

get
Lo my | C D N
(jimy jama| jyms) = (= D+ 22%3“1—1)(]2 — majamsz|jim,). ¥
l

This process is a cyclic exchange of the type 123 — (—2)31. If we follow this
by the cyclic exchange (—2)31 — (—3)1(—2) and subsequently by the cyclic
exchange (—3)1(—2) — (—1)(—2)(—3), we obtain

(imy jama| jams) = (=D 2B G my o — mol 3 — m3), )
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where we have used the identity j, +m + jo +mo+ j3+ms = 1+ jo + j3+2ma,
and j| + jo + js +2ms = ji + j» — ja+ even integer, because 2 j; + 2m; is always
an even integer. (Either j; and mj3 are both integers or are both %—integers.)

We have now derived several symmetry properties, involving interchanges such
as 123 — 213, or cyclic interchanges such as 123 — (—2)31, or changes of
sign in all m’s, 123 — (—1)(—2)(—3). Twelve such symmeftry properties exist
altogether. These properties are much easier to remember by introducing the 3-j
symbol, defined by

J J2 &) (—l)jl—jz+rn3 ) . .

(ml oy —m3) - W(]lmihmzlhma)- (10)
This 3-j symbol has the following symmetry properties: The 3-j symbol is in-
variant under any even permutation of columns. The 3-j symbol changes sign by
the factor (—1)/'+/~15 ynder either an odd permutation of columns or under the
transformation m; — —m; foralli = 1,2, 3,

Although the symmetry properties are easier to remember in terms of the 3-j
symbol, this symbol does not have simple orthonormality properties. The orthonor-
mality relations for the Clebsch-Gordan coefficients are so useful most authors
prefer to use the Clebsch-Gordan coefficients.

References: several little books on angular momentum coupling in quantum
mechanics exist: (1) D. M. Brink and G. R. Satchler. Angular Momentum. Oxford:
Clarendon Press, 1968; (2) M. E. Rose. Elementary Theory of Angular Momentum.
New York: John Wiley, 1957; (3) A. R. Edmonds. Angular Momentum in Quantum
Mechanics. Princeton University Press, 1974,

Tables: The 3-j and 6-j Symbols. M. Rotenberg, R. Bivins, N. Metropolis, and
I. K. Wooten. Cambridge, Mass.: MIT Press, 1959. Tables of Clebsch-Gordan
Coefficients, Peking: Science Press, 1965.

TABLE 28.1. (jim, $my|jm)

T T

j= my = +§ g o= -

. 1 Gt ) Gr-m+ by
U \/ D) \/ @i+
| e D /(jwm%)
JiT g y @i |y Tein

TABLE 28.2. {jm, 1m,|jm)

j: m;:—H mg:O ﬂ‘lzz—l
P41 Urtm)im+ D) Gr=m+ 1) tm+1) G =—m)(j =m+1)
J1 GG TSR] TG
: _fGmemt m G =m tm+1)
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The most useful Clebsch—Gordan coefficients are those in which one of the an-
gular momenta, say, j,, are small. Such coefficients, with j, < 4, can be found
in general algebraic form in the last reference (Peking: Science Press, 1965).
Coefficients with j, = % and j, = 1 are appended.
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Invariance of Physical Systems Under
Rotations

Before going further with our study of angular momentum, it will be advantageous
to study the general behavior of physical systems under rotations in our 3-D space.
If a state vector which describes the state of a physical system is specified by |},
the state vector for the rotated system will be specified by |0 ) = R|¥). (We use
the subscript, rot., in place of a prime, which is often used for the rotated state,
because primes are also often used on quantum labels.) The operator, R, is the
operator that rotates the system. Recall from the theory of translation operators,
two possible points of view exist for such operators: (1) The active point of view,
in which R is used fo rotate the system. (2) The passive point of view, in which
the system is left unchanged and R is used to rotate the coordinate system (in the
opposite sense) to view the system from a rotated reference frame. We shall use
the active point of view in this chapter.
The operator R is a linear, unitary operator:

RU=FR, Q)

Ry} + Aal2)) = A(R[Y)) + Aa(R]2). )

Also, note the following properties.

LI [Y) = [Yo) = R|Y). then (Y| = (Yol = (YIR".  (3)

2. If [x)= O, then |xwo) = Rlx) = ROR'(R|Y)),
$0 Op = ROR'. (4)
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If[R, O] = 0, then O, = O, and if O is hermitian, O, is hermitian. Also, if
{x|¥) are observable amplitudes, then

3.0 (e lWio) = (XIR'RIV) = (x¥). )
Matrix elements of operators are also invariant:
4. {*rot.| Oror [¥ror) = (X [O]¥). 6
Relations among operators are preserved under rotations:
5. If [A,Bl=iC, then [Aror, Brorl = iCror.. @)

A Rotation Operators

We shall begin by studying a single-particle system and assume for the moment
that the particle has no spin. We shall construct the rotation operator for a rotation
through an angle, «, about a specific axis. We shall also take the z axis of our
coordinate system along the direction of the rotation axis. Then, in analogy with

[

the translation operator, 7 = ¢ #“'Px, we shall try
RZ(O!) = e*;%UlL;phys. —_ e*iaL:’ (8)

where we have converted the physical angular momentum operator (z component)
into the dimensionless L. in the last step. To study the action of R, () on a general
[¥r), expand [¢) in terms of angular momentum eigenfunctions.

1) =Y _lnlm) (nlm|y) or
nlm
FlY) = ¥(r,0,¢) = ) _(Flnlm)(nlm|y)
0,6 o
= R, m —==Cnim- 9
%ﬂ:z(r)z()\/z—”w )
Then,
W) = RIY) = Y e “inlm) (nlm|y) = Y e~ “" |nlm) (nlm|yr)
nim nlm
Flion) = Yoo 0. 0) = 3 Rus(r)@pm(@)ei = i 10
or (Fl¥ro) = Yo (2 6, $) 21"; {(F)Oim(0)e Yo (10)
Thus,
wrot.(rv 9’ ¢) - l”(r’ 6, ¢rot.) - l//(rv 67 ¢ - a) (11)

We see (Fig. 29.1), if the original ¥ (r, 8, ¢) has a maximum at some angle ¢ = ¢y,
the rotated wave function, ¥, , has a maximum where (¢ — ) = ¢, that is, where
¢ = ¢ + «. In other words, the physical system has been rotated in the positive
sense through an angle «. Note: The prime is often used to designate ¢ , i.e.,
. = ¢’ = (¢ — @), and note the last minus sign.
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Pred=7|Pp>

| (rog) =<F|R|P>

7

/ g
T VO
-~

FIGURE 29.1. The rotation operation, e~'*%z,

Next, we shall look at a single-particle system, but now we assume the particle
is a spin %—particle, like the electron. Because spin and orbital operators commute,
we shall try

R = R R, (12)
with

Rs(a) = e™'*% = ¢715%%, (13)
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Now, using 6 = |, we get

Rs(@) = cos(=) x 1 — i sin(= 4
s{a) = COS(E) x1—i Sln('i)ozv (14)
or
e”is 0
RS(a) - ( 0 e+[% ) 3 (15)
leading to
()t = Rs(@)o, Ri(@) = o, (16)

because Rs commutes with o,. Similarly,

e 0 0 1\[/e"s5 0
(Ux)rol. = ( 0 e+[*§) (1 0) ( 0 e—i% ) . (17)

Carrying out the maitrix multiplication, this equation leads to

(G o, = COS @ ((1) (])) 4 sina (+O, Bl) ’ a8)
or
(00 )ror. = cOs o, + sinaay, 19)
and, similarly,
(0y)ror. = — sinao, + cosaa,. (20)

Thus, the rotation operator Rs(c) rotates the & vector properly. Note: This & vector
is part of the physical system. Finally, if we combine the orbital and spin operators,
we get

R(a) = Rp(a)Rs(e) = e 1@l — gmiaks 1)

for a single particle with spin. The generator of the rotation about an axis is the
component of the total angular momentum operator along that axis. This result
holds equally well for a many-particle system or any general system, provided J,
is the z component of the fotal angular momentum vector.

B General Rotations, R(a, B, v)

The most general rotation will be parameterized by the three Euler angles, «, 8,
and y, and will be built from the three successive rotations as follows.

The first rotation through the angle o about the original space-fixed z axis will
take the (x, v, z) coordinate system to a rotated (x, y,, z;) system, with z;, = z.

The second rotation through an angle 8 about the new y; axis will take the
(xy, ¥1, z1) coordinate system to a new (x,, y,z;) system, with y, = y;.

The third rotation through an angle y about the z, axis will take the (x5, y2, z2)
coordinate system to the final rotated (x’, ', 7’) system, with 7’ = z;.
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We shall think of the coordinate systems as being attached to our physical system.
Thus, the general rotation can be expressed through

Ra, B, y) = e V7 g7 Bhi gmio):, (22)

where this is not a very handy form because the three generators of the unitary
transformations, R(a), R(B), and R(y), are expressed in terms of angular momen-
tum components along three different coordinate systems. Using O, = ROR’,
however, and noting the operator J,, is reached from J, via the rotation R(e), we
have

e—iﬁ‘])! — R(a)e_iﬁ“’> R(a)T — e*ia.lle—iﬁl)e+ia.l':w (23)

Similarly, noting the operator J» = J,, is reached from J,, via the rotation R(8),
we have

e " = R(B)e™ " R(BY'. 24
Thus, we can write
R(e, B, y) = R(P)e™ "2 R(BY ' R(B)e ™™ = R(B)e Ve ™" (25)

Now, noting J,, = J;, the two rotation operators on the extreme right cormmute
with each other, and we can write

R(e, B,y) = e P Ri@)e " = R@)e ™ R@) ' R@)e™ =, (26)
This process leads to the final result,
R@. B y) = e7ioh e g v, @

Now, all generators are expressed with respect to components along the original
axes, but seemingly the order of the rotations is “backwards,” we start on the right
with the y rotation, followed by 8, and last the ¢-term.

C Transformation of Angular Momentum Eigenvectors
or Eigenfunctions

Having derived a useful expression for the most general rotation operator, we can
now give an expression for a rotated state vector that is an eigenvector of both J?
and J, (and other operators commuting with these two), in terms of the original
eigenvectors of this type
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