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Preface to the First Edition

The attempt to understand the physics of the structure of stars and their change in

time – their evolution – has been bothering many physicists and astronomers ever

since the last century. This long chain of successful research is well documented

not only by numerous papers in the corresponding journals but also by a series of

books. Some of them are so excellently written that despite their age they can still

be recommended and not only as documents of the state of the art at that time.

A few outstanding examples are the books of Emden (1907), Eddington (1926),

Chandrasekhar (1939), and Schwarzschild (1958). But our science has rapidly

expanded in the last few decades, and new aspects have emerged which could not

even be anticipated, say, 30 years ago and which today have to be carefully explored.

This does not mean, however, that our ambition is to present a complete account

of the latest and most refined numerical results. This can well be left to the large

and growing number of excellent review articles. This book is intended rather to

be a textbook that will help students and teachers to understand these results as far

as possible and present them in a simple and clear manner. We know how difficult

this is since we ourselves have tried for the largest part of our scientific career to

understand “how the stars work” – and then to make others believe it. In these

attempts we have found that often enough a simplified analytical example can be

more helpful than the discussion of an exceptionally beautiful numerical solution.

Therefore we do not hesitate to include many simple considerations and estimates, if

necessary, even at the expense of rigour and the latest results. The reader should also

note that the list of references given in this book is not intended to represent a table

of honour for the (known and unknown) heroes of the theory of stellar structure; it is

merely designed to help the beginner to find a few first paths in the literature jungle

and presents those papers from which we have more or less randomly chosen the

numbers for figures and numerical examples (There are others of at least the same

quality!).

The choice of topics for a book such as this is difficult and certainly subject

to personal preferences. Completeness is neither possible nor desirable. Still, one

may wonder why we did not include, for example, binary stars, although we are

obviously interested in their evolution. The reason is that here one would have had

vii



viii Preface to the First Edition

to include the physics of essentially non-spherical objects (such as disks), while

we concentrate mainly on spherical configurations; even in the brief description of

rotation the emphasis is on small deviations from spherical symmetry.

This book would never have been completed without the kind and competent

help of many friends and colleagues. We mention particularly Wolfgang

Duschl and Peter Schneider who read critically through the whole manuscript;

Norman Baker, Gerhard Börner, Mounib El Eid, Wolfgang Hillebrandt,

Helmuth Kahler, Ewald Müller, Henk Spruit, Joachim Wambsganß, and many

others read through particular chapters and gave us their valuable advice. In fact it

would probably be simpler to give a complete list of those of our colleagues who

have not contributed than of those who helped us.

In addition we have to thank many secretaries at our institutes; several have left

their jobs (for other reasons!) during the five years in which we kept them busy.

Most of this work was done by Cornelia Rickl and Petra Berkemeyer in Munich

and Christa Leppien and Heinke Heise in Hamburg, while Gisela Wimmersberger

prepared all the graphs. We are grateful to them all.

Finally we wish to thank Springer-Verlag for their enthusiastic cooperation.

Munich and Hamburg Rudolf Kippenhahn

December 1989 Alfred Weigert



Preface to the Second Edition

Twenty years after its first publication, this textbook is still a major reference for

scientists and students interested in or working on problems of stellar structure and

evolution. But with the incredible growth of computational power, the computation

of stellar models has to large extent become a standard tool for astrophysics. While

the early computations were restricted to single choices for mass, compositions and

possibly evolutionary stage, by now models for the whole parameter space exist. The

first edition of this book was restricted to a few examples for low- and intermediate-

mass star evolution and lacked the broader view now being possible. There are even

semi-automatic stellar evolution codes that may be used remotely via the Internet.

However, stellar evolution programs should not be used without a thorough

understanding of the stellar physics. Therefore, a textbook concentrating on the

foundations of the theory and explaining in detail specific phases and events in the

life of a star is very much needed to allow scientifically solid modelling of stars.

This is the reason why this book deserved a second edition.

Much to our regret, A. Weigert passed away two years after publication of the

first edition. He left a gap that cannot be filled. Given the above mentioned need for

a second edition and the requirement to add up-to-date stellar models, it was decided

to have A. Weiss join R. Kippenhahn in preparing the new edition.

The two authors of this book came to discriminate between the eternal truth

and the mutable parts. The latter ones refer to the current state of modelling and

knowledge obtained from numerical models and their comparison to observations.

Such chapters were updated, extended, or added. As far as possible, the stellar

models shown were specifically calculated for this purpose, with the present, much

evolved version of the original code by Kippenhahn, Weigert, and Hofmeister. The

numerical results are therefore much more homogeneous and consistent than in the

first edition.

The eternal truth concerns the aforementioned basic physics and their under-

standing. These parts of the book have been left almost untouched, since the authors

(and those readers who were consulted) did not see any reason to change them.

The authors are indebted to many friends and colleagues who gave their advice

or comments, with respect to both necessary changes and the new text passages.
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The support of Santi Cassisi, Jørgen Christensen-Dalsgaard, Wolfgang Hillebrandt,

Thomas Janka, Ralf Klessen, Ewald Müller, Hans Ritter, Maurizio Salaris, and

Helmut Schlattl was essential for us.

We are also very grateful to all those colleagues who very generously provided

their own data to help filling gaps that we could not fill with our own models.

They were (again in alphabetical order) Leandro Althaus, Isabelle Baraffe, Raphael

Hirschi, Marco Limongi, Marcelo Miller Bertolami, Aldo Serenelli, and Lionel

Siess. Needless to say, their data also came with much wanted and helpful advice

and sometimes fruitful scientific discussions about details of the models.

Norbert Grüner’s help in the difficult task of generating a useful index is

acknowledged, too.

Last, but not least, we thank Mrs. Rosmarie Mayr-Ihbe, who designed, corrected,

and improved the many figures that we added to this second edition.

Garching Achim Weiss

February 2012
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Part I

The Basic Equations



Chapter 1

Coordinates, Mass Distribution,

and Gravitational Field in Spherical Stars

1.1 Eulerian Description

For gaseous, non-rotating, single stars without strong magnetic fields, the only

forces acting on a mass element come from pressure and gravity. This results

in a spherically symmetric configuration. All functions will then be constant on

concentric spheres, and we need only one spatial variable to describe them. It seems

natural to use the distance r from the stellar centre as the spatial coordinate, which

varies from r D 0 at the centre to the total radius r D R at the surface of the star.

In addition, the evolution in time t requires a dependence of all functions on t: If we

thus take r and t as independent variables, we have a typical “Eulerian” treatment

in the sense of classical hydrodynamics. Then all other variables are considered to

depend on these two, for example, the density % D %.r; t/:

In order to provide a convenient description of the mass distribution inside the

star, in particular of its effect on the gravitational field, we define the function1

m.r; t/ as the mass contained in a sphere of radius r at the time t (Fig. 1.1). Thenm

varies with respect to r and t according to

dm D 4�r2%dr � 4�r2%v dt: (1.1)

The first term on the right is obviously the mass contained in the spherical shell of

thickness dr (Fig. 1.1), and it gives the variation of m.r; t/ due to a variation of r at

constant t; i.e.

@m

@r
D 4�r2%: (1.2)

1In most textbooks our function m.r; t/ is denoted by Mr :

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 1, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1 The variation of m

with r at a fixed moment

t D t0. The quantities dm and

dr are connected by (1.2)

Since it is preferable to describe the mass distribution in the star by m.r; t/

(instead of %), (1.2) will be taken as the first of our basic equations in the Eulerian

description.

The last term in (1.1) gives the (spherically symmetric) mass flow out of the

sphere of (constant) radius r due to a radial velocity v in the outward direction in

the time interval dt:
@m

@t
D �4�r2%v : (1.3)

The partial derivatives in the last two equations indicate as usual that the other

independent variable .t or r) is held constant.

Differentiating (1.2) with respect to t and (1.3) with respect to r and equating the

two resulting expressions gives

@%

@t
D � 1

r2
@.%r2v/

@r
: (1.4)

This is the well-known continuity equation of hydrodynamics, @%=@t D �r � .%v/,
for the special case of spherical symmetry.

1.2 Lagrangian Description

It will turn out that, in the spherically symmetric case, it is often more useful to

take a Lagrangian coordinate instead of r , i.e. one which is connected to the mass

elements. The spatial coordinate of a given mass element then does not vary in time.

We choose for this coordinate the above defined m: to any mass element, the value
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m (which is the mass contained in a concentric sphere at a given moment t0) is

assigned once and for all (see Fig. 1.1).

The new independent variables are then m and t; and all other variables are

considered to depend on them, for example, %.m; t/: This also includes the radial

distance r of our mass element from the centre, which is now described by the

function r D r.m; t/. Since there is certainly no singularity of % at the centre, we

have here m D 0, while the star’s total mass m D M is reached at the surface

(i.e. where r D R/: This already shows one advantage of the new description

for the (normal) case of stars with constant total mass: while the radius R varies

strongly in time, the star always extends over the same interval of the independent

variable m W 0 � m � M: Although real stars do lose mass, for example, by stellar

winds or due to gravitational interaction in binary systems, over short timescales the

assumption of constant mass is justified nevertheless. In any case, the range of m

never changes by more than a factor of a few.

As just indicated, there will certainly be no problem concerning a unique

one-to-one transformation between the two coordinates r and m: We then easily

find the connection between the partial derivatives in the two cases from well-known

formulae. For any function depending on two variables, one of which is substituted

by a new one (r; t ! m; t), the partial derivatives with respect to the new variables

are given by

@

@m
D @

@r
� @r
@m

;

�
@

@t

�

m

D @

@r
�
�
@r

@t

�

m

C
�
@

@t

�

r

: (1.5)

Subscripts indicate which of the spatial variables (m or r) is considered constant.

Let us apply the first of (1.5) tom. The left-hand side is then simply @m=@m D 1,

and the first factor on the right-hand side is equal to 4�r2%, according to (1.2). So

we can solve for the last factor and obtain

@r

@m
D 1

4�r2%
: (1.6)

This is a differential equation describing the spatial behaviour of the function

r.m; t/. It replaces (1.2) in the Lagrangian description and shall be the new first

basic equation of our problem.

Introducing (1.6) into the first equation (1.5) gives the general recipe for the

transformation between the two operators:

@

@m
D 1

4�r2%

@

@r
: (1.7)

The second equation (1.5) reveals the main reason for the choice of the

Lagrangian description. Its left-hand side gives the so-called substantial time
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derivative of hydrodynamics. It describes the change of a function in time when

following a given mass element, for example, the change of a physical property

of this mass element. The conservation laws for time-dependent spherical stars

give very simple equations only in terms of this substantial time derivative. In

terms of a local time derivative, .@=@t/r , the description would become much more

complicated since the “convective” terms with the velocity .@r=@t/m [corresponding

to the first term on the right-hand side of the second equation (1.5)] would appear

explicitly.

1.3 The Gravitational Field

It follows from elementary potential theory that, inside a spherically symmetric

body, the absolute value g of the gravitational acceleration at a given distance r

from the centre does not depend on the mass elements outside of r . It depends only

on r and the mass within the concentric sphere of radius r , which we have calledm:

g D Gm

r2
; (1.8)

whereG D 6:673�10�8 dyn cm2 g�2 is the gravitational constant. So the gravitating

mass appears only in the form of our variablem:

Generally, the gravitational field inside the star can be described by a gravita-

tional potential ˚ , which is a solution of the Poisson equation

r
2˚ D 4�G%; (1.9)

where r
2 denotes the Laplace operator. For spherical symmetry this reduces to

1

r2
@

@r

�
r2
@˚

@r

�
D 4�G%: (1.10)

The vector of the gravitational acceleration points towards the stellar centre and may

in spherical coordinates be written as g D .�g; 0; 0/with 0 < g D jgj. It is obtained

from ˚ by the vector relation g D �r˚ , where in our spherically symmetric case,

only the radial component is non-vanishing:

g D @˚

@r
: (1.11)

With (1.8), (1.11) becomes
@˚

@r
D Gm

r2
; (1.12)
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Fig. 1.2 Gravitational

potential and vector of

gravitational acceleration

(dashed) in a spherically

symmetric star

which is indeed a solution of (1.10), as is easily verified by substitution. The

potential then becomes

˚ D
Z r

0

Gm

r2
dr C constant: (1.13)

Unless otherwise mentioned we will fix the free constant of integration in such a

way that ˚ vanishes for r ! 1. ˚ has a minimum at the stellar centre. Figure 1.2

shows schematically the function ˚.r; t/ at a given time.



Chapter 2

Conservation of Momentum

Conservation of momentum provides the next basic differential equation of the

stellar-structure problem. We will derive this in several steps of gradually increasing

generality. The first assumes mechanical equilibrium (Sect. 2.1), the equation of

motion for spherical symmetry follows in Sect. 2.4, while in Sect. 2.5 even the

assumption of spherical symmetry is dropped. In Sect. 2.6 we briefly discuss general

relativistic effects in the case of hydrostatic equilibrium.

2.1 Hydrostatic Equilibrium

Most stars are obviously in such long-lasting phases of their evolution that no

changes can be observed at all. Then the stellar matter cannot be accelerated

noticeably, which means that all forces acting on a given mass element of the star

compensate each other. This mechanical equilibrium in a star is called “hydrostatic

equilibrium”, since the same condition also governs the pressure stratification, say,

in a basin of water. With our assumptions (gaseous stars without rotation, magnetic

fields, or close companions), the only forces are due to gravity and to the pressure

gradient.

For a given moment of time, we consider a thin spherical mass shell with (an

infinitesimal) thickness dr at a radius r inside the star. Per unit area of the shell, the

mass is % dr, and the weight of the shell is �g% dr. This weight is the gravitational

force acting towards the centre (as indicated by the minus sign).

In order to prevent the mass elements of the shell from being accelerated in this

direction, they must experience a net force due to pressure of the same absolute

value, but acting outwards. This means that the shell must feel a larger pressure Pi

at its interior (lower) boundary than the pressure Pe at its outer (upper) boundary

(see Fig. 2.1). The total net force per unit area acting on the shell due to this pressure

difference is

Pi � Pe D �@P
@r

dr: (2.1)

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 2, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 2.1 Pressure at the

upper and lower border of a

mass shell of thickness dr,

and the vector of gravitational

acceleration (dashed) acting

at one point on the shell

(The right-hand side of this equation is in fact a positive quantity, since P decreases

with increasing r .) The sum of the forces arising from pressure and gravity has to

be zero,

@P

@r
C g% D 0; (2.2)

which gives the condition of hydrostatic equilibrium as

@P

@r
D �g%: (2.3)

This shows the balance of the forces from pressure (left-hand side) and gravity

(right-hand side), both per unit volume of the thin shell. Equation (1.8) gives

g D Gm=r2 so that (2.3) finally becomes

@P

@r
D �Gm

r2
%: (2.4)

This hydrostatic equation is the second basic equation describing the stellar-

structure problem in the Eulerian form (r as an independent variable).

If we take m as the independent variable instead of r , we obtain the hydrostatic

condition by multiplying (2.4) with @r=@m D .4�r2%/�1; according to (1.5) and

(1.6):

@P

@m
D � Gm

4�r4
: (2.5)

This is the second of our basic equations in the Lagrangian form.

2.2 The Role of Density and Simple Solutions

We have dealt up to now with the distribution of matter, the gravitational field, and

the pressure stratification in the star. This purely mechanical problem yielded two

differential equations, for example, with m as independent variable (a choice not

affecting the discussion),
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@r

@m
D 1

4�r2%
;

@P

@m
D � Gm

4�r4
: (2.6)

Let us see whether solutions can be obtained at this stage for the problem as stated

so far.

We have only two differential equations for three unknown functions, namely

r; P; and %. Obviously we can solve this mechanical problem only if we can express

one of them in terms of the others, for example, the density % as a function of P . In

general, this will not be the case. But there are some exceptional situations where %

is a well-known function of P and r or P andm. We can then treat the equations as

ordinary differential equations, since they do not contain the time explicitly.

If such integrations are to be carried out starting from the centre, the difficulty

occurs that (2.6) are singular there, since r ! 0 for m ! 0, though one can easily

overcome this problem by the standard procedure of expansion in powers of m; as

given later in (11.3) and (11.6).

A rather artificial example that can be solved by quadrature is % D %.m/; in

particular % = constant in the homogeneous gaseous sphere.

Physically more realistic are solutions obtained for the so-called barotropic case,

for which the density is a function of the gas pressure only: % D %.P /: A simple

example would be a perfect1 gas at constant temperature. After assuming a value

Pc for the central pressure, both equations (2.6) have to be solved simultaneously,

since %.P / in the first of them is not known before P is evaluated.

As we will see later (for instance, in Sects. 19.3 and 19.8), there are also cases

for which no choice of Pc yields a surface of zero pressure at finite values of r . In

the theory of stellar structure there is even a use for these types of solution.

Among the barotropic solutions is a wide class of models for gaseous spheres

called polytropes. These important solutions will later be discussed extensively

(Chap. 19). Barotropic solutions also describe white dwarfs, i.e. stars that really

exist (Sect. 37.1).

But in general the density is not a function of pressure only but depends also on

the temperature T: For a given chemical composition of the gas, its thermodynamic

behaviour yields an equation of state of the form % D %.P; T /: A well-known case

is that of a perfect gas, where

% D �

<
P

T
(2.7)

with the gas constant < D 8:315 � 107 erg K�1 g�1 (which we define per g instead

of per mole), while � is the (dimensionless) mean molecular weight, i.e. the average

number of atomic mass units per particle; in the case of ionized hydrogen, � D 0:5

(see Sect. 4.2).

1Throughout this book we will use the terms perfect and ideal gas synonymously, as they describe

the same physical concept.



12 2 Conservation of Momentum

Once the temperature appears in the equation of state and cannot be eliminated

by means of additional conditions, it then becomes much more difficult to determine

the internal structure of a self-gravitating gaseous sphere. The mechanical structure

is then also determined by the temperature distribution, which in turn is coupled to

the transport and generation of energy in the star. This requires new equations, with

which we shall deal in Chaps. 4 and 5.

2.3 Simple Estimates of Central Values Pc; Tc

The hydrostatic condition (2.5) together with an equation of state for a perfect gas

(2.7) enables us to estimate the pressure and the temperature in the interior of a star

of given mass and radius.

Let us replace the left-hand side of (2.5) by an average pressure gradient (P0 �
Pc/=M; where P0.D 0/ and Pc are the pressures at the surface and at the centre.

On the right-hand side of (2.5) we replacem and r by rough mean valuesM=2 and

R=2; and we obtain

Pc � 2GM 2

�R4
: (2.8)

From the equation of state for a perfect gas, and with the mean density

N% D 3M

4�R3
; (2.9)

we find with (2.8) that

Tc D Pc

%c

�

< D Pc

�

<
N%
%c

4�R3

3M

� 8

3

�

<
Gm

R

N%
%c

: (2.10)

Since in most stars the density increases monotonically from the surface to the

centre, we have N%=%c < 1 (Numerical solutions show that N%=%c � 0:03 : : : 0:01.).

Therefore (2.10) yields

Tc .
8

3

G�

<
M

R
: (2.11)

With the mass and the radius of the Sun (Mˇ D 1:989 � 1033 g, Rˇ D 6:96 �
1010 cm) and with � D 0:5, we find that

Pc � 7 � 1015 dyn=cm2; Tc < 3 � 107 K: (2.12)
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Modern numerical solutions (Chap. 29) give Pc D 2:4 � 1017 dyn/cm2, Tc D 1:6 �
107 K.

So we can expect to encounter enormous pressures and very high temperatures

in the central regions of the stars. Moreover, our assumption of a perfect gas turns

out to be fully justified for these values of P and T .

2.4 The Equation of Motion for Spherical Symmetry

Our equation of hydrostatic equilibrium (2.5) is a special case of conservation of

momentum. If the (spherical) star undergoes accelerated radial motions, we have to

consider the inertia of the mass elements, which introduces an additional term. We

confine ourselves here to the Lagrangian description .m; t as independent variables),

which is especially convenient for spherical symmetry.

We go back to the derivation of the hydrostatic equation in Sect. 2.1 and again

consider a thin shell of mass dm at the distance r from the centre (Fig. 1.1). Owing

to the pressure gradient, this shell experiences a force per unit area fP given by

(2.1), the right-hand side of which is easily rewritten in terms of @P=@m according

to (1.7):

fP D � @P
@m

dm: (2.13)

The gravitational force per unit area acting on the mass shell is, with the use of (1.8),

fg D � g dm

4�r2
D �Gm

r2
dm

4�r2
: (2.14)

If the sum of the two forces is not equal to zero, the mass shell will be accelerated

according to

dm

4�r2
@2r

@t2
D fP C fg: (2.15)

This gives with (2.13) and (2.14) the equation of motion as

1

4�r2
@2r

@t2
D � @P

@m
� Gm

4�r4
: (2.16)

The signs in (2.16) are such that the pressure gradient alone would produce an

outward acceleration (since @P=@m < 0), while the gravity alone would produce

an inward acceleration.

Equation (2.16) would give exactly the equation of hydrostatic equilibrium (2.5)

if the second time derivative of r vanished, i.e. if all mass elements were at rest

or moved radially at constant velocity. Moreover, the term on the left-hand side is
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certainly unimportant if its absolute value is small compared to the absolute values

of any term on the right, i.e. if the two terms on the right-hand side cancel each

other nearly to zero. Then the hydrostatic condition is a very good approximation,

and the configuration moves through neighbouring near-equilibrium states. In this

sense we are allowed to apply the simpler hydrostatic equation to a much wider

class of solutions than those fulfilling the strict requirement @2r=@t2 D 0. To

illustrate this further we assume a deviation from hydrostatic equilibrium such that,

for example, in (2.16), the pressure term suddenly “disappears”. The inertial term on

the left would then have to compensate the gravitational term on the right. We now

define a characteristic time-scale �ff for the ensuing collapse of the star by setting

j@2r=@t2j D R=�2ff. Then we obtain from (2.16) R=�2ff � g, or

�ff �
�
R

g

�1=2
: (2.17)

This is some kind of a mean value for the free-fall time over a distance of order

R following the sudden disappearance of the pressure. We can correspondingly

determine a timescale �expl for the explosion of our star for the case that gravity

were suddenly to disappear: R=�2expl D P=%R, where we have replaced @P=@r by

P=R after writing 4�r2.@P=@m/ D .@P=@r/=% (P and % are here average values

over the entire star). We then find that

�expl � R
� %
P

�1=2
: (2.18)

Since .P=%/1=2 is of the order of the mean velocity of sound in the stellar interior,

one can see that �expl is of the order of the time a sound wave needs to travel from

the centre to the surface.

If our model is near hydrostatic equilibrium, then the two terms on the right

side of (2.16) have about equal absolute value and �ff � �expl. We then call this

timescale the hydrostatic timescale �hydr, since it gives the typical time in which a

(dynamically stable) star reacts on a slight perturbation of hydrostatic equilibrium.

With g � GM=R2; we obtain from (2.17) up to factors of order 1 that

�hydr �
�
R3

GM

�1=2
� 1

2
.G N%/�1=2: (2.19)

In the case of the Sun we find the surprisingly small value �hydr � 27min. Even in

the case of a red giant (M � Mˇ; R � 100Rˇ/, one has only �hydr � 18 days,

while for a white dwarf (M � Mˇ; R � Rˇ=50), the hydrostatic timescale is

extremely short: �hydr � 4:5 s. In most phases of their life the stars change slowly

on a timescale that is very long compared to �hydr. Then they are very close to

hydrostatic equilibrium and the inertial terms in (2.16) can be ignored.
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2.5 The Non-spherical Case

Up to now we have dealt with spherically symmetric configurations only. It is easy

to see how the equations would have to be modified for more general cases without

this symmetry.

After rewriting (2.16) for the independent variable r , we easily identify it as a

special case of the Eulerian equation of motion of hydrodynamics

%
dv

dt
D �rP � %r˚; (2.20)

where v is the velocity vector, and the substantial time derivative on the left is

defined by the operator

d

dt
D @

@t
C v � r : (2.21)

The general form of (1.4) has already been shown to be the continuity equation of

hydrodynamics

@%

@t
D �r � .%v/; (2.22)

and, as described in Sect. 1.3, the gravitational potential ˚ is connected with an

arbitrary distribution of the density by the Poisson equation (1.9):

r
2˚ D 4�G%: (2.23)

We see in fact that the stellar-structure equations discussed up to now are just special

cases of normal textbook hydrodynamics.

2.6 Hydrostatic Equilibrium in General Relativity

To help with subsequent work (Chap. 38), we briefly refer to the change of the

equation of hydrostatic equilibrium due to effects of general relativity. For details

see, for example, Zeldovich and Novikov (1971).

Very strong gravitational fields, as in the case of neutron stars, are described by

the Einstein field equations

Rik � 1

2
gikR D �

c2
Tik; � D 8�G

c2
; (2.24)



16 2 Conservation of Momentum

whereRik is the Ricci tensor, gik is the metric tensor and the scalarR is the Riemann

curvature. Tik is the energy-momentum tensor, which for a perfect gas has as the

only non-vanishing components T00 D %c2; T11 D T22 D T33 D P (% includes

the energy density, P = pressure). We are interested in static (time-independent),

spherically symmetric mass distributions. Then the line element ds, i.e. the distance

between two neighbouring events, is given in spherical coordinates (r; #; ') by the

general form

ds2 D e�c2dt2 � e�dr2 � r2.d#2 C sin2 # d'2/ (2.25)

with � D �.r/; � D �.r/. With these expressions for Tik and ds, the field equations

(2.24) can be reduced to three ordinary differential equations:

�P

c2
D e��

�
�0

r
C 1

r2

�
� 1

r2
; (2.26)

�P

c2
D 1

2
e��

�
�00 C 1

2
�02 C �0 � �0

r
� �0�0

2

�
; (2.27)

�% D e��
�
�0

r
� 1

r2

�
C 1

r2
; (2.28)

where primes denote derivatives with respect to r . After multiplication with 4�r2,

(2.28) can be integrated giving

�m D 4�r.1� e��/: (2.29)

Here m denotes the gravitational mass inside r defined by

m D
Z r

0

4�r2% dr: (2.30)

For r D R;m becomes the gravitational mass M of the star. It is the mass a distant

observer would measure by its gravitational effects, for example, on orbiting planets.

It is not, however, the mass which we naRıvely identify with the baryon number times

the atomic mass unit: M contains not only the rest mass, but the whole energy

(divided by c2/. This includes the internal and the gravitational energy, the latter

being negative and reducing the gravitational mass (just as the binding energy of

a nucleus results in a mass defect; see Chap. 18). The seemingly familiar form

of (2.30) is treacherous. First of all, % D %0 C U=c2 contains the whole energy

density U as well as the rest-mass density %0, and the changed metric would give

the spherical volume element as e�=24�r2 dr instead of the usual form 4�r2 dr [over

which (2.30) is integrated].

Differentiation of (2.26) with respect to r gives P 0 D P 0.�; �0; �0; �00; r/.
When �; �0; �0; �00 are eliminated by (2.26), (2.27) and (2.29), one arrives at the



2.7 The Piston Model 17

Fig. 2.2 The piston model. Gas of mass m� (with pressure P; density %, temperature T / is held

in a container with a movable piston of mass M�. The gravitational acceleration g acts on the

piston. The container is embedded in a medium of temperature Ts; a possible heat leak is indicated

(dashed) in the right wall of the container. In Chap. 2, only the mechanical properties of the model

are discussed

Tolman-Oppenheimer-Volkoff (TOV) equation for hydrostatic equilibrium in general

relativity:

dP

dr
D �Gm

r2
%

�
1C P

%c2

��
1C 4�r3P

mc2

��
1 � 2Gm

rc2

��1
: (2.31)

Obviously this reverts to the usual form (2.4) for c2 ! 1.

For gravitational fields that are not too large (small deviations from Newtonian

mechanics), one can expand the product of the parentheses in (2.31) and retain only

terms linear in 1=c2. This gives the so-called post-Newtonian approximation:

dP

dr
D �Gm

r2
%

�
1C P

%c2
C 4�r3P

mc2
C 2Gm

rc2

�
: (2.32)

2.7 The Piston Model

From time to time we shall make use of a simple mechanical model which in some

respects mimics the behaviour of stars, and which is shown in Fig. 2.2. A piston of

mass M � encloses a gas of mass m� in a box. G� D gM � is the weight of the

piston in a gravitational field described by the gravitational acceleration g. A is the

cross-sectional area of the piston and h its height above the bottom. Then V D Ah

is the volume of the gas, while its density is % D m�=V:
In the case of hydrostatic equilibrium, the gas pressure P adjusts in such a way

that the weight per unit area is balanced by the pressure:

G� D PA: (2.33)
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If the forces do not compensate each other, the piston is accelerated in the vertical

direction according to the equation of motion

M �d
2h

dt2
D �G� C PA: (2.34)

In a similar manner to our considerations of Sect. 2.4, we can define two timescales

�ff and �expl:

�ff �
�
h

g

�1=2
; (2.35)

�expl � h
� %
P

�1=2 �M �

m�

�1=2
: (2.36)

In the limit of hydrostatic equilibrium both timescales are the same, and we then

call �ff D �expl the hydrostatic timescale �hydr.



Chapter 3

The Virial Theorem

3.1 Stars in Hydrostatic Equilibrium

While the virial theorem generally plays a relatively minor role in physics, it is

of vital importance for the understanding of stars. It connects two important energy

reservoirs of a star and allows predictions and interpretations of certain evolutionary

phases.

If we multiply (2.5) by 4�r3 and integrate over dm in the interval Œ0;M �, i.e.

from centre to surface, we obtain on the left-hand side an integral which can be

simplified by partial integration:

Z M

0

4�r3
@P

@m
dm D

�
4�r3P

�M
0

�
Z M

0

12�r2
@r

@m
P dm ; (3.1)

where the term in brackets vanishes, since r D 0 at the centre and P = 0 at

the surface. With (1.6) the integrand of the last term in (3.1) is reduced to 3P=%.

Therefore, after multiplication by 4�r3 and integration, (2.5) gives

Z M

0

Gm

r
dm D 3

Z M

0

P

%
dm : (3.2)

Both sides of (3.2) have the dimensions of energy and can be easily interpreted. We

define the gravitational energy Eg by

Eg WD �
Z M

0

Gm

r
dm : (3.3)

Consider a unit mass at the position r . Its potential energy due to the gravitational

field of the mass m inside r is �Gm=r . Therefore Eg is the potential energy of all

mass elements dm of the star (normalized to zero at infinity). The energy �Eg.> 0)
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is necessary to expand all mass shells into infinity, and it is released when the stellar

configuration forms out of an infinitely distributed medium.

We see that Eg varies if the configuration undergoes expansion or contraction: if

all mass shells inside the configuration expand or contract simultaneously, then Eg

increases or decreases, respectively. And the same must be true for the integral on

the right of (3.2). Note that these radial motions must be slow compared to �hydr in

order that hydrostatic equilibrium is always maintained, otherwise (3.2) would not

hold.

In order to understand the meaning of the term on the right of (3.2) we first

assume a perfect gas. Then

P

%
D <
�
T D .cP � cv/T D .
 � 1/cvT; (3.4)

where cP ; cv are the specific heats per unit mass (and we make use of <=� D cP�cv
and replace cP =cv by 
 ). For a monatomic gas 
 D 5=3, and we have

P

%
D 2

3
u ; (3.5)

where u D cvT is the internal energy per unit mass of the perfect gas. Therefore

(3.2) can be written as

Eg D �2Ei (3.6)

with the total internal energy of the star

Ei WD
Z M

0

u dm : (3.7)

Equation (3.6) is the virial theorem for a perfect monatomic gas. For a general

equation of state we define a quantity � by

�u WD 3
P

%
: (3.8)

For a perfect gas � D 3.
 � 1), in the monatomic case 
 D 5=3, and therefore

� D 2. For a pure photon gas, P D aT 4=3; and u% D aT 4 (a = radiation density

constant), giving � D 1. If � is constant throughout the star, (3.2) leads to the more

general virial theorem:

�Ei C Eg D 0 : (3.9)

We now define the total energy W of our configuration,

W D Ei C Eg ; (3.10)
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where for a gravitationally bound system W < 0, and with (3.9) we find that

W D .1 � �/Ei D � � 1
�

Eg : (3.11)

In the case of � D 1 .
 D 4=3) the total energy vanishes.

But in general W , Eg, and Ei are coupled. A change of the total energy of

the configuration is then connected with a change of its internal energy and with

expansion or shrinking. A gas of finite temperature must radiate and W must

decrease. Let L be the luminosity of the star, i.e. the total energy loss per unit time

by radiation; then conservation of energy demands that .dW=dt/ C L D 0, so that

with (3.11) we obtain

L D .� � 1/
dEi

dt
D �� � 1

�

dEg

dt
: (3.12)

We have seen that PEg < 0 for contraction of all mass shells (where the dot denotes a

derivative with respect to time t). For a perfect gas (3.12) gives L D � PEg=2 D PEi,

which means that half of the energy liberated by the contraction is radiated away

and the other half is used to heat the star .L > 0; PEi > 0). The surprising fact that

a star heats up while losing energy can be described by saying that the star has a

negative specific heat (cf. the gravothermal specific heat defined in Sect. 25.3.4).

We have to keep in mind that it is the luminosity that causes the shrinking:

a configuration in hydrostatic equilibrium has a finite temperature and therefore

radiates into the (cold) universe.

3.2 The Virial Theorem of the Piston Model

Let us consider the situation for the piston model of Sect. 2.7 for the case of a perfect

gas. Assuming M � � m�; we define Eg WD CG�h, where the free additional

constant is chosen such that Eg D 0 for h D 0. Hydrostatic equilibrium (2.33) with

m� D Ah% and (3.4) demands that

hG� D P

%
m� D .
 � 1/cvT m

� : (3.13)

The internal energyEi of the gas is Ei D cvTm
�, and we find that

Eg D .
 � 1/Ei ; (3.14)
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which is the virial theorem for the piston model. Differentiating with respect to time,

with 
 D 5=3, results in
dEg

dt
D 2

3

dEi

dt
: (3.15)

Hence we see that in contrast to the situation in stars, a reduction of Eg is connected

with cooling of the gas. Indeed the piston can only sink if the gas cools.

This different behaviour comes from the fact that the gravitational field is

assumed to be constant here. In order to demonstrate this we now assume

the weight G� to be a function of h and differentiate (3.13) with respect

to h W
G�.1CG�

h / D .
 � 1/dEi

dh
(3.16)

with G�
h W D .d lnG�=d lnh). Indeed, if G�

h D 0 (constant gravity), we see that Ei

increases with h. If, however,G� decreases sufficiently with increasing h (such that

G�
h < �1), then Ei increases with decreasing h; corresponding to the behaviour of

stars. In fact in an expanding star each mass shell also loses weight with increasing r .

3.3 The Kelvin–Helmholtz Timescale

Returning now to consider stars, since according to (3.12) L is of the order of

jdEg=dtj, we can define a characteristic time-scale

�KH WD jEgj
L

� Ei

L
(3.17)

called the Kelvin–Helmholtz timescale (after the two physicists who estimated this

as the evolutionary timescale for a contracting or cooling star).

A rough estimate for jEgj is

jEgj � Gm2

Nr � GM2

2R
; (3.18)

where quantities with a bar indicate mean values for m and r (which we have

replaced by M=2 and R=2/: Then we have

�KH � GM2

2RL
: (3.19)

For the Sun, with L D 3:827 � 1033 erg/s, we find �KH � 1:6 � 107 years. In the

early days of astrophysics the source of stellar energy was still uncertain, and it

was suggested, among other proposals, that the Sun “lived” from its gravitational

energy Eg. Our estimate shows that this can work only for some 107 years, after

which time it would have contracted to a very condensed body. As it became obvious
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that the Sun has been radiating in roughly the same way for some 109 years, the

contraction hypothesis had to be abandoned. But there are phases in a stellar life

when Eg is the main or even the only stellar energy source (Chap. 28); then the star

evolves on the timescale �KH. A more detailed discussion of the evolution of a star

in time appears in Sect. 4.5.

3.4 The Virial Theorem for Non-vanishing Surface Pressure

One often needs the virial theorem for gaseous spheres imbedded in a medium of

finite pressure. In this case, at the surface .m D M/,P D P0 > 0 instead of P D 0.

Consequently the first term on the right of (3.1) does not vanish at the surface, and

(3.2) is modified to

Z M

0

Gm

r
dm D 3

Z M

0

P

%
dm � 4�R3P0 : (3.20)

Correspondingly we find, rather than (3.9), that

�Ei C Eg D 4�R3P0 : (3.21)



Chapter 4

Conservation of Energy

Since we do not wish to interrupt the derivation of the energy equation for stars with

lengthy formalisms, we first provide a few thermodynamic relations which will be

used extensively later on.

4.1 Thermodynamic Relations

The first law of thermodynamics relates the heat dq added per unit mass,

dq D du C Pdv; (4.1)

to the internal energy u and the specific volume v D 1=% (both also defined per unit

mass).

We now assume rather general equations of state, % D %.P; T / and u D u.%; T /.

Usually they will also depend on the chemical composition, but here this is assumed

to be fixed. With the derivatives defined as

˛ WD
�
@ ln %

@ lnP

�

T

D �P
v

�
@v

@P

�

T

; (4.2)

ı WD �
�
@ ln%

@ lnT

�

P

D T

v

�
@v

@T

�

P

; (4.3)

the equation of state can be written in the form d%=% D ˛dP=P � ıdT=T .

We also need the specific heats:

cP WD
�

dq

dT

�

P

D
�
@u

@T

�

P

C P

�
@v

@T

�

P

; (4.4)

cv WD
�

dq

dT

�

v

D
�
@u

@T

�

v

: (4.5)
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With

du D
�
@u

@v

�

T

dv C
�
@u

@T

�

v

dT (4.6)

and with (4.1) we find the change ds D dq=T of the specific entropy to be

ds D dq

T
D 1

T

��
@u

@v

�

T

C P

�
dv C 1

T

�
@u

@T

�

v

dT: (4.7)

Since ds is a total differential form, @2s=@T @v D @2s=@v@T and

@

@T

�
1

T

�
@u

@v

�

T

C P

T

�
D 1

T

@2u

@T @v
; (4.8)

which after the differentiation on the left is carried out gives

�
@u

@v

�

T

D T

�
@P

@T

�

v

� P: (4.9)

Next we derive an expression for .@u=@T /P , taking P; T as independent variables.

From (4.6) it follows that

du

dT
D
�
@u

@T

�

v

C
�
@u

@v

�

T

dv

dT
; (4.10)

and therefore

�
@u

@T

�

P

D
�
@u

@T

�

v

C
�
@u

@v

�

T

�
@v

@T

�

P

D
�
@u

@T

�

v

C
�
@v

@T

�

P

�
T

�
@P

@T

�

v

� P

�
; (4.11)

where we have made use of (4.9). From the definitions (4.4), (4.5) and from (4.11)

we write

cP � cv D P

�
@v

@T

�

P

C
�
@u

@T

�

P

�
�
@u

@T

�

v

D
�
@v

@T

�

P

�
@P

@T

�

v

T: (4.12)

On the other hand, the definitions (4.2) and (4.3) for ˛ and ı imply that

�
@P

@T

�

v

D �


@v
@T

�
P


@v
@P

�
T

D Pı

T ˛
; (4.13)
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and therefore

cP � cv D T

�
@v

@T

�

P

Pı

T ˛
D Pı2

%T ˛
; (4.14)

where we have made use of T .@v=@T /P D vı D ı=%; hence we arrive at the basic

relation

cP � cv D Pı2

%T ˛
: (4.15)

For a perfect gas this equation reduces to the well-known relation cP � cv D <=�
[see (4.33)].

We have now derived all the tools for rewriting (4.1) in terms of T and P: The

first step is to write it in the form

dq D du C Pdv D
�
@u

@T

�

v

dT C
��
@u

@v

�

T

C P

�
dv

D
�
@u

@T

�

v

dT C T

�
@P

@T

�

v

dv (4.16)

by making use of (4.9), and then with (4.5) and (4.13) we have

dq D cvdT � T

%

�
@P

@T

�

v

d%

%
D cvdT � Pı

%˛

d%

%

D cvdT � Pı

%˛

�
˛

dP

P
� ı

dT

T

�
D
�
cv C Pı2

%T ˛

�
dT � ı

%
dP: (4.17)

The terms in parentheses in the last expression are, according to (4.15), simply cP
and therefore

dq D cP dT � ı

%
dP: (4.18)

Next we define the adiabatic temperature gradient rad, a quantity often used in

astrophysics, by

rad WD
�
@ lnT

@ lnP

�

s

; (4.19)

where the subscript s indicates that the definition is valid for constant entropy. Since

for adiabatic changes the entropy has to remain constant, i.e. ds D dq=T D 0, we

can easily derive an expression for rad from (4.18), i.e.

0 D dq D cP dT � ı

%
dP (4.20)



28 4 Conservation of Energy

or .dT=dP/s D ı=%cP and

rad �
�
P

T

dT

dP

�

s

D Pı

T%cP
: (4.21)

4.2 The Perfect Gas and the Mean Molecular Weight

For a perfect gas consisting of n particles per unit volume that all have the molecular

weight �; the equation of state is

P D nkT D <
�
%T ; (4.22)

with % D n�mu.k D 1:38 � 10�16 erg K�1 = Boltzmann constant; < D k=mu D
8:31 � 107 erg K�1 g�1 = universal gas constant;mu D 1 amu D 1:66053� 10�24 g

= the atomic mass unit). Note that we here use the gas constant with a dimension

(energy per K and per unit mass) different from that in thermodynamic text books

(energy per K and per mole). This has the consequence that here the molecular

weight � is dimensionless (instead of having the dimension mass per mole); it is

simply the particle mass divided by 1 amu.

In the deep interiors of stars the gases are fully ionized, i.e. for each hydrogen

nucleus, there also exists a free electron, while for each helium nucleus, there are

two free electrons. We therefore have a mixture of two gases, that of the nuclei

(which in itself can consist of more than one component) and that of the free

electrons. The mixture can be treated similarly to a one-component gas, if all single

components obey the perfect gas equation.

We consider a mixture of fully ionized nuclei. The chemical composition can be

described by specifying all Xi ; the weight fractions of nuclei of type i; which have

molecular weight �i and charge number Zi . If we have ni nuclei per volume and a

“partial density” %i ; then obviouslyXi D %i=% and

ni D %i

�imu

D %

mu

Xi

�i
: (4.23)

(Here and in the following, we neglect the mass of the electrons compared to that of

the ions.) The total pressure P of the mixture is the sum of the partial pressures

P D Pe C
X

i

Pi D
 
ne C

X

i

ni

!
kT : (4.24)

Here Pe is the pressure of the free electrons, while Pi is the partial pressure due to

the nuclei of type i . The contribution of one completely ionized atom of element i
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to the total number of particles (nucleus plus Zi free electrons) is 1 + Zi ; therefore

n D ne C
X

i

ni D
X

i

.1CZi /ni : (4.25)

With this and (4.23), (4.24) becomes

P D nkT D <
X

i

Xi.1CZi /

�i
%T ; (4.26)

which can be written simply in the form (4.22) with the mean molecular weight

� D
 X

i

Xi.1CZi /

�i

!�1

: (4.27)

By introducing the mean molecular weight, we are able to treat a mixture of perfect

gases as a uniform perfect gas. We just have to replace the molecular weight in

(4.22) by the mean molecular weight. In the case of pure (fully ionized) hydrogen

with XH = 1, �H = 1, ZH = 1, we have � D 1=2, while for a fully ionized helium

gas (XHe = 1, �He = 4, ZHe = 2), we find � D 4=3.

Equation (4.27) can be easily modified for the partial gas consisting of the ions

only, or equivalently, for the case of a neutral gas where all the electrons are still in

the atom. In (4.25) we just have to replace 1 + Zi by 1 and we find

�0 D
 X

i

Xi

�i

!�1

: (4.28)

Here we have dealt with the cases of full ionization and of no ionization at all. In

Chap. 14 we will deal with the case of partial ionization.

At this point we also define the mean molecular weight per free electron �e; a

quantity which we shall need later. For a fully ionized gas each nucleus i contributes

Zi free electrons and we have

�e D
 X

i

XiZi=�i

!�1

: (4.29)

Since for all (not too rare) elements heavier than helium �i=Zi � 2 is a good

approximation, we find

�e D
�
X C 1

2
Y C 1

2
.1 � X � Y /

��1
D 2

1CX
; (4.30)
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where we have followed the custom of using X WD XH; Y WD XHe for the weight

fractions of hydrogen and helium. Then 1 � X � Y is the mass fraction of the

elements heavier than helium.

4.3 Thermodynamic Quantities for the Perfect,

Monatomic Gas

If the gas is monatomic, the internal energy per gram is the kinetic energy of the

translational motion of the particles only

u D 3

2
kT

n

%
: (4.31)

From (4.2) and (4.3) we find

˛ D ı D 1; (4.32)

and from (4.15)

cP � cv D P

%T
D <
�

(4.33)

and therefore with (4.5)

cv D
�
@u

@T

�

%

D 3

2
k
n

%
D 3

2

<
�

(4.34)

and with (4.33)

cP D 5

2

<
�
: (4.35)

Equation (4.21) therefore yields

rad D <
�cP

D cP � cv

cP
D 2

5
: (4.36)

Sometimes also the quantity


ad WD
�
@ lnP

@ ln %

�

s

(4.37)

for adiabatic changes is needed. If we differentiate the equation of state (4.22), we

find

dP

P
D d%

%
C dT

T
(4.38)



4.4 Energy Conservation in Stars 31

Fig. 4.1 Energy flux through

a mass shell

which holds for all variations of the variables in the perfect gas equation, including

the adiabatic variation. For these we obtain from (4.36)

dT

T
D rad

dP

P
D
�
1 � cv

cP

�
dP

P
: (4.39)

Eliminating dT=T from (4.38) and (4.39) gives

�
d%

%

�

ad

D cv

cP

�
dP

P

�

ad

(4.40)

or


ad D
�
d lnP

d ln%

�

s

D cP

cv
: (4.41)

4.4 Energy Conservation in Stars

By l.r/ we define1 the net energy per second passing outward through a sphere

of radius r . The function l is zero at r D 0, since there can be no infinite energy

source at the centre, while l reaches the total luminosity L of the star at the surface.

In between, l can be a complicated function, depending on the distribution of the

sources and sinks of energy.

The function l comprises the energies transported by radiation, conduction, and

convection, transport mechanisms with which we shall deal in Chaps. 5 and 7. Not

included is a possible energy flux by neutrinos, which normally have negligible

interaction with the stellar matter (see below). Included in l are only those fluxes

which require a temperature gradient.

Consider a spherical mass shell of radius r; thickness dr; and mass dm, as

indicated in Fig. 4.1. The energy per second entering the shell at the inner surface

is l , while l C dl is the energy per second leaving it through the outer surface.

The surplus power dl can be provided by nuclear reactions, by cooling, or by

compression or expansion of the mass shell.

1In many textbooks our function l is denoted by Lr :
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We first consider a stationary case in which dl is due to the release of energy

from nuclear reactions only. Let " be the nuclear energy released per unit mass per

second; then

dl D 4�r2 %" dr D " dm ; or (4.42)

@l

@m
D ": (4.43)

In general " depends on temperature and density and on the abundance of the

different nuclear species that react, described in detail in Chap. 18.

If we relax the condition of time independence, then dl can become non-zero

even if there are no nuclear reactions. A non-stationary shell can change its internal

energy, and it can exchange mechanical work .P dV / with the neighbouring shells.

Instead of (4.43) we write

dq D
�
" � @l

@m

�
dt; (4.44)

where dq is the heat per unit mass added to the shell in the time interval dt. Replacing

dq by the first law of thermodynamics (4.1) we obtain

@l

@m
D " � @u

@t
� P

@v

@t

D " � @u

@t
C P

%2
@%

@t
(4.45)

This can be rewritten in terms of P and T , with the help of (4.18), as

@l

@m
D " � cP

@T

@t
C ı

%

@P

@t
; (4.46)

where ı is defined in (4.3). This is the third of the basic equations of stellar structure.

One often combines the terms containing the time derivatives in a source function

"g WD �T @s
@t

D �cP
@T

@t
C ı

%

@P

@t

D �cP T
�
1

T

@T

@t
� rad

P

@P

@t

�
; (4.47)

where use is made of the fact that ds D dq=T and of (4.21).

Let us now turn to the problem of neutrino losses. These can be formed in

appreciable amounts in a star either as a by-product of nuclear energy generation or

by other reactions. Stellar material is normally transparent to neutrinos and therefore
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they can easily “tunnel” the energy they have to the surface. This is the reason we

have excluded the energy flux due to neutrinos from l . The only mass elements

affected by the neutrinos are at the place of their creation, where they act as an

energy sink; hence "� is used to represent the energy taken per unit mass per second

from the stellar material in the form of neutrinos. In general, the energy lost by

neutrinos in nuclear reactions is already taken into account in the net energy Q

released in each reaction (see Sect. 18.3). By definition, "� > 0. Obviously the

complete energy equation is then

@l

@m
D " � "� C "g : (4.48)

As mentioned at the beginning of Sect. 4.4, the boundary values of l are l D 0 at the

centre and l D L at the surface. In between, l is not necessarily monotonic, since

the right-hand side of (4.48) may be positive or negative; l can even become larger

than L, or negative. For instance, the surface luminosity L of an expanding star can

be smaller than the energy produced in the central core by nuclear reactions ." > 0),

since part of it is used to expand the star ."g < 0); and strong neutrino losses can

make l < 0 in certain parts of the stellar interior (see Sect. 33.5).

The energy per second carried away from the star by neutrinos is often called the

neutrino luminosity:

L� WD
Z M

0

"� dm: (4.49)

4.5 Global and Local Energy Conservation

In Chap. 3 we considered gravitational energy .Eg/ and internal energy .Ei), but

ignored nuclear and neutrino energies, as well as the kinetic energy Ekin of radial

motion. We now define the total energy of the star as W D Ekin C Eg C Ei C En,

where En is the nuclear energy content of the whole star. Obviously the energy

equation is
d

dt
.Ekin C Eg C Ei C En/C LC L� D 0 ; (4.50)

and, of course, this must also be obtained from the local energy equation (4.48) by

integration overm: Clearly, the integration of @l=@m givesL; the integration of �"�
gives �L� ; while the integral over " gives �dEn=dt. Integration over "g, however,

needs some consideration.

Let us write "g as in (4.45):

"g D �@u

@t
C P

%2
@%

@t
: (4.51)
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Then integration over �@u=@t gives �dEi=dt. In order to deal with the last term in

(4.51) we use (3.2, 3.3) and find that

Eg D �3
Z M

0

P

%
dm ; (4.52)

which we differentiate with respect to time (indicated by dots):

PEg D �3
Z M

0

PP
%

dm C 3

Z M

0

P

%2
P% dm : (4.53)

We first treat hydrostatic equilibrium .dEkin=dt D 0). Then differentiation of (2.5)

gives

@ PP
@m

D 4
Gm

4�r4
Pr
r
: (4.54)

We multiply this by 4�r3 and integrate overm:

Z M

0

4�r3
@ PP
@m

dm D 4

Z M

0

Gm

r

Pr
r

dm D 4 PEg : (4.55)

Partial integration of the left-hand side gives

Œ4�r3 PP �M0 � 3
Z M

0

4�r2
@r

@m
PP dm ; (4.56)

where the term in brackets vanishes at both ends of the interval, since either r D 0

or P D 0 independent of time. If we replace @r=@m by 1=4�r2% we find from

(4.55) that

�3
Z M

0

PP
%

dm D 4 PEg : (4.57)

Introducing this into the right-hand side of (4.53) gives

PEg D �
Z M

0

P

%2
P% dm ; (4.58)

and therefore the integration of the last term of (4.51) gives PEg so that the equation

(4.50) without PEkin is now recovered.

If, instead of hydrostatic equilibrium, we had used the full equation of motion

(2.16), after multiplication with 4�r2 Pr and integration over m; we would have

obtained the full equation (4.50) with the term PEkin.
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4.6 Timescales

Consider a star balancing its energy loss L essentially by release of nuclear energy.

If L remains constant this can go on for a nuclear timescale �n defined by

�n WD En

L
: (4.59)

Note that En means the nuclear energy reservoir from which energy can be released

under the given circumstances, i.e. the corresponding reactions must be possible.

The most important reaction is the fusion of 1H into 4He. This “hydrogen burning”

releases Q D 6:3 � 1018 erg g�1, and, if the Sun consisted completely of hydrogen,

En would be QMˇ D 1:25 � 1052 erg. With Lˇ D 4 � 1033 erg/s, (4.59) gives

�n D 3 � 1018 s, or 1011 years. A comparison with the earlier estimates of �hydr

(Sect. 2.4) and �KH (Sect. 3.3) shows that

�n � �KH � �hydr ; (4.60)

which is not only true for the Sun, but for all stars that survive by hydrogen

and helium burning. We emphasize this point, since under these circumstances

the equation of energy conservation (4.46) can be simplified. As an illustration,

we assume that the star changes its properties considerably within the timescale

� (which may be either small or large compared to �KH). This change may, for

instance, be due to exhaustion of nuclear fuel or artificial “squeezing” of the

star from the exterior. We now give rough estimates for the four terms in (4.46),

assuming a perfect gas:

ˇ̌
ˇ̌ @l
@m

ˇ̌
ˇ̌ � L

M
� Ei

�KHM
; (4.61)

" � L

M
D En

M�n

� Ei

�KHM
; (4.62)

ˇ̌
ˇ̌cP

@T

@t

ˇ̌
ˇ̌ � cPT

�
� Ei

�M
; (4.63)

ˇ̌
ˇ̌ ı
%

@P

@t

ˇ̌
ˇ̌ � <

�

T

�
� cPT

�
� Ei

�M
: (4.64)

In the case � � �KH, the terms in (4.63) and (4.64) are small compared to those

in (4.61) and (4.62); therefore the time derivatives in the energy equation (4.46) can

be neglected (j"gj � "), and the energy equation is @l=@m D ", as in (4.43). This

occurs if, for instance, the consumption of hydrogen and helium steers the evolution,

i.e. � D �n (� �KH), and represents a considerable simplification for calculating
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models which are said to be in complete equilibrium (i.e. mechanical and thermal

equilibrium).

In the case � � �KH, the right-hand sides of (4.63) and (4.64) are large compared

to those of (4.61) and (4.62). Therefore in (4.46) the last two terms containing the

time derivatives must (at least very nearly) cancel each other, which means that

dq=dt � 0, or the change is nearly adiabatic. Note that a relatively small deviation

from the strict adiabatic change can still be of the order "; and therefore "g cannot be

neglected in the energy equation. An example for this case is a star pulsating with

the timescale � D �hydr � �KH (see Chaps. 40 and 41). The variable luminosity of a

pulsating star, for instance, is not due to changes of " but of "g.

Here we have assumed the simplest case, namely that the star changes more or

less uniformly. The situation can be much more complicated if, for example, only

parts of the star are affected and local timescales have to be considered which may

be quite different.



Chapter 5

Transport of Energy by Radiation

and Conduction

The energy the star radiates away so profusely from its surface is generally

replenished from reservoirs situated in the very hot central region. This requires

an effective transfer of energy through the stellar material, which is possible owing

to the existence of a non-vanishing temperature gradient in the star. Depending on

the local physical situation, the transfer can occur mainly via radiation, conduction,

and convection. In any case, certain “particles” (photons, atoms, electrons, “blobs”

of matter) are exchanged between hotter and cooler parts, and their mean free path

together with the temperature gradient of the surroundings will play a decisive role.

The equation for the energy transport, written as a condition for the temperature

gradient necessary for the required energy flow, will supply our next basic equation

for the stellar structure.

5.1 Radiative Transport of Energy

5.1.1 Basic Estimates

Rough estimates show important features of the radiative transfer in stellar interiors

and justify an enormous simplification of the formalism.

Let us first estimate the mean free path `ph of a photon at an “average” point

inside a star like the Sun:

`ph D 1

�%
; (5.1)

where � is a mean absorption coefficient, i.e. a radiative cross section per unit

mass averaged over frequency. Typical values for stellar material are of order

� � 1 cm2 g�1; for the ionized hydrogen in stellar interiors, a lower limit is certainly

the value for electron scattering, � � 0:4 cm2 g�1 (see Chap. 17). Using this and the
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mean density of matter in the Sun, N%ˇ D 3Mˇ=4�R3ˇ D 1:4 g cm�3, we obtain a

mean free path of only

`ph � 2 cm ; (5.2)

i.e. stellar matter is very opaque.

The typical temperature gradient in the star can be roughly estimated by

averaging between centre (Tc � 107 K) and surface (T0 � 104 K):

�T

�r
� Tc � T0

Rˇ
� 1:4 � 10�4 K cm�1 : (5.3)

The radiation field at a given point is emitted from a small, nearly isothermal sur-

rounding, the differences of temperature being only of order �T D `ph.dT=dr/ �
3�10�4 K. Since the energy density of radiation is u � T 4, the relative anisotropy of

the radiation at a point with T D 107 K is 4�T=T � 10�10. The situation in stellar

interiors must obviously be very close to thermal equilibrium, and the radiation very

close to that of a black body. Nevertheless, the small remaining anisotropy can easily

be the carrier of the stars’ huge luminosity: this fraction of 10�10 of the flux emitted

from 1 cm2 of a black body of T D 107 K is still 103 times larger than the flux at the

solar surface (6 � 1010 erg cm�2 s�1/. Radiative transport of energy occurs via the

non-vanishing net flux, i.e. via the surplus of the outwards-going radiation (emitted

from somewhat hotter material below) over the inwards-going radiation (emitted

from less-hot material above).

5.1.2 Diffusion of Radiative Energy

The above estimates have shown that for radiative transport in stars, the mean

free path `ph of the “transporting particles” (photons) is very small compared

to the characteristic length R (stellar radius) over which the transport extends:

`ph=Rˇ � 3 � 10�11. In this case, the transport can be treated as a diffusion

process, which yields an enormous simplification of the formalism. We derive the

corresponding equation by analogy to those for particle diffusion. A more rigorous

derivation can be found in any textbook about radiation transport, for instance, in

Chaps. 2 and 8 of Weiss et al. (2004).

The diffusive flux j of particles (per unit area and time) between places of

different particle density n is given by

j D �D rn ; (5.4)

whereD is the coefficient of diffusion,

D D 1

3
v `p ; (5.5)
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determined by the average values of mean velocity v and mean free path `p of the

particles.

In order to obtain the corresponding diffusive flux of radiative energy F ; we

replace n by the energy density of radiation U;

U D aT 4 ; (5.6)

v by the velocity of light c; and `p by `ph according to (5.1).

In (5.6), a D 7:57�10�15 erg cm�3 K�4 is the radiation density constant. Owing

to the spherical symmetry of the problem, F has only a radial component Fr D
jF j D F and rU reduces to the derivative in the radial direction

@U

@r
D 4 a T 3

@T

@r
: (5.7)

Then (5.4) and (5.5) give immediately that

F D �4ac
3

T 3

�%

@T

@r
: (5.8)

Note that this can be interpreted formally as an equation for heat conduction by

writing

F D �kradrT ; (5.9)

where

krad D 4ac

3

T 3

�%
(5.10)

represents the coefficient of conduction for this radiative transport.

We solve (5.8) for the gradient of the temperature and replace F by the usual

local luminosity l D 4�r2F ; then

@T

@r
D � 3

16�ac

�%l

r2T 3
: (5.11)

After transformation to the independent variable m (as in Sect. 2.1), the basic

equation for radiative transport of energy is obtained in the form

@T

@m
D � 3

64�2ac

�l

r4T 3
: (5.12)

Of course, this neat and simple equation becomes invalid when one approaches

the surface of the star. Because of the decreasing density, the mean free path

of the photons will there become comparable with (and finally larger than) the

remaining distance to the surface; hence the whole diffusion approximation breaks

down, and one has to solve the far more complicated full set of transport equations

for radiation in the stellar atmosphere (These equations indeed yield our simple



40 5 Transport of Energy by Radiation and Conduction

diffusion approximation as the proper limiting case for large optical depths.).

Fortunately, however, we have then left the stellar-interior regime with which

this book deals, and we happily leave the complicated remainder to those of our

colleagues who feel the call to treat the problem of stellar atmospheres.

5.1.3 The Rosseland Mean for ��

The above equations are independent of the frequency �IF and l are quantities

integrated over all frequencies, so that the quantity � must represent a “proper mean”

over �. We shall now prescribe a method for this averaging.

In general the absorption coefficient depends on the frequency �. Let us denote

this by adding a subscript � to all quantities that thus become frequency dependent:

�� ; `�;D� ; U� , etc.

For the diffusive energy flux F � of radiation in the interval Œ�; � C d��, we write

now, as in Sect. 5.1.2,

F � D �D� rU� ; with (5.13)

D� D 1

3
c `� D c

3��%
; (5.14)

while the energy density in the same interval is given by

U� D 4�

c
B.�; T / D 8�h

c3
�3

eh�=kT � 1 : (5.15)

B.�; T / denotes here the Planck function for the intensity of black-body radiation

(differing from the usual formula for the energy density simply by the factor 4�=c/.

For simplicity, we will not always write the arguments � and T explicitly in the

following formulae. From (5.15) we have

rU� D 4�

c

@B

@T
rT ; (5.16)

which together with (5.14) is inserted into (5.13), the latter then being integrated

over all frequencies to obtain the total flux F :

F D �
�
4�

3%

Z 1

0

1

��

@B

@T
d�

�
rT : (5.17)

We have thus regained (5.9), but with

krad D 4�

3%

Z 1

0

1

��

@B

@T
d� : (5.18)
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Equating this expression for krad with that in the averaged form of (5.10), we have

immediately the proper formula for averaging the absorption coefficient:

1

�
D �

acT 3

Z 1

0

1

��

@B

@T
d� : (5.19)

This is the so-called Rosseland mean (after Sven Rosseland).

Since

Z 1

0

@B

@T
d� D acT 3

�
; (5.20)

the Rosseland mean is formally the harmonic mean of �� with the weighting

function @B=@T , and it can simply be calculated, once the function �� is known

from atomic physics.

In order to see the physical interpretation of the Rosseland mean, we rewrite

(5.13) with the help of (5.14)–(5.16):

F � D �
�
1

��

@B.�; T /

@T

�
4�

3%
rT : (5.21)

This shows that, for a given point in the star (% and rT given), the integrand in

(5.19) is at all frequencies proportional to the net flux F � of energy. The Rosseland

mean therefore favours the frequency ranges of maximum energy flux. One could

say that an average transparency is evaluated rather than an opacity–which is

plausible, since it is to be used in an equation describing the transfer of energy

rather than its blocking.

One can also easily evaluate the frequency where the weighting function @B=@T

has its maximum. From (5.15) one finds that, for given a temperature, @B=@T �
x4ex.ex � 1/�2 with the usual definition x D h�=kT . Differentiation with respect

to x shows that the maximum of @B=@T is close to x D 4.

The way we have defined the Rosseland mean �, which is a kind of weighted

harmonic mean value, has the uncomfortable consequence that the opacity � of a

mixture of two gases having the opacities �1; �2 is not the sum of the opacities:

� ¤ �1 C �2.

Therefore, in order to find � for a mixture containing the weight fractions X of

hydrogen and Y of helium, the mean opacities of the two single gases are of no use.

Rather one has to add the frequency-dependent opacities �� D X��HCY��He before

calculating the Rosseland mean. For any new abundance ratio X=Y the averaging

over the frequency has to be carried out separately.

In the above we have characterized the energy flux due to the diffusion of photons

by F . Since in the following we shall encounter other mechanisms for energy

transport, from now, on we shall specify this radiative flux by the vector F rad.

Correspondingly we shall use �rad instead of �, etc.
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5.2 Conductive Transport of Energy

In heat conduction, energy transfer occurs via collisions during the random thermal

motion of the particles (electrons and nuclei in completely ionized matter, otherwise

atoms or molecules). A basic estimate similar to that in Sect. 5.1.1 shows that in

“ordinary” stellar matter (i.e. in a non-degenerate gas), conduction has no chance of

taking over an appreciable part of the total energy transport. Although the collisional

cross sections of these charged particles are rather small at the high temperatures in

stellar interiors (10�18 � � � 10�20 cm2 per particle), the large density . N% D 1:4 g cm�3

in the Sun) results in mean free paths several orders of magnitude less than those for

photons; and the velocity of the particles is only a few per cent of c: Therefore the

coefficient of diffusion (5.5) is much smaller than that for photons.

The situation becomes quite different, however, for the cores of evolved stars

(see Chap. 33), where the electron gas is highly degenerate. The density can be as

large as 106 g cm�3. But degeneracy makes the electrons much faster, since they are

pushed up close to the Fermi energy; and degeneracy increases the mean free path

considerably, since the quantum cells of phase space are filled up such that collisions

in which the momentum is changed become rather improbable. Then the coefficient

of diffusion (which is proportional to the product of mean free path and particle

velocity) is large, and heat conduction can become so efficient that it short-circuits

the radiative transfer (see Sect. 17.6).

The energy flux Fcd due to heat conduction may be written as

Fcd D �kcdrT : (5.22)

The sum of the conductive flux Fcd and the radiative flux Frad as defined in (5.9) is

F D Frad C Fcd D �.krad C kcd/rT ; (5.23)

which shows immediately the benefit of writing the radiative flux in (5.9) formally

as an equation of heat conduction. On the other hand, we can just as well write the

conductive coefficient kcd formally in analogy to (5.10) as

kcd D 4ac

3

T 3

�cd%
; (5.24)

hence defining the “conductive opacity” �cd. Then (5.23) becomes

F D �4ac
3

T 3

%

�
1

�rad

C 1

�cd

�
rT ; (5.25)

which shows that we arrive formally at the same type of equation (5.11) as in the

pure radiative case, if we replace 1=� there by 1=�rad C 1=�cd. Again the result

is plausible, since the mechanism of transport that provides the largest flux will
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dominate the sum, i.e. the mechanism for which the stellar matter has the highest

“transparency”.

Equation (5.12), which, if we define � properly, holds for radiative and conduc-

tive energy transport, can be rewritten in a form which will be convenient for the

following sections.

Assuming hydrostatic equilibrium, we divide (5.12) by (2.5) and obtain

.@T=@m/

.@P=@m/
D 3

16�acG

�l

mT3
: (5.26)

We call the ratio of the derivatives on the left .dT=dP /rad; and we mean by this

the variation of T in the star with depth, where the depth is expressed by the

pressure, which increases monotonically inwards. In this sense, in a star which is

in hydrostatic equilibrium and transports the energy by radiation (and conduction),

.dT=dP /rad is a gradient describing the temperature variation with depth. If we use

the customary abbreviation

rrad WD
�
d lnT

d lnP

�

rad

; (5.27)

(5.26) can be written in the form

rrad D 3

16�acG

�lP

mT 4
; (5.28)

in which conduction effects are now included. Note the difference in definition

and meaning of rrad and of rad introduced in (4.21), which concerns not only

their (in general different) numerical values. As just explained, rrad means a

spatial derivative (connecting P and T in two neighbouring mass shells), while

rad describes the thermal variation of one and the same mass element during its

adiabatic compression. Only in special cases .d lnT=d lnP/ and rad will have the

same value, and we then speak of an “adiabatic stratification”.

We will use rrad also in connection with more general cases (other modes

of energy transport like convection as in Chap. 7, deviation from hydrostatic

equilibrium). It then means the gradient to which a radiative, hydrostatic layer

would adjust at a corresponding point (same values of P; T; l;m), or simply an

abbreviation for the expression on the right-hand side of (5.28), which is valid only

for hydrostatic equilibrium and as long as an effective � as in (5.25) can be defined.

5.3 The Thermal Adjustment Time of a Star

We can write (5.12), which holds for radiative and conductive energy transport, in

the form

l D ��� @T

@m
; �� D 64�6acT 3r4

3�
: (5.29)
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Now, combining this with (4.45) and replacing the internal energy u by its value cvT

for the perfect gas, it follows that

@

@m

�
�� @T

@m

�
� cv

@T

@t
D �

�
"C P

%2
@%

@t

�
: (5.30)

If we put the right-hand side equal to zero, then (5.30) has the form of the equation of

heat transfer with variable conductivity ��: Indeed variation of the temperature with

time along a rod of conductivity � and specific heat c is governed by the equation

@

@x

�
�
@T

@x

�
D c

@T

@t
; (5.31)

where x is the spatial coordinate along the rod (see Landau and Lifshitz, vol. 6,

1987) . There exists a vast amount of mathematical theory associated with this

equation, especially for the case where � is constant. For example, one can define

an initial-value problem with given T D T .x/ at t D 0. How, then, does this initial

temperature profile evolve in time? There are classical methods for determining

T D T .x; t/ for t > 0. One of the basic results is that one can start with an

exciting temperature profile T .x/; for instance, one which resembles the skyline

of Manhattan or the panorama of the Alps, and after some time, the temperature

profile always looks like the landscape of Nebraska: T .x; t/ approaches the limit

solution T D constant after sufficient time.

One can easily estimate the timescale over which (5.31) demands considerable

changes of an initially given temperature profile, the timescale of thermal adjust-

ment, by replacing in (5.31) @T by 4T , @x by a characteristic length d , and @t

by �adj:

�adj D c

�
d 2 ; (5.32)

where d is a characteristic length over which the (initially given) temperature

variation changes. Obviously, only temperature profiles with variations over small

distances can change rapidly in time.

The inhomogeneous term on the right of (5.30) is a source term. It takes

into account that energy can be added everywhere by nuclear reactions or by

compression. In the case of the rod it would correspond to extra heat sources adding

heat at different values of x: Similarly to (5.32) we can derive a characteristic time

for a star:

�adj D cvM
2

�� ; (5.33)

where we have replaced the operator @=@m by 1=M and introduced a mean value

��, which we can estimate from (5.29). We find for the luminosity L of the star
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L � ��T =M , where T is a mean temperature of the star. Therefore, for a rough

estimate, we have from (5.33) that

�adj � cvTM

L
D Ei

L
D �KH : (5.34)

This means that the Kelvin–Helmholtz timescale as defined in (3.17) can be

considered a characteristic time of thermal adjustment of a star or – in other words –

the time it takes a thermal fluctuation to travel from centre to surface.

In spite of the indicated equivalence of �adj and �KH, it is often advisable

to consider �adj separately, in particular if it is to be applied to parts of a star

only. For example, we will encounter evolved stars with isothermal cores of very

high conductivity (Chap. 33). The luminosity there is zero so that formally the

corresponding �KH becomes infinite. The decisive timescale that in fact enforces

the isothermal situation is the very small �adj. The difference can be characterized

as follows: how much energy may be transported after a temperature perturbation

is often much more important than how much energy is flowing in the unperturbed

configuration.

5.4 Thermal Properties of the Piston Model

We now investigate the thermal properties of the piston model discussed in Sects. 2.7

and 3.2 by first assuming that the gas of mass m� in the container is thermally

isolated from the surroundings. If the piston is moved, the gas changes adiabatically,

i.e.

dQ D m�du C PdV D 0 ; (5.35)

dQ being the heat added to the total mass of the gas. For a perfect gas the energy

per unit mass is u D cvT; and for adiabatic conditions, with V D Ah, this leads to

dQ D cvm
�dT C PA dh D 0 : (5.36)

We now relax the adiabatic condition in three ways. First, we allow a small leak

through which heat (but no gas) can escape from the interior (gas at temperature T )

to the surroundings (at temperature Ts/ see Fig. 2.2. The corresponding heat flow

will be �.T�Ts/, where� is a measure of the heat conduction at the leak indicated in

Fig. 2.2. Second, in order to make the gas more similar to stellar matter, we assume

the release of nuclear energy with a rate ": Third, we assume that a radiative energy

flux F penetrates the gas and that the energy �Fm� is absorbed per second. The

energy balance of the gas in the stationary case then can be expressed by

"m� C �Fm� D �.T � Ts/ : (5.37)



46 5 Transport of Energy by Radiation and Conduction

In general the heat dQ added to the gas within the time interval dt is

dQ D Œ"m� C �Fm� � �.T � Ts/�dt ; (5.38)

and, if we compare (5.36) and (5.38), we find that

cvm
� dT

dt
C PA

dh

dt
D "m� C �m�F � �.T � Ts/ : (5.39)

This is the equation of energy conservation of the gas.

If we assume " D � D 0, then (5.39) has only one time-independent solution:

T D Ts. What is the timescale of this adjustment of T ?

The two time derivatives on the left-hand side of (5.39) give the same estimate

for � ; indeed a change of h occurs only as a consequence of, and together with, the

change of T . For our rough estimate we can therefore replace the left-hand side of

(5.39) by cv�Tm
�=T where�T D jT � Tsj:

cvm
��T=� � �jT � Tsj : (5.40)

For the timescale by which �T decays we obtain

�adj � cvm
�=� ; (5.41)

which is the time it takes the gas to adjust its temperature to that of the surroundings.

This timescale for our piston model plays a role similar to the Kelvin–Helmholtz

timescale in stars. For sufficiently small � (sufficiently large �adj), we have �hydr �
�adj, similar to the situation in stars, where �hydr � �KH.



Chapter 6

Stability Against Local, Non-spherical

Perturbations

We have based our treatment on the assumption of strict spherical symmetry,

meaning that all functions and variables (including velocities) are constant on

concentric spheres. In reality there will arise small fluctuations on such a sphere,

for example, simply from the thermal motion of the gas particles. Such local

perturbations of the average state may be ignored if they do not grow. But in a star

sometimes small perturbations may grow and give rise to macroscopic local (non-

spherical) motions that are also statistically distributed over the sphere. In the basic

equations the assumption of spherical symmetry can still be kept if we interpret the

variables as proper average values over a concentric sphere.

However, these motions have to be considered carefully because they can have a

strong influence on the stellar structure. They not only mix the stellar material but

also transport energy: hot gas bubbles rise, while cooler material sinks down, i.e.

energy transport is by convection, something which is known to play an important

role in the earth’s atmosphere.

Whether convection occurs in a certain region of a star obviously depends on the

question whether the small perturbations always present will grow or stay small: a

question of stability. We shall derive criteria which tell us whether stellar material

at a certain depth is stable or not. Depending on the physical conditions one can

make different simplifying assumptions which lead to different stability problems.

The following dynamical problem covers most of the “normal” cases in stars.

6.1 Dynamical Instability

The kind of stability we are discussing here is based on the assumption that the

moving mass elements have no time to exchange appreciable amounts of heat

with the surroundings and therefore move adiabatically. This type of stability (or

instability) is called dynamical. We will soon learn that there are other types of

instability.

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 6, © Springer-Verlag Berlin Heidelberg 2012

47



48 6 Stability Against Local, Non-spherical Perturbations

First, we consider the possibility that the physical quantities (temperature,

density, etc.) may not be exactly constant on the surface of a concentric sphere

but rather may show certain fluctuations. In the global problem of stellar structure,

one then has only to interpret the previously used functions as proper averages. For

the local description, we shall simply represent a fluctuation by a mass “element”

(subscript e) in which the functions have constant, but somewhat different, values

than in the average “surroundings” (subscript s). For any quantity A we define the

difference DA between element and surroundings1 as

DA WD Ae � As : (6.1)

One can easily imagine an initial fluctuation of temperature, for example, a slightly

hotter element with DT > 0. Normally one could then also expect an excess of

pressure DP. However, the element will expand immediately until pressure balance

with the surroundings is restored, and since this expansion occurs with the velocity

of sound, it is usually much more rapid than any other motion of the element.

Therefore we can assume here (and in the following) that the element always

remains in pressure balance with its surroundings:

DP D 0 : (6.2)

Consequently the assumed DT > 0 requires that, for a perfect gas with % �
P=T;D% < 0, i.e. the element is lighter than the surrounding material, and

the buoyancy forces will lift it upwards: temperature fluctuations are obviously

accompanied by local motions of elements in a radial direction.

So, we can also take a radial shift �r > 0 of the element as the initial

perturbation for testing the stability of a layer. Consider an element that was in

complete equilibrium with the surroundings at its original position r but has now

been lifted to r C�r (cf. Fig. 6.1). In general its density will differ from that of its

new surroundings by

D% D
��
d%

dr

�

e

�
�
d%

dr

�

s

�
�r ; (6.3)

.d%=dr/e determining the change of the element’s density while it rises by dr; the

other derivative is the spatial gradient in the surroundings.

A finite D% gives the radial component Kr D �gD% of a buoyancy force K

(per unit of volume), where g again is the absolute value of the acceleration of

gravity. If D% < 0, the element is lighter and Kr > 0, i.e. K is directed upwards.

This situation is obviously unstable, since the element is lifted further, the original

perturbation being increased.

1Note that we use the subscript s, which is different from s used for the specific entropy in other

parts of this book.
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Fig. 6.1 In order to test the

stability of a “surrounding”

layer (s), a test “element”

(e) is lifted from level r to

r C�r

If on the other hand D% > 0, then Kr < 0, i.e. K is directed downwards. The

element, which is heavier than its new surroundings, is drawn back to its original

position, the perturbation is removed, and the layer is stable. As the condition for

stability we obtain with D% > 0 from (6.3) the result

�
d%

dr

�

e

�
�
d%

dr

�

s

> 0 : (6.4)

Unfortunately this criterion is highly impractical, since it requires knowledge of

density gradients that do not appear in the basic equations. It is therefore preferable

to turn to temperature gradients as used in the equations of radiative and conductive

transport. In order to evaluate .d%=dr/e correctly, we would have to take into

account the possible energy exchange between the element and its surroundings.

For simplicity let us here assume that no such exchange of energy occurs, i.e. that

the element rises adiabatically. This is very close to reality for the deep interior of

a star (see Chap. 7).

In order to transform the gradients of % into those of T , we write the equation of

state % D % .P; T; �/ in the following differential form:

d%

%
D ˛

dP

P
� ı

dT

T
C '

d�

�
; (6.5)

where ˛ and ı have already been defined in (4.2) and (4.3). But here, we have

made allowance also for a possible variation of the chemical composition, which is

characterized by the molecular weight �: We therefore have

˛ WD
�
@ ln %

@ lnP

�
; ı WD �

�
@ ln %

@ ln T

�
; ' WD

�
@ ln%

@ ln�

�
; (6.6)

where the three partial derivatives correspond to constant values of T;�IP;�; and

P; T; respectively, and for a perfect gas with % � P�=T , one has ˛ D ı D
' D 1. In this description d� shall represent only the change of � due to the

change of chemical composition, i.e. the variation of the concentrations of different

nuclei in the deep interior. Of course, � can also change in the outer regions for

constant composition if the degree of ionization changes. This effect, however, has
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a well-known dependence on P and T and is supposed to be incorporated in ˛

and ı: Thus, d� D 0 for the moving element that carries its composition along.

But d� ¤ 0 for the surroundings if the element passes through layers of different

chemical composition.

We can immediately rewrite (6.4) with the help of (6.5) in the form

�
˛

P

dP

dr

�

e

�
�
ı

T

dT

dr

�

e

�
�
˛

P

dP

dr

�

s

C
�
ı

T

dT

dr

�

s

�
�
'

�

d�

dr

�

s

> 0 : (6.7)

The two terms containing the pressure gradient cancel each other owing to (6.2),

and the other terms are usually multiplied by the so-called scale height of pressure

HP :

HP WD � dr

d lnP
D �P dr

dP
: (6.8)

With (2.3), the condition for hydrostatic equilibrium, we find HP D P=%g, i.e.

HP > 0, since P decreases with increasing r . HP has the dimension of length,

being the length characteristic of the radial variation of P: In the solar photo-sphere

.g D 2:7 � 104 cm s�2, P D 1:0 � 105 dyn cm�2, % D 2:6 � 10�7 g cm�3/, one

finds HP D 1:4 � 107 cm, while at r D Rˇ=2 .g D 9:8 � 104 cm s�2, P D
7:3 � 1014 dyn cm�2, % D 1:4 g cm�3/, HP is much bigger, at 5:5 � 109 cm. If one

approaches the stellar centre–where g D 0, while P remains finite–thenHP ! 1.

Multiplication of (6.7) by HP yields as a condition for stability

�
d ln T

d lnP

�

s

<

�
d ln T

d lnP

�

e

C '

ı

�
d ln�

d lnP

�

s

: (6.9)

Similar to the previously defined quantities rrad and rad, we define three new

derivatives:

r WD
�
d ln T

d lnP

�

s

; re WD
�
d lnT

d lnP

�

e

; r� WD
�
d ln�

d lnP

�

s

: (6.10)

Here the subscripts s indicate that the derivatives are to be taken in the surrounding

material. In both cases they are spatial derivatives in which the variations of T and�

with depth are considered and P is taken as a measure of depth. The quantity re

describes the variation of T in the element during its motion, where the position

of the element is measured by P: In this sense re and rad are similar, since

both describe the temperature variation of a gas undergoing pressure variations;

on the other hand, rrad and r� describe the spatial variation of T and � in the

surroundings.

With the definitions (6.10) the condition (6.9) for stability becomes

r < re C '

ı
r� : (6.11)
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In (5.27) and (5.28) we defined rrad, which describes the temperature gradient for

the case that the energy is transported by radiation (or conduction) only. Therefore in

a layer that indeed transports all energy by radiation the actual gradient r is equal

to rrad. Let us test such a layer for its stability and assume the elements change

adiabatically: re D rad; the radiation layer is stable if

rrad < rad C '

ı
r� ; (6.12)

a form known as the Ledoux criterion (named after Paul Ledoux) for dynamical

stability. In a region with homogeneous chemical composition, r� D 0, and one

has then simply the famous Schwarzschild criterion for dynamical stability (named

after Karl Schwarzschild):

rrad < rad : (6.13)

If in the criteria (6.12) and (6.13) the left-hand side is larger than the right, the

layer is dynamically unstable. If they are equal, one speaks of marginal stability.

The difference between the two criteria obviously plays a role only in regions

where the chemical composition varies radially. We will see that such regions occur

in the interior of evolving stars, where heavier elements are usually produced below

the lighter ones, such that the molecular weight � increases inwards (as the pressure

does) and r� > 0. Then the last term in inequality (6.12) obviously has a stabilizing

effect (' and ı are both positive). This is plausible since the element carries its

heavier material upwards into lighter surroundings and gravity will tend to draw it

back to its original place.

If these criteria favour stability, then no convective motions will occur, and the

whole flux will indeed be carried by radiation, i.e. the actual gradient at such a

place is equal to the radiative one: r D rrad. If they favour instability, then small

perturbations will increase to finite amplitude until the whole region boils with

convective motions that carry part of the flux–and the actual gradient has to be

determined in a manner described in Chap. 7. This instability can be caused either

by the fact that rrad has become too high (large flux or very opaque matter), or else

by a depression of rad; both cases occur in stars. And, finally, in a twilight zone,

where one of the two criteria (6.12) and (6.13) says stability and the other one says

instability, strange things may happen (see, for instance, Sects. 6.3 and 30.4.2).

Note that (6.12) and (6.13) are strictly local criteria, which means good and bad

news. They are very practical since they can be evaluated easily for any given place

by using the local values of P; T; % only, without bothering about other parts of

the star. And in most cases this will give satisfactory answers. In critical cases,

however, this may not be sufficient. Strictly speaking, convective motions are not

only dependent on the local forces (which are solely regarded by the criteria),

but must be coupled (by momentum transfer, inertia, the equation of continuity)

to their neighbouring layers. And in extreme cases the reaction of the whole star
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against a local perturbation should be taken into account. An obvious example is the

precise determination of the border of a convective zone, where elements that were

accelerated elsewhere “shoot over” until their motion is braked. We will come back

later to such problems when they arise (see Sect. 30.4.1).

We can immediately derive a qualitative relation between the different gradients.

They are best visualized in a diagram such as Fig. 6.2, where lnT is plotted

against lnP (decreasing outwards) for an unstable layer violating the Schwarzschild

criterion. In such a diagram, an adiabatic change follows a line with slope rad, the

changes in a rising element are given by a line with slope re, while the stratifications

in the surroundings and in a radiative layer are shown by lines with slopes r and

rrad, respectively.

Suppose we have convection in a chemically homogeneous layer (r� D 0). The

criterion (6.11) must be violated, i.e. r > re. If some part of the flux is carried

by convection, then the actual gradient r < rrad, since only a part of the total

flux is left for radiative transfer. Consider a rising element that has started from a

point with P0; T0. In Fig. 6.2 this element moves downwards to the left along the

line with slope re. Since r > re, the element (although cooling) will obviously

have an increasing temperature excess over its new surroundings (the temperature

of which changes with r). Therefore it will radiate energy into its surroundings,

which means that the element cools more than adiabatically: re > rad. Combining

these inequalities, we arrive at the relation illustrated in Fig. 6.2:

rrad > r > re > rad : (6.14)

The fact that re must always be between rad and r of the surroundings shows that

the criteria (6.12) and (6.13) are also to be used in near-surface regions, where the

rising elements lose much of their energy by radiation.

6.2 Oscillation of a Displaced Element

In a dynamically stable layer a displaced mass element is pushed back by buoyancy.

When coming back to its original position, it has gained momentum and will

overshoot and therefore start to oscillate. In the following we shall discuss this

oscillation.

Consider a mass element lifted from its normal (equilibrium) position in the

radial direction by an amount�r (see Fig. 6.1). There it has an excess of densityD%

over its new surroundings given by (6.3), which for balance of pressure .DP D 0)

and with (6.5) and the definitions (6.6), (6.8), (6.10) can easily be written as

D% D %ı

HP

h
re � r C '

ı
r�

i
�r : (6.15)
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Fig. 6.2 Temperature-pressure diagram with a schematic sketch of the different gradients r.�
@ lnT=@ lnP ) in a convective layer. Starting at a common point with P0 and T0, the different types

of changes (adiabatic, in a rising element, in the surroundings, for radiative stratification) lead to

different temperatures at a slightly higher point with P0C�P (< P0, since P decreases outwards)

In the presence of gravity g; the resulting buoyancy force per unit volume is Kr D
�gD%, producing an acceleration of the element of

@2.�r/

@t2
D � gı

HP

h
re � r C '

ı
r�

i
�r : (6.16)

Suppose now that the element, after an original displacement �r0, moves adiabat-

ically (re D rad) through a dynamically stable layer .D%=�r > 0/. The element

is accelerated back towards its equilibrium position around which it then oscillates

according to the solution of (6.16):

�r D �r0 ei!t : (6.17)

The frequency ! D !ad of this adiabatic oscillation is the so-called Brunt-Väisälä

frequency given by

!2ad D gı

HP

�
rad � r C '

ı
r�

�
: (6.18)

(It plays, e.g. a role in the discussion of non-radial oscillations of a star, see

Chap. 42.) The corresponding period is �ad D 2�=!ad.
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We see immediately what happens in an unstable layer. If the Ledoux criterion

(6.12) [or the Schwarzschild criterion (6.13) for r� D 0] is violated, then (6.18)

gives !2ad < 0, such that !ad is imaginary and the time dependence of �r is given

by the factor exp(�t) with a real � > 0. Instead of oscillating, the displaced element

moves away exponentially.

6.3 Vibrational Stability

In a dynamically stable layer an oscillating mass element has, in general, DT ¤ 0.

If DT > 0, it will lose heat to its surrounding by radiation; if DT < 0, it will

gain heat. This means it will not move adiabatically. We consider the deviation

from adiabaticity to be small, which means that the thermal adjustment time of

the element is large compared to the period of the oscillation; then the temperature

excess of the element can be written as

DT D
��
dT

dr

�

e

�
�
dT

dr

�

s

�
�r

D � T

HP

.re � r/�r : (6.19)

Dynamical stability means that D%=�r > 0 and therefore (6.11) is fulfilled. If the

layer is chemically homogeneous, then r� D 0, and (6.11) becomes re � r > 0,

such that (6.19) gives DT < 0 for �r > 0. Above its equilibrium position the

element is cooler than the surroundings and receives energy by radiation. This

reduces re �r;D%, and the restoring force, such that the element is less accelerated

back towards the equilibrium position. The result will be an oscillation with slowly

decreasing amplitude. Formally this radiative damping shows up as a small positive

imaginary part of ! in (6.17) after the exchange of heat with the surroundings is

included in (6.16). The oscillatory part (real part of !/ is still very close to the

adiabatic value (6.18).

If the stable layer is inhomogeneous with r� > 0, it can be that with (6.11)

re � r > 0 also (both criteria for stability are fulfilled), i.e. we find again that

DT < 0 for �r > 0 and radiative damping as before. However, we can also

imagine a situation with re � r < 0 in spite of (6.11) for large enough r�. Then

DT > 0 for �r > 0 according to (6.19), and the lifted element, being hotter

than its surroundings, will now lose energy by radiation. This increases re � r,

D%, and the restoring force, and the element will oscillate with slowly increasing

amplitude. This is an over-stability, or vibrational instability. The difficulties in this

strange situation are obvious [it being the above mentioned twilight zone between

the two criteria (6.12) and (6.13)]. The growing oscillation may lead to a chemical

mixing of elements and surroundings and thus decrease, or eventually even destroy,

the stabilizing gradient r�. But then again, it is not clear whether in such critical
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situations a local analysis suffices at all. The reaction of other layers of the star

might provide enough damping to suppress the over-stability.

With these considerations it follows that we have to distinguish between dynami-

cal stability and vibrational stability. The first applies to purely adiabatic behaviour

of the moving mass, while the second takes heat exchange into account. A layer

with a temperature gradient r such that the Ledoux criterion is fulfilled but the

Schwarzschild criterion is not, i.e.

rad < r < rad C '

ı
r� ; (6.20)

is dynamically stable but vibrationally unstable.

A dynamical instability grows on a timescale given by .HP =g/
1=2; while in the

case of a vibrational instability, the growth of amplitude is governed by the time it

takes a mass element to adjust thermally to its surrounding, i.e. by the fraction of the

total energy of the moving element lost by radiation per unit time. In the following

we shall estimate this timescale �adj.

6.4 The Thermal Adjustment Time

Let us consider a mass element with DT > 0, i.e. one that will radiate into the

surroundings. Superposed onto the radial energy flux F ; carrying energy from the

stellar interior to the surface, there will be a local, non-radial flux f , carrying

the surplus energy of the element to its surroundings. According to (5.9) and

(5.10), the absolute value f of the radiative flux from the element due to its excess

temperature will be

f D 4acT 3

3�%

ˇ̌
ˇ̌@T
@n

ˇ̌
ˇ̌ ; (6.21)

where @=@n indicates the differentiation perpendicular to the surface of the element.

Suppose our element to be a roughly spherical “blob” with diameter d: We will

approximate the temperature gradient in the normal direction by @T=@n � 2DT=d .

The radiative loss � per unit time from the whole surface V of the blob is then

� D Sf D 8acT 3

3�%
DT

S

d
: (6.22)

The quantity � is a sort of “luminosity” of the blob, and it determines the rate by

which the thermal energy of the blob of volume V changes:

%V cP
@T

@t
D �� : (6.23)
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Here we can replace @T=@t by @.DT /=@t , since the temperature of the (large)

surroundings scarcely changes, owing to radiative losses of the blob. Furthermore,

let V=S � d=6 (as for a sphere); then one obtains from (6.22) and (6.23) that

@.DT /

@t
D �DT

�adj

; (6.24)

with the timescale for thermal adjustment

�adj D �%2cPd
2

16acT 3
D %VcPDT

�
: (6.25)

The second equation follows from a comparison of (6.22)–(6.24). We see that �adj is

roughly the excess thermal energy divided by the luminosity, i.e. an equivalent to the

Kelvin–Helmholtz timescale for a star (3.17). For sufficiently large elements that are

far enough from a region of marginal stability, one has �adj � 1=!ad, which means

that the radiative losses give only a small deviation from adiabatic oscillations, as

discussed in Sect. 6.2.

6.5 Secular Instability

Even a small exchange of heat between a displaced mass element and its surround-

ings can lead to another kind of instability, which is called thermal or secular

instability. We first discuss this qualitatively with an experiment which can easily

be carried out with water and kitchen equipment.

In a glass jar containing cold fresh water we carefully pour over a layer of

warm salty water. The salt increases the specific weight of the upper layer, but the

warmth shall be enough to reduce (despite the salt content) its specific weight to

below that of the underlying fresh water. If, owing to a perturbation, a blob of salty

water is pushed downwards, buoyancy will push it back, i.e. the two layers are then

dynamically stable.

But the buoyancy acts as a restoring force only as long as the element stays warm

during its excursion into the cold layers. On the timescale by which it loses its excess

temperature, the buoyancy diminishes and the element moves downwards because

of its salt content. Indeed if one watches the two layers for some time, one can see

(especially if the salty water is coloured) that small blobs of salty water slowly sink,

a phenomenon called salt-fingers. It is an instability controlled by the heat leakage

of the element. This is secular instability. It can not only occur in glass jars, but also

in stars!

Consider a blob of stellar matter situated in surroundings of somewhat different,

but homogeneous, composition, i.e. D� ¤ 0, but r� D 0 (Such a situation can

occur, for example, if two homogeneous layers of different compositions are above

each other and a blob from one layer is displaced into the other.). The blob is
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supposed to be in mechanical equilibrium with its surroundings, i.e.DP D D% D 0.

This requires, however, a temperature difference according to (6.5):

ı
DT

T
D '

D�

�
: (6.26)

For D� > 0, for example, the blob is hotter and therefore radiates towards the

surroundings; the loss of energy under pressure balance .DP D 0) leads to an

increased density and the blob sinks until again D% D 0. Equation (6.26) is still

valid and, since D�, is unchanged, DT > 0 as before, and so on. Obviously the

blob will slowly sink (or rise for D� < 0) with a velocity v� such that DT always

remains constant according to (6.26).

Owing to radiation, the temperature of the blob changes at the rate–DT=�adj [see

(6.24)]. While sinking or rising it changes also because of the adiabatic compression

(or expansion) that occurs as a result of the change of pressure, even in the absence

of energy exchange. The rate of change of DT can then immediately be written as

1

T

@

@t
.DT / D

�
rad

@ lnP

@t
� DT

T �adj

�
� r @ lnP

@t
: (6.27)

The rate of change of pressure is simply linked to the velocity v� by

@ lnP

@t
D � v�

HP

: (6.28)

Using this and (6.26), together with the condition @.DT /=@t D 0 [which follows

from (6.26), since D� does not vary if the element moves in a chemically

homogeneous region], we can solve (6.26)–(6.28) for the velocity and obtain

v� D � HP

.rad � r/�adj

'

ı

D�

�
: (6.29)

In this case of thermal instability, therefore, the blob sinks (v� < 0 for D� > 0)

through a dynamically stable surrounding (rad > 0) with the adjustment timescale

for radiative losses.

The idea of blobs finding themselves in strange surroundings .D� > 0) is not

far-fetched. Secular instabilities of the kind discussed here can occur in stars, for

example, of about one solar mass. After hydrogen has been transformed to helium

in their cores, their central region is cooled by neutrinos, which take away energy

without interacting with the stellar matter. The temperature in these stars, therefore,

is highest somewhere off-centre and decreases towards the stellar surface as well as

towards the centre. If, then, helium “burning” is ignited in the region of maximum

temperature, the newly formed carbon is in a shell surrounding the central core

(Sects. 33.4 and 33.5). This carbon-enriched shell has a higher molecular weight

than the regions below: carbon “fingers” will grow and sink inwards. In later
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evolutionary phases, other nuclear reactions, such as neon burning, may ignite off-

centre, and heavier fingers of material may sink.

6.6 The Stability of the Piston Model

Our piston model (Sects. 2.7 and 5.4) shows a stability behaviour in many respects

similar to that of the blobs.

We start with the two equations that together with the equation of state describe

the time dependence of the piston model. These are (2.34) and (5.39), where we

assume for the sake of simplicity that " D � D 0. The equilibrium state is given by

T D Ts and G� D PA.

In order to investigate the stability we denote the equilibrium values by the

subscript “0” and make small perturbations of the form

h.t/ D h0.1C xei!t /

P.t/ D P0.1C pei!t/

T .t/ D T0.1C #ei!t/ (6.30)

with jxj; jpj; j#j � 1. We therefore neglect quadratic and higher-order expressions

in these quantities.

From mass conservation %h = constant and from the perfect gas equation

P � %T , we obtain

p D # � x : (6.31)

We now introduce (6.30) into (2.34) and obtain after linearization and using

G� D PA

M �h0!
2x C P0Ap D 0 ; (6.32)

which with g D P0A=M
� and with (6.31) can be replaced by

�
!2h0

g
� 1

�
x C # D 0 ; (6.33)

while the corresponding perturbation and linearization of (5.39) gives

i!P0Ah0x C .i!cvm
�T0 C �T0/# D 0 : (6.34)

The two linear homogeneous equations (6.33) and (6.34) for x and # can be solved

if the determinant vanishes. This condition gives an algebraic equation of third order

for the eigenvalue !:
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The problem becomes simple if we assume that the trapped gas changes

adiabatically, i.e. if � D 0. Then (6.34), with m�=.Ah0/ D %0 and with the perfect

gas equation, yields
<
�cv

x C # D 0 ; (6.35)

and with <=� D cP � cv (4.33) and cP =cv D 
ad (4.37) it follows that

.
ad � 1/x C # D 0 : (6.36)

Setting the determinant of the equations (6.33) and (6.36) to zero gives the

eigenvalue for the adiabatic motion:

! D ˙!ad; !ad D .
adg=h0/
1=2 : (6.37)

Since ! is real, the adiabatic motion is an oscillation with frequency ! and constant

amplitude. Therefore in the language of Sect. 6.1 our perfect gas piston model is

dynamically stable. Note that 1=!ad is of the order of the hydrostatic timescale �hydr

defined in Sect. 2.7.

How do non-adiabatic effects change the picture? With the � term in (6.34) we

have, instead of (6.36),

.
ad � 1/x C
�
1C a

i!

�
# D 0 ; (6.38)

with a D �=.cvm
�). Setting the determinant of (6.33) and (6.38) equal to zero now

gives a cubic equation in !: In general ! will be complex.

We assume � to be small, so that the oscillation frequency must be close to

the adiabatic value and we can put ! D !ad C �, with j�j � j!adj: If we

neglect higher terms in � and �, we find from the vanishing determinant of the

system of homogeneous linear equations (6.33) and (6.38) and after some algebraic

manipulation that

i� D �
ad � 1
2
ad

�

cvm� D �
ad � 1

2
ad

1

�adj

< 0 ; (6.39)

where we have used (5.41). The (almost adiabatic) oscillation is therefore damped

since the exponents of (6.30), i! D i!adCi�, have a negative real part that decreases

the amplitude on a timescale �adj: The piston model with a leak is vibrationally

stable.

The cubic equation for ! must have a third root, which we find easily by

assuming that it describes an evolution so slow that the inertia term in (2.34) can

be neglected (This has to be checked later.). Then (6.33) has to be replaced by

# � x D 0 ; (6.40)
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which according to (6.31) is equivalent to p D 0. Indeed if the evolution is so slow

that there is always hydrostatic equilibrium, the pressure is given by the (constant)

weight of the piston. We then have from (6.34) and (6.40)

i! D � �T

P0Ah0 C cvm�T0
D � �

cPm� D � 1


ad�adj

: (6.41)

For the latter equation we have used the relation P0Ah0 D <m�T0=� and (5.41).

The third root gives an exponential decay in time of the initial perturbation, the

timescale being comparable with �adj. If � is sufficiently small and the evolution

slow, the assumption that the inertia term is negligible is justified.

Our result (6.41) means that any deviation from thermal equilibrium

.T � Ts ¤ 0/ vanishes within the thermal adjustment time, i.e. the thermally

adjusted piston model for " D � D 0 is secularly stable. We see that it shows the

same limiting cases for the stability problem (dynamical, vibrational, and secular

stability) as the blobs. In Sect. 41.1 we will consider the influence on the stability of

the piston model of the (here neglected) terms in (5.39) due to " and �.

To summarize: if the trapped gas is changing adiabatically, the piston model

is dynamically stable. If there is a leak, the oscillations are damped and the gas

vibrationally stable. If the thermal evolution is so slow that hydrostatic equilibrium

is always achieved, it is secularly stable, if � and � are zero.



Chapter 7

Transport of Energy by Convection

Convective transport of energy means an exchange of energy between hotter and

cooler layers in a dynamically unstable region through the exchange of macroscopic

mass elements (“blobs”, “bubbles”, “convective elements”), the hotter of which

move upwards while the cooler ones descend. The moving mass elements will

finally dissolve in their new surroundings and thereby deliver their excess (or

deficiency) of heat. Owing to the high density in stellar interiors, convective

transport can be very efficient. However, this energy transfer can operate only if

it finds a sufficient driving mechanism in the form of the buoyancy forces.

A thorough theoretical treatment of convective motions and transport of energy is

extremely difficult. It is the prototype of the many astrophysical problems in which

the bottleneck preventing decisive progress is the difficulty involved in solving the

well-known hydrodynamic equations. For simplifying assumptions, solutions are

available that may even give reasonable approximations for certain convective flows

in the laboratory (or in the kitchen). Unfortunately, convection in stars proceeds

under rather malicious conditions: turbulent motion transports enormous fluxes

of energy in a very compressible gas, which is stratified in density, pressure,

temperature, and gravity over many powers of ten. Nevertheless, large efforts have

been made over many years to solve this notorious problem, and they have partly

arrived at promising results. Canuto (2008) summarizes the state of the art of models

for the underlying Navier-Stokes equations, which in the field of oceanography

and atmospheric sciences have had great success, and which aim at modelling

the fluctuations around an average state. None of these so-called Reynolds stress

models, however, has reached a stage where it could provide a procedure easy

enough to be handled in everyday stellar-structure calculations, and at the same time

would describe the full properties of convection accurately enough. On the other

hand, full two- and three-dimensional hydrodynamical simulations have also made

large progress, thanks to the impressive advances in supercomputer technology and

efficient numerical algorithms (see the review by Kupka 2008). They give valuable

hints to the true nature of convection and often serve as numerical experiments

to test the dynamical methods. Nevertheless, these numerical simulations are still

limited in their size and thus can follow convection in most cases only for a limit
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time and only for thin convection zones. But even if these restrictions can be

foreseen to get relaxed with time, such full hydrodynamical simulations will never

be used in full stellar evolution models, as they would unnecessarily follow the star’s

evolution on a dynamical timescale, which is so much shorter than the dominant

nuclear one. Therefore, we limit ourselves exclusively to the description of the old

so-called “mixing-length” theory. The reason for this is not that we believe it to

be sufficient, but it does provide at least a simple method for treating convection

locally, at any given point of a star. Moreover, empirical tests of the resulting stellar

models show a surprisingly good agreement with observations. And, finally, even

this poor approximation shows without any doubt that in the very deep interior of a

star, a detailed theory is normally not necessary.

Note that in the following we are dealing only with convection in stars that

are in hydrostatic equilibrium. We furthermore assume that the convection is time

independent, which means that it is fully adjusted to the present state of the

star. Otherwise, a convection theory for rapidly changing regions (time-dependent

convection) has to be developed.

Equation (5.28) gives the gradient rrad that would be maintained in a star if the

whole luminosity l had to be transported outwards by radiation only. If convection

contributes to the energy transport, the actual gradient r will be different (namely

smaller). It is the purpose of this section to estimate r in the case of convection.

7.1 The Basic Picture

The mixing-length theory goes back to Ludwig Prandtl, who in 1925 modelled

a simple picture of convection in complete analogy to molecular heat transfer:

the transporting “particles” are macroscopic mass elements (“blobs”) instead of

molecules; their mean free path is the “mixing length” after which the blobs dissolve

in their new surroundings. Prandtl’s theory was adapted for stars by L. Biermann.

There exist different variations and formulations of the mixing-length theory in the

literature. Two widely used versions are those by Böhm-Vitense (1958) and Cox

(see Weiss et al. 2004). We follow here the former one.

The total energy flux l=4�r2 at a given point in the star consists of the radiative

flux Frad (in which the conductive flux may already be incorporated) plus the

convective flux Fcon. Their sum defines according to (5.28) the gradient rrad that

would be necessary to transport the whole flux by radiation:

Frad C Fcon D 4acG

3

T 4m

�P r2
rrad: (7.1)

However, part of the flux is transported by convection. If the actual gradient of the

stratification is r, then the radiative flux is obviously only

Frad D 4acG

3

T 4m

�P r2
r: (7.2)
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Note that r is not yet known; in fact, we hope to obtain it as the result of this

consideration. The first step is to derive an expression for Fcon.

Consider a convective element (a blob) with an excess temperature DT over its

surroundings. It moves radially with velocity v and remains in complete balance

of pressure, that is, DP D 0 [see (6.2) and Fig. 6.1]. This gives a local flux of

convective energy

Fcon D %vcPDT; (7.3)

which we can take immediately as the correct equation for the average convective

flux, if we consider vDT replaced by the proper mean over the whole concentric

sphere. One should be aware that this “proper mean” comprises most of the

difficulties for a strict treatment. We adopt the following simple model.

All elements may have started their motion as very small perturbations only, that

is, with initial values that can be approximated by DT0 D 0 and v0 D 0. Because

of differences in temperature gradients and buoyancy forces, DT and v increase

as the element rises (or sinks) until, after moving over a distance `m; the element

mixes with the surroundings and loses its identity. `m is called the mixing length.

The elements passing at a given moment through a sphere of constant r will have

different values of v and DT since they have started their motion at quite different

distances, from zero to `m. We assume, therefore, that the “average” element has

moved `m=2 when passing through the sphere. Then,

DT

T
D 1

T

@.DT /

@r

`m

2

D .r � re/
`m

2

1

HP

: (7.4)

The density difference [forDP D D� D 0, see (6.3) and (6.5)] is simply D%=% D
�ıDT=T and the (radial) buoyancy force (per unit mass), kr D �g � D%=%. On

average, half of this value may have acted on the element over the whole of its

preceding motion .`m=2/; such that the work done is

1

2
kr
`m

2
D gı.r � re/

`2m
8HP

: (7.5)

Let us suppose that half of this work goes into the kinetic energy of the element

.v2=2 per unit mass), while the other half is transferred to the surroundings, which

have to be “pushed aside”. Then, we have for the average velocity v of the elements

passing our sphere

v2 D gı.r � re/
`2m
8HP

: (7.6)

Inserting this and (7.4) into (7.3), we obtain for the average convective flux
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Fcon D %cPT
p
gı

`2m

4
p
2
H

�3=2
P .r � re/

3=2 : (7.7)

Finally, we shall consider the change of temperature Te inside the element

(diameter d; surface S; volume V / when it moves with velocity v. This change

has two causes, one being the adiabatic expansion (or compression), and the other

being the radiative exchange of energy with the surroundings. The total energy loss

� per unit time is given by (6.22); the corresponding temperature decrease per unit

length over which the element rises is �=%VcP v, and the total change per unit length

is then �
dT

dr

�

e

D
�
dT

dr

�

ad

� �

%VcP v
: (7.8)

Multiplying this by HP =T , we have

re � rad D �HP

%VcP vT
: (7.9)

Here, �may be replaced by (6.22), with the average DT given by (7.4). The resulting

equation then contains a “form factor” `mS=Vd , which would be 6=`m for a sphere

of diameter `m: In the literature, one often finds

`mS

Vd
� 9=2

`m

; (7.10)

which we will use in the following.

Equation (7.9), with the help of (6.22) and (7.10), then becomes

re � rad

r � re

D 6acT 3

�%2cP `mv
: (7.11)

Let us now summarize what we have achieved and describe what is still lacking.

To start with the latter, we have obviously not yet used any physics that could

determine the mixing length `m. Since we do not know a reasonable approach

for this, we shall simply treat `m as a free parameter and make (more or less)

plausible assumptions for its value (This is typical for all versions of the mixing-

length approach and in fact also for many others that seem to be less arbitrary at a

first glance.). In any case, the heat transfer mainly operates via the largest possible

elements, and they can scarcely move over much more than their own diameter

before differential forces destroy their identity.

Now, however, the prospect looks quite favourable: we have obtained the five

equations (7.1), (7.2), (7.6), (7.7) and (7.11), which we can solve for the five quanti-

ties Frad; Fcon; v;re, and r, if the usual local quantities .P; T; %; l;m; cP ;rad;rrad,

and g) are given.
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7.2 Dimensionless Equations

For a simpler treatment of the five equations obtained from the mixing-length theory,

we define two dimensionless quantities:

U WD 3acT 3

cP%2�`2m

s
8HP

gı
; (7.12)

W WD rrad � rad : (7.13)

The meaning of U will become clear later; that ofW is obvious. Note that both can

be calculated immediately for any point in the star when the usual variables and the

mixing length `m are given.

If v is eliminated with the help of (7.6), then (7.11) becomes

re � rad D 2U
p

r � re: (7.14)

Eliminating Frad; Fcon from (7.1), (7.2) and (7.7) and using (2.4) and (6.8),

we arrive at

.r � re/
3=2 D 8

9
U.rrad � r/ : (7.15)

We have thus replaced the set of five equations by the two equations (7.14) and

(7.15) for r and re, and we will now even reduce them to one final equation.

Rewriting the left-hand side of (7.14) as (r � rad/ � .r � re/, one sees

immediately that this is a quadratic equation for (r � re/
1=2 with the solution

p
r � re D �U C � ; (7.16)

where � is a new variable given by the positive root of

�2 D r � rad C U 2 : (7.17)

In (7.15), we insert (7.16) on the left-hand side, eliminate r on the right-hand side

with (7.17), and obtain

.� � U /3 C 8U

9
.�2 � U 2 �W / D 0 : (7.18)

So we have arrived at a cubic equation for � that can be solved for any given

set of parameters U and W: It turns out that (7.18) has only one real solution.

The resulting �, together with (7.17), then gives the decisive quantity r, that is,

the average temperature gradient to which the layer settles in the presence of

convection.
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Other characteristic quantities of the convection are then also easily calculable,

for example, the velocity v from (7.6) and (7.14).

We note for completeness that the cubic equation (7.18) should be solved

numerically and not by the analytical formulae for the solution of third order

equations, because the individual terms appearing therein can be many magnitudes

larger than the root of the formula.

7.3 Limiting Cases, Solutions, Discussion

For a given difference W D rrad � rad, the convection depends decisively on the

value of U: Let us write (7.2) as Frad D �radr, and (7.7) as Fcon D �con.r � re/
3=2.

Then, U , defined in (7.12), is essentially the ratio of the “conductivities”: �rad=�con.

The dimensionless quantity U can also be written in terms of the time �ff it takes

a mass element to fall freely over the distance HP . With �ff D .2HP =g/
1=2 and

(6.25), we have

U � �ff

�adj

d 2

`2m
; (7.19)

where we have ignored a factor 3=.8ı1=2/, which is of order 1. One normally

assumes that `m � d , and therefore, U � �ff=�adj.

The quantity U is also related to another dimensionless quantity � defined by

� WD .r � re/
1=2

2U
D r � re

re � rad

; (7.20)

where we have made use of (7.14). Numerator and denominator have simple

meanings as can easily be shown. For a roughly spherical convective element of

radius `m=2; cross-section A; volume V; lifetime �l D `m=v, and thermal energy

eth D %VcP T , one finds from (7.3) and (7.4) that

r � re D .FconA/�l

eth

4HP

3`m

(7.21)

and from (7.9) that

re � rad D ��l

eth

HP

`m

; (7.22)

and therefore,

� D 4

3

FconA

�
� energy transported

energy lost
: (7.23)
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For an average element, � gives the convective energy flowing throughA relative to

the radiative energy loss per second. It is a measure for the efficiency of convection.

Large values of � (small U / are typical for very dense matter, where radiation

losses are relatively unimportant compared to the convective flux. In regions of

small density, however, the radiative losses can be so large that even very violent

movements are ineffective for energy transport; the elements then lose nearly all of

their excess heat through radiation to the surroundings, and cool down to DT � 0.

In this case, � is very small (i.e. U is very large). The meaning of � can also be

represented in terms of two typical timescales for the elements, namely, lifetime and

adjustment time: in the second equation (6.25), replace DT by (7.4) and solve for

r � re. This expression is then divided by (7.22) giving

� D r � re

re � rad

D 2
�adj

�l
: (7.24)

Let us consider the limiting cases for very large and very small U (or � /: One

should keep in mind that all gradients are finite; except for rrad, they are all smaller

than unity. And for the discussion in terms of � , one can easily rewrite (7.14) and

(7.15) with the help of (7.20).

U ! 0 (or � ! 1): Equation (7.14) gives re ! rad, and thus, (7.15) yields

r ! rad. A negligible excess of r over the adiabatic value is sufficient to transport

the whole luminosity. This is the case in the very dense central part of a star. Here,

we do not need to solve the mixing-length equations (r D rad is known), and the

uncertainties of this theory do not arise.

U ! 1 (or � ! 0): In (7.15), the gradients on the left-hand side must be finite,

and therefore on the right-hand side, r ! rrad. Convection is ineffective and cannot

transport a substantial fraction of the luminosity. Therefore, F ! Frad, and the

gradient r is again known without further calculations. This is the case near the

photosphere of a star.

The situation is difficult where the two limiting cases do not apply, for example,

in the upper part of an outer convective envelope. There the equations of the mixing-

length theory have to be solved, and they will yield a value for r somewhere

between rad and rrad, the convection being said to be superadiabatic.

The following gives a more detailed discussion of the solutions of (7.18), which

depend strongly on the (given) parametersU andW:We illustrate them in a diagram,

where lg W is plotted over lg U (Fig. 7.1).

Instead of using the variable �, the solutions may be discussed in terms of the

over-adiabaticity

x WD r � rad D �2 � U 2 ; (7.25)

which describes the gradient r of the stratification relative to the (known) adiabatic

gradient. With this definition, the cubic equation (7.18) is transformed to

�p
x C U 2 � U

�3 C 8

9
U.x �W / D 0 : (7.26)
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Fig. 7.1 The plane of the parameters U;W (on logarithmic scales) that determine the convection.

The lines x D r � rad = constant are solid; the line where U 2 D x is dot-dashed. Some lines

� D constant are dashed

1. � D 1: Let us first derive the line which separates the regimes of effective

convection (at small U / and ineffective convection (at large U /: Equation (7.20)

for � D 1 is introduced into (7.16), which gives � D 3U such that from (7.25),

we have x D 8U 2: Inserting this into (7.26), we find the condition for � D 1

to be

W D 17 U 2: (7.27)

The corresponding straight line lg W D 2 lg U C 1:23 is shown by dashes in

Fig. 7.1 (Lines for other values of � are obtained by a parallel shift.). We will

now derive the lines on which x is constant. This is easily done by considering

the following two limiting cases.

2. U 2 � x: In (7.26), the term in square brackets on the left, divided by U , goes to

zero, and one has

x D W : (7.28)

Therefore, x = constant on straight lines parallel to the abscissa (right part of

Fig. 7.1).

3. U 2 � x: In (7.26), the term in square brackets goes to x3=2 � Ux, such that

x3=2 D 8

9
UW (7.29)

and x D constant on the lines lg W D � lg U C lg(9/8) C (3/2) lg x (left part

of Fig. 7.1).
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Finally, we derive the equation for the border between the regimes U 2 � x

and U 2 � x.

4. U 2 D x: With this condition, (7.26) gives

W D U 2

�
9

8
.
p
2 � 1/3 C 1

�
: (7.30)

The corresponding straight line lg W D 2 lg U C 0:033 (dot-dashed line in

Fig. 7.1) is below and parallel to that for � D 1.

The meaning of the different regions in Fig. 7.1 is now quite clear. Below and left

of a line of sufficiently small x (say, x D 10�2/, we have nearly r D rad; above

that line, the convection is superadiabatic. Not too far to the right of the line � D 1,

the efficiency is so small that r � rrad.

For an estimate for the interior of a star, let us assume a perfect monatomic gas

with ı D � D 1; cP =< D 5=2 and a mixing-length `m D HP . For an average

point in a star like the Sun, we may take r D Rˇ=2;m D Mˇ=2; T D 107 K,

� D 1 cm2 g�1 and % D 1 g cm�3. Then, we obtain U � 10�8, which is so far to

the left in Fig. 7.1 that, for reasonable values of W D rrad � rad (say between 1

and 102/, r � rad � 10�5 : : : 10�4. For the central region of the Sun, % and � are

larger by factors of 102 and 10, respectively. Then, U � 10�13, and (for the same

values of W / the difference r � rad is even smaller by a factor 103 or more, that

is, < 10�7. The stratification of such convective zones is indeed very close to an

adiabatic one, and we can simply set r D rad, independent of the uncertainties of

the theory (The situation is difficult only near the interface between convective and

radiative zones, where one should have a smooth transition between the two modes

of transport.).

Convective elements in such dense layers are so effective (� � 106 : : : 109/ that

they can transport the whole luminosity with surprisingly little effort. Compared

with the surroundings, they only need very small excesses of the T gradi-

ent, D.dT=dr/ � 10�12 : : : 10�10 K cm�1, and an average temperature excess

DT � 10�2 : : : 1K; their velocities are typically v � 1 : : : 100m s�1 (which is

10�6 : : : 10�4 times the velocity of sound), and their lifetime is between 1 and

102 days.

The Reynolds number decides whether the flow of an incompressible viscous

fluid is turbulent or laminar (Landau, Lifshitz, vol. 6, 1987). It is defined as

Re D v%`m

�
: (7.31)

Here, � is the viscosity of the fluid and `m and v are the typical distance elements

travel and their velocity. For high Reynolds numbers, the flow is turbulent. In spite

of the small velocities of convective elements, the Reynolds number is � 1, since

the flow extends over such a large distance `m: The situation is quite different for
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convection near the surface of the star, where the density is low. This gives small

effectivity and positive lg U: Here, the cubic equation for � (or x/ has to be solved

for each point to find the proper r for that place, and the results are affected by the

uncertainties of the theory.

In any case, we use the resulting value of r in the transport equation written in

the form
dT

dm
D �T

P

Gm

4�r4
r : (7.32)

(Here, we have replaced dP/dm by the right-hand side of the hydrostatic equation

since the theory is suitable only for hydrostatic equilibrium.) For convection in the

very deep interior, r D rad, where rad is given by (4.21), while for envelope

convection, we take r as given by the solution of the mixing-length theory. And we

can even take the same equation (7.32) for transport by radiation, if we set r D rrad

(compare Sect. 5.2).

Aside from the more or less effective (and more or less well-determined)

transport of energy, turbulent convection, if it occurs, has a side effect that is

important for the life of the star: it mixes the stellar matter very thoroughly and

rapidly compared to other relevant timescales, and thus, it contributes directly to the

long-lasting chemical record of the star’s history.

7.4 Extensions of the Mixing-Length Theory

The mixing-length theory, as described above, has many open and hidden

assumptions. Most prominent is the mixing length itself, usually expressed as the

“mixing length parameter” ˛MLT, which is the mixing-length in units of the pressure

scale heightHP . It is generally assumed that ˛MLT is both constant within a star and

does vary neither with stellar mass, composition, nor with evolutionary stage. Its

value is not known better than that from general physical arguments, it should be of

order 1. To determine a reasonable numerical value, a comparison of the effective

temperature or radius of stellar models with observed stars is done, preferentially

in the case of the Sun. This yields values for ˛MLT between 1.5 and 2.0. Ludwig

et al. (1999) have done a comparison with numerical simulations of convection and

found only a weak dependence of the order of 20 % on stellar parameters for stars

of solar metallicity.

But there are even more hidden parameters and assumptions. The theory

contains, for example, several mean values entering the equations from (7.4) on.

For (7.10), we assumed a certain geometrical form of the blobs to obtain the ratio

of surface to volume. Different formulations of the mixing-length theory may make

different assumptions for all this. Therefore, the mixing-length parameter may not

be directly comparable between such different formulations.

The most basic limitation in all these variants of the theory is the assumption of

one single size (and form) for the convective elements. The theory of turbulence,

numerical simulations, laboratory experiments and astrophysical observations all
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show that this is certainly not the case. Instead, numerical simulations and helioseis-

mology showed that convection often operates by extended funnel-like downdrafts

and turbulent updrafts. Convective energy is thus realistically not transported in

laminar flows of blobs of identical size and energy content, but by turbulent elements

(“eddies”) of all sizes. Fcon can therefore not be calculated as in (7.3) but rather

results from an integration over the full spectrum of convective eddies.

Canuto and Mazzitelli (1991) developed and presented an extension of the

mixing-length theory, in which the full turbulent kinetic energy spectrum is taken

into account. This “full spectrum turbulence” theory (FST) can be formulated in

much the same way as the mixing-length theory, which is the limiting case for a

ı-function like energy spectrum. It also results in a cubic equation to be solved.

Canuto and Mazzitelli use the formulation of Cox and Giuli (Weiss et al. 2004,

Chap. 14, and eq. 14.82); in this formulation, the cubic equation reads

9

4
� 03 C � 02 C � 0 � 1

U 2
.rrad � rad/ D 0; (7.33)

where we have replaced already some terms by quantities of our own formulation.

� 0 is defined as

2� 0 C 1 D
�
1C r � rad

U 2

�1=2
(7.34)

and corresponds to the convective efficiency.

After modelling the convective flux in the FST model, (7.33) is modified by

multiplying the � 03-term with a function ˝.� 0/, which is the new turbulent

convective flux relative to that of the mixing-length theory. ˝ rises monotonically

from 0 to 1 for � 0 going from � 0 � 0 to � 0 ! 1 and can be approximated by an

analytical fitting function.

As a rule of thumb convective fluxes in this theory are larger than predicted by the

mixing-length theory in case of efficient convection, and superadiabatic regions are

narrower but more superadiabatic. The temperature gradient in the solar convection

zone predicted by the FST model agrees much better with that obtained in numerical

simulations than it does in the mixing-length case. The numerical value for the

mixing length parameter in this case is around 0.7.



Chapter 8

The Chemical Composition

8.1 Relative Mass Abundances

The chemical composition of stellar matter is obviously very important, since it

directly influences such basic properties as absorption of radiation or generation of

energy by nuclear reactions. These reactions in turn alter the chemical composition,

which represents a long-lasting record of the nuclear history of the star.

The composition of stellar matter is extremely simple compared to that of

terrestrial bodies. Because of the high temperatures and pressures, there are no

chemical compounds in the stellar interior, and the atoms are for the most part

completely ionized. It suffices then to count and keep track of the different types

of nuclei.

We denote by Xi that fraction of a unit mass which consists of nuclei of type i:

This requires that X

i

Xi D 1 : (8.1)

The chemical composition of a star at time t is then described, if for the rel-

evant nuclei the functions Xi D Xi .m; t/ are given in the interval [0, M�

of m:

The commonly used particle number per volume, ni , of nuclei with mass mi , is

related to the mass abundances by

Xi D mini

%
: (8.2)

Usually, one does not need to specify very many Xi because most elements are

either too rare or play no relevant role, or their abundances remain constant in time.

In fact, for many purposes, it is even sufficient to specify only the mass fractions of

hydrogen, helium, and “the rest” with the notation

X � XH; Y � XHe; Z � 1 � X � Y : (8.3)
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74 8 The Chemical Composition

This requires additional conventions about the relative distribution of the elements

in Z, collectively called “metals”, in particular the amount of C, N, and O, which

are important for hydrogen burning.

Young stars throughout, and most stars in their envelopes, contain an over-

whelming amount of hydrogen and helium: X D 0:65 : : : 0:75, Y D 0:30 : : : 0:25,

Z D 0:05 : : : 0:0001.

Of course, nuclear reactions will eventually change this simple picture drasti-

cally. For example, if many competing reactions occur simultaneously, or if one is

interested in such aspects as isotopic ratios, one may have to specify a large number

of differentXi . Only if inverse ˇ decay, the big equalizer in late stages of evolution,

has destroyed all elements does the composition then return to utmost simplicity–

just neutrons (Chap. 38).

The advantages of the use of m instead of r as independent variable become

particularly evident when we have to describe the chemical composition. If we

took Xi.r; t/ instead, any expansion would immediately lead to a change of all the

functions Xi ; this holds, of course, for all functions depending on the chemical

composition.

8.2 Variation of Composition with Time

8.2.1 Radiative Regions

In radiative regions, there is no exchange of matter between different mass shells, if

we can neglect diffusion. Then, the Xi can change only if nuclear reactions create

or destroy nuclei of type i in the mass element under consideration.

The frequency of a certain reaction is described by the reaction rate rlm, that is,

the number of reactions per unit volume and time that transform nuclei from type l

into type m (see Chap. 18). The reaction itself will in most cases involve more than

just one mother and one daughter nucleus, but for simplicity, we characterize it by

one index only. In general, an element i can be affected simultaneously by many

reactions, some of which create it (rj i) and some of which destroy it (rik). These

reaction rates give directly the change per second of ni . Then, with (8.2), we have

@Xi

@t
D mi

%

2
4X

j

rj i �
X

k

rik

3
5 ; i D 1 : : : I (8.4)

for any of the elements 1 � � �I which are involved in reactions (If more than one

nucleus of type i is created or destroyed per reaction, the corresponding terms in the

sums have simply to be normalized by the number of nuclei of type i involved.).
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The reaction p ! q in which one nucleus of type p is transformed may be

connected with a release of energy epq : In the equation of energy conservation,

we have used the energy generation rate " per unit mass, which normally contains

contributions from several different reactions. The " are simply proportional to the

reaction rates:

" D
X

p;q

"pq D 1

%

X

p;q

rpq epq : (8.5)

Let us introduce the energy generated when one mass unit of type p nuclei is

transformed into type q:

qpq D epq

mp

: (8.6)

For simple cases, it is convenient to rewrite (8.4) in terms of the "; which already

occur in the equation of energy conservation. If all reactions give a positive

contribution to ", then instead of (8.4), we can write

@Xi

@t
D
X

j

"j i

qj i
�
X

k

"ik

qik
: (8.7)

If I different nuclei are simultaneously subject to nuclear transformations, equa-

tions (8.4) or (8.7) form a set of I differential equations, technically called a

“nuclear reactions network”. One of them could be replaced by the normalization

(8.1), such that we need only I � 1 of them to complete the basic equations of our

problem. Technically, however, this is not advisable, as (8.1) can then serve as an

independent consistency check: if the set of differential equations is solved correctly,

mass must be conserved.

Note that for simple cases, it may even suffice to consider just one of these

equations. For example, if hydrogen burning is to be taken into account only by

way of an overall generation rate "H (giving the sum over all single reactions), then

the only equation needed is
@X

@t
D � "H

qH

(8.8)

with @Y=@t D �@X=@t , where qH is the energy release per unit mass when

hydrogen is converted into helium.

In Sect. 4.6, we defined the nuclear timescale for a certain burning, �n D En=L.

One can actually define a nuclear timescale for each type of nuclear burning since

each nuclear energy reservoir is proportional to an integral of Xi � dm over the

whole star, where Xi refers to the element consumed by the reactions; therefore, �n

is equivalent to �Xi , the timescale for the exhaustion of the element i:
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8.2.2 Diffusion

Certain microscopic effects can also change the chemical composition in a star.

If gradients occur in the abundances of chemical elements, then concentration

diffusion tends to smooth out the differences. Even in chemically homogeneous

stellar layers, heavier atoms can migrate towards the regions of higher temperature,

owing to the effect of temperature diffusion. Also, the pressure gradient in a

stratified layer causes the heavier particles to diffuse towards the region of higher

pressure, that is, pressure diffusion. The detailed statistical theory of diffusion is

derived in Burgers (1969), Chapman and Cowling (1970), and Choudhuri (1998).

We start with the simplest case: concentration diffusion. Let c be the concen-

tration of particles of a certain species, that is, the number density of particles of

that type divided by the number density of all particles, and j D be the “flux of

concentration”; then, Fick’s first law states that

j D D �Drc ; (8.9)

where D is the diffusion coefficient (We will derive (8.9) later.). With j D D cvD,

where vD is the diffusion velocity, one has

vD D �D
c

rc : (8.10)

With the continuity equation
@c

@t
D �r � j D; (8.11)

we find that
@c

@t
D r � .Drc/ ; (8.12)

and in the case of constantD that

@c

@t
D Dr

2c ; (8.13)

a rough estimate for the characteristic timescale is given by

�D � S2

D
; (8.14)

where S is a characteristic length for the variation of c:

By generalizing (8.10) one can formally include the two other types of diffu-

sion, i.e.

vD D �1
c
D.rc C kTr lnT C kPr lnP/ ; (8.15)
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if the coefficients kT and kP are properly specified. In order to do that we first

consider the combined effects of concentration and temperature diffusion.

We assume rT to be perpendicular to the x–y plane in a Cartesian coordinate

system; then the flux of particles of a certain type in the Cz direction due to the

statistical motion of the particles is determined by the density n and the mean

velocity v; both taken at z D �`, where ` is the mean free path of the particles

of this type:

jC D 1

6
c.�`/v.�`/ ; (8.16)

where the numerical factor originates in averaging over cos2. This takes into account

that the particles penetrating the x–y plane had their last encounter at z D �`.
If one expands n and v at z D 0 in (8.16) and in a corresponding expression for

j�, the fluxes in the Cz and �z directions are

j˙ D 1

6

�
c.0/� @c

@z
`

��
v.0/� @v

@z
`

�
; (8.17)

and therefore there is a net flux

j D jC � j� D �1
3

�
@c

@z
`v C @v

@z
`c

�
; (8.18)

which in general does not vanish, i.e. we have obtained Fick’s law.

We now consider the relative diffusion velocity vD1
� vD2

resulting from the

motion of two different types of particles (1, 2), with fluxes j1; j2 and concentrations

c1; c2:

vD1
� vD2

D j1

c1
� j2

c2
: (8.19)

With (8.18) we can replace the ji by `i ; vi , and the gradients of ci , while the velocity

gradient–with the help of vi D .3<T=�i/1=2–can be replaced by the temperature

gradient. Using the continuity equation (and after some algebra) an expression of

the form

vD1
� vD2

D � D

c1c2

�
@c1

@z
C kT

@ ln T

@z

�
(8.20)

follows. The two terms in the brackets are responsible for concentration diffusion

and temperature diffusion. In a mixture of two species .i D 1; 2/ D and kT have

the form

D D 1

3
.c2`1v1 C c1`2v2/ D

�<T
3

�1=2 

c2`1�

�1=2
1 C c1`2�

�1=2
2

�
; (8.21)

kT D 1

2

`1
p
�2 � `2

p
�1

`1c2
p
�2 C `2c1

p
�1
c1c2.c2 � c1/ ; (8.22)
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where `1 and `2 are the mean free paths of the two species (Landau and Lifshitz

1987, vol. 6). The absolute value kT is of order 1 or less, and its sign is not

immediately clear, though more detailed considerations indicate that kT > 0 for

a typical ionized hydrogen–helium mixture in stars.

From (8.21) it is obvious that D is of order

D �
�<T
3

�1=2
` � 1

3
v�` ; (8.23)

where v� and ` are some kind of averages of the statistical velocities and the mean

free paths of both components. This expression for D can be used to estimate

the timescale �D according to (8.14). As long as jkT j � 1 this also gives the

characteristic timescale for temperature diffusion.

Since D > 0, in the case of kT > 0 for pure temperature diffusion, one

has sign(vD) = �sign(@ lnT=@x). Let us now consider the case of a mixture of

hydrogen and helium. Here vD D vH � vHe is the z component of the diffusion

velocity and vD > 0 means that hydrogen diffuses in the direction of lower

temperature, i.e. “upwards” in the star. For the central region of the Sun (T � 107 K,

% � 100 g cm�3/ one finds that ` � 10�8 cm and D � 6 cm2 s�1, and with a

characteristic length-scale S � Rˇ � 1011 cm, the characteristic timescale �D

(according to (8.14)) there becomes �D � 1013 years. Although �D is much larger

than the age of the universe and therefore the effects of concentration and tempera-

ture diffusion seem to be astrophysically irrelevant for the Sun, diffusion does have

enough influence on stellar evolution such that high-precision observations require

models that include its effect. This will become evident in the case of the standard

solar model (see Chap. 29). We will therefore briefly discuss the situation. If a layer

is homogeneous, then there is no concentration diffusion, but the hydrogen particles

diffuse towards the regions of lower temperature. This causes an outward increase

of nH which in turn triggers concentration diffusion acting against the temperature

diffusion (sign(@cH=@z) = �sign(@T=@z)) until both types of diffusion compensate

each other.

We now turn to pressure diffusion, which is the cause of what is often called

“sedimentation” or “gravitational settling”. A statistical consideration similar to

that used to make temperature diffusion plausible also shows that there is diffusion

in isothermal layers with a non-vanishing pressure gradient. The reader is again

referred to Chapman and Cowling (1970), or any of the other standard textbooks. In

a way similar to that for kT an expression for kP in (8.15) can also be obtained.

We here confine ourselves to the discussion of the final outcome of this process

of pressure diffusion, i.e. the state of final equilibrium for an isothermal layer in

hydrostatic equilibrium in a gravitational field pointing towards the �z direction.

Let us assume that the material consists of two components .i D 1; 2) of perfect

gases of different molecular weights �i and partial pressures Pi . Then there exist

two pressure-scale heights HPi D �d z=d lnPi with which (6.8) can be written in

the form

HPi D Pi

g%i
D <T
g�i

; (8.24)
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where dPi=d z D �g%i and Pi D <%iT=�i are used. The particle densities are

proportional to the Pi , which are here approximately proportional to exp .�z=HPi /.

Therefore the component with the higher�i falls off more sharply in the z direction

than that with smaller �i , so that in a very simplified way, one can say that the

heavier component has “moved below” the lighter one. This is the final state,

which would be brought about by pressure diffusion alone even if the species were

originally in a completely mixed state. Of course, in reality, the two other types of

diffusion would also act and therefore influence the final state.

Estimates show that not only jkT j but also jkP j is of order one. Therefore it

normally takes rather a long time before an appreciable separation occurs in stars.

Although in general we will ignore the effect of diffusion in this book, it can be very

relevant in certain special cases. Equation (8.12), using (8.15), can be formulated in

terms of relative mass fractions Xi instead of particle concentrations and for the

case of spherical symmetry as

@Xi

@t
D � 1

�r2
@

@r

2
4r2XiT 5=2

0
@AP .i/

@lnp

@r
C AT .i/

@ln T

@r
C (8.25)

X

k¤e;He4

Ak.i/
@lnCi

@r

1
A
3
5 :

This formulation follows the one by Thoul et al. (1994), and the T 5=2 factor results

from a convenient definition of the diffusion constants called AP , AT , and Ak here.

In this description the concentration Ci is defined as ci=ce , i.e. as the usual particle

concentration in units of the electron concentration. Note that the concentration

diffusion is taken as a sum over all species, since the concentration of species i

may also change due to the diffusion of all other elements. The sum actually has not

to be taken over all species as mass and charge conservation reduce the number of

independentAk by two. Here we have taken out helium and electrons.

When diffusion is to be taken into account, proper evaluation of the diffusive

constants D (or A in (8.25)) for the various types of diffusion is necessary. This

involves correct treatment of the interaction forces between the particles and will be

quite sophisticated. Two widely used sources for calculating the diffusion constants

are Paquette et al. (1986) and Thoul et al. (1994), both using a method described

in the book by Burgers (1969). This method is also sketched in Weiss et al. (2004).

An improvement by applying quantum corrections was introduced by Schlattl and

Salaris (2003). In general these diffusive speeds or constants are considered to be

accurate to 20 %. There is an additional effect not discussed here: Coupling of the

radiation field to partially ionized atoms results in a net upward force, counteracting

the downward sedimentation. This sort of diffusion is called radiative levitation and

can lead to strong variations in surface element abundances, in particular for those

elements with rich energy level systems. A derivation of the relevant coefficients

was given by Richer et al. (1998).
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Fig. 8.1 The abundances Xi
are smeared out owing to

rapid mixing inside a

convection zone extending

from m1 tom2. At these

borders, Xi can be

discontinuous

8.2.3 Convective Regions

Here we deal with the much more important effect of mixing due to turbulent

convective motion, a process that normally is very rapid compared to the extremely

slow change of the chemical composition produced by nuclear reactions. Therefore

we can assume that the composition in a convective region in most cases remains

homogeneous,
@Xi

@m
D 0 : (8.26)

This requires a dispersion not only of the newly created nuclei, but of all elements

inside a convective zone.

Suppose a convective zone extends between the mass values m1 and m2

(Fig. 8.1). Inside that interval all Xi D X i are constant. At the boundaries one can

generally have a discontinuity, such that the “outer” valuesXi1 andXi2 are different

from the “inner” values–which are simply X i . But m1 and m2 can change in time,

and hence one can easily see that the abundances in the convective zone vary with

the rate

@X i

@t
D 1

m2 �m1

�
�Z m2

m1

@Xi

@t
dmC @m2

@t
.Xi2 �X i /� @m1

@t
.Xi1 � X i /

�
: (8.27)

The Xi1; Xi2 should here be taken as the value on the side that the corresponding

boundary moves towards. The integral in the bracket describes the change due

to nuclear reactions and can be replaced by an integral over the rates �"i=qi ,
as in (8.8), where qi is the energy released if a mass unit of the nucleus i is

transformed. Without any nuclear reaction .@Xi=@t D 0/ in the convective zone, its

composition can still change if the boundaries move into a region of inhomogeneous

composition, and this can have important consequences. For example, “ashes” of

earlier nuclear burnings may be brought to the surface, fresh fuel may be carried

into a zone of nuclear burning, or discontinuities can be produced that drastically

influence the later evolution.
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In cases of very fast nuclear reactions (or short nuclear timescales) the assump-

tions of instantaneous mixing is no longer correct. In such situations one normally

treats convective mixing as a diffusive process with the diffusive velocity vc
estimated from the solution of the mixing length theory and using (7.6) and (7.16).

In this case (8.25) can simply be extended by adding the additional term

Dc

@Xi

@r
D
�
1

3
vc˛MLTHP%r

2

�
@Xi

@r
; (8.28)

where we used the estimate for Dc by Langer et al. (1985). Since usually Dc is by

orders of magnitude larger than any of the diffusion constants in (8.25), the types of

diffusion discussed in Sect. 8.2.2 can in fact be neglected in convective regions.



Chapter 9

Mass Loss

So far we have always assumed that stars have constant total mass. This is, however,

not at all the case. The Sun is losing mass via the solar wind at a rate of about

10�14Mˇ=year. While this mass loss is so slow that it can savely be ignored, other

stars may have mass loss rates of up to 10�8Mˇ=year or even beyond. The highest

mass loss rates for single stars are known for very massive stars (M & 50Mˇ) and

for stars of intermediate mass (around 5Mˇ) in a very late stage of their evolution.

In addition, stars in binary systems can lose (and gain) mass at any rate due to the

gravitational interaction between the two components. Mass loss can therefore range

from being totally irrelevant for the evolution of a star up to reducing the mass by

up to 50 % or more.

For completeness, we add that the nuclear processes, which provide the

overwhelming part of the radiation lost from the stellar surface, imply a conversion

of matter to energy and therefore lead to a reduction of the stellar mass, too. For the

Sun, this is of the same order as the solar wind, and can therefore be safely ignored.

This is also true for all other stars either because this effect is very small, anyhow,

or because stellar wind mass loss is much larger.

Evidence for mass loss and estimates of its size come from the direct detection

of circumstellar matter and from spectral signatures, such as Doppler shifts and

spectral line shapes. Wind velocities can range from a few to a few thousand km/s.

Physically, stellar winds result in many cases from the interaction of the

photons emitted from the photosphere with atoms, molecules, or dust grains in

the atmosphere. It is therefore a complicated radiation-hydrodynamics problem,

which, in addition, may depend on chemical processes, too. An example for the

latter are winds from very cool stars, which depend on the coupling of radiation to

dust grains. Their formation is a complicated chemical process depending strongly

on temperature and density in the stellar atmosphere, which may be subject to

regular variations due to stellar pulsations. High mass loss rates are often associated

with pulsations in extended stellar envelopes. In some cases, solid physical models

exist, which describe the mechanisms for stellar winds. This is particularly true for

winds from hot stars (so-called radiation-driven winds) and for dust-driven winds

of cool stars with carbon-rich chemistry. For the observational evidence and for
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introductions to stellar wind theories, we refer the reader to the reviews “Winds

from hot stars” by Kudritzki and Puls (2000), “Mass loss from cool stars” by Willson

(2000), and “Dust driven winds” by Sedlmayer and Dominik (1994).

Since a full theoretical model for any stellar wind is not available, and would

not be reasonable to be used in modelling stellar evolution, and since most

information about stellar mass loss still results from observations, empirical mass

loss formulations are used in the models. They have all been obtained from

observations of some class of stars, and therefore differ from each other. Therefore,

different mass loss formulae have to be used for different type of stars. None of

them is very accurate, but in most cases, it suffices to have the correct order of

magnitude of mass loss and its dependence on the global properties of the star.

We now introduce a few such empirical mass loss formulations, which are widely

used in stellar evolution calculations.

The most famous mass loss formula of all is that of Reimers (1975), obtained

from red giants with heavy element abundances similar to those in the Sun. Reimers

showed that the dependence of the mass loss rate on basic stellar parameters can be

expressed by the simple fitting formula

PMR D �4 � 10�13�
L

gR
� gˇRˇ
Lˇ

: (9.1)

The unit of PM is Mˇ/year. This formula reflects the intuitive expection that mass

loss increases with luminosityL, and decreases with a deeper gravitational potential

well gR D GM=R. The parameter � was introduced later to use Reimers’ formula

for other types of stars, too. It usually varies between 0.2 and 1.0 and is lower for

metal-poor stars, indicating a weaker coupling of the photons to the gas if fewer

heavy elements are present.

Reimers’ formula has no strong theoretical justification, but seems to be a useful

estimate for the order of magnitude of mass loss from cool stars. It has been

modified from time to time to take into account a more detailed dependence on

stellar parameters. One of the latest of such modifications, which is fitting better to

recent mass loss determinations, is that of Schröder and Cuntz (2005), which is

PMSC D �8 � 10�14LR

M

Mˇ
LˇRˇ

�
Teff

4; 000K

�3:5 �
1C g

4; 300gˇ

�
: (9.2)

For very cool and luminous stars on the asymptotic giant branch, which

experience an almost catastrophic mass loss event with mass loss rates up to

10�4Mˇ=year, a simple and useful formula has been derived by Blöcker (1995),

based on observations and dust-driven wind theories. There are more sophisticated

theoretical or empirical mass loss functions (see Sect. 34.6), but Blöcker’s is in most

cases sufficient for an estimate:

PMB D �4:83 � 10�9 PMR.M?=Mˇ/
�2:1.L=Lˇ/

2:7 (9.3)
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There are two variants of this formula, in which for M? either the initial or the

present mass of the star is used. Since (9.3) is only a rough estimate of the actual

mass loss, this is acceptable.

Finally, we add a formula fitting empirical mass loss rates for hot stars of spectral

type O and B, obtained by Lamers (1981):

PML D �1:48 � 10�5
�

L

1; 000Lˇ

�1:42 �
R

30Rˇ

�0:61 �
30Mˇ
M

�0:99
(9.4)

A more physical discussion of mass loss from hot stars can be found in the

mentioned review by Kudritzki and Puls (2000).

Obviously, all these formulae contain, in some form or other, the basic depen-

dence on M , R, and L by Reimers. Sometimes a dependence on chemical

composition is added. It is generally assumed that PM � X
1=2
res , where Xres denotes

the mass fraction of all elements other than hydrogen and helium.

Equations (9.1)–(9.4) already indicate that the main effect of mass loss is simply

to reduce the total mass of a star. This has to be taken into account in stellar

modelling and will be discussed in Sect. 12.5.



Part II

The Overall Problem



Chapter 10

The Differential Equations of Stellar Evolution

10.1 The Full Set of Equations

Collecting the basic differential equations for a spherically symmetric star in

hydrostatic equilibrium derived in Chap. 1, we are then led by (1.6), (2.16),

(4.47), (4.48), (7.32), and (8.4) to

@r

@m
D 1

4�r2%
; (10.1)

@P

@m
D � Gm

4�r4
; (10.2)

@l

@m
D "n � "� � cP

@T

@t
C ı

%

@P

@t
; (10.3)

@T

@m
D � GmT

4�r4P
r ; (10.4)

@Xi

@t
D mi

%

0
@X

j

rj i �
X

k

rik

1
A ; i D 1; : : : ; I : (10.5)

Equation (10.2) has an additional term �@2r=@t2.4�r2/�1 in case the assumption of

hydrostatic equilibrium is not fulfilled. In (10.5) we have a set of I equations (one

of which may be replaced by the normalization
P

i Xi D 1/ for the change of the

mass fractionsXi of the relevant nuclei i D 1; : : : ; I having masses mi . Additional

formulae regulate the mixing of the composition in convective regions, (8.27) or

(8.28), or in case of diffusive processes (8.25). In (10.3), ı � �.@ ln %=@ lnT /P ,

and in (10.4), r � d ln T=d lnP . If the energy transport is due to radiation (and

conduction), then r has to be replaced by rrad, which is given by (5.28):
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r D rrad D 3

16�acG

�lP

mT 4
: (10.6)

If the energy is carried by convection, then r in (10.4) has to be replaced by a

value obtained from a proper theory of convection; this may be rad in the deep

interior or obtained from a solution of the cubic equation (7.26) for superadiabatic

convection in the outer layers. Note that the expression on the right-hand side

of (10.4) assumes hydrostatic equilibrium. This does not matter in the case of

radiative transport, since the local adjustment time of the radiation field is very

short, and the convection theory of Chap. 7 is valid only for stars in hydrostatic

equilibrium. Otherwise another convection theory valid in rapidly changing regions

would have to be used. Additional criteria such as (6.12) and (6.13) distinguish

between radiative and convective transport.

In the system (10.1)–(10.5) one can distinguish certain subsystems, i.e. (10.1)

and (10.2) give the mechanical part, being coupled to the thermo-energetic part

only through the density %–which usually also depends on T . If for some reason

or other this dependence of % on T is not present (or can be eliminated), then (10.1)

and (10.2) can be solved regardless of the other equations to give the mechanical

structure r.m/; P.m/. Equations (10.5) may be regarded as the chemical part.

Under normal conditions (�n much larger than the other timescales; see Sect. 10.2)

they can be decoupled from the spatial parts (10.1)–(10.4), which describe the

structure of the star for a given time and given composition Xi.m/. This would

be questionable, of course, if the chemical composition changed as rapidly as the

other variables, and for changes of Xi.m/ more rapid than those of P; T , one

would rather assume to have an “equilibrium composition” Xi.P; T / at any time

(see Chap. 36).

Equations (10.1)–(10.5) contain functions which describe properties of the stellar

material such as %; "n; "� ; �; cP ;rad; ı and the reaction rates rij . We shall deal with

these functions in Part III. Meanwhile we assume them to be known functions

of P; T and the chemical composition described by the functions Xi .m; t/. We

therefore have an equation of state

% D %.P; T;Xi / (10.7)

and equations for the other thermodynamic properties of the stellar matter

cP D cP .P; T;Xi/ ; (10.8)

ı D ı.P; T;Xi/ ; (10.9)

rad D rad.P; T;Xi/ ; (10.10)

as well as the Rosseland mean of the opacity (including conduction)

� D �.P; T;Xi/ ; (10.11)



10.2 Timescales and Simplifications 91

and the nuclear reaction rates and the energy production and energy loss via

neutrinos:

rjk D rjk.P; T;Xi / ; (10.12)

"n D "n.P; T;Xi / ; (10.13)

"� D "�.P; T;Xi/ : (10.14)

In these equations, the argumentsXi stand for all types of nuclei .i D 1; : : : ; I /:

It is now time to count the equations and the unknown variables. We consider the

material functions on the right-hand sides of (10.1)–(10.5) to be replaced with the

help of the corresponding equations (10.7)–(10.14), i.e. by functions of P; T;Xi .

For I different types of nuclei being affected by reactions, (10.1)–(10.5) form a set

of 4 C I differential equations for the 4 C I variables r; P; T; l; X1; : : : ; XI . We

therefore have the same number of equations and unknown variables.

The independent variables are m and t: If we assume that the total mass of the

star does not change in time (i.e. no gain nor loss of mass) and if we define the time

at which evolution starts as t D t0, then we are looking for solutions in the intervals

0 � m � M; t � t0 : (10.15)

In the full problem we are confronted with a set of non-linear, partial differential

equations. As usual, physically relevant solutions require the specification of

boundary conditions (here at m D 0;m D M ) and of initial values [e.g. Xi.m; t0)].

The boundary conditions will be dealt with in Chap. 11. In order to see more

clearly which initial values have to be specified we replace the two terms with time

derivatives of P and T in (10.3) by one term containing the change of the entropy

s;�T @s=@t , according to (4.47). Obviously the full problem requires specification

of the functions r.m; t0/; Pr.m; t0/; s.m; t0/, and Xi .m; t0/.

After proper initial values and boundary conditions are specified, together with

the stellar mass M , the problem is to find solutions of the basic equations, i.e. the

unknown variables as functions of m and t: A solution r.m/; P.m/; : : : ; Xi.m/ for

a given time t in the interval [0,M ] is called a stellar model. But before we discuss

in more detail how solutions of our set of differential equations can be obtained, we

first discuss simplifications of the full problem.

10.2 Timescales and Simplifications

There are three types of time derivatives in our set of equations. To each of them

belongs a certain characteristic timescale. In Sect. 2.4 the term .@2r=@t2/=4�r2 in

(2.16)–the dynamical version of (10.2)–was used to derive �hydr. From the time

derivatives in (10.3) we have derived �KH in Sect. 3.3. The time derivatives in (10.5)
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define chemical timescales �Xi which were shown to be equivalent to �n [see (4.59)]

at the end of Sect. 8.2.1.

In Sect. 2.4 we showed that the inertia term in (10.2) can be neglected if the

evolution is slow compared to �hydr. Therefore, if the evolution of a star is governed

by thermal adjustment or by nuclear reactions (�KH � �hydr and �n � �hydr), the

equation of hydrostatic equilibrium (10.2) is appropriate. The star then evolves

along a sequence of states of hydrostatic equilibrium. As initial conditions, the

functions s.m; t0/ and Xi.m; t0) have to be specified in this approximation.

If the star evolves on the timescale �n � �KH, then according to the discussion in

Sect. 4.4, the time derivatives in the energy equation can also be neglected and (10.3)

is reduced to
@l

@m
D "n � "�: (10.16)

The star now evolves along a sequence of states in which it is not only in hydrostatic

equilibrium but also thermally adjusted. We call this complete (mechanical and

thermal) equilibrium. The only initial values to be given in this case are the

Xi.m; t0/:

In complete equilibrium the basic equations split into two parts: the “structure

equations” (10.1), (10.2), (10.16) and (10.4) contain only spatial derivatives while

the “chemical equations” (10.5) contain only time derivatives. Therefore, if at a

certain time t D t0 the Xi .m; t0) are given, the structure equations can be taken as a

set of four ordinary differential equations describing the structure of the star at t0.

Complete equilibrium is a good approximation for stars in many important

evolutionary phases, for example, the stars on the main sequence. But even without

complete equilibrium the full set of equations is usually split into two parts: the

spatial part solved as a boundary value problem for a given chemical composition

Xi.m; t0/, and the time-dependent initial-value problem of the chemical changes.

These two parts are solved in two different, alternating steps with different

numerical schemes. This introduces a basic problem of inconsistency: consider the

spatial problem to be solved at time t0, with some chemical stratification given.

Once the solutions for r.m/, T .m/, P.m/, and l.m/ have been found, some layers

may be convective. Therefore, the chemical stratification for which the solution was

determined may be altered by convective (or, more general, by any kind of) mixing,

and the solution will not be consistent with the real chemical composition. The

mixing is done only in the second step, after the spatial problem is solved, over

a time step 4t , and after this step, the physical variables are again not a solution

of the new Xi.m; t0 C 4t/, etc. Of course one can control the severeness of this

inconsistency by keeping 4t small, but one should be aware of its fundamental

nature. Another problem arises if the structure variables are kept constant over the

time step 4t . In nuclear burning regions, for example, temperature and density are

usually rising with time. Therefore, they would be underestimated in the nuclear

reactions if kept constant over 4t , and so would be the chemical changes due to

nuclear burning. This effect leads to an overestimate of main-sequence lifetimes.

Again, it can be minimized by using very small values for 4t , or by a clever

prediction how T and � (and other quantities) may change during a time step.



Chapter 11

Boundary Conditions

As usual in mathematical physics, the boundary conditions constitute an important

part of the whole problem, and their influence on the solutions is not easy to foresee.

This is connected with the fact that the boundary conditions for the problem of

stellar structure cannot be imposed at one end of the interval [0, M ] only but rather

are split into some that are given at the centre and some near the surface of the

star. The central conditions are simple, whereas the surface conditions implicate

observable quantities and a completely different, much more complicated transport

equation. It is therefore advisable to get some feeling about their influence on the

stellar structure. We discuss these problems for the case of complete equilibrium.

11.1 Central Conditions

Two boundary conditions can be immediately written down for the centre, defined

by m D 0. Since the density % must go to a reasonable, finite, and non-vanishing

value (there can be no singularity and no cavity in the centre), we must have r D 0.

And since the energy sources also remain finite (positive or negative), l must vanish

at the centre as well:

m D 0 W r D 0; l D 0: (11.1)

This was the simple part. Unfortunately nothing is a priori known about the central

values of pressure Pc and temperature Tc, so the conditions (11.1) still allow a two-

parameter set of solutions, obtained by outward integrations starting with arbitrary

Pc; Tc; and r D l D 0.

It is useful to know the behaviour of the four functions r; l; P; T in the vicinity

of the centre,m ! 0, for a given time t D t0. The equation of continuity (10.1) may

be written as

d.r3/ D 3

4�%
dm; (11.2)
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which can be integrated for constant % D %c; i.e. for small enough values ofm and r ,

giving

r D
�

3

4�%c

�1=3
m1=3: (11.3)

This can be considered the first term in a series expansion of r around m D 0. A

corresponding integration of the energy equation (10.3) yields

l D ."n � "� C "g/c m: (11.4)

In both cases we have used the proper boundary conditions (11.1) by taking the

integration constants to be zero.

Eliminating r for small values of m by (11.3), we obtain from the hydrostatic

equation (10.2)

dP

dm
D � G

4�

�
4�%c

3

�4=3
m�1=3; (11.5)

which can be integrated to yield

P � Pc D �3G
8�

�
4�

3
%c

�4=3
m2=3: (11.6)

The pressure gradient must, of course, vanish at the centre, which can be seen by

writing the hydrostatic equation (2.4) in the form

dP

dr
� m

r2
� r3

r2
! 0 (11.7)

for r ! 0.

The variation of temperature will first be considered in the radiative case, for

which (5.12) requires that

dT

dm
D � 3

64�2ac

�l

r4T 3
: (11.8)

With P ! Pc; T ! Tc, � tends to some well-defined value �c. Replacing l.� m)

by (11.4) and r.� m1=3/ by (11.3) now, we can integrate (11.8) for small values of

m and obtain the first equation (11.9). In the case of (adiabatic) convection we start

from (7.32) with r D rad and replace r by (11.3). An integration for small values

of m then gives the second equation (11.9):

T 4 � T 4c D � 1

2ac

�
3

4�

�2=3
�c."n � "� C "g/c%

4=3
c m2=3 .radiative/;

ln T � lnTc D �
��
6

�1=3
G

rad;c%
4=3
c

Pc

m2=3 .convective/: (11.9)
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11.2 Surface Conditions

The strict surface conditions are rather complicated and unwieldy. For rough

estimates one might therefore prefer to use a crude approximation, provided that

it is simple.

An extreme step in this direction would be to take the naRıve “zero conditions”

m ! M W P ! 0; T ! 0: (11.10)

These at least reflect correctly the fact that, in the outermost region of the star, P

and T go to very small values compared to those in the interior. But, of course, in

reality, there is a gradual and rather extended transition to the finite values of P; T

of the diffuse interstellar medium.

The next step is to find a sphere that we can reasonably call the “surface” of the

star and that defines the total stellar radius r D R: The theory of stellar atmospheres

suggests the use of the photosphere, from where the bulk of the radiation is emitted

into space, and which is found where the optical depth � of the overlying layers,

� WD
Z 1

R

�% dr D N�
Z 1

R

% dr; (11.11)

is equal to 2/3. Here we have defined a mean opacity N�, averaged over the stellar

atmosphere. In hydrostatic equilibrium the pressure at this level is given by the

weight of the matter above. We can well approximate the gravitational acceleration

by the constant value g0 D GM=R2; since the bulk of the matter in these layers is

anyway very close to the photosphere. Then

PrDR D
Z 1

R

g%dr D g0

Z 1

R

% dr; (11.12)

and if we eliminate here the integral over % by that in the second equation (11.11),

we find with � D 2=3 that

PrDR D GM

R2
2

3

1

N� : (11.13)

The temperature at the photosphere is equal to the effective temperature TrDR D Teff

of the star defined by

L D 4�R2� T 4eff: (11.14)

Here � D ac=4 is the Stefan-Boltzmann constant of radiation. Teff is thus the

temperature of that black body which yields the same surface flux of energy as

the star.

In (11.11) we have replaced � by an average value. As we usually have detailed

knowledge about the opacity, an obvious improvement is to take into account the

pressure (or density) and temperature dependency of �. This requires knowledge

about the temperature stratification in the atmosphere. One common approach is to
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use the Eddington approximation, which is

T 4.�/ D 3

4



L=4�R2�

� �
� C 2

3

�
; (11.15)

which obviously results in T D Teff for � D 2=3.

Equation (11.11) can be transformed into a differential equation for the radius,

dr=d� D �1=.�%/, and with dP=dr D �g% we obtain

dP

d�
D Gm

r2�
(11.16)

which is to be integrated from � D 0 to � D 2=3 with the boundary condition

P.� D 0/ D 0. The Eddington approximation (11.15) is used to determine �.P; T /.

For the gravitational acceleration on the right-hand side of (11.16) we can savely use

GM=R2. We thus obtain an improved value for PrDR. This approach is called the

Eddington grey atmosphere because of the use of the Eddington approximation and

the Rosseland mean for the opacity, and it is indeed used in stellar evolution codes,

which solve the stellar structure equations (10.1)–(10.5) fromm D 0 to m D M .

The photospheric conditions (11.13) and (11.14) or (11.16) and (11.14) represent

two relations between the surface values (m ! M ) of the functions P; T; r; l . They

are certainly a better approximation for the surface conditions than (11.10). Their

severest defect is that they refer to a level where the assumption made for deriving

the transport equation (5.12) (small mean free path of the photons) breaks down.

At this level, one should use the more complicated transport equation for stellar

atmospheres. Indeed such attempts have been made, and full stellar atmosphere

models are connected to those of the stellar interior at a suitable optical depth.

Examples are the work by Schlattl et al. (1997) for the solar case and VandenBerg

et al. (2008) for low-mass stars.

Quite generally, the correct surface conditions can be formulated as follows: the

interior solution should fit smoothly to a solution of the stellar-atmosphere problem.

Let us put this into a more mathematical form.

The transition between interior and outer (atmospheric) solutions is made at a

certain mass value mF, the “fitting mass”, which should be far enough in to ensure

that the interior equations are still valid there. On the other hand,mF should still be

close enough to M that, for simplicity, we can always use thermally adjusted outer

solutions with constant l D L. The smaller M �mF, the less energy can be stored

or released in these outer layers.

For the stellar-interior problem, we consider the mass M and the chemical

composition to be given. The theory of stellar atmospheres tells us that for given

M and Xi.M/, there is a two-parameter set of possible atmospheric solutions,

the parameters being, for example, R and Teff, or R and L [which are connected

by (11.14)]. Any one of these possible atmospheric solutions can be extended

by integration downwards to mF and may yield there the four “exterior” values

r D rex
F ; P D P ex

F ; T D T ex
F ; l D lex

F D L.
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The outer boundary conditions now require for m D mF that one quartet

rex
F ; : : : ; l

ex
F obtained from an outer solution has to match the corresponding values

r in
F ; : : : ; l

in
F of the interior solution, which extends from the centre to mF:

rex
F D r in

F ; P ex
F D P in

F ; T ex
F D T in

F ; lex
F D l in

F : (11.17)

These four simultaneous fits are in principle possible, since the solutions have

enough degrees of freedom: the interior solution has two (we can vary the

central values Pc and Tc/, and the outer solution also has two (variation of R

and L/: The fact that both solutions have two degrees of freedom is reflected

in the following alternative representation, which is often used in numerical

computations. Imagine that many outer integrations are carried out for many

pairs of parameters R and L: At m D mF, they yield the four functions

rex
F .R;L/; P

ex
F .R;L/; T

ex
F .R;L/; l

ex
F .R;L/. The last one is very simple, namely

lex
F D L: The first one is certainly well behaved, and we can invert it without

complications, obtaining R D R.rex
F ; L). This is now used to replace the argument

R in the functions P ex
F and T ex

F , which can then be considered known functions �

and � of rex
F and lex

F D L:

P ex
F



R.rex

F ; L
�
; L
�

WD �


rex

F ; L
�
;

T ex
F



R


rex

F ; L
�
; L
�

WD �


rex

F ; L
�
: (11.18)

For any given pair rex
F ; L; the � and � give the corresponding values of pressure and

temperature for one outer solution. We now replace the variables P ex
F ; : : : ; l

ex
F D L

in (11.18) by P in
F ; : : : ; l

in
F , using the fit conditions (11.17):

P in
F D �



r in

F ; L
�
; T in

F D �


r in

F ; L
�
: (11.19)

These are the outer boundary conditions for the interior solution. Obviously, if these

are fulfilled, there is always an outer solution that continuously matches the interior

solution. We can now drop the distinction between the variables of the exterior and

interior solutions at m D mF expressed in the superscripts “ex” and “in”.

The fulfilment of the boundary conditions is illustrated in Fig. 11.1, where the

functions � and � (obtained from outer solutions) are sketched over the rF-L

plane. We have also indicated the surfaces Q�.rF; L/ and Q�.rF; L/, which give the

corresponding functions of the interior solutions obtained by varying Pc and Tc.

The intersection of the surfaces .� D Q� and � D Q�/ gives the matches of PF

or of TF, respectively. We project the intersections into the rF-L plane (dot-dashed

lines), and where these projections intersect, we have the desired match of all four

variables.
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Fig. 11.1 The function values PF (or TF) at the fitting mass m D MF are plotted over rF and L:

The surface � (or �/ contains the values obtained by all possible integrations downwards from the

photosphere. The surface Q� (or Q�/ contains the corresponding values obtained from all possible

integrations outwards from the centre. The heavy line shows the intersection of � and Q� (or �

and Q� ), the dot-dashed line the projection of this intersection into the rF-L plane (All surfaces are

freely invented sketches)

11.3 Influence of the Surface Conditions and Properties

of Envelope Solutions

We confine ourselves here to “normal” stars in complete (mechanical and thermal)

equilibrium. For the outer envelope of such a star, it is characteristic that l and m

vary very little over wide ranges of r (This is because " is negligible and % is very

small; for example, only about 10 % of the solar mass lies outside r D Rˇ=2.). This

allows the derivation of approximate solutions that demonstrate the influence of the

outer layers on the interior solution.

11.3.1 Radiative Envelopes

Since m varies so little in the envelope, it seems advisable to take another

independent variable, for which we may choose the pressure P , since it varies

monotonically with m. The equation of radiative transport is derived from (5.12)

and (2.5) as
@T

@P
D 3

64��G

�l

T 3m
(11.20)

.� D ac=4/. Let us approximate the dependence of � on P and T by a power law

of the form
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� D �0P
aT b; (11.21)

with �0 = constant and exponents typically a > 0; b < 0. By proper choice of �0; a;

and b we can represent reasonably (though, of course, not correctly) the run of �

over wide ranges of the envelope. Introducing (11.21) into (11.20) results in

T 3�b

P a

@T

@P
D 3�0

64��G

l

m
; (11.22)

and now we take l � L and m � M (this, together with the approximation of �;

determines how far inwards we are allowed to extend our solution). Then the right-

hand side is constant and (11.22) can be integrated by separation of the variables:

T 4�b D B.P 1Ca C C/; (11.23)

where C is a constant of integration, while the positive constant B is given by

B D 4 � b
1C a

3�0

64��G

L

M
: (11.24)

For an illustrative example we now fix the exponents: a D 1; b D �4:5, which

corresponds to the famous Kramers opacity for bound–free and free–free absorption

in stellar material (see Chap. 17), and which is a good approximation for envelopes

of moderate temperatures. Then (11.23) becomes

T 8:5 D B.P 2 C C/; (11.25)

a solution for the envelope that will now be discussed. It is illustrated in Fig. 11.2,

which gives lgT against lgP; so that the slope of a solution is equal to the value of

r � d lnT=d lnP . Differentiation of (11.25) gives the slope

r D 0:235
BP 2

T 8:5
: (11.26)

The multitude of possible solutions differ by their value of the integration

constant C:

C D 0: The solution (11.25) now gives

T 8:5

BP 2
D 1; (11.27)

for which (11.26) yields the slope r D 2=8:5 � 0:235. This is smaller than the

usual value of rad D 2=5 (see Chap. 14), and therefore the solution is consistent

with (the assumed) radiative transport, shown in Fig. 11.2 as the straight solid line

lgT D (2 lgP + lgB)/8.5. Obviously T ! 0 for P ! 0, and this solution

would reach the zero boundary condition if we were to extend it outwards over

the photosphere.
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Fig. 11.2 A lgT –lgP diagram for illustrating typical properties of envelope solutions as discussed

in the text (see there for details)

C > 0: Since B > 0, (11.25) yields

T 8:5

BP 2
> 1: (11.28)

Comparing this with (11.26) and (11.27), we see that in Fig. 11.2, the solutions

with C > 0 lie above that with C D 0 and that they have a smaller slope, r <

2=8:5. The layers are therefore all the more radiative. For P 2 � C equation (11.25)

becomes T 8:5 � BC = constant. This shows that towards the surface these solutions

tend to a constant (and rather high) T: Three of them (for 3 different values C1 <

C2 < C3 of C/ are illustrated by solid lines on the left of Fig. 11.2. On each line,

one point corresponds to the photosphere with T D Teff. Obviously we will find

such radiative-envelope solutions below the photospheres with Teff larger than some

critical value (close to 104 K). Towards the interior, P will finally increase so far

that P 2 � C in (11.25) and the solution approximates closely that for C = 0. Since

all solutions with C > 0 asymptotically approach the solution C D 0, the precise

starting values at the surface do not greatly influence the solution in the deep interior.

C < 0: Equation (11.25) now gives

T 8:5

BP 2
< 1; (11.29)
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which with (11.26) and (11.27) shows that these solutions lie below the curve for

C D 0 and that their slope is larger, r > 2=8:5. A discussion quite analogous to

that for C > 0 shows immediately that these solutions have the structure indicated

in Fig. 11.2 by the dotted line. They bend downwards from the line C D 0, become

gradually steeper, and tend vertically to a finite P for T ! 0 (With a proper scaling

of the coordinates the curvesC > 0 andC < 0 are simply symmetric with respect to

the line C = 0.). However, the assumption of radiative transport breaks down when

convection sets in, which is the case for r D rad (see Sect. 6.1). This is close to 0.4

in the interior of not too massive stars, while ionization effects near the surface can

make it considerably smaller (see Chap. 14). This limit is derived by equating the

right-hand side of (11.26) with rad:

T 8:5 D 0:235

rad

BP 2: (11.30)

For constant rad this corresponds to a straight line given by lgT = (2 lgP C lgB

C lg(0.235/rad))/8.5. For rad D 0:4 this lower border for radiative solutions is

plotted in Fig. 11.2 (dashed line). Near the surface, ionization effects decrease rad

considerably below 0.4, and therefore the border line should be curved upwards in

its lowest part.

11.3.2 Convective Envelopes

The radiative solutions with C < 0 extending from the interior have to be terminated

at the broken line in Fig. 11.2 given by (11.30), where convection sets in, and have

to be replaced in the outer regions by solutions valid for convective transport. Three

such convective solutions are shown as solid lines in the lower part of Fig. 11.2. In

order to construct them we have to consider their slope d lgT/d lgP (= r). As long

as the solutions stay in regions of high enough density, convection is very effective

(cf. Sect. 7.3) and the slope is equal to the adiabatic gradient rad.

We can start the convective solutions near the border of convection with a slope

given by r D rad = 0.4. With decreasing temperature the curves come into regions

where the most abundant elements (hydrogen and helium) are no longer completely

ionized (see Chap. 14). For hydrogen this occurs around T D 104 K, depending

somewhat on P (cf. the dependence of the Saha equation on the electron density).

Partial ionization depresses rad appreciably below 0.4 such that the curves with a

slope r D rad are less steep and closely approach one another.

Finally the curves come into regions of such low density that convection is

ineffective and the stratification is over-adiabatic, r > rad (Chap. 7). Correspond-

ingly the curves in Fig. 11.2 become rather steep until they reach the photospheric

point. Unfortunately the precise slope r in the over-adiabatic part can only be

calculated from a convection theory, with all its uncertainties. Anyway, convective

envelopes start at cool photospheres, and with decreasing Teff, the convection
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gradually reaches deeper into the interior. Small variations (due to numerical or

physical uncertainties) of Teff or of the over-adiabatic part lead to curves that are

widely separated in the interior.

11.3.3 Summary

Making a few simplifying assumptions, we have been able to derive conve-

nient solutions for the temperature-pressure stratification of stellar envelopes,

i.e. for the layers below the photosphere. In the case of radiative envelopes,

the assumptions concerned �;m; and l . An opacity law like (11.21) is cer-

tainly a poor approximation if one takes the same values of a; b; �0 for too

wide a range, or for very different envelopes. The discussions can, however,

be easily repeated for different values of a; b; �0 [e.g. a D 0; b D 0; �0 D
0:2.1 C XH), as in the case of electron scattering, Sect. 17.1] giving essentially

similar results. The assumption l D constant certainly holds for T < 106 K, where

nuclear burning is negligible, though the assumption m D constant D M breaks

down much earlier. But, even if we stress these assumptions somewhat by extending

the solutions too far inwards, we will still obtain the correct qualitative behaviour.

Radiative envelopes are found below all hot photospheres (T > 9; 000K).

Towards the deep interior these solutions converge rapidly to the solution with

C D 0. The interior is therefore relatively insensitive to details of the outer boundary

conditions, in particular to the photospheric details.

Below cool atmospheres there are convective envelopes, which extend farther

downwards the smaller Teff is. This suggests that a minimum value of Teff might

exist where the whole star has become convective (cf. the Hayashi line, Chap. 24).

The inward extension of the convective part depends rather sensitively on the precise

position of the photosphere and the details of the over-adiabatic layer. Small changes

in even the outer solution, which are otherwise rather unimportant, can exert a

remarkable influence on the interior, and the same is true for the uncertainties in

the treatment of superadiabatic convection.

11.3.4 The T �r Stratification

Sometimes it is useful to know how T D T .r/ increases below the photosphere.

From the definition of r � d lnT=d lnP we have dT D TrdP=P , where we

replace dP by using the hydrostatic equation in the form

dP D �Gm
r2
% dr D Gm%d

�
1

r

�
(11.31)
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and eliminate T%=P D �=< by means of the equation of state for a perfect gas. We

then have

dT D rG�< m d

�
1

r

�
: (11.32)

For the outer envelope with low density we may approximatem by the surface value

M , so that if r is constant between points 1 and 2, we can integrate (11.32) to obtain

T1 � T2 D rGM�<

�
1

r1
� 1

r2

�
: (11.33)

Let the subscript 2 indicate the photosphere, i.e. T2 D Teff and r2 D R: Now at any

point r D r1 in the envelope we have

T � Teff D f

�
R

r
� 1

�
; f D r g�<

M

R
: (11.34)

As a simple example we take M D Mˇ; R D Rˇ and a solution with C = 0

(see Sect. 11.3.1), for which we found that r D 0:235. With � D 1 we find that

f D 5:4 � 106 K. This large value of f provides for a very rapid increase of T

below the photosphere. Within only 2 % of the radius, T has reached 105 K. And

at r � 0:8R (where m � 0:99M still) the temperature exceeds 106 K, which also

shows that the “average” T for all mass elements of the star is well above 106 K.



Chapter 12

Numerical Procedure

For realistic material functions no analytic solutions are possible, so that one

depends all the more on numerical solutions of the basic differential equations.

Consequently the activity and the number of results in this field has increased with

the numerical capabilities. The growth of computing facilities by leaps and bounds

since the 1960s may be illustrated by a remark of Schwarzschild (1958): “A person

can perform more than twenty integration steps per day”, so that “for a typical

single integration consisting of, say, forty steps, less than two days are needed”.

The situation has changed drastically since those days when the scientist’s need for

meals and sleep was an essential factor in the total computing time for one model.

Nowadays one asks rather for the number of solutions produced per second. And

these modern solutions are enormously more refined (numerically and physically)

than those produced 40 years ago. This progress has been possible because of

the introduction of large and fast electronic computers and the simultaneous

development of an adequate numerical procedure connected with the name of

L.G. Henyey. His method for calculating models in hydrostatic equilibrium is now

generally used and will be described later. For more details and for further references

see Kippenhahn et al. (1967). If inertia terms with Rr ¤ 0 become important, one

needs a so-called “hydrodynamic” procedure (see Sect. 12.3).

12.1 The Shooting Method

It is not difficult to see that the appropriate choice of a numerical procedure is

anything but a trivial matter. Consider the simplest case, the calculation of a model

in complete equilibrium at a given time, for given mass M and given chemical

composition Xi .m/. The “spatial problem” can then be separated and is described

by the structure equations (10.1), (10.2), (10.4) and (10.16). The naRıve attempt

simply to integrate them from one boundary to the other would encounter the

difficulty that the boundary conditions are split, one pair being given at the centre,

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 12, © Springer-Verlag Berlin Heidelberg 2012
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the other at the surface. Moreover, a test calculation starting with trial values

Pc; Tc at the centre has little chance of meeting the correct surface conditions.

Outward integrations differing only a little near the centre have the tendency to

diverge strongly when approaching the surface (see Sect. 11.3). The reason is

that for radiative transport (10.4) with (10.6) contains the factor T �4. For inward

integrations starting with trial values R;L at the surface another divergence occurs

near the centre owing to the singularity produced by the factor r�4 in (10.2).

A compromise between these two possibilities is a fitting procedure often used

in earlier, non-automized computations. Outward and inward integrations were both

carried to an intermediate fitting point, where they were fitted smoothly to each

other by a gradual variation of the trial values Pc, Tc and R;L: The simultaneous

fit of four variables (r; P; T; l) is, in principle, possible, since one can vary four

free parameters .Pc; Tc; R;L/ in the partial solutions. The fitting point is preferably

chosen to be at the interface between physically different regions. For example,

one takes the border between a convective central core and a radiative envelope, or

between regions of different composition.

Fitting methods turned out to be unsuitable for calculating large series of

complicated models. For these purposes they were generally replaced by the Henyey

method. There are, however, certain applications where a fitting method is still

unsurpassed, for example, if one wishes to find all possible solutions for given

core and envelope parameters. Another application is the generation of the very

first model for an evolutionary sequence, since the relaxation methods, which will

be introduced in the next section, always need a trial model for finding a solution.

For chemically homogeneous stars the shooting methods are well suited to construct

such initial models.

12.2 The Henyey Method

This method is very practical, especially for solving boundary-value problems

where the conditions are given at both ends of the interval. A trial solution for

the whole interval is gradually improved upon in consecutive iterations until the

required degree of accuracy is reached. In each iteration, corrections to all variables

at all points are evaluated in such a way that the effect of each of them on the whole

solution (including the boundaries) is taken into account. In a generalized Newton–

Raphson method, corrections are obtained from linearized algebraic equations.

For spherical stars in hydrostatic equilibrium we have the partial differential

equations (10.1)–(10.5) together with boundary conditions at the centre and at

the surface. In addition the proper initial values have to be specified as well as

the stellar mass M: The general structure of the system of equations suggests

that one should treat two subsystems separately and alternately. First, the system

(10.1)–(10.4) is solved for given Xi.m/, then (10.5) is applied to a small time step

�t; after which (10.1)–(10.4) is solved for the new values of Xi .m/, and so on.

In modern language such an approach is called operator splitting. In this way one
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can construct a whole evolutionary sequence of models (But one should be aware

of the fundamental inconsistency inherent to this approach, which was discussed in

Chap. 10.). We now describe in detail the first of these two steps, the solution of the

“spatial system”.

If there is complete equilibrium ( Rr D PP D PT D 0), the initial values to be given

are theXi .m/, so that we can treat them as known parameters for any point. Accord-

ing to (10.7)–(10.14) the material functions "; �; %; : : : on the right-hand sides of

(10.1), (10.2), (10.4) and (10.16) can be replaced by their dependencies upon P

and T: Then we have to solve the four ordinary differential equations (10.1), (10.2),

(10.4) and (10.16) for the four unknown variables r; P; T; l in the interval [0, M ]

(whereM is also thought to be given).

The case of hydrostatic equilibrium (Rr D 0) but thermal non-equilibrium

. PP ¤ 0, PT ¤ 0) is almost equivalent, the only difference being the additional term

"g in (10.3), which contains the partial derivatives PP and PT : This requires as initial

values for the earlier time t0 � �t not only the Xi.m/ but also T .m/ and P.m/

(See the remarks on possible initial values in Chap. 10.). Assume that we take them

from a “foregoing” solution, calling these given functions P �.m/; T �.m/. At any

point m D mj , we denote the variables by Pj ; Tj and replace the time derivatives
PPj ; PTj by

PPj D 1

�t
.Pj � P �

j /;
PTj D 1

�t
.Tj � T �

j / : (12.1)

The given values of �t; P �
j ; T

�
j can now be considered known parameters. Then

PPj ; PTj are functions of Pj ; Tj only, as is the case with all material functions, and

therefore we can also consider "g to be replaced by the function "g.P; T ), and the

situation is as before with the complete equilibrium models: we again have the

four ordinary differential equations (10.1)–(10.4) for the four unknown variables

r; P; T; l , but with a somewhat different right-hand side of (10.3).

Let us write these four differential equations briefly as

dyi

dm
D fi .y1; : : : ; y4/; i D 1; : : : ; 4 ; (12.2)

where we have used the abbreviations y1 D r; y2 D P; y3 D T; y4 D l . The

next step is discretization, i.e. we proceed from the differential equations (12.2)

to corresponding difference equations for a finite mass interval [mj ; mjC1�: Let us

denote the variables at both ends of this interval by upper indices, for example,

y
j
1 ; y

jC1
1 ; : : : ; y

j
4 ; y

jC1
4 . The functions fi on the right-hand sides of (12.2) have to

be taken for some average arguments we call y
jC1=2
i ; they are a combination of y

j
i

and y
jC1
i , for example, the arithmetic or the geometric mean. If we define the four

functions

A
j
i WD y

j
i � y

jC1
i

mj �mjC1 � fi


y
jC1=2
1 ; : : : ; y

jC1=2
4

�
; i D 1; : : : ; 4 ; (12.3)
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then the difference equations replacing (12.2) for the mass interval betweenmj and

mjC1 are

A
j
i D 0; i D 1; : : : ; 4 : (12.4)

The difference equations (12.4) and (12.1) represent a linearization of the differ-

ential equations and are therefore an approximation, the accuracy of which has to

be controlled. Obviously, the smaller �t and �mj D mj � mj�1, the better the

approximation. In practical circumstances the spatial discretization is not constant

throughout the stellar model, but depends on the changes of the physical variables.

A good approach is to choose�mj for each j such, that all variables change by less

than a predefined upper limit between points j and j � 1. That maximum change

will differ between variables and has to be determined by numerical experiments

reducing it to a limit from where on the numerical solution no longer depends on the

�mj significantly. Apart from this basic control algorithm there are more advanced

methods, which, for example, take into account not only the slope but the curvature

of the functions T .m/, P.m/ (Wagenhuber and Weiss 1994). The advantage of this

method is that it is sensitive to deviations from linear behaviour. It places many grid

points where the variables are a strongly non-linear function ofm, while it uses very

few in the opposite case. Wagenhuber called this the curvature method, as opposed

to the simpler gradient method.

It is possible to exclude the outermost envelope of the star from the iteration

procedure, since time-consuming computations may be necessary for this part (e.g.

partial ionization and superadiabatic convection). With sufficient computing power

this is no longer a necessity, however. Another situation where this would be

advisable is when fully realistic atmospheres are to be connected to the interior

of the star, since the diffusion approximation (10.6) is not valid at m D M but at

some deeper layer where the optical depth � � 1. The lower boundary of such an

atmosphere then provides the upper boundary of the interior model. As described

in Sect. 11.2 the outer boundary conditions are imposed at a fitting mass mF, which

may have the special value m D M and may have the upper index j D 1, and they

are formulated by the two equations (11.18) that relate the variables y11 ; : : : ; y
1
4 at

m1 D mF. These equations are specific choices and may differ. With the definitions

B1 WD y12 � �


y11 ; y

1
4

�
; B2 WD y13 � �



y11 ; y

1
4

�
; (12.5)

equations (11.19) become

Bi D 0 ; i D 1; 2 : (12.6)

As described in Sect. 11.2 the functions �; � have to be derived by “downward”

integrations starting with different trial values of R;L: In practice this may be

greatly simplified if we content ourselves with a linear approximation for � and �

(i.e. taking the tangential planes instead of the complicated surfaces in Fig. 11.1).

Then only three trial integrations suffice to determine all coefficients in B1 and B2.

In the innermost interval of m, between the central point mK.D 0/ and mK�1;
we apply series expansions for all four variables as given by (11.3), (11.4), (11.6)

and (11.9). These four equations are written as
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Fig. 12.1 Sketch of the mesh points in the interior solution, from the fitting mass m D mF (in this

example mF < M ) to the centre (m D 0). It is also indicated which of the equations (12.4), (12.6)

and (12.7) have to be fulfilled at mF or between two adjacent mesh points

Ci


yK�1
1 ; : : : ; yK�1

4 ; yK2 ; y
K
3

�
D 0; i D 1; : : : 4 ; (12.7)

which already incorporates the central boundary conditions yK1 D yK4 D 0

(i.e. r D l D 0 at the centre).

Consider now the whole interval of m; between mK D 0 and the fitting mass

m1 D mF, to be divided into K � 1 intervals (usually not equidistant) by K mesh

points as sketched in Fig. 12.1. At these K mesh points we have .4K � 2) unknown

variables (since yK1 D yK4 D 0), and in order to have a solution, these unknowns

have to fulfil the following equations: (12.6) for the outer boundary, (12.4) for each

interval except the last one .j D 1; : : : ; K�2), and (12.7) for the central boundary;

thus there are 2C 4.K � 2/C 4 D 4K � 2 equations, which may be written:

Bi D 0; i D 1; 2 ;

A
j
i D 0; i D 1; : : : ; 4; j D 1; : : : ; K � 2 ; (12.8)

Ci D 0; i D 1; : : : ; 4 :

Suppose that we are looking for a solution for given values of M;Xi .m/;

P �.m/; T �.m/ (which all enter into these equations as parameters). And suppose,

furthermore, that we have a first approximation to this solution, say, .y
j
i /1 with

i D 1; : : : ; 4; j D 1; : : : ; K (This may be a rough first guess, e.g. obtained by an

extrapolation of a foregoing solution or a solution for similar parameters. It may also

be obtained from a shooting method.). Since the .y
j
i /1 are only an approximation,

they will not fulfil (12.8), i.e. when we use them as arguments in the functions

A
j
i ; Bi , and Ci , we find that

Bi .1/ ¤ 0; A
j
i .1/ ¤ 0; Ci .1/ ¤ 0 ; (12.9)

where we indicate by (1) that the first approximation is used as arguments. Let us

now look for corrections ıy
j
i for all variables at all mesh points such that the second

approximation



y
j
i

�
2

D


y
j
i

�
1

C ıy
j
i (12.10)
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of the arguments makes the Bi ; A
j
i , and Ci vanish. The changes ıy

j
i of the argu-

ments produce the changes ıBi ; ıA
j
i , and ıCi of the functions, and we obviously

have to require that

Bi .1/C ıBi D 0; A
j
i .1/C ıA

j
i D 0; Ci .1/C ıCi D 0 : (12.11)

For small enough corrections, we may expand the ıBi ; : : : in terms of increasing

powers of the corrections ıy
j
i , and keep only the linear terms in this expansion; for

example,

ıB1 � @B1

@y11
ıy11 C @B1

@y12
ıy12 C @B1

@y13
ıy13 C @B1

@y14
ıy14 : (12.12)

For (12.5) the third term would vanish because in this special caseB1 is independent

of y3. With this linearization (12.11) can be written as

@Bi

@y11
ıy11 C � � � C @Bi

@y14
ıy14 D �Bi ;

i D 1; 2 ;

@A
j
i

@y
j
1

ıy
j
1 C � � � C @A

j
i

@y
j
4

ıy
j
4 C @A

j
i

@y
jC1
1

ıy
jC1
1 C � � � C @A

j
i

@y
jC1
4

ıy
jC1
4 D �Aji ;

i D 1; : : : ; 4; j D 1; : : : ; K � 2 ; (12.13)

@Ci

@yK�1
1

ıyK�1
1 C � � � C @Ci

@yK�1
4

ıyK�1
4 C @Ci

@yK2
ıyK2 C @Ci

@yK3
ıyK3 D �Ci ;

i D 1; : : : ; 4 :

(The Bi ; A
j
i ; Ci , and all derivatives have here to be evaluated using the first

approximation as arguments.) This is a system of 2C4.K�2/C4 D 4K�2 linear,

inhomogeneous equations for the 4K � 2 unknown corrections ıy
j
i .i D 1; : : : ; 4

and j D 1; : : : ; K; but ıyK1 D ıyK4 D 0 because of the central boundary

conditions). Equation (12.13) may be written concisely in matrix form as

H

0
BBBBB@

ıy11
:

:

:

ıyK3

1
CCCCCA

D �

0
BBBBB@

B1
:

:

:

C4

1
CCCCCA
; (12.14)

where the matrix H of the coefficients is called the Henyey matrix; its elements are

the derivatives on the left-hand sides of (12.13).

Usually H has a non-vanishing determinant, det H ¤ 0, and we can solve

these linear equations, obtaining the wanted corrections ıy
j
i . These are applied as

shown in (12.10) to obtain a second, better approximation .y
j
i /2. When using these
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Fig. 12.2 Mesh points in the

“three-layer model”

second approximations as arguments, we will generally still find Bi ¤ 0;A
j
i ¤ 0,

and Ci ¤ 0, i.e. equations (12.8) are not yet fulfilled. This is because the corrections

were calculated from the linearized equations (12.13), while equations (12.8) are

non-linear (Even if we had linear equations instead of (12.8), the solution might

require several iterations, since the numerical solution of (12.13) has only limited

accuracy.). Therefore in a second iteration step we calculate new corrections by the

same procedure to obtain a third approximation



y
j
i

�
3

D


y
j
i

�
2

C ıy
j
i ; (12.15)

and so on. In consecutive iterations of this type, the approximate solution can be

improved until either the absolute values of all corrections ıy
j
i , or the absolute

values of all right-hand sides in (12.13), drop below a chosen limit. Then we have

approached the solution with the required accuracy.

If a time sequence of models is to be produced, one can now change the

parameters appropriately for a new small time step �t [by evaluating from (10.5)

the change of the Xi .m/, and by redefining the just-calculated P.m/; T .m/ as the

new P �.m/; T �.m/]. The new model for t C �t is then calculated by the Henyey

method in the same manner as for the model for t:

Of course, there is no guarantee that the iteration procedure for improving the

approximations really does converge. In fact often enough one finds divergence if

the chosen approximation is too far from the solution; then the required corrections

are so large that one cannot neglect the second-order terms when evaluating

ıBi ; ıA
j
i , and ıCi in (12.11), and the linearized equations (12.14) therefore yield

wrong corrections.

What happens, on the other hand, if we take a given precise solution as the “first

approximation”? It fulfils (12.8) such that the right-hand sides of (12.14) vanish.

Equation (12.14) is then a system of homogeneous linear equations, which for det

H ¤ 0 has only the trivial solution ıy
j
i D 0: in this (normal) case, there is no other

solution (“local uniqueness” as mentioned in Sect. 12.6). If, however, det H D 0,

then we obtain solutions ıy
j
i ¤ 0, i.e. other solutions for the same parameters.

In this somewhat pathological situation the “local uniqueness” of the solution is

violated.

The Henyey matrix and its determinant are obviously important quantities.

This concerns also their connection with the stability properties (see Sect. 12.6).

It is worthwhile noting the general structure of H; which turns out to be very

simple. This is most easily demonstrated by considering the simple “three-layer

model”, which has only four mesh points from centre to fitting mass (Fig. 12.2).

One interval is adjacent to mF, one to the centre, while the intermediate interval
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Fig. 12.3 Structure of the Henyey matrix H for the three-layer star sketched in Fig. 12.2. A dot

in, for example, the column y
j
i and the row Alk represents the matrix element @Alk=@y

j
i . All matrix

elements outside the dotted area are zero

borders on neither of these two boundaries, so that the full generality of possible

cases is exhibited. Any further mesh point will only duplicate the situation of the

intermediate interval. The Henyey matrix H for this three-layer star is indicated in

Fig. 12.3, where a dot in a column under y
j
i and in a row denoted at the left-hand

side by Alk represents a matrix element @Alk=@y
j
i . Some of these derivatives will be

zero, since some basic equations do not depend on all variables [e.g. (10.16) does not

contain y1 D r]. Outside the dotted area there are only zero elements, because the

first-order scheme (12.13) connects only neighbouring points. The Henyey matrix

therefore has non-vanishing elements only in overlapping blocks along the main

diagonal, so that this can be easily used for devising simple and well-behaved

algorithms for computing det H and inverting the matrix through elimination

processes. The most widely used method for solving such block matrices in stellar

evolution codes is that by Henyey et al. (1964), which was described in all details

by Kippenhahn et al. (1967). The basic idea is to express the corrections of the

block matrix connecting points .j; j C 1/ in terms of the quantities of the next
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block .j C 1; j C 2/, and so on. At the end there is a final block (usually the

innermost one), for which the corrections are determined by matrix inversion, and

from which on then all the other corrections can be calculated by going backwards

again. The Henyey method has K inversions of matrices of size 4 � 8 instead of

straightforwardly inverting the Henyey matrix of size K � K . It therefore grows

only linearly–instead of quadratically–with increasing number of grid points.

12.3 Treatment of the First- and Second-Order

Time Derivatives

When devising a numerical scheme for solving our partial differential equations

one can choose many details more or less arbitrarily without greatly affecting the

results. This concerns questions such as the prescription for averaging between

spatial mesh points, and the definition of the variables; these can be, for example, the

physical quantities themselves, their logarithms, or any other functions describing

them properly.

Concerning the manner in which the time derivatives are approximated, one

distinguishes between explicit and implicit schemes that are known to behave

differently, in particular when one is dealing with second-order time derivatives.

Forward integration in time, starting from given initial values, can require time steps

of various length, and the results can be unstable with respect to small numerical

errors. In Sect. 12.2 we encountered examples of both types of scheme:

An explicit scheme was indicated in the case of the chemical equations (10.5).

Consider the time interval between tn (at which all variables qn are supposed

to be known) and tnC1 (for which the variables qnCl are to be calculated). We

may use (10.5) simply in order to calculate time derivatives PXn
i of the chemical

composition from the known reaction rates rnik and densities %n: The composition

for tnCl is then evaluated asXnC1
i D Xn

i C�t PXn
i before the other variables for this

time are derived. In fact theXnC1
i are used as fixed parameters when calculating the

solution at tnC1 by iteration. Such a procedure is relatively simple, and in general,

the results can be sufficiently accurate if the time steps are kept small enough.

However, there is no guarantee to prevent unphysical solutions in explicit methods.

For example, if PXn
i is sufficiently negative even a small time step might lead to a

negative XnC1
i . To prevent this, an implicit treatment is indicated. If PXi depends

on the chemical abundances itself, as is the case for the nuclear reactions (10.5),

the abundance at tnC1 is used on the right-hand side, too. This constitutes a set of

implicit equations, which need to be solved by inversion methods, but which are

numerically stable. An easy way is by writing XnC1
i D Xn

i C�t PXn
i D Xn

i C�Xn
i

and linearizing the equations in the �Xn
i , neglecting all higher terms. The resulting

system of equations is linear in �Xn
i and can be solved by one matrix inversion.

However, the quality of the linearization again depends on the size of �t . Such
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implicit schemes are generally used to solve networks of nuclear reactions, where

the terms PXn
i may vary by many order of magnitudes.

In the set of structure equations (10.1)–(10.4) to be solved at time tnC1
i for given

XnC1
i the energy equation (10.3) contains the time derivatives of PP and T . With

respect to these an implicit scheme was used in Sect. 12.2. According to (12.1) the
PP and PT are replaced by (P nC1�P n/=�t and (T nC1�T n/=�t , respectively. These

time derivatives are therefore considered to depend also on the variables at time tnC1

and are evaluated together with them in the iteration procedure. In principle one

could also have used an explicit method. For example, replace PP and PT in (10.3) by

the time derivative of the entropy s and use this equation only in order to evaluate

Psn at time tn: Then, as in the case of the chemical composition, the solution for tnC1

is calculated for a given, fixed entropy snC1 D sn C�t Psn from the other equations.

It is well known that, for differential equations that involve first-order derivatives

in time and first- (or higher-) order spatial derivatives, implicit methods allow larger

time steps for a given spacing in mass; for explicit difference schemes the time step

has to be kept small to avoid numerical instability (For details see, for instance,

Richtmyer and Morton 1967.).

Let us now turn to the so-calledhydrodynamical problem, which arises when the

inertial term in the equation of motion cannot be neglected. Then in addition to the

first-order time derivatives in (10.3) there is a second-order time derivative in (10.2),

as in (2.16). One usually introduces the radial velocity

v D @r

@t
(12.16)

of the mass elements as a new variable, with which (10.2) becomes

@P

@m
D � Gm

4�r4
� 1

4�r2
@v

@t
: (12.17)

When using (12.16) and (12.17) instead of (2.16) one has again to deal with first-

order time derivatives only. These can be replaced by ratios of differences, and one

can use an explicit or an implicit scheme as before, the explicit being simpler but

demanding smaller time steps. However, this is not the only choice to be made. For

example, within the framework of an explicit method, the different variables can be

defined at different times (say, the radius values at tn; tnC1; : : :, and the velocities at

the intermediate times tn�1=2; tnC1=2; : : :). Furthermore, one may devise a scheme

which treats the mechanical equations explicitly but is implicit with respect to the

time derivatives in the energy equation (10.3).

The presence of the second-order time derivatives changes the properties of the

equations and the behaviour of the numerical procedure considerably. Whenever an

explicit scheme is used, the time steps have to be kept small in order to fulfil the

Courant condition, according to which the time step �t must not exceed �r=vs,

where �r is the thickness of the smallest mass shell and vs is the local velocity of

sound.
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12.4 Treatment of the Diffusion Equation

The diffusion equation (8.25) contains first-order derivatives in time and second-

order derivatives in space for the N chemical species. It may be supplemented by

the nuclear reactions of (10.5), and by the additional term for diffusive convective

mixing (8.28) to achieve a consistent treatment of “burning and mixing”, but these

terms do not change the nature of the equations further.

The left-hand side of (8.25) can again be written as .Xi.t C �t/ � Xi .t//=�t ,

andXi .tC�t/ is the quantity to be determined. As with the nuclear reactions (10.5)

discussed in 12.3, an implicit scheme is to be preferred for sake of numerical

stability, implying that on the right-hand side Xi.t C �t/ is used, too. This

constitutes at each grid point a set of N implicit equations, which can be solved

either through linearization or iteration. However, in contrast to the situation we

found for the nuclear network, these sets of equations are now coupled between grid

points due to the spatial derivatives of the diffusion equation.

These second-order spatial derivatives of, for example, lnT , are calculated in two

steps. First, the first-order derivative for grid point j is approximated in the standard

way by

� lnT j

�rj
D lnT j � ln T j�1

rj � rj�1 (12.18)

and similarly for j C 1. Then the second-order derivative at grid point j can be

calculated from

@2 lnT

@r2

ˇ̌
ˇ̌
j

�
�
� lnT jC1

�rjC1 � � lnT j

�rj

�
=


NrjC1 � Nrj

�
; (12.19)

where Nrj is a suitable mean value for r in the interval .j; j C 1/. In the simplest

case it is the arithmetic mean and thus the denominator in (12.19) reduces to

.rjC1 � rj�1/=2. All other quantities in (8.25) appearing in front of the first-order

derivatives, such as AT .i/, also have to be taken as mean quantities for the second

derivative in analogy to (12.19). We note that the spatial derivatives are defined here

at each grid point, contrary to the system of equations (12.3), where the derivatives

were defined for the shell between j and j C 1. One may imagine that the shells

now are centred at a grid point, extending halfway to the neighbouring ones. The

advantage of this definition is that the diffusion equations are defined at the same

location as the nuclear network equations.

In this way, the discretized equations for the N elements at the M � 2 grid

points from j D 2; : : : ;M � 1 contain values of the Xi at three grid points

j � 1; j; j C 1. As for the structure equations, they are solved by iterating for

Xi.t C �t/, starting with the initial trial values Xi.t/, which are already known.

The iteration method can again be the standard Newton–Raphson method, which

requires first-order derivatives of all quantities appearing in (8.25). The complete
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system of equations is similar to (12.13) with the exception that three instead of

two neighbouring grid points are connected. It is therefore obvious that the Henyey

method will be applicable again, the only difference being that the block matrices

are now of dimensionN � 3N .

The missing two equations to complete the system for the N elements result

from the boundary conditions at j D 1 and j D M , which follow from mass

conservation. We follow here the formulation by Schlattl (1999), where also more

technical details concerning the solution of (8.25) can be found.

Mass conservation leads to

MX

jD1

�
X
j
i .t C�t/ �X j

i .t/
�

4mj D 0; 1 � i � N (12.20)

where j again denotes the grid point (1 � j � M ) and i the element. Since (8.25)

is formulated in Eulerian space, the mass intervals 4mj have to be defined appro-

priately, for example, by

4mj D

8
<
:

1
2



m1 �m2

�
j D 1

Nmj � NmjC1 2 � j � M � 1
1
2
mM�1 j D M:

(12.21)

Note that mean values formj are used in the second line. This wayM mass intervals

are created.

As an example we formulate the expression for the lnT term in (8.25),

abbreviating r2Xi .t C �t/T 5=2AT by KT . With 4rj D 4mj=.4�%j .rj /2/ the

boundary conditions translate into expressions like

1

%r2
@

@r

�
KT

@ lnT

@r

�

rDR
� � 2

%jD1R2
NKjD2
t .� lnT=�r/jD2

rjD1 � rjD2 (12.22)

and

1

%r2
@

@r

�
KT

@ lnT

@r

�

rD0
� 24

%jDM .rjDM�1/2
NKjDM
T .� lnT=�r/jDM

rjDM�1 (12.23)

To simplify reading we have written suffixes indicating grid numbers j explicitly.

In (12.23), the linear expansion (11.3) of m at the centre was used to compute

4rjDM from 4mjDM , which involvesmM�1.
We finally add that Schlattl (1999) justifies the Eulerian formulation for the

diffusion equations, as opposed to our otherwise preferred Lagrangian one, with

the necessity for very dense spatial resolution in situations of shallow convective

layers.
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12.5 Treatment of Mass Loss

The mass loss formulae (9.1)–(9.4) describe only how the stellar mass reduces with

time due to stellar winds. Therefore, the treatment in stellar evolution calculations is

very simple. Over a time step �t , during which the chemical composition changes

as described in Sect. 12.3, the stellar mass will change according to

M.t C�t/ D M.t/ ��M.t/ D M.t/ � PM.t/�t ; (12.24)

where PM.t/ is the mass loss rate evaluated according to (9.1) or any other similar

prescription, using the stellar parameters at time t .

In terms of the mass grid established in Sect. 12.2 a simple removal of all grid

points i with mi � M.t/ � �M.t/ can be done. Such a procedure, of course,

ignores all effects of accelerating matter and moving it out of the star’s gravitational

potential. To treat this correctly, however, a hydrodynamical method with an open

outer boundary would be needed, which in most cases is not necessary. Consider the

energy spent to remove mass from the stellar surface to infinity. This is, according

to (1.13), GM=R per mass unit of the stellar wind. Multiplying with the mass loss

rate we obtain the result that . PMGM/=R erg/s are needed. For the Sun this amounts

to 1:2 � 1027 erg/s, which is only 10�7 of the solar luminosity, and can therefore be

safely ignored. For a very evolved red giant with very strong mass loss the energy

spent for expelling mass can reach values up to 0.001 or even 1 % of the stellar

luminosity.

While the simple removal of grid points is correct in terms of mass distribution

and chemical composition, it is not taking into account thermal effects. Imaging

a mass layer that was deep inside the stellar envelope now suddenly being the

outermost one, since all overlying layers were expelled. It will be hotter than the

surface layers have been before and temperature and pressure will not be that of a

photosphere. Thermal relaxation will therefore set in. While the Sun is losing mass

continuously, its surface temperature is constant. This is because the timescale for

mass loss, �ML � M= PM is of the order of 1014 years and therefore much longer

than even the nuclear timescale. As long as �ML � �KH the outermost layers will

quickly expand and restore the previous photospheric conditions. The adjustment,

of course, vanishes with increasing depth. Numerical schemes are therefore trying

to take this into account: while grid points are removed due to mass loss, the

thermal structure of the star remains almost unperturbed. In the opposite case, when

�ML . �KH, the layers uncovered by mass loss indeed have no time to change

their temperature (pressure can be adjusted, since �hydro is still much shorter). This,

however, may happen only in binary systems during extreme mass transfer episodes.

In such cases, a hydrodynamical treatment of the complete system is indicated,

anyhow.
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12.6 Existence and Uniqueness

As every numerical scheme, the Henyey method sometimes does not converge easily

to a solution, and there are cases when it seems to oscillate between two solutions.

While in most cases this is a purely numerical issue, resulting for example from

insufficiently accurate derivatives, one wonders whether there could also be deeper

mathematical reasons. This relates to questions about the existence and uniqueness

of the solution. It is closely connected to the determinant of the Henyey matrix,

as det H D 0 obviously does not allow an inversion for determining the ıyi and

det H � 0 will lead to numerical problems during the inversion.

An old problem is whether, for stars in complete equilibrium and of given

“parameters” (stellar mass M and chemical composition Xi ), there exists one,

and only one, solution of the basic equations of stellar structure. From simple

considerations concerning uncomplicated cases, answers to this question were given

in the 1920s by Heinrich Vogt und Henry Norris Russell; however, there is no

mathematical basis for this so-called Vogt–Russell theorem, and when by numerical

experiments multiple solutions for the same parameters were found to exist it had

to be abandoned. The conditions under which uniqueness is violated, and why, have

therefore been investigated. A linearized treatment (concerning “local” uniqueness)

is easier to understand, whereas non-linear results refer to the “global” behaviour

of the solutions and require a more involved mathematical apparatus. Relevant

work concerning these issues was done by Kähler (1972, 1975, 1978). For another

representation, particularly of the linear problem, see Paczyński (1972).

The mathematical discussion is usually restricted to models in complete or

at least hydrostatic equilibrium and analyses the behaviour of solutions under

(infinitesimally) small changes of the parameters. Mathematical conditions can be

formulated when a solution is locally unique, which can be translated into the

statement that the evolution–considered as being a change of parameters (chemical

composition and/or entropy) with time–follows a unique sequence of solutions.

However, there is no general statement about when such conditions are fulfilled. The

condition for having a locally unique solution is equivalent to det H ¤ 0. But even

if this condition is fulfilled, there still might be multiple, well-separated solutions.

If one of them is unstable, the star switches to the stable one when perturbed. This

is related to the general stability of stars.

Behind the mathematical question there is thus also interest concerning the

predicted evolution of stars. For example, after learning that often more than one

solution exists, that solutions can disappear, or that new solutions appear in pairs,

one might begin to wonder whether the star really “knows” how to evolve. But we

should keep in mind that normally the star will be brought into one particular state

(corresponding to a certain solution) according to its history. And if the equations

indicate that the evolution approaches a “critical point”, then this means in general

only that the approximation used breaks down. For example, if an evolutionary

sequence calculated for complete equilibrium comes to a critical point beyond

which continuation is not possible, then the difficulties are normally removed by
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allowing for thermal non-equilibrium. Correspondingly if hydrostatic models that

are not in thermal equilibrium evolve to a critical point, the difficulties are usually

removed after the introduction of inertia terms. An example would be the reaction

of a star when reaching the Schönberg–Chandrasekhar limit (Sect. 30.5), where two

existing solutions of complete equilibrium merge. The star easily switches from one

to the other by leaving thermal equilibrium.

Broadly speaking, it was found that indeed several solutions for the same set of

parameters (stellar mass M and chemical composition Xi ) exist but that they are

widely separated and a star’s evolution proceeds along a well-defined sequence of

locally unique solutions.



Part III

Properties of Stellar Matter

In addition to the basic variables .m; r; P; T; l) in terms of which we have

formulated the problem, the differential equations of stellar structure (Sect. 10.1)

also contain quantities such as density, nuclear energy generation, or opacity. These

describe properties of stellar matter for given values of P and T and for a given

chemical composition as indicated in (10.7)–(10.14) and are quantities that certainly

do not depend on m; r; or l at the given point in the star. They could just as well

describe the properties of matter in a laboratory for the same values of P; T; and

chemical composition. We can therefore deal with them without specifying the star

or the position in it for which we want to use them. In this chapter we shall discuss

these “material functions”, and we start by specifying the dependence of the density

% on P; T; and the chemical composition. This is described by an equation of state,

which is especially simple if we have a perfect gas. We already discussed this case

in Sect. 4.2. But radiation and ionization also influence the pressure and the internal

energy. We therefore have to include them.



Chapter 13

The Perfect Gas with Radiation

13.1 Radiation Pressure

The pressure in a star is not only given by that of the gas because the photons in

the stellar interior can contribute considerably to the pressure, and therefore our

discussion of the perfect gas of Sect. 4.2 has to be extended. Since the radiation is

practically that of a black body (see Sect. 5.1.1), its pressure Prad is given by

Prad D 1

3
U D a

3
T 4 ; (13.1)

whereU is the energy density and a is the radiation density constant a D 7:56464�
10�15 erg cm�3 K�4. Then the total pressure P consists of the gas pressure Pgas and

radiation pressure Prad:

P D Pgas C Prad D <
�
%T C a

3
T 4 ; (13.2)

where on the right we have assumed that the gas is perfect. We now define a measure

for the importance of the radiation pressure by

ˇ WD Pgas

P
; 1 � ˇ D Prad

P
: (13.3)

For ˇ D 1 the radiation pressure is zero, while ˇ D 0 means that the gas pressure

is zero. The definition (13.3) can also be used if the gas is not perfect.

Two other relations which can be derived by differentiation of (13.3) are

sometimes useful:
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�
@̌

@T

�

P

D �
�
@.1 � ˇ/
@T

�

P

D � 4

T
.1 � ˇ/ ; (13.4)

�
@̌

@P

�

T

D �
�
@.1 � ˇ/
@P

�

T

D 1

P
.1� ˇ/ : (13.5)

13.2 Thermodynamic Quantities

From (13.2) we obtain

% D �

<
1

T

�
P � a

3
T 4
�
; (13.6)

and with the definitions (6.6) with (13.4), and (13.5) we find that

˛ D 1

ˇ
; ı D 4 � 3ˇ

ˇ
; ' D 1 : (13.7)

Indeed, if the radiation pressure can be neglected (ˇ D 1), we find ˛ D ı D 1, as

should be expected for a perfect monatomic gas.

If the gas components are monatomic, then the internal energy per unit mass is

u D 3

2
kT

n

%
C aT 4

%
D 3

2

<
�
T C aT 4

%
D <T

�

�
3

2
C 3.1� ˇ/

ˇ

�
; (13.8)

so that according to the definition (4.4) of cP we have

cP D
�
@u

@T

�

P

C P

�
@v

@T

�

P

D
�
@u

@T

�

P

� P

%2

�
@%

@T

�

P

: (13.9)

Using (13.8), after some algebraic manipulations involving (13.4), we obtain

�
@u

@T

�

P

D <
�

�
3

2
C 3.4C ˇ/.1 � ˇ/

ˇ2

�
: (13.10)

From the definition of ı with (13.7)–(13.9) we write

cP D <
�

�
3

2
C 3.4C ˇ/.1 � ˇ/

ˇ2
C 4 � 3ˇ

ˇ2

�
; (13.11)

and then the relation (4.21) may be applied in order to determine the adiabatic

gradient rad for the perfect gas plus radiation:

rad D <ı
ˇ�cP

D
�
1C .1 � ˇ/.4C ˇ/

ˇ2

�
=

�
5

2
C 4.1� ˇ/.4C ˇ/

ˇ2

�
: (13.12)
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For ˇ ! 1, (13.11) and (13.12) give the well-known values for the perfect

monatomic gas: cP D 5<=.2�/ and rad D 2=5; while for ˇ ! 0, one has

rad ! 1=4 and cP becomes infinite.

Sometimes the derivative

1


ad

WD
�
d ln %

d lnP

�

ad

(13.13)

is required (4.37, 4.41). If in the definition

d%

%
D ˛

dP

P
� ı dT

T
(13.14)

of ˛ and ı the adiabatic condition PdT/(TdP) = rad is introduced, one finds


ad D 1

˛ � ırad

: (13.15)

In the case of a perfect gas with radiation pressure we have to introduce the

expressions (13.7), while for the limit ˇ D 1, we find


ad D 1

1 � rad

: (13.16)

For a monatomic gas without radiation pressure (ˇ D 1) one has rad D 0:4 and

therefore 
ad D 5=3, whereas in the limit ˇ ! 0–after ˛; ı, and rad are inserted

from (13.7) and (13.12)–we find for a gas dominated by radiation pressure that


ad ! 4

3
; rad ! 1

4
: (13.17)

Instead of 
ad, rad, one often uses the “adiabatic exponents” introduced by

Chandrasekhar, which are defined by

�1 WD
�
d lnP

d ln %

�

ad

D 
ad ; (13.18)

�2

�2 � 1 WD
�
d lnP

d ln T

�

ad

D 1

rad

; (13.19)

�3 WD
�
d lnT

d ln%

�

ad

C 1 ; (13.20)

and obey the relation
�1

�3 � 1
D �2

�2 � 1
: (13.21)



Chapter 14

Ionization

In Sect. 4.2 and Chap. 13 we assumed complete ionization of all atoms. This is

a good approximation in the very deep interior, where T and P are sufficiently

large, but the degree of ionization certainly becomes smaller if one approaches the

stellar surface, where T and P are small. In the atmosphere of the Sun, for instance,

hydrogen and helium atoms are neutral. When a gas is partially ionized the mean

molecular weight and thermodynamic properties such as cP depend on the degree

of ionization. It is the aim of this section to show how this can be calculated and

how it influences the properties of the stellar gas.

14.1 The Boltzmann and Saha Formulae

We consider the atoms of a chemical element in a certain state of ionization,

contained in a unit volume of gas in thermodynamic equilibrium. They are

distributed over many states of excitation, which we denote by subscript s, and these

different states can be degenerate such that the state of number s consists in reality

of gs substates. The number gs is the statistical weight. Consider in particular the

atoms of a certain element in state s and in the ground state s D 0, separated by

the energy difference  s , and the transition between both, say, by emission and

absorption of photons. In equilibrium, the rate of such upward transitions is equal to

that of downward transitions. This gives as the ratio between the numbers of atoms

in the two states:
ns

n0
D gs

g0
e� s=kT : (14.1)

Equation (14.1) is the well-known Boltzmann formula, which governs the distribu-

tion of particles over states of different energy.

Instead of referring to the atoms in the ground state, we want to compare the

atoms of state s with the number n of all atoms of that element:
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n D
X

s

ns : (14.2)

From (14.1), multiplication by g0 and summation over all states leads to

g0
n

n0
D g0

1X

sD0

ns

n0
D g0 C g1 e� 1=kT C g2 e� 2=kT C : : : WD up ; (14.3)

where up D up.T / is the so-called partition function. From (14.1) and (14.3) we

obtain the Boltzmann formula in the form

ns

n
D gs

up

e� s=kT : (14.4)

We can also use the Boltzmann formula to determine the degree of ionization,

but there are differences between excitation and ionization that require attention.

Excitation concerns ions and bound electrons distributed over discrete states only.

In the case of ionization the upper state consists of two separate particles, the

ion and the electron; and the free electron has a continuous manifold of states.

After ionization, say by absorption, the electron “thrown out” can have an arbitrary

amount of kinetic energy, and recombination can occur with electrons of arbitrary

kinetic energy.

We say an atom is in the r th state of ionization if it has already lost r electrons.

The energy necessary to take away the next electron from the ground state is �r .

After ionization this electron is in general not at rest, but has a momentum relative

to the atom of absolute value pe. Then p2e=.2me/ is its kinetic energy; therefore

relative to its original bound state the free electron has the energy �r C p2e=.2me/,

while the state of ionization of the atom is now r C 1.

Let us consider as the lower state an r-times ionized ion in the ground state. The

upper state may be that of the (r C 1) times ionized ion plus the free electron with

momentum in the interval Œpe; pe C dpe�. The number densities of ions in these two

states are nr and dnrC1. The statistical weight of the upper state is the product of

grC1 of the ion and of dg.pe/, the statistical weight of the free electron. Transitions

upwards and downwards occur between the two states with equal rates. In the case

of thermodynamic equilibrium the Boltzmann formula (14.1) applies and gives

dnrC1
nr

D grC1dg.pe/

gr
exp

�
��r C p2e=.2me/

kT

�
: (14.5)

What is the statistical weight dg.pe/ of the electron in the momentum interval

Œpe; pe Cdpe�? The Pauli principle of quantum mechanics tells us that in phase space

a cell of volume dq1 dq2 dq3 dp1 dp2 dp3 D dV d3p can contain up to 2dV d3p=h3

electrons, namely up to two electrons per quantum cell of volume h3. Here the q’s

and the p’s are the space and momentum variables of the (six-dimensional) phase
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space, while dV and d 3p are the (three-dimensional) “volumes” and h is the Planck

constant (h D 6:62620� 10�27 erg s). Then

dg.pe/ D 2 dV d 3pe

h3
: (14.6)

If the electron density in (three-dimensional) space is ne then per electron the

volume dV D 1=ne is available, while the volume in (three-dimensional) momen-

tum space containing all points belonging to the interval Œpe; pe C dpe� is d 3pe D
4�p2e dpe, since all these points are on a spherical shell of radius pe and thickness

dpe. We then have

dg.pe/ D 8�p2e dpe

neh3
(14.7)

and (14.5) yields

dnrC1
nr

D grC1
gr

8�p2e dpe

neh3
exp

�
��r C p2e=.2me/

kT

�
: (14.8)

All upper states (ions of degree r C 1 in the ground state and free electrons of all

momenta) are then obtained by integration over pe:

nrC1
nr

D grC1
gr

8�

neh3
e��r=kT

Z 1

0

p2e exp

�
� p2e
2mekT

�
dpe : (14.9)

Since for a > 0 Z 1

0

x2e�a2x2dx D
p
�

4a3
; (14.10)

we obtain

nrC1
nr

ne D grC1
gr

fr .T / ; with fr .T / D 2
.2�mekT /

3=2

h3
e��r =kT : (14.11)

This is the Saha equation (named after the physicist Meghnad Saha) though it is still

not yet in its final form, since we have considered only the ground states. Therefore,

in order to be more precise, we now use the quantities nrC1;0; nr;0; grC1;0; gr;0;
where the second subscript indicates the ground state for which these quantities

are defined. By nrC1; nr ; grC1; gr we from now on mean number densities of ions

and statistical weights for all states of excitation. A particular state of excitation

is indicated by a second subscript such that ni;k is the number density of atoms in

the stage i of ionization and in state k of excitation and gi;k is the corresponding

statistical weight. The Saha equation (14.11) is then written more precisely as

nrC1;0
nr;0

ne D grC1;0
gr;0

fr .T / : (14.12)
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The number density of ions in the ionization state r (in all states of excitation) is

nr D
X

s

nr;s ; (14.13)

which corresponds to (14.2), and we now write the Boltzmann formula (14.1) for

ions of state r as
nr;s

nr;0
D gr;s

gr;0
e� r;s=kT ; (14.14)

where  r;s is the excitation energy of state s; then (14.13) can be written in the form

gr;0

nr;0
nr D gr;0

X

s

nr;s

nr;0

D gr;0 C gr;1e
� r;1=kT C gr;2e

� r;2=kT C : : : WD ur ; (14.15)

where ur D ur.T / is the partition function for the ion in state r . With the help of

nr gr;0 D nr;0 ur , which follows from (14.15), the Saha equation can be written for

all stages of excitation as

nrC1
nr

ne D urC1
ur

fr .T / ; (14.16)

where fr .T / is given in (14.11). With Pe D nekT one has

nrC1
nr

Pe D urC1
ur

2
.2�me/

3=2

h3
.kT /5=2 e��r=kT : (14.17)

14.2 Ionization of Hydrogen

In order to see the consequences of the Saha equation we shall apply it to a pure

hydrogen gas. We define the degree of ionization x by

x D n1

n0 C n1
; (14.18)

i.e. n1=n0 D x=.1� x/. If the gas is neutral, then x D 0; if it is completely ionized,

x D 1. Also the left-hand side of (14.17) can be replaced by xPe=.1 � x/, and if

n D n0 C n1 is the total number of hydrogen atoms, then we can relate the partial

pressure of the electrons to the total gas pressure:

Pe D nekT D .nC ne/kT
ne

nC ne

D Pgas

ne

nC ne

: (14.19)
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For each ionized atom there is just one electron (ne D n1); therefore

Pe D x

1C x
Pgas (14.20)

and (14.17) can be written in the form

x2

1 � x2
D KH ; with KH D u1

u0

2

Pgas

.2�me/
3=2

h3
.kT /5=2 e��H=kT : (14.21)

Here �H D 13:6 eV is the ionization energy of hydrogen. Now with (14.21) we have

come up with a quadratic equation for the degree of ionization that can be solved if

T and Pgas are given. If radiation pressure is important, it is sufficient to give T and

the total pressure P , and then Pgas can be obtained from (13.2).

In order to compute the degree of ionization, the partition function has to be

known. For this we need the statistical weights of the different states of excitation,

which are given by quantum mechanics. Since the higher states contribute little to

the partition function, we may approximate it by the weight of the ground state,

u0 � g0;0 D 2, while for ionized hydrogen, u1 D 1 (see, for instance, Cox, 2000,

pp. 2–34).

We now give some numerical examples. In the solar photosphere we have in cgs

units Pgas D 1:01 � 105; T D 5; 779K, and we obtain x D 5 � 10�5, while in

a deeper layer with Pgas D 3:35 � 1012; T D 7:17 � 105 K, hydrogen is almost

completely ionized: x D 0:985.

Since in (14.21)KH increases with T and decreases with Pgas, and since the left-

hand side increases with x, one can see that the degree of ionization increases with

temperature and decreases with the gas pressure. This can be easily understood:

with increasing temperature, the collisions become more violent, the photons more

energetic, and the processes of “kicking off” the electrons from the atoms more

frequent. If, on the other hand, the temperature is kept constant but the pressure

increases, then the probability grows that the ion meets an electron and recombines.

In Chap. 4 we have defined the mean molecular weight � for a mixture of gases

and have seen that it is different for ionized and non-ionized gases. Therefore mean

molecular weights depend on the degree of ionization.

In order to determine � for the hydrogen gas having the degree of ionization x,

we define the number E of free electrons per atom (neutral or ionized), which is

here simply

E D ne

n
D x : (14.22)

Remember that �mu; �0mu, and �emu are defined as the average particle masses

per free particle, per nucleus, and per free electron, respectively. This means that the

density can be written as

% D .nC ne/�mu D n�0mu D ne�emu : (14.23)
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Using (14.22) and n D n0 C n1, we solve (14.23) for the mean molecular weight

and find

� D %

mun

1

1C E
D �0

1C E
D �e

E

1C E
; (14.24)

where we have neither replaced �0 by its value 1 for hydrogen nor E by x, since

(14.24) also holds for a mixture of gases.

14.3 Thermodynamical Quantities for a Pure Hydrogen Gas

Many thermodynamic properties depend on the degree of ionization. We here

indicate roughly how the formulae can be derived for the relatively simple case

of the pure hydrogen gas. This is not because of its importance, but rather because

the treatment is quite analogous to that in the much more involved case of mixtures.

The gas is supposed to be perfect, since partial ionization usually occurs only in the

stellar envelope, where effects of degeneracy can be neglected.

In Sect. 4.1 we defined the quantity ı D �.@ ln%=@ lnT /P . In the case of pure

hydrogen obeying the perfect-gas equation we have ı D 1 for x D 0 and x D 1,

since � is constant in both cases (Remember that we wished to incorporate in ˛ and

ı the changes of � due to partial ionization, while ' should be reserved for changes

of� due to changing chemical composition.). For partial ionization, x varies with T ,

and therefore ı is given by a complicated expression. From the perfect-gas equation

% � �P=T and (14.24) with �0 = constant we find

ı D 1C 1

1C E

�
@E

@ lnT

�

P

; (14.25)

which also holds for a mixture of gases. For pure hydrogen E D x and we need

the derivative of x, which can be obtained by differentiation of the Saha equation

(14.21). This gives

ı D 1C 1

2
x.1 � x/

�
5

2
C �H

kT

�
: (14.26)

While the mean molecular weight as given by (14.24) depends only on the degree

of ionization, ı depends also on T , and if in addition radiation pressure is taken

into account, one has to add terms proportional to (1 � ˇ)/ˇ to the right-hand sides

of (14.25) and (14.26).

The definition (4.4) of cP together with P D <%T=� gives

cP D
�
@u

@T

�

P

C <
�
ı : (14.27)
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So we need the internal energy per mass unit

u D 3

2

<
�0
.1CE/T C uion ; (14.28)

where the first term gives the kinetic energy of ions and electrons, and the second

term uion means the energy that has been used for ionization and that again becomes

available if the ions recombine. Again (14.27) and (14.28) also hold for mixtures.

For pure hydrogen,E D x and uion D x�H=.�0mu/ D x�H=mu, and after lengthy

manipulations, one gets

cP
�0

< D 5

2
.1C x/C ˚2

H

G.x/
; (14.29)

with the abbreviations

˚H WD 5

2
C �H

kT
and G.x/ WD 1

x.1 � x/ C 1

x.1C x/
D 2

x.1 � x2/
: (14.30)

If radiation plays a role, it appears not only in the equation for the pressure, but also

in the internal energy. The result for cP is that in (14.29) the factor 5/2 has to be

replaced by 5=2C 4.1� ˇ/.4C ˇ/=ˇ2.

We can now easily derive an expression for rad:

rad D Pı

T%cP
D 2C x.1 � x/˚H

5C x.1 � x/˚2
H

: (14.31)

14.4 Hydrogen–Helium Mixtures

As a next step in the general problem we consider a gas of hydrogen and helium

with weight fractions X; Y respectively. This is important for stellar envelopes and

shows the difficulties which arise if mixtures are treated. We now have six types of

particles: neutral and ionized hydrogen; neutral, ionized, and double ionized helium;

and electrons. There are three types of ionization energy: �0H for hydrogen and

�0He; �
1
He for neutral and single ionized helium (�0H D 13:598 eV, �0He D 24:587 eV,

�1He D 54:418 eV). Each ionized hydrogen atom contributes the energy �0H to the

internal energy, each helium atom in the first stage of ionization the energy �0He and

each helium atom completely stripped of its two electrons the energy �0He C �1He.

By x0H; x
1
H; x

0
He; x

1
He; x

2
He we define degrees of ionization, i.e. xri gives the number of

atoms of type i in ionization state r (D r electrons lost) divided by the total number

of atoms of type i (irrespective of their state of ionization):
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x0H D n0H
nH

; x1H D n1H
nH

; x0He D n0He

nHe

;

x1He D n1He

nHe

; x2He D n2He

nHe

; (14.32)

with nH D n0H Cn1H and nHe D n0He Cn1He Cn2He, where the nri are number densities

of ions of type i in ionization state r . Note that the degrees of ionization x0H and x1H
correspond to 1 � x and x in Sect. 14.2.

The contribution of the ionization energy to the internal energy per unit mass

[cf. (14.28)] is

uion D 1

mu

�
Xx1H�

0
H C 1

4
Y
�
x1He�

0
He C x2He



�0He C �1He

���
; (14.33)

since X=mu; Y=.4mu/ are the numbers of hydrogen and helium atoms (neutral and

ionized) per unit mass. Correspondingly we have for the number E of electrons per

atom (irrespective of ionization state and chemical type)

E D
�
Xx1H C 1

4
Y


x1He C 2x2He

��
�0 : (14.34)

We now have three Saha equations:

x1H

x0H

E

E C 1
D K0

H ;
x1He

x0He

E

E C 1
D K0

He ;
x2He

x1He

E

E C 1
D K1

He ; (14.35)

with

Kr
i D urC1

ur

2

Pgas

.2�me/
3=2.kT /5=2

h3
e��ri =kT (14.36)

for i = H, He, and by definition

x0H C x1H D 1 ; x0He C x1He C x2He D 1 : (14.37)

We now consider X; Y; Pgas, and T to be given. Then (14.34), (14.35) and (14.37)

are six equations for the six unknown quantities x0H; x
1
H; x

0
He; x

1
He; x

2
He; E. The

equations (14.35) are coupled to each other via E , which, for instance, means that

the degree of ionization of hydrogen also depends on the degree of ionization of

helium. But this is to be expected, since a hydrogen ion can also recombine with free

electrons that originally came from helium, since it has no prejudices concerning the

origin of a captured electron.

The coupling of the three Saha equations (14.35) makes an analytical treatment

impossible: the degrees of ionization have to be obtained numerically. In general,
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Fig. 14.1 Ionization in the

outer layers of the Sun. (a)

Degrees of ionization of

hydrogen and helium. (b) The

influence of ionization on rad

this is done by an iteration procedure, starting with a trial value of E , which is then

gradually improved.

In Fig. 14.1 we give the degrees of ionization and rad for the outer layers

of the Sun. One can see that the regions of partial ionization of H and He are

almost separated. This is because the ionization energies �0H; �
1
He; �

2
He differ from

each other appreciably. The second helium ionization does not start until the

hydrogen is almost completely ionized. Therefore one may, for an approximative

treatment, solve at most two of equations (14.35) simultaneously, which simplifies

the situation. Each of the three ionization layers produces a lowering of rad where

influences of hydrogen and first helium ionization overlap.

14.5 The General Case

If Xi is the weight fraction of the chemical element i with charge number Zi and

molecular weight �i , and if xri are the degrees of ionization (the numbers of atoms

of type i in ionization state r in units of the total number of atoms of type i ), then

E D
X

i

�i

ZiX

rD0
xri D

X

i

�0

�i
Xi

ZiX

rD0
xri r ; (14.38)
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where �i D ni=n D Xi�0=�i is the relative number of particles of type i . Equation

(14.34) is a special case of (14.38). Then the degrees of ionization are obtained from

the set of Saha equations

xrC1i

xri

E

E C 1
D Kr

i ; i D 1; 2; : : : ; r D 0; 1; : : : Zi ; (14.39)

where the Kr
i are given by (14.36). In addition we have the relations

ZiX

rD0
xri D 1 ; i D 1; 2; : : : : (14.40)

For a given type i of atoms, equations (14.39) in which E is replaced by (14.38)

represent Zi equations for the Zi C 1 degrees r of ionization, and together

with (14.40) one therefore has the same number of equations as of variables. The

equations can be solved iteratively; thus the degrees of ionization can be used to

determine the mean molecular weight according to � D �0=.1 C E/. The kinetic

part of the internal energy [cf. (14.28)] is

ukin D 3

2

<
�
T D 3

2

<
�0
.1C E/T ; (14.41)

while the ionization energy per mass unit is

uion D
X

i

Xi

�imu

ZiX

rD0
xri

r�1X

sD0
�si ; (14.42)

which is the general form of (14.33).

For the determination of ı and cP according to (14.25) and (14.27) we need

derivatives of the degrees of ionization: (@xri =@ lnT /P . They can be computed

numerically by evaluating the xri for neighbouring arguments, though one has to

be careful if the radiation pressure is not negligible. The derivatives of the xri
are needed for constant total pressure P , whereas the argument for evaluating

the degrees of ionization is the gas pressure. One therefore has to choose the

neighbouring arguments Pgas and T such that P D Pgas C Prad = constant. The

general theory of ionization and, in particular, the influence on the thermody-

namic functions for arbitrary mixtures are given in Baker and Kippenhahn (1962,

Appendix A).

In modern stellar evolution calculations the equation of state is no longer

computed online, but rather pre-calculated tables are used. These tables result from

sophisticated models of the properties of stellar matter, which are too complicated to

be integrated into the stellar evolution programs. Ionization is only one of the many

physical effects treated in such models for many chemical elements, their number

amounting to up to 20.
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14.6 Limitation of the Saha Formula

In the derivation of the Saha formula we have assumed thermodynamic equilibrium.

This is certainly fulfilled in the interior of stars, and the Saha formula is even a

sufficient approximation for many atmospheres as long as one can assume so-called

LTE (local thermodynamic equilibrium), which is the case when collisions dominate

over radiative processes. One cannot apply it for non-LTE, as, for example, in the

solar corona.

But even in the deep interior of a star, where local thermodynamic equilib-

rium is certainly a very good approximation, the naRıve application of the Saha

formula gives wrong results. For instance let us apply it to the centre of the Sun

(Pc � Pgas D 2:32 � 1017 dyn/cm2, Tc D 1:57 � 107 K) and assume for simplicity

pure hydrogen (X D 1); then (14.21) gives for the degree of ionization xH D
0:80. This would mean that 20 % of the hydrogen atoms are neutral. Indeed, for

sufficiently high temperatures, the exponential in the Saha formula can be replaced

by 1, and x1H decreases inwards with KH if r � d lnT=d lnPgas < 2=5, as can be

seen from (14.21).

The solution of this paradox has to do with the decrease of the ionization energy

with increasing density. Let us consider ions at a distance d from each other:

their electrostatic potentials have to be superimposed in order to obtain their total

potential (Fig. 14.2). Obviously the higher quantum states of the ions are strongly

disturbed, and the ionization energy is reduced for high density. This should be

taken into account in the Saha formula, which would then give a higher degree of

ionization. Furthermore, the neighbouring ions allow only a finite number of bound

states. This has the consequence that in the partition function as given by (14.15)

one has to sum over a finite number of excited states only.

In order to estimate roughly at which density these effects become important, we

consider a pure hydrogen gas. If the mean distance between two atoms is d , then

there will be no bound states if the orbital radius a of the electron is comparable

with, or larger than, d=2. With

a D a0�
2 ; d �

�
3

4�nH

�1=3
; (14.43)

where a0 D 5:3 � 10�9 cm is the Bohr radius, � the quantum, number and nH the

number density of the atoms, we obtain from the condition a < d=2 (which must

be fulfilled for a bound state) that

�2 <

�
3

4�nH

�1=3
1

2a0
: (14.44)

This allows a rough estimate of the principal quantum number of the highest bound

state. In the centre of the Sun, with %c � 150 g/cm3, we have nH � %c=mu �
1026 cm�3, and therefore �2 < 0:13, which means that even the ground state of

hydrogen does not exist. Therefore all hydrogen atoms will be ionized.
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Fig. 14.2 Sketch of the

electrostatic potential of an

isolated ion (above) and the

superposition of the potentials

of neighbouring ions (below)

For this so-called pressure ionization, no perfect theory is at hand. The picture

we have used above is a static one, since it does not take into account that the ions

move relative to each other. It also ignores that at high densities electrons can tunnel

from a bound state of one ion into a bound state of another ion in the neighbourhood.

In the specialized computations of the equation of state for an astrophysical plasma,

more elaborate models are used to solve this problem. An example is the hydrogen–

helium equation of state by Saumon et al. (1995).

For simplified stellar-model calculations one may use the Saha formula for the

outer layers of the stars and then switch to complete ionization when the Saha

formula gives degrees of ionization which decrease again towards deeper layers.

This switching normally does not produce a noticeable discontinuity in the run of

ionization, since the maximum often occurs close to complete ionization.

If we assume that pressure ionization can be neglected as long as d > 10a0, then

the Saha formula would be valid only for densities:

% D �0munion <
3�0mu

4�.10a0/
3

D 2:66 � 10�3�0 g cm�3 : (14.45)



Chapter 15

The Degenerate Electron Gas

15.1 Consequences of the Pauli Principle

We consider a gas of sufficiently high density in the volume dV so that it is

practically fully pressure ionized (Sect. 14.6). Here we shall deal with the free

electrons, of number density ne. If the velocity distribution of the electrons is given

by Boltzmann statistics, then their mean kinetic energy is 3kT=2. In momentum

space px ; py; pz each electron of a given volume dV in local space is represented by

a point, and these points form a “cloud” which is spherically symmetric around the

origin. If p is the absolute value of the momentum .p2 D p2x C p2y C p2z ), then the

number of electrons in the spherical shell Œp; pCdp� is, according to the Boltzmann

distribution function,

f .p/dpdV D ne

4�p2

.2�mekT/3=2
exp

�
� p2

2mekT

�
dp dV: (15.1)

Consider a reduction of T with ne D constant. Then the maximum of the distribution

function, which is at pmax D .2mekT/1=2; tends to smaller values of p, and the

maximum of f .p/ becomes higher, since ne is given by
R1
0
f .p/dp. This is

indicated in Fig. 15.1 by the thin curves. But with this classical picture we can come

into contradiction with quantum mechanics, since electrons are fermions, for which

Pauli’s exclusion principle holds: each quantum cell of the six-dimensional phase

space (x; y; z; px ; py ; pz) cannot contain more than two electrons (here x; y; z are

the space coordinates of the electrons with dV D dxdydz). The volume of such a

quantum cell is dpxdpydpzdV D h3, where h is Planck’s constant. Therefore in the

shell [p; pCdp] of momentum space there are 4�p2dpdV=h3 quantum cells, which

can contain not more than 8�p2dpdV=h3 electrons. Quantum mechanics therefore

demands that

f .p/dpdV � 8�p2dpdV=h3 ; (15.2)
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Fig. 15.1 For an electron gas

with ne = 1028 cm�3

(corresponding to a density of

% D 1:66� 104 g cm�3 for

�e D 1), the Boltzmann

distribution function f .p/ is

shown by thin lines over the

absolute value of the

momentum p (both in cgs

units) for three different

temperatures (in K). The

heavy line shows the parabola

that gives an upper bound to

the distribution function

owing to the Pauli principle

(Note that the coordinates are

not logarithmic but linear as

in Figs. 15.2 and 15.5)

as indicated by the heavy parabola in Fig. 15.1, giving an upper bound for f .p/.

One can immediately see that the Boltzmann distribution for ne = constant is

in contradiction with quantum mechanics for sufficiently low temperatures. The

same holds for T D constant and sufficiently high density, since the Boltzmann

distribution is proportional to ne. We therefore have to include quantum-mechanical

effects if the temperature of the gas is too low or if the electron density is too high,

in order to avoid the distribution function exceeding its upper bound. One then says

that the electrons become degenerate.

We first consider an electron gas of temperature zero, i.e. all the electrons have

the lowest energy possible.

15.2 The Completely Degenerate Electron Gas

The state in which all electrons have the lowest energy without violating Pauli’s

principle is that in which all phase cells up to a certain momentum pF are occupied

by two electrons, all other phase cells above pF being empty:

f .p/ D 8�p2

h3
for p � pF ;

f .p/ D 0 for p > pF : (15.3)

This distribution function is shown in Fig. 15.2, and the total number of electrons in

the volume dV is given by
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Fig. 15.2 The distribution

function f .p/ against the

momentum p (both in cgs

units) in the case of a

completely degenerate

electron gas with T D 0K

and ne D 1028 cm�3

(cf. Fig. 15.1)

nedV D dV

Z pF

0

8�p2dp

h3
D 8�

3h3
p3FdV : (15.4)

If therefore the electron density is given, (15.4) gives the Fermi momentum pF �
n
1=3
e . Further, if the electrons are non-relativistic, then EF D p2F=2me � n

2=3
e is

the Fermi energy, and, although the temperature of our electron gas is zero, the

electrons have finite energies up to EF. But there are no electrons of higher energy.

If the electron density is sufficiently large, then according to (15.4) pF can become

so high that the velocities of the fastest electrons may become comparable with c;

the velocity of light. We therefore write the relations between velocity v; energy

Etot, and momentum p of the electrons in the form given by special relativity (see,

for instance, Landau and Lifshitz, vol. 2, 1976):

p D mevp
1 � v2=c2

; (15.5)

Etot D mec
2

p
1 � v2=c2

D mec
2

s
1C p2

m2
ec
2
; (15.6)

whereme is the rest mass of the electron. From (15.5) and (15.6) it follows that

1

c

@Etot

@p
D p=.mec/

Œ1C p2=.m2
ec
2/�1=2

D v

c
: (15.7)

In the following we have to distinguish between the total energy Etot as given

by (15.6) and the kinetic energy E:

E D Etot �mec
2: (15.8)
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Fig. 15.3 A surface element

d� with the normal vector n

and an arbitrary unit vector s

which is the axis of the solid

angle d˝s

For the equation of state we need the pressure, which by definition is the flux

of momentum through a unit surface per second. We consider a surface element

d� having a normal vector n, as indicated in Fig. 15.3. An arbitrary unit vector s,

together with n, defines an angle # .

Let us determine the number of electrons per second that go through d�

into a small solid angle d˝s around the direction s. We restrict ourselves to

electrons for which the absolute value of their momentum lies between p and

p C dp. At the location of the surface element there are f .p/dpd˝s=.4�/

electrons per unit volume that have the right momentum (i.e. the right value

of p and the right direction). Therefore f .p/dpd˝sv.p/ cos#d�=.4�/ electrons

per second move through the surface element d� into the solid-angle element

d˝s . Here v.p/ is the velocity that according to (15.5) belongs to the momentump.

The factor cos# arises, since the electrons moving into the solid-angle element see

only a projection of d� . Each electron carries a momentum of absolute value p and

of direction s. The component in direction n is thereforep cos# . We obtain the total

flux of momentum in direction n by integration over all directions s of a hemisphere

and over all absolute values p; hence the pressure Pe of the electrons is

Pe D
Z

2�

Z 1

0

f .p/v.p/p cos2 #dpd˝s=.4�/ D 8�

3h3

Z pF

0

p3v.p/dp; (15.9)

where we have replaced f .p/ by (15.3) and taken the value 4�=3 for the integration

of cos2 # over a hemisphere. It is obvious that the orientation of d� does not enter

into the expression for Pe: the electron pressure is isotropic because f is spherically

symmetric in momentum space.

With (15.5) we obtain from (15.9) that

Pe D 8�c

3h3

Z pF

0

p3
p=.mec/

Œ1C p2=.m2
ec
2/�1=2

dp

D 8�c5m4
e

3h3

Z x

0

�4d�

.1C �2/1=2
; (15.10)



15.2 The Completely Degenerate Electron Gas 143

Fig. 15.4 The equation of

state for the fully degenerate

electron gas. On logarithmic

scales the pressure Pe (in

dyn cm�2/ is plotted against

the number density ne (in

cm�3/. The relativity

parameter x D pF=mec

increases along the curve

from the lower left to the

upper right; values of x are

indicated above the curve

where we have introduced new variables:

� D p=.mec/ ; x D pF=.mec/ : (15.11)

The integral is

Z x

0

�4d�

.1C �2/1=2
D 1

8
Œx.2x2 � 3/.1C x2/1=2 C 3arcsinh.x/� (15.12)

(where arcsinh is the inverse function of sinh); therefore

Pe D �m4
ec
5

3h3
f .x/ ; (15.13)

with

f .x/ D x.2x2 � 3/.x2 C 1/1=2 C 3arcsinh.x/ � x.2x2 � 3/.x2 C 1/1=2

C 3 ln Œx C .1C x2/1=2� : (15.14)

We now write (15.4) in the form

ne D %

�emu

D 8�m3
ec
3

3h3
x3 : (15.15)

Equations (15.13)–(15.15) define the function Pe.ne/, which is plotted in Fig. 15.4

for the fully degenerate electron gas. Before discussing this and deriving an equation

of state Pe D Pe.%/, we give an expression for the internal energyUe of the electron

gas per volume:

Ue D
Z pF

0

f .p/E.p/dp D 8�

h3

Z pF

0

E.p/p2dp ; (15.16)
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where E.p/ has to be taken from (15.6) and (15.8). One obtains

Ue D �m4
ec
5

3h3
g.x/ ; (15.17)

with

g.x/ D 8x3Œ.x2 C 1/1=2 � 1�� f .x/ : (15.18)

(For numerical values of the functions f .x/ and g.x/ see Chandrasekhar 1939,

Table 23.)

15.3 Limiting Cases

The parameter x as defined in (15.11) is a measure of the importance of relativistic

effects for electrons with the highest momentum. With (15.5) we can write x in the

form

x D pF

mec
D vF=c

.1 � v2F=c2/1=2
or

v2F
c2

D x2

1C x2
; (15.19)

where vF is the velocity of the electrons with p D pF. If x � 1, then vF=c � 1

and all electrons move much slower than the velocity of light (non-relativistic case).

On the other hand if x � 1, then vF=c is very close to one: the bigger x, the more

electrons with velocities near vF become relativistic, and for very high values of x

almost all electrons are relativistic.

The functions f .x/ and g.x/ as defined in (15.14) and (15.18) have the following

asymptotic behaviour:

x ! 0 W f .x/ ! 8

5
x5 ; g.x/ ! 12

5
x5: (15.20)

x ! 1 W f .x/ ! 2x4 ; g.x/ ! 6x4: (15.21)

We first consider the case x � 1, where relativistic effects can be ignored, for

which (15.13) yields

Pe D 8�m4
ec
5

15h3
x5 ; (15.22)

and together with (15.15) we obtain the equation of state for a completely degenerate

non-relativistic electron gas:

Pe D 1

20

�
3

�

�2=3
h2

me

n5=3e D 1

20

�
3

�

�2=3
h2

mem
5=3
u

�
%

�e

�5=3

D 1:0036� 1013
�
%

�e

�5=3
.cgs/ (15.23)



15.4 Partial Degeneracy of the Electron Gas 145

where we have used % D ne�emu. The internal energy Ue of the electrons per unit

volume and the electron pressure are related by

Pe D 2

3
Ue ; (15.24)

which can be obtained from (15.17), (15.20) and (15.22).

For the extreme relativistic case .x � 1/ of a completely degenerate electron

gas, one has according to (15.13) and (15.21)

Pe D 2�m4
ec
5

3h3
x4 ; (15.25)

and therefore

Pe D
�
3

�

�1=3
hc

8
n4=3e D

�
3

�

�1=3
hc

8m
4=3
u

�
%

�e

�4=3

D 1:2435� 1015
�
%

�e

�4=3
.cgs/ ; (15.26)

while (15.17), (15.21) and (15.25) give

Pe D 1

3
Ue : (15.27)

15.4 Partial Degeneracy of the Electron Gas

For a finite temperature, not all electrons will be densely packed in momentum space

in the cells of lowest possible momentum. Indeed, if the temperature is sufficiently

high, we expect them to have a Boltzmann distribution. Further, there must be a

smooth transition from the completely degenerate state (as discussed in Sects. 15.2

and 15.3) to the non-degenerate case.

The most probable occupation of the phase cells of the shell Œp; p C dp�

in momentum space is determined by Fermi–Dirac statistics (see Landau,

Lifshitz, vol. 5, 1980):

f .p/dpdV D 8�p2dpdV

h3
1

1C eE=kT� (15.28)

(where the so-called degeneracy parameter  will be discussed later). The first

factor gives again the maximally allowed occupations for this shell; see (15.2).

However, for p � pF, there are fewer electrons in the shell than in the case

of complete degeneracy: the second factor is smaller than one; it is a “filling
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factor”, telling us what fraction of the cells is occupied. This factor depends on

the temperature and the kinetic energyE of a particle with momentum p as defined

in Sect. 15.2.

With (15.28) ne; Pe, and Ue become

ne D 8�

h3

Z 1

0

p2dp

1C eE=kT� ; (15.29)

Pe D 8�

3h3

Z 1

0

p3v.p/
dp

1C eE=kT� ; (15.30)

Ue D 8�

h3

Z 1

0

Ep2dp

1C eE=kT� : (15.31)

We first deal only with the non-relativistic case for which E D p2=.2me/, and

the electron density ne is given by

ne D 8�

h3

Z 1

0

p2dp

1C ep
2=2mekT� D 8�

h3
.2mekT/3=2a. / ; (15.32)

with

a. / D
Z 1

0

�2

1C e.�
2� / d� ; (15.33)

where we have used the variable � D p=.2mekT/1=2.

We conclude from (15.32) that the degeneracy parameter  is a function of

ne=T
3=2 only:

 D  
� ne

T 3=2

�
: (15.34)

We now discuss limiting cases for  , beginning with large negative values

for  (again non-relativistic). In this case a. / in (15.33) can be made arbi-

trarily small, and from (15.32) we infer that for a given electron density this

is the case for high temperatures. We know that then f .p/ must become the

Boltzmann distribution. Comparing (15.1) with (15.28) [where in the denominator

the 1 can be neglected against exp.E=kT �  /], we see that

e D h3ne

2.2�mekT/3=2
: (15.35)

Here we have replaced E=.kT/ by its non-relativistic value p2=.2mekT/. Indeed in

this limit  is a function of ne=T
3=2, as concluded for the general case.

We now want to consider the case  ! 1 (again non-relativistic) and introduce

an energyE0 by  D E0=.kT/. We then have for large enough  

1

1C eE=kT� D 1

1C e .E=E0�1/
�
�
1 for E < E0
0 for E > E0

: (15.36)



15.4 Partial Degeneracy of the Electron Gas 147

The transition of the numerical value of expression (15.36) from one to zero nearE0
becomes all the more steep, the larger the value of . In the limiting case  ! 1 it

becomes a discontinuity, and comparison of (15.36) with (15.3) shows thatE0 is the

Fermi energy EF D p2F=.2me/. One immediately sees that  ! 1 corresponds to

the case of complete degeneracy, where the distribution function is given by (15.3).

We now deal with the (non-relativistic) case where the numerical value of  

is moderate. In (15.32) we replace the variable p by E . With medE D pdp and

p D .2meE/
1=2, we have

ne D 4�

h3
.2me/

3=2

Z 1

0

E1=2dE

1C eE=kT� ; (15.37)

and defining the so-called Fermi–Dirac integrals F�. / by

F�. / WD
Z 1

0

u�

e.u� / C 1
du ; (15.38)

we find that

ne D %

�emu

D 4�

h3
.2mekT/3=2F1=2. / ; (15.39)

which again manifests the relation (15.34) and which, by inversion of (15.38),

allows to determine  for given ne and T .

The distribution function for partial (non-relativistic) degeneracy as given

by (15.28) is shown in Fig. 15.5 for T D 1:9�107 K and D 10 ŒF1=2.10/ D 21:34,

see Table 15.1]. One can see that for small values of p the function f .p/ is close to

the Pauli parabola, but in contrast to the case T D 0 it is smooth near pF. The higher

the temperature the smoother the transition around pF, until finally f .p/ resembles

a Boltzmann distribution. The electron pressure Pe is given in (15.30). Now (in the

non-relativistic case), we have p3v.p/dp Dm4
ev
4dvDm3

ev
3dE Dm

3=2
e 23=2E3=2dE

and

Pe D 8�

3h3
.2me/

3=2

Z 1

0

E3=2dE

1C eE=kT� : (15.40)

With y D E=.kT/ the integral becomes one of the type defined in (15.38):

Pe D 8�

3h3
.2mekT/3=2kT F3=2. /: (15.41)

For the internal energy Ue per unit volume we have from (15.34) with the non-

relativistic relation p2 D 2meE:

Ue D 4�

h3
.2mekT/3=2kT F3=2. / D 3

2
Pe; (15.42)

in agreement with (15.24).
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Fig. 15.5 The solid line gives the distribution function (f .p/ and p in cgs) for a partially

degenerate electron gas with ne D 1028 cm�3 and T D 1:9 � 107 K, which corresponds to a

degeneracy parameter  D 10 (cf. the case of complete degeneracy of Fig. 15.2). The dot-dashed

line shows the further increase of the parabola that defines an upper bound for the distribution

function

Again, (15.39) and (15.41) define an equation of state for the electron gas. If T

and ne are given, then (15.39) gives (since F1=2. / has a unique inverse function)

and Pe can be determined. Numerical values for some of the functions F� are given

in Table 15.1 to allow a quick estimate of the equation of state.

Without proof we give an expansion of the integrals F� for large positive values

of  , i.e. for strong degeneracy:

F�. / D  �C1

� C 1
f1C 2Œc2.� C 1/� �2

C c4.� C 1/�.� � 1/.� � 2/ �4 C : : :�g ; (15.43)

with c2 D �2=12; c4 D 7�4=720. We therefore have for  � 1 that F1=2. / �
2 3=2=3; F3=2. / � 2 5=2=5. If we introduce these expressions into (15.39) and

(15.41) and eliminate  , we come to the relation (15.23) for non-relativistic strong

degeneracy.

On the other hand for  ! �1 (the electrons behave almost like a perfect gas)

we can make the approximation

F�. / D
Z 1

0

y�dy

1C e.y� / � e 
Z 1

0

y�e�ydy: (15.44)

For � D 1=2 and � D 3=2 integration gives F1=2. / �
p
� e =2; F3=2. / �

3
p
�e =4. If we introduce these approximations into (15.39) and (15.41) and

eliminate  , we recover Pe D nekT, which is the equation of state for the perfect

(non-degenerate) electron gas.
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Table 15.1 Numerical values for Fermi–Dirac functions F1=2; F3=2, F2; andF3 (after Gong et al.

2001, using the computer program for numerical integration provided there)

� F3=2.�/ F1=2.�/ F2.�/ F3.�/

�4.00 0:024269 0:016128 0:036548 0:109768

�3.50 0:039931 0:026481 0:060169 0:180844

�3.00 0:065612 0:043366 0:098963 0:297802

�2.50 0:107581 0:070724 0:162525 0:490023

�2.00 0:175801 0:114588 0:266265 0:805319

�1.50 0:285772 0:183802 0:434567 1:320880

�1.00 0:460849 0:290501 0:705130 2:159840

�0.50 0:734659 0:449793 1:134368 3:515199

0.00 1:152804 0:678094 1:803085 5:682197

0.50 1:772794 0:990209 2:820969 9:098521

1.00 2:661683 1:396375 4:328331 14:389356

1.50 3:891976 1:900833 6:494369 22:412444

2.00 5:537254 2:502458 9:512668 34:298283

2.50 7:668804 3:196599 13:595529 51:482510

3.00 10:353715 3:976985 18:968568 75:729812

3.50 13:654202 4:837066 25:866374 109:150502

4.00 17:627703 5:770727 34:529354 154:211461

4.50 22:327332 6:772574 45:201594 213:743156

5.00 27:802446 7:837976 58:129472 290:944038

5.50 34:099195 8:962995 73:560777 389:383271

6.00 41:261003 10:144285 91:744165 513:002403

6.50 49:328972 11:378986 112:928816 666:116392

7.00 58:342217 12:664638 137:364234 853:414231

7.50 68:338129 13:999097 165:300117 1;079:959324

8.00 79:352594 15:380486 196:986283 1;351:189722

8.50 91:420172 16:807137 232:672619 1;672:918257

9.00 104:574241 18:277560 272:609060 2; 051:332632

9.50 118:847118 19:790412 317:045564 2; 492:995468

10.00 134:270160 21:344471 366:232105 3; 004:844342

10.50 150:873848 22:938625 420:418670 3; 594:191796

11.00 168:687863 24:571846 479:855250 4; 268:725360

11.50 187:741147 26:243190 544:791837 5; 036:507549

12.00 208:061959 27:951777 615:478430 5; 905:975874

12.50 229:677920 29:696791 692:165026 6; 885:942840

13.00 252:616059 31:477465 775:101624 7; 985:595952

13.50 276:902852 33:293083 864:538223 9; 214:497712

14.00 302:564251 35:142971 960:724822 10; 582:585620

14.50 329:625717 37:026492 1; 063:911422 12; 100:172179

15.00 358:112248 38:943047 1; 174:348023 13; 777:944887

15.50 388:048402 40:892064 1; 292:284623 15; 626:966247

16.00 419:458325 42:873005 1; 417:971224 17; 658:673757

16.50 452:365762 44:885355 1; 551:657824 19; 884:879918

17.00 486:794087 46:928625 1; 693:594425 22; 317:772230

17.50 522:766312 49:002348 1; 844:031026 24; 969:913193

18.00 560:305110 51:106078 2; 003:217626 27; 854:240307

18.50 599:432825 53:239389 2; 171:404227 30; 984:066072

19.00 640:171486 55:401871 2; 348:840828 34; 373:077988

19.50 682:542825 57:593132 2; 535:777429 38; 035:338556

20.00 726:568284 59:812795 2; 732:464029 41; 985:285274
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For the non-relativistic case we have derived the tools to deal with partial

degeneracy. For the extreme relativistic case similar approximations are possible,

since in the integrals (15.29) and (15.30) p can be replaced by E=c; and v by c:

Then the same procedure which led to (15.39) and (15.41) now yields

ne D 8�

�
kT

hc

�3
F2. / ; (15.45)

Pe D 8�

3h3c3
.kT/4F3. / ; (15.46)

where F2 and F3 are defined by (15.38). For strong degeneracy ( ! 1) the first

term of the expansion (15.43) is introduced into (15.45) and (15.46), and elimination

of gives the already derived equation of state (15.26) for a completely degenerate,

relativistic electron gas.

No analytical approach is known for the case of partial degeneracy if the electron

gas is only moderately relativistic, because the relation between E and p cannot be

approximated by a simpler expression and in the integrals (15.29) and (15.30) the

full relation (15.6) has to be taken; hence the problem has to be treated numerically.

However, to do this efficiently, no general integration scheme should be used for

the many integrations needed to calculate the equation of state at the many mesh

points of a stellar model, but instead optimized methods adapted to the special form

of the integrals should be used. The integrals can, for instance, be determined by

using Laguerre polynomials as an approximation of the integrand (Kippenhahn and

Thomas 1964). This method was extended to higher accuracy by Pichon (1989),

who also discusses alternative schemes of numerical integration. A very efficient

and convenient method was developed by Gong et al. (2001), who also provide

a ready-to-use computer code, available from the publisher of that paper, which

conveniently also computes the derivatives of the Fermi integrals, needed for the

Henyey method of Chap. 12. This code was also used to compute the values of

Table 15.1. Alternatively, Blinnikov et al. (1996) have extended the approach of

expansions to more general cases of degeneracy and relativism than discussed here.

These authors also provide a computer code on request.



Chapter 16

The Equation of State of Stellar Matter

In Chap. 15 we dealt with degeneracy of arbitrary degree for the electron gas. We

now discuss the combined effect of all components of stellar matter, starting with

the ion gas.

16.1 The Ion Gas

In the non-degenerate case, electron pressure Pe D nekT and ion pressure Pion D
nionkT are of the same order of magnitude; they are even equal in the case of

ionized hydrogen with ne D nion. For sufficiently low temperature or sufficiently

high density the ions can become degenerate, too. If they are Fermi particles such

as protons, they will behave in phase space like the electrons, so that, for Pion and

nion, relations such as (15.29)–(15.31) hold if the mass of the ions mion is used

instead of me, and  is now the degeneracy parameter for the ions. Again the

transition between perfect-gas behaviour and degeneracy is roughly at  D 0. We

write (15.39) in the form

nj

T 3=2
D constant .mj /

3=2F1=2. /; (16.1)

where nj and mj refer to either electrons or ions. Suppose that the electron gas has

a certain value of  D  � for ne D n�
e . An ion gas of the same temperature has

the same degeneracy parameter  D  � for nion D .mion=me/
3=2n�

e � 8 � 104n�
e .

Therefore the ions require much higher densities to become degenerate. For the

interior of normal stars one can assume that even if the electrons are degenerate

the ions still obey Boltzmann statistics; thus, because of the Pauli principle, the

degenerate electrons have much higher momentum than the non-degenerate ions,

and the electron pressure is much larger than the pressure of the ions: P D Pion C
Pe � Pe.
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Even when the ion gas does not contribute noticeably to the pressure, it provides

the main contribution to the mass density %. This has already been taken into account

by relating ne to % D ne�emu, for example in (15.39). Furthermore, the ions can

influence the thermodynamic properties of the plasma considerably.

One should be aware that, for certain types of stars, the treatment of the ions

is not as simple as described here, since they can be subject to rather complicated

interactions, for example, those indicated in Sects. 16.4 and 16.5.

16.2 The Equation of State

For normal stellar matter, the equation of state is then given by

P D Pion CPe CPrad D <
�0
%T C 8�

3h3

Z 1

0

p3v.p/
dp

eE=kT� C 1
C a

3
T 4 ; (16.2)

% D 4�

h3
.2me/

3=2mu�e

Z 1

0

E1=2dE

eE=kT� C 1
; (16.3)

where v.p/ D @E=@p according to (15.7) and where E is given by (15.8). If the

electron gas is highly degenerate, then also Prad � Pe and P � Pe.

For given % and T and chemical composition (�0), (16.3) can be used to

determine  . Then %; , and T determine P via (16.2). The equation of state

P D P.%; T / for all degrees of degeneracy, including relativistic effects, is there-

fore given here in implicit form.

An expression similar to (16.2) can be obtained for the internal energy u per unit

mass:

u D Uion C Ue C Urad

%
D 3

2

<
�0
T C 8�

h3%

Z 1

0

p2E.p/dp

eE=kT� C 1
C aT 4

%
; (16.4)

where the U are the energies per unit volume, and the first term on the right

corresponds to the (perfect monatomic) ion gas.

Figure 16.1 shows the lg %–lgT plane for the ranges relevant for the interiors

of most stars. In different regions, different effects dominate the total pressure, for

example, in some places the electron degeneracy and in others the radiation pressure.

We will derive rough borders between these different regimes.

Let us first consider the lines  D constant for given �e in this diagram. In

the non-relativistic regime, (15.39) shows that  is constant for T � %2=3, i.e. on

straight lines of slope 2/3 in the lg%–lgT plane. In the relativistic regime  D
constant for T � %1=3 according to (15.45), i.e. on straight lines with slope 1/3.

We have already seen that the perfect-gas approximation Pgas D <%T=�
becomes valid for large negative values of  . For large positive values of  

complete degeneracy is a good approximation for the electron gas, and P � Pe for
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Fig. 16.1 Rough sketch of regions in the lg%–lgT plane (% in g cm�3, T in K), in which the

equation of state is dominated by radiation pressure (above the dotted line given here by Prad D
Pgas for � D 0:5/, and by the degenerate electron gas (below the solid line given here by (16.6)

and (16.8) for �e = 2), which can be relativistic (right of the vertical broken line given by (16.7)

for �e D 2/ or non-relativistic (left of the vertical broken line). The dot-dashed line indicates the

melting temperature as given by (16.26) for �0 D 4. By comparing with (14.45) one can see that

the Saha formula is valid almost nowhere in the plotted domain. The heavy dashed curve on the

left corresponds to a model of the present Sun

the non-relativistic case is given by (15.23). We can define the border between the

two regimes by the condition that both approximations yield the same value for the

pressure:

<
�
%T D 1

20

�
3

�

�2=3
h2

me

�
%

�emu

�5=3
: (16.5)

Equation (16.5) is equivalent to

T

%2=3
D 1

20

�
3

�

�2=3
h2

me<m5=3
u

�

�
5=3
e

D 1:207 � 105 �

�
5=3
e

; (16.6)

where the numerical constant is in cgs units. Equation (16.6) gives a straight line

with slope 2/3 in Fig. 16.1 (lower left part of the solid line), which is obviously a

line of  D constant for given �;�e. To the left of it the electrons behave almost

like a perfect gas; to the right they are degenerate and dominate the pressure.

We now ask where relativistic effects become important. The transition between

the non-relativistic and relativistic cases occurs around x � 1, where the relativity
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parameter x is given by (15.11). Then (15.4) together with % D �emune gives

% D 8�mum
3
ec
3

3h3
�e D 9:74 � 105�e .cgs/ : (16.7)

In the plane of Fig. 16.1, (16.7) defines a vertical border line between relativistic

(at larger %) and non-relativistic degeneracy (at smaller %). The same procedure

which yielded (16.6) can be used with (15.26) in order to define the border between

relativistic degeneracy and non-degeneracy:

T

%1=3
D
�
3

�

�1=3
hc

8<
1

m
4=3
u

�

�
4=3
e

D 1:496 � 107 �

�
4=3
e

; (16.8)

where the numerical constant is in cgs. The corresponding straight line of slope

1/3 is the upper-right part of the solid line in Fig. 16.1, again being a line of  D
constant for given �;�e.

In a similar way we can determine a border between the regime of perfect gas

pressure and that of dominating radiation pressure . From

<
�
%T D a

3
T 4 (16.9)

we find
T

%1=3
D
�
3<
a�

�1=3
D 3:2 � 107

�1=3
; (16.10)

where the constant is in cgs. This line of slope 1/3 is dotted in Fig. 16.1.

In Fig. 16.1 it is indicated how T grows with increasing density in the Sun. As

one can see, the interior regions of the Sun avoid the area in the diagram where

radiation pressure is important, as well as that of degeneracy. However, we will

have to deal with other cases in which the equation of state is more complicated.

This concerns highly evolved stars, but also unevolved stars of very low mass (For

a review see Van Horn 1986.).

16.3 Thermodynamic Quantities

With the implicit form (16.2) and (16.3) and with the expression (16.4) for the

internal energy we are in principle able to determine ı; cP ; and rad. Since in

general no analytic methods are known one can try to determine the thermodynamic

quantities numerically. Here we just give them for some limiting cases for which

analytic expressions can be derived. For the sake of simplicity we neglect the effects

of radiation and we suppose the ions to be a perfect gas.
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In the cases of complete degeneracy of a non-relativistic or an extremely

relativistic electron gas, it is obvious from equations (15.23) and (15.26) that the

quantities ˛; ı as defined in (4.2) and (4.3) are ˛ D 3=5; ı D 0, or ˛ D 3=4; ı D 0

respectively.

We define the ratio � of ion pressure to total pressure

� WD Pion

Pion C Pe

: (16.11)

For strong non-relativistic degeneracy (15.39), (15.41), and (15.43) for  � 1,

imply that

Pe � 4

15
B1. kT /

5=2 ; B1 D 4�

h3
.2me/

3=2 ;

% � 2

3
�emuB1. kT /

3=2 ; (16.12)

which together with Pion D <%T=�0 D k%T=.mu�0/ and (16.11) result in

� � 5

2

�e

�0

1

 
: (16.13)

The larger  (the stronger the degeneracy), the smaller �, and therefore the smaller

the contribution of the ion gas to the total pressure.

The value of ı can be obtained from the relation

ı D �
�
@ ln%

@ lnT

�

P

D �
�
@ ln%

@ lnT

�

 

C

�
@ ln %

@ ln 

�
T



@ lnP
@ lnT

�
 �

@ lnP
@ ln 

�
T

; (16.14)

which follows from the total differentials of the functions % D %. ; T /; P D
P. ; T /. For P D Pe the partial derivatives can be taken from (16.12), and (16.14)

gives ı D 0. For a small but non-vanishing contribution Pion we write according

to (16.11) the total pressure P D Pe=.1 � �/ � .1 C �/Pe. If we then use the

expressions (16.12) and (16.13), we obtain for the non-relativistic case

ı � 3

5
� � 3

2

�e

�0

1

 
: (16.15)

For the extremely relativistic electron gas we find from (15.45) and (15.46), with

the lowest terms of the expansion (15.43), that

Pe D B2

4
. kT /4 ; B2 D 8�

3c3h3
;

% D �emuB2. kT /
3; (16.16)
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and in the same way we obtained (16.13) and (16.15) we now get

� � 4
�e

�0

1

 
; ı D 3

4
� D 3�e

�0

1

 
: (16.17)

In order to derive cP we need the internal energy u. Let us again neglect the

radiation field here; then u contains a component ue of the (degenerate) electron gas

and a component uion of the (perfect) ion gas: u D ue C uion. In the non-relativistic

case, (15.42) gave Ue D 3Pe=2 for the internal energy Ue per unit volume of the

electron gas, independent of  . A corresponding relation Uion D 3Pion=2 holds for

the non-degenerate ions, and therefore

u D U

%
D 3

2

Pion C Pe

%
D 3

2

P

%
: (16.18)

This gives the derivative

�
@u

@T

�

P

D �3
2

P

%T

�
@ ln %

@ ln T

�

P

D 3

2

Pı

%T
; (16.19)

which is used in the definition (4.4) of cP :

cP D
�
@u

@T

�

P

� P

%2

�
@%

@T

�

P

D
�
@u

@T

�

P

C Pı

%T
D 5

2

Pı

%T
: (16.20)

Then (4.21) gives rad D 2=5, the same value we obtained for the perfect gas with

ˇ = 1 [see (13.12)]. Since we have derived it without making use of the degree of

degeneracy, the numerical value 2/5 for rad is independent of  , but holds only for

non-relativistic degeneracy.

In the extreme relativistic case, (15.27) shows that Ue = 3Pe, while again Uion D
3Pion=2 for the non-degenerate ions. The total energy density is then

u D ue C uion D 3
Pe

%
C 3

2

Pion

%
D 3

P

%
� 3

2

Pion

%
D 3

P

%
� 3

2

<
�0
T I (16.21)

the specific heat is

cP D �4P
%2

�
@%

@T

�

P

� 3

2

<
�0

D 4P

%T
ı � 3

2

<
�0

; (16.22)

so that we can now determine rad:

rad D Pı

%TcP
D 1

4 � 3
2

<
�0

%T

Pı

: (16.23)
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From (16.16) and (16.17) we find that

P � Pe D B2

4
. kT /4 ; % D B2�emu. kT /

3 ; ı D 3
�e

�0

1

 
; (16.24)

and therefore 3<%T=�0 D 4Pı, which with (16.23) gives rad D 1=2. This is the

value for the fully degenerate, extreme relativistic case.

16.4 Crystallization

Up to now we have treated the ions as a perfect gas, which means we have neglected

their interaction. However, this no longer suffices for high densities and particularly

low temperatures, in which case the Coulomb interaction of the ions must be

considered: instead of moving freely, the ions tend to form a rigid lattice, which

minimizes their total energy. This occurs when the thermal energy 3kT=2 becomes

comparable with the Coulomb energy per ion of charge �Ze. If we define a volume

Vion per ion by nionVion D 1 (where nion is the number density of ions) and a mean

separation rion between the ions, we have Vion D 4�r3ion=3. Then the ratio

�C WD .Ze/2

rionkT
D 2:7 � 10�3Z

2n
1=3
ion

T
(16.25)

is a measure for the importance of this effect, the numerical constant having units

of cgs. �C � 1 would mean that the electrostatic energy plays a minor role and the

ions have a Boltzmann distribution, while �C � 1 indicates that the kinetic energy

of the ions is negligible and that they try to form a conglomerate that has a lower

energy, i.e. they form a crystal.

More detailed considerations (see, for instance, Shapiro and Teukolsky 1983)

indicate that �C � 170 is a critical value for the transition between the two types of

behaviour of the ion gas. With this value for �C and using the relation % D �0munion

we obtain the critical temperature Tm (melting temperature):

Tm � Z2e2

�ck

�
4�%

3�0mu

�1=3
D 1:3 � 103Z2�

�1=3
0 %1=3 ; (16.26)

where the numerical constant is in cgs units. The corresponding straight line is

plotted (dot-dashed) in Fig. 16.1.

In the interior of evolved stars we have high densities, but the temperature is

well above the melting temperature. The situation is different in cooling white

dwarfs, where the temperature becomes smaller with time, while the density remains

virtually unchanged. We will come back to this in Chap. 37, which deals with white

dwarfs.
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16.5 Neutronization

If in a plasma the electrons have sufficient energy, they can combine with the protons

to form neutrons. If mn and mp are the masses of neutron and proton, then the

electron must have the total energy Etot > E� D c2.mn � mp/. At low densities

the neutron will decay within 11 min back into a proton–electron pair, where the

electron has the total energy E� and a kinetic energy E�
kin D E� �mcc

2; however,

the situation can be different if the gas is completely degenerate and the phase space

is filled up to the (kinetic) Fermi energy EF. If the Fermi energy EF exceeds E�
kin,

the electrons released do not have enough energy to find an empty cell in phase

space, and the neutrons cannot decay, i.e. the Fermi sea of electrons has stabilized

the neutrons.

In order to estimate under which conditions this occurs we write the rela-

tion (15.6) between E and p in the form

p D 1

c
.E2 �m2

ec
4/1=2 : (16.27)

If we put E D Ekin C mec
2 D EF C mec

2 D c2.mn � mp/ D 1:294 � 106 eV,

we can determine the corresponding Fermi momentum pF from (16.27) and obtain

x D pF=.mec/ � 2:2. Then, according to (15.15) and taking % D �emune with

�e D 2, we find % � 2:4 � 107 g cm�3. Therefore, if a proton–electron gas is

compressed to a density above this value, then the gas undergoes a transition into a

neutron gas (“neutronization”).

For stellar matter the situation is more complicated, since at sufficiently high

densities the plasma contains heavier nuclei, and not just protons. The nuclei

capture electrons (inverse ˇ decay) and become neutron-rich isotopes. This requires

much higher electron energies than those just estimated, since the neutrons in the

nucleus are degenerate and the new ones have to be raised above the Fermi energy.

Correspondingly higher plasma densities are required to provide the electrons with

the necessary energy. If the nuclei become too neutron rich they start to break up,

releasing free neutrons. The density at which this “neutron drip” starts is of the order

of several 1011g cm�3, but the exact value depends on the nuclear model one is using

in detailed calculations. Hillebrandt (1991) gives %drip � 3 � 1011 g cm�3, Pethick

and Ravenhall (1991) estimate %drip � 3:5 � 1011 g cm�3.
Let us briefly consider the effect on the equation of state. Up to %drip the total

pressure P � Pe is provided by relativistic electrons. With further increases of %,

the number density ne increases by less than an amount proportional to %, owing

to the capture of some electrons. Therefore the pressure rises by less than %4=3.

Consequently 
ad � .d lnP=d ln%/ad is reduced below 4/3, which can be seen in

Fig. 16.2, where the slope of the curve P D P.%/ is suddenly reduced for log % &

11.7. At still higher % the increasing number of free neutrons contribute gradually

more to P .
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Fig. 16.2 The equation of

state for very high densities.

On logarithmic scales the

pressure Pe (in dyn cm�2/ is

plotted against the density %

(in g cm�3/. The grey

symbols refer to experimental

or theoretical data points

from various sources. See

Haensel et al. (2007), p. 15,

for more details. Figure

adapted from their Fig. 1.3

With increasing % the neutrons become increasingly degenerate–as a perfect

Fermi gas they would give the slope 5/3. But then interaction between neutrons

becomes important, and the details of the equation of state are very uncertain, for

example, depending on rather badly known properties of the particles. For more

details see Sects. 37.2 and 38.1 and Shapiro and Teukolsky (1983).

16.6 Real Gas Effects

Although the stellar plasma can to a great extent be treated as a perfect gas, the

assumptions for a perfect gas are not truly fulfilled: there are interaction forces,

such as the Coulomb force, acting between the constituents, and atoms and ions

cannot always be considered to be pointlike. Therefore an accurate equation of state

has to include such effects.

We already encountered pressure ionization in Sect. 14.6, which is a consequence

of the spatially overlapping energy levels, which leads to interacting ionic potentials.

We noted that there is no good theory to treat this in a simple way, but that one has to

modify the Saha equation somehow to avoid its wrong behaviour at high pressure.

A good theory for pressure ionization has to work with quantum-mechanical

atomic models. The effect of pressure ionization is increasingly important for cool,

dense stars of low mass (M < 1Mˇ) and gas planets. Saumon et al. (1995) have

developed an equation for state for dense gases, which, due to the complexity of the

problem, is limited to hydrogen-helium mixtures. This and other modern equations

of state are provided in tabular form, for example, as tables of P.�; T / and u.�; T /

for various chemical mixtures. The thermodynamic quantities, which are or use



160 16 The Equation of State of Stellar Matter

derivatives of P and u, are either computed from the tables, or are provided as

tables, too.

Another interaction becoming important at low temperatures, when molecules

are able to form, are the classical van der Waals forces, which are attractive forces of

electrically neutral, but polarized particles. Their consideration leads in the simplest

approximation to the equation of state for a real gas

.P C n2a/.1 � nb/ D nkT: (16.28)

The meaning of the additional terms n2a and nb is easy to understand: nb is

the effect of volume reduction due to the finite size of the particles, which leads

therefore at given temperature to a pressure increase. The second term, n2a, is the

effect of the attractive forces, which result in a reduction of the gas pressure P .

a and b are parameters depending on the microscopic properties of the gas particles.

An equation of state of this type results in phase transitions, which indeed were

found in the equation of state of Saumon et al. (1995) (For a derivation of (16.28)

see Weiss et al. 2004.).

In Sect. 16.4, we discussed crystallization, which is due to the electrostatic

interaction between ions at high densities, in the limit of �C � 1. At the other

extreme, when �C � 1, the gas is close to being a perfect one, but not quite so.

Consider an ionized gas, which consists of positively charged ions and unbound

electrons. As long as these are not degenerate, they can move freely and will feel

the Coulomb forces in the plasma. In particular, ions will attract electrons and it is

plausible that clouds of electrons gather around ions such that from a sufficiently

large distance the ion electron cloud will appear as being electrically neutral. This

picture of electron shielding (in the weak limit) requires low particle densities,

because the inter-ion distances must be larger than the typical electron cloud size.

The physical effect is usually treated within the Debye–Hückel theory (Landau and

Lifshitz 1980, Chap. 78; Weiss et al. 2004, Chap. 17.15), which we will encounter

in detail in Sect. 18.4. Here it suffices to state that based on a shielded Coulomb

potential around the ions,

˚.r/ D Ze

r
� e�r=rD ; (16.29)

where rD is the Debye-radius (18.50), the resulting attractive electrostatic forces

lead to a reduction of the gas pressure according to

P D nkT

�
1 � 3:2 � 107 %

1=2

T 3=2
��3=2

�
; (16.30)

where

� D
X

i

Zi .Zi C 1/

Ai
Xi (16.31)

is, as in (18.47), the mass weighted average of free electrons times ionic charge Zi
of all ion species i .
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For the centre of the Sun, � � 0:8, � � 1:7, T � 15 � 106 K, and % �
140 g=cm�3, and the correction to P is 1.6 %. Although this effect appears to be

small, it has turned out that equations of state with an accuracy of this order are

needed for modern solar and stellar models.

These are the most important non-ideal effects that modify the equation of state.

In addition there are even more interaction forces of quantum nature (such as spin–

spin interaction), which may in some situations become important. Some of these

effects are considered in equation of states published by specialized groups. The

most important ones are the OPAL and MHD equations of state (Rogers et al. 1996

and Mihalas et al. 1988, and later improvements), both available in tabular form and

for a variety of chemical mixtures. They are widely used in current stellar evolution

calculations, and have helped to improve the solar model considerably. More on this

issue can be found in Weiss et al. (2004), Chap. 15-A.



Chapter 17

Opacity

In this chapter we deal with the material function �.%; T /. While for the equation

of state it was possible to use certain approximations (for instance, that of a perfect

gas) without introducing too much error, this is almost impossible for the opacity.

Although there are similar approximations (such as those for electron scattering

or free–free transitions) they never hold for the whole star and are used only in

simplifying approaches. Therefore, nowadays, when solving the stellar-structure

equations, one uses numerical opacity tables for different chemical mixtures, which

give �.%; T / in the full range of % and T .

In the following we describe the basic processes that contribute to the opacity and

give approximate analytic formulae without deriving them from quantum mechan-

ics. The reader who wants to learn more of the methods by which opacities are

computed is referred to Weiss et al. (2004) and to the original papers quoted there.

17.1 Electron Scattering

If an electromagnetic wave passes an electron, the electric field makes the electron

oscillate. The oscillating electron represents a classical dipole that radiates in other

directions, i.e. the electron scatters part of the energy of the incoming waves.

The weakening of the original radiation due to scattering is equivalent to that by

absorption, and we can describe it by way of a cross section at frequency � per unit

mass (which we called �� in Sect. 5.1). This can be calculated classically giving the

result

�� D 8�

3

r2e
�emu

D 0:20 .1CX/; (17.1)

where re is the classical electron radius, X the mass fraction of hydrogen, and the

constant is in cm2 g�1. The term �emu arises because �� is taken per unit mass; and

�e is replaced by (4.30). Since �� does not depend on the frequency, we immediately

obtain the Rosseland mean for electron scattering:
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�sc D 0:20 .1CX/ cm2 g�1 : (17.2)

The “Thomson scattering” just described neglects the exchange of momentum

between electron and radiation. If this becomes important, then �� will be reduced

compared to the value given in (17.1), though this effect plays a role only at temper-

atures sufficiently high for the scattered photons to be very energetic. In fact during

the scattering process the electron must obtain such a large momentum that its

velocity is comparable to c, say v & 0:1c for (17.2) to become a bad approximation.

The momentum of the photon is h�=c, which after scattering is partly transferred to

the electron,mev � h�=c. Therefore relativistic corrections (“Compton scattering”)

become important if the average energy of the photons is h� & 0:1mec
2. For h� we

take the frequency at which the Planck function has a maximum; then according to

Wien’s law this is at h�D 4:965 kT , and the full Compton scattering cross section

has to be taken into account if T >0:1mec
2/(4.965k), or roughly T >108 K. In fact

even at T D 108 K Compton scattering reduces the opacity by only 20 % of that

given by (17.2).

17.2 Absorption Due to Free–Free Transitions

If during its thermal motion a free electron passes an ion, the two charged particles

form a system which can absorb and emit radiation. This mechanism is only

effective as long as electron and ion are sufficiently close. Now, the mean thermal

velocity of the electrons is v � T 1=2, and the time during which they form a system

able to absorb or emit is proportional to 1=v � T �1=2; therefore, if in a mass element

the numbers of electrons and ions are fixed, the number of systems temporarily able

to absorb is proportional to T �1=2.
The absorption properties of such a system have been derived classically by

Kramers, who calculated that the absorption coefficient per system is proportional to

Z2��3, whereZ is the charge number of the ion. We therefore expect the absorption

coefficient �� of a given mixture of (fully ionized) matter to be

�� � Z2%T �1=2��3 : (17.3)

Here the factor % appears because for a given mass element the probability that two

particles are accidentally close together is proportional to the density.

For the determination of the Rosseland mean � of this absorption coefficient

we make use of a simple theorem which can be easily proved by carrying out the

integration (5.19): a factor �˛ contained in �� gives a factor T ˛ in �. With this and

with (17.3) we find

�ff � %T �7=2 : (17.4)

All opacities of the form (17.4) are called Kramers opacities and give only a

classical approximation. One normally multiplies the Kramers formula (17.4) by
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a correction factor g, the so-called Gaunt factor, in order to take care of the

quantum-mechanical correction (see, for instance, Weiss et al. 2004). In (17.4)

we have still omitted the factor Z2 which appears in (17.3). In general, one has

a mixture of different ions, and therefore one has to add the contributions of the

different chemical species. The (weighted) sum over the values of Z2 is taken

into the constant of proportionality in (17.4), which then depends on the chemical

composition. For a fully ionized mixture a good approximation is given by

�ff D 3:8 � 1022.1CX/Œ.X C Y /CB�%T �7=2 ; (17.5)

with the numerical constant in cgs. The mass fractions of H and He are X and

Y , respectively. Here the factor 1 C X arises, since �ff must be proportional to

the electron density–which is proportional to .1 C X/%. The term .X C Y / in the

brackets can be understood in the following way: there areX=mu hydrogen ions and

Y=.4mu/ helium ions. The former have the charge number 1, the latter the charge

number 2. But since �� � Z2 [see (17.3)], when adding the contributions of H and

He to the total absorption coefficient, we obtain the factor X=mu C 4Y=.4mu/ D
.X C Y /mu. Correspondingly the term B gives the contribution of the heavier

elements:

B D
X

i

XiZ
2
i

Ai
; (17.6)

where the summation extends over all elements higher than helium and Ai is the

atomic mass number.

17.3 Bound–Free Transitions

We first consider a (neutral) hydrogen atom in its ground state, with an ionization

energy of �0, i.e. a photon of energy h� >�0 can ionize the atom. Energy

conservation then demands that

h� D �0 C 1

2
mev

2 ; (17.7)

where v is the velocity of the electron released (relative to the ion, which is assumed

to be at rest before and after ionization).

If we define an absorption coefficient a� per ion .a� D ��%=nion/, we expect

a� D 0 for � < �0=h and a� > 0 for � � �0=h. Classical considerations similar

to those which lead to the Kramers dependence (17.3) of �� for free–free transitions

give a� � ��3 for � � �0=h. Quantum-mechanical corrections can again be taken

into account by a Gaunt factor (see, for instance, Weiss et al. 2004). The absorption

coefficient of the hydrogen atom in its ground state has a frequency dependence

as given in Fig. 17.1a. But if we have neutral hydrogen atoms in different stages

of excitation, the situation is different: an atom in the first excited stage has an
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Fig. 17.1 (a) The absorption coefficient a� of a hydrogen atom in the ground state as a function

of the frequency �; �0 D �0=h (b) The absorption coefficient of a mixture of hydrogen atoms in

different stages of excitation

absorption coefficient a� D 0 for h� < �1, where �1 is the energy necessary to

ionize a hydrogen atom from the first excited state, while a� � ��3 for h� � �1.

The absorption coefficient �� for a mixture of hydrogen atoms in different states of

excitation is a superposition of the a� for different stages of excitation. The resulting

�� is a sawtooth function, as indicated in Fig. 17.1b. In order to obtain �� for a certain

value of the temperature T , one has to determine the relative numbers of atoms in

the different stages of excitation by the Boltzmann formula; then their absorption

coefficients a� , weighted with their relative abundances, are to be summed. To

obtain the Rosseland mean one has to carry out the integration (5.19).

If there are ions of different chemical species with different degrees of ionization,

one has to sum the functions a� for all species in all stages of excitation and all

degrees of ionization before carrying out the Rosseland integration. An important

source of opacity are bound–free transitions of neutral hydrogen atoms, in which

case the opacity must be proportional to the number of neutral hydrogen atoms and

� can be written in the form

�bf D X.1� x/ Q�.T / : (17.8)

Here Q�.T / is obtained by Rosseland integration over (weighted) sums of functions

a� for the different stages of excitation, while x is the degree of ionization as defined

in Sect. 14.2. The function Q�.T / is plotted in Fig. 17.2.

17.4 Bound–Bound Transitions

For absorption by an electron bound to an ion, more than just the bound–free

transitions discussed in Sect. 17.3 contribute to the opacity. If, after absorption of

a photon from a directed beam, the electron does not leave the atom but jumps to a
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Fig. 17.2 The function Q�.T / of (17.8), where Q� is in cm2 g�1 and T in K

Fig. 17.3 Bound–bound transitions contributing to the opacity ��

higher bound state, the energy will later on be re-emitted in an arbitrary direction, so

that the intensity of the directed beam is weakened. This mechanism is effective only

at certain frequencies, and one would expect that absorption in a few lines gives only

a small contribution to the overall opacity; however, the absorption lines in stars are

strongly broadened by collisions, and as one can see in Fig. 17.3, they can occupy

considerable regions of the spectrum. Bound–bound absorption can become a major

contribution to the (Rosseland mean) opacity if T <106 K. It can then increase

the total opacity by a factor 2, while for higher temperatures (say T � 107 K)

the contribution of bound–bound transitions to the total opacity is much smaller

(10 %). Calculation of the absorption coefficients due to bound-bound transitions

obviously requires detailed knowledge about the energy levels of all atoms and ions,

all mechanisms that lead to line broadening, and of all the transition probabilities.

In addition, occupation levels and ionization levels have to be known, which links

the calculation of opacities closely to that of the equation of state. Such calculations

have again to be done in separate calculations by specialists in atomic physics.
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17.5 The Negative Hydrogen Ion

Hydrogen can become a source of opacity in another way, by forming negative

ions: a neutral hydrogen atom is polarized by a nearby charge and can then attract

and bind another electron. This is possible since there exists a bound state for a

second electron in the field of a proton, though this second electron is only loosely

bound–the absorption of photons with h� > 0:75 eV is sufficient for its release.

This energy is very small compared to the 13.6 eV ionization energy for neutral

hydrogen and allows photons with � < 1655 nm (infrared) to be absorbed, giving

rise to a bound–free transition. The photon energy goes into the ionization energy

and kinetic energy of the free electron in the same way as indicated in (17.7). The

number of negative hydrogen ions in thermodynamic equilibrium is given by the

Saha formula (14.17), where the ionization potential �r is the binding energy of

the second electron. Replacing the partition functions by the statistical weights, we

have u�1 D 1 for the negative ion and u0 D 2 for neutral hydrogen; hence the Saha

equation gives

n0

n�1
Pe D 4

.2�me/
3=2.kT /5=2

h3
e��=kT ; (17.9)

with � D 0:75 eV. If we use n0 D .1�x/%X=mu, where x is the degree of ionization

of hydrogen as defined in (14.18) and X the weight fraction of hydrogen, we find

n�1 D 1

4

h3

.2�me/3=2.kT /5=2mu

Pe.1 � x/X%e�=kT : (17.10)

Now, for an absorption coefficient a� per H� ion, it follows that �� D a�n�1=%,

which implies that the Rosseland mean is described by

�H� D 1

4

h3

.2�me/3=2.kT /5=2mu

Pe.1 � x/X a.T /e�=kT ; (17.11)

where a D a.T / is obtained from a� by Rosseland integration (5.19). The opacity

�H� is proportional to n�1, which in turn is proportional to n0ne (or n0Pe), since

the H� ions are formed from neutral hydrogen atoms and free electrons.

For a completely neutral, pure hydrogen gas there would be no free electrons

and therefore no H� ions. If now the temperature is increased and the hydrogen

becomes slightly ionized, giving ne � X , the free electrons can combine with

neutral hydrogen atoms. One therefore would expect an increase of � as long as

1 � x is not too small.

The situation is different in the case of a more realistic mixture of stellar material.

Heavier elements have lower ionization potentials (a few eV) and provide electrons

even at relatively low temperatures; hence, although there is only a small mass

fraction of heavier elements, they determine the electron density at low temperatures

where hydrogen is neutral. When the elements heavier than helium are singly

ionized (say from 3,000 K to 5,000 K) one has
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ne D % ŒxX C .1 �X � Y /=A�=mu ; (17.12)

where %.1 � X � Y /=.Amu/ is the number density of atoms of higher elements

(“metals”) of mean mass number A. Even if the metals constitute only a small

percentage in weight (and number), they still determine the opacity as long as

1 � X � Y > xXA (which becomes very small for low temperatures where x is

small). The metal content can therefore be of great influence on � for the surface

layers and thus the outer boundary conditions of stars.

17.6 Conduction

Electrons, like all particles, can transport heat by conduction. Their contribution to

the total energy transport can normally be neglected compared to that of photons,

since the conductivity is proportional to the mean free path `, and in normal (non-

degenerate) stellar material `photon � `particle.

However, conduction by electrons becomes important in the dense degenerate

regions in the very interior of evolved stars, as well as in white dwarfs. The reason

is that in the case of degeneracy, all quantum cells in phase space below pF are

filled up, and electrons, when approaching ions and other electrons, have difficulty

exchanging their momentum. This is equivalent to saying that “encounters” are rare

or that the mean free path is large. In Sect. 5.2 we saw that the contribution to

conduction can be formally taken into account in the equation of radiative transport

by defining a “conductive opacity” �cd, as in (5.24). If �rad is the Rosseland mean of

the (radiative) opacity, then conduction reduces the “total” opacity �, as can be seen

from (5.25):
1

�
D 1

�rad

C 1

�cd

: (17.13)

The thermal conductivity of the electron component of a gas is mainly determined

by collisions between electrons and ions, but electron–electron collisions can also

be important. Analytic formulae can be found in Weiss et al. (2004), while tables of

the thermal conductivity due to electrons in stellar material have been computed first

by Hubbard and Lampe (1969). They list the conductivities of a pure hydrogen gas,

a mixture of pure helium and pure carbon, a solar composition, and a mixture typical

for the core of an evolved star. More recent work is published by Itoh and co-workers

(Itoh et al. 1983) and Potekhin et al. (1999) for variable chemical mixtures.

The later source, which provides conductive opacities for any ion charge, was

used to plot Fig. 17.4, which shows the dependence of the conductive opacity on

density for a given temperature. For extremely strong degeneracy, �cd is proportional

to %�2T 2.
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Fig. 17.4 The “conductive

opacity” �cd (in cm2 g�1/ of a

hydrogen gas at T D 107 K

against the density % (in

g cm�3/ (Data from Potekhin

et al. 1999)

17.7 Molecular Opacities

For temperatures below � 10; 000K the formation of molecules in the envelopes of

cool stars becomes increasingly important. Due to their rich system of energy levels,

corresponding to the various states of rotational and vibrational excitation, they are

important absorbers. They contribute significantly to the opacity below � 5; 000K

and begin to dominate it for T . 3; 000K. The importance of any absorber for the

Rosseland mean opacity depends primarily on its absorption properties and not so

much on its abundance. This is even more true for molecules and is the reason why

Ti, which is three orders of magnitudes less abundant than oxygen, dominates–along

with the water molecule–the opacity in the form of TiO as long as there is enough

oxygen available for its formation. This is normally the case, unless there is more

carbon than oxygen, in which case the oxygen is bound in CO molecules. In that

case, other carbon molecules, such as C2, CN, or C2H2, dominate.

Obviously, molecular opacities depend on atomic abundances, on the formation

and stability of the various molecules, and finally on their energy level spectrum.

This problem is sufficiently complicated that it can again be treated only in

separate calculations including atomic and molecular physics, thermodynamics,

and chemical processes. The results are again made available in tabular form

for the stellar modelling. The largest sets of such tables has been provided by

Alexander and Ferguson (Alexander and Ferguson 1994; Ferguson et al. 2005).

The calculations consider more than 30 elements, over 50 molecules, and some 800

million atomic and molecular lines. In addition, absorption by dust grains is also
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Fig. 17.5 The Rosseland mean of the opacity � (in cm2 g�1) as a function of R D %=T 36 (in

g cm�3, since T6 D T=106 K) and T (in K) for a mixture of X D 0:70, Y D 0:29, Z D 0:01,

using data for atomic, molecular, and dust opacity from Ferguson et al. (2005)

included. They dominate below 1500 K, temperatures which are usually found in

stellar atmospheres only.

Figure 17.5 shows the total Rosseland opacity for a mixture with 70 % hydrogen

and 1 % of metals. The varying density of the grid lines reflects the density of the

.R; T / points computed for the table [In this and the following, similar figures,

the quantity R D %=T 36 (with T6 D T=106 K) has been used as this has become

customary in the opacity community. This quantity is roughly constant in large parts

of main-sequence stars. This R must not be confused with the stellar radius and is

used with this meaning in this chapter only.]. In regions of many different opacity

sources the opacities were calculated at many temperatures and densities. At higher

temperatures, atomic absorption dominates; the steep rise to the right is mainly

caused by the H� ion. The “shoulder” around lgT D 3:4 and lowR is caused by the

first formation of molecules, such as CO, NO, and H2. The first sharp rise at lower

temperatures after we passed the minimum around lgT D 3:3 is due to formation

of TiO and H2O, which is followed by a slight decrease in � once temperatures are

too low to allow many excited states in the molecules. The various maxima at even

lower temperatures are caused by different grains appearing and disappearing. For

example, the one around lg T D 3:1 is due to Al2O3 and CaTiO3. Solid silicates and

iron grains form at even lower temperatures. Each of these features is also present

at higher densities, but then already occurring at higher temperatures.

Such low temperatures, where molecular or even dust absorption dominates, are

usually found in stars only in convective envelopes. However, the outermost parts

of these envelopes are highly superadiabatic (Chap. 7), such that r . rrad, and

therefore the opacities determine the temperature stratification even in this case.
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Fig. 17.6 The Rosseland mean of the opacity � (in cm2 g�1) as a function of R D %=T 36
(in g cm�3, since T6 D T=106 K) and T (in K) for a mixture with a hydrogen and helium

content X D 0:70, Y D 0:29. These are opacities calculated by the OPAL project at

Lawrence Livermore National Laboratory (Rogers and Iglesias 1992; Iglesias and Rogers 1996).

The dominant absorption mechanisms at different parts of the model are discussed in the text. The

continuation towards higher temperatures is shown in Fig. 17.7

17.8 Opacity Tables

In view of the complexity of modern opacity calculations, the basic considera-

tions of Sects. 17.1–17.6 are not sufficient for calculating accurate stellar models.

Instead, specialized groups have published extensive tables of opacities for different

chemical mixtures over a wide range of temperatures and densities. Each group,

however, may specialize on one specific aspect. The Opacity Project (Mendoza et al.

2007) and the Livermore OPAL group concentrate on atomic absorption important

for higher temperatures (Fig. 17.6); the Wichita group (Alexander and Ferguson)

on molecular and dust absorption for temperatures below 104 K, and finally Itoh,

Pothekin, and others on electron conduction. These various sources then have to be

combined to opacity tables covering the whole stellar structure. Indeed, the low-and

high-temperature opacities, which are shown in Figs. 17.5 and 17.6, agree very well

in the overlapping temperature range. The conductive opacities can finally be added

by use of (17.13).

In Fig. 17.7 we give a graphical representation of such a combined opacity

table for a mixture with a metal fraction of 0.01 and a hydrogen content of 0.70.

Figures 17.6 and 17.5 show the corresponding individual parts for the same mixture.

Indeed one sees that, over the whole range of arguments, �.R; T / is a rather

complicated function. In order to give a feeling for the parts of the plotted surface

that are relevant to stars, we discuss a model of the present Sun, which is plotted

in Fig. 17.7 (thick solid line). We are using only the T � % structure; the chemical



17.8 Opacity Tables 173

Fig. 17.7 Combination of the opacity � shown in Figs. 17.6 and 17.5, and of electron conduction

opacities as in Fig. 17.4. The latter is a steeply declining function of % (orR) and can be seen “from

below” in the back of the figure. Electron scattering provides the flat region in the right foreground.

The thick solid line represents the T � % structure of a solar model (for details see text)

composition of the Sun is in fact quite different from that of the table. For example,

in the solar centre, X � 0:34, and at the surface, the composition is X D 0:737,

Y D 0:245, and Z D 0:018. Nevertheless, the main features are still visible. Note

also, that R indeed is rather constant throughout the solar interior, although % varies

by eight orders of magnitude.

The model starts with the photospheric values lg T D 3:76, lg % D �6:58 (in

cgs), or lgR D 0:14. The corresponding point lies on the left end of the thick solid

line in Fig. 17.7 and on the rising slope on the right of Fig. 17.5, where molecular

opacities are still contributing. On moving deeper into the Sun the opacity sharply

increases owing to the onset of hydrogen ionization, which provides the electrons

for H� formation as described in Sect. 17.5, and the opacity rises by several powers

of 10 until it reaches a maximum value. This occurs when an appreciable amount of

hydrogen becomes ionized and is not available for H� formation, because the factor

1 � x in (17.11) reduces the opacity. In the regions below, bound–free transitions

become the leading opacity source and still further inwards free–free transitions

take over. There a simple power law seems to be a good approximation, as indicated

in (17.4). Note that in the logarithmic representation the opacity surface for a power

law is just a plane. Equation (17.4) therefore corresponds to a tangential plane which

osculates the opacity surface. The line for the interior remains in the domain of free–

free transitions. The region of dominant electron scattering is the horizontal plateau
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in the foreground on the right of Fig. 17.7 at the foot of the “kappa mountain”. In

this figure the region where electron conduction reduces the (total) opacity is hidden

behind the mountain ridge and can be seen only “from below” as the plane dropping

below the electron scatter region at high densities. At the highest temperatures, � is

reduced below the electron-scattering value due to Compton scattering as mentioned

in Sect. 17.1.

In order to find the value of �.%; T;Xi/ for a given point with %0; T0; Xi0 in a star,

one has to interpolate in different opacity tables (for different compositions Xi ) for

the arguments %0; T0 and then between these tables forXi0. Tables are calculated not

only for different .X; Y; Z/ combinations, but also for different relative metal ratios

within the Z-group. When combining opacities from different sources, as is almost

always necessary, tables for identical metal mixtures are preferable, and great care

in the interpolation has to be taken.

Note finally, that the temperature and density range even of the combined opacity

table is limited. In particular the high density limit is critical as low-mass stars have

structures that reach high densities at rather low temperatures. The reason for the

lack of available opacity data lies in the equation of state: this is the region where

complicated non-ideal gas effects (Sect. 16.6) prevent an accurate calculation of the

thermodynamic state of the gas, and therefore the calculation of opacities becomes

impossible. In practical stellar evolution calculations, such a situation asks for the

creativity of the modeller to somehow supplement the missing data.



Chapter 18

Nuclear Energy Production

We shall limit ourselves here to a very rough summary of the most important

features of nuclear reactions in stars. This will suffice completely for the consid-

eration of the main band of stellar structures, while the study of particular aspects

of nuclear astrophysics anyway requires the consultation of specialized literature

(see Clayton 1968, or Iliadis 2007). For example, we will only deal with energy

production of equilibrium nuclear burning, i.e. we will neglect the effects occurring

when the timescale of a rapidly changing star becomes comparable to that of an

important nuclear reaction. On the other hand, we will also briefly touch on such

topics as electron screening or neutrino production, about which a certain minimum

of information seems to be indispensible for general discussions.

We begin with a few historical comments. That thermonuclear reactions can

provide the energy source for the stars was first shown by R. Atkinson and

F. Houtermans in 1929, after G. Gamow discovered the tunnel effect. Later, two

important discoveries were published almost simultaneously in 1938: H. Bethe

and Ch. Critchfield described the pp chain, and C.F. von Weizsäcker and Bethe

independently found the CNO cycle. The reactions of helium burning were then

described in 1952 by E.E. Salpeter. Finally, a classic paper summarized the state of

the art in 1957, “Synthesis of the Elements in Stars” (Burbidge et al. 1957).

18.1 Basic Considerations

Most observed stars (including the Sun) live on so-called thermonuclear fusion. In

such nuclear reactions, induced by the thermal motion, several lighter nuclei fuse

to form a heavier one. Before this process, the involved nuclei j have a total mass

(
P
Mj ) different from that of the product nucleus .My/. The difference is called

the mass defect:

�M D
X

j

Mj �My : (18.1)
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It is converted into energy according to Einstein’s formula

E D �Mc2 (18.2)

and is available (at least partly) for the star’s energy balance. An example is the

series of reactions called “hydrogen burning”, where four hydrogen nuclei 1H with

a total mass 4 � 1:0079mu (atomic mass units, physical scale) are transformed into

one 4He nucleus of 4.0026mu. Atomic masses are given for the neutral atoms, i.e. for

the nucleus plus all electrons. However, since the electron mass is only 1=1823mu,

we will assume that masses of nuclei are the same as the atomic masses. Obviously

2:9�10�2mu per produced 4He nucleus have “disappeared” during the fusion of the

four protons, which is roughly 0.7 % of the original masses and which corresponds

to an energy of about 27.0 MeV according to (18.2). As usual in nuclear physics, as

the unit of energy, we take the electron volt eV (1 eV D 1:6018 � 10�12 erg) with

the following equivalences:

1 keV bD 1:1606 � 107 K ;

931:49MeV bD 1mu : (18.3)

The Sun’s luminosity corresponds to a mass loss rate ofLˇ=c2 D 4:26�1012 g s�1,
which appears to be a lot, especially if it is read as “more than four million metric

tons per second”. If a total of 1 Mˇ of hydrogen were converted into 4He, then

the disappearing 0.7 % of this mass would be 1:4 � 1031 g, which could balance the

Sun’s present mass loss by radiation for about 3 � 1018 s � 1011 years.

The deficiency of mass is just another aspect of the fact that the involved nuclei

have different binding energies EB. This is the energy required to separate the

nucleons (protons and neutrons in the nucleus) against their mutual attraction by

the strong, but short-range nuclear forces. Or else, EB is the energy gained if they

are brought together from infinity (which starts here at any distance large compared

with, say, 10�12 cm, the scale of a nuclear size).

Consider a nucleus of massMnuc and atomic mass numberA (the integer “atomic

weight”): it may contain Z protons of mass mp and .A �Z/ neutrons of mass mn.

Its binding energy is then related to these masses by (18.2):

EB D Œ.A �Z/mn CZmp �Mnuc�c
2 : (18.4)

When comparing different nuclei, it is more instructive to consider the average

binding energy per nucleon,

f D EB

A
; (18.5)

which is also called the binding fraction. With the exception of hydrogen, typical

values are around 8 MeV, with relatively small differences for nuclei of very

different A. This shows that the short-range nuclear forces due to a nucleon mainly

affect the nucleons in its immediate neighbourhood only, such that with increasing
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Fig. 18.1 A smoothed run of

the fractional binding energy

per nucleon, f D EB=A, for

stable nuclei, over the atomic

mass number A. The curve is

smoothed over the wiggles

which are due to the nuclear

shell structure and pair effects

A, a saturation occurs rather than an increase of f proportional to A. An idealized

plot of f against A is shown in Fig. 18.1 (The real curve zigzags around this

smoothed curve as a consequence of the shell structure of the nucleus and pair

effects.).

With increasing A; f .A/ rises steeply from hydrogen, then flattens out and

reaches a maximum of 8.5 MeV at AD 56 .56Fe), after which it drops slowly

with increasing A. The increase for A<56 is a surface effect: particles at the

surface of the nucleus experience less attraction by nuclear forces than those in

the interior, which are completely surrounded by other particles. And in a densely

packed nucleus, the surface area increases with radius slower than the volume (i.e.

the number A) such that the fraction of surface particles drops. With increasing A,

the number Z of protons also increases (The addition of neutrons only would

require higher energy states, because the Pauli principle excludes more than two

identical neutrons, and the nuclei would be unstable.). The positively charged

protons experience a repulsive force which is far-reaching and therefore does not

show the saturation of the nuclear forces. This increasing repulsion by the Coulomb

forces brings the curve in Fig. 18.1 down again for A > 56.

Around the maximum, at 56Fe, we have the most tightly bound nuclei. In other

words, the nucleus of 56Fe has the smallest mass per nucleon, so that any nuclear

reaction bringing the nucleus closer to this maximum will be exothermic, i.e. will

release energy. There are two ways of doing this:

1. By fission of heavy nuclei, which happens, for example, in radioactivity.

2. By fusion of light nuclei, which is the prime energy source of stars (and

possibly ours too in the future).

Clearly, both reach an end when one tries to extend them over the maximum of f ,

which is therefore a natural finishing point for the stellar nuclear engine. So if a star

initially consisted of pure hydrogen, it could gain a maximum of about 8.5 MeV per
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Fig. 18.2 Sketch of the

potential over the distance r

from the nuclear centre.

Nuclear attraction dominates

for r < r0 and Coulomb

repulsion for r > r0. A

particle starting at infinity

with kinetic energy E1 of the

relative motion will approach

classically only to r1

nucleon by fusion to 56Fe, but 6.7 MeV of these are already used up when 4He is

built up in the first step.

In order to obtain a fusion of charged particles, they have to be brought so close to

each other that the strong, but very short-ranged, nuclear forces dominate over the

weaker, but far-reaching, Coulomb forces. The counteraction of these two forces

leads to a sharp potential jump at the interaction radius (Fig. 18.2):

r0 � A1=31:44 � 10�13cm (18.6)

(the “nuclear radius” of the order of femtometer, 1fm D 10�13cm). For distances

less than r0, the nuclear attraction dominates and provides a potential drop of

roughly 30 MeV, while “outside” r0, the repulsive Coulomb forces for particles with

chargesZ1 and Z2 yield

ECoul D Z1Z2e
2

r
: (18.7)

The height of the Coulomb barrier ECoul .r0/ is typically of the order

ECoul.r0/ � Z1Z2 MeV : (18.8)

If, in the stationary reference frame of the nucleus, a particle at “infinity” has kinetic

energy E1, it can come classically only to a distance r1 given by E1 D ECoul.r1/

from (18.7), as indicated in Fig. 18.2. Now, the kinetic energy available to particles

in stellar interiors is that of their thermal motion, and hence the reactions triggered

by this motion are called thermonuclear. Since in normal stars we observe a slow

energy release rather than a nuclear explosion, we must certainly expect the average

kinetic energy of the thermal motion,Eth, to be considerably smaller thanECoul.r0/.

For the value T � 107 K estimated for the solar centre in Sect. 2.3, according to

(18.3), kT is only 103 eV, i.e. Eth is smaller than the Coulomb barrier (18.8) by

a factor of roughly 103. This is in fact so low that, with classical effects only, we
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can scarcely expect any reaction at all. In the high-energy tail of the Maxwell–

Boltzmann distribution, the exponential factor drops here to exp .�1000/ � 10�434,
which leaves no chance for the “mere” 1057 nucleons in the whole Sun (and even

for the � 1080 nucleons in the whole visible universe)!

The only possibility for thermonuclear reactions in stars comes from a quantum-

mechanical effect found by G. Gamow: there is a small but finite probability of

penetrating (“tunnelling”) through the Coulomb barrier, even for particles withE <

ECoul.r0/. This tunnelling probability varies as

P0 D p0E
�1=2e�2�� I � D

�m
2

�1=2 Z1Z2e2
„E1=2

: (18.9)

Here „ is h=2� and m the reduced mass. The factor p0 depends only on the

properties of the two colliding nuclei. The exponent 2�� is here obtained as the

only E-dependent term in an approximate evaluation of the integral over „�1Œ2m
.ECoul � E/�1=2, which is extended from r0 to the distance rc of closest approach

(where E D ECoul). For Z1Z2 D 1 and T D 107 K, P0 is of the order of 10�20 for

particles with average kinetic energyE and steeply increases with E and decreases

with Z1Z2. Therefore, for temperatures as “low” as 107 K, only the lightest nuclei

(with smallest Z1Z2) have a chance to react. For reactions of heavier particles,

with larger Z1Z2, the energy, i.e. the temperature, has to be correspondingly larger

to provide a comparable penetration probability. This will result in well-separated

phases of different nuclear “burning” during the star’s evolution.

18.2 Nuclear Cross Sections

Consider a reaction of the nucleusX with the particle a by which the nucleus Y and

the particle b are formed:

a CX ! Y C b ; (18.10)

represented by the notation X(a, b)Y. The reaction probability depends on nuclear

details, some of which can be illustrated with the following simplified description.

After penetration of the Coulomb barrier, an excited compound nucleus C � may

form containing both original particles (The level of excitation is dependent on the

kinetic energy and binding energy brought along by the newly added particle.). C �

may decay after a short time, which will still be long enough for the added nucleons

to “forget”–owing to interactions within the compound nucleus–their history, a

process for which only � 10�21 s is necessary. The decay then depends only on

the energy. C � can generally decay via one of several “channels” of different

probability: C � ! X C a;! Y1 C b1;! Y2 C b2; : : : ;! C C 
 . The first of

these would be the reproduction of the original particles, while the last indicates a

decay with 
 -ray emission; the others are particle decays where the b1; b2; : : : may

be, for example, neutrons, protons, and ˛ particles. Compared to these, a decay
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Fig. 18.3 Schematic sketch of energy levels in a compound nucleus C� formed by particles X

and a. The zero of E is here taken as corresponding to zero velocity of X and a at infinity. For

initial particle energy E1, the reaction would be non-resonant, while for E2, the particles X and

a find a resonance in the compound nucleus. Emin is the minimum excitation energy above the

ground level for particle emission

with electron emission has negligible probability (ˇ decay times being of order

1 s or larger). Outgoing particles will obtain a certain amount of kinetic energy,

which (just as the energy of emitted 
 rays) will be shared with the surroundings,

though an exception here are the neutrinos, which leave the star without interaction

(Sect. 18.7). The possibility that a given energy level of C � can decay via a certain

channel requires fulfilment of the conservation laws (energy, momentum, angular

momentum, nuclear symmetries).

It is very important to know the energy levels of the compound nucleus C �,

which can be of different types. LetEmin be the minimum energy required to remove

a nucleon from the ground state to infinity with zero velocity (to the level E D 0

in Fig. 18.3). This corresponds to the atom ionization energy discussed in Chap. 14.

Levels below Emin can obviously only decay by electromagnetic transitions with

the emission of 
 rays, which are relatively improbable, and hence their lifetime �

is large; these are “stationary” levels of small energy width � , since

� D „
�
; (18.11)

as follows from the Heisenberg uncertainty relation. These levels correspond to the

discrete, bound atomic states.

The compound nucleus will not, however, immediately expel a particle if its

energy is somewhat above Emin, since the sharp potential rise holds it back, at

least for some time. Eventually it can leave the potential well by the tunnelling

effect (which was, in fact, predicted by Gamow for explaining such outward escapes

of particles from radioactive nuclei). So there can be “quasi-stationary” levels

above Emin that have an appreciably shorter lifetime � (and are correspondingly

wider) than those below Emin, since they can also decay via the much more

probable particle emission. This probability will clearly increase strongly with

increasing energy, which results in corresponding decreases of � and increases
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Fig. 18.4 Sketch of the

reaction cross section � over

the energy E of the relative

motion of the reacting

particles, with resonances at

E1 and E2

of � , see (18.11). Above a certain energy Emax the width � will become larger

than the distance between neighbouring levels, and their complete overlap yields a

continuum of energy states, instead of separated, discrete levels.

The possible existence of quasi-stationary levels above Emin requires particular

attention. Consider an attempt to produce the compound nucleus C � by particles

XCa with gradually increasing energyE of their relative motion at large distances.

The reaction probability will simply increase with the penetration probability (18.9),

if E is in a region either without quasi-stationary levels or between two of them. If,

however, E coincides with such a level, the colliding particles find a “resonance”

and can form the compound nucleus much more easily. At such resonance energies

Eres, the probability for a reaction (and hence the cross section �) is abnormally

enhanced, as sketched in Fig. 18.4, with resonant peaks rising to several powers of

ten above “normal”. The energy dependence of the cross section therefore has a

factor which has the typical resonance form:

�.E/ D constant
1

.E � Eres/2 C .� =2/2
: (18.12)

At a resonance, the cross section � for the reaction of particles X and a can nearly

reach its maximum value (geometrical cross section), given by quantum mechanics

as ��-2, where �- is the de Broglie wavelength associated with a particle of relative

momentum p:

�- D „
p

D „
.2mE/1=2

: (18.13)

Here the non-relativistic relation between p and E is used, and m is the reduced

mass of the two particles. The meaning of ��-2 is clear because according to quantum

mechanics, the particles moving with momentum p “see” each other not as a precise

point but smeared out over a length �-. The dependence of � on E can now be seen

from the relation

�.E/ � ��-2P0.E/�.E/ ; (18.14)

where �- is given by (18.13). For E values well below the Coulomb barrier,

P0 can be taken from (18.9) with a pre-factor p0 DE
1=2
Coul.r0/ expŒ32mZ1Z2e

2r0=

„2/1=2�. In the range of a single resonance, �.E/ is given by (18.12), while far



182 18 Nuclear Energy Production

away from any resonances, � ! 1. In any case, with or without resonances, �

is proportional to �-2P0, which depends on E as shown by (18.9) and (18.13).

Therefore one usually writes

�.E/ D SE�1e�2�� ; (18.15)

where all remaining effects are contained within the here-defined “astrophysical

factor” S. This factor contains all intrinsic nuclear properties of the reaction under

consideration and can, in principle, be calculated, although one rather relies on

measurements.

The difficulty with laboratory measurements of S.E/–if they are possible at all–

is that, because of the small cross sections, they are usually feasible only at rather

high energies, say above 0.1 MeV, but this is still roughly a factor 10 larger than

those energies which are relevant for astrophysical applications. Therefore one has

to extrapolate the measured S.E/ downwards over a rather long range of E . This

can be done quite reliably for non-resonant reactions, in which case S is nearly

constant or a very slowly varying function of E [an advantage of extrapolating

S.E/ rather than �.E/�. The real problems arise from (suspected or unsuspected)

resonances in the range over which the extrapolation is to be extended. Then

the results can be quite uncertain. Only in underground laboratories, where the

experiments are shielded from cosmic rays by hundreds of meters of solid rock,

it is sometimes possible to measure the nuclear cross sections of at least a few

nuclear reactions at energies as low as 10–30 keV, i.e. at energies relevant for nuclear

processes in stellar interiors. The first such measurement was done by Junker et al.

(1998) in the Gran Sasso Laboratory and concerned the 3He.3He; 2p/4He reaction

(18.62) of the hydrogen burning chains (Sect. 18.5.1). Such experiments sometimes

lead to the discovery of resonances, but more importantly reduce the uncertainties

of the cross sections considerably, and confirm the near constancy of S.E/ at the

relevant energies.

18.3 Thermonuclear Reaction Rates

Let us denote the types of reacting particles, X and a, by indices j and k

respectively. Suppose there is one particle of type j moving with a velocity v relative

to all particles of type k. Its cross section � for reactions with the k sweeps over a

volume �v per second. The number of reactions per second will then be nk�v if

there are nk particles of type k per unit volume. For nj particles per unit volume the

total number of reactions per units of volume and time is

Qrjk D njnk�v : (18.16)

This product may also be interpreted by saying that njnk is the number of pairs

of possible reaction partners, and �v gives the reaction probability per pair and
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second. This indicates what we have to do in the case of reactions between identical

particles .j D k/. Then the number of pairs that are possible reaction partners is

nj .nj � 1/=2 � n2j =2 for large particle numbers. This has to replace the product

njnk in (18.16) so that we can generally write

Qrjk D 1

1C ıjk
njnk�v ; ıjk D

�
0; j ¤ k

1; j D k
: (18.17)

Now we have to allow for the fact that particles j and k do not move relatively

to each other with uniform velocities, which is important since � depends strongly

on v. Excluding extreme densities (as, e.g. in neutron stars) we can assume that

both types have a Maxwell–Boltzmann distribution of their velocities. It is then

well known that also their relative velocity v is Maxwellian. If the corresponding

energy is

E D 1

2
mv2 (18.18)

with the reduced mass m D mjmk=.mj C mk/, the fraction of all pairs contained

in the interval [E;E C dE] is given by

f .E/dE D 2p
�

E1=2

.kT /3=2
e�E=kT dE : (18.19)

This fraction of all pairs has a uniform velocity and contributes the amount drjk D
Qrjkf .E/dE to the total rate. The total reaction rate per units of volume and time is

then given by the integral
R
drjk over all energies, which formally can be written as

rjk D 1

1C ıjk
njnkh�vi ; (18.20)

where the averaged probability is

h�vi D
1Z

0

�.E/vf .E/dE : (18.21)

Let us replace the particle numbers per unit volume ni by the mass fraction Xi with

Xi% D nimi ; (18.22)

cf. (8.2). If the energy Q is released per reaction, then (18.20) gives the energy

generation rate per units of mass (instead of unit volume; obtained by dividing by %)

and time:

"jk D 1

1C ıjk

Q

mjmk

%XjXkh�vi : (18.23)
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Fig. 18.5 The Gamow peak

(solid curve) as the product of

Maxwell distribution

(dashed) and penetration

factor (dot-dashed). The

hatched area under the

Gamow peak determines the

reaction rate. All three curves

are on different scales

Using (18.9), (18.15), (18.18) and (18.19) in (18.21), the average cross section h�vi
can be written as

h�vi D 23=2

.m�/1=2
1

.kT /3=2

1Z

0

S.E/e�E=kT�N�=E1=2dE ; (18.24)

where

N� D 2��E1=2 D �.2m/1=2
ZjZke

2

„ : (18.25)

A further evaluation of h�vi requires a specification of S.E/. We shall limit

ourselves to the simplest but for astrophysical applications very important case of

non-resonant reactions. Then we can set S.E/ � S0 D constant, and take it out

of the integral (18.24), since only a small interval of E will turn out to contribute

appreciably. The remaining integral may be written as

J D
1Z

0

ef .E/dE ; with f .E/ D � E

kT
� N�
E1=2

: (18.26)

The integrand is the product of two exponential functions, one of which drops

steeply with increasing E , while the other rises. The integrand will therefore

have appreciable values only around a well-defined maximum (see Fig. 18.5), the

so-called Gamow peak. This maximum occurs at E0, where the exponent has a

minimum. From the condition f 0 D 0, where f 0 is the derivative with respect to E ,

one finds

E0 D
�
1

2
N�kT

�2=3
D
��m
2

�1=2
�
ZiZke

2kT

„

�2=3
: (18.27)
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It is usual to introduce now a quantity � defined by

� D 3
E0

kT
D 3

�
�
� m

2kT

�1=2 ZjZke2
„

�2=3
(18.28)

and to represent f .E/ near the maximum by the series expansion

f .E/ D f0 C f 0
0 � .E �E0/C 1

2
f 00
0 � .E � E0/

2 C � � �

D �� � 1

4
�

�
E

E0
� 1

�2
C � � � ; (18.29)

from which we retain only these two terms (the linear term vanishes since f 0
0 D 0 at

the maximum). Their substitution in (18.26) means to approximate the Gamow peak

of the integrand by a Gaussian, as will become particularly clear when we transform

J to the new variable of integration � D .E=E0 � 1/
p
�=2:

J D
1Z

0

exp

"
�� � �

4

�
E

E0
� 1

�2#
dE D 2

3
kT �1=2e��

1Z

�
p
�=2

e��2d� : (18.30)

The main contribution to J comes from a range close to E D E0, i.e. � D 0, so that

no large errors are introduced when extending the range of integration to �1, the

integral over the Gaussian becoming
p
� .

We then have

J � kT
2

3
�1=2�1=2e�� ; (18.31)

and for non-resonant reactions (18.24) becomes

h�vi D 4

3

�
2

m

�1=2
1

.kT /1=2
S0�

1=2e�� : (18.32)

From (18.28) one has .kT /�1=2 � �3=2; hence the kT can be substituted in (18.32),

which then gives h�vi � �2e�� .
The properties of the Gamow peak are so important that we should inspect some

of them a bit further. In order to have convenient numerical values, we count the

temperature in units of 107 K (which is typical for many stellar centres) and denote

this dimensionless temperature by T7 D T=107 K or generally

Tn WD T

10n K
: (18.33)
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We then have the following relations (some of which will be derived below):

W D Z2
jZ

2
kA D Z2

jZ
2
k

AjAk

Aj C Ak
;

� D 19:721W 1=3T
�1=3
7 ;

E0 D 5:665 keV �W 1=3T
2=3
7 ;

E0

kT
D �

3
D 6:574W 1=3T

�1=3
7 ;

�E D 4:249 keV �W 1=6T
5=6
7 ;

�E

E0
D 4.ln 2/1=2��1=2 D 0:750W �1=6T 1=67 ;

� D @ lnh�vi=@ lnT D .� � 2/=3 D 6:574W 1=3T
�1=3
7 � 2=3 : (18.34)

The value of W is determined by the reaction partners and is at least of order

unity. Large W discriminates against the reactions of heavy nuclei so much that

only the lighter nuclei can react with appreciable rate. The Gamow peak occurs as

a compromise in the counteraction between Maxwell distribution and penetration

probability with a maximum at E D E0, which is roughly 5–100 times the average

thermal energy kT. This “effective stellar energy range” is, on the other hand, far

below the &100 keV available to most laboratory experiments. With increasing T;

E0 increases moderately, while the maximum height of the peakH0 D e�� increases

very steeply owing to the decreasing � .

The width of the effective energy range is described by �E, which is the full

width of the Gamow peak at half maximum (see Fig. 18.5), i.e. between the points

with height 0.5 e�� . Equating this to the integrand in the first form of (18.30), we

obtain

�E

E0
D 4

.ln 2/1=2

�1=2
: (18.35)

According to (18.34), this is always below unity, and therefore one has a well-

defined energy range in which the reactions occur effectively. With �E increasing

with T only slightly more than E0, the relative form of the peak remains nearly

constant.

The most striking feature of thermonuclear reactions is their strong sensitivity to

the temperature. In order to demonstrate this, one represents the T dependence of

h�vi (and thus of rjk and "jk) around some value T D T0 by a power law such as

h�vi D h�vi0
�
T

T0

��
; � D @ lnh�vi

@ ln T
: (18.36)
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From (18.28) we have � �T �1=3, and then from (18.32) h�vi �T �2=3e�� .
Therefore

lnh�vi D constant � 2

3
ln T � � ; (18.37)

and

@ lnh�vi
@ lnT

D �2
3

� @�

@ lnT
D �2

3
� � @ ln �

@ lnT
: (18.38)

Since � � T �1=3, we have @ ln �=@ lnT D �1=3, so that finally

� � @ lnh�vi
@ lnT

D �

3
� 2

3
; (18.39)

where for most reactions �=3 is much larger than 2/3 and � � �=3. Then � decreases

with T as � � T �1=3. From (18.34) we see that even for reactions between the

lightest nuclei, � � 5, and it can easily attain values around (and even above)

� � 20. With such values for the exponent (!) of T , the thermonuclear reaction rate

is about the most strongly varying function treated in physics, and this temperature

sensitivity has a clear influence on stellar models. Also, since small fluctuations

of T (which will certainly be present) must result in drastic changes in the energy

production, we have to assume that there exists an effective stabilizing mechanism

(a thermostat) in stars (Sect. 25.3.5).

We may easily see how the large � values are related to the change of the Gamow

peak with T : the value h�vi is proportional to the integral J in (18.30), and this is

given by the area under the Gamow peak, which is roughly J � �E �H0.H0 D e��

is the height of the peak). According to (18.34), �E � T 5=6, while H0 increases

strongly with T . In fact it is this height H0 which provides the exponential e�� in

the expressions for h�vi and is therefore responsible for the large values of �.

We should briefly mention a few corrections to the derived formulae for the

reaction rates. The first concerns inaccuracies made by evaluating the integral

in (18.24) with constant S and with an integrand approximated by a Gaussian. This

is usually corrected for by multiplying h�vi with a factor

gjk D 1C 5

12�
C S 0

S
E0

�
1C 105

36�

�
C 1

2

S 00

S
E2
0

�
1C 267

36�

�
; (18.40)

where S and its derivatives with respect to E have to be taken at ED 0 (Eq.

(17.206b) in Weiss et al. 2004, p. 601).

Another correction factor, fjk , allows for a partial shielding of the Coulomb

potential of the nuclei, owing to the negative field of neighbouring electrons. This

plays a role only at very high densities; it will be treated separately in Sect. 18.4.

Concerning resonant reactions we shall only remark that the situation depends

very much on the location of the resonance. For example, the integral in (18.24)

can be dominated by a strong peak at the resonance energy. However, once S.E/ is

given, (18.24) can in principle always be evaluated.
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18.4 Electron Shielding

We have seen that the repulsive Coulomb forces of the nucleus play a decisive role

in controlling the rate of thermonuclear reactions. Therefore any modification of

its potential by influences from the outside can have an appreciable effect on these

rates. An obvious effect to be considered comes from the surrounding free electrons.

It is clear that beyond a certain distance an approaching particle will “feel” a neutral

conglomerate of the target nucleus plus a surrounding electron cloud rather than the

isolated charge of the target nucleus.

The first step is to consider the polarization that the nucleus of charge CZe
produces in its surrounding. The electrons of charge �e are attracted and have a

slightly larger density ne in the neighbourhood of the nucleus; the other ions are

repelled and have a slightly decreased density ni in comparison with their average

values Nne and Nni (without electric fields present). For non-degenerate gases the

density of particles with charge q is modified in the presence of an electrostatic

potential � according to

n D Nne�q�=kT : (18.41)

In most normal cases one will find jq�j �kT and can then approximate the

exponential by 1 � q�=kT . For ions and electrons, (18.41) now yields

ni D Nni
�
1 � Zie�

kT

�
; ne D Nne

�
1C e�

kT

�
; (18.42)

which shows directly the decrease (ions) and increase (electrons) of the two

densities.

Considering the ni for all types of ions present in the gas mixture, one can

immediately write down the total charge density � . For � D 0 one must have a

neutral gas, with N� D 0, i.e.

N� D
X

i

.Zie/ Nni � e Nne D 0 ; (18.43)

whereas for non-vanishing � we have

� D
X

i

.Zie/ni � ene

D
X

i

� .Zie/
2�

kT
Nni � e2�

kT
Nne : (18.44)

Here we have already inserted (18.42) and made use of (18.43) to eliminate the

�-independent terms. The second expression (18.44) suggests that we combine the

two terms and write
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� D ��e
2�

kT
n ; (18.45)

where we have introduced the total particle density n D ne C
P

i ni and the average

value �:

� WD 1

n

 X

i

Z2
i Nni C Nne

!
: (18.46)

If one wishes to use the mass fractionXi D Ai Nni=n� .� D mean molecular weight

per free particle, see Sect. 4.2, (4.27)) instead of the particle numbers, the expression

follows simply as

� D �� D �
X

i

Zi .Zi C 1/

Ai
Xi : (18.47)

The charge density � and the electrostatic potential � are also connected by the

Poisson equation

r2� D �4�� : (18.48)

If we assume spherical symmetry for the charge distribution surrounding the nucleus

under consideration, the Laplace operator r2 then reduces to its well-known radial

part. Introducing � from (18.45) on the right-hand side of (18.48), the Poisson

equation becomes

r2D
r

d 2.r�/

dr2
D � ; (18.49)

where we have scaled the distance r by the so-called Debye–Hückel length

rD D
�

kT

4��e2n

�1=2
: (18.50)

One readily verifies that (18.49) is solved by

� D Ze

r
e�r=rD ; (18.51)

and this shows that � tends to the normal (unshielded) potential Ze=r of a point

charge Ze for small distances, r ! 0, while we have an essential reduction of this

“normal” potential at distances r & rD. In a certain sense we can call rD the “radius”

of the electron cloud that envelopes the nucleus and shields part of its potential for

an outside viewer.

The values of � in (18.47) are of order unity. For T D 107 K and % between

1 and 102 g cm�3, rD has typical values of 10�8 � � � 10�9 cm. In order to judge the

influence of the shielding on nuclear reactions between nuclei of types 1 and 2, we

should compare rD with the closest distance rc0 to which the particles can classically

approach each other if their energy is that of the Gamow peakE0 [given by (18.27)].

These particles will be the most effective ones for the energy production. According
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to (18.7) one has rc0 D Z1Z2e
2=E0, and convenient numerical expressions for E0

are given in (18.34). We then find

rD

rc0

� 200
E0

Z1Z2

�
T7

�%

�1=2
; (18.52)

whereE0 is in keV and % in g cm�3. With rough values for the solar centre, T7 � 1,

% � 102 g cm�3, � � 1, and for the most important hydrogen reactions, we have

Z1Z2 D 1 : : : 7 and E0 � 5 : : : 20 keV; hence (18.52) gives rD=rc0 � 50 : : : 100.

For all such “normal” stars, rD � rc0, which means that the incoming particle even

classically (without the tunnelling effect) penetrates nearly the entire electron cloud

and the shielding will have little effect at these critical distances.

The decrease of the Coulomb interaction energy ECoul increases the probability

P0 for tunnelling through the Coulomb wall. The decisive exponent � in P0 [(18.9)

and the following] is determined by the function ECoul � E . The energy ECoul is

now reduced according to (18.51) by the factor exp.�r=rD/, which is to a first

approximation 1 � r=rD for r=rD � 1.

This gives

ECoul � E � Z1Z2e
2

r
e�r=rD � E � Z1Z2e

2

r
� Z1Z2e

2

rD

� E ; (18.53)

which shows that we will obtain the same result as without shielding, but with an

enlarged energy:

QE D E C Z1Z2e
2

rD

D E C ED : (18.54)

In order to see the influence on simple non-resonant reaction rates, consider the

integrand in (18.21) and replace �.E/ by �. QE/. With (18.15) and (18.19) and Q� D �

.E= QE/1=2, we have the proportionality

�. QE/vf .E/ � . QE�1e�2� Q�/E1=2.E1=2e�E=kT /

�
�
1 � ED

QE

�
eED=kT� QE=kT�2� Q� : (18.55)

We assume here thatED=kT � 1, which is usually called the case of “weak screen-

ing”. Considering the fact that only a small range of E at values much larger than

kT contributes essentially to h�vi, we may as well neglect the factor (1 � ED= QE)

in (18.55) and integrate over QE instead ofE . The main change is then the additional

constant exponentED=kT such that h�vi is multiplied by a “screening factor”

f D eED=kT ; (18.56)
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which increases h�vi, sinceED is positive. For weak screening we have numerically

ED

kT
D Z1Z2e

2

rDkT
D 5:92 � 10�3Z1Z2

�
�%

T 37

�1=2
; (18.57)

with % in g cm�3. For � � 1; % D 1 g cm�3, and T7 D 1, reactions with Z1Z2 . 16

require correction factors f , which increase the rate by less than 10 %.

Where very large densities are involved, however, one will leave the regime of

weak screening. For ED=kT & 1, the treatment is much more complicated, and the

limiting case of “strong screening” is described approximately by

ED

kT
� 0:0205Œ.Z1 CZ2/

5=3 �Z5=3
1 �Z

5=3
2 �

.%=�e/
1=3

T7
; (18.58)

with the molecular weight per free electron �e D .
P
XiZi=Ai/

�1, see (4.29), and

% in g cm�3.
Equations (18.57) and (18.58) show that the screening factor f increases

appreciably for increasing % and decreasing T: While f was a minor correction

factor to the rate for “normal” stars with weak screening, the situation changes

completely in the high-density, low-temperature regime, where screening becomes

the dominating factor in the reaction rate.

Consider the shielded reaction rate as represented by

f h�vi D f0h�vi0
�
%

%0

�� �
T

T0

��
(18.59)

in the neighbourhood of %0; T0. In a similar manner to the derivation of � for the

unshielded case in (18.36)–(18.39), we find now that

� D �

2
� 2

3
� ED

kT
I � D 1C 1

3

ED

kT
: (18.60)

For very high densities and moderate to low temperatures (say %> 106 g cm�3;
T >107 K), the temperature sensitivity � decreases, while the density sensitivity �

becomes larger. This can be seen from Fig. 18.6, where the line of constant 12C–12C

burning turns steeply down for large %. Finally, the reaction rates now depend

mainly on the density (instead of the temperature) and one speaks of “pycnonuclear

reactions”. For 12C burning in a pure 12C plasma, (18.60) gives the transition � D �

at T7 D 10 for % D 1:60 � 109 g cm�3.
Pycnonuclear reactions can play a role in very late phases of stellar evolution,

where a burning may be triggered by a compression without temperature increase,

and they can provide a certain amount of energy release even in cool stars, if only the

density is high enough. Of course, other effects, such as the decrease of the mobility

of the nuclei because of crystallization, must then also be considered.
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Fig. 18.6 A line of constant

energy generation rate

".D104 erg g�1 s�1/ for the
12CC12C burning in a

diagram showing the

temperature T (in K) over the

density % (in g cm�3/. The

temperature sensitivity � and

the density sensitivity � are

equal where the slope is �1

18.5 The Major Nuclear Burning Stages

Although no chemical reactions are involved, one usually calls the thermonuclear

fusion of a certain element the “burning” of this element. Owing to the properties of

thermonuclear reaction rates, different burnings are well separated by appreciable

temperature differences. A review of the cross sections for all possible reactions

in the major burning stages shows that only very few reactions occur with non-

negligible rates during a certain phase. The most important ones will be listed below.

Their important properties, such as the astrophysical factors S0, correction factors

to (18.32), or energy release Q, can be found in the literature (e.g. Caughlan and

Fowler 1988; Harris and Fowler 1983; Adelberger et al. 2011; Angulo et al. 1999).

TheQ values usually contain all of the energy made available to the stellar matter

by one such reaction. This includes the energies of the 
 rays that are either directly

emitted or created by pair annihilation after eC emission. Excluded, however, is the

energy carried away by neutrinos, since they normally do not interact with the stellar

material.

A whole “network” of all simultaneously occurring reactions (8.7) has to be

calculated if one is interested in details such as the isotopic abundances produced

by the reactions or if the star changes on a timescale comparable with that of one of

the reactions. The total " is then obtained as a sum of (18.23) over all reactions, and

one has to ensure the correct bookkeeping of the changing abundances of all nuclei

involved. We have encountered nuclear reaction networks also in Sect. 12.3.

If one is interested only in the energy production, often, a much simpler

procedure suffices in which only the rate for the slowest of a chain of subsequent

reactions is calculated, since it determines essentially the rate of the whole fusion

process. An example of such a “bottleneck” is the 14N reaction in the CNO cycle

(see below). Then (18.23) has to be used for this reaction, but with Q equal to the

sum of all energies released in the single reactions.

In this section, all formulae for "will be given in units of erg g�1s�1, % in g cm�3,
and T in the dimensionless form Tn D T=10n K. As usual we denote byXj the mass

fraction of nuclei with mass number A D j .
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18.5.1 Hydrogen Burning

The net result of hydrogen burning is the fusion of four 1H nuclei into one 4He

nucleus. The difference in binding energy is almost exactly 27.0 MeV, correspond-

ing to a mass defect of about 0.7 per cent. This is roughly 10 times the energy

liberated in any other fusion process, though not all of this energy is available to

stellar matter. The fusion requires the transformation of two protons into neutrons,

i.e. two ˇC decays, which must be accompanied by two neutrino emissions

(conservation of lepton number). The neutrinos carry away 2 : : : 30 per cent of the

whole energy liberated, the amount depending strongly on the reaction in which

they are emitted.

There are different chains of reactions by which a fusion process can be

completed and which in general will occur simultaneously in a star. The two main

series of reactions are known as the proton–proton chain and the CNO cycle.

The proton–proton chain (pp chain) is named after its first reaction, between two

protons forming a deuterium nucleus 2H, which then reacts with another proton to

form 3He:

1H C 1H ! 2H C eC C � ;

2H C 1H ! 3He C 
 : (18.61)

The first of these reactions is unusual in comparison with most other fusion

processes. In order to form 2H, the protons have to experience a ˇC decay at the

time of their closest approach. This is a process governed by the weak interaction

and is very unlikely. Therefore the first reaction has a very small cross section.

The completion of a 4He nucleus can proceed via one of three alternative

branches (pp1, pp2, pp3) all of which start with 3He. The first alternative requires

two 3He nuclei, i.e. the reactions in (18.61) have first to be completed twice. The

other alternatives require that 4He already exists (either it is present because of its

primordial abundance, or because it was already produced earlier by this burning

process). The branching between pp2 and pp3 exists, since 7Be can react either with

e� or with 1H. All possibilities can be seen from the following scheme:

(18.62)
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Owing to the different energies carried away by the neutrinos, the energies

released to the stellar matter differ for the three chains. They are QD 26:50.pp1),

25.97(pp2), and 19.59(pp3), in MeV per produced 4He nucleus. For each quantity

Q released, the first two reactions of (18.61) have to be performed only once in the

pp2 and pp3 branches.

Three reactions in (18.62) release neutrinos, which are given names according to

the element being processed in these reactions: pp-, 7Be-, and 8B-neutrinos. If they

are the only lepton emitted, then their energy is well defined. The 7Be-neutrinos

carry away 0.863 MeV in 90 % of the reactions, and 0.386 MeV in the remaining

10 %, depending on the energy state of 7Li produced. If the neutrinos are emitted

along with a positron (eC), the two leptons share the energy, and a spectrum of

neutrino energies results. The upper limits are 0.423 MeV for the pp-neutrinos and

15 MeV for those of the 8B reaction. The average values are 0.267 and 6.735 MeV

respectively.

The relative frequency of the different branches depends on the chemical com-

position, the temperature, and the density. The 3He–4He reaction has a 14 % larger

reduced mass, a 4.6 % larger � , and thus a slightly larger temperature sensitivity

� than the 3He–3He reaction, cf. (18.34) and (18.39). With increasing T, pp2 and

pp3 will therefore dominate more and more over pp1 (say above T7 � 1) if 4He is

present in appreciable amounts. And with increasing T , the relative importance will

gradually shift from the electron capture (pp2) to the proton capture (pp3) of 7Be.

The energy generation in the pp chain should be calculated at small T (say below

T6 � 8) by calculating all single reactions and their influence on the nuclei involved.

For larger T , there will be an equilibrium abundance established for these nuclei

(equal rates of consumption and production) and one can simply take the whole "pp

as proportional to that of the pp1 branch, which in turn may be calculated from the

rate of the first reaction 1H + 1H:

"pp D 2:57 � 104 f11g11%X2
1T

�2=3
9 e�3:381=T 1=39 ;

g11 D .1C 3:82T9 C 1:51T 29 C 0:144T 39 � 0:0114T 49 / ; (18.63)

where "pp and % are in cgs and f11 is the shielding factor for this reaction. The factor

 corrects for the additional energy generation in the branches pp2 and pp3 if there

is appreciable 4He present (see Fig. 18.7). For gradually increasing T; starts with

the value 1 and can then increase to values close to 2 (at T7 � 2), at which point

pp2 takes over, since then each 1H–1H reaction gives one 4He (compared to every

second such reaction in the branch pp1). After this maximum,  decreases again to

about 1.5 where pp3 has taken over owing to its Q being much smaller than those

of the other branches.

The formulation of the energy generation " as given in (18.63) is an analytical

fit to measured and tabulated values, based on T -dependences of non-resonant

reactions and resonances. They may vary from group to group; the one used here is

taken from Angulo et al. (1999).
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Fig. 18.7 The correction  

for "pp as a function of T7, for

three different helium

abundances (After Parker

et al. 1964)

The temperature sensitivity of the pp chain is the smallest of all fusions. At

T6 D 5, we have � � 6, which decreases to 3.5 at T6 � 20.

The CNO cycle is the other main series of reactions in hydrogen burning. It

requires the presence of some isotopes of C, N, or O, which are reproduced in a

manner similar to catalysts in chemical reactions. The sequence of reactions can be

represented as follows:

(18.64)

The main cycle (CNO-I; upper 6 lines of this scheme) is completed after the

initially consumed 12C is reproduced by 15N C 1H. This reaction shows a branching

via 16O into a secondary cycle (CNO-II; connected with the main cycle by dashed

arrows), which is, however, roughly 103 times less probable. Its main effect is that

the 16O nuclei originally present in the stellar matter can also take part in the cycle,

since they are finally transformed into 14N by the last three reactions of (18.64).

The decay times for the ˇC decays are of the order of 102 : : : 103 s. As usual, a

network of all simultaneous reactions has to be calculated for lower temperatures,

rapid changes, or if a detailed knowledge about the abundances of all nuclei involved

is desired.

As in the case of the pp chains, two protons have to be converted in effect to

neutrons in the process, which will release two neutrinos per new helium nucleus.
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Fig. 18.8 Total energy

generation rate "H

(in erg g�1 s�1/ for hydrogen

burning (solid line) over the

temperature T (in K), for

% D 1 g cm�3, X1 D 1, and

XCNO D 0:01. The

contributions of the pp chain

and the CNO cycle are

dashed

The 13N-, 15O-, and 17F-neutrinos of the CNO-cycles have all energy spectra with

an upper limit between 1.1 and 1.7 MeV, and an average energy of 0.706, 0.996, and

0.998 MeV.

Most stars change slowly enough that, for sufficiently high temperature (say

T7 & 1:5), the nuclei involved in the cycle reach their equilibrium abundance (i.e.

the rate of production equals that of consumption). Then it suffices to calculate

explicitly only the slowest reaction, which is 14NC1H and which essentially controls

the time for completing the cycle. "CNO will then be given by the rate of this reaction

and by the energy gain of the whole cycle, which is 24.97 MeV. This slowest

reaction acts like a bottleneck where the nuclei involved are congested in their

“flow” through the cycle. Nearly all of the initially present C, N, and O nuclei will

therefore be found as 14N, waiting to be transformed to 15O. The energy generation

rate can be written as (using again the cross section from Angulo et al. 1999 but

dropping additional terms important for higher temperatures for simplicity)

"CNO D 8:24 � 1025g14;1XCNOX1%T
�2=3
9 e.�15:231T

�1=3
9 �.T9=0:8/2/ ;

g14;1 D .1 � 2:00T9 C 3:41T 29 � 2:43T 39 / ; (18.65)

where "CNO and % are in cgs. XCNO is the sum of XC; XN, and XO . The temperature

sensitivity � is much higher here than in the pp chain. For T6 D 10 : : : 50, we find

�� 23 : : : 13. This has the consequence that the pp chain dominates at low temper-

atures (T6<15), while it can be neglected against "CNO for higher temperatures (see

Fig. 18.8). Hydrogen burning normally occurs in the range T6 � 8 : : : 50, since at

larger T , the hydrogen is very rapidly exhausted.
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18.5.2 Helium Burning

The reactions of helium burning consist of the gradual fusion of several 4He into
12C, 16O, : : : . This requires temperatures of T8 & 1, i.e. appreciably higher than

those for hydrogen burning, because of the higher Coulomb barriers.

The first and key reaction is the formation of 12C from three 4He nuclei, which is

called the triple ˛ reaction (or 3˛ reaction). A closer look shows that it is performed

in two steps, since a triple encounter is too improbable:

4He C 4He � 8Be ;

8Be C 4He ! 12C C 
 : (18.66)

In the first step, two ˛ particles temporarily form a 8Be nucleus. Its ground state is

nearly 100 keV higher in energy and therefore decays back into the two ˛’s after a

few times 10�16 s. This seems to be a very short time at a first glance, but it is roughly

105 times larger than the duration of a normal scattering encounter. The probability

for another reaction occurring during this time is correspondingly enhanced. In

fact the lifetime of 8Be is sufficient to build up an average concentration of these

nuclei of about 10�9 in the stellar matter. The high densities then ensure a sufficient

rate of further ˛ captures that form 12C nuclei [the second step in (18.66)]. Both

these reactions are complicated owing to the involvement of resonances. The energy

release per 12C nucleus formed is 7.274 MeV. This gives an energy release per unit

mass that is 10.4 times smaller than in the case of the CNO cycle (where only four

instead of 12 nucleons are processed): E3˛ D 5:8 � 1017 erg g�1. The resulting

energy generation rate is

"3˛ D 5:09 � 1011f3˛%2X3
4T

�3
8 e�44:027=T8 (18.67)

(" and % in cgs), with the screening factor f3˛ . (18.67) is based on an older,

simplified analytical fit of h�vi by Caughlan and Fowler (1988). A more recent

one, taken from the compilation by Angulo et al. (1999), has more terms, reflecting

the effect of the several resonances involved:

"3˛ D 6:272%2X3
4 � .1C 0:0158T�0:65

9 /

�
h
2:43 � 109T �2=3

9 exp
�
�13:490T�1=3

9 � .T9=0:15/
2
�

� .1C 74:5T9/

C6:09 � 105T �3=2
9 exp.�1:054=T9/

i

�
h
2:76 � 107T �2=3

9 exp
�
�23:570T�1=3

9 � .T9=0:4/
2
�

� .1C 5:47T9 C 326T 29 /C 130:7T
�3=2
9 exp.�3:338=T9/

C2:51 � 104T �3=2
9 exp.�20:307=T9/

i
: (18.68)
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The two terms in square brackets in (18.68) come from the ˛ C ˛ and the

˛C8 Be steps of the 3˛-process; the first line contains also a conversion factor to go

from the mean cross section to the energy production rate according to (18.23). This

reaction has an enormous temperature sensitivity. For T8 D 1 : : : 2, (18.39) gives

� � 40 : : : 19!

Once a sufficient 12C abundance has been built up by the 3˛ reaction, further ˛

captures can occur simultaneously with (18.66) such that the nuclei 16O, 20Ne, : : :

are successively formed:

12C C 4He !16O C 
 ;

16O C 4He !20Ne C 
 ;

: : : (18.69)

In a typical stellar-interior environment, reactions going beyond 20Ne are rare.

The energy release per 12C(˛; 
 )16O reaction is 7.162 MeV, corresponding to

E12;˛ D 4:320 � 1017 erg g�1 of produced 16O (The whole formation of 16O from

the initial four ˛ particles has then yielded 8:71 � 1017 erg g�1.). This is a rather

complicated reaction. For moderate temperatures (up to a few 108 K), one may use

the following simple approximation:

"12;˛ D 1:3 � 1027f12;4X12X4 %T �2
8

 
1C 0:134T

2=3
8

1C 0:017T
2=3
8

!2
e�69:20=T 1=38 ; (18.70)

where " and % are in cgs. This reaction has been notoriously uncertain by factors

of 2 and 3 at stellar temperatures. This has severe consequences for the production

of carbon and even for the evolution of stars. The rate has been changed repeatedly

within this uncertainty range as a result of new measurements. Kunz et al. (2002)

provide the most recent analytical fit.

In each reaction 16O .˛; 
/ 20Ne, an energy of 4.73 MeV is released. The rate is

according to Angulo et al. (1999):

"16;˛ � X16X4%f16;4 � 1:91 � 1027T �2=3
9 exp

�
�39:760T�1=3

9 � .T9=1:6/
2
�

C3:64 � 1018T �3=2
9 exp.�10:32=T9/

C4:39 � 1019T �3=2
9 exp.�12:200=T9/

C2:92 � 1016T 2:9669 exp.�11:900=T9/ ; (18.71)

where " and % are in cgs; this rate is also very uncertain.

Summarizing, we can say that during helium-burning reactions, (18.66)

and (18.69) occur simultaneously, and the total energy generation rate is given

by "He D "3˛ C "12;˛ C "16;˛. If the initial 4He is transformed into equal amounts of
12C and 16O, then the energy yield is 7:28 � 1017 erg g�1.



18.5 The Major Nuclear Burning Stages 199

The general course of helium burning is always according to the following

scheme: initially, when burning sets in at temperatures around 108 K, the triple-

˛ reaction is dominating, both because of a larger cross section and of the

carbon and oxygen abundances, which are low in comparison to that of helium.

With progressing conversion of helium to carbon, the 12C(˛; 
 )16O becomes more

competitive. The increasing temperature is supporting this. When the helium content

gets low, the fact that the triple-˛ reaction is proportional to the third power of

the helium abundance disfavours it increasingly, such that the burning of carbon

is larger than its creation by triple-˛ reactions, and its abundance decreases again,

while simultaneously that of 16O increases. The final abundances of 12C and 16O will

thus depend on the competition between the reactions (18.69) and the exhaustion

of 4He particles. This depends mainly on the 12C(˛; 
 )16O rate: if it is higher, the

destruction of 12C will set in earlier and a higher O:C ratio will result. Overall,

the outcome of helium burning is O:C � 1:1–2:1. Neon production is comparably

unimportant.

18.5.3 Carbon Burning and Beyond

For a mixture consisting mainly of 12C and 16O (as would be found in the central

part of a star after helium burning), carbon burning will set in if the temperature

or the density rises sufficiently. The typical range of temperature for this burning is

T8 � 5 : : : 10.

Here (and in the following types of burning) the situation is already so difficult

that one often has to rely on rough approximations and guesses, or on complete

nuclear networks. The first complication is that the original 12CC12C reaction

produces an excited 24Mg nucleus, which can decay via many different channels

(the last column givesQ/1 MeV):

12C C 12C ! 24Mg C 
 ; 13:931

! 23Mg C n ; �2:605
! 23Na C p ; 2:238

! 20Ne C ˛ ; 4:616

! 16O C 2˛ ; �0:114

(18.72)

The relative frequency of the channels is very different, and depends also on the

temperature. The 
 decay (leaving 24Mg) is rather improbable, and the same is

true for the two endothermic decays (23Mg C n and 16O C 2˛). The most probable

reactions are those which yield 23NaCp and 20NeC˛. These are believed to occur

at about equal rates for temperatures that are not too high (say T9 < 3).

The next problem is that the produced p and ˛ find themselves at temperatures

extremely high for hydrogen and helium burning and will immediately react with

some of the particles in the mixture (from 12C up to 24Mg). They may even start
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whole reaction chains, such as 12C(p; 
 )13N(eC�)13C(˛; n)16O, where the neutron

could immediately react further. All these details would have to be evaluated

quantitatively in order to find the average energy gain and the final products. For

a rough guess one may assume that on average, Q � 13MeV are released per
12C–12C reaction (including all follow-up reactions). Then (Caughlan and Fowler

1988),

"CC � 1:86 � 1043fCC%X
2
12T

�3=2
9 T

5=6
9a

� expŒ�84:165=T 1=39a � 2:12 � 10�3T 39 � (18.73)

with " and % in cgs and with T9a D T9=.1C0:0396T9/. The screening factor fCC can

become important (see Fig. 18.6), since this burning can start in very dense matter.

The end products may be mainly 16O, 20Ne, 24Mg, and 28Si.

For oxygen burning, 16OC16O, the Coulomb barrier is already so high that the

necessary temperature is T9 & 1. As in the case of carbon burning, the reaction can

proceed via several channels:

16O C16O ! 32S C 
 ; 16:541

! 31P C p ; 7:677

! 31S C n ; 1:453

! 28Si C ˛ ; 9:593

! 24Mg C 2˛ ; �0:393

(18.74)

Most frequent is the p decay, followed by the ˛ decays. Again, all released p; n;

and ˛ are captured immediately, giving rise to a multitude of secondary reactions.

Among the end products, one will find a large amount of 28Si. For an average energy

Q � 16MeV released per 16OC16O reaction, the energy generation rate is roughly

"OO � 2:14 � 1053fOO%X
2
16T

�2=3
9

� exp.�135:93=T 1=39 � 0:629T 2=39 � 0:445T 4=39 C 0:0103T 29 / (18.75)

with " and % in cgs, and the screening factor fOO.

For T9 > 1, one also has to consider the possibility of photodisintegration of

nuclei that are not too strongly bound. Here the radiation field contains a significant

number of photons with energies in the MeV range, which can be absorbed by

a nucleus, breaking it up, for example, by ˛ decay. This is a complete analogue

of photoionization of atoms, and, in equilibrium, a formula equivalent to the Saha

formula [see (14.11)] holds for the number densities ni and nj of the final particles

(after disintegration), relative to the numbernij of the original (compound) particles:

ninj

nij
� T 3=2e�Q=kT ; (18.76)
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where Q is the difference in binding energies between the original nucleus and

its fragments. .Q corresponds to the ionization energy �; however, it is about

102 : : : 103 times larger because of the much stronger nuclear forces.) The pro-

portionality factor contains essentially the partition functions of the three types of

particles. Equilibrium is usually not reached, and the details are very complicated

and may differ from case to case, which is also true for the amount of energy

released or lost.

The photodisintegration itself is, of course, endothermic. But the ejected particles

.Xj / will be immediately recaptured. The capture can lead back to the original

nucleus Xij , i.e. the reaction would be Xij � Xi C Xj , or it can lead to quite

different, even heavier, nuclei Xjk that are more strongly bound than the original

one Xj C Xk ! Xjk. The latter case would be exothermic and can outweigh the

endothermic photodisintegration in the total energy balance.

An example is neon disintegration, which in stellar evolution occurs even before

oxygen burning:

20Ne C 
 !16O C ˛ ; Q D �4:73MeV : (18.77)

It dominates over the inverse reaction (known from helium burning) at T9 > 1:5.

The ejected ˛ particle reacts mainly with other 20Ne nuclei, yielding 24MgC
 . The

net result will then be the conversion of Ne into O and Mg:

2 20Ne C 
 ! 16O C24 Mg C 
 ; Q D C4:583MeV : (18.78)

Another example is the photodisintegration of 28Si, which may be the dominant

reaction at the end of oxygen burning. Near T9 � 3, 28Si can be decomposed by the

photons and eject n; p; or ˛. There follows a large number of reactions in which the

thereby created nuclei (e.g. Al, Mg, Ne) will also be subject to photodisintegration,

leading to the existence of an appreciable amount of free n; p; and ˛ particles. These

react with the remaining 28Si, thus building up gradually heavier nuclei, until 56Fe is

reached. Since 56Fe is so strongly bound, it may survive this melting pot as the only

(or dominant) species. So, forgetting all intermediate stages, we would ultimately

have the conversion of two 28Si into 56Fe, which can be called silicon burning.

For T9 & 5, photodisintegration breaks up even the 56Fe nuclei into ˛ particles

and thus reverses the effect of all prior burnings. Such processes can occur during

supernova explosions (see Chap. 36).

18.6 Neutron-Capture Nucleosynthesis

In Fig. 18.9 we show the solar abundances of elements. As on earth, we find all

elements from hydrogen to lead and uranium in the Sun. The nuclear burning we

discussed so far is able to produce only elements up to iron, since the creation of

elements heavier than the “iron peak” is endothermic, and the electrostatic repulsion
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Fig. 18.9 The abundances (particle number fractions) of elements in the Sun, normalized to a

value of 106 for 28Si

for charged particle reactions is increasing with nuclear charge. The various peaks

in this figure reflect the stability of isotopes against further addition of neutrons and

protons and are due to the structure of the nuclei, easily explained in the shell model

of nuclear physics. In particular isotopes with even and equal numbers of neutrons

and protons, such as 12C or 40Ca, are very stable and therefore more abundant than

neighbouring ones. If nuclear shells are closed, the stability is even higher, similar

to the noble gases in atomic physics. Such isotopes are called “magic nuclei” with

“magic” numbers of protons or neutrons. 16O is a “double-magic” nucleus.

During hydrostatic burning phases, the elements beyond the iron peak can be

produced only if other reactions with lighter nuclei provide enough energy and,

most easily, if the reactions are processing by the capture of neutrons, since they

are electrically neutral. Adding neutrons leads initially to heavier isotopes of the

same element, which become the more unstable the more neutrons they have. The

decay proceeds by emission of an electron, which is temperature-insensitive and

therefore is acting as a kind of nuclear clock. ˇ-decay times can reach from minutes

to millions of years, and are getting shorter with increasing neutron excess. The

decay leads to the creation of a new element of the same mass but with the charge

being increased by one.

The general sequence of reactions is therefore

.Z;A/C n ! .Z;AC 1/C 


.Z;AC 1/ ! .Z C 1;AC 1/C e� ; (18.79)

where the first reaction can be repeated several times, depending on the number

density of available neutrons n and the neutron-capture cross section. If the
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Fig. 18.10 Typical s-process reaction path in the nuclear chart, in the region of Cs and Ba.

The laboratory half-life time of the Cs isotopes is given. It can be appreciable shorter at stellar

temperatures. 134Cs and 136Cs are so-called branching points, and the relative abundances of

isotopes in the various branches allow conclusions about the temperature at the s-process site (after

Busso et al. 1999)

neutron-capture time is long compared to the ˇ-decay time, the process is called the

slow neutron-capture process or simply the s-process, and the reaction path remains

close to the line of ˇ-stability in the nuclear chart; if it is rapid, such that the first

reaction in (18.79) is repeated several times, it is called the r-process. Subsequent

neutron captures and ˇ-decays will lead to the creation of the heavy elements. The

astrophysical site for the r-process is not clearly identified, but is probably to be

found in supernova explosions or similar energetic events. The s-process is certainly

taking place in stars of intermediate mass (M � 2 � � � 5Mˇ) in an advanced phase of

evolution (Sect. 34.3). In the atmospheres of such stars, short-lived isotopes of heavy

elements (most importantly 99Tc with a half-life time of only 211,000 years) have

been found, which could only have been created in the stars themselves. Although

the s-process may drain energy from the star, it is in fact unimportant for the energy

budget and the structure of stars, mainly due to the extremely low abundances (see

Fig. 18.9) with respect to the elements participating in the burning stages discussed

earlier in this chapter. Figure 18.10 shows part of the s-process path in the Cs-Ba

region of the nuclear chart. 138Ba has a magic neutron number (82) and therefore is

very stable and abundant (Fig. 18.9).

The necessary condition for the s- and r-process is the presence of neutrons.

Since free neutrons are both unstable and are easily captured by other nuclei, a

constant source of neutron production is needed. Considering the burning phases

of Sect. 18.5, we realize that only protons and ˛-particles were involved. The

generation of neutrons is indeed a very rare event in a star’s life. However, in

Sect. 18.5.3, we already mentioned that during carbon burning, the various reaction

channels may lead to whole chains of subsequent reactions, one of them resulted

in 13C.˛; n/16O. Indeed, this is one of the two neutron sources identified, the other

being 22Ne.˛; n/25Mg, the end reaction of the sequence 14N.˛; 
/18O.˛; 
/22Ne,

which is operating at temperatures of about 4 � 108 K. Such temperatures are

encountered during helium burning in massive stars, where the neon source may

produce s-process elements.
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The alternative carbon source for neutrons apparently requires the simultaneous

presence of protons and ˛-particles as well as temperatures above 2 � 108 K for

the ˛-capture. However, at these temperatures, usually all protons are already burnt

to helium, and the amount of 13C is very low, since the overwhelming carbon

isotope is 12C from helium burning. The solution is to bring fresh hydrogen into

hot layers of freshly produced 12C but to keep the abundance of protons so low that

no further CNO processing to 14N is happening. Such a situation can be achieved

by complicated sequences of mixing processes between the helium-burning regions

of a star of intermediate mass and its hydrogen-rich envelope. We will discuss this

in Sect. 34.3. In full stellar models, the neutron densities achieved range from 106

to 1010 cm�3.
The neutron-capture cross section is inversely dependent on velocity (or temper-

ature):

� � 1

v
; (18.80)

therefore h�vi in (18.21) is actually close to a constant (�v) times the integral

over f .E/ and only slightly dependent on the stellar plasma temperature, except

for nuclei close to magic neutron numbers, where � may be lower by an order

of magnitude or more. It generally lies in the range of 100 to 1000 mb (1 b =

10�24 cm2).

We define

h�i WD h�.v/vi=vT ; (18.81)

where vT D .2kT=�n/
1=2 is the thermal velocity in the system of a nucleus A and

a neutron n, �n being the reduced mass of it. h�i corresponds approximately to the

cross section measured at that relative velocity. The rate equation for a nucleus with

mass A and density nA is then

dnA

dt
D �h�.v/viAnnnA C h�.v/viA�1nnnA�1 : (18.82)

With (18.81) this becomes

dnA

dt
D vT nn.��AnA C �A�1nA�1/ : (18.83)

Since the neutron density nn may vary with time, we define

d� D vT nn.t/dt; (18.84)

so we obtain

dnA

d�
D ��AnA C �A�1nA�1 : (18.85)

This equation is self-regulating: assume that initially nA is very small. Then nA will

grow due to the positive second term in (18.85). This will also increase the first
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term until the right-hand side vanishes and nA has reached a stationary value. The

abundances of A and A � 1 will therefore reflect the ratio of cross sections �A and

�A�1. The integral over d� ,

� D vT

Z
nn.t/dt; (18.86)

is called the neutron exposure and reflects the integrated flux of neutrons with

thermal velocities. Its dimension is that of an inverse area and typically of order

mb�1. It is the decisive quantity determining the overall abundances of elements

produced by neutron captures, and how far the s- or r-process can proceed. The

relative abundances of isotopes produced then reflect the cross section � .

The synthesis of neutron-capture elements has to be computed with huge nuclear

networks consisting of hundreds of isotopes and even more reactions. Simplified

models assuming a distribution of neutron exposures on a single initial seed nucleus,

usually 56Fe, can quite successfully reproduce the solar abundance patterns. This

distribution �.�/ is

�.�/ D f n56

�0
exp.��=�0/ ; (18.87)

with f and �0 being two free parameters. With (18.87) the rate equation (18.85) can

be solved analytically for nucleus A:

�AnA D f n56

�0

AY

iD56

�
1C .�i�0/

�1��1 (18.88)

More details about neutron-capture nucleosynthesis for the interested reader can

be found in the reviews by Meyer (1994), Arnould and Takahashi (1999), and Busso

et al. (1999).

18.7 Neutrinos

Neutrinos require special consideration because their cross section �� for interaction

with matter is so extremely small. For scattering of neutrinos with energy E� ; one

has roughly �� � .E�=mec
2/210�44 cm2. Neutrinos in the MeV range then have

�� � 10�44 cm2, which is a factor 10�18 smaller than the cross section for typical

photon–matter interactions. The corresponding mean free path in matter of density

% D n�mu and molecular weight �.� 1/ is about

`� D 1

n��
D �mu

%��
� 2 � 1020cm

%
; (18.89)
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with % in cgs. For “normal” stellar matter with %� 1 g cm�3, (18.89) would give a

mean free path of the neutrinos of `� � 100 parsec, and even for % D 106 g cm�3,
one has `� � 3000Rˇ.

Therefore it is safe to say that neutrinos, once created somewhere in the central

region, leave a normal star without interactions carrying away their energy. This

neutrino energy has then to be excluded from all other forms of energies (e.g.

that released by nuclear reactions), which are subject to some diffusive transport

of energy according to the temperature gradient.

The situation can be completely different, however, during a collapse in the final

evolutionary stage. The density can reach nuclear values, and for %D 1014 g cm�3,
(18.89) gives only `� � 20 km. Considering the fact that neutrinos can then be

rather energetic (which increases �� appreciably) one sees that many of them will be

reabsorbed within the star. Then it is necessary to consider a transport equation for

neutrino energy and to evaluate the amount of momentum the interacting neutrinos

deliver to the overlying layers (see Sect. 36.3.3).

Only electron neutrinos play a role in stellar interiors, and these can be created

in quite different processes inside a star. We first recall those processes involving

nuclear reactions, which have already been mentioned (Sect. 18.5) in connection

with certain nuclear burnings. In this special case one usually allows for the neutrino

energy loss by a corresponding reduction of the released energy [This means that

in (10.3) "n is reduced and no separate "� term is needed.].

We already encountered this situation in the case of hydrogen burning

(Sect. 18.5.1), where two neutrinos per fresh helium nucleus are created. The energy

loss due to the escaping neutrinos depends on the particular chain or cycle by which

the burning proceeds, but on average the energy yield per cycle is 25 MeV or

� 4 � 10�5 erg. The generation of one solar luminosity .Lˇ � 4 � 1033 erg s�1/
by hydrogen burning implies thus a production of about 2 � 1038 neutrinos per

second. Those neutrinos coming directly from the central region of the Sun yield

a flux of roughly 1011 neutrinos per cm2 each second at the distance of earth. For

experiments measuring the solar neutrinos see Sect. 29.5.

There are also neutrino-producing nuclear reactions that are not connected with

nuclear burnings. For example, at extreme densities, degenerate electrons can be

pushed up to energies large enough for electron capture by protons in nuclei of

chargeZ and atomic weight A W e� C .Z;A/ ! .Z � 1;A/C �.

Another interesting example is the so-called Urca process. For a suitable nucleus

.Z;A/; an electron capture occurs which is followed by ˇ decay:

.Z;A/C e� ! .Z � 1;A/C � ;

.Z � 1;A/ ! .Z;A/C e� C N� : (18.90)

The original particles are restored, and two neutrinos are emitted. There are obvious

restrictions on the nuclei .Z;A/ suitable for this process: they must have an isobaric

nucleus .Z�1, A/ of slightly higher energy that is unstable to ˇ decay. A possible

example would be 35 Cl .e�; �/35S (endothermic with Q D �0:17MeV), followed



18.7 Neutrinos 207

Fig. 18.11 Regions in which

different types of neutrino

less dominate. The lines

indicate where neighbouring

processes contribute

approximately in equal

shares. 2%=�e is a suitable

quantity proportional to the

electron density. It is identical

to the mass density if �e D 2,

for example, in helium cores

(After Haft et al. 1994)

by the decay 35S .e� N�/35 Cl, the energy for the first reaction being supplied by the

captured electron. In this way, thermal energy of the stellar matter is converted into

neutrino energy and lost from the star, while the composition remains unchanged

(Urca is the name of a Rio de Janeiro casino, where Gamow and Schönberg found

that, as the only recognizable net effect, similar losses, little by little, occur with

visitors’ money.). Details depend very much on the stellar material. If appropriate

nuclei for this are present, the energy loss will increase with % and T .

The following processes occur without a nuclear reaction. These purely leptonic

processes were predicted as a consequence of the generalized Fermi theory of weak

interaction, which allows a direct electron–neutrino coupling, such that a neutrino

pair can be emitted if an electron changes its momentum. It is clear that such

processes may be reduced by degeneracy if the electrons do not find enough free

cells in phase space.

Several processes of this type can be important for stellar interiors. Figure 18.11

shows the approximate regions of the %� T plane where this is the case. Generally,

the energy loss rates are complicated functions of density and temperature. They

are calculated from theories of weak interaction and the results obtained as tables,

for which approximative analytical fitting formulae are derived, which themselves

are too complicated to be reproduced here. A compilation of results is given by Itoh

et al. (1996); a somewhat simpler fitting formula for plasma neutrinos was derived

by Haft et al. (1994).

Pair Annihilation Neutrinos: e� C eC ! � C N� In very hot environments

(T9 > 1), there are enough energetic photons to create large numbers of .e�eC/
pairs. These will soon be annihilated, usually giving two photons, and a certain

equilibrium abundance of eC will be reached. In this continuous back and forth
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exchange, however, there is a small one-way leakage, since roughly once in 1019

times, the annihilation results in a pair .� N�/ instead of the usual photons. This can

lead to appreciable energy loss only in a very hot, not too dense plasma. "� is a

complicated function, but is always proportional to %�1.

Photoneutrinos: 
C e� ! e� C�C N� This is the analogue of normal Compton

scattering, in which a photon is scattered by an electron. In very few cases it may

happen that, after scattering, the photon is replaced by a neutrino–antineutrino pair.

The rates of energy loss for this process are rather different for different limiting

cases (depending on the degrees of degeneracy and the importance of relativistic

effects).

Plasmaneutrinos: 
plasm ! �C N� A so-called plasmon decays here to a neutrino–

antineutrino pair. The plasma frequency !0 is given by

!20
me

4�e2ne

D

8
<̂

:̂

1 ; non-degenerate
�
1C

�
„
mec

�2
.3�2ne/

2=3

��1=2
; degenerate :

(18.91)

This is important for an electromagnetic wave of frequency ! moving through the

plasma, since its dispersion relation is

!2 D K2c2 C !20 ; (18.92)

where K is the wave number. Here the wave is coupled to the collective motions of

the electrons, and a propagating wave can occur only for ! > !0. Multiplication

of (18.92) by „2 gives the square of the energy E of a quantum, which therefore

behaves as if it were a relativistic particle with a rest mass corresponding to the

energy „!0. Such a quantum is called a plasmon. For the energy rate, one has to

add the rates of transversal and longitudinal plasmons: "
.plasm/
� D "t� C "l� . The

emission rate has an exponential decrease for large !0, which is proportional to %1=2

at constant T . This comes from the fact that very few plasmons can be excited if kT

drops below „!0.

Bremsstrahlung Neutrinos Inelastic scattering (deceleration) of an electron in

the Coulomb field of a nucleus will usually lead to emission of a “Bremsstrahlung”

photon (free–free emission). This photon can be replaced by a neutrino–antineutrino

pair. The rate of energy loss for very large % is

".brems/
� � 0:76

Z2

A
T 68 ; (18.93)

(in cgs) where Z and A are the charge and mass number of the nuclei. For smaller

densities "� is smaller than this expression, the correction being roughly a factor 10

at % � 104 g cm�3. This process can dominate, in particular, at low temperature and
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very high density. The rate "
.brems/
� does not decrease with increasing degeneracy (as

other processes do), since the lack of free cells in phase space is compensated by an

increasing cross section for neutrino emission.

Synchrotron Neutrinos These can only occur in the presence of strong magnetic

fields. The normal synchrotron photon emitted by an electron moving in this field is

again replaced by a neutrino–antineutrino pair.



Part IV

Simple Stellar Models

While accurate stellar models have to be computed with numerical programmes, for

a deeper understanding of stellar properties, general rules and dependencies, and

approximative relations, simple stellar models are very useful. They are often based

on simplifications of the material functions discussed in Part III or by assuming

similarity relations between stars. The polytropes of Chap. 19 were essential for the

earliest models of stellar interior but have now gone out of fashion. Nevertheless, we

present the definition and the basic properties for those interested in simple models.

The homology relations of Chap. 20 are formulated very generally; one usually finds

them in more simplified versions, where they are used to derive simple relations

like the mass-luminosity-relation for main sequence stars. Simple relations also are

useful in clarifying popular misconceptions about stars, such as the assumption that

the solar luminosity depends on the nuclear reaction rates (see Sect. 20.2).

In the later sections of this part it will become evident how useful simplified

models can be to capture basic principles of stellar structure and evolution. Of

course, all these are obtained with high accuracy from numerical solutions, but

understanding them is a different issue.



Chapter 19

Polytropic Gaseous Spheres

19.1 Polytropic Relations

As we have seen in Sect. 10.1 the temperature does not appear explicitly in the two

mechanical equations (10.1) and (10.2). Under certain circumstances this provides

the possibility of separating them from the “thermo-energetic part” of the equations.

For the following it is convenient to introduce once again the gravitational potential

˚ , as it was defined in Sect. 1.3. We here treat stars in hydrostatic equilibrium, which

requires [see (1.11) and (2.3)]

dP

dr
D �d˚

dr
% ; (19.1)

together with Poisson’s equation (1.10)

1

r2
d

dr

�
r2
d˚

dr

�
D 4�G% : (19.2)

We have replaced the partial derivatives by ordinary ones since only time-

independent solutions shall be considered.

In general the temperature appears in the system (19.1) and (19.2) if the density

is replaced by an equation of state of the form % D %.P; T /. However, we have

already encountered examples for simpler cases. If % does not depend on T , i.e.

% D %.P / only, then this relation can be introduced into (19.1) and (19.2), which

become a system of two equations for P and ˚ and can be solved without the other

structure equations. An example is the completely degenerate gas of non-relativistic

electrons for which % � P 3=5 [see (15.23)].

We shall deal here with similar cases and assume that there exists a simple

relation between P and % of the form

P D K%
 � K%1C
1
n ; (19.3)
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where K; 
 , and n are constant. A relation of the form (19.3) is called a polytropic

relation.K is the polytropic constant and 
 the polytropic exponent (which we have

to distinguish from the adiabatic exponent 
ad). One often uses, instead of 
 , the

polytropic index n, which is defined by

n D 1


 � 1
: (19.4)

Obviously for a completely degenerate gas the equation of state in its limiting cases

has the polytropic form (19.3). In the non-relativistic limit (15.23) we have 
 D 5=3,

n D 3=2, while for the relativistic limit (15.26) holds, so that 
 = 4/3, n D 3. For

such cases, where the equation of state has a polytropic form, the polytropic constant

K is fixed and can be calculated from natural constants.

But there are also examples for a relation of the form (19.3) where K is a free

parameter which is constant within a particular star but can have different values

from one star to another.

Let us consider an isothermal ideal gas of temperature T D T0 and mean

molecular weight �. Its equation of state % D �P=.<T / can be written in the form

(19.3), with K D <T0=�; 
 D 1; and n D 1. Here K is not fixed but depends on

T0 and �, and if we then use (19.3) in the stellar-structure equations, we are free to

giveK any (positive) value for a certain star.

In a star that is completely convective the temperature gradient (except for that

in a region near the surface, which we shall ignore) is given, to a very good

approximation, by r D .d lnT=d lnP/ad D rad (see Sect. 7.3). If radiation

pressure can be ignored and the gas is completely ionized, we have rad D 2=5

according to (13.12). This means that throughout the star T � P 2=5, and for an

ideal gas with � = constant, T � P=%, and therefore P � %5=3. This again is a

polytropic relation of the form (19.3) with 
 D 5=3, n D 3=2. But now K is not

fixed by natural constants; it is a free parameter in the sense that it can vary from

star to star.

The homogeneous gaseous sphere can also be considered a special case of the

polytropic relation (19.3). Let us write (19.3) in the form

% D K1P
1=
 I (19.5)

then 
 D 1 (or n D 0) gives % D K1 D constant.

These examples have shown that we can have two reasons for a polytropic

relation in a star. (1) The equation of state is of the simple form P D K%
 , with a

fixed value ofK . (2) The equation of state contains T (as for an ideal gas), but there

is an additional relation between T andP (like the adiabatic condition) that together

with the equation of state yields a polytropic relation; then K is a free parameter.

On the other hand, if we assume a polytropic relation for an ideal gas, this is

equivalent to adopting a certain relation T D T .P /. This means that one fixes

the temperature stratification instead of determining it by the thermo-energetic

equations of stellar structure. For example, a polytrope with n D 3 does not
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necessarily have to consist of relativistic degenerate gases but can also consist of

an ideal gas and have r D 1=.nC 1/ D 0:25.

19.2 Polytropic Stellar Models

With the polytropic relation (19.3) (independent of whether K is a free parameter

or a constant with a fixed value), (19.1) can be written as

d˚

dr
D �
K%
�2 d%

dr
: (19.6)

If 
 ¤ 1 (the case 
 D 1; n D 1, corresponding to the isothermal model, will be

treated in Sect. 19.8), (19.6) can be integrated:

% D
� �˚
.nC 1/K

�n
; (19.7)

where we have made use of (19.4) and chosen the integration constant to give˚ D 0

at the surface (% D 0). Note that in the interior of our model, ˚ < 0, giving there

% > 0. If we introduce (19.7) into the right-hand side of the Poisson equation (19.2),

we obtain an ordinary differential equation for ˚ :

d 2˚

dr2
C 2

r

d˚

dr
D 4�G

� �˚
.nC 1/K

�n
: (19.8)

We now define dimensionless variables z;w by

z D Ar ; A2 D 4�G

.nC 1/nKn
.�˚c/

n�1 D 4�G

.nC 1/K
%c

n�1
n ;

w D ˚

˚c

D
�
%

%c

�1=n
; (19.9)

where the subscript c refers to the centre and where the relation between % and ˚

is taken from (19.7). At the centre (r D 0) we have z D 0;˚ D ˚c; % D %c, and

therefore w D 1. Then (19.8) can be written as

d 2w

d z2
C 2

z

dw

d z
C wn D 0 ;

1

z2

d

d z

�
z2
dw

d z

�
C wn D 0 : (19.10)
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This is the famous Lane–Emden equation (named after J.H. Lane and R. Emden).

We are only interested in solutions that are finite at the centre, z D 0. Equa-

tion (19.10) shows that we then have to require dw=d z � w0 D 0. Let us assume we

have a solution w.z/ of (19.10) that fulfils the central boundary conditions w.0/ D 1

and w0.0/ D 0; then according to (19.9) the radial distribution of the density is

given by

%.r/ D %cwn ; %c D
� �˚c

.nC 1/K

�n
: (19.11)

For the pressure we obtain from (19.3) and (19.4) that P.r/ D PcwnC1, where

Pc D K%


c .

Before trying to construct stellar polytropic models we shall discuss some of the

mathematical properties of the solutions w.z/ of (19.10).

19.3 Properties of the Solutions

The Lane–Emden equation has a regular singularity at z D 0. In order to understand

the behaviour of the solutions there, we expand into a power series:

w.z/ D 1C a1z C a2z
2 C a3z

3 C : : : ; (19.12)

with a1 D w0.0/; 2a2 D w00.0/; : : : . Since the gravitational acceleration jgj D
d˚=dr � dw=d z must vanish in the centre, we have a1 D 0. Inserting (19.12) into

the Emden equation (19.10), by comparing coefficients one finds

w.z/ D 1 � 1

6
z2 C n

120
z4 C : : : ; (19.13)

where again we have excluded the isothermal sphere n D 1. Equation (19.13)

shows that w.z/ has a maximum at z D 0.

Only for three values of n can the solutions be given by analytic expressions. The

first case is

n D 0 W w.z/ D 1 � 1

6
z2 ; (19.14)

and we have already mentioned that this corresponds to the homogeneous gas

sphere. Indeed % D %cwn gives constant density for n D 0. The two other cases are

n D 1 W w.z/ D sin z

z
; (19.15)

n D 5 W w.z/ D 1

.1C z2=3/1=2
: (19.16)
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Fig. 19.1 If n < 5 the

solution of the Lane–Emden

equation (19.10) of index n

starting with w.0/ D 1

becomes zero at a finite value

of z D zn. Here the solutions

for n D 3=2 and n D 3 are

plotted

Table 19.1 Numerical values for polytropic models with index n (after Chandrasekhar 1939)

n zn

�
�z2 dw

d z

�
zDzn

%c= N%

0 2.4494 4.8988 1.0000

1 3.14159 3.14159 3.28987

1.5 3.65375 2.71406 5.99071

2 4.35287 2.41105 11.40254

3 6.89685 2.01824 54.1825

4 14.97155 1.79723 622.408

4.5 31.8365 1.73780 6,189.47

5 1 1.73205 1

The surface of the polytrope of index n is defined by the value z D zn; for which

% D 0 and thus w D 0. While for n D 0 and n D 1 the surface is obviously reached

for a finite value of zn; the case n D 5 yields a model of infinite radius. It can be

shown that for n < 5 the radius of polytropic models is finite; for n � 5 they have

infinite radius. This also holds for the limiting case n D 1 (cf. Sect. 19.8).

Apart from the three cases where analytic solutions are known, the Emden

equation (19.10) has to be solved numerically, beginning with the expansion (19.13)

for the neighbourhood of the centre. Here the solution starts with zero tangent and

w D 1 and decreases outwards. This can be seen from (19.13) and is illustrated in

Fig. 19.1.

For a given value of n < 5 the integration comes to a point z where w.z/ vanishes,

i.e. % D 0. This value of z, which corresponds to the surface of the polytrope, will

be called zn. From (19.14)–(19.16) one finds z0 D
p
6; z1 D �; z5 D 1. It is a

general property of the solutions that zn grows monotonically with the polytropic

index n. Table 19.1 gives some values of zn and the values of certain functions at

z D zn which will later turn out to be useful for the construction of models.

So far, we have discussed only solutions that are regular at the centre. But

solutions with a singularity at z D 0 can also be important if one uses them for stellar

regions outside the centre. Let us, for instance, consider a star that is convective in

its outer layer, while in the inner part, the energy may be transported by radiation.

If the convective envelope is adiabatic, with r D rad D 2=5, it is polytropic and

therefore % � w3=2 and P � w5=2. But it is unimportant whether this solution is

finite at the centre, since anyway the equations do not hold in the radiative interior.
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On the other hand, one may have to fit a polytropic central core to an envelope

with different properties. In this case the polytropic solution has to be regular at the

centre, but its behaviour for w D % D 0 is unimportant, since it is used only up to

the core surface where % and P are non-vanishing. In the following we mainly deal

with complete polytropes, which have a polytropic relation of the form (19.3) from

surface to centre.

19.4 Application to Stars

We now construct polytropic models for a given index n < 5 and for given values of

M and R. This will turn out to be possible as long asK is not fixed by the equation

of state. We first derive some more relations for polytropes.

From (10.1) and (19.11) it follows that

m.r/ D
Z r

0

4�%r2dr D 4�%c

Z r

0

wnr2dr D 4�%c

r3

z3

Z z

0

wnz2d z ; (19.17)

where we have made use of relations (19.9) and of the fact that r3=z3 is constant

and can be brought in front of the integral. According to the Lane–Emden equation

(19.10) the integrand wnz2 on the right is a derivative and can immediately be

integrated, so that the integral becomes �z2dw=d z. We obtain

m.r/ D 4�%cr
3

�
�1

z

dw

d z

�
; (19.18)

where the simultaneously appearing z and r are related to each other by r=z D
1=A D R=zn. For the special case of the surface, we have

M D 4�%cR
3

�
�1

z

dw

d z

�

zDzn

: (19.19)

The quantity in brackets can be derived from Table 19.1 for several values of n:

If we introduce the mean density N% WD 3M=.4�R3/, we find

N%
%c

D
�

�3
z

dw

d z

�

zDzn

: (19.20)

The right-hand side of this equation depends only on n: for n D 0 it is 1–as one

can see from (19.11). The higher n; the smaller N%=%c, which means the higher the

density concentration, as can be seen in Table 19.1.

We now have all the means at hand to construct the whole polytropic stellar

model for given values of n, M , and R for the case that K is not fixed by the

equation of state.
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If n is given, a numerical solution of the Lane–Emden equation (19.10) yields

the functions w.z/;w0.z/ and the values of zn and of �zn=.3dw=d z/n. If we now use

M and R to determine the mean density N%, (19.20) gives %c. On the other hand, we

know the constantA D z=r D zn=R by which we adjust the dimensionless z scale to

the r scale. We therefore know the density distribution in the model %.r/ D %cwn.z/

from (19.11). With %c and the constantAwe can determineK from (19.9) and obtain

the pressure distribution P.r/ D K%.nC1/=n D K%
.nC1/=n
c wnC1. The local mass m

then follows from (19.18) and the (known) relation between the z scale and the r

scale. The whole mechanical structure is now determined. It has to be emphasized

that this method of constructing models for given values of n;M; and R is only

applicable ifK is a free parameter, otherwise the problem would be overdetermined

(The case that K has fixed value will be discussed in Sect. 19.6.).

As an example we try to construct a polytropic model of index 3 for the Sun

(M D 1:989 � 1033g, R D 6:96 � 1010 cm). For n D 3 Table 19.1 gives z3 D
6:897; %c= N% D 54:18. The mean density becomes N% D 1:41 g cm�3; consequently

the central density %c D 76:39 g cm�3 and, further,A D z3=R D 9:91�10�11. From

(19.9) we find K D 3:85 � 1014 and consequently Pc D 1:24 � 1017 dyn/cm2. For

the ideal gas equation with � D 0:62 corresponding to X � 0:7, Y � 0:3 we find

for the temperature Tc D 1:2 � 107 K. A proper numerical solution of the full set

of stellar-structure equations for a chemically homogeneous model of 1Mˇ gives

Tc D 1:5�107 K. We see that a polytropic estimate with n D 3 comes considerably

closer to the honestly computed value than our crude estimate in Sect. 2.3.

19.5 Radiation Pressure and the Polytrope n D 3

We consider here only the case thatK is a free parameter. In the example at the end

of the previous section we approximated the Sun by a polytrope of n D 3. This is

formally equivalent to the assumption of an ideal gas (P � %T ) together with a

constant temperature gradient r D 1=4.T � P 1=4/. We will now show that this

polytropic relation with n D 3 can also be obtained by a certain assumption on the

radiation pressure. For an ideal gas with radiation pressure

P D <
�
%T C a

3
T 4 D <

�ˇ
%T; (19.21)

we assume that the ratio ˇ D Pgas=P is constant throughout the star. Now

1 � ˇ D Prad

P
D aT 4

3P
(19.22)

shows that ˇD constant means a relation of the form T 4 � P , which we introduce

into (19.21). This gives



220 19 Polytropic Gaseous Spheres

P D
�
3<4

a�4

�1=3 �
1 � ˇ

ˇ4

�1=3
%4=3 ; (19.23)

which indeed is a polytropic relation with n D 3 for constant ˇ. Here the polytropic

constantK is again a free parameter, since we can choose ˇ in the interval 0, 1.

In Sect. 19.10 we shall apply this to very massive stars. They are fully convective

(r D rad) and dominated by radiation pressure.

Relation (19.23) goes back to A.S. Eddington, who obtained it for his famous

“standard model”. He found that the full set of stellar-structure equations (including

the thermo-energetic equations) could be solved very simply by the assumption

�l=m D constant throughout the star. One then obtains ˇ D constant and therefore

the polytropic relation (19.23).

19.6 Polytropic Stellar Models with Fixed K

As a typical example we have already mentioned the non-relativistic degenerate

electron gas for which the equation of state (15.23) is polytropic with n D 3=2 and

polytropic constant

K D 1

20

�
3

�

�2=3
h2

me

1

.�emu/5=3
: (19.24)

We consider the chemical composition to be given (�e fixed). Then in this

expression there is no room for the choice of a free parameter as in (19.23). Although

n D 3=2 is a particularly interesting case, we shall derive our relation for general

values of the polytropic index with n < 5.

Let us see how to construct a model with index n for a given value of %c. The

functions w.z/ and w0.z/ can be considered known from an integration of the Emden

equation. Then % D %cwn is known as a function of z. According to (19.9) the

relation between r and z is

�
r

z

�2
D 1

4�G
.nC 1/K%

1�n
n

c : (19.25)

This can be used to derive the density also as a function of r , where the radius of the

model is R D zn=A and the value zn is obtained from the integration. The constant

A depends on %c, as shown by (19.25), and

R � %
1�n
2n

c : (19.26)

As long as n > 1, the radius R becomes smaller with increasing central density %c,

becoming zero for infinite %c. On the other hand, the mass M of the model varies

with %c according to (19.19) as M � %cR
3 or
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M D C1%
3�n
2n

c I C1 D 4�

�
�w0

z

�

zn

z3n

�
nC 1

4�G

�3=2
K3=2 : (19.27)

Elimination of %c from (19.26) and (19.27) shows that there is a mass-radius relation

of the form

R � M
1�n
3�n : (19.28)

We see that for given K and n there is a one-dimensional manifold of models only,

the parameter being either M or R (or %c), whereas there was a two-dimensional

manifold (M and R as parameters) when K was a free parameter.

Consider again the case of the non-relativistic degenerateX electron gas, which is

not too bad an approximation for white dwarfs of small mass. With n D 3=2, (19.28)

gives R � M�1=3 and the surprising result that the larger the mass the smaller

the radius (This is made plausible by simple considerations in Sect. 37.1.). The

model will shrink with increasing mass and should finally end as a point mass for

infiniteM . But long before this, our assumed equation of state will not be valid any

more, since from (19.27) we see that %c is proportional to �M 2. For ever-increasing

densities the electrons will become relativistic (see Sect. 16.2), and the equation of

state (15.23) has to be replaced by (15.26). This means a transition from a polytrope

n D 3=2 to one with n D 3 (and a different, but also given, polytropic constantK).

In this case we shall encounter a new problem, hinted at by the exponent in (19.28).

19.7 Chandrasekhar’s Limiting Mass

In Sect. 19.6 we have seen that a polytropic model in which the pressure is provided

by a non-relativistic degenerate electron gas reaches higher central and mean

densities with growing total mass M . But with increasing density the electrons

become gradually more relativistic. This starts in the central region where the

density is highest, the outer parts remaining non-relativistic. Although we know

that the transition between equations of state (15.23) and (15.26) does not occur

abruptly, but smoothly via the more general equation of state (15.13), one can

imagine that an idealized stellar model consisting of degenerate matter can be

constructed by fitting two regions smoothly together: a (relativistic) polytropic core

with n D 3 surrounded by a (non-relativistic) polytropic envelope with n D 3=2.

Indeed Chandrasekhar constructed his first white-dwarf model in this way.

Let us consider how this idealized model changes with growing mass M . At

smallM the whole model is still non-relativistic. The relativistic core will occur for

%c & 106 g cm�3 (Fig. 16.1) and gradually encompass larger parts of the model as %c

increases. One would therefore expect the model finally to approach the state where

all its mass (except a small surface region) is relativistic, so that a polytrope of index

n D 3 would describe the whole model properly; however, there is a difficulty. As

one can see from (19.27) the mass does not vary with central density in the case of

a polytrope of index n D 3 if K is fixed. In this case, (19.27) givesM D C1:
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M D 4�

�
�w0

z

�

z3

z33

�
K

�G

�3=2
: (19.29)

This is the only possible mass for relativistic degenerate polytropes and is called the

Chandrasekhar mass, which after insertion of the proper numerical values yields

MCh D 5:836

�2e
Mˇ : (19.30)

We therefore can expect that our series of models constructed by fitting an n D 3=2

envelope to an n D 3 core finds its end at a critical total massM D MCh as given by

(19.30). Or in other words our models of increasing central density tend to a finite

mass and approach zero radius for %c ! 1. Of course, this final state is physically

unrealistic, since the equation of state is changed by different effects at very high

density (see Chaps. 16, 37 and 38).

Although we have discussed the problem only from the standpoint of poly-

tropic models, the result for MCh remains numerically the same if one uses

Chandrasekhar’s more general equation of state (15.13) (compare the treatment in

Sect. 37.1. The reason is that for extremely high density, (15.13) approaches the

polytropic relation (19.3) with 
 D 4=3 or n D 3.

It is surprising that the limiting mass not only is finite, but that it is so small that

many stars exceed it. But their equation of state is not dominated by degenerate

electrons, and therefore Chandrasekhar’s limiting mass (19.30) has no meaning

for them. White dwarfs seem to be formed of material where all the hydrogen

is transformed into helium, carbon, or oxygen, such that we expect �e D 2 and

therefore MCh D 1:46Mˇ. Indeed no white dwarf has been found which exceeds

this mass.

In the above considerations we have approached the relativistic degenerate

polytrope by way of a sequence with %c ! 1 (and consequentlyR ! 0). However,

this polytrope is a particular case: we have already mentioned that according to

(19.27) M and %c are then no longer coupled. In other words, for M D MCh, the

central density can be arbitrary (and therefore also the radius R), i.e. there is a

whole series of relativistic degenerate polytropes (having %c or R as parameter) that

all have the same massMCh. This is a case of neutral equilibrium (see Sect. 25.3.2).

19.8 Isothermal Spheres of an Ideal Gas

We now deal with the case 
 D 1 or n D 1, which we omitted in Sect. 19.2. Here

K D <T=� is a free parameter. If 
 D 1, integration of (19.6) gives

� ˚

K
D ln% � ln %c ; (19.31)
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Fig. 19.2 The solution of the

Lane–Emden

equation (19.35) for the case

of an isothermal ideal gas

(n D 1)

where we have now chosen the constant of integration in such a way that the

gravitational potential is zero at the centre and positive outside it. With

% D %ce�˚=K (19.32)

and with the Poisson equation (19.2) we find

d 2˚

dr2
C 2

r

d˚

dr
D 4�G%ce�˚=K : (19.33)

We now introduce dimensionless variables z;w by

z D Ar ; A2 D 4�G%c

K
; ˚ D Kw (19.34)

and obtain the “isothermal” Lane–Emden equation

d 2w

d z2
C 2

z

dw

d z
D e�w ; (19.35)

which now has to be integrated with the central conditions

w.0/ D 0 ;

�
dw

d z

�

zD0
D 0 : (19.36)

Again, a power series expansion can be derived and has to be used to describe the

behaviour near the centre. The solution is given in Fig. 19.2.

As already mentioned, the isothermal sphere consisting of an ideal gas has an

infinite radius, like all polytropes of n � 5. It also has an infinite mass. Certainly

there can be no such stars, but polytropes with n D 1 can be used in order to

construct models with non-degenerate isothermal cores. Such models play a role in

connection with the so-called Schönberg–Chandrasekhar limit (see Sect. 30.5).
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19.9 Gravitational and Total Energy for Polytropes

We now give a general expression for the gravitational energy Eg of polytropes.

We first show that quite generally

Eg D 1

2

Z M

0

˚ dm� 1

2

GM 2

R
: (19.37)

From the definition (3.3) of Eg, we find

Eg D �G
Z M

0

m

r
dm D �1

2

GM 2

R
� 1

2
G

Z R

0

m2

r2
dr ; (19.38)

where the last expression has been obtained by partial integration and where we

have used the fact thatm=r vanishes at the centre. But on the other hand

d˚

dr
D Gm

r2
(19.39)

and therefore

Eg D �1
2

GM 2

R
� 1

2

Z R

0

d˚

dr
mdr

D �1
2

GM 2

R
C 1

2

Z M

0

˚ dm ; (19.40)

where again we have integrated partially and used the fact that m˚ vanishes at the

centre (m D 0) and at the surface [˚ D 0, according to our choice of the integration

constant in connection with (19.7)], so we have indeed recovered (19.37). For a

polytrope we can use (19.3), (19.7) and write

˚ D � K



 � 1
%
�1 D � 



 � 1

P

%
(19.41)

and therefore, with (19.37),

Eg D �1
2

GM 2

R
� 1

2





 � 1

Z M

0

P

%
dm : (19.42)

According to (3.2) and (3.3) the last term on the right can be expressed byEg. If we

replace 
 by n, then

Eg D �1
2

GM 2

R
C 1

6
.nC 1/Eg (19.43)
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and therefore

Eg D � 3

5 � n

GM 2

R
: (19.44)

We now derive a similar expression for the internal energyEi. In (3.8) we defined a

quantity � by

� WD 3P=.%u/ (19.45)

(u = internal energy per mass unit).

We saw that for an ideal gas

� D 3.
ad � 1/ : (19.46)

This relation also holds for a more general equation of state as long as � is constant.

In order to show this, we take the total differentials from (19.45) and obtain

� du D 3
dP

%
� 3

P

%2
d% : (19.47)

We now assume that the differentials describe adiabatic changes. The first law of

thermodynamics gives

du D P

%2
d% : (19.48)

Then with


ad D %

P

dP

d%
; (19.49)

(19.47) yields

� D 3
%

P

dP

d%
� 3 D 3.
ad � 1/ : (19.50)

For an ideal gas with 
ad D 5=3 one has � D 2, while for an ideal gas with 
ad D
4=3; � D 1. In the case of a gas dominated by radiation pressure (P D aT 4=3 and

u D aT 4) one finds � D 1. Assuming � to be constant throughout the star and using

(19.44) we find with (3.9)

Ei D �1
�
Eg D 3

�.5� n/
GM 2

R
: (19.51)

The total energy then becomes

W D Ei C Eg D 3

5 � n

�
1

�
� 1

�
GM 2

R
: (19.52)

We can conclude from (19.52) that the total energy for a polytrope of finite radius

vanishes when � D 1 and in particular for the above cases of an ideal gas with


ad D 4=3 and a radiation-dominated gas.
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19.10 Supermassive Stars

Let us consider an ideal gas with radiation pressure and assume that ˇ D Pgas=P D
constant throughout the star. We have seen in (19.23) that this yields a polytrope

with n D 3.

Relation (19.23) defines the polytropic constantK:

K D
�
3<4

a�4

�1=3 �
1 � ˇ

ˇ4

�1=3
: (19.53)

On the other hand, from (19.9) for n D 3 we have

K D �G%2=3c

R2

z23
; (19.54)

where we have used A D z3=R. The numerical value of z3 is 6.897 (Table 19.1).

With (19.20) %c can be expressed by M and R:

%c D 54:18 N% D 54:18
3M

4�R3
D c1

M

R3
; (19.55)

where we have taken the numerical value from Table 19.1. From (19.53) we

eliminate K with (19.54) and then %c with (19.55) and obtain “Eddington’s quartic

equation”:

1 � ˇ

�4ˇ4
D a

3<4

.�G/3c21
z63

M 2 D 3:02 � 10�3
�
M

Mˇ

�2
: (19.56)

In the interval 0 � ˇ � 1 the left-hand side is a monotonically decreasing function

of ˇ, which therefore becomes smaller with growing M ; this means that radiation

pressure becomes the more important the larger the stellar mass.

For a pure hydrogen star of 106Mˇ and � D 0:5, (19.56) gives .1 � ˇ/=ˇ4 D
1:9 � 108, or ˇ � 0:0086.

Supermassive stars are therefore dominated by radiation pressure. One conse-

quence is that rad is appreciably reduced [rad ! 1=4, for ˇ ! 0; see (13.12)]

and the star becomes convective with r D rad. This can also be seen from

an extrapolation of the main-sequence models towards large M (Sect. 22.3). The

adiabatic structure requires constant specific entropy s. For a gas dominated by

radiation pressure (the density being determined by the gas, the pressure by the

photons) the energy u per mass unit and the pressure are given by

u D aT 4

%
; P D a

3
T 4 : (19.57)
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Then with the first law of thermodynamics we have

ds D dq

T
D 1

T

�
du � P

%2
d%

�

D 4aT 2

%
dT � 4aT 3

3%2
d% D d

�
4aT 3

3%

�
(19.58)

and

s D 4aT 3

3%
: (19.59)

Constant specific entropy means % � T 3, which together with the pressure equation

P � T 4 immediately gives P � %4=3. Indeed supermassive stars are polytropic

with n D 3 as we assumed initially.

The supermassive star polytropes have a free K , which means that M can be

chosen arbitrarily (in contrast to the relativistic degenerate polytrope of the same

index, whereK and M were fixed). For each mass, .1 � ˇ/=.�ˇ/4 can be obtained

from (19.56), and then (19.53) gives the corresponding value ofK . But if the mass is

given, there still exists an infinite number of models for differentR. This is possible

in spite of the fact that K is already determined by M : since according to (19.55)

%c � N% � M=R3, (19.54) shows K to be independent of R. This is typical for the

polytropic index n D 3.

Equation (19.59) shows that for an adiabatic change .ds D 0/ of a given mass

element % � T 3, and therefore with (19.57)P � %4=3 or 
ad D 4=3. Then � D 1 and

(19.52) gives the total energy of the modelW D 0. The supermassive configuration

is in neutral equilibrium. No energy is needed to compress or expand it. In Chap. 25

we will find that 
ad D 4=3 corresponds to the case of marginal dynamical stability.

There a simple interpretation is given for this peculiar behaviour.

19.11 A Collapsing Polytrope

Up to now we have only treated polytropic gaseous spheres in hydrostatic equilib-

rium. One can also find solutions for polytropes of n D 3 for which the inertia term,

neglected in (19.1), is important (Goldreich and Weber 1980). Then (19.1) has to be

replaced by
@vr

@t
C vr

@vr

@r
C 1

%

@P

@r
C @˚

@r
D 0 ; (19.60)

with vr D @r=@t .

Let us consider a relativistic degenerate polytrope with n D 3, or 
 D 
ad D 4=3.

In a manner similar to that of Sect. 19.2 we define a dimensionless length-scale z by

r D a.t/z ; vr D Paz (19.61)
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such that z is time independent, the whole time dependence of r being contained

in a.t/ [Note that a corresponds to 1=A in (19.9)]. The form (19.61) describes a

homologous change (compare with Sect. 20.3). If we introduce a velocity potential

 by vr D @ =@r , we can write

avr D a Paz D a
@ 

@r
D @ 

@z
;  D 1

2
a Paz2 ; (19.62)

where we have fixed the constant of integration in the velocity potential by  D 0

at z D 0. Note that the time derivative of  in the comoving frame is

d 

dt
D @ 

@t
C vr

@ 

@r
D @ 

@t
C . Paz/2 : (19.63)

With the new variables, Poisson’s equation (19.2) can be written as

1

z2

@

@z

�
z2
@ 

@z

�
D 4�G%a2 ; (19.64)

while the continuity equation (1.4) becomes with (19.62)

1

%

d%

dt
C 1

z2a2
@

@z

�
z2
@ 

@z

�
� 1

%

d%

dt
C 3

Pa
a

D 0 : (19.65)

This means that % � a�3 (in the comoving frame), a result that is obvious from

(19.61). As in (19.9) we define w.z/ by % D %cw3.z/. This w.z/ will turn out to

be related to the Emden function of index 3, as we shall see later. Note that %c is a

function of time. In order to stay as close as possible to the formalism of hydrostatic

equilibrium, we fix a D r=z [rather as we did with 1=A in (19.9)] by

1

a2
D �G

K
%2=3c (19.66)

such that

% D %cw3.z/ D
�
K

�G

�3=2
1

a3
w3.z/ : (19.67)

We now come to the equation of motion and define

h WD
Z
dP

%
D 4K%1=3 ; (19.68)

where we have made use of (19.3) for 
 D 4=3. Inserting and h from (19.62) and

(19.68) into the equation of motion (19.60) gives
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@2 

@r@t
C 1

2

@

@r

�
@ 

@r

�2
C @˚

@r
C @h

@r
D 0 ; (19.69)

which can be integrated with respect to r . If we set the integration constant to zero,

replace @ =@r by Paz, and consider (19.63), we find that

d 

dt
D 1

2
Pa2z2 � ˚ � h (19.70)

and therefore with (19.62)
1

2
a Raz2 D �˚ � h : (19.71)

From (19.67) and (19.68) follows

h D 4K%1=3 D 4
K3=2

.�G/1=2
1

a
w.z/ : (19.72)

We try a similar dependence of ˚ on t and write

˚ D 4
K3=2

.�G/1=2
1

a
g.z/ ; (19.73)

which defines the dimensionless function g.z/. If we insert (19.72) and (19.73) into

(19.71) we find

1

2
a2 Ra D � 4K3=2

.�G/1=2
.g C w/

1

z2
: (19.74)

Since the left-hand side is a function of t only and the right-hand side is a function

of z only, both sides must be constant; therefore

3

4

.�G/1=2

K3=2
a2 Ra D �� ; (19.75)

6
g C w

z2
D � (19.76)

(� = constant). The first of these equations can be integrated twice. After multipli-

cation with Pa=a2, the first integration gives

Pa2 D 8

3
�

�
K3

�G

�1=2
1

a
; (19.77)

where the constant of integration is set equal to zero (assuming a zero velocity when

the sphere is expanded to infinity). Multiplication of (19.77) with a gives
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Fig. 19.3 Solutions of (19.81) for different values of �. In the range 0 < � � �m, they describe

homologously collapsing polytropes of index 3. The solution for � D �m reaches the abscissa with

slope zero. The broken lines indicate the behaviour of the solutions for different values of �

a1=2 Pa � 2

3

d

dt
.a3=2/ D ˙

"
8�

3

�
K3

�G

�1=2#1=2
(19.78)

(the signs representing exploding or collapsing models, respectively). This can

immediately be integrated, yielding for a collapse ( Pa < 0) that starts at a0 for t D 0:

a3=2.t/ D a
3=2
0 � 3

2

"
8�

3

�
K3

�G

�1=2#1=2
t : (19.79)

This expression gives the time dependence of the scaling factor a.t/ and therefore

by way of (19.67), of the density as a function of time.

We now investigate the spatial dependence of our solution. In particular, the

function w.z/ in (19.67) has to be determined. For this purpose we write Poisson’s

equation (19.2) in the dimensionless variable z

1

z2

@

@z

�
z2
@˚

@z

�
D 4�G%a2 : (19.80)

If we here replace ˚ by (19.73), g.z/ by (19.76), and % by (19.67), we find

1

z2

d

d z

�
z2
dw

d z

�
C w3 D � : (19.81)

For � D 0 this is the classical Emden equation. Solutions for � ¤ 0 deviate

from hydrostatic equilibrium, the value of � being a measure for this deviation.

From numerical integrations it follows that physically relevant solutions w.z/ are

obtained only for very small values of �, namely for � < �m D 0:0065. Otherwise

the solution w.z/ and therefore %.r/ do not become zero at a finite radius; they

rather increase again to infinity after a minimum has been reached (see Fig. 19.3).



19.11 A Collapsing Polytrope 231

This figure shows also that for � < �m the solutions deviate appreciably from the

“classical” one (� D 0) only in the outer layers, where � � w3 no longer applies.

The time-dependent solution discussed here has to be understood in the following

way. Let us consider a polytrope with n D 3 in equilibrium; then the equilibrium

is independent of radius. We have already seen that the total energy is W D 0

independent of the radius, see (19.52). Therefore the polytrope n D 3 is indifferent

to radial changes. If we now assume that suddenly the pressure is slightly reduced

say, because the constantK is slightly diminished, then the gaseous sphere begins to

contract. This contraction can be described by the two equations (19.75) and (19.76).

The solution of the first gives the behaviour in time (19.79), while the second is used

to derive the modification of the Lane–Emden equation due to the inertia terms. The

parameter � is a measure of the deviation from hydrostatic equilibrium, caused by

the assumed reduction of K .

The solutions for collapsing polytropes have been discussed by Goldreich and

Weber (1980) with respect to collapsing stellar cores causing supernova outbursts

(Chap. 36).



Chapter 20

Homology Relations

In physical problems it often happens that from one solution others can be obtained

by simple transformations. When comparing different stellar models that are

calculated under similar assumptions (concerning parameters or material functions),

one therefore expects to find similarities in the solutions. It would be very helpful if

we could find simple analytic expressions that transform one solution into another.

It would then only be necessary to produce one numerical solution in order to

find new ones by a transformation. There is indeed often a kind of “similarity”

between different solutions, which is called homology, though the conditions for

this are so severe that real stars will scarcely match them. There are a few cases,

however, for which homology relations offer a rough, but helpful, indication for

interpreting or predicting the numerical solutions. We indicate this in two examples,

the main-sequence models and the homologous contraction. Except for this classical

homology there is another type of homology, which applies to certain red giants (see

Sect. 33.2).

20.1 Definitions and Basic Relations

When comparing different models (say of masses M and M 0, and radii R and R0)
one considers in particular homologous points at which the relative radii are equal:

r=R D r 0=R0. We now speak of homologous stars if their homologous mass shells

.m=M D m0=M 0) are situated at homologous points. To be more precise, let us

consider all radii as functions of the relative mass values �, which are the same for

homologous masses:

� WD m=M D m0=M 0: (20.1)

We can then write the homology condition as

r.�/

r 0.�/
D R

R0 (20.2)
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for all �. In homologous stars the ratio of the radii r=r 0 for homologous mass shells

is constant throughout the stars. Going from one homologous star to another, all

homologous mass shells are compressed (or expanded) by the same factor R=R0

(Note that therefore any two polytropic models of the same index n are homologous

to each other.).

Since both models have to fulfil the stellar-structure equations, the transition

has, of course, consequences for all other variables. We derive these by comparing

two homologous stars of masses M and M 0 and of two different compositions that

are supposed to be homogeneous and represented by the mean molecular weights

� and �0. The ratio of these basic parameters will be called

x D M=M 0I y D �=�0: (20.3)

The variables in the two models are always considered functions of the relative mass

variable � and may be called r; P; T; l (for M;�), and r 0; P 0; T 0; l 0 (for M 0; �0),
respectively. We try the following “ansatz”: for homologous mass values � (which

we omit for clarity in the following equations) the variables are supposed to have

the ratios

r

r 0 D z D R

R0 I P

P 0 D p D Pc

P 0
c

I T

T 0 D t D Tc

T 0
c

I l

l 0
D s D L

L0 ; (20.4)

where z; p; t; s have the same values for all � and where the subscript c indicates

central values.

We start with homologous main-sequence models. Since they evolve within the

long nuclear timescale, one can use (10.2), neglecting the inertia term, as well as the

time derivatives in the energy equation (10.3). Let us assume that in these two stars

in complete equilibrium (hydrostatic and thermal) the energy transport is radiative.

The basic equations to be fulfilled are then (10.1), (10.2), (10.4) and (10.16) together

with (10.6), where we further set " for the total energy production rate. We write

them for the first star in terms of the relative mass variable � as

dr

d�
D c1

M

r2%
; c1 D 1

4�
;

dP

d�
D c2

�M 2

r4
; c2 D � G

4�
;

d l

d�
D "M; (20.5)

dT

d�
D c4

�lM

r4T 3
; c4 D � 3

64�2ac
:

Since no time derivatives appear, the differentiations with respect to � are written

as ordinary derivatives. In these equations we transform the variables r; P; T; l into
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r 0; P 0; T 0; l 0 by use of (20.4). Noting that the z, p, t, s are independent of �, and that

� contains the total mass as scaling factor, which has to be transformed by (20.3),

one immediately finds the transformed equations:

dr 0

d�
D c1

M 0

r 02%0

�
x

z3d

�
;

dP 0

d�
D c2

�M 02

r 04

�
x2

z4p

�
;

d l 0

d�
D "0M 0

hex
s

i
; (20.6)

dT 0

d�
D c4

�0l 0M 0

r 04T 03

�
ksx

z4t4

�
:

c1; : : : ; c4 are the same constants as before, and we have introduced the additional

abbreviations

%

%0 D d I "

"0 D e I �

�0 D k (20.7)

for the ratios of the material functions at homologous points.

Since for the variables r 0; P 0; T 0; l 0 we could have written the same basic equa-

tions (20.5) as for r; P; T; l , a comparison of (20.6) with (20.5) shows immediately

that the four factors in brackets in (20.6) must be equal to one:

x

z3d
D 1;

x2

z4p
D 1;

ex

s
D 1;

ksx

z4t4
D 1: (20.8)

Without further specification of the material functions, we can obtain two useful

relations already from the first and second of equations (20.8). They can be rewritten

as
%

%0 D M=M 0

.R=R0/3
;

P

P 0 D .M=M 0/2

.R=R0/4
: (20.9)

Therefore, for all homologous points, the density changes simply as the mean

density for the whole star, while P varies like M 2R�4:
In order to find solutions for (20.8), we represent the material functions by power

laws:

% � P ˛T �ı�' ; " � %�T � ; � � P aT b; (20.10)

which from (20.7) with (20.4) give

d D p˛t�ıy' ; e D p�˛ t���ıy�' ; k D patb : (20.11)
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These can be introduced into (20.8), which are then four conditions for the powers

of z; p; t , and s:We will try to represent them in terms of x and y; which, according

to (20.3), describe the change of the basic parametersM and �:

z D xz1yz2 I p D xp1yp2 I t D xt1yt2 I s D xs1ys2 : (20.12)

Introducing these and (20.11) into (20.8), we obtain four conditions which contain

only products of powers of x and y: In each condition, the exponents of x and of y

must sum up to zero, since the right-hand sides of (20.8) are independent of x and y:

This yields eight linear equations for the exponents z1; : : : ; s2, which are written in

matrix form as

0
BB@

�3 �˛ ı 0

�4 �1 0 0

0 �˛ .� � �ı/ �1
�4 a .b � 4/ 1

1
CCA

0
BB@

z1

p1
t1
s1

1
CCA D

0
BB@

�1
�2
�1
�1

1
CCA (20.13)

and 0
BB@

�3 �˛ ı 0

�4 �1 0 0

0 �˛ .� � �ı/ �1
�4 a .b � 4/ 1

1
CCA

0
BB@

z2

p2
t2

s2

1
CCA D

0
BB@

'

0

��'
0

1
CCA : (20.14)

The solutions are

z1 D 1

2
.1CA/; p1 D �2A;

t1 D 1

2ı
Œ1C .3 � 4˛/A�; (20.15)

s1 D 1C 4 � b

2ı
C
�
2C 2a C 3 � 4˛

2ı
.4 � b/

�
A;

and

z2 D 'B; p2 D �4'B; t2 D '

ı
Œ1C .3 � 4˛/B�;

(20.16)

s2 D '

ı
.4 � b/C '

�
4C 4aC 3 � 4˛

ı
.4 � b/

�
B;

A D
�
4ı.1C aC �˛/

� C b � 4 � �ı C 4˛ � 3

��1
; B D A

�
1 � �ı

� C b � 4

��1
:

(20.17)
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20.2 Applications to Simple Material Functions

20.2.1 The Case ı D 0

A special situation arises for the case that the density is independent of T; i.e.

ı D 0 in (20.10). The equation of state then is polytropic, the polytropic index

being n D ˛=.1 � ˛/; and we must recover the typical properties of polytropic

stars (see Sect. 19.3). This can, in fact, be easily verified. To start with, the first two

equations of system (20.13) (which represent the mechanical part) can be solved

independently of the rest (the thermo-energetic part). For ı D 0we find from (20.15)

and (20.17) that A D .4˛ � 3/�1 and z1 D .2˛ � 1/=.4˛ � 3/. The first of (20.12)

gives for homologous stars of equal composition (y D 1) the mass-radius relation

R � M z1 : (20.18)

For a non-relativistic degenerate electron gas, one has ˛ D 3=5, which gives the

exponent z1 D �1=3 as already obtained in Sect. 19.6.

20.2.2 The Case ˛ D ı D ' D 1; a D b D 0

Further discussion of the above homology solutions will concentrate on the simplest

case, an ideal gas (˛ D ı D ' D 1) with constant opacity (a D b D 0) [cf. (20.10)].

This extremely rough approximation to reality suffices for outlining some general

properties of main-sequence stars (The assumption of homology introduces a much

severer limitation on the results.).

From (20.15)–(20.17), one finds

z1 D � C � � 2
� C 3�

; z2 D � � 4
� C 3�

;

p1 D 2 � 4z1; p2 D �4z2;

t1 D 1 � z1; t2 D 1 � z2;

s1 D 3; s2 D 4: (20.19)

The first surprising result concerns the exponents of the luminosity, s1 and s2. In

this simple case the square brackets in the equations for s1 and s2 in (20.15) and

(20.16) vanish, and s1 and s2 become simple constant numbers. In particular, they

are independent of � and �, i.e. of the special mode of energy generation. In fact

the energy equation [giving the third of (20.13)] has no influence on the luminosity,

which is determined by hydrostatic equilibrium, the equations of state, and radiative

energy transfer only. The model has to adjust so that the energy sources (") provide
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Fig. 20.1 Sketch of the

Hertzsprung–Russell diagram

with the locus of homologous

main-sequence stars (solid

line) of different masses for a

certain constant value of �.

The dashed lines indicate

lines of R D constant

this luminosity. Introducing the exponents into (20.12), we have from (20.4) that

L

L0 D
�
M

M 0

�3 �
�

�0

�4
: (20.20)

There thus exists a mass-luminosity relation that gives a steeply increasing L with

increasing M . And L varies even more strongly with the molecular weight � (The

precise values of the exponents vary for other values of a and b roughly in a range

from 3 to 6, but the principle result remains.).

All other exponents depend on � and �. z1 and z2 describe the variation of the

radius:
R

R0 D
�
M

M 0

�z1
�
�

�0

�z2

: (20.21)

The exponent z1 of the M �R relation is positive for all relevant combinations of

� and � but smaller than one, i.e. R increases slightly with M . Values for typical

parameters of hydrogen burning (� D 1) via the pp chain .� D 4 : : : 5) and the

CNO cycle .� � 15 : : : 18) are given in Table 20.1. Over this very large range of

�, z1 varies relatively little, roughly from 0.4 to 0.8.

The M�R relation together with the M�L relation immediately give the locus

of these stars in the Hertzsprung–Russell (HR) diagram, where lg L is plotted over

�lg Teff (see Fig. 20.1).

From (20.20) and (20.21) we haveR � Lz1=3 for homologous stars of identical�.

Introducing this into the definition of the effective temperature

�T 4eff D L

4�R2
; (20.22)

we obtain the locus as given by

lgL D 12

3 � 2z1
lg Teff C constant: (20.23)

For an average value z1 D 0:6, the slope is 6.67.
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Table 20.1 Exponents in (20.12) for various temperature sensitivities � of the nuclear reactions,

and for ˛ D ı D ' D 1; a D b D 0; � D 1, calculated from (20.19)

�: 4 5 15 18

z1 0.43 0.5 0.78 0.81

z2 0 0.13 0.61 0.67

p1 0.29 0 �1.11 �1.24

p2 0 �0.5 �2.44 �2.67

t1 0.57 0.5 0.22 0.19

t2 1.0 0.88 0.39 0.33

s1 3 3 3 3

s2 4 4 4 4

The exponents describe the dependence of R;P; T; L on M and � .R � M z1�z2 ; P �
M p1�p2 IT � M t1�t2 ; L � M s1�s2/

Let us consider how a star of fixed M moves in the HR diagram if � changes.

From (20.20) and (20.21) we have L � �4; R � �z2 ; which with (20.22) gives

T 8eff � L2�z2 � L1:5 for z2 � 0:5. This defines in the HR diagram a straight

line of smaller slope (� 5:3) than that of the main sequence. This line for M D
constant and � increasing goes to the upper left with a slope between that of the

main sequence and that of the lines R D constant.

The expression for t1 in (20.19) means that

T � M=R; (20.24)

which simply reflects the virial theorem (thermal energy � potential energy). Of

special interest are the central values of temperature and density, Tc and %c, for

which one has

Tc � M 1�z1 ; %c � M 1�3z1 : (20.25)

The values in Table 20.1 show that for increasing M;Tc increases relatively slowly,

while %c decreases. This trend is especially pronounced for CNO burning, where

Tc scarcely changes at all, typical variations being Tc � M 0:2 and %c � M�1:4

(see Fig. 20.2). The predictions of the homology relations are at least qualitatively

recovered in the numerical solutions for main-sequence stars (Chap. 22).

20.2.3 The Role of the Equation of State

The procedure by which the homology solutions were obtained shows that their

existence rests entirely on the fact that the right-hand sides of (20.5) contain only

products of the variables, but no sums. This property is destroyed if the material

functions, instead of being products of powers of P and T , contain additive terms

as is in general the case with the equation of state. The simplest example is the

addition of radiation pressure to an ideal gas such that P D <%T=� C aT 4=3:
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Fig. 20.2 The central values of T and % (both logarithmic) for homologous main-sequence stars

of various M: The slope corresponds to a temperature sensitivity � typical for CNO burning

No strict homology relations are then possible. But one can try to make rough

approximations.

One usually writes the corresponding equation of state as

% � .�ˇ/
P

T
; ˇ D Pgas

P
D 1 � Prad

P
: (20.26)

The situation would be simple and homology relations would hold if ˇ were

constant throughout the model. Then a variation of ˇ obviously has the same effect

as that of � and we would find R � ˇz2 ; P � ˇp2 ; T � ˇt2 ; L � ˇs2 . In reality ˇ

is determined by P and T: For simultaneous variations of M and ˇ, therefore

1 � ˇ D Prad

P
� T 4

P
� M 4t1

M p1

ˇ4t2

ˇp2
; (20.27)

which, if we simply use (20.19), gives

1 � ˇ

ˇ4
� M 2: (20.28)

Now, ˇ is generally not constant inside a star [except for the polytrope n D 3

as treated in Sect. 19.5; compare with the identical relation (19.56)], but we can

consider (20.28) as a relation between M and some kind of mean value of ˇ. One

then sees that ˇ decreases strongly with M; i.e. the contribution of the radiation

pressure to P increases with mass. Quite similarly we can write

L � M s1 ˇs2 : (20.29)

Since ˇ decreases with increasing M , (20.29) can be written as L � M s1�c .c > 0
for s2 > 0) and the M�L relation becomes less steep. For ˇ � 1 (large Prad),

relation (20.28) gives ˇ � M�1=2 such that L � M s1�s2=2 D M . It is generally

true that with increasing mass, the pressure in homogeneous stars is increasingly
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dominated by radiation pressure, and the mass-luminosity relation is less steep than

for low-mass stars.

20.3 Homologous Contraction

Now we briefly consider the homologous contraction. This may apply to a chemi-

cally homogeneous star of given mass in hydrostatic equilibrium, if its radius is not

fixed by an M�R relation but changes in time. Let us assume that consecutive

models are homologous to each other. An example in which this assumption is

fulfilled is the contraction of a polytrope that does not change its polytropic index n:

The solution of the Lane–Emden equation for given n yields the mass value m as

a unique function of z only, where z is Emden’s dimensionless radius variable, i.e.

z � r=R (see Sect. 19.2). Therefore the mass elements remain at homologous points,

since their values of z do not change in time.

Homologous mass shells (� = constant) are here simply those which have the

same value of m; since the normalizing factor M remains constant. The radius of

any such shell is supposed to change by a rate Pr D @r=@t . In two neighbouring

models, separated by a time interval �t , we have the values r and r 0 connected by

r 0 D r C Pr�t . This gives
r 0

r
D 1C Pr

r
�t: (20.30)

For a homologous contraction, we must require that r 0=r D R0=R D constant

throughout the star. Then also

Pr
r

D
PR
R

(20.31)

must be constant, or
@

@m

�
@ ln r

@t

�
D 0: (20.32)

The relative rate of change of the other variables can then be easily expressed in

terms of Pr=r: From (20.32) we find by exchange of the two derivatives, and by

using (10.1),

@

@t

�
1

r

@r

@m

�
D @

@t

�
1

4�r3%

�
D 1

4�r3%

�
�3 Pr
r

� P%
%

�
D 0; (20.33)

which gives
P%
%

D �3 Pr
r
: (20.34)

The pressure at a layer of mass valuem is given by an integration of the hydrostatic

equation as
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P D
Z M

m

Gm

4�r4
dm: (20.35)

Differentiating this with respect to time and observing that Pr=r is constant through-

out the model, we have

PP D
Z M

m

@

@t

�
1

r4

�
Gm

4�
dm D �4 Pr

r

Z M

m

Gm

4�r4
dm: (20.36)

Equations (20.35) and (20.36) yield

PP
P

D �4 Pr
r
: (20.37)

If we have an equation of state with % � p˛T �ı; then P%=% D ˛ PP=P � ı PT =T .

Solving this for PT =T and replacing P% and PP by (20.34) and (20.37), we have

PT
T

D �4˛ � 3

ı

Pr
r
: (20.38)

The energy generation due to contraction is according to (4.47)

"g D cPT

 
rad

PP
P

�
PT
T

!
: (20.39)

We introduce (20.37), (20.38) and (20.31), thus obtaining

"g D cPT

�
�4rad C 4˛ � 3

ı

� PR
R
: (20.40)

For an ideal monatomic gas (rad D 2=5; ˛ D ı D 1) this becomes

"g D �3
5
cPT

PR
R
: (20.41)

Therefore "g > 0 for contraction . PR < 0). We also see that j"gj � j PR=Rj; and since

"g is proportional to T , it represents an energy source that is only rather moderately

concentrated towards the centre.

As already mentioned, homology considerations are important for rough inter-

pretations of numerical results, but their strict applicability is very limited. This

is ultimately because homology requires a very well concerted action of all mass

elements. It can hold approximately only for homogeneous stars. In Sect. 33.2 we

will encounter another type of homology which considers only certain parts inside

a star, and which applies to some very inhomogeneous stellar configurations.
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Simple Models in the U –V Plane

There are stars in which the nuclear energy generation proceeding close to the centre

creates such a high energy flux that the whole central region is convective. These

stars can be described by models with a convective core and a radiative envelope.

In later stages of stellar evolution the nuclear fuel in the central region of the star is

exhausted and nuclear burning takes place only at the surface of a burned-out core.

Under certain circumstances these models with shell burning can be described by

a core that is isothermal, since no energy has to be transported there, and that is

surrounded by a radiative envelope. In both cases a core solution of one type has to

be fitted to an envelope solution of another type. In the following we shall deal with

a classical fitting procedure which in the past was often used to construct models

for such stars (see Schwarzschild 1958; Wrubel 1958) and which gives valuable

insight into some of their general properties. Moreover, procedures like this can be

helpful in certain special cases where the usual, iterative numerical methods are not

practicable.

21.1 The U –V Plane

We define two dimensionless quantities using (1.2) and (2.4):

U WD d lnm

d ln r
D 4�r3%

m
; V WD �d lnP

d ln r
D %

P

Gm

r
: (21.1)

A solution which is regular in the stellar centre has the central valuesU D 3, V D 0,

as can easily be seen: a small sphere around the centre has the massm D 4�r3%c=3;

so that there U ! 3 and V � r2 ! 0. Near the surface the numerical value of U

becomes very small (as % does), as well as P=% .� T for the ideal gas or � %
�1

for polytropes). Therefore V becomes very large.
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Fig. 21.1 The polytrope

n D 3=2 in the U –V plane.

The stellar centre is in the

lower-right corner .U D 3,

V D 0)

Compare two homologous models. Then U as well as V have the same value in

homologous mass shells. Indeed with r=r 0 D R=R0; m=m0 D M=M 0; and (20.9) it

follows that

U D 4�r3%

m
D 4�r 03%0

m0 D U 0 and correspondingly V D V 0: (21.2)

U and V are therefore also called homology invariants.

We now determine the quantities U and V for polytropes. From (19.11) and

(19.18), we find

U D �wn
�
1

z

dw

d z

��1
: (21.3)

With the expansion (19.12) one can see that indeed U ! 3 for z ! 0, independent

of the value of n: We furthermore find–with % D %cw
n; P D Pc.%=%c/

1C1=n D
Pcw

nC1, and (19.18)–from (21.1) that

V D 4�G%2cr
2

Pc

�
�1

z

dw

d z

�
1

w
; (21.4)

and with (19.3) and (19.9)

V D �.nC 1/
z

w

dw

d z
; (21.5)

which indeed vanishes at the centre and becomes large near the surface where

w ! 0. Note that the functions U.z/ and V.z/ depend only on n: they are

independent of any other parameter of the model. This is the property which makes

a discussion of the U –V plane worthwhile. The function V D V.U / for n D 3=2 is

plotted in Fig. 21.1.
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Fig. 21.2 The isothermal

sphere for an ideal gas in the

U –V plane. The centre

(r D 0) is in the lower-right

comer (U D 3, V D 0),

while for the surface

(r ! R D 1) the curve

spirals into the point

U D 1; V D 2

The above polytropic relations hold for finite n only. The isothermal polytrope

for an ideal gas .n D 1) again is an exceptional case. Instead of (21.3) and (21.5)

one finds from (21.1) and the relations of Sect. 19.8

U D e�w

�
1

z

dw

d z

��1
; V D z

dw

d z
; (21.6)

where w now is the solution of (19.35). This case is shown in Fig. 21.2:

although the corresponding polytropic model has an infinite radius, its image curve

in the U –V plane spirals into the point U D 1, V D 2, which represents the

surface .z D 1). The spiral of the isothermal gaseous sphere unwinds and reaches

higher and higher values of V if degeneracy becomes important. In the limit case

of complete non-relativistic degeneracy, the image curve approaches that of the

polytrope n D 3=2 of Fig. 21.1.

The U –V plane has often been used to construct simple stellar models by

fitting core and envelope solutions. Clearly this is most profitable when the core

is polytropic with given index n and therefore all possible cores are represented by

a single, known curve in the plane. This is the case for stars with convective cores

(polytropic with n D 3=2) or with non-degenerate isothermal cores .n D 1).

The fitting requires continuity of r , P , T , l at the interface. If � is continuous,

then also %–and according to (21.1)–U and V have to be continuous at the fitting

point: core and envelope curves intersect (compare Figs. 21.3 and 21.4). If � is

discontinuous at the interface having there the values �1; �2, then the continuity of

P and T for an ideal gas requires %1=%2 D �1=�2, and (21.1) shows that

U1

U2
D V1

V2
D %1

%2
D �1

�2
; (21.7)

where subscripts 1 and 2 refer to core and envelope solutions at the interface

respectively. This means that the points (U1; V1) and (U2; V2) lie on a straight line

through the origin.
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Fig. 21.3 Fitting a radiative-envelope solution with a convective core in the U –V plane. (a) Three

envelope solutions with different values of the parameter C come from the upper left downwards

(solid lines). One of them fits to the convective-core solution (dashed line), which is given by the

polytrope of n D 3=2 and starts in the centre at U D 3, V D 0. At the fitting point, both curves

have the same gradient r D rad D 0:4 and the same tangent. (b) A radiative-envelope solution in

the U –V plane. The solution is shown by a solid line as far as r < 0:4, and by a dotted line where

r > 0:4 such that the assumption of radiative transport breaks down (After Schwarzschild 1958)

21.2 Radiative Envelope Solutions

We first consider solutions for the envelope where " D 0 and therefore

l D constant D L. The gas is supposed to be ideal, and the opacity is approximated

by a power law

� D �0%
aT �b; (21.8)

where �0 D constant (Note that here a representation in % and T is used which gives

a different exponent b than a representation in P and T .).

We want to obtain many different solutions from a given one by simple scaling.

For this aim we replace P; T;m; r by the dimensionless Schwarzschild variables

y; t; q; x (Schwarzschild 1946):

P D GM 2

4�R4
y ; T D �

<
GM

R
t ; m D qM; r D xR: (21.9)
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Fig. 21.4 Three envelope solutions with different parameters C and the curve of the non-

degenerate isothermal core in the U –V plane. The dashed lines combine those points of the

envelope solutions where q D m=M reaches certain values. Since, in the case of a homogeneous

model, envelope and core solution must be fitted continuously in the U –V plane, one can see that

no complete models are possible for isothermal cores with more than about 0.38 M (This limit is

even lower if the core has a higher molecular weight than the envelope.). A possible fit for q � 0:3

between the envelope curve for lgC D �5:5 and the isothermal-core curve is indicated by a

heavy dot

The equation of state gives the density as

% D M

4�R3
y

t
: (21.10)

One can easily see that then the homology variables become U D x3y=.qt/ and

V D q=.tx/. The stellar-structure equations (10.1) and (10.2) give

dx

dq
D t

x2y
;

dy

dq
D � q

x4
; (21.11)

while the equation for energy transport (10.4) with expression (10.6) gives

dt

dq
D �C ya

taCbC3x4
; (21.12)
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with

C D 3�0

4ac.4�/aC2

� <
�G

�bC4
LRb�3aM a�b�3: (21.13)

At the surface q D 1, and the solutions have to fulfil the boundary conditions

y D 0 ; x D 1 ; y=t D 0; (21.14)

the last of which guarantees that according to (21.10) the density vanishes there.

The singularity of the system (21.11) and (21.12) at the surface can be overcome

by an approximation. If one puts q D constant D 1 for the whole near-surface

region, one finds from (21.11) and (21.12) that

dy

dt
D 1

C

taCbC3

ya
;

dt

dx
D � a C 1

a C b C 4

1

x2
: (21.15)

The first equation has been integrated (the integration constant being chosen in such

a way that y D t D 0 at the surface). This is used for eliminating y from (21.11)

and (21.12), which then give the second equation (21.15).

The two ordinary differential equations (21.15) are integrated by separation of

the variables. The solutions can be used near the surface down to a safe distance

from the singularity. From there on the normal equations (21.11) and (21.12) can be

numerically integrated inwards.

Obviously one obtains a one-parameter set of solutions, the parameter being C .

Three such envelope solutions in the U –V plane are shown in Fig. 21.3a. All of

them come from the upper left and miss the central boundary condition (U D 3,

V D 0), since they have a singularity there. This does not matter, since anyway we

have to fit them to a core solution (compare also with Sect. 12.1). From (21.11) and

(21.12) it results that

r � d lnT

d lnP
D y

t

dt

dy
D C

yaC1

taCbC4q
; (21.16)

from which one can see that owing to the factor q�1 the value of r tends to infinity

near the centre. In fact r is small near the surface and increases inwards until it

reaches the critical value rad (see Fig. 21.3b). Further inwards the Schwarzschild

criterion (6.13) requires convection and the radiative-envelope solutions are no

longer valid.

21.3 Fitting of a Convective Core

In order to obtain a model with a convective core inside a radiative envelope we have

to fit the solutions of Sect. 21.2 with a polytropic solution of n D 3=2 starting at the

centre (U D 3, V D 0). The fit has to be done at the point where the envelope
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solution reaches r D rad. Joining all these points on the different envelope

solutions (different C ) gives a line r D rad in the U –V plane, which intersects

the core polytrope at the fitting point U �; V �: The envelope solution through this

point has the value C D C �: Because of the condition that the gradient r is also

continuous there, the solutions for core and envelope are tangential to each other, as

can be seen in Fig. 21.3a. At the fitting point the variables of the envelope solution

may be q�; y�; x�; t�, while the core polytrope has the variables z�;w�.

Let us assume a certain value for the mean molecular weight � in the envelope.

The fit has fixed C D C �; which according to (21.13) gives a relation between

L;R; and M: But L is determined by the energy generation in the core, for which

we assume a rate of

" D "0%T
� : (21.17)

In the convective core we can connect the Emden variable z with r by r D zr�=z�,

where r� D x�R from the outer solution. Then r�dl=dr D z�dl=d z, and with

% D %cw
3=2; T D Tcw; we have the energy equation with � D l=L

d�

d z
D Bz2w�C3; B D 4�"0

L

�
x�R

z�

�3
%2cT

�
c : (21.18)

Continuity of % and T in core and envelope solutions requires

%� D %cw
�3=2 D M

4�R3
y�

t�
; (21.19)

T � D Tcw
� D �

<
GM

R
t�: (21.20)

With these two equations we can express %c; Tc as functions of w�; y�; t� (all known

from the integrations) and of M and R. The expressions inserted into (21.18) give

B D B0"0

�
�G

<

��
M �C2

LR�C3 ; (21.21)

where B0 is known from the numerical integrations to the fitting point. Since L is

to be generated in the core, � D l=L D 1 at the fitting point. Therefore integration

of (21.18) gives

1 D
Z z�

0

d�

d z
d z D B

Z z�

0

z2w�C3d z: (21.22)

This fixes the value B D B�; since z� is known, and the integral follows from a

simple quadrature.

The fitting procedure now has yielded two numerical values C �; B�. Therefore

for a given value of M one obtains L and R from (21.13) and (21.21). Of course,

one has to check afterwards that (21.17) only gives negligible contributions to L in

the envelope solution (where l D constant was assumed).
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Models of this type were first constructed by Cowling (1935). They have the

advantage that l appears in the structure equations only for the envelope where it is

constant (D L).

21.4 Fitting of an Isothermal Core

In stellar evolution we shall have to discuss models with an isothermal helium core

surrounded by a hydrogen-rich envelope. The luminosity is generated in a thin shell

at the interface. This will be idealized by assuming a discontinuity of l (from 0 to L)

at the interface.

Let us discuss here a model in which � is continuous at the interface so that the

image curve in the U –V plane is continuous at the fit.

In Fig. 21.4 we have plotted envelope solutions together with the isothermal-

core solution for an ideal gas. Along each envelope curve the value of q decreases

inwards. We have also plotted some lines q D constant. As one can see from the

figure there are no fits possible with q > qmax � 0:38, i.e. when more than 38 % of

the total mass lies within the isothermal core. For given q < qmax a fit is possible.

An example for a fit at q � 0:3 is shown in Fig. 21.4. One can show that such

a fit determines a model completely for given M . Physically more realistic is a

model in which � is higher in the core than in the envelope, which we idealize by

a jump of � at the interface. Then the curve in the U � V plane is discontinuous,

fulfilling the conditions (21.7) at the interface (�1 > �2). If one tries to fit core

and envelope with this condition, and say �1=�2 D 1:333=0:62, one finds that qmax

is considerably smaller: no fits are possible at q > qmax � 0:1. This gives the

Schönberg–Chandrasekhar limit for isothermal cores consisting of an ideal gas (see

Sect. 30.5) enclosed by the stellar envelope.
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The Zero-Age Main Sequence

We consider here a sequence of chemically homogeneous models in complete

(mechanical and thermal) equilibrium with central hydrogen burning. All of them

are composed of the same hydrogen-rich mixture, while the stellar mass M varies

from model to model along the sequence.

These models can represent very young stars which have just formed from the

interstellar medium, and in which the foregoing contraction (see Chap. 28) has

raised the central temperature so far that hydrogen burning has started. This provides

a long-lasting energy source, and consequently the stars change only on the very

long nuclear timescale �n. Within the much shorter Kelvin–Helmholtz timescale

(see Sect. 3.3), the stars will “forget” the details of their thermal history long before

the nuclear reactions have noticeably modified the composition. The only nuclear

changes that have taken place during the previous phase are the burning of the

light elements deuterium, lithium, beryllium and boron in the largest part of the

star, and the conversion of carbon to nitrogen in the centre. The latter reactions

consume approximately 1 % of the protons in the stellar core; the former ones are

orders of magnitude less important due to the very low abundances of the mentioned

elements. This is why one can reasonably treat them as homogeneous models in

thermal equilibrium. The now-beginning evolution, in which hydrogen is slowly

consumed in the stellar core, has such a long duration that most visible stars are

presently found in this phase. Our homogeneous models define its very beginning,

and their sequence is therefore more precisely called the zero-age main sequence

(ZAMS), since one usually counts the age of a star from this point on.

22.1 Surface Values

Homogeneous, hydrogen-burning equilibrium models can be very easily calculated

and are available for many different chemical compositions. We limit ourselves to

discussing a set of calculations with XH D 0:70;XHe D 0:28, such that all heavier
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Fig. 22.1

Hertzsprung–Russell diagram

with the zero-age main

sequence computed for a

composition with

XH D 0:70; XHe D 0:28. The

locations of models for

several masses between 0.1

and 55Mˇ are indicated

elements amount only to 0:02 of the mass.1 This is a chemical composition typical

for the younger population of stars found in the spiral arms of the Milky Way. The

metallicity Z is slightly higher than that of the Sun.

Figure 22.1 shows the Hertzsprung–Russell diagram for the models in the wide

range of stellar masses from 0.1Mˇ to more than 50Mˇ: L and Teff increase

with increasing M , thus forming the ZAMS, which coincides more or less with

the lower border of the observed main-sequence band. The slope of the ZAMS

below � 0:6Mˇ depends sensitively on the equation of state, the opacities, and

the atmospheric boundary conditions.

The important mass-radius and mass-luminosity relations for these models are

shown in Figs. 22.2 and 22.3 by the solid lines. In both cases they should constitute

a lower envelope to the distribution of stars, since radius as well as luminosity

are increasing during the main-sequence evolution and mass remains constant or

decreases slightly. Those objects in Fig. 22.2 clearly detached from the bulk of

objects are stars that have already developed off the main sequence and therefore

have considerably larger radii. Note the very good agreement with theory, although

the stars shown do not have identical composition and, in particular, not exactly

that of the models. Points below the theoretical sequence may also be due to

measurement errors. As predicted already by the simple homology relations for

main sequence models [see (20.20) and (20.21)], R increases slowly, and L

1Note that we will also use the notation X , Y , and Z for the mass fractions of hydrogen,

helium, and the sum of all remaining elements, commonly labelled “metals”, as is the case in

the astrophysical literature.



22.1 Surface Values 253

Fig. 22.2 The line shows the

mass-radius relation for the

models of the zero-age main

sequence plotted in Fig. 22.1.

For comparison, the best

measurements (as collected

by Malkov et al. 2006,

containing the very important

catalogue of Andersen 1991)

of main sequence primary

components of detached and

visual binary systems are

shown as grey dots

Fig. 22.3 The line gives the

mass-luminosity relation for

the models of the main

sequence shown in Fig. 22.1.

Measurements of binary

systems are plotted for

comparison as in Fig. 22.2

increases strongly with increasing M . For an interpolation over a certain range of

M we may again write

R � M � ; L � M � : (22.1)

From the slopes of the curve in Fig. 22.2 we find roughly � D 0:56 and 0.79 in the

upper and lower mass ranges, respectively. In the range of small values of M , there

is a pronounced maximum of the slope aroundM D 1Mˇ, indicating a remarkable

deviation from homologous behaviour in this range. With decreasing effective

temperature these models have outer convective zones of strongly increasing

extension (cf. Sects. 11.3.2, 11.3.3 and Fig. 22.7). This tends to decrease R, in

addition to other effects.

Also the slope of the M � L relation in Fig. 22.3 varies with M . Over the

whole mass range plotted, the average of � is about 3.37. For M D 1 : : : 10Mˇ
the average exponent is 3.89, while in the larger range M D 1 : : : 50Mˇ it is

3.35. The decreasing slope towards largerM is an effect of the increasing radiation

pressure (see below and Sect. 20.2.3).
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Let us consider the way in which the variation of the exponents � and � influences

the slope of the main sequence in the Hertzsprung–Russell diagram. EliminatingM

from the two relations (22.1), we find immediately that

R � L�=n : (22.2)

We introduce this into the relation L � R2T 4eff and obtain for the main sequence in

the Hertzsprung–Russell diagram the proportionality

L � T
�

eff; � D 4

1 � 2�=� : (22.3)

We have seen that for large stellar masses, � decreases and � remains about constant

with further increasingM: Equation (22.3) then gives an increase of �, which means

that the main sequence must become gradually steeper towards high luminosities.

We should mention that these two relations belong to the rare instances for which

a reasonable quantitative test of the theory is possible. Even here one is rather

restricted, since it is extremely difficult to obtain sufficiently precise measurements

of R;L; and M . From this point of view, the M � R relation should be the

more reliable one. In Figs. 22.2 and 22.3 a selection of the best observed main-

sequence double stars are plotted (Andersen 1991; Malkov et al. 2006). When

comparing the scattering in the two diagrams one should note that Fig. 22.3 has

an appreciably more compressed ordinate. The theoretical curves map out roughly

the lower border of the measured values. They would be shifted slightly upwards,

for example, by the assumption of a smaller hydrogen content. However, we have

compared zero-age main-sequence stars with real stars of varying composition

here. In view of the uncertainties and difficulties involved in theory as well as in

observation, one can scarcely expect a better fit, particularly when considering the

enormous range of values involved (a factor 250 in M , nearly 8 powers of 10 in L).

22.2 Interior Solutions

The behaviour of the interior may be illustrated by characteristic variables as

functions of m=M . They are plotted in Fig. 22.4 for two stellar masses in order

to demonstrate typical dependencies of the solutions on M .

The density % (Fig. 22.4a) increases appreciably towards the centre where we

have %c � 102 g cm�3 for 1 Mˇ, i.e. roughly a factor 109 larger than in the

photosphere. For 10Mˇ, the central density is smaller by more than a factor 10.

The inward increase of % indicates a very strong concentration of the mass elements

towards the centre, illustrated in Fig. 22.4b. For 1 Mˇ; the inner 30 % of the radius

(i.e. only 3 % of the total volume) contains 50 % of the mass; and in the outer 50 %

of R (i.e. 88 % of the volume) only about 15 % of M can be found.
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a b

c

d e

Fig. 22.4 The run of some functions inside zero-age main-sequence models for M D 1Mˇ

(solid lines) and M D 10Mˇ (dashed lines) with the same composition as in Fig. 22.1

(XH D 0:70; XHe D 0:28/I (a) density % (in g cm�3), (b) radial mass distribution m.r/=M ,

(c) temperature T (in K), (d) nuclear energy production (in erg g�1 s�1/, (e) local luminosity l

The temperature (Fig. 22.4c) also increases towards the centre. For 1 Mˇ, the

central value of 1:36 � 107 K is a factor 2,400 larger than the photospheric value.

Values of T > 3 � 106 K extend to m � 0:95M , so that the average T value

(averaged over the mass elements) is roughly 7:7 � 106 K. In a 10Mˇ star, T has

slightly more than twice the values of corresponding mass elements for 1 Mˇ.

The behaviour of T is necessarily reflected by that of the rate of energy

generation due to hydrogen burning (Fig. 22.4d). The dependence of " on T

(cf. Sect. 18.5.1), together with the T gradient, yields a strong decrease of " from the

centre outwards. In the 1Mˇ star, " has dropped by a factor 102 from the centre to

m D 0:6M , and still further outward it is quite negligible. This is particularly well

seen in Fig. 22.4e: 90 % of L is generated in the inner 30 % of M ; and l reaches

about 99 % of L at m=M D 0:53. In the central part of the 10Mˇ star, where
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Fig. 22.5 The heavy solid line gives the central temperature Tc (in K) over the central density

%c (in g cm�3) for the same zero-age main-sequence models as in Fig. 22.1. The dots give the

positions of some models with masses between M D 0:10 and M D 50 (in solar masses). The

labels below the curve indicate the logarithmic fractional contribution of the radiation pressure

Prad to the total pressure in the centre. The dashed lines give the constant degeneracy parameter  

of the electron gas

Tc D 3 � 107 K, the dominant energy source is the CNO cycle (instead of the pp

chain in 1Mˇ). The much larger T dependence of " gives an even more pronounced

concentration of " towards the centre (Fig. 22.4d). In the innermost 30 % of M; "

drops by about a factor 103 (as compared to a factor 10 in the same interval of

1Mˇ). This corresponds to an " with an exponent of T roughly three times larger.

Further outwards, where T is low enough for the pp chain to dominate, the slope of

" becomes the same in both stars. In the 10Mˇ star, 90 % of the total luminosity is

generated within the innermost 10 % of the mass (Fig. 22.4e).

We have seen that in spite of all similarities there are characteristic differences

between the interior solutions for different values ofM . Some of these can be found

in the plot of the central values of temperature and density (Fig. 22.5). This diagram

exhibits at least qualitatively another prediction of the homology considerations

in Chap. 20: with increasing M , there is a slight increase of Tc together with a

substantial decrease of %c. Between M D 2Mˇ and 50Mˇ the differences are

� lgTc D C0:28 and � lg%c D �1:43. The striking change of the curve around

1:3Mˇ is a direct consequence of the transition from the CNO cycle to the pp-

chains as the dominating energy source. AtM D 1:4Mˇ, the CNO cylce dominates

at the centre, which reaches the critical temperature of lgTc D 7:25 (Fig. 18.8),

while at M D 1:9Mˇ the pp-contribution to the total energy production has fallen

below 50 % (see also Fig. 22.6). From the homology relations (20.25) and Table 20.1

the slope of the curve in Fig. 22.5 can be predicted: it has a small negative value at
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Fig. 22.6 For six zero-age

main-sequence models of the

same composition as in

Fig. 22.1 (mass in solar units

indicated along each curve),

the fraction that the CNO

cycle contributes to the total

energy generation rate at

different places inside the

model (characterized by the

corresponding local

luminosity l at the abscissa)

is shown

the high mass end (�0:16 compared to �0:20 from the numbers given above) and a

large negative value (. �2) forM < 1:3Mˇ. In addition, there are deviations from

homology, partly due to the appearance of the outer convective zone (the homology

relations were derived under the assumption of radiative energy transport), which

is deepening with decreasing mass. The extension of convective regions should

certainly influence the centre, since they have a less pronounced mass concentration

than radiative regions. Note that both flat parts of the Tc � %c curve in Fig. 22.5

belong to models in which the central part is convective (cf. Fig. 22.7). At the lowest

masses the stars are fully convective and follow the relations for a polytrope of index

n D 3=2 (Chap. 19 and Sect. 24.2).

In the upper range of masses degeneracy is negligible, while it becomes increas-

ingly important towards smaller M owing to the increasing density. Below 0.5Mˇ,

say, other deviations from the ideal gas approximation also become important in the

equation of state, for example, electrostatic interaction between the ions.

On the other hand, the radiation pressure Prad must increase towards larger M

owing to the increasing T , since Prad � T 4. At M D 1Mˇ, radiation contributes

only the negligible fraction of a few 10�4 to the total central pressure. This fraction

becomes about 1 % at 4Mˇ, while in the centre of the 50Mˇ star, Prad contributes

no less than 1/3 to the total pressure (see Fig. 22.5).

Another effect of the growing Tc, which also occurs around 1 Mˇ, is the

transition from the pp chain to the CNO cycle as the dominant energy source

(compare also Fig. 18.8). For models in the transition region from M D 1 Mˇ
to 3 Mˇ, Fig. 22.6 shows the contribution of "CNO to the local energy generation

rate as a function of l=L. The integral over such a curve gives the fraction of L due

to burning in the CNO cycle. This amounts only to a few percent forM D 1:2Mˇ.

In the 1:6Mˇ star, the CNO cycle already contributes 65 % at the centre, and nearly

one half of the total luminosity. It clearly dominates the whole energy generation

for 1:8Mˇ and more massive stars.
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22.3 Convective Regions

Knowledge of the extension of convective regions is very important in view of their

influence on the ensuing chemical evolution. A rough overview can be obtained

from Fig. 22.7, wherem=M and lgM=Mˇ are ordinate and abscissa. For any given

stellar mass M along a line parallel to the ordinate it is indicated what conditions

we would encounter when drilling a radial borehole from the surface to the centre.

In particular, one can see whether the corresponding mass elements are convective

or radiative. Aside from the stars of smallest mass (M < 0:25Mˇ), we can roughly

distinguish between two types of model:

convective core C radiative envelope (upper main sequence);

radiative core C convective envelope (lower main sequence).

The transition from one type to the other again occurs near M D 1Mˇ.

The distinction between convective and radiative regions is made here by

using the Schwarzschild criterion (see Sect. 6.1), which predicts convection if the

radiative gradient of temperature rrad exceeds the adiabatic gradient rad (The

gradient r� of the molecular weight appearing in the Ledoux criterion is zero

in these homogeneous models. Possible effects of overshooting will be discussed

in Chap. 30.). The variation of these gradients (together with that of the actual

gradient r) throughout the star is plotted in Fig. 22.8 for M D 1Mˇ and 10Mˇ.

For the abscissa, lg T is chosen, since this conveniently stretches the scale in the

complicated outer layers.

Let us start with the simpler situation concerning the convective core. When

comparing Fig. 22.8a, b, we see that the convective core in the more massive models

is caused by a steep increase of rrad towards the centre. The reason for this is that

the dominating CNO cycle , with its extreme temperature sensitivity, concentrates

the energy production very much towards the centre (cf. the curve l=L D 0:5 in

Fig. 22.7, and Fig. 22.4e). Therefore we find in these stars very high fluxes of energy

(l=4�r2) at small r , which produce large values of rrad. Figure 22.7 shows a

remarkable increase in the extent of the convective core for increasingM . The core

covers as much as 65 % of the stellar mass in a star of 50Mˇ, an increase caused by

the increasing radiation pressure (cf. Sect. 22.2 and Fig. 22.5), which depresses the

value of rad well below its standard value of 0.4 for an ideal monatomic gas [see

(13.12)]. In the centre of the 50Mˇ model, roughly 1/3 of P is radiation pressure,

and rad � 0:27. From Fig. 22.8b it is clear that a depression of rad in the central

region will shift the intersection with rrad (i.e. the border of the convective core)

outwards to smaller T . When we increase M to much larger values still, the top

of the convective core will finally approach the surface such that we should obtain

fully convective stars. We then approach models of the so-called supermassive stars

(see Sect. 19.10).
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Fig. 22.7 The mass values m from centre to surface are plotted against the stellar mass M for

the same zero-age main-sequence models as in Fig. 22.1. “Cloudy” areas indicate the extension of

convective zones inside the models. Two solid lines give them values at which r is 1/4 and 1/2 the

total radius R: The dashed and dotted lines show the mass elements inside which 50 % and 90 %

of the total luminosity L are produced

Fig. 22.8 The grey solid lines show the actual temperature gradient r D d lnT=d lnP over the

temperature T (in K) inside two zero-age main-sequence models of 1Mˇ (left panel) and 10Mˇ

(right panel). The corresponding adiabatic gradients rad (dotted lines) and radiative gradients rrad

(dashed lines) are also plotted, and the location of the ionization zones of hydrogen and helium are

indicated (arrows). The chemical composition of the models is the same as for those of Fig. 22.1

In less massive stars, the pp chain with its smaller temperature sensitivity

dominates. This distributes the energy production over a much larger area, so that the

flux and rrad are much smaller in the central region, which thus remains radiative.

Outer convective envelopes can generally be expected to occur in stars of low

effective temperature, as the discussion of the boundary conditions in Sect. 11.3.2

has already shown. When studying the different gradients in the outer layers of

cool stars (Fig. 22.8a), one finds a variety of complicated details. The variation

of rad clearly shows depressions in those regions where the most abundant
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elements, hydrogen (T & 104 K) and helium (T � 105 K), are partially ionized

(see Chap. 14). The most striking feature is that rrad reaches enormous values (more

than 105/. This is due to the large opacity �, which here increases by several powers

of 10 (cf. Chap. 17). Therefore the Schwarzschild criterion indicates convective

instability: the models have an outer convective zone. In the largest part of it,

the density is so high that convection is very effective and the actual gradient r
is close to rad. Convective transport becomes ineffective only in the outermost,

superadiabatic part, where r is clearly above rad. Scarcely anything of all these

features appears in the hot envelope of the 10Mˇ star (Fig. 22.8b). rrad remains

nearly at the same level; even the photosphere is too hot for hydrogen to be neutral,

and only the small dip from the second He ionization is seen immediately below

the photosphere. This causes such a shallow zone with convective instability that

only for special cases, depending on the detailed chemical composition, convective

motions set it.

The outer convection zone gradually penetrates deeper into the star with decreas-

ing Teff. Its lower border finally reaches the centre at M . 0:25Mˇ (left end

of Fig. 22.7), such that the main-sequence stars of even smaller masses are fully

convective.

22.4 Extreme Values of M

The ZAMS ends at extreme low and high mass values. Only in recent years

detailed calculations for main-sequence stars of very lowM have become available.

The difficulties of modelling them lie in particular in the fact that the input

physics is complicated and the available data not very reliable. This concerns the

notorious problem of the treatment of convection, as well as the opacity values

for mixtures containing many molecules. Both these effects are important in very

cool envelopes. Complications for the interior structure are equally severe. They

arise, for example, from the difficult treatment of particle interaction in the low-

temperature high-density regime and influence the equation of state and the electron

screening of nuclear reactions. Progress has been made in the equation of state

under such conditions (Sect. 16.6), in the treatment of the opacities (Sect. 17.8) and

the calculation of the atmospheric structure. The latter is very important since stars

below � 0:2Mˇ are fully convective (Fig. 22.7) and their interior structure therefore

depends very much on the outer boundary conditions (Fig. 11.2).

Quite another problem concerns the relevance of the calculated equilibrium

models for real, evolving stars. At the low central temperatures in models of

extremely small masses, for example, the time for reaching equilibrium burning

can become exceedingly long. A preceding phase in which the original 3He is

burned may be at least equally important, but this 3He content is very uncertain.

And below about M D 0:1Mˇ, even the original contraction leads so far into

electron degeneracy that hydrogen burning is no longer ignited (refer to Chap. 28).
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In this sense one may speak of the “lower end of the main sequence” at this

mass value. Disregarding this evolutionary argument, however, one can ask whether

solutions for main-sequence models (homogeneous, hydrogen burning, complete

equilibrium) exist down to arbitrary small values ofM: It turns out that such models

end to exist at M � 0:08Mˇ. Real stars simply fail to provide all the luminosity

from nuclear burning alone and need thermal energies to supply the rest of the

energy. Such objects are called brown dwarfs and are no longer considered as

“real stars”. Details about very low-mass stars and brown dwarfs, their physical

properties and how they are modelled, can be found in the review by Chabrier and

Baraffe (2000). Although they are extremely faint, they are now routinely found

with large telescopes. A decisive test to confirm that a “star” is indeed a brown

dwarf is the lithium test: going down in mass along the main sequence, stars become

fully convective. Any change in element abundances due to hydrogen burning is

therefore reflected in the surface abundances. This includes lithium, which, as part

of the pp2 chain (18.62), is destroyed due to proton captures at temperatures above

�2:5 � 106 K. Its surface abundance is therefore very low on the lower main

sequence, as it is almost completely destroyed throughout the star. If the mass is

however low enough such that the critical temperature is not reached even at the

centre, lithium can survive and “reappears” for the very faintest main-sequence

stars. The mass at which such low central temperatures are reached is � 0:06Mˇ,

which is lower than the 0:08Mˇ, which denotes the transition from stars to brown

dwarfs. The lithium test has lead to the first definite detection of brown dwarfs.

In the direction towards largeM , on the other hand, the sequence of equilibrium

models can principally be continued up to the “supermassive” stars (see Sect. 19.10).

Long before they are reached, however, an instability occurs which sets in between

M � 60 and 100Mˇ (depending on the composition). It is a vibrational instability

caused by the so-called " mechanism (see Sect. 41.5) and supported by the large

amount of radiation pressure. Such stars, instead of sitting quietly at their proper

place on the main sequence, will start to oscillate with growing amplitude. This

may go so far as to throw off matter from the surface, until the mass is reduced

below the critical value for the instability.

22.5 The Eddington Luminosity

For massive, hot stars there exists another physical limit for hydrostatic stabil-

ity, which results from the increasingly important radiation pressure. According

to (13.1)

Prad D 1

3
U D a

3
T 4 :

Therefore there exists a gradient of the radiation pressure

dPrad

dr
D a

3
T 3

dT

dr
; (22.4)
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which exerts, just like the gas pressure gradient, an outward acceleration

(dPrad=dr < 0)

grad D �1
�

dPrad

dr
: (22.5)

(This outward force is already included in the hydrostatic equation, if the total

pressure is considered according to (13.2). Here we consider it separately only for

clarifying the effect.)

Using (5.8) we see that we can rewrite (22.5) as

grad D �Frad

c
D �Lr

4�r2c
: (22.6)

In case that radiation pressure completely dominates over gas pressure, a star can

no longer be in hydrostatic equilibrium if grad > �g. The sum of both accelerations

can be written as

g C grad D �Gm

r2

�
1 � �Lr

4�cGm

�
D �Gm

r2
Œ1� �r � ; (22.7)

where �r can be understood as the ratio of the luminosity relative to the critical

luminosity at which the bracket changes sign, and thus the star becomes unbound.

For m D M this critical luminosity is called the Eddington luminosity and is

LE D 4�cGM

�
: (22.8)

Expressed in solar units it is

LE

Lˇ
D 1:3 � 104 1

�

M

Mˇ
(22.9)

and grows linearly with stellar mass. Since L � M 3, stars obviously reach a limit,

where radiation pressure is able to drive a strong stellar wind, and which depends

on the opacity.

For hot, massive stars electron scattering is the dominating opacity source, which

can be approximated by (17.1), and is �sc D 0:20.1 C X/. For a mass fraction of

hydrogen of 0.70 (22.9) simplifies to

LE

Lˇ
D 3:824 � 104 M

Mˇ
: (22.10)

ForM � 200Mˇ the luminosity of massive main-sequence stars reach the Edding-

ton limit and disperse. This is a rough estimate for an upper limit. In reality the

instability of the " mechanism occurs at lower mass. However, the Eddington limit

can become quite important in other situations.
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Other Main Sequences

The simplicity and the importance of the results obtained for the main sequence

suggest the extension of this concept to stars of quite different composition. We

can then describe a main sequence as any sequence of homogeneous models with

various massesM in complete equilibrium, consisting (mainly) of a certain element

which burns in the central region. In this sense, the (normal) main sequence as

treated before is a special case and is more precisely called the hydrogen main

sequence (H-MS). In a further step of generalization, we will even drop the

assumption of chemical homogeneity, thus arriving at the so-called generalized

main sequences (GMS) (Sect. 23.3). Of course, compared with the H-MS, the other

sequences are far less important for real, observed stars. But their properties yield

valuable information for understanding certain types of evolved stars, for example.

The numerical models shown in this chapter have been calculated with an older

equation of state and simpler opacities. Also, the chemical composition for the

hydrogen-rich models differs from that used in the last chapter and is for a slightly

higher (D 0:021) metallicity. But since we will discuss fundamental properties of

stars in this section, these details are of no relevance.

23.1 The Helium Main Sequence

The helium main sequence (He-MS) contains chemically homogeneous equilibrium

models that consist almost completely of He (with the usual few per cent of heavier

elements) and have central helium burning. In principle, one could imagine them

to be the descendants of perfectly mixed hydrogen-burning stars (however, perfect

mixing during evolution is very improbable). Or they may represent the remnants

of originally more massive stars that have developed a central helium core and then

lost their hydrogen-rich envelope.

In the Hertzsprung–Russell diagram (Fig. 23.1) the He-MS is situated far to the

left of the (normal) H-MS at fairly high luminosities. If we compare the same stellar
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Fig. 23.1 In the Hertzsprung–Russell diagram the solid lines show the normal hydrogen main

sequence (H-MS; XH D 0:685; XHe D 0:294), the helium main sequence (He-MS; XH D 0,

XHe D 0:979), and the carbon main sequence (C-MS; XH D XHe D 0; XC D XO D 0:497). The

labels along the sequences give stellar masses M (in units of Mˇ). Three lines of constant stellar

radius (R in units of Rˇ) are plotted (dashed)

massM on each sequence, we see that the helium stars have smaller radii and much

higher luminosities. The remarkable difference in L for given M is particularly

well illustrated by the M � L relations in Fig. 23.2. The main cause is certainly

the difference in the mean molecular weight �, which is 0.624 for the mixture used

for the stars on the H-MS and 1.343 for the helium stars. If everything else were the

same and the models were homologous, then we would expect from (20.20) for stars

with the same M a difference in luminosity given by � lgL D 4� lg� D 1:33.

This is in fact very nearly the shift between the two M � L relations in Fig. 23.2 at

M D 10Mˇ, while forM D 1Mˇ, we even have � lgL � 2:5.

The interior structure resembles roughly that of models on the upper H-MS.

The extreme temperature sensitivity of helium burning concentrates the energy

production into a small central sphere where the large energy flux produces a

convective core. This contains about 0:27M in the 1Mˇ star, and nearly 0.7M for

10Mˇ. The increase of the convective core is again a consequence of the increasing

radiation pressure: it contributes 1.5 % to the total pressure in the centre of the 1Mˇ
star, 18 % for 5Mˇ, and 32 % for 10Mˇ, which is very much more than for the

corresponding stars on the H-MS (6 � 10�4, 0.018, and 0.063, respectively). The

difference is due to the fact that helium burning requires temperatures roughly six

times higher, as can be seen in Fig. 23.3, which shows the central values of T and %.

The high radiation pressure provides relatively large amplitudes of pulsation in the

central region. This again produces a vibrational instability due to the " mechanism,



23.1 The Helium Main Sequence 265

Fig. 23.2 Mass–luminosity

relations for the models of the

hydrogen, helium, and carbon

main sequences of Fig. 23.1

Fig. 23.3 Central

temperature Tc (in K) and

central density %c=�e.%c in

g cm�3; �e D molecular

weight per electron) of the

models on the hydrogen,

helium, and carbon main

sequences of Fig. 23.1. The

labels along the lines give the

stellar mass M (in Mˇ). The

dashed lines indicate constant

degeneracy parameters  of

the electron gas

the onset of which occurs aroundM D 15Mˇ, depending somewhat on the content

of heavier elements.

Another property of the helium stars to be seen in Fig. 23.3 is their much larger

central density: for M D 0:3Mˇ, %c reaches 105 g cm�3, and, in spite of the

larger T , the electron gas has about the same degree of degeneracy as at the lower

end of the H-MS [In order to plot a unique degeneracy parameter  (see Chap. 15)

for compositions with different molecular weight per electron �e, the abscissa of



266 23 Other Main Sequences

Fig. 23.3 gives lg.%c=�e/. The He-MS and the C-MS (see below) have �e D 2,

while �e D 1:19 for the plotted H-MS.]. The increasing degeneracy causes the

sequence of stable helium-burning stars to terminate at aboutM � 0:3Mˇ.

23.2 The Carbon Main Sequence

The next major step in the nuclear history of a star is carbon burning. Thus, we

now consider a carbon main sequence (C-MS) consisting of homogeneous models

in complete equilibrium that have central carbon burning. Except for the usual

admixture of a few per cent of heavy elements, the composition can be either pure
12C, or a mixture of 12C and 16O in equal amounts, which represents roughly the

end products of stellar helium burning (For both assumptions the basic results, in

particular the luminosities, are not too different, since the molecular weights are

nearly the same.). The models of the C-MS are not so much used for describing

homogeneous carbon stars, but rather for the purpose of surveying carbon-burning

cores in highly evolved stars.

In the Hertzsprung–Russell diagram (Fig. 23.1) the C-MS is at Teff > 10
5 K even

to the left of the He-MS. For equal masses, models on the C-MS have remarkably

smaller R and larger L. The M � L relation for carbon stars is � lgL � 0:5

above that for helium stars (Fig. 23.2) because of the larger mean molecular weight

(� lg� � 0:11).

The interior solutions of carbon stars have similar properties to those of the

helium stars, for example, large convective cores and an appreciable amount of

radiation pressure. In a model of M D 3:5Mˇ, the convective core encompasses

about 45 % of the total mass, and the radiation pressure contributes more than 20 %

to the central pressure. Figure 23.3 shows that, according to the requirements of

carbon burning, the central temperatures are between 5 and 8�108 K. But the central

density is even more increased compared to helium stars. Therefore appreciable

degeneracy of the electron gas is already found in carbon stars around 1Mˇ. And

the sequence of stars with a stable carbon burning terminates at masses in the range

M � 0:9 : : : 0:8Mˇ. The exact value of this limiting mass depends somewhat on

the assumptions in the physical parameters. A well-known uncertainty comes, for

example, from neutrino losses, which can become noticeable in these very hot and

dense stars (Sect. 18.7). Large neutrino losses have the tendency to increase the

lower limit ofM for stable carbon burning. Figure 23.3 shows that in all three main

sequences the limiting mass occurs at roughly the same degree of degeneracy of the

electron gas ( � 4:5). The C-MS and the He-MS have a much simpler structure

than the H-MS, which is affected by the complications occurring near 1Mˇ, namely

the transition from convective to radiative cores and the growth of outer convection

zones with decreasing Teff.
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23.3 Generalized Main Sequences

The logical next step in extending the concept of main sequences is to drop the

condition of chemical homogeneity. This is suggested by the chemical evolution we

encounter in all stars: the conversion of hydrogen to helium by nuclear reactions

(which are concentrated towards the centre) produces a central helium core, while

the outer envelope retains its original hydrogen-rich mixture. If the temperatures are

high enough, helium burning will occur around the centre, and hydrogen burning

continues in a so-called shell source, i.e. a concentric shell starting at the bottom

of the hydrogen-rich envelope. Based on this picture, different types of significant

sequences may be defined. We will limit ourselves in the following to the simplest

case, which nevertheless finds useful applications.

For these generalized main sequences (GMS), we consider models in complete

equilibrium, with a chemical profile as shown in Fig. 23.4: a central helium core

of mass MHe, i.e. of the mass fraction q0 D MHe=M; is surrounded by an envelope

of mass .1 � q0/M with the usual hydrogen-rich mixture of unevolved stars. At

the interface of the two regions, the hydrogen content XH changes discontinuously

(“step profile”), while the hydrogen content in the envelope as well as the small

admixture of heavier elements in both regions is assumed to be fixed at some

reasonable values. The energy is supplied by central helium burning and (possibly)

by an additional hydrogen burning in a shell source at q0.

Each of these models is characterized by two parameters, the stellar massM , and

the relative core mass q0. We then obtain a generalized main sequence by keeping

q0 constant and varying M as a parameter. For each value of q0 there is one GMS.

In the evolution the value of q0 is not constant: q0 can slowly increase because of

the shell source burning, and it can increase by mass loss from the surface. We will

therefore consider GMS of various values of q0.

The upper limit is obviously q0 D 1, implying that the “core” encompasses the

whole star, which is then a homogeneous helium star. The GMS for q0 D 1 is

therefore identical with the well-known He-MS discussed in Sect. 23.1.

For values of q0 slightly below 1, the GMS are shifted appreciably to the right in

the Hertzsprung–Russell diagram (Fig. 23.5). They have already passed the H-MS

for q0 � 0:9 : : : 0:85, depending on the value ofM . In other words, the addition of a

relatively small hydrogen-rich layer on top of a helium star will remarkably increase

its radius and decrease Teff.

This behaviour changes completely if q0 drops below a certain value, which

is about 0:8 : : : 0:7, depending on M . Figure 23.5 shows that the GMS are then

compressed towards a limiting line far to the right-hand side of the Hertzsprung–

Russell diagram. This will turn out to be the Hayashi line, a limit for all stars in

hydrostatic equilibrium (Chap. 24). The closest approach to it is found roughly for

the GMS with q0 D 0:5. For even smaller q0, the GMS move slowly back to the

left in the Hertzsprung–Russell diagram. We conclude that the upper part of this

diagram can be covered at least once by these GMS, i.e. by very simple equilibrium

models depending on two parameters (M;q0) only.
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Fig. 23.4 Chemical composition inside the models on the generalized main sequences. The mass

concentrations of hydrogen XH (solid line) and helium XHe (dashed line) are plotted over the mass

variablem=M from centre to surface. X0 is the hydrogen content in the envelope. The relative core

mass isMHe=M D q0

Fig. 23.5 Hertzsprung–Russell diagram with generalized main sequences for models with helium

cores of relative mass q0 and hydrogen-rich envelopes of relative mass 1� q0 (cf. Fig. 23.4). The

sequences plotted here cover only the range from q0 D 1 (helium main sequence) to q0 D 0:2. For

comparison, the limiting case of the hydrogen main sequence (q0 D 0, dashed) is shown. Models

with a stellar mass M D 5 (in Mˇ) are indicated by solid dots, M D 2 by open circles, M D 1

by triangles, and M D 0:5 by squares (After Giannone et al. 1968)

Let us compare models with the same M on different GMS. If we connect

their points in Fig. 23.5, we obtain curves such as those plotted in Fig. 23.6 for

two values of M . This shows that the luminosity remains roughly constant in

the range q0 D 1 : : : 0:7. This is caused by two opposite effects nearly cancelling

each other: when we decrease q0 at M D constant, MHe decreases, which reduces

the luminosity of the core, LHe; approximately as given by the M � L relation for

the He-MS (Fig. 23.2, if here we takeMHe forM ). At the same rate, the mass of the
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Fig. 23.6 The solid lines connect models of the same stellar mass M (in Mˇ) on the different

generalized main sequences of Fig. 23.5. Labels along the lines give the q0 values of the generalized

main sequences (After Lauterborn, Refsdal, Weigert, 1971a)

envelope M.1 � q0/ increases, which gives an increasing energy production LH of

the hydrogen shell source, such that the total luminosity L D LHe CLH can remain

almost constant. The situation changes when q0 drops below, say, 0.7. The “helium

luminosity” LHe then decreases so strongly that it is compensated no longer by the

increase of LH, which eventually dominates L completely.

Not only the cases q0 D 0 and q0 D 1which give the ZAMS and the helium main

sequence, but also the cases in between sometimes give insight how stars behave,

for instance, in the case where in a close binary system mass flows from one star to

its companion. If a primary of, say, one solar mass evolves it forms a helium core, so

it resembles a star on a generalized main sequence with a certain value of q0. While

the evolution goes on q0 grows while simultaneously the star becomes a red giant.

If before the onset of helium burning the surface of it comes close to the companion

(to be more precise: when it fills the Roche lobe), mass flows from the red giant

onto the surface of the still unevolved secondary until only the helium core is left

and the original primary after thermal adjustment has become a star of the helium

main sequence. In the HR diagram the star has moved from the Red Giant branch to

the helium main sequence while its value of q0 has grown during the mass loss.
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The Hayashi Line

We have seen that convection can occur in quite different regions of a star. In this

section we consider the limiting case of fully convective stars, i.e. stars which

are convective in the whole interior from centre to photosphere, while only the

atmosphere remains radiative.

The Hayashi line (HL) is defined as the locus in the Hertzsprung–Russell

diagram of fully convective stars of given parameters (mass M and chemical

composition). Note that for each set of the parameters, such as mass or chemical

composition, there is a separate Hayashi line. These lines are located far to the right

in the Hertzsprung–Russell diagram, typically at Teff � 3; 000 : : : 5; 000K, and they

are very steep, in large parts almost vertical.

From the foregoing definition one may not immediately realize the importance of

this line. However, the HL also represents a borderline between an “allowed” region

(on its left) and a “forbidden” region (on its right) in the Hertzsprung–Russell

diagram for all stars with these parameters, provided that they are in hydrostatic

equilibrium and have a fully adjusted convection. The latter means that, at any

time, the convective elements have the properties (for instance the average velocity)

required by the mixing-length theory. Changes in time of the large-scale quantities

of the stars are supposed to be slow enough for the convection to have time to adjust

to the new situation; otherwise one would have to use a theory of time-dependent

convection. Since hydrostatic and convective adjustment are very rapid, stars could

survive on the right-hand side of the HL only for a very short time.

In addition, parts of the early evolutionary tracks of certain stars may come close

to, or even coincide with, the HL. It is certainly significant for the later evolution of

stars, which is clearly reflected by observed features (e.g. the ascending branches of

the Hertzsprung–Russell diagrams of globular clusters). One may even say that the

importance of the HL is only surpassed by that of the main sequence. It is all the

more surprising that its role was not recognized until the early 1960s when the work

of Hayashi (1961) appeared. The late recognition of the HL may partly be because

its properties are derived from involved numerical calculations. In the following we

will use extreme simplifications in order to make some basic characteristics of the

HL plausible.
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24.1 Luminosity of Fully Convective Models

Let us consider the different ways in which the luminosity is coupled to the pressure-

temperature stratification of radiative and convective stars.

For regions with radiative transport of energy, we can write the “radiative

luminosity” lrad D 4�r2Frad according to (7.2) as

lrad D k0
radr; (24.1)

with the usual notation r D d lnT=d lnP and the “radiative coefficient of

conductivity”

k0
rad D 16�acG

3

T 4m

�P
: (24.2)

If a stratification of P and T is given, then the luminosity lrad is obviously

determined and can be easily calculated from (24.1).

For convective transport of energy by adiabatically rising elements we can write

accordingly from (7.7) the convective luminosity as

lcon D k0
con.r � rad/

3=2 (24.3)

with the coefficient

k0
con

�p
2

�
`m

HP

�2
r2cPT .%Pı/

1=2: (24.4)

Here we have made use of the hydrostatic equation and the definition (6.8) of the

pressure scale height. The mixing length `m was defined in Sect. 7.1.

In principle, we can again assume the luminosity to be determined using (24.3)

for a given P�T stratification. In practice, however, we would never be able to

calculate lcon from this equation for the stellar interior, since it would require the

knowledge of the value of r with inaccessible accuracy. The point is that lcon is

not proportional to the gradient r itself but rather to a power of the excess over

the adiabatic gradient, r�rad, which may be as small as 10�7 for very effective

convection (see Sect. 7.3). Therefore the convective conductivity k0
con must be very

high, since large luminosities lcon are carried. This may be looked at in another way:

by solving (24.3) for r and writing

r D rad.1C '/; (24.5)

we see that the luminosity influences the T gradient only through the tiny correction

'.� 10�7):

' D
"

lcon

r3=2
ad k

0
con

#2=3
: (24.6)
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Therefore one usually neglects this correction in the case of effective convection and

takes simply

r D rad; (24.7)

which is equivalent to assuming an infinite conductivity k0
con. Then de facto the

luminosity is decoupled from the T�P structure.

In order to fix the luminosity of a fully convective star, we have to appeal to the

only region where the gradient is sufficiently non-adiabatic. This is the radiative

atmosphere and a layer immediately below where the convection is ineffective,

i.e. strongly superadiabatic. We have seen that then the transport of energy is

essentially radiative (in spite of violent convective motions), and we can again use

(24.1). By this argumentation one arrives at the statement that the structure of the

outermost layers determines the luminosity of a fully convective star. This means,

on the other hand, that such stars are very sensitive to all influences and uncertainties

near their outer boundary.

Of course, if the energy production is prescribed, one would rather say that the

outer layers have to adjust to this value of L (for this point of view, see Sect. 24.5).

24.2 A Simple Description of the Hayashi Line

In order to derive some typical properties of the HL analytically, we shall use an

extremely crude model for fully convective stars (Further refinements of the picture,

though possible, would not be worth the large additional complications involved.).

We have seen that nearly all of the interior part of convective stars has an

adiabatic stratification, such that d ln T=d lnP D rad. We shall assume that

this simple relation between P and T holds for the whole interior up to the

photosphere, i.e. we neglect the superadiabaticity in the range immediately below

the photosphere. We also neglect the depression of rad in those regions near the

surface where H and He are partially ionized (see Figs. 11.2 and 14.1). We thus

simply assume rad to be constant throughout the star’s interior, say rad D 0:4,

which is the value for a fully ionized ideal gas. With these simplifications we

certainly introduce errors in the P�T stratification. However, they will be nearly

the same for neighbouring models, and we can hope to obtain at least the correct

differential behaviour.

We then have for the whole interior the simple P�T relation

P D CT 1Cn; (24.8)

i.e. the star is polytropic with an index nD 1=rad � 1D 3=2, and we can use

the earlier results for such stars (see Chap. 19). The constant C is related to the

polytropic constant K defined in (19.3). With P D <%T=�, one finds C D
K�n.<=�/1Cn. K and C are constant only within one model, but vary from star



274 24 The Hayashi Line

to star, which means that we do not have a mass-radius relation. From (19.9) and

(19.19) it follows that

K � %1=3c A�2 � %1=3c R2 � M 1=3R; (24.9)

so that

C D C 0R�3=2M�1=2; (24.10)

where the constant C 0 is known for given n and �.

Relation (24.8) is now assumed to hold as far as the photosphere, where the

optical depth � D 2=3; P D P0; T D Teff; r D R; and m D M . Above this point

we suppose to have a radiative atmosphere with a simple absorption law of the form

� D �0P
aT b : (24.11)

Integration of the hydrostatic equation through the atmosphere yields the photo-

spheric pressure [cf. (11.13), where N� is replaced by (24.11)] as

P0 D constant

�
M

R2
T �b

eff

� 1
aC1

: (24.12)

We now fit this to the interior solution by setting P D P0; T D Teff in (24.8)

and then eliminating P0 with (24.12). For given values of M and � this yields a

relation between R and Teff, or between R and L, since L � R2T 4eff. Thus, any

value of R corresponds to a certain point in the Hertzsprung–Russell diagram. The

interior solutions form a one-dimensional manifold, since the constant C contains

the free parameter R for given M [and given �, see (24.10)]. In the Hertzsprung–

Russell diagram this is reflected by a one-dimensional manifold of points defining

the Hayashi line.

The fitting procedure is illustrated in Fig. 24.1. Each interior solution of the form

(24.8) with n D 3=2 is represented in this diagram by a straight line:

lgT D 0:4 lgP C 0:4

�
3

2
lgRC 1

2
lgM � lgC 0

�
: (24.13)

For fixed values of M and �, each of these lines is characterized by a value of R:

The atmospheric solutions (24.12) are another set of straight lines in Fig. 24.1:

.a C 1/ lgP0 D lgM � 2 lgR � b lgTeff C constant: (24.14)

The intersection of a line of the first set with a line of the second set, both with

the same value of R, fixes the corresponding value of Teff (and of P0). From R and

Teff we have L, i.e. a point in the Hertzsprung–Russell diagram. We then obtain the

Hayashi line by a continuous variation of R.
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Fig. 24.1 Fit of a polytropic

(n D 3=2) interior solution

(solid line) with an

atmospheric condition

(dashed line) for different

values of

R .R1 > R2 > R3 > R4/.

The photospheric points

obtained by this fit are

marked by dots. The dotted

line illustrates schematically

the effects of superadiabatic

convection and depression of

rad in an ionization zone for

R D R1

The formalism for this procedure, as described, yields immediately an equation

for the Hayashi line in the Hertzsprung–Russell diagram:

lgTeff D A lgLC B lgM C constant (24.15)

with the coefficients

A D 0:75a � 0:25
b C 5:5aC 1:5

; B D 0:5aC 1:5

b C 5:5aC 1:5
: (24.16)

We now need typical values for the exponents a and b in the atmospheric absorption

law (24.11). An important property of fully convective stars can immediately be

concluded from the discussion in Sect. 11.3: such stars must have very low values

of Teff, i.e. the Hayashi line must be far to the right in the Hertzsprung–Russell

diagram. For atmospheres this means that in most parts T . 5 � 103 K, and H�

absorption will provide the dominant contribution to �. If hydrogen is essentially

neutral, the free electrons necessary for the formation of H� ions are provided by

the heavier elements (see Sect. 17.5). A very rough interpolation gives a ' 1; b ' 3.

With these values (24.16) yields the coefficients

A D 0:05; B D 0:2: (24.17)

According to (24.15), the slope of the Hayashi line in the Hertzsprung–Russell

diagram is @ lgL=@ lgTeff D 1=A. Since A � 1, we conclude that the Hayashi

line must be very steep. The value of B � @ lg Teff=@ lgM means that the Hayashi

line shifts slightly to the left in the Hertzsprung–Russell diagram for increasing M.

These qualitative predictions, although derived from very crude assumptions, are

fully supported by the numerical results (see Fig. 24.3).
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Let us consider once more the reason for the steepness of the HL. At the

photosphere the pressures P0i of the interior solution (24.8), (24.10) and P0a of

the atmospheric solution (24.12) vary for constantM as

P0i �
T 2:5eff

R3=2
; P0a �

T
� b
aC1

eff

R
2

aC1

: (24.18)

First of all, we expect a very steep HL for small positive values of a. In fact, for

a D 1=3, P0i and P0a have the same dependence on R; then Teff does not vary with

R (and L), and the line is vertical. If this is not quite fulfilled, the fit P0i D P0a

requires the smaller variations of Teff with varying R, the more different the two

exponents of Teff in (24.18) are, i.e. the larger b.

The basic approximations made were to neglect the depression of rad in ion-

ization zones and to ignore superadiabatic convection. The dotted line in Fig. 24.1

indicates how these effects change the P�T structure relative to a simple polytrope.

One sees that they tend to increase the effective temperature. The precise value of

Teff obviously depends on the detailed structure of the outermost envelope. The

extension and the depth of the ionization zones and the superadiabatic layers change

systematically with L: This has the consequence that, in better approximations, the

coefficient A in (24.15) changes sign at L ' Lˇ. It is positive for smaller L; and

negative for larger L; so that the HL is convex relative to the main sequence.

Another important conclusion is that the whole uncertainty which remained in

the mixing-length theory of ineffective convection must occur as a corresponding

uncertainty in the precise value of Teff for the HL.

Finally, we note that the chemical composition enters into the position of the HL

in two ways. The interior is affected, since the polytropic constant C depends on �

via C 0 [see (24.10)], and the outer layers are particularly affected via the opacity �.

24.3 The Neighbourhood of the Hayashi Line

and the Forbidden Region

We now consider stars in hydrostatic equilibrium that are close to, but not exactly

on, their HL. Certainly the stars cannot be fully convective with an adiabatic

interior (otherwise they would be on the HL). Their interior is then no longer a

simple polytrope. They do not even have to be chemically homogeneous, since

they are not fully mixed by the turbulent motions. We must therefore expect that an

analytical treatment will be much more complicated. We will nevertheless try to give

some simple arguments which may help to make the numerical results plausible.

In the following, we treat models with a fixed value of M and the same chemical

composition (at least in their outer layers).
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An important indication can be obtained from the discussion of the envelope

integrations in Sect. 11.3. When integrating inwards into models with different Teff

(but with the same parameters M and � and, say, the same L), we will reach a

radiative region the earlier, the larger Teff . In other words, in models left of the HL

we will encounter a radiative region before reaching the centre. In these regions, the

gradient r < rad. Let us consider some average Nr obtained by averaging over the

whole interior (where we again neglect the complications in the outermost parts of

the envelope). On the HL we have Nr D rad. In a model to the left of the HL the

radiative part decreases the average value such that Nr < rad. This suggests that we

would have to allow Nr < rad in models to the right of the HL.

In order to prove this we treat models with a constant gradient r D Nr in the

interior and vary Nr slightly around rad. We then have again polytropic stars with

slightly different n (around 3/2). The interior solution is written as

P D CnT
1Cn; (24.19)

where Nr D .1C n/�1 and, similarly to (24.10),

Cn D C 0
n�

�n�1M 1�nRn�3: (24.20)

From now on we measure R and M in solar units. Then

C 0
n D <nC1

4�Gn
.nC 1/n

"
�
�
dw

d z

�

zDzn

#n�1

znC1
n Rn�3

ˇ M 1�n
ˇ : (24.21)

We extend relation (24.19) to the photosphere (P D P0; T D Teff), where we again

eliminate P0 by (24.12) and R by the relation R D c2L
1=2T �2

eff . This gives the locus

in the Hertzsprung–Russell diagram. The factor of proportionality in (24.12) may

be called c1. Choosing for simplicity a D 1; b D 3 in the opacity law, we obtain

lg Teff D ˛1 lgLC ˛2 lgM C ˛3 lg�C ˛4 lgC 0
n C ˛5 lg c1 C ˛6 lg c2; (24.22)

where the coefficients depend on n:

˛1 D 2 � n

13� 2n
; ˛2 D 2n � 1

13 � 2n ; ˛3 D 2.1C n/

13� 2n
;

˛4 D �2
13� 2n

; ˛5 D �˛4; ˛6 D 2˛1: (24.23)

The ˛i do not vary too much with small deviations of n from 3/2. This means, for

example, since ˛1 determines the slope, lines of neighbouring values of n are nearly

parallel to the HL. Without loss of generality, we may consider particular models

on and close to the HL with L D M D � D 1. The variation of lgTeff with n

is then only due to the variation of the last three terms in (24.22). One finds that
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Fig. 24.2 (a) In the Hertzsprung–Russell diagram, the Hayashi line (n D 3=2, heavy line)

is indicated, together with some neighbouring lines for interior polytropes with n > 3=2 and

< 3=2. (b) The same as Fig. 24.1 but with three different polytropic interior solutions for the same

value of R

@ lgTeff=@n > 0: the stars move to the right in the Hertzsprung–Russell diagram

with decreasing n (i.e. increasing Nr).

Thus, we have to expect the following situation (see Fig. 24.2): left of the HL

we have Nr < rad and some part of the model is radiative. On the HL, the model

is fully convective with Nr D rad. Models to the right of the HL should have
Nr > rad, which means that they should have a superadiabatic stratification in their

very interior (aside from the outermost zone of ineffective convection).

The mixing-length theory has shown that a negligibly small excess of r over rad

suffices in order to transport any reasonable luminosity in the deep interior of stars.

Then, what happens with a star that by some arbitrary means (e.g. initial conditions)

has been brought to a place to the right of the HL, such that some region in its

deep interior has remarkably large values of r � rad > 0‹ The results are large

convective velocities vconv � .r � rad/
1=2 and corresponding convective fluxes

[cf. (24.3)]. These cool the interior and heat the upper layers rapidly until the

gradient is lowered to r � rad and the star has moved to the HL. This will happen

within the short timescale for the adjustment of convection.

Another possibility for a star being situated to the right of its HL is, of course, that

it is not in hydrostatic equilibrium (which is assumed for the interior solution). But

a deviation from this equilibrium will be removed in the timescale for hydrostatic

adjustment, which is even shorter.

Therefore the HL is in fact a borderline between an “allowed” region (left)

and a “forbidden” region (right) for stars of given M and composition that are in

hydrostatic equilibrium and have a fully adjusted convection.
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Fig. 24.3 Top: The position

of Hayashi lines for stars of

M D 0:8Mˇ but different

composition. The helium

content is always 0.245, while

Z varies from 10�4 to 0.02.

Bottom: Pre-main-sequence

evolution along the Hayashi

line to the zero-age main

sequence for stars between

0.1 and 1.1 Mˇ and a

solar-like composition (Data

courtesy S. Cassisi)

24.4 Numerical Results

There are many results available giving the position of Hayashi lines for stars of

widely ranging mass and chemical composition and for different assumptions in the

convection theory. The latter concerns in particular the ratio of mixing length to

pressure scale height used for calculating the superadiabatic envelope.

Figure 24.3 shows typical results of calculations for stellar masses of up to

1:1 Mˇ. One sees that indeed the HLs plotted here are very steep, the exact slope

depending mainly on L: The dependence on M (lower panel) is roughly given by
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Fig. 24.4 The Hayashi line

for M D 5Mˇ with two

different assumptions for the

ratio of mixing length to

pressure scale height (After

Henyey et al. 1965)

@ lgTeff=@ lgM � 0:1, i.e. we find the expected weak increase of Teff with M [cf.

(24.22)]. The dependence on chemical composition (top panel) is, however, very

different from that given by (24.23), which yields ˛3 D 0:5. It predicts only a slight

decrease in Teff, when increasing the metallicity from 10�4 to 0:02, as in the left

panel of the figure. In that case lg� changes from �0.229 to �0.226, and lg Teff

should increase by � 0:002. The numerical result instead is @ lgTeff=@ lg� � �26,

i.e. with increasing molecular weight Teff is strongly reduced!

As mentioned earlier the chemical composition enters in several ways. A very

important factor certainly is the opacity in the atmosphere. For Teff . 5; 000K the

dominant absorption is due to H�, and � then is proportional to the electron pressure,

which in turn is proportional to the abundance of the easily ionized metals. It turns

out that a decrease of their abundance (usually comprised inZ) by a factor 10 shifts

the HL by � lgTeff � C0:05 to the left in the Hertzsprung–Russell diagram. This

explains the large effect of changing the composition seen in Fig. 24.3. However,

Fig. 24.4 shows that roughly the same shift can be obtained by the comparatively

small increase of lm=HP from 1 to 1.5. The uncertainty of the convection theory,

therefore, severely limits our knowledge of the HL.

The typical S-shape of the numerical Hayashi tracks in Fig. 24.3 are the result

of the sign change of coefficient A in (24.15), which was mentioned at the end of

Sect. 24.2. At the lowest end of the Hayashi tracks the models develop a radiative

core and begin to bend back to the main sequence, where they end once nuclear

burning has started at the centre, supplying the energy radiated from the surface.

This is the situation discussed in Sect. 24.3.

Thus, the HLs are far away from the main sequence in the upper part of the

diagram, and approach it in the lower part. This fact will turn out to influence the

evolutionary tracks of stars of differentM . Recall that the main-sequence stars were

found to be fully convective for M . 0:25Mˇ (see Sect. 22.3). This obviously

means that the corresponding Hayashi lines cross the main sequence there.
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24.5 Limitations for Fully Convective Models

In order to describe the HL, we have considered models for which the convection

was postulated to reach from centre to surface. This provided a polytropic interior

structure with typical decoupling from the luminosity. We have not yet asked

whether the physical situation will in fact allow the onset of convection throughout

the star. This depends on the distribution of the energy sources.

According to the Schwarzschild criterion (6.13), a chemically homogeneous

layer will be convective if

rrad � rad; (24.24)

where the radiative gradient [see (5.28)] is

rrad � �lP

T 4m
: (24.25)

If the energy sources were completely arbitrary, we could choose their distribution

so that (24.24) is violated at some point and the model could not be fully convective.

A trivial example would be a central core without any sources, with the result that

there l D 0; i.e rrad D 0. Then the core must be radiative. On the other hand,

we have the best chance of finding convection throughout a star of given L if the

sources are highly concentrated towards the centre (in the extreme: a point source),

which gives almost l D L everywhere.

We consider a contracting polytrope (see Sect. 20.3) without nuclear energy

sources, which is of interest for early stellar evolution. According to (20.41) the

energy generation rate is then only proportional to T; which means a rather weak

central concentration. For the sake of simplicity we even go a step further and

assume constant energy sources with

l

m
D L

M
D constant: (24.26)

We again use the opacity law (24.11) and the polytropic relation (24.8) with n D 1:5

(corresponding to r D rad D 0:4). Equation (24.25) then gives

rrad � L

M
C 1CaT b�4C2:5.1Ca/: (24.27)

For a typical Kramers opacity with a D 1; b D �4:5 this becomes rrad � T �3:5.
Indeed, for all reasonable interior opacities, rrad has a minimum at the centre and

increases outwards. Therefore the centre is the first point in a fully convective star

where rrad drops below rad (and a radiative region starts to develop) if L decreases

below a minimum value Lmin.

The constant C depends on M and R as given by (24.10), and T � Tc � M=R

after (20.24). Introducing this into (24.27) we obtain



282 24 The Hayashi Line

rrad � LM b�5C2.1Ca/R�bC4�4.1Ca/: (24.28)

Let us again set a D 1, b D �4:5, which gives

rrad � LM�5:5R0:5: (24.29)

For models on the HL, the effective temperatures vary only a very little and we

simply take R � L1=2. Then,

rrad � L1:25M�5:5: (24.30)

For any given value of M the luminosity reaches Lmin if the central value of rrad

has dropped to 0.4. According to (24.30), Lmin depends on M as

Lmin � M 4:4: (24.31)

This minimum luminosity (down to which models of the specified type on the

HL remain fully convective) decreases strongly with M: The decrease is in fact

steeper than that given by the M � L relation of the main sequence. This provides

the possibility that the HL for very small M can cross the main sequence without

reaching Lmin.

Note, however, that strictly speaking a “minimum luminosity” always refers to a

fixed distribution of the energy sources.
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Stability Considerations

Even the most beautiful stellar model is not worth anything if one does not know

whether it is stable or not. Stability is discussed again and again throughout this

book. Here we review the different types of stability considerations necessary for

stars. We intend to make the basic mechanisms and concepts plausible rather than

present the full formalism; the reader will find this, for example, in the review article

by Ledoux (1958).

25.1 General Remarks

It is not easy to give a very general concept of stability that is applicable to all

possible cases. Different definitions are discussed in La Salle and Lefschetz (1961).

We may use, for example, the following: let the solution of a system of (time-

dependent) differential equations be a set of functions y1.t/, y2.t/; : : : which we

comprise in the symbol y.t/. We define a “distance” between two such solutions

ya.t/; yb.t/ by

jjya.t/ � yb.t/jj WD
X

i

h

yai .t/ � ybi .t/

�2i
: (25.1)

We then call the solution ya.t/ stable at t D t0 if for any t1 > t0 and for any

small positive number ı there exists a small positive number ı such that any other

solution yb.t/ having the distance jjya.t0/ � yb.t0/jj < ı at t D t0 will keep a

distance jjya.t1/ � yb.t1/jj < ".
This definition in plain words says that a solution is stable at a given point

t0 if all solutions that at t D t0 are in its neighbourhood remain neighbouring

solutions. The problems we are interested in can be reduced to first-order systems

in time. Therefore the above definition of neighbouring solutions also guarantees

neighbouring derivatives.
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Fig. 25.1 An example of stability in mechanics. A ball on a surface under the influence of gravity

(a) in stable and (b) in unstable equilibrium. In (c) the motion starting at point A is stable, but,

starting with zero velocity at point B; the motion is unstable

One normally is familiar with stability problems in mechanics. We recall a few

simple examples, the first being the freely rolling ball on a curved surface which is

concave in the direction opposite to gravity (see Fig. 25.1a). One solution is that of

equilibrium, where the ball rests in the lowest position. The initially neighbouring

position is obtained by a small perturbation, say, by a slight horizontal displacement.

The ball will then move about the equilibrium position, but it will never increase its

distance above its initial value: the equilibrium position is stable and friction would

merely restore the ball to its equilibrium position. In the case of a convex surface

(see Fig. 25.1b) the equilibrium is unstable, since after a small displacement the ball

will move further and further from the equilibrium position. While these examples

deal with the stability of an equilibrium in which the solution is time independent,

our general definition also concerns time-dependent solutions. The motion of a ball

rolling on the surface in Fig. 25.1c can be stable or unstable. The motion is stable if

it starts with zero velocity at a point A above B (non-periodic motion), or below B

(periodic motion). But a motion starting exactly at B with zero velocity and ending

at rest at C is unstable: a slight perturbation of the initial conditions can either

produce a periodic motion (the ball never overcomes the summit C ) or cause the

ball to roll beyond C and never come back.

When considering the influence of friction, one may naı̈vely expect that it

stabilizes an otherwise unstable motion, since it uses up energy. But the following

example will show that friction can also produce instability.
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We again consider the ball in the spherical bowl (Fig. 25.1a). But now we assume

that the bowl is rotating with an angular velocity ! around a vertical axis through

the minimum. Without friction no angular momentum can be transferred to the ball

which therefore does not know anything of rotation and behaves as in the non-

rotating case: the lowest position is stable. If there is friction, however, and the ball is

“kicked” out of its lowest (equilibrium) position, it will take up angular momentum

from the rotating bowl. For sufficiently large ! the ball goes to a new equilibrium

position outside the axis around which it rotates with ! and where the tangential

components of centrifugal and gravity forces balance each other. The lowest position

has obviously become unstable by the inclusion of friction.

25.2 Stability of the Piston Model

Closer to stars than the above mechanical examples is the piston model introduced

in Sect. 2.7, since it also incorporates thermal effects. We consider the stability of

an equilibrium solution with a certain constant height h: Will a solution originating

from a small displacement of the piston remain in its neighbourhood? This stability

problem has already been discussed in Sect. 6.6, where we made approximations

appropriate for the illustration of the stability of convective blobs. We now improve

the model by adding some complications typical of stars.

25.2.1 Dynamical Stability

In this case one assumes that there is no heat leakage, no nuclear energy generation,

and no absorption, i.e. " D � D � D 0 in (5.39). Therefore the entropy of the gas

remains constant during the displacement of the piston. In Sect. 6.6, we investigated

the resulting (adiabatic) oscillations of the model around the equilibrium position,

though with constant weight G� only. We now allow G� to vary with height

ŒG� D G�.h/� as we did in Sect. 3.2. This can be achieved, for instance, by putting

the piston model into an inhomogeneous gravitational field. Then the equation of

motion (2.34)

M �d
2h

dt2
D �G� C PA (25.2)

with the perturbations (6.30) gives after linearization, instead of (6.32),

M �h0!
2x C P0Ap �G�

hG
�
0 x D 0: (25.3)

Here G�
h WD d lnG�=d lnh.< 0/, while G�

0 D P0A D g0M
� is the equilibrium

value of G� and g0 is that of g: With the perturbed perfect gas equation (6.31) we

find
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�
!2h0

g0
�G�

h � 1

�
x C # D 0: (25.4)

This together with the adiabatic equation (6.36),

.
ad � 1/x C # D 0; (25.5)

gives for the eigenvalues of adiabatic oscillations ! D C!ad and ! D �!ad with

!ad D
�
.
ad CG�

h /
g0

h0

�1=2
; (25.6)

which replaces (6.37). Recall that the perturbation changes with time as ei!t . We

see that !ad is a real number only as long as 
ad > �G�
h . In this case the small

perturbation is followed by a periodic oscillation which remains small for all times.

It is therefore stable in the sense of our definition of stability at the beginning of

this paragraph. But if 
ad < �G�
h , then !ad is imaginary and one of the eigenvalues

! gives an amplitude growing exponentially in time: the equilibrium solution is

unstable (We will see in Sect. 25.3.2 that for stars the analogue of 
ad > �G�
h is


ad > 4=3.).

25.2.2 Inclusion of Non-adiabatic Effects

We now drop the assumption of strict adiabaticity. Non-adiabatic changes were

previously included in Sect. 5.4 (refer also to the last part of Sect. 6.6). The energy

equation of the piston model (5.39) includes the non-adiabatic terms for nuclear

generation ", absorption �, and heat leakage �. We consider " and � as functions of

P and T , while � shall be constant. Let F be the radiative flux through the gas. In

the case of thermal equilibrium (vanishing time derivatives) we have [see (5.37)]

"0m
� C �0m

�F D �.T0 � Ts/; (25.7)

where subscript 0 indicates the equilibrium and subscript s the surroundings. If

we perturb this equilibrium according to (6.30), we find for the perturbations after

linearization

i!.cvm
�T0# C P0Ah0x/

D "0m
�.p "P C #"T /C �0m

�F.p�P C #�T / � �T0#; (25.8)

where the derivatives
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"P D
�
@ ln "

@ lnP

�

T

; "T D
�
@ ln "

@ ln T

�

P

;

�P D
�
@ ln �

@ lnP

�

T

; �T D
�
@ ln �

@ lnT

�

P

(25.9)

are taken at the values P0; T0.

The equation of motion (25.2) yielded (25.4) for which we now assume constant

weight of the piston (G�
h D 0, giving dynamical stability):

�
!2h0

g0
� 1

�
x C # D 0: (25.10)

Since % � h�1, the equation of state for an ideal (or “perfect”) gas gives (6.31)

p D # � x: (25.11)

System (25.8), (25.10) and (25.11) comprises three linear homogeneous algebraic

equations for the perturbations p; #; x. To find a solution it is necessary that the

determinant of the coefficients vanishes:

h0

g0
iu0!

3 � h0

g0
.eP C eT /!

2 � 5

3
u0i! C eT D 0 (25.12)

with

eP D "0"P C �0F�P ; eT D "0"T C �0F�T � �T0

m� ; u0 D cvT0; (25.13)

where for the last relation we have assumed the gas to be ideal and monatomic

(Note that P0Ah0=m
� D P0=%0 D 2u0=3.). Equation (25.12) becomes one with

real coefficients if instead of ! we use the eigenvalue � WD i!,

h0

g0
u0�

3 � h0

g0
.eP C eT /�

2 C 5

3
u0� � eT D 0: (25.14)

This is a third-order equation for the eigenvalue � (or !). While in the adiabatic

case (eP D eT D 0) we obtained two solutions � D ˙�ad D ˙i!ad (where !ad was

real), we now have three eigenvalues. If the non-adiabatic terms eP ; eT are small,

we can expect that two (conjugate complex) eigenvalues lie near the adiabatic ones:

� D �r ˙ i!ad; !ad D
�

ad

g0

h0

�1=2
; (25.15)

where �r is real and j�rj � !ad. While in the adiabatic case the oscillation was

strictly periodic, the real part �r causes the amplitude of the oscillation to grow
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or decrease in time, depending on the sign of �r. Because of j�rj � !ad these

changes take place over a time much longer than the oscillation period, actually on

a scale corresponding to �adj in (5.41). This type of stability behaviour is called the

vibrational stability (compare Sect. 6.6). If the oscillation grows in time, the solution

leaves the neighbourhood of equilibrium, which therefore is unstable.

We now turn to the third root of (25.12) or (25.14), which occurs necessarily

with the dissipative terms eP ; eT . Instead of solving the third-order equation (25.14),

we will follow some heuristic arguments. The addition of non-adiabatic terms has

changed the rapid oscillations only to the extent that their amplitude varies on long

timescales (of the order of ��1
r ). We now look for the existence of a third solution

changing with this long timescale only. Then the inertia terms can be neglected and,

consequently, the terms with �3 and �2 disappear in (25.14). The solution of (25.14)

for this so-called secular stability problem is

� D �sec D i!sec D 3

5

eT

u0
: (25.16)

For sufficiently small non-adiabaticity eT , we can achieve j�secj � !ad, and

neglecting the �2 and �3 terms in (25.14) was justified. If �sec < 0, any perturbation

will decay within a kind of thermal adjustment time �adj � ��1
sec and the equilibrium

is secularly stable. But if �sec > 0, then it will grow on that timescale (independently

of vibrational stability): The equilibrium is secularly unstable.

We have now found the three well-known types of stability behaviour: dynami-

cal, vibrational, and secular stability . This classification is possible since j!adj �
j!secj, which is equivalent to saying that �hydr � �adj. From one type of stability

one cannot draw any conclusions about the behaviour of another type, for example,

a dynamically stable model can still be vibrationally or secularly unstable. If the

model were dynamically unstable, the other instabilities would be of no interest

since the model would move out of equilibrium long before any other instability

can develop.

We will find more or less the same behaviour in stars where also �hydr � �adj �
�KH. However, there we cannot solve the eigenvalue problem analytically any more.

This is the reason why we dwelt in such length on the stability of the piston model.

25.3 Stellar Stability

For the problem of stellar stability a very general definition, like that given at the

beginning of Sect. 25.1, has to be taken with care. For example, a star may be stable

in one phase (e.g. on the main sequence) and later on become unstable (e.g. in

the Cepheid phase). At any stage of evolution the solution (the stellar model) is

obtained for certain parameters, for instance, a certain chemical composition or

a certain distribution of entropy. It is reasonable to ask whether this solution is

stable in the following sense: Does a small perturbation decay rapidly compared
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to the change of the parameters of the model (e.g. its chemical composition)? Then

we would call the model stable. Therefore, the question of the Cepheid stability

is irrelevant for the stability of its main-sequence progenitor since the chemical

composition is different. The solution for a certain phase of evolution, in general,

is obtained by solving approximate equations. For example, complete equilibrium

may be assumed in the case of the main sequence, while only the inertia terms are

dropped for the evolution through the Cepheid phase. If such approximate models

approach an instability in the run of their evolution, the neglected time derivatives

become important and have to be taken into account. In general, then, the solution

obtained from better approximations tells us in which direction the evolution really

goes.

25.3.1 Perturbation Equations

We want to investigate the stability of a stellar model in complete equilibrium for

given input parameters M and chemical composition. Let the model be described

by r0.m/, P0.m/, T0.m/, l0.m/, which solve the time-independent stellar structure

equations. We test its stability by investigating how a neighbouring (perturbed)

solution evolves in time. We here restrict ourselves to spherically symmetric

perturbations which depend on m and t in such a way that the perturbed variables

become

r.m; t/ D r0.m/
�
1C x.m/ei!t

�
;

P.m; t/ D P0.m/
�
1C p.m/ei!t

�
;

T .m; t/ D T0.m/
�
1C #.m/ei!t

�
;

l.m; t/ D l0.m/
�
1C �.m/ei!t

�
; (25.17)

where the absolute values of x; p; # , and � are � 1. These variables have to fulfill

the time-dependent equations (10.1)–(10.4). As an example let us introduce (25.17)

into the equation of motion (10.2). If we linearize with respect to p and x; this

becomes

P 0
0



1C pei!t

�
C P0p

0ei!t

D � Gm

4�r40



1 � 4xei!t

�
C !2

4�r0
xei!t ; (25.18)

where primes indicate derivatives with respect to m. Since P0; r0 obey (10.2), we

haveP 0
0 D �Gm=.4�r40 /: The time-independent terms in (25.18) cancel each other,

the exponentials drop out, and we are left with (25.19). By a similar procedure, we

find for the case of a radiative layer and an equation of state of the form % � P ˛T �ı
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from (10.1), (10.3), (10.4) the equations (25.20)–(25.22):

p0 D �P
0
0

P0

�
p C

�
4C r30

Gm
!2
�
x

�
; (25.19)

x0 D � 1

4�r30%0
.3x C ˛p � ı#/: (25.20)

�0 D �"0
l0
.� � "Pp � "T#/ � i!

P0ı

l0%0

�
#

rad

� p

�
; (25.21)

# 0 D P 0
0

P0
rradŒ�Pp C .�T � 4/# C � � 4x�: (25.22)

Equations (25.19)–(25.22) are four linear homogeneous differential equations of

first order for the variables p; #; x; � which have to obey certain boundary

conditions corresponding to those of the unperturbed solutions. They have to be

regular in the centre and to be fitted to an atmosphere. We will deal with the

boundary conditions in Chaps. 40 and 41, where they are shown to be equivalent

to four linear homogeneous equations. Therefore, solutions exist only for certain

eigenvalues of !; which have to be found numerically. There exists an infinite

number of eigenvalues for which the system can be solved. For each eigenvalue

!� one obtains a set of eigenfunctions p�.m/, #�.m/, x�.m/, ��.m/.
The term with !2.� Rr) in (25.19) comes from the inertial terms in the equation

of motion, while in (25.21), the term with i!.� PP ; PT / is due to the time derivatives

in the energy equation. The two corresponding timescales are �hydr and �adj D �KH.

Since �hydr � �KH, we have a situation similar to that described for the piston model

in Sect. 25.2. Correspondingly, in general, we can speak of dynamical, vibrational,

and secular stability.

There are, however, more complicated cases where this classification of stability

behaviour is not possible. For example, the relevant thermal timescale may not be

that of the whole star but a much shorter one for a small subregion. If the char-

acteristic wavelength of a thermal perturbation is short enough, the corresponding

adjustment time can become comparable or shorter than �hydr (of the whole star).

Another example is the case of a dynamically stable model which evolves in such a

way that it approaches marginal stability (!ad ! 0). Then the oscillations become

so slow that they certainly will not be adiabatic anymore: 1=!ad � �KH (although

�hydr � �KH still).

25.3.2 Dynamical Stability

Since in Chap. 40 we will treat this problem thoroughly, we merely present some

general results here. Instead of solving all four equations (25.19)–(25.22), one

can consider oscillations taking place on the timescale �hydr. Since �hydr � �adj,
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the temperature of the matter changes almost adiabatically. Instead of solving

(25.21) and (25.22) one just replaces # by prad in (25.20). Therefore (25.19) and

(25.20) present two equations for p and x with the eigenvalue !2. As we will see

in Chap. 40 the eigenvalue problem is self-adjoint. Then there exists an infinite

series of eigenvalues !2n which are real. (!n is either real or purely imaginary).

Therefore, they either correspond to periodic oscillations (!2n > 0) or exponentially

decreasing/increasing solutions (!2n < 0). The same behaviour was found for the

adiabatic case of the piston model. But now, with an infinite number of eigenvalues,

stability demands that for all eigenvalues !2n > 0, while even a single eigenvalue

with !2n < 0 is sufficient for instability.

How a star behaves after it is adiabatically compressed or expanded depends on

the numerical value of 
ad. This can be most easily seen in the case of homologous

changes. Let us consider a concentric sphere r D r.m/ in a star of hydrostatic

equilibrium.

The pressure there is equal to the weight of the layers above a unit area of the

sphere, as shown by integrating the hydrostatic equation:

P D
Z M

m

Gm

4�r4
dm: (25.23)

We now compress the star artificially and assume the compression to be adiabatic

and homologous. In general, after this procedure, the star will no longer be in

hydrostatic equilibrium.

If a prime indicates values after the compression, then homology demands that

the right-hand side of (25.23) varies like .R0=R/�4 [cf. (20.37)] where R is the

stellar radius, while adiabaticity and homology demand that the left-hand side varies

as

.%0=%/
ad D .R0=R/�3
ad (25.24)

according to (20.9). Therefore, if 
ad D 4=3, the pressure on the left-hand side

of (25.23) increases stronger with the contraction than the weight on the right:

The resulting force is directed outwards, and the star will move back towards

equilibrium: it is dynamically stable.

For 
ad < 4=3 the weight increases stronger than the pressure and the star would

collapse after the initial compression (dynamical instability). For 
ad D 4=3, the

compression leads again to hydrostatic equilibrium: One has neutral equilibrium.

The condition 
ad > 4=3 corresponds to the dynamical stability condition 
ad >

�G�
h for the piston model (Sect. 25.2.1).

In Chap. 40 we will see that 
ad D 4=3 is also a critical value for non-homologous

perturbations. If 
ad is not constant within a star, for instance, because of ionization,

then marginal stability occurs if a certain mean value of 
ad over the star reaches the

critical value 4/3.

It should be noted that radiation pressure can bring 
ad near the critical value

4/3 (see Sect. 13.2). This is the reason why supermassive stars are in indifferent

equilibrium, i.e. they are marginally stable (see Sect. 19.10).
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The critical value 4/3 depends strongly on spherical symmetry and Newtonian

gravitation. The 4 in the numerator comes from the fact that the weight of the

envelope in Newtonian mechanics varies as � r�2 and has to be distributed over

the surface of our sphere, giving another r�2. The 3 in the denominator comes

from the r3 in the formula for the volume of a sphere. Therefore, effects of general

relativity change the critical value (see Sect. 38.2) of 
ad and make the models less

stable. Since we have assumed spherical symmetry in deriving the critical value of


ad, rotation changes it, too. It can decrease the critical value of 
ad and make the

models more stable.

25.3.3 Non-adiabatic Effects

The inclusion of non-adiabatic effects in a dynamically stable model brings us

to the question of its vibrational and secular stability (A dynamical instability

makes a perturbation grow so rapidly that any other possible instability of vibra-

tional or secular type is irrelevant because of their much longer timescales.).

Vibrational stability means an oscillation with nearly adiabatic frequency but with

slowly decreasing (stability) or increasing amplitude (instability). Such oscillations

describe the behaviour of pulsating stars and therefore are treated in detail in

Chap. 41.

Secular (or thermal) stability is governed by thermal relaxation processes. In

general these proceed on timescales long compared to �hydr and, therefore, the inertia

terms in the equation of motion can be dropped. This means that the term � !2 in

(25.19) can be omitted. Equations (25.19)–(25.22) together with proper boundary

conditions can then be solved, yielding an infinite number of secular eigenvalues

!sec. Normally they are purely imaginary (as in the case of the piston model). This

is what one expects from a thermal relaxation process, such as in the problem

of diffusion of heat. It is therefore all the more surprising that in certain cases

a few complex eigenvalues occur (Aizenman and Perdang 1971). The oscillatory

behaviour here comes from heat flowing back and forth between different regions in

the star (Obviously this could not occur in the single layer of the piston model.). If

instead of ! we again use � WD i!, the system (25.19)–(25.22) has real coefficients.

Therefore the eigenvalues � , if complex, appear in conjugate complex pairs. Again,

the sign of the real part of � (the imaginary part of !/ distinguishes between secular

stability or instability.

The most important application of the secular problem to stellar evolution

concerns the question whether a nuclear burning is stable or not. Secular instability

in degenerate regions leads to the flash phenomenon, while in thin (nondegenerate)

shell sources, it results in quasiperiodic thermal pulses.

In order to make the secular stability of a central burning plausible, we treat a

simple model of the central region, assuming homologous changes of the rest of the

star. Other secular instabilities which occur in burning shells or which are due to

nonspherical perturbations will be discussed later (Sects. 33.5 and 34.2).
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25.3.4 The Gravothermal Specific Heat

Let us consider a small sphere of radius rs and mass ms around the centre of a star

in hydrostatic equilibrium. If the sphere is sufficiently small, then P at rs and the

mean density in the sphere are good approximations for the central values Pc, %c.

Suppose that, as a reaction to the addition of a small amount of heat to the central

sphere, the whole star is slightly expanding and let the expansion be homologous.

Then any mass shell of radius r after expansion has the radius r C dr D r.1C x),

where x is constant for all mass shells. If after the expansion the pressure in the

sphere is Pc C dPc, then, similarly to (20.34) and (20.37), the resulting changes of

%c and Pc are
d%c

%c

D �3x; pc WD dPc

Pc

D �4x: (25.25)

We now write the equation of state in differential form,

d%c

%c

D ˛pc � ı#c; (25.26)

(#c WD dTc=Tc) as in (6.5) but here with constant chemical composition.

Elimination of d%c=%c and of x from (25.25) and (25.26) gives

pc D 4ı

4˛ � 3#c: (25.27)

According to the first law of thermodynamics the heat dq per mass unit added to the

central sphere is

dq D du C Pdv D cPTc.#c � radpc/ WD c�Tc#c; (25.28)

where we have used (4.18), (4.21) and where according to (25.27)

c� D cP

�
1 � rad

4ı

4˛ � 3

�
: (25.29)

This quantity has the dimension of a specific heat per mass unit. Indeed, dT D
dq=c� gives the temperature variation in the central sphere if the heat dq is added.

In thermodynamics we are used to defining specific heats with some mechanical

boundary conditions, for example, cP and cv: For c� the mechanical condition is

that the gas pressure is kept in equilibrium with the weight of all the layers with

r > rs. This c� is called the gravothermal specific heat.

For an ideal monatomic gas (a D ı D 1;rad D 2=5), as we have approximately

in the central region of the Sun, one finds from (25.29) that c� < 0. This is

fortunate, since if in the Sun the nuclear energy generation is accidentally enhanced

for a moment (dq > 0), then dT < 0, the region cools, thereby reducing the
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overproduction of energy immediately. Therefore the negative specific heat acts

as a stabilizer. At first glance it seems as if the decrease of temperature after an

injection of heat contradicts energy conservation. But one has also to take into

account the Pdv work done by the central sphere. Indeed, while the centre cools

(#c < 0), the whole star expands, since elimination of pc and d%c=%c from (25.25)

and (25.26) gives x D �ı#c=.4˛ � 3/, which in the case ˛ D ı D 1 yields

x > 0. It turns out that, if heat is added to the central sphere, more energy is used

up by the expansion, and therefore some must be taken from the internal energy.

This behaviour is essentially connected with the virial theorem (see Sect. 3.1). A

corresponding property can be found for the piston model by assuming a variable

weight G� of the piston as in Sect. 3.2.

For a nonrelativistic degenerate gas (ı ! 0; ˛ ! 3=5) equation (25.29) gives

c� > 0: the addition of energy to the central sphere heats up the matter, which can

lead to thermal runaway.

25.3.5 Secular Stability Behaviour of Nuclear Burning

Having derived a handy expression for dq, we shall now use it in the energy balance

of the central sphere considered in Sect. 25.3.4. Energy is released in the sphere by

nuclear reactions and transported out of it by radiation (we assume here that the

central region is not convective). In the steady state gains and losses compensate

each other. Let " be the mean energy generation rate, and ls the energy per unit time

which leaves the sphere; then "ms � ls D 0. Now the equilibrium is supposed to be

perturbed on a timescale � , such that � is much larger than �hydr but short compared

to the thermal adjustment time of the sphere. Then, while hydrostatic equilibrium is

maintained, the thermal balance is perturbed.

For the perturbed state the energy balance is

msd" � dls D ms

dq

dt
� msc

� dTc

dt
: (25.30)

Here, dq is the heat gained per mass unit, which is expressed by c�dTc according to

(25.28).

If we now perturb the equation for radiative heat transfer (5.12),

l � T 3r4

�

dT

dm
; (25.31)

we obtain for ls
dls

ls
D 4#c C 4x � �Ppc � �T#c: (25.32)

For the perturbation of dT/dm we have made use of the fact that for homology

# D dT=T D constant and therefore d.dT=dm/ D d.T #/=dm D #dT=dm.
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From (25.25), (25.27) and (25.32) it follows that

dls

ls
D
�
4 � �T � 4ı

4˛ � 3
.1C �P /

�
#c: (25.33)

This, introduced into (25.30), gives

ms

ls

dq

dt
D .msd" � dls/ls D "T#c C "Ppc � dls

ls

D
�
."T C �T � 4/C 4ı

4˛ � 3."P C �P C 1/

�
#c; (25.34)

where we have made use of ls D "ms and of (25.27). Then with (25.30) we find

msc
�Tc

ls

d#c

dt
D
�
."T C �T � 4/C 4ı

4˛ � 3
.1C "P C �P /

�
#c: (25.35)

The sign of the bracket tells us whether for dTc > 0 the additional energy production

exceeds the additional energy loss of the sphere ([: : :] > 0). The sign of c� tells us

whether in this case the sphere heats up .c� > 0) or cools .c� < 0). Normally "T
is the leading term in the bracket, so that indeed [: : :] > 0. We first assume an ideal

gas (˛ D ı D 1; c� < 0) and obtain

msc
�Tc

ls

d#c

dt
D Œ"T C �T C 4."P C �P /�#c: (25.36)

Since c� < 0, one finds from (25.36) that (d#c=dt/=#c < 0, meaning that the

perturbation dTc decays and the equilibrium is stable if

"T C �T C 4."P C �P / > 0: (25.37)

This criterion is normally fulfilled. The only “dangerous” term is �T , which can be

as low as to �4:5 for Kramers opacity. But then, even "T D 5 for the pp chain

suffices to fulfill (25.37), since the other terms are positive.

Any temperature increase dTc > 0 would cause a large additional energy

overproduction "0"T dTc=Tc. But since the gravothermal heat capacity c� < 0, the

sphere reacts with dTc < 0, and this cooling brings energy production back to

normal. We then can say that the burning in a sphere of ideal gas proceeds in a

stable manner, the negative gravothermal specific heat acts like a thermostat. This,

for example, is the case in the Sun.

We go back to (25.35) for the general equation of state. Since normally "T
dominates the other terms in the square bracket (in some case "T > 20), we neglect

them for simplicity. Then (25.35) can be written
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d#c

dt
D ls"T

msTcc� #c WD 1

D
#c: (25.38)

Obviously D < 0 indicates stability, D > 0 instability. Since "T > 0 and, for an

ideal gas, c� < 0, the quantityD is negative: The nuclear burning is stable.

For a nonrelativistic degenerate gas we have ı D 0, ˛ D 3=5. Therefore, c� > 0
andD > 0: Any nuclear burning with a sufficiently strong temperature dependence

will then be unstable. This is the reason, for instance, why in the central regions

of a white dwarf there can be no strong nuclear energy source [as first shown by

Mestel (1952)]; the star would be destroyed by thermal runaway, or at least heat up

until it was not degenerate and then expand. Of course, then it would no longer be

a white dwarf. The same instability is also responsible for the phenomenon of the

so-called flash (compare Sect. 33.4) which occurs if a new nuclear burning starts

in a degenerate region. Note that the appearance of 4˛ � 3 in the denominator in

several equations, including (25.29) for c� and (25.35), does not become serious

even if ˛ ! 3=4 for partial nonrelativistic degeneracy, since the singularity can

be removed from the equation which one obtains if c� is inserted in (19.35) by

multiplication with 4˛ � 3.

From (25.38) one can draw another conclusion. Let us assume that in the central

region of a star there is no nuclear burning but that energy losses by neutrinos

(Sect. 18.7) are important. The nuclear energy production in the star may take place

in a concentric shell of finite radius. Part of this energy flows outwards, providing

the star’s luminosity, while part of it flows from the shell inwards towards the centre

where it goes into neutrinos. The maximum temperature then is in the shell and

not in the stellar centre. In Sect. 33.5 we shall see that this really can be the case

in models of evolved stars. If we now again look at (25.38), we have to be aware

that ls < 0. If "T > 0, as it is for neutrino losses (see Sect. 18.7), all the above

conclusions are contradicted because of the different sign of ls: The equilibrium is

stable if c� > 0, i.e. for degeneracy, but unstable if c� < 0, which is the case for an

ideal gas.

All our discussions here were based on the assumption of homologous changes

in the stellar model. Although stars clearly never change precisely in such a simple

way, it turns out that the above conclusions describe qualitatively correctly the

secular stability behaviour of stars. Deviations from homology only influence

the factors [e.g. in the bracket in (25.36)], thus modifying the exact position of

the border between secular stability and instability.



Part V

Early Stellar Evolution



Chapter 26

The Onset of Star Formation

Stars form out of interstellar matter. With modern telescopes and instruments this

can nowadays be observed directly and in many phases of the formation process.

Indeed a homogeneous cloud of compressible gas can become gravitationally unsta-

ble and collapse. In this section we shall deal with gravitational instability and then

discuss some of its consequences. But before we do so it may be worth comparing

this instability with those discussed in Chap. 25. For gravitational instability the

inertia terms are important as well as heat exchange of the collapsing mass with its

surroundings. But it is not a vibrational instability, since the classification scheme

of Chap. 25 holds only if the free-fall time is much shorter than the timescale of

thermal adjustment. As we will see later, just the opposite is the case here, during

the earliest phases of star formation.

26.1 The Jeans Criterion

26.1.1 An Infinite Homogeneous Medium

We start with an infinite homogeneous gas at rest. Then density and temperature

are constant everywhere. However, we must be aware that this state is not a well-

defined equilibrium. For symmetry reasons the gravitational potential ˚ must also

be constant. But then Poisson’s equation r
2˚ D 4�G% demands % D 0. Indeed

the gravitational stability behaviour should be discussed starting from a better

equilibrium state, as we will do later. Nevertheless we first assume a medium

of constant non-vanishing density. If we here apply periodic perturbations of

sufficiently small wavelength, the single perturbation will behave approximately

like one with the same wavelength in an isothermal sphere in hydrostatic equilibrium

(which is a well-defined initial state).
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The gas has to obey the equation of motion of hydrodynamics

@v

@t
C .v � r /v D �1

%
rP � r˚ (26.1)

(Euler equation), together with the continuity equation

@%

@t
C vr%C %r � v D 0 : (26.2)

In addition we have Poisson’s equation

r
2˚ D 4�G% (26.3)

and the equation of state for an ideal gas

P D <
�
%T D v2s % ; (26.4)

where vs is the (isothermal) speed of sound. For equilibrium we assume % D %0 D
constant, T D T0 D constant, and v0 D 0: ˚0 may be determined by r

2˚0 D
4�G%0 and by boundary conditions at infinity.

We now perturb the equilibrium

% D %0 C %1 ; P D P0 C P1 ; ˚ D ˚0 C ˚1 ; v D v1 ; (26.5)

where the functions with subscript 1 depend on space and time. In (26.5) we have

already used that v0 D 0. If we substitute (26.5) in (26.1) and (26.4), assuming that

the perturbations are isothermal .vs is not perturbed), and if we ignore non-linear

terms in these quantities, we find

@v1

@t
D �r

�
˚1 C v2s

%1

%0

�
; (26.6)

@%1

@t
C %0r � v1 D 0 ; (26.7)

r
2˚1 D 4�G%1 : (26.8)

The terms with index 0, describing the equilibrium part, have vanished, as usual.

This is a linear homogeneous system of differential equations with constant

coefficients. We therefore can assume that solutions exist with the space and time

dependence proportional to exp [i(kx C !t)] such that

@

@x
D ik ;

@

@y
D @

@z
D 0 ;

@

@t
D i! : (26.9)
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With v1x D v1; v1y D v1z D 0 we find from (26.6)–(26.8) that

!v1 C kv2s
%0
%1 C k˚1 D 0; (26.10)

k%0v1 C !%1 D 0; (26.11)

4�G%1 C k2˚1 D 0: (26.12)

This homogeneous linear set of three equations for v1; %1; ˚1 can only have

nontrivial solutions if the determinant

ˇ̌
ˇ̌
ˇ̌
ˇ̌

!
kvs2

%0
k

k%0 ! 0

0 4�G k2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

is zero. Assuming a non-vanishing wave number k we obtain

!2 D k2v2s � 4�G%0: (26.13)

For sufficiently large wave numbers the right-hand side is positive, i.e. ! is real. The

perturbations vary periodically in time. Since the amplitude does not increase, the

equilibrium is stable with respect to perturbations of such short wavelengths.

In the limit k ! 1, (26.13) gives !2 D k2v2s , which corresponds to isothermal

sound waves. Indeed for very short waves gravity is not important, any compression

is restored by the increased pressure, and the perturbations travel with the speed of

sound through space.

If k2 < 4�G%0=v
2
s ; the eigenvalue ! is of the form ˙i�, where � is real.

Therefore there exist perturbations �exp.˙�t/ which grow exponentially with time,

so that the equilibrium is unstable. If we define a characteristic wave number kJ by

k2J WD 4�G%0

v2s
; (26.14)

or a corresponding characteristic wavelength

�J WD 2�

kJ

; (26.15)

then perturbations with a wave number k < kJ (or a wavelength � > �J/ are

unstable; otherwise, they are stable with respect to the perturbations applied here.

The condition for instability � > �J, where

�J D
�
�

G%0

�1=2
vs; (26.16)
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is called the Jeans criterion after James Jeans, who derived it in 1902. Depending

on the detailed geometrical properties of equilibrium and perturbation, the factors

on the right-hand side of (26.16) can differ.

For our special choice of perturbations the case of instability can be described as

follows: after a slight compression of a set of plane-parallel slabs, gravity overcomes

pressure and the slabs collapse to thin sheets. If we estimate ! for the collapsing

sheets only from the gravitational term in (26.13) (which indeed is larger than the

pressure term), we have i! � .G%0/
1=2 and the corresponding timescale is � �

.G%0/
�1=2, which corresponds to the free-fall time, as defined in Sect. 2.4.

26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium

We have already mentioned the contradictions connected with the assumption of an

infinite homogeneous gas as initial condition. One way out of this difficulty is to

investigate the equilibrium of an isothermal plane-parallel layer stratified according

to hydrostatic equilibrium in the z direction. Perpendicular to the z direction

all functions are constant, the layer extending to infinity. This defines a one-

dimensional problem: %0; P0; T0 depend only on one coordinate, say z. Poisson’s

equation then is

d 2˚0

d z2
D 4�G%0; (26.17)

while hydrostatic equilibrium, dP0=d z D �%0d˚0=d z, can be written with (26.4)

as

v2s
d ln%0

d z
D �d˚0

d z
: (26.18)

After differentiation of (26.18) one obtains from (26.17)

d 2 ln %0

d z2
D �4�G

v2s
%0 : (26.19)

With the boundary condition %0 D 0 for z D ˙1, (26.19) has the solution

%0.z/ D %0.0/

cosh2.z=H/
; (26.20)

with

H D
� <T
2��G%0.0/

�1=2
D vs

Œ2�G%0.0/�1=2
; (26.21)

which can be seen if (26.20) and (26.21) are inserted into (26.19). The (stratified)

disc does not cause problems similar to those encountered in the case of the infinite

homogeneous gas.
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In order to investigate the stability of this disc one defines cartesian coordinates

x; y in the plane perpendicular to the z-axis and considers perturbations of the form

%1 � f .z/ exp Œi.kx C !t/�. Since the perturbations do not depend on y the layer

collapses in the x-direction to a set of plane-parallel “sticks” in y-direction in the

case of instability. We shall not go into the details of the stability analysis, which

has been described by Spitzer (1968). The result is that again there is a critical wave

number

kJ D 1

H
D Œ2�G%0.0/�

1=2

vs

(26.22)

and that instability occurs for wave numbers k < kJ, while perturbations with

k > kJ remain finite. This is very similar to what we have obtained in the

homogeneous case, as can be seen by comparing (26.22) and (26.14). The difference

in the numerical factors is due to the different geometry.

The two cases discussed above have in common that for smaller wave numbers

(larger wavelengths and therefore larger amounts of mass involved in the resulting

collapse) the equilibrium is unstable, while for larger wave numbers, it is stable. In

hydrostatic equilibrium the force due to the pressure gradient and the gravitational

force cancel each other. In general this balance is disturbed after a slight compres-

sion. If only a small amount of mass is compressed, the pressure increases more

than the force due to gravity, and the gas is pushed back towards the equilibrium

state. This is the case if a toy balloon is slightly compressed. Only the increase of

pressure counts, since the gravity of the trapped gas is negligible. The same is true

for the compressions which occur in sound waves where gravity plays no role. But

if a sufficient amount of gas is compressed simultaneously, the increase of gravity

overcomes that of pressure and makes the compressed gas contract even more.

26.2 Instability in the Spherical Case

In order to investigate the Jeans instability for interstellar gas in a configuration more

realistic than the two examples of Sect. 26.1, we now consider an isothermal sphere

of finite radius imbedded in a medium of pressure P � > 0. The sphere is supposed

to consist of an ideal gas. The structure of the sphere can be obtained from a solution

of the Lane–Emden equation (19.35) for an isothermal polytrope. The solution is cut

off at a certain radius where P has dropped to the surface pressure P D P �. The

stratification outside the sphere is not relevant as long as it is spherically symmetric

with respect to the centre, since then there is no gravitational influence of the outside

on the inside. Its only influence will be via the surface pressure, which we assume

to be constant during the perturbation.

The essential points of this problem can be easily seen if one discusses the virial

theorem for the sphere, as described in Sect. 3.4. Since our sphere of mass M and

radius R is isothermal, its internal energy is Ei D cvMT . For the gravitational

energy we write Eg D ��GM 2=R, where � is a factor of order one. It can be
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obtained by numerical integration of the Lane–Emden equation and is related to the

polytropic index n by � D 3=.5� n/. For a fully convective sphere .n D 3=2/, for

example, its value would be 6/7; for the homogenous sphere with n D 0, � D 3=5,

and for an n D 3 polytrope (see Sect. 19.4) it is 1.5. Here, however, we use it as a

general factor that depends on the actual density distribution within the sphere. With

these expressions and with � D 2 [ideal monatomic gas; (3.8)] the virial theorem

(3.21) can be solved for the surface pressure P0 giving

P0 D cvMT

2�R3
� �GM 2

4�R4
: (26.23)

The first term on the right is due to the internal gas pressure, which tries to expand

the sphere. It is proportional to the mean density. The second term is due to the

self-gravity of the sphere, which tries to bring all matter to the centre.

At this point we introduce two scaling factors for radius and pressure which allow

us to write (26.23) in dimensionless form

eR D �GM

2cvT
; eP D cvMT

2�eR3
; (26.24)

and write

R D xeR; P0 D yeP : (26.25)

We then obtain instead of (26.23)

y D 1

x3

�
1 � 1

x

�
: (26.26)

We now discuss how P0 varies with R for fixed values of M , T , and �

(Fig. 26.1). For small x the value of y is negative. It changes sign with increasing

x at x D 1 (or R D eR), and approaches zero from positive values for x (or R)

! 1. x has a (positive) maximum at 4/3 (or P0 at R D Rm), a value which can be

obtained by differentiation of (26.26) or (26.23). After replacing cv by 3<=.2�/ we

find that dP0=dR vanishes at

Rm D 4�

9

G�M

<T D 4

3
eR : (26.27)

Suppose the sphere to be in equilibrium with the surroundings: P0 D P �. For R <

Rm, the surface pressure P0 decreases with decreasing R. Therefore, after a slight

compression,P0 < P
� and the sphere will be compressed even more; it is unstable.

For R > Rm, the pressure P0 increases during a slight compression and the sphere

will expand back to equilibrium; it is stable (These simple plausibility arguments are

supported by the results of a decent stability analysis.). We have obviously recovered

the Jeans instability discussed in Sect. 26.1. This can be seen if in (26.27) M is

replaced by 4�R3m N%=3, where N% is the mean density of the sphere. We then obtain
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Fig. 26.1 The function given

in (26.23) in dimensionless

form (26.26). The variable y

and therefore also P0 change

sign at x D 1 (or at R D QR).

It has a positive maximum at

x D 4=3 (or at

R D Rm D 4 QR=3)

R2m D 27

16��

<T
G� N% : (26.28)

Here Rm is the critical radius of a gaseous mass of mean density N% and temperature

T which is marginally stable. We compare it with the critical Jeans wavelength

obtained in (26.16), which with v2s D <T=� becomes

�2J D <T�
G� N% : (26.29)

Clearly �J and Rm are of the same order of magnitude.

Obviously for a given equilibrium state, defined by a radius R and a surface

pressure P0, there exists a critical mass MJ, the so-called Jeans mass, where R D
Rm. Masses larger thanMJ are gravitationally unstable becauseR would be smaller

than the corresponding Rm, which grows linearly with M according to (26.27). If

slightly compressed they fall together. According to (26.28)

MJ D 4�

3
N%R3m D 27

16

�
3

�

�1=2 � <
�G

�3=2 �
T

�

�3=2 �
1

N%

�1=2
: (26.30)

Depending on the treatment of the perturbation problem and its geometry, one finds

slightly differing pre-factors in the expression for MJ, but they all give the same

order of magnitude.

We can rewrite (26.30) into a more convenient form (setting � D 1):

MJ D 27

16

�
3

�

�1=2 � <
G�

�3=2
T 3=2%�1=2

D 1:1Mˇ

�
T

10K

�3=2 �
%

10�19 g cm�3

��1=2 � �
2:3

��3=2
: (26.31)
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The scaling values % D 10�19 g cm�3 and T D 10K are typical for the conditions

in star-forming clumps within interstellar clouds. We assumed that all hydrogen

is in molecular form and helium is neutral, and therefore � � 2:3. We thus obtain

MJ � 1:1Mˇ as the typical mass of a clump of molecular gas from which stars form

because of the Jeans instability. The typical Jeans mass for the molecular cloud as

a whole, with % � 10�24 g cm�3 and T � 100K, would be around 105Mˇ, which

indeed is in the range of molecular cloud masses. However, it is believed that not

the cloud as a whole collapses, but rather that turbulence within the cloud leads to

overdense condensations with the conditions outlined above, which then collapse

due to the Jeans instability and which may fragment further to form stars of even

lower mass.

Equation (26.31) exists in various forms, which differ in the numerical factors.

This can be the result of different assumptions about �, or � not being equal to

2. For example, for a bimolecular gas, it would be 6/5. Sometimes also half of the

Jeans wavelength �J is used instead of Rm. All this can amount to a variation of the

typical Jeans mass by a factor of a few.

We have already shown, following (26.16), that the timescale for the growth of

the instability is � � .G%/�1=2, the free-fall time. This is of course also valid for

the present spherical case. For a density of % � 10�19 g cm�3, the collapse takes

place on a timescale of some 105 years. During collapse, � becomes shorter, since

the density increases.

This timescale � is long compared to that for thermal adjustment �adj. Since the

cloud is optically thin, �adj is the internal energy per unit mass divided by the rate of

energy losses owing to radiation. For typical neutral hydrogen clouds, Spitzer (1968)

and Low and Lynden-Bell (1976) estimate a loss� of the order 1 erg g �1 s�1. With

T D 10K we find �adj � cvT=� � 10 years. Comparison with the free-fall time

of some 105 years shows that the collapse proceeds in thermal adjustment (which

turns out to mean that it is almost isothermal). In Sect. 26.3 we will show where this

breaks down. As a rough estimate a molecular cloud is optically thin for particle

densities below 10�10cm�3, or mass densities below 10�14 g cm�3, and optically

thick, if the density is higher.

So far, the external pressure P � has not entered our discussion, because we have

asked for the maximum pressure for given mass M at the cut-off radius R. If P.R/

is given by the external pressure P �, one can turn around the question and ask

for the maximum mass an isothermal sphere of given T and M can have before it

has to collapse. Such a sphere is called Bonnor-Ebert sphere, and the critical mass,

the Bonnor-Ebert mass MBE, is given here without derivation (Ebert 1955; Bonner

1956):

MBE D 1:18
<2

�2G3=2
T 2.P �/�1=2Mˇ: (26.32)

As expected,MBE is increasing with its temperature because the thermal pressure

of the sphere can better balance the outer pressure and is decreasing with increasing

external pressure.
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26.3 Fragmentation

For a long time it was believed that large molecular clouds of 104 � � � 105Mˇ
were collapsing because they exceeded their Jeans mass. To actually form stars

of much lower mass from such clouds, fragmentation into smaller clumps, which

are collapsing faster than the cloud as a whole, is required. Due to progress of

theories, numerical simulations, and observations of molecular clouds the picture

has changed. Molecular clouds are highly turbulent, with supersonic motions of gas

streams depositing kinetic energy into the cloud, stabilizing it against gravitational

collapse. The same shock waves, on smaller scales, result in a local compression

of gas. This process is called gravoturbulent cloud fragmentation (Mac Low and

Klessen 2004) and leads to overdense gas filaments and clumps. Some of them

remain gravitationally bound and may collapse if they exceed their Jeans mass.

Even then, the question remains whether out of clumps of several solar masses

many stars of lower mass can form, or how stars with masses below 1Mˇ are

formed. Under what circumstances can fragments of a collapsing cloud become

unstable and collapse faster than the cloud?

At first glance it seems to be a natural mechanism for producing collapsing

objects with masses smaller than the initial MJ. Indeed, if a clump collapses

isothermally, then MJ decreases as %�1=2. If, however, the gas were to change

adiabatically, then for a monatomic ideal gas, rad D .d ln T=d lnP/ad D 2=5

or T � P 2=5, and from P � %T , the temperature would change as T � %2=3,

and therefore MJ � T 3=2%�1=2 � %1=2 . So the Jeans mass would grow during

an adiabatic collapse. But already in Sect. 26.2 we have seen that under interstellar

conditions the thermal adjustment timescale is much shorter than the free-fall time,

which is of the order .G%/�1=2, and this also holds when the density increases

during collapse. One can therefore assume the collapse to be isothermal rather than

adiabatic. Then the Jeans mass becomes smaller than the mass of the originally

collapsing cloud. If it has dropped, say, to one half its original value, the clump can

split into two independently collapsing parts. This kind of fragmentation can go on

as long as the collapse remains roughly isothermal. It will stop as soon as matter

becomes opaque and the heat gained by gravothermal contraction can no longer

be radiated away (Note that in principle it is not justified to apply the concept of

the Jeans mass to an already collapsing medium, since it has been derived for an

equilibrium state. But we may do it for order-of-magnitude estimates.).

What are the final products of this fragmentation process? Will the collapsing

clump finally fall apart into a swarm of clumplets of planetary masses or even

smaller? Even detailed multidimensional simulations of the hydrodynamics and

thermodynamics of this complicated process cannot follow it in all details. But

we may just estimate when the thermal adjustment time of the fragments becomes

comparable with the free-fall time. Then the collapse can certainly not be isothermal

anymore and must approach an adiabatic one. As we have seen, then the Jeans mass

no longer decreases with increasing %. This means that subregions of the fragments

do not fall together on their own and fragmentation stops.
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For a detailed estimate, one has to know the radiation processes that cool the

gas during collapse. One can then find how long the gained work �Pdv can be

radiated away, as is done in modern radiation-hydrodynamical simulations of star

formation. Instead, we give a rough estimate of the mass limit of fragmentation

based on simple physical arguments, following Rees (1976), without specifying the

detailed radiation processes.

The characteristic time of the free-fall of a fragment is .G%/�1=2, and the total

energy to be radiated away during collapse is of the order of the gravitational energy

Eg � GM 2=R (see Sect. 3.1), where M and R are the mass and radius of the

fragment. Therefore the rate A of energy to be radiated away in order to keep the

fragment always at the same temperature is of the order

A � GM 2

R
.G%/1=2 D

�
3

4�

�1=2
G3=2M 5=2

R5=2
: (26.33)

But the fragment at temperature T cannot radiate more than a black body of that

temperature (This implies approximate thermal equilibrium, which is not too bad

an assumption for the final stage of fragmentation, where matter starts to become

opaque.). Therefore the rate of radiation loss of the fragment is

B D 4�f�T 4R2; (26.34)

where � D 2�5k4=.15c2h3/ is the Stefan–Boltzmann constant, while f is a factor

less than 1 taking into account that the fragment radiates less than the corresponding

black body. For isothermal collapse it is necessary that B � A. The transition to

adiabatic collapse will occur if A � B . From (26.33) and (26.34) we find that this

is the case when

M 5 D 64�3

3

�2f 2T 8R9

G3
: (26.35)

We assume that fragmentation has reached its limit whenMJ is equal to thisM . We

therefore replace M in (26.35) by MJ, R by

R D
�
3

4�

�1=3
M

1=3
J

%1=3
; (26.36)

and eliminate % with the help of (26.31). The Jeans mass at the end of fragmentation

is then obtained as

MJ D 81

64

�
3

�

�3=4
1

.�G3/1=2

�<
�

�9=4
f �1=2T 1=4

D 6:2 � 1030g f �1=2T 1=4 D 0:003Mˇ
T 1=4

f 1=2
; (26.37)

where T is in K and where we have set � D 1.
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Let us assume that the temperature T of the smallest elements is 10 K and,

further, that appreciable deviations from isothermal collapse occur when the

radiation losses have to exceed 10 % of the maximal possible (black-body) radiation

losses (f D 0:1). We then find from (26.37) that M � 0:001Mˇ. This rough

estimate is surprisingly close to the mass of the smallest optically thick, pressure-

supported protostellar cores that were found in numerical simulations. These objects

in fact grow in mass by accretion from the surrounding clump.

It should be noted that our result is dependent on the chemical composition

because the efficiency of cooling is higher the more heavy elements with rich

spectral line systems are present. In particular for stars of the first generation, which

are formed shortly after the Big Bang (also called Population III stars), cooling

is very inefficient and proceeds mainly via hydrogen molecules, which are even

dissociated easily at temperatures around 2,000 K. As a consequence, the smallest

condensations in a collapsing cloud of primordial material is of the order of 100Mˇ
(see Bromm and Larson 2004 for a review on first stars).

In the above considerations a number of complicating effects have been ignored.

The role of magnetic fields is manifold. They may stabilize clouds against collapse,

as long as there are ions in the gas, but are usually found to be too weak to do

so. However, they may help to mediate the angular momentum problem, which

is due to the fact that the initially present angular momentum in the cloud works

against gravitational collapse. Magnetic fields may allow the transport of angular

momentum away from collapsing clumps. Nevertheless, matter does not accrete

spherically onto the smallest condensation objects, but accumulates in an accretion

disc around it. Disc, protostellar object, and surrounding matter interact in a

complicated way through matter in- and outflow, where magnetic fields and angular

momentum influence the geometrical shape and efficiency. Magnetic fields also

appear to help in keeping clumps together, after the effects of turbulence, which

has created them in the first place, have faded. Zinnecker and Yorke (2007) as well

as McKee and Ostriker (2007) give comprehensive reviews of star formation theory.
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The Formation of Protostars

The Jeans criterion derived in the foregoing section follows from a first-order per-

turbation theory and gives conditions under which perturbations of an equilibrium

stage will grow exponentially. But the linear theory does not give information, for

instance, about the fully developed collapse, to say nothing about the final product.

For this, one has to follow the perturbation into the non-linear regime. We first

begin with some very simple cases, assuming always spherical symmetry for the

collapsing cloud.

27.1 Free-Fall Collapse of a Homogeneous Sphere

If, according to the Jeans criterion, a gaseous mass has become unstable and the

collapse has started, gravity increases relatively more than the pressure gradient.

The collapse is more and more governed by gravity alone, which is easily seen from

the following arguments. For spherical symmetry, the gravitational acceleration is

of the order GM=R2, where M and R are the mass and radius of the cloud. On the

other hand, an estimate of the acceleration due to the pressure gradient is

ˇ̌
ˇ̌1
%

@P

@r

ˇ̌
ˇ̌ � P

%R
� <
�

T

R
: (27.1)

The ratio of gravitational force to pressure gradient is therefore �M=.RT /, which

during isothermal collapse increases as 1=R. Consequently we here neglect the gas

pressure.

The free collapse of a homogeneous sphere can be treated analytically. At a

distance r from the centre the gravitational acceleration is Gm=r2, where m is the

mass within the sphere of radius r . If the pressure can be neglected, the sphere

collapses in free fall, according to the equation of motion

Rr D �Gm
r2
; (27.2)
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where the dots indicate the time derivatives of the radius r.m; t/. We now replacem

by 4� %0r
3
0=3, where the subscript zero indicates the values at the beginning of the

collapse, by assumption %0 D constant. Multiplication of (27.2) by Pr and integration

gives

1

2
Pr2 D 4�r30

3r
G%0 C constant: (27.3)

Choosing the integration constant so that Pr D 0 at the beginning, when r D r0, we

get

Pr
r0

D ˙
�
8�G

3
%0

� r0
r

� 1
��1=2

: (27.4)

In order to obtain only real values of r , it must always be less than r0, which means

that only the minus sign on the right of (27.4) gives relevant solutions.

For the solution of (27.4) we introduce a new variable �, defined by

cos2 � D r

r0
: (27.5)

Therefore
Pr
r0

D �2 P� cos � sin �;
r0

r
� 1 D sin2�

cos2�
; (27.6)

and (27.4) gives

2 P� cos2 � D
�
8�G%0

3

�1=2
: (27.7)

With the identity

2 P� cos2 � D d

dt

�
� C 1

2
sin 2�

�
; (27.8)

which is easily verified, we can write instead of (27.7) that

� C 1

2
sin 2� D

�
8�G%0

3

�1=2
t; (27.9)

where the integration constant is chosen such that the beginning of the collapse

(when r D r0 or � D 0) coincides with t D 0. It should be noted that r0 no

longer explicitly appears in the solution (27.9) and that %0 D constant. Therefore

the solution �.t/ is the same for all mass shells. Then, according to (27.6), r=r0 and

also Pr=r0 at a given time t are the same for all mass shells. This means that the sphere

undergoes a homologous contraction. Since Pr=r0 is independent of r0, the relative

density variation is independent of r0, and the sphere, which was homogeneous at

t D 0, remains homogeneous. The time it takes to reach the centre (r D 0 or

� D �=2) is the free-fall time

tff D
�

3�

32G%0

�1=2
; (27.10)
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which follows from (27.9) and is the same for all mass shells. With %0 D 4 �
10�23 g/cm3, corresponding to a slightly enhanced interstellar density, one obtains

tff � 107years. For a typical protostellar clump as in Sect. 26.2, with %0 D 4 �
10�19 g/cm3, (27.10) results in tff � 2�105 years. It should be noted that expression

(27.10) is very similar to the free-fall time �ff for a star we estimated in (2.17), if

there g is replaced by GM=R2 D 4�G%0R=3:

Of course, before the centre is reached the pressure will become relevant as the

gas becomes opaque and T increases. Then the free-fall approximation has to be

abandoned, and finally the collapse will be stopped.

27.2 Collapse onto a Condensed Object

As the collapsing cloud becomes opaque the heating will first start in the central

parts, since radiation can escape more easily from gas near the surface. Therefore the

collapse will be stopped first in the central region. In order to see what then happens

we consider a core which has already reached hydrostatic equilibrium, surrounded

by a still-free-falling cloud. We emphasize that usually matter carries angular

momentum, which is conserved, with the result that matter is first accumulated in

an accretion disc around the central object, from where it finally flows onto the

accreting body. This fact is ignored here.

Now let M be the mass of the core. For the sake of simplicity we neglect the

self-gravity of the free-falling matter. The simplest case is that for the steady state.

This would mean that the core is surrounded by an infinite reservoir of matter from

which a steady flow rains down. Then the mass flow with absolute radial velocity v,

PM D 4�r2%v; (27.11)

must be constant in space and time. Differentiation of (27.11) with respect to r gives

the continuity equation
2

r
C 1

%

d%

dr
C 1

v

dv

dr
D 0: (27.12)

If for v we take the free-fall velocity v D vff D ŒGM=.2r/�1=2 and assume M �
constant, we find

1

%

d%

dr
D � 3

2r
; (27.13)

or

%.r/ D constant

r3=2
: (27.14)

If R is the radius of the core, then at impact the free-falling matter has the velocity

vff.R/ D ŒGM=.2R/�1=2.
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The matter falling onto the core is stopped at its surface. The kinetic energy is

then transformed into heat, part of which is used to heat up the core, the rest being

radiated away. If we ignore the heating of the core, the radiation losses are

Laccr D 1

2
v2ff.R/

PM D 1

4

GM

R
PM: (27.15)

Laccr is called the accretion luminosity. Since for the steady-state solution we have

assumed constant M in the expression for vff, (27.15) is only valid if the accretion

timescale

�accr WD M= PM (27.16)

is long compared to the free-fall time tff.

27.3 A Collapse Calculation

The collapse of an unstable interstellar cloud can in principle be followed numer-

ically. We will describe the first, meanwhile classical collapse calculations of a

spherical, homogeneous cloud of one solar mass by Larson (1969). Although in the

meantime three-dimensional hydrodynamical calculations have become possible,

Larson’s work is nicely illustrating basic effects and remains conceptionally very

instructive. Modern one-dimensional calculations (e.g. Ogino et al. 1999) of

collapsing Bonnor-Ebert spheres (see Sect. 26.2) give in fact results very similar

to Larson’s original models. The mass fractions of hydrogen, helium, and heavier

elements were taken to be X D 0:651, Y D 0:324, and Z D 0:025, respectively.

The boundary conditions assumed that the surface of the sphere remained fixed. The

equations to be solved are the continuity equation

@m

@t
C 4�r2v% D 0 (27.17)

(with the radial velocity v having positive values in outward direction), the equation

of motion

@v

@t
C v

@v

@r
C Gm

r2
C 1

%

@P

@r
D 0; (27.18)

and the energy equation

@u

@t
C P

@

@t

�
1

%

�
C v

�
@u

@r
C P

@

@r

�
1

%

��
C 1

4�%r2
@l

@r
D 0; (27.19)

where u is the internal energy per unit mass. Here the terms on the left (except

for the last one) give the substantial derivative du=dt C Pd.1=%/=dt according to

d=dt D @=@t C v@=@r . In addition we have the relation
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@m

@r
D 4�r2%: (27.20)

Finally we need an equation which describes the energy transport by radiation.

Although the diffusion approximation is certainly not good in those parts of the

cloud which are optically thin (see Chap. 5), the equation

l D �16�acr
2

3�%
T 3
@T

@r
(27.21)

was used, which is identical with our equation (5.11). The errors introduced do not

change the qualitative (and maybe even the quantitative) results too much.

For the absorption properties of a gas at extremely low temperatures, other effects

than those due to atomic absorption and scattering discussed in Chap. 17 have to be

considered. As long as they exist, dust grains are the dominant source of opacity.

With increasing temperature (above 1,000 K) the dust particles evaporate. Then

the collapsing material becomes more transparent, the opacity being dominated by

molecules (Sect. 17.8).

With (27.17)–(27.21), one has five equations for the five unknown variables

m.r , t), v.r , t), P.r , t), T .r , t), and l(r , t), while %; �, and u are given material

functions of, say,P and T . The equation of state is assumed to be that of an ideal gas

(including effects of dissociation and ionization). The numerical solution now has to

be determined with one of the methods described in Sect. 12.3. The outer boundary

condition at r D R in these calculations is v.R; t/ D 0. Since the equations show

a singularity at the centre, one has to demand as inner boundary condition that

the solutions remain regular there. The initial conditions are v.r; 0/ D 0, while

P.r; 0/ and T .r; 0/ are constant, and therefore l.r; 0/ D 0. The initial values were

T .r; 0/ D 10K, %.r; 0/ � 10�19 g/cm3. It should be noted that then almost all

hydrogen is in molecular form. These are exactly the conditions we used for the

derivation of the typical Jeans mass for a realistic collapsing clump in Sect. 26.2.

In order to have instability at the beginning, the cloud of one solar mass must be

sufficiently dense and therefore small. Instability was found numerically by Larson

(1969) for R < 0:46GM�=.<T /. The close resemblance to the critical radius

(26.27) for homologous collapse should be noted. The calculations began with a

slightly compressed cloud with R D 1:63� 1017 cm. With the density 10�19 g cm�3

the free-fall time is 6:6 � 1012 s � 210; 000 years, according to (27.10), where we

already estimated such a value.

In the following we describe the different phases of the collapse.

27.4 The Optically Thin Phase and the Formation

of a Hydrostatic Core

In the very first phase the whole collapsing cloud remains optically thin and

therefore nearly isothermal with T � 10K.
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When the instability evolves into the non-linear regime the collapse becomes

non-homologous, which is not surprising in view of the outer boundary condition.

It holds the outer layers of the sphere at a fixed radius while the inner part is

free to collapse. Indeed during collapse the density increases rapidly in the central

part, while it remains practically constant in the outer regions. A small central

concentration, once formed, will necessarily enhance itself. The free-fall time of

a certain mass shell at distance r from the centre is of the order ŒG N%.r/��1=2, where

N%.r/ is the mean density inside the sphere of radius r . If N% increases towards the

centre, then the (local) free-fall time decreases in this direction. Therefore the inner

shells fall faster than the outer ones, and the central density concentration becomes

even more pronounced.

The calculations show that the density distribution–starting from % D constant–

approaches the form % � r�2 over gradually increasing parts of the cloud (see

Fig. 27.1). It is not surprising that it does not follow (27.14), since there we have

made assumptions (steady state, a free fall determined only by the gravity of a

central object, ignoring gas pressure) which are not fulfilled here.

The density profiles in Fig. 27.1 can be described as follows. A smaller and

smaller homogeneous mass collapses more and more rapidly, continuously leaving

behind more matter in the inhomogeneously contracting envelope. There the

timescale of collapse remains much larger because (1) the density is smaller and

(2) pressure gradients brake the free fall.

The collapse of the homogeneous central part resembles a free fall as long as

the matter can get rid of the released gravitational energy via radiation. The central

region becomes opaque once a central density of 10�13 g cm�3 is reached. Now the

further increase of density in the centre causes an adiabatic increase of temperature.

As a consequence the pressure there increases until the free fall is stopped.

This leads to the formation of a central core in hydrostatic equilibrium sur-

rounded by a still-falling envelope. Immediately after the core has reached hydro-

static equilibrium, its mass and radius are 1031 g and 6 � 1013 cm, similar to the

values estimated in Sect. 26.3 for the Jeans mass at the end of fragmentation, and

the central values are %c D 2 � 10�10 g cm�3, Tc D 170K. The free-fall velocity

at the surface of the core is 75 km/s. With increasing core mass and decreasing core

radius, the velocity of the falling material exceeds the velocity of sound in the core

surface regions. Therefore a spherical shock front is formed which separates the

supersonic “rain” from the hydrostatic interior. In this shock front the falling matter

comes to rest, releasing its kinetic energy. If all the energy released is radiated away

(which is approximately the case), the luminosity of the accreting core is given by

(27.15).

In certain respects the hydrostatic core resembles a star. But while the surface

pressure is virtually zero for a star, here it has to balance the pressure exerted by

the infalling material. If ve and %e are the velocity relative to the shock front and the

density of the falling gas just above it, respectively, and if Pi is the surface pressure,

then conservation of momentum demands that
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Fig. 27.1 The density % (in

g cm�3/ against the distance

from the centre r (in cm) in a

collapsing cloud. The density

distribution is shown by solid

lines for different times

(labels in 1013 s after the

onset of the collapse).

Regions with homologous

changes remain homogeneous

.@%=@r D 0/; regions in free

fall approach a distribution

with % � r�2 (i.e. a slope

indicated by the dashed line)

(After Larson 1969)

Pi D %ev
2
e D %e

GM

2R
; (27.22)

where M and R are the mass and radius of the core. This equation is a special case

of the more general condition for shock fronts (see Landau and Lifshitz 1987, Vol. 6,

p. 320) according to which the quantity P C%v2 must have the same values on both

sides of the front. In (27.22) P is neglected outside the front and v inside.

Another difference between an accreting core and a real star is that the accretion

energy is released in a thin surface layer, while in a star, the energy source is in the

deep interior.

At first glance one would expect the whole core to be isothermal. But while mat-

ter is raining down on its surface the core is contracting. This has the consequence

that Laccr as given by (27.15) increases for PM � constant (since M grows and

R decreases). Since during contraction gravitational energy is released in the deep

interior of the core, there must be a finite temperature gradient in order to transport

this energy outwards. The diameter of the accreting core in hydrostatic equilibrium

is already comparable to the dimensions of the solar system (see Fig. 27.2).

27.5 Core Collapse

The accreting hydrostatic core heats up in its interior. We have to keep in mind

that the gas consists mainly of hydrogen that at low temperatures is in molecular

form as H2. When the central temperature reaches about 2,000 K, the hydrogen
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Fig. 27.2 The collapse of a gas cloud of 1Mˇ. (a) After about 1:3 � 1013 s, the cloud has

formed an optically thick core. The collapse is stopped there, and a shock front develops at the

interface between the core, which is in hydrostatic equilibrium, and the still freely falling envelope.

(b) When the core has become dynamically unstable owing to dissociation of H2, a second collapse

occurs within the core, forming a second shock front at much smaller r . (c) Schematic plot of the

absolute value of the velocity v (in cm s�1/ and the density % (in g cm�3/ against r (in cm), for

a time shortly after the formation of a second core within the first one. The regions of the shock

fronts are characterized by steep (positive) slopes in the velocity curve

molecules dissociate. The equilibrium between molecular and atomic hydrogen

is governed by an equation similar to the Saha equation (see Sect. 14.1). Like

ionization, dissociation influences the specific heat, since not all the energy injected

into a gas goes into kinetic energy, a fraction being used to break up the molecules

into atoms. This decreases 
ad. For hydrogen molecules there are f D 5 degrees

of freedom, three belonging to translation and two to rotation around two possible

axes. Consequently 
ad D .f C 2/=f D 7=5 D 1:40: This is much closer to the

critical value 4=3 D 1:33 (see Sect. 25.3.2) than in the case of a monatomic gas

.
ad D 5=3 D 1:667/. Only a slight reduction of 
ad owing to dissociation therefore

brings it below the critical value 4=3. Then the hydrostatic equilibrium becomes

dynamically unstable, and the core starts to collapse again.

In Larson’s calculations this happened when the core has, compared to the initial

values, twice the mass and half the radius. It collapses as long as the gas is partially

dissociated. When almost all hydrogen in the central region is in atomic form,


ad increases above 4=3 (approaching the value 5=3 for a monatomic gas) and the

collapsing core forms a dynamically stable subcore in its interior. This core, which

is generally called protostar has an initial mass of 1:5 � 10�3Mˇ and an initial

radius of 1:3Rˇ. Its central density is 2�10�2 g cm�3 and the central temperature is
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Fig. 27.3. The central evolution of a 1Mˇ cloud from the isothermal collapse to the ignition of

nuclear burning. The central temperature Tc (in K) is plotted over the central density %c(in g cm�3).

(After Masunaga and Inutsuka 2000)

2� 104 K. At the surface of this protostar there is another shock front. The situation

is illustrated in Fig. 27.2b, c. As a consequence of the second collapse the density

below the outer shock front decreases, and the outer shock finally disappears. More

recent calculations by Masunaga et al. (1998) and Masunaga and Inutsuka (2000),

which follow the collapse of a 1Mˇ clump through the whole sequence outlined

above, confirm it to high degree. Their calculations include a better treatment of

the radiative transport and can follow the collapse for a longer time due to a higher

spatial resolution. The main difference with respect to Fig. 27.2c is that the velocities

at the second shock front reach final values a factor of 10 higher than shown here,

while the first shock front has already disappeared. The density profile is, however,

very similar to that of Larson’s original calculation.

The evolution of the centre of the 1Mˇ cloud, as it results from the radiation-

hydrodynamical simulation by Masunaga and Inutsuka (2000), starting from the

original Jeans instability, is given in Fig. 27.3. The curve starts on the left during

the isothermal collapse. After the matter has become opaque, T rises adiabatically.

The slope is at first close to 0.4 (corresponding to 
ad D 1:4 for H2), but then

becomes considerably less owing to partial dissociation (
 D 1:1), and finally

approaches 2=3 (corresponding to 
ad D 5=3 for a monatomic gas).

The central compression is adiabatic as long as the accretion timescale �accr

of the core (or of the innermost core, if there are two) is short compared to its

Kelvin–Helmholtz timescale �KH. But the more the envelope is depleted the more

the accretion rate will diminish and consequently �accr will grow. When it exceeds

�KH the core can adjust thermally and the evolution of the central region ceases to

be adiabatic. Since then PM has become very small, the protostar has practically
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Fig. 27.4. Sketch of the mass flow within a collapsing protostellar sphere. From the original cloud,

matter is accreted onto the protostar that sits at the centre of the figure. Because of angular

momentum conservation, most of it accumulates in an accretion disc. Part of the matter finally

falling onto the star is however ejected in a bipolar jet along the axis of rotation. The jet also

may gain additional material directly from the disc due to heating of the inner disc (According to

Zinnecker and Yorke 2007)

constant mass. We shall discuss its further evolution with constant M in the next

section.

We repeat once more that these calculations were made without considering the

fact that the angular momentum of the prestellar cloud leads to the formation of an

accretion disc. Most of the matter falling onto the central protostar has first circled

the star in this disc.

At the same time the protostar may start to lose mass due to stellar winds and

bipolar outflows and jets. All this has already been revealed by observations. The

interaction between cloud, protostar, and disc is complicated and also depends

on the presence of magnetic fields. This phase has to be investigated by three-

dimensional magnetohydrodynamical simulations (Banerjee and Pudritz 2007). The

situation is illustrated in Fig. 27.4.

27.6 Evolution in the Hertzsprung–Russell Diagram

A plot of the evolution of a collapsing cloud in the Hertzsprung–Russell

(HR) diagram has to be made with care. The radiation emitted by the core is

absorbed in the falling envelope, particularly by dust grains, which heat up and

reradiate in the infrared. One can assign an effective temperature to the protostellar

models. Defining an effective radius R at the optical depth 2/3 one can derive

an effective temperature Teff from L D 4�R2�T 4eff. Evolutionary tracks for

initial masses of 1Mˇ and 60Mˇ are given in Fig. 27.5. Although the numerical
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Fig. 27.5. Hertzsprung–Russell diagrams with evolutionary tracks for protostars of 1Mˇ and

60Mˇ. The tracks start at the lower right, where the thermal radiation of the clouds is in the

infrared, and they finally approach the zero-age main sequence (ZAMS, dot-dashed). In the case

of 60Mˇ, part of the mass of the envelope is blown away so that a star of only 17Mˇ settles

down on the main sequence. The corresponding Hayashi lines are indicated by broken lines (After

Appenzeller and Tscharnuter 1974, 1975a,b)

results shown in this figure are quite old, the newer calculations by Wuchterl and

Tscharnuter (2003) have confirmed the overall picture very well. To an outside

observer the collapsing cloud remains an infrared object as long as the envelope is

opaque to visible radiation. The evolutionary track, therefore, starts extremely far

to the right in this diagram. This, of course, is no contradiction to the statements

about a forbidden region to the right of the Hayashi line (Chap. 24) since the falling

envelope (including the “photosphere”) is far from being in hydrostatic equilibrium.

Even if we could see the already hydrostatic core, we would not observe a normal

star, since its boundary conditions are still perturbed by infalling matter.

The thinning out of the envelope has several effects: the first is that it becomes

more transparent, and the photosphere (� D 2=3) moves downwards until it

has reached the surface of the hydrostatic core. With decreasing radius of the

photosphere, Teff must increase in order to radiate away the energy. In the whole

first phase (through the maximum of L in the evolutionary tracks of Fig. 27.5) the

luminosity is produced by accretion: L D Laccr � PM . With decreasing PM , the

luminosity L decreases until it is finally provided by contraction of the core.

It is generally found that for low-mass stars accretion onto the protostar stops

well before central temperatures for hydrogen ignition is reached. For massive stars,

however, accretion continues while central hydrogen burning has already set in.

Therefore, when the newborn star finally separates from its surrounding cloud and

becomes visible it has already consumed part of its hydrogen fuel and has evolved on

the main sequence. Massive stars are therefore unlikely to be found on the ZAMS.

Another effect is the influence of accretion on the boundary conditions of the

core. Strong accretion heats up the surface of the core so much that the core is

nearly isothermal and the ram pressure %ev
2
e is appreciable. With decreasing PM the
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boundary conditions become “normal”. The core surface cools down, a temperature

gradient is built up, and a convection zone develops downwards from the surface.

This convection may or may not penetrate down to the centre. If the object is

fully convective, has “normal” boundary conditions, and is already visible, we must

see it on the Hayashi line. In any case we have the transition from a protostar to a

normal contracting star in hydrostatic, but not yet in thermal, equilibrium.

In this chapter we could only sketch the complicated and still not fully under-

stood process of star formation. We concentrated on the evolution of individual

contracting spheres that eventually become single stars, which is sometimes called

the “classical picture” of star formation. In reality, stars form in clusters, which

are the result of the many condensed regions of large molecular clouds, in which

magnetic fields, turbulence, rotation, and gravity interact in complicated ways. We

refer the reader to the reviews by Mac Low and Klessen (2004) and Zinnecker and

Yorke (2007) for more details about this field.



Chapter 28

Pre-Main-Sequence Contraction

In the last section we left the newly born star while it was still contracting in

hydrostatic, but not yet thermal, equilibrium. Essential features of this contraction

can already be understood by assuming simple homologous changes. It will turn out

that the fate of such a sphere is mainly determined by the equation of state.

28.1 Homologous Contraction of a Gaseous Sphere

A star which has not yet reached the temperature for nuclear burning has to supply

its energy loss by contraction. This is a consequence of the virial theorem and of

energy conservation as discussed in Sect. 3.1. We have seen, in particular, that part of

the released gravitational energy goes into internal energy, while the rest supplies the

luminosity [see (3.12)]. The characteristic timescale is �KH, as shown in Sect. 3.3.

In the following we will be concerned with the centre of the star. For this we

can use the relations of Sect. 20.3, which hold for any mass shell of a homologously

contracting star. The equation of state (for fixed chemical composition) was written

there as d%=% D ˛dP=P �ıdT=T . According to (20.34) and (20.38), the variation

of the central temperature, dTc, is related to the variation of the central density, d%c,

by
dTc

Tc

D 4˛ � 3
3ı

d%c

%c

: (28.1)

This defines a field of directions in the lg %c–lgTc plane as displayed in

Fig. 28.1. Each arrow there indicates how Tc changes during contraction (d%c > 0).

According to (28.1) the slope depends on the equation of state via ˛ and ı. For an

ideal gas ˛ D ı D 1 and (28.1) becomes

dTc

Tc

D 1

3

d%c

%c

: (28.2)
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Fig. 28.1 The vector field given by (28.1) in a diagram showing the temperature T (in K) over the

density %=�e (in g cm�3/. The arrows indicate the direction in which the centre of a homologously

contracting star would evolve. In the upper-left part the equation of state is that of an ideal gas,

and therefore the arrows have a slope of 1/3. The thin solid line at which the degeneracy parameter

 D 0 indicates roughly the transition from the ideal gas to degeneracy of the electrons. The

critical line along which ˛ D 3=4 is dot-dashed. On this curve the arrows point horizontally while

below it the arrows point downwards

Here the slope is 1/3, a contracting ideal gas heats up (the latter conforms with the

conclusions drawn from the virial theorem in Sect. 3.1). The same slope also holds

for non-negligible radiation pressure (ˇ < 1) as can be seen if (13.7) is introduced

into (28.1). In Fig. 28.1 the evolutionary track of a (homologously) contracting ideal

gaseous sphere is a straight line with slope 1/3. This necessarily leads closer to

the regime of degeneracy, which is separated from that of ideal gas by a line of

slope 2/3 [see (16.6) and Fig. 16.1]. The onset of degeneracy changes ˛ and ı

and decreases the slope of the arrows in Fig. 28.1. In the limit of complete non-

relativistic degeneracy one has ˛ ! 3=5 and ı ! 0. What happens to a sphere

which is contracting and becomes more and more degenerate? Then ˛ will pass

the value 3/4 when ı is still finite and the slope given by (28.1) will change sign.

Further contraction leads to cooling: the stronger the degeneracy the steeper will

be the then negative slope, until finally the stellar centre tends to cool off at almost

constant density. In the case of complete relativistic degeneracy, with ˛ D 3=4 and

ı D 0, the factor on the right of (28.1) becomes indeterminate. Then the ion gas -

although its pressure is negligible compared to that of the degenerate electrons - will
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Fig. 28.2 Temperature T (in K) over density %=�e(in g cm�3/ with the vector field and the lines

 D 0 and ˛ D 3=4 as in Fig. 28.1. The heavy lines give the “evolutionary tracks” of the centres of

three homologously contracting stars of different masses. Mass M1 is so large that the evolution is

not remarkably influenced by degeneracy, and the centre continuously heats up during contraction.

For massM2.< M1/ degeneracy becomes important in the centre, and consequently a homologous

contraction cannot bring the central temperature above a few 107 K (which is not sufficient to

start helium burning). Mass M3.< M2/ while contracting will start to cool off even before the

temperature of hydrogen burning is reached

determine the slope. A dash-dotted line in Fig. 28.1 connects the points of vanishing

slope .˛ D 3=4).1

For the sake of simplicity let us first ignore the fact that nuclear reactions set in

at certain temperatures. Obviously, the evolutionary track of a contracting gaseous

sphere in the lg %c–lgTc diagram depends very much on the starting point at the left-

hand border, as can be seen from Fig. 28.2. If a stellar centre starts there sufficiently

low it will reach a maximum temperature and begin to cool again after entering the

domain of degeneracy. But if it started on the left at a sufficiently high temperature,

it will never be caught by degeneracy and thus will continue to heat up.

Which types of spheres do reach a maximum temperature, and which types have

the privilege of heating up forever? This depends on the mass of the sphere. In order

to show this we consider two homologous spheres of an ideal gas with masses M

and M 0 D M=x and radii R and R0 D R=z. Then, according to (20.9), %c=%
0
c D

xz�3; Pc=P
0
c D x2z�4, and therefore, for an ideal gas, Tc=T

0
c D x=z. If we now

compare states in which the two spheres have the same central density (xz�3 D 1),

1Since the dash-dotted line in Fig. 28.1 gives the impression of delineating a hill, this kind of

figure is sometimes called Thomas-mountain after H.-C. Thomas who first used it to illustrate the

evolution of homologously contracting stellar cores.
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we have Tc=T
0

c D x2=3 D .M=M 0/2=3. This means that in Fig. 28.2 the evolutionary

tracks of larger masses are above those of smaller masses. Consequently it is the less

massive spheres which will finally be forced by degeneracy to cool off after having

reached a maximum central temperature, being smaller the smaller the mass.

This has immediate consequences for the nuclear reactions, which we have

ignored up to now. We know that a nuclear burning in a wide range of densities

occurs at a characteristic temperature: hydrogen burning near 107 K and helium

burning at 108 K (Since here we are discussing early phases of stellar evolution, we

exclude the pycnonuclear reactions, which occur at extremely high densities only;

see Sect. 18.4). One can therefore expect that a contracting sphere below a certain

critical mass may never reach the temperature of hydrogen burning, since its central

temperature never reaches 107 K. This is the case for M3 in Fig. 28.2.

This important result deduced from simple homology considerations is also

manifested in computer calculations of more realistic stellar models. Although the

cores formed in the protostar phase do not contract completely homologously, their

centres evolve in the lg %–lg T plane very similarly. Protostars of mass less than

about 0:08Mˇ never ignite their hydrogen and thus never become main-sequence

stars. These are the brown dwarfs we already introduced in Sect. 22.4. Here we

have encountered an evolutionary aspect of the lower end of the main sequence:

protostars born with too little mass never reach the state of complete equilibrium by

which the main-sequence models are defined. Even if some nuclear reactions have

started, they are so slow at these low temperatures that equilibrium abundances (rate

of destruction = rate of production) of the involved nuclei are not reached even in

the lifetime of the galaxy.

We shall see later that analogous considerations can be used to explain critical

masses for the ignition of each higher nuclear burning in contracting cores of

evolved stars. Helium burning is not reached by stars of an initial mass below

approximately 0:5Mˇ; for carbon burning, it has to be above 6Mˇ. And masses

above � 8Mˇ will never be caught by degeneracy in this way (see Sect. 35.2).

28.2 Approach to the Zero-Age Main Sequence

We have seen that a contracting star of more than 0.08Mˇ ignites hydrogen in

its centre and becomes a star on the zero-age main sequence (ZAMS). While the

luminosity of the star was originally due to contraction, it now originates from

nuclear energy. These two energy sources are quite differently distributed in the star.

According to (20.41), "g �T is not so much concentrated towards the centre, while

hydrogen burning with "pp �T 5 and "CNO �T 18 has strong central concentration.

Clearly the transition from contraction to hydrogen burning requires a rearrange-

ment of the internal structure. The protostar becomes a zero-age main-sequence star

with properties very close to those described in Chap. 22. The difference arises from

the fact that some nuclear reactions, for example, the proton captures on 2H, 7Li, or
12C, start at temperatures lower than those of core hydrogen burning.
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The way in which nuclear reactions take over the energy production can now

be followed by detailed numerical models following the approach to the main

sequence of contracting protostars. We first discuss the results for one solar mass.

Some reactions of the CNO cycle as given in (18.64) become important before the

central temperature has reached that of equilibrium hydrogen burning (where the

participating nuclei have equilibrium abundances). At a central temperature of about

106 K, all the 12C that had been in the interstellar cloud will burn into 14N via the

reactions of the first three lines in (18.64). However, the following 14N.p; 
/15O

reaction is much slower–and therefore often called the bottleneck reaction–such that

the full CNO cycle cannot be completed. Once switched on, this process will take

over the energy generation and stop the contraction. Because of the high temperature

sensitivity of ", the energy is released close to the centre. Consequently the energy

flux l=4�r2 is large, and a convective core that contains almost 10 % of the total

mass develops. At the same time, the first reactions of the pp chain become relevant,

transforming H into 3He [see the first two lines of (18.62)]. With decreasing 12C

the pp reactions become more important, and 3He can be destroyed by 3He+3He

and 3He+4He [the two reactions in the third line of (18.62)]. As a consequence the

concentration of 3He reaches a maximum at m D 0:6M . Outside, the temperature

is too low to form 3He, while inside, 3He is used up to form 4He. This characteristic

shape of the 3He abundance curve remains throughout the main-sequence evolution

(see Fig. 29.3). With the depletion of 12C in the central region the convective core

disappears and the pp chain becomes the dominant energy source.

The situation is similar for more massive stars. But then instead of the pp

chain, the CNO cycle finally takes over and the abundance of 12C becomes that of

equilibrium. For stars of M > 1:5Mˇ the effect of pre-main-sequence 12C burning

can even be seen in the computed evolutionary tracks in the Hertzsprung–Russell

diagram: there seems to be another, relatively short-lived main sequence to the right

of the ordinary (hydrogen) main-sequence. Contracting protostars stay there until

their 12C fuel is used up before they move on to the main sequence. This somewhat

prolongs the time a protostar needs to reach the ZAMS.

The numbers quoted here are from pre-main-sequence evolution calculations that

ignore the detailed results of Chap. 27. They start out with a cool protostar on the

Hayashi line and follow the ensuing quasi-hydrostatic contraction until the model

reaches the hydrogen main sequence. The errors introduced by this simplification

are not too large and certainly become negligible towards the end of pre-main-

sequence contraction when the thermal history of accretion is forgotten by the star.

This has to do with the fact that, whatever the thermal history of the protostar, its

structure has adjusted to thermal equilibrium after a Kelvin–Helmholtz time. Since

the main-sequence timescale (which is relevant for the ensuing evolution) is much

longer, the stars settle on the ZAMS quite independently of their past. Whatever their

detailed history, tracks of protostars of the same mass and chemical composition

lead to the same point on the ZAMS.

We now turn to the question of how rapidly stars of different M approach the

ZAMS. Decisive for this is the Kelvin–Helmholtz timescale �KH � cv NTM=L. The

mean temperature NT does not vary too much withM , since Tc is anyway just below
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Fig. 28.3 Colour-magnitude diagram of the young open cluster NGC 602. The dots are the cluster

stars. Overlaid are pre-main-sequence evolutionary tracks for masses between 3:0Mˇ and 0:5Mˇ

(black lines; top to bottom) as well as isochrones obtained from these tracks with ages of 1, 5, and

10 Myr (grey lines; top to bottom) (After Cignoni et al. 2009)

the ignition temperature of hydrogen. As a rough estimate for L, we may take the

corresponding ZAMS luminosity, since the evolutionary tracks in their final parts

are at about that luminosity (see Fig. 27.5). Then L � M 3:5 and �KH � M�2:5. This

means that massive protostars reach the ZAMS much faster than their low-mass

colleagues.

In the Hertzsprung–Russell diagrams of very young stellar clusters one finds that

only massive stars are on the main sequence, while the low-mass stars lie to the

right of it. As an example we show in Fig. 28.3 the case of NGC 602 (Cignoni et al.

2009), a very young star cluster with a population of stars born only a few million

years (Myrs). From comparison with low-mass pre-main-sequence evolutionary

tracks and isochrones2 it is obvious that many stars have not yet reached the main

sequence. Similar cases in the Milky Way are the Pleiades (80 Myrs) and NGC 2264

(5 Myrs). It seems that, because of their longer �KH, these stars are still in the

contraction phase and have not yet begun with nuclear burning. Among them are

flare stars (UV Ceti stars), Herbig AE/BE, and T Tauri variables. The cause of their

(irregular) variability is not yet fully understood, but is ascribed to circumstellar or

chromospheric activity in connection with rotation as well as internal pulsations.

2An isochrone is the locus of stellar models of identical age, but different mass in the Hertzsprung–

Russell diagram.



Chapter 29

From the Initial to the Present Sun

There is evidence on Earth that the Sun has shone for more than 3,000 million years

with about the same luminosity. From radioactive decay in different materials of

the solar system, one nowadays assumes that it was formed 4.57 Gigayears (Gyrs;

109 years) ago. Since then, the Sun has lived on hydrogen burning, predominantly

according to the pp chain, and its interior has been appreciably enriched in 4He. In

the following we show how a model of the present Sun can be constructed.

29.1 Known Solar Data

Although the Sun is a very ordinary star of average mass and in a quiet state of

main-sequence hydrogen burning, it is a unique object for stellar evolution theorists.

For no other star so many quantities are known with comparable accuracy obtained

by so many different and independent methods. From Kepler’s laws and known

distances within the solar system we can derive its mass and radius as well as

the total luminosity. This yields the effective temperature by application of the

Stefan-Boltzmann law. Neutrino experiments on Earth (see Sect. 29.5) allow the

determination of conditions in the innermost energy producing core. And the art

of (helio-)seismology has returned with high accuracy the run of the sound speed

throughout most of the solar interior, the helium content of the outer convective

envelope, and its depth. These quantities restrict the modelling of the present Sun

and allow a comparison with stellar evolution theory at a degree of precision which

is almost unique in astrophysics. Table 29.1 summarizes the fundamental solar

parameters and the method to derive them. Note that the rather large uncertainty

in the solar mass is the result of the uncertainty in Newton’s constant of gravity G.

Kepler’s third law returns their combination,GMˇ, with a precision of 10�7!
There is still one significant uncertainty in the solar quantities, and this is

the present surface (or convective envelope) composition. The determination by

Grevesse and Noels (1993) was considered to be very close to the real com-

position, as it also agreed very well with meteoritic values in those elements

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 29, © Springer-Verlag Berlin Heidelberg 2012

329



330 29 From the Initial to the Present Sun

Table 29.1 Solar quantities and how they are derived

Quantity Value Method

Mass .1:9891 ˙ 0:0004/ � 1033 g Kepler’s third law

Radius 695; 508˙ 26 km Angular diameter plus distance

Luminosity .3:846 ˙ 0:01/ � 1033 erg s�1 Solar constant

Effective temp. 5; 779˙ 2 K Stefan-Boltzmann law

Z=X 0:0245 ˙ 0:001 Meteorites and solar spectrum

0:0165 (new determination)

Age 4:57˙ 0:02 Gyr Radioactive decay in meteorites

Depth of conv. env. 0:713˙ 0:001Rˇ Helioseismology

Env. helium content 0:246˙ 0:002 Helioseismology

.Z=X/ is given twice: the more traditional value by Grevesse and Noels (1993) and the more recent

one by Asplund et al. (2005)

that can be compared. However, new analyses of the solar spectrum (Asplund

et al. 2005, 2009), done with sophisticated three-dimensional, non-LTE radiation-

hydrodynamics methods, returned (see Table 29.2) much lower values in particular

for the volatile elements C, N, and O, which cannot be measured accurately in

meteorites. The difference is a reduction of the total amount of metals relative to

hydrogen, (Z=X ), by 30 %! The latest revision by Asplund et al. (2009) for the solar

element composition resulted in somewhat higher abundances than the 2005 values

but still distinctively lower than the Grevesse and Noels numbers. Consequently, the

structure of solar models using the 2009 abundances lies between the two other

cases, which we will present in the following. This issue is not yet settled, but

since the solar composition is the yardstick for all abundance determinations in

astrophysics, the outcome will certainly be of great importance.

As we will see, the older abundance data yielded solar models in very good

agreement with helioseismology. The lower abundances deteriorate this. In the

following we will present a standard solar model based on the older Grevesse and

Noels (1993) abundances, since such a model appears to be closer to the real solar

structure, even if this could be due to coincidence.

A standard solar model is derived under the assumptions of spherical symmetry

and hydrostatic equilibrium, ignoring effects of rotation and the influence of

magnetic fields. Convection is usually treated in mixing-length theory, and no

overshooting is assumed. The only effect beyond these most basic assumptions is

the inclusion of atomic diffusion, since it turned out that models which disregarded

this disagree more with seismic results. This is true for both sets of solar abundances

mentioned above.

A solar model has to match the solar radius, luminosity, and surface abundance

of metals at the solar age. The evolution is started from the pre-main-sequence

hydrostatic contraction until the solar age. The mass can be kept fixed because mass

loss is known to be unimportant.
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Table 29.2 Solar

atmospheric and meteoritic

abundances of the most

important elements, as

determined by Grevesse and

Noels (1993; “GN93”) and

Asplund et al. (2005,

“AGS05”)

Element GN93 AGS05 Meteorites

H 12:00 12:00 8:25

C 8:55 8:39 7:40

N 7:97 7:78 6:25

O 8:87 8:66 8:39

Ne 8:08 7:84 �1:06
Na 6:33 6:17 6:27

Mg 7:58 7:53 7:53

Al 6:47 6:37 6:43

Si 7:55 7:51 7:51

S 7:21 7:14 7:16

Cl 5:50 5:50 5:23

Ar 6:52 6:18 �0:45
Ca 6:36 6:31 6:29

Ti 5:02 4:90 4:89

Cr 5:67 5:64 5:63

Mn 5:39 5:39 5:47

Fe 7:50 7:45 7:45

Ni 6:25 6:23 6:19

Z=X 0:0245 0:0165

Abundances are given in logarithms of particle abun-

dance on a scale on which hydrogen has the abundance

of 1012

The abundance of helium cannot be determined from the

spectrum and is therefore missing

Errors are for most elements in the range of 0.02–

0.06 dex

Neon and argon can be determined only indirectly from

coronal abundance ratios with respect to oxygen, and are

basically absent in meteorites

The bottom line gives the total metallicity in mass frac-

tions relative to hydrogen

29.2 Choosing the Initial Model

While the observations yield information about the mass abundance Z of heavier

elements, it is difficult to determine spectroscopically the helium content Y of

the solar surface. One therefore uses Y as a free parameter. This is actually the

initial helium content Yi, which will change during the evolution due to the effects

of nuclear burning and diffusion. Its value cannot be compared directly with an

observed value. Sedimentation–the main effect of diffusion–will also lead to a

reduction of Z=X with time. Therefore also the initial metallicity Zi has to be

chosen such that after 4.57 Gyr the present Z=X is obtained. Furthermore, there

is no information about the mixing length `m to be used in the convection theory

(see Chap. 7). One normally expresses `m in units of the local pressure scale height

HP and treats the dimensionless quantity `m=HP as another free parameter.
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Fig. 29.1 Finding a model that for given values of Z D 1�X �Y describes the present Sun. For

arbitrary values of Y , `m one obtains a ZAMS model at A, from where it shifts along the broken

and dotted arrow as a result of independent changes of Y and `m, respectively. Based on this, one

guesses the values of Y; `m that yield the model at B . Its evolution is calculated from age zero .B/

to t D 4:57 � 109 years (C ). The guessed values Y; `m are modified until C coincides with D

(present Sun)

We now sketch the way to obtain a solar model using some simplifications.

These are not done in numerical calculations, but they allow us to use properties

of simplified models. We first ignore diffusion. Then .Z=X/i is known from the

present photospheric abundances. We now start the construction of an initial solar

model with trial values of Yi and `m=HP . Since the model changes only on the (long)

nuclear timescale, it can well be approximated by assuming complete equilibrium.

This means that in addition to the inertia term in (10.2) the time derivatives in the

energy equation (10.3) can be neglected. The evolution can then be followed from

the ZAMS until a time of 4:57 � 109 years after the onset of hydrogen burning

has elapsed. During this time interval the molecular weight in the central regions

increases owing to the enrichment of helium. Consequently, the luminosity increases

slightly, as can be expected from the homology relation (20.20) according to which

the luminosity should increase like �4. (The fact that the solar evolution is not

homologous changes the result only quantitatively.) At the same time, the point

in the Hertzsprung–Russell (HR) diagram moves slightly to the left. If our choice of

the free parameters were correct, the model after 4:57 � 109 years should resemble

the present Sun. But, in general, this will not be the case, and the evolutionary track

will miss the image point of the present Sun. One therefore has to adjust the two

free parameters in order to end up with the present Sun.

A variation of the mixing length changes the radius slightly, but turns out to have

almost no influence on the luminosity. Therefore, while varying `m, the initial model

will move almost horizontally (Fig. 29.1). If, on the other hand, Yi is changed, the

mean molecular weight � varies. With increasing helium content, � also increases,

and since the computed models roughly behave as the homologous models of

Sect. 20.2.2, the image point of the model moves to the upper left on a line below

the main sequence [see the arguments after (20.23)].

Since small changes in the two parameters do not modify the form of the

evolutionary track very much, the whole track makes an approximately parallel
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Table 29.3 Dependence of

solar model quantities on

model parameters

`m=HP Yi Zi

L=Lˇ 0:038 8.515 �38:60
R=Rˇ �0:129 2.019 �7:05
.Z=X/=.Z=X/ˇ 0:043 0.523 56:0

The table entries are to be read as the partial derivative of

the column quantity with respect to the row quantity

The strongest influence by each parameter is in italics

shift. Therefore one can find values for Yi and `m=HP for which the end point of

the evolutionary track coincides with the point of the (observed) present Sun. The

procedure is illustrated in Fig. 29.1. A model constructed in this way, and by using

the standard assumptions for the input physics, is often called a “standard solar

model”.

Table 29.3 gives an overview of the partial derivatives @y=@x in the vicinity of the

final, calibrated solar model, where y corresponds to the solar observable (rows) and

x to the model parameter (columns). The values were obtained from the solar model

calculations presented in the next section. While the absolute numbers depend a lot

on the individual calculation, the relative ratios are very similar for all solar model

calibrations. Clearly, the initial helium content affects mostly the luminosity and the

mixing length the radius of the solar model. The initial metallicity Zi has not only

an obviously direct effect on Z=X but also, due to the change of �, on luminosity.

The values of the initial Y and `m=HP , which after 4:57 � 109 years lead to the

present Sun, depend sensitively on the details of the computations, for instance, on

the opacities used and the equation of state applied.

29.3 A Standard Solar Model

After the procedure to compute a standard solar model has been outlined, we now

show the results of such a detailed computation. The final model agrees with the

present solar luminosity and effective radius (Table 29.1) to 1 part in 104 or better

and has Z=X D 0:0245 according to the analysis of Grevesse and Noels (1993),

from which also the chemical composition (Table 29.2) was taken. The effect of

diffusion was included. Up-to-date tables for the equation of state (Sect. 16.6) and

the opacities (Sect. 17.8) were used, the latter for the same metal composition of

Grevesse and Noels (1993). The calculation starts with a homogenous pre-main-

sequence model, since the assumption of a homogenous ZAMS model in complete

equilibrium would already be too inaccurate (see Sect. 28.2).

All modern stellar evolution codes using the same physical input data are able

to produce a standard solar model that reproduces known properties of the Sun at a

similar accuracy and agree very well with each other.

The evolution in the Hertzsprung-Russell diagram is shown in Fig. 29.2. It begins

with a fully convective, contracting pre-main-sequence model. At an age of 1.7 Myr
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Fig. 29.2 Evolution of the standard solar model from the initial pre-main-sequence contraction to

the present age. Ages in million years are indicated along the track. Notice the drastic slowdown

of the evolution as soon as the nuclear timescale has become the dominant one and the rapid

pre-main-sequence evolution on thermal timescales during the hydrostatic contraction along the

Hayashi line. The main-sequence evolution and the phase immediately preceding it are magnified

in the inset for clarity. The zero-age main sequence of Fig. 22.1 is shown as well. Since the solar

composition is not exactly the same, the evolutionary path of the Sun is slightly offset from this

ZAMS

the centre begins to become radiative; at that time logL=Lˇ has already dropped to

0.163. The evolution slows down considerably in the following. At 28.3 Myr and a

luminosity of logL=Lˇ D �0:038 and logTeff D 3:748 a transient convective core

begins to develop due to the strongly peaked energy release of the CN conversion.

It lasts for about 120 Myr at which time the luminosity minimum has been reached.

From there on the evolution proceeds on the very long nuclear timescale as the very

short linear part of the track that ends at the solar position.

The initial homogeneous composition of this standard solar model is Xi D
0:7058, Yi D 0:2743, and Zi D 0:0199. Z=X therefore was initially 0.0282 and

has dropped at the photosphere to 0.0245 due to the settling of all heavier elements

and the corresponding increase of hydrogen in the convective envelope. This effect

is visible in Fig. 29.3, where the hydrogen and metal content X and Z as functions

of m=M are plotted; the final surface hydrogen abundance is 0.7377 and that of

metals 0.0181. They are higher, respectively lower than the initial ones because of

the sedimentation of all elements heavier than hydrogen below the thin convective

envelope. This leads to the sudden increase of hydrogen abundance to the higher

and constant value in the convectively mixed outermost layers. Accordingly, the

abundance of metals (dashed curve in Fig. 29.3) decreases at the beginning of the

convective envelope.

In the central region of the present Sun, quite an appreciable percentage of the

original hydrogen has already been converted into helium. The central value of X

has dropped to 0.338. The abundance of 3He, also shown in Fig. 29.4, displays

the characteristic shape discussed in Sect. 28.2 due to its evolution towards an

equilibrium value within the pp chain.
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Fig. 29.3 Element abundances in a model for the present Sun (age 4:57� 109 years) as a function

of m=M . Shown are the mass fractions of hydrogen, (X , solid line), metals (Z, multiplied by a

factor 10, dashed line), and of 3He (multiplied by 100, dotted line). The initial values for X and Z

in the homogeneous model were 0.7058, respectively 0.0199. The increase in X and the decrease

in Z in the outermost regions is due to the effect of diffusion

Some details of the solar structure are shown in Fig. 29.4. The left panel shows

the concentration of mass. More than 80 % are contained within 40 % of the solar

radius or just 6.4 % of the volume. Temperature rises over two orders of magnitude

within the outermost 20 % of the radius, but then only by another factor of ten

until the centre. Pressure and density profiles have a similar shape like that of

temperature. In the right panel the strongly peaked energy generation is shown,

which results in the fact that over 90 % of the total luminosity are reached already at

r=Rˇ D 0:2, corresponding to a mass coordinate of only 0.3. Note the similarity of

the solar structure to that of the 1Mˇ ZAMS model of Fig. 22.4. Although the Sun

has burnt hydrogen for almost 5 billion years, it still has the shape of a young star.

Had we used the abundances of Asplund et al. (2005; middle column in

Table 29.2) with the corresponding present value for Z=X of 0.0165, the structure

of that solar model would hardly be distinguishable from the one shown in Fig. 29.4.

However, initial and present composition would be different: the initial abundances

in that case are Xi D 0:7261, Yi D 0:2599, and Zi D 0:0140, and the present solar

surface values are X D 0:7578, Y D 0:2297, and Z D 0:0125.

The outer convective zone of our standard solar model reaches down to a

temperature of 2:2 � 106 K. The radius of its inner boundary is r D 0:713 Rˇ,

and the corresponding mass is 0:9761Mˇ.

The temperature gradients r; rad, and rrad as defined in Chaps. 5–7 are plotted

in Fig. 29.5. In the near-surface regions where lgP < 5:0, one finds rrad < rad and

the layer is stable (Fig. 29.5a). Then convection sets in where rrad exceeds rad. In

the outermost part of the convective zone the convection is very ineffective and r
is close to rrad, according to the considerations in Sect. 7.3. But r does not follow
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Fig. 29.4 Internal structure of the standard solar model as function of relative solar radius r=Rˇ

rrad to the extreme values (which at lgP D 9 reach a maximum of 4:1 � 105/. It

never exceeds 0.9. Owing to partial ionization of the most abundant elements, rad

is not constant in the outer region of the solar model, as we have already shown in

Fig. 14.1b. The deeper inside, the more the actual gradient approaches the adiabatic

one, following it up and down (Fig. 29.5a, b). In Fig. 29.5c the convective velocity

obtained from U , rrad, and r according to (7.6) and (7.15) is given in units of the

(isothermal) velocity of sound vs D .<T=�/1=2. At the top of the convection zone,

v=vs reaches its maximum of about 0.4.

29.4 Results of Helioseismology

It is not surprising that one can produce models for the present Sun which have

the correct position in the HR diagram, since three free parameters, Yi, `m and Zi,

can be varied to adjust the quantities L, R, and Z=X . Therefore obtaining a solar

model with the right age at the right position in the HR diagram and the right surface

composition is not much of a test of stellar evolution theory.

At present there are two observational tests to compare the solar interior with

model calculations. One are solar neutrino experiments, which will be discussed in

the next section. They test the conditions at the solar centre, where nuclear reactions

take place. The other one allows an almost complete “view” of the solar interior

and is based on the investigation of non-radial solar oscillations, commonly called

helioseismology. We shall deal with such oscillations later (see Sect. 42.4). For the

moment it is sufficient to state that the frequencies of thousands of non-radial solar

oscillation modes, measured with extremely high precision, depend in particular on

the sound speed profile throughout the Sun. In the following we discuss the most

important results for the solar interior.
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a

c

b

Fig. 29.5 Some properties of the model for the present Sun described in the text. (a) The

temperature gradients in the outer layers, against the pressure P (in dyn cm�2/. In the outermost

layers the actual gradient r (gray-shaded line) coincides with rrad (dashed line), which then,

however, goes up to values above the range of the ordinate. The strong depression of rad (lower

short-dashed line) for lg P > 5 is due to hydrogen ionization. (b) The same curves as in (a) but

with compressed scales, such that the whole interior of the model is covered. rrad is still out of the

range for almost all of the outer convective zone. The depression of rad is caused by the ionization

of H, He, and HeC (at values of lgP around 6, 8, and 10). Note that the centre of the Sun is close

to convective instability. (c) The convective velocity v in units of the local velocity of sound, vs, in

the outer convective zone of the Sun

The first one is that the transition from the nearly adiabatic temperature gradient

to the radiative one at the bottom of the convective zone leaves a significant change

in the slope of the square of the sound speed divided by the gravitational acceleration

(Gough 1986). This allows a very accurate determination of the bottom of the

convective envelope, which is at 0:713 ˙ 0:001Rˇ. The solar model of Sect. 29.3

has exactly the same depth of the convective zone. The solar model with the newer

abundance determination, in contrast, is convective to 0:731Rˇ. This would favour

the older abundances, provided that the physical input (equation of state, opacities,

diffusion theory) is correct.

The second envelope quantity that can be determined by seismology is the

envelope helium content and is based on the fact that the quantity �1, defined

in (13.18), depends on the chemical composition and therefore allows the

determination of the helium abundance as the ionization of helium modifies �1.
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Fig. 29.6. The difference in sound speed c between that of the standard solar model computed in

this chapter (“model”) and that determined by helioseismology (“sun”; grey shaded line). Using

the more recent abundance determination by Asplund et al. (2005) results in a larger difference

(dotted line). The vertical line denotes the lower boundary of the convective envelope

The result is Y D 0:246 ˙ 0:005, where for the error we have also considered

possible systematic uncertainties. Again, the solar model with older abundances

agrees with this value, having Y D 0:244, while the alternative model results in a

lower value for helium of Y D 0:230.

Finally, the sound speed profile throughout most of the solar interior can be

determined. The difference with respect to the standard solar model is shown in

Fig. 29.6 for both determinations of the solar abundances. As before, the older

one results in a model closer to the seismic results, even if the reasons for this

good agreement are not clear. The uncertainty of the seismic sound speed is below

0.002 for r=Rˇ between 0.2 and 0.7. Towards the centre it is increasing due to the

small number of modes extending into the core, and in the outermost layers it is

larger because of the uncertainties concerning the damping of oscillations in the

atmosphere. Therefore the only significant deviation of the solar model sound speed

profile from the seismically determined one is the maximum of the grey line just

below the convective envelope.

Although the discrepancy between model and seismic data appears to be large for

the alternative model, one should keep in mind that the agreement is still within one

per cent everywhere. Ignoring the effect of diffusion in the solar model calculation,

which, when looking at its effect in Fig. 29.3, appears to be rather small, would result

in a very similar discrepancy between model and seismic result. Overall, helioseis-

mology confirms that stellar evolution theory can reproduce the structure of the Sun

with an accuracy that is much higher than usually found in astrophysical situations.

29.5 Solar Neutrinos

Some of the nuclear reactions of the pp chain, as well as of the CNO cycle, produce

neutrinos (Sect. 18.5.1). In addition, there are also neutrinos due to the very rare pep

and hep reactions
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1H C1 H C e� ! 2H C � .pep/

3He C1 H ! 4He C eC C � .hep/; (29.1)

the latter one being the trivial way to produce 4He after the reactions of (18.61),

but it is occurring in only 10�8 of all cases. However, the energy of the emitted

neutrino is close to 10 MeV, and it is therefore necessary to consider this reaction.

As already discussed in Sect. 18.7, the neutrinos leave the star practically without

interacting with the stellar matter. The energy spectrum of neutrinos from ˇ decay

is continuous, since the electrons can take part of the energy away, while neutrinos

released after an inverse ˇ decay are essentially monochromatic. Therefore most

reactions of the pp chain have a continuous spectrum, while the pep-reaction (29.1)

and the electron capture on 7Be (18.62) have a line spectrum. Since 7Be can decay

into 7Li either in the ground state or in an excited state, this reaction gives two

spectral lines. The neutrino spectrum of the Sun as predicted from the reactions of

the pp chain, computed from our standard solar model, is given in Fig. 29.7. In

order to obtain the neutrino spectrum of the present Sun one cannot use the simple

(equilibrium) formulae (18.63) and (18.65), but must compute the rates of all the

single reactions given in (18.62), (18.64) and in addition the reactions of (29.1) in a

nuclear network.

Since the solar neutrinos can leave the Sun almost unimpeded they can in

principle be measured in terrestrial laboratories and thus be used to learn directly

about conditions in the innermost solar core. This difficult task indeed has been

undertaken since 1964, when John Bahcall and Raymond Davies began to plan for

an underground neutrino detector in a mine in Homestead, North Dakota. Forty

years later the experiments finally have confirmed the standard solar model, and

R. Davies received the Nobel Prize for his work. The time in between, however, was

characterized by the “solar neutrino problem”. The history of solar neutrino physics

and the resolution of the problem is summarized in detail in Chap. 18 of the textbook

by Weiss et al. (2004) and in Bahcall and Davies (2000).1

The solar neutrino problem consisted in the fact that since the first results from

the so-called chlorine experiment by Davies there was a lack of neutrinos compared

to solar model predictions. The chlorine experiment is sensitive to neutrinos with

energies above 0.814 MeV and therefore, as can be seen in Fig. 29.7 mainly to the 8B

neutrinos, with some contribution from pep, hep, and 7Be neutrinos. The experiment

is based on the reaction 37Cl C � ! 37Ar, where the decays of radioactive argon

nuclei are counted. The rate of neutrino captures is commonly measured in solar

neutrino units (SNU). One SNU corresponds to 10�36 captures per second and per

target nucleus. The predicted counts amount to 7.5 SNU for the chlorine experiment,

the measurements averaged over several decades to only 2:5˙0:2 SNU. The deficit

could indicate that the solar centre is cooler than in the models.

1There is also a review by Bahcall (Solving the Mystery of the Missing Neutrinos) at the

electronic library of the Nobel prize committee (URL: nobelprize.org/nobel prizes/

physics/articles/bahcall).
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Fig. 29.7. The neutrino spectrum of the Sun as predicted from the theoretical standard solar

model. The solid lines belong to reactions of the pp chain while the broken lines are due to

reactions of the CNO cycle. The neutrinos from most of the reactions have continuous spectra,

while monoenergetic neutrinos come from 7Be and from the pep-reaction (29.1). The flux � for

the continuum sources is given in cm�2 s�1 MeV�1 and for the line sources in cm�2 s�1. The

sensitivity of the three types of neutrino experiments is indicated above the figure and by the

shaded regions

To improve the experimental evidence, additional experiments were started. First,

another kind of radiochemical detector using gallium in the detector fluid measured,

due to a much lower energy threshold, the majority of neutrinos, including those

from the pp-reaction. Later, electron-scattering detectors were developed, which

are sensitive to the highest energies only, but which provide directional information

about the neutrino source (For these detectors the hep-neutrinos of (29.1) have to be

taken into account.). All experiments confirmed that the solar neutrino flux was of

the right order of magnitude, and therefore that indeed the Sun shines by the nuclear

fusion of hydrogen, but they also consistently measured a deficit of neutrinos. This

deficit, however, varied between different kinds of detectors.

The various ideas on how to solve the solar neutrino problem are discussed

in Chap. 18 of Weiss et al. (2004). With more and more experimental data it

became evident that even hypothetical changes to the solar centre cannot solve

the problem and that the solution is most likely to be found in the proper-

ties of neutrinos. All nuclear reactions emit electron neutrinos, and these are

the only ones that were measured in terrestrial experiment, with the exception

of the electron-scattering Sudbury Neutrino Observatory experiment in Canada,

where heavy water (with a high percentage of deuterium isotopes) was used as

the detector. Here also reactions with the two other types (flavours) of neutri-

nos, muon and tau neutrinos can be detected. Summing these and the electron

neutrinos up, the total number of detections is completely consistent with the

solar model prediction, within a few per cent. What created the apparent solar

neutrino deficit is the fact that neutrinos can change their flavour, both while

travelling through vacuum and more efficiently in the presence of electrons in
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the solar interior. A similar effect was also confirmed for muon neutrinos aris-

ing in the Earth’s upper atmosphere from high-energy cosmic radiation, when

measured before or after they have travelled through the Earth’s interior. The

modelling of the solar interior, together with sophisticated experiments, has there-

fore resulted in new knowledge about fundamental properties of neutrinos. In

particular, these so-called neutrino oscillations are possible only if neutrinos have

mass.



Chapter 30

Evolution on the Main Sequence

30.1 Change in the Hydrogen Content

In the main-sequence phase, the large energy losses from a star’s surface are

compensated by the energy production of hydrogen burning (see Sect. 18.5.1).

These reactions release nuclear binding energy by converting hydrogen into helium.

This chemical evolution of the star concerns primarily its central region, since the

energy sources are strongly concentrated towards the centre (Sect. 22.2).

Somewhat larger volumes are affected simultaneously if there is a convective

core in which the turbulent motions provide a very effective mixing. If the extent of

convective regions and the rate of energy production "H for all mass elements are

known, the rate of change of the hydrogen content XH can be calculated according

to Sect. 8.2.3.

The situation is particularly simple for stars of rather small mass (say 0:1Mˇ <

M . 1Mˇ) that have a radiative core. In the absence of mixing, the change of XH

at any given mass element is proportional to the local value of "H. After a small time

step �t , the change of hydrogen concentration is �XH � "H�t everywhere (with a

well-known factor of proportionality). Following the chemical evolution in this way

over many consecutive time steps, one obtains “hydrogen profiles” [i.e. functions

XH.m/] as shown in Fig. 30.1. At the end of the main-sequence phase, XH ! 0 in

the centre.

With the change in the hydrogen profile also a change in the energy generation

rate "H takes place (Fig. 30.2). Initially, it has a maximum at the centre, since there

temperature is highest and the abundance of hydrogen almost the same everywhere

in the core. However, in the course of evolution, though temperature rises in

the centre, the hydrogen abundance drops, and after some time, the maximum "H,

which depends on both of these quantities, is larger outside the centre. This can

be seen first for the model of 8:2 � 109 years (dotted line in Fig. 30.2). When the

centre is completely depleted of hydrogen, "H D 0 there and the energy generation

profile looks like the strongly peaked (solid) line, corresponding to the final model of

Fig. 30.1. Energy is now being produced effectively in a shell around the exhausted

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
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Fig. 30.1 Hydrogen profiles

showing the gradual

exhaustion of hydrogen in a

star of 1Mˇ. The

homogeneous initial model

consists of a mixture with

XH D 0:700 and

XHe D 0:280. The hydrogen

content XH over m=M is

plotted for seven models

which correspond to an age of

0.0, 2.2, 4.2, 6.2, 8.2, 10.2,

and 11:2 � 109 years after the

onset of hydrogen burning

Fig. 30.2 Profiles of nuclear

energy production "H from

hydrogen burning (in erg/gs)

for some of the models for

which hydrogen profiles are

shown in Fig. 30.1. These are

the ones at the very beginning

of hydrogen burning

(dash-dotted line) and at ages

of 6.2 (dashed), 8.2 (dotted),

and 11:2 � 109 years (solid

line). The maximum energy

generation rate in this latter

model is 170 erg/gs

core. This “hydrogen-shell burning” is taking place within the much larger region,

in which core hydrogen burning has reduced the hydrogen content. It leads to a

steepening of that profile and to a narrowing of the burning shell. Hydrogen burning

is now even for this 1Mˇ star proceeding via the CNO cycle.

In more massive stars, the helium production is even more concentrated towards

the centre because of the large sensitivity to temperature of the CNO cycle. But

the mixing inside the central convective core is so rapid compared to the local

production of new nuclei that the core is virtually homogeneous at any time.

Inside the core, �XH � N"H�t with an energy production rate N"H averaged over

the whole core. The only difficulty comes from the fact that the border of the

convective core may change during the time step �t . The numerical calculations

show that for stars below 10Mˇ the mass Mc of the convective core decreases

with progressive hydrogen consumption, which leads to a hydrogen profile XH.m/,

as shown in Fig. 30.3 for a 5Mˇ star. At the end of central hydrogen burning,

one has a helium core with MHe � 0:1M , and the envelope in which XH still
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Fig. 30.3 The hydrogen

profile XH.m/ that is

established in a 5Mˇ star of

the same composition as in

Fig. 30.1 during and at the

end of hydrogen burning in a

shrinking convective core.

With decreasing central

hydrogen content the age of

the models is 0.7, 23, 55, 78,

and 82 � 106 years

3

3

3

3

Fig. 30.4 Energy production

profiles for the models with

an age of 0.7 (dash-dotted),

55 (dotted), 78 (dashed), and

82� 106 years (solid line) of

Fig. 30.3. "H, the energy

generation rate by hydrogen

burning (in units of erg/gs), is

about 104 times larger than in

the 1Mˇ star (Fig. 30.2) and

has a maximum of

2:6� 104 erg/gs in the last

model

has almost its original value. The corresponding energy production is shown in

Fig. 30.4. Notice that it is more and more concentrated towards the centre with

progressing main-sequence evolution and that the energy producing shell is located

just outside the helium core left after the end of central hydrogen burning. Similar

hydrogen and energy production profiles are established in stars with other values of

M . The main difference is that with increasingM the hydrogen profile is gradually

shifted to larger values of m=M , i.e. the relative mass of the produced helium

core increases with M . The corresponding increase of the convective core with

increasingM for zero-age main-sequence (ZAMS) models has already been shown

in Fig. 22.7.

This simple scenario is seriously complicated, particularly for rather massive

stars, by two uncertainties in the theory of convection (convective overshoot and

semiconvection). These effects will be dealt with separately in Sect. 30.4.
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30.2 Evolution in the Hertzsprung–Russell Diagram

At the beginning of the main-sequence phase the models are located in the HR

diagram on or near the ZAMS as described in Chap. 22. Numerical solutions show

that their positions change relatively little during the long phase in which hydrogen

is exhausted in the central region. A typical evolutionary track (for a 7Mˇ star of

the same population I mixture as before) is given in Fig. 30.5a. Starting from point

A on the ZAMS, the luminosity increases by about � lgL D 0:240 to point B

and about � lgL D 0:059 from B to C . The rise of L is due to the increasing

mean molecular weight when 1H is transformed to 4He, in accordance with the

prediction of the homology relations [see, e.g. (20.20)]. The evolution from B to C

is so fast that � increases only a very little in this short time interval. From the

change of r for different values of m (see Fig. 31.3) one clearly sees that the star

evolves non-homologously, which ultimately is because the chemical composition

changes only in the central region. The solutions show that the effective temperature

decreases fromA toB by� lgTeff � �0:089 and then increases again to pointC by

� lgTeff � 0:038. This corresponds to an increase of the radius by � lgR � 0:299

(A to B) and a decrease by � lgR � 0:047 (B to C ). Point B is reached after

about 3:67 � 107 years, roughly when the central hydrogen content has dropped

to XH � 0:05. At point C , when XH D 0 in the centre, the age is 3:74 � 107

years.

The evolutionary tracks are very similar for all stellar masses for which the

hydrogen content is exhausted in a convective core of appreciable mass, i.e. on the

whole upper part of the main sequence (see Fig. 30.5b). The increments of lgL from

A to B and from A to C become somewhat larger for larger values of M , while the

changes of lg Teff remain about the same. The structure of the evolutionary tracks

is different for smaller masses which have radiative cores. This can be seen in the

lower part of Fig. 30.5b. Of particular interest is the star withM D 1:2Mˇ, since it

barely develops a convective core of only 0:05Mˇ. This is also visible in the shape

of its track in the Hertzsprung–Russell diagram, which appears to be a transition

between those for lower and higher masses.

A common feature of all evolutionary tracks described here is that they point in

some direction above the ZAMS. This is the case only for an evolution producing

chemically inhomogeneous models (composed of a helium core and a hydrogen-rich

envelope). In an evolution assuming complete mixing of the whole model, � would

have a constant spatial distribution and would increase in time. Then the star would

evolve below the ZAMS, in accordance with the discussion after (20.23). Aside

from all details, the observations (e.g. cluster diagrams) show that evolved stars are

in fact above and to the right of the ZAMS, i.e. the stars obviously develop chemical

inhomogeneities in their interior. This conclusion is very important, in particular,

for the theory of stellar rotation. It excludes, for example, a complete mixing by the

large-scale currents of rotationally driven meridional circulations (Chap. 44).
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a b

Fig. 30.5 Hertzsprung–Russell diagrams with evolutionary tracks for population I stars during

central hydrogen burning (main-sequence phase). The tracks start on the zero-age main-sequence

and extend into the post-main-sequence phase. (a) For stellar mass M D 7Mˇ. Some charac-

teristic models are labelled by A (age zero), B (minimum of Teff), and C (exhaustion of central

hydrogen). (b) For stellar masses M D 0:8, 1.0, 1.2, 1.5, 2.0, 3.0, 5.0, 7.0, and 10Mˇ. The

dotted parts of the tracks indicate their continuation into the ensuing phase after central hydrogen

exhaustion

30.3 Timescales for Central Hydrogen Burning

The time �H a star spends on the main sequence while burning its central hydrogen

depends on M . This is because its luminosity L increases so strongly with M . Let

us consider this timescale:

�H D EH

L
; (30.1)

where EH is the nuclear energy content that can be released by central hydrogen

burning. As a rough estimate, we assume that the same fraction of the total mass of

hydrogen MH in the star is consumed in all stars. Then we have EH � MH � M .

Since L does not vary very much in this phase, we take the M –L relation of the

ZAMS, L � M � [cf. (22.1)]. Introducing these proportionalities into (30.1), we

have for the dependence of �H onM

�H.M/ � M

L
� M 1��: (30.2)

For an average exponent in theM –L relation of, say, � D 3:5, one has �H � M�2:5,
i.e. a strong decrease of �H towards larger values ofM .

Of course, the numerical results are influenced and modified by a variety of

details. The sequence of calculations made for Fig. 30.5b yields �H=.10
6 years/ D

23,283.89, 2,420.24, 303.32, 37.42, and 18.91 for M=Mˇ D 0:8; 1:5; 3:0; 7:0; and

10, respectively. In all the cases with a convective core, by far the largest part of �H
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Fig. 30.6. Hydrogen-burning

times against stellar mass

obtained from the

calculations done for

Fig. 30.5b

is spent in the first phase between points A and B , while the last part (B–C ) covers

only about 3% : : : 5%. Figure 30.6 shows the main-sequence lifetime as function

of mass in a double-logarithmic plot. The mean slope is � �2:8, corresponding to

� � 3:8.

Although the absolute values are very uncertain (Sect. 30.4), the general trend

is clear and has remarkable consequences for the observed HR diagrams of star

clusters, by which it is confirmed. Assume that all stars of such a cluster were formed

at the same time, i.e. that they now have the same age �cluster. We must then conclude

that all stars with masses larger than a limiting massM0 have already left the main-

sequence region, while stars with M < M0 are still on the main sequence. M0 is

given by the condition �cluster D �H.M0/. This is the basis for the age determination

of such clusters.

30.4 Complications Connected with Convection

The seemingly nice and clear picture of the main-sequence phase as described

above is unfortunately blurred by the notorious problem of convection. Questionable

points include the precise determination of those regions in the deep interior in

which convective motions occur and therefore the extent to which the chemical

elements are mixed. The mixing influences the later evolution, since the chem-

ical profile, which is established and left behind, is a long-lasting memory. We

briefly mention two problems, the first of which concerns all main-sequence stars

having convective cores, while the second occurs only in the more massive of

these stars.
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30.4.1 Convective Overshooting

We consider the situation in the surroundings of the outer boundary of a convective

core of mass Mbc, as calculated without allowance for overshooting. This means

that here we have defined the boundary to be at the position of neutral stability, i.e.

where

rrad D rad (30.3)

according to the classical criterion (6.13). (Without much loss of generality, we may

here treat a chemically homogeneous layer, for example, in the model for a ZAMS

star.) Complete mixing and a nearly adiabatic stratification with r D rad C ".0 <

" � 1/ is assumed in the convective region below Mbc, while no mixing and r D
rrad is assumed for the radiative region aboveMbc (cf. Chaps. 6 and 7, in particular

Sect. 7.3).

This model implies an obvious problem: the boundary between the regimes in

which convective motions are present .v > 0/ and absent .v D 0/ is determined

by the criterion (30.3), which essentially relies on buoyancy forces, and therefore

describes the acceleration Pv rather than the velocity v (cf. Sect. 6.1). Rising

elements of convection are accelerated until they have reached Mbc; the braking

starts only beyond this border, which is passed by elements owing to their inertia.

The situation is the same as if we were to hope that a car would come to a full stop

at the very point where one switches from acceleration to braking. The only way to

substantiate this would be to try it (once) right in front of a hard and solid enough

wall.

Simple estimates (e.g. Saslaw and Schwarzschild 1965) indeed give the impres-

sion that there is such a hard wall for elements passing the border Mbc. We have

seen in Sect. 7.4 that in the deep interior of the star the elements rise adiabatically

such that re D rad. From (7.5) we then see that the buoyancy force kr acting on an

element is

kr � r � rad ; (30.4)

with a positive factor of proportionality. Below the border, kr is small and positive

(small acceleration) since r � rad is extremely small and positive (�10�6). In

contrast to this, the braking above the border is by orders of magnitude more

efficient. We have assumed that there r is equal to rrad, which drops rapidly below

rad (in Fig. 22.8b by about 0.1 within a scale height). So the force kr due to r �rad

soon reaches rather large and negative values: therefore an overshooting element

can be stopped within a negligible fraction of the pressure scale height.

A significant overshoot, therefore, could result only if the braking were sub-

stantially reduced (the “wall” softened). A possibility for this was outlined by

Shaviv and Salpeter (1973), who pointed to the recoupling of the overshoot on the

thermal structure of the layer. Consider the temperature excess DT of a moving

element (re D rad) over the surroundings (gradient r). According to (7.4), we have

DT � r � rad, and DT becomes negative above the border, i.e. the overshooting

elements become cooler than the surroundings, which results in a cooling of the
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upper layers and an increase of the gradient r. We may describe it in terms of the

convective flux (positive, if it points outwards), which according to (7.3) is

Fcon � v �DT (30.5)

(with positive factors of proportionality). Above the border, the upward motion

.v > 0/ of cooler elements .DT < 0/ represents a negative Fcon. In order to

maintain a constant total flux

F D Fcon C Frad D l

4�r2
; (30.6)

with Fcon < 0, the radiative flux Frad must become larger than the total flux F . From

(7.1) and (7.2) we immediately have

Frad

F
D r

rrad

; (30.7)

which shows that r > rrad for Frad > F . The increase of r, however, reduces the

absolute values of r � rad and of the braking force kr compared with the situation

without overshooting; the elements can penetrate farther into the region of stability

than originally estimated, etc.

To find out whether or not this provides an appreciable amount of overshooting

is a difficult problem and one that is still far from being solved. In order to find

the point where the velocity v vanishes, one needs a self-consistent and detailed

solution (including velocities, fluxes, gradients) for the whole convective core.

This can only be obtained by using a theory of convection, the uncertainties of

which now enter directly into the interior solution of the star. Even if we want

to apply the mixing-length theory, the procedure is not clear. Instead of the usual

local version of the theory, one needs a non-local treatment. At a given point, for

example, the velocity of an element or its temperature excess depends not only on

quantities at that point, but on the precise amount of acceleration (and braking)

which the element has experienced along its whole previous path. All prescriptions

for evaluating this and for averaging quantities like v or DT are as arbitrary as the

choice of the mixing length. In fact any detailed modelling of the convective core

by a mixing-length theory is necessarily ambiguous. For example, it encounters

the difficulty that a core extends over less than a pressure scale height [the local

expression of which, HP D �dr=d ln P , becomes 1 at the centre according

to (11.7)]. Different authors using different prescriptions have arrived at answers

ranging from virtually no overshoot to rather extensive overshoot; and all of them

have been questioned (see Renzini 1987). In the following we present a physically

motivated treatment by Maeder (1975). Figure 30.7 shows the typical run of some

characteristic functions as obtained from such calculations for M D 2Mˇ and

˛ D `m=HP D 1. Below the “classical” border of stability (rrad D rad), one has

typically r � rad � C10�4 which is enough to accelerate the convective elements
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Fig. 30.7. Velocity v and

temperature excess DT of

rising convective elements

and the ratio of the radiative

flux Frad relative to the total

flux F around the border of

stability (rrad D rad) in a

star of 2Mˇ. Overshooting

calculated with

˛ D `m=HP D 1 extends to

the point where v D 0 (after

Maeder 1975)

to 30 � � �40ms�1. Above the border, where still v > 0, but DT < 0; Frad exceeds

the total flux F by about 10 %, while r � rad ranges from �10�4 to �10�2. The

overshooting reaches to the point with v D 0, which occurs at about 14 % of the local

scale height HP above the border, corresponding to an increase of the mass of the

convective core Mc of more than 30 %. This amount depends on the assumed value

of ˛, because the velocity of the convective elements depends on the mixing length

`m according to (7.6). Figure 30.8a shows the hydrogen profile established during

hydrogen burning in a 7Mˇ star calculated with such overshooting for different ˛

(The limit case ˛ D 0 is the model calculated without overshooting.). The influence

of overshooting on the evolutionary tracks is shown in Fig. 30.8b. The consequences

of an increased helium core at the end of this phase are an increased luminosity, an

increased age (by about 25 % for ˛ D 1) due to the enlarged reservoir of nuclear

fuel, and lower effective temperatures reached during the main-sequence evolution.

This leads to a broadening of the upper main-sequence compared to calculations

without overshooting. Indeed, the observed width of the upper main-sequence is

one test to estimate the amount of overshooting from convective cores in massive

stars (Maeder and Meynet 1991). However, if such overshooting occurs, its main

effect will show up only later, during the phase of helium burning (see Sect. 31.4).

As mentioned at the beginning of Chap. 7 efforts to develop more realistic

convection models, based on either the Reynolds stress approach or on multi-

dimensional simulations, have been made. Such models would be non-local by
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Fig. 30.8. Central hydrogen

burning for a 7Mˇ star

(initial mixture XH D 0:602,

Xrest D 0:044) with

overshooting according to

different assumptions for the

ratio ˛ D `m=HP (˛ D 0

means no overshooting). (a)

The hydrogen profile at the

end of this phase. (b) HR

diagram with evolutionary

tracks (Matraka et al. 1982)

nature and therefore include the necessary conditions for treating also overshooting

more realistically.

Up to the present time two standard methods for modelling overshooting are

being used in numerical calculations. The first one is based on a simple extension

of the convectively mixed region above the boundary defined by the Schwarzschild

criterion. This extension lov is parametrized in terms of the local pressure scale

height at the boundary

lov D ˛ovHP : (30.8)

The parameter ˛ov is typically of order 0:1 � � � 0:2 for modern stellar models. It has

no relation to the mixing-length parameter ˛MLT, and is most often determined

by fitting models to observed colour-magnitude diagrams (e.g. Stothers and Chin

1992). For the overshooting region the assumption r D rad is usually made. One

sometimes speaks of “convective penetration” instead of overshooting. Strictly

speaking, the temperature gradient should be at least slightly subadiabatic, otherwise

convective elements would not be decelerated.

In an alternative approach, convective overshooting is considered to be a diffusive

process with a diffusion constant

D.z/ D D0 exp
�2z

fovHP

; (30.9)

where z is the radial distance from the formal Schwarzschild border and fov the

free parameter of this description. D0 sets the scale of diffusive speed and is



30.4 Complications Connected with Convection 353

Fig. 30.9. Fit of isochrones to the colour-magnitude diagram of the open cluster NGC 2420

(adopted from Pietrinferni et al. 2004). The dashed line is obtained from stellar models without

overshooting, and the solid line for models with overshooting, treated in the approach of (30.8),

with a parameter ˛ov of about 0.1. The “hook” at the end of the main-sequence can be reproduced

correctly only with overshooting taken into account. Note that the isochrone age is 3.2 Gyr for this

case, while it is lower (2 Gyr) for the case without overshooting to balance the fact that in this case

main sequence luminosities are lower. Except for the turn-off region the two isochrones are almost

identical

derived from the convective velocity obtained from mixing-length theory and taken

below the Schwarzschild boundary. This approach is based on two-dimensional

hydrodynamical simulations of thin convective envelopes in A-type stars and

cool white dwarfs. Although its theoretical foundation is therefore limited, it has

been used in a variety of situations and been shown that it also can be used

to reproduce the width of the upper main sequence, and the colour-magnitude

diagrams of open clusters (Fig. 30.9), with a numerical value of fov in the range

of 0:02. The hydrodynamical models also indicate that the temperature gradient in

the overshooting layers is close to the radiative one. A further advantage of this

approach is that it can easily be added to a stellar evolution code that already has

implemented diffusion (Sect. 8.2.2). In both cases the extent of the overshooting

region has to be limited for small convective cores because of the divergence ofHP

near the centre, as one otherwise gets unrealistically large mixed cores.

The “diffusive” approach (30.9) leads to smoother chemical profiles than those

resulting from (30.8). This is quite obvious from the example we show in Fig. 30.10

for a star of 15Mˇ. The solid black lines are for the calculation without over-

shooting taken into account. The receding convective core leaves behind a profile
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Fig. 30.10. Hydrogen profiles

in a 15Mˇ star during the

main-sequence evolution. The

solid black lines refer to a

model without, the dashed

grey lines to one with

overshooting being included.

Four models at approximately

the same central hydrogen

content, but not necessarily

the same age, are being

compared

characterized by small steps mixed with shallow, homogeneously mixed regions,

which have been unstable to convection locally. In Fig. 30.12 this kind of structure

shows up as “convective tongues” in the upper panel. The dashed grey lines are

the resulting chemical profiles if overshooting according to (30.9) is included. Due

to the exponentially declining mixing speed the profiles are very smooth. It is

also clearly seen how overshooting extends the homogeneously mixed core by

about 0:05M in this case. For a large part of the main-sequence evolution the

Schwarzschild boundary of the convective core remains at about the same mass

coordinate as in the case without overshooting. Only in later main-sequence phases

it changes (see Fig. 30.12, top and middle panel).

But as mentioned before the question of overshooting is quite open and can be

settled only by use of a better theory of convection. This also concerns the question

how the amount of overshooting varies with stellar parameters, such as mass and

composition, and whether it occurs at all convective boundaries. So far, both issues

can be addressed only tentatively by comparison with observations.

30.4.2 Semiconvection

Another phenomenon related to convection introduces a large amount of uncertainty

in the evolution of rather massive stars, say, forM > 10Mˇ (This limit depends on

the chemical composition; it can even be around 7Mˇ for hydrogen-rich mixtures

of extreme population I stars.).

In these stars during central hydrogen burning the convective core retreats,

leaving a certain hydrogen profile behind; the radiative gradient rrad outside the

core starts to rise and soon exceeds the adiabatic gradient rad. This happens in a
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Fig. 30.11. Schematic

illustration of the example for

semiconvection discussed in

the text. The solid line in (a)

shows a hydrogen profile in

which semiconvection occurs.

Complete mixing in this layer

would lead to the dashed

“plateau”. The gradients in

the same range of m are

sketched in (b), indicating the

radiative-semiconvective-

convective properties of the

different layers

region with outwardly increasing hydrogen content (decreasing molecular weight

�); therefore r� � d ln�=d lnP > 0, which makes the layer dynamically stable

(Sect. 6.1). Considering the classical criteria for convective stability according to

Schwarzschild and Ledoux we find

rad < rrad < rad C '

ı
r�: (30.10)

As described in Sect. 6.3 a layer in which (30.10) is fulfilled is vibrationally unstable

(“overstable”). A slightly displaced mass element starts to oscillate with slowly

growing amplitude and penetrates more and more into regions of different chemical

composition. This results in a rather slow mixing which is called semiconvection.

The treatment of this process is complicated, one difficulty being that any degree of

mixing must have a noticeable reaction on the stratification in the mixed layer.

Suppose that semiconvection occurs in some region of an originally very

smooth hydrogen profile (solid line in Fig. 30.11a). The corresponding gradients

are schematically sketched in Fig. 30.11b. The solid line is the decisive gradient of

the Ledoux criterion. The region is fully convective in the innermost part, because

rad < rrad and r� D 0. Next follows a radiative zone because of the drop of rrad,

above which a semiconvective layer exists, which would be convective according

to the Schwarzschild criterion, but is stabilized due to the positive r�-term. If

the mixing in the semiconvective region were very efficient, we would obtain a

“plateau” in the profile (dashed line in Fig. 30.11a). There are obviously two main

effects of such a mixing on the gradients. Firstly, any change of profile changes

the value of r�, which goes to zero in the plateau. Secondly, the mixing increases

the hydrogen contentXH in the lower part and decreases XH in the upper part of the

mixed region. In massive main-sequence stars the opacity is largely dominated by
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electron scattering, for which � � .1CXH/, [cf. (17.2)]. Since rrad � �, [cf. (5.28)],

the radiative gradient rrad is increased in the lower part and decreased in the upper

part of the mixed area. Therefore both these changes (of r� and of rrad), which

are due to the mixing, will modify the decisive terms entering into (30.10), and

as a result some parts can completely change their stability properties (convective-

semiconvective-radiative). Whether a semiconvective layer becomes more stable or

unstable to convection depends on the overall result of both effects. In the situation

sketched, most likely the lower part, in which hydrogen content increases, will

become fully convective, while the radiative envelope will grow deeper into the

formerly semiconvective layer.

The slow mixing in semiconvective regions can be considered as a diffusion

process (see, for instance, Langer et al. 1985). The resulting profile will depend

on the timescale �diff of that kind of diffusion and its ratio to the typical timescale in

which the stellar properties change (e.g. the composition due to nuclear reactions).

For example, a relatively small �diff (large diffusion coefficient) will tend to mix

to such an extent that convective neutrality is nearly reached with rrad � rad. In

fact this is yet another approach to treat semiconvection in numerical calculations:

Semiconvective layers are mixed to such an extent that neutrality is achieved.

In this case one does not aim at describing the physical properties in detail but

rather aims at a likely final situation. In general one should expect a continuous

change of the profile and radiative, semiconvective, and fully convective regions

moving slowly through the star. Unfortunately the coefficient of diffusion cannot

yet be determined satisfactorily, which is rather serious, since, as in the case

of overshooting, the details of the established profile are very decisive for the

later evolution of these stars. In Fig. 30.12 we show an example for the different

convective and semiconvective layers establishing in a 15Mˇ star during the main-

sequence evolution, when different approaches to overshooting and semiconvection

are employed. The semiconvective layers outside the fully convective core in the

Schwarzschild case (top panel in the figure) change their character–convective or

radiative–with time, depending on changes in the thermal structure and on mixing.

The result is a typical tongue-like extent of convective layers, separated by radiative

“tongues”, and a H/He profile that shows many irregular steps. This kind of structure

can already be seen in the early works Langer (1989, 1991) in stars of 30 and 20Mˇ.

Additional complications can arise from the interaction of semiconvection and

overshooting. Note that semiconvection can also play a role in later phases, for

example, if a convective core increases during helium burning and expands into

a region of different chemical composition.

30.5 The Schönberg–Chandrasekhar Limit

Since the nuclear timescale for central hydrogen burning is large compared to the

Kelvin–Helmholtz timescale, stars can be well represented by models in complete

equilibrium throughout this phase. The question is now whether this continues to
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Fig. 30.12. Convective and

semiconvective regions in a

star of 15Mˇ for three

different treatments of

convection. The top figure

shows fully convective

regions (dark grey) if the

Schwarzschild criterion is

applied. The bottom panel

shows the result if the Ledoux

criterion is used, and slow

semiconvective mixing is

done according to the

diffusive approach by Langer

et al. (1985; with the free

parameter in this description

set to 0.1). Semiconvective

regions are indicated by light

grey. The central panel

finally shows the case with

overshooting considered as a

diffusive process according to

(30.9), with fov D 0:02. Note

that only the convective core

(rrad � rad) is shown; the

region of overshooting, which

extends over more than 5 % of

the mass, is not visible in this

figure (but see Fig. 30.10)

be valid also for the subsequent evolution. At the end of central hydrogen burning,

the star is left with a helium core without nuclear energy release surrounded by

a hydrogen-rich envelope. At the bottom of this envelope, the temperature is just

large enough for further hydrogen burning, which continues at this place in a shell

source (see Figs. 30.2 and 30.4). The problematic part is the possible structure and

change of the helium core. A core almost in thermal equilibrium without nuclear

energy sources cannot have a considerable luminosity, and hence must be nearly

isothermal, since dT=dr � l .

Therefore we consider here equilibrium models consisting of an isothermal

helium core of mass Mc D q0M and a hydrogen-rich envelope of mass

(1 � q0/M (see Fig. 30.13). For simplicity the chemical composition is taken to

change discontinuously at the border of the two regions. The luminosity is supplied

by hydrogen-shell burning at the bottom of the envelope. In the following, solutions

for the core (subscript 0 at its surface q D q0) and solutions for the envelope

(subscript e at the lower boundary q D q0) are first discussed separately and then

fitted to each other. In view of their importance we will look at the surprising results

from different points of view.
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Fig. 30.13. Schematic

temperature profile in an

equilibrium model having an

isothermal helium core of

mass q0M . Hydrogen burns

in a shell source at the bottom

of the envelope, indicated by

the dashed part of the line

30.5.1 A Simple Approach: The Virial Theorem and Homology

Important properties of such models can be understood by rather simple considera-

tions, which give at least a qualitatively correct picture. We assume the isothermal

core after central hydrogen burning to consist of an ideal monatomic gas (molecular

weight �core). To this core, we apply the virial theorem in the form (3.21) which

contains a term for the non-vanishing surface pressure P0. Solving for P0, we

obtained (26.23), which we here rewrite as

P0 D C1
McT0

R3c
� C2

M 2
c

R4c
; (30.11)

where C1; C2 are positive factors, and C1 � cv D 3<=.2�core). This describes the

resulting surface pressure P0 as the difference between the average interior pressure

(first term � N%T0) and the self-gravity term (second term �Rc Ng N%), when we use

N% � Mc=R
3
c and Ng � Mc=R

2
c .

For simplicity we assume Te to be kept at a constant value by the thermostatic

action of hydrogen burning. The fitting condition at q0 then requires

T0 D Te D constant; (30.12)

and P0 depends only onMc and Rc. As explained in Sect. 26.2 the counteraction of

the two terms in (30.11), which depend on different powers ofRc, has the result that,

forMc D constant, P0 has a maximum value P0max at Rc D Rcmax [see (26.27)],

Rcmax D C3
Mc

T0
; P0max D C4

T 40
M 2

c

; (30.13)

with some positive constants C3; C4. This can be obtained by solving

@P0=@Rc D 0 (for constant T0) from (30.11). The function P0.Rc) for given Mc

and T0 is sketched in Fig. 30.14. From (30.13) we see that P0max � M�2
c , i.e. the

maximum surface pressure of the core decreases strongly with the mass Mc of the

core.
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Fig. 30.14. The solid line shows schematically the pressure P0 at the surface of the isothermal core

as a function of the core radius Rc. Horizontal lines indicate the pressure Pc at the bottom of the

envelope for three different relative core masses q0. The stable solution is marked by a dot and the

unstable solution by an open circle; the solution at P0max, is marginally stable

For the functions at the bottom of the envelope we simply assume that all possible

envelopes are homologous to each other. Then from (20.9) and (20.24) follow Pe �
M 2=R4 and Te � M=R: The latter relation together with (30.12) means that M=R

D constant, such that the relation for Pe becomes

Pe D C5
T 40
M 2

: (30.14)

We see that Pe is independent of Rc and has the same dependence on T0 as P0max,

but decreases with M instead of Mc. This can lead to difficulties! In Fig. 30.14 the

envelope pressure Pe according to (30.14) is given by a horizontal straight line, the

height of which depends onM .

The remaining fitting conditions for a complete solution of the star require

Rc D re and P0 D Pe, i.e. we look for an intersection of the two types of curves in

Fig. 30.14. Obviously this can be obtained only if Pe � P0max, which together with

(30.13) and (30.14) gives the condition

q0 � Mc

M
� qSC; (30.15)

i.e. the relative core mass q0 must not exceed a certain limiting value, which is the

Schönberg–Chandrasekhar limit qSC. This limit was already derived in Sect. 21.4

from fitting solutions for isothermal cores and for envelopes in the U–V plane.

For q0 < qSC we have Pe < P0max, and there are two intersections in

Fig. 30.14. The solution for the smaller value of Rc is thermally unstable,

the other one is stable. This can be made plausible by a simple argument.

Figure 30.14 shows that, if we slightly increase the core radius of the stable solution,

P0 drops below Pe and the envelope tends to compress the core, thus restoring the

equilibrium state. The opposite behaviour (further increase of an initial expansion,

since P0 exceeds Pe/ can be seen to result from the perturbation of the unstable

equilibrium state, and this rough argument is confirmed by a strict eigenvalue

analysis.
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The solutions merge for q0 D qSC .Pe D P0max) which corresponds to neutral

stability. And there are no solutions possible for q0 > qSC, since Pe always exceeds

P0. In such a case some basic assumption of our present picture has to be dropped

(e.g. equilibrium or ideal gas). In particular the Schönberg–Chandrasekhar limit

does not apply for the case of a degenerate electron gas. This will be discussed

later.

The value of qSC has been computed by Schönberg and Chandrasekhar (1942).

It depends on the ratio of the molecular weights �core=�env, since the envelope

pressure depends on �env; while P0 depends on �core via C1. One can write roughly

qSC D 0:37

�
�env

�core

�2
; (30.16)

which means for a pure helium core �core D 4=3 and for a hydrogen-rich envelope

qSC � 0:09. This value is certainly exceeded by the helium cores that are left after

central hydrogen burning in stars of the upper main sequence. Stars of somewhat

smaller mass may encounter the same difficulty later, when the shell source burns

outwards, thus increasing the mass of the helium core above the critical value. The

Schönberg–Chandrasekhar limit is therefore quite relevant for the evolution in any

phases in which at a first glance one would expect isothermal cores of ideal gas to

appear.

30.5.2 Integrations for Core and Envelope

More reliable curves in the P � Rc diagram (Fig. 30.14) can be easily obtained by

numerical integrations for core and envelope (Roth 1973).

An envelope solution can be calculated for given M and Mc by requiring the

lower boundary conditions l D 0; r D R0 to hold at M D Mc: The solution gives

Pe and Te at m D Mc. By varying Rc, one obtains a set of solutions which gives

Pe.Rc/; Te.Rc/. Two typical envelope curves Pe.Rc) are shown in Fig. 30.15a. It

turns out that these curves, in their important parts, are nearly independent of Mc

but are raised essentially by a decrease ofM [This is qualitatively the same as in the

approximation (30.14).]. The temperature Te varies, in fact, very little along such

an envelope curve. For later applications (Sect. 31.1) we briefly mention the surface

values of these envelope solutions. Those with large values of Rc are located near

the main-sequence. With decreasing Rc they move to the right in the HR diagram,

and envelopes with the smallest values of Rc are close to the Hayashi line.

The solution for an isothermal core with temperature T0 can be obtained by a

straightforward integration starting at the centre with an assumed value of P D Pc

and continued until m D Mc is reached. At this point one finds a pair of values

P D P0 and r D Rc. Many such integrations for different values of the parameter

Pc then give the curve P0.Rc) for the core. The solid line in Fig. 30.15b gives such

a curve for cores of mass Mc D 0:18Mˇ and T0 D 2:24 � 107 K. The lower-right

part (small P0, largeRc) corresponds to small central pressures Pc: With increasing
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Fig. 30.15. Some typical curves of the pressure P (in dyn cm�2/ against the core radius Rc (in

cm). (a) The pressure Pe at the lower boundary of the envelope for a stellar mass M D 2Mˇ and

two values of the core mass Mc (in Mˇ). (b) The pressure P0 at the surface of isothermal cores of

different mass Mc (in Mˇ). The arrows along the solid curve indicate the direction of increasing

central pressure. The dotted spiral is with neglect of degeneracy. (c) Sketch of core and envelope

curves for the case of three intersections giving three complete solutions (filled circles stable, open

circle unstable) (After Roth 1973)

Pc the curve leads up to the maximum and decreases again (This corresponds to

the maximum of the core curve in Fig. 30.14, while the horizontal envelope curves

there are now replaced by envelope curves like those in Fig. 30.15a.). Then it would

follow the dotted spiral, if we artificially suppress the deviation from the ideal-gas

approximation in the equation of state. This may be compared with the spiral in the

U –V plane obtained for an isothermal core in Fig. 21.2. An increasing Pc, however,

implies an increasing degeneracy of the electron gas. This “unwinds” the spiral and

P0 drops, while a gradually increasing fraction of the core becomes degenerate.

When degeneracy encompasses practically the whole core, P0 rises again strongly

with decreasing Rc (upper-left end of the solid curve in Fig. 30.15b). The dashed

and dot-dashed lines demonstrate how the curve changes whenMc is decreased. As

predicted by (30.13) the maximum shifts to smaller Rc and larger P0. The main

effect, however, is that the minimum is less and less pronounced. This goes so

far that finally the maximum, which is decisive for the existence of a Schönberg–

Chandrasekhar limit, has disappeared. A similar change of the structure of the curve

is obtained if, instead of decreasingMc, we increase the temperature T0.

30.5.3 Complete Solutions for Stars with Isothermal Cores

As mentioned, each sequence of envelope solutions yields a relation Te D Te.Rc).

Assume now that along a corresponding sequence of isothermal-core solutions



362 30 Evolution on the Main Sequence

Fig. 30.16. Complete equilibrium solutions for four different stellar masses M (in Mˇ) having

an isothermal core of mass Mc D q0M . Each solution here is characterized by its core radius Rc

and its relative core mass q0. Branches with thermally stable solutions are shown by solid lines

and branches with unstable solutions by dashed lines. The turning point at q0 D qSC defines the

Schönberg–Chandrasekhar limit (After Roth 1973)

T0 is varied such that T0.Rc/ D Te.Rc) for all Rc. This deforms a core curve

in Fig. 30.15b only slightly. Any intersection of this new core curve with a

corresponding envelope curve gives a complete solution, since we then have at

m D Mc

re D Rc; Pe D P0; Te D T0; le D l0 D 0; (30.17)

i.e. continuity of all variables.

Suppose that the core curve has a pronounced maximum. We can then obviously

expect to have up to three solutions (see Fig. 30.15c), one with an ideal gas (largest

Rc), the second with partial degeneracy (intermediate Rc), and the third with

large degeneracy (smallest Rc) in the core. If the envelope curve passes below the

minimum or above the maximum of the core curve, there will be only one solution.

And there can also be only one solution with a monotonic core curve.

The resulting solutions for different values ofM andMc can best be reviewed by

representing them as models in which q0 D Mc=M varies as a parameter while M

is fixed (Fig. 30.16). Each model is represented here by its core radius Rc in order

to give an easy connection with the foregoing fitting procedure.

Figure 30.16 shows that for larger M the sequence of equilibrium solutions

consists of three branches. Two of them contain thermally stable models (solid

lines), the other unstable models (dashed). On the upper and lower stable branches,

the isothermal cores have no or strong degeneracy respectively. The branches are

connected by two turning points (at q1, and qSC) where the models have marginal

stability. A real star would first evolve along the upper stable branch, increasing

its core at nearly constant radius. When the mass of the core reaches the turning

point, the core will contract on a thermal timescale (q0 staying constant because of
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the much longer nuclear timescale) to the lower branch. The turning point with the

larger q0 defines the Schönberg–Chandrasekhar limit. Its value qSC turns out to be

nearly independent of M . For q1 < q0 < qSC, there are three solutions, otherwise

one solution. When going to gradually smaller M , we see that q1 approaches

qSC, until both turning points merge and finally disappear for M < 1:4Mˇ. For

such small M , therefore, one has only one (stable) branch and no Schönberg–

Chandrasekhar limit. This agrees with what one expects from the core curves given

in Fig. 30.15b. It shows, for example, that the curves are already monotonic for

M D 1:3Mˇ and q0 � 0:1 (i.e. Mc � 0:13Mˇ/ (The exact mass values depend

not only on the chemical composition, but also on the detailed physical input of the

stellar models. Those given here are from the model calculations by Roth 1973, but

are representative.). Instead of Rc, we might have plotted the stellar radius R over

the parameter q0. As mentioned above, small Rc corresponds to large R and vice

versa. The sequences for large enoughM would then exhibit a stable dwarf branch

for q0 < qSC, a stable giant branch for q0 > qSC and an unstable intermediate

branch.

In evolutionary models one will encounter a smooth profile rather than a

discontinuity of the chemical composition. In such a case various definitions of

the core mass are possible: it can be the point at which XH > 0, or where the

maximum of shell source burning is located. Since the shell is comparably thin, the

various definitions do not differ too much from each other, anyhow. The Schönberg–

Chandrasekhar limit can be identified by the departure from thermal stability, i.e. by

a higher fraction of thermal to nuclear energy. In any case, one finds again that

qSC � 0:1.



Part VI

Post-Main-Sequence Evolution



Chapter 31

Evolution Through Helium Burning:

Intermediate-Mass Stars

31.1 Crossing the Hertzsprung Gap

After central hydrogen burning, the star has a helium core, which in the absence

of energy sources tends to become isothermal. Indeed thermal equilibrium would

require that the models consist of an isothermal helium core (of mass Mc D q0M ,

radius Rc), surrounded by a hydrogen-rich envelope [of mass (1 � q0/M ] with

hydrogen burning in a shell source at its bottom. Such models were discussed in

detail in Sect. 30.5. We now once more consider the case of M D 3Mˇ, which is

typical for stars on the upper part of the main sequence (say M > 2:5Mˇ). The

possible solutions were comprised in a series of equilibrium models consisting of

three branches. This is shown in the first graph of Fig. 30.16, and again in Fig. 31.1,

which also gives schematically the position in the HR diagram.

Suppose that the relative mass of the core q0 has not yet reached the

Schönberg–Chandrasekhar limit qSC.�0:1/ at the end of central hydrogen

burning. The model then can easily settle into a state contained in the

uppermost branch of Fig. 31.1a, which consists of stars close to the main

sequence (Fig. 31.1b). Let us imagine a “quasi-evolution” of this simple model

by assuming that Mc grows because of shell burning while complete equilibrium is

maintained. The result is that the model is shifted towards the right in Fig. 31.1a.

This proceeds continuously until the model reaches the Schönberg–Chandrasekhar

limit, represented by the turning point which terminates the uppermost branch.

Further increase of Mc would require the model to jump discontinuously onto the

lower branch in Fig. 31.1a. This decrease of Rc (i.e. compression of the core) would

be accompanied by a large jump in the HR diagram, from the main sequence to the

region of the Hayashi line (Fig. 31.1b). This means that such equilibrium stars have

to become giants because the main-sequence solutions (which the stars had selected

owing to their history) cease to exist, while the red giant solutions (which have

coexisted for a long time) are still available. In Fig. 31.1a, b the quasi-evolution of

increasingMc is indicated by solid lines, while those parts which can obviously not

be reached are broken. We will see that basic features of this jump in the simple
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Fig. 31.1 (a) The same series of equilibrium models for M D 3Mˇ as in Fig. 30.16. The core

radius Rc is plotted against the core mass Mc. In a quasi-evolution with increasing mass Mc of the

isothermal helium core, the model shifts along the solid lines, as indicated by the arrows. (b) The

corresponding position in the HR diagram

quasi-evolution (particularly the compression of the core together with an expansion

of the envelope to a red giant stage) are recovered in the real evolution which, of

course, leads through non-equilibrium models. In any case, a phase of thermal

non-equilibrium must follow after central hydrogen burning since a continuation

via suitable equilibrium models would involve a discontinuity.

As an example for the real evolution we take numerical solutions obtained

for upper main-sequence stars with our standard Pop. I initial mixture .XH D
0:70;XHe D 0:28;Xrest D 0:02). This model was calculated neglecting overshoot-

ing from the convective core completely and is a continuation of the main-sequence

evolution shown, for example, in Fig. 30.3. The transition from central to shell

burning can be seen from Fig. 31.2a. Any line parallel to the ordinate indicates what

one would encounter in different layers when moving along the radius of the star at

that moment of the evolution. Figure 31.2b gives the corresponding evolutionary

track in the HR diagram. The first part of Fig. 31.2a (from A to C/ shows the

phase of central hydrogen burning which exhausts 1H in the core within about

7:9� 107 years for 5Mˇ. With hydrogen being depleted there, the burning together

with the convection ceases rather abruptly in the central region. At the same time,

hydrogen burning intensifies in an initially rather broad shell around the core, i.e.

in the mass range of the outwards-increasing hydrogen content left by the shrinking

convective core (cf. Fig. 30.3a). Later this shell source narrows remarkably in mass

scale, particularly when it has consumed the lower tail of the hydrogen profile.

After phase C the evolution is so much accelerated that the abscissa had to be

expanded. The models are no longer in thermal equilibrium, i.e. the time derivatives

("g D �T @s=@t) in the energy equation are not negligible [cf. (4.47) and (4.48)].

The star has now encountered the situation outlined earlier in this section.

The radial motion of different mass elements in this phase is shown in Fig. 31.3

for the same star. After a short resettling at the end of central hydrogen burning

(pointC ) we see that core and envelope change in opposite directions: an expansion

of the layers above the shell source (at m � 0:14M ) is accompanied by a

contraction of the layers below. The fact that Pr changes sign at the maximum of
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a

b

Fig. 31.2 (a) The evolution of the internal structure of a star of 5Mˇ of Population I. The abscissa

gives the age (in units of 106 years) since the beginning of the evolution on the main sequence.

Each vertical line corresponds to a model at a given time. The different layers are characterized

by their values of m=M: “Cloudy” regions indicate convective areas. Heavily hatched regions

indicate where the nuclear energy generation ("H or "He) exceeds 102 erg g�1 s�1. Regions of

variable chemical composition are dotted. The letters A : : :G above the upper abscissa indicate the

corresponding points in the evolutionary track, which is plotted in Fig. 31.2 (b) with a solid line.

The grey line in the Hertzsprung-Russell diagram shows the evolution of a star of the same mass

and composition, but with convective overshooting included

a shell source is a pattern very characteristic for models with strongly burning

shell sources; it can occur in quite different phases of evolution, for contracting or

expanding cores, for one or two shell sources. Such shell sources seem to represent

a kind of mirror in the pattern of contraction and expansion inside a star (“mirror

principle” of radial motion).
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Fig. 31.3 The radial

variation of different mass

shells (characterized by their

m=M values) in the

post-main-sequence phase of

the same 5Mˇ star. The

letters A : : :E correspond to

the evolutionary phases

labelled in the two Figs. 31.2

The "g term also changes sign at the maximum of the shell source. One finds

that "g > 0 in the contracting core and "g < 0 in the expanding envelope. The

energy released in the contracting core must flow outwards, which prevents the core

from becoming isothermal. Such a massive star starts on the main sequence with

relatively low central density (cf. Fig. 22.5) and therefore remains non-degenerate

during the contraction phase described here, which then leads to heating. When the

central temperature has reached about 108 K, helium is ignited. The core has thus

tapped a large new energy source which stops its rapid contraction, and the star again

reaches a stage of complete (thermal and hydrostatic equilibrium. The whole core

contraction from C toD has proceeded roughly on the Kelvin–Helmholtz timescale

of the core (in 32:3 � 106 years for 5Mˇ). In the same time, the outer layers have

rapidly expanded, and the stellar radius is increased appreciably (roughly by a factor

15 in Fig. 31.3).

The evolutionary path in the HR diagram for the 5Mˇ star is shown in Fig. 31.2b.

The expansion transforms the star into a red giant so rapidly that there is little chance

of observing it during this short phase of evolution. This explains the existence of

the well-known Hertzsprung gap, an area between main sequence and red giants

with a striking deficiency of observed stars. It is a direct consequence of stars with

cores reaching the Schönberg–Chandrasekhar limit after central hydrogen burning.

The evolution is qualitatively similar for all stars in which helium burning is

ignited before the core becomes degenerate and in which possible complications

due to semiconvection cannot prevent the star from moving close to the Hayashi line.

This includes stellar masses of, say, 2:5Mˇ < M < 10Mˇ. A set of evolutionary

tracks in this phase for differentM is shown in Fig. 31.4.
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Fig. 31.4 The HR diagram with evolutionary tracks from the zero-age main sequence to the end

of central helium burning for stars with different masses M (from 3Mˇ to 10Mˇ) and for an

initial composition with XH D 0:70; XHe D 0:28. The instability strip of Cepheids is indicated by

the broken line

In Fig. 31.2b the second track (grey line) is that of the same 5Mˇ star, but

here overshooting from the convective cores during hydrogen and helium burning is

taken into account. The extent of the overshooting corresponds to about 0.2 pressure

scale heights at the Schwarzschild boundary, equivalent to an increase in mass by

more than 20 %. The region in which material is mixed to the stellar centre is thus

extended, the main-sequence evolution lasts longer, and the extension of the main-

sequence phase in the HR diagram is larger. Point B along the track is 470 K cooler

than for the evolution without overshooting and 26 % more luminous. Point C, the

end of core hydrogen burning, which now lasts 96.3 instead of 79.9 Myr, moves in a

similar way. The wider main sequence is observationally confirmed, and indeed the

width of the upper main sequence required the inclusion of convective overshooting

in stellar models for massive stars. All the subsequent evolution takes place at higher

luminosity, which can be explained according to (20.20) by the larger increase of

the mean molecular weight for the whole star during core hydrogen burning.

31.2 Central Helium Burning

As a consequence of the rapid contraction and heating of the core, central helium

burning sets in (at the age of 8:3 � 107 years for our 5Mˇ star). The star is then

in the red giant region of the HR diagram, close to the Hayashi line (D–E in

Fig. 31.2b). Correspondingly it has a very deep outer convection zone, which can

be seen in Fig. 31.2a to reach down to m=M � 0:17. The larger M , the deeper
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Fig. 31.5 Variation of the

abundance of 12C and 16O

during the depletion of 4He in

the centre of the 5Mˇ star,

whose internal evolution was

shown in Fig. 31.2

the convection zone penetrates, and it reaches into layers in which the composition

was already slightly modified by the earlier hydrogen burning. Therefore some

products of this burning are now dredged up by the convection and distributed all

over the envelope. This is called the first dredge-up event. We here encounter one

of the mechanisms by which nuclear species produced in the very deep interior

can be lifted to the stellar surface. For example, the 12C=13C isotope ratio drops

from its initial value of approximately 90 to values close to 20. This is the result

of mixing material that has undergone CNO burning, where the equilibrium value

of 12C=13C � 5 was established, with pristine matter in the envelope having the

initial value. Furthermore, the nitrogen abundance increases at the expense of that

of carbon, and even the surface helium abundance increases slightly by a few per

mille. The carbon isotope ratio can be determined rather accurately from stellar

spectra of giants and confirms the presence of the first dredge-up and thus also the

CNO burning in the deep stellar interior.

The high temperature sensitivity of helium burning causes a strong concentration

of the energy release towards the centre and therefore the existence of a convective

core. The core contains roughly 3–4 % of M , i.e. much less mass than during

hydrogen burning.

At first the dominant reaction is 3˛ ! 12C (cf. Sect. 18.5.2). With increasing

abundance of 12C the reaction 12C C˛ ! 16O gradually takes over. When 4He

has already become rather rare the depletion of 12C on account of 16O is larger

than the production of 12C by the 3˛ reaction, and 12C decreases again after having

reached a maximum abundance. This is explained by the fact that the production of
12C is proportional to X3

˛ , while its depletion is proportional to X˛X12. The change

of the abundances can be seen from Fig. 31.5, which shows the final composition

for such stars to be 12C and 16O in roughly equal amounts with only a very small

admixture of 20Ne. In the example shown, the ratio 16O/12C is 51:47; if overshooting

is included in the models, it changes slightly to 55:42 due to the different history

of the temperature stratification of the core. Note, however, that the final ratio of
16O/12C depends strongly on the rather uncertain reaction rate for 12C.˛; 
/16O.
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The experimentally determined values have been varying by factors of 2–3 over the

years. One of the most recent and widely used rate is that by Kunz et al. (2002),

which–at 100 million K–is about 40 % higher than the classical one by Caughlan

and Fowler (1988), but 40 % lower than the one recommended in the NACRE

compilation (Angulo et al. 1999). Generally, the 16O=12C ratio as well as 20Ne/16O

increases with increasing stellar mass, since T increases.

The phase of central helium burning lasts roughly 1:6 � 107 years, which is

about 20 % of the duration of the main-sequence phase. This fraction seems to be

surprisingly large in view of the facts that nowL is somewhat higher, the exhausted

core is much smaller, and the specific gain of energy (per unit of mass of the fuel)

is only 1/10, as compared with hydrogen burning. The simple reason is that most of

the total energy output in this phase comes from hydrogen-shell-source burning. For

a star of 5Mˇ helium burning contributes only about 7 %, 26 %, and 42 % at points

E;F; andG, respectively: a rather small release of nuclear energy inside the core is

obviously sufficient to prevent it from contraction and to bring the whole star nearly

into thermal equilibrium. The luminosity LHe produced between points E and F

by helium burning in a helium core of mass MHe is roughly equal to the luminosity

a pure helium star of M D MHe would have on the helium main sequence (cf.

Sect. 23.1). In fact the helium-burning core resembles in several respects a star on

the helium main sequence with M D MHe. For later applications we note that the

radius RHe of the core changes rather little during most of this phase. It increases

very slowly until the central helium content has dropped to XHe � 0:3. It is only

in the final phase of central helium burning (XHe < 0:1) that the core contracts and

RHe drops appreciably (cf. Fig. 31.3). It should be mentioned that the evolution will

be affected by convective overshooting, which enlarges the convective core also

during central helium burning, but does not extend its duration appreciably. The

larger supply of nuclear fuel is compensated by the higher luminosity. In case of the

star shown in Fig. 31.2b it lasts 1:59 � 107 years.

Let us now look at the HR diagram in Fig. 31.2b. After point E the star (the one

calculated without overshooting, but this discussion applies also to the more general

case, as can be seen from Fig. 31.4) goes at first down along the Hayashi line, then

leaves this line and moves back to the left. The “bluest” pointF; for 5Mˇ, is reached

after 1:4 � 107 years (88 % of the helium-burning phase) when the central helium

content is down to about XHe � 0:15. The track then leads back towards point G

in the vicinity of the Hayashi line. The further evolution in which another loop may

occur will be discussed in Sect. 31.5.

The extension of the loops, i.e. the distance of their bluest points from the

Hayashi line, depends on the stellar mass M. We limit the discussion to a range

of not too large masses, say M < 10Mˇ, where the situation is relatively simple

and clear. Large loops are obtained for stars with large M . With decreasing

M the loops become gradually smaller and finally degenerate to a mere down

and up along the Hayashi line. This can be seen in Fig. 31.4, which gives the

evolutionary tracks for a comparable set of computations. The loops for different

stellar masses cover a roughly wedge-shaped area which is bordered by the Hayashi

line and the connection of the bluest points of the loops (i.e. points F where Teff
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Table 31.1 Characteristic points and the time elapsed after the zero-age main-sequence stage in

the evolutionary tracks of the models shown in Fig. 31.4

t (in 106a) lg L=Lˇ lg Teff (K)

3Mˇ E 319.95 2.459 3.633

E 0 327.24 1.809 3.692

F 337.69 1.810 3.692

G0 409.83 2.012 3.672

4Mˇ E 145.71 2.787 3.626

E 0 158.74 2.343 3.674

F 163.48 2.439 3.695

G0 176.65 2.437 3.661

5Mˇ E 82.62 3.082 3.615

E 0 91.92 2.758 3.654

F 96.05 2.963 3.739

G0 98.32 2.816 3.648

6Mˇ E 52.97 3.344 3.605

E 0 58.82 3.069 3.640

F 61.51 3.369 3.886

G0 63.21 3.138 3.635

8Mˇ E 28.82 3.787 3.585

E 0 31.50 3.532 3.617

F 32.54 3.869 4.024

G0 34.40 3.739 3.676

10Mˇ E 19.09 4.126 3.569

E 0 20.31 3.854 3.603

F 20.85 4.198 4.125

G0 22.00 4.165 3.909

The meaning of the points E;E 0; F; G0 is explained in the text

has a maximum). The duration of characteristic phases as obtained from these

calculations can been seen from Table 31.1. Point E 0 corresponds to the minimum

of L after E; where the leftwards motion starts, while G0 indicates the end of the

central helium burning [As with most numerical values obtained up to now from

evolutionary calculations, these data should be taken as an indication of typical

relative properties, rather than as absolutely reliable. For other data see the original

literature.]. The situation is much more complicated for still larger masses, where

the loops do not continue to grow withM and the tracks remain well separated from

the Hayashi line. Unfortunately this depends on the uncertain details of the mixing

during the earlier main-sequence phase (compare Sects. 30.4 and 31.4), and of the

poorly known mass loss rates.

The importance of the loops comes from the fact that they occur during a nuclear,

slow phase of evolution in which the star has a sufficient chance of being observed

(contrary to the foregoing phase of core contraction). We therefore expect to find
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Fig. 31.6 Equivalent of an HR diagram (magnitude V against colour index B � V / for the

cluster NGC 1866 (after Musella et al. 2006; data courtesy E. Brocato). Crosses indicate identified

Cepheid variables with well-observed light curves and known period

helium-burning stars as red giants in the area of the HR diagram covered by the

loops. This is in fact the case, as can be seen from HR diagrams of open clusters

(see, e.g. Fig. 31.6). They often show a more or less extended giant branch, which

is clearly separated from the main sequence by the Hertzsprung gap, and which sets

out nicely the range of loops for the corresponding values ofM .

31.3 The Cepheid Phase

It is of particular significance that the loops are necessary for explaining the

observed ı Cephei variables. The observations show that these stars are giants,

located in the HR diagram in a narrow strip roughly parallel to the Hayashi line

and a few 102 K wide (cf. Fig. 31.4). Indeed the theory of stellar pulsations which

will be described in Chap. 40 predicts that a star is vibrationally unstable if it is

located in the “instability strip” of the HR diagram, where the observed Cepheids

are found (Fig. 31.6). This is a consequence of the way in which the outer stellar

envelope (particularly the helium ionization zone) reacts on small perturbations.

When a stellar model has evolved into the instability strip, the oscillation will grow

to finite, observable amplitudes. This phenomenon does not show up in the normal

evolutionary calculations which are carried out by neglecting the inertia terms in the

equation of motion, since these terms are necessary to obtain an oscillation at all.

The calculated evolution therefore gives only the unperturbed solution.
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The evolutionary tracks discussed above cross the instability strip up to three

times. For all stars a first crossing occurs in the short phase of core contraction

when the star moves from C to D (Fig. 31.4). This passage is so rapid that there is

scarcely a chance for observing a star as a Cepheid in this phase. So we are left with

the much slower second and third passages, which occur only for sufficiently large

loops. According to Fig. 31.4 this is roughly the case for all stars with M � 5Mˇ.

This lower mass limit for Cepheids depends of course on all the uncertainties of the

loops in the computed evolutionary tracks.

The theory of stellar pulsations (Chaps. 40 and 41) also gives the period ˘ of

the oscillation. For the evolutionary models the theory in fact yields values of ˘

comparable with the observed Cepheid periods, which are in the range of 1–100

days. In a first approximation,˘ is shown to depend only on the mean density N% of

the whole star as

˘
p

N% D constant; N% � M=R3: (31.1)

Indeed˘ is of the order of the hydrostatic timescale �hydr introduced in (2.19).

Since the Cepheid strip is rather narrow, each passage defines reasonably well a

pair of average values of L and R; and (31.1) then gives the corresponding period

˘ . When going from the lowest to the highest passages in Fig. 31.2b, we find that

˘ increases since its variation is dominated by the increase of R; which enters into

N% with the third power. In fact, this, together with the properties of the instability

strip discussed in Chap. 41, will be shown to lead to the famous ˘–L relation

of Cepheids, which is the basic standard for the determination of extragalactic

distances.

During a passage through the Cepheid strip from right to left .E ! F /; the

radius R decreases, which means that ˘ must also decrease according to (31.1).

During a passage in the opposite direction .F ! G/, the period ˘ will increase.

From (31.1) and the Stefan-Boltzmann law (11.14) one derives for the period change

d log˘

dt
D 3

4

d logL

dt
� 3

d logTeff

dt
: (31.2)

If we take as an example the 5Mˇ model of Table 31.1, we can calculate the

average d˘
dt

(in the conventional units of s/year) for both passages. The pulsation

periods at points E 0, F , and G0 are approximately 4.4, 2.7, and 5.8 days, and the

period changes are predicted to be �9:5�10�3 s/year for the first crossing and 2:8�
10�2 s/year for the return passage. For more massive stars these rates can be higher

by a factor of 104, as can easily be inferred from Table 31.1. These predicted changes

of the period can in fact be measured by high-precision photometric observations

covering many periods. An analysis of over 200 Milky Way Cepheids by Turner

et al. (2006) confirmed the generally good agreement between observations and

theoretical predictions. Two Cepheids, ˛ UMi (Polaris) and DX Gem, show such

high period changes that they are believed to belong to that rare group of stars which

are currently crossing the Hertzsprung gap.

The duration of a passage �cep increases strongly towards lower values of L (i.e.

of ˘ ). For an assumed width of � lgTeff D 0:05 for the strip, the crossing on the
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Fig. 31.7 Well-determined masses of Cepheids in comparison with the luminosity of the tip of

blue loops as function of mass from different theoretical stellar evolution calculations. The long-

dashed line was obtained without the inclusion of overshooting; the solid and dot-dashed lines

with moderate overshooting (from two different calculations), and finally the short-dashed one

from models with strong overshooting. The empirical Cepheid masses seem to indicate slightly

more overshooting than used in the two “moderate” cases (after Evans et al. 1998)

way fromE to F takes �cep D 2:4� 106 years for 5Mˇ. For 8Mˇ the strip is wider

(� lgTeff � 0:1) and �cep D 0:25 � 106 years. From �cep one can draw conclusions

on the number of Cepheids to be expected. It turns out that this number should

increase substantially towards smaller values of ˘ , reach a maximum (at a period

of a few days), and then drop steeply, since the loops no longer reach the Cepheid

strip. This is at least qualitatively in agreement with the observations.

A less favourable result concerns the masses of the Cepheids. One value,

called the “evolutionary mass” Mev, can be obtained with the help of evolutionary

calculations essentially by comparing the luminosities. On the other hand, non-

linear pulsation calculations show that the form of the light curves should depend

on M , and a comparison with observed light curves gives a “pulsational mass”

Mpul. Now one finds that Mev notoriously exceeds Mpul by 15–20 %. This result

is confirmed by a handful of Cepheids for which the mass can be determined from

the dynamics of binary systems. This problem has been amply discussed in the

literature (Cox 1980; Keller 2008). Two solutions are considered: either the stars

have lost the “excessive” mass by stellar winds prior to becoming Cepheids, or

convective overshooting increases the mass of the helium core and the luminosity

of Cepheids (see Fig. 31.2b), such that for given ˘ , hence L, a lower mass Mev is

deduced. The latter solution appears to be the more realistic one (Keller 2008), as

it appears to solve the problem for Cepheids with dynamic masses (Fig. 31.7). On
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the other hand, overshooting tends to reduce the loops through the instability strip

both because largerMHe leads to less extended loops (cf. Sect. 31.4) and because of

the fact that the instability strip is inclined to higher Teff for higher luminosity. For

some stellar masses and compositions models with overshooting therefore avoid the

Cepheid phase altogether.

We have dwelt at length on this short phase of evolution, since the Cepheids are

important and offer a major fraction of those rare cases which, at least in principle,

allow a quantitative test of the theory.

31.4 To Loop or Not to Loop : : :

In Sect. 31.3 we saw how important it is to find evolutionary tracks looping through

the red giant region during central helium burning. It was all the more noteworthy

when one learned that the loops depend critically on some uncertain input param-

eters (e.g. �; ", treatment of convection, composition) used in the calculations. A

detailed classification of all influences, including their mutual interaction, is far too

involved. Rather we point out a few characteristic properties of the models which

allow a phenomenological prediction on the looping (We here follow the discussion

Strittmatter 1972).

For not too large masses (say, M . 7Mˇ/, the evolution through the loops

is so slow that the "g terms scarcely play a role. So we can reproduce the loops

sufficiently well by models in complete equilibrium. Let us again consider solutions

for the helium core (mass Mc, radius Rc, luminosity l0) and for the hydrogen-rich

envelope separately before fitting them to a full solution. The core luminosity l0
is supplied by central helium burning; hydrogen-shell burning at the bottom of the

envelope gives the additional luminosity L–l0.

For given chemical composition a solution for the envelope can be obtained after

specifying a pair of values Rc; l0 as inner boundary conditions at m D Mc (This is

quite analogous to the usual central conditions r D l D 0 at m D 0:). Any solution

gives a point in the HR diagram as well as pressure and temperature aMc, i.e. values

forL; Teff; P0; T0. For the first part of the loop, helium burning contributes relatively

little to L: Consequently we may approximate the envelope by setting l0 D 0 (This

can be done, of course, only for the calculation of the envelope which is dominated

by hydrogen burning; in the core, l0 cannot be neglected since it represents the whole

local luminosity of this region.). The envelope solutions there form a two-parameter

set in which we treat Mc; Rc as free parameters.

Next we look for a simple description of the chemical composition in the

envelope. Figure 31.8a shows a typical hydrogen profile. A rather moderate increase

of XH is the relic of hydrogen consumption in the convective core during the main-

sequence phase. The very narrow shell source has already eaten away the lower part

of this profile (dashed) and produced a steep increase of XH above the momentary

of Lauterborn et al. 1971a,b; for other descriptions see Robertson 1971; Fricke and
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Fig. 31.8 The hydrogen abundance in an evolved star. (a) The convective core has left a fairly

smooth profile (dashed line) which afterwards is steepened by shell burning. The shell is centred

at m0. Consequently XH D 0 for m < m0. For m > m0, there is still a region in which XH is not

constant. (b) Schematic description of the chemical profile given by the solid line in (a)

helium core. We idealize this by a profile described by the parameters�m and�X ,

as shown in Fig. 31.8b. The further shell burning will obviously increase Mc and

decrease�m and �X .

Now the envelope solution and its position in the HR diagram depend on the

four parametersMc; Rc �m;�X . We would like to have a simple function of these

parameters which can serve as a measure for the separation from the Hayashi line.

The back-and-forth motion in the loop would then correspond to a non-monotonic

variation of this function. A hint for a suitable procedure can be found in Fig. 31.1.

The envelopes there shift monotonically to the right in the HR diagram, while the

cores move through all three branches of the series of equilibrium models with

increasing ratioMc=Rc. This is essentially the surface potential of the core and plays

a decisive role in many descriptions of radial expansion and contraction during the

evolution. So we consider an “effective core potential”:

' WD h
Mc

Rc

; (31.3)

where we countMc; Rc in solar units. The function h D h.�m;�X ) takes account

of the influence of the chemical profile. We normalize it by setting h D 1 for a

simple step profile .�m D �X D 0) and specify it later for other profiles. For a

step profile and for M D 5Mˇ five sequences of envelope solutions with constant

Mc are shown in Fig. 31.9. The plotted lines ' D constant illustrate that ' may

indeed serve as an indicator of the distance from the Hayashi line. In particular we

can find a critical value 'cr such that all envelopes with

' > 'cr (31.4)

are close to, and move upwards along, the Hayashi line with increasing '. The line

' D 'cr may therefore roughly connect the minima of the envelope curves, and

from Fig. 31.9 we see that lg 'cr D 0:93 for 5Mˇ. For M D 3Mˇ and 7Mˇ, it is

0.83 and 0.99, respectively.
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Fig. 31.9 Envelope solutions

for M D 5Mˇ with

homogeneous composition

down toMc.h D 1) for

different values of the core

mass Mc (in Mˇ). Lines of

constant core potential ' are

indicated (After Lauterborn

et al. 1971a)

The function h is defined so that models with different profiles but equal distances

from the Hayashi line have the same '. Numerical experiments with different

profiles have shown that the simple approximation

h D econstant��m��X (31.5)

is sufficient. Here h depends only on the product �m � �X , i.e. to say on the

amount of excess helium in and just above the shell source. The profile influences

the envelope mainly through a hydrostatic effect.

Finally, relations between Mc and Rc have to be derived from solutions for the

core. Each solution of an envelope of givenMc; Rc yields a pair of valuesP0; T0. For

each Mc we vary Rc and get the functions P0.Rc) and T0.Rc), which are taken as

outer boundary conditions for the core. For a specified composition and differentMc

the core solutions then give the required relation Rc.Mc/, which is quite different

for ' larger or smaller than 'cr, namelyMc=Rc � M 0:4
c .' < 'cr) and �M 0:25

c (' >

'cr). Therefore this factor tends to increase ' when the shell source burns outwards.

We then have, in addition, the influence of the chemical evolution of the core on

Rc. As mentioned earlier, an appreciable effect occurs only after the central helium

content has dropped below, say, 0.1. The following rapid decrease of Rc tends to

increase '. Both these effects (the increase of Mc and the decrease of Rc) tend to

shift the model to the right in the HR diagram and may therefore finish a loop, but

they can never start it.

Obviously the responsibility for the onset of a loop rests with the function h: In

fact, when the shell source burns farther into the profile,�m and�X (cf. Fig. 31.8)

become smaller and h decreases according to (31.5). This outweighs the increase

of Mc=Rc in the first phase after E; and ' becomes smaller (Fig. 31.10). Sooner or

later, however, the factorMc=Rc takes over, since it continues to grow steadily, while

h will level off near its maximum h D 1 when the shell source has “crunched up”

almost the entire profile. Therefore ' reaches a minimum 'min and then increases

again. The turning of ' at 'min can be caused either by the growth of Mc or by
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Fig. 31.10 Sketch of the

effective potential ' as a

function of the core mass Mc

for an evolution through a

loop. The points E;F;G

refer to those in Fig. 31.2

the drop of Rc due to helium depletion. Which of these effects occurs earlier will

depend on the ratio of the timescales for shell source and central burning.

So we have found a non-monotonic variation of '. Whether this results in a loop,

and if so the length of the loop, will depend on 'cr and the starting value '.E/

by which we denote the value of ' at point E: For small M;'.E/ exceeds 'cr by

so much that even 'min remains above 'cr, and no loop occurs. The variation of '

then is reflected only in a motion down and up near the Hayashi line (Fig. 31.4, for

M . 4Mˇ). High values of M bring '.E/ close to 'cr, and therefore in the further

evolution ' goes below 'cr. A case with 'min < 'cr is illustrated in Fig. 31.10. When

' drops below 'cr the model detaches from the Hayashi line and starts looping to

the left. The turn to the right begins at point F when ' D 'min.

Now it is obvious that many factors can modify the loops. For example, all

properties changing the ratio of the timescales for central helium burning and

shell burning can shift 'min and thus the bluest point of the loop. In particular,

we have to mention all the uncertainties concerning convection. Appreciable

overshooting on the main sequence shifts the whole profile outwards. This

can increase Mc and consequently '.E/ � 'cr such that the loop becomes

smaller if it is not completely suppressed. Other factors affect the decisive

upper part of the hydrogen profile. Aside from careless integrations during the

main-sequence phase there are also physical uncertainties which can leave faulty

profiles in the models. An example is the mixing by the outer convection zone

during its deepest penetration, which in turn depends on the chosen mixing length

in the superadiabatic layer. A similar problem causes the semiconvective region in

main-sequence stars of large M (cf. Sect. 30.4.2). The assumption that this region

is fully mixed leads to a plateau in the calculated profile with a discontinuous drop

ofXH at its bottom. The presence or absence of this plateau must strongly influence

the function h: Correspondingly the literature presents quite different evolutionary

tracks for massive stars during helium burning (some with loops near the Hayashi

line, others more to the left and completely detached from this line) for different

assumptions on the semiconvective mixing.

In the following we present some examples for these effects. In Fig. 31.11 the

evolution of a 9Mˇ star is shown for two different chemical compositions and

different treatment of convection as well as a numerical aspect. In the top panel
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a

b

Fig. 31.11 Sensitivity of blue loops during core helium burning for a star of 9Mˇ and two

compositions. (a) (top panel): for X D 0:70, Z D 0:02. The black solid line is a calculation

with Schwarzschild criterion and without overshooting, which is included in the model shown by

the dashed line. The solid grey line is using the same physical assumptions as in the first case, but

with a coarse spatial resolution during the core hydrogen burning phase. (b) (bottom panel): for

X D 0:66, Z D 0:04. The two lines correspond to the cases without (solid) and with (dashed)

overshooting

(for a case with Z D 0:02) the inclusion of overshooting (dashed line) simply

shifts the track to higher luminosity, as expected, with respect to the “standard”

case without overshooting and using the Schwarzschild criterion for convection.

However, when reducing the spatial resolution of the model (solid grey line), the

chemical profile at the end of core hydrogen burning differs from the standard case,

such that near the end of core helium burning convection brings fresh helium from

outside the convective helium core, leading to a rejuvenation of the helium burning

and resulting is a second loop before the star finally returns to the Hayashi line. Note

that all calculations were terminated once helium at the centre was exhausted.

In the lower panel of Fig. 31.11, for Z D 0:04, the standard case is shown again

(solid line), which is similar to the standard case for the previous mixture. However,

in this case, overshooting (dashed line) enlarges the convective core sufficiently such

that the loop is reduced to a very small “looplet” close to the Hayashi line. These

numerical results agree well with the analysis done above.
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Fig. 31.12 Teff as function of age (years) for the 9Mˇ models of Fig. 31.11b

A further example how different assumptions concerning convection affect the

loops can be found in Fig. 32.1 for a star of 15Mˇ. In this particular case, the

use of the Ledoux criterion and semiconvective mixing lead to a quite extended

loop, while the application of the Schwarzschild criterion as well as the inclusion of

overshooting suppress it.

We see that details, which have originated from different regions and from earlier

phases when the effects were scarcely recognizable, can now pop up and modify the

evolution appreciably. The present phase is a sort of magnifying glass, also revealing

relentlessly the faults of calculations of earlier phases.

Finally, we demonstrate in Fig. 31.12 that the crossing of the Hertzsprung gap

and the onset of the blue loop happen on a thermal timescale as discussed in

the preceding paragraphs and that the “looplet” for the case with overshooting of

Fig. 31.11b (dashed line) is taking place on a much longer, nuclear timescale. We

show the effective temperature as function of age. The nearly vertical drop after

the main sequence (hottest points reached during the evolution) corresponds to the

Hertzsprung gap crossing on a thermal timescale of about 1:1 � 105 years (taken as

the time between logTeff D 4:2 and 3.7); the leftward evolution on the blue loop

(from logTeff D 3:65 to 4.0) lasts 9 � 104 years. The looplet, in contrast, needs

almost 3 � 106 years.



384 31 Evolution Through Helium Burning: Intermediate-Mass Stars

31.5 After Central Helium Burning

In the central core, helium burning terminates when 4He is completely processed

to 12C, 16O, and 20Ne (in various ratios, depending on the temperatures, i.e. on the

stellar mass, and on the reaction rates used). The burning continues in a concentric

shell surrounding the exhausted core, and the formation of this shell source for

5Mˇ can be seen in Fig. 31.2a. While the helium shell burns outwards, the CO

core increases in mass and contracts. Obviously the situation resembles that before

central helium burning. Now, however, the star has two shell sources, since the

hydrogen shell is still burning at the bottom of the hydrogen-rich envelope. In the

model shown in Fig. 31.2b the star then begins a steep upward evolution in the HR

diagram. In some cases a second, smaller loop is initiated depending on the same

quantities as mentioned in Sect. 31.4. In this phase the helium region between the

two shell sources expands, and the temperature in the hydrogen-shell source drops

so far that hydrogen burning ceases. The mass of the CO core roughly doubles. The

hydrogen later reignites and can compete with the energy release by the helium shell

only when the stellar luminosity has increased by almost a factor of ten and when

the CO-core has again doubled its mass to � 0:16M ). These two quantities are in

fact correlated, as we shall see in Chaps. 33 and 35.

From Fig. 31.2a we see that the outer convective envelope gradually reaches

further down until it contains more than 80 % of the stellar mass. Its lower boundary

clearly penetrates into a range of mass through which the hydrogen-shell source has

burned during the preceding �107 years, processing all 1H to 4He, and nearly all 12C

and 16O to 14N. These nuclei are now dredged up by the outer convection zone and

can appear at the surface. This is usually called the phase of the second dredge-up,

during which also the surface helium content, which has risen from an initial value

of 0.28 to 0.29 during the first dredge-up, increases again to 0.31 in this example.

It happens only in a mass range above 3–5Mˇ, but not for massive stars.

With the inward motion of the lower border of convection, the H–He discon-

tinuity has come rather close to the helium-shell source where T � 2 � 108 K.

This hot helium shell moves outwards until it is close enough to the hydrogen-

rich layers so that they heat up and hydrogen is ignited–the hydrogen-shell source

is reactivated. This mixing of hydrogen at the same time reduces the mass of the

hydrogen-exhausted core, which will later become the white-dwarf remnant of such

stars. The second dredge-up therefore prevents the formation of more massive white

dwarfs, too.

Before we continue discussing the stars in this mass range in Chap. 35, we have to

describe the evolution of massive and low-mass stars through central helium burning

in the next chapters.



Chapter 32

Evolution Through Helium Burning:

Massive Stars

The evolution of massive stars (stars with M & 8 � � � 10) through the phases of

central hydrogen and helium burning would be quite similar to that of intermediate-

mass stars (Chap. 31) if it were not for a few effects that influence it appreciably

and which are specific for this mass range. The fact that the size of the convective

core is encompassing large fractions of the star (Fig. 22.7) makes uncertainties

connected with the treatment of convection even more important. These are twofold:

semiconvection and overshooting, which we introduced already in Sect. 30.4.

Furthermore, massive stars are known to have intensive mass loss, which in some

cases are able to uncover the cores such that layers with a composition modified

by nuclear fusion processes become visible. These are the so-called Wolf-Rayet

stars. Finally, massive stars can rotate with surface rotation speeds of up to a few

hundred km/s, or to an appreciable fraction of the break-up speed. This leads, as we

will see in Chap. 44, to additional mixing processes beyond convective mixing, and

further effects. The modelling of massive star evolution therefore becomes quite

complicated and uncertain because of these physical effects which are not well

understood. We will discuss their general influence in the following.

32.1 Semiconvection

The problem of semiconvection was already introduced and illustrated in

Sect. 30.4.2 and Fig. 30.12. It is of particular importance for the evolution of stars

above, say, 10Mˇ, and results from the fact that the convective core contains less

and less mass during the main-sequence evolution. This “shrinking” of the core

is due to the increasing concentration of nuclear energy production, taking place

via the CNO cycles, towards the centre with increasing core temperature. It leaves

behind a region of varying chemical composition around the convective core, with

material that experienced only some amount of nuclear fusion surrounding inner

layers, where the conversion of hydrogen to helium proceeded further. In these

layers, both the stabilizing molecular gradient r� and the radiative temperature
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Fig. 32.1 Evolution of a 15Mˇ star of initial composition X D 0:70, Y D 0:28, Z D 0:02

with different treatments of core convection. The solid black line is the resulting evolution if

the Schwarzschild criterion is applied, the dotted one in case of the Ledoux criterion, with slow

semiconvective mixing, and the dashed one for the case with the inclusion of overshooting and the

Schwarzschild criterion. The grey solid line, finally, has been computed with more overshooting

and additional mass loss

gradient rrad are strongly oscillating functions of depth, depending on the exact

chemical profile left behind by the shrinking core. In numerical models this profile

depends on the spatial and temporal resolution of the models and their evolution,

but also, for example, on the detailed interpolation in sets of opacity tables. In

particular, it is quite important how accurately the varying chemical composition

at each position inside the star is represented by these tables. As a consequence of

these fluctuating terms in (30.10), the stability condition may be fulfilled in some

parts of these critical regions, but not in others. The result is a region above the

core with fluctuating radiative and convective layers, the exact structure of which is

rather uncertain to compute.

If the Schwarzschild criterion for convection is used, the stabilizing molecular

weight gradient in (30.10) is omitted and the layers become convective more easily

and earlier in the evolution. This is the situation displayed in the top panel of

Fig. 30.12 for a sample calculation of a 15Mˇ star. Since the separation between

the convective core and the semiconvective layers outside of it may be rather small,

a connection of both may occur, which “rejuvenates” the core by mixing fresh

hydrogen into the burning region. The main-sequence evolution is thus extended and

happens at higher luminosities. In Fig. 32.1 we show the resulting evolutionary track

in the HR diagram (solid line) of a calculation, in which this effect was avoided. In

this case the core helium burning is starting already during the evolution towards the

red region, at a temperature of logTeff D 4:17 (we have set, rather arbitrarily, this

phase to the point, when the helium luminosity has reached 20 % of the hydrogen
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luminosity). This is at an age of 9.35 Myr, and the core helium burning lasts for

another 1.43 Myr. At that time the star is beyond the luminosity minimum close to

the red (super-)giant region. The onset of core helium burning is connected with the

small loop at logTeff � 4:15.

The lower panel in Fig. 30.12 and the dotted line in Fig. 32.1 correspond to

the case of the Ledoux criterion. In this case the semiconvective layers above the

shrinking core mix only slowly, and a more gradual chemical gradient between

the hydrogen-exhausted core and the envelope is maintained. This is illustrated in

Fig. 32.2, which compares the hydrogen profile at the end of the main sequence

for the two criteria for convective stability. In the Ledoux case, the profile in the

outer parts of the initially convective core (out to m=M � 0:35) is very smooth,

whereas in the case of the Schwarzschild criterion it shows steps due to the sporadic

appearance of localized convective regions.

In the Ledoux case, the main sequence lasts longer for 1.4 Myr, and the helium

burning starts only 40,000 years later, at logL=Lˇ D 4:41 and logTeff D 3:78,

i.e. after the star has crossed the Hertzsprung gap on a thermal timescale and is

approaching the luminosity minimum close to the Hayashi line, along which it

quickly ascends within a few 104 years. Due to the deep convective envelope the

chemical composition is homogeneous down to m=M � 0:25 (Fig. 32.2, lines

showing the helium profile), while in the Schwarzschild case, steps still exist,

because at this stage, when the central helium content is 0.48, the star has not yet

reached the red giant region.

The most striking difference is the blue loop that the Ledoux model performs

during core helium burning. At its hottest extension, the central helium content is

reduced to 19 %; it is exhausted when the star is about halfway back to the giant

region. This phase lasts for 1.23 Myr, comparable to the duration of central core

helium burning in the Schwarzschild case. The fact that stars in that mass range,

calculated using the Ledoux criterion for convection and under the assumption of

slow semiconvective mixing, first become red giants and then perform blue loops

was very crucial in explaining the pre-explosion evolution of the progenitor of

supernova SN1987A, a star known as Sanduleak �69ı202 (see, e.g. Woosley et al.

1988; Langer 1989).

32.2 Overshooting

The effect of overshooting on the interior evolution of the same star is visible

in the middle panel of Fig. 30.12. The evolutionary path in the HR diagram

(Fig. 32.1) is shifted in a similar way as was shown in Fig. 31.2b, i.e. to higher

luminosities. Due to the enlarged convectively mixed core, central hydrogen burning

lasts now for 12.12 Myr, i.e. about 2.8 Myr (30 %) longer than for the case without

overshooting. This corresponds roughly to the increased amount of fuel for the

nuclear fusion, which can also be recognized from the hydrogen profile shown

in Fig. 32.2. Note also that overshooting has the additional effect of creating a
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Fig. 32.2 Chemical composition profiles for selected models along the evolution shown in

Fig. 32.1. Shown are the hydrogen and helium mass fractions (indicated by the usual symbols

X and Y ) as function of relative mass. The solid lines refer to the models calculated with the

Schwarzschild criterion, the dashed lines to those with the Ledoux criterion for convection, and

finally the dotted ones to the case with convective overshooting. The models were taken at the end

of the main sequence when the central hydrogen abundance had been reduced to 0.01, and during

core helium burning, when the central helium abundance is at 0.48

smooth chemical profile. The increase in luminosity of 4 logL=Lˇ � 0:11 at

the end of the main sequence agrees well with a simple estimate using (20.20),

which predicts L � �4, where � is the mean molecular weight obtained from

that of the hydrogen-rich envelope and of the helium-rich core. � increases from

0.83 to 0.90 when overshooting is enlarging the core, and therefore logL by

approximately 0:14. Core helium burning starts again halfway through the crossing

of the HR diagram, but without a visible feature in the track, and lasts for another

1.2 Myr. Although overshooting enlarges the convective helium-burning core, too,

the increased luminosity leads to an overall reduced duration of this nuclear phase.

This star does not perform any loop. This agrees with the similarity of the helium

profile with that of the Schwarzschild case (Fig. 32.2).

Overshooting is even more important for more massive stars. Figure 32.3 shows

evolutionary tracks for stars of 40 and 50Mˇ. For reference, the solid track of the

40Mˇ star was calculated without any overshooting, while the dotted grey line

does include it. The broadening of the main-sequence phase and the increase in

luminosity are obvious. The core hydrogen burning phase is extended from 4.47 to

4.69 Myrs, too. The models for the 50Mˇ star all include overshooting, but differ in

the criterion for convection. One realizes that until the end of core hydrogen burning

(after 4.14 respectively 4.12 Myrs), both tracks are almost identical, but differ

afterwards, when the newly established hydrogen shell encounters the hydrogen

profile, which, due to the use of the Schwarzschild (dotted line) or Ledoux (solid

line) criterion, is different. As we discussed in the previous section, the treatment of

convection influences strongly the post-main-sequence evolution!
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Fig. 32.3 Evolution of 40 and 50Mˇ stellar models calculated with various assumptions concern-

ing semiconvection, overshooting, and mass loss. For the 40Mˇ star three cases are shown: one

with neither overshooting nor mass loss using the Schwarzschild criterion for convection (black

solid track), one with strong overshooting (grey dotted), and one with additional mass loss (black

dot dashed). In total, this last model loses about 5Mˇ. The black solid line for the 50Mˇ star

refers to a case with overshooting and mass loss; the Ledoux criterion for convection was used

here. For comparison, using the Schwarzschild criterion results in the grey dotted line. Finally, the

grey dash-dotted line corresponds to a case with significantly enhanced mass loss. The final mass

of this model is 28Mˇ compared to 37.5 and 42:4Mˇ in the former cases

32.3 Mass Loss

In addition to the complications of the interior evolution due to convection, the

evolution of massive stars is also much stronger influenced by mass loss due to

stellar winds than that of stars of low and intermediate mass. These strong stellar

winds are driven by the radiation field and therefore increase with luminosity and

effective temperature (the energy density of radiation scales with T 4eff). For a review

of winds from hot stars, see Kudritzki and Puls (2000). In the following we used the

empirical mass loss formula by Vink et al. (2001) in our models.

In Fig. 32.1 (grey solid line) we show the evolution of the 15Mˇ model when

mass loss is added and the amount of overshooting is increased even further, to

now about 0:3HP. Accordingly, luminosity increases even further, and the main-

sequence phase extends over 12.8 Myr. The mass loss rate on the main sequence

is of the order of 1 � 2 � 10�8Mˇ=year and drops by a factor of a few when the

star gets cooler. At the end of helium burning 1:15Mˇ is lost due to stellar winds.

Since the amount of mass loss is below 10 % of the initial mass, the influence on

the track, when compared to the case with overshooting, but no mass loss (dashed),

is very small.
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This is different for the two stars of Fig. 32.3. The 40Mˇ star, when calculated

with mass loss (black dot-dashed line), loses mass at a level close to 10�6Mˇ=year,

which amounts, over the main-sequence lifetime of 4.54 Myrs to a reduction to

35:52Mˇ. Since the mass loss timescale is much longer than the nuclear timescale,

the star can always adjust to the reduced mass and evolves at any time similar to

a star of the same instantaneous constant mass. Note, however, that the width of

the main-sequence phase, that is the effective temperature of the “hook” indicating

the end of core hydrogen burning is very similar to that of the track without mass

loss. The convective core of the star is not influenced very much by the mass loss

from the stellar surface. Until the end of core helium burning, the star loses only a

further 0:03Mˇ; this is due to the short duration of this phase and the cooler stellar

temperatures, which reduce the mass loss rate by more than an order of magnitude.

All calculations of the 50Mˇ star have been done with mass loss. However, in

the case shown by the grey dash-dotted line the mass loss rate by Vink et al. was

artificially enhanced by a factor 3. While the stellar mass in the cases with normal

mass loss amounts to 42:5Mˇ after the main-sequence, here the model loses 12Mˇ
over 4.47 Myrs. Mass loss after the main sequence is negligible in all cases. Since

this enhanced mass loss is so strong, the star can no longer evolve unperturbed.

One can see this in the early part of the main sequence: instead of increasing in

luminosity, the track bends down trying to follow a sequence of unevolved stars

of decreasing mass. Only during the second half of core hydrogen burning, when

the nuclear timescale is further reduced, the usual evolution proceeds, but at lower

luminosity and also with a smaller extension of the main sequence. Indeed, the

convective core is smaller than in the cases with normal mass loss (17 instead of

27Mˇ in this phase; compare this to 22Mˇ of the 40Mˇ star with Schwarzschild

criterion, the evolution of which resembles most closely this one).

The maximum mass loss rate is 5 � 10�6Mˇ=year for the last case presented.

With even more extreme mass loss, up to 10�4Mˇ=year and above, the track would

even turn around and the star evolve to temperatures higher than the main sequence

(compare this to the generalized main sequences of Sect. 23.3 for large values of

q0). During this evolution, the wind would uncover nuclear-processed layers of the

star: first hydrogen-rich layers with high nitrogen abundance (from CNO-burning),

later helium-rich layers, and even later possibly carbon-rich, hydrogen-free layers

that experienced helium burning. These different surface compositions define the

sequence of different types of Wolf-Rayet stars (WN, WC). Such models have been

computed and presented by, for example, Maeder and Meynet (1987). However,

stars with such strong winds can no longer be considered as having an optically thin

atmosphere on top of the opaque interior. Instead, interior, atmosphere, circumstellar

envelope and hot, fast stellar wind should be treated together and consistently (see,

e.g. Schaerer 1996).

The evolution of massive stars is further influenced significantly by rotation and

the mixing of the interior induced by rotation (see Chap. 43). Massive stars are

known to rotate with surface velocities of several hundred km/s, sometimes close

to break-up velocities. Modelling rotating stars is an active field of research going

beyond the scope of this book. Therefore we refer the reader to the monograph by

Maeder (2009)
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Evolution Through Helium Burning:

Low-Mass Stars

33.1 Post-Main-Sequence Evolution

Compared to more massive stars, those of lower masses (typically M < 2:3Mˇ)

evolve in a qualitatively different way after the exhaustion of hydrogen in their

central regions. There are several reasons for this difference. Low-mass main-

sequence stars have small, or no, convective cores, and degeneracy is important,

if not on the main sequence, then shortly afterwards. In addition they start at a point

on the main sequence much closer to the Hayashi line than the starting points of

massive stars.

For example, if hydrogen is consumed in a well-mixed convective core, there

will be a helium core of appreciable mass at the very end of central hydrogen

burning. However, stars of around 1Mˇ have no convective cores; they consume

hydrogen as illustrated in Fig. 30.1. Consequently they produce a growing helium

core starting at zero mass. Therefore there is a smooth transition from central to

shell burning. These stars start with such large central densities (&102 g cm�3/ that

the electron gas is at the border of degeneracy, which has several consequences. The

Schönberg–Chandrasekhar limit (Sect. 30.5) is not important: initially, the core mass

Mc is below 0.1M . When, however, with outward burning shell sourceMc > 0:1M ,

the core contraction has produced sufficient degeneracy, making this limit irrelevant.

The stars can then well exist in thermal equilibrium with a degenerate, isothermal

helium core. This means that there is no “need” for a rapid core contraction

as described in Sect. 31.1 and no equivalent of the Hertzsprung gap. Another

consequence of degeneracy is that core contraction is not connected with heating.

This is in contrast to the pre-main-sequence contraction (Sect. 28.1) and to post-

main-sequence core contraction, which leads to helium ignition in massive stars.

At least in the first phases to be discussed here, the growth of the core mass is

slow (since the productivity of the shell source is low), and the whole core settles at

the temperature of the surrounding hydrogen-burning shell. This means that the core

temperature is far from that of the ignition of helium (�108 K). In low-mass stars,

helium burning will be seen to start much later owing to secondary effects, after
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the core mass has grown up to a certain limit. Therefore the shell-burning phase

between the central hydrogen and helium burning is a nuclear, slow phase, and one

can expect to find many such stars in the sky.

The contraction of the core is (as in the case of larger M ) accompanied by an

expansion of the hydrogen-rich envelope outside the shell source. However, as long

as the luminosity does not change drastically, the expansion cannot carry the star far

away from its starting point on the main sequence. The reason is that this point is

already close to the Hayashi line, which cannot be crossed (Chap. 24).

Any further expansion of the envelope is only possible if the luminosity

increases. In fact the calculations show that L now increases by more than a factor

102 while Mc grows.

Surprisingly enough it turns out that L soon depends on the properties of the

core only and is practically independent of the mass of the envelope (and therefore

of M ). In this phase the models can be well described analytically by a generalized

form of homology.

33.2 Shell-Source Homology

Consider a model in complete equilibrium consisting of a degenerate helium core

(mass Mc, radius Rc/ surrounded by an extended envelope of hydrogen with

abundance XH and mass Menv D M � Mc. The core mass Mc grows owing to

hydrogen-shell burning, which provides the luminosity L:

PMc D L

XHEH

(33.1)

(whereEH is the energy gain per unit mass of hydrogen). This equation could easily

be integrated if L were constant. However, while evolution proceeds, L grows too

since there is a relation betweenL andMc. The properties of the shell (and therefore

L/ are mainly determined by Mc and Rc, while they are almost independent of the

properties of the envelope. This can be understood from the fact that the core is

highly concentrated and the gravity at its surface is very large. Then, according to

hydrostatic equilibrium, jdP=dmj � m=r4 is very large, and P drops by powers

of 10 within a thin mass shell just above the core surface. The typical situation is

illustrated in Fig. 33.1. In other words, the extended envelope above this layer is

nearly weightless and has no influence on the burning shell.

We now present an analytic approach of Refsdal and Weigert (1970) giving

relations between the properties of the core and the physical variables in the

hydrogen-burning shell. For this purpose we will generalize the homology consid-

erations of Chap. 20 and use again the power approximations for � and ":

� D �0P
aT b; " D "0%

n�1T � : (33.2)
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Fig. 33.1 A schematic

sketch of the run of pressure

in the vicinity of a thin shell.

Mc is the mass of the core;

the shell extends toM0.r0/.

Its thickness is 4r , i.e.

M0 D Mr .Rc C 4r/ (After

H. Ritter,

priv. communication)

Here we have replaced the exponent � used in Chap. 20 by n � 1.

For the gas pressure we will use the ideal-gas equation

P D <
�
%T ; (33.3)

since we only want to apply it to regions outside the core, where the gas is not

degenerate. We also neglect radiation pressure since it is not important for low-

mass stars. In Chap. 35 we shall apply the relations derived here to more massive

stars and then take radiation pressure into account.

We now assume for the density, temperature, pressure, and local luminosity in

the region of the hydrogen-burning shell (i.e. for Rc � r � Rc C 4r) that there

exists a simple dependency on Mc and Rc:

%.r=Rc/ � M '1
c R

'2
c ; (33.4)

T .r=Rc/ � M  1
c R 2c ; (33.5)

P.r=Rc/ � M �1
c R

�2
c ; (33.6)

l.r=Rc/ � M �1
c R

�2
c : (33.7)

These homology-type relations have the following meaning: we compare two stellar

models of different core masses Mc and M 0
c and core radii Rc and R0

c: We define

homologous points, r and r 0, in the two models by

r

Rc

D r 0

R0
c

I (33.8)

the physical quantities at homologous points in the two models shall then be con-

nected by relations (33.4)–(33.7). This indeed is very similar to the considerations

of Sect. 20.1, though there the homologous points were defined with respect to the

total radius R; whereas we here define them with respect to the core radius Rc.
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While there, for example, in (20.9), the physical quantities vary like powers of M

andR, they here vary like powers ofMc andRc. For example, with our new concept

of homology, (20.9) is replaced by (33.4) and (33.6), which are written explicitly as

%

%0 D
�
Mc

M 0
c

�'1 �Rc

R0
c

�'2
; (33.9)

P

P 0 D
�
Mc

M 0
c

��1 �Rc

R0
c

��2
: (33.10)

We now introduce relations (33.4)–(33.7) into the stellar-structure equations in order

to determine the exponents. We therefore write (2.4), (5.11), and (4.42) in the form

dP � Mc%d.1=r/ ; (33.11)

d.T 4/ � �%l d.1=r/ D �0%P
aT bl d.1=r/ ; (33.12)

dl � "%d.r3/ D "0%
nT �d.r3/ ; (33.13)

with positive factors of proportionality. In (33.11) we have assumed that m � Mc

= constant, which is a sufficient approximation in the region in which P drops to

negligible values. This assumption yields decisive differences from the relations

discussed in Chap. 20. Introducing (33.4)–(33.6) into (33.3) we easily obtain for the

exponents

�1 D '1 C  1; �2 D '2 C  2 : (33.14)

We now integrate (33.11)–(33.13) over the shell, starting with (33.11): we choose

a radius r0 sufficiently larger than Rc that P.r0=Rc/ � P.r=Rc/, and find from

(33.11) that

P.r=Rc/ D P.r0=Rc/C
Z 1=r

1=r0

GMc%d.1=r/ � GMc

Rc

Z x

x0

%dx ; (33.15)

with x D Rc=r . If we do the same for another model with M 0
c ; R

0
c, we find for the

pressure at the homologous radius r 0

P 0.r 0=R0
c/ � GM 0

c

R0
c

Z x

x0

%0 dx D GM 0
c

R0
c

�
M 0

c

Mc

�'1 �R0
c

Rc

�'2 Z x

x0

%dx ; (33.16)

where (33.9) has been introduced into the integral. Comparing (33.16) with (33.15)

yields

P.r=Rc/ � M '1C1
c R'2�1c ; (33.17)

and if we compare this with (33.6) we find

�1 D '1 C 1; �2 D '2 � 1 : (33.18)
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The same procedure can be carried out using (33.12) and (33.13). For the integration

in the first case we again choose r0 sufficiently far outside, where the temperature

is small compared to its values in the shell; for the integration of (33.13) we take

r0 D Rc, where the local luminosity vanishes. We then obtain

.4 � b/ 1 D '1 C a�1 C �1 ; (33.19)

.4 � b/ 2 D '2 C a�2 C �2 � 1 ; (33.20)

�1 D n'1 C � 1; �2 D n'2 C � 2 C 3 : (33.21)

Equations (33.14) and (33.18)–(33.21) are eight linear inhomogeneous algebraic

equations for the eight exponents in (33.4)–(33.7). The solutions are

'1 D �� � 4C aC b

N
; '2 D � � 6C a C b

N
;  1 D 1;  2 D �1 ;

�1 D 1C '1; �2 D '2 � 1; �1 D � C n'1; �2 D 3 � � C n'2 ;

(33.22)

with

N D 1C nC a : (33.23)

Equations (33.22) allow us to determine the variations of the physical quantities

from one model (characterized by Mc; Rc) to another (characterized by M 0
c; R

0
c).

The temperature and the local luminosity at homologous points vary as

T � M  1
c R 2c D Mc=Rc ; (33.24)

l � M �Cn'1
c R3��Cn'2

c : (33.25)

This holds for all homologous points, also for those at the upper border of the range

of integration where l D L. Therefore the luminosity of these shell-source models

depends onMc (rather than onM ) and on the mode of energy generation (in striking

contrast to main-sequence type models, cf. Chap. 20). As an illustration we assume

a D b D 0 (electron scattering, see Sect. 17.1) and � D 13; n D 2 (CNO cycle, see

Sect. 18.5.1). Then '1 D �3; '2 D 7=3, and we find

L � M 7
cR

�16=3
c : (33.26)

We have obtained relations T .Mc; Rc) and L.Mc; Rc) independent of M . In order

to see how T and L vary along an evolutionary sequence of models with increasing

Mc, one has to know how Rc varies with Mc. Since the cores in the evolution under

consideration are degenerate, they resemble white dwarfs whose radii decrease with

increasing mass (see Sect. 19.6, Chap. 37). We therefore can expect from (33.24)

that the temperature in the shell source increases withMc, and according to (33.26),

the luminosity increases strongly with Mc even with Rc = constant (this increase

being much steeper than the L.M/ relation for main-sequence stars).
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Fig. 33.2 The luminosity ls (solid curve, left ordinate) at the top of the hydrogen-burning shell

around a degenerate helium core of mass Mc: The dotted line indicates the importance of the

radiation pressure, the value of ˇ.D Pgas=Ptotal) being given by the ordinate at the right. When

Mc approaches the Chandrasekhar mass MCh (Sect. 19.7; dot-dashed vertical line), the luminosity

curve has the tendency to approach the Eddington luminosity LE (dashed line) for which gravity

equals the radiation-pressure gradient (for an opacity dominated by electron scattering; see

Sect. 22.5)

We now need a relation Rc.Mc/. The classical mass-radius relation for white

dwarfs (Chap. 37) is, of course, not directly applicable to these cores. Below the

shell there must be a transition from complete through partial to no degeneracy.

Compared to the outer layers of white dwarfs, this transition region is very hot (like

the shell source) and may occupy an appreciable fraction of the core volume (For

a discussion of this problem, see Refsdal and Weigert 1970.). Nevertheless, as a

simple example for Rc.Mc/ we here take the relation for the cold white dwarfs of

Table 37.1, yielding d lnRc=d lnMc for different values ofMc. This can be used in

d lnL

d lnMc

D �1 C �2
d lnRc

d lnMc

; (33.27)

which follows from (33.7). The coefficients �1 and �2 are determined by (33.22).

For a D b D 0; n D 2; � D 14, one finds d lnL=d lnMc � 8 � � � 10. We can

also integrate (33.27) numerically when starting from a correctly computed model,

which gives an initial value L for a givenMc. The results of such an integration, ls,

are shown in Fig. 33.2 by the left part of the solid curve where radiation pressure

can be neglected (ˇ � 1).
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For the temperature at homologous points, say at the bottom of the hydrogen-

burning shell, instead of (33.27), we obtain from (33.24)

d lnT

d lnMc

D 1 � d lnRc

d lnMc

; (33.28)

and we get d lnT=d lnMc somewhat larger than 1. Since the cores are assumed to be

isothermal, this also gives the increase of the central temperature Tc. We see that in

this way Tc can be raised to helium ignition even by models in complete equilibrium.

33.3 Evolution Along the Red Giant Branch

In the following we describe the evolution of a star of 1:3Mˇ as calculated by

Thomas (1967) in a pioneering paper. The chemical composition of the initial model

on the ZAMS is XH D 0:9;XHe D 0:099;Z D 0:001, which at that time seemed to

be the appropriate mixture for a star of population II. The essential results, however,

do not depend too much on the chosen chemical composition, as we will show

later and in Fig. 33.5. The initial model has L D 1:91Lˇ; Teff D 6; 760K. Nuclear

energy is released in the central region at Tc D 1:48 � 107 K. There is a small

convective core containing 4.3 % of the total mass, which disappears long before

the exhaustion of hydrogen in the centre. There is also an outer convective zone,

which reaches inwards from the photosphere to about r � 0:95R:

The evolutionary track in the HR diagram is shown in Fig. 33.3, while the internal

evolution is illustrated by Fig. 33.4. In the HR diagram the image point of the model

first moves upwards and then to the right. At the same time, the model switches from

central nuclear burning to shell burning, as can be seen in Fig. 33.4. We have already

learned from the shell-source homology of Sect. 33.2 that the luminosity must grow

with increasing core mass. The calculated evolution confirms these predictions once

the core is sufficiently compressed. The track is very close to the Hayashi line,

leading up along the giant branch to higher luminosities and correspondingly larger

radii. The neighbourhood of the line of fully convective stars can also be seen from

the internal structure of the models. Figure 33.4 shows that the outer convective

zone penetrates deeply inwards until more than 70 % of the total mass is convective.

It then reaches into layers which are already contaminated by products of nuclear

reactions (see dotted area in Fig. 33.4). The processed material is distributed over

the whole convective region and therefore also brought to the surface. This type of

partial mixing, the first dredge-up, we have already encountered for more massive

stars in Chap. 31.

The monotonic increase of the luminosity is interrupted when the hydrogen-

burning shell reaches the layer down to which the outer convective zone has mixed

at the moment of deepest penetration. At this point the mixing has produced a

discontinuity in molecular weight between the homogeneous hydrogen-rich outer

layer and the helium-enriched layers below. When the shell source reaches the
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Fig. 33.3 The evolutionary track of a star of 1:3Mˇ with the initial composition XH D
0:9; XHe D 0:099; Z D 1 � XH � XHe D 0:001 as computed by Thomas (1967). The letters

A�D refer to the corresponding evolutionary states in Fig. 33.4. The arrows indicate the direction

of the evolution. This direction is reversed for a short period between the dotted horizontal lines.

This transient drop in luminosity at about lg L=Lˇ D 2 occurs when the hydrogen-burning shell

crosses the chemical discontinuity left behind when the bottom of the outer convective zone moves

outwards again in the mass scale after it has reached its deepest extension (see Fig. 33.4)

discontinuity, the molecular weight of the shell material becomes smaller. This

causes the drop of luminosity at L� 100Lˇ (see Fig. 33.3) as can easily be

understood.

For this purpose we follow the considerations of Sect. 33.2, but this time, we vary

the molecular weight � at homologous points while keeping Mc, Rc, and all other

parameters constant. Analogously to (33.4)–(33.7) we write

%.r=Rc/ � �'3 ; (33.29)

T .r=Rc/ � � 3 ; (33.30)
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Fig. 33.4 The evolution of the internal structure of a star of 1:3Mˇ plotted in the same manner as

in Fig. 31.2a. The main region of hydrogen burning is hatched; “cloudy” areas indicate convection.

Regions of variable hydrogen content are dotted (After Thomas 1967)

P.r=Rc/ � ��3 ; (33.31)

l.r=Rc/ � ��3 ; (33.32)

and with the same procedure as in Sect. 33.2 we find

'3 D 4 � b � �

N
;  3 D 1; �3 D '3; �3 D � C n'3 ; (33.33)

withN D 1CnCa: For example, using again the values � D 13; n D 2; a D b D 0

as in Sect. 33.2, we see that (33.32) becomes l � �7. Therefore the luminosity

decreases with decreasing �, which explains the transient reduction of L: After

the shell source has passed the discontinuity, � remains at its reduced value and

the luminosity grows again with increasing core mass. As the star passes three

times through the region between the two dotted horizontal lines in Fig. 33.3,

observations have a higher probability of finding stars in this luminosity range

than in the neighbouring ones. In luminosity functions of globular clusters, which

give the number of stars per brightness bin, this event in the evolution of low-mass

stars shows up as a localized peak, which is either called Thomas peak, or simply
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Fig. 33.5 The evolutionary track of a star of 0:85Mˇ and composition XH D 0:7499, XHe D
0:25, and Z D 0:0001. This is the modern version of Fig. 33.3 calculated with a modern stellar

evolution code and a Pop. II composition typical for metal-poor globular clusters. The evolution

proceeds from the main sequence to the tip of the red giant branch at logL=Lˇ � 3:2, through

the helium flash to the horizontal branch

the bump. Indeed, in high-quality photometry of clusters, it can be found easily. As

an example, we refer the reader to the case of NGC 5824 (Zoccali et al. 1999).

Evolutionary calculations for somewhat different total masses M yield similar

results. Near the main sequence the tracks are shifted relative to each other according

to their different starting points on the ZAMS. When approaching the Hayashi line

the tracks merge (This is not exactly true, since different total masses have slightly

different Hayashi lines.). After the cores are sufficiently condensed they are virtually

independent of the envelope (and therefore of the total mass M ). However, they

determine the total luminosity according to the L.Mc) relation. Consequently stars

of different M but the same Mc have the same L and are practically at the same

point in the HR diagram.

The same convergence of the evolution for different M must occur for all

properties of the shell source and the core. For example, the central values of density

and temperature converge to the same evolutionary track in the %c–Tc plane.

Numerical calculations show that with growing core mass the temperature in the

core rises. This is due to two effects which are of approximately the same order.

The first is the increase of the temperature in the surrounding shell source where

T � Mc=Rc after (33.24). While this effect already occurs in models of complete

equilibrium, there is an additional effect due to non-stationary terms. With growing

Mc the core contracts, releasing energy. If this occurs rapidly enough, it heats up the

transition layer below the shell, and therefore the whole core. An inward-directed

temperature gradient is built up in the transition region, such that the energy released

by "g terms is carried away. However, this is not the whole story, since at the same

time conditions in the core are such that cooling by plasma neutrinos, which were
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discussed in Sect. 18.7 (see also Fig. 18.11), becomes important and modifies the

temperature gradient, as will be seen in Sect. 33.5. The core evolution is enhanced

by increasing L: the rate PMc is proportional to L, which in turn increases by a

high power of Mc, and the process speeds up more and more. Both these effects,

controlled by the growth of Mc, finally increase the core temperature to �108 K at

which helium is ignited. This happens when Mc � 0:48Mˇ, almost independently

of M , but slightly decreasing with increasing metallicity. The matter in the core

is highly degenerate, and the nuclear burning is unstable. The resulting thermal

runaway terminates the slow and quiet evolution along the giant branch.

33.4 The Helium Flash

We start with some analytic considerations and assume that helium is ignited in

the centre, where the electron gas is assumed to be non-relativistic and degenerate.

In Sect. 25.3.5 we have discussed the secular stability of nuclear burning in a small

central sphere of massms; “luminosity” ls D "ms, and gravothermal specific heat c�.

Assuming a homologous reaction of the layers above, a small relative temperature

perturbation #c.D dTc=Tc) was shown in (25.35) to evolve according to

P#c D ls

cPmsTc

."T C �T � 4/#c ; (33.34)

where we have set ı D 0 and therefore c� D cP according to (25.29). For helium

burning we have "T > 19 (see Sect. 18.5.2), which certainly dominates the other

terms in the parenthesis which thus is positive: the onset of helium burning in the

degenerate core is unstable and results in a thermal runaway. The timescale of the

thermal runaway is of the order cPmsTc=ls D cPTc=", i.e. of the order of the thermal

timescale of the helium-burning region.

The homologous linear approximation which yielded (33.34) can only give a

very rough picture of the events after helium ignition. Nevertheless we can try to

discuss the consequences which follow from our simple formalism. From (25.25)

and (25.26) one obtains
d%c

%c

D 3ı

4˛ � 3#c ; (33.35)

and for the completely degenerate non-relativistic gas, where ˛ D 3=5; ı D 0, we

find d%c D 0. Therefore, while during the thermal runaway the central temperature

is rising, the matter neither expands nor contracts. The central density remains

constant, and in the lg%c–lgTc diagram, the centre evolves vertically upwards as

indicated in Fig. 33.6. The reason is that in the (fully) degenerate gas the pressure

does not depend on temperature and therefore remains constant during the thermal

runaway. But only an increase of pressure could lift the weight of the mass above

and cause an expansion. Since the Pdv work is zero, all nuclear power goes into

internal energy. During the thermal runaway there is an enormous overproduction of

nuclear energy. The local luminosity l at maximum comes to 1011Lˇ, about that of
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Fig. 33.6 Schematic sketch of the changes of temperature and density during the helium flash.

After the ignition temperature is reached in the regime of degeneracy the temperature rises almost

without a change of density until degeneracy is removed near the broken line. Then a phase of

almost isothermal expansion ensuesfollowed by a phase of stable helium burning in the non-

degenerate regime

a whole galaxy, but only for a few seconds (The expression “helium flash” is quite

appropriate indeed!). However, almost nothing of it reaches the surface, since it is

absorbed by expansion of the non-degenerate layers above.

With increasing temperature at constant density, the degeneracy is finally

removed. This happens roughly when in Fig. 33.6 the border .˛ D 3=4) between

degeneracy and ideal gas is crossed. Then with further increase of T the core

expands. With the removal of degeneracy the gravothermal specific heat becomes

negative again and central helium burning becomes stable; the expansion stops

the increase of temperature. The overproduction then is gradually removed by

cooling until the temperature has dropped to “normal” values for quiet (stable)

helium burning. In the lg %c–lgTc plane the core settles near the image point of

a homogeneous helium star of mass Mc, which is of the order of 0:48Mˇ.

There is another prediction we can make for the changes in the HR diagram.

Until the onset of helium burning the total luminosity of the star (which is just the

power produced in the shell) increases with increasing core mass as expected from

(33.26). After degeneracy is removed in the central region, the core expands and Rc

increases. During the short phase of the flash, Mc remains practically unchanged.

From (33.26) we therefore expect the luminosity to be appreciably reduced after the

flash phase, and this indeed can be seen from Figs. 33.3 and 33.5.

33.5 Numerical Results for the Helium Flash

In Sect. 33.4 we have tacitly assumed that the maximum temperature is in the centre.

This, however, is not the case if neutrinos–as we discussed them in Sect. 18.7–are

created in the very interior of the core and provide an energy sink there, since they
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Fig. 33.7 The temperature T (in K) as a function of the mass variable m in a 1:2Mˇ model

with solar metallicity, shortly before the onset of (unstable) helium burning (solid line). Owing

to neutrino losses the maximum temperature does not occur in the centre but near m=M D 0:1

(indicated by the dot). The dashed line (deviating from the solid one only near the dot) shows

how the ignition of helium burning has raised the temperature at this position inside the star only

104 years later

leave the star without noticeable interaction. Then the maximum of temperature is

not in the centre but at a finite value of m (see Fig. 33.7). From there, energy flows

outwards (l > 0) and inwards (l < 0). This energy is released by core contraction in

the transition zone below the burning shell as mentioned in Sect. 33.3. The transport

mechanisms are radiation and conduction. The inward-going energy is carried away

by neutrinos. Then the ignition of helium and the flash will not take place in the

centre but in the concentric shell of maximum temperature. This is nearm=M D 0:1

according to Fig. 33.7 [Note that in the calculations shown in Fig. 33.4 an unusually

low value of � in the envelope was assumed. Therefore, according to (33.30) and

(33.32), T in the shell source and L are smaller for the sameMc andRc, and helium

ignites at correspondingly largerMc, in this case at m=M � 0:3, cf. Fig. 33.10.].

In Fig. 33.8, the evolution is shown in a lg %–lg T diagram for the shell in which

helium is ignited. We see that the shell behaves roughly as predicted in Fig. 33.6

for the centre. When the temperature of helium burning is reached at point A, the

core matter heats up. After degeneracy is removed near point B; the core expands

and a non-degenerate phase follows with stable helium burning, roughly at the same

temperature at which the flash phase had started but at much lower densities. The

internal structure of the model after the ignition of helium is indicated in Fig. 33.10.

The calculations by Thomas (1967) were carried out with neutrino rates which

turned out to be too high. In calculations for 1:3Mˇ, with more realistic neutrino

rates (and composition), the igniting shell was at m=M D 0:11, similar to the value

in Fig. 33.7, which is based on calculations with the most recent neutrino loss

rates. Sweigart and Gross (1978), and more recently Salaris and Cassisi (2005),

investigated in detail the dependence of the core mass and the location of the

temperature maximum as function of mass, helium content, and metallicity. For
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Fig. 33.8 Temperature T (in

K) versus density % (in

g cm�3/ for the mass shell at

which helium ignites in the

1.3Mˇ model. The letters

A–C refer to the

corresponding evolutionary

slates in Figs. 33.3 and 33.4.

The dashed line (degeneracy

parameter  D 0 for �e D 2)

roughly separates the regimes

of degeneracy and

non-degeneracy of the

electron gas (After Thomas

1967)

stellar masses in the range 0:7 � M=Mˇ � 2:2 helium ignites at m=M � 0:17 for

M D 0:7Mˇ, while with increasing total mass the shell of ignition moves closer to

the centre.

The changing luminosity provided by the hydrogen shell and helium burning is

displayed in Fig. 33.9. The timescale in this figure changes several times due to the

different phases of the flash, which starts very slowly over several 105 years (not

shown), but accelerates dramatically once logLHe=Lˇ > 3. Within a few years

logLHe=Lˇ > 10, but drops equally fast after the peak. Around this time, when

the layers above the flash location begin to expand, the hydrogen shell basically

extinguishes due to the drop in temperature, while the total luminosity remains

almost constant. In the following 105 years the hydrogen shell reignites and L

drops as predicted in Sect. 33.4. The flash and the resulting convection heat up

the core such that the lower boundary of helium fusion is moving inwards within

approximately one million years. In all hydrostatic calculations this progression is

connected with small, secondary helium flashes, as can be seen in the figure. When

the star finally settles on the horizontal branch, the core, which is now burning

helium under non-degenerate conditions, is already enriched in carbon by about 5 %.

Although the properties of the regions in which the flash occurs can change

drastically within a few seconds, it seems as if inertia terms can be neglected even

in the most violent phases of the flash. Another open question is, how convection

behaves during the rapid evolution of the helium flash and whether the ignition of

helium and the flash in a shell proceeds in strict spherical symmetry. Such question

can only be answered with 2- and 3-dimensional hydrodynamical calculations.
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Fig. 33.9 Changes in total (L), hydrogen (LH), and helium (LHe) luminosity with time during the

helium flash in the 0:85Mˇ star of Fig. 33.5. t D 0 is defined for the moment whenLHe=Lˇ D 5,

and the zero-age horizontal branch is reached 1:325�106 years later. This is defined as the point of

minimal total thermal energy and indicated by the vertical dashed line. Vertical dotted lines delimit

ranges of different scale for the time axis

These, however, need such enormous computational resources that so far only parts

of stars can be modelled and their evolution be followed for only a short period of a

few hours to days. This restricts such simulations to the peak of the helium flash and

the inner core of the star. Mocák et al. (2008, 2009) have done such simulations and,

apart from some details, confirmed the overall applicability of the 1-dimensional,

spherical, and hydrostatic stellar models. However, they seem to predict a much

faster heating of the core and the absence of the secondary flashes. This is one of

the several unanswered questions connected with the helium flash. Another one is,

whether during the flash matter is expelled from the surface.

If helium is ignited off centre, then the burning forms a shell enriched in carbon

and oxygen which surrounds a helium sphere. But if the molecular weight decreases

in the direction of gravity, the layer is secularly unstable: a mass element pushed

down so slowly that it could adjust its pressure and temperature to that of the new

surroundings .DP D 0;DT D 0, in the terms of Chap. 6) would have a higher

density .D% > 0, because D� > 0) and would sink deeper. This corresponds to

the “salt finger instability” discussed in Sect. 6.5. In the case discussed here it will

cause mixing between the shell in which carbon and oxygen are produced, and the

helium region below. The linear stability analysis is rather easy, though it is difficult

to follow the instability into the non-linear regime and, for instance, to determine
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Fig. 33.10 The evolution of the internal structure of a star of 1.3Mˇ during the helium flash. The

zero point of the abscissa corresponds to the age 7:474 � 109 years of the abscissa of Fig. 33.4.

The main regions of nuclear energy release are hatched; the hydrogen-burning shell is, in the mass

scale of the ordinate, so narrow that it appears as a broken line. It extinguishes at t � 10�3 years.

“Cloudy” areas indicate convection. The close approach of the outer convective envelope and the

convective region above the helium-burning shell is shown with a strongly enlarged ordinate in a

window at the lower right. There the dotted area indicates the transition region of the chemical

composition left by the (then extinguished) hydrogen-burning shell

the characteristic time for this mixing process. Simple assumptions about the flow

pattern suggest that mixing due to the inwardly decreasing molecular weight is slow

compared to the nuclear timescale and can therefore be neglected (Kippenhahn et al.

1980a,b). The multidimensional hydrodynamical models by Mocak and co-workers

mentioned above indeed show the occurrence of such fingers, which, however, the

authors ascribe to Rayleigh-Taylor instabilities. They could be followed for less than

2 days only.

More spectacular mixing than in the case just discussed can occur if the

convective shell, forming above the helium-burning shell during the flash, merges

with the outer convective layer. Then hydrogen-rich matter will be mixed down to

regions with high temperatures where simultaneous helium and hydrogen burning

give rise to quite unusual nuclear reactions and chemical compositions. Although

the boundaries between the two convective zones come very close to each other,

they do not merge usually. This can be seen in the detailed picture on the lower

right of Fig. 33.10. But there are situations where such “flash-induced mixing”

indeed happens. The first example is stars with zero initial metallicity, so-called

Population III stars, and with M . 1:0Mˇ. In such stars only the pp chains can
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produce helium, and this leads to a different temperature stratification, which allows

the penetration of the hydrogen/helium discontinuity by the convective layers above

the helium ignition shell (Fujimoto et al. 1990). The result of the flash-induced

mixing are surface abundances drastically enhanced in carbon produced by triple-

alpha reaction and in nitrogen resulting from proton captures on some of this carbon

(Schlattl et al. 2001). The second case where this was encountered is Pop. II stars

with extremely thin hydrogen envelopes (of order 10�4Mˇ), which could be the

result of enhanced mass loss on the red giant branch (RGB). Due to the low envelope

mass the hydrogen shell is extinguishing and the star leaves the RGB, returning

first to hotter temperatures and then entering the white dwarf cooling phase. If

on its way across the Hertzsprung-Russell diagram the helium flash sets in (such

stars are also called “hot flashers”), convection can penetrate into the envelope to

engulf protons into the hot helium-burning regions, which leads to a “CNO flash”.

As a consequence the surface is enriched both in helium and carbon, and the star

resembles, both in composition and its location, stars at the very hot end of the

horizontal branch (see Sect. 33.6). For more details we refer the reader to Cassisi

et al. (2003).

33.6 Evolution After the Helium Flash

After the violent phase of the helium flash there follows a phase of quiet burning

in non-degenerate matter. The transition to this is not particularly well covered by

calculations; one of the few exceptions is shown in Figs. 33.5 and 33.9. Most authors

prefer to start with models that belong to a later state in which the models already

resemble the horizontal-branch stars of globular clusters. These methods and how

accurately they reproduce the full calculations carried through the complete flash

event can be found in Serenelli and Weiss (2005). One should keep in mind, though,

that the comparison is done with spherical symmetric, hydrostatic models. Once

multidimensional hydrodynamical models are available for all phases of the helium

flash, one will see how accurate the hydrostatic models are themselves.

Although during the flash helium is ignited in a shell, it will also burn in the

central region after some time, and the stars can be approximated by models on

generalized main sequences (cf. Sect. 23.3). For example, a 0.9Mˇ star, having

a helium core of 0:45Mˇ after the flash, corresponds to the generalized main

sequence for q0 D 0:5. Then from Fig. 23.5 we expect that the model should lie

in the HR diagram near the Hayashi line at a luminosity of about L � 100Lˇ,

appreciably lower than just before the flash. This is also what we had expected from

the analytic discussion at the end of Sect. 33.4, and the historical evolutionary track

in Fig. 33.3 in fact already pointed downwards in the right direction. The modern

calculation of Fig. 33.5 covers the whole post-flash part. When in the subsequent

phase q0 increases with growing Mc; the model should cross over to generalized

main sequences of larger q0, i.e. move to the left with slightly increasing luminosity.

This also applies when comparing models of the same core, but different total
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mass, and therefore different values of q0. Thus, the analytic discussion and the

generalized main sequences already sketch basic properties of the phase following

the helium flash, which is identified as the (zero-age) horizontal branch.

Detailed calculations, first carried out by Faulkner (1966) in order to reproduce

the horizontal branch of globular clusters, show that the models after the helium

flash depend not only on q0 but also on the chemical composition. He compared

models of different mass M in complete equilibrium at the onset of quiet helium

burning in a core of Mc D 0:5Mˇ with a hydrogen-burning shell at the bottom of

the envelope. For M > 0:75Mˇ (at about solar metallicity) they were close to the

Hayashi line, but for a smaller mass, they were located considerably to the left. In

order to cover the whole observed horizontal branch with such models for a fixed

metallicity, one has to assume that the models differ in mass. In a globular cluster,

where all stars have the same age and all stars at the tip of the RGB and on the

zero-age horizontal branch (ZAHB) had nearly the same initial mass, the horizontal

extent of the horizontal branch provides stringent evidence for different mass loss

during the previous phase, either before or during the helium flash. This question

still awaits a final answer, but the most likely scenario is the following:

During the slow evolution before the helium flash the stars lose an appreciable,

but from star to star different, amount of mass from their surfaces. Then the stars

start their evolution after the flash with the same core masses but different envelope

masses: those which have lost more mass lie on the left, while those which have lost

only little mass lie in the red region (Fig. 33.12).

To some degree, however, the observed horizontal branches reflect the evolution

of stars after their appearance on the zero-age branch. When their cores grow owing

to shell hydrogen burning, and the helium is consumed in their central part, their

evolutionary tracks loop back and forth, populating the horizontal branch. The

observed branches are not simply the locus of zero-age models. We will come to the

further evolution in Sect. 33.7. Since the horizontal branch crosses the instability

strip (see Chap. 41) we can expect pulsating horizontal-branch stars. Indeed there

one finds the RR Lyrae variables.

Faulkner’s results revealed another important property of zero-age models. If

one keeps the total mass constant but decreases their metal content, then the

models move to the left of the HR diagram. This helped to understand an observed

correlation between horizontal-branch characteristics of different globular clusters

and their composition: the concentration of stars on the horizontal branch shifts from

left to right with increasing contents of heavier elements. This is usually called

the first parameter effect for horizontal-branch morphology. Observations point

to a second parameter, which so far has not been identified undisputedly. There

exist pairs of globular clusters of (almost) identical age and the same metallicity,

but different numbers of stars on the red and blue part of the horizontal branch.

Examples for such famous “twins” are M13 and M3, and NGC 362 and NGC 288.

Among the candidates for the second parameter are age, helium content, and the

density of stars inside the cluster.

Detailed, full evolutionary calculations confirm all these dependencies. We show

in Fig. 33.11 the location of ZAHB models for three different metallicities, ranging
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Fig. 33.11 Zero-age horizontal-branch (ZAHB) models for different compositions. The ZAHB

brightness increases with decreasing metallicity, which is in this version Z D 0:016, 0.005, and

0.0001. The two lines for Z D 0:005 correspond to ages of 15 Gyr (dotted) and 5 Gyr (solid)

Fig. 33.12 Evolution on the horizontal branch starting at the zero-age position for models with

different mass loss rates during the preceding red-giant phase, indicated by the �-parameter in

the mass loss formula (9.1). The main-sequence mass was Mi D 0:85Mˇ in all cases; at the

beginning of the horizontal-branch evolution, the models have 0.85, 0.66, and 0:56Mˇ (right to

left). The loops correspond to the so-called “mini pulses”. The dashed lines indicate the location

of the instability strip, continuing that for classical Cepheids (Fig. 31.4). In this strip, the RR Lyr

and BL Her variable stars are found; they are obviously stars either in or after the HB phase
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from Z D 0:0001 to Z D 0:016. The lower the metallicity, the brighter the stars

on the ZAHB. Along each ZAHB, mass and therefore envelope mass varies. The

coolest models were obtained from calculations ignoring mass loss, the hottest ones

have only very thin hydrogen envelopes left. For the two more metal-rich cases

they were obtained by removing mass from the coolest ZAHB models. This is one

of the mentioned approximative ways to construct such models. The ZAHB for

Z D 0:0001was taken from calculations that followed the complete evolution from

the ZAMS through the core helium flash to the horizontal branch. The zero-age

stage was identified with the model having the smallest thermal energies.

In this logTeff-logL=Lˇ diagram the horizontal branch appears to be “hori-

zontal” only in some Teff regions. This is partly because of the narrow range in

luminosity shown, but its appearance in fact also depends a lot on the photometric

band it is observed in. However, if extending over the full temperature or colour

range, it never is completely horizontal.

The ZAHB for Z D 0:005 in Fig. 33.11 appears as a pair. The slightly brighter

branch corresponds to an age of 15 Gyr, the other one to one of 5 Gyr. This in turn

reflects the slight dependence of the core mass at the helium flash on initial mass:

the brighter branch originates from stars below � 1:0Mˇ, the dimmer one from

M � 1:3Mˇ.

More details about the dependency of the ZAHB luminosity on core mass, helium

content, and metallicity, including quantitative results from theoretical models, can

be found in Salaris and Cassisi (2005), Chap. 6.3.

33.7 Evolution from the Zero-Age Horizontal Branch

A so-called ZAHB model has a homogeneous non-degenerate helium core of mass

Mc � 0:45 � 0:50Mˇ, surrounded by a hydrogen-rich envelope of mass Menv D
M � Mc. The total luminosity consists of comparable contributions from (quiet)

central helium burning and from the hydrogen-burning shell.

A complication occurs during the following evolution of these models. The

stars have a central convective core which becomes enriched in carbon and oxygen

during helium burning. The opacity in this temperature-density range is dominated

by free-free transitions. However, the free-free opacity increases with increasing

carbon and oxygen abundance as can be seen from the factor B in (17.5) and

(17.6), which depends on the square of the nuclear charge. As a consequence the

radiative gradient inside the Schwarzschild boundary grows during core helium

burning, and a discontinuity in rrad at the edge of the convective core develops. The

situation is similar to that in massive stars on the main sequence (see Sect. 30.4.2)

where the opacity is governed by electron scattering and decreases with increasing

helium abundance. In this case the core is therefore shrinking during the main-

sequence evolution. The radiative layers of increasing hydrogen content above the

core can locally become convective if some mixing increases the hydrogen content

(Fig. 30.3).
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Fig. 33.13 Change in the run

of the radiative temperature

gradient with time during the

evolution on the horizontal

branch (see text). Three

situations 1–3 for increasing

time are sketched (after

Salaris and Cassisi 2005)

A similar semiconvective situation is given outside the convective helium-

burning core on the horizontal branch. If some mixing, for example, due to

overshooting, mixes C/O-enriched material outside the formal Schwarzschild bor-

der, the radiative gradient will increase there and convection sets in. Such cores

therefore have the tendency to grow, and a jump in rrad at the convective core

boundary cannot develop in the early phase of HB evolution. Detailed models show

that the radiative gradient then tends to increase and to develop a minimum inside

the growing convective core, which, due to the continuing mixing of helium-rich

layers and the combined effect of changing physical quantities, at some point begins

to become smaller, until it drops to the value of the adiabatic value. This change

in the radiative gradient with time is sketched in Fig. 33.13 for three consecutive

times. Further mixing at the core border then would lead to a stabilization of an

intermediate region, and therefore to the development of a radiative zone inside the

core. In real stars one expects therefore mixing up to a composition that leads to a

marginally unstable layer with rrad D rad. This partially mixed layer constitutes

another case of semiconvection, and was discussed first by Castellani et al. (1971).

The development of this situation is indicated by the line labelled “3” in Fig. 33.13,

and the real situation in a stellar model calculated with semiconvection is shown in

Figs. 33.15 and 33.16.

If a continuous, slow growth of the convective core is inhibited, a strong

discontinuity at its edge is developing. As in the case of massive stars, during the

further evolution, a sudden mixing between the core and the overlying, helium-rich

layers may occur, which leads to a sudden increase in the core’s helium content

and a loop in the HR diagram. The occurrence of these so-called “breathing pulses”

depends a lot on the details of the treatment of convection and of the border of

the convective core. The most favourable situation for their occurrence is when the

Schwarzschild criterion for convection is used, but they are probably an artefact

of the calculations (see the discussion in Salaris and Cassisi 2005). In most of the

models we show in Figs. 33.12 and 33.14 they are not present.

Figure 33.14 shows evolutionary tracks for the horizontal-branch evolution of

the same initial pre-ZAHB model with M D 0:6856Mˇ (Z D 0:0001), calculated

with either the Schwarzschild criterion for convection (solid line), the Ledoux

criterion and semiconvection (dotted line), or with overshooting (dashed line). The
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Fig. 33.14 An example for horizontal-branch evolution using different treatments for convection.

The evolution begins at a pre-ZAHB position (diamond symbol) for a mass of 0:6856Mˇ

(Z D 0:0001). The grey triangles and circles refer to models used for Fig. 33.16. Solid line:

Schwarzschild criterion; dashed: Schwarzschild and overshooting; dotted: Ledoux criterion and

semiconvection. The horizontal line indicates where the interior hydrogen profile of the models of

Fig. 33.15 was taken

Fig. 33.15 The hydrogen profile in three horizontal-branch models taken from the tracks of

Fig. 33.14, taken at approximately the same luminosity. The linestyles refer to the same cases

as in the previous figures

overshooting model initially follows the track of the Schwarzschild case, until

after the hottest point on the evolution the core is expanding; generally higher

luminosities are reached, but also a second loop close to the initial ZAHB position

takes place. After this the track with overshooting is slowly approaching the one
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a

b

Fig. 33.16 (a) The radiative (black lines) and adiabatic (grey lines) temperature gradients in two

models of Fig. 33.14, indicated there by triangles, calculated with the Schwarzschild criterion. The

solid line refers to a state at the beginning and the dashed line to the end of horizontal-branch

evolution. The dash-dotted line shows the helium mass fraction in the latter model. (b) The same

for the case using the Ledoux criterion and semiconvection. The two models are indicated by

circles in Fig. 33.14. Additionally, the Ledoux-gradient rL (6.12) is shown as the grey dotted line.

Notice the fact that rrad is almost identical to rad as the result of semiconvective mixing

calculated with semiconvection. In this latter case, only one extended loop takes

place in the final phase of approaching the ZAHB (which here can be identified

with the hottest point on the track), and then the evolution is proceeding smoothly

to higher luminosities and cooler temperatures. In Fig. 33.15 we show the run of

hydrogen abundance inside models taken at approximately the same luminosity

of logL=Lˇ D 1:82. The composition jump at the edge of the convective core
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is clearly visible for the Schwarzschild case, as is the similarity between the

overshooting and semiconvection model in this late phase of the HB evolution.

The mass of the helium core grows owing to hydrogen-shell burning, while in

the convective core helium is consumed and carbon and oxygen are produced. After

some time a pure carbon-oxygen core will be formed in the central region of the

helium core. Then nuclear burning takes place in two shells (hydrogen and helium

burning), and in the subsequent phases of evolution, the masses below these shells

will grow.

The models evolve from the ZAHB first in the slow phase of central helium

burning with a hydrogen-burning shell. This phase, which lasts for several 107 to

up to 108 years, is followed by a phase of rapid evolution during which the models

go from helium burning in the centre to shell burning. In this phase another kind

of loops appears, which is clearly visible in Fig. 33.12; these are the so-called

“mini-pulses”, which were described early on by Mazzitelli and D’Antona (1986).

The steep chemical profile of models calculated with the Schwarzschild criterion

(Fig. 33.15) leads to a thinner helium shell; such shells can be thermally unstable.

We will discuss such shell instabilities in more detail in Chap. 34. After this initial

shell-burning phase a slow phase of double shell burning occurs.

The general direction of the evolution is towards higher luminosity and a return

to the Hayashi line. Depending on the relative energy production of helium core and

hydrogen shell the models initially show more or less extended excursions towards

higher Teff (see the model with the lowest mass compared to the coolest one in

Fig. 33.12).

The evolutionary tracks lead upwards with increasing core mass, and the

corresponding branch in the HR diagram is called the asymptotic giant branch

(AGB). It has to be distinguished from the red giant branch (RGB), along which

the image points in the HR diagram move upwards before ignition of helium.

The models of the post-horizontal-branch evolution occupy a region above the

horizontal branch. During their evolution some of them cross the instability strip

(see Chap. 41), where one finds the pulsating BL Herculis1 stars (compare the

sketch in Fig. 33.12). In contrast, the RR Lyrae variables are stars, which are still

on the horizontal branch, and which are located in the region, where it crosses the

instability strip.

1BL Her stars belong to the class of type II Cepheids, which used to be called collectively

W Virginis stars. Nowadays the latter term is used for even brighter stars in the same instability

strip, which cross it during an excursion from the AGB.



Part VII

Late Phases of Stellar Evolution

The more advanced the evolution of stars is, the less it is possible to treat it with

simple models or even analytic descriptions. Instead, numerical calculations are

the only way to follow the evolution. Therefore, in the following chapters, we

will rely almost solely, with a few exceptions, on results from models produced in

the computer. At the same time, the complications from poorly known physics are

becoming more and more important. This is in particular true for the treatment of

convection and of mass loss, not to speak of the influence of rotation and additional

mixing mechanisms. Unfortunately, the late evolution of stars depend a lot on

exactly these physical effects. The following chapters therefore give an overview of

our current understanding of stellar evolution after the core helium-burning phase.

It is very likely that this will change–hopefully improve–in the future.



Chapter 34

Evolution on the Asymptotic Giant Branch

34.1 Nuclear Shells on the Asymptotic Giant Branch

In stars of low and intermediate mass, i.e. in stars of initial mass . 8Mˇ, the phase

following the end of core helium burning is of special interest. It is characterized by

the presence of two nuclear burning shells around a carbon-oxygen core, of which

one–the helium shell–is thermally unstable. Stars in this mass range and phase of

the evolution populate the so-called asymptotic giant branch (AGB), previously also

known as “second-ascent branch”. In this chapter we give an overview over the

important physical effects which are characteristic for AGB stars. As we will see,

the evolution is highly complicated and the numerical models far from being perfect.

For more details and a much more thorough discussion, we refer the reader to the

review by Herwig (2005) and to the textbook by Habing and Olofsson (2003). The

classical review by Iben and Renzini (1983) is still worth being studied, too.

After the end of core helium burning and after the hydrogen shell has burned

outwards for some time, the temperature in this shell drops, and hydrogen-shell

burning extinguishes. This phase of the evolution is often called the early AGB

(E-AGB). The layer of transition between the hydrogen-rich envelope and the region

of helium stays now at a fixed value of m: In stars above M � 4Mˇ convection

may reach below the H–He discontinuity and mix more ashes of hydrogen shell

burning to the surface. This is the second dredge-up we already encountered in

Chap. 31. But there is still the active helium-burning shell moving to higher values

of m and therefore approaching the bottom of the hydrogen-rich envelope. Since

helium burning proceeds at a temperature of &108 K, which is about ten times the

temperature of hydrogen ignition, hydrogen burning starts again, and once more

there are two shell sources. In this phase, shell burning becomes secularly unstable,

resulting in a thermal runaway. This leads to a cyclic phenomenon (reoccurring

here within some 104–105 years) known as thermal pulses (TP). Their general

properties will be discussed in Sect. 34.3 in connection with their appearance in

intermediate-mass stars where the unstable shells initially are in the deep interior,

and the response of the surface is moderate. In the case of low-mass stars, the
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Fig. 34.1 Schematic evolutionary track of a star of 0:6Mˇ .XH D 0:749; XHe D 0:25) for the

phases after central helium burning. The model moves upwards along the asymptotic giant branch

(AGB) until thermal pulses occur (indicated by full circles). The changes during a pulse are shown

only for pulse 9 and pulse 10. Before the last pulse (11), for which only the onset is shown, the

track has reached the white-dwarf area of the HR diagram. The main sequence (MS), the horizontal

branch (HB), and a line of constant radius in the white-dwarf region are indicated (after Iben and

Renzini 1983)

luminosity and the surface temperature can vary appreciably with each pulse. This

is the more pronounced the less mass is left above the unstable shells, as we will

see in Sect. 34.7. If a thermal pulse occurs in certain critical phases (with neither

too much nor too little mass above the shells) the models can even move rapidly

through large regions of the HR diagram (Kippenhahn et al. 1968; Schönberner

1979). The evolution displayed in Fig. 34.1, shown as an illustrative example and

taken from the review article “Asymptotic Giant Branch Evolution and Beyond” by

Iben and Renzini (1983) goes through 11 pulses, the onsets of which are indicated by

heavy dots. The variation of the surface values is not very pronounced, since there is

enough mass above the nuclear shells to damp the changes caused by the instability.

This phase is also called the thermally pulsing AGB (TP-AGB) to discriminate it

from the E-AGB.

The pulses are more or less an envelope phenomenon and are of no influence on

the core. The inner part of the CO-core resembles more and more a white dwarf.

Only the hydrogen-rich envelope, small in mass but thick in radius, at first gives the

star the appearance of a red giant. After the envelope mass has dropped below, say,

one per cent, the envelope starts to shrink. With decreasing envelope mass the star

moves typically within a few thousand to 104 years to the left of the main sequence

(see Fig. 34.1). This is the post-AGB phase. Then shell burning extinguishes and the

star becomes a white dwarf. In the case shown, the star experiences a final thermal

pulse (11), which will lead to large excursion in the HRD. This will be discussed

further in Sect. 34.9.
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It is clear that the mass in the envelope is diminished by two effects: the hydrogen

burning at the bottom and mass loss from the surface. Therefore the stage at which

the star leaves the asymptotic branch, turning to the left, is sensitive also to the

amount of mass loss in the red giant phase. This influences the mass of the final

white dwarf (cf. Sect. 35.2) and limits the number of thermal pulses (see Sect. 34.6).

34.2 Shell Sources and Their Stability

Stars on the AGB are the first to have more than one nuclear shell. Their productivity

may change considerably and even go to zero for some time. Neighbouring shell

sources can influence each other, since each type of burning requires a separate

range of temperature. For example, if a helium shell source operating at roughly

2 � 108 K approaches a hydrogen-rich layer, we can expect an enormous increase

of hydrogen burning, which usually proceeds at T . 3 � 107 K. It is also clear that

different shell sources will generally move with different “velocities” Pmi through

the mass, unless their contributionsLi to the total luminosity are in certain ratios. If

Xi denotes the mass concentration of the reacting element ahead of the shell source,

and qi the energy released by the fusion of one unit of mass, then Pmi D Li=.qiXi /.

For example, on the AGB, the relative motion of the hydrogen and helium shell

sources through the mass is given by the ratio

PmH

PmHe

D LH

LHe

qHe

qH

XHe

XH

: (34.1)

This gives a stationary situation with roughly equal velocities only if LH � 7LHe,

since typically XH � 0:7;XHe � 1; and qH=qHe � 10. Otherwise the two shell

sources approach each other or the inner one falls behind.

Shell-source models for several evolutionary phases can be approximated well

by solutions obtained by assuming complete equilibrium. While burning outwards,

a shell source has the tendency to concentrate the reactions over steadily decreasing

mass ranges. One then has to deal with rather short local nuclear time scales, defined

as those time intervals in which the burning shifts the very steep chemical profile

over a range comparable to its own extension. This would require computations of

tens of thousands models with very short time steps, if it were not for the influence

of mass loss (see Sect. 34.6).

All changes become much more rapid, and the assumption of complete equi-

librium certainly has to be dropped if the shell source is thermally unstable. The

reasons for such instabilities will be made plausible by considering a very simple

model for the shell source and its perturbation. The procedure is completely anal-

ogous to that used in Sect. 25.3.5 for the stability of a central nuclear burning. The

only difference between the two cases is that the burning regions are geometrically

different and the density reacts differently to an expansion.

Let us compare the two cases of a central burning and a shell-source burning in

Fig. 34.2. In the central case, the mass of the burning region is m � %r3, and an
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Fig. 34.2 The main region of

nuclear energy production

(hatched) in the cases of (a)

central burning and (b) shell

source burning

expansion dr > 0 with dm D 0 requires a relative change of the density [compare

with (25.25)]
d%

%
D �3dr

r
: (34.2)

In the case of a shell source of thickness D, we write the upper boundary of the

burning region as r D r0 C D (cf. Fig. 34.2b). For relatively small D the mass in

the burning shell is m � %r20D. If the burning region expands with roughly r0 D
constant as a reaction to an energy perturbation, we have dr D dD, and the condition

dm D 0 now leads to

d%

%
D �dD

D
D � r

D

dr

r
: (34.3)

We now assume that the mass outside r0 C D expands or contracts homologously.

Then for the pressure in the shell we can use the relation dP=P D �4dr=r as in

(25.25). When comparing (34.3) with (34.2) we see that we only have to replace the

factor 3 by the factor r=D when going from the central case to that of a shell source.

This can be done directly in expression (25.29) for the gravothermal heat capacity

c�. For simplicity we neglect the perturbation of the flux dls and have from (25.30)

c� dT

dt
D d" I c� D cP

�
1 � rad

4ı

4˛ � r=D

�
: (34.4)

(Note that the time derivative dT=dt represents a differential perturbation; it could

be replaced by d.dT=dt/ since T D T0 C dt with time-independent T0.) If c� is

positive, then the shell source is unstable, since an additional energy input .d" > 0)

leads to higher T and further increased burning.

We first recover the well-known flash instability in the case of strong degeneracy

of the electron gas with ı ! 0. Indeed we have seen in Chap. 33 that the helium

flash occurs in a shell rather than in the centre if the central part is cooled by neutrino

emission.

In addition, (34.4) shows that there is a new instability which can occur even for

an ideal monatomic gas .˛ D ı D 1;rad D 2=5) and which has no counterpart in

the case of central burning. It depends only on the geometrical thickness D of the

shell source. IfD=r is small enough (in our simple representation smaller than 1/4),
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c� is positive and the shell source is secularly unstable. This instability of a shell

source is called pulse instability for reasons which will become obvious very soon.

It is amazing that such a simple geometrical property can cause a thermal

instability, though it becomes more plausible if we consider the change of the

pressure in the shell source as a hydrostatic reaction to the lifting of the layers above

(for which we simply assume homology). Suppose that the shell tries to get rid of the

perturbation energy by expansion. A substantial relative increase of the thickness

dD=D>0 gives the same absolute value for the relative decrease of the density

d%=% < 0, but only a very small relative increase dr=r; if D=r � 1 [cf. (34.3) and

Fig. 34.2b]. This means that the layers above are scarcely lifted, so that their weight

remains about constant and hydrostatic equilibrium requires dP=P � 0. In fact with

the homology relation dP=P D �4dr=r and (34.3) we find the connection between

dP and d% to be
dP

P
D 4

D

r

d%

%
: (34.5)

Considering the equation of state

d%

%
D ˛

dP

P
� ı dT

T
; (34.6)

we see that expansion .d%=%<0) necessarily leads to an increase of the temperature

.dT=T > 0/, since dP=P ! 0 for D=r ! 0:

d%

%
D �ı dT

T
: (34.7)

Therefore the expansion of a thin shell source does not stabilize it, but rather

enforces the liberation of energy by heating. This means that the shell source reacts

just as if the equation of state were % � 1=T , which, of course, gives instability

[cf. (34.4) with ˛ D 0 and ı D 1].

While the foregoing discussion provides the main points correctly, it can easily

be completed by also considering the perturbation of the local luminosity. Then

some of the surplus energy can flow away, and instability requires, in addition, that

the temperature sensitivity of the burning exceeds a certain limit, which is usually

fulfilled. The eigenvalue analysis of such stellar models has shown that they are

indeed thermally unstable and that the unstable modes are complex (Härm and

Schwarzschild 1972).

The pulse instability was first found (Schwarzschild and Härm 1965) for a

helium shell source in calculations for a 1Mˇ star. The same type of instability

was encountered independently in a model for 5Mˇ during the two-shell phase, and

here it turned out that the instability leads to nearly periodic relaxation oscillations,

which were called thermal pulses, as described below (Weigert 1966). They are now

known to be a genuine property of those low- and intermediate-mass stars, which

are massive enough to ignite helium and evolve into the double-shell burning phase

of the AGB.
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A unified scheme for the stability of shell sources has been developed by Yoon

et al. (2004). It includes the present case of geometrically thin shells as well as the

flash instability of Sect. 33.4 and demonstrates that shells are more stable, if they

are geometrically thick, non-degenerate, or hotter.

34.3 Thermal Pulses of a Shell Source

Thermal pulses occur in models containing one or more shell sources, and in stars of

different masses and compositions. We start by describing their properties according

to the calculation of the first six pulses in a 5Mˇ model, found for the first time

in a star in this mass range by Weigert (1966). Although the physical details and

numerical treatment of the models have changed a lot since then, the basic picture

of thermal pulses is still the same. The instability occurs in the helium shell source

after it has reached m=M � 0:1597. It then contributes only a little to the surface

luminosity L; which is almost completely supplied by the nearby hydrogen shell

source located at m=M � 0:1603:

The instability results immediately in a thermal runaway: the shell source reacts

to the surplus energy with an increase in T; which enhances the release of nuclear

energy, etc. The increase of T is connected with an expansion according to (34.7).

This can be seen from Fig. 34.3a, b which give T and % at maximum "He in the

unstable shell source as functions of time (Note that the thermal runaway in a flash

instability would proceed with % D constant.). Since helium burning has an extreme

temperature sensitivity, the increase of T strongly enhances the productivityLHe of

the shell source, in later pulses even to many times the surface value L: But most of

this energy is used up by expansion of the layers above, and this expansion reduces

considerably the temperature in the hydrogen shell source, such that LH decreases

significantly. After starting rather slowly the thermal runaway accelerates more and

more until reaching a sharp peak within a few years. The helium shell source is now

widely expanded and is therefore no longer unstable. The whole region then starts to

contract again, which heats up the hydrogen shell source so that it regains its large

productivity. Within a time of a few 103 years the whole region has asymptotically

recovered its original overall structure, the helium shell source becomes unstable

again and the next pulse starts. Figure 34.3 shows that the amplitude of the pulses

and the time between consecutive pulses grows (in these calculations from 3,200

to 4,300 years). The reason for these changes is that the chemical composition

around the shells changes considerably from pulse to pulse. Later calculations (for

an early review, see Iben and Renzini 1983; for more recent results Wagenhuber

1996) showed that a nearly periodic behaviour is usually reached after roughly 20

pulses. The amplitude of a pulse has then become so large that during the maximum

LHe exceeds L by orders of magnitude. The changes of the chemical composition

still provide a small deviation from periodicity. Otherwise we would expect strictly

periodic relaxation oscillations, i.e. the solution would have reached a limit cycle.
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Fig. 34.3 Thermal pulses of

the helium shell source in a

5Mˇ star after central helium

burning. For the first six

pulses, some characteristic

functions are plotted against

time from the onset of the

first pulse. T is in K, % in

g cm�3 (After Weigert 1966)

The surface luminosity (Fig. 34.3d) drops in each pulse by typically � lgL �
0:1 : : : 0:2 for models with rather massive outer envelopes. The visible reaction of

the surface is much more pronounced if the pulses occur in a shell source close

to the surface. Such models can move quite spectacularly through the HR diagram

(compare with Sect. 34.9).

The properties of the thermal pulses depend on the type of star in which they

occur. The cycle time �p (between the peaks of two consecutive pulses) becomes

smaller with increasing mass Mc of the degenerate CO-core inside the helium

shell source. From a large sequence of calculations Paczyński (1975) derived the

following rough relation:

lg

�
�p

1year

�
� 3:05C 4:50

�
1 � Mc

Mˇ

�
: (34.8)

ForMc � 0:5Mˇ the cycle time is of the order of 105 years, while near the limit

mass Mc � 1:4Mˇ it would be of the order of 10 years only. We now consider

the number of pulses that can occur until Mc has reached 1.4 Mˇ. Suppose that the

hydrogen shell source moves outwards by �m per cycle time and produces most

of the energy L�p . Although L � Mc (cf. Sect. 34.4), �m decreases strongly with

growing Mc owing to the decrease of �p. One can estimate that, depending on the
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details of the model, the total number of pulses (determined mainly by the very

small �p in the last phases) must be 8; 000 : : : 10; 000 before Mc � 1:4Mˇ. Of

course, the shell source cannot burn further than to within a few 10�3M from the

surface. Therefore the total number of pulses will be much smaller if the stellar mass

is well below 1.4Mˇ, either originally or owing to mass loss. In low-mass stars one

can expect only ten pulses or so, as seen, for instance, in Fig. 34.1. These, however,

occur very close to the surface and can affect the observable values certainly much

more than pulses of a shell source in the deep interior.

During a thermal pulse, the star changes quite rapidly, particularly in the layers

of the shell sources. Consequently the calculations have to use short time steps

(often of the order of 1 year), and the number of models to be computed per

pulse is large (or order 103/. Additionally the fact that the helium shell is thermally

unstable implies that the models have to be calculated with high precision to prevent

unwanted thermal runaways. This makes the calculations even more challenging,

and in fact, AGB calculations still suffer from numerical problems. It is therefore

clear that one cannot hope to compute straightforwardly through the whole phase

of about 104 pulses in intermediate-mass stars. In reality this is–fortunately–never

needed, as mass loss on the AGB reduces the envelope mass quickly enough to limit

the number of TPs to a few tens.

For stars of small mass (originally or by mass loss) the situation is better. One

can certainly calculate through all of the relatively few pulses that occur before such

a star becomes a white dwarf.

34.4 The Core-Mass-Luminosity Relation for Large

Core Masses

Since the direct computation of TP-AGB models is so difficult, one may try to

suppress the pulses artificially by neglecting the time-dependent terms ."g/ in

the energy equation and computing models in complete equilibrium. This gives

(hopefully) an average evolution which might suffice in order to describe the

evolution of the central core, and therefore of the final fate of the star.

An alternative approach are the so-called synthetic AGB models (see, e.g.,

Renzini 1981, or Marigo et al. 1996), where the global properties of AGB stars

are followed using fitting functions such as (34.8) for the pulse durations. Extensive

analytical fitting functions were derived by Wagenhuber and Groenewegen (1998)

for quantities such as the luminosity, the pulse duration and interpulse time, the core

mass at the first pulse, and many more. These functions were derived by fitting them

to numerical models and are valid for various masses and chemical compositions,

but simpler versions can be derived analytically. This is particularly true for the

important core-mass-luminosity relation on the AGB.

We have seen that medium-mass stars, after central helium burning, develop a

degenerate CO-core which is separated from the hydrogen-rich envelope by a thin
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helium layer. At its bottom there is helium-shell burning, which contributes only,

say, 10 % to L: Most of the luminosity is produced in a hydrogen shell source at

the bottom of the envelope. It is not too bad an approximation if we simply assume

L � LH, the hydrogen luminosity generated above a condensed core of mass Mc

and radius Rc. We also have seen that L increases with increasing Mc (giving the

upwards motion along the asymptotic branch) and here face the same situation as for

low-mass stars on the ascending giant branch. One can again derive the dependence

of the properties of the shell on Mc and Rc by homology relations as in Sect. 33.2,

assuming the simple power laws (33.2) for � and ". But since we are dealing with

rather massive cores and high temperatures here, the radiation pressure cannot be

neglected. We therefore have to replace (33.3) by

P D <
�
%T C ˛

3
T 4 D 1

ˇ

<
�
%T: (34.9)

If again we write in the neighbourhood of given P and T the equation of state as

a power law, % � P ˛T �ı , we know from (13.7) that ˛ D 1=ˇ; ı D .4 � 3ˇ/=ˇ.

Therefore we have as equation of state

P � %ˇT 4�3ˇ : (34.10)

As in (33.4)–(33.7), we write the quantities %; T; P; and l in the shell as powers of

Mc and Rc. By the same procedure as in Sect. 33.2 we can derive equations for the

exponents. For the sake of simplicity we restrict ourselves to the case a D b D 0

and obtain, instead of (33.22),

'1 D 4 � �
N

; '2 D � � 12C 6ˇ

N
;

 1 D 1C n

N
;  2 D 2ˇ � n � 3

N
;

�1 D ˇ'1 C .4 � 3ˇ/'1; �2 D ˇ'2 C .4 � 3ˇ/'2;

�1 D 4nC �

N
; �2 D 3 � � � 3n

N
ˇ (34.11)

with

N D .4 � 3ˇ/.1C n/C .1 � ˇ/.� � 4/: (34.12)

For ˇ D 1 the relations (34.11) and (34.12) agree with (33.22) and (33.23) for

a D b D 0.

With increasing core mass, ˇ in the shell must decrease strongly, as can be seen

from the following considerations. From (34.9) and (34.10) we have

ˇ � %T

P
� %1�ˇT �3.1�ˇ/: (34.13)
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If we here replace %; T by (33.4) and (33.5), then the dependence of ˇ onMc; Rc is

given by

d lnˇ

d lnMc

D .1 � ˇ/
�
.'1 � 3 1/C .'2 � 3 2/

d lnRc

d lnMc

�
: (34.14)

One may start from an initial model that has been computed by solving the stellar

structure equations numerically. This gives initial values for Mc; Rc; L; and ˇ.

Starting from these initial values we want to integrate (34.14). For simplicity, let

us take for the derivative on the right-hand side of (34.14) Chandrasekhar’s mass-

radius relation of white dwarfs, and for the exponents in the energy generation

nD 2; �D 14. The result of such an integration is shown by a dotted line in

Fig. 33.2. In the same way, (33.27) can be integrated with �1; �2 from (34.11)

and ˇ.Mc/ as derived from the solution of (34.14). This gives the solid curve in

Fig. 33.2. In spite of all approximations used, the integrated curves illustrate clearly

the essential points.

For small core masses, ˇ � 1 and the relation (33.25) holds, giving a steep

increase of L with Mc ŒL � M 7
c after (33.26)]. For larger Mc, radiation pressure

becomes more and more important and ˇ decreases. This gives a much smaller

slope of the L.Mc/ curve. Indeed in the limit ˇ D 0 (34.11) gives �1 D 1; �2 D 0;

independent of n and �:

L � Mc: (34.15)

TheL-Mc relation has become extremely simple, and we do not have to worry about

the correctRc-Mc relation. Indeed from numerical models Paczyński (1970) derived

L

Lˇ
D 5:92 � 104

�
Mc

Mˇ
� 0:52

�
(34.16)

as an interpolation formula for sufficiently large Mc. The corresponding formula

by Wagenhuber and Groenewegen (1998) contains a linear term as well, but has

additional correction terms which improve the fit also for low core masses and which

take into account different metallicities of the models. It is therefore much more

complicated than (34.16).

34.5 Nucleosynthesis on the AGB

We now turn to the change of the chemical composition by a combination of burning

and convection. Figure 34.4 shows (with expanded scales) m against t during the

peak of two pulses of the models by Weigert (1966). The high fluxes near the

maximum of helium burning create a short-lived, pulse-driven intershell convection

zone (ISCZ), which, in the later pulses of this calculation, comes very close to the

H–He discontinuity. For a short time, almost the entire matter between the two shells
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Fig. 34.4 Evolution of the mass shells around the two shell sources in a 5Mˇ star near the maxima

of the first and sixth thermal pulses of the helium shell source (compare Fig. 34.3). The mass

variablem is plotted against time, starting from an arbitrary zero point. Note the strongly expanded

scales on both axes. Cloudy areas indicate the intershell convection zone (labelled here as CS)

and the outer convective zone (OCZ); hatched areas show the regions of strongest nuclear energy

production ." > 3� 107 erg g�1 s�1/ (After Weigert 1966)

is mixed into the helium-burning shell, the products of which are spread over the

intershell region. The outer convection zone (OCZ), which extends to the surface,

can be seen to reach down nearly to the hydrogen shell source. The lower boundary

of the OCZ moves during each pulse at first somewhat outwards, and then back again

(compare also with Fig. 34.5, where the t axis is more compressed). Depending on

mass, composition, and in particular on the assumption of mixing by convection

or rotation, the ISCZ may even reach beyond the H–He discontinuity and dredge

hydrogen into the intershell region but also enrich the outer layers with carbon.

Similarly, the lower border of the OCZ can descend beyond the former location of

the H–He discontinuity into the intershell region. Also in this case, hydrogen-rich

material is transported downwards, while intershell material is dredged up by the

OCZ and distributed over the whole outer envelope. This event is called the third

dredge-up, and its reality is witnessed by the existence of carbon stars, stars on the

AGB, in which the ratio of carbon-to-oxygen abundance is C/O> 1. In models with

no mixing processes apart from convection according to the Schwarzschild criterion,

the third dredge-up occurs only in stars of low mass and very low metallicity. This

is not in agreement with observations, which found modifications of the surface

composition also in more metal-rich and more massive stars. They can only be

explained by the third dredge-up, and this requires additional mixing processes in

the models, which could be overshooting or mixing induced by rotation. In Fig. 34.6
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Fig. 34.5 Evolution of the mass elements around the two shell sources (broken lines) during the

first six thermal pulses in a 5Mˇ star (compare Fig. 34.3). The “cloudy” area represents the outer

convective zone (OCZ). The intershell convection zone (ISCZ) (labelled CS in Fig. 34.4) at the

maximum of each pulse is so short-lived that it appears here as a vertical spike. The time (in years)

between consecutive pulses is indicated at the top (After Weigert 1966)

we show a sketch of the sequence of mixing episodes leading to dredge-up and the

formation of a so-called 13C-pocket. In some models this additional mixing is added

ad hoc with an efficiency tuned to reproduce the observations. The third dredge-up

is one of the major problems of stellar evolution theory.

The mixing between layers containing protons and those burning helium at high

temperatures is the beginning of interesting nucleosynthesis in stars on the AGB.

Helium burning transforms 4He into 12C and 16O, and the hydrogen shell source

converts 16O and 12C into 14N, which is left behind when the shell burns outwards

between two pulses (between, e.g. t3 and t5 in Fig. 34.6). The ISCZ of the next

pulse sweeps these 14N nuclei down into the helium shell source where they are

burned in the chain 14N .˛; 
 ) 18F .ˇC�/18O .˛; 
/22Ne. During a pulse in fairly

massive stars, and therefore within the pulse-driven convective zone, the helium

shell source attains a temperature so high that 22Ne is also burned in the reaction
22Ne (˛; n/25Mg. This can provide a neutron source sufficiently strong to build up

elements beyond the iron peak in the s-process (i.e. with neutron captures being

slow compared with beta decay; see Sect. 18.7; Iben 1975; Truran and Iben 1977).

In other cases a corresponding neutron source may be provided by 13C nuclei,

which are burned via the chain 12C .p; 
/ 13N .ˇC�/ 13C .˛; n/ 16O in the helium

shell. This happens, in contrast to the neon neutron source, between pulses and

in a radiative environment (beginning at t3 and t6 in Fig. 34.6). For this neutron

source to operate it is necessary to bring a sufficient amount of 13C into the helium

shell, which is achieved by mixing hydrogen-rich material from the envelope into

the 12C-rich region during the pulse phase in which the hydrogen-burning shell is

extinguished (Fig. 34.6; t2 � t3). The protons are then captured by the 12C nuclei to

form 13C. The region of high 13C abundance is known as the 13C-pocket, and will

provide the neutron source later in the pulse cycle. According to theoretical models
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Fig. 34.6 Schematic sketch of the mixing episodes during thermal pulses, following similar

representations in the reviews by Busso et al. (1999; Fig. 5) and Herwig (2005; Fig. 3). In contrast

to Fig. 34.5, dredge-up is occurring here due to suitable assumptions about mixing processes, for

example, due to the inclusion of overshooting. Shown is the region between the two shell sources

and the bottom of the outer convection zone (OCZ). The mass scale is of order a few hundredths

of a solar mass. At time t1 the thermal pulse of the He-shell starts and triggers the intershell

convection zone (ISCZ), which grows in mass and may reach the H-shell location at time t2. The

H-shell, however, has extinguished at this time due to the radial expansion of the intershell. After

the pulse terminates, the OCZ can extend deeper than before (at t3) and mixes both protons into

the intershell as well as carbon, produced in the He-shell and transported upwards by the ISCZ,

into the envelope. Upon contraction of the intershell, the OCZ recedes, the H-shell reignites, and

the proton-enriched intershell layers heat to sufficiently high temperatures to allow 12C.p; 
/13C

reactions in a radiative environment, forming the 13C-pocket, which marks the start of s-process

nucleosynthesis (see text; “s” in the figure). At t4 the next pulse cycle starts, eventually leading to

dredge-up of s-process elements and carbon to the surface of the AGB star. The interpulse time

t4 � t1 is of order 104 years, the timescale t3 � t1 (or t6 � t4) is a few hundred years

this is the preferred neutron source in most AGB stars. Only in stars of higher mass

the neon source may act as well. The main source for s-process elements appear to

be AGB stars of lower mass. This is in agreement with theoretical models, which

predict the third dredge-up to happen more easily in the lower mass range of AGB

stars.

Such mixing and nuclear burning episodes may lead to modifications of the

surface composition of AGB stars. We already mentioned that they may become

enriched in carbon, initially produced in the helium shell, but subsequently mixed by

the ISCZ and the OCZ to the surface. If a neutron source is operating and s-process

elements are created, they, too, may appear at the photosphere. The detection of
99Tc in the atmosphere of Mira variables (pulsating AGB stars) by Merrill (1952)

proved the in situ production of this rare-earth element, as this isotope is unstable

with a half-life time of only 211,000 years. Another signature of mixing between

the convective envelope and nuclear burning regions is the presence of 19F in

AGB stars. It is created by the reaction 15N.˛; 
/19F, which is taking place in

the helium shell. The necessary production of 15N can happen through different

paths, one of them being 18O.p; ˛/15N (see the neon neutron source, p. 428). Other
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possibilities include the production of protons through .n; p/-exchange reactions,

which therefore connects 19F with the occurrence of the s-process and the presence

of a neutron source.

Another modification of the surface composition, particularly of the ratio of 12C

to 14N, can occur if the lower boundary of the OCZ becomes hot enough to start

reactions of the CNO cycle. This event is known as hot bottom burning (HBB), and

occurs primarily in more massive AGB stars. It may even convert a carbon star back

into an oxygen star (C/O < 1). The details of all these processes and their results

are still rather uncertain, since they depend critically on the precise extensions of the

two convective zones involved (the OCZ and the ISCZ) and on any other potential

mixing process that may occur.

Nucleosynthesis on the AGB is very complex and depends on the details of

mixing episodes and temperatures encountered. Due to the simultaneous presence

of protons, ˛-particles, and possibly neutrons at temperatures of several 107 K up to

�2 � 108 K, elements from C to Al are both produced and destroyed by proton and

˛ captures. The primary production site is the helium shell, which creates C and O.

If these elements encounter protons, 14N will be the result. AGB stars can therefore

be the source of primary nitrogen (Primary elements are produced directly from the

basic building blocks, hydrogen and helium. Secondary elements, in contrast, are

the result of nucleosynthesis of pre-existing heavier elements. An example would be

the nitrogen resulting from CNO processes on the main sequence.). If 14N is further

exposed to ˛-particles in the helium shell, 18O and then 22Ne will result. In the

more massive AGB stars, temperatures can be high enough for further ˛-captures,

resulting in various Mg isotopes. Proton captures on Ne, Na, and Mg may change

the isotope ratios and eventually lead to Al, including 26Al, which has a half-life

time of almost a million years. It decays under emission of 1.81 MeV 
 -photons,

contributing partially to the galactic 
 -rays. Isotope ratios may further be modified

by neutron capture reactions. 14N, for example, acts as a so-called neutron poison,

as it very effectively captures neutrons, thereby reducing the neutron flux needed for

the s-process.

The detailed analysis of the abundances of these and the s-process elements

is a very important way to learn about the internal evolution of AGB stars. An

extensive discussion of nucleosynthesis in AGB stars can be found in the review by

Lattanzio and Wood (in Habing and Olofsson 2003, p. 24). Chemical yields from

AGB stars have been published by Karakas (2010), and Busso et al. (1999) reviewed

in particular the s-process in AGB stars.

34.6 Mass Loss on the AGB

There is plenty of observational evidence that AGB stars suffer significant mass loss

through stellar winds such that mass loss is, next to the thermal pulses, the second

major factor determining the evolution on the AGB. Direct evidence comes from

observations of circumstellar envelopes which enshroud luminous AGB stars, and
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may make them visible only in the infrared. The analysis of winds and circumstellar

shells shows that mass loss rates range from 10�8Mˇ=year to 10�5Mˇ=year

and are strongly correlated with increasing luminosity and decreasing effective

temperature. The highest rates effectively terminate the AGB evolution by removing

the envelope within several thousands of years to a level, where the star leaves

the giant region (as in Fig. 34.1). In this phase, the stellar wind is often called

a superwind, a term coined by Renzini in 1981, to indicate that it is orders of

magnitudes higher than the standard Reimers wind (9.1). We will not go into the

details of the observations and the physics of AGB winds, but give, as an illustrative

example, a fit formula by van Loon et al. (2005) that describes the mass loss rate

(in Mˇ/year) for oxygen stars (C/O < 1) as a function of the star’s position in the

HRD, and demonstrates the high sensitivity to effective temperature:

log PMAGB D �5:65C 1:05 � log

�
10�4 L

Lˇ

�
� 6:3 � log

�
Teff

3500K

�
: (34.17)

Generally, it is believed that the winds of AGB stars are due to the coupling of

the radiation field to dust forming in the outer atmospheres. The formation of

dust is favoured by very low temperatures, which are achieved during and due

to large-amplitude stellar pulsations (see Chap. 40). Indeed, many AGB stars are

known to be pulsating stars of type Mira or semi-regular and long-period pulsators

(periods are between 100 and 1,000 days). In addition, temperature variations

during TPs also modulate the mass loss. The complex interplay between pulsating

envelopes, the chemistry of dust formation, and the interaction with radiation poses

an extremely difficult chemistry-radiation-hydrodynamics problem. So far, such

models have been successful for carbon-rich atmospheres, and theoretical dust-

driven wind models and mass loss rates are available for carbon stars. Again, as

an example that is sufficient to make order-of-magnitude estimates for the mass loss

rate, we give the fitting formula to theoretical carbon-dust models by Wachter et al.

(2002):

log PMAGB D �4:52C 2:47 � log

�
10�4 L

Lˇ

�

�6:81 � log

�
Teff

2600K

�
� 1:95 � log

�
M

Mˇ

�
: (34.18)

Such fitting formulae may be accurate within one or two orders of magnitude.

Within this accuracy, the similarity of the dependencies on L and Teff in (34.17)

and (34.18) is interesting. More about AGB mass loss can be found in the textbook

by Habing and Olofsson (2003).

A more indirect but very convincing fact that demonstrates the importance of

mass loss from AGB stars comes from the initial-final-mass relation, pioneered by

Weidemann (1977; revised 2000). We describe briefly the general idea: spectrosopy

of white dwarfs allows to determine surface gravity gD GM=R and Teff. The
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Fig. 34.7 The initial-final mass relation. The data points and their error bars are taken from Salaris

et al. (2009). The dashed line is the empirical relation derived by Weidemann (2000). The solid

line is the relation predicted from theoretical AGB evolution models for Z D 0:02 (After Weiss

and Ferguson 2009)

former quantity, which can in principle also be determined from gravitational photon

redshift, together with known mass-radius relations (Chap. 37) yields the white

dwarf’s mass. Theoretical cooling curves for the so determined mass, together with

Teff, give the cooling age, tcool. If the white dwarfs are in a stellar cluster, the age t

of this cluster can be determined from comparison with isochrones of appropriate

composition. Since the white dwarfs are the descendants of former main-sequence

stars in the cluster, the difference t � tcool is the age the progenitor spent in the pre-

white dwarf stages. This time is dominated by the main-sequence lifetime, which is

depending on the initial mass, as we have estimated in (30.2) and plotted in Fig. 30.6.

In this way, the initial mass can be determined. Since the more massive AGB stars

and their mass loss are more interesting, open clusters of several 100 Myrs are

mainly investigated. However, also binary systems, in which one component is a

white dwarf, are suitable. A famous example is Sirius B; popular clusters are the

Hyades, the Pleiades, and Praesepe.

Figure 34.7 shows the empirical initial-final-mass relation (Salaris et al. 2009;

data points), the previous analytical fit by Weidemann (2000), and the prediction

from theoretical AGB evolution (Weiss and Ferguson 2009), which included

overshooting and mass loss according to (34.17) and (34.18). Within the errors the

theoretical models lie well within the empirical data. This is an indication that the

total mass loss is described well by the models. Notice that a 6Mˇ star ends as

a white dwarf of only 1Mˇ. It has lost a total of 5Mˇ, and this happens mostly

on the TP-AGB. The second remarkable result is that even for the highest masses

(� 8Mˇ) the final white-dwarf mass is well below the critical Chandrasekhar mass
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of � 1:4Mˇ. This will turn out to be an important fact in relation to the progenitors

of supernovae (Chap. 36).

34.7 A Sample AGB Evolution

In this section, we will present the complete evolution of a star of 2Mˇ and a stan-

dard composition (X D 0:695, Y D 0:285, ZD 0:02) from the main-sequence until

the final white-dwarf state. The calculations for this and many other values for mass

and composition were done by A. Kitisikis (PhD thesis, Munich University, 2008)

and published by Weiss and Ferguson (2009). They are the first attempt to include as

many crucial physical aspects of AGB evolution as possible. Overshooting is treated

according to (30.9), and applied at all convective boundaries. The opacity tables

used include variations of C and O abundance and therefore are sensitive to dredge-

up processes and in general lead to lower Teff in case of carbon enhancement of

the envelope due to the third dredge-up. Mass loss is included in parametrized form

following (34.17) and (34.18), depending on the C/O ratio. Figure 34.8a gives an

overview of the full evolution, and Fig. 34.8b shows the TP-AGB phase. Figure 34.9

summarizes details during the TPs.

The evolution starts on the main sequence, which lasts for 1.075 Gyr. A further

58 Myr are spent on the RGB, before helium ignites in a moderately energetic

core helium flash, with a peak helium luminosity of “only” logLHe=Lˇ D 7:2. The

surface luminosity of logL=Lˇ D 2:87 is also lower than that of the RGB tip of

low-mass stars indicating that at this mass, we are already in the transition region to

intermediate-mass stars. Core helium burning, which lasts for 177 Myr, takes place

in a barely visible loop around logL=Lˇ D 1:8. Then the star starts to climb the

E-AGB, and the first thermal pulses set in around logL=Lˇ D 3:0. Figure 34.8b

shows this part of the HRD in more detail. In the course of the TPs the peak

luminosity increases and the effective temperature drops. This leads to stronger mass

loss. The last TP, which sets in after C/O > 1 is reached, leads to a strong excursion

to temperatures as low as 2,000 K. After this final pulse, due to the fast shedding

of the envelope, the star contracts and crosses the HRD within 4,100 yrs. Its mass,

and therefore the final white-dwarf mass, is 0:543Mˇ. The E- and TP-AGB last for

15.4 and 2.6 Myr.

Details of the TP-AGB phase are given in Fig. 34.9. As mentioned in Sect. 34.3,

an asymptotic pulse behaviour is slowly approached after about 10 TPs, but not

completely reached, even after all 15 pulses. The first pulse is, as is very often found

in such calculations, different from the subsequent ones. The surface luminosity

drops more than for the 5Mˇ star of Fig. 34.3, due to the less massive envelope.

However, it also shows a very short-lived peak of 500 ‘years’ duration, which is

not visible in Fig. 34.3. This is found in many models with massive envelopes and a

deep penetration of the OCZ down to the hydrogen-burning shell.

Figure 34.9 also shows the interaction of dredge-up, effective temperature and

mass loss. With increasing pulse number, the star gets increasingly cooler. At the
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a

b

Fig. 34.8 (a) Evolution of a

star of 2Mˇ and Z D 0:02

from the ZAMS to the

white-dwarf cooling stage

(Weiss and Ferguson 2009).

(b) Detail view of the

TP-AGB phase, with 15 TPs,

the last one leading to an

excursion to very low Teff, the

final expulsion of the stellar

envelope, and the beginning

of the post-AGB transition to

hot Teff at nearly constant L.

For details about the

calculations, see text

same time, the carbon abundance in the envelope increases in each pulse due to

dredge-up, ensured by the application of convective overshooting from the ISCZ.

The dredge-up in fact starts already with the first thermal pulse, but is interrupted

until TP 9. Then a significant increase up to C/O D 1 takes place. Note that also

some oxygen–the second result of helium burning–is dredged up. The increase in

nitrogen is due to protons ingested from the envelope. The abundances in Fig. 34.9

are given in mass fractions, while the C/O ratio is in number fractions. This is the

reason why the carbon abundance remains below that of oxygen, but C/O > 1

after pulse 14. At this moment, a strong increase in opacity due to the carbon-rich

atmosphere leads to a drop in Teff, and thus, due to the high sensitivity of the mass

loss rate to temperature, to a strong increase in PM . In the corresponding panel PM
increases to levels above 10�5Mˇ=year, such that the total mass (middle panel) is
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Fig. 34.9 Physical quantities during the TPs of the same model as in Fig. 34.8. The panels show,

from top to bottom: total luminosity L (left scale) and Teff (right scale); helium and hydrogen shell

luminosity; total and C/O core mass; pulsation period (left scale) and mass loss rate (right scale);

and finally C/O ratio at the surface (left scale) and C, N, and O mass fractions (right scale)
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reduced to the core mass within 3:4�104 years. The pulsation period (second-to-last

panel, left scale) is only a rough estimate and is needed only to decide when standard

Reimers wind is replaced by (34.17) for C/O < 1 or (34.18) for C/O > 1. Dust-

driven winds, for which large-amplitude pulsations are a necessary prerequisite (see

Sect. 34.6), are taken into account only for periods longer than 400 days.

34.8 Super-AGB Stars

There is a small mass range between intermediate-mass and massive stars that may

extend, depending on composition and author, from 7 to 12Mˇ or from � 8

to 10Mˇ, in which stars may ignite carbon burning off-centre under partially

degenerate core conditions. Above the upper mass limit carbon ignites at the non-

degenerate centre of stars, and below the lower mass limit, the core does not reach

the necessary ignition temperature of about 7 � 108 K. To reach this temperature

requires core masses in excess of �1Mˇ, which, according to the empirical

findings and theoretical predictions of the initial-final mass relation, (Fig. 34.7) is

not obviously possible. Nevertheless, this option should not be excluded.

Siess (2006b, and reference therein) describes in detail the complicated evolution

of such stars. The mass range, at a metallicity of ZD 0:02, is between 9 and

11:3Mˇ. Here, we summarize only the main events in it. The carbon flash happens

analogously to the helium flash we encountered earlier. It leads to a heating and

expansion of the C/O core. However, these structural changes lead to a quenching of

carbon burning, and core contraction is resumed. This now takes place under much

less degenerate conditions, such that the core heats up and a second carbon ignition,

in the literature called a “flame”, sets in, and leads to central carbon burning. After

this phase, which may last a few thousand years, carbon burning proceeds in a

radiative shell around a neon-oxygen core. If it encounters carbon pockets around

the core, convection zones may appear for some time.

There is also a number of convective episodes in the outer regions of the star.

For example, the OCZ may reach the hydrogen-helium boundary before or during

central carbon burning. This constitutes the second dredge-up we already know. It

leads to the extinction of the hydrogen shell. The helium shell is providing most

of the star’s luminosity, and since the shell may be convective, in some stars, this

convection zone may merge with the OCZ. As a result, the mass of the hydrogen-

exhausted core is reduced substantially.

Carbon burning can also be quenched again due to strong cooling by neutrino

losses such that after core carbon burning the He-shell is the only nuclear energy

source of the star. Obviously, this shell is thermally unstable and will resume thermal

pulses, during which the hydrogen is also reignited. This is the reason for the

name super-AGB stars, as such stars share properties with AGB stars, but are more

luminous. Since mass loss has to be minor in order to allow a sufficient core growth

during the AGB phase, the envelope mass is still substantial and super-AGB stars

may indeed suffer up to thousand TPs.
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Fig. 34.10 Transition masses between different evolutionary paths for stars, and their final fate.

MH,MHe,Mup,Mn, andMSN correspond to the minimum initial stellar mass for hydrogen, helium,

and carbon ignition, the formation of a neutron star, and for stars undergoing a type II supernova

explosion. The final fate of the star and its remnant are indicated for each mass range. Note that

these mass limits depend crucially on the initial composition and on the detailed computations

(After Siess 2006b)

The final fate of super-AGB stars depends on the mass of the NeO core. If it

exceeds � 1:37Mˇ after carbon burning, the nuclear evolution will go through all

phases just as for massive stars. If it is slightly lower than this value initially, Ne

ignition can be avoided and the core can grow due to shell burning and develop a

highly degenerate NeO core of 1:37Mˇ. It will not undergo the thermal pulses,

but will end as a so-called electron-capture supernova (see Sect. 36.3.4), which

is initiated by electron-capture reactions on 24Mg, 24Na, and other isotopes. This

leads, among other effects, to the reduction of electron pressure, and a subsequent

collapse of the core. A low-mass neutron star will be the remnant after the supernova

explosion. If the NeO core mass always stays below this critical core mass, the

star will end–after envelope expulsion–as a NeO white dwarf. In Fig. 34.10 an

overview of the various mass limits separating the different evolutionary paths is

given (adapted from Siess 2006b). These limits are very uncertain and depend a lot

not only on the details of the computations, but also on the initial composition. In

fact some limits may not even exist at all metallicities, because of effects of mass

loss or overshooting.
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Fig. 34.11 Example for a

late thermal pulse in a star of

initially 2:7Mˇ, according to

Althaus et al. (2005)

34.9 Post-AGB Evolution

Stars of low and intermediate mass leave the AGB mainly due to the very short-lived

superwind phase. Depending on the phase of the TP cycle this happens, the star may

have a hydrogen- or helium-shell providing the majority of the total luminosity. The

post-AGB stars are therefore divided into hydrogen and helium burners. The latter

group generally has longer HRD-crossing timescales.

With increasing Teff, mass loss is quickly dying out. Depending on the density

and expansion velocity of the circumstellar shell which was lost during the TP-

AGB phase, the increasingly higher number of UV photons emerging from the star,

which is crossing the HRD to very high temperatures, may ionize the circumstellar

matter and lead to the creation of a planetary nebula. The critical values for Teff are

30,000 K and 60,000 K for hydrogen and helium ionization. In addition, a hot wind

with velocities of the order of 1,000 km/s ploughs into the slowly expanding shell

(of a few tens of km/s), compressing it and creating shocks.

At the bluest point in the evolution (see Figs. 34.1 and 34.8), the shell is finally

fading away and the star begins its final cooling phase and becomes a white dwarf.

However, in some cases, the star may still suffer a last thermal pulse. Such late

pulses are found in numerical calculations both during the HRD crossing and during

the earliest cooling phases. In the course of such a late TP the star returns to the

AGB and resumes a second HRD crossing. We show such an excursion in the HRD

in Fig. 34.11. Due to the mixing and burning episodes connected with the pulse the

thin envelope undergoes drastic changes in its composition. In fact, there is a small

number of stars which evolved drastically over a few decades including changes of

the surface composition. These are generally connected with late TP events. Famous

examples are Sakurai’s object (V4334 Sgr), FG Sge, and V650 Aql. There is still

a discrepancy between the timescales for the changes between the models and the

objects, but this may be due to insufficient theories for time-dependent convection.

This kind of objects and their relation to post-AGB evolution have been reviewed

by Schönberner (2008).
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Later Phases of Core Evolution

35.1 Nuclear Cycles

The stellar evolution described above may seem to be rather complicated with regard

to the nuclear shell instabilities, but also where the changes of the surface layers are

concerned, for example, in the case of evolutionary tracks in the HR diagram. The

processes appear much simpler and even become qualitatively predictable if we

concentrate only on the central evolution. Extrapolating from central hydrogen and

helium burning of sufficiently massive stars, we can imagine that the central region

continues to pass through cycles of nuclear evolution which are represented by the

following simple scheme:

nuclear burning

% &
core heating exhaustion of fuel

- .
core contraction

The momentary burning will gradually consume all nuclei inside the convective

core that serve as “fuel”. The exhausted core then contracts. This raises the central

temperature until the next higher burning is ignited etc.

As long as this scheme works, gradually heavier elements are built up near the

centre from cycle to cycle. The new elements are evenly distributed in convective

cores which usually become smaller with each step. For example, in the first cycle

(hydrogen burning), the star develops a massive helium core, inside which a much

smaller CO core is produced in the next cycle (helium burning), and so on.

We have also seen that after the core is exhausted the burning usually continues

in a concentric shell at the hottest place where the fuel is still present. A shell source

can survive several of the succeeding nuclear cycles, each of which generates a new

shell source, such that several of them can simultaneously burn outwards through

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 35, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 35.1 Schematic illustration (not to scale) of the “onion skin structure” in the interior of a

highly evolved massive star. Along the vertical radius and below the horizontal radius some typical

values of the mass, the temperature (in K), and the density (in g cm�3/ are indicated

the star. They are separated by mass shells of different chemical composition;

gradually heavier elements are encountered when going inwards from shell to shell.

One then speaks of an “onion skin model”. A schematical cross section of such a

model is shown in Fig. 35.1. The shell structure of the chemical composition can

in fact become more complicated than that, since some shell sources bring forth a

convective (or semiconvective) subshell, inside which the newly processed material

is completely (or partially) mixed. This can be recognized in Fig. 36.4, which shows

the interior composition of a model for a 25Mˇ star in a very advanced stage (just

before core collapse, see Chap. 36). We have also seen that, depending on the change

of T in certain regions, a shell source may stop burning for some time and be

reignited later.

The simple evolution through nuclear cycles as sketched above can obviously

be interrupted, either temporarily or for good. From the discussion of the nuclear

reactions in Chap. 18 we know that the cycles must come to a termination, at the

latest, when the innermost core consists of 56Fe (or neighbouring nuclei) and no

further exothermic fusions are possible. However, it is easily seen that the sequence

of cycles can be interrupted much earlier by another effect. Each contraction

between consecutive burnings increases the central density %c. Assuming homology
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for the contracting core (cf. Sect. 28.1) and ignoring the influence of the rest of the

star, we obtain from (28.1) the change of the central temperature Tc

dTc

Tc

D
�
4˛ � 3

3ı

�
d%c

%c

: (35.1)

The decisive factor, in parenthesis on the right-hand side, depends critically on the

equation of state which is written as %�P ˛T �ı . For an ideal gas with ˛ D ı D 1,

we have dTc=Tc D .1=3/.d%c=%c/. This means that each contraction of the central

region increases the temperature, as well as the degeneracy parameter of the elec-

tron gas Œ D constant for dT=T D .2=3/.d%=%/ (cf. Sects. 15.4 and 16.2)]. With

increasing degeneracy the exponents ˛ and ı become smaller. When the critical

value ˛ D 3=4 is reached (ı is then still > 0), the contraction (d%c>0) no longer

leads to a further increase of Tc according to (35.1). The degeneracy in the central

region has obviously decoupled the thermal from the mechanical evolution, and the

cycle of consecutive nuclear burnings is interrupted. In this case the next burning

can be ignited only via more complicated secondary effects, which originate, for

example, in the evolution of the surrounding shell source (cf. Sect. 33.2).

Other complications may arise if the central region of a star suffers an appreciable

loss of energy by strong neutrino emission (cf. Sect. 18.7). We have already seen

(Sect. 33.5) that this can decrease the central temperature and, therefore, influence

the onset of a burning.

In any case, the nuclear cycles tend to develop central regions with increasing

density and with heavier elements. We should note, however, that the later nuclear

burnings are not capable of stabilizing the star long enough for us to observe many

stars in such phases (as is the case with central hydrogen burning and helium

burning). The main reason for this is the strongly decreasing difference in binding

energy per nucleon (Fig. 18.1). Table 35.1 on page 447 gives typical durations

for the various hydrostatic burning phases. From carbon burning on, these are

comparable, respectively much shorter than the thermal timescale of the star. This

means that any change in the core is no longer reflected by a change of surface

properties, and therefore the star remains at its position in the Hertzsprung-Russell

diagram. From the outside, one cannot see whether the star is 10,000 years or 10 h

before the final core collapse!

35.2 Evolution of the Central Region

The description of the nuclear cycles in Sect. 35.1 has already given a rough outline

of the central evolution of a star. We recognize it easily in Fig. 35.2, where the

evolution of the centre is plotted in the lg %c–lgTc plane according to evolutionary

calculations for different stellar masses M , covering the full range from brown

dwarfs to the most massive stars. We see that Tc indeed rises roughly �%1=3c

[cf. (35.1)] as long as the central region remains non-degenerate. Of course, the
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Fig. 35.2 Evolution of the central values of temperature Tc (in K) and density %c (in g cm�3/

for stars of all masses (from 0.05Mˇ to 120Mˇ). The tracks are labelled with the stellar mass

M (in Mˇ). The tracks have been collected from different sources but are all for a metallicity

of approximately Z D 0:02. The brown dwarf track (M D 0:05Mˇ) includes the pre-main-

sequence phase and is from Baraffe et al. (2003). Stars with M from 0.45 to 5Mˇ are from the

authors, those with M D 8:8, 9.5, and 12:0Mˇ (the super-AGB range) from Siess (2006a), and

the massive stars (M D 15, 40, and 120Mˇ) from Limongi and Chieffi (2006) (Data courtesy of

I. Baraffe, M. Limongi, L. Siess)

details of the central evolution are much more complicated than predicted by the

simple vector field in Fig. 28.1. During the burnings the curves bulge out to the upper

left. This is not surprising, since then the changes are far from homologous [which is

assumed in (35.1) and for Fig. 28.1], for example, owing to the restratification from

a radiative to a convective core. After these interludes of burning, the evolution

returns more or less to the normal slope. A parallel shift of the track from one to

the next contraction is to be expected, since the contracting region (the core) will in

general have a larger molecular weight, but a smaller mass.

We have already mentioned in Sect. 28.1 and in Sect. 35.1 the important fact that

each contraction with Tc � %
1=3
c brings the centre closer to the regime of electron

degeneracy. The degree of non-relativistic degeneracy is constant on the steeper

lines T � %2=3. Once the central region has reached a certain degree of degeneracy

(where ˛ D 3=4 in the simple model of Sect. 28.1), Tc no longer increases, and

the next burning is not reached in this way (if at all), as we have already seen in

Fig. 28.2. This happens the earlier in nuclear history, the closer to degeneracy a star

has been at the beginning, i.e. the smaller M is (cf. Fig. 35.2). Recall (Sect. 22.2)

that with increasing mass, also Tc increases, but %c decreases (Fig. 22.5). Therefore

which nuclear cycle is completed before the star develops a degenerate core depends

on the stellar mass M:

If the evolution were to proceed with complete mixing, we would only have to

consider homogeneous stars of various M and different compositions, and to see

whether their contraction leads to ignition (M >fM 0) of a certain burning or to a
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degenerate core (M <fM 0). These limits for reaching the burning of H, He, and C

are fM 0 � 0:08; 0:3; and 0:8Mˇ, respectively.

We know that the evolution lies far from the case of complete mixing, and only

the innermost core of a star is processed by nuclear burning. But for sufficiently

concentrated cores, the central contraction proceeds independently of the conditions

at its boundary, i.e. independently of the non-contracting envelope. Therefore the

above values fM 0 give roughly the limits for the masses of the corresponding cores.

Standard evolutionary calculations (assuming a typical initial composition, no

convective overshooting, and no mass loss) give the following characteristic ranges

of M , which we already mentioned earlier. After central hydrogen burning, low-

mass stars withM <M1.He/ � 2:3Mˇ develop degenerate He cores. After central

helium burning, intermediate-mass stars with M <M1.CO/� 9Mˇ develop a

degenerate CO core. And in massive stars with M >M1(CO) even the CO core

remains non-degenerate while contracting for the ignition of the next burning. The

precise values of the limiting masses M1 depend, for example, not only on the

assumed initial composition but also on details of the physical effects considered.

Another important influence is the downwards penetration of the outer convection

zone after central helium burning (in the second dredge-up phase). This lowers the

mass of the core and therefore encourages the evolution into stronger degeneracy,

i.e. it lowers M1 (cf. Sect. 34.8). The depth of the second dredge-up depends on the

choice of the mixing length parameter and the inclusion of convective overshooting.

In Fig. 35.2 we see that the models with M D 0:05, 0:45, and 8:8Mˇ just miss the

ignition of H, He, and C, respectively.

After a star has developed a strongly degenerate core it has not necessarily

reached the very end of its nuclear history. This is only the case if the shell-source

burning cannot sufficiently increase the mass of the degenerate core. However, the

next burning is only delayed, and it will be ignited later in a “flash” if the shell

source is able to increase the mass of the core to a certain limit M 0
c . We have

seen in Sect. 33.3 that the critical mass for ignition of helium in a degenerate

core is M 0
c.He/� 0:48Mˇ, which agrees with the case shown in Fig. 35.2. The

corresponding critical mass of a degenerate CO core is M 0
c.CO/� 1:4Mˇ as we

shall see immediately. Note that these limits are appreciably larger than the corre-

sponding lower limits (fM 0) for reaching a burning by non-degenerate contraction,

as described above. This indicates the possibility that the evolution depends dis-

continuously onM around the limitsM1(He) andM1(CO). For example, stars with

M DM1.He/��M ignite helium via a flash in a degenerate core of mass 0:48Mˇ,

while stars withM DM1.He/C�M can ignite helium burning via core contraction

in (nearly) non-degenerate cores of about 0:3Mˇ (cf. the idealized scheme in

Fig. 35.3). Here one could imagine a bifurcation at M DM1, where fluctuations

would decide into which of the two regimes the star turns. In reality (by which we

mean numerical models) the limit is “softened up” (a little bit of degeneracy leading

to a baby flash, etc.), as can be seen in Fig. 5.19 of Salaris and Cassisi (2005). Nev-

ertheless, the transition range is narrower than �0:5Mˇ between the two regimes.

The ignition of He and C under degenerate conditions in the 1.0 and 8:8Mˇ stars

of Fig. 35.2 first leads to a strong cooling and expansion of the core, followed by a



444 35 Later Phases of Core Evolution

Fig. 35.3 The solid line

shows schematically the mass

Mc of the helium core at the

onset of helium burning as a

function of the stellar

mass M . The broken line

shows the core mass at the

end of hydrogen burning in

low-mass stars, before the

electron gas in the core

becomes degenerate

temperature increase and further expansion until stable core He burning is reached.

This realistic evolution is more complicated than the simple picture illustrated in

Fig. 33.6.

The evolution of degenerate CO cores is similar to that of degenerate helium

cores in low-mass stars (Sects. 33.3 and 33.4). The structure of the core is more or

less independent of the details of the envelope. Therefore the evolution of the central

values converges for stars of different M as long as the core mass is the same (cf.

Fig. 35.2, M D 0:45 and 1:0Mˇ). While the mechanical structure of such a core

is determined by its mass Mc; its thermal properties depend on the surrounding

shell source and on the neutrino losses. If the shell source were extinguished, the

core would simply cool down with %c D constant (on a vertical line in Fig. 35.2) to

the white-dwarf state, as can be seen in this figure for the lower and intermediate-

mass values. The brown dwarf will end as a hydrogen white dwarf, that with

M D 0:45Mˇ as a helium white dwarf, those with higher masses up to 8:8Mˇ as

carbon-oxygen white dwarfs, and the one with 9:5Mˇ possibly as a oxygen-neon

white dwarf.

The continuous burning of the shell source increasesMc; which in turn increases

the temperature in the shell source (cf. Sect. 33.2). It also increases the central den-

sity, as we know from the discussion of the structure of degenerate configurations

(Sect. 19.6), i.e. the evolution goes to the right in Fig. 35.2. The contraction due to

this effect releases a large amount of gravitational energy, which, in the absence of

energy losses (by conduction or neutrinos), would heat the core adiabatically.

However, there are strong neutrino losses "� in this part of the T -% diagram

(cf. Fig. 18.11), which modify the whole situation. Since "� increases appreciably

with T , we should first make sure that there is no thermal runaway in the degenerate

core (a “neutrino flash”), in analogy to a flash at the onset of a burning. This can

be easily shown by the stability consideration presented in Chap. 25, where we

analysed the reaction of the central region on an assumed increase d" of the energy

release. This led to (25.30) with gravothermal heat capacity c� (25.29). Now we

replace d" by the small energy loss �d"� . If we neglect the perturbation of the flux

(dls D 0) for simplicity, (25.29) and (25.30) become

c� dT

dt
D �d"�; c� D cP

�
1 � rad

4ı

4˛ � 3

�
: (35.2)
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Obviously the reversal of the sign of the right-hand side in the first equation (35.2)

has reversed the conditions for stability. An ideal gas with ˛ D ı D 1 has the

gravothermal heat capacity c� < 0, and neutrino losses are unstable since PT > 0

(a thermal runaway with ever increasing neutrino losses). Degenerate cores with

˛ ! 3=5; ı ! 0 have c� > 0, i.e. PT < 0, and these cores are stable: a small

additional energy loss reduces T and "� such that the core returns to a stable balance.

In the following scheme we summarize the different properties of thermal stability

we have encountered:

Burning Neutrinos

(" > 0) (�"� < 0)

Ideal gas Stable Unstable

Degeneracy Unstable Stable

According to Sect. 34.3 the scheme also holds for burning in shell sources, where

we have in addition the pulse instability for thin shells. We recall that a general

treatment of the shell source stability is possible (Yoon et al. 2004).

Numerical calculations approve the above conclusions: instead of leading to

a thermal runaway, the neutrino losses cool the central region of a degenerate

core such that "� remains moderate. Typical “neutrino luminosities” L� (D total

neutrino energy loss of the star per second) remain only a fraction of the normal

“photon luminosity” L: In Fig. 35.4 we show a very instructive example from an

early model by Paczyński (1971). Although a star of only 3Mˇ is almost certainly

never able to develop a CO core of more than 0:8Mˇ, the figure still shows all

principle effects: The temperature profiles inside the cores of two different Mc

are shown in Fig. 35.4 by the broken S-shaped curves. They follow roughly lines

of "� D constant. With increasing Mc the point for the centre moves along the

solid line to the right, and extremely high values of %c would necessarily occur if

Mc could go to the Chandrasekhar limit of 1.44Mˇ. Shortly before this limit, at

Mc � 1:4Mˇ, the central values reach the dotted line "� D "C to the right of which

pycnonuclear carbon burning dominates over the neutrino losses, "C > "� . Now

carbon burning starts with a thermal runaway. If this happens in the centre, then

explosive carbon burning will finally disrupt the whole star, such that one should

expect a supernova outburst that does not leave a remnant (a neutron star); compare

this also with Chap. 36. We have already seen (Sect. 34.8) that in more massive

stars carbon ignition starts in a shell, such that the star survives this event, but

the principal story remains that the degenerate CO core is ignited when its mass

Mc � 1:4Mˇ, although it depends on the initial mass and varies, according to Siess

(2006b), between 1.1 and 1:5Mˇ for ZAMS masses between 9.0 and 11:5Mˇ.

With increasing mass and decreasing core degeneracy the location of carbon ignition

is moving towards the centre. At the end of the rather complicated carbon burning

phase an ONeMg core is left over. For the initial mass range for which this core is

degenerate, its mass is between 1.05 and 1:12Mˇ, again far from the Chandrasekhar

mass.
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Fig. 35.4 Temperature T (in K) and density % (in g cm�3) in the CO core of a 3Mˇ star after

central helium burning. The solid line gives the evolution of the centre with increasing core mass

Mc (inMˇ). The carbon flash starts at aboutMc D 1:39Mˇ when the energy production by carbon

burning ("C) exceeds the neutrino losses ("� ). Some lines of constant ratio "�="C are dotted. The

broken lines show the T stratification in the core for two consecutive stages; neutrino losses have

produced a maximum of the temperature outside the centre (After Paczyński 1971)

The just-described central evolution is the same for all stars that are able to

develop a degenerate CO core ofMc � 1:4Mˇ. The obvious condition for this is that

the stellar massM is larger than that limit. For PM D 0 this would include all stars in

the range 1:4Mˇ<M <9Mˇ, i.e. the intermediate-mass stars (M � 2:3 : : : 9Mˇ)

and the low-mass stars with M >1:4Mˇ. More precisely the stellar mass M must

be larger than 1:4Mˇ at the moment of ignition (which does not occur before

Mc � 1:4Mˇ). This can require that the initial stellar mass Mi (on the main

sequence) was much larger than 1:4Mˇ if M has been reduced in the meantime

by a strong mass loss.

Obviously there are two competing effects, the increase ofMc due to shell-source

burning and the simultaneous decrease of the stellar mass M due to mass loss.

Their changes in time are schematically shown in Fig. 35.5, and the outcome of

this race decides the final stage of the star. The two values (M and Mc/ reach their

goal at 1.4Mˇ simultaneously if the initial mass has the critical value Mi(min).

Stars with Mi>Mi(min) will ignite the CO core, since Mc can reach 1.4Mˇ.

For stars with initial masses Mi<Mi(min), the mass loss will win and Mc never

reaches 1.4Mˇ. Such stars will finally cool down to the white-dwarf state after

the shell source has died out near the surface (cf. Sect. 33.7). Unfortunately the

total loss of mass during the evolution is not well known. The various mass loss

formulae (Sect. 32.3) and the initial-final mass relation (Fig. 34.7) predict a total

mass loss of up to�M � 6 : : : 7Mˇ, which would mean a critical initial mass above

Mi(min) � 7Mˇ at least. Of course, if the mass loss were so large that even stars
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Fig. 35.5 For three different

initial masses Mi the solid

lines show schematically the

decrease of the stellar mass

M due to mass loss, while the

mass of their degenerate CO

cores (dashed line) increases

owing to helium-shell

burning. Carbon burning is

ignited when the core mass

reaches about 1.4Mˇ. This

never occurs for

Mi < Mi(min), since then the

surface reaches the core

before it can grow to 1.4 Mˇ

Table 35.1 The duration of burning stages (in years) in three models of

different mass, taken from Limongi and Chieffi (2006)

Burning: M D 15Mˇ W M D 40Mˇ W M D 120Mˇ W
H 1:31 � 107 4:88 � 106 2:80 � 106

He 9:27 � 105 3:82 � 105 2:96 � 105

C 3:25 � 103 1:86 � 102 3:62 � 101

Ne 6:67 � 10�1 1:34 � 10�1 6:56 � 10�2

O 3:59 � 100 1:59 � 10�1 2:57 � 10�2

Si 6:65 � 10�2 1:47 � 10�3 3:63 � 10�4

The beginning and end of each burning stage is defined as the times when

1 % of the fuel has been burnt, respectively when its abundance has dropped

to below 10�3 (Data courtesy M. Limongi)

with Mi � 10Mˇ were reduced to M <1:4Mˇ before carbon ignition, then all

intermediate stars (developing a degenerate CO core) would become white dwarfs.

In any case, there are drastic differences between the final stages (white dwarfs or

explosions) to be expected for stars in a narrow range of Mi near Mi(min). Current

models (Sect. 34.8 and Fig. 35.2) put this mass range between �9 and 11Mˇ. These

numbers are all depending on the composition.

It is clear that we have the same competition between PMc > 0 and PM < 0 in the

analogous problem of determining initial masses for which the degenerate helium

cores are ignited (at Mc � 0:48Mˇ). In this case the bifurcation of the evolution

concerns mainly the composition of the final white dwarfs (He or CO).

Finally, we have to consider the massive stars with M > 9 : : : 11Mˇ, in which

the CO core does not become degenerate during the contraction after central

helium burning. Therefore Tc rises sufficiently during this contraction to start the

(non-explosive) carbon burning. Here the neutrino losses can become very large,

carrying away most of the energy released by carbon burning. In the later burnings,

massive stars can have neutrino luminosities up to 106 times larger thanLI but these

stages are very short-lived: for example, silicon burning lasts just a few days (see

Table 35.1).
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These massive stars will go all the way through the nuclear burnings until Fe and

Ni are produced in their central core (Such a case is illustrated in the onion skin

model in Fig. 35.1.). After the core has become unstable and collapses, electron

captures by these nuclei transform the core into a neutron star, while the envelope is

blown away by a supernova explosion (see Chap. 36).



Chapter 36

Final Explosions and Collapse

We have seen that stars can evolve to the white dwarf stage through a sequence

of consecutive hydrostatic states if they develop a degenerate core and have final

masses less than the Chandrasekhar limit MCh. It is not well known, however, how

much mass the stars can have initially (on the main sequence) in order to end this

way. From what was discussed in Chap. 34, it seems that except for a very narrow

mass range at the upper end, all stars that develop degenerate cores end as white

dwarfs. The main uncertainty here is the total amount of mass lost by stellar winds.

Other stars certainly undergo explosions, ejecting a large part of their mass, if

not disrupting completely. In the case where a neutron star is left as a remnant the

core must have undergone a collapse, since it cannot reach the neutron-star stage

by a hydrostatic sequence. Collapse and explosions are connected with supernova

events, and although the theory and the numerical models are well developed and

far advanced, not all questions concerning the different mechanisms have been

answered, and not all different observed phenomena can be explained so far. The

singular event of SN 1987A and the ongoing large-scale supernovae searches, which

have returned hundreds of such objects throughout the universe, have led to a much

better understanding of stellar explosions, but have also raised new questions. In this

section we only discuss some basic effects which certainly play an important role in

late phases of more massive stars, and that will probably remain to be an important

part of full theories of supernovae.

Since we will not go into the details of the physics of collapse and explosion, and

neither into the interesting question of explosive nucleosynthesis in supernovae, we

refer the reader to the respective reviews on the subject, such as Hillebrandt and

Niemeyer (2000; on supernovae of type I), Smartt (2009; on core collapse super-

novae progenitors), Janka et al. (2007; on the theory of core collapse supernovae),

Heger et al. (2003; on the fate of massive stars), and others.

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 36, © Springer-Verlag Berlin Heidelberg 2012
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36.1 The Evolution of the CO-Core

After central helium burning, the further evolution depends critically on the question

whether or not the CO-core becomes degenerate in the ensuing contraction phase.

Clearly this will depend on the mass of the core. Since its contraction is practically

independent of the envelope, the core can be considered as if it were a contracting

gaseous sphere with zero surface pressure, as discussed in Chap. 28.

We first estimate the critical core mass that separates the case where the

contraction leads to increasing temperatures from the case where degeneracy

prevents further heating. For this purpose we replace the equation of state by

an interpolation formula between different asymptotic behaviours. In the cores of

evolved stars the molecular weight per electron is �e � 2, while that per ion is

�0 � 12, and therefore the pressure of non-degenerate electrons (�1=�e) dominates

the ion pressure (�1=�0). This holds even more so if the electrons are degenerate.

For simplicity we here neglect radiation pressure, as well as the creation of electron–

positron pairs, which can also lead to partial degeneracy at very high temperatures

and low densities (see Sect. 36.3.5). We then approximate the equation of state by

the simple form

P � Pe D <
�e

%T CK


�
%

�e

�

: (36.1)

In the second term the exponent 
 is not a constant, allowing for non-relativistic and

relativistic degeneracy. It varies from 
 D 5=3 for % � 106 g cm�3 to 
 D 4=3 for

% � 106 g cm�3, while K
 varies from the constant in (15.23) to that in (15.26).

The equation of hydrostatic equilibrium (2.4) yields as a rough estimate for the

central values (which we denote by subscript 0):

P0 � GMc N%
Rc

D f GM 2=3
c %

4=3
0 : (36.2)

Here we have used the fact that P0 is almost given by the weight of the core

material alone and N% D 3Mc=.4�R
3
c/ is assumed to be proportional to %0. The

dimensionless factor f , containing, for example, the ratio N%=%0, is kept constant in

this consideration. Using (36.1) for the centre and eliminating P0 from (36.2) yields

<
�e

T0 D f GM 2=3
c %

1=3
0 �K
%


�1
0 ��


e : (36.3)

On the right-hand side, the first term dominates in the non-degenerate case, while

the two terms are about equal for high degeneracy.

For a given mass Mc; (36.3) gives an evolutionary track in the lg%0–lgT0 plane

in Fig. 36.1, similar to the tracks shown in Fig. 28.2. Starting with rather small %0
and 
 D 5=3, the central temperature T0 grows with %0 and has a maximum at

%0max, after which T0 decreases again until T0 D 0 is reached at a density of 8%0max.



36.1 The Evolution of the CO-Core 451

Fig. 36.1 Schematic

evolution of the central values

T0 (in K) and %0 (in g cm�3/

for different core masses. The

dot-dashed line corresponds

to the left-hand part of the

dot-dashed line in Figs. 28.1

and 28.2. Five evolutionary

tracks are plotted which

illustrate the different cases

discussed in the text: A and B

correspond to case 1. B�

illustrates case 2, where the

core gains mass after it has

become degenerate and

undergoes a carbon flash. The

curves C , D correspond to

case 3, while curve E

corresponds to case 4

The behaviour of these evolutionary tracks is the same as that discussed in Chap. 28,

if there M is replaced by Mc (The way we have made our estimate here, keeping

f constant during contraction, is equivalent to the assumption of homology there.).

For example, in the non-degenerate case [first term on the right of (36.3) dominant],

the slope of the tracks is 1/3 as indicated on the left-hand side of Fig. 36.1, and

the tracks for different Mc are shifted at the same values of %0 like T0 � M
2=3
c , in

analogy to Sect. 28.1.

With sufficiently growing central density, relativistic degeneracy becomes impor-

tant, and 
 ! 4=3;K
 ! K4=3. If we now write 
 D 4=3C � (where � ! 0 for

%=�e > 10
7 g cm�3/, we can replace (36.3) by

<
�e

T0 D %
1=3
0



f GM 2=3

c �K.4=3C�/�
�.4=3C�/
e %

�
0

�
: (36.4)

This shows that with increasing %0 the temperature T0 does not become zero, but

rises again � %1=3 if

Mc > Mcrit D
�
K4=3

f G

�3=2
��2

e : (36.5)

Obviously the critical value of Mc obtained in (36.5) is of the order of the

Chandrasekhar mass MCh as in (19.29) and (19.30) [Note that a comparison of

(36.1) with (19.3) shows thatK4=3 D K�
4=3
e .]. In fact ifMc D Mcrit as defined here,

then the core at zero temperature is fully relativistic, degenerate, and in hydrostatic

equilibrium, which requiresMc D MCh.

We can therefore say that during contraction of a core withMc . MCh the central

temperature reaches a maximum and afterwards decreases because of degeneracy,
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while for Mc & MCh, the temperature continues to increase, roughly proportionally

to %
1=3
0 .

We consider next the maximum temperature an evolutionary track reaches for

Mc < Mcrit in the non-relativistic regime. We simply set 
 D 5=3;K
 D K5=3 in

(36.3) and introduceMcrit from (36.5), obtaining

<T0 D K4=3

�
Mc

Mcrit

�2=3 �
%0

�e

�1=3
�K5=3

�
%0

�e

�2=3
: (36.6)

This gives a maximum temperature T0max for

%0max

�e

D 1

8

�
K4=3

K5=3

�3 �
Mc

Mcrit

�2
� 2:38 � 105g cm�3

�
Mc

Mcrit

�2
; (36.7)

with the value

T0max D 1

4<
K2
4=3

K5=3

�
Mc

Mcrit

�4=3
� 0:5 � 109K

�
Mc

Mcrit

�4=3
: (36.8)

(Note that K4=3 and K5=3 have different dimensions.) For cores with Mc . Mcrit,

therefore, T0 cannot exceed �0:5 � 109 K. This is in rough agreement with the

“summit” of the dotted line in Fig. 28.1.

The events in the following stages depend sensitively on details of the material

functions, the initial models, and the numerical calculations. These factors can

decide, for example, whether core collapse is followed by an explosion, whether a

remnant is left, etc. In view of the uncertainties involved and the many complications

which can occur, it is not surprising that the present picture is not too clear (see

Heger et al. 2003 for an overview of possibilities). Nevertheless we will tentatively

classify the different evolutionary scenarios according to the core mass Mc after

helium burning. As can be seen, for example, from (36.3), the tracks for lower

mass are below those for higher mass. We distinguish four cases, each of which

is represented by one or more schematic evolutionary tracks in Fig. 36.1.

Case 1. If Mc < Mcrit � MCh, and if the envelope is not massive enough (due

either to the original mass or to mass loss), so that Mc cannot approach MCh

during the shell burning phase, T0 first grows in the non-degenerate regime until

a maximum is reached. Then the core becomes degenerate, starts to cool, and the

star must become a white dwarf. This is most likely the fate for most intermediate

mass stars, which evolve as single stars (Chap. 34; Fig. 34.7). Only if a star is a

member of a binary system and accretes sufficient mass at certain rates carbon can

finally be ignited in a flash. A very popular scenario is the double-degenerate one, in

which a CO-WD and a He-WD in a binary system merge due to the loss of angular

momentum by gravitational radiation. It would explain how the CO core would

reachMCh and why the spectrum would be devoid of hydrogen lines (the definition

of type I supernovae). From the shell in which the flash occurs, a helium detonation
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wave (see Sect. 36.2.4) starts, moving both out- and inwards (This is in fact a

simplified one-dimensional picture; in reality the flash occurs at a certain location,

and the front travels in all directions and even around the star.). When it arrives near

the centre, carbon will be ignited and a second (carbon) detonation front moves

outwards, too. In this double-detonation model the star will finally be disrupted

(for a summary see, for instance, Hillebrandt and Niemeyer 2000). Alternatively, in

the single degenerate scenario, the CO-WD accretes matter from a non-degenerate

companion. This could be a main-sequence star or a giant, for example, on the RGB.

If the mass transfer rate is favourable, the accreted matter is burnt hydrostatically

and the core grows in mass up toMCh. Again, the envelope is hydrogen free and the

spectrum would classify the supernova as of type I. In this scenario the previous loss

of matter in the pre-WD evolution is effectively reversed. A third possibility is that

explosions in the accreted helium layers shock the CO-core sufficiently to trigger a

nuclear runaway, although the core has not reached the Chandrasekhar mass. These

are the Sub-Chandrasekhar models. In all three cases the explosion of the star is due

to a thermonuclear runaway resulting from the carbon flash. These are the type Ia

supernovae. We will discuss basic facts of the carbon flash briefly in Sect. 36.2.

Case 2. If initially Mc < Mcrit, but if the remaining envelope is sufficiently

massive, so that because of shell burning, Mc can grow to MCh, the core becomes

degenerate and cools after having reached a maximum temperature. But %0 increases

with Mc, and finally carbon burning begins (e.g. by pycnonuclear reactions;

compare with Sect. 35.2). It starts in a highly degenerate state and is therefore

explosive. This carbon flash can occur in stars that have started on the main sequence

in the range 4 . M=Mˇ < 8, if their mass loss has not been too strong. However, as

we have mentioned before, this seems to be unlikely, although it cannot be excluded

completely, for example, in the case of extremely metal-poor or metal-free stars

(so-called Population III or First Stars), where mass loss may be significantly lower

than in stars of solar metallicity (Chap. 9). Since the spectrum in such an event would

contain hydrogen lines, as is the definition for type II supernovae, but the explosion

mechanism is that of a thermonuclear runaway, typical for type Ia supernovae, such

events are called supernovae of type 1.5. Whether they exist remains unclear.

Case 3. If Mcrit < Mc . 40Mˇ, the evolutionary track misses the non-relativistic

region of degeneracy. The core heats up, reaching successively higher nuclear fusion

phases. In a small mass range above the minimum mass to start carbon burning (this

critical mass is usually refered to as Mup; see Fig. 34.10), electron captures by Mg,

Na, and Ne reduce the pressure and a central collapse ensues. This is the fate of

some of the super-AGB stars of Sect. 34.8, if the mass of the resulting NeO-core

is initially below 1:37Mˇ to avoid Ne ignition, but reaches this critical value due

to shell burning. This will be discussed further in Sect. 36.3.4. The corresponding

CO-core mass limit is of order 2�4Mˇ. ForMc & 4Mˇ, photodisintegration of Ne

and Mg nuclei brings 
ad below 4=3 and triggers a collapse. Both types of collapse

may lead to neutron-star formation and to the ejection of the envelope, the latter

mechanism also to black holes as the stellar remnants. It is assumed to cause the

standard type II supernovae, and will be introduced in Sect. 36.3.
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Case 4. : If Mc & 40Mˇ, the cores also reach the carbon burning in a non-

degenerate state as in Case 3. This mass limit is, as always, metallicity dependent,

and corresponds to helium-core mass of � 65Mˇ and an initial mass of � 140Mˇ.

After carbon burning the evolutionary tracks in Fig. 36.1 cross the region of pair

creation, which also reduces 
ad. If 
ad < 4=3 in an appreciable fraction of

the core, say, within 40 % of its mass, then the core collapses adiabatically until

the temperature of oxygen burning is reached. This may stop the collapse and

make the star explode; if not, the collapse would lead into the region of instability

because of photodisintegration, and the events would be as in Case 3. We will

discuss this in Sect. 36.3.5. The remnants of stars in this mass range will be neutron

stars (for lower masses), black holes by fallback on the proto-neutron star, or black

holes by direct formation. Pair-instability supernovae, a subclass of type II core

collapse supernovae, leave no remnant at all.

36.2 Carbon Ignition in Degenerate Cores

Consider stars starting with masses in the range 4 . M=Mˇ . 8 and assume

that they have almost no mass loss. After helium burning, they will form a

CO-core that is degenerate, and in the subsequent evolution, Mc grows owing to

shell burning until it comes close to MCh. During this phase the central density

increases with increasingMc (similar to a sequence of white dwarfs with increasing

mass). The energy released in the core during this contraction is transported by

electron conduction in the direction of the centre, where the temperature is smaller

and neutrino losses (see Sect. 18.7) carry away the energy. The increase of the

central density or of the temperature at the place of its maximum finally ignites

carbon burning.

36.2.1 The Carbon Flash

The ignition of carbon in degenerate CO-cores of mass Mc � MCh has already

been discussed in Sect. 35.2. As described there, the ignition of carbon may occur

in the centre or in the shell of maximum temperature. The general properties of

the flash are the same in both cases. We discuss here the central ignition in the

case of strong degeneracy, but recall that most likely only stars above 8Mˇ will

reach carbon ignition and this will happen off-centre at very modest degeneracy.

The carbon flash under such circumstances is described in the literature about super-

AGB stars, for example, by Garcı́a-Berro and Iben (1994).

In Fig. 36.2 the lg %0-lg T0 plane is shown again with an evolutionary

path of the centre. The stability behaviour of the degenerate core depends

critically on the question whether the energy balance is dominated by neutrino

losses ("CC � "� < 0: stable) or by carbon burning ("CC � "� > 0: unstable).
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Fig. 36.2 Schematic evolution of the central region during and after the carbon flash (heavy). It

corresponds to the evolution of type B� in Fig. 36.1. The flash starts when the central density

%0 (in g cm�3/ or the central temperature T0 (in K) is so high that the neutrino losses do not

overcome the energy generation by carbon burning. The temperature then rises almost at constant

density until degeneracy is removed. The dot-dashed line labelled � D 1 indicates where the gas

pressure is twice the (degenerate) pressure at temperature zero; it roughly separates the regions of

degeneracy and non-degeneracy. The broken line labelled C, O gives the temperature reached if

all the energy released by carbon burning is used to increase the internal energy. The dotted line

labelled Fe/˛ D 1 shows the points for which statistical equilibrium gives equal abundances of

iron and helium

The borderline "CC � "� D 0 bends down at a few 109 g cm�3, since "cc

here increases mainly with increasing density (pycnonuclear reactions, see

Sect. 18.4). Numerical calculations indicate that CO-cores reach the critical

border "CC � "� D 0 between stability and instability at a density of 2 �
109 g cm�3.

The slightest increase in temperature now makes "CC � "� > 0. Because of

degeneracy the pressure does not increase and there is no consumption of energy

through expansion. Therefore the temperature rises even more: a violent flash

occurs. As in the case of the helium flash (see Sect. 33.4) the involved matter heats

up at constant density until degeneracy is removed. Then it expands.

36.2.2 Nuclear Statistical Equilibrium

How violent the carbon flash can become is seen from a simple estimate. In a

mixture of equal parts of C and O the carbon burning can release 2:5�1017 erg/g and
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the subsequent oxygen burning twice this amount. If all this energy is used to heat

the material, it can reach the temperatures indicated by the dashed line labelled C, O

in Fig. 36.2. This line is somewhat curved since the specific heat depends slightly on

the density. At these temperatures of nearly 1010 K the energy of the photons exceeds

the binding energy of the nuclei, which are thus disintegrated. Photodisintegration,

for example, of Ne nuclei

20Ne C 
 !16 O C ˛; (36.9)

was discussed in Sect. 18.5.3. The inverse reaction of (36.9) can also occur, and the

photon generated by this process can disintegrate another Ne nucleus. The processes

are very similar to ionization and recombination of atoms. In nuclear statistical

equilibrium (NSE) the abundances of O, Ne, and ˛ particles can be derived from

a set of equations similar to the Saha equation (14.11):

nOn˛

nNe

D 1

h3

�
2�mOm˛kT

mNe

�3=2
GOG˛

GNe

e�Q=kT ; (36.10)

where GO; G˛ , and GNe are the statistical weights, while Q is the difference of

binding energies

Q D .mO Cm˛ �mNe/c
2: (36.11)

In addition to (36.10) there are two other conditions, one of which relates the

particle numbers to the density, the other one describing the initial composition,

since (36.9) and its inverse cannot change nO � n˛ . Of course, one cannot consider

a single reaction only, but has to take into account all reactions that can take place

simultaneously. For example, ˛ particles generated by (36.9) can also be captured

by 12C or 20Ne (The problem is similar when ionization of different elements takes

place simultaneously. They are not independent of each other, since all of them

produce electrons which influence all recombination rates.).

If the temperatures are sufficiently high, many nuclei are disintegrated by photons

and their fragments react again. The abundances of the different elements are then

determined by a set of “Saha formulae” of the type (36.10). The nucleus 56
26Fe as

the most stable one plays a crucial role in this statistical equilibrium. It can be

disintegrated by photons into ˛ particles and neutrons:


 C56
26 Fe � 13˛ C 4n: (36.12)

In order to determine the ratio nFe=na we consider quite general reactions of the

type


 C .Z;A/ � .Z � 2;A � 4/C ˛; (36.13)


 C .Z;A/ � .Z;A � 1/C n: (36.14)
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We start with the nucleus .26; 56/ D 56Fe and consider 13 reactions of type (36.13)

and four of type (36.14). Then the abundance ratios are all given by equations like

(36.10), and they can be combined to

n13˛ n
4
n

nFe

D G13
˛ G

4
n

GFe

�
2�kT

h2

�24 �
m13
˛ m

4
n

mFe

�3=2
e�Q=kT ; (36.15)

with

Q D .13m˛ C 4mn �mFe/c
2: (36.16)

If one assumes that the numbers of protons to neutrons (independently of whether

they are free or in nuclei) have a ratio np=nn D 13=15, as it is in the nucleus 56Fe,

then

nn D 4

13
n˛ : (36.17)

This, for instance, would be approximately the case in a mixture in which 56Fe is by

far the most abundant heavy nucleus and its disintegration yields almost all neutrons

and ˛ particles. Then the left-hand side of (36.15) can be replaced by

�
4

13

�4
n17˛
nFe

: (36.18)

Ignoring the binding energies, we can write the density as

% D .56nFe C 4n˛ C nn/mu; (36.19)

where mu is the atomic mass unit. For given values of %, T , and the ratio

nn=n˛ [corresponding to (36.17)] with (36.15), (36.18) and (36.19) we have two

equations for nFe and n˛ :

Suppose again that the ratio of protons to neutrons per unit volume, normally

called NZ= NN , is 13/15. Then equilibrium demands that all matter goes into 56Fe

(the nucleus of the highest binding energy per nucleon) for temperatures that are

not too high, and into 4He for high temperatures (see Fig. 36.3a). However, if we

assume NZ= NN D 1, then for the former temperatures 5628Ni is the dominant nucleus,

since it has the highest binding energy per nucleon of all nuclei with Z D N . With

increasing temperature the equilibrium shifts from 56Ni to 54 Fe+2p and finally to 14
4He. For very high temperatures it may even shift to the basic constituents, protons

and neutrons (see Fig. 36.3b).

The value NZ= NN at the occurrence of photodisintegration depends on the weak

interaction processes (ˇ decays) during the nuclear history of the stellar matter.

In any case, in equilibrium at moderate temperatures, one expects nuclei of the

iron group, which with increasing temperature disintegrate to ˛ particles and at

temperatures around 1010 K, which can also be reached in exploding cores, even

to protons and neutrons. In this case, (36.12)–(36.19) would have to be written for
56Fe, n, and p.
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a b

Fig. 36.3 (a) In the temperature-density diagram (T in 109 K, % in g cm�3) the curve separates

the regions in which equilibrium demands matter to be in the form of 4He and 56Fe, respectively,

for the case of NZ= NN D 13=15. (b) The corresponding equilibrium regions for NZ= NN D 1

36.2.3 Hydrostatic and Convective Adjustment

Even during the rapid helium flash the star remains very nearly in hydrostatic

equilibrium, and convection can carry away all the released nuclear energy with-

out becoming appreciably superadiabatic. The situation is completely different

if unstable carbon burning proceeds in a degenerate core on a time-scale of

milliseconds.

Consider the events after the onset of the carbon flash in the centre. The rapid

rise of the central temperature is sufficient for immediately starting higher nuclear

reactions, such as oxygen burning, which release additional energy. In one single

runaway the central temperature rises so much that statistical equilibrium between

Fe and He is reached, and eventually degeneracy is removed (see Fig. 36.2). Then

the pressure increases and the central region starts to expand. This will occur

roughly on a timescale �", in which the central temperature and the internal energy

u rise. Since PT =T � "CC=u, we have

�" D cPT

"CC

: (36.20)

The other regions of the core react on the central expansion on the hydrostatic

timescale �hydr � .G N%/�1=2 [compare with (2.19)], where N% is the mean density

of the core. As long as � WD �"=�hydr � 1 the core follows the central expansion

quasi-hydrostatically. If, however, � � 1, then the layers above cannot react rapidly

enough, and a compression wave will move outwards with the speed of sound. If the

push by the suddenly expanding burning region is sufficiently strong, an outwards

travelling shock wave may develop.

Owing to the energy release in the flash, a central convective core will form,

which has two effects. Part of the surplus energy is carried away (reducing the
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intensity of the flash), and new nuclear fuel is brought to the region of carbon

burning (enhancing the flash). A characteristic timescale for convection is �conv �
`m=vs, where `m is the mixing length and vs the local velocity of sound. Indeed

turbulent elements will scarcely move faster than vs, since otherwise shock waves

would strongly damp the motion. If � WD �"=�conv � 1, convection is able to carry

away all the nuclear energy released. If, however, � � 1, then convection cannot

carry away the released energy.

The timescales �hydr and �conv are very short indeed. For the central parts of the

core with % > 108 g cm�3, one finds typically �hydr � 0:1 s, and �conv is of the

same order. However, for T D 2 : : : 3 � 109 K, the local timescale �" for the flash is

of the order of 10�6 s. Therefore � and � are both � 1. This means that, instead of

hydrostatic adjustment, a compression wave will start outwards and that “convective

blocking” prevents a rapid spread of released energy in the core. The changes caused

by the flash in one mass element propagate comparatively slowly to other parts.

These estimates clearly show that the carbon flash and the following explosion

can be treated accurately only when the full hydrodynamical equations are solved.

The important role of convection and the propagation of burning fronts necessitate

three-dimensional models. Such models are the current state of the art, but will not

be the subject of this book.

36.2.4 Combustion Fronts

The local nuclear timescale �" at the onset of the flash is rather short. If a flash is

started somewhere in a degenerate CO-core, the burning proceeds at such high rates

that the fuel in this mass element is used up almost instantaneously. To be more

precise, the consumption is completed locally before the layers above can adjust.

Only then is the unburnt material ahead heated to ignition (either by compression or

by energy transport, which may be by convection), and the flash proceeds outwards.

But the burning is always confined to a layer of (practically) zero thickness. We have

an outward-moving combustion front, which can be of two different types.

We have seen that a shock wave develops. Matter in front penetrates the

discontinuity with supersonic velocity and is compressed and heated. If this suffices

to ignite the fuel, then the combustion front coincides with the shock front moving

outwards supersonically. This is called a detonation front. It releases enough

energy to lead to a complete stellar explosion, but matter ahead of the blast wave

cannot expand and ignites under typical white-dwarf conditions. Temperatures and

densities are so high that NSE is reached and is peaking around Ni. This is in conflict

with the presence of intermediate-mass elements seen in the spectra of some type Ia

supernovae.

If the compression in the shock does not ignite the fuel, then the ignition

temperature is reached owing to energy transport (convection or conduction). This

gives a slower, subsonic motion for the burning front and contains a discontinuity

in which density and pressure drop. This is a deflagration front. Since it allows the
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nucleosynthesis to occur at lower density and pressure, NSE peaks at lower mass

numbers and intermediate-mass elements can be created. Whether such deflagration

models can unbind completely the white dwarf is unclear. Higher-dimensional

simulations seem to be more promising to achieve this.

Obviously the speed of a deflagration front is controlled by that of energy

transport. This in turn depends on the conductivity (thermal or convective) and

on the temperature difference between the deflagration front and the material

ahead. Numerical modelling thus needs hydrodynamical simulations of convection.

Simple mixing length theory (Chap. 7), which has been useful for hydrostatic stellar

evolution phases, certainly will not suffice to compute accurate models.

In both cases the deviations from hydrostatic equilibrium are mainly confined

to a thin shell across which the pressure is discontinuous and all nuclear energy is

released. The momentum of the matter approaching a detonation front superson-

ically is balanced by the higher pressure behind the front; the momentum of the

matter approaching a deflagration front subsonically is balanced by the recoil of the

matter moving away from it behind the front. The front in both cases is unstable to

spatial perturbations, the scale of which is well below any numerical resolution in

the simulations, and must be represented by a physical subscale model.

For an account of the theory of the two types of combustion fronts, see Courant

and Friedrichs (1976), Landau and Lifshitz (1987), and Hillebrandt and Niemeyer

(2000). As with normal shock waves, the theoretical results follow from the

conservation of mass, momentum, and energy of the matter going through the

discontinuity. For energy conservation, however, it also has to be taken into account

that energy is released at the discontinuity. This makes the two types of solutions

(detonation and deflagration waves) possible, while the theory of normal shock

waves allows only that solution in which the density of matter going through the

discontinuity increases.

In principle, detonation fronts as well as deflagration fronts can occur in stars.

Which of the two will develop depends on the details of the transport mechanism,

which determines the motion of a deflagration front and of the preceding shock.

In some cases the explosion may start out with a slow deflagration front, which

allows some expansion of the layers ahead of the front, but which switches at

some point into a detonation, when the front begins to progress supersonically.

These are the delayed detonation models, which combine the advantage of allowing

intermediate-mass elements to be created and deliver typical supernova energies,

which are of order 1051 erg.

The details of type Ia supernova explosions can be uncovered only by very

complicated and challenging numerical simulations that take into account both

hydrodynamics and nuclear processes, and should resolve scales ranging from that

of white dwarfs (� 1; 000 km) down to that of the burning flame of a few cm. Early

one-dimensional hydrodynamical calculations for detonation models were done by

Arnett (1969) and Ivanova et al. (1977). A classical deflagration model, still in one

dimension, is by Nomoto et al. (1976) and Nomoto (1984). State-of-the-art models

are mostly 3-dimensional; a summary and discussion can be found in the reviews

by Hillebrandt and Niemeyer (2000) and Roepke (2008).
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36.2.5 Carbon Burning in Accreting White Dwarfs

Rather similar phenomena to those described above for CO-cores of single stars

can occur in CO white dwarfs which are members of binary systems. They can

receive appreciable amounts of matter from their companions. The accreted matter

is compressed and heated, and its ignition can give rise to various phenomena.

For example, if helium is accreted with relatively low rates (about 10�8Mˇ/

year), a helium flash will be ignited in a shell of high density. The result can be

a double detonation wave: a helium detonation front running outwards and a carbon

detonation front going to the centre. As a result the white dwarf will be disrupted.

For higher accretion rates the new material can burn quietly near the surface,

thus simply increasing the mass of the CO white dwarf. When it approaches MCh,

the density in the inner parts becomes so large that carbon burning starts either

in the centre, or in the shell of maximum temperature. This results in a flash,

and a deflagration (or detonation) front starts, as discussed above for single stars.

The white dwarf will also be disrupted. Both possibilities correspond to Case 1 of

Sect. 36.1. It is this mechanism which is generally believed to cause the Type Ia

supernovae. Note that it has to be invoked, since the spectra of these supernovae

show no hydrogen, and because evolving single stars of M < 10Mˇ may lose so

much mass that their CO-core can never come close to MCh.

36.3 Collapse of Cores of Massive Stars

According to Fig. 36.1 one can expect that the cores of massive stars will not cool,

because of non-relativistic degeneracy, but will heat up during core contraction until

the next type of nuclear fuel is ignited. The core then is either non-degenerate (larger

core mass Mc/ or degenerate but to the upper right of the “summit” of the line

˛ D 3=4 in Fig. 28.1. In both cases the gravothermal heat capacity is negative, and

the burning is self-controlled. In the following we discuss stars with core masses in

the range Mch < Mc < 40Mˇ. The evolutionary paths of these stars will avoid the

region of ˛ < 3=4, where in Fig. 28.1 the arrows point downwards.

After going through several cycles of nuclear burning and contraction, the core

will heat up to silicon burning. Nuclear burning in several shell sources has produced

layers of different chemical composition, as shown in Fig. 36.4. Finally the central

region of the core reaches a temperature at which the abundances are determined

by nuclear statistical equilibrium. In this stage the core is in a peculiar state

in several respects. Since the electron gas dominates the pressure, and since at

temperatures of T9 � 10 the electrons are relativistic (kT � 1:7mec
2), the adiabatic

exponent 
ad is close to 4/3. In the more massive stars photodisintegration of

heavy nuclei reduces 
ad even more (like partial ionization). In addition general

relativistic effects increase the critical value of 
ad above 4/3, and the core becomes

dynamically unstable. As a consequence core collapse sets in. For less massive stars

the relativistic electrons are degenerate with high Fermi energies. Then electron
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Fig. 36.4 The chemical composition in the interior of a highly evolved model of a population I

star with an initial mass of 25Mˇ, close to the end of hydrostatic nuclear burning. The mass at this

time is reduced to 16Mˇ due to mass loss. In the upper panel the mass concentrations of important

elements are plotted against the mass variablem. Below the abscissa, in the middle of the figure, the

approximate location of shell sources in different nuclear burning phases is indicated by the grey

rectangles. In the lower panel the run of temperature (lgT : scale at left axis) and density (lg % :

right axis) is given to identify typical burning conditions for these nuclear shells (data courtesy

R. Hirschi, published in Hirschi et al. 2004)

captures by heavy nuclei reduce the pressure and start the collapse. For this stage

we now discuss a simple solution.

36.3.1 Simple Collapse Solutions

Suppose we have a core at the onset of collapse, say, with central values

%0 D 1010 g cm�3; T0 � 1010 K. The electrons are relativistically degenerate. Then

the equation of state is polytropic and can be written as

P D K 0%4=3; (36.21)

whereK 0 D K4=3=�
4=3
e [compare with (15.26)]. Therefore the core can be described

by a polytrope of index 3. We have already discussed the collapse of such a

polytrope in Sect. 19.11. As we have seen there, the parameter � appearing in the

modified Emden equation (19.81) is a measure of the deviation from hydrostatic
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equilibrium, which corresponds to the value � D 0. Solutions with finite radius are

possible only for values 0 < � < �m D 6:544 � 10�3, where � D �m corresponds

to the strongest deviation from equilibrium. For � D �m no homologous collapse of

a polytrope of n D 3 is possible.

We now adapt the formalism of Sect. 19.11 for application to the collapse of

stellar cores. The solution of the spatial structure is given by the function w.z/;

which obeys (19.81). We denote the value of z at the surface of the collapsing core

by z3, so that w.z3/ D 0; for � D 0 one has z3 D 6:897. It increases with � and

reaches the maximum value 9.889 for � D �m. The limit � D �m is reached when

the surface of the core collapses with the acceleration of free fall.

If we apply (19.75) to the surface we have

z3 Ra D �4
3
�
.K 0/3=2p
�G

z3

a2
: (36.22)

If this is equal to the free-fall acceleration �GMc=.az3/
2, then

� D �m D 3

4

r
�G

K 03
GMc

z33
: (36.23)

On the other hand, (19.67) and (19.81) give

%

%0
D w3 D � � 1

z2

d

d z

�
z2
dw

d z

�
; (36.24)

and therefore with r D az; Rc D az3, and

N% D 3

R3c

Z Rc

0

%r2dr; (36.25)

after some manipulation we find

N%
%0

D � �
�
3

z

�
dw

d z

��

zDz3

: (36.26)

If we apply this to the limit case � D �m in which dw=d z vanishes at the surface

(compare with Fig. 19.3), we find N%=%0 D �m.

The core may start out from the (marginally stable) equilibrium for which � D 0.

Here the actual acceleration at the surface is zero, since gravity and pressure gradient

cancel each other. But if the pressure is slightly decreased, the core will start to

collapse (� > 0). The numerical integration of (19.81) for different values of � in

the range 0 � � � �m gives values for z3 and N%=%0 in the ranges 6:897 � z3 � 9:889

and 0:01846 � N%=%c � 0:0654 (Goldreich and Weber 1980). If we determine the

masses for different collapsing polytropes, we can use the expression
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Fig. 36.5 Schematic picture of the velocity distribution in a collapsing stellar core obtained in

numerical calculations, and taken at two subsequent times t1 and t2. Note the two regimes: on the

left jvrj increases in the outward direction. It corresponds to a (roughly) homologously collapsing

part, while on the right jvrj decreases with m. This corresponds to the free-fall regime, where

velocities are supersonic. The run of the (negative) sound speed is indicated by the dashed lines,

and the location, where the infall becomes supersonic, by arrows. With time the mass of the “inner

core” (defined as the part left of the maximum infall velocity) is decreasing. Velocities are of the

order of 109 cm s�1 (after Müller 1997)

Mc � 4�a3z33%0

3

N%
%0

D 4�z33

3

�
K 0

�G

�3=2 N%
%0
; (36.27)

which has been derived with the help of (19.67). Equation (36.27) for � D 0 gives

the Chandrasekhar mass MCh, as can be seen from (19.29), (19.30) and (36.26). In

fact all masses obtained for different values of � in the narrow interval 0 � � � �m

are close to the Chandrasekhar mass, namelyMCh � Mc � 1:0499MCh.

Only core masses in this small interval can collapse homologously. Now we

know that MCh � ��2
e . Electron captures during the collapse increase �e and

reduceMCh. Therefore the upper bound forMc for homologous collapse decreases.

If initially �e D �e0 andMCh D MCh0, then after some time not more than the mass

Mc D 1:0499

�
�e0

�e

�2
MCh0 � ��2

e (36.28)

can collapse homologously (Note that, strictly speaking, the whole formalism

should be repeated for a time-dependentK 0.). Numerical integrations in fact indicate

that during collapse the mass of the homologously collapsing part of the core

decreases with increasing �e as given by (36.28).

This simple collapse model has been generalized by Yahil and Lattimer (1982)

for values of the polytropic index in (36.21) between 6=5 < 
ad < 4=3.

Figure 36.5 shows the infall velocity as a function of m as obtained from numerical
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computations, in agreement with the models by Goldreich and Weber, and Yahil

and Lattimer. The maximum separates the homologously collapsing inner core (left)

from the nearly free-falling outer part of the core (right). The outer core collapses

supersonically; the sound speed is exceeded at a location somewhat interior to the

maximum collapse velocity. During collapse the boundary between the two regimes

is not fixed but moves to smallerm values: mass from the inner core is released into

the free-fall regime. This corresponds to the decrease of MCh with increasing �e as

discussed above.

The collapse is extremely short-lived; it takes a time which is of the order

of the free-fall time. If the core starts with an initial density of 1010 g cm�3 one

obtains �ff � .G N%/�1=2 � 40 ms at the onset of collapse, while it is 0.4 ms for

N% D 1014 g cm�3.

36.3.2 The Reflection of the Infall

Because of the collapse, the density finally approaches that of neutron stars (nuclear

densities of the order 1014 g cm�3/. Then the equation of state becomes “stiff,” i.e.

the matter becomes almost incompressible. This terminates the collapse.

If the whole process were completely elastic, then the kinetic energy of the

collapsing matter would be sufficient to bring it back after reflection to the state

just before the collapse began. This energy can be estimated roughly from

E � GM 2
c

�
1

Rn

� 1

Rwd

�
� GM 2

c

Rn

� 3 � 1053erg; (36.29)

where Mc is the mass of the collapsing core, while Rn and Rwd are the typical radii

of a neutron star and of a white dwarf. We compare this with the energyEe necessary

to expel the envelope, which had no time to follow the core collapse,

Ee D
Z M

Mwd

Gm dm

r
� GM 2

Rwd

� 3 � 1052erg (36.30)

forM D 10Mˇ. Realistic estimates bringEe down to 1050 erg, and therefore only a

small fraction of the energy involved in the collapse of the core is sufficient to blow

away the envelope. In predicting what happens after the bounce, one has to find out

what (small) fraction of the energy of the collapse can be transformed into kinetic

energy of outward motion. Remember that the energy estimated in (36.29) would

suffice only to bring back the whole collapse to its original position–and no energy

would be left for expelling the envelope. But if a remnant (neutron star) of massMn

remains in the condensed state, the energy of its collapse is available. The question

is how this can be used for accelerating the rest of the material outwards.

A possible mechanism would be a shock wave moving outwards. The remnant

is somewhat compressed by inertia beyond its equilibrium state and afterwards,



466 36 Final Explosions and Collapse

acting like a spring, it expands, pushing back the infalling matter above. This

creates a pressure wave, steepening when it travels into regions of lower density.

The kinetic energy stored in such a wave may be sufficient to lift the envelope into

space. However, the following problem arises. One can imagine that the neutron star

formed has a mass of the order of the final Chandrasekhar mass MChF. The rest of

the collapsing matter still consists mainly of iron. When, after rebounce, this region

is passed by the shock wave, almost all of its energy is used up to disintegrate the

iron into free nucleons. Therefore only a small fraction of the initial kinetic energy

remains in the shock wave and is available for lifting the envelope.

In fact the major part of the energy estimated in (36.29) of order 1053 erg is

lost in the form of neutrinos (Sect. 36.3.3). Only 1 % of it–1051 erg–is actually

converted into kinetic energy, and only a few per cent of this is escaping from the

supernova in the form of light. Nevertheless, this tiny part of the collapse energy

makes supernovae the brightest stellar objects in the universe.

36.3.3 Effects of Neutrinos

Before collapse, neutrinos were created by the processes described in Sect. 18.7,

and their energy is of the order of the thermal energy of the electrons. During

collapse, neutrino production by neutronization becomes dominant. As soon as

the density approaches values of 1012 g cm�3, inverse ˇ decay becomes more

pronounced, and the equilibrium shifts to increasingly neutron-rich nuclei. During

this neutronization neutrinos are released. In connection with supernova SN 1987A,

neutrinos have been observed in underground neutrino detectors–manifest evidence

that core collapse is indeed connected with the supernova phenomenon. The typical

energy of the neutrinos released during collapse is of the order of the Fermi energy

of the (relativistic) electrons. Therefore when using the relation % D �enemu and

(15.11) and (15.15) one finds

E�

mec2
� EF

mec2
D pF

mec

D
�

3

8�mu

�1=3
h

mec

�
%

�e

�1=3
� 10�2

�
%

�e

�1=3
: (36.31)

If heavy nuclei are present, the neutrinos interact predominantly through the so-

called “coherent” scattering (rather than scattering by free nucleons):

� C .Z;A/ ! � C .Z;A/: (36.32)

The cross section is of the order of

�� �
�
E�

mec2

�2
A210�45cm2; (36.33)
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which with (36.31) gives

�� � A2
�
%

�e

�2=3
10�49cm2: (36.34)

This allows an estimate of the mean-free-path `� of neutrinos in the collapsing core.

If n D %=.Amu/ is the number density of nuclei, then with (36.34)

`� � 1

n��
D 1

�eA

�
%

�e

��5=3
1:7 � 1025cm: (36.35)

Can `� become comparable with the dimension of the collapsing core, say, 107

cm? With �e D 2;A � 100, we obtain from (36.35) `� D 107 cm for .%=�e/ D
3:6 � 109 g cm�3. We may bring (36.35) into a more convenient form by putting in

such typical values for �e, A, and % such that it yields a typical length

`� � 1

n��
D 200

�eA

�
2%

1010�e

��5=3
5:8 � 106 cm: (36.36)

Obviously we cannot simply assume that the neutrinos escape without interaction.

The more the density rises, the smaller `� , and the collapsing core becomes opaque

for neutrinos. Then they can only diffuse through the matter via many scattering

processes. For sufficiently high density the diffusion velocity becomes even smaller

than the velocity of the collapse. Calculations show that the neutrinos cannot escape

by diffusion within the free-fall time �ff of the core if % & 3 � 1011 g cm�3: the

neutrinos are then trapped.

In the schematic picture of the core structure (Fig. 36.6), the place where

the infall velocity of matter equals the velocity of outward neutrino diffusion is

indicated as the “neutrino trapping surface”. Below it the neutrinos are trapped;

above it they diffuse outwards until reaching the so-called “neutrinosphere”. This

provides the boundary of the opaque part of the core and is located one mean free

path `� beneath the surface. From here the neutrinos leave the core almost without

further interaction.

Detailed calculations have to deal with a radiation-hydro-problem, where one has

to solve the neutrino transport problem in a six-dimensional phase space, defined by

three spatial and three momentum coordinates, one of the latter being the neutrino

energy, for example. In particular one has to consider and calculate the detailed

distribution function of the neutrinos (rather than their average energy). This is

obvious since the cross section as given in (36.33) depends on the energy of the

neutrinos: those with low energy can escape more easily than those of high energy.

This problem, which is essentially that of solving the Boltzmann equation, requires

very extensive and challenging computations and has not been solved so far in all

aspects for realistic physical conditions. Another important aspect is the detailed

consideration of all neutrino interactions with matter, including neutrino oscillations

and cross sections for the different neutrino families. The neutrino transport is

essential for modelling type II supernova explosions as the neutrinos deposit part of
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Fig. 36.6 Schematic picture of a collapsing stellar core at bounce. The short arrows correspond

to the velocity field. At the sphere labelled core shock, the shock is formed. Inside this sphere the

matter is almost at rest. Above the shock there is a still collapsing shell in which neutrinos are

trapped. But on top there is a shell from which neutrinos can escape. One can define a neutrino

photosphere, a neutrinosphere, analogous to the photosphere in a stellar atmosphere

their energy below the neutrinosphere, possibly raising the energy to levels sufficient

to expel the envelope.

The congestion of the neutrinos, resulting from the opaqueness of the core,

influences the further neutronization. With increasing density the neutrinos become

degenerate with a high Fermi energy. Electron capture becomes less probable,

since the new neutrinos have to be raised to the top of the Fermi sea. Around a

density of 3�1012 g cm�3 the so-called ˇ-equilibrium is reached, where the reaction

pCe� $ nC�e proceeds in both directions. However, the neutrino capture reaction

is also subject to the requirement that the resulting electron has to have an energy

above the Fermi energy of the degenerate electron gas. In total, with increasing

density, ˇ-equilibrium shifts to the right-hand side. Since the neutrinos can no

longer escape, the number of leptons (electrons and neutrinos) stays constant. 
ad

has increased to a value close to 4=3, which corresponds to relativistic degeneracy.

The collapse continues until % > 1014 g cm�3, the nuclear density. At such densities

the equation of state is very stiff, and 
ad & 2 due to the repulsive nuclear forces

of the strong interaction. Therefore the collapse is stopped. Further neutronization

can proceed only as far as the neutrinos diffuse outwards. This enables further

electron captures on protons, lowering the proton-to-neutron ratio. Most of this takes

place in the neutronization shell between trapping surface and neutrino photosphere

(Fig. 36.6) where the density is several 1011 g cm�3. During this phase, which can

last a few to 10 s, the proto-neutron star evolves into a neutron star.

As in the case of thermonuclear supernova explosions caused by the carbon flash

detailed models are possible only by two- and three-dimensional hydrodynamical

simulations, taking into account nucleosynthesis and the problem of neutrino
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transport in full detail. Another major ingredient is the equation of state at nuclear

matter density, finite temperature, and for extremely neutron-rich matter. Such

computations are extremely demanding, require always the latest generation of

supercomputers, but are still from giving final answers concerning the details of

core collapse supernova explosions. Some of these simulations have resulted in

successfully exploding pre-SN models, other have failed or remained inconclusive.

We therefore refer the reader to some recent reviews about the subject, given by

Woosley and Janka (2005), Mezzacappa (2005), and Janka et al. (2007).

36.3.4 Electron-Capture Supernovae

While electron capture plays an important role in all core-collapse supernovae, it

is particularly crucial in the specific case of degenerate NeOMg cores reaching a

critical density of 4:5 � 109g cm�3, equivalent to a mass of 1:37Mˇ (Nomoto et al.

1984). These conditions are reached, according to the models by Nomoto and others,

within helium cores slightly less massive than 2:5Mˇ in stars of an initial mass of

about 9Mˇ or somewhat higher, i.e. the super-AGB stars of Sect. 34.8 (see also

Fig. 34.10).

The core collapse is initiated here by the capture of electrons on 24Mg and 20Ne,

since this is energetically preferred over keeping the electrons at high energy in

the Fermi distribution. This reduces pressure, which is mainly provided by the

degenerate electrons, and contraction sets in. During the ensuing collapse oxygen

burning starts, but the released nuclear energy is not sufficient to stop the collapse,

since the energy budget is dominated by the loss due to neutrinos emitted in

the electron-capture process. The nuclear burning proceeds to nuclear statistical

equilibrium, which, in the course of the collapse, first shifts to ˛-particles and

in the final phase to neutrons and protons. The result is a neutron star of low

mass (. 1:37Mˇ). According to numerical simulations (Kitaura et al. 2006) the

supernova explosion is driven by the neutrino heating mechanism, and comparably

small amounts of metals, in particular of O, C, and Ni (< 0:015Mˇ), are ejected.

The overall explosion energy is of order 1050 erg, and therefore much lower than in

type II supernovae from more massive stars. These results agree with properties of

the Crab supernova remnant and pulsar, and thus this historical supernova is believed

to be of the electron-capture type. It could therefore be evidence for a previous

super-AGB evolution. However, the absence of hydrogen in the Crab nebula points

to a previous binary star evolution.

36.3.5 Pair-Creation Instability

From Fig. 36.1 one can see that evolutionary tracks for cores of sufficient mass enter

a region on the left-hand side of the diagram where also 
ad < 4=3 (Fowler and

Hoyle 1964). In this region many photons have an energy exceeding the rest-mass
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energy of two electrons, h� � 2mec
2. Therefore electron-positron pairs can be

spontaneously formed out of photons in the fields of nuclei. Admittedly the pairs

do annihilate, creating photons again, but there is always an equilibrium number of

pairs present. The mean energy of the photons h� � kT equals the rest energy of

the electron–positron pair only at a temperature of 1:2 � 1010 K, but even at 109 K

appreciable pair creation occurs because of the high-energy photons of the Planck

distribution.

For an account of the thermodynamic effects of pair creation, see, for example,

Weiss et al. (2004). In many respects pair creation can be considered in analogy

to ionization or dissociation (a photon being “ionized” or “dissociated” into a pair

e�; eC). Regarding the stability of massive cores, the crucial point is that the pair

creation reduces 
ad, as incomplete ionization or photodisintegration does. Indeed,

if the gas is compressed, not all the energy is used to increase the temperature, but

part of it is used to create pairs. Other reductions of 
ad are due to high radiation

pressure according to (13.7), (13.12) and (13.15) and to relativistic electrons. All

these effects bring 
ad below the critical value 4=3 for dynamical instability.

The total number of electrons consists of those from pairs and those from normal

ionization of atoms. With increasing % the Fermi energy rises. This diminishes the

possibility for pair creation, since newly created electrons now need an energy

exceeding the Fermi energy. Correspondingly the instability region in Fig. 36.1 is

limited to the right at a density of 5 � 105 g cm�3.
The pairs created are not relativistic, having 
ad D 5=3 (Note that a photon

with h� D mec
2 can only create a pair with zero kinetic energy!). For higher

temperatures there are so many pairs that they dominate and bring 
ad of the

whole gas–radiation mixture slightly above 4=3, which limits the instability region

towards high temperatures. In summary, the three effects discussed in the preceding

paragraphs explain the island nature of the pair-creation instability in Fig. 36.1.

For the evolution of cores into the region of pair instability, radiation pressure

is important, and therefore one cannot use our simple formulae of Sect. 36.1.

Furthermore, for a core instability, it is not sufficient that the evolutionary track

of the star’s centre moves through the area with 
ad < 4=3. Since in reality a mean

value of 
ad over the whole core decides upon its dynamical stability (Sect. 40.1),

an appreciable fraction of the core mass must lie in that density–temperature range.

According to numerical results this happens to cores of masses of 40Mcrit and more,

where Mcrit is defined in (36.5). The corresponding main-sequence masses depend

on the uncertain mass loss, but a realistic guess seems to be that stars initially

with M > 80 � 100Mˇ later develop pair-unstable cores. This, however, assumes

that no appreciable mass is lost due to radiation-driven stellar winds during the

main-sequence phase. In addition, violent radial pulsations by the �-mechanism

(Sects. 41.1 and 41.5) may lead to a significant mass reduction for stars with

M & 60Mˇ. Both effects depend on metallicity. Therefore for solar metallicity

models predict a maximum helium core mass of about 10Mˇ, while for metal-free

Pop. III stars, they may exceed the critical value for pair instability. It may be that

this kind of supernova explosions may be restricted to the very early universe.
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The final fate of stars this massive is rather uncertain. Numerical calculations

indicate that, in a collapsing core of this type, oxygen is ignited explosively and the

core runs into the (unstable) region of photodisintegration, which may cause a total

disruption of the star. There is also the possibility of violent pulsations caused by the

instability, which lead to explosive mass loss, but no total disruption. The star may

thus (for increasing main-sequence mass) end in a black hole after having expelled

large parts of its hydrogen/helium layers, be totally disrupted, or collapse directly

into a black hole. The situation and the different outcomes have been summarized

by Heger et al. (2003).

We also mention that rotation is playing a crucial role also for the final phases of

massive star evolution, although the basic effects as discussed in this chapter remain

the same. Details can be found in the textbook by Maeder (2009).

36.4 The Supernova-Gamma-Ray-Burst Connection

Gamma-ray bursts (GRBs) are short flashes of 
 -radiation (energies in the range of

100 keV), which reach us from all directions in the sky and cosmological distances.

They typically last for several ten seconds, but the total duration varies between

fractions of a second to minutes. Repetitive events were never reported. The burst

results from matter accelerated to highly relativistic speeds. The energy of this

collimated matter jet is converted into radiation by an as yet not fully understood

mechanism. The energy of the GRB is of the order of 1051 erg, which is the same

order of magnitude as the kinetical energy of a core collapse supernova.

GRBs were detected in the 1970s by the military Vela-satellite, and most

extensively investigated scientifically by the Batse detector on board of the Compton

Gamma Ray Observatory. The event frequency is a few per day. While the shortest

GRBs are thought to be the result of the merging of two neutron stars (or that

of a neutron star with a black hole), the longer lasting type (longer than � 2 s)

has been associated with the core collapse of massive stars, mainly due to the

association of GRBs with star-forming regions, and the coincidence, both in time

and place, with SNe of type Ib and Ic. These are core collapse supernovae, which

lack hydrogen in their spectra. For a review about this evidence, and more details

about the connection, see Woosley and Bloom (2006).

Why do a few massive stars create highly collimated jets of matter, being ejected

at more than 99.9 % of the speed of light, while the majority eject their envelopes

more or less as a spherical shell? The answer is believed to lie in an exceptionally

high rotation of the precursor’s core. For very massive stars (M > 30Mˇ), the

core collapses into a fast-rotating black hole and infalling matter assembles in an

accretion disk around it (the collapsar model). There are several mechanisms under

discussion, how the binding energy of the disk or the rotation energy of the black

hole can be converted into the collimated relativistic outflow. Alternatively, GRBs

may originate from highly magnetized (B � 1�1015 G), fast-rotating neutron stars

with rotation periods of milliseconds, thus rotating almost at breakup speed (the
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magnetar model). The rotation energy would be of order 1052 erg, and the spin-

down luminosity would be of the right order for a GRB.

The fact that hydrogen is absent in the spectra requires high mass loss rates as for

Wolf-Rayet stars, but these should not be so high as to reduce the mass too much.

Since mass loss scales somehow with metallicity, it is expected that GRBs should

be found mainly in low-metallicity regions, and occur more frequently in the early

epochs of the universe.

Although many details are still not understood, it seems to be evident that long-

duration GRBs are core collapse supernovae with very massive progenitors that have

extremely fast-rotating cores.



Part VIII

Compact Objects

Stellar evolution can lead to somewhat extreme final stages. We have seen in

Chaps. 33 and 35 that the evolution tends to produce central regions of very high

density. On the other hand it is known that stellar matter can be ejected (see

Chap. 34). The mechanisms are only partly (if at all) understood, but they do

exist according to observations (normal mass loss, planetary nebulae, explosions).

It may be that in certain cases the whole star explodes without any remnant left (see

Chap. 36). Often enough, however, only the widely expanded envelope is removed,

leaving the condensed core as a compact object. Relative to “normal stars” these

objects are characterized by small radii, high densities, and strong surface gravity.

There are three types of compact objects, distinguished by the “degree of

compactness”: white dwarfs (WD), neutron stars (NS), and black holes (BH).

Typical values for WD are R � 10�2Rˇ; % � 106 g cm�3, escape velocity

vE � 0:02c; their configuration is supported against the large gravity by the pressure

of highly degenerate electrons (instead of the “thermal pressure”, which dominates

in the case of normal stars). For NS one has typicallyR � 10 km, % � 1014 g cm�3,
vE � c=3; their pressure support is provided by densely packed, partially degenerate

neutrons. This is the dominant species of particles since normal nuclei do not exist

above a certain density. Indeed a NS represents very roughly a huge “nucleus” of

1057 baryons.

As a simple illustration, suppose that in both cases (WD and NS) ideal, non-

relativistic degenerate fermions (of mass me or mn/ provide the pressure balancing

the gravity. The stars then are polytropes of index n D 3=2. With a mass-radius

relation (19.28), where the constant of proportionality can be seen to be � K �
1=mfermion, we have R � 1=mfermion. The ratio of mn to me then provides the ratio

of typical radii for WD and NS of the same mass. The pressure–gravity balance by

degenerate neutrons can only be maintained up to limiting masses corresponding to

about 2 � 1057 fermions.

Clearly for objects with gravity fields like those in NS general relativity becomes

important. It will be the dominant feature for the last group of compact objects,

namely BH with R � 1 km and vE D c:
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The first WD was detected long before theoreticians were able to explain it,

whereas NS were predicted theoretically before they were, accidentally, discovered

in the sky. Today, also the existence of BH is proven beyond doubt.

The physics of compact objects is interesting and complex enough to fill special

textbooks (e.g., Shapiro and Teukolsky 1983). We refer to these for details and limit

ourselves to indicating a few main characteristics.



Chapter 37

White Dwarfs

It is characteristic for configurations involving degenerate matter that mechanical

and thermal properties are more or less decoupled from each other. Correspondingly

we will discuss these two aspects separately. When dealing with the mechanical

problem (including the P and % stratification, theM –R relation, etc.) one may even

go to the limit T ! 0. Of course, such cold matter cannot radiate at all and it is

more appropriate to denote these objects as “black dwarfs”. The thermal properties,

on the other hand, are responsible for the radiation and the further evolution of white

dwarfs. The evolution indeed leads from a white dwarf (WD) to a black dwarf, since

it is–roughly speaking–the consumption of fossil heat stored in the WD which we

see at present (Concerning the evolution to the white-dwarf stage see Chaps. 34–

36, and for a much deeper and more detailed review of properties of white dwarfs,

Althaus et al. 2010b).

37.1 Chandrasekhar’s Theory

This theory treats the mechanical structure of WD under the following assumptions.

The pressure is produced only by the ideal (non-interacting) degenerate electrons,

while the non-degenerate ions provide the mass. The electrons are supposed to be

fully degenerate, but they may have an arbitrary degree of relativity x D pF=mec;

which varies as %1=3. Therefore we no longer have a polytrope as we had in the

limiting cases x ! 0 and x ! 1. The equation of state can be written as

P D C1f .x/ ; % D C2x
3 I x D pF=mec ; (37.1)

according to (15.13) and (15.15), which also define the constants C1 and C2, while

(15.14) gives f .x/.

In order to describe hydrostatic stratification we start with Poisson’s equation

(19.2), in which we eliminate d˚=dr by (19.1) and substitute P and % from (37.1)

obtaining

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 37, © Springer-Verlag Berlin Heidelberg 2012
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C1

C2

1

r2
d

dr

�
r2

x3
df .x/

dr

�
D �4�GC2x3 : (37.2)

Differentiating the left-hand side of (15.12) with respect to x; one obtains an

expression for df .x/=dx which shows that

1

x3
df .x/

dr
D 8

d

dr
Œ.x2 C 1/1=2� D 8

d z

dr
; (37.3)

with

z2 WD x2 C 1 : (37.4)

Therefore (37.2) becomes

1

r2
d

dr

�
r2
d z

dr

�
D ��GC

2
2

2C1
.z2 � 1/3=2 ; (37.5)

and as in Sect. 19.2 we replace r and z by dimensionless variables � and ':

� WD r

˛
; ˛ D

r
2C1

�G

1

C2zc

;

' WD z

zc

; (37.6)

where zc is the central value of z, characterizing the central density. Then from (37.5)

1

�2
d

d�

�
�2
d'

d�

�
D �

�
'2 � 1

z2c

�3=2
: (37.7)

This is Chandrasekhar’s differential equation for the structure of WD. We write it in

the form
d 2'

d�2
C 2

�

d'

d�
C
�
'2 � 1

z2c

�3=2
D 0 (37.8)

and see that it is very similar (differing only in the parenthesis) to the Emden

equation (19.10) for polytropes. In fact (37.8) becomes the Emden equation for

indices n D 3 and n D 3=2 if we go to the limits z ! 1 (i.e. x ! 1) and z ! 1

(i.e. x ! 0), respectively. The central conditions are now

� D 0 W ' D 1 ; ' 0 D 0 : (37.9)

Starting with these values, (37.8) can be integrated outwards for any given value

of zc. The density stratification is found if �e (which enters via C2) is also specified:

% D C2x
3 D C2.z

2 � 1/3=2 D C2z
3
c

�
'2 � 1

z2c

�3=2
: (37.10)
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Table 37.1 Numerical results of Chandrasekhar’s theory of white dwarfs

%c=�e �2eM �eR

1=z2c xc �1 .��2d'=d�/1 (g cm�3) (Mˇ) (km)

0 1 6.8968 2.0182 1 5.84 0

0.01 9.95 5.3571 1.9321 9:48 � 108 5.60 4.170

0.02 7 4.9857 1.8652 3:31 � 108 5.41 5.500

0.05 4.36 4.4601 1.7096 7:98 � 107 4.95 7.760

0.1 3 4.0690 1.5186 2:59� 107 4.40 10.000

0.2 2 3.7271 1.2430 7:70 � 106 3.60 13.000

0.3 1.53 3.5803 1.0337 3:43 � 106 2.99 16.000

0.5 1 3.5330 0.7070 9:63 � 105 2.04 19.500

0.8 0.5 4.0446 0.3091 1:21 � 105 0.89 28.200

1.0 0 1 0 0 0 1
Subscripts c and 1 refer to centre and surface, respectively (After Cox and Giuli 1968, vol. II,

Chap. 25)

The surface is reached at � D �1, where % becomes zero, i.e. after (37.1), (37.4) and

(37.6)

� D �1 W x1 D 0 ; z1 D 1 ; '1 D 1=zc : (37.11)

The value of R is

R D ˛�1 D
r
2C1

�G

1

C2zc

�1 ; (37.12)

andM can be found if we replace r and % by (37.6) and (37.10):
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: (37.13)

The integrand in the second equation (37.13) was simply replaced by the derivative

on the left-hand side of (37.7).

Table 37.1 gives the results of integrations for different values of zc from 1 to 1,

i.e. from xc D 1 (fully relativistic) to xc D 0 (non-relativistic), with the resulting

M –R relation being plotted in Fig. 37.1. As in the simple case of polytropes

(Sect. 19.6), we find an M –R relation with dR=dM < 0, but the exponent of M

is no longer constant as it is in (19.28). The stellar mass M cannot exceed the

Chandrasekhar limit MCh as given by (19.30),
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Fig. 37.1 Sketch of the classical mass–radius relation of white dwarfs according to

Chandrasekhar’s theory (assuming that the pressure is provided only by an ideal, degenerate

electron gas). The arrows indicate the direction into which a non-equilibrium configuration is

pushed if the gravitational force (“Gr.”) is larger or smaller than the pressure gradient (“Pr.”).

Corrections are necessary at both ends of the curve (dashed)

MCh D
�
2

�e

�2
� 1:459Mˇ ; (37.14)

since this limit case (zc ! 1) coincides with a polytropic structure of index n D 3.

These characteristics certainly call for a simple explanation, since they contradict

the everyday experience that spheres of given material (say iron) become larger with

increasing mass. This experience is not only obtained by handling small iron spheres

but also by measurements of planets.

Let us consider rough averages (taken over the whole star) of the basic equation

of hydrostatic equilibrium (10.2). Replacing there the absolute value of dP=dm by

P=M andm=r4 by M=R4, we obtain

P

M
� GM

4�R4
; (37.15)

where P is some average value. We replace it by the average density % � M=R3,

using a degenerate equation of state,

P � %
 �
�
M

R3

�

: (37.16)

The pressure term fp, i.e. the left-hand side of (37.15), and the gravity term fg, on

the right-hand side, are then

fp � M 
�1

R3

I fg � M

R4
: (37.17)
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Their ratio f must be unity for hydrostatic equilibrium:

f WD
fg

fp

� M 2�
R3
�4 D
�
M 1=3R ; for 
 D 5=3

M 2=3 ; for 
 D 4=3 :
(37.18)

These equations describe the mass–radius relation for white dwarfs in the limiting

cases of Chandrasekhar’s theory. Since the pressure of a fully degenerate, non-

relativistic gas with 
 D 5=3 also depends on �
�5=3
e (15.23), so does fP. For He

and CO white dwarfs, �e D 2, but for 56Fe it is 2.15, and therefore the mass–radius

relation is shifted to smaller radii for the same mass, as the term �
5=3
e appears on the

right-hand side of (37.18). This shift is visible in Fig. 37.3.

Suppose we have a given stellar mass M < MCh and non-relativistic electrons

with 
 D 5=3. Then the star can easily find an equilibrium by adjusting R such that

f D 1. If we now slightly increase M , then f > 1 (gravity exceeds the pressure

force), and R must decrease in order to regain equilibrium (f D 1). This explains

the structure of the R–M relation (cf. Fig. 37.1).

However, if the electrons are relativistic (
 D 4=3), then f is independent of

R. Equilibrium can be achieved only by adjusting M to a certain value MCh. If

M < MCh, then f < 1, i.e. the dominant pressure term makes the star expand. This

makes the electrons less relativistic and increases 
 above the critical value 4/3. For

M > MCh; f > 1, and the dominant gravity term makes the star contract; but this

does not help either, and the star must collapse without finding an equilibrium. So

MCh is quite obviously a mass limit for these equilibrium configurations. This mass

limit again depends on �e, with a power of 4=3 [cf. (15.26) and (19.30)].

37.2 The Corrected Mechanical Structure

The admirable lucidity of the theory of Sect. 37.1 is based completely on the

simplicity of the equation of state for an ideal, fully degenerate electron gas used

there [cf. (37.1)]. It certainly requires corrections near both ends of the mass

range. For cold (or nearly cold) configurations of M ! 0 we should get the

behaviour R ! 0; % � constant as for planets (or even smaller spheres) instead

of R ! 1; % ! 0 (as we have already explained above). At least there should

be the possibility for a smooth transition to the planets, which in this connection

can well be considered cold bodies. The corrections to be applied here are due to

the electrostatic interaction. Near the limiting mass, on the other hand, we have

encountered very high densities, with the simple theory yielding % ! 1 for

M ! MCh. In this domain we have to allow for effects of the weak interaction

(inverse ˇ decay) and the possibility of pycnonuclear reactions. Some influences on

the equation of state have already been indicated in Chaps. 4 and 5.
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37.2.1 Crystallization

Let us first treat the main effects of electrostatic interaction in a cold plasma with

nuclei of type .Z;A/ and electrons of density ne. We have seen in Sect. 16.4 that

matter in WD can be crystallized, and we will come back later to the condition for

this. Let us suppose that the ions form a regular lattice and the electrons are evenly

distributed. For the density encountered in WD the Wigner–Seitz approximation is

not too bad, and so we divide the lattice into neutral Wigner–Seitz spheres of radius

R0 D Z1=3rea0 (re = average separation of the electrons in units of the Bohr radius

a0). Each sphere contains one ion (point charge CZ in the centre) andZ electrons (a

uniformly distributed charge �Z/. In order to find the Coulomb energy ZEC of the

sphere we take concentric shells of radius y and charge �3Zey2dy=R03 and remove

them to infinity, thereby overcoming the potential difference Ze.1 � y3=R03/. An

integration over the whole sphere gives the energy per electron as

�EC D 9

10

Ze2

R0 D 9

10

Z2=3e2

rea0
� 2

Z

A1=3
%
1=3
6 keV ; (37.19)

with %6 D %=106 g cm�3. Even for T ! 0 the ions cannot sit at rest precisely

on their points in the lattice. Instead, the ions of mass m0 D Amu and density n0
oscillate around their positions with some ion plasma frequency !E (with !2E �
Z2e2n0=m0) such that the zero-point energy is ZEzp D 3„!E=2 per ion. With % D
n0Amu we have per electron

Ezp D 3

2

r
4�

3

„e
Amu

%1=2 � 0:6

A
%
1=2
6 keV : (37.20)

For 12C (Z D 6;A D 12) and % D 106 g cm�3, the energies are �EC � 5:2 keV

and Ezp � 0:05 keV � �EC. The ratio �EC=Ezp � ZA2=3%�1=6 varies only very

little with % and increases towards heavier elements.

Therefore cold configurations (“black dwarfs”) are crystallized. The ions form

a regular lattice which minimizes the energy; they perform low-energy oscillations

around their average positions, where they are kept by mutual repulsive forces.

The energy per electron is now

E D E0 C EC C Ezp � E0 C EC < E0 ; (37.21)

where E0 is the mean energy of an electron in an ideal Fermi gas. The influence of

EC on the pressure is seen from

P � � @E

@.1=n/
� � @E0

@.1=n/
� @EC

@.1=n/
< P0 ; (37.22)
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Table 37.2 Values of P=P0, where P includes the Coulomb interaction and P0 is for an ideal

Fermi gas

P=P0 P=P0 P=P0
x % � 2=�e (Z D 2) (Z D 6) (Z D 26)

0.05 2:44 � 102 0.760 0.564 �0.063

0.1 1:95 � 103 0.880 0.782 0.467

1 1:95 � 106 0.988 0.975 0.933

x is the relativity parameter; % is in g cm�3 (After Salpeter 1961)

where the derivatives are taken for constant entropy, and P0 is the pressure of

the ideal Fermi gas. The lowering of E and P due to EC < 0 comes from the

concentration of all positive charges into the nucleus, while the negative charges

are much more uniformly distributed. The average electron–electron distance is

thus larger than the average electron–nucleus distance, and the repulsion is smaller

than the attraction. A few calculated values of the ratio P=P0 for different Z and

relativity parameter x are given in Table 37.2. As expected the reduction of P

increases with the charge Z and with decreasing % (decreasing Fermi energy).

It will therefore be the dominant correction at small M , providing there the

described reduction of R. The above approximation breaks down, of course, when

it yields P . 0.

Apart from modifying the pressure, crystallization has an additional effect, which

changes the chemical structure and therefore the run of pressure and density, too.

This effect is chemical or phase separation and is due to the fact that different

elements cannot coexist in arbitrary amounts in the solid phase. After the previous

evolution most low- and intermediate-mass stars end as CO white dwarfs, with an

almost flat chemical profile in the centre (Fig. 37.2). When crystallization occurs,

the phase transition for the first (the lighter) element requires a lower abundance of

this element in the solid phase than in the liquid (or gas) phase. The excess amount

of this element (carbon in our example) will flow up to the liquid phase, above the

crystallization boundary, creating there a local density inversion. This is the case,

because even further away from the solid core there is the original abundance of

the lighter element, and since this is now lower than in the region just above the

crystallized core, the average molecular weight is higher. This induces convection,

redistributing the elements in the liquid phase. Of course, with the local changes

in the lighter element abundance connected is one in the abundance of the heavier

element (oxygen). This effect is now continuing with decreasing temperature and

a growing solid core (It can be understood in greater detail with the help of phase

diagrams, as done in the textbook by Salaris and Cassisi (2005, Chap. 7)). The result

is a modification of the chemical and therefore mechanical structure of the white

dwarf, and a rather smooth, monotonic run of element abundances, as can be seen

in Fig. 37.2, which shows the abundances for carbon and oxygen in a white dwarf

before and after crystallization.
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Fig. 37.2 The abundances of

carbon and oxygen within the

core of a white dwarf of

0:609Mˇ, which resulted

from a full evolutionary

calculation (Althaus et al.

2010a) of a star of initially

2Mˇ. The grey lines show

the chemical profile before

and the black ones after

crystallization and phase

separation have taken place

(plot courtesy L. Althaus and

A. Serenelli)

37.2.2 Pycnonuclear Reactions

In this and the following (Sect. 37.2.3) we will encounter two types of nuclear

reactions which occur at very high densities and which lead to a change of the

chemical composition without thermonuclear reactions. Though they are believed

to be quite irrelevant for most white dwarfs, except maybe for the densest and

coolest ones, they are of principal interest, as they may lead–in the extreme–to

a composition defined by nuclear equilibrium (Sect. 37.2.4). Such effects will be

important for neutron stars (Sect. 38).

For the very high densities occurring near the upper end of the mass range,

pycnonuclear reactions have to be considered (cf. Sect. 18.4). These were defined

as nuclear reactions which depend mainly on % (instead of T , as in the case of

thermonuclear reactions). They can occur even at T ! 0 as a consequence of

the small oscillations of the nuclei in the lattice with energy Ezp, combined with

the tunnel effect. Reactions set in rather abruptly at a certain density limit %pyc

and use up all fuel within a short time (say 105 years) once % & %pyc. The

limits %pyc for the different reactions are not well known, since the relevant cross

sections are very uncertain. The values of %pyc increase towards heavier elements;

the orders of magnitude are %pyc � 106, 109, and 1010 g cm�3 for burning of 1H,
4He, and 12C, respectively. Central densities of white dwarfs may reach values up

to % � 106 � 109g cm�3. However, hydrogen white dwarfs do not exist due to the

previous stellar evolution, and He and CO white dwarfs reach the critical densities



37.2 The Corrected Mechanical Structure 483

for the respective burning by pycnonuclear reactions only in very extreme cases. In

general, therefore, the composition and structure of white dwarfs is not affected by

this kind of nuclear reactions.

37.2.3 Inverse ˇ Decays

Inverse ˇ decay also becomes important at high densities. Consider a nucleus

(Z � 1;A) which is ˇ-unstable and decays under normal conditions to the stable

nucleus .Z;A/C e� C N� (we always drop the subscript “e” for the neutrinos), the

decay energy being Ed . If .Z;A/ is surrounded by a degenerate electron gas with a

kinetic energy at the Fermi border

EF D mec
2Œ.1C x2/1=2 � 1� ; (37.23)

such that EF > Ed, then .Z;A/ becomes unstable against electron capture, i.e. we

have the inverse ˇ decay

.Z;A/C e� ! .Z � 1;A/C � : (37.24)

In general, we have to deal with the particularly stable even–even nuclei .Z;A/

and then Ed.Z � 1;A/ < Ed.Z;A/. If EF > Ed.Z;A/, then also EF >

Ed.Z � 1;A/; and the inverse ˇ decay proceeds further to .Z � 2;A/. The new

nuclei are now stabilized by the Fermi sea, i.e. they cannot eject an electron with

Ed.< EF/, since it would not find a free place in phase space. EF increases with %.

Therefore for each type of nucleus .Z;A/ there is a threshold %n of the density above

which neutronization occurs. For 1H and 4He (%n D 1:2�107 and 1:4�1011 g cm�3/
this is of no interest, since clearly %n � %pyc such that pycnonuclear burning would

set in before neutronization can occur. And even for the decay 12C ! 12B ! 12Be

one still has %n D 3:9 � 1010 g cm�3 > %pyc, but the order of critical densities is

reversed for heavy nuclei. The decay 56Fe !56 Mn !56Cr, for example, has a

threshold %n D 1:14 � 109 g cm�3 < %pyc. Although neither inverse ˇ decays nor

pycnonuclear reactions are important processes that might change a white dwarf’s

chemical composition, which is the result of the evolution of its stellar predecessor,

they demonstrate that for high densities, the outcome of the thermonuclear processes

occurring during a star’s life might be changed in its remnant and that the structure

might be determined by the density and the energy of the Fermi sea of degenerate

electrons.

37.2.4 Nuclear Equilibrium

In “normal” stars we were used to imposing the chemical composition as an

arbitrary free parameter. This was reasonable, since the usual transformation

of the elements by thermonuclear reactions takes a sufficiently long time, and

configurations with a momentary (non-equilibrium) composition are astronomically
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relevant. This may be different for very high densities, at which processes such as

pycnonuclear reactions or inverse ˇ decay can transform the nuclei in relatively

short timescales. The other extreme, then, is to impose only the baryon number

per volume and ask for the corresponding equilibrium composition. In reality the

approach to nuclear equilibrium may be too slow to be accomplished. But one

can imagine having reached it after an artificial acceleration by suitable catalysts,

leading to the expression “cold catalysed matter”. Because of their history, WD will

scarcely have reached that stage of equilibrium (they usually consist of 4He, or 12C

and 16O, instead of 56Fe, etc.). But in order to see the connection between different

types of objects, we briefly describe a few characteristics of equilibrium matter.

The equilibrium composition can be found by starting with a certain type of

nucleus .Z;A/ and varying Z and A until the minimum of energy is obtained. For

isolated nuclei the counteraction of attracting nuclear and repelling Coulomb forces

gives a maximum binding of the nucleons at 56Fe (cf. Sect. 18.1). Therefore 56Fe will

be the equilibrium composition for small % .<8�106 g cm�3/. With increasing % this

balance is shifted to heavier and neutron-enriched nuclei, since replacing a proton by

a neutron decreases the repulsive Coulomb force inside the nucleus; and the ˇ decay,

which would then result in isolated nuclei, is here prohibited by the filled Fermi

sea of the surrounding electrons. Another influence comes from the lattice energy

(37.19), which gives only a small correction to P at high %, but reduces the Coulomb

energy at the surface of the nucleus. The sequence of equilibrium nuclei is (the

maximum density in g cm�3 is shown in parenthesis): 56Fe.8�106/, 62Ni.2:8�108/,
64Ni.1:3 � 109/; : : : ;120Sr.3:6 � 1011/, 122Sr.3:8 � 1011/, 118Kr.4:4 � 1011/. For

% > 4 � 1011 g cm�3 it is energetically more favourable that further neutrons are

free rather than bound in the nucleus: the “neutron drip” sets in. The composition

consists of two phases: the lattice of nuclei (with sufficient electrons for neutrality)

plus free neutrons. Their number increases with %, and at % � 4 � 1012 g cm�3

their pressure Pn even exceeds Pe. At 2 � 1014 g cm�3, the nuclei are dissolved,

leaving a degenerate neutron gas with a small admixture of protons and electrons

(see Sect. 38.1). The P � % relation can be calculated, giving the equation of state

as shown in Fig. 16.2.

Once an equation of state is given, one can easily integrate the mechanical

equations outwards, starting from a variety of values for the central pressure which

leads to a pair of valuesM;R. TheM –R relations obtained in this way by Hamada

and Salpeter (1961) are plotted as solid curves in Fig. 37.3 for different compositions

(He, C, Mg, Fe, and equilibrium composition). For comparison the relations for an

ideal Fermi gas (Chandrasekhar’s theory) are plotted for �e D 2 (e.g. 4He, 12C,
24Mg) and �e D 2:15 (56Fe); in the latter case, the mass limit is already lowered

to MCh � 1:25Mˇ. Relative to these classical models there is a clear reduction

of R, particularly at small M , owing to the Coulomb interaction reducing P . This

effect increases with Z. The curve for 56Fe shows a maximum of R beyond which

it decreases for M ! 0. In fact such a maximum of R (�0:02; 0:05; 0:12ˇ for Fe,

He, H, respectively) occurs for all compositions at values ofM between a few 10�3

to 10�2Mˇ. In this regime the equation of state is not well known; it is certainly

completely dominated by Coulomb effects, and the inhomogeneous distribution of
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Fig. 37.3 R–M relation for white dwarfs. Dashed lines indicate solutions of Chandrasekhar’s

equation for non-interacting gases with �e D 2 .4He, 12C, 16O : : :) and �e D 2:15 .56Fe). The

other curves are for He, C, Mg, Fe, and equilibrium composition; they include interaction of the

nuclei (After Hamada and Salpeter 1961)

the electrons has to be considered. In any case, we find here the natural transition

between WD .dR=dM < 0/ and planets .dR=dM > 0) (Note that Jupiter with

R � 0:1Rˇ and M � 10�3Mˇ is not far from this border; in fact its radius is far

aboveRmax for He and close to that of H, so that it must consist essentially of H.).

Towards large M the curves for C, Mg, and Fe show kinks at the mass limit.

These are due to a phase transition in the centre, since %c reaches one of the limits

described above. For 12C we find here %c D %pyc, and pycnonuclear reactions then

transform 12C ! 24Mg, which by inverse ˇ decay becomes 24Ne. Models on the

lower branch beyond the kink consist of Ne cores and C envelopes. The curve for
24Mg reaches Mmax when %c D %n, and inverse ˇ decay gives central cores of
24Ne. For 56Fe we see the result of the inverse ˇ decay to 56Cr at Mmax and to 56Ti

at the following second kink (beyond which the models consist of 56Ti cores, 56Cr

shells, and 56Fe envelopes). The curve for equilibrium composition, which coincides

with 56Fe for % . 8 � 106 g cm�3, is below and to the left of all other curves;

it always has the largest average �e. At the maximum M.� 1:0Mˇ/ one finds

%c � 2 � 109 g cm�3, with 66Ni nuclei giving a relatively large �e. Towards the

end of the plotted equilibrium curve, 120Kr is reached and the first neutrons are

freed (From here follows the sequence of equilibrium configurations which leads

to neutron stars, see Chap. 38.). The whole curve appears fairly smooth, since the

change of the composition here proceeds in small steps via neighbouring nuclei,
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Fig. 37.4 R–M relation obtained from numerical white dwarf models. For comparison, the

relations by Hamada and Salpeter (1961) for white dwarfs consisting of pure He, C, or Fe are

repeated (black lines, indicated by “HS” following the element label). The numerical results were

obtained for white dwarfs with an effective temperature of 4,000–5,000 K. These are the shorter

grey lines with the same line style as the HS-curves. The computations were restricted to a narrow

mass range resulting from realistic previous stellar evolution models. The dashed black line with

the label “He .Teff D 2� 104/” is for a white dwarf with this effective temperature (data courtesy

L. Althaus, after Panei et al. 2000)

while the transit of a non-catalysed composition to equilibrium is first delayed by

large thresholds and then occurs in a big jump.

Concerning inhomogeneous models of WD with non-equilibrium composition,

we briefly mention the case of a low-mass envelope of light elements (particularly
1H) being placed on a WD of 4He or 12C and 16O. This may happen by mass

exchange in close binary systems. Aside from possible instabilities during the onset

of nuclear burning (which can lead to the ejection of a nova shell), there is a

strong influence on the equilibrium radius described by d lgR=d lgMH of the order

10 : : : 102. This means that the addition of a 1H envelope of only 1 % ofM increases

R by about 50 % and more. In fact the white dwarf will scarcely be recognizable as

such. Although WD originating purely from single star evolution will also have

envelopes of lighter elements, these are typically at least two orders of magnitude

less massive, and the radius increase is correspondingly less drastic.

The M–R relation by Hamada and Salpeter (1961) shown in Fig. 37.3 is in

fact a very good approximation for old white dwarfs with very cold (effective)

temperatures, as Fig. 37.4 demonstrates. Here we compare the Hamada and Salpter

relations with those obtained from full numerical models for white dwarfs with pure

He, C, or Fe cores, and He–He envelopes, except for the He-WDs, which have a

pure H envelope. The envelope masses range from 3 � 10�4Mˇ for the He-WDs
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to 10�2Mˇ for the others. Another He-WD sequence obtained from models with

a much higher Teff of 2 � 104 K demonstrates how white dwarfs initially have

much larger radii but approach the cold configurations during the cooling process.

Based on mass and radius determinations of observed objects, the existence of white

dwarfs with iron cores is sometimes claimed. So far, however, corrections to the

radius shifted all objects back to the CO- or He-WD sequence. Such objects would

indeed be a challenge to stellar evolution theory (cf. Chaps. 34 and 35).

Once L and Teff of a white dwarf have been determined accurately enough,

the Stefan-Boltzmann law (11.14) yields the radius. The mass–radius relation

then delivers the mass of the white dwarf. This is the basis for the initial–final

mass relation (Fig. 34.7). However, it depends on the assumption about the core

composition of the white dwarf. In most cases, one can safely assume a CO-WD, as

this is, at the present age of the universe, the most likely.

The connection with other types of configurations is seen in Fig. 38.3, which

gives the M –R relation for cold catalysed matter (equilibrium composition). When

going along the curve in the direction of increasing %c, one encounters extrema of

M (open circles) in which the stability properties change. An example is the point

at M D Mmax for the white-dwarf sequence, beyond which a branch of unstable

models follows (see the discussion of Sect. 38.2).

37.3 Thermal Properties and Evolution of White Dwarfs

In the very interior of a WD, the degenerate electrons provide a high thermal

conductivity. This, together with the small L, does not allow large temperature

gradients. The situation is different when going to the outermost layers. With

decreasing % the matter is less and less degenerate, and the dominant heat transfer

becomes that by radiation (or convection), which is much less effective. Therefore

we expect to find a non-degenerate outer layer in which T can drop appreciably and

which isolates the degenerate, isothermal interior from outer space.

We simplify matters by assuming a discontinuous transition from degeneracy to

non-degeneracy (ideal gas) at a certain point (subscript 0). For the envelope we use

the radiative solution (11.25) for a Kramers opacity (� D �0PT
�4:5/ and a zero

constant of integration:

T 8:5 D BP 2 I B D 4:25
3�0

16�acG

L

M
: (37.25)

Replacing P by <%T=� and solving for % here, we have

% D B�1=2�

<T
3:25: (37.26)
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The transition point is assumed to be where the degenerate electron pressure equals

the pressure of an ideal gas, i.e. according to (16.6)

%0 D C
�3=2
1 T

3=2
0 I C1 D 1:207 � 105 �

�
5=3
e

cgs : (37.27)

This density %0 is reached according to (37.26) at a temperature T D T0 given by

T 3:50 D B

C 3
1

�<
�

�2
D #

L=Lˇ
M=Mˇ

; (37.28)

where all factors are comprised in # . For typical compositions and values of �0, one

has roughly

T0 � #2=7
�
L=Lˇ
M=Mˇ

�2=7
�
�
L=Lˇ
M=Mˇ

�2=7
5:9 � 107 K : (37.29)

This simple relation between L and T0 will turn out to be essential for deriving

the cooling time of a white dwarf, (37.42). For M D Mˇ and the range L=Lˇ D
10�4 : : : 10�2, (37.29) yields T � 4:2 : : : 16� 106 K, which is, by assumption, also

the temperature in the whole (isothermal) interior. Typical values for the density at

the transition point are then, according to (37.27), of the order of %0 � 103 g cm�3

(i.e. � %c/.

An idea of the radial extension R � r0 of the non-degenerate envelope is easily

obtained from (11.34). We neglect Teff..10
4 K) against T0 and get

R � r0

r0
� <T0
�r

R

GM
� 0:82

R=Rˇ
M=Mˇ

T0

107 K
: (37.30)

(The numerical factor is given for � D 4=3;r D 0:4:) The relative radial extension

of the non-degenerate envelope then is typically 1 % or less, i.e. a few 10 km, since

R � 10�2Rˇ and M � 1Mˇ. This means that the radius of a WD is well

approximated by the integrations which assume complete degeneracy throughout,

as long as Teff can indeed be neglected. As we saw in Fig. 37.4, WD models with

more massive envelopes and high temperatures might be up to 50 % larger than the

cold configurations.

The rather high internal temperatures of 106 � � � 107 K set a limit to the possible

hydrogen content in the interior. If hydrogen were present with a mass concentration

XH, we would expect hydrogen burning via the pp chain. For average values

T D 5 � 106 K, % = 106 g cm�3, (18.63) gives "pp � 5 � 104X2
H erg g�1 s�1, and

the luminosity for M D 1Mˇ would be

L=Lˇ � Mˇ
Lˇ

"pp � 2:5 � 104X2
H ; (37.31)
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such that the observed L � 10�3Lˇ allows only XH . 2 � 10�4. Stability

considerations (Sect. 25.3.5) indeed rule out that the luminosity of normal WD is

generated by thermonuclear reactions, which was first pointed out by Mestel (1952).

A stable burning could only be expected in nearly cold configurations that produce

their extremely smallL (“black” or “brown” dwarfs) by pycnonuclear reactions near

T D 0.

If there are no thermonuclear reactions, then which reservoirs of energy are

involved when a normal WD loses energy by radiation? The means for obtaining

the answer are provided in Sect. 3.1. For a configuration in hydrostatic equilibrium

the virial theorem (3.9) requires � PEi C PEg D 0.

The potential energy in the gravitational field Eg.< 0/ is given by (3.3). The

total internal energy of the star Ei D Ee C Eion consists of the contributions from

electrons and ions. By � we mean an average of the quantity � 0, defined by the

relation

� 0u D 3
P

%
; (37.32)

where u is the internal energy per unit mass. For highly degenerate electrons, � 0

varies from � 0 D 2 (non-relativistic) to � 0 D 1 (relativistic case). For the ions,

� 0 D 2 if they are an ideal gas [cf. (3.5)]. If there is crystallization, the contributions

uC of Coulomb energy and up of lattice oscillations (phonons) have to be considered.

For the static Coulomb part we note that uC D neEC=%, with EC � %1=3 according

to (37.19). Then one finds from (37.22) that PC=% D uC=3, i.e. � 0 D 1. The situation

is more difficult with up, but this contributes relatively little.

Summing up all effects, the average over the whole WD will obviously be

somewhere in the range 1 < � < 2. As in “normal” stars we have a simple relation

between Ei and Eg; the absolute values of both being of the same order.

The total energy isW D EiCEg. The energy equation requiresL D � PW , which

together with the virial theorem [compare with (3.12)]

L D � PW D �� � 1

�
PEg D .� � 1/ PEi : (37.33)

Therefore L > 0 requires a contraction . PEg < 0/ and an increase of the internal

energy . PEi > 0/. So far, it is the same as with normal, non-degenerate stars. The

crucial question is how Ei is distributed between electrons (Ee) and ions (Eion).

We recall the situation for a normal star with both electrons and ions being non-

degenerate. Then there is equipartition with Eion � Ee � T , such that also Ei D
Eion C Ee � T I PEi > 0 means PT > 0. Thus the loss of energy (L > 0) leads to

a heating ( PT > 0). This was expressed in Sect. 25.3.4 by saying that the star has

negative gravothermal specific heat, c� < 0.

For demonstrating the behaviour of a WD, let us simply assume that the electrons

are non-relativistic degenerate and the ions form an ideal gas. Then � D 2 and

L D � PEg=2, i.e. the star must contract, releasing twice the energy lost by radiation.

Since –Eg � 1=R � %1=3, we have PEg=Eg D .1=3/ P%=% (Here % is some average
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value.). The compression, however, increases the Fermi energyEF of the electrons.

Their internal energy is Ee � EF � p2F � %2=3, such that PEe=Ee D .2=3/ P%=%. So

we have a simple relation between PEg and PEe:

PEe � 2
Ee

Eg

PEg D �Ee

Ei

PEg : (37.34)

Here Ei is introduced via the virial theorem in the form Eg D �2Ei.

If the WD is already cool, then Eion � Ee and Ei D Eion C Ee � Ee. This

means PEe � � PEg D 2L, and nearly as much energy as released by contraction is

used up by raising the Fermi energy of the electrons. With PEe � � PEg, the energy

balance L D � PEion � PEe � PEg becomes

L � � PEion � � PT : (37.35)

Therefore, the ions release about as much energy by cooling as the WD loses by

radiation. The contraction is then seen to be the consequence of the decreasing ion

pressure (even though Pion is only a small part of P ). In spite of the decreasing ion

energy, the whole internal energy rises, since PEion C PEe � L. This evolution tends

finally to a cold black dwarf; then the contraction has stopped and all of the internal

energy is in the form of Fermi energy.

Of course, the relations just derived should have somewhat different numerical

factors, since � is not exactly 2 (a certain degree of relativity in the central part, the

ion gas not being ideal, etc.). But the essence of the story remains the same.

The foregoing discussion opens the possibility of arriving at a very simple theory

of the cooling of WD. We start with the energy equation (4.48), setting there

"g D �cv PT C T

%2

�
@P

@T

�

v

P% ; (37.36)

which follows from the first equation (4.17). We now integrate (4.48) over the whole

star, taking not only "n D "� D 0, but also neglecting the compression term in

(37.36),

� L �
Z M

0

cv PT dm � cv PT0M ; (37.37)

where an isothermal interior is assumed with T D T0. If the ions are an ideal gas,

then

cion
v D 3

2

k

Amu

: (37.38)

For the specific heat of the degenerate electrons one can derive (Chandrasekhar

1939, p. 394)
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cel
v D �2k2

mec2
Z

Amu

p
1C x2

x2
T Œx D pF=mec�

� �2k

2

Z

Amu

kT

EF

; for x � 1 : (37.39)

The ratio (for x � 1)
cel
v

cion
v

D �2

3
Z
kT

EF

(37.40)

is small for small kT=EF and not too large Z. In the numerical examples below we

will take cv D cion
v . Then (37.37) describes L as given by the change of the internal

energy of the ions.

In (37.28) we eliminate L with (37.37) and obtain a differential equation for T

(where we drop the subscript 0 for the interior):

PT D � Lˇ
Mˇ

1

cv#
T 7=2 : (37.41)

This can be rewritten with (37.29) as � PL � L12=7, which together with R �
constant describes the motion in the HR diagram. Equation (37.41) is easily

integrated from t D 0 when the temperature was much larger than it is now, to

the present time t D � . The result gives the cooling time

� D 2

5

Mˇ
Lˇ

cv#T
�5=2 D 2

5
cv
MT

L

D 2

5

�
Mˇ
Lˇ

#

�2=7
cv

�
M

L

�5=7
� 4:7 � 107years

A

�
M=Mˇ
L=Lˇ

�5=7
: (37.42)

Here we have used (37.28) and (37.29). For A D 4;M D Mˇ and L=Lˇ D 10�3

one has � � 109 years. Equation (37.42) is the result of Mestel’s model for the

evolution of white dwarfs (Mestel 1952). For CO-WDs, A � 14, and the cooling

time of a WD withL D 10�4Lˇ is estimated to be of the order of 2 Gyrs, indicating

already that some very cool WDs are remnants of the earliest phases of galactic

evolution. However, they are very dim, and difficult to observe except for the closest

ones. Note that the more massive a WD is, and the lighter its main elements (He,

CO, or ONe, depending on its initial mass and previous evolution), the longer will

be cooling time.

The specific heat cv is obviously very important. Larger values of cv give a slower

cooling ( PT � 1=cv/, i.e. a larger cooling time (� � cv). The simplest assumption

would be cv D cion
v D 3k=.2Amu/, but this requires several corrections. For small

M (i.e. moderate %) and larger T and Z, one cannot neglect the contribution of the

electrons. From (37.40) we have cel
v � 0:25cion

v for T D 107 K, M D 0:5Mˇ and a

carbon–oxygen mixture.
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Fig. 37.5 Schematic

variation of the specific heat

per ion with the temperature

T in white-dwarf matter

For small T the ions dominate completely: cv D cion
v , but their specific heat is

influenced by crystallization. We indicate only a few aspects of the rather involved

theory for these processes (e.g. Mestel and Ruderman 1967; Shaviv and Kovetz

1976; Isern et al. 1997).

The properties of the ions depend critically on two dimensionless quantities, �c

and T=�. The ratio �c of Coulomb energy to kinetic energy of the ions is defined

in (16.25). For �c � 102 a heated crystal will melt (or a cooling plasma will

crystallize), which determines the melting temperature Tm given in (16.26). For

�c < 1 the thermal motion does not allow any correlation between the positions

of the ions, no lattice is possible, and the ions behave as a gas.

The other ratio, T=�, contains a characteristic temperature � which is essen-

tially the Debye temperature and is defined by

k� D „˝p ; ˝p D 2Ze

Amu

.�%/1=2 ; (37.43)

with˝p being the ion plasma frequency [cf. the zero-point energy (37.20) where we

used !E D ˝p=3]. This gives

� D he

kmu

p
�

Z

A
%1=2 � 7:8 � 103 K � Z

A
%1=2 (37.44)

(% in g cm�3/. k� is a characteristic energy of the lattice oscillations, which cannot

be excited for T=� < 1. For typical WD composed of C, O, or heavier elements,

one has � < Tm.

Figure 37.5 shows how the specific heat Cv per ion changes with T . Starting

at very large T (�c � 1), the ions form an ideal gas. Each degree of freedom

contributes kT=2 to the energy (i.e. k=2 to Cv/, and Cv D 3k=2. With decreasing

T one finds an increasing correlation of the ion positions owing to the growing

importance of Coulomb forces in the range �c � 1 : : : 10. This gives additional

degrees of freedom, since energy can go into lattice oscillations, and Cv increases

above 3k=2, with the maximum of Cv D 3k being reached when the plasma

crystallizes at T D Tm. With further decreasing T gradually fewer oscillations are

excited, and the specific ion heat Cv even drops below 3k=2 around T D �. For

T ! 0 finally, Cv � T 3.
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Fig. 37.6 The cooling of a

CO white-dwarf model of

0:609Mˇ, calculated from a

full evolutionary sequence.

The evolution has three

dominant phases: initially,

shell hydrogen burning

(LCNO) is still important, after

which neutrino emission (L� )

is the dominant channel of

energy loss. At very large

ages thermal energies (Lg)

provide the white dwarf’s

luminosity (Lsur; thick black

line) in the phase of

crystallization. In this model

helium burning (LHe) never is

an important energy source

(Data courtesy L. Althaus)

These large variations of Cv (increase by a factor 2, then decrease to zero) of

course influence the cooling times [cf. (37.42)]. In addition there is the release of the

latent heat of about kT per ion when the material crystallizes, which delays cooling.

Additional energy is delivered by the phase separation (Sect. 37.2.1), which is due to

the (so far neglected) dependence of the specific entropy s on chemical composition

(4.7). Compared to the approximative Mestel cooling law (37.42), cooling times can

be longer by up to several 10 % by these effects, which are more important when

crystallization sets in at lower luminosity, because the delay is simply the extra

energy divided by the luminosity. This is the case for less massive WDs, because

they are less dense and reach the critical �c � 170 only at lower T , thus lower L.

Further improvements in the theory of WD cooling result from a realistic and

more accurate treatment of the equation of state, and the transport of energy within

the degenerate interior and through the non-degenerate envelope by conduction,

radiation, and convection. Obviously, the mass of the envelope and its composition

have an influence on the cooling time. Both depend on the pre-WD evolution,

in particular, therefore, on the physics of mass loss and mixing on and after the

AGB phase. Generally, envelope masses between 10�4 and 0:01Mˇ are obtained

for the beginning of the WD cooling phase, but later, empirical evidence from the

seismology of pulsating WDs (Sect. 42.4), indicates envelope masses well below

these numbers, with an average around 10�7Mˇ. The less massive the envelope,

and the less hydrogen it contains, the more transparent it is for radiative losses,

allowing a faster cooling of the WD.

Convection in the envelope may eventually reach into the core, and thereby

the convergence of the temperature profile of the envelope to that of the outer

core boundary (Sect. 11.3.3) is lost (The solution (37.25) assumes purely radiative

transfer.). Instead the core depends on the conditions in the atmosphere, and
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Fig. 37.7 The cooling of a

CO white-dwarf model

during the crystallization

phase. The solid line shows

the cooling curve including

the release of latent heat, the

dotted one if the additional

effect of phase separation is

taken into account (data

courtesy L. Althaus)

the connection between core temperature and luminosity–or the cooling rate–

is modified (D’Antona and Mazzitelli 1989). Finally, the various sources and

sinks of energy–nuclear reactions, neutrino emission, gravothermal energy, and

crystallization–have to be included, which are important at various phases of the

WD cooling. We conclude this discussion with Fig. 37.6, which shows the cooling

function of a 0:61Mˇ CO white dwarf, resulting from a full evolutionary sequence,

starting on the main sequence with an initial mass of 2Mˇ and a metallicity of

Z D 0:01. The figure shows the various contributions of energy sources and sinks.

In the earliest phase, lasting only a few thousand years, the total photon lumi-

nosity L emerging from the surface is provided completely by hydrogen burning

from the CNO-cycles (pp-chains are at all times almost irrelevant). Gravothermal

energies (Lg) balance the loss by neutrinos (L�). Then, the hydrogen shell is

extinguishing rapidly, and the WD begins to cool and to get fainter. After a few

105 years neutrino losses become more important than photon emission for the

cooling, and the energy results almost completely from gravothermal energies, being

gained from the internal energy of the core. At t � 107 years, the neutrino sink fades

away, and the WD is now in the phase where the Mestel theory applies, and the

thermal energy of the ions is the only energy source. Crystallization and convection

in the envelope have not yet set it. This happens only after almost 109 years. This

final phase of cooling is the one shown in Fig. 37.7.

It is possible to connect the cooling times with the observed number of WD as

a function of L. Since � is steadily increasing with time, the evolution therefore

slowing down, one expects to observe an increasing number of white dwarfs for

fainter luminosities. The end of this luminosity function is reached when no star

had enough time to cool to an even cooler temperature, respectively reach an even
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Fig. 37.8 Luminosity function of white dwarfs obtained from 6,000 objects in the Sloan Digital

Sky Survey, data release 3 (Abazajian et al. 2005), including error bars of the star countings, which

are significant after the peak of the luminosity function, due to the extreme faintness of the objects.

The last few data points at and after the break of the luminosity function also depend somewhat on

the assumption about the interior carbon and oxygen abundances. The break at Mbol D 15:3, or

equivalently logL=Lˇ D �4:3, could correspond to an age of the coolest WDs of 8 Gyr, or be

a few Gyr higher (Kilic et al. 2010, and Salaris, private communication). Data for this figure were

taken from Harris et al. 2006; Fig. 7

lower luminosity. Then, the luminosity function (as the one in Fig. 37.8) should

show a cut-off, and the maximum age reached indicates the age of the oldest white

dwarfs and thus the oldest stars in the observed sample. With this method one could

first determine the age of the galactic disk in the solar neighbourhood (found to be

around 8 Gyr), and more recently that of old stellar clusters. The WD cooling curves

provide an alternative way to find out about the oldest objects in our galaxy.

As discussed above, such age determinations depend on the white dwarf models

used. In particular, and apart from the physics of cooling, it requires an assumption

about the internal chemical composition of the WD. In case of WDs originating

from single stars, it will be safe to assume a CO-WD with a He/H envelope. The

arguments for this assumption are that ONeMg-WDs are very rare–if they are the

result of single star evolution at all–because of the narrow mass range of super-AGB

stars (Sect. 34.8; Fig. 34.10), and that the main-sequence mass of stars that develop

into He-WDs by avoiding the core helium flash is so low (. 0:50Mˇ; Sect. 35.2 and

Fig. 35.2) that even the age of the universe of about 14 Gyr has not been long enough

to allow them to evolve off the main sequence (an estimate for the main-sequence

lifetime from (30.2) would give 75 Gyrs; a numerical model yields almost twice

this number). At the present time, the oldest globular clusters produce CO-WDs of

� 0:53Mˇ (Kalirai 2009). According to Liebert et al. (2005), however, about 10 %

of all white dwarfs in the solar neighbourhood have indeed a mass below 0:45Mˇ
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and therefore are very likely He-WDs. This empirical result could be an indication

for significant mass loss already on the red giant branch for stars with M & 0:8Mˇ
or for a previous binary star evolution. To decide about the nature of WDs one

therefore has to employ the mass–radius relation (Fig. 37.4), for which effective

temperature (from spectroscopy) and absolute brightness (i.e. distance) are needed.

But even for carbon–oxygen white dwarfs the ratio between these two elements will

be decisive for the cooling rate, in particular during the phase of crystallization. This

ratio depends, among other things, on the exact value of the 12C(˛; 
 )16O reaction

rate, which, as we have seen in Sect. 18.5.2, is uncertain by a factor of 2 and 3. This

is a beautiful example how microphysics (a nuclear reaction rate) is connected with

cosmological questions (the age of the oldest stars in the Milky Way).



Chapter 38

Neutron Stars

As early as 1934 Baade and Zwicky correctly predicted the birth of the strange

objects neutron stars in supernova explosions (Baade and Zwicky 1934). The first

models were calculated by Oppenheimer and Volkoff (1939), and the stage was

then left for the next 28 years to particle physicists who struggled with the problem

of matter at extreme densities (a struggle not yet finished). Radio astronomers

accidentally found the first pulsar in 1967; it was interpreted soon after as a rapidly

rotating neutron star (Gold 1968), emitting synchroton radiation in a narrow beacon

along the magnetic axis. In addition, neutron stars were identified as sources of

energetic X-ray emission, resulting from accretion in binary systems. By now, the

existence of neutron stars is well established. The number of detected pulsars in the

Galaxy already amounts to more than 1,800 (Lorimer 2008). These known neutron

stars constitute only a tiny fraction of a population as large as a few hundred million.

In some cases, their masses could be determined quite accurately (Fig. 38.2) because

they are members of binary systems or from relativistic effects in their extreme

gravitational potential. Everything is extreme with neutron stars, their interior state

(simulating a huge nucleus), the velocity of sound (not far from c/; their rotation

(frequencies 1 : : : 1; 000Hz), and their magnetic fields (from 109 to 1015 gauss).

One is far from really understanding them. So we content ourselves here with a

few remarks on the state of matter and the resulting models. For more detailed and

complete information about neutron stars, we recommend one of the many existing

textbooks on compact objects (e.g., Glendenning 1997; Camenzind 2007; Haensel

et al. 2007).

38.1 Cold Matter Beyond Neutron Drip

Neutron stars (NS) are born hot .T > 1010 K) in the collapse of a highly evolved

star (see Chap. 36). But the interior temperature drops rapidly because of neutrino

emission: after a day, temperatures of 109 K are reached; after 100 years, maybe

108 K. And this (kT � 10 keV) can be considered cold in view of the degenerate

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics

Library, DOI 10.1007/978-3-642-30304-3 38, © Springer-Verlag Berlin Heidelberg 2012
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nearly relativistic neutrons .EF � 1; 000MeV). The equation of state is essentially

the same as for T � 0. We refer to the descriptions of high-density matter in

Sect. 37.2 and of the equation of state in Chap. 16.

With increasing density the rising Fermi energy of the electrons provides an

increasing neutronization by electron captures. The neutron-rich equilibrium nuclei

(such as 118Kr) begin to release free neutrons at %dr � 4:3 � 1011 g cm�3. This is

called the neutron drip. The matter consists of nuclei (usually arranged in a lattice)

plus sufficient electrons for charge neutrality, and free neutrons. Their number

nn increases with %, and so does their pressure Pn. While P � Pe � Pn still at

% D %dr; we have Pn D P=2 at % � 4 � 1012 g cm�3 (here the Coulomb lattice is

dissolving) and Pn > 0:8P for % & 1:5 � 1013 g cm�3; and finally Pn � P: The

neutrons are increasingly degenerate, but still non-relativistic, as their Fermi energy

is much smaller than their rest-mass energy. Note that all characteristic densities

quoted here and in the following depend in general on the model assumed for the

particles and their interaction. The higher the values of %, the more uncertain are the

details (see below).

With progressing neutron drip the number of nuclei is diminished by fusion.

The nuclei more or less touch each other at the nuclear density of %nuc � 2:7 �
1014 g cm�3, and hence they merge and dissolve, leaving a degenerate gas (or

liquid) of neutrons plus a small admixture of e� and p: The concentrations of these

particles can be calculated as an equilibrium between back and forth exchanges in

the reaction n • p C e� (The neutrinos leave the system immediately and can

be left out of the considerations.). The conditions are that the Fermi energies fulfil

En
F D E

p

F C Ee
F, and that ne D np for neutrality. This gives that np is about 1 % (or

less) of nn for a wide range of % up to %nuc: At % � 6� 1015 g cm�3 the neutrons are

relativistically degenerate. With increasing relativity of the neutrons the fraction of

protons raises slowly, until at an infinite relativity parameter one finds the limiting

ratio nn W np W ne D 8 W 1 W 1. When % exceeds 1015 g cm�3, the Fermi energy of the

neutrons,EF D Œ.pFc/
2 C .mnc

2/2�1=2, will gradually exceed the rest masses of the

hyperons of lowest mass (such as �;˙;�; : : :). These particles will then appear,

i.e. a “hyperonization” begins. Finally even free quarks can occur. Obviously, at

these densities, nuclear forces, the interaction between elementary particles, and

the masses of hadron states are determining the exact composition of neutron star

matter. Astrophysics meets quantum chromodynamics!

We now come to the equation of state, in particular the dependence of P on %.

For % up to %drip, the pressure is dominated by the relativistic, degenerate electrons,

and P � Pe � %4=3 [cf. (15.26)].

The onset of the neutron drip (% D %drip) has severe consequences for the

equation of state. An increase d% mainly increases nn at the expense of ne (which

yields the pressure), such that the increment dP is small (see Fig. 16.2). Therefore

the gas becomes more compressible, which is described as a “softening” of the

equation of state (in the opposite case one speaks of “stiffening”). In other terms the

adiabatic index 
ad D .d lnP=d ln%/ad drops appreciably below the critical value 4/3

(cf. Sect. 25.3.2), and only when Pn contributes sufficiently to P will 
ad again rise

above 4/3 at % � 7 � 1012 g cm�3.
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When the neutron pressure Pn dominates one may tentatively consider the

approximation that the gas consists of ideal (non-interacting), fully degenerate

neutrons. These are fermions like the electrons, and they obey the same statistics, so

that the same relations hold as derived in Sect. 15.2, if there me is replaced by mn

and �e by 1 (since we now have one nucleon per fermion). Instead of (15.23) and

(15.26) we can write

Pn D K
 0%

 0

0 (38.1)

with the non-relativistic and relativistic limit cases (for %0 � 6 � 1015 and

%0 � 6 � 1015 g cm�3 respectively)


 0 D 5

3
; K5=3 D 1

20

�
3

�

�2=3
h2

m
8=3
n

;


 0 D 4

3
; K4=3 D 1

8

�
3

�

�1=3
hc

m
4=3
n

; (38.2)

with mu � mn. In (38.1) we have used the rest-mass density %0 D nnmn: For

relativistic configurations instead of %0 one has to use the total mass-energy density

% D %0 C u=c2. This distinction was not necessary for the electron gas, where %0
(coming mainly from the non-degenerate nucleons) was always large compared with

the energy density u=c2 coming from the degenerate electron gas. Now both %0 and

u=c2 are provided by the degenerate neutrons. For non-relativistic neutrons, %0 �
u=c2 and % � %0; for relativistic neutrons, %0 � u=c2 and % � u=c2: For relativistic

particles, however, we know that P D u=3, i.e. P D %c2=3. So we can write

Pn � %� ;

� D 5=3 .non � relativistic/;

� D 1 .relativistic/: (38.3)

The distinction between % and %0 will be seen to be important for NS models. The

relation P D %c2=3 also yields the velocity of sound directly as v2s D .dP=d%/ad D
c2=3, i.e. vs D 0:577c.

Of course, with the densities considered here, the interaction between nucleons

is far from being negligible. It dominates the behaviour long before the limit

6 � 1015 g cm�3, where pF D mnc; is reached. In order to calculate its influence

on the equation of state, one faces two problems. The first is the determination of

a reasonable potential. In the absence of a rigorous theory and of experiments at

such high densities, one has to use a model of the interacting particles that meets

the results of low-energy scattering, the properties of saturation of nuclear forces,

etc. It is not surprising that such models yield large uncertainties when extrapolated

and applied to the densities found in NS. The qualitative influence of some effects
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on the equation of state is quite obvious. For example, the interaction between two

nucleons depends (aside from spin and isospin properties) on their distance. When

approaching each other they first feel an attraction, which turns to repulsion below a

critical distance (in the extreme: at an inner hard core). Attraction (dominant at not

too high %) reduces P and gives a softer equation of state. Repulsion (dominant at

very high % and small average particle distances) increases P and thus stiffens the

equation of state. Obviously details of the potential can shift the border appreciably

between these two regimes.

Other uncertainties are connected with the appearance of new particles when %

increases. For example, if hyperons of some type occur in sufficient number, they

contribute to %; but scarcely to P; since their creation lowers the Fermi sea of the

neutrons. Therefore “hyperonization” makes the gas more compressible. At ultra-

high densities (say � 10%nuc) so many new resonances appear that, in the extreme,

attempts have been made to describe their number in a certain energy range only

by statistics (which leads, e.g., to the rather soft Hagedorn equation of state). But

if the nucleons almost touch each other, one might have to consider something like

quark interaction. The question was even discussed whether this might lead to quark

matter and possibly to quark stars.1 Finally, in case that the absolute ground state

of strong interactions is that of quark matter in a deconfined state, in which up,

down, and strange quarks are present in about equal number, neutron stars will

consist of this so-called strange matter and would be strange stars (For a discussion

of quark and strange stars, see, e.g., the corresponding chapters in the book by

Glendenning.).

As early as % . 2%nuc the possibility of the reaction n ! p C �� (if En �
EpCE�� ) gives the possibility of having a Bose–Einstein condensate of the cold��

bosons in momentum space with zero momentum, i.e. no contribution to P but to %.

The second quite general problem for determining the equation of state is that,

even if the potential were known exactly, one would not know how to solve

convincingly the many-body problem. Several attempts use different assumptions

and yield different results.

To resume, we must stress that the equation of state is highly uncertain for at least

two independent reasons (concerning the potential and the many-body problem), but

there are still more open questions concerning possible effects of superfluidity and

superconductivity, which might influence the evolution of neutron stars, in particular

their rotation and magnetic fields. In fact particle physics cannot yet decide which

of the available equations of state is correct, but the softest ones now seem to be

ruled out by observation of neutron stars (see below). In Fig. 16.2 just one of them

is plotted, which should resemble the general properties, but will not be exact in the

details.

1The full beauty of this term can be savoured only in German, where the term “quark” means either

a popular, soft white cheese or, in slang, complete nonsense.
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38.2 Models of Neutron Stars

For a given equation of state of the form P D P.%/ it is easy to obtain the corre-

sponding hydrostatic models of NS. One has only to integrate the relativistic equa-

tion of hydrostatic equilibrium (2.31) (the Tolman–Oppenheimer–Volkoff equation)

together with (2.30), starting at r D 0 with a chosen central density %c: Since the

equation of state is independent of T , these two equations suffice for obtaining the

mechanical structure. This is seen after replacing P by % in (2.31), so that there are

two equations for the variables % andm:When the integration comes to % D P D 0,

the surface is reached, i.e. we have found R D r and M D m.R/ (We do not

have to worry about the obvious failure of the equation of state for P ! 0. The

transition region to the non-degenerate atmosphere, and even the whole atmosphere,

are negligibly thin so that the error made is small.).

Repeating this integration for a variety of starting values %c, one can produce a

sequence of models for the chosen equation of state. They give, in particular, the

relations M D M.%c/, R D R.%c), and by elimination of %c also R D R.M/

(cf. Fig. 38.1).

The resulting relations M.%c/ and R.M/ change considerably if we replace the

equation of state by another one, as can be seen in Fig. 38.1 for M.R/, where the

results are plotted for several equations of state. The persisting common feature is

that all relations M.%c/ show a minimum and a maximum of M; although at quite

different values. One can easily understand the qualitative changes which occur

when a soft equation of state is replaced by a stiffer one. The matter is then less

compressible; for given M one expects a larger R and a smaller %c. For given %c

one can put more mass on top until reaching the surface with % D 0. This lowers

the gravity inside the model, and Mmax is higher. A particularly soft equation of

state is that for the ideal degenerate neutron gas in (38.3), since the repulsive forces

at small particle distances are completely neglected. Correspondingly Oppenheimer

and Volkoff (1939) obtained for this equation of state a maximum mass of only

Mmax � 0:72Mˇ. Normally the maxima range roughly between 1Mˇ and 3Mˇ,

but Fig. 38.1 also demonstrates that a particularly stiff equation of state, obtained

by including interactions into the Oppenheimer–Volkoff equation, may lead to

maximum masses above 3Mˇ. We have stressed in Sect. 38.1 that particle physics

cannot yet supply the correct equation of state. All the more interesting are objects

like the binary pulsar PSR B1913+16 (also called the Hulse–Taylor pulsar), for

which the masses could be determined very accurately when details of the orbital

motion were interpreted as general relativistic effects.2 The result for the NS isM D
1:442Mˇ with a vanishing small uncertainty, which rules out all equations of state

2These effects include a shrinking of the orbit–and therefore a decrease of the orbital period (of

the order of 60 ms)–due to the loss of gravitational waves. The observations agree perfectly with

the predictions of Einstein’s theory of general relativity and are considered as indirect proof for the

existence of gravitational waves. J.H. Taylor and R. Hulse were awarded with the Nobel Prize for

this in 1993.
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Fig. 38.1 The relation M against R of neutron-star models calculated using seven different

equations of state. The maximum mass is indicated in each case by the solid dot. Two extreme

assumptions are specifically indicated: a non-interacting neutron gas (Oppenheimer and Volkoff

1939), which leads to an extremely soft equation of state and a very low maximum mass, and one

where interactions are included and which leads to a maximum neutron star mass above 3Mˇ

(After Fig. 10.3 in Weber et al. 2009, where also details about the other five equations of state can

be found)

so soft that their Mmax is below 1:44Mˇ. Very recently, another binary millisecond

pulsar–J1614-2230–was analysed by Demorest et al. (2010), who determine a pulsar

mass of 1:97˙0:04Mˇ, using the so-called Shapiro delay of the pulsar signal, which

is caused by the fact that light signals do not travel a straight line, but follow null-

geodesics which are bent, and therefore longer, by the gravitational potential. This

result rules out at least two more equations of state of Fig. 38.1, among them one for

“strange stars” (in the figure, this corresponds to the left-most line). Here seems to

be one of the cases where astrophysical measurements set a discriminating limit to

particle physics. A collection of accurately determined neutron-star masses is given

in Fig. 38.2. They were obtained by different methods, on which we do not comment

further, but refer to the respective textbooks.

The maximum mass for NS is very important, not only in connection with

evolutionary considerations, but also in the attempt to identify compact objects with

M > Mmax as black holes. If our ignorance of the equation of state does not yet

allow the determination of Mmax to better than the interval 2 : : : 3Mˇ, we should at

least understand that such a maximum mass (well below 5Mˇ) must exist.

In order to make this plausible, we neglect effects of general relativity, i.e.

consider the usual equation of hydrostatic equilibrium but keep those of special

relativity as allowed for in (38.3). Let us consider some averages of P and % over the

whole star. As in (37.15) the normal hydrostatic equation then yields the estimate

P � M 2=R4: Here we eliminate R by % � M=R3 and obtain P � M 2=3%4=3,
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Fig. 38.2 An overview of empirically determined masses and their errors of neutron stars

(identifier to the right of the data point). Except for the last object, J1614-2230 (Demorest et al.

2010), the data are taken from Fig. 6.31 in Camenzind (2007). The vertical line corresponds to the

generic mass of 1:4Mˇ

introduce % � P 1=� from the equation of state (38.3), and then solve forM and find

M � %3.��4=3/=2: (38.4)

In the non-relativistic limit, � D 5=3, giving M � %1=2 and dM=d% > 0. The

extreme relativistic case requires � D 1, which gives M � %�1=2 and dM=d% < 0.

Somewhere on the border between the two regimes we expect dM=d% D 0, i.e.

the maximum mass(The average % treated here will be a sufficient measure for

%c too.). Therefore the maximum of M must occur when the neutrons start to

become relativistic and the energy density u=c2 begins to overtake the rest-mass

density %0. Only by neglecting u=c2 in % [taking (38.1) instead of (38.3)] could
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Fig. 38.3 Schematic

mass–radius relation .R in

km) for configurations of cold

catalysed matter, from the

planetary regime to

ultra-dense neutron stars.

Some values of %c (in

g cm�3/ are indicated along

the curve. At the extrema of

M (open circles) the stability

problem has a zero

eigenvalue. Solid branches

are stable, dashed branches

are unstable. The grey,

vertical arrow indicates the

collapse of a white dwarf

exceeding the maximum

stable mass to a neutron star

we obtain the Chandrasekhar mass of MCh D 5:73Mˇ as the mass limit for

an infinite relativity parameter (
 0 D 4=3). Clearly, therefore, Mmax < MCh. The

here neglected influence of general relativity [i.e. the description of hydrostatic

equilibrium by the TOV equation equation (2.31)] tends to decrease Mmax even

more (see below).

Closely connected with the extrema of M are the stability properties. The

relation M D M.%c/ can be considered to represent a sequence of equilibrium

models with the parameter %c. Figure 38.3 shows a schematic overview of the

resulting M � R relation for cold catalysed matter from the regime of planets to

that of ultra-dense NS. Starting from planets, %c increases monotonically along the

curve (compare with typical values of %c indicated in Fig. 38.3). There are extrema

of R which may be interesting in other connections but are not important for the

sequence M.%c). However, one also encounters extrema of M (open circles). The

most important are Mmin and Mmax for NS, as well as the maximum M for white

dwarfs. These are critical points at which a detailed stability analysis shows that the

stability of the equilibrium models changes. The stable parts of the curve are those

with dM=d%c > 0, i.e. the branch of NS with Mmin < M < Mmax (and the white-

dwarf and planetary branch with M < maximum mass for white dwarfs). When

further increasing %c beyond the point at whichM D Mmax there follows an infinite

number of maxima and minima of M . Correspondingly the curve R D R.M/

spirals into a limiting point, which is reached for %c ! 1. All of these branches

are in fact unstable. The stability analysis can also be made for general relativistic

configurations. In the Newtonian limit one has the well-known result that an average

of the exponent 
ad of 
cr D 4=3 is equivalent to marginal stability (see Sect. 25.3.2),
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and in addition it can be shown (see Shapiro and Teukolsky 1983) that small effects

of general relativity (GM=Rc2 � 1) change the critical value from 4/3 to


cr D 4

3
C�

GM

Rc2
; (38.5)

where � is a positive quantity of the order of unity. Therefore general relativity

increases 
cr; making the star more unstable, since stability requires N
ad > 
cr. For

M D 1Mˇ, R D 10 km the correction term in (38.5) is about 0.15, i.e. far from

being negligible. 
cr can be raised well above 5/3 (even above 2 for certain models

nearMmax/ such that all but the stiffest equations of state would give instability. This

increase of 
cr is an important factor in determining the value ofMmax (together with

the lowering of N
ad).

A very stiff equation of state, for example, gives Mmax D 2:7Mˇ, with

R D 13:5 km and %c D 1:5 � 1015 g cm�3, while a softer one yields Mmax D 2Mˇ,

with R D 9 km and %c D 3:3� 1015 g cm�3. At present there is no equation of state

that can be considered realistic and that would give Mmax well above 3Mˇ. This

includes calculations that take into account general relativity.

The model is also marginally stable at the minimum massMmin, where the curve

in Fig. 38.3 begins leading to the white dwarfs. This instability is essentially caused

by the lowering of 
 0 in connection with the neutron drip (see Sect. 38.1). We

have seen that the release of free neutrons from nuclei results in 
 0 . 4=3 in the

range % � 4 � 1011 : : : 7 � 1012 g cm�3. Typical models for the minimum mass of

stable neutron stars give Mmin � 0:09Mˇ, R � 160 km, %c � 1:5 � 1014 g cm�3.
The average density is, of course, much smaller .�1010 g cm�3/, and the averaged


ad becomes just equal to 
cr (which is here close to 4/3).

Let us dwell briefly on the meaning of the mass values quoted for NS. The stellar

mass M is here always the “gravitational mass”, which is the value measurable for

an outside observer [cf. the comments in Sect. 2.6 after (2.29)].M differs from the

proper mass M0 D Nm0, given by the total numberN of nucleons with a rest mass

m0, since in relativity, the total binding energy W of the configuration appears as a

mass �M D W=c2; such that

M D M0 C W

c2
D M0 C�M: (38.6)

In the Newtonian limit (for weak fields) we were used to identifying particularly

the internal energy Ei (from motion and interaction of particles) and the poten-

tial energy Eg in the gravitational field. Then for a static, stable configuration,

W D Ei C Eg < 0, since Eg < 0 and �Eg > Ei (In the Newtonian limit Eg

and Ei were related by the virial theorem, cf. Chap. 3.). Correspondingly we may

now say that the mass of a NS is increased by the internal energy and decreased by

the (negative) potential energy, and the latter term wins. ThereforeW < 0, and we

have a mass defect �M < 0. Depending on the precise model, j�M j can go up

to 10 : : : 25% of M near Mmax. Formally M is given as an integral over 4�r2%dr ,

where % is the total mass-energy density (%0 C u=c2/ and 4�r2dr is not the volume



506 38 Neutron Stars

element. This is rather given by dV D 4�r2 e�=2dr with e�=2 being a component of

the metric tensor (cf. Sect. 2.6). Then simply

�M � M �M0 D
Z R

0

.4�r2%dr � %0dV /

D
Z R

0

4�r2%

�
1 � e�=2

%0

%

�
dr: (38.7)

Here %0=% < 1, but e�=2 > 1, and the product of both is >1, such that �M < 0.

So if we find an NS with mass M , we know that it started off as a more massive

configuration. The mass defect j�M j was radiated away in the course of evolution

by photons, neutrinos, or gravitational radiation. In that sense the original Kelvin–

Helmholtz hypothesis that contraction supplies the radiated energy has turned out to

be correct. The mass defect reaches a maximum at M D Mmax and then decreases

again towards models with still larger %c:

The maximum mass for NS is scarcely influenced by rotation. Except for the

very few most rapidly spinning pulsars, centrifugal forces play practically no role

in NS, since the overwhelming gravitational forces dominate completely. This is at

least true for rigidly rotating NS stars. However, differential rotation may stabilize

neutron stars and will lead to higher maximum masses. In the case of simple

polytrope models, differential rotation can raiseMmax by up to 50 % (see Baumgarte

and Shapiro 2010, Chap. 14).

Now we turn to describe the stratification of matter inside an NS model. At

the very outer part there must be an atmosphere of “normal” non-degenerate

matter. Going inwards, we come to gradually larger densities and encounter all

characteristic changes of high-density matter as described in Sect. 38.1.

The atmosphere of an NS is very hot and incredibly compressed. Typical

temperatures are of the order of 106 K (see below). The extension is very small

owing to the high surface gravity g0 � 1:3 � 1014 cm s�2 (For comparison,

g0 D 2:7 � 104 cm s�2 for the Sun and � 108 cm s�2 for white dwarfs.). This

gives a pressure scale height of the order of 1 cm only. In the surface layers (say

% . 106 g cm�3/ the behaviour of the matter is still influenced by the temperature

and also by strong magnetic fields.

Not far below the surface, the densities will be in and above the range typical for

the interior of white dwarfs (&106 g cm�3/. As an example we discuss the model

for an NS of M D 1:4Mˇ (see Fig. 38.4), calculated by using an equation of

state of moderate stiffness which gives Mmax � 2Mˇ. The radius of the 1:4Mˇ
model is 10.6 km. Although there are newer models, the present one is still a good

representation of the typical structure of neutron stars.

Below the surface there is a solid crust .106 . % . 2:4 � 1014 g cm�3/ of

thickness �r � 0:9 km. The matter in the crust contains nuclei, which are mainly

Fe near the surface (cf. the equilibrium composition as a function of % described

in Sect. 37.2). These nuclei will form a lattice, thus minimizing the energy of

Coulomb interaction as in crystallized white dwarfs. The outer crust consists only of
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Fig. 38.4 Illustration of the interior structure of a neutron-star model with M D 1:4Mˇ calcu-

lated with an equation of state similar to the intermediate ones in Fig. 38.1. A few characteristic

values of the density (in g cm�3/ are indicated along the upper radius (After Pines 1980)

these nuclei plus a relativistically degenerate electron gas, though this changes over

a depth of �r � 0:3 km to where the neutron drip density %dr � 4 � 1011 g cm�3

is reached. In the subsequent inner crust (4 � 1011 . % . 2 � 1014 g cm�3/, a

liquid of free neutrons exists in addition to the nuclei (still arranged in a lattice,

and becoming increasingly neutron-rich) and the electrons. With decreasing r the

free neutrons become more and more abundant at the expense of the nuclei, and the

lattice disappears with the nuclei, until all nuclei are dissolved into homogeneous,

neutron-rich nuclear matter at % D %nuc � 2:4 � 1014 g cm�3, which therefore

defines the lower boundary of the solid crust, at a depth of 0.9 km. The equation of

state throughout the crust is relatively well known; this is the reason why our aged

neutron-star model is still valid.

Below the crust there is the interior neutron liquid .% & 2:4 � 1014 g cm�3/
consisting mainly of neutrons in equilibrium with a few protons, electrons, and

muons. All constituents are strongly degenerate and the hadrons are interacting by

nuclear forces. The neutrons will be superfluid, the protons superconductive. The

equation of state begins not to be well-known in this density regime, and from here

on the structure and composition of the inner core depends on the equation of state

used.

It is unclear whether there is finally a central solid core in which the neutrons

form a solid owing to their repulsive forces at small particle distances. The central

density of our model is %c � 1:3 � 1015 g cm�3. The inner core may also consist of

baryon condensates (��, K�), of a mixture hyperons and baryon resonances (˙ ,

�, � , �), or deconfined quark matter. We refer the reader to Fig. 10.1 in Weber

et al. (2009) for a graphical representation of various possibilities. In that figure, our

model would be one of the traditional neutron stars.

The superfluidity of the neutron and proton liquids and the solid parts (crust

and possible core) play a role in the attempts to explain the observed “glitches”
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of pulsars. These are sudden spin-ups, interrupting from time to time the normal,

regular spin-down (decrease of the rotation frequency ˝). There is a hypothesis

according to which a glitch is due originally to a “starquake”, decreasing suddenly

the moment of inertia Ic of the crust. Conservation of angular momentum requires

a corresponding increase of˝ . The relaxation to the normal state depends critically

on the coupling of the rotating crust and the rotating interior liquid (and possible

solid core). The charged components could be coupled magnetically, while the

superfluid matter may couple via vortices. This coupling is the basis of another

model of the glitches: the superfluid neutron liquid in the interior and in the inner

crust is considered to rotate with an angular velocity slightly different from that

of the lattice of nuclei in the crust. The coupling is provided by vortices in the

liquid and is thought to break down suddenly when the crust has been decelerated

sufficiently by the pulsar mechanism on the outside. The vortices can contain an

appreciable fraction of the star’s angular momentum, and their distortion induces

immediate changes of the observed rotation.

The thermal properties (except for the earliest stages) in principle follow once

the mechanical models are given. One can then calculate the thermal conductivity,

which, together with a given outward flux of energy, determines the T gradient

at any point. It turns out that like white dwarfs (Sect. 37.3) the NS have a nearly

isothermal interior because of the high thermal conductivity. Only in the outermost

layers does T drop, by typically a factor of 102, to the surface temperature.

Particularly in the first, hot phases, the cooling will be very rapid because of strong

neutrino losses.

In this chapter we have completely ignored the strong magnetic fields of neutron

stars. While they are of only minor importance for the structure and the maximum

mass, they are crucial for many phenomena which allow the observation of neutron

stars. Most notably this is the pulsar phenomenon, which is due to the emission

of synchrotron radiation along the axis of the magnetic dipole, being inclined with

respect to the rotation axis. The typical field strength of pulsar magnetic fields are

of order 1011–1013 G. Some NS possess even stronger magnetic fields, up to 1015 G,

which is the highest known level in the universe. They are called magnetars and are

the source for the soft gamma repeaters (Thompson and Duncan 1995), a class of

gamma-ray bursts that exceed the Eddington luminosity by far, but are characterized

by a comparably soft gamma spectrum. In a magnetar, the decaying magnetic field

is the source of free energy (rather than rotation, as in pulsars). As we said at the

beginning, everything is extreme in neutron stars.



Chapter 39

Black Holes

Black holes (BH) represent the ultimate degree of compactness to which a stellar

configuration can evolve. Having already called the neutron star a strange object,

one cannot help labelling BH as weird. From the many fascinating aspects that are

accessible via the full mathematical procedure (cf. Misner et al. 1973; Shapiro and

Teukolsky 1983; Chandrasekhar 1983) we will indicate only a few points, showing

that this is really a final stage of evolution, not just another late phase. We limit the

description to non-rotating BH without charge.

The theoretical description to be applied is that of general relativity (see, e.g.,

Landau and Lifshitz 1976, vol. 2). We consider the gravitational field surrounding

a very condensed mass concentration M with spherical symmetry. The vacuum

solution of Einstein’s field equations (2.24) for this case was found as early as

1916 by K. Schwarzschild. It gives the line element ds, i.e. the distance between

neighbouring events in 4-dimensional space–time as

ds2 D gijdx
idxj

D
�
1 � rs

r

�
c2dt2 �

�
1 � rs

r

��1
dr2 � r2d#2 � r2 sin2 #d'2

D
�
1 � rs

r

�
c2dt2 � d�2 ; (39.1)

where one has to sum from 0 to 3 over the indices i and j , and where the usual

spherical coordinates r; #; ' are taken as the spatial coordinates x1; x2; x3, and

x0 D ct . The critical parameter rs in (39.1) is the Schwarzschild radius

rs D 2GM

c2
; (39.2)

which has the value rs D 2:95 km for M D Mˇ: The second component of the

metric tensor gij , .1 � rs=r/
�1, becomes singular at r D rs; but one can show that

this is a non-physical singularity disappearing when other suitable coordinates are

used.

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
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The proper time � , as measured by an observer carrying a standard clock, is

related to the line element ds along his world line by

d� D 1

c
ds : (39.3)

For a stationary observer .dr D d# D d' D 0/ at infinity .r ! 1/ the proper

time �1 coincides with t according to (39.1). Consider two stationary observers,

one at r; #; ' and the other at infinity. Their proper times � and �1 are related to

each other by
d�

d�1
D
�
1 � rs

r

�1=2
: (39.4)

Suppose that the first of them operates a light source emitting signals at regular

intervals d� , for example, an atom emitting with the frequency �0 D 1=d� . The

other one receives the signals and measures the intervals in his own proper time as

d�1, i.e. he measures another frequency � D 1=d�1. The resulting red shift due to

the gravitational field is therefore

z � �0 � �

�
D �0

�
� 1 D d�1

d�
� 1 D

�
1 � rs

r

��1=2
� 1 ; (39.5)

which gives z ! 1 for r ! rs.

The metric components in (39.1) show that the 4-dimensional space–time

.x0; : : : ; x3/ is curved, and this holds also for the 3-dimensional space (x1; x2; x3/.

At the surface of a mass configuration of mass M and radius R, the Gaussian

curvatureK of position space can be written as

K D � GM

c2R3
D �1

2

rs

R

1

R2
: (39.6)

This is usually very small compared with the curvature R�2 of the 2-dimensional

surface. For example, �K � 2�10�6R�2 at the surface of the Sun. But one already

has �K � 0:15R�2 for a neutron star, and the two curvatures are comparable at the

surface of a BH with R D rs.

Consider a test particle small enough for the gravitational field not to be disturbed

which moves freely in the field from point A to B . Its world line in 4-dimensional

space–time is then a geodesic, i.e. the length sAB is an extremum. This is to say, any

infinitesimal variation does not change the length:

ısAB � ı

Z B

A

ds D 0 (39.7)

If the test particle moves locally with a velocity v over a spatial distance d� , then

the proper time interval d� will be the smaller, the larger v. It becomes [cf. (39.1)]

d� D ds D 0; for v D c ; (39.8)
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Fig. 39.1 Illustration of light

cones at different distances r

from the central singularity,

inside and outside the

Schwarzschild radius rs

i.e. for photons or other particles of zero rest mass: they move along null geodesics.

For material particles the requirement v < c of special relativity (which is locally

valid) means d�2 and ds2 > 0. Such separations are called time-like. World lines of

material particles must be time-like. Separations with ds2 < 0 (or d�2 < 0) would

require v > c; they are called space-like. For example, the distance between two

simultaneous events (dt D 0) is space-like.

The null geodesies (ds2 D 0), giving the propagation of photons, describe

hypercones in space–time which are called light cones. In order to also see their

properties near r D rs, we introduce a new time coordinate Nt given by

Nt D t C rs

c
ln

ˇ̌
ˇ̌ r
rs

� 1
ˇ̌
ˇ̌ ; (39.9)

which transforms (39.1) to

ds2 D
�
1 � rs

r

�
c2d Nt2 � 2

rs

r
c dr d Nt

�
�
1C rs

r

�
dr2 � r2d#2 � r2 sin2 #d'2 ; (39.10)

which is non-singular at r D rs. We consider only the radial boundaries of the light

cones, i.e. the path of radially (d# D d' D 0) emitted photons. Then (39.10) yields

for ds2 D 0, after division by c2dr2, the quadratic equation

�
1 � rs

r

��d Nt
dr

�2
� 2rs

cr

d Nt
dr

� 1

c2

�
1C rs

r

�
D 0 ; (39.11)

which has the solutions

�
d Nt
dr

�

1

D �1
c
;

�
d Nt
dr

�

2

D 1

c

1C rs=r

1 � rs=r
(39.12)

These derivatives are inclinations of the two radial boundaries of the light cone in

an r� Nt plane (see Fig. 39.1). The first always corresponds to an inward motion with

the same velocity c. The second derivative changes sign at r D rs, being positive

for r > rs, where photons can be emitted outwards (dr > 0). With decreasing

r , (d Nt=dr/2 becomes larger so that the light cone narrows and its axis turns to the

left in Fig. 39.1. At r D rs the light cone is such that no photon can be emitted to the



512 39 Black Holes

outside (dr > 0). This is the reason for calling a configuration with R D rs a “black

hole”, and for speaking of the Schwarzschild radius rs as the radius of a BH of mass

M . For r < rs both solutions (39.12) are negative and the whole light cone is turned

inwards. Therefore inside rs all radiation (together with all material particles, which

can move only inside the light cone) is drawn inexorably towards the centre. This

means also that no static solution (dr D d# D d' D 0) is possible inside rs, since

it would require a motion vertically upwards in Fig. 39.1, i.e. outside the light cone.

In order to describe the motion of a material particle, we consider all variables

to depend on the parameter � , the proper time, varying monotonically along the

world line: d� D ds=c. Dots denote derivatives with respect to � . For example,

Px˛ D dx˛=d� is the ˛ component of a 4-velocity. Introducing dx˛ D Px˛d� into

(39.1) gives the useful identity

c2 D gij Pxixj D c2
�
1 � rs

r

�
Pt2

�
�
1 � rs

r

��1
Pr2 � r2. P#2 C sin2# P'2/ : (39.13)

The condition that the world line be a geodesic means that the variation ıs D ı� D
0, which yields the Euler–Lagrange equations

d

d�

�
@L

@ Px˛

�
� @L

@x˛
D 0 ; (39.14)

with the Lagrangian L given by

2cL D Œgij Pxixj �1=2

D
�
c2
�
1 � rs

r

�
Pt2 �

�
1 � rs

r

��1
Pr2 � r2

�
P#2 C sin2# P'2

��1=2
: (39.15)

From (39.13) and (39.15) follows the valueL D 1=2. For x0 D ct , (39.14) becomes

simply

d

d�

h�
1 � rs

r

�
Pt
i

D 0 ;
�
1 � rs

r

�
Pt D constant � A : (39.16)

We confine ourselves to the discussion of a radial infall ( P# D P' D 0) starting at

� D 0 with zero velocity at the distance r0. Instead of also deriving the equation of

motion for x1 D r from (39.14), we simply introduce the second equation (39.16)

into (39.13) and solve it for Pr :

Pr D c
h
A2 � 1C rs

r

i1=2
: (39.17)
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For our purposes we set A2 � 1 D �rs=r0. According to (39.17) this means that the

particle starts with zero velocity at r D r0. The integration of (39.17) then yields

� D 1

2

r0

c

r
r0

rs

.sin �C �/ ; (39.18)

with the parameter � D arccos .2r=r0 � 1/, as can be verified by differentiation.

This function � D �.r/ is shown in Fig. 39.2 for r0 D 5rs. Again, nothing special

happens in the proper time when the particle reaches r D rs. The total proper time

for reaching r D 0 is

�0 D �

2

rs

c

�
r0

rs

�3=2
: (39.19)

For r0 D 10 rs and 5 rs we have �0 D 49:67 rs=c and 17:56 rs=c, respectively. These

are very short times indeed, since for M D Mˇ the characteristic time is only

rs=c D 9:84 � 10�6 s.

The motion in terms of the coordinate time t of an observer at infinity is

quite different. The relation between t and � is given by (39.16) as d�=dt D
.1 � rs=r/=A, which goes to zero when r ! rs. By this relation and (39.17) one

obtains a differential equation for t.r/, which is integrated to give

t

rs=c
D ln

ˇ̌
ˇ̌� C tg �=2

� � tg �=2

ˇ̌
ˇ̌C �

�
�C r0

2rs

.�C sin �/

�
; (39.20)

with � as in (39.18) and � D .r0=rs � 1/1=2. The curve t D t.r/ is also shown in

Fig. 39.2 for r0 D 5rs. The fact that the observer sees the � clock of the particle

slowing down completely for r ! rs has the result that t D t.r/ approaches r D rs

only asymptotically for t ! 1. Events inside r D rs are completely shielded for

the distant observer by the coordinate singularity at the Schwarzschild radius acting

as an “event horizon”.

These few considerations may suffice to illustrate some important properties of

configurations which collapse into a BH [Note that the Schwarzschild metric (39.1)

is a vacuum solution, which is not valid inside the mass configuration, but holds

from the surface outwards.].

As observed from the infalling surface (proper time �) the collapse proceeds

fairly rapidly and in particular quite smoothly through the Schwarzschild radius

r D rs. Once the surface is inside rs a static configuration is no longer possible, and

the final collapse into the central singularity within a very short time is unavoidable.

This is shown by the fact that material particles have world lines only inside the

local light cone, and this is open only towards r D 0 (even radiation falls to r D 0).

Note that it would not help to invoke an extreme pressure exerted by unknown

physical effects, since the pressure would also contribute to the gravitating energy.

The singularity at r D 0 is an essential one (as opposed to the mere coordinate

singularity at r D rs) with infinite gravity, though the physical conditions there are
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Fig. 39.2 The radial infall

into a black hole for a test

particle starting at a distance

5rs with zero velocity. The

motion is shown in terms of

the particle’s proper time � ,

and in terms of the coordinate

time t of an observer at

infinity

not yet clear. Quantum effects should be included and one can speculate whether

they might remove the singularity.

The collapse of a star will present itself quite differently for an astronomer who

is (we hope) very far away. In his coordinate time t he will see that the collapse

of the stellar surface slows down more and more, the closer it comes to rs. In fact

he will find that this critical point is not reached within finite time t ; for him the

collapsing surface seems to become stationary there. Of course, the approach of the

surface to rs strongly affects the light received by the distant observer. He receives

photons in ever increasing intervals and with ever decreasing energy, due to the red

shift z ! 1 according to (39.5). Thus the collapsing star will finally “go out” for

the distant observer. Only a strong gravitational field is left.

It should be mentioned that aside from the Schwarzschild solution for non-

rotating, uncharged BH, there exist solutions which describe a rotating BH (Kerr

metric) and a charged BH (Newman metric), the combination of these covering the

full generality of possible properties of a BH: it is fully defined by mass, angular

momentum, and charge. This surprising scantiness of properties left after the final

collapse was summarized by Wheeler: “a black hole has no hair”.

From the foregoing it is clear that black holes cannot be observed directly. How-

ever, they can be detected through their enormous influence on their surroundings.

For a long time, however, BHs remained a theoretical possibility without proof

of their reality. This has changed during the last few decades, and by now, their

existence in two completely different mass ranges has been confirmed.

The first type of BHs are of galactic scale, sit in the centre of many galaxies,

and have masses of 106 . MBH=Mˇ . 1010. They truly deserve the name

supermassive black holes. They are detected by the analysis of the dynamics of stars

in their vicinity. The overall rotation velocity (e.g. in the disks of spiral galaxies),
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or the velocity dispersion (in elliptical galaxies) allows to determine the total mass

interior to the galactocentric radius at which it is measured. With increasing spatial

resolution of the telescopes, most notably the Hubble Space Telescope, the central

mass could be restricted to smaller and smaller central regions, until finally only a

supermassive black hole could explain the dynamics. The determined masses agree

well with the estimates for the mass of the central engine in quasars and other active

galaxies, needed to power the energetic of these objects.

A particularly convincing case is the Seyfert galaxy NGC 4258, where

microwave emission from gas orbiting the centre has been observed. For such

long wavelengths the resolution is even higher and it was found that the maser

clouds orbit a central mass of forty million solar masses on orbits of only half a

light year! Note that the Schwarzschild radius of such a BH is 1:2� 1013 cm, which

is still only 10�5 of that distance. Nevertheless, no stellar cluster with that mass

could be accommodated in this volume.

Our own Milky Way is hosting a supermassive BH as well (Genzel et al. 2010).

From near-infrared observations of its centre, it was found that the radio source

Sgr A? coincides with a supermassive BH of about 3.6 million Mˇ. The proof

was brought about from accurate determinations of the position and movement of

a cluster of about 20 stars over a decade and longer (Eckart and Genzel 1996). As

before, the stars orbit with velocities of several hundred km/s around a mass of that

size which is occupying a volume with a radius smaller than 0.001 pc, and this

extremely high mass concentration can only be explained with a black hole.

The origin and growth of supermassive BHs is not understood, but we have good

models for the creation of the so-called stellar black holes. Their masses are in the

range 2:5 . MBH . 50, and they are thought to have been created either directly in

core collapse supernova explosions (see Chap. 36, and Fig. 34.10), or by the merging

of binary neutron stars. They have been detected by using the fact that in binary

systems mass from a companion may flow onto the black hole, and in doing so,

accumulates in an accretion disk because of the conservation of angular momentum.

Due to the extremely deep gravitational potential well around the BH, the energy of

the infalling material is so high that any dissipative process in the disk releases

X-ray photons. X-ray binary systems are therefore the ideal place to look for proof

of stellar BHs. The method is rather straightforward: one measures the orbital period

˘ , and the maximum line-of-sight velocityKcomp D v sin i of the visible companion

using the Doppler effect. The inclination angle is not known, but can be estimated

from other information or treated with a probability approach. These two quantities

are used to compute the so-called mass function

f .MBH; i / D
K3

comp˘

2�G
D MBH sin3 i

.1CMBH=Mcomp/2
; (39.21)

whereMcomp is the mass of the companion, which has to be estimated or determined

using other quantities, such as the spectral type. While there are obviously a number

of uncertainties in the determination of MBH from (39.21), there are enough X-ray
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Table 39.1 Some stellar black holes (as of 2008) in X-ray binaries

Object ˘ Spect.cl. Kcomp i MBH Mcomp

V1487 Aql 33:5 K–M III 140 70 10� 18 1:0� 1:4

V1334 Aql 13:08211 A3–7 I 58:2 4:3˙ 0:8 12:3˙ 3:3

V404 Cyg 6:4714 K0 III–V 208:5 6:08 10:06� 13:38 0:5� 0:8

Cyg X–1 5:59983 O9.7 Iab 74:9 0:244 14:8˙ 1:0 12� 27

LMC X–1 3:90917 O9–7 III 71:61 10:91˙ 1:54 31:79˙ 3:67

LS 5039 3:9060 ON6.5 V 25:2 0:0053 2:7� 5:0 20:0� 26:3

M33 X–7 3:453014 O7-8 III 108:9 0:777 15:65˙ 1:45 70:0˙ 6:9

V4641 Sgr 2:81730 B9 III 220:5 3:13 6:82� 7:42 2:92� 3:26

V1033 Sco 2:6219 F6 IV 215:5 2:73 6:03� 6:57 2:25� 2:75

BW Cir 2:54448 G0–5 III 279 7:34 > 7:83.50/ > 1:02.6/

LMC X–3 1:70479 B5 V 256:7 2:29 9:5� 13:6 3:0� 8:3

V381 Nor 1:5435 G8 IV–K3 II 349 6:86 8:36� 10:76 < 0:9

IC 10 X–1 1:455 WR 370 7:64 > 32:7˙ 2:6 35

IL Lup 1:116407 A2 V 129 0:25 8:45� 10:39 2:3� 3:2

V2107 Oph 0:521 K5 V 448 4:86 6:64� 8:30 > 0:3

GU Mus 0:432606 K3–4 V 408 3:01 6:47� 8:18 0:7� 1:7

V406 Vul 0:382 G5 570 7:4 7:6� 12:0

QZ Vul 0:344092 K3–6 V 519:9 5:01 7:15� 7:78 0:25� 0:41

V616 Mon 0:323016 K4 V 433 2:72 8:70� 12:86 0:48� 0:97

MM Vel 0:285206 K7–M0 V 475:4 3:17 3:64� 4:74 0:45� 0:75

V518 Per 0:212160 M4–5 V 378 1:19 3:66� 4:97 0:28� 1:55

KV UMa 0:169930 K7 V–M0 V 701 6:1 6:48� 7:19 0:22� 0:32

The orbital period˘ is in days, the maximumg line-of-sight velocityKcomp in km/s, the inclination

angle i in degrees, and masses in solar units

“Spect.Cl.” is the spectral class of the companion, Mcomp its mass

Errors in Kcomp and i have been omitted, but enter into MBH (collection courtesy of H. Ritter)

binary systems to allow a quite reliable analysis in some cases. The final argument

why these central masses must be BHs is that it must be a compact object (in contrast

to an ordinary star which should be visible) and that its mass is beyond the maximum

allowed mass for a neutron star (Fig. 38.1). In addition, from the energy of the X-ray

emission, and from the timescale of its variation one can deduce the geometric scale

of the hot accretion disk. This puts further constraints on possible objects. Up to

now, more than 20 BH masses have been determined (Table 39.1).

There are indications for intermediate-mass black holes (50 . MBH=Mˇ .

105), but both their existence and their origin are still a matter of discussion. They

may be created either by the merging of stellar black holes, or by the collision of

massive stars in massive stellar clusters. They have been postulated to explain ultra-

luminous X-ray sources. For further reading on BHs and the related physics we refer

to the textbook by Camenzind (2007).



Part IX

Pulsating Stars

Throughout this book we have repeatedly considered the stability of stellar layers.

A very important aspect of stellar stability is the occurrence of pulsations. Since

their periods are determined by the dynamical timescale they are much easier

to observe than evolutionary changes of stars, and the periods are very often

determined with high precision. Since the recognition that the brightness of Mira

(o Cet) and other stars is not constant, but varying (semi-)regularly, the interest

in stellar pulsations has constantly grown, because it was realized that we can

learn about the stellar interior and about the speed of stellar evolution from these

pulsations. It has culminated in the field of helioseismology, and more recently in

its generalization, asteroseismology.

In the following chapters we discuss only briefly the basic concepts of the

theory of stellar pulsations, which is essentially the problem of solving equations

that describe perturbations of a star from its hydrostatic equilibrium on dynamical

timescales. The whole field has become so extended and specialised that it requires a

separate textbook. We recommend the classical books by Unno et al. (1979) and Cox

(1980), but in particular the very recent one by Aerts et al. (2010).



Chapter 40

Adiabatic Spherical Pulsations

40.1 The Eigenvalue Problem

The functions P0.m/; r0.m/; and %0.m/ are supposed to belong to a solution of the

stellar-structure equations (10.1)–(10.4) for the case of complete equilibrium. Let

us assume that we perturb the hydrostatic equilibrium, say by compressing the star

slightly and releasing it again suddenly. It will expand and owing to inertia overshoot

the equilibrium state: the star starts to oscillate. The analogy to the oscillating piston

model (see Sect. 6.6) is obvious. More precisely we assume the initial displacement

of the mass elements to be only radially directed .d# D d' D 0/ and of constant

absolute value on concentric spheres. This leads to purely radial oscillations (or

radial pulsations) during which the star remains spherically symmetric all time. For

the perturbed variables at time t we write

P.m; t/ D P0.m/C P1.m; t/ D P0.m/
�
1C p.m/eiwt

�
;

r.m; t/ D r0.m/C r1.m; t/ D r0.m/
�
1C x.m/eiwt

�
;

%.m; t/ D %0.m/C %1.m; t/ D %0.m/
�
1C d.m/eiwt

�
; (40.1)

where the subscript 1 indicates the perturbations for which we have made a

separation ansatz with an exponential time dependence [as in (25.17)]. The relative

perturbations p; x; d are assumed to be � 1.

We now insert these expressions into the equation of motion (10.2), linearize, and

use the fact thatP0; r0 obey the hydrostatic equation (10.2). Then with g0 D Gm=r20
we obtain

@

@m
.P0p/ D .4g0 C r0!

2/
x

4�r20
: (40.2)
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Using (10.2) again for @P0=@m and the relation

@

@r0
D 4�r20%0

@

@m
; (40.3)

we find
P0

%0

@p

@r0
D !2r0x C g0.p C 4x/ : (40.4)

Quite similarly (40.1) introduced into (10.1) yields with (40.3)

r0
@x

@r0
D �3x � d : (40.5)

Note that the transformation (40.3) does not mean that we go back to an Eulerian

description. The partial derivative @=@t describes time variations at constant r0. But

since r0 D r0.m/ is given by the equilibrium solution, @=@t also refers to a fixed

value of m:

We know already that perturbations of hydrostatic equilibrium proceed on a

timescale �hydr � �adj. We therefore assume here that the oscillations are adiabatic,

which means that

p D 
add : (40.6)

This shows again the advantage of using Lagrangian variables: the adiabatic

condition has the simple form (40.6) only if p and d are considered functions of

m [or of r0 D r0.m/] and therefore give the variations in the co-moving frame. For

the sake of simplicity we now assume that 
ad is constant in space and time. From

(40.5) and (40.6) we obtain by differentiation with respect to r0

@x

@r0
C r0

@2x

@r20
D �3 @x

@r0
� 1


ad

@p

@r0
: (40.7)

Eliminating @p=@r0; p, and d from (40.4)–(40.7) gives

x00 C
�
4

r0
� %0g0

P0

�
x0 C %0


adP0

�
!2 C .4 � 3
ad/

g0

r0

�
x D 0 ; (40.8)

where a prime denotes a derivative with respect to r0.

This second-order differential equation describes the relative amplitude x.r0/ as

function of depth for an adiabatic oscillation of frequency !. In addition one has to

fulfil boundary conditions, one at the centre and one at the surface. At the centre the

coefficient of x0 in (40.8) is singular, while the coefficient of x remains regular since

g0 � m=r20 � r0. Because one has to demand that x is regular there, this gives the

central boundary condition x0 D 0.
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With a simple expansion into powers of r0 of the form x D a0 C a1r0 C
a2r

2
0C . . . , one finds that the regular solution starts from the centre outwards with

a1 D 0 and

a2 D � 1

10

%c


adPc

�
!2 C .4 � 3
ad/

4�

3
G%c

�
a0 ; (40.9)

where the subscript c indicates central values of the unperturbed solution.

For the surface the simple condition P1 � p P0 D 0 is often used. However, one

can find a slightly more realistic boundary condition. We simplify the atmosphere

by assuming its massma to be comprised in a thin layer at r D R.t/, which follows

the changingR during the oscillations and provides the outer boundary condition at

each moment by its weight. We neglect, however, its inertia. Then at the bottom of

the “atmosphere” we have

4�R2P � GmaM

R2
D 0 ; (40.10)

and in the equilibrium state we have

4�R20P0 D GmaM

R20
: (40.11)

Using this and (40.1), we find from (40.10) that after linearization

p C 4x D 0 : (40.12)

We can rewrite this condition in terms of x and x0. If we replace p in (40.12) by

(40.6) and then d by (40.5), the outer boundary condition at r0 D R0 becomes


adR0x
0 � .4 � 3
ad/x D 0: (40.13)

The interior boundary condition at r0 D 0 was

x0 D 0 (40.14)

If we multiply the differential equation (40.8) by r40P0, we can write it in the

form

.r40P0x
0/0 C r40%0


ad

�
!2 C .4� 3
ad/

g0

r0

�
x D 0 : (40.15)

Together with the (linear, homogeneous) boundary conditions (40.13) and (40.14)

this defines a classical Sturm–Liouville problem with all its consequences.
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From the theory of eigenvalue problems of the Sturm–Liouville type, a series of

theorems immediately follows that we shall here list without proofs (which can be

found in standard textbooks):

1. There is an infinite number of eigenvalues !2n.

2. The !2n are real and can be placed in the order !20 < !
2
1 < : : :, with !2n ! 1 for

n ! 1.

3. The eigenfunction x0 of the lowest eigenvalue !0 has no node in the interval

0 < r0 < R0(“fundamental”). For n > 0, the eigenfunction xn has n nodes in the

above interval (“nth overtone”).

4. The normalized eigenfunctions xn are complete and obey the orthogonality

relation Z R0

0

r40%0 xm xndr0 D ımn ; (40.16)

where ımn is the Kronecker symbol.

The eigenfunctions permit the investigation of the evolution in time of any

arbitrary initial perturbation described by xm D xm.r0/; Pxm D Pxm.r0/ at t D 0.

Indeed if one writes down the expansion of the initial perturbations in terms of the

eigenfunctions,

xm.r0/ D
1X

nD0
cnxn.r0/ ; Pxm.r0/ D

1X

nD0
dnxn.r0/ ; (40.17)

where the cn; dn are real, then

x.r0; t/ D Re

" 1X

nD0
.aneiwnt C bne

�iwnt /xn.r0/

#
;

Px.r0; t/ D Re

" 1X

nD0
iwn.aneiwnt � bne

�iwnt /xn.r0/

#
(40.18)

with complex coefficients an; bn; fulfil the time-dependent equation of motion

(40.15) with the initial conditions (40.17) at t D 0 if an, bn satisfy

an C bn D cn ; ReŒiwn.an � bn/� D dn: (40.19)

Now we come to the question of stability. Since the perturbations are assumed to

be adiabatic, it is dynamical stability we are asking for. We have seen that !2n is real,

so that if !2n > 0, then ˙!n is real, and the perturbations according to (40.1) are

purely oscillatory (with constant amplitude): the equilibrium is dynamically stable.

If !2n < 0 then ˙!n is purely imaginary, say ˙!n D ˙i� with real �. The general

time-dependent solution for this model is a sum of expressions of the form

Axne��t C Bxne�t ; (40.20)
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where A;B are complex constants. Hence at least one of the two terms describes an

amplitude growing exponentially in time. This term will necessarily show up in the

expansion (40.18) of an arbitrary perturbation and dominate after sufficient time:

the equilibrium is dynamically unstable.

The two regimes are separated by the case of marginal stability with !20 D 0,

which according to earlier considerations (Sect. 25.3.2) is expected to occur for


ad D 4=3. We now show that this in fact follows from the rather general formalism

used here. For simplicity let us assume that P0 ! 0 at the outer boundary.

Integration of (40.15) over the whole star for the fundamental mode (n D 0)

gives

�
r40P0x

0
0

�R0
0

C !20

ad

Z R0

0

r40%0x0dr0

C 4 � 3
ad


ad

Z R0

0

r30%0g0x0dr0 D 0 : (40.21)

The boundary term on the left vanishes and we find

!20 D .3
ad � 4/
R R0
0 r30%0g0x0dr0R R0
0 r40%0g0x0dr0

: (40.22)

Since x0, as eigenfunction of the fundamental, does not change sign in the interval,

we have sign !20 D sign.3
ad � 4/. Therefore 
ad > 4=3 gives !20 > 0, and the

equilibrium is dynamically stable, because all !2n > !02 for n > 0 (see above). If


ad < 4=3, then for the fundamental (and possibly for a finite number of overtones),

!2n < 0, and the equilibrium is dynamically unstable.

Here we have assumed that 
ad is constant throughout the stellar model, though

the main result is unchanged if 
ad varies; in order to guarantee dynamical stability,

then, a mean value of 
ad has to be > 4=3.

Of course, we could have carried through the whole procedure using m as

independent variable instead of r0. Then (40.4) and (40.5) would have had to be

replaced by the equivalent equations (25.19) and (25.20).

40.2 The Homogeneous Sphere

To illustrate the procedure of Sect. 40.1 we apply it to the simplest, but very

instructive, case of a gaseous sphere of constant density, where we have an easy

analytical access to the eigenvalues and eigenfunctions.
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If % is constant in space, then

r0 D
�
3m

4�%0

�1=3
; g0 D Gm

r20
D 4�

3
Gr0%0 ; (40.23)

and from integration of the equation of hydrostatic equilibrium (2.3) we find

P0.r0/ D 2�

3
G%20



R20 � r20

�
; (40.24)

where R0 is the surface radius in hydrostatic equilibrium.

If we introduce the dimensionless variable � D r0=R0 and define

QA WD 3!2

2�G%0
ad

C 2.4� 3
ad/


ad

; (40.25)

then instead of (40.8) we can write

d 2x

d�2
C
�
4

�
� 2�

1 � �2

�
dx

d�
C

QA
1 � �2

x D 0 : (40.26)

This differential equation has singularities at the centre and at the surface and we

look for solutions which are regular at both ends.

The simplest such solution of (40.26) is obvious: x D x0 D constant is an

eigenfunction for QA D 0. The corresponding eigenfrequency follows from (40.25):

!20 D 4�

3
G%0.3
ad � 4/ : (40.27)

This represents the fundamental, since the eigenfunction x D constant has no node.

The expression (40.27) for the eigenvalue follows immediately from (40.22) for

x0 D constant, %0 D constant. Note that (40.27) shows the famous period–density

relation for pulsating stars: !20=%0 D constant.

For the overtones we try polynomials in r0. Indeed if for the first overtone we

take x D 1 C b�2 with constant b, then (40.26) can be solved with b D �7=5 and
QA D 14. The corresponding eigenvalue is obtained from (40.25), (40.27) and we

have

!21 D !20

�
1C 7
ad

3
ad � 4

�
I x1 D 1 � 7

5
�2 : (40.28)

The eigenfunction has one node at � D .5=7/1=2, i.e. at r0 D 0:845R0. For


ad D 5=3 the ratio of the frequencies of first overtone and fundamental is

!1=!0 D 3:56.

One can now try higher polynomials with free coefficients in order to find the

higher overtones. But we leave this to the reader, the first three eigenfunctions being

illustrated in Fig. 40.1.
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Fig. 40.1 The first three

eigenfunctions for radial

adiabatic pulsations of the

homogeneous sphere

40.3 Pulsating Polytropes

Let us now investigate the (spherically symmetric) radial oscillations of polytropic

models of index n as discussed in Chap. 19. We therefore express the quantities of

the unperturbed model which appear in the coefficients of (40.8),

r0 ; %0g0=P0 ; %0=P0 ; %0g0=.P0r0/ ;

by the Lane–Emden function w.z/ and by its dimensionless argument z. From (19.9)

we have

g0 D @˚0

@r0
D A˚c

dw

d z
I A2 D 4�G

Œ.nC 1/K�n
.�˚c/

n�1 ; (40.29)

while (19.7) yields

%0 D
� �˚cw
.nC 1/K

�n
; (40.30)

the subscript c denoting central values in the unperturbed model. If we use the

polytropic relation (19.3), we find

%0

P0
D 1

K
%�1=n D �nC 1

˚cw
; (40.31)
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and we then have
g0%0

P0
D �AnC 1

w

dw

d z
(40.32)

and
g0

r0
D ˚cA

2

z

dw

d z
: (40.33)

If we replace r0 by z D Ar0, the oscillation equation (40.8) becomes

d 2x

d z2
C
�
4

z
C nC 1

w

dw

d z

�
dx

d z

C
�
˝2 � .4 � 3
ad/.nC 1/


ad

1

z

dw

d z

�
x

w
D 0 : (40.34)

Equation (40.34) is singular at the centre (z D 0) and at the surface (w D 0). ˝ is a

dimensionless frequency:

˝2 D nC 1


ad.�˚c/A2
!2 (40.35)

In (40.34) only 
ad, the polytropic index n, and the Lane–Emden function for

this index appear. Therefore the dimensionless eigenvalue˝2 obtained from (40.34)

depends only on n and 
ad, but not on other properties of the polytropic model, say

M or R. The relation (40.35) between˝ and ! can be expressed differently. Using

(40.30) for the centre .w D 1/ and (40.29) we have

!2 D 
ad.�˚c/A
2

nC 1
˝2 D 4�G
ad%c

nC 1
˝2 : (40.36)

Since for a given n the central density %c and the mean density N% of the whole

unperturbed model differ only by a constant factor, one finds from (40.36) w2 D
constant � N%, or with the period˘ D 2�=!

˘
p

N% D
�
.nC 1/�


adG˝2

� N%
%c

�

n

�1=2
: (40.37)

For a given mode, say the fundamental, the right-hand side depends only on the

polytropic index n and on 
ad. This is the famous period–density relation. It is also

approximately fulfilled for more realistic stellar models.

If one assumes for a ı Cephei star that M D 7Mˇ and R D 80Rˇ, its mean

density is � 2 � 10�5 g cm�3. If the period is 11d, then ˘. N%/1=2 � 0:049 (˘ in

days, N% in g cm�3). This constant gives a period of about 220 days for a supergiant

with N% D 5�10�8 g cm�3, while for a white dwarf (with N% � 106 g cm�3), it gives a

period of 4 s. Indeed the supergiant period is of the order of those observed for Mira

stars, while very short periods are observed for white dwarfs.

The dimensionless equation (40.34) depends on n and 
ad, where the polytropic

index n is a measure of the density concentration, say of %c= N%, while 
ad is a measure
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of the stiffness of the configuration. If 
ad D 4=3, then ˝ D 0 is an eigenvalue

and x D constant the corresponding eigenfunction, as can be seen from (40.34);

the model is then marginally stable and after compression does not go back to its

original size. The larger the 
ad, the better the stability, since the compressed model

will expand more violently after being released. This can be understood with the

help of the considerations in Sect. 25.3.2.

Numerical solutions of the eigenvalue problem show how variations in n and


ad modify the solutions. Because of the singularities of (40.34) at both ends of

the interval 0 < z < zn .zn is the value of z for which the Lane–Emden function

of index n vanishes) the numerical solution is not straightforward. The simplest

way is to choose a trial value ˝ D ˝� and to start two integrations with power

series regular at z D 0 and at z D zn. The outward and inward integrations are

continued to a common point somewhere, say at z� D zn=2. There the two solutions

will have neither the same value x.z�/ nor the same derivative .dx=d z/�. Since

the differential equation is linear and homogeneous, we can multiply one of the

solutions by a constant factor such that both get the same value at z�. But then they

probably still disagree in .dx=d z/�. Agreement in the derivatives can be achieved by

gradually improving˝ , carrying out new integrations, and so on. By such iterations

a solution for the whole interval can be obtained.

Whether by such a procedure one arrives at the fundamental or at an overtone

depends in general on the trial˝�. If it is near the fundamental, we will end up with

the fundamental eigenvalue and eigenfunction. In any case the number of nodes will

reveal which mode has been found.

Since (40.34) is linear and homogeneous, the solution may be multiplied by an

arbitrary constant factor, in which way we can normalize the solution such that at the

surface x.zn/ D 1. For the polytrope n D 3 the eigenfunctions of different modes

for 
ad D 5=3 are shown in Fig. 40.2 and the eigenfunction of the fundamental for

different values of 
ad is displayed in Fig. 40.3.

The variation of 
ad is indeed important. To see this, we assume an ideal

monatomic gas with radiation pressure as discussed in Chap. 13. From (13.7),

(13.12) and (13.15) we find after some algebra that


ad D 1

˛ � ırad

D 32� 24ˇ � 3ˇ2
24 � 21ˇ

: (40.38)

For the limit cases ˇ D 1 .Prad D 0/ and ˇ D 0 .Pgas D 0/ the adiabatic exponent


ad takes the values 5=3 and 4=3, respectively. We see that our assumption 
ad D
constant throughout the model holds only as long as ˇ D constant. Fortunately this

is the case for the polytrope n D 3, since 1 � ˇ � T 4=P and T � !;P � !nC1.
In (40.34) the radiation pressure only appears in the quantity

' WD �4 � 3
ad


ad

D 3 � 4


ad

: (40.39)

For vanishing and dominating radiation pressure, ' takes the values 0.6 and 0,

respectively.
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Fig. 40.2 Eigenfunctions for

radial adiabatic pulsations of

the polytrope n D 3 for

' D 0:6 (After

Schwarzschild 1941)

Fig. 40.3 The fundamental

eigenfunction for radial

adiabatic pulsations of the

polytrope n D 3 for different

values of '. Radiation

pressure diminishes the ratio

of the amplitude at the surface

to that of the centre. If the

radiation pressure dominates

the gas pressure completely

(' D 0) the relative

amplitude x is constant

Fundamental and overtone solutions of (40.34) for n D 3 and for different values

of ' have been found numerically by Schwarzschild (1941). For ' D 0:6 (
ad D
5=3) the (dimensionless) eigenfrequency for the fundamental and the first overtones

are ˝2
0 D 0:1367, ˝2

1 D 0:2509, ˝2
2 D 0:4209, ˝2

3 D 0:6420, ˝2
4 D 0:9117. The

corresponding eigenfunctions are shown in Fig. 40.2.

The influence of ˇ on the fundamental eigenfunction can be seen in Fig. 40.3.

With increasing radiation pressure (' decreasing) the relative amplitude x drops

less and less steeply from the surface to the centre. The ratio xsurface=xcentre is 22.4

for ' D 0:6 and 9.1 for ' D 0:4. In the limit ' ! 0 (pure radiation pressure)

x even becomes constant. Indeed, for 
ad D 4=3 and for the eigenvalue ˝ D 0,

x D constant is a solution as we know already.
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Non-adiabatic Spherical Pulsations

When a star oscillates, its mass elements will generally not change their properties

adiabatically. The outward-going heat flow, as well as the nuclear energy production,

is modulated by the rhythm of the pulsation, and both effects cause deviations from

adiabaticity. However, since the pulsation takes place on the hydrostatic timescale,

which is short compared to �KH, the deviations from adiabaticity should be small in

most parts of the stellar interior. In order to demonstrate the main effects of the non-

adiabatic terms on the equation of motion, we discuss them at first for the simple

piston model.

41.1 Vibrational Instability of the Piston Model

We go back to the description of Sect. 25.2.2. Equation (25.14) gives three eigen-

values � for non-adiabatic oscillations of the piston model. The adiabatic period

� D ˙�ad D ˙i!ad (with !2ad > 0) would be obtained for eP D eT D 0. For

small non-adiabatic terms eP and eT we now write � D �r ˙ �ad as in (25.15) and

assume that the real part is small, j�rj � !ad. Then, neglecting terms of the order

�3r ; �
2
r ; eP �r; eT �r and introducing 
ad instead of 5/3, we find from (25.14) that

h0u0

g0



3�2ad�r ˙ �3ad

�
� h0

g0
.eP C eT /�

2
ad C 
adu0.�r ˙ �ad/ � eT D 0: (41.1)

Since �ad has to obey the adiabatic equation [cf. (25.15)]

h0

g0
�2ad C 
ad D 0; (41.2)
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(41.1) becomes

2u0�r D radeT C eP ; (41.3)

where we have introduced rad WD .
ad � 1/=
ad.

We now assume "0 D �0 D 0, then eP D 0, eT D ��T0=m� [see (25.13)], and

we find that

2u0�r D �rad

�T0

m� : (41.4)

Therefore, since rad > 0, one has �r < 0, meaning that the oscillation is damped.

During each cycle heat leaves and enters the gas in the container by way of the leak,

kinetic energy of the piston is lost and added to the surroundings as heat.

Similarly in a star the flow of heat modulated by the oscillation can damp the

motion. Since the deviation from adiabaticity is more pronounced in the outer

regions, the damping time is determined by the Kelvin–Helmholtz timescale of

the outer layers. In his classic book, Eddington (1926) estimated that the damping

time of ı Cephei stars would be of the order of 8,000 years and concluded that there

must exist a mechanism which maintains their pulsations. He actually discussed two

possible mechanisms which can be easily demonstrated with the piston model.

The first is called the � mechanism, since here it is the modulated absorption of

radiation which can yield vibrational instability.

If for the sake of simplicity we assume that � D "0 D 0, then according to

(25.13) one has eP D �0F�P ; eT D �0F �T , and therefore (41.3) becomes

2u0�r D �0F.rad�T C �P /: (41.5)

The model is vibrationally unstable .�r > 0/ if (rad�T C �P / > 0. This means that

the instability occurs if during adiabatic compression .d lnP > 0/ the absorption

coefficient increases: d ln � D .rad�T C �P /d ln P > 0. Then in the compressed

state more energy is absorbed than in equilibrium and the ensuing expansion

is slightly enhanced. For analogous reasons the state of maximum expansion is

followed by an enhanced compression.

In stars the outgoing radiative flux can similarly cause an instability if the stellar

opacity increases/decreases during the phase of contraction/expansion. As we shall

see (Sect. 41.4), this is the mechanism which indeed drives the ı Cephei stars.

In the so-called "mechanism the possible cause for an instability is the modulated

nuclear energy generation. In order to discuss a simple case, we assume � D �0 D 0

and find from (41.3) with (25.13) that

2u0�r D "0.rad"T C "P /: (41.6)

This model is vibrationally unstable for any nuclear burning ("0 > 0), since all terms

on the right-hand side are > 0. For example, the CNO cycle has typically "T & 10,

"P D 1 while rad � 0:4.

In the two cases discussed above, the piston model in a certain sense mim-

ics the stability behaviour of different layers in a star. Since �KH � 1=!ad, the



41.2 The Quasi-adiabatic Approximation 531

non-adiabatic effects in a pulsating star are small, and as in the piston model one

can expect that the oscillations are almost adiabatic, as described in Chap. 40. But

the non-adiabatic effects will cause a small deviation of the eigenfrequency from the

adiabatic value. Indeed, since the temperature variations are different in different

regions of the star, these regions exchange an additional heat which–like the heat

flow through the leak–causes a damping (radiative damping). A destabilizing effect

on the star is caused by those regions where the opacity increases during contraction

(� mechanism) as well as those with a nuclear burning where " increases during

contraction (" mechanism).

41.2 The Quasi-adiabatic Approximation

In order to determine the vibrational stability behaviour of a star, one has to solve the

four ordinary differential equations (25.19)–(25.22) for the perturbations p, x, �, #

together with homogeneous boundary conditions at the centre and at the surface. In

addition to the “mechanical” boundary conditions (40.13) and (40.14) one has at the

centre

l0� D 0 at m D 0: (41.7)

As a rough outer boundary condition one can assume that at the surface the relation

L D 4�R2�T 4 holds throughout the oscillation period, yielding

l D 2x C 4#: (41.8)

This relation is not exactly true, since the photosphere (where T D Teff) does not

always belong to the same mass shell during the oscillation. With a more detailed

theory of the behaviour of the atmosphere during the oscillations one can replace

(41.8) by another, but also linear and homogeneous, outer boundary condition.

The homogeneous linear equations (25.19)–(25.22) and boundary conditions

(40.13), (40.14) and (41.7), (41.8) define an eigenvalue problem for the eigen-

value !.

Here we will restrict ourselves to a simplified treatment, the quasi-adiabatic

approximation. For the given unperturbed equilibrium model we first solve the

adiabatic problem described in Chap. 40, thereby obtaining a set of adiabatic

eigenvalues !
.n/

ad with the eigenfunctions p
.n/

ad ; x
.n/

ad ; #
.n/

ad D radp
.n/

ad , where the

upper index n labels the different eigenvalues. In the following we will drop n,

though keeping in mind that the procedure described here and in Sect. 41.3 can be

carried out for each of the adiabatic eigenvalues. Of course, the real oscillations

will not proceed exactly adiabatically, which, for example, is shown in luminosity

perturbations. To determine an approximation to the relative luminosity perturbation

� we differentiate #ad with respect to m and find from (25.22)

� D P0

radP
0
0

# 0
ad C 4xad � �Ppad C .4 � �T /#ad: (41.9)
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In this quasi-adiabatic approximation, therefore, the non-adiabatic effects

determining � are calculated from adiabatic eigenfunctions. The correct procedure

would require the use of non-adiabatic eigenfunctions on the right-hand side of

(41.9), while in a strictly adiabatic case we would expect � D �ad D 0. One can use

the non-adiabatic variation � of the local luminosity in order to estimate the change

of ! due to non-adiabatic effects.

For this, one assumes the star to be forced into a periodic oscillation. If non-

adiabatic processes are taken into account, periodicity can only be maintained if,

during each cycle, energy is added to or removed from the whole star. If energy has

to be added to maintain a periodic oscillation, the star is damped; if energy has to be

removed, it is excited. In order to determine the energy necessary for maintaining a

periodic pulsation one defines the energy integral.

41.3 The Energy Integral

Suppose we want to make a star undergo periodic radial pulsations. If it is

vibrationally unstable, then during each cycle a certain amount W of energy has to

be taken out to maintain periodicity. If the star is vibrationally stable, the energy

�W has to be fed into the star during each period to avoid a damping of the

amplitude. In both cases W is the energy to be taken out to overcome excitation

or damping. Therefore, if the star is left alone, W >0 gives amplitudes increasing

in time (excitation) while for W < 0 the oscillation is damped.

To determineW we consider a shell of mass dm which gains the energy dq=dt

per units of mass and time. The energy gained per unit mass per cycle is the integral

of (dq=dt/dt taken over one cycle. Therefore the energy

dW D dm

I
dq

dt
dt (41.10)

has to be taken out of the mass shell to maintain periodicity. If we replace dq=dt by

dq

dt
D �cos!t

d.l0�/

dm
; (41.11)

and if we integrate over all mass shells, we have

W D �
Z M

0

dm

I
cos !t

d.l0�/

dm
dt: (41.12)

It is obvious that this integral vanishes: in the linear approximation there is neither

damping nor excitation.
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However, owing to a trick invented by Eddington it is still possible to determine

the second-order quantity W with the help of solutions of the first-order theory.

Since in the adiabatic case the eigenvalues are real, the time dependence of x, p, # ,

and according to (41.9) that of �, can be expressed by the factor cos !t .

We first prove that

I
dq

dt
dt D

I
#
dq

dt
cos !t dt; (41.13)

up to second order. Indeed, since the specific entropy s is a state variable, the integral

of ds over one cycle vanishes exactly. We now write ds D dq=T . Since we use only

solutions of the adiabatic case, we can consider the variation of T as real and can

write T D T0.1 C #ad cos !t), which is correct in the first order. With the (real)

adiabatic solutions xad , pad, and #ad according to (41.9), � also is real, and therefore

dq=dt is real, too, as can be seen from (41.12). Therefore

0 D
I
ds

dt
dt D

I
1

T0
.1 � #ad cos !t/

dq

dt
dt

D 1

T0

I
dq

dt
� 1

T0

I
#ad cos !t

dq

dt
dt: (41.14)

This equation is exact in the second order. It therefore proves (41.13). Should the

integral on the left of (41.13) vanish in the first order, its value in the second order is

given by the integral on the right of (41.13), which does not vanish. We can therefore

write from (41.10) by using (41.11)

W D
Z M

0

dm

I
#ad cos !t

dq

dt
dt D �

Z M

0

dm

I
#ad

d.l0�/

dm
cos2 !t dt

D �
Z M

0

dm

I �
#ad�

dl0

dm
C l0#ad

d�

dm

�
cos2 !t dt: (41.15)

The time dependence of the real part is cos2 !t , which integrated over 2� gives

�=!. With dl0=dm D "0 we therefore obtain

W D ��
!

�Z M

0

#ad�"0 dmC
Z M

0

l0#ad

d�

dm
dm

�
: (41.16)

In fact we see that only second-order terms (� #ad� and � #add�=dm) appear in

the expression forW . We can now solve the adiabatic equations, insert the resulting

#ad, differentiate � given in (41.9), and determineW from (41.16).
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41.3.1 The � Mechanism

We consider here regions of the star in which no energy generation takes place

("0 D 0) and therefore in which l0 D constant. Since the adiabatic equations for the

determination of x, p, # are linear and homogeneous, the solutions are determined

only up to a common factor. We choose it here such that xad D 1 at the surface.

We further choose the initial point of time such that the maximal expansion of the

surface is at t D 0. Then the first equation of (25.17) can be written r D r0.1C xad

cos !t), and for x > 0 (expansion) the variations #ad and pad are certainly < 0

there. Since, for the fundamental, #ad.< 0/ does not change sign throughout the

star, one can immediately see from (41.16) that a region where � increases outwards

(d�=dm > 0) gives a positive contribution to W : such a region has an excitational

effect on the oscillation, while regions with d�=dm < 0 have a damping influence.

The last two terms on the right of (41.9) together with #ad D radpad can be

written as

4radpad � .�P C rad�T /pad: (41.17)

Note that the term in parenthesis is identical with a term we encountered in (41.5)

for the piston model. If for the sake of simplicity we assume �P , �T , rad to be

constant and observe that, for the fundamental, pad < 0 increases inwards, then

for �P C rad�T > 0 the term �.�P C rad�T /pad > 0 gives a contribution

that helps to increase � in an inward direction. This has a stabilizing effect. The

term 4radpad < 0 in (41.17) decreases with pad in an outward direction and has a

damping effect independently of �. This damping corresponds to the effect of the

leak in the piston model.

The � mechanism is responsible for several groups of variable stars. Before we

discuss its effect on real stars we shall first deal with the other mechanism that can

maintain stellar pulsations.

41.3.2 The " Mechanism

The terms in the energy integral discussed in Sect. 41.3.1 appear everywhere in a

star where radiative energy transport occurs. However, there, we have excluded

nuclear energy generation, which can also be modulated by the oscillations. To

investigate its influence we now concentrate on the terms which come from ".

If we put l0.d�/=dm equal to the perturbation of the energy generation rate

" W "0."Ppad C "T#ad/ D "0."P C rad"T /pad, we find from (41.16) that

W" D ��
!

�Z M

0

#ad�"0dmC
Z M

0

#ad"0."P C rad"T /pad dm

�

D ��
!

Z M

0

#adŒ�C ."P C rad"T /pad�"0 dm: (41.18)
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Here we again find the excitation mechanism working if "P C rad"T > 0, which

is already known to us from the piston model of Sect. 41.1. All terms in the integral

(41.18) contribute to the energy integral only in the very interior, where "0 ¤ 0.

Since the amplitudes of the eigenfunctions there are normally small compared to

their values in the outer regions, one often ignores the contribution of the energy

generation and instead of W computesW� D W �W" � W . We come back to the

case where W" becomes important in Sect. 41.5.

41.4 Stars Driven by the � Mechanism: The Instability Strip

If one has determined the adiabatic amplitudes for a given stellar model, one can

derive � from (41.9) and evaluate W according to (41.16). We shall first describe

the influence of different layers.

In the outer layers, where deviations from adiabaticity are biggest, the �

mechanism and the damping term 4radpad in (41.17) become important and the

sign of .�P C rad�T / determines whether the � mechanism acts to damp or to

excite. To illustrate this it is useful not only to plot on a lg P –1g T diagram

lines of constant opacity but also to indicate at each point the slope given by

rad D .d lgT=d lgP/ad as in Fig. 41.1. The � mechanism provides excitation if one

comes to higher opacities when going along the slope towards higher pressure. For

a monatomic gas one has rad D 0:4: However, ionization reduces rad appreciably

(see Fig. 14.1b), which according to Fig. 41.1 favours instability. This is easily seen

for a simple Kramers opacity with �P D 1 and �T D �4:5: then the decisive term

(�P C rad�T ) is �0:8 for rad D 0:4, while it is � 0 for rad � 0:222.

In the near-surface layers of a star with an effective temperature of about 5,000 K,

there are two regions where ionization, together with a suitable form of the function

� D �(P , T ), acts in the direction of instability. The outer one is quite close

to the surface, where hydrogen is partially ionized, followed immediately by the

first ionization of helium (see Fig. 14.1, which is plotted for the Sun). Below this

ionization zone, rad goes back to its standard value of 0.4. But still deeper another

region of excitation occurs caused by the second ionization of helium. This turns

out to be the region which contributes most to instability. In still deeper layers

the � mechanism has a damping effect, but their influence is very small, since the

oscillations become more adiabatic the deeper one penetrates into the star. For an

estimate of the right depth of the Hell ionization zone, see Cox (1967) and Sect. 27.7

of Cox and Giuli (1968).

In Fig. 41.2 the exciting and damping regions of the outer layers of a ı Cephei

star of 7Mˇ are shown. For a star right in the middle of the Cepheid strip the “local”

energy integral

w.m/ D �
Z M

m

dm

I
cos !t

d l0�

dm
dt (41.19)
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Fig. 41.1 Lines of constant opacity � in the lgP –lgT plane (all values in cgs). Four arrows are

shown that indicate the direction in which a mass element moves during adiabatic compression.

For the arrows labelled a, b, and d , the direction is given by rad D 0:4. In case a the arrow

points in the direction of increasing �, i.e. the � mechanism has a “driving” effect on pulsations. In

cases b and d the arrows point in the direction of decreasing �, indicating a “damping” (or almost

neutral) effect on pulsation. In case c the direction of the arrow is different from that of the other

ones, since rad is here reduced by the second ionization of helium. Because of this reduction, the

arrow points in the direction of increasing �, and this ionization region can contribute considerably

to the excitation of pulsations in Cepheids

is plotted as a function of depth in Fig. 41.3, where lg P has been used as a

measure of the depth. There one can see which regions excite the oscillations

(dw=d lgP > 0) and which have a damping effect (dw=d lg P < 0). According

to (41.12) !.0/ D W .

In order that excitation wins over damping it is necessary that the zones of

ionization, which provide the excitation, contain a sufficient part of the mass of

the star. This means that these zones have to be situated at suitable depths, and since

ionization is mainly a function of temperature, we can conclude that it is essentially

a question of the surface temperature that decides whether a star is vibrationally

stable or unstable via the � mechanism.

Let us compare stellar models of the same mass (say in the range 5–10Mˇ),

of roughly the same luminosity, and consider values for the effective temperature

which range from the main sequence to the Hayashi line. At the main sequence and

in some range to the right of it, the outer layers of the stars are too hot: hydrogen is

fully ionized far up into the atmosphere, and even the second ionization of helium is

almost complete up to the photosphere. Therefore the � mechanism due to ionization
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Fig. 41.2 An opacity surface (“� mountain”) for the outer layers of a star as in Fig. 17.6. But

this time the dependence with respect to P (in dyn cm�2/ and T (in K) is shown. The dotted line

corresponds to the stratification inside a Cepheid of 7Mˇ. The white areas of the “mountain”

indicate regions which excite the pulsation and the black ones those which damp it. The excitation

in the region of lg T � 4:6 is due to the second ionization of helium

Fig. 41.3 The “local” energy integral w.m/ (in arbitrary units) as defined in (41.19) for a star

of 7Mˇ and Teff D 5; 300K as a function of the unperturbed pressure P0 (in dyn cm�2). w.m/

increases in regions which excite the pulsation, and falls in those regions which damp the pulsation

(After Baker and Kippenhahn 1965)

as discussed in Sect. 41.3.1 does not provide much excitation. The main contribution

to W comes from the layers which are in the region of the lgP –lg T plane of

Fig. 41.1 where the � mechanism has a damping effect. Therefore the pulsation of

such hot stars is damped. But the smaller the effective temperature, i.e. the further

to the right in the HR diagram, the deeper inwards are the zones of partial ionization

of H and He. Then a higher percentage of the stellar matter lies in the regions of

excitation shown in Fig. 41.2. At effective temperatures below about 6,300 K, the
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ionization zones are located such that their excitation overcomes the damping of

the other layers: such stars start to pulsate with increasing amplitude. This critical

temperature, which decreases slightly with increasing luminosity, defines the left

(“blue”) border of an instability region in which W > 0. This border coincides

roughly with the left border of the strip in which the observed Cepheids are

located.

When considering models with still lower effective temperatures, one has to keep

in mind that (41.9) only holds in radiative regions. To determine the influence of

convective layers a theory of time-dependent convection is necessary. In particular

such a theory should tell us whether in a given convective layer the energy transport

is less or more efficient when the star is compressed. Since at present no reliable

time-dependent theory for convection is available, one has to realize that the energy

integralW � W� becomes unreliable if convection becomes important in the layers

where the � mechanism would be effective. Consequently predictions of the right

(“red”) border of the instability strip are not reliable.

Nevertheless, attempts have been made to determine the influence of convection,

by using some formulations of time-dependent mixing-length theory. For example,

Bono et al. (1999) computed non-adiabatic, non-linear pulsations of classical

Cepheid models, using the treatment of time-dependent convection described in

an earlier paper (Bono and Stellingwerf 1994) about RR Lyrae stars. They could

indeed determine a more realistic red edge of the instability strip than the one found

when only the radiative energy transport is considered. While for these classical

radial pulsators convection has a damping effect, convection can also contribute to

the excitation. This is in particular true for white dwarf pulsators, where convective

time scales can be much shorter than that of pulsation (see Dupret et al. 2008, and

Aerts et al. 2010, Sect. 3.7.3, for more on this subject).

In any case it is well established that there is an instability strip with a probable

width of a few 102 K, not too far from, and roughly parallel to, the Hayashi

line, extending through almost all of the HR diagram (cf. Figs. 31.4 and 33.11).

All stellar models evolving into this strip will become vibrationally unstable via

the � mechanism and start to pulsate. In order to predict that we can observe a

corresponding pulsating star, the passage through the strip has to be slow enough.

This is fulfilled for models of typically 5 : : : 10Mˇ, which during the phase

of helium burning loop away from and back to the Hayashi line, thereby passing

through the instability strip at least twice. These passages, in which models represent

the classical Cepheids, are discussed in detail in Sect. 31.3. Depending on M , the

passages occur at quite different luminosities: the largerM , the higherL. Using the

adiabatic approximation one can easily determine the periods of the fundamental

for models of very different L inside the instability strip. In this way one obtains

a theoretical period–luminosity relation that is in satisfying agreement with the

observed one. It is interesting to note that the passages through the instability strip

do not follow lines of R D constant. Since the radius and therefore the mean

density changes, the period–density relations predict a certain amount of change

(in both directions) of the period of a Cepheid. This period change, of the order of

seconds per year, has been determined from long-term monitoring of Cepheids and
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is in reasonable agreement with theoretical predictions (e.g. Pietrukowicz 2001, and

references therein).

Of much smaller mass are the helium-burning stars located on the horizontal

branches of the HR diagrams of globular clusters. Where these branches intersect the

downward continuation of the instability strip, at an effective temperature between

6,000 and 7,500 K, one finds the RR Lyrae stars (Sect. 33.7). Like the classical

Cepheids these are pulsating stars driven by the � mechanism. For a monograph

see Smith (1995).

Even further down in the HR diagram, in the region of the main sequence, the

instability strip is marked by another group of observed pulsating stars, the so-called

ı Scuti stars or dwarf Cepheids.

Above the location of the RR Lyrae stars in the HR diagram of globular

clusters one sometimes finds stars which lie in the instability strip and are therefore

pulsating: the BL Herculis and W Virginis stars (see footnote on page 414).

In contrast to the classical Cepheids, which belong to population I, these stars are

of population II (and are called Type II Cepheids). It is not surprising that they

do not obey the same period–luminosity relation as Cepheids. According to the

evolutionary considerations of Sect. 33.7 they are low-mass stars in an evolutionary

stage later than that of the horizontal branch. They obviously have lower masses than

the Cepheids, which have travelled more or less horizontally from the main sequence

into the instability strip. Let us assume that at the same point inside the instability

strip there are two stars, a population I star of, say, 7Mˇ and a population II star

of, say, 0:8Mˇ. The � mechanism will make both of them pulsate. Being at the

same point in the HR diagram, the two stars have the same radii. Therefore the

population II star has the lower mean density and according to the period–density

relation a longer period than the population I star, although their luminosities are

the same. Since the luminosity increases with the period, it follows that pulsating

population I stars have a higher luminosity than pulsating population II stars of the

same period. In the history of astronomy the clarification of this difference between

the two period–luminosity relations caused the revision of the cosmic distance scale

by W. Baade in 1944. This increase of the cosmic distance scale amounted to no

less than a factor of 2, which caused the comment “The Lord made the universe–but

Baade doubled it”.

Up to now we have based our considerations on a linear quasi-adiabatic

approximation. In the linear theory the amplitude of the solution is not determined

and the time dependence is given by almost sinusoidal oscillations with amplitudes

growing or decreasing very slowly in time. In reality a vibrationally unstable star

would start to oscillate with increasing amplitudes until the oscillations had grown

so much that they could not be described by a linear theory any more. Once the

non-linear terms in the equations have become important, they have the effect of

limiting the increase of amplitudes and causing a time dependence of the solutions

which differs considerably from sinusoidal behaviour. Indeed the light curves of

most of the observed pulsating stars have constant amplitude and are far from being

sinusoidal.
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Attempts have been made to reproduce the observed light curves of Cepheids

by solving the non-linear equations numerically with varied parameters. A special

goal was to determine the masses of Cepheids by comparing their observed light

curves with computed ones (see Christy 1975; Bono et al. 2000, and related work).

Such comparisons seem to indicate lower masses for Cepheids than expected from

evolution theory, but as we have seen in Sect. 31.3, overshooting and/or mass loss

help to solve this problem.

Besides the linearization of the equations, we have additionally simplified the

problem of pulsations by applying the quasi-adiabatic approximation. With some

more effort, however, one can also solve the full set of linear non-adiabatic

equations. These four equations demand four linear boundary conditions. If they are

properly chosen, one obtains one complex eigenvalue!. Since the time dependence

is given by exp(i!t), the imaginary part !I of ! determines vibrational stability.

The energy integral (41.12), computed with the function � obtained from (41.9),

is connected to !I when one is close to the adiabatic case (Baker and Kippenhahn

1962). In most cases the quasi-adiabatic approximation seems to be sufficient. If,

however, pure helium stars cross the instability strip, the oscillations are far from

being adiabatic, and therefore the quasi-adiabatic approximation becomes very

unreliable. This can become important, for instance, if the oscillations of stars of

the type R Coronae Borealis are being investigated (Weiss 1987).

As the �-mechanism depends on the detailed shape of the “opacity mountain”,

it is important to have accurate opacity data. Norman Simon in 1982 wrote a paper

entitled A plea for reaexamining heavy element opacities in stars (Simon 1982),

in which he showed that an increase in opacities by a factor of 2 and 3 in the

temperature region between 105 and 2 � 106 K would solve two long-standing

problems: the mismatch between predicted and observed period ratios for the

fundamental and first overtone pulsations of classical Cepheids (so-called “double

mode Cepheids”), and that between second overtone and fundamental for the “bump

Cepheids”. He suggested that the opacities of metals were underestimated in the

then existing opacity tables. As a consequence new Rosseland mean opacities were

computed (which we discussed in Sect. 17.8), and indeed the problem was solved

(Moskalik et al. 1992)! Additionally, the long-sought excitation mechanism for

the so-called ˇ Cepheids (pulsating main-sequence stars of 7–10Mˇ and spectral

type B) was found (Moskalik and Dziembowski 1992; Kiriakidis et al. 1992): as the

reason the bump around lgT � 5:3 (see Fig. 17.6) was identified, which is due to

absorption of photons by abundant metals such as C, N, Ne, and Fe. This “metal”

or “iron bump” was missing in earlier opacity tables. The new opacities, required in

order to understand stellar pulsations, had far-reaching consequences: they helped

to compute very accurate solar models as well as improved isochrones for globular

clusters.



41.5 Stars Driven by the " Mechanism 541

41.5 Stars Driven by the " Mechanism

In most stars the " mechanism discussed in Sects. 41.1 and 41.3.2 cannot overcome

the damping, the reason being that it only works in the central regions of the stars

where nuclear energy is released. But there the amplitudes of the oscillations are

usually very small compared to the amplitudes in the near-surface regions, which–

if the star is not in the instability strip–damp the oscillations by way of the �

mechanism.

Figure 40.3 shows that for polytropes for which the radiation pressure can

be neglected, the amplitude ratio xcentre=xsurface is small, while it increases with

decreasing ' until the ratio becomes 1 for ' D 0 (negligible gas pressure). Since

the integrand of the energy integral is quadratic in the amplitudes of the oscillations,

we can expect that the " mechanism becomes more important the larger the fraction

of the radiation pressure.

This is of importance at the upper end of the hydrogen main sequence

(Sect. 22.4), because for such stars, the ratio of radiation pressure to gas pressure

strongly increases with M . Numerical calculations with realistic stellar models

instead of polytropes indicate that the " mechanism makes the main-sequence

stars pulsate if their mass exceeds a critical value of about 60Mˇ (Schwarzschild

and Härm 1959); this value depends on the chemical composition. Baraffe et al.

(2001) found that metal-free (Pop. III) stars may even be as massive as a few

hundred Mˇ without losing substantial amounts of material during their main-

sequence lifetime. The reason is that these stars burn hydrogen at much higher

central temperatures, where the H-burning reactions have a lower dependency on

temperature (see Fig. 18.8), a fact which reduces "P C rad"T and thus stabilizes the

star.

Why, then, do we not see pulsating stars in the extension of the main sequence

towards higher luminosities? Non-linear pulsation calculations (Appenzeller 1970;

Ziebarth 1970) indicate that the amplitudes would grow until, with each cycle, a thin

mass shell is thrown into space. This would continue until the total mass is reduced

to the critical mass of, say, 60Mˇ. Then the pulsation would stop. However, the

growth rates of the pulsations are probably longer than the main-sequence lifetime.

It is therefore unclear whether the "-mechanism really sets an upper limit to the

mass range on the main sequence.

Similarly the onset of a vibrational instability due to the " mechanism may also

limit the helium main sequence towards largeM (see Sect. 23.1). The critical upper

mass for helium stars depends on the content of heavier elements and may lie

between 7 and 8Mˇ (Boury and Ledoux 1965).



Chapter 42

Non-radial Stellar Oscillations

We use spherical coordinates r; #; ' and describe the velocity of a mass element

by a vector v having the components vr ; v# ; v' . For the radial pulsations treated

in the foregoing sections, the velocity has only one non-vanishing component, vr ;

which depends only on r . This is so specialized a motion that one might wonder

why a star should prefer to oscillate this way at all. In fact it is easier to imagine the

occurrence of perturbations that are not spherically symmetric, for example, those

connected with turbulent motions or local temperature fluctuations. They can lead

to non-radial oscillations, i.e. oscillatory motions having in general non-vanishing

components vr ; v# ; v' , all of which can depend on r; # , and '. It is obvious that the

treatment of the more general non-radial oscillations is much more involved than

that of the radial case, but they certainly play a role in observed phenomena (see

Sect. 42.4). We will limit ourselves to indicating a few properties of the simplest

case: small (linear), adiabatic, poloidal-mode oscillations. A detailed monograph

about this subject, which is the basis of the field of asteroseismology, was written

by Aerts et al. (2010).

42.1 Perturbations of the Equilibrium Model

The unperturbed model (subscript 0) is assumed to be spherically symmetric, in

hydrostatic equilibrium (%0r˚0 C rP0 D 0) and at rest (velocity v0 D 0). We now

consider perturbations which shift the mass elements over very small distances. For

any mass element at r; #; ', the displacement relative to its equilibrium position is

described by the vector � with the components �r ; �# ; �' , which, in general, depend

on r; #; '; t . Owing to this displacement, such variables as pressure, density, or
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gravitational potential will change. This can be described either in a Lagrangian

form (changes inside the displaced element) denoted by

P D P0 CDP; % D %0 CD%; ˚ D ˚0 CD˚; v D d�=dt (42.1)

or as Eulerian perturbations (local changes), which we write as

P D P0 C P 0; % D %0 C %0; ˚ D ˚0 C˚ 0; v D @�=@t (42.2)

and which are preferred in the following. The linearized connection between the two

types of perturbations of any quantity q is

Dq D q0 C � � rq0 D q0 C �r
@q0

@r
: (42.3)

(The last equality holds since rq0 is a purely radial vector.) Together with �, all

perturbations are functions of r; #; '; and t:We have to perturb the Poisson equation

and the equations of motion and continuity.

The acceleration due to gravity,

g D �r˚; (42.4)

and its perturbations Dg or g0 are given by the potential ˚ . Poisson’s equation

(2.23), together with (42.2), yields after linearization

r2˚ 0 D 4�G%0: (42.5)

The equation of motion for the moving mass element is

%
dv

dt
D %g � rP: (42.6)

With (42.1) this gives the linearized equation

%0
d 2�

dt2
D g0D%C %0Dg � r.DP/; (42.7)

where the forces on the right-hand side are measured relative to equilibrium. From

(42.7) and (42.3), the Eulerian equation of motion follows:

%0
@2�

@t2
D �%0r˚ 0 � %0r˚0 � rP 0: (42.8)

On the right-hand side of this expression, the restoring force is represented by

three terms, the last of which is due to pressure variations, while the others are
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gravitational terms. The first stems from the changed gravitational acceleration and

is usually small compared with the second, which is essentially a buoyancy term.

The equation of continuity, @%=@t C r.%v/ D 0, after insertion of (42.1) and

linearization, takes the form

D%C %0r � � D 0; (42.9)

which together with (42.3) is transformed to

%0 C � � r%0 C %0r � � D 0: (42.10)

We do not have to consider the equations of energy and energy transfer, since we

assume the changes to be adiabatic. The condition for adiabaticity in Lagrangian

form is simply [cf. (40.6)]
DP

P0
D 
ad

D%

%0
; (42.11)

which is transformed by (42.3) to the Eulerian condition

P 0 C � � rP0 D P0

%0

ad.%

0 C � � r%0/: (42.12)

We shall see below that the equations derived for the perturbations constitute a

fourth-order system. So we need in addition four boundary conditions.

At the surface, we require continuity of the Lagrangian variation of r˚ through

the surface, and a vanishing pressure perturbation,DP D 0, such that no forces are

transmitted to the outside. These outer boundary conditions are then written as

�
@˚ 0

@r
C � � r˚0

�

in

D
�
@˚ 0

@r
C � � r˚0

�

out

; P 0 C � � rP0 D 0: (42.13)

At the centre, the perturbations are required to be regular, which also yields two

boundary conditions, say,

P 0 D 0; ˚ 0 D 0: (42.14)

42.2 Normal Modes and Dimensionless Variables

The perturbations are to be determined from (42.5), (42.8), (42.10) and (42.12)–

(42.14). Aside from the perturbations �; ˚ 0; P 0; %0, these equations contain only

quantities of the unperturbed equilibrium model, for which we now drop the

subscript 0.
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Fig. 42.1 Node lines of some spherical harmonics Y ml . Corresponding oscillations would show,

for example, outward motion in the shaded areas and inward motion in the other parts of the sphere

We specify the perturbations q.r; #; '; t) in the usual way, assuming that all of

them depend on the variables as factorized in the following separation ansatz:

q.r; #; '; t/ D Qq.r/Y ml .#; '/ei!t : (42.15)

The perturbations are supposed to vary on all concentric spheres like the well-known

spherical harmonics Y ml .#; ') of degree l and order m (see, for instance, Korn and

Korn 1968). In time they vary periodically with frequency !. The dependence on r

is comprised in the function Qq.r/: The Y ml are solutions of

@2Y ml
@#2

C ctg#
@Y ml
@#

C 1

sin2 #

@2Y ml
@'2

C l.l C 1/Y ml D 0; (42.16)

and can be written as

Y ml D K.l;m/Pm
l .cos#/ cos m'; (42.17)

where K is a coefficient depending on l and m, and Pm
l .x/ are the associated

Legendre functions. Degree and order are specified by choosing the integers

l > 0; m D �l; : : : ;Cl: (42.18)

A change of l; m changes the angular variation on concentric spheres. A few

examples are illustrated in Fig. 42.1. Generally speaking, the larger l , the more

node lines (Y D 0) are present, and the smaller are the enclosed areas in which

the matter moves in the same radial direction (e.g. outwards). For example, l D 2

is a quadrupole oscillation, l D 1 a dipole oscillation, and l D 0 the special case of

the earlier discussed radial pulsations.

We shall discuss here only perturbations of the form (42.15). The resulting

oscillations of that form are called poloidal modes. It should be mentioned that there

exists the additional class of toroidal modes, which do not have the form (42.15);

they are independent of time and have purely transverse displacements (without

radial components).
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In order to get an overview of the problem, it is convenient to introduce

dimensionless variables, for example,

�1 D 1

r
�r I �2 D 1

gr

�
P 0

%
C ˚ 0

�
I �3 D 1

gr
˚ 0 I �4 D 1

g

@˚ 0

@r
: (42.19)

Since they are proportional to P 0; %0; ˚ 0, we have according to (42.15)

�j D Q�j .r/Y ml .#; '/ei!t ; j D 1; 2; 3; 4: (42.20)

The density perturbation, which does not appear in (42.19), will always be replaced

by terms in P 0 (and then in �2 � �3) via (42.12).

The equation of motion (42.8), together with (42.19), becomes after some

algebra:

� !2

g
� D ŒW.�1 � �2 C �3/C .1 � U /�2�er � rr�2; (42.21)

where er is a unit vector in the r direction. The dimensionless quantities

U WD r

m

@m

@r
D 4�r3%

m
;

V WD � r

P

@P

@r
D g%r

P
; (42.22)

W WD r

%

@%

@r
� r

P
ad

@P

@r

are to be taken from the equilibrium model. Equation (42.21) is easily verified. Its

radial component will be treated later, while the tangential components

!2

g
�# D @�2

@#
;

!2

g
�' D 1

sin#

@�2

@'
(42.23)

are used immediately in the equation of continuity. But first we replace ! by a

dimensionless frequency � , setting

!2r

g
D C�2; C D

� r
R

�3 M
m
; �2 D !2

R3

GM
: (42.24)

This frequency is scaled by a time of the order of the hydrostatic adjustment time or

of the period of the radial fundamental.

When transforming the equation of continuity (42.10), we evaluate the term r ��
by using (42.23), introduce (42.20), and eliminate all derivatives of Y ml with respect
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to # and ' with the help of (42.16). Then all terms are proportional to Y ml exp(i!t),

which can thus be dropped. One finally obtains

r
@ Q�1
@r

D
�
3 � V


ad

�
Q�1 C

�
l.l C 1/

C�2
C V


ad

�
Q�2 � V


ad

Q�3: (42.25)

Similarly one finds from the radial component of the equation of motion (42.21)

r
@ Q�2
@r

D .W C C�2/ Q�1 C .1 � U �W / Q�2 CW Q�3: (42.26)

The next equation is simply obtained by differentiating the definition of �3 in (42.19)

with respect to r , which gives

r
@ Q�3
@r

D .1 � U / Q�3 C Q�4: (42.27)

In the Poisson equation (42.5), after elimination of %0 by (42.12), we introduce

(42.19) and again use (42.16), arriving at

r
@ Q�4
@r

D �UW Q�1 C UV


ad

Q�2 C
�
l.l C 1/� UV


ad

�
Q�3 � U Q�4: (42.28)

With (42.25)–(42.28) we have obtained four ordinary, linear differential equa-

tions with real coefficients (given by the equilibrium model) for the four dimen-

sionless variables Q�1 : : : ; Q�4. In addition there are four algebraic equations arising

from the boundary conditions. This constitutes an eigenvalue problem with the

eigenvalue �2.

Note that it is the assumption of adiabaticity which has reduced the problem to

4th order in the spatial variables. For the full non-adiabatic case one additionally

has to consider the perturbations of the temperature and of the energy-flux vector.

The perturbed energy equation contains first derivatives with respect to time, which

according to (42.15) give terms multiplied by i!. Therefore the equations become

complex and the non-adiabatic problem is of order 12 in real variables. On the other

hand, for l D 0, one obtains the adiabatic radial oscillations, for which the problem

is reduced to second order.

42.3 The Eigenspectra

For adiabatic non-radial oscillations we have obtained an eigenvalue problem of

4th order in the spatial variables and non-linear in the eigenvalue !2 (or the

dimensionless �2). The problem can be shown to be self-adjoint, so that the
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eigenfunctions are orthogonal to one another. They have been found to form a

complete set if complemented by the toroidal modes.

The eigenvalues obey an extremal principle. The self-adjointness assures that all

eigenvalues are real. This means that the motion is either purely periodic (!2 > 0,

! real: dynamical stability) or purely aperiodic (!2 < 0, ! imaginary: dynamical

instability).

Neither the equations (42.25)–(42.28) nor the boundary conditions contain

explicitly the orderm of the spherical harmonics. Therefore to each eigenvalue of a

given l correspond 2l C 1 solutions (for the different m values �l; : : : 0; : : : ;Cl).
This degeneracy can be removed, for example, by centrifugal or tidal forces.

The general discussion is very much complicated by the fact that the eigenvalue

� D �2 appears non-linearly in the set (42.25)–(42.28). In order to see the typical

properties of the eigenspectra, we use an approximation introduced by Cowling,

assuming that the perturbation of the gravitational potential can be neglected. We

then do not need (42.27), (42.28) and are left with a second-order problem. This

approximation becomes the better, the more the oscillation is limited to the outer

layers (e.g. high overtones of acoustic modes with sufficiently large l). The second-

order problem still contains terms proportional to �2 [from (42.26)] and terms

proportional to 1=�2 [from (42.25)]. In order to simplify this we consider two

asymptotic cases (�2 ! 1 and �2 ! 0), in both of which the problem becomes of

the classical Sturm–Liouville type.

For large �2 we neglect the terms proportional to 1=�2. The only coefficient

containing � then is �2=c2s , with the velocity of sound given by c2s D 
adP=%. This

problem has an infinite series of discrete eigenvalues�k D �2k , with an accumulation

point at infinity. Such oscillations are produced by acoustic waves propagating with

cs. They are dominated by pressure variations and are therefore called p modes. For

sufficiently simple stellar models, they are easily ordered as p1; p2; : : : ; pk where k

is the number of nodes of their eigenfunction �r between centre and surface. They

are analogous to the radial oscillations (l D 0), except for the dynamical stability:

while the radial fundamental is unstable for 
ad < 4=3, the p modes are all stable

under reasonable conditions.

For small �2 we neglect the terms proportional to �2. The only coefficient

containing � is now !2adl.l C 1/=.�2r2/, where !ad is the Brunt–Väisälä frequency

as introduced in Sect. 6.2. This problem has an infinite series of eigenvalues

�k D 1=�2k , with an accumulation point at � D 1, i.e. at �2 D 0. The motions are

dominated by gravitational forces and are therefore called g modes (again ordered

as g1; g2; : : : ; gk according to the number k of nodes).

The stability of the g modes depends essentially on W , defined in (42.23).

This quantity is connected with the problem of convective stability discussed in

Chap. 6. One can easily verify from (6.18) that the Brunt–Väisälä frequency of an

adiabatically oscillating mass element is given by

!2ad D �grW: (42.29)
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Fig. 42.2 Propagation

diagram for oscillations with

degree l D 2 in a polytropic

star with index n D 3. The

square of the dimensionless

frequency � is plotted against

the distance from the centre.

Propagation of acoustic and

gravity waves is possible in

the shaded regions A and G,

respectively. For the lowest

modes the eigenvalues

(broken lines) and the

positions of the nodes of the

eigenfunction �r (dots) are

indicated (After Smeyers

1984)

And rW > 0 is just the criterion (6.4) for convective instability against adiabatically

displaced elements. If in the whole star W < 0 (convective stability everywhere),

then all g modes are stable (�2 > 0; � real). Such modes are also called gC

modes and are produced by propagating gravity waves. If the star contains a

region where W > 0 (convective instability), then unstable g� modes also exist

.�2 < 0, � imaginary). So we see that convective stability (instability) coincides

with dynamical stability (instability) of non-radial g modes; the onset of convection

appears as the manifestation of unstable g modes.

The non-linearity in � D �2 of the full set (42.25)–(42.28) implies that the eigen-

spectrum of stars is a combination of the above-described partial spectra: it contains

high-frequency p modes as well as low-frequency g modes, which can be split up

into the stable gC and the unstable g�. Between the p and g modes of relatively

simple stars there is another one, called the f mode, since it has no node between

centre and surface (like the radial fundamental).

As mentioned above, the stable modes are produced by propagating waves. From

the appropriate dispersion relations with horizontal wave numbers Œl.l C 1/�1=2=r

one finds that for propagating acoustic waves ! � !0 WD 1
2
cs.d ln%=dr/, and for

propagating gravity waves ! � !ad, where at any place !0 > !ad. These conditions

define two main regions (G and A) of propagation inside a star: one in the deep

interior for gravity waves the other in the envelope for acoustic waves (see Fig. 42.2).

These regions act like cavities or resonators, inside which modes can be “trapped”.

At certain frequencies (the eigenvalues), the propagating waves produce standing

waves by reflections at the borders such that they come back in phase with

themselves. The simple polytropic model demonstrated in Fig. 42.2 is typical for
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Fig. 42.3 In this scheme the dots indicate the eigenvalues �2 (plotted as abscissa) for a few modes

of non-radial adiabatic oscillations with different orders l of the spherical harmonics (plotted as

ordinate). Eigenvalues for the same type of mode are connected by a solid line. Dot-dashed lines

give the connexion to the corresponding radial modes with l D 0 (p1 to the radial fundamental,

p2 to the first radial overtone, etc.). For l D 1 the f mode has �2 D 0 (no oscillatory motion, see

text)

the situation with homogeneous main-sequence stars. When during the evolution the

central concentration of the model increases and a chemical inhomogeneity is built

up, the maximum of the G region near the core increases far above the minimum

of the A region in the envelope. Then the g1 mode can move above the p1 mode,

etc. When they are close to each other, resonance effects provide that they exchange

their properties and avoid an exact coincidence of the eigenvalues (avoided level

crossing, as known, say, from quantum mechanics). So the eigenspectra can be

rather involved, particularly for evolved stars.

Figure 42.3 illustrates the eigenspectra for different values of l (degree of the

spherical harmonics) for the case of a rather simple star. The radial oscillations are

found at l D 0. For dipole oscillations (l D 1) the f mode must have � D 0, since

otherwise it would result in an oscillatory motion of the centre of gravity, which

is not possible without external forces. However, oscillations having nodes outside

the centre are possible for l D 1, since then, for example, the core always moves

in the opposite direction to the envelope such that the centre of gravity remains at

rest. For higher l values the eigenspectra are generally shifted to higher frequencies.

The connection between the different p modes and the radial modes as shown in the

figure is based on physical considerations, as well as on solutions of (42.25)–(42.28)

for continuously varying l (where of course only those for integer l have a physical

meaning).
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42.4 Stars Showing Non-radial Oscillations

When applying the above-described formalism to models of real stars, a basic

question is whether such oscillations in fact proceed adiabatically. Strictly speaking,

one would have to test the model for its vibrational stability and look for the

imaginary part of ! derived in a full non-adiabatic treatment. This is, however, so

cumbersome that one usually confines oneself to a quasi-adiabatic approximation,

similar to that described for the radial case in Chap. 41: the adiabatically calculated

eigenfunctions are used to determine an “energy integral”, describing the growth or

damping rate of the amplitude.

There is a variety of stars and stellar types that are known or suspected to undergo

non-radial oscillations. We shall briefly mention a few of them.

The best established group of non-radial oscillators are certain white dwarfs (cf.

Van Horn 1984), among them the ZZ Ceti variables, which are of type DA. They

exhibit periods typically between a few 102 and 103 s, often split up into close

pairs. These periods are certainly too long for radial oscillations of white dwarfs,

but can well be explained by gC modes. Rotation of the white dwarf splits them

up into oscillations with different order m. The corresponding gravity waves are

“trapped” in a superficial hydrogen layer which, according to its thickness, acts as a

resonator for certain modes. They are excited by the � mechanism in zones of partial

ionization. Other groups of oscillating white dwarfs, of type DB and very hot ones,

have also been found.

The ˇ Cephei stars, which are situated somewhat above the upper main-

sequence, are both radial and non-radial oscillators. Some of them also seem to show

the effect of rotational mode splitting. We already mentioned them in Sect. 41.4.

Non-radial oscillations are also found among the ı Scuti stars and some types of

supergiants.

The most prominent example of observed non-radial oscillations is our Sun

(compare the early work by Christensen-Dalsgaard 1984; Deubner and Gough

1984). Detailed spectral investigations of the solar surface have shown that, again

and again, areas roughly 105 km across start oscillating in phase for some time.

These oscillations are excited by the ongoing convective motions in the solar

envelope, and although they are damped, they are constantly reappearing. Their

lifetime is of order a few months. The first detected and best-known oscillations

have periods around 5 min. They represent standing acoustic waves trapped mainly

in a region from somewhere below the photosphere down into the upper convective

zone. Power spectra with ! plotted against the horizontal wave number show clearly

that the phenomena contain mode oscillations with very many modes (many degrees

l and radial orders k).

Meanwhile, thanks to constant monitoring of the solar surface by global net-

works of solar telescopes, continuous observations from the south pole during

the antarctic summer, and from space, have allowed to identify tens of thousand

different modes, with l being as high as 1,500. Rotational splitting due to rotation,

i.e. different m-modes, has been detected as well as possibly some g-modes.
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These and low-degree p-modes have allowed a detailed analysis of the solar

interior (known as helioseismology), of solar rotation, and more recently even

local helioseismology where subsurface motions in the convective envelope are

measured. Helioseismology has provided us with a detailed view into the solar

interior. In Sect. 29.4, we already presented those results of helioseismology of

relevance for the comparison with hydrostatic, spherically symmetric solar models.

But the richness of helioseismology extends far beyond this. We are already learning

about convective motions, magnetic fields, active regions, and more, thanks to the

analysis of non-radial oscillations.

In the future asteroseismology will allow similar views into the interior of other

stars. Non-radial oscillations have already been found in many main-sequence stars

(of which we mentioned a few classical classes above), but also in evolved stars,

even in red giants. Asteroseismology will offer a unique opportunity to test stellar

evolution theory.



Part X

Stellar Rotation

Rotation may influence the evolution of stars in two major aspects: it may, if

sufficiently fast, affect the internal structure through an effective reduction of

the gravitational pull towards the center. As a result, pressure and temperature

will be different throughout the star. Second, it leads to additional mass flows,

which may transport material between regions of stars that otherwise would not

be connected. In particular the latter effect leads to observable modification of the

surface composition of stars. This has led to a strong interest in rotation in stars.

So far, full three-dimensional models of rotating stars are not available, but one-

dimensional, simplified models do exist and seem to result in quite realistic models.

As in the case of stellar pulsations, the following chapters about rotating stars

provide only the basic concepts and some idealized cases. Maeder (2009) has written

a full textbook on all aspects of rotating stars, which reflects the large progress made

in this field, and covers the present sophisticated modelling.



Chapter 43

The Mechanics of Rotating Stellar Models

The theory of rotating bodies with constant densities (liquid bodies) has been

investigated thoroughly by McLaurin, Jacobi, Poincaré, and Karl Schwarzschild.

We first start with a summary of their results without deriving them.

Most of the results have been obtained for solid-body rotation, i.e. for constant

angular velocity ! of the self-gravitating liquid body. In this case the centrifugal

acceleration c has a potential, say c D �rV with V D �s2!2=2; where s is the

distance from the axis of rotation. If ˚ is the gravitational potential, then according

to the hydrostatic equation, the total potential � WD ˚ C V must be constant on the

surface. The main difficulty in determining the surface of a rotating liquid body lies

with the gravitational potential, which in turn depends on the form of the surface.

43.1 Uniformly Rotating Liquid Bodies

For sufficiently slow rotation with constant angular velocity, the rotating liquid

bodies are spheroids (i.e. axisymmetric ellipsoids) called McLaurin spheroids.

In order to examine the behaviour of rotating liquid masses, we define their

gravitational energyEg

Eg WD 1

2

Z
%˚ dV ; (43.1)

where ˚ is the gravitational potential vanishing at infinity and dV is the volume

element. The expression (43.1) is the generalization for non-spherical bodies of the

definition (3.3).

Indeed in the spherical case with

d˚

dr
D Gm

r2
; (43.2)

we have from (3.3)
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Eg D �G
Z R

0

m dm

r
D �1

2
G

Z R

0

d.m2/

dm

1

r
dm

D �1
2
G
M 2

R
� 1

2
G

Z R

0

m2dr

r2

D �1
2

GM 2

R
� 1

2

Z R

0

d˚

dr
m dr D 1

2

Z R

0

˚ dm ; (43.3)

in agreement with the definition (43.1) for the more general (non-spherical) case.

The kinetic energy

T WD 1

2

Z
v2 dm (43.4)

is supposed to contain only the energy due to the macroscopic rotational motion,

but not that due to the thermal motion of the molecules. Let us further define the

dimensionless quantity

� WD !2

2�G%
: (43.5)

It is of the order of the ratio of centrifugal acceleration to gravity at the equator and

is a measure of the “strength” of rotation.

We now describe some results on the equilibrium configurations and their

stability. The derivations and some details of the configurations can be found in

the classic book by Jeans (1928) and in that of Lyttleton (1953).

The shape of McLaurin spheroids is described by the eccentricity e of the

meridional cross section,

e2 D a2 � c2
a2

; (43.6)

where a, c are the major and the minor half axes of the meridional cross section.

A sequence of increasing e leads from the sphere (e D 0) to the plane parallel layer

(e D 1), and one can label each of these configurations by its value of �. But the

correspondence between e and � is not unique. For each value of � < 0:2247 there

exist two configurations with different values of e: For example, in the limit case

of zero rotation with � D 0, the sphere as well as the infinite plane parallel layer

are two possible equilibria, the latter of which obviously is not stable. Along the

series of increasing eccentricity e; neither � nor T is monotonic, but one can show

that the angular momentum and Eg vary monotonically. Furthermore, ! does not

vary monotonically with the total angular momentum: if we start with a liquid self-

gravitating sphere (e D 0) and feed in angular momentum, the angular velocity,

and with it the eccentricity, increases. But once the eccentricity exceeds the value of

0.9299, the angular velocity decreases again, even with further increasing angular

momentum. The reason for this is that the momentum of inertia increases faster than

the angular momentum, and therefore ! must decrease again.

But long before this, namely at e D 0:8127 or at � D 0:1868, the McLaurin

spheroids become unstable. At this point the sequence of configurations shows a
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Fig. 43.1 Sequences of the McLaurin and Jacobian equilibrium configurations of a rotating

incompressible fluid. In this schematic representation, each configuration is characterized by its

angular momentum and its value of .a�b/=c, where a, b, c are the three axes of an ellipsoid. Solid

lines indicate dynamically and secularly stable configurations, broken lines secularly unstable,

and dotted lines dynamically unstable models. The branches of pear-shaped configurations are

also indicated, although they cannot be plotted in a diagram with that ordinate. For more details

see Ledoux (1958)

bifurcation (Fig. 43.1): another branch of stable models occurs which have a quite

different shape. They are triaxial ellipsoids, the so-called Jacobi ellipsoids. Beyond

the point of bifurcation, a McLaurin spheroid is unstable, the Jacobi ellipsoid of

the same mass and angular momentum having a lower total (macroscopic kinetic

plus gravitational) energy. Therefore, if there is a mechanism like friction which

can use up macroscopic energy and transform it into heat, the spheroids become

ellipsoids. The transition takes place on the timescale of friction as defined in

Chap. 45. In analogy to the case of a blob of excess molecular weight (see Sect. 6.5)

in hydrostatic equilibrium with its surroundings, the motion is controlled by a

dissipative process (there heat flow, here friction). One therefore calls the instability

of the McLaurin spheroids also secular. Instead of the oblateness, one often uses

the ratio � WD T=jEgj, which reaches the value 0.1376 at the point of bifurcation.

Stability analysis shows that if � exceeds another critical value (of about 0.16), the

triaxial ellipsoids also become unstable and then assume a pear-shaped form (see

Fig. 43.1).

It should be noted that here we have interpreted sequences of varying dimension-

less parameters e, �, � as sequences of models with increasing angular momentum,

while mass and density were assumed to be constant. Models with the same

dimensionless parameters can also be obtained by a sequence of increasing density,

while mass and angular momentum are kept constant. In this way one can conclude

from the foregoing discussion that a freely rotating body (mass and angular

momentum constant) that contracts (density increasing) can start with slow rotation

as a McLaurin spheroid, and can then become triaxial and finally pear-shaped.

Indeed, before the Jacobi ellipsoids become long cigars they become dynamically

unstable. An ensuing fission may then split the body in two.
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However, one cannot use this scenario to explain the existence of binary stars,

since in stars the density increases towards the centre. Then solid-body rotation

has different consequences, as we will see in Sect. 43.2. Numerical calculations,

though, do show that rotating stars also become unstable against non-axisymmetric

perturbations when T=jEgj comes close to 0.14.

43.2 The Roche Model

Since the liquid-body approximation .% D constant) is extremely bad for stars, one

can go to the other extreme in which practically all gravitating mass is in the centre.

In Roche’s approximation one assumes that the gravitational potential˚ is the same

as if the total mass of the star were concentrated at the centre. Then ˚ is spherically

symmetric:

˚ D �GM
r :

(43.7)

For solid-body rotation, the centrifugal acceleration can again be derived from the

potential

V D �1
2
s2!2 ; (43.8)

where s is the distance from the axis of rotation. If z is the distance from the

equatorial plane, then r2 D s2 C z2, and the total potential is

� D ˚ C V D � GM

.s2 C z2/1=2
� 1

2
s2!2 : (43.9)

The acceleration �r� in the co-rotating frame is the sum of gravitational and

centrifugal accelerations. A set of surfaces � D constant is plotted in Fig. 43.2.

The advantage of the Roche approximation is that the gravitational field is given

independently of the rotation. Eccentricity does not affect gravity. In order to

investigate the rotating Roche configurations, we consider the surfaces of constant

total potential � :

GM

.s2 C z2/1=2
C !2s2

2
D constant D GM

rp
; (43.10)

where rp, the polar radius, is the distance from the centre to the point where the

surface intersects the axis of rotation (i.e. the value of z for s = 0). With the

abbreviations

a D 1

rp

; b D !2

2GM
; (43.11)

we find for the equipotential surfaces
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Fig. 43.2 The lines of

constant total potential � for

the Roche model in the

meridional plane. They are

labelled by their values of

rp=scr. The coordinates are

� D s=scr , � D z=scr . The

shaded area is inside the

critical surface

z2 D 1

.a � bs2/2
� s2 : (43.12)

In the equatorial plane z D 0, at the circle s D scr with

s3cr D GM

!2
; (43.13)

the gradient of � vanishes. The corresponding critical surface intersects the axis of

rotation at z D ˙2=3scr and separates closed surfaces from those going to infinity

(Fig. 43.2). In the equatorial plane z D 0, gravity dominates inside the critical circle,

while outside, the centrifugal acceleration dominates. Both compensate each other

exactly at the critical circle. Numerical integration for the volume inside the critical

surface gives

Vcr D 0:1804 � 4� s3cr : (43.14)

Let us now assume that a stellar model just fills its critical volume: N% D M=Vcr.

We redefine the dimensionless quantity � by

� WD !2

2�G N% ; (43.15)

which is of the order of centrifugal acceleration over gravity at the equator. The

model fills its critical volume if � D �cr D 0:36075, as can be obtained from the

condition of the balance of centrifugal and gravitational acceleration together with

(43.14) and (43.15). Rotating models which do not fill their critical volume have

� < �cr.

In order to see the rotational behaviour of the Roche model, let us start with very

slow rotation so that the stellar surface lies safely within the critical equipotential.
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If we speed up the rotation, the volume of the model star will grow, since

centrifugal forces “lift” the matter and therefore reduce the effective gravity. We first

ignore this effect, assuming that the stellar volume remains unchanged (in spite of

the speed-up). Then with increasing !, according to (43.13) and (43.14), the critical

surface will shrink and come closer to the surface of the model. Consequently the

model surface becomes more and more oblate until it coincides with the critical

surface. In reality the stellar volume will grow as the angular velocity speeds up and

the model will reach its critical stage even earlier.

A critically rotating star cannot hold the matter at the equator. What happens

if then the angular velocity increases even more? From a first glance at Fig. 43.2

one might expect that the matter can easily escape along equipotential surfaces into

infinity. However, one has to keep in mind that the equipotentials plotted there only

hold for solid-body rotation. If matter leaving the star at the equator were to be

forced, say, by magnetic fields, to co-rotate, it would indeed be swept into space.

But if there is no such mechanism, the matter would have to conserve its angular

momentum and remain in the neighbourhood of the star. If ! D constant, the

centrifugal acceleration (� s) dominates over gravity (� s�2/ for large values of

s. But in the case of constant specific angular momentum .! � s�2/, the centrifugal

acceleration .!2s � s�3/ drops more steeply with s than gravity.

We have here considered the case of a star with increasing angular velocity

and constant (or increasing) volume. A more realistic case would be that a slowly

rotating star contracts. If then its radius decreases, the angular velocity increases

like R�2 while its critical surface shrinks proportionally to scr � !�2=3 � R4=3.

The critical surface therefore shrinks faster than the star, which will become more

and more oblate until its surface is critical. Then the centrifugal force balances the

gravitational one at the equator. With further shrinking, the star loses mass, which

is left behind as a rotating disk in the equatorial plane. This is similar to Laplace’s

scenario of the pre-planetary nebula.

43.3 Slowly Rotating Polytropes

In a homogeneous gaseous sphere there is no density concentration towards the

centre, while for the Roche model, the assumed density concentration is too extreme

compared to that of real stars. Polytropes approximate real stars better, at least with

respect to their density distribution. For slowly rotating polytropes (small values of

�), equilibrium solutions have been found by solving ordinary differential equations

for solid-body rotation.

As in the case of the non-rotating polytropes (see Chap. 19), one has to solve

the Poisson equation for the gravitational potential. But since the centrifugal

acceleration according to (43.8) can be derived from the potential V , we combine

˚ and V to obtain the total potential � as in (43.9). Then instead of (19.7), we have

in the co-rotating frame
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% D
� ��
.nC 1/K

�n
; (43.16)

and since �˚ D 4�G%;�V D �2!2, we find

�� D 4�G% � 2!2 ; (43.17)

and with (43.16)

�� D 4�G

� ��
.nC 1/K

�n
� 2!2 : (43.18)

If we now replace r in the Laplace operator by the dimensionless variable y D Ar ,

where A is defined as in (19.9), we obtain for ! W ˚=˚c with the help of (43.16)

�y! D !n � !2

2�G%c

; (43.19)

with �y D A2�, where � is the Laplace operator. In spherical coordinates, for the

case of axial symmetry,

�y � 1

y2 sin#

�
@

@y

�
y2 sin#

@

@y

�
C @

@#

�
sin#

@

@y

��
: (43.20)

The last term on the right-hand side of (43.19) is a measure of the strength of

rotation. We therefore now define for polytropes

� WD !2

2�G%c

; (43.21)

and we can write (43.19) in the form

�y! D !n � � : (43.22)

This partial differential equation corresponds to the Emden equation (19.10), which

indeed is obtained for! ! 0. Equation (43.22) holds in the interior of the polytrope,

while outside, the solution has to obey the Laplace equation, which here is �y! D
0, and has to be regular at infinity. For � � 1 one can approximate the solution

!.y; #/ by an expansion in Legendre polynomials Li .#/ with even i W

! D !0.y/C �!1.y/C �!2.y/L2.cos#/C : : : ; (43.23)

where !0.y/ is the solution of the Lane–Emden equation. The perturbation of first

order in � is split into a spherically symmetric term and a non-spherical one, which

vanishes if averaged over a sphere. The terms of higher order in � are not explicitly

written down. If the expansion (43.23) is introduced into (43.22), then the terms

of the same dependence on # and of the same order in � give ordinary differential
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equations in y. Similarly the Laplace equation for the outside can be reduced to a

set of ordinary differential equations by the expansion (43.23).

Numerical calculations by Chandrasekhar (1933) show that the oblateness of the

surface defined by .requ � rpole/=requ is 3.75�, 5.79�, 9.82�, 41.81�, 468.07� for

the polytropes of index n D 1, 1.5, 2, 3, 4, respectively.



Chapter 44

The Thermodynamics of Rotating

Stellar Models

The theory of the structure of rotating stars becomes relatively simple if the

centrifugal acceleration can be derived from a potential V :

!2ses D �rV; (44.1)

where es is a unit vector perpendicular to the axis of rotation (pointing outwards)

and s is the distance from this axis. One can easily see that a sufficient and necessary

condition for the existence of such a potential is that in the system of cylindrical

coordinates s; '; z, the angular velocity depends on s only: @!=@z D @!=@' D 0,

i.e. ! is constant on cylinders. We call such an angular-velocity distribution (to

which the case of solid-body rotation also belongs) conservative.

44.1 Conservative Rotation

In this case the potential V is

V D �
Z s

0

!2s ds: (44.2)

We again combine gravitational and centrifugal potentials to form the total potential

� WD ˚ C V: (44.3)

If we now include centrifugal acceleration in the equation of hydrostatic equilibrium

[compare with (2.20)], we obtain

rP D �%r�: (44.4)
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Equation (44.4) indicates that the vectors rP and �r� are parallel. In other words,

the equipotential surfaces � = constant coincide with the surfaces of constant

pressure, which means that the pressure is a function of � W P D P.�/. It then

follows that % D �dP=d� is also a function of � only. If we now have an ideal

gas, then T=� D P=.%</ is a function of � . In a chemically homogeneous star,

therefore, T D T .�/, i.e. the temperature is constant on equipotential surfaces.

Since not T but T=� is constant on equipotentials, the temperature varies pro-

portionally to � on these surfaces if the chemical composition is not homogeneous.

We have already encountered this case in Sect. 6.5, where we dealt with a blob of

material with a higher molecular weight than that in the surroundings. In the blob

the temperature was higher.

Note that this is a consequence of hydrostatic equilibrium: even small deviations

from hydrostatic equilibrium can cause considerable temperature variations on

equipotential surfaces, which can be seen in the case with negligible rotation. Then

from (44.4) one can conclude that P; %; and T=� are constant on the equipotential

surfaces of the gravitational field, say, of the earth. We know that if we light a

match, the air on the horizontal equipotential planes intersecting the flame will not

have the high temperature of the fire. The reason is that with the flame a circulation

system is set up. With this motion, inertia terms disturb the equation of hydrostatic

equilibrium. Although they cause only small perturbations, the inertia terms are

sufficient to allow lower temperatures outside the flame.

In the following we discuss only the case of strict hydrostatic equilibrium for

a chemically homogeneous ideal gas and therefore have P D P.�/; % D %.�/,

T D T .�/.

Note that the coincidence of P and % surfaces only holds if the rotation is

conservative. Otherwise they are inclined to each other (see Sect. 45.2).

44.2 Von Zeipel’s Theorem

We now investigate radiative energy transport in a homogeneous, hydrostatic star

with conservative rotation. The equation for radiative transport (5.8) in vector form

F D �4ac
3�%

T 3rT; (44.5)

where F is the vector of the radiative energy flux. With T D T .�/ and with �r�

D geff, the effective gravitational acceleration consisting of gravitational and

centrifugal acceleration, one finds

F D �4ac
3�%

T 3
dT

d�
geff D �k.�/geff; (44.6)
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since also �.%; T / D �.�/. In the non-rotating case this equation is equivalent to

(5.9). We now look for the equation of energy conservation and restrict ourselves

to stationary states with complete equilibrium. Then, instead of (4.43), we have

from (44.6)

r � F D � dk

d�
.r�/2 � k.�/��

D � dk

d�
.r�/2 � k.�/

�
4�G% � 1

s

d.s2!2/

ds

�
D "%; (44.7)

where we have made use of�˚ D 4�G% and of (44.2) (� is the Laplace operator.).

One can easily see that this equation cannot be fulfilled. We consider a chemically

homogeneous star; then P; %; and T are constant on the equipotential surfaces � D
constant. Therefore the terms "% as well as 4�G%k.�/ are constant on equipotential

surfaces, but in general the remaining two terms on the left are not, and they do not

cancel each other. This can be easily seen in the case of solid-body rotation, for

which .s�1/d.s2w2/=ds is a constant, while .r�/2 always varies on equipotential

surfaces, the effective gravity at the equator being smaller than at the poles.

The fact that radiative transport and the simple equation of energy conservation

cannot be fulfilled simultaneously was first pointed out by Von Zeipel (1924) and

is known as von Zeipel’s theorem. The solution of the problem was independently

found by Eddington (1925) and Vogt (1925).

44.3 Meridional Circulation

What is to be expected if (44.7) cannot be fulfilled? Then there must be regions in the

star which would cool off, since radiation carries more energy out of a mass element

than is generated by thermonuclear reactions. In other regions the mass elements

would heat up. But cooling and heating cause buoyancy forces, and meridional

motions occur in addition to rotation. In order to maintain a stationary state as

assumed, one has to demand that meridional motions contribute to the energy

transport. They carry away energy from regions where radiation cannot transport

all the energy generated and they bring energy to regions which otherwise would

cool off.

In order to derive the velocity field of the circulation, we write the first law of

thermodynamics in the co-moving frame:

r � F D "%� %T
d�

dt
: (44.8)
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We here denote the specific entropy by � (instead of s) to avoid confusion with the

distance from the axis. With d� D dq=T , and with (4.18), one has

T
d�

dt
D cP

dT

dt
� ı

%

dP

dt
: (44.9)

If we replace the derivatives in the co-moving frame by those in a coordinate system

at rest with respect to the stellar centre, i.e. d=dt D @=@t C v � r , we find

r � F D "% � cP%
@T

@t
C ı

@P

@t
� vŒcP %rT � ırP �; (44.10)

and for thermal equilibrium

r � F D "% � cP%T v

�
1

T
rT � ı

cP%T
rP

�
: (44.11)

With rT D r�.dT=d�/ and rP D r�.dP=d�/, the usual abbreviation

r D d lnT=d lnP , and (4.21), we can write

r � F D "%� cP%T

P
.r � rad/.v � rP/: (44.12)

The components of the meridional velocity field have to fulfil this equation together

with the continuity equation, which in the stationary case becomes r � .%v/ D 0.

We can simplify (44.12) if we assume �, as defined in (43.5), to be small and

ignore higher-order terms in �. Since v is of first order in �, the last term in (44.12)

can be replaced by ŒcP %T .r � rad/=P �0rP0v, where the subscript 0 indicates the

values of the corresponding non-rotating model. Since rP0 D �%0g0 and g0 has

only a radial component given by �jg0j D �g0, we have, instead of (44.12),

r � F D "%C
�
cP%

2T

P
.r � rad/g

�

0

vr : (44.13)

Comparing the non-rotating case, we have now introduced a new unknown variable

vr , which in spherical coordinates r; '; # together with the velocity component in

the # direction has to fulfil the continuity equation

1

r2
@.%r2vr /

@r
C 1

r sin#

@.%v# sin#/

@#
D 0: (44.14)

Equations (44.13) and (44.14) are the necessary conditions for determining also the

velocity field.
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44.4 The Non-conservative Case

Above we have shown the existence of meridional circulation only for a conservative

angular-velocity distribution. We now discuss the situation in a non-conservative

case. For this we choose ! D !.r/, but restrict ourselves to slow rotation. The

equations to be solved are

rP D �%r˚ C c; (44.15)

r � F D "%C
�
cP%

2T

P
.r � rad/g

�

0

vr : (44.16)

F D �4ac
3�%

T 3rT; (44.17)

�˚ D 4�G%; (44.18)

where the functions %; "; � are assumed to be known functions of P and T . Without

rotation the solutions are spherically symmetric, but rotation produces deviations

from that symmetry. The centrifugal acceleration c appearing in (44.15) has the

components

cr D !2r sin2 # D 2

3
!2r.1 �L2/; (44.19)

c# D !2r sin# cos# D �1
3
!2r

@L2

@#
; (44.20)

where we have introduced the second Legendre polynomial L2.#/ D .3 cos2 # �
1/=2.

In order to solve the system (44.15)–(44.18), we split all the scalar functions into

a spherically symmetric part (subscript 0) and one which is proportional to L2.#/:

P.r; #/ D P0.r/C P2.r/L2.#/; T D T0 C T2L2; ˚ D ˚0 C˚2L2; (44.21)

with jP2j � P0; jT2j � T0. For the vectors F and v we write

Fr D Fr0.r/C Fr2.r/L2; F# D F#2.r/
dL2.#/

d#
;

vr D 0C vr2.r/L2.#/; v# D v#2.r/
dL2.#/

d#
; (44.22)

with jFr2j and jF#2j being small compared to jFr0j. It should be noted that in

this notation the quantities P0; T0; : : : are not identical with the corresponding

functions of the non-rotating star, since in the centrifugal acceleration there is also

a spherically symmetric component, as can be seen from (44.19).

We now ignore second-order effects and count the number of equations for

the four “spherical” functions P0; T0; ˚0 and Fr0 and for the five “non-spherical”
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functions P2; T2; ˚2; Fr2; and F#2. These are all variables appearing in (44.15)–

(44.18) together with (44.21) and (44.22), if for the moment we ignore circulation

(vr D 0). It is obvious that each of the two scalar equations (44.16) and (44.18)

gives two equations, a spherical one and a non-spherical one, though in the case of

the vector equations (44.15) and (44.17) it is different. We explain this in the case

of (44.15). The r component gives a “spherical” equation [compare (44.19)]

dP0

dr
D �%0

d˚0

dr
C 2

3
%0!

2r (44.23)

and a “non-spherical” one

dP2

dr
D �%0

d˚2

dr
� %2

d˚0

dr
� 2

3
%0!

2r; (44.24)

while the # component gives [compare (44.20)]

P2 D �%0˚2 C 1

3
%0!

2r: (44.25)

Therefore the vector equation (44.15) yields the “spherical” equation (44.23) and

two “non-spherical” equations (44.24) and (44.25). The same holds for the vector

equation (44.17). Altogether we have four equations for the four “spherical”

functions but six equations for the five “non-spherical” functions. Obviously with

vr D 0 the problem is overdetermined. In general it can only be solved if meridional

circulations are present; then the vr appearing in (44.16) is the sixth unknown “non-

spherical” variable and the problem is no longer overdetermined. If vr is known, the

continuity equation (44.14) together with (44.21) and (44.22) gives v# .

44.5 The Eddington–Sweet Timescale

To obtain an estimate of the velocity of the circulation, we restrict ourselves to slow

rotation and to the conservative case. The estimate for the non-conservative case is

more complicated, but the results are very similar. We also assume " D 0, which

holds for the outer layers. Therefore l D constant.

We now can split each function A.r; #/ of the model uniquely into two terms:

A.r; #/ D NA.�/C A�.r; #/; (44.26)

where NA.�/ is the mean value of A.r; #/ over the surface � = constant, while the

integral of A� over each � surface vanishes:

Z

�

A�.r; #/dS D 0; (44.27)
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where dS is the surface element of the � surface. Then according to (44.6), k.�/ D
NF= Ngeff, where F and geff are the absolute values of F and geff, and (44.7) can be

written as

r � F D � d

d�

 
NF
Ng

!
g2 �

NF
Ng

�
4�G% � 1

s

d

ds
.s2!2/

�
; (44.28)

where we have omitted the subscript eff in the symbols g and Ng. We now split the

terms of (44.28) according to (44.26). r � F has to be zero in the steady state in

regions where there is no nuclear energy generation (otherwise it has to be equal

to "%, a function which is also constant on � surfaces). But the term .r � F/�

can only be compensated by circulation. Indeed the circulation term in (44.13) is

ŒcP%T .r � rad/=P �rP0v. The integral of this term over equipotential surfaces

vanishes because of mass conservation, as does .r � F/�.

We now estimate .r � F/� for slow rotation and take NF= Ng from the non-rotating

model, an approximation which introduces only errors of order �2, since in the

expression for .r � F/� the function NF= Ng appears multiplied only by terms of

order �. Then
NF
Ng D L

4�Gm
; (44.29)

d

d�

 
NF
Ng

!
D d

dr

 
NF
Ng

!
dr

d�
D d

dr

�
L

4�Gm

�
1

g
D �L%

m

�
r2

Gm

�2
; (44.30)

and therefore

.r � F/� D �L%
m

�
r2

Gm

�2
.g2/� � L

4�Gm

�
1

s

d.s2!2/

ds

��
: (44.31)

Now (44.12) yields

ı% Ng
rad

.rad � r/vr D � L%

Ng2m.g
2/� � L

4�Gm

�
1

s

d.s2!2/

ds

��
; (44.32)

where in the circulation term we have made use of (4.21).

For angular velocities of the form !2 D c1 C c2=s
2 the expression in the last

bracket is constant and the last term vanishes for these special angular velocity

distributions which include solid-body rotation (c2 D 0). We first restrict ourselves

to these special rotation laws. As a rough estimate, we can say that .g2/�= Ng2 is

of the order of �. Indeed g�, the variation of g over an equipotential, is due to

the difference of centrifugal acceleration between equator and poles, and therefore

g�=g � �, and also .g2/�=g2 � �. We then find with .rad � r/=rad and ı of the

order of 1,

vr � L

Ngm� � LR2

GM 2
�; (44.33)
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where we have replaced m and g by their surface valuesM and GM/R2 (Replacing

them by some mean values over the star would not change the order of magnitude.).

The time it takes a mass element to move over the stellar radius, then, is the

circulation timescale �circ, first derived by Sweet (1950):

�circ � R

vr
� GM 2

LR

1

�
� �KH

�
; (44.34)

where we have made use of (3.19), ignoring a factor 2. For the Sun one has � �
10�5; �KH � 107 years, and therefore �circ � 1012 years, which exceeds the lifetime

of the Sun.

This estimate has been made ignoring the last term in (44.32). If ! is not of the

special form given above, the term in the bracket will be of the order of !2, and

since !� is constant on cylinders but not on equipotential surfaces, ! will be of the

order of N! and the term in question will be of the order of

L!2

4�GM
� L

4�R3
�; (44.35)

where we have replaced !2R=g D !2R3=.GM/ by �. We estimated that the first

term on the right of (44.32) is of the order of L%�=M . Therefore as long as we are

not too close to the surface we can replace % by the mean density N% D 3M=.4�R3/,

so that the two terms on the right of (44.32) are of the same order and our estimates

(44.33) and (44.34) also hold for rotation laws which are not of the special form

c1 C c2=s
2. But near the surface the first term on the right of (44.32) becomes small

owing to the factor %, and the second becomes the leading term. Then near the

surface, (44.33) has to be replaced by

vr � N%
%

LR2

GM 2
� � L

G%RM
�; (44.36)

where again we have neglected factors of the order of one. The circulation can

therefore become rather fast near the surface.

The same is true at the interfaces between radiative and convective regions where

r D rad, which we have excluded in our rough estimate of the left-hand side of

(44.32). At these singularities the circulation speed would become so large that its

inertia terms are important and (44.4) would no longer be valid.

Another more serious restriction of our estimates of vr is the assumption of a

certain time-independent angular-velocity distribution. If one starts, say, with ! D
constant, then circulation will occur, and by conservation of angular momentum, it

will immediately change the angular-velocity distribution, which in turn demands

another circulation pattern.

The “proof” of the existence of meridional circulation in the theory of first

order in � as given in Sect. 44.4 rested on counting the number of linear equations

and the number of variables. We showed that without circulation the problem is
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overdetermined. This, however, is only true if the linear equations are independent.

But if ! is considered as a free function, it can be chosen in such a way that the

equations become linearly dependent and in the first-order theory no circulation is

necessary to fulfil the equations. In the (unrealistic) case " D constant, � D constant,

the stellar-structure equations for radiative energy transport lead to a polytrope of

index n D 3. If " D constant, then l=m D constant and one has a very special

“standard model” as discussed in Sect. 19.5. It has been shown by Schwarzschild

(1942) that, for this model, solid-body rotation does not demand circulation in the

first-order theory. For other, more realistic stellar models, there are also angular-

velocity distributions for which there is no meridional circulation in the first-order

theory (Kippenhahn 1963).

The linear dependence of the equations can also be achieved if for a given

rotation law w, the molecular weight is considered a free function and chosen in

an appropriate way. We will come to this problem in the next section.

44.6 Meridional Circulation in Inhomogeneous Stars

We have already estimated that for the Sun that �circ=�nucl � 102. But for more

massive main-sequence stars the situation changes. According to (44.34)

�circ

�nucl

� �KH

�nucl

1

�
� M 1�˛

�
� M 0:4

�
; (44.37)

where we have assumed a mass-radius relation R � M ˛ and �KH � M 2=.RL/, as

can be derived from (3.19), and �nucl � M=L, and we have put ˛ D 0:6 for the upper

end of the main sequence (Sect. 22.1). Therefore, if we go from the Sun to higher

masses, say, to 20Mˇ, then the ratio �circ=�nucl (which for the Sun is about 1/100)

increases by a factor 3.3. Observations of rotating B stars show that � is larger by

a factor 105 than for the Sun. Therefore, �circ=�nucl drops below unity towards the

upper end of the main sequence, so that the circulation is rapid enough to mix

the star. As a consequence one should expect that the fuel is not only used up in

the central region and the star should remain chemically homogeneous. But then the

stars, while converting hydrogen into helium, should move in the HR diagram from

the main sequence straight towards the helium main sequence [compare (20.20) and

(20.21) for M D M 0]. But we know from observation that the stars leave the main

sequence moving towards the region of the red stars and not towards the region

of the (blue) helium main sequence. This indicates that they do not mix, and the

explanation was found by Mestel (1953). Before the circulation can transport the

material out of the burning region, the moving matter will have been enriched in

helium. It therefore has a higher molecular weight than the surrounding into which it

has been lifted. But then the effect discussed in connection with a blob of material of

higher molecular weight � in a gas of lower � becomes important (Sect. 6.4). Let us
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Fig. 44.1 Material of higher

molecular weight in the

central region of a rotating

star (grey area) under the

influence of meridional

circulation

assume that the circulation lifts helium-enriched material as indicated in Fig. 44.1.

Then, since in hydrostatic equilibrium T=� must be constant on � surfaces, the

lifted matter has a higher temperature than the matter on the same � surface which

is not lifted. There is no buoyancy force acting on the lifted matter, since the

higher molecular weight is compensated by the higher temperature. But as the lifted

material adjusts thermally, it sinks back. This additional motion (“� currents”) acts

against the circulation, and the star can only be mixed if circulation is sufficiently

fast. But even in rapidly rotating main-sequence stars, the circulation is not sufficient

to mix the helium formed during hydrogen burning. Obviously layers in which the

molecular weight increases in an inward direction cannot easily be penetrated by

meridional circulation. One therefore often speaks of � barriers.

Note that � barriers in which no circulation occurs are not in contradiction to

our “proof” of the existence of meridional circulation in rotating stars. According

to our considerations in Sect. 44.4, which also hold for inhomogeneous stars as long

as � is spherically symmetric, circulation would set in. But after a short time the

circulation has modified the � distribution, and the original spherically symmetric

function �.r/ has become distorted and may be of the form �0.r/ C �2.r/L2.#/.

Then by counting the equations and variables as was done in Sect. 44.4, we would

not find the problem to be overdetermined, since �2.r/ is an additional unknown

function. It can be determined instead of vr by the “non-spherical” equations.

The foregoing arguments do not apply to homogeneous layers in outer regions of

stars, where no nuclear processes have changed the molecular weight substantially.

Indeed, meridional circulation streams and other hydrodynamical matter flows due

to rotation do lead to surface abundance changes, in particular of CNO elements.

This is observed in massive stars and well explained by current models including

rotation (see Maeder 2009).



Chapter 45

The Angular-Velocity Distribution in Stars

Stars formed out of an interstellar cloud contain a certain amount of angular

momentum, which is distributed over the stellar mass. Suppose there were no

transport of angular momentum between the mass elements during the formation

and evolution of the stars; one would then have local conservation of angular

momentum,

d.s2!/

dt
� s2

@!

@t
C v � r .s2!/ D 0; (45.1)

where v is the large-scale velocity in the star. Then the angular velocity !.s; #/

would be determined by the angular momenta of the mass elements in the original

cloud. However, the motion of atoms, the flow of photons through matter, and

instabilities that cause small-scale motions can transport angular momentum (An

example of the last of these is the convective motion in regions of dynamical

instability.). We now discuss these transport mechanisms in detail.

45.1 Viscosity

Viscosity due to microscopic motion, like that of the molecules in a liquid, is given

by the viscosity coefficient

� � %`vth; (45.2)

where ` is the mean free path of the particles and vth their mean velocity. In an

ionized gas the viscosity is determined by the collisions between the ions. Therefore

their mean free path and their thermal velocities have to be inserted in (45.2), and

one normally obtains values for � which in cgs units are of the order of 1.

In order to see whether viscosity is important in a star, one has to estimate the

timescale required for viscosity to influence a given angular-velocity distribution.
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This can be done with the ' component of the Navier–Stokes equations of motion,

which for constant viscosity can be written in the form

%
@!

@t
D ��!; (45.3)

where� is the Laplace operator. This equation is of the form of the equation of heat

transfer (5.31). In analogy to (5.32), we can estimate the viscosity timescale:

�visc � d 2%

�
; (45.4)

where d is the characteristic length on which ! varies. If for d one takes the radius

of a star, say 1011 cm, then with % � 1 g cm�3, one finds �visc � 1022 s, a timescale

much longer than the cosmological time. In stars one can therefore neglect the

viscosity due to the collisions between the ions.

In a star, photons can also cause viscosity, since they transport momentum.

If they are absorbed after a mean free path `ph, they transfer their momentum to

the absorbing particle. A rough estimate of this radiative viscosity �rad is obtained

if in (45.2) % is replaced by the mass density of the radiation field %rad D aT 4=c2,

vth is replaced by c, and ` by `ph � 1=�%, the mean free path of a photon:

�rad � aT 4

c�%
: (45.5)

The characteristic timescale according to (45.4) is

�visc � d 2%

�
� d 2%2c�

aT 4
: (45.6)

With d D 1011 cm2, % D 1 g cm�3, � D 1 cm2 g�1, T D 107 K, we find the

characteristic time of radiative viscosity in a star to be 1018 s, again a timescale long

compared to the lifetime of a star. One therefore can neglect the effects of viscosity

not only caused by the atomic motion but also those caused by radiation: the stellar

gas moves like a frictionless fluid.

It should be noted that the radiation causes a kind of viscosity similar to that of

the atomic motion only in an isotropic radiation field. For a non-isotropic field the

radiative viscosity is not a scalar but a tensor.

The expression (45.2) for viscosity can also be used in convective regions, where

rising and falling mass elements not only transport energy as discussed in Chap. 7

but also momentum. In the picture of the mixing-length theory, one can consider

the convection elements as “particles” which are created at some place, move

one mixing length `m, and dissolve. The corresponding “turbulent viscosity” �t in

analogy to (45.2) is

�t � %`mvt; (45.7)
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where vt is the convective velocity. In the case of the convective envelope of the

Sun, we assume vt to be 1 % of the speed of sound (as indicated in Fig. 29.5c). With

`m � HP � 108 cm, % � 10�4 g cm�3, a sound velocity of vs � 2 � 106 cm s�1

corresponding to a temperature of 3�104 K, and with vt � 0:01vs � 2�104 cm s�1,
we find �t � 2 � 108 cgs and the corresponding timescale �visc � 5 � 109 s �
160 years! One can therefore assume that the angular-velocity distribution in the

convective zone of the Sun, for instance, has reached a steady state in which the

initial angular-momentum distribution is smeared out by viscosity.

However, the analogy between friction caused by molecules and that by convec-

tive blobs has its limits. While the statistical motion of molecules is isotropic to a

high degree, there is no reason to suppose that convection in a stellar convective

zone can be described by elements with isotropic random motion. Convection is

maintained in a star by the radially outgoing energy flux. The motion is caused by

buoyancy forces which are antiparallel to the (radial) gravity vector. One therefore

can expect that the exchange of momentum by the turbulent elements is different in

the radial direction from that in other directions. The viscosity is no longer isotropic,

i.e. it is a tensor.

The macroscopic behaviour of a fluid with anisotropic viscosity is peculiar. We

know that in the case of isotropic viscosity, a self-gravitating sphere which initially

starts out with differential rotation approaches solid-body rotation after a viscous

timescale. This is not true any more for non-isotropic viscosity (Biermann 1951).

One can expect that non-isotropic turbulent viscosity causes differential rotation

and should therefore not be surprised that the surface of the Sun does not rotate

uniformly.

In this connection it should be noted that in a large part of the solar convective

zone, the layers are adiabatic (with constant rad) and surfaces of constant pres-

sure and of constant density coincide (since d ln%=d lnP D constant). As in the

barotropic case any angular-velocity distribution for which ! varies on cylinders of

s D constant will cause dynamically driven meridional circulation which by itself

changes the angular-velocity distribution.

Helioseismology has allowed to determine the rotation profile of the Sun.

Schou et al. (1998) have demonstrated that the radiative interior of the Sun is

rotating with nearly constant angular velocity, while the convective envelope shows

differential rotation, which changes gradually with depth from the surface rotation.

At 30 ı latitude angular velocity is nearly constant with depth, while at higher

latitude, where the surface rotation velocity is about 20–30 % lower than at the

poles, it rises mainly near the bottom of the convective envelope, at a relative radius

of about r=Rˇ � 0:28.

45.2 Dynamical Stability

The behaviour of incompressible homogeneous rotating fluids has been thoroughly

investigated (see, e.g. Chandrasekhar 1981). But in many respects compressible

gases behave differently. For instance, pure rotation (without meridional motions)
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in the case % D constant can only take place if ! is constant on cylinders of

s D constant (compare Chap. 44). Otherwise the curl of the centrifugal acceleration

!2ses would not vanish. But in the case of pure rotation the equation of motion in

the meridional plane is
1

%
rP C r˚ D !2ses : (45.8)

As long as % D constant, the curl of the left-hand side vanishes. For @!=@z ¤ 0 one

has curl (!2ses/ ¤ 0. Then the meridional components of the equation of motion

can only be fulfilled if meridional motions occur, and with them additional terms

appear in (45.8). This is also the case if the equation of state is barotropic (as for

complete degeneracy), since for P D P.%/, the curl of .rP=%/ also vanishes. The

same holds if the equation of state is not barotropic, but if some other mechanism

ensures that the surfaces of constant pressure and constant density coincide. One

example is convection zones in their adiabatic regime. From the condition r D rad

(where rad is constant or is a function of P and T ) it follows that the surfaces

of constant pressure and density coincide. If the convective region is chemically

homogeneous, then the equation of state (say for an ideal gas) assures that also

the pressure and density surfaces coincide. Therefore r � .rP=%/ vanishes and

meridional flow occurs if @!=@z ¤ 0.

But in a rotating star the pressure and density surfaces are normally inclined:

r �
�
1

%
rP

�
D � 1

%2
r% � CrP ¤ 0: (45.9)

Here the right-hand side is obviously proportional to the sine of the angle of

inclination. The vector rP=% is no longer a gradient; it can therefore cancel the

non-conservative part of !2ses and (45.8) can be fulfilled without any meridional

velocity components.

The different behaviour of a compressible non-barotropic gas compared to that

of an incompressible fluid also affects the stability behaviour.

It is well known that the shear motion of fluids can become turbulent. Then

kinetic energy of the shear flow goes into the kinetic energy of the “turbulent”

elements. If friction is strong, it can prevent this transition.

In an incompressible viscous fluid, therefore, the Reynolds number Re decides

whether the flow is turbulent or laminar (Landau and Lifshitz 1987, vol. 6):

Re D %vd

�
; (45.10)

where v is a characteristic velocity difference and d is a characteristic length.

For high Reynolds numbers (say Re � 3; 000) kinetic energy of the differential

motion becomes kinetic energy of the turbulent elements and the energy which is

necessarily lost because of friction is small: the flow is turbulent. If, on the other
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hand, Re is small, much more energy would have to be used up to overcome the

friction of the turbulent elements than is available from the reservoir of differential

motion: the flow is laminar. For a rotating star with % � 1 g cm�3, d � R �
1011 cm, v � 105 cm s�1, and � � 1 cgs (molecular or radiative viscosity), we find

Re � 1016, which means that the flow should be highly turbulent.

But the stellar gas is not incompressible and in most cases not barotropic.

Therefore, for a transition from laminar to turbulent motion, the energy due to the

shear motion not only has to go into kinetic energy of the turbulent elements (and via

friction into heat) but also into work against the buoyancy forces. Another critical

dimensionless number, the Richardson number Ri, can be used to decide whether

shear motion becomes turbulent despite the stabilizing effect of buoyancy. In the

case of a plane parallel flow v.z/; it is defined by

Ri D g

HP

jrad � rj
.@v=@z/2

: (45.11)

One can show that Ri < 1=4 is a sufficient condition for stability of the laminar

motion. In the case of a layer in the deep interior of a star we may estimate j@v=@zj �
!R=R D !; jrad � rj � 1;HP � 109 cm; g � 105 cm s�2 and find that the

rotation is laminar as long as ! < 2 � 10�2 s�1 or the rotation period is longer than

five minutes. Only neutron stars rotate faster.

Equation (45.11) has been derived under the assumption that the turbulent

elements undergo adiabatic changes during their motion. This is not necessarily

always the case, not even in the very deep stellar interior. For the sake of simplicity

we discuss it in the plane parallel approximation. Let us define a characteristic

timescale for a turbulent element in the case of shear instability of a plane parallel

flow by �` D jd z=dvj. This timescale can be considered as the “lifetime” of the

element. If its excess velocity over the mean velocity of its origin is�v D `jdv=d zj,
where ` is its mean free path, then it takes the time �` to move over the distance `.

The motion will only be adiabatic if �` � �adj, where �adj is the thermal adjustment

time of the element. With (6.25) one finds as the condition for adiabatic changes of

the turbulent elements of diameter d (as assumed in the Richardson criterion),

1 � �`

�adj

�
ˇ̌
ˇ̌ d z

dv

ˇ̌
ˇ̌ 16acT

3

�%2cPd 2
: (45.12)

One can see that this condition is violated for very small shear (jdv=d zj ! 0)

as well as for small elements (d ! 0). Small elements always have time to adjust

thermally to their surroundings while they are moving. Then the stabilizing effect

of the temperature stratification disappears. The instability which then occurs for

small turbulent elements can become important. But one has to keep in mind

that extremely small turbulent elements cannot exist, since for them, even the low

molecular or radiative viscosity brakes their motion. One way of estimating the

lower limit would be to assume that the smallest elements are those for which

�` (which is normally short compared to the viscosity timescale of the elements)
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Fig. 45.1 Two tori of radii s1
and s2 are exchanged in order

to determine the work against

centrifugal forces

becomes comparable to �visc. This would mean that the critical size d of the turbulent

element is given by

d 2 �
ˇ̌
ˇ̌ d z

dv

ˇ̌
ˇ̌ �
%
; (45.13)

while for smaller elements, viscosity overcomes the instability. Since the thermal

adjustment time of turbulent elements is shorter than their lifetime, however, the

stabilizing effect of buoyancy is reduced and a flow can be turbulent even if

Ri < 1=4.

There are other dynamical instabilities which are typical of rotational motion.

If they occurred in a star, the flows would become turbulent and the turbulent

viscosity would immediately change the original angular-velocity distribution.

The simplest case of such an instability can be studied by the example of an

incompressible or barotropic liquid rotating, say, in a cylindrical container. The

angular velocity ! may depend on s only, making pure rotation possible (see

Sect. 45.3). As “mass elements,” we consider the matter within two neighbouring

thin tori as indicated in Fig. 45.1. Their main radii are s1 and s2 D s1 C ds.

Their thicknesses shall be such that their mass contents dm are equal. We now

try to exchange the masses of the two tori by expanding the smaller one and

contracting the other without changing their angular momentum and calculate the

work necessary to make the exchange against the centrifugal force. The kinetic

energy of a torus is E D !2s2dm=2, which for a given mass is a function of s:

If we expand (or contract) one of the rings, then conservation of angular momentum

demands ! � s�2 and therefore E � s�2. At their original position (s1 and s2),

the two tori shall have the energiesE1 andE2, respectively. Owing to the expansion

s1 ! s2, the energy of the first torus changes by an amount

dE1 D E1s
2
1

.s1 C ds/2
� E1 D �2E1ds

s1
C 3

E1ds
2

s21
� � � � ; (45.14)
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while for the contraction s2 ! s1 of the other one, we find

dE2 D 2
E2ds

s2
C 3

E2ds
2

s22
C � � � : (45.15)

Then the total energy required for the exchange of the two tori is

dE D dE1 C dE2 D 2

�
E2

s2
� E1

s1

�
ds C 6

E1ds
2

s21
C � � �

D 2
d

ds

�
E

s

�
ds2 C 6

E

s2
ds2 C � � � ; (45.16)

where in the last term of (45.15), we have replaced E2=s2 by E1=s1, which only

introduces third-order errors in ds=s1. In the last equation (45.16), E means, for

instance, a value between E1 and E2. With E=s D s!2dm=2, we find

dE D 2!2dm

�
d ln!

d ln s
C 2

�
ds2: (45.17)

Since dE is the energy which has to be supplied for the exchange, dE > 0 indicates

stability, while dE < 0 gives instability (energy is gained). We therefore find the

condition for stability,
d ln!

d ln s
> �2: (45.18)

This is the Rayleigh criterion, which we have derived here in a heuristic way.

It says that if the specific angular momentum s2! decreases with distance from

the axis of rotation, the flow will be turbulent. We have to keep in mind that it

has been derived by assuming axisymmetric perturbations only. Since additional

non-axisymmetric instabilities may exist, (45.18) is only a necessary condition for

stability. Experiments with rotating incompressible fluids between coaxial cylinders

indicate that the transition from laminar to turbulent flow occurs when the left-hand

side of (45.18) becomes equal to �2. But a liquid between a slowly rotating inner

cylinder and a very rapidly rotating outer one can become turbulent even though

condition (45.18) is fulfilled.

In the derivation of the Rayleigh criterion we have assumed that the gas is

incompressible or at least barotropic. But in all other cases buoyancy forces become

important and the work against them has to be taken into account. In the case of gas

rotating with ! D !.s/ and with gravity pointing towards the axis of rotation (as it

is in the equatorial plane of a star), instead of (45.18) one has as stability condition

1

s3
@s4!2

@s
� gs

@ lnP

@s
.r � rad/ > 0; (45.19)

where gs.< 0/ is the component of gravity in the s direction.
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If the second term on the left is neglected, the Rayleigh criterion is recovered.

Without rotation (45.19) gives the Schwarzschild criterion (6.13) for stability.

As in the case of the Rayleigh criterion the derivation of (45.19) assumes that

the exchange of toroidal mass elements takes place only in the s direction. If in

a star the directions of gravity and of exchange do not coincide, then the Solberg-

Høiland criterion decides whether the flow is stable or not. We introduce the specific

entropy � :

� D cP ln.%P�1=
ad /C constant: (45.20)

As long as the equipotential surfaces are not too far from being spherical we can

write approximately that

g � r� D jgj
HP

.rad � r/: (45.21)

With the specific angular momentum j D s2!, the Solberg–Høiland criterion

(Tassoul 1978; Zahn 1974) requires for stability

1

s2
@j 2

@s
� jgj
HP

cP .r � rad/ > 0; (45.22)

gz

�
@j 2

@s

@�

@z
� @j 2

@z

@�

@z

�
< 0; (45.23)

gz

@�

@z
> 0: (45.24)

All three conditions have to be fulfilled in order to obtain stability; otherwise, the

flow is unstable. They are necessary and sufficient for stability as long as only

axisymmetric perturbations are allowed. They are also necessary for stability if non-

axisymmetric perturbations are permitted.

One immediately sees that (45.22) is identical to (45.19) and gives stability for

exchange in the s direction. Condition (45.23) is fulfilled as long as j increases on

surfaces of � D constant on the way from the pole to the equator. Exchange on

such surfaces does not imply buoyancy forces, and therefore it reproduces our old

condition (45.18). Condition (45.24) says that the Schwarzschild criterion has to be

fulfilled for exchange in directions parallel to the axis of rotation in which there is

no centrifugal acceleration.

For the problem of dynamical stability in the more general case ! D !.z; s/, we

refer to Tassoul (1978) and Zahn (1974).

45.3 Secular Stability

We have seen that buoyancy forces can stabilize angular-velocity distributions

which otherwise are dynamically unstable. In the case of non-conservative rotation

of a barotropic fluid, there can be no hydrostatic equilibrium between centrifugal,
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gravitational, and pressure accelerations. Therefore circulation currents are

necessary to fulfil the equation of motion in the meridional plane. If buoyancy

forces are present, equilibrium can exist for any rotation law ! D !.s; z/ as long as

gravity overcomes the centrifugal force.

However, buoyancy forces are not as reliable as, for instance, gravity. Let us

consider the axisymmetric case of a fluid between two rotating cylinders and let us

assume the Rayleigh criterion (45.18) to be violated, while the Solberg–Høiland

criterion (45.22)–(45.24) gives stability. We then know that if a toroidal mass

element is exchanged with another one further outwards in the s direction, energy

is gained from centrifugal forces, but the work which goes into buoyancy is larger.

Therefore, if kicked outwards, it will go back and, in the pure adiabatic case, starts

to oscillate around its original position. This reminds us of the oscillating blob

discussed in Chap. 6. But we have seen there that a blob with an excess of molecular

weight will sink while adjusting thermally. The situation is very similar in the case

of a rotating star in which buoyancy forces guarantee dynamical stability.

Let us discuss the case of non-conservative rotation. It is called “baroclinic”,

since the P and % are inclined against each other. Then centrifugal acceleration is

not curl-free and cannot be balanced by the (conservative) gravity. We now consider

a closed line in one quadrant of the meridional plane (Fig. 45.2). The vector of a

line element is dl . Then the integral of the centrifugal acceleration taken along the

line is I
c � d l ¤ 0: (45.25)

This means that the centrifugal acceleration produces a torque on the matter along

this line. In a barotropic (or incompressible) fluid this torque would cause a

meridional flow. In the more general case, rP=% can balance this torque. But the

matter will follow the torque within the timescale during which heat can leak out.

The matter will also flow if the Rayleigh criterion (45.18) is violated, but the

Richardson number (45.11) gives stability. This is analogous to the case of the salt-

finger experiment (see Sect. 6.5). If we then exchange two coaxial tori adiabatically

as indicated in Fig. 45.1, buoyancy will bring them back to their old position. But

since it takes a finite time to return to the initial state, heat will leak out of, or go

into, the two tori and they will never come back exactly to the old position. As the

blobs in the salt-finger experiment exchange chemical species, here a meridional

flow will exchange angular momentum. This flow is again controlled by the time

during which heat can leak away from the matter.

What is the timescale of such a thermally controlled flow? Let us go back

to the baroclinic case and the example indicated in Fig. 45.2. Along each closed

meridional line there is a torque. The heat exchange can take place most effectively

if the thickness d is small, just as the thinnest salt-finger moves fastest, as can

be seen from (6.25) and (6.29). One would therefore expect that the smallest

elements move fastest. Indeed, with decreasing thickness, the velocity increases like

v � d�2. Certainly for small mass elements friction becomes important, but since

the molecular (or radiative) viscosity is low, the elements slowed down by friction
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Fig. 45.2 (a) The meridional

plane of a rotating star with

d!=dz ¤ 0. Thin lines give

! D constant. Along each

closed line, the integral over

the centrifugal acceleration as

defined in (45.25) does not

vanish, giving rise to a torque

which causes meridional

motions as indicated in (b)

are rather small. Estimates indicate that they are of the order of some metres in the

radiative interior of the Sun.

Here we have discussed the instabilities by rather heuristic arguments. A math-

ematically more satisfying treatment of this problem has been carried out by

Goldreich and Schubert (1967) and Fricke (1968). They find as conditions necessary

for secular stability
@ ln!

@ ln s
> �2; @!

@z
D 0: (45.26)

Although the first condition is identical with (45.18) we have to keep in mind that

there we discussed dynamical stability in the barotropic (or incompressible) case,

while here we deal with secular stability. The second condition of (45.26) does not

correspond to a stability condition in the barotropic case. If in this case it is violated,

there is no equilibrium. Only buoyancy forces can establish equilibrium in the non-

barotropic case, but this equilibrium is thermally unstable.

Several estimates have been made of the timescale by which the thermal

instabilities change the overall angular-velocity distribution, violating conditions

(45.26). There is no definite answer, but it may well be that it is the Eddington–

Sweet timescale (44.34) (Kippenhahn et al. 1980b).

What kind of angular-velocity distribution really does occur in radiative regions

of stars? Let us start with a conservative angular-velocity distribution, ! D !.s/,

say with ! D constant. Then meridional motions will start. Since they are due

to the thermal imbalance between polar and equatorial regions, their characteristic
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length scale should be of the order of the stellar radius. They will change the

angular-velocity distribution, and ! will become a function of z too. But then the

Goldreich–Schubert–Fricke criterion (45.26) is violated and instabilities will occur,

which grow fastest for small-scale perturbations. Therefore one again expects eddies

of the size of metres. At the present time, a complete picture of the transport of

angular momentum does not exist. Multidimensional hydrodynamical simulations

as well as advanced theories are used to understand the physics determining the

properties of rotation in stars. Seismology may yield observational evidence, too.

The present situation is summarized in more detail in the textbook by Maeder

(2009). Rotation is one of the big unsolved and important questions of stellar

structure theory. It will require much more physical insight and many more

numerical efforts to understand it.
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Härm, R., Schwarzschild, M. (1972): Astrophys. J. 172, 403

Harris, M.J., Fowler, W.A., Caughlan, G.R., Zimmerman, B.A. (1983): Ann. Rev. Astron.

Astrophys. 21, 165

Harris, H.C., Munn, J.A., Kilic, M., Liebert, J., Williams, K.A., von Hippel, T., Levine, S.E.,

Monet, D.G., Eisenstein, D.J., Kleinman, S.J, Metcalfe, T.S., Nitta, A., Winget, D.E.,

Brinkmann, J., Fukugita, M., Knapp, G.R., Lupton, R.H., Smith, J.A., Schneider, D.P. (2006):

Astron. J., 131, 571

Hayashi, C. (1961): Publ. Astron. Soc. Japan 13, 450

Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., Hartmann, D.H. (2003): Astrophys. J. 591, 288

Henyey, L.G., Forbes, J.E., Gould, N.L. (1964): Astrophys. J. 139, 306

Henyey, L.G., Vardya, M.S., Bodenheimer, P.L. (1965): Astrophys. J. 142, 841

Herwig, F. (2005): Ann. Rev. Astron. Astrophys. 43, 435

Hillebrandt, W. (1991): In Proceedings of the International School of Physics, “Enrico Fermi”,

Course CXIII, ed. by S. Eliezer, R.A. Ricci (North Holland, Amsterdam), p. 399

Hillebrandt, W., Niemeyer, J.C. (2000): Ann. Rev. Astr. Astrophys. 38, 191

Hirschi, R., Meynet, G., Maeder, A. (2004): Astron. Astrophys. 425, 649

Hubbard, W.B., Lampe, M. (1969): Astrophys. J. Suppl. 18, 297

Iben, I., Jr. (1975): Astrophys. J. 196, 549,

Iben, I., Jr., Renzini, A. (1983): Ann. Rev. Astron. Astrophys. 21, 271

Iglesias, C.A., Rogers, F.J. (1996): Astrophys. J. 464, 943

Iliadis, C. (2007): Nuclear Physics of Stars, (Wiley, Wenheim, Germany)

Isern, J., Mochkovitch, R., Garcı́a-Berro, E., Hernanz, M. (1997): Astrophys. J. 485, 308

Itoh, N., Mitake, S., Iyetomi, H., Ichimaru, S. (1983): Astrophys. J. 273, 774

Itoh, N., Hayashi, H., Nishikawa, A., Kohyama, Y. (1996): Astrophys. J. Suppl. Ser. 102, 411

Ivanova, L.N., Imshennik, V.S., Chechetkin V.M. (1977): Sov. Astron. 21, 5



590 References

Janka, H.-Th., Langanke, K., Marek, A., Martı́nez-Pinedo, G., Müller, B. (2007): Phys. Rep.

442, 38

Jeans, J. (1928): Astronomy and Cosmogony (Cambridge University Press, Cambridge), repub-

lished 1961 (Dover, New York)

Junker, M., D’Alessandro, A., Zavatarelli, S., Arpesella, C., Bellotti, E., et al. (1998): Phys. Rev.

C 57, 2700

Kähler, H. (1972): Astron. Astrophys. 20, 105

Kähler, H. (1975): Astron. Astrophys. 43, 443

Kähler, H. (1978): In The HR Diagram, ed. by A.G.D. Philip and D.S. Hayes, IAU Symp. 80

(Reidel, Dordtrecht), p. 303

Kalirai, J.S., Saul Davis, D., Richer, H.B., Bergeron, P., Catelan, M., Hansen, B.M.S., Richer, R.M.

(2009): Astrophys. J., 705, 408

Karakas, A.I. (2010): Mon. Not. R. Astron. Soc. 403, 1413

Keller, S.C. (2008): Astrophys. J. 677, 483

Kilic, M., Leggett, S.K., Tremblay, P.-E., von Hippel, T., Bergeron, P., Harris, H.C., Munn, J.A.,

Williams, K.A., Gates, E., Farihi, J. (2010): Astrophys. J. Supp. 190, 77

Kippenhahn, R. (1963): In Star Evolution, Proc. International School of Physics “Enrico Fermi”,

Course XXVIII, ed. by L. Gratton (Academic Press, New York), p. 330

Kippenhahn, R., Thomas, H.-C. (1964): Z. Astrophys. 60, 19

Kippenhahn, R., Weigert, A., Hofmeister, E. (1967): Meth. Comp. Phys. 7, 129

Kippenhahn, R., Thomas, H.-C., Weigert, A. (1968): Z. Astrophys. 69, 265

Kippenhahn, R., Ruschenplatt, G., Thomas, H.-C. (1980a): Astron. Astrophys. 91, 175

Kippenhahn, R., Ruschenplatt, G., Thomas, H.-C. (1980b): Astron. Astrophys. 91, 181

Kiriakidis, M., El Eid, M.F., Glatzel, W. (1992): Mon. Not. R. Astron. Soc. 255, 1p

Kitaura, F.S., Janka, H.-Th., Hillebrandt, W. (2006): Astron. Astrophys. 450, 345

Korn, G.A., Korn, T.M. (1968): Mathematical Handbook for Scientists and Engineers, 2nd ed.

(McGraw-Hill, New York)

Kudritzki, R.-P., Puls, J. (2000): Ann. Rev. Astron. Astrophys. 38, 613

Kunz, R., Fey, M., Jaeger, M., Mayer, A., Hammer, J.W., Staudt, G., Harissopulos, S., Paradellis, T.

(2002): Astrophys. J. 567, 643

Kupka, F. (2008): In Interdisciplinary aspects of turbulence, ed. by W. Hillebrandt, F. Kupka

(Springer, Berlin Heidelberg), p. 49

La Salle, J., Lefschetz, S. (1961): Stability by Liapunov’s Direct Method with Applications

(Academic Press, New York)

Lamers, H.J.G.L.M. (1981): Astrophys. J. 245, 593

Landau, L.D., Lifshitz, E.M. (1976): The Classical Theory of Fields, Vol. 2 of Course of

Theoretical Physics, 4th edition reprinted 2003 (Butterworth-Heinemann, Amsterdam)

Landau, L.D., Lifshitz, E.M. (1980): Statistical Physics, part 1, Vol. 5 of Course of Theoretical

Physics, 3rd edition reprinted 2003 (Butterworth-Heinemann, Amsterdam)

Landau, L.D., Lifshitz, E.M. (1987): Fluid Mechanics, Vol. 6 of Course of Theoretical Physics,

2nd edition reprinted 2004 (Butterworth-Heinemann, Amsterdam)

Langer, N. (1989): In Rev. Mod. Astron, ed. G. Klare (Springer, Berlin Heidelberg), vol. 2, p. 306

Langer, N. (1991): Astron. Astrophys. 252, 669

Langer, N., El Eid, M.F., Fricke, KJ. (1984): In Liege International Astrophysical Colloquia,

25, 120

Langer, N., El Eid, M.F., Fricke, KJ. (1985): Astron. Astrophys. 145, 169

Larson, R.B. (1969): Mon. Not. R. Astron. Soc. 145, 271

Lauterborn, D., Refsdal, S., Weigert, A. (1971a): Astron. Astrophys. 10, 97

Lauterborn, D., Refsdal, S., Roth, M.L. (1971b): Astron. Astrophys. 13, 119

Ledoux, P. (1958): In Handbuch der Physik, ed. by S. Flügge (Springer, Berlin, Heidelberg), Vol.
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Paczyński, B. (1972): Acta Astron. 22, 163
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Index

Absorption coefficient. See Opacity

Abundances of elements. See Chemical

composition

Accreting white dwarfs, 461

Accretion disk, 515, 516

Accretion on protostars, 311, 321

luminosity, 321

time-scale, 319

Adiabatic exponent, 125, 214, 529

Adiabatic temperature gradient, 27, 124

Angular-velocity distribution in stars, 569,

571, 572, 575, 577, 582

dynamical stability, 582–584

secular stability, 582, 584

Ascending giant branch. See Red giant branch

Asteroseismology, 553

Astrophysical factor, 182

Asymptotic giant branch, 414, 417, 418

convective regions, 427, 428

evolution, 433–436

hot bottom burning, 430

intershell convection, 426–429

nuclear shells, 417

nucleosynthesis, 426, 428, 430

thermal pulses (see Thermal pulses)

ˇ Cephei variables, 540, 552

Bifurcation, rotating liquid configurations, 559

Binding energy per nucleon, 176

Black dwarfs, 475, 490

Black holes, 509–516

formation, 453, 454

BL Herculis variables, 539

Boltzmann distribution

excitation of atoms, 127, 128

momentum of particles, 140

Boundary conditions, 91, 93, 106, 521

at the centre, 93, 105

series expansions, 94, 108

at the surface, 95, 98, 106

general formulation, 96, 98

influence on envelope, 98, 102

photospheric conditions, 96

zero conditions, 95

Bremsstrahlung neutrinos, 208

Brown dwarfs, 261, 326, 442

Brunt-Väisälä frequency, 53, 549

Carbon burning, 199, 200

in accreting white dwarfs, 461

in degenerate cores, 444, 454, 455, 458,

461

reactions, 199

Carbon flash, 436, 446, 454, 455, 458

time-scales, 458

Carbon main-sequence, 266

Carbon-oxygen cores

carbon flash, carbon burning, 436, 445,

454, 455, 458, 461

contraction and heating, 450, 451

dynamical instability, 470

Catalyzed matter, 484, 504

M � R relation for cold bodies, 502

Central conditions, 93

Central evolution

late phases, 449

pre-main-sequence, 323

through nuclear burnings, 441, 442, 448

Central values, 93, 256, 264, 400

Cepheid phase, 288, 375

Cepheids

ˇ Cepheids, 540
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bump Cepheids, 540

change of period, 375, 376, 538

evolution, 375, 378

excitation, 534, 538

masses, 377, 378, 539, 540

period-luminosity relation, 538, 539

Cepheid strip, 375, 376, 535, 538

Chandrasekhar’s limiting mass, 221, 396, 453,

464, 477, 504

Chemical composition of stellar matter, 73,

426

change by nuclear reactions, 74, 422

convective mixing, 81, 385

diffusion, 76

equilibrum, catalyzed matter, 484, 487

mass abundances, 73

mixing by circulations, 573, 574

present Sun, 333, 336

Circulations, meridional, 567, 573

chemical inhomogeneities, 573, 574

time-scale, 572

Clusters of stars. See Star clusters

CNO cycle, 192, 195, 197, 344

in main-sequence stars, 257

Collapse

into black holes, 513

evolved cores, 450, 452, 468

interstellar clouds, 306, 314

polytropes, 227, 231, 462, 463

protostars, 318, 319

Combustion front, 459

Compact objects, 473–516. See also Black

holes, Neutron stars, White dwarfs

Complete equilibrium (mechanical and

thermal), 36, 92, 105, 107, 362, 424,

567

Compound nucleus, 179–181

Compton scattering, 164

Conductive opacity, 169

Conductive transport of energy, 42–43

Conservation of momentum, 9, 316

Conservative rotation, 565, 566

Continuity equation, 4, 15, 300, 313, 314

Contraction and heating/cooling, 323, 325,

440, 450, 451

Convection

as a diffusive process, 81, 357

fully convective regions, 355–357, 387

fully convective stars, 258, 271, 273

in main-sequence stars, 257, 260, 343, 348

mixing-length theory, 62, 70, 276, 278, 279

adiabatic, superadiabatic, 67, 69, 90,

337, 381

efficiency, 67, 69

limiting cases, 66, 68

mixing of chemical composition, 80

overshooting, 345, 349–354, 356, 357,

368–373, 377, 378, 381–383,

385–389, 411, 412, 414, 427, 433,

437, 443, 540

semiconvection, 345, 354–356, 370,

385–389, 411–414

stability criteria (dynamical), 47, 51

unstable g modes, 550

vibrational and secular stability, 54, 58

velocity, 63, 64, 69, 336

Convective blocking, 459

Convective transport of energy, 61, 69

Cooling of white dwarfs, 493, 494

Core collapse supernovae, 449, 469, 515

collapse of evolved cores, 450, 452, 461

collapse time, 465

electron capture, 464

instabilities, 452

neutrinos, 466, 468

rebounce, 466

Core contraction and heating, 370, 439

Core-mass-luminosity relation, 400, 401,

424–426

Core-mass-temperature relation, 393, 400

Core of neutron stars, 507

Coulomb barrier of nuclei, 177–179, 181, 200

Critical rotation, 561, 562

Crust of neutron stars, 506, 507

Crystallization, 157, 160

neutron stars, 506

white dwarfs, 480, 492

Deflagration front, 459, 460

Degeneracy

of electrons, 42, 139, 150, 151, 442

complete degeneracy, 140, 145, 152

Fermi-Dirac distribution, 145

non-relativistic, extreme relativistic,

145

partial degeneracy, 150

of neutrons, 498, 500

Degeneracy parameter, 145, 146, 151, 441, 442

Degenerate cores, 391, 436, 442, 443, 449

ı Scuti variables, dwarf Cepheids, 539

Detonation front, 453, 459–461

Diffusion

chemical elements, 76, 115

neutrinos in collapsed cores, 466–468

radiative energy, 38, 39

radiative levitation, 79

in standard solar model, 78, 330, 333, 338
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Dredge-up of nuclear species, 433

first dredge-up, 372, 384, 397

second dredge-up, 384, 417, 436, 443

third dredge-up, 427–429, 433

Dynamical stability/instability, 285, 290, 522,

523

angular-velocity distribution, 575–582

configurations of catalyzed matter, 504,

505

critical gamma, 291

effect of general relativity, 292, 505

highly evolved cores, 462, 470

Jacobi ellipsoids, 560

local perturbations (convection), 47, 52

non-radial g modes, 550

piston model, 288

protostars, 318

supermassive stars, 227

Eddington’s standard model, 220

Eddington–Sweet time-scale, 570, 572, 584

Effective temperature, 95, 433

Efficiency of convection, 67, 69

Eigenvalues, 58, 59

Electron capture, 469

Electron capture instability, 464

Electron scattering, 37

Electron scattering opacity, 163–164

Electron shielding of nuclear reactions, 188

Electrostatic interaction and equation of state,

160, 479

Energy conservation

neutrino losses, 32

for stellar matter, 31, 33

time-dependent terms, 32

for the whole star, 33

Envelope solutions

convective, 101

radiative, 98, 99

temperature stratification, 102

" mechanism, 531, 534

upper-main-sequence stars, 267, 541

Equation of motion, 13, 300, 311, 314, 512,

519, 544

non-spherical case, 15

Equation of state, 11, 25, 151–161

beyond neutron drip, 497

degenerate electron gas, 140, 144, 145,

150, 153

electron shielding, 160

electrostatic interaction, 479

for stellar matter, 151, 152

neutronization, 158, 159, 468, 483, 498

at nuclear matter density, 469

perfect gas, 28–31

perfect gas and radiation, 28, 123, 124, 154

real gas, 159, 160

tables, 136

Equations of stellar structure

change of chemical composition, 74

energy equation, 33, 92, 94, 114, 237, 314,

424

equation of motion, 13, 114, 285

Eulerian and Lagrangian descriptions, 3, 4

hydrostatic equilibrium, 10

transport of energy

conductive, 42

convective, 61

radiative, 37, 42

Equilibrium

complete (see Complete equilibrium

(Mechanical and thermal))

hydrostatic, 9, 10, 92

nuclear statistical, 455, 461

Equilibrium composition of stellar matter

equilibrum, catalyzed matter, 484

Evolutionary mass of Cepheids, 377

Explosions, 449–472

Fermi-Dirac distribution, 145

Fermi-Dirac integrals, 147

Fermi momentum,– energy, 42, 141, 158, 468,

470, 490, 498

Final stages

mass limits, 439, 448, 449

Fitting (shooting) method, 105, 106

Flash. See Carbon flash; Helium flash

f mode, 550

Formation of stars. See Star formation

Fragmentation of collapsing clouds, 307, 309

stellar masses, 308

Free-fall, 14

Gamow peak, 184, 186, 187, 189

Gamow penetration factor, 179

Generalized main-sequences, 267, 390, 407

General relativistic effects

dynamical stability, 505

hydrostatic equilibrium, 15, 17

neutron star masses, 501, 505, 506

Giants, evolution to, 367, 397

Globular cluster diagrams

horizontal branch, 407, 408, 411

luminosity function, bump, 400

red giant branch, 397
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g modes, 549

Goldreich–Schubert–Fricke criterion, 585

Gravitational energy, 16, 19, 303, 557

Gravitational instability of interstellar clouds,

299, 309

Jeans criterion, 302, 306

Gravitational mass of a star, 16, 505, 506

Gravitational potential, 7, 213, 557

Gravothermal specific heat, 21, 293, 295, 420,

445, 489

Hayashi line, 271–282, 321, 322, 327, 380

analytical approach, 273

forbidden region, 271, 276, 278

Heat conduction, 42, 45

and opacity values, 169, 172

Heating/cooling during contraction, 323, 325
3He burning, pre-main-sequence, 326

Helioseismology, 71, 330, 336–338, 553,

577

Helium-burning phase

helium ignition, 397

intermediate-mass stars, 367–385

Cepheid phase, 375

helium-shell burning, 384

loops in the HR diagram, 373, 384

production of C, O, Ne, 372, 384

time-scales, 371, 381

low-mass stars, 393, 433

CNO-flash, 407

helium flash, 401, 405

horizontal-branch phase, 407, 411, 539

massive stars, 371, 385–390

Cepheid phase, 378

nuclear reactions, 192

production of C, O, Ne, 198, 372

Helium-burning reactions, 198

Helium flash, 400–407, 410, 433, 443

mixing of composition, 407, 411

time-scale, 401

Helium main-sequence, 263, 264, 269, 541,

573

Henyey matrix, determinant, 110, 113

Henyey method, 106, 113

Hertzsprung gap, 367, 370, 375, 376, 383, 387,

391

Hertzsprung–Russell diagram, 252, 263, 271,

275, 280, 369, 407, 441

forbidden region, 271, 276, 278

star clusters, 328, 348, 407, 410

Homologous contraction, 241, 242, 312, 323

central evolution, 326

maximum central temperature, 326

Homology invariants U; V

for polytropic models, 244–246

Homology relations, 233–242, 346

main-sequence models, 234, 252, 256

for shell-source models, 392–396, 425

Horizontal branch, 400, 409

morphology, 408

Horizontal-branch stars, 407–414

metal content, 408

zero-age models, 409, 410

HR diagram. See Hertzsprung–Russell

diagram

Hydrodynamical methods, 117

Hydrogen-burning phase. See Main-sequence

phase

Hydrogen-burning reactions, 193–196

CNO cycle, 195, 256, 327

proton-proton chain, 193–195, 256

Hydrogen main-sequence, 251–262, 541

stability, upper and lower end, 260

Hydrostatic equilibrium, 9, 10, 34, 89, 92, 213,

291, 302, 421, 450

general relativity, 15, 17

post-Newtonian approximation, 17

Hydrostatic time-scale, 14

Hyperonization, 498

Ideal gas. See Perfect gas

Ignition of nuclear burning

minimum mass, 453

Initial-final mass relation, 431, 432

Initial values, 91, 92

Instability strip, 375, 409, 414, 535–540

BL Herculis variables, 414

Cepheid evolution, 375, 378, 538

observed stars, 538, 539

RR Lyrae variables, 408

W Virginis variables, 414

Inverse ˇ decay, 158, 483

Ionization of stellar matter

partial ionization, 101

partial ionization of H and He, 130, 135,

336, 537

mean molecular weight, 131

in the Sun, 135

thermodynamic properties, 127, 132

pressure ionization, 138

Saha equation, 129, 130

Isothermal-core models, 360–362

Schönberg-Chandrasekhar limit, 356–363

thermal stability, 359, 362

in the U � V plane, 250

Isothermal spheres of ideal gas, 222
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Jacobi ellipsoids, 559

Jeans criterion, 299–303

Jeans mass, 305–308

virial theorem, 303

� mechanism

stars driven by, 535–540

Kelvin–Helmholtz time-scale, 22, 45, 46, 56,

327, 370, 530

Kramers opacity, 99, 164, 281, 295, 487, 535

Lane–Emden equation, 216, 217, 219, 223,

241, 303, 304, 563

collapsing polytropes, 231

isothermal spheres, 222–223

solutions, 216–218

Later phases (post-He-burning), 439–448

carbon flash, 436, 445, 454–455, 458

central evolution, 424, 441, 446, 451

degenerate cores, 442–444, 454–461

final evolution, 450–454

neutrino losses, 266, 420, 436, 439–448

nuclear burnings, 437, 450–454, 461

thermal pulses, 422–424

Ledoux criterion, 51, 355, 357, 386, 387, 412,

413

Limiting mass. See also Mass limits

neutron stars, 501–508

white dwarfs, 221, 222, 477, 487

Loops in the HR diagram, 373–383, 387

Cepheid phase, 375–378

Luminosity

accretion, 314, 316, 321

local, 31

neutrino, 32

surface value, 31

Magic nuclei, 202

Magnetars, 471, 472, 508

Main-sequence models, 251–262

central values, 254–257

convective regions, 258–262

instability at small and large M , 260

M � R and M � L relations, 251–254

pp and CNO reactions, 257, 258

radiation pressure, 257

Main-sequence phase, 343–356, 388

chemical evolution, 267, 343, 346

convective overshooting, 349–354

massive stars, 344, 351

influence of rotation, 390

semiconvection, 356

time-scales, 347–348

Main-sequences

carbon main-sequence, 266

generalized main-sequences, 263, 267–269

helium main-sequence, 263–266

vibrational stability, 288

zero-age (hydrogen) main-sequence, 259

Mass

of Cepheids, 377

gravitational, 16, 505

Mass defect

neutron stars, 502, 504

nuclei, 175

Mass limits

degenerate cores, 442, 443

final stages, 446

ignition of nuclear burning, 326, 442, 443,

446

neutron stars, 505

types of late evolution, 437, 452, 471

Mass loss, 83–85

on the AGB, 419, 430, 433, 437

before helium flash, 407, 495

from cool giants, 83

critical rotation, 561, 562

dust-driven, 83, 431, 436

and final stages, 446

from massive stars, 83, 389, 390

radiation-driven, 83, 389

Reimers formula, 84

superwind, 431, 438

Mass-luminosity relation

helium and carbon main-sequences,

263–266

main-sequence models, 238, 251–254

Mass-radius relation

main-sequence models, 237, 238,

251–254

models of cold catalyzed matter, 504

neutron stars, 501, 502

polytropic stars, 221

white dwarfs, 395, 478, 479, 485, 487

Material functions of stellar matter, 107,

121–208, 315

Maximum mass of neutron stars, 502–506

McLaurin spheroids, 557–559

Mean free path, 37, 38, 42, 77, 78, 169, 467,

575

Mechanical structure, 12

Melting temperature, 153, 157, 492

Meridional circulations, 567–574

chemical inhomogeneities, 573, 578

Eddington–Sweet time-scale, 570–573
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Metallicity, 70, 74, 252, 280, 401, 403, 406,

408–410, 453, 470

of the Sun, 331, 333

Millisecond pulsar, 502

Minimum mass

ignition of nuclear burning, 325, 326, 441,

443, 446

Mirror principle of radial motions, 368

Mixing length, 62

Mixing-length theory of convection, 65, 70–71,

81, 331

Mixing of chemical composition

by convection, 80, 348, 427

by meridional circulations, 573, 574

Molecular weight, 11, 28

for ionized matter

mean value, 28, 29

per free electron, 29

per ion, 29

partially ionized matter, 132

� barrier, � currents, 574

Multiple solutions

helium-core models, 368

homogeneous equilibrium models, 267

isothermal-core models, 362

Neon disintegration, 201

Neutrino losses, 32

before helium flash, 57, 402, 403

degenerate CO cores, 443–447, 452

energy equation, 33, 91

temperature inversion, 403

thermal stability, 296, 444, 445

Neutrino luminosity, 33, 445, 447

Neutrinos, 205–209

core collapse, supernovae, 466–469

electron, 206, 340

from electron captures, 206

from hydrogen burning, 193–196, 206

from leptonic interaction, 206, 207

Bremsstrahlung, 208

photon scattering, 208

plasmon decay, 208

synchroton radiation, 209

mean free path, 205, 467

muon, 340, 341

solar (see Solar neutrinos)

tau, 340

Urca process, 206

Neutrino trapping, 467

Neutron drip, 158, 484, 497, 498

Neutrons

degeneracy, 498

production in thermal pulses, 428

superfluid liquid, 500, 507

Neutron stars, 15, 485, 497–508

equation of state, 498, 500, 502, 505

extension of atmosphere, 506

formation, 453, 454, 466

gravitational mass, 505, 506

interior models, 506, 507

magnetic fields, 508

masses, 502

maximum mass, 501–504, 506

merging, 471, 515

M � R relation, 501

stability, 504, 505

structure, 506, 507

Neutronization, 158–159, 466, 468, 498

threshhold, 483

Non-radial oscillations, 53, 543–553

dynamical stability, 549, 550

eigenspectra, 548–551

observations, 552

Nuclear burning

minimum mass for ignition, 442, 443

reaction network, 75

reactions, 175, 192–201

thermal stability, 292, 294–296, 401, 444

Nuclear burning phases

helium burning, 367–414

hydrogen burning, 35, 255, 343–354, 387

later burnings, 447

pre-main-sequence burning, 326, 328

Nuclear cross-sections, 179–182

astrophysical factor, 182

resonances, 181

temperature sensitivity, 186, 187

Nuclear energy generation, 35, 175–179, 534

electron shielding, 188–192, 260

Nuclear equilibrium, 482, 483

Nuclear reactions, 73

Nuclear statistical equilibrium, 455–458, 461

Nuclear time-scale

late phases, 449

shell sources, 419

Nucleosynthesis, 201–205, 430

of carbon and oxygen, 198–199

explosive, 449

of helium, 193–196

after helium-burning, 197–199

by neutron captures, 201–205, 428

Numerical methods, 105–119

explicit, implicit schemes, 113, 114

Henyey method, 106–113

hydrodynamical problem, 114

shooting (fitting) method, 105, 106
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Onion skin model, 440, 448

Opacity of stellar matter, 163–174

bound-bound transitions, 166–167

bound-free transitions, 165, 166

conductive opacity, 169, 170, 172

electron scattering, 102, 163–164

Compton scattering, 164

free-free transitions, 164, 165

molecules, 170–172

negative hydrogen ions, 168–169

opacity tables, 172–174

Rosseland mean, 40–41, 96, 163, 164, 540

Opacity Project, 172

OPAL, 161, 172

Oscillation of stars. See Pulsations

Oxygen burning, 200

reactions, 200

Pair annihilation neutrinos, 207–208

Pair creation instability, 469–471

Partition function, 128–131, 137

Pauli’s exclusion principle, 139, 140

Pear-shaped configurations, 559

Perfect gas, 11

Perfect gas and radiation

equation of state, 123

thermodynamic properties, 124–125

Period-density relation, 375, 524, 538, 539

Period-luminosity relation, 538, 539

Photodisintegration, 200, 201, 453, 454, 456,

457, 461, 470, 471

Photo neutrinos, 208

Photosphere, 95, 102

Photospheric conditions, 96

Piston model, 17–18

mechanical properties, 17, 18

stability, 58–60, 285–288

eigenvalues, 286–292

thermal properties, 45, 46

Planetary Nebulae, 438

Plasma neutrinos, 208, 400, 401

p modes, 549

Poisson equation, 6, 15, 189, 215, 562

Poloidal modes of non-radial oscillations, 546

Polytropes

adiabatic, convective, 214, 217, 245, 248,

304

collapsing, 462–465

isothermal, 214, 215, 222, 223, 245, 247,

250

slowly rotating, 562–564

Polytropic relation, -index, -exponent, 213–215

Polytropic stellar models, 215–231

collapsing polytropes, 227–231

isothermal ideal-gas sphere, 222–223

Lane–Emden equation, 231

M � R relations, 221

pulsations, 525–528

radiation pressure, 219–220

supermassive stars, 226–227

Population

I, 346, 347, 354, 369, 462, 539

II, 397, 400, 407, 539

III, 309, 406, 453, 470, 541

Post-main-sequence evolution

asymptotic giant branch, 417–438

Hertzsprung gap (see Hertzsprung gap)

intermediate-mass stars, 367–371, 446

core-contraction phase, 368

hydrogen-shell burning, 368

low-mass stars, 391, 399, 425, 446, 539

degeneracy, 402

hydrogen-shell burning, 324–325, 391,

396–398, 414

red giant branch, 397, 433

massive stars, 385–390, 447, 461

Post-Newtonian approximation, 17

pp reactions, 193–195

Pre-main-sequence contraction, 323–328

approach to main-sequence, 326–328, 391

central heating, 323, 325

minimum mass for hydrogen ignition, 326

time-scales, 327

Pre-main-sequence nuclear burning, 326

Proton-proton chain

in main-sequence stars, 257

reactions, 193–195

Protostar evolution, 311–322

collapse calculations, 314–315

collapse onto condensed object, 313–314

formation, 315–317

H2 dissociation, core collapse, 318

Pulsation of stars

adiabatic non-radial pulsations

eigenvalues, 549

adiabatic spherical pulsations, 519–527

dynamical stability, 523

effect of radiation pressure, 527, 528

eigenvalues, 519–523

influence of convection, 538

non-adiabatic spherical pulsations,

529–541

eigenvalues, 529–533

" mechanism, 531, 534–535, 541

instability strip, 535–540

� mechanism, 534–540

non-linear effects, 539



602 Index

quasi-adiabatic approximation, 531–532

non-radial oscillations, 543–553

eigenspectra, 548–551

excitation mechanism, 552

mode splitting due to rotation, 552

observations, 552

Pulsational mass of Cepheids, 377

Pulse instability, 420, 421

Pulses. See Thermal pulses

Pycnonuclear reactions, 191, 445, 453, 479,

482–485, 489

Quark stars, 500

Quasi-adiabatic approximation, 531–532, 552

Radiation pressure, 123–124, 136, 152, 153,

256, 261, 262, 541

influence on pulsations, 527, 529, 541

in main-sequence models, 257, 266

in polytropic models, 219

supermassive stars, 226, 227, 470

Radiative transport of energy, 37–46, 534,

567

Radiative viscosity, 576

Rayleigh criterion, 581–583

Red giant branch, 370, 375, 378, 397–401,

407, 414

Resonance reactions, 180

Reynolds number, 69, 578

Reynolds stress model, 61, 351

Richardson number, 579, 583

Roche lobe, 269

Roche model, 560–562

Rosseland mean of the absorption coefficient,

40–41, 90

Rotation of stellar models, 555–585

angular-celocity distribution

dynamical stability, 577–582

secular stability, 582–585

angular-velocity distribution, 572, 575–585

conservative rotation, 565–566

meridional circulations, 567–568

non-conservative rotation, 569–570, 582

polytropes, 562–564

Roche model, 560–562

critical rotation, 561, 562

rotating liquid configurations, 557–560

stability, 559

thermodynamic properties, 565–574

von Zeipel’s theorem, 566–567

r-process, 203

RR Lyrae variables, 408, 414

Saha equation, 129, 130, 318

limitation for high densities, 137–138

Salt-finger instability, 56, 583

Scale height of pressure, 50, 70

Schönberg–Chandrasekhar limit, 356–363

in the U � V plane, 250

Schwarzschild criterion for convection, 51,

355, 357, 386, 387, 412

Schwarzschild radius, -metric, 509, 511–513,

515

Screening factor, 190

Secular (thermal) stability, 294–296

angular-velocity distribution, 582–585

isothermal-core models, 359, 362

McLaurin spheroids, 557

neutrino losses, 296, 445

nuclear burning, 294–296, 401, 445

piston model, 288

salt-finger, 56, 58, 405

shell sources, 419–421

Sedimentation, 78, 79, 331, 334

Semiconvection. See Convection,

Semiconvection

influence on loops, 381

Shell-source burning

double-shell sources, 414, 421

helium, 384

hydrogen, 267, 368, 391, 392, 406, 414,

493

late phases, 417, 419

local nuclear time-scales, 419

Shell-source homology, 392–397, 424, 426

Solar neutrinos, 338–341

measurements, 339

spectrum, 339, 340

Solberg–Høiland criterion, 582, 583

Specific heat

electron degeneracy, 156, 490

gravothermal, 21, 293–294, 401, 420, 444

ionization, 132

radiation pressure, 124

white-dwarf matter, 487–496

s-process, 203
13C-pocket, 428, 429

neutron poison, 430

neutron source, 203, 428–430

Stability, 283–296

dynamical stability, 290–292

general considerations, 283, 285, 290

gravitational, 299–309

local perturbations, 47–60

dynamical stability, 47–52, 55

secular (salt-finger) stability, 56, 58

secular instability, 56–58
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vibrational stability, 54, 55

perturbation equations, 289, 290

piston model, 58–60

secular (thermal) stability, 292

vibrational stability, 290, 292, 529, 530

Standard model of Eddington, 220

Standard solar model, 330, 333–336, 338

Star clusters

age determination, 348

Hertzsprung–Russell diagram, 346, 347,

407

Star formation, 299–322

Bonnor–Ebert sphere, 306

collapse of clouds, 311–317, 575

adiabatic/isothermal, 307–309, 319

free-fall, 311

time-scales, 307

fragmentation, 307–309

gravitational instability, 299–309

pre-main-sequence contraction, 323–328

protostar evolution, 315–322, 327

low-mass stars, 321, 328

massive stars, 321, 328

Stellar-structure equations. See Equations of

stellar structure

Strange stars, 500, 502

Sub-Chandrasekhar models, 453

Sun

age, 293, 329, 330

central values, 13

chemical composition, 333, 337

convective regions, 329, 335, 337

evolution, 333, 334

hydrogen burning, 329, 332, 336, 340

luminosity, 21

mass, radius, 12

oscillations (see Helioseismology)

solar neutrinos, 338–341

solar quantities, 329, 330

standard solar model, 333–336, 338

structure, 335

time-scales, 14, 22, 35–36

Super-AGB, 436–438, 442, 453, 454, 469, 495

Supermassive stars, 226–227, 258, 291

Supernova

electron capture, 437, 448, 453, 469

gamma-ray burst, 471–472

pair-instability, 454

SN1987A, 387

type 1.5, 453

type I, 449, 452, 453, 459–461, 471

type II, 449, 453, 468, 469

Supernova explosions, 437, 448, 449, 452, 461,

466

neutrino photosphere, 468

neutrinos, 466

Surface conditions, 95–103

Synchrotron neutrinos, 209

Temperature gradient

in convective regions, 50–55, 64–70

for radiative transport, 43

Thermal adjustment time, 43–45

Thermal pulses, 417–419, 421–424, 427–430,

433, 434, 437, 438

cycle time, 441

dredge-up, 427

instability, 420, 421

late pulse, 438

nuclear reactions, 427

Thermal stability. See Secular stability

Thermonuclear fusion, 175, 178, 192

Thermonuclear reaction rates, 182–187

Thomas-peak, 399

Time-scales, 36, 91

accretion, 313

collapsing clouds, 302, 307

convection, 459

explosion, 14

free-fall, 14, 299, 302, 305, 306, 312,

465

helium-burning phase, 371, 373

hydrostatic, 14, 15, 35

Kelvin–Helmholtz, 22–23, 45

local oscillations, 52, 54

main-sequence phase, 347

meridional circulations, 572

nuclear, 35

pre-main-sequence contraction, 328

for the Sun, 22, 35

thermal adjustment, 43–45, 55, 56, 306

Tolman–Oppenheimer–Volkoff (TOV)

equation, 17, 504

Transport of energy

conductive, 42–43, 89

convective, 61–71, 90

diffusion approximation, 38, 40

mechanisms, 37

radiative, 42, 89

Triple ˛ reaction, 197, 199

Tunnelling probability, 179, 482

Turbulence of rotational motion, 578–581

Turbulent viscosity, 576, 577

Uniqueness of solutions, 118–119

Urca process, 206
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U � V plane, 243–250

convective cores, 248–250

isothermal cores, 250

radiative envelopes, 248

Variable stars

ˇ Cephei variables, 540, 552

BL Herculis variables, 539

Cepheids, 375, 378, 538–540

non-radial oscillators, 552

RR Lyrae variables, 408, 414

W Virginis variables, 539

Velocity

convection, 63, 69

meridional circulations, 573–574

Vibrational stability, 290, 292, 529, 530

excitation mechanisms, 534–541

local mass elements, 54–55

piston model, 288, 509

stars in the instability strip, 375, 535, 539

upper-main-sequence stars, 260, 266, 541

Virial theorem, 19–23, 239, 294, 304, 489

piston model, 21–22

surface terms, 23

Viscosity of stellar matter, 69, 70, 577, 579,

583

coefficient, 575

radiative, 576

turbulent, 576

Von Zeipel’s theorem, 567

White dwarfs, 11, 438, 444, 475–496

accreting, 461

chemical composition, 483

cooling time, 432, 488, 491

crystallization, 480–482, 489, 492–494

energy reservoirs, 489, 490

formation of, 437

initial masses of progenitors, 432, 433, 447

limiting mass, 221–222, 475–479, 487, 504

masses, 495

mechanical structure, 479–487

particle interaction effects, 479–487

M � R relation, 221, 477, 478

non-radial oscillations, 552

phase separation, 481, 482

pulsations, 525

thermal properties, 157, 487–496

W Virginis variables, 539

Zero-age horizontal-branch, 408–414

models, 408–410

Zero-age main-sequence (ZAMS), 251–262,

269, 327, 332, 346

ZZ Ceti variables, 552
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