
Undergraduate Topics in Computer Science

Roman Trobec · Boštjan Slivnik
Patricio Bulić · Borut Robič

Introduction
to Parallel
Computing
From Algorithms to Programming on
State-of-the-Art Platforms

Undergraduate Topics in Computer
Science

Series editor

Ian Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK

Chris Hankin, Imperial College London, London, UK

Mike Hinchey, University of Limerick, Limerick, Ireland

Dexter C. Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality

instructional content for undergraduates studying in all areas of computing and

information science. From core foundational and theoretical material to final-year

topics and applications, UTiCS books take a fresh, concise, and modern approach

and are ideal for self-study or for a one- or two-semester course. The texts are all

authored by established experts in their fields, reviewed by an international advisory

board, and contain numerous examples and problems. Many include fully worked

solutions.

More information about this series at http://www.springer.com/series/7592

Roman Trobec • Boštjan Slivnik
Patricio Bulić • Borut Robič

Introduction to Parallel
Computing

From Algorithms to Programming
on State-of-the-Art Platforms

123

Roman Trobec
Jožef Stefan Institute
Ljubljana, Slovenia

Boštjan Slivnik
University of Ljubljana
Ljubljana, Slovenia

Patricio Bulić
University of Ljubljana
Ljubljana, Slovenia

Borut Robič
University of Ljubljana
Ljubljana, Slovenia

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-98832-0 ISBN 978-3-319-98833-7 (eBook)
https://doi.org/10.1007/978-3-319-98833-7

Library of Congress Control Number: 2018951197

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission

or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this

book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To all who make our lives worthwhile.

Preface

This monograph is an overview of practical parallel computing and starts with the

basic principles and rules which will enable the reader to design efficient parallel

programs for solving various computational problems on the state-of-the-art com-

puting platforms.

The book too was written in parallel. The opening Chap. 1: “Why do we need

Parallel Programming” has been shaped by all of us during instant communication

immediately after the idea of writing such a book had cropped up. In fact, the first

chapter was an important motivation for our joint work. We spared no effort in

incorporating of our teaching experience into this book.

The book consists of three parts: Foundations, Programming, and Engineering,

each with a specific focus:

• Part I, Foundations, provides the motivation for embarking on a study of

parallel computation (Chap. 1) and an introduction to parallel computing

(Chap. 2) that covers parallel computer systems, the role of communication,

complexity of parallel problem-solving, and the associated principles and laws.

• Part II, Programming, first discusses shared memory platforms and OpenMP

(Chap. 3), then proceeds to message passing library (Chap. 4), and finally to

massively parallel processors (Chap. 5). Each chapter describes the methodol-

ogy and practical examples for immediate work on a personal computer.

• Part III, Engineering, illustrates parallel solving of computational problems on

three selected problems from three fields: Computing the number p (Chap. 6)

from mathematics, Solving the heat equation (Chap. 7) from physics, and Seam

carving (Chap. 8) from computer science. The book concludes with some final

remarks and perspectives (Chap. 9).

To enable readers to immediately start gaining practice in parallel computing,

Appendix A provides hints for making a personal computer ready to execute

parallel programs under Linux, macOS, and MS Windows.

Specific contributions of the authors are as follows:

• Roman Trobec started the idea of writing a practical textbook, useful for stu-

dents and programmers on a basic and advanced levels. He has contributed

Chap. 4: “MPI Processes and Messaging”, Chap. 9: “Final Remarks and Per-

spectives”, and to chapters of Part III.

vii

• Boštjan Slivnik has contributed Chap. 3: “Programming Multi-core and Shared

Memory Multiprocessors Using OpenMP”. He has also contributed to Chap. 1

and chapters of Part III.

• Patricio Bulić has contributed Chap. 5: “OpenCL for Massively Parallel Gra-

phic Processors” and Chap. 8: “Engineering: Parallel Implementation of Seam

Carving”. His contribution is also in Chap. 1 and chapters of Part III.

• Borut Robič has coordinated our work and cared about the consistency of the

book text. He has contributed Chap. 2: “Overview of Parallel Systems” and to

Chap. 1: “Why do we need Parallel Programming”.

The spectrum of book topics ranges from implementations to efficient applications

of parallel processors on different platforms. The book covers shared memory

many-core processors, shared memory multi-core processors, and interconnected

distributed computers. Chapters of Parts I and II are quite independent and can be

read in any order, while chapters of Part III are related to previous chapters and are

intended to be a final reading.

The target audience comprises undergraduate and graduate students; engineers,

programmers, and industrial experts acting in companies that develop software with

an intention to add parallel capabilities for increased performance; research insti-

tutions that develop and test computationally intensive software with parallel

software codes; and universities and educational institutions that teach courses on

parallel computing. The book may also be interesting and useful for the wider

public in the part where basic principles and benefits of parallel approaches are

presented.

For the readers who wish to be promptly updated with current achievements in

the field of parallel computing, we will maintain this information on the book web

page. There, also a pool of questions and homeworks will be available and main-

tained according to experiences and feedbacks from readers.

We are grateful to all our colleagues who have contributed to this book through

discussions or by reading and commenting parts of the text, in particular to Matjaž

Depolli for his assistance in testing the exemplar programs, and to Andrej Brodnik

for his fruitful suggestions and comments.

For their support of our work, we are indebted to the Jožef Stefan Institute,

Faculty of Computer and Information Science of the University of Ljubljana, and

the Slovenian Research Agency.

Ljubljana, Slovenia Roman Trobec

June 2018 Boštjan Slivnik

Patricio Bulić

Borut Robič

viii Preface

Contents

Part I Foundations

1 Why Do We Need Parallel Programming . 3

1.1 Why—Every Computer Is a Parallel Computer 3

1.2 How—There Are Three Prevailing Types of Parallelism 4

1.3 What—Time-Consuming Computations Can Be Sped up 5

1.4 And This Book—Why Would You Read It? 7

2 Overview of Parallel Systems . 9

2.1 History of Parallel Computing, Systems and Programming 9

2.2 Modeling Parallel Computation . 11

2.3 Multiprocessor Models . 13

2.3.1 The Parallel Random Access Machine 13

2.3.2 The Local-Memory Machine . 17

2.3.3 The Memory-Module Machine . 18

2.4 The Impact of Communication . 18

2.4.1 Interconnection Networks . 19

2.4.2 Basic Properties of Interconnection Networks 19

2.4.3 Classification of Interconnection Networks 22

2.4.4 Topologies of Interconnection Networks 25

2.5 Parallel Computational Complexity . 31

2.5.1 Problem Instances and Their Sizes 31

2.5.2 Number of Processing Units Versus Size of Problem

Instances . 32

2.5.3 The Class NC of Efficiently Parallelizable Problems 33

2.6 Laws and Theorems of Parallel Computation 36

2.6.1 Brent’s Theorem . 36

2.6.2 Amdahl’s Law . 37

2.7 Exercises . 42

2.8 Bibliographical Notes . 44

ix

Part II Programming

3 Programming Multi-core and Shared Memory Multiprocessors

Using OpenMP . 47

3.1 Shared Memory Programming Model . 47

3.2 Using OpenMP to Write Multithreaded Programs 49

3.2.1 Compiling and Running an OpenMP Program 50

3.2.2 Monitoring an OpenMP Program 52

3.3 Parallelization of Loops . 53

3.3.1 Parallelizing Loops with Independent Iterations 54

3.3.2 Combining the Results of Parallel Iterations 62

3.3.3 Distributing Iterations Among Threads 72

3.3.4 The Details of Parallel Loops and Reductions 76

3.4 Parallel Tasks . 78

3.4.1 Running Independent Tasks in Parallel 78

3.4.2 Combining the Results of Parallel Tasks 82

3.5 Exercises and Mini Projects . 84

3.6 Bibliographic Notes . 86

4 MPI Processes and Messaging . 87

4.1 Distributed Memory Computers Can Execute in Parallel 87

4.2 Programmer’s View . 88

4.3 Message Passing Interface . 89

4.3.1 MPI Operation Syntax . 92

4.3.2 MPI Data Types . 93

4.3.3 MPI Error Handling . 95

4.3.4 Make Your Computer Ready for Using MPI 95

4.3.5 Running and Configuring MPI Processes 95

4.4 Basic MPI Operations . 98

4.4.1 MPI_INIT (int *argc, char ***argv) 98

4.4.2 MPI_FINALIZE () . 98

4.4.3 MPI_COMM_SIZE (comm, size) 98

4.4.4 MPI_COMM_RANK (comm, rank) 98

4.5 Process-to-Process Communication . 99

4.5.1 MPI_SEND (buf, count, datatype, dest,

tag, comm) . 100

4.5.2 MPI_RECV (buf, count, datatype, source,

tag, comm, status) . 101

4.5.3 MPI_SENDRECV (sendbuf, sendcount,

sendtype, dest, sendtag, recvbuf,

recvcount, recvtype, source, recvtag,

comm, status) . 103

4.5.4 Measuring Performances . 104

x Contents

4.6 Collective MPI Communication . 107

4.6.1 MPI_BARRIER (comm) . 107

4.6.2 MPI_BCAST (inbuf, incnt, intype, root,

comm) . 108

4.6.3 MPI_GATHER (inbuf, incnt, intype,

outbuf, outcnt, outtype, root, comm) 108

4.6.4 MPI_SCATTER (inbuf, incnt, intype,

outbuf, outcnt, outtype, root, comm) 109

4.6.5 Collective MPI Data Manipulations 110

4.7 Communication and Computation Overlap 114

4.7.1 Communication Modes . 115

4.7.2 Sources of Deadlocks . 117

4.7.3 Some Subsidiary Features of Message Passing 122

4.7.4 MPI Communicators . 123

4.8 How Effective Are Your MPI Programs? 128

4.9 Exercises and Mini Projects . 129

4.10 Bibliographical Notes . 131

5 OpenCL for Massively Parallel Graphic Processors 133

5.1 Anatomy of a GPU . 133

5.1.1 Introduction to GPU Evolution . 134

5.1.2 A Modern GPU . 138

5.1.3 Scheduling Threads on Compute Units 139

5.1.4 Memory Hierarchy on GPU . 142

5.2 Programmer’s View . 145

5.2.1 OpenCL . 145

5.2.2 Heterogeneous System . 146

5.2.3 Execution Model . 146

5.2.4 Memory Model . 148

5.3 Programming in OpenCL . 150

5.3.1 A Simple Example: Vector Addition 150

5.3.2 Sum of Arbitrary Long Vectors 173

5.3.3 Dot Product in OpenCL . 176

5.3.4 Dot Product in OpenCL Using Local Memory 180

5.3.5 Naive Matrix Multiplication in OpenCL 186

5.3.6 Tiled Matrix Multiplication in OpenCL 189

5.4 Exercises . 195

5.5 Bibliographical Notes . 195

Contents xi

Part III Engineering

6 Engineering: Parallel Computation of the Number p 199

6.1 OpenMP . 202

6.2 MPI . 204

6.3 OpenCL . 208

7 Engineering: Parallel Solution of 1-D Heat Equation 211

7.1 OpenMP . 215

7.2 MPI . 216

8 Engineering: Parallel Implementation of Seam Carving 223

8.1 Energy Calculation . 225

8.2 Seam Identification . 226

8.3 Seam Labeling and Removal . 229

8.4 Seam Carving on GPU . 232

8.4.1 Seam Carving on CPU . 233

8.4.2 Seam Carving in OpenCL . 235

9 Final Remarks and Perspectives . 241

Appendix: Hints for Making Your Computer a Parallel Machine 243

References . 251

Index . 253

xii Contents

Part I

Foundations

In Part I, we first provide the motivation for delving into the realm of parallel com-

putation and especially of parallel programming. There are several reasons for doing

so: first, our computers are already parallel; secondly, parallelism can be of great

practical value when it comes to solving computationally demanding problems from

various areas; and finally, there is inertia in the design of contemporary computers

which keeps parallelism a key ingredient of future computers.

The second chapter provides an introduction to parallel computing. It describes

different parallel computer systems and formal models for describing such systems.

Then, various patterns for interconnecting processors and memories are described

and the role of communication is emphasized. All these issues have impact on the

execution time required to solve computational problems. Thus, we introduce the

necessary topics of the parallel computational complexity. Finally, we present some

laws and principles that govern parallel computation.

1Why Do We Need Parallel
Programming

Chapter Summary

The aim of this chapter is to give a motivation for the study of parallel computing and

in particular parallel programming. Contemporary computers are parallel, and there

are various reasons for that. Parallelism comes in three different prevailing types

which share common underlying principles. Most importantly, parallelism can help

us solve demanding computational problems.

1.1 Why—Every Computer Is a Parallel Computer

Nowadays, all computers are essentially parallel. This means that within every oper-

ating computer there always exist various activities which, one way or another, run

in parallel, at the same time. Parallel activities may arise and come to an end inde-

pendently of each other—or, they may be created purposely to involve simultaneous

performance of various operations whose interplay will eventually lead to the desired

result. Informally, the parallelism is the existence of parallel activities within a com-

puter and their use in achieving a common goal. The parallelism is found on all levels

of a modern computer’s architecture:

• First, parallelism is present deep in the processor microarchitecture. In the past,

processors ran programs by repeating the so-called instruction cycle, a sequence

of four steps: (i) reading and decoding an instruction; (ii) finding data needed to

process the instruction; (iii) processing the instruction; and (iv) writing the result

out. Since step (ii) introduced lengthy delays which were due to the arriving data,

much of research focused on designs that reduced these delays and in this way

increased the effective execution speed of programs. Over the years, however, the

main goal has become the design of a processor capable of execution of several

instructions simultaneously. The workings of such a processor enabled detection

and exploitation of parallelism inherent in instruction execution. These processors

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_1&domain=pdf

4 1 Why Do We Need Parallel Programming

allowed even higher execution speeds of programs, regardless of the processor

and memory frequency.

• Second, any commercial computer, tablet, and smartphone contain a processor

with multiple cores, each of which is capable of running its own instruction

stream. If the streams are designed so that the cores collaborate in running an

application, the application is run in parallel and may be considerably sped up.

• Third, many servers contain several multi-core processors. Such a server is

capable of running a service in parallel, and also several services in parallel.

• Finally, even consumer-level computers contain graphic processors capable of

running hundreds or even thousands of threads in parallel. Processors capable of

coping with such a large parallelism are necessary to support graphic animation.

There are many reasons for making modern computers parallel:

• First, it is not possible to increase processor and memory frequencies indefinitely,

at least not with the current silicon-based technology. Therefore, to increase com-

putational power of computers, new architectural and organizational concepts are

needed.

• Second, power consumption rises with processor frequency while the energy

efficiency decreases. However, if the computation is performed in parallel at

lower processor speed, the undesirable implications of frequency increase can

be avoided.

• Finally, parallelism has become a part of any computer and this is likely to remain

unchanged due to simple inertia: parallelism can be done and it sells well.

1.2 How—There Are Three Prevailing Types of Parallelism

During the last decades, many different parallel computing systems appeared on

the market. First, they have been sold as supercomputers dedicated to solving spe-

cific scientific problems. Perhaps, the most known are the computers made by Cray

and Connection Machine Corporation. But as mentioned above, the parallelism has

spread all the way down into the consumer market and all kinds of handheld devices.

Various parallel solutions gradually evolved into modern parallel systems that

exhibit at least one of the three prevailing types of parallelism:

• First, shared memory systems, i.e., systems with multiple processing units

attached to a single memory.

• Second, distributed systems, i.e., systems consisting of many computer units,

each with its own processing unit and its physical memory, that are connected

with fast interconnection networks.

• Third, graphic processor units used as co-processors for solving general-purpose

numerically intensive problems.

1.2 How—There Are Three Prevailing Types of Parallelism 5

Apart from the parallel computer systems that have become ubiquitous, extremely

powerful supercomputers continue to dominate the parallel computing achieve-

ments. Supercomputers can be found on the Top 500 list of the fastest computer

systems ever built and even today they are the joy and pride of the world superpow-

ers.

But the underlying principles of parallel computing are the same regardless of

whether the top supercomputers or consumer devices are being programmed. The

programming principles and techniques gradually evolved during all these years.

Nevertheless, the design of parallel algorithms and parallel programming are still

considered to be an order of magnitude harder than the design of sequential algo-

rithms and sequential-program development.

Relating to the three types of parallelism introduced above, three different

approaches to parallel programming exist: threads model for shared memory sys-

tems, message passing model for distributed systems, and stream-based model for

GPUs.

1.3 What—Time-Consuming Computations Can Be Sped up

To see how parallelism can help you solve problems, it is best to look at examples.

In this section, we will briefly discuss the so-called n-body problem.

The n-body problem The classicaln-body problem is the problem of predicting the

individual motions of a group of objects that interact with each other by gravitation.

Here is a more accurate statement of the problem:

The classical n-body problem

Given the position and momentum of each member of a group of bodies at an

initial instant, compute their positions and velocities for all future instances.

While the classical n-body problem was motivated by the desire to understand

the motions of the Sun, Moon, planets, and the visible stars, it is nowadays used to

comprehend the dynamics of globular cluster star systems. In this case, the usual

Newton mechanics, which governs the moving of bodies, must be replaced by the

Einstein’s general relativity theory, which makes the problem even more difficult.

We will, therefore, refrain from dealing with this version of the problem and focus

on the classical version as introduced above and on the way it is solved on a parallel

computer.

So how can we solve a given classical n-body problem? Let us first describe in

what form we expect the solution of the problem. As mentioned above, the classical

n-body problem assumes the classical, Newton’s mechanics, which we all learned in

school. Using this mechanics, a given instance of the n-body problem is described as

6 1 Why Do We Need Parallel Programming

a particular system of 6n differential equations that, for each of n bodies, define its

location (x(t), y(t), z(t)) and momentum (mvx (t), mvy(t), mvz(t)) at an instant t .

The solution of this system is the sought-for description of the evolution of the

n-body system at hand. Thus, the question of solvability of a particular classical

n-body problem boils down to the question of solvability of the associated system of

differential equations that are finally transformed into a system of linear equations.

Today, we know that

• if n = 2, the classical n-body problem always has analytical solution, simply

because the associated system of equations has an analytic solution.

• if n > 2, analytic solutions exist just for certain initial configurations of n bodies.

• In general, however, n-body problems cannot be solved analytically.

It follows that, in general, the n-body problem must be solved numerically, using

appropriate numerical methods for solving systems of differential equations.

Can we always succeed in this? The numerical methods numerically integrate the

differential equations of motion. To obtain the solution, such methods require time

which grows proportionally to n2. We say that the methods have time complexity of

the order O(n2). At first sight, this seems to be rather promising; however, there is

a large hidden factor in this O(n2). Because of this factor, only the instances of the

n-body problem with small values of n can be solved using these numerical methods.

To extend solvability to larger values of n, methods with smaller time complexity

must be found. One such is the Barnes–Hut method with time complexity O(n log n).

But, again, only the instances with limited (though larger) values of n can be solved.

For large values of n, numerical methods become prohibitively time-consuming.

Unfortunately, the values of n are in practice usually very large. Actually, they are

too large for the abovementioned numerical methods to be of any practical value.

What can we do in this situation? Well, at this point, parallel computation enters

the stage. The numerical methods which we use for solving systems of differential

equations associated with the n-body problem are usually programmed for single-

processor computers. But if we have at our disposal a parallel computer with many

processors, it is natural to consider using all of them so that they collaborate and

jointly solve systems of differential equations. To achieve that, however, we must

answer several nontrivial questions: (i) How can we partition a given numerical

method into subtasks? (ii) Which subtasks should each processor perform? (iii) How

should each processor collaborate with other processors? And then, of course, (iv)

How will we code all of these answers in the form of a parallel program, a program

capable of running on the parallel computer and exploiting its resources.

The above questions are not easy, to be sure, but there have been designed parallel

algorithms for the above numerical methods, and written parallel programs that

implement the algorithms for different parallel computers. For example, J. Dubinsky

et al. designed a parallel Barnes–Hut algorithm and parallel program which divides

the n-body system into independent rectangular volumes each of which is mapped

to a processor of a parallel computer. The parallel program was able to simulate

evolution of n-body systems consisting of n = 640,000 to n = 1,000,000 bodies. It

turned out that, for such systems, the optimal number of processing units was 64.

1.3 What—Time-Consuming Computations Can Be Sped up 7

At that number, the processors were best load-balanced and communication between

them was minimal.

1.4 And This Book—Why Would You Read It?

We believe that this book could provide the first step in the process of attaining

the ability to efficiently solve, on a parallel computer, not only the n-body problem

but also many other computational problems of a myriad of scientific and applied

problems whose high computational and/or data complexities make them virtually

intractable even on the fastest sequential computers.

2Overview of Parallel Systems

Chapter Summary

In this chapter we overview the most important basic notions, concepts, and the-

oretical results concerning parallel computation. We describe three basic models

of parallel computation, then focus on various topologies for interconnection of

parallel computer nodes. After and a brief introduction to analysis of parallel com-

putation complexity, we finally explain two important laws of parallel computation,

the Amdahl’s law and Brents’s theorem.

2.1 History of Parallel Computing, Systems and Programming

Let Π be an arbitrary computational problem which is to be solved by a computer.

Usually our first objective is to design an algorithm for solving Π . Clearly, the class

of all algorithms is infinite, but we can partition it into two subclasses, the class of

all sequential algorithms and the class of all parallel algorithms.1 While a sequential

algorithm performs one operation in each step, a parallel algorithm may perform

multiple operations in a single step. In this book, we will be mainly interested in

parallel algorithms. So, our objective is to design a parallel algorithm for Π .

Let P be an arbitrary parallel algorithm. We say that there is parallelism in

P . The parallelism in P can be exploited by various kinds of parallel computers.

For instance, multiple operations of P may be executed simultaneously by multiple

processing units of a parallel computer C1; or, perhaps, they may be executed by

multiple pipelined functional units of a single-processor computer C2. After all, P

1There are also other divisions that partition the class of all algorithms according to other criteria,

such as exact and non-exact algorithms; or deterministic and non-deterministic algorithms. However,

in this book we will not divide algorithms systematically according to these criteria.

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_2&domain=pdf

10 2 Overview of Parallel Systems

can always be sequentially executed on a single-processor computer C3, simply by

executing P’s potentially parallel operations one by one in succession.

Let C(p) be a parallel computer of the kind C which contains p processing units.

Naturally, we expect the performance of P on C(p) to depend both on C and p. We

must, therefore, clearly distinguish between the potential parallelism in P on the one

side, and the actual capability of C(p) to execute, in parallel, multiple operations of

P , on the other side. So the performance of the algorithm P on the parallel computer

C(p) depends on C(p)’s capability to exploit P’s potential parallelism.

Before we continue, we must unambiguously define what we really mean by the

term “performance” of a parallel algorithm P . Intuitively, the “performance” might

mean the time required to execute P on C(p); this is called the parallel execution

time (or, parallel runtime) of P on C(p), which we will denote by

Tpar.

Alternatively, we might choose the “performance” to mean how many times is the

parallel execution of P on C(p) faster than the sequential execution of P; this is

called the speedup of P on C(p),

S
def

=
T seq

T par

.

So parallel execution of P on C(p) is S-times faster than sequential execution

of P . Next, we might be interested in how much of the speedup S is, on average,

due to each of the processing units. Put differently, the term “performance” might

be understood as the average contribution of each of the p processing units of C(p)

to the speedup; this is called the efficiency of P on C(p),

E
def

=
S

p
.

Since Tpar � Tseq � p ·Tpar, it follows that speedup is bounded above by p and effi-

ciency is bounded above by

E � 1.

This means that, for any C and p, the parallel execution of P on C(p) can be at most

p times faster than the execution of P on a single processor. And the efficiency of the

parallel execution of P on C(p) can be at most 1. (This is when each processing unit

is continually engaged in the execution of P , thus contributing 1
p

-th to its speedup.)

Later, in Sect. 2.5, we will involve one more parameter to these definitions.

From the above definitions we see that both speedup and efficiency depend on

Tpar, the parallel execution time of P on C(p). This raises new questions:

2.1 History of Parallel Computing, Systems and Programming 11

How do we determine Tpar?

How does Tpar depend on C (the kind of a parallel computer) ?

Which properties of C must we take into account in order to determine Tpar?

These are important general questions about parallel computation which must be

answered prior to embarking on a practical design and analysis of parallel algorithms.

The way to answer these questions is to appropriately model parallel computation.

2.2 Modeling Parallel Computation

Parallel computers vary greatly in their organization. We will see in the next section

that their processing units may or may not be directly connected one to another; some

of the processing units may share a common memory while the others may only own

local (private) memories; the operation of the processing units may be synchronized

by a common clock, or they may run each at its own pace. Furthermore, usually there

are architectural details and hardware specifics of the components, all of which show

up during the actual design and use of a computer. And finally, there are technological

differences, which manifest in different clock rates, memory access times etc. Hence,

the following question arises:

Which properties of parallel computers must be considered

and which may be ignored in the design and analysis of parallel algorithms?

To answer the question, we apply ideas similar to those discovered in the case of

sequential computation. There, various models of computation were discovered.2

In short, the intention of each of these models was to abstract the relevant properties

of the (sequential) computation from the irrelevant ones.

In our case, a model called the Random Access Machine (RAM) is particularly

attractive. Why? The reason is that RAM distills the important properties of the

general-purpose sequential computers, which are still extensively used today, and

which have actually been taken as the conceptual basis for modeling of parallel

computing and parallel computers. Figure 2.1 shows the structure of the RAM.

2Some of these models of computation are the μ-recursive functions, recursive functions, λ-calculus,

Turing machine, Post machine, Markov algorithms, and RAM.

12 2 Overview of Parallel Systems

Fig. 2.1 The RAM model of

computation has a memory

M (containing program

instructions and data) and a

processing unit P (executing

instructions on data)

MEMORY

0 1 2

PROCESSING UNIT

registers

pc = r
1

a = r
2

rn

k

P

M

Here is a brief description of RAM:

• The RAM consists of a processing unit and a memory. The memory is a poten-

tially infinite sequence of equally sized locations m0, m1, The index i is called

the address of mi . Each location is directly accessible by the processing unit: given

an arbitrary i , reading from mi or writing to mi is accomplished in constant time.

Registers are a sequence r1 . . . rn of locations in the processing unit. Registers are

directly accessible. Two of them have special roles. Program counter pc (=r1)

contains the address of the location in the memory which contains the instruction

to be executed next. Accumulator a (=r2) is involved in the execution of each

instruction. Other registers are given roles as needed. The program is a finite

sequence of instructions (similar to those in real computers).

• Before the RAM is started, the following is done: (a) a program is loaded into

successive locations of the memory starting with, say, m0; (b) input data are written

into empty memory locations, say after the last program instruction.

• From now on, the RAM operates independently in a mechanical stepwise fashion

as instructed by the program. Let pc = k at the beginning of a step. (Initially,

k = 0.) From the location mk , the instruction I is read and started. At the same

time, pc is incremented. So, when I is completed, the next instruction to be

executed is in mk+1, unless I was one of the instructions that change pc (e.g.

jump instructions).

So the above question boils down to the following question:

What is the appropriate model of parallel computation?

It turned out that finding an answer to this question is substantially more challenging

than it was in the case of sequential computation. Why? Since there are many ways

to organize parallel computers, there are also many ways to model them; and what is

difficult is to select a single model that will be appropriate for all parallel computers.

2.2 Modeling Parallel Computation 13

As a result, in the last decades, researchers proposed several models of parallel

computation. However, no common agreement has been reached about which is the

right one. In the following, we describe those that are based on RAM.3

2.3 Multiprocessor Models

A multiprocessor model is a model of parallel computation that builds on the RAM

model of computation; that is, it generalizes the RAM. How does it do that?

It turns out that the generalization can be done in three essentially different ways

resulting in three different multiprocessor models. Each of the three models has some

number p (�2) of processing units, but the models differ in the organization of their

memories and in the way the processing units access the memories.

The models are called the

• Parallel Random Access Machine (PRAM),

• Local Memory Machine (LMM), and

• Modular Memory Machine (MMM).

Let us describe them.

2.3.1 The Parallel Random Access Machine

The Parallel Random Access Machine, in short PRAM model, has p processing

units that are all connected to a common unbounded shared memory (Fig. 2.2). Each

processing unit can, in one step, access any location (word) in the shared memory

by issuing a memory request directly to the shared memory.

The PRAM model of parallel computation is idealized in several respects. First,

there is no limit on the number p of processing units, except that p is finite. Next,

also idealistic is the assumption that a processing unit can access any location in the

shared memory in one single step. Finally, for words in the shared memory it is only

assumed that they are of the same size; otherwise they can be of arbitrary finite size.

Note that in this model there is no interconnection network for transferring mem-

ory requests and data back and forth between processing units and shared memory.

(This will radically change in the other two models, the LMM (see Sect. 2.3.2) and

the MMM (see Sect. 2.3.3)).

However, the assumption that any processing unit can access any memory location

in one step is unrealistic. To see why, suppose that processing units Pi and P j

3In fact, currently the research is being pursued also in other, non-conventional directions, which

do not build on RAM or any other conventional computational models (listed in previous footnote).

Such are, for example, dataflow computation and quantum computation.

14 2 Overview of Parallel Systems

Fig. 2.2 The PRAM model

of parallel computation: p

processing units share an

unbounded memory. Each

processing unit can in one

step access any memory

location
SHARED MEMORY

PpP1 P2 P3

Fig. 2.3 Hazards of

simultaneous access to a

location. Two processing

units simultaneously issue

instructions each of which

needs to access the same

location L

LIi Ij

Pi

SHARED MEMORY

Pj

simultaneously issue instructions Ii and I j where both instructions intend to access

(for reading from or writing to) the same memory location L (see Fig. 2.3).

Even if a truly simultaneous physical access to L had been possible, such an

access could have resulted in unpredictable contents of L. Imagine what would be

the contents of L after simultaneously writing 3 and 5 into it. Thus, it is reasonable

to assume that, eventually, actual accesses of Ii and I j to L are somehow, on the fly

serialized (sequentialized) by hardware so that Ii and I j physically access L one after

the other.

Does such an implicit serialization neutralize all hazards of simultaneous access

to the same location? Unfortunately not so. The reason is that the order of physical

accesses of Ii and I j to L is unpredictable: after the serialization, we cannot know

whether Ii will physically access L before or after I j .

Consequently, also the effects of instructions Ii and I j are unpredictable (Fig. 2.3).

Why? If both Pi and P j want to read simultaneously from L, the instructions Ii and

I j will both read the same contents of L, regardless of their serialization, so both

processing units will receive the same contents of L—as expected. However, if one

of the processing units wants to read from L and the other simultaneously wants

to write to L, then the data received by the reading processing unit will depend

on whether the reading instruction has been serialized before or after the writing

instruction. Moreover, if both Pi and P j simultaneously attempt to write to L, the

resulting contents of L will depend on how Ii and I j have been serialized, i.e., which

of Ii and I j was the last to physically write to L.

In sum, simultaneous access to the same location may end in unpredictable data

in the accessing processing units as well as in the accessed location.

In view of these findings it is natural to ask: Does this unpredictability make the

PRAM model useless? The answer is no, as we will see shortly.

2.3 Multiprocessor Models 15

The Variants of PRAM

The above issues led researchers to define several variations of PRAM that differ in

(i) which sorts of simultaneous accesses to the same location are allowed; and

(ii) the way in which unpredictability is avoided when simultaneously accessing the

same location.

The variations are called the

• Exclusive Read Exclusive Write PRAM (EREW-PRAM),

• Concurrent Read Exclusive Write PRAM (CREW-PRAM), and

• Concurrent Read Concurrent Write PRAM (CRCW-PRAM).

We now describe them into more detail:

• EREW-PRAM. This is the most realistic of the three variations of the PRAM

model. The EREW-PRAM model does not support simultaneous accessing to the

same memory location; if such an attempt is made, the model stops executing

its program. Accordingly, the implicit assumption is that programs running on

EREW-PRAM never issue instructions that would simultaneously access the same

location; that is, any access to any memory location must be exclusive. So the

construction of such programs is the responsibility of algorithm designers.

• CREW-PRAM. This model supports simultaneous reads from the same memory

location but requires exclusive writes to it. Again, the burden of constructing such

programs is on the algorithm designer.

• CRCW-PRAM. This is the least realistic of the three versions of the PRAM model.

The CRCW-PRAM model allows simultaneous reads from the same memory loca-

tion, simultaneous writes to the same memory location, and simultaneous reads

from and writes to the same memory location. However, to avoid unpredictable

effects, different additional restrictions are imposed on simultaneous writes. This

yields the following versions of the model CRCW-PRAM:

– CONSISTENT-CRCW-PRAM. Processing units may simultaneously attempt

to write to L, but it is assumed that they all need to write the same value to L.

To guarantee that is, of course, the responsibility of the algorithm designer.

– ARBITRARY-CRCW-PRAM. Processing units may simultaneously attempt

to write to L (not necessarily the same value), but it is assumed that only one

of them will succeed. Which processing unit will succeed is not predictable, so

the programmer must take this into account when designing the algorithm.

– PRIORITY-CRCW-PRAM. There is a priority order imposed on the pro-

cessing units; e.g., the processing unit with smaller index has higher priority.

Processing units may simultaneously attempt to write to L, but it is assumed that

only the one with the highest priority will succeed. Again, algorithm designer

must foresee and mind every possible situation during the execution.

16 2 Overview of Parallel Systems

– FUSION-CRCW-PRAM. Processing units may simultaneously attempt to

write to L, but it is assumed that

⋄ first a particular operation, denoted by ◦, will be applied on-the-fly to all

the values v1, v2, . . . , vk to be written to L, and

⋄ only then the result v1 ◦ v2 ◦ · · · ◦ vk of the operation ◦ will be written

to L.

The operation ◦ is assumed to be associative and commutative, so that the

value of the expression v1 ◦ v2 ◦ · · · ◦ vk does not dependent on the order of

performing the operations ◦. Examples of the operation ◦ are the sum (+),

product (·), maximum (max), minimum (min), logical conjunction (∧), and

logical disjunction (∨).

⋆ The Relative Power of the Variants

As the restrictions of simultaneous access to the same location are relaxed when we

pass from EREW-PRAM to CREW-PRAM and then to CRCW-PRAM, the variants

of PRAM are becoming less and less realistic. On the other hand, as the restrictions

are dropped, it is natural to expect that the variants may be gaining in their power.

So we pose the following question:

Do EREW-PRAM, CREW-PRAM and CRCW-PRAM differ in their power?

The answer is yes, but not too much. The foggy “too much” is clarified in the next

Theorem, where CRCW-PRAM(p) denotes the CRCW-PRAM with p processing

units, and similarly for the EREW-PRAM(p). Informally, the theorem tells us that by

passing from the EREW-PRAM(p) to the “more powerful” CRCW-PRAM(p) the

parallel execution time of a parallel algorithm may reduce by some factor; however,

this factor is bounded above and, indeed, it is at most of the order O(log p).

Theorem 2.1 Every algorithm for solving a computational problem Π on the

CRCW-PRAM(p) is at most O(log p)-times faster than the fastest algorithm for

solving Π on the EREW-PRAM(p).

Proof Idea We first show that CONSISTENT-CRCW-PRAM(p)’s simultaneous writ-

ings to the same location can be performed by EREW-PRAM(p) in O(log p) steps.

Consequently, EREW-PRAM can simulate CRCW-PRAM, with slowdown factor

O(log p). Then we show that this slowdown factor is tight, that is, there exists a

computational problem Π for which the slowdown factor is actually �(log p). Such

a Π is, for example, the problem of finding the maximum of n numbers. �

2.3 Multiprocessor Models 17

Relevance of the PRAM Model

We have explained why the PRAM model is unrealistic in the assumption of an

immediately addressable, unbounded shared memory. Does this necessarily mean

that the PRAM model is irrelevant for the purposes of practical implementation of

parallel computation? The answer depends on what we expect from the PRAM model

or, more generally, how we understand the role of theory.

When we strive to design an algorithm for solving a problem Π on PRAM, our

efforts may not end up with a practical algorithm, ready for solving Π . However,

the design may reveal something inherent to Π , namely, that Π is parallelizable.

In other words, the design may detect in Π subproblems some of which could,

at least in principle, be solved in parallel. In this case it usually proves that such

subproblems are indeed solvable in parallel on the most liberal (and unrealistic)

PRAM, the CRCW-PRAM.

At this point the importance of Theorem 2.1 becomes apparent: we can replace

CRCW-PRAM by the realistic EREW-PRAM and solve Π on the latter. (All of that

at the cost of a limited degradation in the speed of solving Π).

In sum, the relevance of PRAM is reflected in the following method:

1. Design a program P for solving Π on the model CRCW-PRAM(p), where p

may depend on the problem Π . Note that the design of P for CRCW-PRAM is

expected to be easier than the design for EREW-PRAM, simply because CRCW-

PRAM has no simultaneous-access restrictions to be taken into account.

2. Run P on EREW-PRAM(p), which is assumed to be able to simulate simultane-

ous accesses to the same location.

3. Use Theorem 2.1 to guarantee that the parallel execution time of P on EREW-

PRAM(p) is at most O(log p)-times higher than it would be on the less realistic

CRCW-PRAM(p).

2.3.2 The Local-Memory Machine

The LMM model has p processing units, each with its own local memory (Fig. 2.4).

The processing units are connected to a common interconnection network. Each

processing unit can access its own local memory directly. In contrast, it can access

a non-local memory (i.e., local memory of another processing unit) only by sending

a memory request through the interconnection network.

The assumption is that all local operations, including accessing the local memory,

take unit time. In contrast, the time required to access a non-local memory depends

on

• the capability of the interconnection network and

• the pattern of coincident non-local memory accesses of other processing units as

the accesses may congest the interconnection network.

18 2 Overview of Parallel Systems

INTERCONNECTION NETWORK

Pp

M1 M2 Mp

P1 P2

Fig.2.4 The LMM model of parallel computation has p processing units each with its local memory.

Each processing unit directly accesses its local memory and can access other processing unit’s local

memory via the interconnection network

Fig. 2.5 The MMM model

of parallel computation has

p processing units and m

memory modules. Each

processing unit can access

any memory module via the

interconnection network.

There are no local memories

to the processing units

INTERCONNECTION NETWORK

PpP1 P2

M1 M2 Mm

P3

2.3.3 The Memory-Module Machine

The MMM model (Fig. 2.5) consists of p processing units and m memory modules

each of which can be accessed by any processing unit via a common interconnection

network. There are no local memories to processing units. A processing unit can

access the memory module by sending a memory request through the interconnection

network.

It is assumed that the processing units and memory modules are arranged in such

a way that—when there are no coincident accesses—the time for any processing

unit to access any memory module is roughly uniform. However, when there are

coincident accesses, the access time depends on

• the capability of the interconnection network and

• the pattern of coincident memory accesses.

2.4 The Impact of Communication

We have seen that both LMM model and MMM model explicitly use interconnec-

tion networks to convey memory requests to the non-local memories (see Figs. 2.4

and 2.5). In this section we focus on the role of an interconnection network in a

2.4 The Impact of Communication 19

multiprocessor model and its impact on the the parallel time complexity of parallel

algorithms.

2.4.1 Interconnection Networks

Since the dawn of parallel computing, the major hallmark of a parallel system have

been the type of the central processing unit (CPU) and the interconnection net-

work. This is now changing. Recent experiments have shown that execution times

of most real world parallel applications are becoming more and more dependent on

the communication time rather than on the calculation time. So, as the number of

cooperating processing units or computers increases, the performance of intercon-

nection networks is becoming more important than the performance of the processing

unit. Specifically, the interconnection network has great impact on the efficiency and

scalability of a parallel computer on most real world parallel applications. In other

words, high performance of an interconnection network may ultimately reflect in

higher speedups, because such an interconnection network can shorten the overall

parallel execution time as well as increase the number of processing units that can

be efficiently exploited.

The performance of an interconnection network depends on several factors. Three

of the most important are the routing, the flow-control algorithms, and the network

topology. Here routing is the process of selecting a path for traffic in an interconnec-

tion network; flow control is the process of managing the rate of data transmission

between two nodes to prevent a fast sender from overwhelming a slow receiver; and

network topology is the arrangement of the various elements, such as communica-

tion nodes and channels, of an interconnection network.

For the routing and flow-control algorithms efficient techniques are already known

and used. In contrast, network topologies haven’t been adjusting to changes in tech-

nological trends as promptly as the routing and flow-control algorithms. This is one

reason that many network topologies which were discovered soon after the very birth

of parallel computing are still being widely used. Another reason is the freedom that

end users have when they are choosing the appropriate network topology for the

anticipated usage. (Due to modern standards, there is no such freedom in picking

or altering routing or flow-control algorithms). As a consequence, a further step in

performance increase can be expected to come from the improvements in the topol-

ogy of interconnection networks. For example, such improvements should enable

interconnection networks to dynamically adapt to the current application in some

optimal way.

2.4.2 Basic Properties of Interconnection Networks

We can classify interconnection networks in many ways and characterize them by

various parameters. For defining most of these parameters, graph theory is the most

elegant mathematical framework. More specifically, an interconnection network can

20 2 Overview of Parallel Systems

be modeled as a graph G(N , C), where N is a set of communication nodes and C

is a set of communication links (or, channels) between the communication nodes.

Based on this graph-theoretical view of interconnection networks, we can define

parameters that represent both topological properties and performance properties

of interconnection networks. Let us describe both kinds of properties.

Topological Properties of Interconnection Networks

The most important topological properties of interconnection networks, defined by

graph-theoretical notions, are the

• node degree,

• regularity,

• symmetry,

• diameter,

• path diversity, and

• expansion scalability.

In the following we define each of them and give comments where appropriate:

• The node degree is the number d of channels through which a communica-

tion node is connected to other communication nodes. Notice, that node degree

includes only the ports for the network communication, although a communica-

tion node also needs ports for the connection to the processing element(s) and

ports for service or maintenance channels.

• An interconnection network is said to be regular if all communication nodes have

the same node degree; that is, there is a d > 0 such that every communication

node has node degree d.

• An interconnection network is said to be symmetric if all communication nodes

possess the “same view” of the network; that is, there is a homomorphism that

maps any communication node to any other communication node. In a symmetric

interconnection network, the load can be evenly distributed through all communi-

cation nodes, thus reducing congestion problems. Many real implementations of

interconnection networks are based on symmetric regular graphs because of their

fruitful topological properties that lead to a simple routing and fair load balancing

under the uniform traffic.

• In order to move from a source node to a destination node, a packet must traverse

through a series of elements, such as routers or switches, that together comprise

a path (or, route) between the source and the destination node. The number of

communication nodes traversed by the packet along this path is called the hop

count. In the best case, two nodes communicate through the path which has the

minimum hop count, l, taken over all paths between the two nodes. Since l may

vary with the source and destination nodes, we also use the average distance,

lavg , which is average l taken over all possible pairs of nodes. An important

characteristic of any topology is the diameter, lmax , which is the maximum of all

the minimum hop counts, taken over all pairs of source and destination nodes.

2.4 The Impact of Communication 21

• In an interconnection network, there may exist multiple paths between two nodes.

In such case, the nodes can be connected in many ways. A packet starting at source

node will have at its disposal multiple routes to reach the destination node. The

packet can take different routes (or even different continuations of a traversed part

of a route) depending on the current situation in the network. An interconnection

network that has high path diversity offers more alternatives when packets need

to seek their destinations and/or avoid obstacles.

• Scalability is (i) the capability of a system to handle a growing amount of work,

or (ii) the potential of the system to be enlarged to accommodate that growth. The

scalability is important at every level. For example, the basic building block must

be easily connected to other blocks in a uniform way. Moreover, the same building

block must be used to build interconnection networks of different sizes, with only

a small performance degradation for the maximum-size parallel computer. Inter-

connection networks have important impact on scalability of parallel computers

that are based on the LMM or MMM multiprocessor model. To appreciate that,

note that scalability is limited if node degree is fixed.

Performance Properties of Interconnection Networks

The main performance properties of interconnection networks are the

• channel bandwidth,

• bisection bandwidth, and

• latency.

We now define each of them and give comments where appropriate:

• Channel bandwidth, in short bandwidth, is the amount of data that is, or theo-

retically could be, communicated through a channel in a given amount of time.

In most cases, the channel bandwidth can be adequately determined by using a

simple model of communication which advocates that the communication time

tcomm, needed to communicate given data through the channel, is the sum ts + td
of the start-up time ts, needed to set-up the channel’s software and hardware, and

the data transfer time td, where td = mtw, the product of the number of words

making up the data, m, and the transfer time per one word, tw. Then the channel

bandwidth is 1/tw.

• A given interconnection network can be cut into two (almost) equal-sized compo-

nents. Generally, this can be done in many ways. Given a cut of the interconnection

network, the cut-bandwidth is the sum of channel bandwidths of all channels con-

necting the two components. The smallest cut-bandwidth is called the bisection

bandwidth (BBW) of the interconnection network. The corresponding cut is the

worst-case cut of the interconnection network. Occasionally, the bisection band-

width per node (BBWN) is needed; we define it as BBW divided by |N |, the

number of nodes in the network. Of course, both BBW and BBWN depend on

the topology of the network and the channel bandwidths. All in all, increasing

22 2 Overview of Parallel Systems

the bandwidth of the interconnection network can have as beneficial effects as

increasing the CPU clock (recall Sect. 2.4.1).

• Latency is the time required for a packet to travel from the source node to the

destination node. Many applications, especially those using short messages, are

latency sensitive in the sense that efficiencies of these applications strongly depend

on the latency. For such applications, their software overhead may become a major

factor that influences the latency. Ultimately, the latency is bounded below by the

time in which light traverses the physical distance between two nodes.

The transfer of data from a source node to a destination node is measured in terms

of various units which are defined as follows:

• packet, the smallest amount of data that can be transferred by hardware,

• FLIT (flow control digit), the amount of data used to allocate the buffer space in

some flow-control techniques;

• PHIT (physical digit), the amount of data that can be transferred in a single cycle.

These units are closely related to the bandwidth and to the latency of the network.

Mapping Interconnection Networks into Real Space

An interconnection network of any given topology, even if defined in an abstract

higher-dimensional space, eventually has to be mapped into the physical, three-

dimensional (3D) space. This means that all the chips and printed-circuit boards

making up the interconnection network must be allocated physical places.

Unfortunately, this is not a trivial task. The reason is that mapping usually has

to optimize certain, often contradicting, criteria while at the same time respecting

various restrictions. Here are some examples:

• One such restriction is that the numbers of I/O pins per chip or per printed-

circuit board are bounded above. A usual optimization criterion is that, in order

to prevent the decrease of data rate, cables be as short as possible. But due to

significant sizes of hardware components and due to physical limitations of 3D-

space, mapping may considerably stretch certain paths, i.e., nodes that are close

in higher-dimensional space may be mapped to distant locations in 3D-space.

• We may want to map processing units that communicate intensively as close

together as possibly, ideally on the same chip. In this way we may minimize

the impact of communication. Unfortunately, the construction of such optimal

mappings is NP-hard optimization problem.

• An additional criterion may be that the power consumption is minimized.

2.4.3 Classification of Interconnection Networks

Interconnection networks can be classified into direct and indirect networks. Here

are the main properties of each kind.

2.4 The Impact of Communication 23

Fig. 2.6 A fully connected

network with n = 8 nodes

Direct Networks

A network is said to be direct when each node is directly connected to its neighbors.

How many neighbors can a node have? In a fully connected network, each of the

n = |N | nodes is directly connected to all the other nodes, so each node has n − 1

neighbors. (See Fig. 2.6).

Since such a network has 1
2

n(n − 1) = �(n2) direct connections, it can only be

used for building systems with small numbers n of nodes. When n is large, each node

is directly connected to a proper subset of other nodes, while the communication to

the remaining nodes is achieved by routing messages through intermediate nodes.

An example of such a direct interconnection network is the hypercube; see Fig. 2.13

on p. 28.

Indirect Networks

An indirect network connects the nodes through switches. Usually, it connects pro-

cessing units on one end of the network and memory modules on the other end of the

network. The simplest circuit for connecting processing units to memory modules is

the fully connected crossbar switch (Fig. 2.7). Its advantage is that it can establish

a connection between processing units and memory modules in an arbitrary way.

At each intersection of a horizontal and vertical line is a crosspoint. A crosspoint

is a small switch that can be electrically opened (◦) or closed (•), depending on

whether the horizontal and vertical lines are to be connected or not. In Fig. 2.7 we

see eight crosspoints closed simultaneously, allowing connections between the pairs

(P1, M1), (P2, M3), (P3, M5), (P4, M4), (P5, M2), (P6, M6), (P7, M8) and (P8, M7) at

the same time. Many other combinations are also possible.

Unfortunately, the fully connected crossbar has too large complexity to be used

for connecting large numbers of input and output ports. Specifically, the number of

crosspoints grows as pm, where p and m are the numbers of processing units and

memory modules, respectively. For p = m = 1000 this amounts to a million cross-

points which is not feasible. (Nevertheless, for medium-sized systems, a crossbar

24 2 Overview of Parallel Systems

Fig. 2.7 A fully connected

crossbar switch connecting 8

nodes to 8 nodes

P
R

O
C

E
S

S
IN

G
 U

N
IT

S
MEMORY MODULES

M1
M2 M3 M4 M5 M6 M7 M8

P1

P2

P3

P4

P5

P6

P7

P8

design is workable, and small fully connected crossbar switches are used as basic

building blocks within larger switches and routers).

This is why indirect networks connect the nodes through many switches. The

switches themselves are usually connected to each other in stages, using a regular

connection pattern between the stages. Such indirect networks are called the multi-

stage interconnection networks; we will describe them in more detail on p. 29.

Indirect networks can be further classified as follows:

• A non-blocking network can connect any idle source to any idle destination,

regardless of the connections already established across the network. This is due

to the network topology which ensures the existence of multiple paths between

the source and destination.

• A blocking rearrangeable networks can rearrange the connections that have

already been established across the network in such a way that a new connection

can be established. Such a network can establish all possible connections between

inputs and outputs.

• In a blocking network, a connection that has been established across the network

may block the establishment of a new connection between a source and desti-

nation, even if the source and destination are both free. Such a network cannot

always provide a connection between a source and an arbitrary free destination.

The distinction between direct and indirect networks is less clear nowadays. Every

direct network can be represented as an indirect network since every node in the direct

network can be represented as a router with its own processing element connected

to other routers. However, for both direct and indirect interconnection networks, the

full crossbar, as an ideal switch, is the heart of the communications.

2.4 The Impact of Communication 25

2.4.4 Topologies of Interconnection Networks

It is not hard to see that there exist many network topologies capable of intercon-

necting p processing units and m memory modules (see Exercises). However, not

every network topology is capable of conveying memory requests quickly enough

to efficiently back up parallel computation. Moreover, it turns out that the network

topology has a large influence on the performance of the interconnection network

and, consequently, of parallel computation. In addition, network topology may incur

considerable difficulties in the actual construction of the network and its cost.

In the last few decades, researchers have proposed, analyzed, constructed, tested,

and used various network topologies. We now give an overview of the most notable or

popular ones: the bus, the mesh, the 3D-mesh, the torus, the hypercube, the multistage

network and the fat tree.

The Bus

This is the simplest network topology. See Fig. 2.8. It can be used in both local-

memory machines (LMMs) and memory-module machines (MMMs). In either case,

all processing units and memory modules are connected to a single bus. In each step,

at most one piece of data can be written onto the bus. This can be a request from a

processing unit to read or write a memory value, or it can be the response from the

processing unit or memory module that holds the value.

When in a memory-module machine a processing unit wants to read a memory

word, it must first check to see if the bus is busy. If the bus is idle, the processing unit

puts the address of the desired word on the bus, issues the necessary control signals,

and waits until the memory puts the desired word on the bus. If, however, the bus

is busy when a processing unit wants to read or write memory, the processing unit

must wait until the bus becomes idle. This is where drawbacks of the bus topology

become apparent. If there is a small number of processing units, say two or three,

the contention for the bus is manageable; but for larger numbers of processing units,

say 32, the contention becomes unbearable because most of the processing units will

wait most of the time.

To solve this problem we add a local cache to each processing unit. The cache

can be located on the processing unit board, next to the processing unit chip, inside

the processing unit chip, or some combination of all three. In general, caching is

not done on an individual word basis but on the basis of blocks that consist of, say,

64 bytes. When a word is referenced by a processing unit, the word’s entire block

Pp

M1 M2 Mp

P1 P2

BUS

PpP1 P2

M1 M2 Mm

P3
BUS

Fig. 2.8 The bus is the simplest network topology

26 2 Overview of Parallel Systems

Fig. 2.9 A ring. Each node

represents a processor unit

with local memory

i

is fetched into the local cache of the processing unit. After that many reads can be

satisfied out of the local cache. As a result, there will be less bus traffic, and the

system will be able to support more processing units.

We see, that the practical advantages of using buses are that (i) they are simple

to build, and (ii) it is relatively easy to develop protocols that allow processing units

to cache memory values locally (because all processing units and memory modules

can observe the traffic on the bus). The obvious disadvantage of using a bus is that

the processing units must take turns accessing the bus. This implies that as more

processing units are added to a bus, the average time to perform a memory access

grows proportionately with the number of processing units.

The Ring

The ring is among the simplest and the oldest interconnection networks. Given n

nodes, they are arranged in linear fashion so that each node has a distinct label i ,

where 0 � i � n − 1. Every node is connected to two neighbors, one to the left and

one to the right. Thus, a node labeled i is connected to the nodes labeled i + 1 mod n

and i − 1 mod n (see Fig. 2.9). The ring is used in local-memory machines (LMMs).

2D-Mesh

A two-dimensional mesh is an interconnection network that can be arranged in

rectangular fashion, so that each switch in the mesh has a distinct label (i, j), where

0 � i � X − 1 and 0 � j � Y − 1. (See Fig. 2.10). The values X and Y determine

the lengths of the sides of the mesh. Thus, the number of switches in a mesh is XY .

Every switch, except those on the sides of the mesh, is connected to six neighbors:

one to the north, one to the south, one to the east, and one to the west. So a switch

Fig. 2.10 A 2D-mesh. Each

node represents a processor

unit with local memory

i

j

2.4 The Impact of Communication 27

Fig. 2.11 A 2D-torus. Each node represents a processor unit with local memory

labeled (i, j), where 0 < i < X − 1 and 0 < j < Y − 1, is connected to the switches

labeled (i, j + 1), (i, j − 1), (i + 1, j), and (i − 1, j).

Meshes typically appear in local-memory machines (LMMs): a processing unit

(along with its local memory) is connected to each switch, so that remote memory

accesses are made by routing messages through the mesh.

2D-Torus (Toroidal 2D-Mesh)

In the 2D-mesh, the switches on the sides have no connections to the switches on

the opposite sides. The interconnection network that compensates for this is called

the toroidal mesh, or just torus when d = 2. (See Fig. 2.11). Thus, in torus every

switch located at (i, j) is connected to four other switches, which are located at

(i, j + 1 mod Y), (i, j − 1 mod Y), (i + 1 mod X, j) and (i − 1 mod X, j).

Toruses appear in local-memory machines (LMMs): to each switch is connected

a processing unit with its local memory. Each processing unit can access any remote

memory by routing messages through the torus.

3D-Mesh and 3D-Torus

A three-dimensional mesh is similar to two-dimensional. (See Fig. 2.12). Now each

switch in a mesh has a distinct label (i, j, k), where 0 � i � X − 1, 0 � j � Y − 1,

and 0 � k � Z − 1. The values X , Y and Z determine the lengths of the sides of

the mesh, so the number of switches in it is XY Z . Every switch, except those on the

sides of the mesh, is now connected to six neighbors: one to the north, one to the

south, one to the east, one to the west, one up, and one down. Thus, a switch labeled

(i, j, k), where 0 < i < X − 1, 0 < j < Y − 1 and 0 < k < Z − 1, is connected to

the switches (i, j + 1, k), (i, j − 1, k), (i + 1, j, k), (i − 1, j, k), (i, j, k + 1) and

(i, j, k − 1). Such meshes typically appear in LMMs.

We can expand a 3D-mesh into a toroidal 3D-mesh by adding edges that connect

nodes located at the opposite sides of the 3D-mesh. (Picture omitted). A switch

labeled (i, j, k) is connected to the switches (i + 1 mod X, j, k), (i − 1 mod X, j, k),

(i, j + 1 mod Y, k), (i, j − 1 mod Y, k), (i, j, k + 1 mod Z) and (i, j, k − 1 mod Z).

3D-meshes and toroidal 3D-meshes are used in local-memory machines (LMMs).

28 2 Overview of Parallel Systems

Fig. 2.12 A 3D-mesh. Each

node represents a processor

unit with local memory

i

j

k

Fig. 2.13 A hypercube.

Each node represents a

processor unit with local

memory

Hypercube

A hypercube is an interconnection network that has n = 2b nodes, for some b � 0.

(See Fig. 2.13). Each node has a distinct label consisting of b bits. Two nodes are

connected by a communication link if an only if their labels differ in precisely one

bit location. Hence, each node of a hypercube has b = log2 n neighbors.

Hypercubes are used in local-memory machines (LMMs).

⋆ The k-ary d-Cube Family of Network Topologies

Interestingly, the ring, the 2D-torus, the 3D-torus, the hypercube, and many other

topologies all belong to one larger family of k-ary d-cube topologies.

Given k � 1 and d � 1, the k-ary d-cube topology is a family of certain “gridlike”

topologies that share the fashion in which they are constructed. In other words, the

k-ary d-cube topology is a generalization of certain topologies. The parameter d is

called the dimension of these topologies and k is their side length, the number of

nodes along each of the d directions. The fashion in which the k-ary d-cube topology

is constructed is defined inductively (on the dimension d):

A k-ary d-cube is constructed from k other k-ary (d − 1)-cubes

by connecting the nodes with identical positions into rings.

2.4 The Impact of Communication 29

PROCESSING UNITS

MEMORY MODULES

1st stage

2nd stage

3rd stage

4th stage

P4P1 P2

M1 M2

P3 P8P5 P6 P7

M7 M8M5 M6M3 M4

Fig. 2.14 A 4-stage interconnection network capable of connecting 8 processing units to 8 memory

modules. Each switch ◦ can establish a connection between arbitrary pair of input and output

channels

This inductive definition enables us to systematically construct actual k-ary d-cube

topologies and analyze their topological and performance properties. For instance,

we can deduce that a k-ary d-cube topology contains n = kd communication nodes

and c = dn = dkd communication links, while the diameter is lmax = dk
2

and the

average distance between two nodes is lavg =
lmax

2
(if k even) or lavg = d(k

4
− 1

4k
) (if

k odd). Unfortunately, in spite of their simple recursive structure, the k-ary d-cubes

have a poor expansion scalability.

Multistage Network

A multistage network connects one set of switches, called the input switches, to

another set, called the output switches. The network achieves this through a sequence

of stages, where each stage consists of switches. (See Fig. 2.14). In particular, the

input switches form the first stage, and the output switches form the last stage. The

number d of stages is called the depth of the multistage network. Usually, a multistage

network allows to send a piece of data from any input switch to any output switch.

This is done along a path that traverses all the stages of the network in order from 1

to d. There are many different multistage network topologies.

30 2 Overview of Parallel Systems

PROCESSING UNITS WITH LOCAL MEMORIES

M M M MM MM M

PP P PP P P PP P P PP P PP

M M M M M M M M

Fig. 2.15 A fat-tree. Each switch ◦ can establish a connection between arbitrary pair of incident

channels

Multistage networks are frequently used in memory-module machines (MMMs);

there, processing units are attached to input switches, and memory modules are

attached to output switches.

Fat Tree

A fat tree is a network whose structure is based on that of a tree. (See Fig. 2.15).

However, in contrast to the usual tree where edges have the same thickness, in a fat

tree, edges that are nearer the root of the tree are “fatter” (thicker) than edges that

are further down the tree. The idea is that each node of a fat tree may represent many

network switches, and each edge may represent many communication channels. The

more channels an edge represents, the larger is its capacity and the fatter is the edge.

So the capacities of the edges near the root of the fat tree are much larger than the

capacities of the edges near the leaves.

Fat trees can be used to construct local-memory machines (LMMs): processing

units along with their local memories are connected to the leaves of the fat tree, so

that a message from one processing unit to another first travels up the tree to the

least common ancestor of the two processing units and then down the tree to the

destination processing unit.

2.5 Parallel Computational Complexity 31

2.5 Parallel Computational Complexity

In order to examine the complexity of computational problems and their parallel

algorithms, we need some new basic notions. We will now introduce a few of these.

2.5.1 Problem Instances and Their Sizes

Let Π be a computational problem. In practice we are usually confronted with a

particular instance of the problem Π . The instance is obtained from Π by replacing

the variables in the definition of Π with actual data. Since this can be done in many

ways, each way resulting in a different instance of Π , we see that the problem Π

can be viewed as a set of all the possible instances of Π .

To each instance π of Π we can associate a natural number which we call the size

of the instance π and denote by

size(π).

Informally, size(π) is roughly the amount of space needed to represent π in some

way accessible to a computer and, in practice, depends on the problem Π .

For example, if we choose Π ≡ “sort a given finite sequence of numbers,” then

π ≡ “sort 0 9 2 7 4 5 6 3” is an instance of Π and size(π) = 8, the number of

numbers to be sorted. If, however, Π ≡ “Is n a prime number?”, then “Is 17 a prime

number?” is an instance π of Π with size(π) = 5, the number of bits in the binary

representation of 17. And if Π is a problem about graphs, then the size of an instance

of Π is often defined as the number of nodes in the actual graph.

Why do we need sizes of instances? When we examine how fast an algorithm A

for a problem Π is, we usually want to know how A’s execution time depends on the

size of instances of Π that are input to A. More precisely, we want to find a function

T (n)

whose value at n will represent the execution time of A on instances of size n. As a

matter of fact, we are mostly interested in the rate of growth of T (n), that is, how

quickly T (n) grows when n grows.

For example, if we find that T (n) = n, then A’s execution time is a linear function

of n, so if we double the size of problem instances, A’s execution time doubles too.

More generally, if we find that T (n) = nconst (const � 1), then A’s execution time

is a polynomial function of n; if we now double the size of problem instances, then

A’s execution time multiplies by 2const . If, however, we find that T (n) = 2n , which

is an exponential function of n, then things become dramatic: doubling the size n of

problem instances causes A to run 2n-times longer! So, doubling the size from 10 to

20 and then to 40 and 80, the execution time of A increases 210 (≈thousand) times,

then 220 (≈million) times, and finally 240 (≈thousand billion) times.

32 2 Overview of Parallel Systems

2.5.2 Number of Processing Units Versus Size of Problem Instances

In Sect. 2.1, we defined the parallel execution time Tpar, speedup S, and efficiency

E of a parallel program P for solving a problem Π on a computer C(p) with p

processing units. Let us augment these definitions so that they will involve the size

n of the instances of Π . As before, the program P for solving Π and the computer

C(p) are tacitly understood, so we omit the corresponding indexes to simplify the

notation. We obtain the parallel execution time Tpar(n), speedup S(n), and efficiency

E(n) of solving Π ’s instances of size n:

S(n)
def

=
Tseq(n)

Tpar(n)
,

E(n)
def

=
S(n)

p
.

So let us pick an arbitrary n and suppose that we are only interested in solving

instances of Π whose size is n. Now, if there are too few processing units in C(p), i.e.,

p is too small, the potential parallelism in the program P will not be fully exploited

during the execution of P on C(p), and this will reflect in low speedup S(n) of P .

Likewise, if C(p) has too many processing units, i.e., p is too large, some of the

processing units will be idling during the execution of the program P , and again this

will reflect in low speedup of P . This raises the following question that obviously

deserves further consideration:

How many processing units p should have C(p),

so that, for all instances of Π of size n, the speedup of P will be maximal?

It is reasonable to expect that the answer will depend somehow on the type of C ,

that is, on the multiprocessor model (see Sect. 2.3) underlying the parallel computer

C . Until we choose the multiprocessor model, we may not be able to obtain answers

of practical value to the above question. Nevertheless, we can make some general

observations that hold for any type of C . First observe that, in general, if we let n

grow then p must grow too; otherwise, p would eventually become too small relative

to n, thus making C(p) incapable of fully exploiting the potential parallelism of P .

Consequently, we may view p, the number of processing units that are needed to

maximize speedup, to be some function of n, the size of the problem instance at

hand. In addition, intuition and practice tell us that a larger instance of a problem

requires at least as many processing units as required by a smaller one. In sum, we

can set

p = f (n),

where f : N → N is some nondecreasing function, i.e., f (n) � f (n + 1), for all n.

2.5 Parallel Computational Complexity 33

Second, let us examine how quickly can f (n) grow as n grows? Suppose that

f (n) grows exponentially. Well, researchers have proved that if there are exponen-

tially many processing units in a parallel computer then this necessarily incurs long

communication paths between some of them. Since some communicating process-

ing units become exponentially distant from each other, the communication times

between them increase correspondingly and, eventually, blemish the theoretically

achievable speedup. The reason for all of that is essentially in our real, 3-dimensional

space, because

• each processing unit and each communication link occupies some non-zero vol-

ume of space, and

• the diameter of the smallest sphere containing exponentially many processing

units and communication links is also exponential.

In sum, exponential number of processing units is impractical and leads to theoreti-

cally tricky situations.

Suppose now that f (n) grows polynomially, i.e., f is a polynomial function of

n. Calculus tells us that if poly(n) and exp(n) are a polynomial and an exponential

function, respectively, then there is an n′ > 0 so that poly(n) < exp(n) for all n > n′;

that is, poly(n) is eventually dominated by exp(n). In other words, we say that

a polynomial function poly(n) asymptotically grows slower than an exponential

function exp(n). Note that poly(n) and exp(n) are two arbitrary functions of n.

So we have f (n) = poly(n) and consequently the number of processing units is

p = poly(n),

where poly(n) is a polynomial function of n. Here we tacitly discard polynomial

functions of “unreasonably” large degrees, e.g. n100. Indeed, we are hoping for

much lower degrees, such as 2, 3, 4 or so, which will yield realistic and affordable

numbers p of processing units.

In summary, we have obtained an answer to the question above which—because of

the generality of C and Π , and due to restrictions imposed by nature and economy—

falls short of our expectation. Nevertheless, the answer tells us that p must be some

polynomial function (of a moderate degree) of n.

We will apply this to Theorem 2.1 (p. 16) right away in the next section.

2.5.3 The Class NC of Efficiently Parallelizable Problems

Let P be an algorithm for solving a problem Π on CRCW-PRAM(p). According to

Theorem 2.1, the execution of P on EREW-PRAM(p) will be at most O(log p)-times

slower than on CRCW-PRAM(p). Let us use the observations from previous section

and require that p = poly(n). It follows that log p = log poly(n) = O(log n). To

appreciate why, see Exercises in Sect. 2.7.

34 2 Overview of Parallel Systems

Combined with Theorem 2.1 this means that for p = poly(n) the execution of P on

EREW-PRAM(p) will be at most O(log n)-times slower than on CRCW-PRAM(p).

But this also tells us that, when p = poly(n), choosing a model from the models

CRCW-PRAM(p), CREW-PRAM(p), and EREW-PRAM(p) to execute a program

affects the execution time of the program by a factor of the order O(log n), where n

is the size of the problem instances to be solved. In other words:

The execution time of a program does not vary too much

as we choose the variant of PRAM that will execute it.

This motivates us to introduce a class of computational problems containing all the

problems that have “fast” parallel algorithms requiring “reasonable” numbers of

processing units. But what do “fast” and “reasonable” really mean? We have seen in

previous section that the number of processing units is reasonable if it is polynomial

in n. As for the meaning of “fast”, a parallel algorithm is considered to be fast if

its parallel execution time is polylogarithmic in n. That is fine, but what does now

“polylogarithmic” mean? Here is the definition.

Definition 2.1 A function is polylogarithmic in n if it is polynomial in log n,

i.e., if it is ak(log n)k + ak−1(log n)k−1 + · · · + a1(log n)1 + a0, for some

k � 1.

We usually write logi n instead of (log n)i to avoid clustering of parentheses. The sum

ak logkn + ak−1logk−1n + · · · + a0 is asymptotically bounded above by O(logk n).

To see why, consider Exercises in Sect. 2.7.

We are ready to formally introduce the class of problems we are interested in.

Definition 2.2 Let NC be the class of computational problems solvable in

polylogarithmic time on PRAM with polynomial number of processing units.

If a problem Π is in the class NC, then it is solvable in polylogarithmic parallel time

with polynomially many processing units regardless of the variant of PRAM used

to solve Π . In other words, the class NC is robust, insensitive to the variations of

PRAM. How can we see that? If we replace one variant of PRAM with another, then

by Theorem 2.1 Π ’s parallel execution time O(logk n) can only increase by a factor

O(log n) to O(logk+1 n) which is still polylogarithmic.

In sum, NC is the class of efficiently parallelizable computational problems.

Example 2.1 Suppose that we are given the problem Π ≡ “add n given numbers.”

Then π ≡ “add numbers 10, 20, 30, 40, 50, 60, 70, 80” is an instance of size(π) = 8

2.5 Parallel Computational Complexity 35

a2a1
a4a3 a6a5 a8a7

a1+a2

a1+a2+a3+a4 a5+a6+a7+a8

a3+a4 a5+a6 a7+a8

a1+a2+a3+a4+a5+a6+a7+a8

s = 1

s = 2

s = 3

P1
P2 P3

P1
P2

P4

P1

Fig. 2.16 Adding eight numbers in parallel with four processing units

of the problem Π . Let us now focus on all instances of size 8, that is, instances of

the form π ≡ “add numbers a1, a2, a3, a4, a5, a6, a7, a8.”

The fastest sequential algorithm for computing the sum a1 + a2 + a3 + a4 + a5 +

a6 + a7 + a8 requires Tseq(8) = 7 steps, with each step adding the next number to

the sum of the previous ones.

In parallel, however, the numbers a1, a2, a3, a4, a5, a6, a7, a8 can be summed in

just Tpar(8) = 3 parallel steps using 8
2

= 4 processing units which communicate in a

tree-like pattern as depicted in Fig. 2.16. In the first step, s = 1, each processing unit

adds two adjacent input numbers. In each next step, s � 2, two adjacent previous

partial results are added to produce a new, combined partial result. This combining

of partial results in a tree-like manner continues until 2s+1 > 8. In the first step,

s = 1, all of the four processing units are engaged in computation; in step s = 2, two

processing units (P3 and P4) start idling; and in step s = 3, three processing units

(P2, P3 and P4) are idle.

In general, instances π(n) of Π can be solved in parallel time Tpar = ⌈log n⌉ =

O(log n) with ⌈ n
2
⌉ = O(n) processing units communicating in similar tree-like pat-

terns. Hence, Π ∈ NC and the associated speedup is S(n) =
T seq(n)

T par(n)
= O(n

log n
). �

Notice that, in the above example, the efficiency of the tree-like parallel addition

of n numbers is quite low, E(n) = O(1
log n

). The reason for this is obvious: only

half of the processing units engaged in a parallel step s will be engaged in the next

parallel step s + 1, while all the other processing units will be idling until the end of

computation. This issue will be addressed in the next section by Brent’s Theorem.

36 2 Overview of Parallel Systems

2.6 Laws and Theorems of Parallel Computation

In this section we describe the Brent’s theorem, which is useful in estimating the

lower bound on the number of processing units that are needed to keep a given

parallel time complexity. Then we focus on the Amdahl’s law, which is used for

predicting the theoretical speedup of a parallel program whose different parts allow

different speedups.

2.6.1 Brent’s Theorem

Brent’s theorem enables us to quantify the performance of a parallel program when

the number of processing units is reduced.

Let M be a PRAM of an arbitrary type and containing unspecified number of

processing units. More specifically, we assume that the number of processing units

is always sufficient to cover all the needs of any parallel program.

When a parallel program P is run on M , different numbers of operations of P are

performed, at each step, by different processing units of M . Suppose that a total of

W

operations are performed during the parallel execution of P on M (W is also called

the work of P), and denote the parallel runtime of P on M by

Tpar, M(P).

Let us now reduce the number of processing units of M to some fixed number

p

and denote the obtained machine with the reduced number of processing units by

R.

R is a PRAM of the same type as M which can use, in every step of its operation, at

most p processing units.

Let us now run P on R. If p processing units cannot support, in every step of the

execution, all the potential parallelism of P , then the parallel runtime of P on R,

Tpar, R(P),

may be larger than Tpar, M(P). Now the question raises: Can we quantify Tpar, R(P)?

The answer is given by Brent’s Theorem which states that

Tpar, R(P) = O

(

W

p
+ Tpar, M(P)

)

.

2.6 Laws and Theorems of Parallel Computation 37

Fig. 2.17 Expected (linear)

speedup as a function of the

number of processing units

processing units

speedup16

14

12

10

8

6

4

2

0

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Proof Let Wi be the number of P’s operations performed by M in i th step and

T := Tpar, M(P). Then
∑T

i=1 Wi = W. To perform the Wi operations of the i th step

of M , R needs
⌈

Wi

p

⌉

steps. So the number of steps which R makes during its

execution of P is Tpar, R(P) =
∑T

i=1

⌈

Wi

p

⌉

�
∑T

i=1

(

Wi

p
+ 1

)

� 1
p

∑T
i=1 Wi + T =

W
p

+ Tpar, M(P). �

Applications of Brent’s Theorem

Brent’s Theorem is useful when we want to reduce the number of processing units as

much as possible while keeping the parallel time complexity. For example, we have

seen in Example 2.1 on p. 34 that we can sum up n numbers in parallel time O(log n)

with O(n) processing units. Can we do the same with asymptotically less processing

units? Yes, we can. Brent’s Theorem tells us that O(n/ log n) processing units suffice

to sum up n numbers in O(log n) parallel time. See Exercises in Sect. 2.7.

2.6.2 Amdahl’s Law

Intuitively, we would expect that doubling the number of processing units should

halve the parallel execution time; and doubling the number of processing units again

should halve the parallel execution time once more. In other words, we would expect

that the speedup from parallelization is a linear function of the number of processing

units (see Fig. 2.17).

However, linear speedup from parallelization is just a desirable optimum which

is not very likely to become a reality. Indeed, in reality very few parallel algorithms

achieve it. Most of parallel programs have a speedup which is near-linear for small

numbers of processing elements, and then flattens out into a constant value for large

numbers of processing elements (see Fig. 2.18).

38 2 Overview of Parallel Systems

Fig. 2.18 Actual speedup as

a function of the number of

processing units

processing units

speedup16

14

12

10

8

6

4

2

0

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Setting the Stage

How can we explain this unexpected behavior? The clues for the answer will be

obtained from two simple examples.

• Example 1. Let P be a sequential program processing files from disk as follows:

– P is a sequence of two parts, P = P1 P2;

– P1 scans the directory of the disk, creates a list of file names, and hands the

list over to P2;

– P2 passes each file from the list to the processing unit for further processing.

Note: P1 cannot be sped up by adding new processing units, because scanning the

disk directory is intrinsically sequential process. In contrast, P2 can be sped up

by adding new processing units; for example, each file can be passed to a separate

processing unit. In sum, a sequential program can be viewed as a sequence of two

parts that differ in their parallelizability, i.e., amenability to parallelization.

• Example 2. Let P be as above. Suppose that the (sequential) execution of P takes

20 min, where the following holds (see Fig. 2.19):

– the non-parallelizable P1 runs 2 min;

– the parallelizable P2 runs 18 min.

Fig. 2.19 P consists of a

non-parallelizable P1 and a

parallelizable P2. On one

processing unit,P1 runs 2

min and P2 runs 18 min

P

P1 P2

182

2.6 Laws and Theorems of Parallel Computation 39

P

P1 P2

T
seq

(P1) T
seq

(P2)

Fig. 2.20 P consists of a non-parallelizable P1 and a parallelizable P2. On a single processing unit

P1 requires Tseq(P1) time and P2 requires Tseq(P2) time to complete

Note: since only P2 can benefit from additional processing units, the parallel execu-

tion time Tseq(P) of the whole P cannot be less than the time Tseq(P1) taken by the

non-parallelizable part P1 (that is, 2 min), regardless of the number of additional pro-

cessing units engaged in the parallel execution of P . In sum, if parts of a sequential

program differ in their potential parallelisms, they differ in their potential speedups

from the increased number of processing units, so the speedup of the whole program

will depend on their sequential runtimes.

The clues that the above examples brought to light are recapitulated as follows: In

general, a program P executed by a parallel computer can be split into two parts,

• part P1 which does not benefit from multiple processing units, and

• part P2 which does benefit from multiple processing units;

• besides P2’s benefit, also the sequential execution times of P1 and P2 influence

the parallel execution time of the whole P (and, consequently, P’s speedup).

Derivation

We will now assess quantitatively how the speedup of P depends on P1’s and P2’s

sequential execution times and their amenability to parallelization and exploitation

of multiple processing units.

Let Tseq(P) be the sequential execution time of P . Because P = P1 P2, a sequence

of parts P1 and P2, we have

Tseq(P) = Tseq(P1) + Tseq(P2),

where Tseq(P1) and Tseq(P2) are the sequential execution times of P1 and P2, respec-

tively (see Fig. 2.20).

When we actually employ additional processing units in the parallel execution of

P , it is the execution of P2 that is sped up by some factor s > 1, while the execution

of P1 does not benefit from additional processing units. In other words, the execution

time of P2 is reduced from Tseq(P2) to 1
s

Tseq(P2), while the execution time of P1

remains the same, Tseq(P1). So, after the employment of additional processing units

the parallel execution time Tpar(P) of the whole program P is

Tpar(P) = Tseq(P1) +
1

s
Tseq(P2).

40 2 Overview of Parallel Systems

The speedup S(P) of the whole program P can now be computed from definition,

S(P) =
Tseq(P)

Tpar(P)
.

We could stop here; however, it is usual to express S(P) in terms of b, the fraction

of Tseq(P) during which parallelization of P is beneficial. In our case

b =
Tseq(P2)

Tseq(P)
.

Plugging this in the expression for S(P), we finally obtain the Amdahl’s Law

S(P) =
1

1 − b + b
s

.

Some Comments on Amdahl’s Law

Strictly speaking, the speedup in the Amdahl’s Law is a function of three variables,

P , b and s, so it would be more appropriately denoted by S(P, b, s). Here b is the

fraction of the time during which the sequential execution of P can benefit from

multiple processing units. If multiple processing units are actually available and

exploited by P , the part of P that exploits them is sped up by the factor s > 1. Since

s is only the speedup of a part of the program P , the speedup of the whole P cannot

be larger than s; specifically, it is given by S(P) of the Amdahl’s Law.

From the Amdahl’s Law we see that

S <
1

1 − b
,

which tells us that a small part of the program which cannot be parallelized will limit

the overall speedup available from parallelization. For example, the overall speedup

S that the program P in Fig. 2.19 can possibly achieve by parallelizing the part P2

is bounded above by S < 1

1− 18
20

= 10.

Note that in the derivation of the Amdahl’s Law nothing is said about the size of the

problem instance solved by the program P . It is implicitly assumed that the problem

instance remains the same, and that the only thing we carry out is parallelization of

P and then application of the parallelized P on the same problem instance. Thus,

Amdahl’s law only applies to cases where the size of the problem instance is fixed.

Amdahl’s Law at Work

Suppose that 70% of a program execution can be sped up if the program is parallelized

and run on 16 processing units instead of one. What is the maximum speedup that

can be achieved by the whole program? What is the maximum speedup if we increase

the number of processing units to 32, then to 64, and then to 128?

In this case we have b = 0.7, the fraction of the sequential execution that can be

parallelized; and 1 − b = 0.3, the fraction of calculation that cannot be parallelized.

2.6 Laws and Theorems of Parallel Computation 41

The speedup of the parallelizable fraction is s. Of course, s � p, where p is the

number of processing units. By Amdahl’s Law the speedup of the whole program is

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
16

= 2.91.

If we double the number of processing units to 32 we find that the maximum

achievable speedup is 3.11:

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
32

= 3.11 ,

and if we double it once again to 64 processing units, the maximum achievable

speedup becomes 3.22:

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
64

= 3.22.

Finally, if we double the number of processing units even to 128, the maximum

speedup we can achieve is

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
128

= 3.27.

In this case doubling the processing power only slightly improves the speedup.

Therefore, using more processing units is not necessarily the optimal approach.

Note that this complies with actual speedups of realistic programs as we have

depicted in Fig. 2.18.

⋆ A Generalization of Amdahl’s Law

Until now we assumed that there are just two parts of of a given program, of which

one cannot benefit from multiple processing units and the other can. We now assume

that the program is a sequence of three parts, each of which could benefit from

multiple processing units. Our goal is to derive the speedup of the whole program

when the program is executed by multiple processing units.

So let P = P1 P2 P3 be a program which is a sequence of three parts P1, P2, and

P3. See Fig. 2.21. Let Tseq(P1) be the time during which the sequential execution of

Fig. 2.21 P consists of

three differently

parallelizable parts P

P1 P2

Tseq(P1) Tseq(P2) Tseq(P3)

P3

42 2 Overview of Parallel Systems

P spends executing part P1. Similarly we define Tseq(P2) and Tseq(P3). Then the

sequential execution time of P is

Tseq(P) = Tseq(P1) + Tseq(P2) + Tseq(P3).

But we want to run P on a parallel computer. Suppose that the analysis of P shows

that P1 could be parallelized and sped up on the parallel machine by factor s1 > 1.

Similarly, P2 and P3 could be sped up by factors s2 > 1 and s3 > 1, respectively.

So we parallelize P by parallelizing each of the three parts P1, P2, and P3, and

run P on the parallel machine. The parallel execution of P takes Tpar(P) time,

where Tpar(P) = Tpar(P1) + Tpar(P2) + Tpar(P3). But Tpar(P1) = 1
s1

Tseq(P1), and

similarly for Tpar(P2) and Tpar(P3). It follows that

Tpar(P) =
1

s1
Tseq(P1) +

1

s2
Tseq(P2) +

1

s3
Tseq(P3).

Now the speedup of P can easily be computed from its definition, S(P) =
T seq(P)

T par(P)
.

We can obtain a more informative expression for S(P). Let b1 be the fraction of

Tseq(P) during which the sequential execution of P executes P1; that is, b1 =
T seq(P1)

T seq(P)
.

Similarly we define b2 and b3. Applying this in the definition of S(P) we obtain

S(P) =
Tseq(P)

Tpar(P)
=

1
b1
s1

+
b2
s2

+
b3
s3

.

Generalization to programs which are sequences of arbitrary number of parts Pi is

straightforward. In reality, programs typically consist of several parallelizable parts

and several non-parallelizable (serial) parts. We easily handle this by setting si � 1.

2.7 Exercises

1. How many pairwise interactions must be computed when solving the n-body

problem if we assume that interactions are symmetric?

2. Give an intuitive explanation why Tpar � Tseq � p ·Tpar, where Tpar and Tseq are

the parallel and sequential execution times of a program, respectively, and p is

the number of processing units used during the parallel execution.

3. Can you estimate the number of different network topologies capable of inter-

connecting p processing units Pi and m memory modules M j ? Assume that each

topology should provide, for every pair (Pi ,M j), a path between Pi and M j .

4. Let P be an algorithm for solving a problem Π on CRCW-PRAM(p). Accord-

ing to Theorem 2.1, the execution of P on EREW-PRAM(p) will be at most

O(log p)-times slower than on CRCW-PRAM(p). Now suppose that p =

poly(n), where n is the size of a problem instance. Prove that log p = O(log n).

2.7 Exercises 43

5. Prove that the sum ak logkn + ak−1logk−1n + · · · + a0 is asymptotically

bounded above by O(logk n).

6. Prove that O(n/ log n) processing units suffice to sum up n numbers in O(log n)

parallel time. Hint: Assume that the numbers are summed up with a tree-like

parallel algorithm described in Example 2.1. Use Brent’s Theorem with W =

n − 1 and T = log n and observe that by reducing the number of processing units

to p := n log n, the tree-like parallel algorithm will retain its O(log n) parallel

time complexity.

7. True or false:

(a) The definition of the parallel execution time is: “execution time = computa-

tion time + communication time + idle time.”

(b) A simple model of the communication time is:“communication time = set-

up time + data transfer time.”

(c) Suppose that the execution time of a program on a single processor is T1,

and the execution time of the same parallelized program on p processors is Tp.

Then, the speedup and efficiency are S = T1/Tp and E = S/p, respectively.

(d) If speedup S < p then E > 1.

8. True or false:

(a) If processing units are identical, then in order to minimize parallel execution

time, the work (or, computational load) of a parallel program should be parti-

tioned into equal parts and distributed among the processing units.

(b) If processing units differ in their computational power, then in order to min-

imize parallel execution time, the work (or, computational load) of a parallel

program should be distributed evenly among the processing units.

(c) Searching for such distributions is called load balancing.

9. Why must be the load of a parallel program evenly distributed among processors?

10. Determine the bisection bandwidths of 1D-mesh (chain of computers with bidi-

rectional connections), 2D-mesh, 3D-mesh, and the hypercube.

11. Let a program P be composed of a part R that can be ideally parallelized, and

of a sequential part S; that is, P = RS. On a single processor, S takes 10% of

the total execution time and during the remaining 90% of time R could run in

parallel.

(a) What is the maximal speedup reachable with unlimited number of processors?

(b) How is this law called?

12. Moore’s law states that computer performance doubles every 1.5 year. Suppose

that the current computer performance is Perf = 1013. When will be, according

to this law, 10 times greater (that is, 10 × Perf)?

13. A problem Π comprises two subproblems, Π1 and Π2, which are solved by

programs P1 and P2, respectively. The program P1 would run 1000 s on the

computer C1 and 2000 s on the computer C2, while P2 would require 2000 and

3000 s on C1 and C2, respectively. The computers are connected by a 1000-km

long optical fiber link capable of transferring data at 100 MB/sec with 10 msec

latency. The programs can execute concurrently but must transfer either (a) 10

MB of data 20,000 times or (b) 1 MB of data twice during the execution. What

is the best configuration and approximate runtimes in cases (a) and (b)?

44 2 Overview of Parallel Systems

2.8 Bibliographical Notes

In presenting the topics in this Chapter we have strongly leaned on Trobec et al. [26]

and Atallah and Blanton [3]. On the computational models of sequental computation

see Robič [22]. Interconnection networks are discussed in great detail in Dally and

Towles [6], Duato et al. [7], Trobec [25] and Trobec et al. [26]. The dependence

of execution times of real world parallel applications on the performance of the

interconnection networks is discussed in Grama et al. [12].

Part II

Programming

In Part II is devoted to programming of parallel computers. It is designed in a way

that every reader can exploit the parallelism of its own computer, either on multi-

cores with shared memory, or on a set of interconnected computers, or on a graphic

processing units. The knowledge and experience obtained can be beneficial in even-

tual further, more advanced applications, which will run on many-core computers,

computing clusters, or heterogeneous computers with computing accelerators.

We start in Chap. 3 with multi-core and shared memory multiprocessors, which

is the architecture of almost all contemporary computers, that are likely the easiest

to program with an adequate methodology. The programming such systems is intro-

duced using OpenMP, a widely used and ever expanding application programming

interface well suited for the implementation of multithreaded programs. It is shown

how the combination of properly designed compiler directives and library functions

can provide a programming environment where the programmer can focus mostly

on the program and algorithms and less on the details of the underlying computer

architecture. A lot of practical examples are provided, which help the reader to under-

stand the basic principles and to get a further motivation for fully exploiting available

computing resources.

Next, in Chap. 4, distributed memory computers are considered. They cannot

communicate through the shared memory therefore messages are used for the coor-

dination of parallel tasks that run on geographically distributed but interconnected

processors. Definition of processes with their management and communication are

well defined by a platform-independent message passing interface (MPI) specifica-

tion. The MPI library is introduced from the practical point of view, with basic set

of operations that enable the implementation of parallel programs. Simple example

programs should serve as an aid for a smooth start of using MPI and as motivation

for developing more complex applications.

Finally, in Chap. 5, we provide an introduction to the concepts of massively

parallel programming on GPUs and heterogeneous systems. Almost all contemporary

desktop computers are multi-core processor with a GPU units. Thus we need a

programming environment in which a programmer can write programs and run them

on either a GPU, or on a multi-core CPU, or on both. Again, several practical examples

are given that help and assist the readers in acquiring knowledge and experience in

programming GPUs, using OPenCL environment.

http://dx.doi.org/10.1007/978-3-319-98833-7_3
http://dx.doi.org/10.1007/978-3-319-98833-7_4
http://dx.doi.org/10.1007/978-3-319-98833-7_5

3Programming Multi-core and Shared
Memory Multiprocessors Using
OpenMP

Chapter Summary

Of many different parallel and distributed systems, multi-core and shared memory

multiprocessors are most likely the easiest to program if only the right approach is

taken. In this chapter, programming such systems is introduced using OpenMP, a

widely used and ever-expanding application programming interface well suited for

the implementation of multithreaded programs. It is shown how the combination

of properly designed compiler directives and library functions can provide a pro-

gramming environment where the programmer can focus mostly on the program and

algorithms and less on the details of the underlying computer system.

3.1 Shared Memory Programming Model

From the programmer’s point of view, a model of a shared memory multiproces-

sor contains a number of independent processors all sharing a single main memory

as shown in Fig. 3.1. Each processor can directly access any data location in the

main memory and at any time different processors can execute different instruc-

tions on different data since each processor is driven by its own control unit. Using

Flynn’s taxonomy of parallel systems, this model is referred to as MIMD, i.e., mul-

tiple instruction multiple data.

Although of paramount importance, when the parallel system is to be fully utilized

to achieve the maximum speedup possible, many details like cache or the internal

structure of the main memory are left out of this model to keep it simple and general.

Using a simple and general model also simplifies the design and implementation of

portable programs that can be optimized for a particular system once the parallel

system specifications are known.

Most modern CPUs are multi-core processors and, therefore, consist of a num-

ber of independent processing units called cores. Moreover, these CPUs support

(simultaneous) multithreading (SMT) so that each core can (almost) simultaneously

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_3&domain=pdf

48 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

Fig. 3.1 A model of a shared memory multiprocessor

Fig. 3.2 A parallel system with two quad-core CPUs supporting simultaneous multithreading con-

tains 16 logical cores all connected to the same memory

execute multiple independent streams of instructions called threads. To a program-

mer, each core within each processor acts as several logical cores each able to run

its own program or a thread within a program independently.

Today, mobile, desktop and server CPUs typically contain 2–24 cores and with

multithreading support, they can run 4–48 threads simultaneously. For instance, a

dual-core mobile Intel i7 processor with hyper-threading (Intel’s SMT) consists of 2

(physical) cores and thus provides 4 logical cores. Likewise, a quad-core Intel Xeon

processor with hyper-threading provides 8 logical cores and a system with two such

CPUs provides 16 logical cores as shown in Fig. 3.2. If the common use of certain

resources like bus or cache is set aside, each logical core can execute its own thread

independently. Regardless of the physical implementation, a programmer can assume

that such system contains 16 logical cores each acting as an individual processor as

shown in Fig. 3.1 where n = 16.

Apart from multi-core CPUs, manycore processors comprising tens or hundreds

of physical cores are also available. Intel Xeon Phi, for instance, provides 60–72

physical cores able to run 240–288 threads simultaneously.

The ability of modern systems to execute multiple threads simultaneously using

different processors or (logical) cores comes with a price. As individual threads

can access any memory location in the main memory and to execute instruction

streams independently may result in a race condition, i.e., a situation where the

result depends on precise timing of read and write accesses to the same location in

the main memory. Assume, for instance, that two threads must increase the value

stored at the same memory location, one by 1 and the other by 2 so that in the end

it is increased by 3. Each thread reads the value, increases it and writes it back. If

these three instructions are first performed by one thread, and then by the other, the

correct result is produced. But because threads execute instructions independently,

the sequences of these three instructions executed by each thread may overlap in time

3.1 Shared Memory Programming Model 49

Fig. 3.3 Two examples of a race condition when two threads attempt to increase the value at the

same location in the main memory

Fig. 3.4 Preventing race conditions as illustrated in Fig. 3.3 using locking

as illustrated in Fig. 3.3. In such situations, the result is both incorrect and undefined:

in either case, the value in the memory will be increased by either 1 or 2 but not by

1 and 2.

To avoid the race condition, exclusive access to the shared address in the main

memory must be ensured using some mechanism like locking using semaphores or

atomic access using read-modify-write instructions. If locking is used, each thread

must lock the access to the shared memory location before modifying it and unlock

it afterwards as illustrated in Fig. 3.4. If a thread attempts to lock something that the

other thread has already locked, it must wait until the other thread unlocks it. This

approach forces one thread to wait but guarantees the correct result.

The peripheral devices are not shown in Figs. 3.1 and 3.2. It is usually assumed

that all threads can access all peripheral devices but it is again up to software to

resolve which thread can access each device at any given time.

3.2 Using OpenMP to Write Multithreaded Programs

A parallel program running on a shared memory multiprocessor usually consists of

multiple threads. The number of threads may vary during program execution but at

any time each thread is being executed on one logical core. If there are less threads

than logical cores, some logical cores are kept idle and the system is not fully utilized.

If there are more threads than logical cores, the operating system applies multitasking

among threads running on the same logical cores. During program execution, the

operating system may perform load balancing, i.e., it may migrate threads from one

logical core to another in an attempt to keep all logical cores equally utilized.

A multithreaded program can be written in different programming languages

using many different libraries and frameworks. On UNIX, for instance, one can use

pthreads in almost any decent programming language, but the resulting program

is littered with low-level details that the compiler could have taken care of, and is not

portable. Hence, it is better to use something dedicated to writing parallel programs.

50 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

One such thing is OpenMP, a parallel programming environment best suitable for

writing parallel programs that are to be run on shared memory systems. It is not

yet another programming language but an add-on to an existing language, usually

Fortran or C/C++. In this book, OpenMP atop of C will be used.

The application programming interface (API) of OpenMP is a collection of

• compiler directives,

• supporting functions, and

• shell variables.

OpenMP compiler directives tell the compiler about the parallelism in the source

code and provide instructions for generating the parallel code, i.e., the multi-

threaded translation of the source code. In C/C++, directives are always expressed

as #pragmas. Supporting functions enable programmers to exploit and control the

parallelism during the execution of a program. Shell variables permit tunning of

compiled programs to a particular parallel system.

3.2.1 Compiling and Running an OpenMP Program

To illustrate different kinds of OpenMP API elements, we will start with a simple

program in Listing 3.1.

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main() {
5 printf ("Hello , world:");
6 #pragma omp parallel
7 printf (" %d", omp_get_thread_num ());
8 printf ("\n");
9 return 0;

10 }

Listing 3.1 “Hello world” program, OpenMP style.

This program starts as a single thread that first prints out the salutation. Once

the execution reaches the omp parallel directive, several additional threads are

created alongside the existing one. All threads, the initial thread and the newly created

threads, together form a team of threads. Each thread in the newly established team of

threads executes the statement immediately following the directive: in this example

it just prints out its unique thread number obtained by calling OpenMP function

omp_get_thread_num. When all threads have done that threads created by the

omp parallel directive are terminated and the program continues as a single

thread that prints out a single new line character and terminates the program by

executing return 0.

To compile and run the program shown in Listing 3.1 using GNU GCC C/C++

compiler, use the command-line option -fopenmp as follows:

3.2 Using OpenMP to Write Multithreaded Programs 51

OpenMP: parallel regions

A parallel region within a program is specified as

#pragma omp parallel [clause [[,] clause] …]

structured-block

A team of threads is formed and the thread that encountered the omp
parallel directive becomes the master thread within this team. The

structured-block is executed by every thread in the team. It is either a single

statement, possibly compound, with a single entry at the top and a single exit at

the bottom, or another OpenMP construct. At the end, there is an implicit bar-

rier, i.e., only after all threads have finished, the threads created by this directive

are terminated and only the master resumes execution.

A parallel region might be refined by a list of clauses, for instance

• num_threads(integer) specifies the number of threads that should execute

structured-block in parallel.

Some other clauses applicable to omp parallel will be introduced later.

$ gcc -fopenmp -o hello-world hello-world.c

$ env OMP_NUM_THREADS=8 ./hello-world

(See Appendix A for instructions on how to make OpenMP operational on Linux,

macOS, and MS Windows.)

In this program, the number of threads is not specified explicitly. Hence, the

number of threads matches the value of the shell variable OMP_NUM_THREADS.

Setting the value of OMP_NUM_THREADS to 8, the program might print out

Hello, world: 2 5 1 7 6 0 3 4

Without OMP_NUM_THREADS being set, the program would set the number of

threads to match the number of logical cores threads can run on. For instance, on a

CPU with 2 cores and hyper-threading, 4 threads would be used and a permutation

of numbers from 0 to 3 would be printed out.

Once the threads are started, it is up to a particular OpenMP implementation and

especially the underlying operating system to carry out scheduling and to resolve

competition for the single standard output the permutation is printed on. Hence, if

the program is run several times, a different permutation of thread numbers will most

likely be printed out each time. Try it.

52 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

OpenMP: controlling the number of threads

Once a program is compiled, the number of threads can be controlled using the

following shell variables:

• OMP_NUM_THREADS comma-separated-list-of-positive-integers

• OMP_THREAD_LIMIT positive-integer

The first one sets the number of threads the program should use (or how many

threads should be used at every nested level of parallel execution). The second

one limits the number of threads a program can use (and takes the precedence

over OMP_NUM_THREADS).

Within a program, the following functions can be used to control the number of

threads:

• void omp_set_num_threads() sets the number of threads used in

the subsequent parallel regions without explicit specification of the number

of threads;

• int omp_get_num_threads() returns the number of threads in the

current team relating to the innermost enclosing parallel region;

• int omp_get_max_threads() returns the maximal number of threads

available to the subsequent parallel regions;

• int omp_get_thread_num() returns the thread number of the calling

thread within the current team of threads.

3.2.2 Monitoring an OpenMP Program

During the design, development, and debugging of parallel programs reasoning about

parallel algorithms and how to encode them better rarely suffices. To understand how

an OpenMP program actually runs on a multi-core system, it is best to monitor and

measure the performance of the program. Even more, this is the simplest and the

most reliable way to know how many cores your program actually runs on.

Let us use the program in Listing 3.2 as an illustration. The program starts several

threads, each of them printing out one Fibonacci number computed using the naive

and time-consuming recursive algorithm.

On most operating systems, it is usually easy to measure the running time of a

program execution. For instance, compiling the above program and running it using

time utility on Linux as

$ gcc -fopenmp -O2 -o fibonacci fibonacci.c

$ env OMP_NUM_THREADS=8 time ./fibonacci

yields some Fibonacci numbers, and then as the last line of output, the information

about the program’s running time:

3.2 Using OpenMP to Write Multithreaded Programs 53

1 #include <stdio.h>
2 #include <omp.h>

3

4 long fib (int n) { return (n < 2 ? 1 : fib (n - 1) + fib (n - 2)); }

5

6 int main () {

7 int n = 45;

8 #pragma omp parallel
9 {

10 int t = omp_get_thread_num ();
11 printf ("%d: %ld\n", t, fib (n + t));

12 }
13 return 0;

14 }

Listing 3.2 Computing some Fibonacci numbers.

106.46 real 298.45 user 0.29 sys

(See Appendix A for instructions on how to measure time and monitor the execution

of a program on Linux, macOS and MS Windows.)

The user and system time amount to the total time that all logical cores together

spent executing the program. In the example above, the sum of the user and system

time is bigger than the real time, i.e., the elapsed or wall-clock time. Hence, various

parts of the program must have run on several logical cores simultaneously.

Most operating systems provide system monitors that among other metrics show

the amount of computation performed by individual cores. This might be very infor-

mative during OpenMP program development, but be careful as most system monitor

reports the overall load on an individual logical core, i.e., load of all programs running

on a logical core.

Using a system monitor while the program shown in Listing 3.2 is run on an

otherwise idle system, one can observe the load on individual logical cores during

program execution. As threads finish one after another, one can observe how the

load on individual logical cores drops as the execution proceeds. Toward the end of

execution, with only one thread remaining, it can be seen how the operating system

occasionally migrates the last thread from one logical core to another.

3.3 Parallelization of Loops

Most CPU-intensive programs for solving scientific or technical problems spend

most of their time running loops so it is best to start with some examples illustrating

what OpenMP provides for the efficient and portable implementation of parallel

loops.

54 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

3.3.1 Parallelizing Loops with Independent Iterations

To avoid obscuring the explanation of parallel loops in OpenMP with unnecessary

details, we start with a trivial example of a loop parallelization: consider printing out

all integers from 1 to some user-specified value, say max, in no particular order. The

parallel program is shown in Listing 3.3.

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main (int argc , char *argv []) {
5 int max; sscanf (argv[1], "%d", &max);
6 #pragma omp parallel for
7 for (int i = 1; i <= max; i++)
8 printf ("%d: %d\n", omp_get_thread_num (), i);
9 return 0;

10 }

Listing 3.3 Printing out all integers from 1 to max in no particular order.

The program in Listing 3.3 starts as a single initial thread. The value max is read

and stored in variable max. The execution then reaches the most important part of

the program, namely, the for loop which actually prints out the numbers (each

preceded by the number of a thread that prints it out). But the omp parallel
for directive in line 6 specifies that the for loop must be executed in parallel, i.e.,

its iterations must be divided among and executed by multiple threads running on

all available processing units. Hence, a number of slave threads is created, one per

each available processing unit or as specified explicitly (minus one that the initial

thread runs on). The initial thread becomes the master thread and together with the

newly created slave threads the team of threads is formed. Then,

• iterations of the parallel for loop are divided among threads where each iteration

is executed by the thread it has been assigned to, and

• once all iterations have been executed, all threads in the team are synchronized

at the implicit barrier at the end of the parallel for loop and all slave threads are

terminated.

Finally, the execution proceeds sequentially and the master thread terminates the

program by executing return 0. The execution of the program in Listing 3.3 is

illustrated in Fig. 3.5.

Several observations must be made regarding the program in Listing 3.3 (and exe-

cution of parallel for loops in general). First, the program in Listing 3.3 does not

specify how the iterations should be divided among threads (as explicit scheduling

of iterations will be described later). In such cases, most OpenMP implementations

divide the entire iteration space into chunks where each chunk containing a subin-

terval of all iterations is executed by one thread. Note, however, that this must not

be the case as if left unspecified, it is up to a particular OpenMP implementation to

do as it likes.

3.3 Parallelization of Loops 55

OpenMP: parallel loops

A parallel for loops are declared as

#pragma omp for [clause [[,] clause] …]

for-loops

This directive, which must be used within a parallel region, specifies that itera-

tions of one or more nested for loops will be executed by the team of threads

within the parallel region (omp parallel for is a shorthand for writing

a for loop that itself encompasses the entire parallel region). Each for loop

among for-loops associated with the omp for directive must be in the canon-

ical form. In C, that means that

• the loop variable is made private to each thread in the team and must be either

(unsigned) integer or a pointer,

• the loop variable should not be modified during the execution of any iteration;

• the condition in the for loop must be a simple relational expression,

• the increment in the for loop must specify a change by constant additive

expression;

• the number of iterations of all associated loops must be known before the start

of the outermost for loop.

A clause is a specification that further describes a parallel loop, for instance,

• collapse(integer) specifies how many outermost for loops of for-loops

are associated with the directive, and thus parallelized together;

• nowait eliminates the implicit barrier and thus synchronization at the end

of for-loops.

Some other clauses applicable to omp parallel for will be introduced

later.

Fig. 3.5 Execution of the program for printing out integers as implemented in Listing 3.3

56 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

OpenMP: data sharing

Various data sharing clauses might be used in omp parallel directive to

specify whether and how data are shared among threads:

• shared(list) specifies that each variable in the list is shared by all threads

in a team, i.e., all threads share the same copy of the variable;

• private(list) specifies that each variable in the list is private to each thread

in a team, i.e., each thread has its own local copy of the variable;

• firstprivate(list) is likeprivatebut each variable listed is initialized

with the value it contained when the parallel region was encountered;

• lastprivate(list) is like private but when the parallel region ends

each variable listed is updated with its final value within the parallel region.

No variable listed in these clauses can be a part of another variable.

If not specified otherwise,

• automatic variables declared outside a parallel construct are shared,

• automatic variables declared within a parallel construct are private,

• static and dynamically allocated variables are shared.

Race conditions, e.g., resulting from different lifetimes of lastprivate vari-

ables or updating shared variables, must be avoided explicitly by using OpenMP

constructs described later on.

Second, once the iteration space is divided into chunks, all iterations of an indi-

vidual chunk are executed sequentially, one iteration after another. And third, the

parallel for loop variable i is made private in each thread executing a chunk of

iterations as each thread must have its own copy of i. On the other hand, variable

max can be shared by all threads as it is set before and is only read within the parallel

region.

However, the most important detail that must be paid attention to is that the overall

task of printing out all integers from 1 to max in no particular order can be divided

into N totally independent subtasks of almost the same size. In such cases, the

parallelization is trivial.

As the access to the standard output is serialized, printing out integers does not

happen as parallel as it might seem. Therefore, an example of truly parallel compu-

tation follows.

Example 3.1 Vector addition

Consider vector addition. The function implementing it is shown in Listing 3.4.

Write a program for testing it. As vector addition is not a complex computation at

all, use long vectors and perform a large number of vector additions to measure and

monitor it.

3.3 Parallelization of Loops 57

The structure of function vectAdd is very similar to the program for printing

out integers shown in Listing 3.3: a simple parallel for loop where the result of one

iteration is completely independent of the results produced by other loops. Even more,

different iterations access different array elements, i.e., they read from and write to

completely different memory locations. Hence, no race conditions can occur. �

1 double* vectAdd (double *c, double *a, double *b, int n) {
2 #pragma omp parallel for
3 for (int i = 0; i < n; i++)
4 c[i] = a[i] + b[i];
5 return c;
6 }

Listing 3.4 Parallel vector addition.

Consider now printing out all pairs of integers from 1 to max in no particular

order, something that calls for two nested for loops. As all iterations of both nested

loops are independent, either loop can be parallelized while the other is not. This is

achieved by placing theomp parallel for directive in front of the loop targeted

for parallelization. For instance, the program with the outer for loop parallelized is

shown in Listing 3.5.

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main (int argc , char *argv []) {
5 int max; sscanf (argv[1], "%d", &max);
6 #pragma omp parallel for
7 for (int i = 1; i <= max; i++)
8 for (int j = 1; j <= max; j++)
9 printf ("%d: (%d,%d)\n", omp_get_thread_num (), i, j);

10 return 0;
11 }

Listing 3.5 Printing out all pairs of integers from 1 to max in no particular order by parallelizing

the outermost for loop only.

Assume all pairs of integers from 1 to max are arranged in a square table. If 4

threads are used and max = 6, each iteration of the parallelized outer for loop prints

out a few lines of the table as illustrated in Fig. 3.6a. Note that the first two threads

are assigned twice as much work than the other two threads which, if run on 4 logical

cores, will have to wait idle until the first two complete as well.

However, there are two other ways of parallelizing nested loops. First, the two

nested for loops can be collapsed in order to be parallelized together using clause

collapse(2) as shown in Listing 3.6.

Because of the clause collapse(2) in line 6, the compiler merges the two

nested for loops into one and parallelizes the resulting single loop. The outer for
loop running from 1 to max and max inner for loops running from 1 to max as

well, are replaced by a single loop running from 1 to max2. All max2 iterations are

divided among available threads together. As only one loop is parallelized, i.e., the

58 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

(a) (b) (c)

Fig. 3.6 Partition of the problem domain when all pairs of integers from 1 to 6 must be printed

using 4 threads: a if only the outer for loop is parallelized, b if both for loops are parallelized

together, and c if both for loops are parallelized separately

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main (int argc , char *argv []) {
5 int max; sscanf (argv[1], "%d", &max);
6 #pragma omp parallel for collapse (2)
7 for (int i = 1; i <= max; i++)
8 for (int j = 1; j <= max; j++)
9 printf ("%d: (%d,%d)\n", omp_get_thread_num (), i, j);

10 return 0;
11 }

Listing 3.6 Printing out all pairs of integers from 1 to max in no particular order by parallelizing

both for loops together.

one that comprises iterations of both nested for loops, the execution of the program

in Listing 3.6 still follows the pattern illustrated in Fig. 3.5. For instance, if max = 6,

all 36 iterations of the collapsed single loop are divided among 4 thread as shown

in Fig. 3.6b. Compared with the program in Listing 3.5, the work is more evenly

distributed among threads.

The other method of parallelizing nested loops is by parallelizing each for loop

separately as shown in Listing 3.7.

1 #include <stdio.h>

2 #include <omp.h>

3

4 int main (int argc , char *argv []) {

5 int max; sscanf (argv[1], "%d", &max);
6 #pragma omp parallel for

7 for (int i = 1; i <= max; i++) {
8 #pragma omp parallel for

9 for (int j = 1; j <= max; j++) {

10 printf ("%d: (%d,%d)\n", omp_get_thread_num (), i, j);
11 }

12 }
13 return 0;

14 }

Listing 3.7 Printing out all pairs of integers from 1 to max in no particular order by parallelizing

each nested for loop separately.

3.3 Parallelization of Loops 59

OpenMP: nested parallelism

Nested parallelism is enabled or disabled by setting the shell variable

• OMP_NESTED nested

where nested is either true or false. Within a program, this can be achieved

usign the following two functions:

• void omp_set_nested(int nested) enables or disables nested

parallelism;

• int omp_get_nested() tells whether nested parallelism is enabled or

disabled.

The number of threads at each nested level can be set by calling function

omp_set_num_threads or by setting OMP_NUM_THREADS . In the lat-

ter case, if a list of integers is given each integer specifies the number of threads

at a successive nesting level.

To have one parallel region within the other as shown in Listing 3.7 active at the

same time, nesting of parallel regions must be enabled first. This is achieved by calling

omp_set_nested(1) before mtxMul is called or by setting OMP_NESTED to

true. Once nesting is activated, iterations of both loops are executed in parallel sep-

arately as illustrated in Fig. 3.7. Compare Figs. 3.5 and 3.7 and note how many more

threads are created and terminated in the latter, i.e., if nested loops are parallelized

separately.

Fig. 3.7 The execution of the program for printing out all pairs of integers using separately paral-

lelized nested loops as implemented in Listing 3.7

60 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

By setting OMP_NUM_THREADS=2,2 and running the program in Listing 3.7,

the team of two (outer) threads is established to execute three iterations of the outer

loop each as they would even if nesting was disabled. Each iteration of the outer

loop must compute one line of the table and thus establishes a team of two (inner)

threads to execute 3 iterations of the inner loop each. The table of pairs to be printed

out is divided among threads as shown in Figure 1.6 (c). However, be careful while

interpreting the output: threads of every iteration of the inner loop are counted from

0 onward because function omp_get_thread_num always returns the thread

number relative to its team.

Example 3.2 Matrix multiplication

Another example from linear algebra is matrix by matrix multiplication. The

classical algorithm, based on the definition, encompasses two nested for loops

used to compute n2 independent dot products (and each dot product is computed

using yet another, innermost, for loop).

Hence, the structure of the matrix multiplication code resembles the code shown

in Listings 3.5, 3.6 and 3.7 except that the simple code for printing out the pair of

integers is replaced by yet another for loop for computing the dot product.

The function implementing multiplication of two square matrices where the two

outermost for loops are collapsed and parallelized together, is shown in Listing 3.8.

As before, write a program for testing it.

1 double ** mtxMul (double **c, double **a, double **b, int n) {
2 #pragma omp parallel for collapse (2)
3 for (int i = 0; i < n; i++)
4 for (int j = 0; j < n; j++) {
5 c[i][j] = 0.0;
6 for (int k = 0; k < n; k++)
7 c[i][j] = c[i][j] + a[i][k] * b[k][j];
8 }
9 return c;

10 }

Listing 3.8 Matrix multiplication where the two outermost loops are parallelized together.

The other way of parallelizing matrix multiplication is shown in Listing 3.9.

1 double ** mtxMul (double **c, double **a, double **b, int n) {
2 #pragma omp parallel for
3 for (int i = 0; i < n; i++)
4 #pragma omp parallel for
5 for (int j = 0; j < n; j++) {
6 c[i][j] = 0.0;
7 for (int k = 0; k < n; k++)
8 c[i][j] = c[i][j] + a[i][k] * b[k][j];
9 }

10 return c;
11 }

Listing 3.9 Matrix multiplication where the two outermost loops are parallelized separately.

3.3 Parallelization of Loops 61

Fig. 3.8 Conway’s Game of Life: a particular initial population turns into an oscillating one

Writing functions for matrix multiplication where only one of the two outermost

forloops is parallelized, either outer of inner, is left as an exercise. �

Example 3.3 Convay’s Game of Life

Both examples so far have been taken from linear algebra. Let us now consider

something different: Conway’s Game of life. It is a zero-player game played on a

(finite) plane of square cells, each of which is either “dead” or “alive”. At each step

in time, a new generation of cells arises where

• each live cell with fewer than two neighbors dies of underpopulation,

• each live cell with two or three neighbors lives on,

• each live cell with more than three neighbors dies of overpopulation, and

• each dead cell with three neighbors becomes a live cell.

It is assumed that each cell has eight neighbors, four along its sides and four on its

corners.

Once the initial generation is set, all the subsequent generations can be computed.

Sometimes the population of live cells die out, sometimes it turns into a static colony,

other times it oscillates forever. Even more sophisticated patterns can appear includ-

ing traveling colonies and colony generators. Figure 3.8 shows an evolution of an

oscillating colony on the 10 × 10 plane.

The program for computing Convay’s Game of life is too long to be included

entirely, but its core is shown in Listing 3.10. To understand it, observe the following:

• variable gens contains the number of generations to be computed;

• the current generation is stored in a two-dimensional array plane containing

size × size cells;

• the next generation is computed into a two dimensional array aux_plane con-

taining size × size cells;

• both two dimensional arrays, i.e., plane and aux_plane, are allocated as a

one-dimensional array of pointers to rows of two-dimensional plane;

• function neighbors returns the number of neighbors of the cell in the plane

specified by the first argument of size specified by the second argument at position

specified by the third and fourth arguments.

Except for the omp parallel for directive, the code in Listing 3.10 is the

same as if it was written for the sequential execution: the (outermost) while loop

62 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

runs over all generations to be computed while the inner two loops are used to

compute the next generation and store it inaux_plane given the current generation

in plane. More precisely, the rules of the game are implemented in the switch
statement in lines 6–11: the case for plane[i][j]==0 implements the rule for

dead cells and the case for plane[i][j]==1 implements the rules for live cells.

Once the new generation has been computed, the arrays are swapped so that the

generation just computed becomes the current one.

The omp parallel for directive in line 2 is used to specify that the iterations

of the two for loops in lines 3–12 can be performed simultaneously. By inspecting

the code, it becomes clear that just like in matrix multiplication every iteration of the

outer for loop computes one row of the plane representing the next generation and

that every iteration of the inner loop computes a single cell of the next generation.

As array plane is read only and the (i, j)-th iteration of the collapsed loop is the

only one writing to the (i, j)-th cell of array aux_plane, there can be no race

conditions and there are no dependencies among iterations.

The implicit synchronization at the end of the parallelized loop nest is crucial.

Without synchronization, if the master thread performed the swap in line 13 before

other threads finished the computation within both for loops, it would cause all

other threads to mess up the computation profoundly.

Finally, instead of parallelizing the two for loops together it is also possible

to parallelize them separately just like in matrix multiplication. But the outermost

loop, i.e., while loop, cannot be parallelized as every iteration (except the first one)

depends on the result of the previous one. �

3.3.2 Combining the Results of Parallel Iterations

In most cases, however, individual loop iterations aren’t entirely independent as they

are used to solve a single problem together and thus each iteration contributes its part

to the combined solution. Most often then not partial results of different iterations

must be combined together.

1 while (gens -- > 0) {

2 #pragma omp parallel for collapse (2)

3 for (int i = 0; i < size; i++)

4 for (int j = 0; j < size; j++) {

5 int neighs = neighbors (plane , size , i, j);

6 switch (plane[i][j]) {

7 case 0: aux_plane[i][j] = (neighs == 3);

8 break;

9 case 1: aux_plane[i][j] = (neighs == 2) || (neighs == 3);

10 break;

11 }

12 }

13 char ** tmp_plane = aux_plane; aux_plane = plane; plane = tmp_plane;

14 }

Listing 3.10 Computing generations of Convay’s Game of Life.

3.3 Parallelization of Loops 63

Fig. 3.9 Execution of the summation of integers as implemented in Listing 3.11

If integers from the given interval are to be added instead of printed out, all subtasks

must somehow cooperate to produce the correct sum. The first parallel solution that

comes to mind is shown in Listing 3.11. It uses a single variable sum where the

result is to be accumulated.

1 #include <stdio.h>
2

3 int main (int argc , char *argv []) {
4 int max; sscanf (argv[1], "%d", &max);
5 int sum = 0;
6 #pragma omp parallel for
7 for (int i = 1; i <= max; i++)
8 sum = sum + i;
9 printf ("%d\n", sum);

10 return 0;
11 }

Listing 3.11 Summation of integers from a given interval using a single shared variable — wrong.

Again, iterations of the parallel for loop are divided among multiple threads. In

all iterations, threads use the same shared variable sum on both sides of assignment

in line 8, i.e., they read from and write to the same memory location. As illustrated

in Fig. 3.9 where every box containing =+ denotes the assignment sum = sum +
i, the accesses to variable sum overlap and the program is very likely to encounter

race conditions illustrated in Fig. 3.3.

Indeed, if this program is run multiple times using several threads, it is very likely

that it will not always produce the same result. In other words, from time to time it

will produce the wrong result. Try it.

To avoid race conditions, the assignment sum = sum + i can be put inside a

critical section — a part of a program that is performed by at most one thread at

a time. This is achieved by the omp critical directive which is applied to the

statement or a block immediately following it. The program using critical sections

is shown in Listing 3.12.

The program works correctly because the omp critical directive performs

locking around the code it contains, i.e., the code that accesses variable sum, as

64 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

1 #include <stdio.h>
2

3 int main (int argc , char *argv []) {
4 int max; sscanf (argv[1], "%d", &max);
5 int sum = 0;
6 #pragma omp parallel for
7 for (int i = 1; i <= max; i++)
8 #pragma omp critical
9 sum = sum + i;

10 printf ("%d\n", sum);
11 return 0;
12 }

Listing 3.12 Summation of integers from a given interval using a critical section — slow.

illustrated in Fig. 3.4 and thus prevents race conditions. However, the use of critical

sections in this program makes the program slow because at every moment at most

one thread performs the addition and assignment while all other threads are kept

waiting as illustrated in Fig. 3.10.

It is worth comparing the running times of the programs shown in Listings

3.11 and 3.12. On a fast multi-core processor, a large value for max possibly causing

an overflow is needed so that the difference can be observed.

Another way to avoid race conditions is to use atomic access to variables as shown

in Listing 3.13.

Although sum is a single variable shared by all threads in the team, the program

computes the correct result as the omp atomic directive instructs the compiler

Fig. 3.10 Execution of the summation of integers as implemented in Listing 3.12

3.3 Parallelization of Loops 65

1 #include <stdio.h>
2

3 int main (int argc , char *argv []) {
4 int max; sscanf (argv[1], "%d", &max);
5 int sum = 0;
6 #pragma omp parallel for
7 for (int i = 1; i <= max; i++)
8 #pragma omp atomic
9 sum = sum + i;

10 printf ("%d\n", sum);
11 return 0;
12 }

Listing 3.13 Summation of integers from a given interval using a atomic variable access — faster.

to generate code where sum = sum + i update is performed as a single atomic

operation (possibly using a hardware supported read-modify-write instructions).

The concepts of a critical section and atomic accesses to a variable are very similar,

except that an atomic access is much simpler, and thus usually faster than a critical

section that can contain much more elaborate computation. Hence, the program in

Listing 3.13 is essentially executed as illustrated in Fig. 3.10.

OpenMP: critical sections

A critical section is declared as

#pragma omp critical [(name) [hint(hint)]]

structured-block

The structured-block is guaranteed to be executed by a single thread at a time.

A critical section can be given name, an identifier with external linkage so that

different tasks can implement their own implementation of the same critical

section. A named critical section can be given a constant integer expression hint

to establish a detailed control underlying locking.

To prevent race conditions and to avoid locking or explicit atomic access to vari-

ables at the same time, OpenMP provides a special operation called reduction. Using

it, the program in Listing 3.11 is rewritten to the program shown in Listing 3.14.

1 #include <stdio.h>
2

3 int main (int argc , char *argv []) {
4 int max; sscanf (argv[1], "%d", &max);
5 int sum = 0;
6 #pragma omp parallel for reduction (+:sum)
7 for (int n = 1; n <= max; n++)
8 sum = sum + n;
9 printf ("%d\n", sum);

10 return 0;
11 }

Listing 3.14 Summation of integers from a given interval using reduction — fast.

66 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

Fig. 3.11 Execution of the summation of integers as implemented in Listing 3.14

Fig. 3.12 Integrating y =
√

1 − x2 numerically from 0 to 1

The additional clause reduction(+:sum) states that T private variables sum
are created, one variable per thread. The computation within each thread is performed

using the private variable sum and only when the parallel for loop has finished are

the private variables sum added to variable sum declared in line 5 and printed out in

line 9. The compiler and the OpemMP runtime system perform the final summation

of local variables sum in a way suitable for the actual target architecture.

The program in Listing 3.14 is executed as shown in Fig. 3.11. At first glance, it

is similar to the execution of the incorrect program in Listing 3.11, but there are no

race conditions because in line 8 each thread uses its own private variable sum. At

the end of the parallel for loop, however, these private variables are added to the

global variable sum.

Example 3.4 Computing π by numerical integration

There are many problems that require combining results of loop iterations. Let us

start with a numerical integration in one dimension. Suppose we want to compute

number π by computing the area of the unit circle defined by equation x2 + y2 = 1.

Converting it to its explicit form y =
√

1 − x2, we want to compute number π using

the equation

π = 4

∫ 1

0

√

1 − x2dx

3.3 Parallelization of Loops 67

OpenMP: atomic access

Atomic access to a variable within expression-stmt is declared as

#pragma omp atomic [seq_cst [,]] atomic-clause [[,] seq_cst]

expression-stmt

or

#pragma omp atomic [seq_cst]

expression-stmt

when update is assumed. The omp atomic directive enforces an exclusive

access to a storage location among all threads in the binding thread set without

regard to the teams to which the threads belong.

The three most important atomic-clauses are the following:

• read causes an atomic read of x in statements of the form expr = x;

• write causes an atomic write to x in statements of the form x = expr ;

• update causes an atomic update of x in statements of the form ++x, x++,

–x, x–, x = x binop expr, x = expr binop x, x binop= expr.

If seq_cst is used, an implicit flush operation of atomically accessed variable

is performed after statement-expr.

OpenMP: reduction

Technically, reduction is yet another data sharing attribute specified by

reduction(reduction-identifier:list)

clause.

For each variable in the list, a private copy is created in each thread of a parallel

region, and initialized to a value specified by the reduction-identifier. At the end

of a parallel region, the original variable is updated with values of all private

copies using the operation specified by the reduction-identifier.

The reduction-identifier may be +, -, &, |, ˆ, &&, ||, min, and max. For * and

&& the initial value is 1; for min and max the initial value is the largest and the

smallest value of the variable’s type, respectively; for all other operations, the

initial value is 0.

as illustrated in Fig. 3.12.

The integral on the right hand side of the equation above is computed numerically.

Therefore, the interval [0, 1] is cut into N intervals [1
N

i, 1
N

(i + 1)] where 0 ≤ i ≤
(N − 1) for some chosen number of intervals N . To keep the program simple, the

left Riemann sum is chosen: the area of each rectangle is computed as the width of a

68 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

rectangle, i.e., 1/N , multiplied by the function value computed in the left-end point

of the interval, i.e.,
√

1 − (i/N)2. Thus,

∫ 1

0

√

1 − x2dx ≈
N−1
∑

i=0

⎛

⎝
1

N

√

1 −
(

1

N
i

)2
⎞

⎠

for large enough N .

The program for computing π using the sum on the right-hand side of the approx-

imation is shown in Listing 3.15.

1 #include <stdio.h>
2 #include <math.h>
3

4 int main (int argc , char *argv []) {
5 int intervals; sscanf (argv[1], "%d", &intervals);
6 double integral = 0.0;
7 double dx = 1.0 / intervals;
8 #pragma omp parallel for reduction (+: integral)
9 for (int i = 0; i < intervals; i++) {

10 double x = i * dx;
11 double fx = sqrt (1.0 - x * x);
12 integral = integral + fx * dx;
13 }
14 double pi = 4 * integral;
15 printf ("%20.18 lf\n", pi);
16 return 0;
17 }

Listing 3.15 Computing π by integrating
√

1 − x2 from 0 to 1.

Despite the elements of numerical integration, the program in Listing 3.15 is

remarkably similar to the program in Listing 3.14—after all, this numerical integra-

tion is nothing but a summation of rectangular areas. Nevertheless, one important

detail should not be missed: unlike intervals, integral, and dx variables x
and fx must be thread private.

At this point, it is perhaps worth showing once again that not every loop can be

parallelized. By rewriting lines 7–13 of Listing 3.15 to code shown in Listing 3.16 a

multiplication inside the loop was replaced by addition.

1 double x = 0.0;
2 #pragma omp parallel for reduction (+: integral)
3 for (int i = 0; i < intervals; i++) {
4 double fx = sqrt (1.0 - x * x);
5 integral = integral + fx * dx;
6 x = x + dx;
7 }

Listing 3.16 Computing π by integrating
√

1 − x2 from 0 to 1 using a non-paralellizable loop.

This works well if the program is run by only one thread (setOMP_NUM_THREADS
to 1), but produces the wrong result if multiple threads are used. The reason is that the

iterations are no longer independent: the value of x is propagated from one iteration

3.3 Parallelization of Loops 69

Fig. 3.13 Computing π by random shooting: different threads shoot independently, but the final

result is a combination of all shots

to another so the next iteration cannot be performed until the previous has been fin-

ished. However, the omp parallel for directive in line 2 of Listing 3.16 states

that the loop can and should be parallelized. The programmer unwisely requested

the parallelization and took the responsibility for ensuring the loop can indeed be

parallelized too lightly. �

Example 3.5 Computing π using random shooting

Another way of computing π is to shoot randomly into a square [0, 1] × [0, 1] and

count how many shots hit inside the unit circle and how many do not. The ratio of hits

vs. all shots is an approximation of the area of the unit circle within [0, 1] × [0, 1].
As each shot is independent of another, shots can be distributed among different

threads. Figure 3.13 illustrates this idea if two threads are used. The implementation,

for any number of threads, is shown in Listing 3.17.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <omp.h>

4

5 double rnd (unsigned int *seed) {

6 *seed = (1140671485 * (*seed) + 12820163) % (1 << 24);

7 return ((double)(*seed)) / (1 << 24);

8 }

9

10 int main (int argc , char *argv []) {

11 int num_shots; sscanf (argv[1], "%d", &num_shots);

12 unsigned int seeds[omp_get_max_threads ()];

13 for (int thread = 0; thread < omp_get_max_threads (); thread ++)

14 seeds[thread] = thread;

15 int num_hits = 0;

16 #pragma omp parallel for reduction (+: num_hits)

17 for (int shot = 0; shot < num_shots; shot ++) {

18 int thread = omp_get_thread_num ();

19 double x = rnd (& seeds[thread]);

20 double y = rnd (& seeds[thread]);

21 if (x * x + y * y <= 1) num_hits = num_hits + 1;

22 }

23 double pi = 4.0 * (double)num_hits / (double)num_shots;

24 printf ("%20.18 lf\n", pi);

25 return 0;

26 }

Listing 3.17 Computing π by random shooting using a parallel loop.

70 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

From the parallel programming view, the program in Listing 3.17 is basically

simple: num_shots are shot within the parallel for loop in lines 17–23 and

the number of hits is accumulated in variable num_shots . Furthermore, it also

resembles the program in Listing 3.14: the results of independent iterations combined

together to yield the final result (Fig. 3.14).

The most intricate part of the program is generating random shots. The usual

random generators, i.e., rand or random, are not reentrant or thread-safe: they

should not be called in multiple threads because they use a single hidden state that

is modified on each call regardless of the thread the call is made in. To avoid this

problem, function rnd has been written: it takes a seed, modifies it, and returns a

random value in the interval [0, 1). Hence, a distinct seed for each thread is created in

lines 12–14 where OpenMP function omp_get_max_threads is used to obtain

the number of future threads that will be used in the parallel for loop later on. Using

these seeds, the program contains one distinct random generator for each thread.

The rate of convergence toward π is much lower than if random shooting is used

instead of numerical integration. However, this example shows how simple it is to

implement a wide class of Monte Carlo methods if random generator is applied

correctly: one must only run all random based individual experiments, e.g., shots

into [0, 1] × [0, 1] in lines 18–20, and aggregate the results, e.g., count the number

of hits within the unit circle.

As long as the number of individual experiments is known in advance and the

complexity of individual experiments is approximately the same, the approach is pre-

sented in Listing 3.17 suffices. Otherwise, a more sophisticated approach is needed,

but more about that later.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4

5 double rnd (unsigned int *seed) {
6 *seed = (1140671485 * (*seed) + 12820163) % (1 << 24);
7 return ((double)(*seed)) / (1 << 24);
8 }
9

10 int main (int argc , char *argv []) {
11 int num_shots; sscanf (argv[1], "%d", &num_shots);
12 int num_hits = 0;
13 #pragma omp parallel
14 {
15 unsigned int seed = omp_get_thread_num();
16 #pragma omp for reduction (+: num_hits)
17 for (int shot = 0; shot < num_shots; shot ++) {
18 double x = rnd (&seed);
19 double y = rnd (&seed);
20 if (x * x + y * y <= 1) num_hits = num_hits + 1;
21 }
22 }
23 double pi = 4.0 * (double)num_hits / (double)num_shots;
24 printf ("%20.18 lf\n", pi);
25 return 0;
26 }

Listing 3.18 Computing π by random shooting using a parallel loop.

3.3 Parallelization of Loops 71

Before proceeding, we can rewrite the program in Listing 3.17 to a simpler one.

By splitting the omp parallel and omp forwe can define the thread-local seed

inside the parallel region as shown in Listing 3.19.

Let us demonstrate that computing π by random shooting into [0, 1] × [0, 1] and

counting the shots inside the unit circle can also be encoded differently as shown in

Listing 3.19, but at its core it stays the same.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4

5 double rnd (unsigned int *seed) {
6 *seed = (1140671485 * (*seed) + 12820163) % (1 << 24);
7 return ((double)(*seed)) / (1 << 24);
8 }
9

10 int main (int argc , char *argv []) {
11 int num_shots; sscanf (argv[1], "%d", &num_shots);
12 int num_hits = 0;
13 #pragma omp parallel reduction (+: num_hits)
14 {
15 unsigned int seed = omp_get_thread_num ();
16 int loc_shots = (num_shots / omp_get_num_threads ()) +
17 ((num_shots % omp_get_num_threads () > ←֓

omp_get_thread_num ())
18 ? 1 : 0);
19 while (loc_shots -- > 0) {
20 double x = rnd (seed);
21 double y = rnd (seed);
22 if (x * x + y * y <= 1) num_hits = num_hits + 1;
23 }
24 }
25 double pi = 4.0 * (double)num_hits / (double)num_shots;
26 printf ("%lf\n", pi);
27 return 0;
28 }

Listing 3.19 Computing π by random shooting using parallel sections.

Namely, the parallel regions, one per each available thread, specified by the omp
parallel directive in line 13 are used instead of the parallel for loop (see also

Listings 3.1 and 3.2). Within each parallel region, the seed for the thread-local random

generator is generated in lines 15. Then, the number of shots that must be carried

out by the thread is computed in lines 16–18 and finally all shots are performed in

a thread-local sequential while loop in lines 19–23. Unlike the iterations of the

parallel par loop in Listing 3.18, the iterations of the while loop do not contain a

call of function omp_get_thread_num . However, the aggregation of the results

obtained by the parallel regions, i.e., the number of hits, is done using the reduction

in the same way as in Listing 3.18. �

72 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

3.3.3 Distributing Iterations Among Threads

So far no attention has been paid on how iterations of a parallel loop, or of a several

collapsed parallel loops, are distributed among different threads in a single team

of threads. However, OpenMP allows the programmer to specify several different

iteration scheduling strategies.

Consider computing the sum of integers from a given interval again using the

program shown in Listing 3.14. This time, however, the program will be modified

as shown in Listing 3.20. First, the schedule(runtime) clause is added to the

omp for directive in line 8. It allows the iteration schedule strategy to be defined

once the program is started using the shell variable OMP_SCHEDULE . Second, in

line 10, each iteration prints out the the number of thread that executes it. And third,

different iterations take different time to execute as specified by the argument of

function sleep in line 11: iterations 1, 2, and 3 require 2, 3, and 4 s, respectively,

while all other iterations require just 1 second.

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <omp.h>
4

5 int main (int argc , char *argv []) {
6 int max; sscanf (argv[1], "%d", &max);
7 long int sum = 0;
8 #pragma omp parallel for reduction (+:sum) schedule(runtime)
9 for (int i = 1; i <= max; i++) {

10 printf ("%2d @ %d\n", i, omp_get_thread_num ());
11 sleep (i < 4 ? i + 1 : 1);
12 sum = sum + i;
13 }
14 printf ("%ld\n", sum);
15 return 0;
16 }

Listing 3.20 Summation of integers from a given interval where iteration scheduling strategy is

determined in runtime.

Suppose 4 threads are being used and max = 14:

• If OMP_SCHEDULE=static, the iterations are divided into chunks each con-

taining approximately the same number of iterations and each thread is given

at most one chunk. One possible static distribution of 14 iterations among 4

threads (but not the only one, see [18]) is

T0 : {1, 2, 3, 4}
︸ ︷︷ ︸

10 secs

T1 : {5, 6, 7, 8}
︸ ︷︷ ︸

4 secs

T2 : {9, 10, 11}
︸ ︷︷ ︸

3 secs

T3 : {12, 13, 14}
︸ ︷︷ ︸

3 secs

Thread T0 is assigned to all the most time-consuming iterations: although iteration

when i equals 4 takes 1 second, iterations when i is either 1, 2, or 3 require 2,

3, and 4 s, respectively. Each iteration assigned to any other thread takes only

3.3 Parallelization of Loops 73

OpenMP: scheduling parallel loop iterations

Distributing iterations of parallel loops among team threads is controlled by the

schedule clause. The most important options are as follows:

• schedule(static): The iterations are divided into chunks each contain-

ing approximately the same number of iterations and each thread is given at

most one chunk.

• schedule(static,chunk_size): The iterations are divided into chunks

where each chunk contains chunk_size iterations. Chunks are then assigned

to threads in a round-robin fashion.

• schedule(dynamic,chunk_size): The iterations are divided into chunks

where each chunk contains chunk_size iterations. Chunks are assigned to

threads dynamically: each thread takes one chunk at a time out of the common

pool of chunks, executes it and requests a new chunk until the pool is empty.

• schedule(auto): The selection of the scheduling strategy is left to the

compiler and the runtime system.

• schedule(runtime): The scheduling strategy is specified at run time

using the shell variable OMP_SCHEDULE .

If no schedule clause is present in the omp for directive, the compiler and

runtime system are allowed to choose the scheduling strategy on their own.

1 s. Hence, thread T0 finishes much later than all other threads as can be seen in

Fig. 3.15.

• If OMP_SCHEDULE=static,1 or OMP_SCHEDULE=static,2, the itera-

tions are divided into chunks containing 1 or 2 iterations, respectively. Chunks

are then assigned to threads in a round-robin fashion as

T0 : {1; 5; 9; 13}
︸ ︷︷ ︸

5 secs

T1 : {2; 6; 10; 14}
︸ ︷︷ ︸

6 secs

T2 : {3; 7; 11}
︸ ︷︷ ︸

6 secs

T3 : {4; 8; 12}
︸ ︷︷ ︸

3 secs

or

T0 : {1, 2; 9, 10}
︸ ︷︷ ︸

7 secs

T1 : {3, 4; 11, 12}
︸ ︷︷ ︸

7 secs

T2 : {5, 6; 13, 14}
︸ ︷︷ ︸

4 secs

T3 : {7, 8}
︸ ︷︷ ︸

2 secs

where semicolon separates different chunks assigned to the same thread.

As shown in Fig. 3.14, the running times of different threads differ less than if

simple static scheduling is used. Furthermore, the overall running time is reduced

from 10 to 6 or 7 s, depending on the chunk size.

• If OMP_SCHEDULE=dynamic,1 or OMP_SCHEDULE=dynamic,2, the iter-

ations are divided into chunks containing 1 or 2 iterations, respectively. Chunks

are assigned to threads dynamically: each thread takes one chunk at a time out of

the common pool of chunks, executes it and requests a new chunk until the pool

74 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

Fig. 3.14 A distribution of 14 iterations among 4 threads where iterations 1, 2 and 3 require more

time than other iterations, using static iteration scheduling strategy

Fig. 3.15 A distribution of 14 iterations among 4 threads where iterations 1, 2 and 3 require more

time than other iterations, using static,1 (left) and static,2 (right) iteration scheduling

strategies

Fig. 3.16 A distribution of 14 iterations among 4 threads where iterations 1, 2 and 3 require more

time than other iterations, using dynamic,1 (left) and dynamic,2 (right) iteration scheduling

strategies

is empty. Hence, two possible dynamic assignments, for chunks consisting of 1

and 2 iterations, respectivelly, are

T0 : {1; 6; 9; 13}
︸ ︷︷ ︸

5 secs

T1 : {2; 8; 12}
︸ ︷︷ ︸

5 secs

T2 : {3; 11}
︸ ︷︷ ︸

5 secs

T3 : {4; 5; 7; 10; 14}
︸ ︷︷ ︸

5 secs

or

T0 : {1, 2}
︸ ︷︷ ︸

5 secs

T1 : {3, 4}
︸ ︷︷ ︸

5 secs

T2 : {5, 6; 9, 10; 13, 14}
︸ ︷︷ ︸

6 secs

T3 : {7, 8; 11, 12}
︸ ︷︷ ︸

4 secs

The scheduling of iterations is illustrated in Fig. 3.16: the overall running is further

reduced to 5 or 6 s, again depending on the chunk size. The overall running time

of 5 s is the minimal possible as each thread performs the same amount of work.

3.3 Parallelization of Loops 75

Fig. 3.17 The Mandelbrot

set in the complex plane

[−2.6,+1.0] ×
[−1.2i,+1.2i] (black) and

its complement (white, light

and dark gray). The darkness

of each point indicates the

time needed to establish

whether a point belongs to

the Mandelbrot set or not

Example 3.6 Mandelbrot set

The appropriate choice of iteration scheduling strategy always depends on the

problem that is being solved. To see why the iteration scheduling strategy matters,

consider computing the Mandelbrot set. It is defined as

M = {c ; lim sup
n→∞

|zn| ≤ 2 where z0 = 0 ∧ zn+1 = z2
n + c}

and shown in Fig. 3.17.

The Mandelbrot set can be computed using the program shown in Listing 3.21

which generates a picture consisting of i_size×j_size pixels. For each pixel,

the sequence zn+1 = z2
n + c where c represents the pixel coordinates in the complex

plane, is iterated until it either diverges (|zn+1| > 2) or the maximum number of

iterations (max_iters, defined in advance) is reached.

1 #pragma omp parallel for collapse (2) schedule(runtime)
2 for (int i = 0; i < i_size; i++) {
3 for (int j = 0; j < j_size; j++) {
4 // printf ("# (%d,%d) t=%d\n", i, j, omp_get_thread_num ());
5 double c_re = min_re + i * d_re;
6 double c_im = min_im + j * d_im;
7

8 double z_re = 0.0;
9 double z_im = 0.0;

10 int iters = 0;
11 while ((z_re * z_re + z_im * z_im <= 4.0) &&
12 (iters < max_iters)) {
13 double new_z_re = z_re * z_re - z_im * z_im + c_re;
14 double new_z_im = 2 * z_re * z_im + c_im;
15 z_re = new_z_re; z_im = new_z_im;
16 iters = iters + 1;
17 }
18 picture[i][j] = iters;
19 }
20 }

Listing 3.21 Computing the Mandelbrot set.

76 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

To produce Fig. 3.17, max_iters has been set to 100. Each point of the black

region, i.e., within the Mandelbrot set, takes 100 iterations to compute. However, each

point within the dark gray region requires more than 10 yet less than 100 iterations.

Likewise, each point within the light gray region requires more than 5 and less than

10 iterations and all the rest, i.e., points colored white, require at most 5 iterations

each. As different points and thus different iterations of the collapsed for loops

in lines 2 and 3 require significantly different amount of computation, it matters

what iteration scheduling strategy is used. Namely, if static,100 is used instead

of simply static, the running time is reduced by approximately 30 percent; the

choice of dynamic,100 reduces the running time even more. Run the program

and measure its running time under different iteration scheduling strategies. �

3.3.4 The Details of Parallel Loops and Reductions

The parallel for loop and reduction operation are so important in OpenMP pro-

gramming that they should be studied and understood in detail.

Let us return to the program for computing the sum of integers from 1 to max as

shown in Listing 3.14. If it assumed that T , the number of threads, divides max and

the static iteratin scheduling startegy is used, the program can be rewritten into

the one shown in Listing 3.22. (See exercises for the case when T does not divide

max.)

1 #include <stdio.h>
2 #include <omp.h>
3

4 int main (int argc , char *argv []) {
5 int max; sscanf (argv[1], "%d", &max);
6 int ts = omp_get_max_threads ();
7 if (max % ts != 0) return 1;
8 int sums[ts];
9 #pragma omp parallel

10 {
11 int t = omp_get_thread_num ();
12 int lo = (max / ts) * (t + 0) + 1;
13 int hi = (max / ts) * (t + 1) + 0;
14 sums[t] = 0;
15 for (int i = lo; i <= hi; i++)
16 sums[t] = sums[t] + i;
17 }
18 int sum = 0;
19 for (int t = 0; t < ts; t++) sum = sum + sums[t];
20 printf ("%d\n", sum);
21 return 0;
22 }

Listing 3.22 Implementing efficient summation of integers by hand using simple reduction.

The initial thread first obtains T , the number of threads available (using OpenMP

function omp_get_max_threads), and creates an array sums of variables used

for summation within each thread. Although the array sums is going to be shared

by all threads, each thread will access only one of its T elements.

3.3 Parallelization of Loops 77

Fig. 3.18 Computing the reduction in time O(log2 T) using T/2 threads when T = 12

Reachingomp parallel region the master thread creates (T − 1) slave threads

to run alongside the master thread. Each thread, master or slave, first computes its

subinterval (lines 11–12), initializes its local summation variable to 0 (line 13), and

then executes its thread-local sequential for loop (line 14–15). Once all threads

have finished computing local sums, only the master thread is left alive. It adds the

local summation variables and prints the result. The overall execution is performed

as shown in Fig. 3.9. However, no race conditions appear because each thread uses

its own summation variable, i.e., the t-th thread uses the t-th element sums[t] of

array sums.

From the implementation point of view, the program in Listing 3.22 uses array

sums instead of thread-local summation variables and performs the reduction by

the master thread only. Array sums is created by the master thread before creating

slave threads so that the explicit reduction, which is performed in line 18 after the

slave threads have been terminated and their local variables (t, lo, hi, and n) have

been lost, can be implemented.

Furthermore, the reduction is performed by adding local summation variables,

i.e., elements of sums, one after another to variable sum. This takes O(T) time

and works fine if the number of threads is small, e.g., T = 4 or T = 8. However, if

there are a few hundred threads, a solution shown in Listing 3.23 that works in time

O(log2 T) and produces the result in sums[0], is often preferred (unless the target

system architecture requires even more sophisticated method).

1 for (int d = 1; d < ts; d = d * 2)
2 #pragma omp parallel for
3 for (int t = 0; t < ts; t = t + 2 * d)
4 if (t + d < ts) sums[t] = sums[t] + sums[t + d];

Listing 3.23 Implementing efficient summation of integers by hand using simple reduction.

The idea behind the code shown in Listing 3.23 is illustrated in Fig. 3.18. In List-

ing 3.23 variable, d contains the distance between elements of array sums being

added, and as it doubles in each iteration, there are ⌈log2 T ⌉ iterations of the outer

loop. Variable t denotes the left element of each pair being added in the inner loop.

But as the inner loop is performed in parallel by at least T/2 threads which operate

on distinct elements of array sums, all additions in the inner loop are performed

simultaneously, i.e., in time O(1).

Note that either method used for computing the reduction uses (T − 1) additions.

However, in the first method (line 18 of Listing 3.22) additions are performed one

78 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

after another while in the second method (Listing 3.23) certain additions can be

performed simultaneously.

3.4 Parallel Tasks

Although most parallel programs spend most of their time running parallel loops,

this is not always the case. Hence, it is worth exploring how a program consisting of

different tasks can be parallelized.

3.4.1 Running Independent Tasks in Parallel

As above, where parallelization of loops that need not combine the results of its

iterations was explained first, we start with explanation of tasks where cooperation

is not needed.

Consider computing the sum of integers from 1 to max one more time. At the end

of a previous section, it was shown how iterations of a single parallel for loop are

distributed among threads. This time, however, the interval from 1 to max is split

into a number of mutually disjoint subintervals. For each subinterval, a task that

first computes the sum of all integers of a subinterval and then adds the sum of the

subinterval to the global sum, is used.

The idea is implemented as the program in Listing 3.24. For the sake of simplicity,

it is assumed that T , denoting the number of tasks and stored in variable tasks,

divides max.

Computing the sum is performed in the parallel block in lines 9–25. The for
loop in line 12 creates all T tasks where each task is defined by the code in lines

13–23. Once the tasks are created, it is more or less up to OpenMP’s runtime system

to schedule tasks and execute them.

The important thing, however, is that the for loop in line 12 is executed by only

one thread as otherwise each thread would create its own set of T tasks. This is

achieved by placing the for loop in line 12 under the OpenMP directive single.

The OpenMP directive task in line 13 specifies that the code in lines 14–23 is

to be executed as a single task. The local sum is initialized to 0 and the subinterval

bounds are computed from the task number, i.e., t. The integers of the subinterval

are added up and the local sum is added to the global sum using atomic section to

prevent a race condition between two different tasks.

Note that when a new task is created, the execution of the task that created the

new task continues without delay; once created, the new task has a life of its own.

Namely, when the master thread in Listing 3.24 executes the for loop, it creates

one new task in each iteration, but the iterations (and thus creation of new tasks) are

executed one after another without waiting for the newly created tasks to finish (in

fact, it would make no sense at all to wait for them to finish). However, all tasks must

3.4 Parallel Tasks 79

1 #include <stdio.h>

2 #include <omp.h>

3

4 int main (int argc , char *argv []) {

5 int max; sscanf (argv[1], "%d", &max);

6 int tasks; sscanf (argv[2], "%d", &tasks);

7 if (max % tasks != 0) return 1;

8 int sum = 0;

9 #pragma omp parallel

10 {

11 #pragma omp single

12 for (int t = 0; t < tasks; t++) {

13 #pragma omp task

14 {

15 int local_sum = 0;

16 int lo = (max / tasks) * (t + 0) + 1;

17 int hi = (max / tasks) * (t + 1) + 0;

18 // printf ("%d: %d..%d\n", omp_get_thread_num (), lo, hi);

19 for (int i = lo; i <= hi; i++)

20 local_sum = local_sum + i;

21 #pragma omp atomic

22 sum = sum + local_sum;

23 }

24 }

25 }

26 printf ("%d\n", sum);

27 return 0;

28 }

Listing 3.24 Implementing summation of integers by using a fixed number of tasks.

finish before the parallel region can end. Hence, once the global sum is printed

out in line 26 of Listing 3.24, all tasks has already finished.

The difference between the approaches taken in the previous and this section can

be told in yet another way. Namely, when iterations of a single parallel for loop

are distributed among threads, tasks, one per thread, are created implicitly. But when

a number of explicit tasks is used, the loop itself is split among tasks that are then

distributed among threads.

Example 3.7 Fibonacci numbers

Computing the first max Fibonacci numbers using the time-consuming recursive

formula can be pretty naive, especially if a separate call of the recursive function is

used for each of them. Nevertheless, it shows how to use the advantage of tasks.

The program in Listing 3.25 shows how this can be done. Note again that a single

thread within a parallel region starts all tasks, one per each number. As the program

is written, smaller Fibonacci numbers, i.e., for n = 1, 2, . . ., are computed first while

the largest are left to be computed later.

The time needed to compute the n-th Fibonacci number using function fib in

line 4 of Listing 3.25 is of order O(1.6n). Hence, the time complexity of individual

tasks grows exponentially with n. Therefore, it is perhaps better to create (and thus

carry out) tasks in reverse order, the most demanding first and the least demanding

last as shown in Listing 3.26. Run both programs, check this hypothesis out and inves-

tigate which tasks get carried out by which thread. �

80 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

OpenMP: tasks

A task is declared using the directive

#pragma omp task [clause [[,] clause] …]

structured-block

The task directive creates a new task that executes structured-block. The new

task can be executed immediately or can be deferred. A deferred task can be

later executed by any thread in the team.

The task directive can be further refined by a number of clauses, the most

important being the following ones:

• final(scalar-logical-expression) causes, if scalar-logical-expression eval-

uates to true, that the created task does not generate any new tasks any more,

i.e., the code of would-be-generated new subtasks is included in and thus

executed within this task;

• if([task:]scalar-logical-expression) causes, if scalar-logical-expression

evaluates to false, that an undeferred task is created, i.e., the created task

suspends the creating task until the created task is finished.

For other clauses see OpenMP specification.

OpenMP: limiting execution to a single thread

Within a parallel section, the directive

#pragma omp single [clause [[,] clause] …]

structured-block

causes structured-block to be executed by exactly one thread in a team (not

necessarily the master thread). If not specified otherwise, all other threads wait

idle at the implicit barrier at the end of the single directive.

The most important clauses are the following:

• private(list) specifies that each variable in the list is private to the code

executed within the single directive;

• nowait removes the implicit barrier at the end of the single directive and

thus allows other threads in the team to proceed without waiting for the code

under the single directive to finish.

Converting a parallel for loop into a set of tasks is not very interesting and in

most cases does not help either. The real power of tasks, however, can be appreciated

when the number and the size of individual tasks cannot be known in advance. In

3.4 Parallel Tasks 81

1 #include <stdio.h>

2 #include <omp.h>

3

4 long fib (int n) { return (n < 2 ? 1 : fib (n - 1) + fib (n - 2)); }

5

6 int main (int argc , char *argv []) {

7 int max; sscanf (argv[1], "%d", &max);

8 #pragma omp parallel

9 #pragma omp single

10 for (int n = 1; n <= max; n++)

11 #pragma omp task

12 printf ("%d: %d %ld\n", omp_get_thread_num (), n, fib (n));

13 return 0;

14 }

Listing 3.25 Computing Fibonacci numbers using OpenMP’s tasks: smaller tasks, i.e., for smaller

Fibonacci numbers are created first.

other words, when the problem or the algorithm demands that tasks are created

dynamically.

1 for (int n = max; n >= 1; n--)
2 #pragma omp task
3 printf ("%d: %d\n", omp_get_thread_num (), n);

Listing 3.26 Computing Fibonacci numbers using OpenMP’s tasks: smaller tasks, i.e., for smaller

Fibonacci numbers are created last.

Example 3.8 Quicksort

A good and simple, yet well-known example of this kind is sorting using the

Quicksort algorithm [5]. The parallel version using tasks is shown in Listing 3.27.

1 void par_qsort (char **data , int lo , int hi ,
2 int (* compare)(const char *, const char*)) {
3 if (lo > hi) return;
4 int l = lo;
5 int h = hi;
6 char *p = data[(hi + lo) / 2];
7 while (l <= h) {
8 while (compare (data[l], p) < 0) l++;
9 while (compare (data[h], p) > 0) h--;

10 if (l <= h) {
11 char *tmp = data[l]; data[l] = data[h]; data[h] = tmp;
12 l++; h--;
13 }
14 }
15 #pragma omp task final(h - lo < 1000)
16 par_qsort (data , lo , h, compare);
17 #pragma omp task final(hi - l < 1000)
18 par_qsort (data , l, hi, compare);
19 }

Listing 3.27 The parallel implementation of the Quicksort algorithm where each recursive call is

performed as a new task.

The partition part of the algorithm, implemented in lines 4–14 of Listing 3.27,

is the same as in the sequential version. The recursive calls, though, are modified

82 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

because they can be performed independently, i.e., at the same time. Each of the two

recursive calls is therefore executed as its own task.

However, no matter how efficient creating new tasks is, it takes time. Creating a

new task only makes sense if a part of the table that must be sorted using a recursive

call is big enough. In Listing 3.27, the clause final in lines 15 and 17 is used to

prevent creating new tasks for parts of table that contain less than 1000 elements. The

threshold 1000 has been chosen by experience; choosing the best threshold depends

on many factors (the number of elements, the time needed to compare two elements,

the implementation of OpenMP’s tasks, …). The experimental way of choosing it

shall be, to some extent, covered in the forthcoming chapters.

There is an analogy with the sequential algorithm: recursion takes time as well

and to speed up the sequential Quicksort algorithm, the insertion sort is used once

the number of elements falls below a certain threshold.

There should be no confusion about the arguments for function par_qsort .

However, function par_qsort must be called within a parallel region by

exactly one thread as shown in Listing 3.28.

1 #pragma omp parallel
2 #pragma omp single
3 par_qsort (strings , 0, num_strings - 1, compare);

Listing 3.28 The call of the parallel implementation of the Quicksort algorithm.

As the Quicksort algorithm itself is rather efficient, i.e., it runs in time O(n log n),

a sufficient number of elements must be used to see that the parallel version actually

outperforms the sequential one. The comparison of running times is summarized in

Table 3.1. By comparing the running times of the sequential version with the parallel

version running within a single thread, one can estimate the time needed to create

and destroy OpenMP’s threads.

Using 4 or 8 threads the parallel version is definitely faster, although the speed

us consider the Quicksort algorithm up is not proportional to the number of threads

used. Note that the partition of the table in lines 4–14 of Listing 3.27 is performed

sequentially and recall the Amdahl law. �

3.4.2 Combining the Results of Parallel Tasks

In a number of cases, parallel tasks cannot be left to execute independently of each

other and leave its results in some global or shared variable. In such a situation, the

programmer must take care of the lifespan of each individual task. The next example

illustrates this.

Example 3.9 Quicksort revisited

Let us consider the Quicksort algorithm as an example again and modify it so that

it returns the number of element pairs swapped during the partition phases.

3.4 Parallel Tasks 83

Table 3.1 The comparison of the running time of the sequential and parallel version of the Quick-

sort algorithm when sorting n random strings of max length 64 using a quad-core processor with

multithreading

n seq par

(1 thread) (4 threads) (8 threads)

105 0.05 s 0.07 s 0.04 s 0.04 s

106 0.79 s 0.99 s 0.44 s 0.32 s

107 11.82 s 12.47 s 4.27 s 3.57 s

108 201.13 s 218.14 s 71.90 s 61.81 s

Counting swaps during the partition phase in a sequential program is trivial. For

instance, as shown in Listing 3.29, three new variables can be introduced, namely

count, locount, and hicount that contain the number of swaps in the current

partition phase and the total numbers of swaps in recursive calls, respectively. (In

the sequential program, this could be done with a single counter, but having three

counters instead is more appropriate for the developing of the parallel version.)

1 int par_qsort (char **data , int lo , int hi ,
2 int (* compare)(const char *, const char*)) {
3 if (lo > hi) return 0;
4 int l = lo;
5 int h = hi;
6 char *p = data[(hi + lo) / 2];
7 int count = 0;
8 while (l <= h) {
9 while (compare (data[l], p) < 0) l++;

10 while (compare (data[h], p) > 0) h--;
11 if (l <= h) {
12 count ++;
13 char *tmp = data[l]; data[l] = data[h]; data[h] = tmp;
14 l++; h--;
15 }
16 }
17 int locount , hicount;
18 #pragma omp task shared(locount) final(h - lo < 1000)
19 locount = par_qsort (data , lo , h, compare);
20 #pragma omp task shared(hicount) final(hi - l < 1000)
21 hicount = par_qsort (data , l, hi, compare);
22 #pragma omp taskwait
23 return count + locount + hicount;
24 }

Listing 3.29 The call of the parallel implementation of the Quicksort algorithm.

In the parallel version, the modification is not much harder, but a few things must

be taken care of. First, as recursive calls in lines 16 and 18 of Listing 3.27 change

to assignment statements in lines 19 in 21 of Listing 3.29, the values of variables

locount and hicount are set in two newly created tasks and must, therefore, be

shared among the creating and the created tasks. This is achieved using shared
clause in lines 18 and 20.

84 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

Second, remember that once the new tasks in lines 18–19 and 20–21 are created,

the task that has just created them continues. To prevent it from computing the sum of

all three counters and returning the result when variables locount and hicount
might not have been set yet, the taskwait directive is used. It represents an explicit

barrier: all tasks created by the task executing it must finish before that task can

continue.

At the end of the parallel section is an implicit barrier before all tasks

created within the parallel section must finish just like all iterations of a parallel

loop must. Hence, in Listing 3.24, there is no need for an explicit barrier using

taskwait. �

OpenMP: explicit task barrier

An explicit task barrier is created by the following directive:

#pragma omp taskwait

It specifies a point in the program the task waits until all its subtasks are finished.

3.5 Exercises and Mini Projects

Exercises

1. Modify the program in Listing 3.1 so that it uses a team of 5 threads within the par-

allel region by default. Investigate how shell variablesOMP_NUM_THREADS and

OMP_THREAD_LIMIT influence the execution of the original and modified

program.

2. If run with one thread per logical core, threads started by the program in List-

ings 3.1 print out their thread numbers in random order while threads started

by the program in Listing 3.2 always print out their results in the same order.

Explain why.

3. Suppose two 100 × 100 matrices are to be multiplied using 8 threads. How many

dot products, i.e., operations performed by the innermost for loop, must each

thread compute if different approaches to parallelizing the two outermost for
loops of matrix multiplication illustrated in Fig. 3.6 are used?

4. Draw a 3D graph with the size of the square matrix along one independent axis,

e.g., from 1 to 100, and the number of available threads, e.g., from 1 to 16, along

the other showing the ratio between the number of dot products computed by

the most and the least loaded thread for different approaches to parallelizing the

two outermost for loops of matrix multiplication illustrated in Fig. 3.6.

3.5 Exercises and Mini Projects 85

5. Modify the programs for matrix multiplication based on different loop paral-

lelization methods to compute C = A · BT instead of C = A · B. Compare the

running time of the original and modified programs.

6. Suppose 4 threads are being used when the program in Listing 3.20 and max =
20. Determine which iteration will be performed by which thread if static,1,

static,2 or static,3 is used as a iteration scheduling strategy. Try without

running the program first. (Assume that iterations 1, 2 and 3 require 2, 3 and 4

units of time while all other iterations require just 1 unit of time.)

7. Suppose 4 threads are being used when the program in Listing 3.20 and

max = 20. Determine which iteration will be performed by which thread if

dynamic,1, dynamic,2 or dynamic,3 is used as a iteration scheduling

strategy. Is the solution uniquely defined? (Assume that iterations 1, 2 and 3

require 2, 3 and 4 units of time while all other iterations require just 1 unit of

time.)

8. Modify lines 12 and 13 in Listing 3.22 so that the program works correctly even

if T , the number of threads, does not divide max. The number of iterations of

the for loop in lines 15 and 16 should not differ by more than 1 for any two

threads.

9. Modify the program in Listing 3.22 so that the modified program implements

static,c iteration scheduling strategy instead of static as is the case in

Listing 3.22. The chunk size c must be a constant declared in the program.

10. Modify the program in Listing 3.22 so that the modified program implements

dynamic,c iteration scheduling strategy instead of static as is the case in

Listing 3.22. The chunk size c must be a constant declared in the program.

Hint: Use a shared counter of iterations that functions as a queue of not yet

scheduled iterations outside the parallel section.

11. While computing the sum of all elements of sums in Listing 3.23, the program

creates new threads within every iteration of the outer loop. Rewrite the code so

that creation of new threads in every iteration of the outer loop is avoided.

12. Try rewriting the programs in Listings 3.25 and 3.26 using parallel for loops

instead of OpenMP’s tasks to mimic the behavior of the original program as

close as possible. Find out which iteration scheduling strategy should be used.

Compare the running time of programs using parallel for loops with those that

use OpenMP’s tasks.

13. Modify the program in Listing 3.27 so that it does not use final but works in

the same way.

14. Check the OpenMP specification and rewrite the program in Listing 3.24 using

the taskloop directive.

Mini Projects

P1. Write a multi-core program that uses CYK algorithm [13] to parse a string of

symbols. The inputs are a context-free grammar G in Chomsky Normal Form

and a string of symbols. At the end, the program should print yes if the string

of symbols can be derived by the rules of the grammar and no otherwise.

86 3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP

Write a sequential program (no OpenMP directives at all) as well. Compare the

running time of the sequential program with the running time of the multi-core

program and compute the speedup for different grammars and different string

lengths.

Hint: Observe that in the classical formulation of CYK algorithm the iterations

of the outermost loop must be performed one after another but that iterations

of the second outermost loop are independent and offer a good opportunity for

parallelization.

P2. Write a multi-core program for the “all-pairs shortest paths” problem [5]. The

input is a weighted graph with no negative cycles and the expected output are

lengths of the shortest paths between all pairs of vertices (where the length of a

path is a sum of weights along the edges that the path consists of).

Write a sequential program (no OpenMP directives at all) as well. Compare the

running time of the sequential program with the running time of the multi-core

program and compute the speedup achieved

1. for different number of cores and different number of threads per core, and

2. for different number of vertices and different number of edges.

Hint 1: Take the Bellman–Ford algorithm for all-pairs shortest paths [5] and

consider its matrix multiplication formulation. For a graph G = 〈V, E〉 your

program should achieve at least time O(|V |4), but you can do better and achieve

time O(|V |3 log2 |V |). In neither case should you ignore the cache performance:

allocate matrices carefully.

Hint 2: Instead of using the Bellman–Ford algorithm, you can try parallelizing

the Floyd–Warshall algorithm that runs in time O(|V |3) [5]. How fast is the

program based on the Floyd–Warshall algorithm compared with the one that

uses the O(|V |4) or O(|V |3 log2 |V |) Bellman–Ford algorithm?

3.6 Bibliographic Notes

The primary source of information including all details of OpenMP API is available

at OpenMP web site [20] where the complete specification [18] and a collection of

examples [19] are available. OpenMP version 4.5 is used in this book as version 5.0

is still being worked on by OpenMP Architecture Review Board. The summary card

for C/C++ is also available at OpenMP web site.

As standards and specifications are usually hard to read, one might consider some

book wholly dedicated to programming using OpenMP. Although relatively old and

thus lacking the most of the modern OpenMP features, the book by Rohit Chandra

et al. [4] provides a nice introduction to underlying ideas upon which OpenMP is

based upon and the basic OpenMP constructs. A more recent and comprehensive

description of OpenMP, version 4.5, can be found in the book by Ruud van der Pas

et al. [21].

4MPI Processes and Messaging

Chapter Summary

Distributed memory computers cannot communicate through a shared memory.

Therefore, messages are used to coordinate parallel tasks that eventually run on

geographically distributed but interconnected processors. Processes as well as their

management and communication are well defined by a platform-independent mes-

sage passing interface (MPI) specification. MPI is introduced from the practical point

of view, with a set of basic operations that enable implementation of parallel pro-

grams. We will give simple example programs that will serve as an aid for a smooth

start of using MPI and as motivation for developing more complex applications.

4.1 Distributed Memory Computers Can Execute in Parallel

We know from previous chapters that there are two main differences between the

shared memory and distributed memory computer architectures. The first difference

is in the price of communication: the time needed to exchange a certain amount of

data between two or more processors is in favor of shared memory computers, as

these can usually communicate much faster than the distributed memory computers.

The second difference, which is in the number of processors that can cooperate effi-

ciently, is in favor of distributed memory computers. Usually, our primary choice

when computing complex tasks will be to engage a large number of fastest avail-

able processors, but the communication among them poses additional limitations.

Cooperation among processors implies communication or data exchange among

them. When the number of processors must be high (e.g., more than eight) to reduce

the execution time, the speed of communication becomes a crucial performance

factor.

There is a significant difference in the speed of data movement between two

computing cores within a single multi-core computer, depending on the location of

data to be communicated. This is because the data can be stored in registers, cache

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_4

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_4&domain=pdf

88 4 MPI Processes and Messaging

memory, or system memory, which can differ by up to two orders of magnitude if their

access times are considered. The differences in the communication speed get even

more pronounced in the interconnected computers, again by orders of magnitude, but

this now depends on the technology and topology of the interconnection networks

and on the geographical distance of the cooperating computers.

Taking into account the above facts, complex tasks can be executed efficiently

either (i) on a small number of extremely fast computers or (ii) on a large number of

potentially slower interconnected computers. In this chapter, we focus on the presen-

tation and usage of the Message Passing Interface (MPI), which enables system-

independent parallel programming. The well-established MPI standard1 includes

process creation and management, language bindings for C and Fortran, point-

to-point and collective communications, and group and communicator concepts.

Newer MPI standards are trying to better support the scalability in future extreme-

scale computing systems, because currently, the only feasible option for increasing

the computing power is to increase the number of cooperating processors. Advanced

topics, as one-sided communications, extended collective operations, process topolo-

gies, external interfaces, etc., are also covered by these standards, but are beyond the

scope of this book.

The final goal of this chapter is to advise users how to employ the basic MPI

principles in the solution of complex problems with a large number of processes that

exchange application data through messages.

4.2 Programmer’s View

Programmers have to be aware that the cooperation among processes implies the data

exchange. The total execution time is consequently a sum of computation and com-

munication time. Algorithms with only local communication between neighboring

processors are faster and more scalable than the algorithms with the global commu-

nication among all processors. Therefore, the programmer’s view of a problem that

will be parallelized has to incorporate a wide number of aspects, e.g., data indepen-

dency, communication type and frequency, balancing the load among processors,

balancing between communication and computation, overlapping communication

and computation, synchronous or asynchronous program flow, stopping criteria, and

others.

Most of the above issues that are related to communication are efficiently solved by

the MPI specification. Therefore, we will identify the mentioned aspects and describe

efficient solutions through the standardized MPI operations. Further sections should

not be considered as an MPI reference guide or MPI library implementation manual.

1Against potential ambiguities, some segments of text are reproduced from A Message-Passing

Interface Standard (Version 3.1), © 1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012, 2015, by

University of Tennessee, Knoxville, Tennessee.

4.2 Programmer’s View 89

We will just try to rise the interest of readers, through simple and illustrative examples,

and to show how some of the typical problems can be efficiently solved by the MPI

methodology.

4.3 Message Passing Interface

The standardization effort of a message passing interface (MPI) library began in 90s

and is one of the most successful projects of the software standardization. Its driving

force was, from the beginning, a cooperation between academia and industry that

has been created with the MPI standardization forum.

The MPI library interface is a specification, not an implementation. The MPI is

not a language, and all MPI “operations” are expressed as functions, subroutines, or

methods, according to the appropriate language bindings for C and Fortran, which

are a part of the MPI standard. The MPI standard defines the syntax and semantics of

library operations that support the message passing model, independently of program

language or compiler specification.

Since the word “PARAMETER” is a keyword in the Fortran language, the MPI

standard uses the word “argument” to denote the arguments to a subroutine. It is

expected that C programmers will understand the word “argument”, which has no

specific meaning in C, as a “parameter”, thus allowing to avoid unnecessary confusion

for Fortran programmers.

An MPI program consists of autonomous processes that are able to execute their

own code in the sense of multiple instruction multiple data (MIMD) paradigm. An

MPI “process” can be interpreted in this sense as a program counter that addresses

their program instructions in the system memory, which implies that the program

codes executed by each process have not to be the same.

The processes communicate via calls to MPI communication operations, inde-

pendently of operating system. The MPI can be used in a wide range of programs

written in C or Fortran. Based on the MPI library specifications, several efficient

MPI library implementations have been developed, either in open-source or in a

proprietary domain. The success of the project is evidenced by a coherent develop-

ment of the parallel software projects that are portable between different computing

environments, e.g., parallel computers, clusters, and heterogeneous networks, and

scalable along wide numbers of cooperating processors, from one to millions. Finally,

the MPI interface is designed for end users, parallel library writers and developers

of parallel software tools.

Any MPI program should have operations to initialize execution environment

and to control starting and terminating procedures of all generated processes. MPI

processes can be collected into groups of specific size that can communicate in its

own environment where each message sent in a context must be received only in the

same context. A process group and context together form an MPIcommunicator.

A process is identified by its rank in the group associated with a communicator.

There is a default communicator MPI_COMM_WORLDwhose group encompasses all

90 4 MPI Processes and Messaging

initial processes, and whose context is default. Two essential questions arise early in

any MPI parallel program: “How many processes are participating in computation?”

and “Which are their identities?” Both questions will be answered after calling two

specialized MPI operations.

The basic MPI communication is characterized by two fundamental MPI opera-

tions MPI_SEND and MPI_RECV that provide sends and receives of process data,

represented by numerous data types. Besides the data transfer these two operations

synchronize the cooperating processes in time instants where communication has to

be established, e.g., a process cannot proceed if the expected data has not arrived.

Further, a sophisticated addressing is supported within a group of ranked processes

that are a part of a communicator. A single program may use several communicators,

which manage common or separated MPI processes. Such a concept enables to use

different MPI based parallel libraries that can communicate independently, without

interference, within a single parallel program.

Even that the most of parallel algorithms can be implemented by just a few

MPI operations, the MPI-1 standard offers a set of more than 120 operations for

elegant and efficient programming, including operations for collective and asyn-

chronous communication in numerous topologies of interconnected computers. The

MPI library is well documented from its beginning and constantly developing. The

MPI-2 provides standardized process start-up, dynamic process creation and man-

agement, improved data types, one-sided communication, and versatile input/output

operations. The MPI-3 standard introduces non-blocking collective communication

that enables communication-computation overlapping and the MPI shared memory

(SHM) model that enables efficient programming of hybrid architectures, e.g., a

network of multi-core computing nodes.

Complete MPI is quite a large library with 128 MPI-1 operations, with twice as

much in MPI-2 and even more in MPI-3. We will start with only six basic operations

and further add a few from the complete MPI set for greater flexibility in the parallel

programming. However, to fulfill the desires of this textbook one need to master just

a few dozens of MPI operations that will be described in more detail in the following

sections.

Very well organized documentation can be found on several web pages, for exam-

ple, on the following link: http://www.mcs.anl.gov/research/projects/mpi/tutorial/

mpiexmpl/contents.html with assignments, solution, program output and many use-

ful hints and additional links. The latest MPI standard and further information about

MPI are available on http://www.mpi-forum.org/.

Example 4.1 Hello World MPI program

We will proceed with a minimal MPI program in C programming language. Its

implementation is shown in Listing 4.1.

1 #include "stdafx.h"

2 #include <stdio.h>

3 #include "mpi.h"

4

5 int main(int argc , char **argv)

http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/contents.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/contents.html
http://www.mpi-forum.org/

4.3 Message Passing Interface 91

6 //int main(argc , argv)

7 //int argc;

8 //char **argv;

9 {

10 int rank , size;

11 MPI_Init(&argc , &argv);

12 MPI_Comm_size(MPI_COMM_WORLD , &size);

13 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

14 printf("Hello world from process %d of %d processes.\n", rank , size);

15 MPI_Finalize();

16 return 0;

17 }

Listing 4.1 “Hello world” MPI program MSMPIHello.ccp in C programming syntax.

The “Hello World” has been written in C programming language; hence, the three-

line preamble should be commented and replaced by int main(int argc,

char **argv), if C++ compiler is used. The “Hello World” code looks like a

standard C code with several additional lines with MPI_ prefix, which are calls

to global MPI operations that are executed on all processes. Note that some MPI

operations that will be introduced later could be local, i.e., executed on a single

process.

The “Hello World” code in Listing 4.1 is the same for all processes. It has to

be compiled only once to be executed on all active processes. Such a methodology

could simplify the development of parallel programs. Run the program with:

$ mpiexec -n 3 MSMPIHello

from Command prompt of the host process, at the path of directory where

MSMPIHello.exe is located. The program should output three “Hello World”

messages, each with a process identification data.

All non-MPI procedures are local, e.g., printf in the above example. It runs on

each process and prints separate “Hello World” notice. If one would prefer to have

only a notice from a specific process, e.g., 0, an extra if(rank == 0) statement

should be inserted. Let us comment the rest of the above code:

• #include "stdafx.h" is needed because the MS Visual Studio compiler

has been used,

• #include <stdio.h> is needed because of printf, which is used later in

the program, and

• #include "mpi.h" provides basic MPI definition of named constants, types,

and function prototypes, and must be included in any MPI program.

The above MPI program, including the definition of variables, will be executed

in all active processes. The number of processes will be determined by parameter

-n of the MPI execution utility mpiexec, usually provided by the MPI library

implementation.

• MPI_Init initializes the MPI execution environment and MPI_Finalize

exits the MPI.

92 4 MPI Processes and Messaging

• MPI_Comm_size(MPI_COMM_WORLD, & size) returns size, which is

the number of started processes.

• MPI_Comm_rank(MPI_COMM_WORLD, & rank) that returns rank, i.e.,

an ID of each process.

• MPI operations return a status of the execution success; in C routines as the value

of the function, which is not considered in the above C program, and in Fortran

routines as the last argument of the function call (see Listing 4.2).

Depending on the number of processes, the printf function will run on each

process, which will print a separate “Hello World” notice. If all processes will print

the output, we expect size lines with “Hello World” notice, one from each process.

Note that the order of the printed notices is not known in advance, because there is no

guaranty about the ordering of the MPI processes. We will address this topic, in more

detail, later in this chapter. Note also that in this simple example no communication

between processes has been required. �

For comparison, a version of “Hello World” MPI program in Fortran programming

language is given in Listing 4.2:

1 program hello_world

2 include ’/usr/include/mpif.h’

3 integer ierr , num_procs , my_id

4

5 call MPI_INIT (ierr)

6 call MPI_COMM_RANK (MPI_COMM_WORLD , my_id , ierr)

7 call MPI_COMM_SIZE (MPI_COMM_WORLD , num_procs , ierr)

8 print *, "Hello world from process ", my_id , " of ", num_procs

9 call MPI_FINALIZE (ierr)

10 stop

11 end

Listing 4.2 ”Hello world” MPI program OMPIHello.f in Fortran programming language.

Note that capitalized MPI_ prefix is used again in the names of MPI operations,

which are also capitalized in Fortran syntax, but the different header file mpif.h is

included. MPI operations return a status of execution success, i.e., ierr in the case

of Fortran program.

4.3.1 MPI Operation Syntax

The MPI standard is independent of specific programming languages. To stress this

fact, capitalized MPI operation names will be used in the definition of MPI operations.

MPI operation arguments, in a language-independent notation, are marked as:

IN—for input values that may be used by the operation, but not updated;

OUT—for output values that may be updated by the operation, but not used as input

value;

INOUT—for arguments that may be used and/or updated by the MPI operation.

4.3 Message Passing Interface 93

An argument used as IN by some processes and as OUT by other processes is also

marked as INOUT, even that it is not used for input and for output in a single call.

For shorter specifications of MPI operations, the following notation is used for

descriptive names of arguments:

IN arguments are in normal text, e.g., buf, sendbuf, MPI_COMM_WORLD, etc.

OUT arguments are in underlined text, e.g., rank,recbuf, etc.

INOUT arguments are in underlined italic text, e.g., inbuf,request, etc.

The examples of MPI programs, in the rest of this chapter, are given in C pro-

gramming language. Below are some terms and conventions that are implemented

with C program language binding:

• Function names are equal to the MPI definitions but with the MPI_ prefix and the

first letter of the function name in uppercase, e.g., MPI_Finalize().

• The status of execution success of MPI operations is returned as integer return

codes, e.g., ierr = MPI_Finalize(). The return code can be an error code

or MPI_SUCCESS for successful competition, defined in the file mpi.h. Note

that all predefined constants and types are fully capitalized.

• Operation arguments IN are usually passed by value with an exception of the send

buffer, which is determined by its initial address. All OUT and INOUT arguments

are passed by reference (as pointers), e.g.,

MPI_Comm_size (MPI_COMM_WORLD, & size).

4.3.2 MPI Data Types

MPI communication operations specify the message data length in terms of number

of data elements, not in terms of number of bytes. Specifying message data elements

is machine independent and closer to the application level. In order to retain machine

independent code, the MPI standard defines its own basic data types that can be used

for the specification of message data values, and correspond to the basic data types

of the host language.

As MPI does not require that communicating processes use the same representa-

tion of data, i.e., data types, it needs to keep track of possible data types through the

build-in basic MPI data types. For more specific applications, MPI offers operations

to construct custom data types, e.g., array of (int, float) pairs, and many other

options. Even that the typecasting between a particular language and the MPI library

may represent a significant overhead, the portability of MPI programs significantly

benefits.

Some basic MPI data types that correspond to the adequate C or Fortran data types

are listed in Table 4.1. Details on advanced structured and custom data types can be

found in the before mentioned references.

The data types MPI_BYTE and MPI_PACKED do not correspond to a C or a

Fortran data type. A value of type MPI_BYTE consists of a byte, i.e., 8 binary digits.

A byte is uninterpreted and is different from a character. Different machines may have

different representations for characters or may use more than one byte to represent

94 4 MPI Processes and Messaging

Table 4.1 Some MPI data types corresponding to C and Fortran data types

MPI data type C data type MPI data type Fortran data type

MPI_INT int MPI_INTEGER INTEGER

MPI_SHORT short int MPI_REAL REAL

MPI_LONG long int MPI_DOUBLE_PRECISION DOUBLE

PRECISION

MPI_FLOAT float MPI_COMPLEX COMPLEX

MPI_DOUBLE double MPI_LOGICAL LOGICAL

MPI_CHAR char MPI_CHARACTER CHARACTER

MPI_BYTE / MPI_BYTE /

MPI_PACKED / MPI_PACKED /

characters. On the other hand, a byte has the same binary value on all machines. If

the size and representation of data are known, the fastest way is the transmission of

raw data, for example, by using an elementary MPI data type MPI_BYTE.

The MPI communication operations have involved only buffers containing a con-

tinuous sequence of identical basic data types. Often, one wants to pass messages

that contain values with different data types, e.g., a number of integers followed by a

sequence of real numbers; or one wants to send noncontiguous data, e.g., a subblock

of a matrix. The type MPI_PACKED is maintained by MPI_PACK or MPI_UNPACK

operations, which enable to pack different types of data into a contiguous send buffer

and to unpack it from a contiguous receive buffer.

A more efficient alternative is a usage of derived data types for construction of

custom message data. The derived data types allow, in most cases, to avoid explicit

packing and unpacking, which requires less memory and time. A user specifies

in advance the layout of data types to be sent or received and the communication

library can directly access a noncontinuous data. The simplest noncontiguous data

type is the vector type, constructed with MPI_Type_vector. For example, a

sender process has to communicate the main diagonal of an N × N array of integers,

declared as:

int matrix[N][N];

which is stored in a row-major layout. A continuous derived data type diagonal

can be constructed:

MPI_Datatype MPI_diagonal;

that specifies the main diagonal as a set of integers:

MPI_Type_vector (N, 1, N+1, MPI_INT, & diagonal);

where their count is N, block length is 1, and stride is N+1. The receiver process

receives the data as a contiguous block. There are further options that enable the

construction of sub-arrays, structured data, irregularly strided data, etc.

If all data of an MPI program is specified by MPI types it will support data transfer

between processes on computers with different memory organization and different

interpretations of elementary data items, e.g., in heterogeneous platforms. The par-

allel programs, designed with MPI data types, can be easily ported even between

4.3 Message Passing Interface 95

computers with unknown representations of data. Further, the custom application-

oriented data types can reduce the number of memory-to-memory copies or can be

tailored to a dedicated hardware for global communication.

4.3.3 MPI Error Handling

The MPI standard assumes a reliable and error-free underlying communication plat-

form; therefore, it does not provide mechanisms for dealing with failures in the

communication system. For example, a message sent is always received correctly,

and the user need not check for transmission errors, time-outs, or similar. Simi-

larly, MPI does not provide mechanisms for handling processor failures. A program

error can follow an MPI operation call with incorrect arguments, e.g., non-existing

destination in a send operation, exceeding available system resources, or similar.

Most of MPI operation calls return an error code that indicates the completion

status of the operation. Before the error value is returned, the current MPI error

handler is called, which, by default, aborts all MPI processes. However, MPI provides

mechanisms for users to change this default and to handle recoverable errors. One

can specify that no MPI error is fatal, and handle the returned error codes by custom

error-handling routines.

4.3.4 Make Your Computer Ready for Using MPI

In order to test the presented theory, we need to install first the necessary software

that will make our computer ready for running and testing MPI programs.

In Appendix A of this book, readers will find short instructions for the installation of

free MPI supporting software for either for Linux, macOS, or MS Windows-powered

computers. Beside a compiler for selected program language, an MPI implementa-

tion of the MPI standard is needed with a method for running MPI programs. Please

refer the instruction in Appendix A and run your first “Hello Word” MPI program.

Then you can proceed here in order to find some further hints for running and test-

ing simple MPI programs, either on a single multi-core computer or on a set of

interconnected computers.

4.3.5 Running and Configuring MPI Processes

Any MPI library will provide you with the mpiexec (or mpirun) program that

can launch one or more MPI applications on a single computer or on a set of

interconnected computers (hosts). The program has many options that are stan-

dardized to some extent, but one is advised to check actual program options with

mpiexec -help. Most common options are −n<num_processes>, -host

or -machinefile.

https://doi.org/10.1007/978-3-319-98833-7
https://doi.org/10.1007/978-3-319-98833-7

96 4 MPI Processes and Messaging

An MPI program executable MyMPIprogram.exe can be launched on a local

host and on three processes with:

$ mpiexec -n 3 MyMPIprogram

MPI will automatically distribute processes among the available cores, which can be

specified by option −cores<num_cores_per_host> Alternatively, the pro-

gram can be launched on two interconnected computers, on each with four processes,

with:

$ mpiexec -host 2 host1 4 host2 4 MyMPIprogram

For more complex managing of cooperation processes, a separate configura-

tion file can be used. The processes available for the MPI can be specified by

using -machinefile option to mpiexec. With this option, a text file, e.g.,

myhostsfile, lists computers on which to launch MPI processes. The hosts are

listed one per line, identified either with a computer name or with its IP address.

An MPI program, e.g., MyMPIprogram, can be executed, for example, on three

processes, with:

$ mpiexec -machinefile myhostsfile -n 3 MyMPIprogram

Single Computer

The configuration file can be used for a specification of processes on a single computer

or on a set of interconnected computers. For each host, the number of processes to

be used on that host can be defined by a number that follows a computer name. For

example, on a computer with a single core, the following configuration file defines

four processes per computing core:

localhost 4

If your computer has, for example, four computing cores, MPI processes will

be distributed among the cores automatically, or in a way specified by the user in

the MPI configuration file, which supports, in this case, the execution of the MPI

parallel program on a single computer. The configuration file could have the following

structure:

localhost

localhost

localhost

localhost

4.3 Message Passing Interface 97

specifying that a single process will run on each computing core if mpiexec option

-n 4 is used, or two processes will run on each computing core if -n 8 is used, etc.

Note that there are further alternative options for configuring MPI processes that are

usually described in more detail in-help options of a specific MPI implementation.

Your computer is now ready for the coding and testing more useful MPI programs

that will be discussed in following sections. Before that, some further hints are given

for the execution of MPI programs on a set of interconnected computers.

Interconnected Computers

If you are testing your program on a computer network you may select several

computers to perform defined processes and run and test your code. The configuration

file must be edited in a way that all cooperating computers are listed. Suppose that

four computers will cooperate, each with two computing cores. The configuration

file: myhostsfile should contain names or IP addresses of these computers, e.g.:

computer_name1

computer_name2

192.20.301.77

computer_name4

each in a separate line, and with the first name belonging to the name of the local

host, i.e., the computer from which the MPI program will be started, by mpiexec.

Let us execute our MPI program MyMPIprogram on a set of computers in a

network, e.g., connected with an Ethernet. Editing, compiling, and linking processes

are the same as in the case of a single computer. However, the MPI executable should

be available to all computers, e.g., by a manual copying of the MPI executable on

the same path on all computers, or more systematically, through a shared disk.

On MS Windows, a service for managing the local MPI processes, e.g., smpd dae-

mons should be started by smpd -d on all cooperating computers before launching

MPI programs. The cooperating computers should have the same version of the MPI

library installed, and the compiled MPI executable should be compatible with the

computing platforms (32 or 64 bits) on all computers. The command from the master

host:

$mpiexec -machinefile myhostsfile \\MasterHost\share\

MyMPIprog

will enable to run the program on a set of processes, eventually located on different

computers, as has been specified in the configuration file myhostsfile.

Note also that the potential user should be granted with rights for executing

the programs on selected computers. One will need a basic user account and an

access to the MPI executable that must be located on the same path on all comput-

ers. In Linux, this can be accomplished automatically by placing the executable in

/home/username/ directory. Finally, a method that allows automatic login, e.g.,

in Linux, SSH login without password, is needed, to enable automatic login between

cooperating computers.

98 4 MPI Processes and Messaging

The described approach is independent on the technology of the interconnection

network. The interconnected computers can be multi-core computers, computing

clusters connected by Gigabit Ethernet or Infiniband, or computers in a home network

connected by Wi-Fi.

4.4 Basic MPI Operations

Let us recall the presented issues in a more systematic way by a brief description of

four basic MPI operations. Two trivial operations without MPI arguments will initiate

and shut down the MPI environment. Next two operations will answer the questions:

“How many processes will cooperate?” and “Which is my ID among them?” Note

that all four operations are called from all processes of the current communicator.

4.4.1 MPI_INIT (int *argc, char ***argv)

The operation initiates an MPI library and environment. The arguments argc and

argv are required in C language binding only, where they are parameters of the

main C program.

4.4.2 MPI_FINALIZE ()

The operation shuts down the MPI environment. No MPI routine can be called before

MPI_INIT or after MPI_FINALIZE, with one exception MPI_INITIALIZED

(flag), which queries if MPI_INIT has been called.

4.4.3 MPI_COMM_SIZE (comm, size)

The operation determines the number of processes in the current communicator. The

input argument comm is the handle of communicator; the output argument size

returned by the operation MPI_COMM_SIZE is the number of processes in the group

of comm. If comm is MPI_COMM_WORLD, then it represents the number of all active

MPI processes.

4.4.4 MPI_COMM_RANK (comm, rank)

The operation determines the identifier of the current process within a communicator.

The input argument comm is the handle of the communicator; the output argument

rank is an ID of the process from comm, which is in the range from 0 to size-1.

4.4 Basic MPI Operations 99

In the following sections, some of the frequently used communication MPI

operations are described briefly. There is no intention to provide an MPI user manual

in its complete version, instead, this short description should be just a first motivation

for beginners to write an MPI program that will effectively harness his computer,

and to further explore the beauty and usefulness of the MPI approach.

4.5 Process-to-Process Communication

We know from previous chapters that a traditional process is associated with a pri-

vate program counter of its private address space. Processes may have multiple

program threads, associated with separate program counters, which share a single

process’ address space. The message passing model formalizes the communication

between processes that have separate address spaces. The process-to-process com-

munication has to implement two essential tasks: data movement and synchroniza-

tion of processes; therefore, it requires cooperation of sender and receiver processes.

Consequently, every send operation expects a pairing/matching receive operation.

The cooperation is not always apparent in the program, which may hinder the under-

standing of the MPI code.

A schematic presentation of a communication between sender Process_0 and

receiver Process_1 is shown in Fig. 4.1. In this case, optional intermediate mes-

sage buffers are used in order to enable senderProcess_0 to continue immediately

after it initiates the send operation. However, Process_0 will have to wait on the

return from the previous call, before it can send a new message. On the receiver

side, Process_1 can do some useful work instead of idling while waiting on the

matching message reception. It is a communication system that must ensure that

the message will be reliably transferred between both processes. If the processes

have been created on a single computer, the actual communication will be proba-

bly implemented through a shared memory. If the processes reside on two distant

computers, then the actual communication might be performed through an existing

interconnection network using, e.g., TCP/IP communication protocol.

Although that blocking send/receive operations enable a simple way for synchro-

nization of processes, they could introduce unnecessary delays in cases where sender

and receiver do not reach communication point at the same real time. For example,

if Process_0 issues a send call significantly before the matching receives call in

Process_1, Process_0 will start waiting to the actual message data transfer. In

the same way, processes’ idling can happen if a process that produces many messages

is much faster than the consumer process. Message buffering may alleviate the idling

to some extent, but if the amount of data exceeds the capacity of the message buffer,

which can always happen, Process_0 will be blocked again.

The next concern of the blocking communication are deadlocks. For example, if

Process_0 and Process_1 initiate their send calls in the same time, they will

be blocked forever by waiting matching receive calls. Fortunately, there are several

100 4 MPI Processes and Messaging

May I Send?

Yes, go!

Process_0 Process_1

Process_0

buffer

Process_0

buffer

Process_1

buffer

waiting on

receive

complete

confirmation

waiting on

expected

matching

message

Communication system

sent

message data

received

message dataMessage received

Time

data(n)

data(2)

data(1)

...

Fig. 4.1 Communication between two processes awakes both of them while transferring data from

sender Process_0 to receiver Process_1, possibly with a set of shorter sub-messages

ways for alleviating such situations, which will be described in more detail near the

end of Sect. 4.7.

Before an actual process-to-process transfer of data happens, several issues have

to be specified, e.g., how will message data be described, how processes will be

identified, and how the receiver recognizes/screens messages, when the operations

will complete. The MPI_SEND and MPI_RECV operations are responsible for the

implementation of the above issues.

4.5.1 MPI_SEND (buf, count, datatype, dest, tag,

comm)

The operation, invoked by a blocking callMPI_SEND in the sender processsource,

will not complete until there is a matching MPI_RECV in receiver process dest,

identified by a corresponding rank. The MPI_RECV will empty the input send

buffer buf of matching MPI_SEND. The MPI_SEND will return when the message

data has been delivered to the communication system and the send buffer buf of the

sender process source can be reused. The send buffer is specified by the following

arguments: buf - pointer to the send buffer, count - number of data items, and

datatype - type of data items. The receiver process is addressed by an envelope

that consists of arguments dest, which is the rank of receiver process within all

processes in the communicator comm, and of a message tag.

The message tags provide a mechanism for distinguishing between different mes-

sages for the same receiver process identified by destination rank. The tag is

an integer in the range [0, UB] where UB, defined in mpi.h, can be found by

querying the predefined constant MPI_TAG_UB. When a sender process has to send

more separate messages to a receiver process, the sender process will distinguish

them by using tags, which will allow receiver process to efficiently screening its

4.5 Process-to-Process Communication 101

messages. For example, if a receiver process has to distinguish between messages

from a single source process, a message tag will serve an additional means for

messages differentiation. MPI_ANY_TAG is a constant predefined in mpi.h, which

can be considered as a “wild-card”, where all tags will be accepted.

4.5.2 MPI_RECV (buf, count, datatype, source, tag,

comm, status)

This operation waits until the communication system delivers a message with

matching datatype, source, tag, and comm. Messages are screened at the

receiving part based on specific source, which is a rank of the sender pro-

cess within communicator comm, or not screened at all on source by equating it

with MPI_ANY_SOURCE. The same screening is performed with tag, or if screen-

ing on tag is not necessary, by using MPI_ANY_TAG, instead. After return from

MPI_RECV the output buffer buf is emptied and can be reused.

The number of received data items of datatypemust be equal or fewer as spec-

ified by count, which must be positive or zero. Receiving more data items results

in an error. In such cases, the output argument status contains further information

about the error. The entire set of arguments: count, datatype, source, tag

and comm, must match between the sender process and the receiver process to initi-

ate actual message passing. When a message, posted by a sender process, has been

collected by a receiver process, the message is said to be completed, and the program

flows of the receiver and the sender processes may continue.

Most implementations of the MPI libraries copy the message data out of the user

buffer, which was specified in the MPI program, into some other intermittent system

or network buffer. When the user buffer can be reused by the application, the call to

MPI_SEND will return. This may happen before the matching MPI_RECV is called

or it may not, depending on the message data length.

Example 4.2 Ping-pong message transfer

Let us check the behavior of the MPI_SEND and MPI_RECV operations on your

computer, if the message length grows. Two processes will exchange messages that

will become longer and longer. Each process will report when the expected message

has been sent, which means that it was also received. The code of the MPI program

MSMPImessage.cpp is shown in Listing 4.3. Note that there is a single program

for both processes. A first part of the program, that determines the number of cooper-

ating processes, is executed on both processes, which must be two. Then the program

splits in two parts, first for process of rank = 0 and second of process of rank

= 1. Each process sends and receives a message with appropriate calls to the MPI

operations. We will see in the following, how the order of these two calls impacts

the program execution.

102 4 MPI Processes and Messaging

1 #include "stdafx.h"

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "mpi.h"

5 int main(int argc , char* argv [])

6 {

7 int numprocs , rank , tag = 100, msg_size =64;

8 char *buf;

9 MPI_Status status;

10 MPI_Init(&argc , &argv);

11 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

12 if (numprocs != 2) {

13 printf("The number of processes must be two!\n");

14 MPI_Finalize();

15 return (0);

16 }

17 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

18 printf("MPI process %d started ...\n", rank);

19 fflush(stdout);

20 while (msg_size < 10000000) {

21 msg_size = msg_size *2;

22 buf = (char *) malloc(msg_size * sizeof(char));

23 if (rank == 0) {

24 MPI_Send(buf , msg_size , MPI_BYTE , rank+1, tag , MPI_COMM_WORLD);

25 printf("Message of length %d to process %d\n",msg_size ,rank +1);

26 fflush(stdout);

27 MPI_Recv(buf , msg_size , MPI_BYTE , rank+1, tag ,MPI_COMM_WORLD ,

28 &status);

29 }

30 if (rank == 1) {

31 // MPI_Recv(buf , msg_size , MPI_BYTE , rank -1, tag , MPI_COMM_WORLD ,

32 // &status);

33 MPI_Send(buf , msg_size , MPI_BYTE , rank -1, tag , MPI_COMM_WORLD);

34 printf("Message of length %d to process %d\n",msg_size ,rank -1);

35 fflush(stdout);

36 MPI_Recv(buf , msg_size , MPI_BYTE , rank -1, tag , MPI_COMM_WORLD ,

37 &status);

38 }

39 free(buf);

40 }

41 MPI_Finalize();

42 }

Listing 4.3 Verification of MPI_SEND and MPI_RECV operations on your computer.

The output of this program should be as follows:

$ mpiexec -n 2 MPImessage
MPI process 0 started...
MPI process 1 started...
Message of length 128 send to process 1.
Message of length 128 returned to process 0.
Message of length 256 send to process 1.
Message of length 256 returned to process 0.
Message of length 512 send to process 1.
Message of length 512 returned to process 0.
Message of length 1024 send to process 1.
Message of length 1024 returned to process 0.
Message of length 2048 send to process 1.
Message of length 2048 returned to process 0.
Message of length 4096 returned to process 0.
Message of length 4096 send to process 1.
Message of length 8192 returned to process 0.

4.5 Process-to-Process Communication 103

Message of length 8192 send to process 1.
Message of length 16384 send to process 1.
Message of length 16384 returned to process 0.
Message of length 32768 send to process 1.
Message of length 32768 returned to process 0.
Message of length 65536 send to process 1.
Message of length 65536 returned to process 0.

The program blocks at the message length 65536, which is in some relation with

the capacity of the MPI data buffer in the actual MPI implementation. When the

message exceeds it, MPI_Send in both processes block and enter a deadlock. If we

just change the order of MPI_Send and MPI_Recv by comment lines 36–37 and

uncomment lines 31–32 in process with rank = 1, all expected messages until the

length 16777216 are transferred correctly. Some further discussion about the reasons

for such a behavior will be provided later, in Sect. 4.7. �

4.5.3 MPI_SENDRECV (sendbuf, sendcount, sendtype,

dest, sendtag, recvbuf, recvcount, recvtype,

source, recvtag, comm, status)

The MPI standard specifies several additional operations for message transfer that are

a combination of basic MPI operations. They are useful for writing more compact

programs. For example, operation MPI_SENDRECV combines a sending of mes-

sage to destination process dest and a receiving of another message from process

source, in a single call in sender and receiver process; however, with two distinct

message buffers: sendbuf, which acts as an input, and recvbuf, which is an

output. Note that buffers’ sizes and types of data can be different.

The send-receive operation is particularly effective for executing a shift operation

across a chain of processes. If blocking MPI_SEND and MPI_RECV are used, then

one needs to order them correctly, for example, even processes send, then receive,

odd processes receive first, then send - so as to prevent cyclic dependencies that may

lead to deadlocks. By using MPI_SENDRECV, the communication subsystem will

manage these issues alone.

There are further advanced communication operations that are a composition

of basic MPI operations. For example, MPI_SENDRECV_REPLACE (buf,

count, datatype, dest, sendtag, source, recvtag, comm,

status) operation implements the functionality the MPI_SENDRECV, but uses

only a single message buffer. The operation is therefore useful in cases with send

and receive messages of the same length and of the same data type.

104 4 MPI Processes and Messaging

Seven basic MPI operations

Many parallel programs can be written and evaluated just by using the following

seven MPI operations that have been overviewed in the previous sections:

MPI_INIT,

MPI_FINALIZE,

MPI_COMM_SIZE,

MPI_COMM_RANK,

MPI_SEND,

MPI_RECV,

MPI_WTIME.

4.5.4 Measuring Performances

The elapsed time (wall clock) between two points in an MPI program can be measured

by using operation MPI_WTIME (). Its use is self-explanatory through a short

segment of an MPI program example:

double start, finish;

start = MPI_Wtime ();

... //MPI program segment to be clocked

finish = MPI_Wtime ();

printf ("Elapsed time is %f\n", finish - start);

We are now ready to write a simple example of a useful MPI program that will

measure the speed of communication channel between two processes. The program

is presented, in more detail, in the next example.

Example 4.3 Measuring communication bandwidth

Let us design a simple MPI program, which will measure the communication

channel bandwidth, i.e., the amount of data transferred in a specified time interval,

by using MPI communication operations MPI_SEND and MPI_RECV. As shown

in Fig. 4.2, we will generate two processes, either on a single computer or on two

interconnected computers. In the first case, the communication channel will be a data-

bus that “connects” the processes through their shared memory, while in the second

case the communication channel will be an Ethernet link between computers.

The process with rank = 0 will send a message, with a specified number of

doubles, to the process with rank = 1. The communication time is a sum of the

communication start-up time ts and the message transfer time, i.e., the transfer time

per word tw times message length. We could expect that with shorter messages the

bandwidth will be lower because a significant part of communication time will be

4.5 Process-to-Process Communication 105

Process_0 Process_1

inbuf

MPI_SEND(buf...)

Messages of increasing length

...

...
...

...

MPI_RECV (buf...)

...

...

buf

bufoutbuf

Fig. 4.2 A simple methodology for measurement of process-to-process communication bandwidth

spent on setting up the software and hardware of the message communication chan-

nel, i.e., on the start-up time ts . On the other hand, with long messages, the data

transfer time will dominate, hence, we could expect that the communication band-

width will approach to a theoretical value of the communication channel. Therefore,

the length of messages will vary from just a few data items to very long messages.

The test will be repeated nloop times, with shorter messages, in order to get more

reliable average results.

Considering the above methodology, an example of MPI program MSMPIbw.

cpp, for measuring the communication bandwidth, is given in Listing 4.4. We have

again a single program but slightly different codes for the sender and the receiver

process. The essential part, message passing, starts in the sender process with a call to

MPI_Send, which will be matched in the receiver process by a call to corresponding

MPI_Recv.

1 #include "stdafx.h"

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "mpi.h"

5 #define NUMBER_OF_TESTS 10 //for more reliable average results

6

7 int main(int argc , char* argv [])

8 {

9 double *buf;

10 int rank , numprocs;

11 int n;

12 double t1, t2;

13 int j, k, nloop;

14 MPI_Status status;

15 MPI_Init(&argc , &argv);

16 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

17 if (numprocs != 2) {

18 printf("The number of processes must be two!\n");

19 return (0);

20 }

21 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

22 if (rank == 0) {

23 printf("\tn\ttime [sec]\tRate [Mb/sec]\n");

24 }

25 for (n = 1; n < 100000000; n *= 2) { // message length doubles

26 nloop = 1000000 / n;

27 if (nloop < 1) nloop = 1; //just a single loop for long messages.

28 buf = (double *) malloc(n * sizeof(double));

29 if (!buf) {

30 printf("Could not allocate message buffer of size %d\n", n);

31 MPI_Abort(MPI_COMM_WORLD , 1);

106 4 MPI Processes and Messaging

32 }

33 for (k = 0; k < NUMBER_OF_TESTS; k++) {

34 if (rank == 0) {

35 t1 = MPI_Wtime();

36 for (j = 0; j < nloop; j++) {//send message nloop times

37 MPI_Send(buf , n, MPI_DOUBLE , 1, k, MPI_COMM_WORLD);

38 }

39 t2 = (MPI_Wtime() - t1) / nloop;

40 }

41 else if (rank == 1) {

42 for (j = 0; j < nloop; j++) {// receive message nloop times

43 MPI_Recv(buf , n, MPI_DOUBLE , 0, k, MPI_COMM_WORLD , &status);

44 }

45 }

46 }

47 if (rank == 0) { // calculate bandwidth

48 double bandwidth;

49 bandwidth = n * sizeof(double)*1.0e-6 * 8 / t2; //in Mb/sec

50 printf("\t%10d\t%10.8f\t%8.2f\n", n, t2, bandwidth);

51 }

52 free(buf);

53 }

54 MPI_Finalize();

55 return 0;

56 }

Listing 4.4 MPI program for measuring bandwidth of a communication channel.

The output of the MPI program from Listing 4.4, which has been executed on two

processes, each running on one of two computer cores that communicate through

the shared memory, is shown in Fig. 4.3a with a screenshot of rank = 0 process

user terminal, and in Fig. 4.3b with a corresponding bandwidth graph. The results

confirmed our expectations. The bandwidth is poor with short messages and reaches

the whole capacity of the memory access with longer messages.

If we assume that with very short messages, the majority of time is spent on the

communication setup, we can read from Fig. 4.3a (first line of data) that the setup time

was 0.18 µs. The setup time starts increasing when the messages become longer than

16 of doubles. A reason could be that processes communicate until know through

the fastest cache memory. Then the bandwidth increases until message length 512

of doubles. A reason for a drop at this length could be cache memory incoherences.

The bandwidth converges then to 43 Gb/s, which could be a limit of cache memory

access. If message lengths are increased above 524 thousands of doubles, the band-

width is becoming lower and stabilizes at around 17 Gb/s, eventually because of a

limit in shared memory access. Note that the above merits are strongly related to a

specific computer architecture and may therefore significantly differ among different

computers. �

You are encouraged to run the same program on your computer and compare the

obtained results with the results from Fig. 4.3. You may also run the same program

on two interconnected computers, e.g., by Ethernet or Wi-Fi, and try to explain the

obtained differences in results, taking into account a limited speed of your connection.

Note that the maximum message lengthsn could be made shorter in the case of slower

communication channels.

4.6 Collective MPI Communication 107

100 102 104 106 108

Message length [#doubles]

102

103

104

105

b
a
n
d
w

id
th

 [
M

b
/s

]

(a)

(b)

Fig. 4.3 The bandwidth of a communication channel between two processes on a single computer

that communicate through shared memory. a) Message length, communication time, and bandwidth,

all in numbers; b) corresponding graph of the communication bandwidth

4.6 Collective MPI Communication

The communication operations, described in the previous sections, are called from

a single process, identified by a rank, which has to be explicitly expressed in the

MPI program, e.g., by a statement if(my_id == rank). The MPI collective

operations are called by all processes in a communicator. Typical tasks that can be

elegantly implemented in this way are as follows: global synchronization, reception

of a local data item from all cooperating processes in the communicator, and a lot of

others, some of them described in this section.

4.6.1 MPI_BARRIER (comm)

This operation is used to synchronize the execution of a group of processes specified

within the communicator comm. When a process reaches this operation, it has to

wait until all other processes have reached the MPI_BARRIER. In other words, no

process returns from MPI_BARRIER until all processes have called it. Note that the

programmer is responsible that all processes from communicator comm will really

call to MPI_BARRIER.

The barrier is a simple way of separating two phases of a computation to ensure

that messages generated in different phases do not interfere. Note again that the

MPI_BARRIER is a global operation that invokes all processes; therefore, it could

be time-consuming. In many cases, the call to MPI_BARRIER should be avoided

by an appropriate use of explicit addressing options, e.g., tag, source, or comm.

108 4 MPI Processes and Messaging

Process_0 (root) Process_1

inbuf Dθ

Dθoutbuf

...

...

...

...

Dθ
outbuf

MPI_BCAST

Process_2

...

...

Dθoutbuf

MPI_BCASTMPI_BCAST

Fig. 4.4 Root process broadcasts the data from its input buffer in the output buffers of all processes

4.6.2 MPI_BCAST (inbuf, incnt, intype, root, comm)

The operation implements a one-to-all broadcast operation whereby a single named

process root sends its data to all other processes in the communicator, including to

itself. Each process receives this data from the root process, which can be of any

rank. At the time of call, the input data are located in inbuf of process root and

consists of incnt data items of a specified intype. This implies that the number

of data items must be exactly the same at input and output side. After the call, the

data are replicated in inbuf as output data of all remaining processes. As inbuf

is used as an input argument at the root process, but as an output argument in all

remaining processes, it is of the INOUT type.

A schematic presentation of data broadcast after the call to MPI_BCAST is shown

in Fig. 4.4 for a simple case of three processes, where the process with rank = 0

is the root process. Arrows symbolize the required message transfer. Note that all

processes have to call MPI_BCAST to complete the requested data relocation.

Note that the functionality of MPI_BCAST could be implemented, in the above

example, by three calls to MPI_SEND in the root process and by a single corre-

spondingMPI_RECV call in any remaining process. Usually, such an implementation

will be less efficient than the original MPI_BCAST. All collective communications

could be time-consuming. Their efficiency is strongly related with the topology and

performance of interconnection network.

4.6.3 MPI_GATHER (inbuf, incnt, intype, outbuf,

outcnt, outtype, root, comm)

All-to-one collective communication is implemented by MPI_GATHER. This oper-

ation is also called by all processes in the communicator. Each process, including

root process, sends its input data located in inbuf that consists of incnt data

items of a specified intype, to the root process, which can be of any rank.

Note that the communication data can be different in count and type for each pro-

cess. However, the root process has to allocate enough space, through its output

buffer, that suffices for all expected data. After the return from MPI_GATHER in all

processes, the data are collected in outbuf of the root processes.

4.6 Collective MPI Communication 109

Process_0 (root)

inbuf Dθ

Dθ D1 D2

MPI_GATHER
...

...

outbuf

Process_1

inbuf D1

MPI_GATHER
...

...

Process_2

inbuf D2

MPI_GATHER
...

...

Fig. 4.5 Root process gathers the data from input buffers of all processes in its output buffer

A schematic presentation of data relocation after the call to MPI_GATHER is

shown in Fig. 4.5 for the case of three processes, where process with rank = 0

is the root process. Note again that all processes have to call MPI_GATHER to

complete the requested data relocation.

4.6.4 MPI_SCATTER (inbuf, incnt, intype, outbuf,

outcnt, outtype, root, comm)

This operation works inverse to MPI_GATHER, i.e., it scatters data from inbuf of

process root to outbuf of all remaining processes, including itself. Note that the

count outcnt and type outtype of the data in each of the receiver processes are

the same, so, data is scattered into equal segments.

A schematic presentation of data relocation after the call to MPI_SCATTER is

shown in Fig. 4.6 for the case of three processes, where process with rank = 0

is the root process. Note again that all processes have to call MPI_SCATTER to

complete the requested data relocation.

There are also more complex collective operations, e.g., MPI_GATHERV and

MPI_SCATTERV that allow a varying count of process data from each process and

permit some options for process data placement on the root process. Such extensions

are possible by changing the incnt and outcnt arguments from a single integer to

an array of integers, and by providing a new array argument displs for specifying

the displacement relative to root buffers at which to place the processes’ data.

Process_0 (root)

inbuf Dθ D1 D2

Dθ

MPI_SCATTER

...

...

outbuf outbuf outbuf

Process_1

D1

MPI_SCATTER

...

...

Process_2

D2

MPI_SCSTTER

...

...

Fig. 4.6 Root process scatters the data from its input buffer to output buffers of all processes in its

output buffer

110 4 MPI Processes and Messaging

4.6.5 Collective MPI Data Manipulations

Instead of just relocating data between processes, MPI provides a set of operations

that perform several simple manipulations on the transferred data. These operations

represent a combination of collective communication and computational manipula-

tion in a single call and therefore simplify MPI programs.

Collective MPI operations for data manipulation are based on data reduction

paradigm that involves reducing a set of numbers into a smaller set of numbers via

a data manipulation. For example, three pairs of numbers: {5, 1}, {3, 2}, {7, 6},

each representing the local data of a process, can be reduced in a pair of maximum

numbers, i.e., {7, 6}, or in a sum of all pair numbers, i.e., {15, 9}, and in the same

way for other reduction operations defined by MPI:

• MPI_MAX, MPI_MIN; return either maximum or minimum data item;

• MPI_SUM, MPI_PROD; return either sum or product of aligned data items;

• MPI_LAND, MPI_LOR, MPI_BAND, MPI_BOR; return logical or bitwise AND

or OR operation across the data items;

• MPI_MAXLOC, MPI_MINLOC; return the maximum or minimum value and the

rank of the process that owns it;

• The MPI library enables to define custom reduction operations, which could be

interesting for advanced readers (see references in Sect. 4.10 for details).

The MPI operation that implements all kind of data reductions is

MPI_REDUCE (inbuf, outbuf, count, type, op, root, comm).

The MPI_REDUCE operation implements manipulation op on matching data items

in input buffer inbuf from all processes in the communicator comm. The results

of the manipulation are stored in the output buffer outbuf of process root. The

functionality ofMPI_REDUCE is in fact anMPI_GATHER followed by manipulation

op in process root. Reduce operations are implemented on a per-element basis,

i.e., i th elements from each process’ inbuf are combined into the i th element in

outbuf of process root.

A schematic presentation of the MPI_REDUCE functionality before and after the

call:

MPI_REDUCE (inbuf,outbuf,2,MPI_INT, MPI_SUM,0,MPI_COMM_

WORLD)

is shown in Fig. 4.7. Before the call, inbuf of three processes with ranks 0, 1, and

2 were: {5, 1}, {3, 2}, and {7, 6}, respectively. After the call to the MPI_REDUCE

the value in outbuf of root process is {15, 9}.

In many parallel calculations, a global problem domain is divided into sub-

domains that are assigned to corresponding processes. Often, an algorithm requires

that all processes take a decision based on the global data. For example, an iterative

calculation can stop when the maximal solution error reaches a specified value. An

approach to the implementation of the stopping criteria could be the calculation of

maximal sub-domain errors and collection of them in a root process, which will

evaluate stopping criteria and broadcast the final result/decision to all processes. MPI

4.6 Collective MPI Communication 111

Process_0 (root)

inbuf {5,1}

{15,9}

5,1 3,2 7,6

MPI_REDUCE(...

MPI_SUM, ...

...

outbuf

Process_1

inbuf {3,2}

MPI_REDUCE(...

MPI_SUM, ...

...

...

Process_2

inbuf {7,6}

MPI_REDUCE(...

MPI_SUM, ...

...

...

Fig. 4.7 Root process collects the data from input buffers of all processes, performs per-element

MPI_SUM manipulation, and saves the result in its output buffer

provides a specialized operation for this task, i.e.:

MPI_ALLREDUCE (inbuf, outbuf, count, type, op, comm),

which improves simplicity and efficiency of MPI programs. It works as MPI_

REDUCE followed by MPI_BCAST. Note that the argument root is not needed

anymore because the final result has to be available to all processes in the commu-

nicator. For the same inbuf data as in Fig. 4.7 and with MPI_SUM manipulation,

a call to MPI_ALLREDUCE will produce the result {15, 9}, in output buffers of all

processes in the communicator.

Example 4.4 Parallel computation of π

We know that an efficient parallel execution on multiple processors implies that

a complex task has to be decomposed in subtasks of similar complexity that have

to be executed in parallel on all available processors. Consider again a computation

of π by a numerical integration of 4
∫ 1

0

√
1 − x2dx , which represents the area of a

circle with radius one that is equal to π . A detailed description of this task is given

in Section 2. We divide the interval [0, 1] into N subintervals of equal width. The

area of subintervals is calculated in this case slightly different, by a multiplication

of subinterval width with the evaluated integrand yi in the central point xi of each

subinterval. Finally, all subareas are summed-up by a partial sum. The schematic

presentation of the described methodology is shown in Fig. 4.8a with ten subintervals

with central points xi = [0.05, 0.1, . . . , 0.95].
If we have p available processes and p is much smaller than the number of subin-

tervals N , which is usually the case if we need an accurate solution, the calculation

load has to be distributed among all available processes, in a balanced way, for

efficient execution. One possible approach is to assign each pth subinterval to a

specific process. For example, a process with rank = myID will calculate the fol-

lowing subintervals: i = myI D + 1, i + p, i + 2p, until i + (k − 1)p ≤ N , where

k = ⌈N/p⌉. In the case of N ≫ p, and N is dividable by p, k = N/p, and each

process calculates N/p intervals. Otherwise, a small unbalance in the calculation

is introduced, because some processes have to calculate one additional subinterval,

while remaining processes will already finish their calculation. After the calculation

of the area of subintervals, p partial sums are reduced to a global sum, i.e., by sending

MPI messages to a root process. The global sum approximates π , which should be

now computed faster and more accurate if more intervals are used.

112 4 MPI Processes and Messaging

0.1

(a) (b)

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0 0.1

Area of subdomains

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank=0(light gray) and rank=1(dark gray)

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.8 a) Discretization of interval [0, 1] in 10 subintervals for numerical integration of quarter

circle area; b) decomposition for two parallel processes: light gray subintervals are sub-domain of

rank 0 process; dark gray subintervals of rank 1 process

A simple case for two processes and ten intervals is shown in Fig. 4.8b. Five

subintervals {1,3,5,7,9}, marked in gray, are integrated by rank 0 process and

the other five subintervals {2,4,6,8,10}, marked in dark, are integrated by rank 1

process.

An example of an MPI program that implements parallel computation of π , for

an arbitrary p and N , in C programming language, is given in Listing 4.5:

1 #include "stdafx.h"

2 #include <stdio.h>

3 #include <math.h>

4 #include "mpi.h"

5 int main(int argc , char *argv [])

6 {

7 int done = 0, n, myid , numprocs , i;

8 double PI25DT = 3.141592653589793238462643;

9 double pi, h, sum , x, start , finish;

10 MPI_Init(&argc , &argv);

11 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

12 MPI_Comm_rank(MPI_COMM_WORLD , &myid);

13 while (!done) {

14 if (myid == 0) {

15 printf("Enter the number of intervals: (0 quits) ");

16 fflush(stdout);

17 scanf_s("%d", &n);

18 start = MPI_Wtime();

19 }

20 // execute in all active processes

21 MPI_Bcast(&n, 1, MPI_INT , 0, MPI_COMM_WORLD);

22 if (n == 0) done = 1;

23 h = 1.0 / (double)n;

24 sum = 0.0;

25 for (i = myid + 1; i <= n; i += numprocs) {

26 x = h * ((double)i - 0.5);

27 sum += 4.0 * h * sqrt (1.0 - x*x);

28 }

4.6 Collective MPI Communication 113

29 MPI_Reduce (&sum , &pi, 1, MPI_DOUBLE , MPI_SUM , 0, MPI_COMM_WORLD);

30 if (myid == 0) {

31 finish = MPI_Wtime();

32 printf("Pi is app. %.16f, Error is %.16f\n",pi,fabs(pi-PI25DT));

33 printf("Elapsed time is %f\n", finish - start);

34 }

35 }

36 MPI_Finalize();

37 return 0;

38 }

Listing 4.5 MPI program in C for parallel computation of π .

Let us open a Terminal window and a Task Manager window (see Fig. 4.9), where

we see that the computer used has four cores, eight logical processors and is utilized

by a background task for 17%. After running the compiled program for the calculation

of π on a single process and with 109 intervals, the execution time is about 31.4 s and

the CPU utilization increases to 30%. In the case of four processes, the execution time

drops to 7.9 s and utilization increases to 70%. Running the program on 8 processes

a further speedup is noticed, by the execution time 5.1 s and CPU utilization 100%,

because all computational resources of the computer are now fully utilized. From

prints in the Terminal window, it is evident that the number π was calculated with

similar accuracy in all cases. With our simple MPI program, we achieved a speedup

a bit higher than 6, which is excellent! �

Recall, that we have parallelized the computation of π by distributing the com-

putation of subintervals areas among cooperating processes. In this simple example,

our, initially continuous, computation domain was interval [0, 1]. The domain was

discretized into N subintervals. Then a 1-D domain decomposition was used to

divide the whole domain into p sub-domains, where p is the number of cooperat-

ing processes that did the actual computation. Finally, the partial results have been

assembled in a selected host process and output as a final result. This is the most

often used approach for the parallelization in numerical analysis. It can be applied

for the operations on large vectors or matrices, for solutions of systems of equations,

for solutions of partial differential equations (PDE), and similar. A more detailed

methodology and analysis of the parallel program is given in Part III.

Fig. 4.9 Screenshots of Terminal window and Task Manager indicating timing of the program for

calculation of π and the computer utilization history

114 4 MPI Processes and Messaging

Quite enough MPI operations

We are now quite familiar with enough operations for coding simpler MPI pro-

grams and for evaluating their performances. A list of corresponding MPI oper-

ations is shown below:

Basic MPI operations:

MPI_INIT, MPI_FINALIZE,

MPI_COMM_SIZE, MPI_COMM_RANK,

MPI_SEND, MPI_RECV,

MPI operations for collective communication:

MPI_BARRIER,

MPI_BCAST, MPI_GATHER, MPI_SCATTER,

MPI_REDUCE, MPI_ALLREDUCE,

Control MPI operations:

MPI_WTIME, MPI_STATUS,

MPI_INITIALIZED.

4.7 Communication and Computation Overlap

Contemporary computers have separate communication and calculation resources;

therefore, they are able to execute both tasks in parallel, which is a significant potential

for improving an MPI program efficiency. For example, instead of just waiting for

a data transmission to be completed, a certain part of calculation could be done that

could be eventually required in the next computing step. If a process can perform

useful work while some long communication is in progress, the overall execution

time might be reduced. This approach is often termed as a hiding latency.

Various communication modes are available in MPI that enable hiding latency, but

they require correct usage to avoid communication deadlock or program shutdown.

The measures for managing potential deadlocks of communication operations are

addressed in more detail in a separate subsection. Finally, a single MPI program in

the ecosystems of more communicators is presented. More advanced topics, e.g., a

virtual shared memory emulation through the so-called MPI windows, which could

simplify the programming and improve the execution efficiency, are beyond the scope

of this book and are well covered by continual evolving MPI standard, which should

be ultimate reference of enthusiastic programmers.

4.7 Communication and Computation Overlap 115

4.7.1 Communication Modes

MPI processes can communicate in four different communication modes: standard,

buffered, synchronous and ready. Each of these modes can be performed in blocking

or in non-blocking type, first being less eager to the amount of required memory for

message buffering, and second being often more efficient, because of an ability to

overlap the communication and computation tasks.

Blocking Communication

A standard mode send call, described in Sect. 4.5 with operationMPI_SEND, should

be assumed as a blocking send, which will not return until the message data and

envelope have been safely stored away. The sender process can access and overwrite

the send buffer with a new message. However, depending on the MPI implementation,

short messages might still be buffered while longer messages might be split and sent

in shorter fragments, or they might be copied into a temporary communication buffer

(see Fig. 4.1 for details).

Because the message buffering requires extra memory space and memory-to-

memory copying, implementations of MPI libraries do not guarantee the amount of

buffering; therefore, one has always to count on the possibility that send call will

not complete until a matching receive has been posted, and the data has been moved

to the receiver. In other words, the standard send call is nonlocal, i.e., may require

execution of an MPI operation in another process.

According to the MPI standard, a program is correct and portable if it does not rely

on system buffering in the standard mode. Buffering may improve the performance of

a correct program, but does not affect the result of the program. There are three block-

ing send call modes, indicated by a single-letter prefix: MPI_BSEND, MPI_SSEND,

MPI_RSEND, with B for buffered, S for synchronous, and R for ready, respectively.

The send operation syntax is the same as in the standard send, e.g., MPI_BSEND

(buf, count, datatype, dest, tag, comm).

The buffered mode send is a standard send with a user-supplied message buffer-

ing. It will start independent of a matching receive and can complete before a match-

ing receive is posted. However, unlike the standard send, this operation is local, i.e.,

its completion is independent on the matching receive. Thus, if a buffered send is

executed and no matching receive is posted, then the MPI will buffer the outgo-

ing message, to allow the send call to complete. It is a responsibility of the pro-

grammer to allocate enough buffer space for all subsequent MPI_BSEND by calling

MPI_BUFFER_ATTACH (bbuf, bsize). The buffer space bbuf cannot be

reused by subsequent MPI_BSENDs if they have not been completed by matching

MPI_RECVs; therefore, it must be large enough to store all subsequent messages.

The synchronous mode send can start independently of a matching receive. How-

ever, the send will complete successfully only if a matching receive operation has

started to receive the message sent by the synchronous send. Thus, the completion

of a synchronous send not only indicates that the send buffer can be reused but also

indicates that the receiver has reached a certain point in its execution, i.e., it has

started executing the matching receive. If both sends and receives are blocking oper-

ations then the use of the synchronous mode provides synchronous communication

116 4 MPI Processes and Messaging

semantics: a communication does not complete at either end before both processes

rendezvous at the communication. A send executed in this mode is nonlocal, because

its competition requires a cooperation of sender and receiver processes.

The ready mode send may be started only if the matching receive has been already

called. Otherwise, the operation is erroneous and its outcome is undefined. On some

systems, this allows the removal of a handshake operation that is otherwise required,

which could result in improved performance. In a correct program, a ready send

can be replaced by a standard send with no effect on the program results, but with

eventually improved performances.

The receive call MPI_RECV is always blocking, because it returns only after the

receive buffer contains the expected received message.

Non-blocking Communication

Non-blocking send start calls are denoted by a leading letter I in the name of MPI

operation. They can use the same four modes as blocking sends: standard, buffered,

synchronous, and ready, i.e., MPI_ISEND, MPI_IBSEND, MPI_ISSEND, MPI_

IRSEND. Sends of all modes, except ready, can be started whether a matching receive

has been posted or not; a non-blocking ready send can be started only if a matching

receive is posted. In all cases, the non-blocking send start call is local, i.e., it returns

immediately, irrespective of the status of other processes. Non-blocking communi-

cations return immediately request handles that can be waited on, or queried, by

specialized MPI operations that enables to wait or to test for their completion.

The syntax of the non-blocking MPI operations are the same as in the standard

communication mode, e.g.:

MPI_ISEND (buf, count, datatype, dest, tag, comm,

request), or

MPI_IRECV (buf, count,datatype, dest, tag, comm,

request),

except with an additional request handle that is used for later querying by send-

complete calls, e.g.:

MPI_WAIT (request, status), or

MPI_TEST (request, flag, status).

A non-blocking standard send call MPI_ISEND initiates the send operation, but

does not complete it, in a sense that it will return before the message is copied out

of the send buffer. A later separate call is needed to complete the communication,

i.e., to verify that the data has been copied out of the send buffer. In the meantime,

a computation can run concurrently. In the same way, a non-blocking receive call

MPI_IRECV initiates the receive operation, but does not complete it. The call will

return before a message is stored into the receive buffer. A later separate call is needed

to verify that the data has been received into the receive buffer. While querying about

the reception of the complete message, a computation can run concurrently.

We can expect that a non-blocking send MPI_ISEND immediately followed

by send-complete call MPI_WAIT is functionally equivalent to a blocking send

MPI_SEND. One can wait on multiple requests, e.g., in a master/slave MPI pro-

gram, where the master waits either for all or for some slaves’ messages, using MPI

operations:

4.7 Communication and Computation Overlap 117

MPI_WAITALL (count, array_of_requests, array_of_statuses),

or

MPI_WAITSOME (incount, array_of_requests, outcount,

array_of_indices, array_of_statuses).

A send-complete call returns when data has been copied out of the send buffer.

It may carry additional meaning, depending on the send mode. For example, if the

send mode is synchronous, then the send can complete only if a matching receive has

started, i.e., a receive has been posted, and has been matched with the send. In this

case, the send-complete call is nonlocal. Note that a synchronous, non-blocking send

may complete, if matched by a non-blocking receive, before the receive complete

call occurs. It can complete as soon as the sender “knows” that the transfer will

complete, but before the receiver “knows” that the transfer will complete.

If the non-blocking send is in buffered mode, then the message must be buffered

if there is no pending receive. In this case, the send-complete call is local and must

succeed irrespective of the status of a matching receive. If the send mode is standard

then the send-complete call may return before a matching receive occurred, if the

message is buffered. On the other hand, the send-complete may not complete until a

matching receive occurred, and the message was copied into the receive buffer.

Some further facts or implications of the non-blocking communication mode are

listed below. Non-blocking sends can be matched with blocking receives, and vice

versa. The completion of a send operation may be delayed, for a standard mode, and

must be delayed, for synchronous mode, until a matching receive is posted. The use

of non-blocking sends in these two cases allows the sender to proceed ahead of the

receiver, so that the computation is more tolerant of fluctuations in the speeds of the

two processes.

Non-blocking sends in the buffered and ready modes have a more limited impact.

A non-blocking send will return as soon as possible, whereas a blocking send will

return after the data has been copied out of the sender memory. The use of non-

blocking sends is advantageous in these cases only if data copying can be concurrent

with computation.

The message passing model implies that a communication is initiated by the

sender. The communication will generally have lower overhead if a receive is already

posted when the sender initiates the communication, e.g., message data can be moved

directly into the receive buffer, and there is no need to queue a pending send request.

However, a receive operation can complete only after the matching send has occurred.

The use of non-blocking receives allows one to achieve lower communication over-

heads without blocking the receiver while it waits for the send. There are further,

more advanced, approaches for optimized use of the communication modes that are

beyond the scope of this chapter; however, they are well documented elsewhere (see

Sect. 4.10).

4.7.2 Sources of Deadlocks

We know from previous sections that after a call to receive operation, e.g., MPI_

RECV, the process will wait patiently until a matching MPI_SEND is posted. If the

118 4 MPI Processes and Messaging

matching send is never posted, the receive operation will wait forever in a deadlock.

In practice, the program will become unresponsive until some time limit is exceeded,

or the operating system will report a crash. The above situation can appear if two

MPI_RECV are issued in approximately the same time, on two different processes,

that mutually expect a matching send and are waiting to the matching messages that

will be never delivered. Such a situation is shown below with a segment from an MPI

program, in C language, for process with rank = 0 and rank =1, respectively:

if (rank == 0) {

MPI_Recv (rec_buf, count, MPI_BYTE, 1, tag, comm, &status);

MPI_Send (send_buf, count, MPI_BYTE, 1, tag, comm);

}

if (rank == 1) {

MPI_Recv (rec_buf, count, MPI_BYTE, 0, tag, comm, &status);

MPI_Send (send_buf, count, MPI_BYTE, 0, tag, comm);

}

In the same way, if two blocking MPI_SENDs are issued in approximately the

same time, on process, e.g., with rank = 0 and rank =1, respectively, both fol-

lowed by a matching MPI_RECV, they will never finish if MPI_SENDs are imple-

mented without buffers. Even in the case that message buffering is implemented,

it will usually suffice only for shorter messages. With longer messages, a deadlock

situation could be expected, when the buffer space is exhausted, which was already

demonstrated in Listing 4.3.

The above situations are called “unsafe” because they depend on the implementa-

tion of the MPI communication operations and on the availability of system buffers.

The portability of such unsafe programs may be limited.

Several solutions are available that can make an unsafe program “correct”. The

simplest approach is to use the order of communication operations more carefully.

For example, in the given example, by a call to MPI_SEND, in process with rank =

0, first. Consequently, with exchanging the order of two lines in the program segment

for process with rank = 0:

if (rank == 0) {

MPI_Send (send_buf, count, MPI_BYTE, 1, tag, comm);

MPI_Recv (rec_buf, count, MPI_BYTE, 1, tag, comm, &status);

}

if (rank == 1) {

MPI_Recv (rec_buf, count, MPI_BYTE, 0, tag, comm, &status);

MPI_Send (send_buf, count, MPI_BYTE, 0, tag, comm);

}

send and receive operations are automatically matched and deadlocks are avoided in

both processes.

4.7 Communication and Computation Overlap 119

An alternative approach is to supply receive buffer in the same time as the

send buffer, which can be done by operation MPI_SENDRECV. If we replace the

MPI_RECV and MPI_SEND pair by MPI_SENDRECV, in both processes, the dead-

lock is not possible, because four buffers will prevent eventual mutual waiting.

Next possibility is to use a pair of non-blocking operations MPI_IRECV, MPI_

ISEND in each process, with subsequent waiting in both processes to both requests

by MPI_WAITALL:

...

MPI_Request requests[2]

...

if (rank == 0) {

MPI_Irecv (rec_buf,count,MPI_BYTE,1,tag,comm,&requests[0]);

MPI_Isend(send_buf,count,MPI_BYTE,1,tag,comm,&requests[1]);

}

else if (rank == 1) {

MPI_Irecv (rec_buf,count,MPI_BYTE,0,tag,comm,&requests[0]);

MPI_Isend(send_buf,count,MPI_BYTE,0,tag,comm,&requests[1]);

}

MPI_Waitall (2, request, MPI_STATUSES_IGNORE);

The call to MPI_IRECV is issued first, which provides a receive data buffer that is

ready for the message that will arrive. This approach avoids extra memory copies of

data buffers, avoids deadlock situations and could therefore speed up the program

execution.

Finally, non-blocking buffered send can be used MPI_BSEND with explicit allo-

cation of separate send buffers by MPI_BUFFER_ATTACH, however, this approach

needs extra memory.

Example 4.5 Hiding latency

We have learned that a blocking send will continue to wait until a matching receive

will signal that it is ready to receive. In situations where a significant calculation

work follows a send of a large message, and it does not interfere with the send buffer,

it might be more efficient to use non-blocking send. Now, the calculation work

following the send operation can start almost immediately after the send process is

initiated, and can continue to run while the send operation is pending. Similarly, a

non-blocking receive could be more efficient than its blocking counterpart if work

following the receive operation does not depend on the received message.

In some MPI programs, communication and calculation tasks can run concur-

rently, and consequently, can speed up the program execution. Suppose that a master

process has to receive large messages from all slaves. Then, all processes have to

do an extensive calculation that is independent of data in the messages. If blocking

communication is used, the execution time will be a sum of communication and

calculation time. If asynchronous, non-blocking communication is used, a part of

120 4 MPI Processes and Messaging

communication and calculation tasks could overlap, which could result in a shorter

execution time.

One way to implement the above task is to start a master process that will receive

messages from all slave processes, and then proceed with its calculation work. The

slave processes will send their messages and then start to calculate. The program

runs until all communication and calculation are done. A simple demonstration code

of overlapping communication and calculation is given in Listing 4.6.

1 #include <mpi.h> #include <stdlib.h> #include <math.h> #include

2 <stdio.h>

3

4 double other_work(int numproc)

5 {

6 int i; double a;

7 for (i = 0; i < 100000000/ numproc; i++) {

8 a = sin(sqrt(i)); // different amount of calculation

9 }

10 return a;

11 }

12

13 int main(int argc , char* argv []) // number of processes must be > 1

14 {

15 int p, i, myid , tag=1, proc , ierr;

16 double start_p , run_time , start_c , comm_t , start_w , work_t , work_r;

17 double *buff = nullptr;

18

19 MPI_Request request;

20 MPI_Status status;

21

22 MPI_Init(&argc , &argv);

23 start_p = MPI_Wtime();

24 MPI_Comm_rank(MPI_COMM_WORLD , &myid);

25 MPI_Comm_size(MPI_COMM_WORLD , &p);

26

27 #define master 0

28 #define MSGSIZE 100000000 // 5000000 // different sizes of ←֓
messages

29 buff = (double *) malloc(MSGSIZE * sizeof(double)); // allocate

30

31 if (myid == master) {

32 for (i = 0; i < MSGSIZE; i++) { // initialize message

33 buff[i] = 1;

34 }

35 start_c = MPI_Wtime();

36 for (proc = 1; proc <p; proc ++) {

37 #if 1

38 MPI_Irecv(buff , MSGSIZE , //non -blocking receive

39 MPI_DOUBLE , MPI_ANY_SOURCE , tag , MPI_COMM_WORLD , &←֓
request);

40 #endif

41 #if 0

42 MPI_Recv(buff , MSGSIZE , // blocking receive

43 MPI_DOUBLE , MPI_ANY_SOURCE , tag , MPI_COMM_WORLD , &status←֓
);

44 #endif

45 }

46 comm_t = MPI_Wtime() - start_c;

47 start_w = MPI_Wtime();

48 work_r = other_work(p);

49 work_t = MPI_Wtime() - start_w;

50 MPI_Wait(&request , &status); //block until Irecv is done

51 }

4.7 Communication and Computation Overlap 121

1 else { //slave processes

2 start_c = MPI_Wtime();

3 #if 1

4 MPI_Isend(buff , MSGSIZE , //non -blocking send

5 MPI_DOUBLE , master , tag , MPI_COMM_WORLD , &request);

6 #endif #if 0

7 MPI_Send(buff , MSGSIZE , // blocking send

8 MPI_DOUBLE , master , tag , MPI_COMM_WORLD);

9 #endif

10 comm_t = MPI_Wtime()-start_c;

11 start_w = MPI_Wtime();

12 work_r = other_work(p);

13 work_t = MPI_Wtime()-start_w;

14 MPI_Wait(&request , &status); //block until Isend is done

15 }

16 run_time = MPI_Wtime() - start_p;

17 printf("Rank \t Comm[s] \t Calc[s] \t Total[s] \t Work_result\n");

18 printf(" %d\t %e\t %e\t %e\t %e\t\n", myid , comm_t , work_t , run_time ,←֓
work_r);

19 fflush(stdout); //to correctly finish all prints

20 free(buff);

21 MPI_Finalize();

22 }

Listing 4.6 Communication and calculation overlap.

The program from Listing 4.6 has to be executed with at least two processes: one

master and one or more slaves. The non-blocking MPI_Isend call, in all processes,

returns immediately to the next program statement without waiting for the commu-

nication task to complete. This enables other_work to proceed without delay.

Such a usage of non-blocking send (or receive), to avoid processor idling, has the

effect of “latency hiding”, where MPI latency is the elapsed time for an operation,

e.g., MPI_Isend, to complete. Note that we have used MPI_ANY_SOURCE in the

master process to specify message source. This enables an arbitrary arrival order of

messages, instead of a predefined sequence of processes that can further speed up

the program execution.

The output of this program should be as follows:

$ mpiexec -n 2 MPIhiding

Rank Comm[s] Calc[s] Total[s] Work_result

1 2.210910e-04 1.776894e+00 2.340671e+00 6.109991e-01

Rank Comm[s] Calc[s] Total[s] Work_result

0 1.692562e-05 1.747064e+00 2.340667e+00 6.109991e-01

Note that the total execution time is longer than the calculation time. The commu-

nication time is negligible, even that we have sent 100 millions of doubles. Please

use blocking MPI communication, compare the execution time, and explain the dif-

ferences. Please experiment with different numbers of processes, different message

lengths, and different amount of calculation, and explain the behavior of the execu-

tion time. �

122 4 MPI Processes and Messaging

4.7.3 Some Subsidiary Features of Message Passing

The MPI communication model is by default nondeterministic. The arrival order

of messages sent from two processes, A and B, to a third process, C, is not known

in advance.

The MPI communication is unfair. No matter how long a send process has been

pending, it can always be overtaken by a message sent from another sender process.

For example, if process A sends a message to process C, which executes a matching

receive operation, and process B sends a competing message that also matches the

receive operation in process C, only one of the sends will complete. It is the pro-

grammer’s responsibility to prevent “starvation” by ensuring that a computation is

deterministic, e.g., by forcing a reception of specific number of messages from all

competing processes.

The MPI communication is non-overtaking. If a sender process posts successive

messages to a receiver process and a receive operation matches all messages, the

messages will be managed in the order as they were sent, i.e., the first sent message

will be received first, etc. Similarly, if a receiver process posts successive receives,

and all match the same message, then the messages will be received in the same

order as they have been sent. This requirement facilitates correct matching of a send

to a receive operation and guarantees that an MPI program is deterministic, if the

cooperating processes are single-threaded.

On the other hand, if an MPI process is multi-threaded, then the semantics of thread

execution may not define a relative order between send operations from distinct

program threads. In the case of multi-threaded MPI processes, the messages sent

from different threads can be received in an arbitrary order. The same is valid also for

multi-threaded receive operations, i.e., successively sent messages will be received

in an arbitrary order.

Example 4.6 Fairness and overtaking of MPI communication

A simple demonstration example of some MPI communication features is given in

Listing 4.7. The master process is ready to receive 10*(size-1)messages, while

each of the slave processes wants to send 10 messages to the master process, each

with a larger tag. The master process lists all received messages with their source

process ranks and their tags.

1 #include "stdafx.h"

2 #include "mpi.h"

3 #include <stdio.h>

4 int main(int argc , char **argv)

5 {

6 int rank , size , i, buf [1];

7 MPI_Status status;

8

9 MPI_Init (&argc , &argv);

10 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

11 MPI_Comm_size(MPI_COMM_WORLD , &size);

12 if (rank == 0) {

13 for (i = 0; i < 10*(size -1); i++) {

14 MPI_Recv(buf , 1, MPI_INT , MPI_ANY_SOURCE ,

4.7 Communication and Computation Overlap 123

15 MPI_ANY_TAG , MPI_COMM_WORLD , &status);

16 printf("Msg from %d with tag %d\n",

17 status.MPI_SOURCE , status.MPI_TAG);

18 }

19 }

20 else { //rank > 0

21 for (i = 0; i < 10; i++)

22 MPI_Send(buf , 1, MPI_INT , 0, i, MPI_COMM_WORLD);

23 }

24 MPI_Finalize ();

25 return 0;

26 }

Listing 4.7 Demonstration of unfairness and non-overtaking in MPI communication.

The output of this program depends on the number of cooperating processes. For

the case of 3 processes it could be as follows:

$ mpiexec -n 3 MPIfairness
Msg from 1 with tag 0
Msg from 1 with tag 1
Msg from 1 with tag 2
Msg from 1 with tag 3
Msg from 1 with tag 4
Msg from 1 with tag 5
Msg from 1 with tag 6
Msg from 1 with tag 7
Msg from 1 with tag 8
Msg from 1 with tag 9
Msg from 2 with tag 0
Msg from 2 with tag 1
Msg from 2 with tag 2
Msg from 2 with tag 3
Msg from 2 with tag 4
Msg from 2 with tag 5
Msg from 2 with tag 6
Msg from 2 with tag 7
Msg from 2 with tag 8
Msg from 2 with tag 9

We see that all messages from the process with rank 1 have been received first,

even that the process with rank 2 has also attempted to send its messages, so the

communication was unfair. The order of received messages, identified by tags, is the

same as the order of sent messages, so the communication was non-overtaking. �

4.7.4 MPI Communicators

All communication operations introduced in previous sections have used the default

communicator MPI_COMM_WORLD, which incorporates all processes involved and

defines a default context. More complex parallel programs usually need more process

groups and contexts to implement various forms of sequential or parallel decompo-

sition of a program. Also, the cooperation of different software developer groups is

much easier if they develop their software modules in distinct contexts. The MPI

124 4 MPI Processes and Messaging

library supports modular programming via its communicator mechanism that pro-

vides the “information hiding” and “local name space”, which are both needed in

modular programs.

We know from previous sections that any MPI communication operation specifies

a communicator, which identifies a process group that can be engaged in the com-

munication and a context (tagging space) in which the communication occurs. Differ-

ent communicators can encapsulate the same or different process groups but always

with different contexts. The message context can be implemented as an extended

tag field, which enables to distinguish between messages from different contexts.

A communication operation can receive a message only if it was sent in the same

context; therefore, MPI processes that run in different contexts cannot be interfered

by unwanted messages.

For example, in master–slave parallelization, master process manages the tasks

for slave processes. To distinguish between master and slave tasks, statements like

if(rank==master) and if(rank>master) for ranks in a default commu-

nicator MPI_COMM_WORLD can be used. Alternatively, the processes of a default

communicator can be splitted into two new sub-communicators, each with a different

group of processes. The first group of processes, eventually with a single process,

performs master tasks, and the second group of processes, eventually with a larger

number of processes, executes slave tasks. Note that both sub-communicators are

encapsulated into a new communicator, while the default communicator still exists.

A collective communication is possible now in the default communicator or in the

new communicator.

In a further example, a sequentially decomposed parallel program is schematically

shown in Fig. 4.10. Each of the three vertical lines with blocks represents a single

process of the parallel program, i.e., P_0, P_1, and P_2. All three processes form

a single process group. The processes are decomposed in consecutive sequential

program modules shown with blocks. Process-to-process communication calls are

shown with arrows. In Fig. 4.10a, all processes and their program modules run in

the same context, while in Fig. 4.10b, program modules, encircled by dashed curves,

run in two different contexts that were obtained by a duplication of the default

communicator.

Figure 4.10a shows that MPI processes P_0 and P_2 have finished sooner than

P_1. Dashed arrows denote messages that have been generated during subsequent

computation in P_0 and P_2. The messages could be accepted by a sequential pro-

gram module P1_mod_1 of MPI process P_1, which is eventually NOT correct.

A problem solution is shown in Fig. 4.10b. The program modules run here in two

different contexts,New_comm(1) andNew_comm(2). The early messages will be

accepted now correctly by MPI receive operations in program module P1_mod_2

from communicator New_comm(2), which uses a distinct tag space that will cor-

rectly match the problematic messages.

4.7 Communication and Computation Overlap 125

P_0

P
0

_
m

o
d

_
1

P
0

_
m

o
d

_
2

P_1

P
1

_
m

o
d

_
1

P
1

_
m

o
d

_
2

P_2

P
2

_
m

o
d

_
1

P
2

_
m

o
d

_
2

MPI_COMM_DUP

(a) (b)

New_comm(1)

New_comm(2)

P_0

P
0

_
m

o
d

_
1

P
0

_
m

o
d

_
2

P_1

P
1

_
m

o
d

_
1

P
1

_
m

o
d

_
2

P_2
P

2
_

m
o

d
_

1
P

2
_

m
o

d
_

2

Fig. 4.10 Sequentially decomposed parallel program that runs on three processes. a) processes run

in the same context; b) processes run in two different contexts

The MPI standard specifies several operations that support modular programming.

Two basic operations implement duplication or splitting of an existing communicator

comm.

MPI_COMM_DUP (comm, new_comm)

is executed by each process from the parent communicator comm. It creates a

new communicator new_comm comprising the same process group but a new con-

text. This mechanism supports sequential composition of MPI programs, as shown

in Fig. 4.10, by separating communication that is performed for different pur-

poses. Since all MPI communication is performed within a specified communicator,

MPI_COMM_DUP provides an effective way to create a new user-specified commu-

nicator, e.g., for use by a specific program module or by a library, in order to prevent

interferences of messages.

MPI_COMM_SPLIT (comm, color, key, new_comm)

creates a new communicator new_comm from the initial communicator comm, com-

prising disjoint subgroups of processes with optional reordering of their ranks. Each

subgroup contains all processes of the same color, which is a nonnegative argu-

ment. It can be MPI_UNDEFINED; in this case, its corresponding process will not be

included in any of the new communicators. Within each subgroup, the processes are

ranked in the order defined by the value of corresponding argument key, i.e., a lower

value of key implies a lower value of rank, while equal process keys preserve the

original order of ranks. A new sub-communicator is created for each subgroup and

126 4 MPI Processes and Messaging

returned as a component of a new communicator new_comm. This mechanism sup-

ports parallel decomposition of MPI programs. The MPI_COMM_SPLIT is a collec-

tive communication operation with a functionality similar to MPI_ALLGATHER to

collect color and key from each process. Consequently, the MPI_COMM_SPLIT

operation must be executed by every process from the parent communicator comm,

however, every process is permitted to apply different values for color and key.

Remember that every call to MPI_COMM_DUP or MPI_COMM_SPLIT should

be followed by a call to MPI_COMM_FREE, which deallocates a communicator that

can be reused later. The MPI library can create a limited number of objects at a time

and not freeing them could result in a runtime error.

More flexible ways to create communicators are based on MPI object MPI_

GROUP. A process group is an ordered set of process identifiers associated with an

integer rank. Process groups allow a subset of processes to communicate among

themselves using local names and identifiers without interfering with other processes,

because groups do not have a context. Dedicated MPI operations can create groups

in a communicator by MPI_COMM_GROUP, obtain a group size of a calling pro-

cess by MPI_GROUP_SIZE, perform set operations between groups, e.g., union by

MPI_GROUP_UNION, etc., and create a new communicator from the existing group

by MPI_COMM_CREATE_GROUP.

There are many advanced MPI operations that support the creation of commu-

nicators and structured communication between processes within a communicator,

i.e., intracommunicator communication, and between processes from two different

communicators, i.e., intercommunicator communication. These topics are useful for

advanced programming, e.g., in the development of parallel libraries, which are not

covered in this book.

Example 4.7 Splitting MPI communicators

Let visualize now the presented concepts with a simple example. Suppose that

we would like to split a default communicator with eight processes ranked as rank

= {0 1 2 3 4 5 6 7} to create two sets of process by a call to MPI_COMM_SPLIT,

as shown in Fig. 4.11. Two disjoint sets should include processes with odd and

even ranks, respectively. We therefore need two colors that can be created, for

example, with division of original ranks by modulo 2: color = rank%2, which

results in corresponding processes’ colors = {0 1 0 1 0 1 0 1}. Ranks of processes

in new groups are assigned according to process key. If corresponding keys are {0

0 0 0 0 0 0 0}, new process ranks in groups, new_g1 and new_g2, are sorted in the

ascending order as in the initial communicator.

A call toMPI_COMM_SPLIT (MPI_COMM_WORLD, rank%2, 0, & new_

comm); will partition the initial communicator with eight processes in two groups

with four processes, based on the color, which is, in this example, either 0 or 1.

The groups, identified by their initial ranks, are new_g1 = {0 2 4 6} and new_g2

= {1 3 5 7}. Because all process keys are 0, new process ranks of both groups are

sorted in ascending order as rank = {0 1 2 3}.

A simple MPI programMSMPIsplitt.cpp in Listing 4.8 implements the above

ideas. MPI_COMM_SPLIT is called by color = rank%2, which is either 0 or 1.

4.7 Communication and Computation Overlap 127

P_0

P_0
r_0

P_2
r_1

P_4
r_2

P_6
r_3

P_1
r_0

P_3
r_1

P_5
r_2

P_7 Process groups of

two new_comm

Rank of Process

in MPI_ COMM_WORLD

color = rank%2

Key = 0

MPI_Comm_split (MPI_COMM_WORLD, color, Key, &new_comm) ;

r_3

P_1 P_2 P_3 P_4 P_5 P_6 P_7

c=0 c=1 c=0 c=1 c=0 c=1 c=0 c=1

k=0 k=0 k=0 k=0 k=0 k=0 k=0 k=0

Fig. 4.11 Visualization of splitting the default communicator with eight processes into two sub-

communicators with disjoint sets of four processes

Consequently, we get two process groups with four processes per group. Note that

the new process ranks in both groups are equal to {0 1 2 3}, because the key = 0

in all processes, and consequently, the original order of ranks remain the same. For

an additional test, the master process calculates the sum of processes’ ranks in each

new group of a new communicator, using theMPI_REDUCE operation. In this simple

example, the sum of ranks in both groups should be equal to 0 + 1 + 2 + 3 = 6.

1 #include "stdafx.h"

2 #include <stdio.h>

3 #include "mpi.h"

4

5 int main(int argc , char **argv)

6 {

7 int numprocs , org_rank , new_size , new_rank;

8 MPI_Comm new_comm;

9

10 MPI_Init(&argc , &argv);

11 MPI_Comm_size(MPI_COMM_WORLD , &numprocs);

12 MPI_Comm_rank(MPI_COMM_WORLD , &org_rank);

13

14 MPI_Comm_split(MPI_COMM_WORLD , org_rank%2, 0, &new_comm);

15 // MPI_Comm_split(MPI_COMM_WORLD ,org_rank >=2,org_rank <=3,& new_comm);

16 MPI_Comm_size(new_comm , &new_size);

17 MPI_Comm_rank(new_comm , &new_rank);

18 printf("’MPI_COMM_WORLD ’ process rank/size %d/%d has rank/size %d/%d in←֓
’new_comm ’\n", org_rank , numprocs , new_rank , new_size);

19

20 int sum_ranks; // calculate sum of ranks in both new groups of new_com

21 MPI_Reduce (&new_rank , &sum_ranks , 1, MPI_INT , MPI_SUM , 0, new_comm);

22 if (new_rank == 0) {

23 printf("Sum of ranks in ’new_com ’: %d\n", sum_ranks);

24 }

25

26 MPI_Comm_free (& new_comm);

27 MPI_Finalize();

28 return 0;

29 }

Listing 4.8 Splitting a default communicator in two process groups of a new communicator. First

and second process groups include, respectively, processes with even and odd ranks from the default

communicator.

128 4 MPI Processes and Messaging

The output of compiled program from Listing 4.8, after running it on eight pro-

cesses, should be similar to:

$ mpiexec -n 8 MSMPIsplitt

’MPI_COMM_WORLD’ process rank/size 4/8 has rank/size 2/4 in ’new_comm’

’MPI_COMM_WORLD’ process rank/size 6/8 has rank/size 3/4 in ’new_comm’

’MPI_COMM_WORLD’ process rank/size 5/8 has rank/size 2/4 in ’new_comm’

’MPI_COMM_WORLD’ process rank/size 0/8 has rank/size 0/4 in ’new_comm’

Sum of ranks in ’new_com’: 6

’MPI_COMM_WORLD’ process rank/size 7/8 has rank/size 3/4 in ’new_comm’

’MPI_COMM_WORLD’ process rank/size 1/8 has rank/size 0/4 in ’new_comm’

Sum of ranks in ’new_com’: 6

’MPI_COMM_WORLD’ process rank/size 3/8 has rank/size 1/4 in ’new_comm’

’MPI_COMM_WORLD’ process rank/size 2/8 has rank/size 1/4 in ’new_comm’

The above output confirms our expectations. We have two process groups in the

new communicator, each comprising four processes with ranks 0 to 3. Both sums of

ranks in process groups are 6, as expected. �

For an exercise, suppose that we have seven processes in the default communicator

MPI_COMM_WORLD with initial ranks = {0 1 2 3 4 5 6}. Note that for this case,

the program should be executed by mpiexec option -n 7. Let the color be

(rank >= 2) andkey be (rank <= 3), which results in processcolors = {0 0 1

1 1 1 1} andkeys = {1 1 1 1 0 0 0}. After a call toMPI_COMM_SPLIT operation, two

process groups are created in new_comm, with two and five members, respectively.

By using initial rank for the processes identification, the processes in new groups

are new_g1 = {0 1} and new_g2 = {2 3 4 5 6}.

The new ranks of processes in both groups are determined according to corre-

sponding values of keys. Aligning the initial rank and key, we see, for example,

that process with initial rank = 0 is aligned with key = 1, or process with initial

rank = 4 is aligned with key = 0, etc. Now, the keys can be assigned to process

groups as: key_g1 = {1 1} and key_g2 = {1 1 0 0 0}. Because smaller values of

keys relate with smaller values of ranks, and because equal keys does not change

the original rank’s order, we get: rank_g1 = {0 1} and rank_g2 = {3 4 0 1 2}. For

example, process with initial rank = 4 becomes a member of new_g2 with rank

= 0. Obviously, the sums of ranks in both groups of the new communicator are 1 and

10, respectively. Please, feel free to adapt MPI program MSMPIsplitt.cpp from

Listing 4.8 in a way that it will implement the described example.

4.8 How Effective Are Your MPI Programs?

Already in the simple cases of MPI programs, one can analyze the speedup as a

function of the problem size and as a function of the number of cooperating processes.

The parallelization of sequential problems can be guided by various methodolo-

gies that provide the same quantitative results, however, in different execution time

or with different memory requirements. Some parallelization approaches are better

4.8 How Effective Are Your MPI Programs? 129

for a smaller number of computing nodes and other for a larger number of nodes. We

are looking for an optimal solution that is simple, efficient, and scalable. A simple

parallelization methodology, proposed by Ian Foster in his famous book “Designing

and Building Parallel Programs”, is performed in four distinct stages: Partitioning,

Communication, Agglomeration, and Mapping (PCAM).

In the first two stages, the sequential problem is decomposed into, as small as

possible, tasks and the required communication among the tasks is identified. The

available parallel execution platform is ignored for these two phases, because the

aim is a maximal decomposition, with the final goal, to improve concurrency and

scalability of the discovered parallel algorithms.

The third and fourth stages respect the ability of targeted parallel computer. The

identified fine-grained tasks have to be agglomerated to improve performance and

to reduce development costs. The last stage is devoted to the mapping of tasks on

real computers, taking into account the locality of communication and balancing of

calculation load.

The developed parallel program speedup and, consequently, its efficiency and

scalability depend mainly on the following three issues:

• balancing of computing and communication loads among processes,

• ratio between computing and communication loads, and

• computer architecture.

Further improvements in the parallelization efficiency could be obtained by an

overlapping of calculation with communication, in particular in problems with large

messages. Some of the approaches to measure the performance of MPI programs are

presented in Part III.

4.9 Exercises and Mini Projects

Test Questions

1. True or false:

(a) MPI is a message passing library specification not a language or compiler

specification.

(b) In the MPI model processes communicate only by shared memory.

(c) MPI is useful for an implementation of MIMD/SPMD parallelism.

(d) A single MPI program is usually written that can run with a general number

of processes.

(e) It is necessary to specify explicitly, which part of the MPI code will run with

specific processes.

2. True or false:

(a) A group and context together form a communicator.

(b) A default communicator MPI_COMM_WORLD contains in its group all initial

130 4 MPI Processes and Messaging

processes and its context is default.

(c) A process is identified by its rank in the group associated with a communi-

cator.

(d) Maximal rank is equal to size.

3. List, in the required order, (a) MPI functions to control starting and terminating

procedures of MPI processes.

(b) MPI functions for determining the number of participating processes and the

identifier of the current process.

4. Suppose that a process with rank 1 started the execution of MPI_SEND (buf,

5, MPI_INT, 4, 7, MPI_COMM_WORLD).

(a) Which process has to start matching MPI_RECV to finish this communica-

tion?

(b) Write the adequate MPI_RECV.

(c) What will be received?

5. Name the following definitions of the MPI communication semantics:

(a) An operation may return before its completion, and before the user is allowed

to reuse resources (such as buffers) specified in the call.

(b) Return from an operation call indicates that resources can safely be reused.

(c) A call may require execution of an operation on another process, or commu-

nication with another process.

(d) All processes in a group need to invoke the procedure.

6. When a process makes a call toMPI_RECV, it will wait patiently until a matching

send is posted. If the matching send is never posted, the receiver will wait forever.

(a) Name this situation.

(b) Describe a solution to the problem?

7. Give a functional equivalent program segment using non-blocking send to imple-

ment blocking MPI send operation: MPI_SEND.

8. Name the following definitions of the MPI communication semantics:

(a) If a sender posts two messages to the same receiver, and a receive operation

matches both messages, the message first posted will be chosen first.

(b) No matter how long a send has been pending, it can always be overtaken by

a message sent from another process.

(c) Does the MPI implementation by itself guarantee fairness?

9. (a) Implement a one-to-all MPI broadcast operation whereby a single named

process (root) sends the same data to all other processes.

(b) Which process(es) has(have) to call this operation?

10. Suppose an M × N array of doubles stored in a C row-major layout in the

sender system memory.

(a) Construct a continuous derived datatype MPI_newtype specifying a col-

umn of the array.

(b) Write an MPI_Send to send the first column of array. Try the same for

the second column. Note that the first stride starts now at array[0][1].

11. Suppose four processes a, b, c, d, with corresponding oldrank in comm: 0,

1, 2, 3. Let color=oldrank%2 and corresponding key= 7, 1, 0, 3. Identify

4.9 Exercises and Mini Projects 131

newgroups of newcomm, sorted by newranks, after the execution of:

MPI_COMM_SPLIT (comm, color, key, newcomm).

12. Which types of parallel program composition are supported by:

(a) MPI_COMM_DUP (comm, newcomm) and by

(b) MPI_COMM_SPLIT (comm, color, key, newcomm)?

(c) Are the above operations examples of collective operations?

Mini Projects

P1. Implement MPI program for a 2-D finite difference algorithm on a square

domain with n × n = N points. Assume 5 points stencil (actual point and four

neighbors). Assume ghost boundary points in order to simplify the calculation

in border points (all stencils, including boundary points, are equal). Compare

the obtained results, after a specified number of iterations, on a single MPI pro-

cess and on a parallel multi-core computer, e.g., with up to eight cores. Use the

performance models for calculation and communication to explain your results.

Plot the execution time as a function of the number of points N and as a function

of the number of processes p for, e.g., 104 time steps.

P2. Use MPI point-to-point communication to implement the broadcast and reduce

functions. Compare the performance of your implementation with that of the

MPI global operations MPI_BCAST and MPI_REDUCE for different data sizes

and different numbers of processes. Use data sizes up to 104 doubles and up to

all available number of processes. Plot and explain the obtained results.

P3. Implement the summation of four vectors, each of N doubles, with an algorithm

similar to the reduction algorithm. The final sum should be available on all

processes. Use four processes. Each of them will initially generate its own

vector. Use MPI point-to-point communication to implement your version of

the summation of the generated vector. Test your program for small and large

vectors. Comment results and compare the performance of your implementation

with that of the MPI_ALLREDUCE. Explain any differences.

4.10 Bibliographical Notes

The primary source of MPI information is available at MPI Forum website: https://

www.mpi-forum.org/ where the complete MPI library specifications and documents

are available. MPI features of Version 2.0 are mostly referenced in this book as later

versions include more advanced options, however, they are backward compatible

with MPI 2.0.

Newer MPI standards [10] are trying to better support the scalability in future

extreme-scale computing systems using advanced topics as: one-sided commu-

nications, extended collective operations, process topologies, external interfaces,

etc. Advanced topics, e.g., a virtual shared memory emulation through so-called

MPI windows, which could simplify the programming and improve the execution

https://www.mpi-forum.org/
https://www.mpi-forum.org/

132 4 MPI Processes and Messaging

efficiency, are beyond the scope of this book and are well covered by the continual

evolving MPI standard, which should be an ultimate reference of enthusiastic

programmers.

More demanding readers are adviced to check several well-documented open-

source references for further reading, e.g., for the MPI standard [16], for MPI imple-

mentations [1,2], and many other internet sources for advanced MPI programming.

Note that besides the parallel algorithm, parallelization methodology [9], and

the computational performance of the cooperating computers, the parallel program

efficiency depends also on the topology and speed of the interconnection network

[26].

5OpenCL for Massively Parallel Graphic
Processors

Chapter Summary

This chapter will teach us how to program GPUs using OpenCL. Almost all desktop

computers ship with a quad-core processor and a GPU. Thus, we need a programming

environment in which a programmer can write programs and run them on either a

GPU or a quad-core CPU and a GPU. While CPUs are designed to handle complex

tasks, such as time slicing, branching, etc., GPUs only do one thing well. They

handle billions of repetitive low-level arithmetic operations. High-level languages,

such as CUDA and OpenCL, that target the GPUs directly, are available today so

GPU programming is rapidly becoming one of the mainstreams in the computer

science community.

5.1 Anatomy of a GPU

In order to understand how to program massively parallel graphic processors, we

must first understand how they are built. In the first part of this chapter, we will look

behind the idea of processors in graphic processing units (GPU). The basic idea is to

have many (hundreds or even thousands) simpler and weaker processing units in GPU

instead of one or two powerful CPUs and let these many processors simultaneously

perform the same instructions, but with different data. First, let us learn how a GPU

is constructed. Then, we will learn how we program graphic processing units using

the OpenCL language.

Processors in GPU differ from general-purpose CPUs in that they have a much

simpler structure that is designed to execute hundreds of arithmetic instructions

simultaneously. To understand how to implement such an efficient massively paral-

lel processor, we will first briefly describe how general-purpose CPUs are built. The

simplified structure of a general-purpose single-core CPU is presented in Fig. 5.1a.

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_5

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_5&domain=pdf

134 5 OpenCL for Massively Parallel Graphic Processors

Fig. 5.1 a) A general-purpose single-core CPU. b) A slimmed single-core CPU

It consists of the instruction fetch and instruction decode logic, an arithmetic-logic

unit (ALU), and the execution context. The fetch/decode logic is responsible for

fetching the instructions from memory, decoding them in order to prepare operands

and select the required operation in ALU. The execution context comprises of the

state of CPU such as a program counter, a stack pointer, a program-status regis-

ter, and general-purpose registers. Such a general-purpose single-core CPU with a

single ALU and execution context can run a single instruction from an instruction

stream (thread) at a time. To increase the performance when executing a single thread,

general-purpose single-core CPUs rely on out-of-order execution and branch predic-

tion to reduce stalls. However, execution units are of no use without the instructions

and the operands, which are stored in main memory. Transferring the instructions and

operands to and from main memory requires considerable amount of power and time.

This is addressed by the use of caches. Caches work on the principle of either spatial

or temporal locality. They work well when an instruction stream is repeated many

times (e.g., program loops) and when data is accessed from relatively close memory

words. ALUs and fetch/decode logic run at high speed, consume little power, and

require few hardware resources to build them. Contrary to execution units, a huge

number of transistors is needed to build a cache (it may occupy up to 50% of the total

die area) and they are very expensive. It is also one of the main energy absorbing

element in general-purpose CPU.

5.1.1 Introduction to GPU Evolution

To build a GPU that comprises of tens or thousands of CPUs, we need a slimmer

design of a CPU. For this reason, all complex and large units should be removed

from general-purpose CPU: a branch predictor, out of order logic, caches, and a cache

prefetcher. Such a single-core CPU with a slimmer design is presented in Fig. 5.1b.

5.1 Anatomy of a GPU 135

Now, suppose we are running the following fragment of code on a slimmed single-

core CPU from Fig. 5.1b:

1 void vectorAdd(float *vecA , float *vecB , float *vecC) {
2 int tid = 0;
3 while (tid < 128) {
4 vecC[tid] = vecA[tid] + vecB[tid];
5 tid += 1;
6 }
7 }

Listing 5.1 Vector addition

The C code in Listing 5.1 implements vector addition of two floating-point vectors,

each containing 128 elements. A slimmed CPU executes a single instruction stream

obtained after the compilation of the program in Listing 5.1. A compiled fragment

of the function VectorAdd that runs on a single-core CPU is presented in Fig. 5.2.

With the first two instructions in Fig. 5.2, we clear the registers r2 and r3 (suppose

r0 iz a zero register). The register r2 is used to store loop counter (tid from

Listing 5.1) while the register r3 contains offset in the vectors VecA and VecB.

Within the L1 loop CPU loads adjacent elements from the vectors VecA and VecB
into the floating-point registers f1 and f2, adds them and stores the result from the

register f1 into the vector VecC. After that we increment the offset in the register

r3. Recall that the vectors contain floating-point numbers, which are represented

with 32 bits (4 bytes), thus the offset is incremented by 4. At the end of the loop,

we increment the loop counter (variable tid) in the register r2, compare the loop

counter with the value of 128 (the number of elements in each vector) and loop back

if the counter is smaller, then the length of the vectors VecA and VecB.

Instead of using one slimmed CPU core from Fig. 5.2, we can use two such

cores. Why? If we use two CPU cores form Fig. 5.2, we will be able to execute

two instruction streams fully in parallel (Fig. 5.3). A two cores CPU from Fig. 5.3

replicates processing resources (Fetch/Decode logic, ALU, and execution context)

and organizes them into two independent cores. When an application features two

Fig. 5.2 A single instruction stream is executed on a single-core CPU

136 5 OpenCL for Massively Parallel Graphic Processors

Fig. 5.3 Two instructions streams (two threads) are executed fully in parallel on two CPU cores

Fig. 5.4 A GPU core with eight ALUs, eight execution contexts, and shared fetch/decode logic

instruction streams (i.e., two threads), a two cores CPU provides increased throughput

by simultaneously executing these instruction streams on each core. In the case of

vector addition from Listing 5.1, we can now run two threads on each core. In this

case, each thread will add 64 adjacent vector elements. Notice that both threads in

Fig. 5.3 have the same instruction stream but use different data. The first thread adds

the first 64 elements (the loop index tid in the register r2 iterates from 0 to 63),

while the second thread adds the last 64 elements (the loop index tid in the register

r2 iterates from 64 to 127).

We can achieve even higher performance by further replicating ALUs and exe-

cution contexts as in Fig. 5.4. Instead of replicating the complete CPU core from

Fig. 5.2, we can replicate only ALU and execution context and leaving the fetch/de-

code logic shared among ALUs. As the fetch/decode logic is shared, all ALUs should

execute the same operations contained in an instruction stream, but they can use dif-

ferent input data. Figure 5.4 depicts such a core with eight ALUs, eight execution

contexts and shared fetch/decode logic. Such a core usually implements additional

storage for data shared among the threads.

On such a core, we can add eight adjacent vector elements in parallel using one

instruction stream. The instruction stream is now shared across threads with identical

program counters (PC). The same instruction is executed for each thread but on

different data. Thus, there is one ALU and one execution context per thread. Each

thread should now use its own ID (tid) to identify data which is to be used in

5.1 Anatomy of a GPU 137

Compute units and Processing elements

Terminology about processor cores in a modern GPU can be very confusing. The mean-

ing of a term depends on who manufactured a particular GPU. To make thing simple,

we opted for the following terminology. A compute unit can be considered equivalent to

cores in CPU. Compute units are the basic computational building blocks of GPUs. CPU

cores were designed for serial tasks like productivity applications, while GPUs were

designed for more parallel and graphics-intensive tasks like video editing, gaming, and

rich Web browsing. Compute units have many ALUs and execution context that share a

common fetch/decode logic. ALUs execute same instructions in a lock-step basis, i.e.,

running the same instruction but on different data. These CUs implement an entirely

new instruction set that is much simpler for compilers and software developers to use

and delivers more consistent performance.

Top two GPU vendors, NVIDIA and AMD, use different names to describe compute

units and processing elements. A compute unit is a stream multiprocessor in a NVidia

GPU or a SIMD engine in an AMD GPU. A processing element is a stream processor

in a NVidia GPU or an ALU in an AMD GPU.

instructions. The compiler for such a CPU core should be able to translate the code

from Listing 5.1 into the assembly code from Fig. 5.4. When the first instruction is

fetched it is dispatched to all eight ALUs within the core. Recall that each ALU has

its own set of registers (execution context) so each ALU would add its own tid to

its own register r2. The same holds also for the second and all following instructions

in the instruction stream. For example, the instruction

lfp f1,r3(vecA)

is executed on all ALUs at the same time. This instruction loads the element from

vector vecA at the address vecA+r3. Because the value in r3 is based on dif-

ferent tid, each ALU will operate on different element form vector vecA. Most

modern GPUs use this approach where the cores execute scalar instructions but one

instruction stream is shared across many threads.

In this book, we well refer to a CPU core from Fig. 5.4 as Compute Unit (CU)

and to ALU as Processing Element. Let us summarize the key-features of computer

units. We can say that they are general-purpose processors, but they are designed very

differently than the general-purpose cores in CPUs—they support so-called SIMD

(Single Instruction Multiple Data) parallelism through replication of execution units

(ALUs), and corresponding execution contexts, they do not support branch prediction

or speculative execution and they have less cache than general-purpose CPUs.

We can further improve the execution speed of our vector addition problem repli-

cating compute units. Figure 5.5 shows a GPU containing 16 compute units. Using

16 compute units as in Fig. 5.5 we can add 128 adjacent vector elements in parallel

using one instruction stream. Each CU executes a code snippet in Fig. 5.5, which

represents one thread. Let us suppose that we run 128 threads and each thread has

its own ID, tid, where tid is in range 0 . . . 127. The first two instructions load

138 5 OpenCL for Massively Parallel Graphic Processors

Fig. 5.5 Sixteen compute units each containing eigth processing elements and eigth separate

contexts

the thread ID tid into r3 and multiply it by 4 (in order to obtain the correct offset

in floating-point vector). Now, the register r3 that belongs to each thread contains

the offset of the vector element that will be accessed in that thread. Each thread

then adds two adjacent elements of vecA and vecB and stores the result into the

corresponding element of vecC. Because each compute units has eight processing

elements (128 processing elements in total), there is no need for the loop. Hopefully,

we are now able to understand the basic idea behind modern GPUs: use as many

ALUS as possible and let ALUs execute same instructions in a lock-step basis, i.e.,

running the same instruction at the same time but on different data.

5.1.2 A Modern GPU

Modern GPUs comprise of tens of compute units. The efficiency of wide SIMD

processing allows GPUs to pack many CU cores densely with processing elements.

For example, the NVIDIA GeForce GTX780 GPU contains 2304 processing ele-

ments. These processing elements are organized into 12 CU cores (192 PEs per CU).

All modern GPUs maintain large numbers of execution contexts on chip to provide

maximal memory latency-hiding ability. This represents a significant departure from

CPU designs, which attempt to avoid or minimize stalls primarily using large, low-

latency data caches and complicated out of order execution logic. Each CU contains

5.1 Anatomy of a GPU 139

Table 5.1 Comparison of NVIDIA GPU generations

GeForce GTX280 GeForce GTX580 GeForce GTX780

Microarchitecture Tesla Fermi Kepler

CUs 30 16 12

PEs 240 512 2304

PEs per CU 8 32 192

32-bit registers per CU 16 K 32 K 64 K

thousands of 32-bit registers that are used to store execution context and are evenly

allocated to threads (or PEs). Registers are both the fastest and most plentiful mem-

ory in the compute unit. As an example, CU in NVIDIA GeForce GTX780 (Kepler

microarchitecture) contains 65,536 (64 K) 32-bit registers. To achieve large-scale

multithreading, execution contexts must be compact. The number of thread contexts

supported by a CU core is limited by the size of on-chip execution context stor-

age. GPUs can manage many thread contexts (and provide maximal latency-hiding

ability) when threads use fewer resources. When threads require large amounts of

storage, the number of execution contexts (and latency-hiding ability) provided by

a GPU drops. Table 5.1 shows the structure of some of the modern NVIDIA GPUs.

5.1.3 Scheduling Threads on Compute Units

The GPU device containing hundreds of simple processing elements is ideally suited

for computations that can be run in parallel. That is, data parallelism is optimally

handled on the GPU device. This typically involves arithmetic on large data sets

(such as vectors, matrices, and images), where the same operation can be performed

across thousands, if not millions, of data elements at the same time. To exploit such

a huge parallelism, the programmers should partition their programs into thousands

of threads and schedule them among compute units. To make it easier to switch to

OpenCL later in this chapter, we will now define and use the same thread terminology

as OpenCL does. In that sense, we will use the term work-item (WI) for a thread.

Work-items (or threads) are actually scheduled among compute units in two steps,

which are given as follows:

Work-item (WI) and work-group (WG)

A work-item in OpenCL is actually a thread in terms of its control flow and its memory

model. Work-items are organized into work-groups, which are the unit of work sched-

uled onto compute units. Because of this, work-groups also define the set of work-items

that may share data using local memory and may synchronize at barriers.

140 5 OpenCL for Massively Parallel Graphic Processors

Fig.5.6 A programmer partitions a program into blocks of work-item (threads) called work-groups.

Work-groups execute independently from each other on CUs. Generally, a GPU with more CUs

will execute the program faster than a GPU with fewer CUs

1. First, a programmer explicitly, within a program, partitions work-items into

groups called work-groups (WG). A work-group is simply a block of work-

items that are executed on the same compute unit. Besides that, a work-group

also represents a set of work-items that can be synchronized by means of using

barriers or memory fences. As a work-group runs on a compute-unit, all work-

items within a work-group are able to share local memory that is present within a

compute unit (this will be explained in more details in Sect. 5.1.4). After the pro-

gram has been compiled and sent to execution, the hardware scheduler (which is

a part of GPU) evenly assigns work-groups to compute-units. Work-groups exe-

cute independently from each other on CUs. If there are more work-groups than

CUs, the work-groups are evenly assigned to CUs. Work-groups can be sched-

uled in any order by the hardware scheduler. In the following sections, we will

learn how a programmer partitions a program into work-items and work-groups.

Figure 5.6) shows how a multithreaded program is partitioned into work-groups

that are assigned to several CUs.

2. Second, the compute unit schedules and executes work-items from the same work-

group in groups of 32 parallel work-items called warps. When a compute unit is

given one or more work-groups to execute, it partitions them into warps and each

warp gets scheduled by a warp scheduler for execution. The way a work-group

is partitioned into warps is always the same; each warp contains work-items of

consecutive, increasing work-items IDs with the first warp containing work-item

0. Individual work-items composing a warp start together at the same program

address, but they have their own instruction address counter and register state

and are, therefore, free to branch and execute independently. However, the best

performance is achieved when all work-items from the same warp execute the

same instructions.

5.1 Anatomy of a GPU 141

A warp executes one common instruction at a time. It means that work-items in

a warp execute in a so-called lock-step basis, running the same instruction but on

different data. Full efficiency is thus realized when all 32 work-items in a warp execute

the same instruction sequence. If work-items in a warp diverge via a conditional

branch (i.e., if we use conditional branches within the code executed by work-items),

the warp serially executes each branch path taken, disabling work-items that are not

on that path. When all branch paths complete, work-items converge back to the same

execution path.

At every instruction issue time, a warp scheduler selects a warp that has work-

items ready to execute its next instruction (Fig. 5.7), and issues the instruction to those

work-items. Work-items that are ready to execute are called active work-items. The

number of clock cycles it takes for a warp to be ready to execute its next instruction

is called latency. Full utilization is achieved when all warp schedulers have some

instruction to issue for some warp at every clock cycle during that latency period. In

that case, we say that latency is completely hidden. The most common reason a warp

is not ready to execute its next instruction is that the instruction’s input operands are

not yet available. Another reason a warp is not ready to execute its next instruction

is that it is waiting at some memory fence or barrier. A barrier can force CU to idle

as more and more warps wait for other warps in the same work-group to complete

execution of instructions prior to the barrier. Full utilization is achieved when more

than one work-group is assigned to one CU, so that CU always have 32 work-items

from some work-group that are ready to execute and are not waiting at the barrier.

Warp

A warp is a group of 32 work-items from the same work-group that are executed in

parallel at the same time. Work-items in a warp execute in a so-called lock-step basis.

Each warp contains work-items of consecutive, increasing work-items IDs. Individual

work-items composing a warp start together at the same program address, but they

have their own instruction address counter and register state and are therefore free to

branch and execute independently. However, the best performance is achieved when all

work-items from the same warp execute the same instructions.

If processing elements within a CU remain idle during the period while a warp is

stalled, then a GPU is inefficiently utilized. Instead, GPUs maintain more execution

contexts on CU than they can simultaneously execute (recall that a huge register

file is used to store context for each work-item). In such a way, PEs can execute

instructions from active work-items when others are stalled. The execution context

(program counters, registers, etc) for each warp processed by a CU is maintained on-

chip during the entire lifetime of the warp. Therefore, switching from one execution

context to another has no cost. Also, having multiple resident work-groups per CU

can help reduce idling in the case of barriers, as warps from different work-groups

do not need to wait for each other at barriers.

142 5 OpenCL for Massively Parallel Graphic Processors

Fig. 5.7 Scheduling of warps within a compute unit. At every instruction issue time, a warp sched-

uler selects a warp that has work-items ready to execute its next instruction. Each warp always

contains work-items of consecutive work-items IDs, but warps are executed out of order

Memory hierarchy on GPU

A GPU device has the following five memory regions accessible from a single work-

item:

• Registers

• Local Memory

• Texture Memory

• Constant Memory

• Global Memory

5.1.4 Memory Hierarchy on GPU

Modern GPUs have several memories that can be accessed from a single work-item.

Memory hierarchy of a modern GPU is shown in Fig. 5.8. A memory hierarchy has a

5.1 Anatomy of a GPU 143

Table 5.2 Access time by

memory level
Storage type Access time

Registers 1 cycle

Local memory 1–32 cycles

Texture memory ~500 cycles

Constant memory ~500 cycles

Global memory ~500 cycles

Fig. 5.8 Memory hierarchy on GPU

number of levels of areas where work-items can place data. Each level has its latency

(i.e., access time) as shown in Table 5.2.

The GPU has thousands of registers per compute unit (CU). The registers are at

the first and also the most preferable level, as their access time is 1 cycle. Recall

that GPU dedicates real registers to each and every work-item. The number of

registers per work-item is calculated at compile time. Depending on the particular

microarchitecture of a CU, there are 16 K, 32 K, or 64 K registers for all work-items

within an CU. For example, with Kepler microarchitecture you get 64 K of registers

per CU. If you decide to partition your program such that there are 256 work-

items per work-group, and that there are four work-groups per CU, you will get

65536 / (256*4) = 64 registers per work-item on a CU.

144 5 OpenCL for Massively Parallel Graphic Processors

Each CU contains a small amount (64 kB) of very fast on-chip memory that

can be accessed from the work-items running at the particular CU. It is mainly

used for data interchange within a work-group running on CU. This memory is

called local or shared memory. Local memory acts as a user-controlled L1 cache.

Actually, on modern GPUs, this on-chip memory can be used as a user-controlled

local memory or standard hardware-controlled L1 cache. For example, on Kepler

CUs this memory can be split of 48 KB local memory/16 KB L1 cache. On CUs

with the Tesla microarchitecture, there is 16 kB of local memory and no L1 cache.

Local memory has around one-fifth of the speed of registers.

Memory coalescing

Coalesced memory access or memory coalescing refers to combining multiple memory

accesses into a single transaction. Grouping of work-items into warps is not only relevant

to computation, but also to global memory accesses. The GPU device coalesces global

memory loads and stores issued by work-items of a warp into as few transactions as

possible to minimize DRAM bandwidth. On the recent GPUs, every successive 128

bytes (e.g., 32 single precision words) memory can be accessed by a warp in a single

transaction.

The largest memory space on GPU is the global memory. The global memory

space is implemented in high-speed GDDR, or graphics dynamic memory, which

achieves very high bandwidth, but like all memory, has a high latency. GPU global

memory is global because it’s accessible from both the GPU and the CPU. It can

actually be accessed from any device on the PCI-E bus. For example, the GeForce

GTX780 GPU has 3 GB of global memory implemented in GDDR5. Global memory

resides in device DRAM and it is used for transfers between the host and device as

well as for the data input to and output from work-items running on CUs. Reads and

writes to global memory are always initiated from CU and are always 128 bytes wide

starting at the address aligned at 128-bytes boundary. The blocks of memory that are

accessed in one memory transactions are called segments. This has an extremely

important consequence. If two work-items of the same warp access two data that fall

into the same 128-bytes segment, data is delivered in a single transaction. If on the

other hand there is data in a segment you fetch that no work-item requested—it is

being read anyway and you (probably) waste bandwidth. And if two work-items from

the same warp access two data that fall into two different 128-bytes segments, two

memory transactions are required. The important thing to remember is that to ensure

memory coalescing we want work-items from the same warp to access contiguous

elements in memory so to minimize the number of required memory transactions.

There are also two additional read-only memory spaces within global memory that

are accessible by all work-items: constant memory and texture memory. The con-

stant memory space resides in device memory and is cached. This is where constants

and program arguments are stored. Constant memory has two special properties: first,

it is cached, and second, it supports broadcasting a single value to all work-items

5.1 Anatomy of a GPU 145

OpenCL kernel

Code that gets executed on a GPU device is called a kernel in OpenCL. The kernels are

written in a C dialect, which is mostly straightforward C with a lot of built-in functions

and additional data types. The body of a kernel function implements the computation

to be completed by all work-items.

within a warp. This broadcast takes place in just a single cycle. Texture memory is

cached so an image read costs one memory read from device memory only on a cache

miss, otherwise, it just costs one read from the texture cache. The texture cache is

optimized for 2D spatial access pattern, so work-items of the same warp that read

image addresses that are close together will achieve best performance.

5.2 Programmer’s View

So far, we have learned how GPUs are built, what are compute units and processing

elements, how work-groups and work-items are scheduled on CUs, which memory

is present on a modern GPU, and what is the memory hierarchy of a modern GPU.

We have mentioned that a programmer is responsible for partitioning programs into

work-groups of work-items. In the following sections, we will learn what is a pro-

grammer’s view of a heterogeneous system and how to use OpenCL to program for

a GPU.

5.2.1 OpenCL

OpenCL (Open Computing Language) is the open, royalty-free standard for cross-

platform, parallel programming of diverse processors found in personal computers,

servers, mobile devices, and embedded platforms. OpenCL is a framework for writing

programs that execute across heterogeneous platforms consisting of central process-

ing units (CPUs), graphics processing units (GPUs), and other types of processors

or hardware accelerators. OpenCL specifies:

• programming language for programming these devices, and

• application programming interface to control the platform and execute programs

on the compute devices.

OpenCL defines the OpenCL C programming language that is used to write compute

kernels—the C like functions that implements the task which is to be executed

by all work-items running on a GPU. Unfortunately, OpenCL has one significant

146 5 OpenCL for Massively Parallel Graphic Processors

drawback: it is not easy to learn. Even the most introductory application is difficult

for a newcomer to grasp. Prior to jump into OpenCL and take advantage of its

parallel-processing capabilities, an OpenCL developer needs to clearly understand

three basic concepts: heterogeneous system (also called platform model), execution

model, and memory model.

5.2.2 Heterogeneous System

A heterogeneous system (also called platform model) consists of a single host con-

nected to one or more OpenCL devices (e.g., GPUs, FPGA accelerators, DSP or even

CPU). The device is where the OpenCL kernels execute. A typical heterogeneous

system is shown in Fig. 5.9. An OpenCL program consists of the host program, that

runs on the host (typically this is a desktop computer with a general-purpose CPU),

and one or more kernels that run on the OpenCL devices. The OpenCL device com-

prises of several compute units. Each compute unit comprises of tens or hundreds of

processing elements.

5.2.3 Execution Model

The OpenCL execution model defines how kernels execute. The most important

concept to understand is NDRange (N-Dimensional Range) execution. The host

program invokes a kernel over an index space. An example of an index space which

is easy to understand is a for loop in C. In the for loop defined by the statement

for(int i=0; i<5; i++), any statements within this loop will execute five

times, with i = 0, 1, 2, 3, 4. In this case, the index space of the loop is [0, 1, 2, 3, 4]. In

OpenCL, index space is called NDRange, and can have 1, 2, or 3 dimensions. OpenCL

kernel functions are executed exactly one time for each point in the NDRange index

space. This unit of work for each point in the NDRange is called a work-item.

Unlike for loops in C, where loop iterations are executed sequentially and in-order,

an OpenCL device is free to execute work-items in parallel and in any order. Recall

that work-items are not scheduled for execution individually onto OpenCL devices.

Fig. 5.9 A heterogeneous system

5.2 Programmer’s View 147

OpenCL execution model

The OpenCL Execution Model: Kernels are executed by one or more work-items. Work-

items are collected into work-groups and each work-group executes on a compute unit.

Kernels are invoked over an index space called NDRange. A work-item is a single

kernel instance at a point in the NDRange. NDRange defines the total number of work-

items that execute in parallel. In other words, each work-item executes the same kernel

function.

Instead, work-items are organized into work-groups, which are the unit of work

scheduled onto compute units. Because of this, work-groups also define the set of

work-items that may share data using local memory. Synchronization is possible

only between the work-items in a work-group.

Work-items have unique global IDs from the index space. Work-items are further

grouped into work-groups and all work-items within a work-group are executed on

the same compute unit. Work-groups have a unique work-group ID and work-items

have a unique local ID within a work-group. NDRange defines the total number

of work-items that execute in parallel. This number is called global work size and

must be provided by a programmer before the kernel is submitted for execution. The

number of work-items within a work-group is called local work size. The programmer

may also set the local work size at runtime. Work-items within a work-group can

communicate with each other and we can synchronize them. In addition, work-items

within a work-group are able to share memory. Once the local work size has been

determined, the NDRange (global work size) is divided automatically into work-

groups, and the work-groups are scheduled for execution on the device.

A kernel function is written on the host. The host program then compiles the

kernel and submits the kernel for execution on a device. The host program is thus

responsible for creating a collection of work-items, each of which uses the same

instruction stream defined by a single kernel. While the instruction stream is the

same, each work-item operates on different data. Also, the behavior of each work-

item may vary because of branch statements within the instruction stream.

Figure 5.10 shows an example of NDRange where each small square represents

a work-item. NDRange in Fig. 5.10 is a two-dimensional index space of size (GX,

GY). Each work-item within this NDRange has its own global index (gx , gy). For

example, the shaded square has global index (10, 12). The work items are grouped

into two-dimensional work-groups. Each work-group contains 64 work-items and

is of size (LX, LY). Each work-item within a work-group has a unique local index

(lx , ly). For example, the shaded square has local index (2, 4). Also, each work-group

has its own work-group index (wx , wy). For example, the work-group containing

the shaded square has work-group index (1, 1). And finally, the size of the NDRange

index space can be expressed with the number of work-groups in each dimension,

(WX, WY).

148 5 OpenCL for Massively Parallel Graphic Processors

Fig. 5.10 NDRange

OpenCL memory model

The OpenCL memory model: Kernel data must be specifically placed in one of four

address spaces: global memory, constant memory, local memory, or private memory.

The location of the data determines how quickly it can be processed and how the data

is shared within a work-group.

5.2.4 Memory Model

Since common memory address space is unavailable on the host and the OpenCL

devices, the OpenCL memory model defines four regions of memory accessible

to work-items when executing a kernel. Figure 5.11 shows the regions of memory

accessible by the host and the compute device. OpenCL generalizes the different

types of memory available on a device into private memory, local memory, global

memory, and constant memory, as follows:

1. Private memory: a memory region that is private per work item. For example,

on a GPU device this would be registered within the compute unit.

5.2 Programmer’s View 149

Fig. 5.11 The OpenCL memory model

2. Local memory: a memory region that is shared within a work-group. All work-

items in the same work-group have both read and write access. On a GPU device,

this is local memory within the compute unit.

3. Global memory: a memory region in which all work-items and work-groups

have read and write access. It is visible to all work-items and all work-groups.

On a GPU device, it is implemented in GDDR5. This region of memory can be

allocated only by the host during runtime.

4. Constant memory: a region of global memory that stays constant throughout

the execution of the kernel. Work-items have only read access to this region. The

host is permitted both read and write access.

When writing kernels in the OpenCL language, we must declare memory with certain

address space qualifiers to indicate whether the data resides in global (_ _global),

constant (_ _constant), local (_ _local), or it will default to private within a

kernel.

150 5 OpenCL for Massively Parallel Graphic Processors

5.3 Programming in OpenCL

5.3.1 A Simple Example: Vector Addition

We will start with a simple C program that adds the adjacent elements of two arrays

(vectors). with N elements each. The sample C code for vector addition that is

intended to run on a single-core CPU is shown in Listing 5.2.

1 // add the elements of two arrays
2 void VectorAdd(float *a,
3 float *b,
4 float *c,
5 int iNumElements) {
6

7 int iGID = 0;
8

9 while (iGID < iNumElements) {
10 c[iGID] = a[iGID] + b[iGID];
11 iGID += 1;
12 }
13 }

Listing 5.2 Sequential vector addition

We compute the sum within a while loop. The index iGID ranges from 0

to iNumElements - 1. In each iteration, we add elements a[iGID] and

b[iGID] and place the result in the c[iGID].

Now, we will try to implement the same problem using OpenCL and execute it on

a GPU. We will use this simple problem of adding two vectors because the emphasis

will be on getting familiar with OpenCL and not on solving the problem itself. We

will show how to split the code into two parts: the kernel function and the host code.

Kernel Function

We can accomplish the same addition on a GPU. To execute the vector addition

function on a GPU device, we must write it as a kernel function that is executed on

a GPU device. Each thread on the GPU device will then execute the same kernel

function. The main idea is to replace loop iterations with kernel functions executing at

each point in a problem domain. For example, process vectors withiNumElements
elements with one kernel invocation per element or iNumElements threads (kernel

executions). The OpenCL kernel is a code sequence that will be executed by every

single thread running on a GPU. It is very similar in structure to a C function, but

it has the qualifier _ _kernel. This qualifier alerts the compiler that a function is

to be compiled to run on an OpenCL device instead of the host. The arguments are

passed to a kernel as they are passed to any C function. The arguments in the global

memory are described with _ _global qualifier and the arguments in the shared

memory are described with _ _local qualifier. These arguments should be always

passed as pointers.

5.3 Programming in OpenCL 151

OpenCL: Get global ID

The global ID for a working-item in NDRange is obtained by the get_global_id
function:

size_t get_global_id (uint dimindx)

This function returns the unique global work-item ID value for dimension identified by

its argument dimindx. Valid values of dimindx are 0 for the first dimension (row),

1 for the second dimension (column) and 2 for the third dimension in NDRange.

As each thread executing the kernel function operates on its own data, there should

be a way to identify the thread end link it with particular data. To determine the thread

id, we use the get_global_id function, which works for multiple dimensions.

The kernel function should look similar to the function VectorAdd from List-

ing 5.2. If we assume that each work-item calculates one element of array C, the

kernel function looks like in Listing 5.3.

1 // OpenCL Kernel Function for element by element
2 // vector addition
3 __kernel void VectorAdd(
4 __global float* a,
5 __global float* b,
6 __global float* c,
7 int iNumElements
8) {
9

10 //find my global index and handle the data at this index
11 int iGID = get_global_id (0);
12

13 if (iGID < iNumElements) {
14 // add adjacent elements
15 c[iGID] = a[iGID] + b[iGID];
16 }
17 }

Listing 5.3 Vector Addition - the kernel function

We intend to run this kernel in iNumElements instances so that each work-item

in NDRange will operate on one vector element. The kernel function has four argu-

ments. The first two arguments are the pointers to input arrays in global memory,

a and b, namely. The third parameter is the pointer to the output array c in global

memory. And finally, the fourth argument iNumElements is the number of ele-

ments in arrays. Instead of summing in a while loop, each work-item discovers its

global index in NDRange and process only the array elements at this index. For one-

dimensional arrays we use one-dimensional index space. To discover its global index

in one-dimensional index space, a work-item should call the get_global_id(0)
function. Prior to run this kernel on a GPU device, we must setup the execution envi-

ronment in the host code.

152 5 OpenCL for Massively Parallel Graphic Processors

Host Code

In developing an OpenCL project, the first step is to code the host application. The

host application runs on a user’s computer (the host) and dispatches kernels to con-

nected devices. The host application can be coded in C or C++. Because OpenCL

supports a wide range of heterogeneous platforms, the programmer must first deter-

mine which OpenCL devices are connected to the platform. After he discovers the

devices constituting the platform, the programmer chooses one or more devices on

which he wants to run the kernel function. Only after that can he compile and execute

the kernel function on the selected device. Thus, the kernel functions are compiled

in runtime and the compilation process is initiated from the host code.

Prior to execute a kernel function, the host program for a heterogeneous system

must carry out the following steps:

1. Discover the OpenCL devices that constitute the heterogeneous system. The

OpenCL abstraction of the heterogeneous system is represented with platform

and devices. The platform consists of one or more devices capable of executing

the OpenCL kernels.

2. Probe the characteristics of these devices so that the software (kernel functions)

can adapt to the specific features.

3. Read the program source containing the kernel function(s) and compile the ker-

nel(s) that will run on the selected device(s).

4. Set up memory objects on the selected device(s) that will hold the data for the

computation.

5. Compile and run the kernel(s) on the selected device(s).

6. Collect the final result from device(s).

The host code can be very difficult to understand for the beginner, but we will soon

realize that a large part of the host code is repeated and can be reused in different

applications. Once we understand the host code, we will only devote our attention

to writing kernel functions. The above steps are accomplished through the following

series of calls to OpenCL API within the host code:

1. Prepare and initialize data on host.

2. Discover and initialize the devices.

3. Create a context.

4. Create a command queue.

5. Create the program object for a context.

6. Build the OpenCL program.

7. Create device buffers.

8. Write host data to device buffers.

9. Create and compile the kernel.

10. Set the kernel arguments.

11. Set the execution model and enqueue the kernel for execution.

12. Read the output buffer back to the host.

5.3 Programming in OpenCL 153

Every host application requires five data structures: cl_device_id,

cl_context, cl_command_queue, cl_program, and cl_kernel. This data

structures must be initialized and filled-in prior to enqueue the kernel function for

execution. Listing 5.4 shows the host code. In paragraphs that follows we explain

each step within the host code and briefly describe the OpenCL API function used

to accomplish the step. For more detailed description of API calls, you should refer

to OpenCLTM 2.2 Specification.

154 5 OpenCL for Massively Parallel Graphic Processors

5.3 Programming in OpenCL 155

156 5 OpenCL for Massively Parallel Graphic Processors

5.3 Programming in OpenCL 157

158 5 OpenCL for Massively Parallel Graphic Processors

Listing 5.4 Host code for vector addition

1. Discover and initialize the devices

Every OpenCL program requires an OpenCL context, including a list of all OpenCL

devices available on the platform. To discover and initialize the devices, we use the

clGetDeviceIDs() function. We must call the clGetDeviceIDs() function

for two times. In the first call, we use clGetDeviceIDs() to retrieve the number

of the OpenCL devices present on the platform. The code is shown in Listing 5.5.

The number of OpenCL devices is returned in num_Devices. Once we know how

many OpenCL devices are available on the platform, we can obtain the list of all

devices available on a platform with the second call of the clGetDeviceIDs()
function.

The sample code for discovering OpenCL devices is shown in Listing 5.6.

1 // ***
2 // STEP 1: Discover and initialize the devices
3 // ***
4

5 // Use clGetDeviceIDs () to retrieve the number of
6 // devices present
7 status = clGetDeviceIDs(
8 NULL ,
9 CL_DEVICE_TYPE_ALL ,

10 0,

5.3 Programming in OpenCL 159

OpenCL: Get device ID

To obtain the list of devices available on a platform we use the clGetDeviceIDs()
function:

cl_int clGetDeviceIDs (
cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

clGetDeviceIDs returns CL_SUCCESS if the function is executed successfully.

Parameters are:

• platform: Refers to the platform ID or can be NULL.

• device_type: A bitfield that identifies the type of OpenCL device. Some

of valid values are CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_GPU and

CL_DEVICE_TYPE_ALL. For all other values refer to OpenCL 2.2 Specification.

• num_entries: The number of cl_device entries that can be added to devices.

If devices is not NULL, the num_entries must be greater than zero.

• devices: A list of OpenCL devices found. In the case that this is NULL, then

clGetDeviceIDs returns the number of devices in num_devices. Otherwise

it returns a pointer to the list of available OpenCL devices in devices.

• num_devices: The number of OpenCL devices available that match

device_type. If num_devices is NULL, this argument is ignored.

Refer to OpenCLTM 2.2 Specification for more detailed description.

11 NULL ,
12 &numDevices);
13 if (status != CL_SUCCESS)
14 {
15 printf("Error: Failed to create a device group !\n");
16 return EXIT_FAILURE;
17 }
18

19 printf("The number of devices found = %d \n", numDevices);
20

21 // Allocate enough space for each device
22 devices = (cl_device_id *) malloc(numDevices*sizeof(←֓

cl_device_id));
23 // Fill in devices with clGetDeviceIDs ()
24 status = clGetDeviceIDs(
25 NULL ,
26 CL_DEVICE_TYPE_ALL ,
27 numDevices ,
28 devices ,
29 NULL);
30 if (status != CL_SUCCESS)
31 {
32 printf("Error: Failed to create a device group !\n");
33 return EXIT_FAILURE;

160 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Get device info

To get information about an OpenCL device available on a platform we use the

clGetDeviceInfo() function:

cl_int clGetDeviceInfo(
cl_device_id device,
cl_device_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

clGetDeviceInfo returns CL_SUCCESS if the function is executed successfully. Param-

eters are:

• device: Refers to the device returned by clGetDeviceIDs.

• param_name: An enumeration constant that identifies the device information

being queried. Some of valid values are CL_DEVICE_MAX_COMPUTE_UNITS,

CL_DEVICE_MAX_WORK_GROUP_SIZE, CL_DEVICE_TYPE, etc. For all other

values refer to OpenCL 2.2 Specification.

• param_value_size: Specifies the size in bytes of memory pointed to by

param_value.

• param_value: A pointer to memory location where appropriate values for a given

param_name as specified in the table below will be returned.Specifies the size in

bytes of memory pointed to by param_value.

• param_value_size_ret: Returns the actual size in bytes of data being queried

by param_value. If param_value_size_ret is NULL, it is ignored.

Refer to OpenCLTM 2.2 Specification for more detailed description.

34 }

Listing 5.5 Discover and initialize devices

the first call is used to discover the number of present devices. This number is returned

in the numDevices variable. On an Apple laptop with an Intel GPU, there are two

discovered devices:

The number of devices found = 2

Once we know the number of devices, we make enough space in devices buffer

with malloc(), and then we make the second call to clGetDeviceIDs() to

obtain the list of all devices in the devices buffer.

We can get and print information about an OpenCL device with the clGet
DeviceInfo() function.

The sample code for printing information about discovered OpenCL devices is

shown in Listing 5.6.

5.3 Programming in OpenCL 161

1 printf("=== OpenCL devices: ===\n");
2 for (int i=0; i<numDevices; i++)
3 {
4 printf(" -- The device with the index %d --\n", i);
5 clGetDeviceInfo(devices[i],
6 CL_DEVICE_NAME ,
7 sizeof(buffer),
8 buffer ,
9 NULL);

10 printf(" DEVICE_NAME = %s\n", buffer);
11 clGetDeviceInfo(devices[i],
12 CL_DEVICE_VENDOR ,
13 sizeof(buffer),
14 buffer ,
15 NULL);
16 printf(" DEVICE_VENDOR = %s\n", buffer);
17 clGetDeviceInfo(devices[i],
18 CL_DEVICE_MAX_COMPUTE_UNITS ,
19 sizeof(buf_uint),
20 &buf_uint ,
21 NULL);
22 printf(" DEVICE_MAX_COMPUTE_UNITS = %u\n",
23 (unsigned int)buf_uint);
24 clGetDeviceInfo(devices[i],
25 CL_DEVICE_MAX_WORK_GROUP_SIZE ,
26 sizeof(buf_sizet),
27 &buf_sizet ,
28 NULL);
29 printf(" CL_DEVICE_MAX_WORK_GROUP_SIZE = %u\n",
30 (unsigned int)buf_uint);
31 clGetDeviceInfo(devices[i],
32 CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS ,
33 sizeof(buf_uint),
34 &buf_uint ,
35 NULL);
36 printf(" CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = %u\n",
37 (unsigned int)buf_uint);
38

39 size_t workitem_size [3];
40 clGetDeviceInfo(devices[i],
41 CL_DEVICE_MAX_WORK_ITEM_SIZES ,
42 sizeof(workitem_size),
43 &workitem_size ,
44 NULL);
45 printf(" CL_DEVICE_MAX_WORK_ITEM_SIZES = %u, %u, %u \n",
46 (unsigned int)workitem_size [0],
47 (unsigned int)workitem_size [1],
48 (unsigned int)workitem_size [2]);
49 }

Listing 5.6 Print devices’ information

The following is the output of the code in Listing 5.6 for an Apple laptop with an

Intel GPU:

=== OpenCL devices found on platform: ===
-- Device 0 --
DEVICE_NAME = Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
DEVICE_VENDOR = Intel
DEVICE_MAX_COMPUTE_UNITS = 8
CL_DEVICE_MAX_WORK_GROUP_SIZE = 2200
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 3
CL_DEVICE_MAX_WORK_ITEM_SIZES = 1024, 1, 1

162 5 OpenCL for Massively Parallel Graphic Processors

-- Device 1 --
DEVICE_NAME = Iris Pro
DEVICE_VENDOR = Intel
DEVICE_MAX_COMPUTE_UNITS = 40
CL_DEVICE_MAX_WORK_GROUP_SIZE = 1200
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS = 3
CL_DEVICE_MAX_WORK_ITEM_SIZES = 512, 512, 512

We can use this information about an OpenCL device later in our host program

to automatically adapt the kernel to the specific features. In the above example, the

device with index 1 is an Intel Iris Pro GPU. It has 40 compute units, each work-group

can have up to 1200 work-items, which can span into three-dimensional NDRange

and the maximum size in each dimension is 512. We can also see, that the device

with index 0 is an Intel Core i7 CPU, which can also execute OpenCL code. It has

eight compute units (four cores, two hardware threads per core).

2. Create a context

Once we have discovered the available OpenCL devices on the platform and have

obtained ad least one device ID, we can create an OpenCL context. The context

is used to group devices and memory objects together and to manage command

queues, program objects, and kernel objects. An OpenCL context is created with one

or more devices. Contexts are used by the OpenCL runtime for managing objects

such as command-queues, memory, program, and kernel objects and for executing

kernels on one or more devices specified in the context. An OpenCL context is created

with the clCreateContext function. Listing 5.7 shows a call to this function.

1 // ***
2 // STEP 2: Create a context
3 // ***
4

5 cl_context context = NULL;
6 // Create a context using clCreateContext () and
7 // associate it with the devices
8 context = clCreateContext(
9 NULL ,

10 numDevices ,
11 devices ,
12 NULL ,
13 NULL ,
14 &status);
15 if (! context)
16 {
17 printf("Error: Failed to create a compute context !\n");
18 return EXIT_FAILURE;
19 }

Listing 5.7 Create a context

3. Create a command queue

When the context is created, command queues are created that allow commands

to be sent to the OpenCL devices associated to the context. Commands are placed

into the command queue in order the calls are made. The most common use of

queues is to enqueue OpenCL kernel functions for execution on a device. The

5.3 Programming in OpenCL 163

OpenCL: Create a context

An OpenCL context is created by the clCreateContext() function:

cl_context clCreateContext(
cl_context_properties *properties,
cl_uint num_devices,
const cl_device_id *devices,
void *pfn_notify (

const char *errinfo,
const void *private_info,
size_t cb,
void *user_data

),
void *user_data,
cl_int *errcode_ret)

An OpenCL context is created with one or more devices. Contexts are used by the

OpenCL runtime for managing objects such as command-queues, memory, program

and kernel objects and for executing kernels on one or more devices specified in the

context. clCreateContext returns a valid non-zero context and errcode_ret is

set to CL_SUCCESS if the context is created successfully. Otherwise, it returns NULL

value with the values returned inerrcode_ret. Refer to OpenCLTM 2.2 Specification

for more detailed description.

clCreateCommandQueue function is used to create a command queue. By

enqueuing commands, we request that the OpenCL device execute the operations in

the order. If we have multiple OpenCL devices, we must create a command queue

for each OpenCL device and submit commands separately to each. Listing 5.8 shows

how to create a command queue for an OpenCL device.

1 // ***
2 // STEP 3: Create a command queue
3 // ***
4

5 cl_command_queue cmdQueue;
6 // Create a command queue using clCreateCommandQueue (),
7 // and associate it with the device you want to execute
8 // on
9 cmdQueue = clCreateCommandQueue(

10 context ,
11 devices [1], // GPU
12 CL_QUEUE_PROFILING_ENABLE ,
13 &status);
14

15 if (! cmdQueue)
16 {
17 printf("Error: Failed to create a command commands !\n");
18 return EXIT_FAILURE;
19 }

Listing 5.8 Create a command queue

164 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Create a command queue

To create a command-queue a specific device use the clCreateCommandQueue()
function:

cl_command_queue clCreateCommandQueue(
cl_context context,
cl_device_id device,
cl_command_queue_properties properties,
cl_int *errcode_ret)

clCreateCommandQueue returns a valid non-zero command-queue and

errcode_ret is set to CL_SUCCESS if the command-queue is created successfully.

Otherwise, it returns NULL value with the values returned in errcode_ret. The

third argument specifies if profiling is enabled (CL_QUEUE_PROFILING_ENABLE)

to measure execution time of commands or disabled (0). Refer to OpenCLTM 2.2 Spec-

ification for more detailed description.

4. Create the program object for a context

An OpenCL program consists of a set of kernel functions that are identified as func-

tions declared with the _ _kernel qualifier in the program source. Kernel functions

are functions that are executed on a particular OpenCL device. OpenCL programs

may also contain auxiliary functions and constant data that can be used by _ _kernel
functions.

OpenCL allows applications to create a program object using the program source

or binary and build appropriate program executables. This allows applications to

determine whether they want to use the pre-built offline binary or load and compile

the program source and use the executable compiled/linked online as the program

executable. This can be very useful as it allows applications to load and build program

executables online on its first instance for appropriate OpenCL devices in the system.

These executables can now be queried and cached by the application. Future instances

of the application launching will no longer need to compile and build the program

executables. The cached executables can be read and loaded by the application, which

can help significantly reduce the application initialization time.

To create a program object, we use theclCreateProgramWithSource func-

tion. Listing 5.9 shows how to:

• read the OpenCL kernel from the source file VectorAdd.cl,

• read the kernel source into the buffer programBuffer, and

• create the program from the source.

1 // ***
2 // STEP 4: Create the program object for a context
3 // ***
4

5.3 Programming in OpenCL 165

OpenCL: Create a program object

To create a program object for a context use theclCreateProgramWithSource()
function:

cl_program clCreateProgramWithSource (
cl_context context,
cl_uint count,
const char **strings,
const size_t *lengths,
cl_int *errcode_ret)

clCreateProgramWithSource creates a program object for a context, and loads

the source code specified by the text strings in the strings array into the program

object. clCreateCommandQueue returns a valid non-zero program object and

errcode_ret is set to CL_SUCCESS if the program object is created successfully.

Otherwise, it returns NULL value with the values returned in errcode_ret. Refer

to OpenCLTM 2.2 Specification for more detailed description.

5 // 4 a: Read the OpenCL kernel from the source file and
6 // get the size of the kernel source
7 programHandle = fopen("/Users/patriciobulic/FRICL/VectorAdd←֓

.cl", "r");
8 fseek(programHandle , 0, SEEK_END);
9 programSize = ftell(programHandle);

10 rewind(programHandle);
11

12 printf("Program size = %d B \n", programSize);
13

14 // 4 b: read the kernel source into the buffer ←֓

programBuffer
15 // add null -termination -required by ←֓

clCreateProgramWithSource
16 programBuffer = (char*) malloc(programSize + 1);
17

18 programBuffer[programSize] = ’\0’; // add null -termination
19 fread(programBuffer , sizeof(char), programSize , ←֓

programHandle);
20 fclose(programHandle);
21

22 // 4 c: Create the program from the source
23 //
24 cpProgram = clCreateProgramWithSource (
25 context ,
26 1,
27 (const char **)&programBuffer ,
28 &programSize ,
29 &ciErr);
30 if (! cpProgram)
31 {
32 printf("Error: Failed to create compute program !\n");
33 return EXIT_FAILURE;
34 }
35

36 free(programBuffer);

Listing 5.9 Create the program object for a context

166 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Build a program executable

To build (compile and link) a program executable from the program source or binary

use the clBuildProgram() function:

cl_int clBuildProgram (
cl_program program,
cl_uint num_devices,
const cl_device_id *device_list,
const char *options,
void (*pfn_notify)(cl_program, void *user_data),
void *user_data)

clBuildProgram returns CL_SUCCESS if the function is executed successfully.

Otherwise, it returns one of errors. Refer to OpenCLTM 2.2 Specification for more

detailed description.

5. Build the program

Once we have created a program object using the function clCreateProgram
WithSource, we must build a program executable from the contents of the program

object. Building the program compiles the source code in the program object and

links the compiled code into an executable program. The program object can be

built for one or more OpenCL devices using the function clBuildProgram. This

function builds (compiles and links) a program executable from the program source

or binary.The function clBuildProgram modifies the program object to include

the executable, the build log and build options. Listing 5.10 shows how to build the

program and read build information for the selected device in the program object in

the case when the build process fails.

1 // ***
2 // STEP 5: Build the program
3 // ***
4

5 ciErr = clBuildProgram(
6 cpProgram ,
7 0,
8 NULL ,
9 NULL ,

10 NULL ,
11 NULL);
12

13 if (ciErr != CL_SUCCESS)
14 {
15 size_t len;
16 char buffer [2048];
17

18 printf("Error: Failed to build program executable !\n");
19 clGetProgramBuildInfo(cpProgram ,
20 devices [1],
21 CL_PROGRAM_BUILD_LOG ,
22 sizeof(buffer),
23 buffer ,

5.3 Programming in OpenCL 167

OpenCL: Create a buffer

To create a device buffer use the clCreateBuffer function:

cl_mem clCreateBuffer (
cl_context context,
cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)

This function creates a buffer object within the context context of the sizesize bytes

using flagsflags. The pointer to the allocated buffer datahost_ptr holds the address

in the device memory. It returns a valid non-zero buffer object and errcode_ret is

set to CL_SUCCESS if the program object is created successfully. Otherwise, it returns

NULL value with the values returned in errcode_ret.

A bit-field flags is used to specify allocation and usage information such as the

memory arena that should be used to allocate the buffer object and how it will be used.

The following are some of the possible values for flags:

CL_MEM_READ_WRITE This flag specifies that the memory object will be read

and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flags specifies that the memory object will be

written but not read by a kernel. Reading from a buffer object created with

CL_MEM_WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_ONLY This flag specifies that the memory object is a read-only

memory object when used inside a kernel. Writing to a buffer or image object created

with CL_MEM_READ_ONLY inside a kernel is undefined.

Refer to OpenCLTM 2.2 Specification for more detailed description.

24 &len);
25 printf("%s\n", buffer);
26 exit (1);
27 }

Listing 5.10 Build the program

6. Create device buffers

Memory objects are reserved regions of global device memory that contains our

data. There are two types of memory objects: device buffers and image objects.

In this book, we use only device buffers. To create a device buffer we use the

clCreateBuffer function.

One important thing to remember is that we should never try to de-reference the

device pointer from the host code as the device memory is not directly accessible

from the host, i.e., we cannot use these pointers to buffer objects to read or write

memory from code that executes on the host. We use these pointers to read or write

168 5 OpenCL for Massively Parallel Graphic Processors

memory from code that execute on device. Also, we pass these pointers as arguments

to kernels, i.e., functions that execute on device. To read or write to device buffers

from the host, we must use OpenCL dedicated functionsclEnqueueReadBuffer
and clEnqueueWriteBuffer. Upon creation, the contents of the device buffers

are undefined. We must explicitly fill the device buffers with our data from the host

application. We will show this in the next subsection.

Listing 5.11 shows how to create three device buffers: bufferA and bufferB
that are read-only and are used to store input vectors; and bufferC that is write-only

and used to store the result of vector addition.

1 // ***
2 // STEP 6: Create device buffers
3 // ***
4

5 cl_mem bufferA; // Input array on the device
6 cl_mem bufferB; // Input array on the device
7 cl_mem bufferC; // Output array on the device
8 // cl_mem noElements;
9

10 // Size of data:
11 size_t datasize = sizeof(cl_float) * iNumElements;
12

13 // Use clCreateBuffer () to create a buffer object (d_A)
14 // that will contain the data from the host array A
15 bufferA = clCreateBuffer(
16 context ,
17 CL_MEM_READ_ONLY ,
18 datasize ,
19 NULL ,
20 &status);
21

22 // Use clCreateBuffer () to create a buffer object (d_B)
23 // that will contain the data from the host array B
24 bufferB = clCreateBuffer(
25 context ,
26 CL_MEM_READ_ONLY ,
27 datasize ,
28 NULL ,
29 &status);
30

31 // Use clCreateBuffer () to create a buffer object (d_C)
32 // with enough space to hold the output data
33 bufferC = clCreateBuffer(
34 context ,
35 CL_MEM_WRITE_ONLY ,
36 datasize ,
37 NULL ,
38 &status);

Listing 5.11 Create device buffers

7. Write host data to device buffers

After we have created the device buffers, we can enqueue reads and writes. To write

data from host memory to a device buffer, we use the clEnqueueWriteBuffer
function. We use this function to provide data for processing by a kernel executing

on the device. Listing 5.12 shows how to write host data (input vectors srcA and

srcB) to the device buffers bufferA and buffferB. The device buffers will be

then accessed within the kernel.

5.3 Programming in OpenCL 169

OpenCL: Write to a buffer

To enqueue commands to write to a buffer object from the host memory use the

clEnqueueWriteBuffer function:

cl_int clEnqueueWriteBuffer (
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,
size_t offset,
size_t cb,
const void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function enqueues commands into command queuecommand_queue to writecb
bytes to a device buffer buffer from host memory pointed by ptr. This function does

not block by default. To know when the command has completed, we can use a blocking

form of the command by setting theblocking_write parameter toCL_TRUE. Refer

to OpenCLTM 2.2 Specification for more detailed description.

1 // ***
2 // STEP 7: Write host data to device buffers
3 // ***
4 // Use clEnqueueWriteBuffer () to write input array A to
5 // the device buffer bufferA
6 status = clEnqueueWriteBuffer(
7 cmdQueue ,
8 bufferA ,
9 CL_FALSE ,

10 0,
11 datasize ,
12 srcA ,
13 0,
14 NULL ,
15 NULL);
16

17 // Use clEnqueueWriteBuffer () to write input array B to
18 // the device buffer bufferB
19 status = clEnqueueWriteBuffer(
20 cmdQueue ,
21 bufferB ,
22 CL_FALSE ,
23 0,
24 datasize ,
25 srcB ,
26 0,
27 NULL ,
28 NULL);

Listing 5.12 Write host data to device buffers

170 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Create a kernel object

To create a kernel object use the clCreateKernel function:

cl_kernel clCreateKernel (
cl_program program,
const char *kernel_name,
cl_int *errcode_ret)

This function creates a kernel object from a function kernel_name contained within

a program object program with a successfully built executable. Refer to OpenCLTM

2.2 Specification for more detailed description.

8. Create and compile the kernel

A kernel is a function we declare in an OpenCL program and is executed on the

OpenCL device. We must identify kernels with the _ _kernel qualifier to let

OpenCL know that the function is a kernel function. The kernel object is created

after the executable has been successfully built in the program object. A kernel

object is a data structure that includes the kernel function and the data on which

the kernel operates. To create a single kernel object we use the clCreateKernel
function. Before the kernel object is submitted to the command queue for execution,

input or output buffers must be provided for any arguments required by the kernel

function. If the arguments use device buffers, they must be created first and the data

must be explicitly copied into the device buffers. Listing 5.13 shows how to create a

kernel object from the kernel function VectorAdd().

1 // ***
2 // STEP 8: Create and compile the kernel
3 // ***
4

5 // Create the kernel
6 ckKernel = clCreateKernel(
7 cpProgram ,
8 "VectorAdd",
9 &ciErr);

10 if (! ckKernel || ciErr != CL_SUCCESS)
11 {
12 printf("Error: Failed to create compute kernel!\n");
13 exit (1);
14 }

Listing 5.13 Create and compile the kernel

9. Set the kernel arguments

Prior to enqueue the kernel function for execution on device, we must set the kernel

arguments. When the required memory objects have been successfully created, kernel

arguments can be set using the clSetKernelArg function. Listing 5.14 shows

how to set arguments for the kernel function VectorAdd(). In this example, the

input arguments have indices 0, 1, and 3 and the output argument has index 2.

5.3 Programming in OpenCL 171

OpenCL: Set kernel arguments

To set the argument value for a specific argument of a kernel use theclSetKernelArg
function:

cl_int clSetKernelArg (
cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void *arg_value)

Arguments to the kernel are referred by indices that go from 0 for the leftmost argument

to n − 1, where n is the total number of arguments declared by a kernel. The argument

index refers to the specific argument position of the kernel definition that must be

set. The last two arguments of clSetKernelArg specify the size of the argument

data and the pointer to the actual data that should be used as the argument value. If a

kernel function argument is declared to be a pointer of a built-in or user defined type

with the __global or __constant qualifier, a buffer memory object must be used. Refer

to OpenCLTM 2.2 Specification for more detailed description.

1 // ***
2 // STEP 9: Set the kernel arguments
3 // ***
4 // Set the Argument values
5 ciErr = clSetKernelArg(ckKernel ,
6 0,
7 sizeof(cl_mem),
8 (void*)&bufferA);
9 ciErr |= clSetKernelArg(ckKernel ,

10 1,
11 sizeof(cl_mem),
12 (void*)&bufferB);
13 ciErr |= clSetKernelArg(ckKernel ,
14 2,
15 sizeof(cl_mem),
16 (void*)&bufferC);
17 ciErr |= clSetKernelArg(ckKernel ,
18 3,
19 sizeof(cl_int),
20 (void*)&iNumElements);

Listing 5.14 Set the kernel arguments

10. Enqueue the kernel for execution

OpenCL always executes kernels in parallel, i.e., instances of the same kernel execute

on different data set. Each kernel execution in OpenCL is called a work-item. Each

work-item is responsible for executing the kernel once and operating on its assigned

portion of the data set. OpenCL exploits parallel computation of the compute devices

by having instances of the kernel execute on different portions of the N-dimensional

problem space. In addition, each work-item is executed only with its assigned data.

Thus, it is programmer’s responsibility to tell OpenCL how many work-items are

needed to process all data.

172 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Enqueue the kernel for execution on a device

To enqueue a command to execute a kernel on a device use the function

clEnqueueNDRangeKernel:

cl_int clEnqueueNDRangeKernel (
cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function enqueues a command into command_queue to execute the kernel

kernel on a device over NDRange. The argument work_dim denotes the number of

dimensions used to specify the global work-items and work-items in the work-group.

The number of global work-items in work_dim dimensions that will execute the ker-

nel function is specified with global_work_size.The size of the work-group that

will execute the kernel is specified with local_work_size. Refer to OpenCLTM

2.2 Specification for more detailed description.

Before the work-items total can be determined, the N-dimension to be used to

represent the data must be determined. For example, a linear array of data would

be a one-dimension problem space, while an image would be a two-dimensional

problem space, and spatial data, such as a 3D object, would be a three-dimensional

problem space.

When the dimension space is determined, the total work-items (also called the

global work size) and group size can be calculated. When the work-items for each

dimension and the group size (local work size) is determined (i.e., NDRange), the

kernel can be sent to the command queue for execution. To execute the kernel func-

tion, we must enqueue the kernel object into a command queue. To enqueue the

kernel to execute on a device, we use the function clEnqueueNDRangeKernel.

Listing 5.15 shows how to enqueue the VectorAdd kernel on a device over one-

dimensional space. The total number of work-items is szGlobalWorkSize, and

the work-group size is szLlobalWorkSize.In this example (vector addition),

szGlobalWorkSize is set to be equal to the number of elements in the input

vector(s), while szLocalWorkSize is set to 256. Thus, the kernel VectorAdd
will be executed by szGlobalWorkSize work-items and each SM on a GPU

device will execute 256 work-items.

1 // ***
2 // Start Core sequence ... copy input data to GPU , compute ,
3 // copy results back

5.3 Programming in OpenCL 173

4

5 // ***
6 // STEP 10: Enqueue the kernel for execution
7 // ***
8 // Launch kernel
9 ciErr = clEnqueueNDRangeKernel(

10 cmdQueue ,
11 ckKernel ,
12 1,
13 NULL ,
14 &szGlobalWorkSize ,
15 &szLocalWorkSize ,
16 0,
17 NULL ,
18 NULL);
19 if (ciErr != CL_SUCCESS)
20 {
21 printf("Error launchung kernel !\n");
22 }
23

24 // Wait for the command commands to get serviced before
25 // reading back results
26 //
27 clFinish(cmdQueue);

Listing 5.15 Enqueue the kernel for execution

11. Read the output buffer back to the host

After the kernel function has been executed on the device, we should read the output

data from the device. To read data from a device buffer to host memory, we use the

clEnqueueReadBuffer function. Listing 5.16 shows how to read data from the

device buffer bufferC to host memory srcC.

1 // ***
2 // STEP 11: Read the output buffer back to the host
3 // ***
4

5 // Synchronous/blocking read of results
6 ciErr = clEnqueueReadBuffer (
7 cmdQueue ,
8 bufferC ,
9 CL_TRUE ,

10 0,
11 datasize ,
12 srcC ,
13 0,
14 NULL ,
15 NULL);

Listing 5.16 Read the output buffer back to the host

5.3.2 Sum of Arbitrary Long Vectors

The OpenCL standard does not specify how the abstract execution model provided

by OpenCL is mapped to the hardware. We can enqueue any number of threads (work

items), and provide a work-group size (number of work_items in a work-group), with

at least the following constraints:

174 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Read from a buffer

To enqueue commands to read from a buffer object to the host memory use the

clEnqueueReadBuffer function:

cl_int clEnqueueReadBuffer (
cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
size_t offset,
size_t cb,
void *ptr,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function enqueues commands into command queue command_queue to read cb
bytes from a device buffer buffer to host memory pointed by ptr. This function does

not block by default. To know when the command has completed, we can use a blocking

form of the command by setting theblocking_write parameter toCL_TRUE. Refer

to OpenCLTM 2.2 Specification for more detailed description.

Occupancy

Occupancy is a ratio of active warps per compute unit to the maximum number of

allowed warps. We should always keep the occupancy high because this is a way to

hide latency when executing instructions. A compute unit should have a warp ready to

execute in every cycle as this is the only way to keep hardware busy.

1. work-group size must divide the number of work items,

2. work-group size be at most CL_DEVICE_MAX_WORK_GROUP_SIZE (recall

that for the CPU device used in the previous example this is 1200).

Maximum number of work-groups per compute unit is limited by the hardware

resources. Each compute unit has a limited number of registers and a limited amount

of local memory. Usually, no more than 16 work-groups can run simultaneously

on a single compute unit with the Kepler microarchitecture and 8 work-groups can

run simultaneously on a single compute unit with the Fermi microarchitecture. Also,

there is a limit for the number of active warps on a single compute unit (64 on Kepler,

48 on Fermi). We usually want to keep as many active warps as possible because

this affects occupancy. Occupancy is a ratio of active warps per compute unit to

the maximum number of allowed warps. Keeping the occupancy high, we can hide

latency when executing instructions. Recall that executing other warps when one

warp is paused is the only way to hide latency and keep hardware busy. Finally, the

5.3 Programming in OpenCL 175

hardware also limits the number of work-groups in a single launch (usually this is

65535 in each NDRange dimension).

In our previous example, we have vectors with 512 × 512 elements (iNum
Elements) and we have launched the same number of work-items (szGlobal
WorkSize). As each work-group contains 512 work-items (szLocalWorkSize),

we have 512 work-groups in a single launch. Is it possible to add larger vectors and

where is the limit? If we tried to add two vectors with 512 × 512 elements, we would

fail to launch a kernel with such a large number of work-items (work-groups). So

how would we use a GPU to add two arbitrary long vectors? First, we should limit

the number of work-items and the number of work-groups. Secondly, one work-item

should perform more than one addition. Let us first look at the new kernel function

in Listing 5.17.

1 // OpenCL Kernel Function for element by element
2 // vector addition of arbitrary long vectors
3 __kernel void VectorAddArbitrary(
4 __global float* a,
5 __global float* b,
6 __global float* c,
7 int iNumElements
8) {
9

10 //find my global index
11 int iGID = get_global_id (0);
12

13 while (iGID < iNumElements) {
14 // add adjacent elements
15 c[iGID] = a[iGID] + b[iGID];
16 iGID += get_global_size (0);
17 }
18 }

Listing 5.17 Sum o arbitrary long vectors - the kernel function

We used a while loop to iterate through the data (this kernel is very similar to the

function from Listing 5.2). Rather than incrementing iGID by 1, a many core GPU

device could increment iGID by the number of work-items that we are using. We

want each work-item to start on a different data index, so we use the thread global

index:

int iGID = get_global_id(0);

After each thread finishes its work at the current index, we increment iGID by the

total number of work-items in NDRange. This number is obtained from the function

get_global_size(0):

iGID += get_global_size(0);

The only remaining piece is to fix the execution model in the host code. To ensure

that we never launch too many work-groups and work-items, we will fix the number

of work-groups to a small number, but still large enough to have a good occupancy.

We will launch 512 work-groups with 256 work-items per work-group (thus the total

number of work-items will be 131072). The only change in the host code is

176 5 OpenCL for Massively Parallel Graphic Processors

szLocalWorkSize = 256;
szGlobalWorkSize = 512*256;

5.3.3 Dot Product in OpenCL

We will now take a look at vector dot products. We will start with the simple version

first to illustrate basic features of memory and work-item management in OpenCL

programs. We will again recap the usage of NDRange and work-item ID. We will

then analyze performance of the simple version and extend the simple version to

version which employs local memory.

The computation of a vector dot product consists of two steps. First, we multi-

ply corresponding elements of the two input vectors. This is very similar to vector

addition but utilizes multiplication instead of addition. In the second step, we sum

all the products instead of just storing them to an output vector. Each working-item

multiplies a pair of corresponding vector elements and then moves on to its next pair.

Because the result would be the sum of all these pairwise products, each working-

item keeps a sum of its products. Just like in the addition example, the working-items

increment their indices by the total number of threads. The kernel function for the

first step is shown in Listing 5.18.

1 // OpenCL Kernel Function for Naive Dot Product
2 __kernel void DotProductNaive(
3 __global float* a,
4 __global float* b,
5 __global float* c,
6 int iNumElements
7) {
8

9 //find my global index
10 int iGID = get_global_id (0);
11 int index = iGID;
12

13 while (iGID < iNumElements) {
14 // add adjacent elements
15 c[iGID] = a[index] * b[index];
16 index += get_global_size (0);
17 }
18 }

Listing 5.18 Vector Dot Product Kernel - naive implementation

Each element of the array c holds the sum of products obtained form one work-

item, i.e., c[iGID] holds a sum of products obtained by the work-item with the

global index iGID. After all work-item finish their work, we should sum all the

elements form the vector c to produce a single scalar product. But how do we know

when have all work-items finished their work? We need a mechanism to synchronize

work-items. The only way to synchronize all work-items in NDRange is to wait

for the kernel function to finish. After the kernel function finishes, we can read the

results (vector c) from a GPU device and sum its elements on host. The host code is

5.3 Programming in OpenCL 177

very similar to the host code from Listing 5.4. We have to make the following two

changes:

1. the vector c has a different size than vectors a and b. It has the same number of

elements as the number of all work-items in NDRange (szGlobalWorkSize):

1 // ***
2 // STEP 6: Create device buffers
3 // ***
4

5 ...

6

7 cl_mem bufferC; // Output array on the device
8

9 // Size of data for bufferC:
10 size_t datasize_c = sizeof(cl_float) * szGlobalWorkSize;

11

12 ...

13

14 // Use clCreateBuffer () to create a buffer object (d_C)
15 // with enough space to hold the output data
16 bufferC = clCreateBuffer(

17 context ,
18 CL_MEM_READ_WRITE ,

19 datasize_c ,

20 NULL ,

21 &status);

Listing 5.19 Create a buffer object C for naive implementation of vector dot product

2. after the kernel executes on a GPU device, we read vector c from device and

serially sum all its elements to produce the final dot product:

How Fast is Your OpenCL Kernel

Our motivation for writing kernels in OpenCL is to speed up applications. Often, we

want to measure the execution time of a kernel. As OpenCL is a performance-oriented

language, performance analysis is an essential part of OpenCL programming. The

OpenCL runtime provides a built-in mechanism (profiling) for timing the execu-

tion of kernels. A profiler is a performance analysis tool that gathers data from the

OpenCL run-time using events. This information is used to discover bottlenecks in

the application and find ways to optimize the application’s performance. OpenCL

supports 64-bit timing of commands submitted to command queues and events to

keep track of a command’s status. Events can be used with most commands placed on

the command queue: commands to read, write, map, or copy memory objects, com-

mands to enqueue kernels, etc. Profiling is enabled when a queue is created with the

CL_QUEUE_PROFILING_ENABLE flag is set. The fact is that when you execute

your kernels on GPU, no CPU clock is spent during the execution. When profiling is

enabled, the function clGetEventProfilingInfo is used to extract the timing

data. We need to follow next steps to measure the execution time of OpenCL kernel

execution time:

178 5 OpenCL for Massively Parallel Graphic Processors

OpenCL: Timing the execution

To return profiling information for the command associated with event if profiling is

enabled use the function clGetEventProfilingInfo.

cl_int clGetEventProfilingInfo (
cl_event event,
cl_profiling_info param_name,
size_t param_value_size,
void *param_value,
size_t *param_value_size_ret)

The function returns profiling information for the command associated with event if

profiling is enabled. The first argument is the event being queried, and the second

argument, param_name is an enumeration value describing the query. Most often

used param_name values are:

CL_PROFILING_COMMAND_START : A 64-bit value that describes the current

device time counter in nanoseconds when the command identified by event starts

execution on the device, and

CL_PROFILING_COMMAND_END : A 64-bit value that describes the current

device time counter in nanoseconds when the command identified by event has

finished execution on the device.

Event objects are used to capture profiling information that measure execution time of

a command. Profiling of OpenCL commands can be enabled using a command-queue

created with CL_QUEUE_PROFILING_ENABLE flag set in properties argument to

clCreateCommandQueue. OpenCL devices are required to correctly track time

across changes in device frequency and power states. Refer to OpenCLTM 2.2 Specifi-

cation for more detailed description.

1. Create a queue, profiling need to be enabled when the queue is created.

cmdQueue = clCreateCommandQueue(
...
CL_QUEUE_PROFILING_ENABLE,
&status);

2. Link an event when launching a kernel:

cl_event kernelevent;
ciErr = clEnqueueNDRangeKernel(

...
&kernelevent);

3. Wait for the kernel to finish:

ciErr = clWaitForEvents (1, &kernelevent); // Wait for the event

5.3 Programming in OpenCL 179

4. Get profiling data using the function clGetEventProfilingInfo() and

calculate the kernel execution time.

5. Release the event using the function clReleaseEvent().

The code snippet form Listing 5.20 shows how to measure kernel execution time

using OpenCL profiling events.

180 5 OpenCL for Massively Parallel Graphic Processors

Listing 5.20 Measuring kernel execution time

This way, we can profile operations on both memory objects and kernels. Results for

dot product of two vectors of size 16777216 (512 × 512 × 64) on an Apple laptop

with an Intel GPU are as follows:

5.3.4 Dot Product in OpenCL Using Local Memory

Host device data transfer has much lower bandwidth than global memory access. So

we should perform as much computation on a GPU device as possible and read as

small amount of data from a GPU device as possible. In this case, the threads should

cooperate to calculate the final sum. Work-items can safely cooperate through local

memory by means of synchronization. Local memory can be shared by all work-

items in a work-group. Local memory on a GPU is implemented on a compute device.

To allocate local memory, the _ _local address space qualifier is used in variable

declaration. We will use a buffer in local memory named ProductsWG to store each

work-item’s running sum. This buffer will store szLocalWorkSize products so

each work-item in the work-group will have a place to store its temporary result.

Since the compiler will create a copy of the local variables for each work-group, we

need to allocate only enough memory such that each thread in the work-group has

an entry. It is relatively simple to declare local memory buffers as we just pass local

arrays as arguments to the kernel:

__kernel void DotProductShared(
__global float* a,
__global float* b,
__global float* c,
__local* ProductsWG,
int iNumElements)

5.3 Programming in OpenCL 181

OpenCL: Barrier

barrier(mem_fence_flag)

All work-items in a work-group executing the kernel on a processor must execute

this function before any are allowed to continue execution beyond the barrier. The

mem_fence_flag can be either CLK_LOCAL_MEM_FENCE (the barrier function

will queue a memory fence to ensure correct ordering of memory operations to local

memory), or CLK_GLOBAL_MEM_FENCE (the barrier function will queue a memory

fence to ensure correct ordering of memory operations to global memory. This can be

useful when work-items, for example, write to buffer objects and then want to read the

updated data). Refer to OpenCLTM 2.2 Specification for more detailed description.

We then set the kernel argument with a value of NULL and a size equal to the size

we want to allocate for the argument (in byte). Therefore, it should be as follows:

ciErr |= clSetKernelArg(ckKernel,
3,
sizeof(float) * szLocalWorkSize,
NULL);

Now, each work-item computes a running sum of the product of corresponding entries

in a and b. After reaching the end of the array, each thread stores its temporary sum

into the local memory (buffer ProductsWG):

// work-item global index
int iGID = get_global_id(0);
// work-item local index
int iLID = get_local_id(0);
float temp = 0.0;
while (iGID < iNumElements) {

// multiply adjacent elements
temp += a[iGID] * b[iGID];
iGID += get_global_size(0);

}
//store the product in local memory
ProductsWG[iLID] = temp;

At this point, we need to sum all the temporary values we have placed in the

ProductsWG. To do this, we will need some of the threads to read the values

that have been stored there. This is a potentially dangerous operation. We should

place a synchronization barrier to guarantee that all of these writes to the local buffer

ProductsWG complete before anyone tries to read from this buffer. The OpenCL

C language provides functions to allow synchronization of work-items. However,

as we mentioned, the synchronization can only occur between work-items in the

same work-group. To achieve that, OpenCL implements a barrier memory fence for

synchronization with the barrier() function. The function barrier() creates

a barrier that blocks the current work-item until all other work-items in the same

group has executed the barrier before allowing the work-item to proceed beyond the

182 5 OpenCL for Massively Parallel Graphic Processors

barrier. All work-items in a work-group executing the kernel on a processor must

execute this function before any are allowed to continue execution beyond the barrier.

The following call guarantees that every work-item in the work-group has completed

instructions before the hardware will execute the next instruction on any work-item

within the work-group

barrier(CLK_LOCAL_MEM_FENCE);

Now that we have guaranteed that our local memory has been filled, we can sum

the values in it. We call the general process of taking an input array and performing

some computations that produce a smaller array of results a reduction. The naive

way to accomplish this reduction would be having one thread iterate over the shared

memory and calculate a running sum. This will take us time proportional to the length

of the array. However, since we have hundreds of threads available to do our work,

we can do this reduction in parallel and take time that is proportional to the logarithm

of the length of the array. Figure 5.12 shows a summation reduction. The idea is that

each work-item adds two of the values in ProductsWG and store the result back to

ProductsWG. Since each thread combines two entries into one, we complete the

first step with half as many entries as we started with. In the next step, we do the

same thing for the remaining half. We continue until we have the sum of every entry

in the first element of ProductsWG. The code for the summation reduction is

Fig. 5.12 Summation reduction

5.3 Programming in OpenCL 183

Reduction

In computer science, the reduction is a special type of operation that is commonly used

in parallel programming to reduce the elements of an array into a single result.

// how many work-items are in WG?
int iWGS = get_local_size(0);
// Summation reduction:
int i = iWGS/2;
while(i!=0){

if (iLID < i) {
ProductsWG[iLID] += ProductsWG[iLID+i];

}
barrier(CLK_LOCAL_MEM_FENCE);
i=i/2;

}

After we have completed one step, we have the same restriction we did after com-

puting all the pairwise products. Before we can read the values we just stored

in ProductsWG, we need to ensure that every thread that needs to write to

ProductsWG has already done so. The barrier(CLK_LOCAL_MEM_FENCE)
after the assignment ensures this condition is met. It is important to note that when

using barrier, all work-items in the work-group must execute the barrier function. If

the barrier function is called within a conditional statement, it is important to ensure

that all work-items in the work-group enter the conditional statement to execute the

barrier. For example, the following code is an illegal use of barrier because the barrier

will not be encountered by all work-items:

if (iLID < i) {
ProductsWG[iLID] += ProductsWG[iLID+i];
barrier(CLK_LOCAL_MEM_FENCE);

}

Any work-item with the local index iLID greater than or equal to i will never exe-

cute the barrier(CLK_LOCAL_MEM_FENCE). Because of the guarantee that no

instruction after a barrier(CLK_LOCAL_MEM_FENCE) can be executed before

every work-item of the work-group has executed it, the hardware simply continues

to wait for these work-items. This effectively hangs the processor because it results

in the GPU waiting for something that will never happen. Such a kernel will actually

cause the GPU to stop responding, forcing you to kill your program.

After termination of the summation reduction, each work-group has a single num-

ber remaining. This number is sitting in the first entry of theProductsWG buffer and

is the sum of every pairwise product the work-items in that work-group computed.

We now store this single value to global memory and end our kernel:

if (iLID == 0) {
c[iWGID] = ProductsWG[0];

}

184 5 OpenCL for Massively Parallel Graphic Processors

As there is only one element fromProductsWG that is transferred to global memory,

only a single thread needs to perform this operation. Since each work-group writes

exactly one value to the global array c, we can simply index it by WGID, which is

the work-group index.

We are left with an array c, each entry of which contains the sum produced by

one of the parallel work-groups. The last step of the dot product is to sum the entries

of c. Because array c is relatively small, we return control to the host and let the

CPU finish the final step of the addition, summing the array c.

Listing 5.21 shows the entire kernel function for dot product using shared memory

and summation reduction.

1 // ***
2 // OpenCL Kernel Function for dot product
3 // using shared memory snd summation reduction
4 __kernel void DotProductShared(__global float* a,
5 __global float* b,
6 __global float* c,
7 __local* ProductsWG ,
8 int iNumElements)
9 {

10

11 // work -item global index
12 int iGID = get_global_id (0);
13 // work -item local index
14 int iLID = get_local_id (0);
15 // work -group index
16 int iWGID = get_group_id (0);
17 // how many work -items are in WG?
18 int iWGS = get_local_size (0);
19

20 float temp = 0.0;
21 while (iGID < iNumElements) {
22 // multiply adjacent elements
23 temp += a[iGID] * b[iGID];
24 iGID += get_global_size (0);
25 }
26 //store the product
27 ProductsWG[iLID] = temp;
28

29 // wait for all threads in WG:
30 barrier(CLK_LOCAL_MEM_FENCE);
31

32 // Summation reduction:
33 int i = iWGS /2;
34 while(i!=0){
35 if (iLID < i) {
36 ProductsWG[iLID] += ProductsWG[iLID+i];
37 }
38 barrier(CLK_LOCAL_MEM_FENCE);
39 i=i/2;
40 }
41

42 // store partial dot product into global memory:
43 if (iLID == 0) {
44 c[iWGID] = ProductsWG [0];
45 }
46 }

Listing 5.21 Vector Dot Product Kernel - implementation using local memory and summation

reduction

5.3 Programming in OpenCL 185

In the host code for this example,we should create the bufferC memory object

that will hold szGlobalWorkSize/szLocalWorkSize partial dot products.

Listing 5.22 shows how to create bufferC.

1

2 size_t datasize_c = sizeof(cl_float) * (szGlobalWorkSize/←֓

szLocalWorkSize);
3

4 // Use clCreateBuffer () to create a buffer object (d_C)
5 // with enough space to hold the output data
6 bufferC = clCreateBuffer(
7 context ,
8 CL_MEM_READ_WRITE ,
9 datasize_c ,

10 NULL ,
11 &status);

Listing 5.22 Create bufferC for dot product using local memory

Listing 5.23 shows how to set kernel arguments.

1 // ***
2 // STEP 9: Set the kernel arguments
3 // ***
4 // Set the Argument values
5 ciErr = clSetKernelArg(ckKernel ,
6 0,
7 sizeof(cl_mem),
8 (void*)&bufferA);
9 ciErr |= clSetKernelArg(ckKernel ,

10 1,
11 sizeof(cl_mem),
12 (void*)&bufferB);
13 ciErr |= clSetKernelArg(ckKernel ,
14 2,
15 sizeof(cl_mem),
16 (void*)&bufferC);
17 ciErr |= clSetKernelArg(ckKernel ,
18 3,
19 sizeof(float) * szLocalWorkSize ,
20 NULL);
21 ciErr |= clSetKernelArg(ckKernel ,
22 4,
23 sizeof(cl_int),
24 (void*)&iNumElements);

Listing 5.23 Set kernel arguments for dot product using shared memory

The argument with index 3 is used to create local memory buffer of size sizeof
(float) * szLocalWorkSize for each work-group. As this argument is

declared in the kernel function with the _ _local qualifier, the last entry to

clSetKernelArg must be NULL.

Results for dot product of two vectors of size 67108864 (512 × 512 × 256) on an

Apple laptop with an Intel GPU are

Kernel execution time = 0.503470 s
Result = 33554432.000000

186 5 OpenCL for Massively Parallel Graphic Processors

5.3.5 Naive Matrix Multiplication in OpenCL

This section describes a matrix multiplication application using OpenCL for GPUs in

a step-by-step approach. We will start with the most basic version (naive) where focus

will be on the code structure for the host application and the OpenCL GPU kernels.

The naive implementation is rather straightforward, but it gives us a nice starting

point for further optimization. For simplicity of presentation, we will consider only

square matrices whose dimensions are integral multiples of 32 on a side. Matrix

multiplication is a key building block for dense linear algebra and the same pattern

of computation is used in many other algorithms. We will start with simple version

first to illustrate basic features of memory and work-item management in OpenCL

programs. After that we will extend to version which employs local memory.

Before starting, it is helpful to briefly recap how a matrix–matrix multiplication

is computed. The element ci, j of C is the dot product of the i th row of A and the

j th column of B. The matrix multiplication of two square matrices is illustrated in

Fig. 5.13. For example, as illustrated in Fig. 5.13, the element c5,2 is the dot product

of the row 5 of A and the column 2 of B.

To implement matrix multiplication of two square matrices of dimension N ×

N , we will launch N × N work-items. Indexing of work-items in NDRange will

correspond to 2D indexing of the matrices. Work-item (i, j)will calculate the element

ci, j using row i of A and column j of B. So, each work-item loads one row of matrix

A and one column of matrix B from global memory, do the dot product, and store

the result back to matrix C in the global memory. The matrix A is, therefore, read N

times from global memory and B is read N times from global memory. The simple

version of matrix multiplication can be implemented in the plain C language using

three nested loops as in Listing 5.24. We assume data to be stored in row-major order

(C-style).

1 void matrixmul(float *matrixA ,
2 float *matrixB ,
3 float *matrixC ,
4 int N) {
5

6 for (int i = 0; i < N; i++) {
7 for (int j = 0; j < N; j++) {
8 for (int k = 0; k < N; k++) {
9 matrixC[i*N + j] +=

10 matrixA[i * N + k] * matrixB[k * N + j];
11 }
12 }
13 }
14 }

Listing 5.24 Simple matrix multiplication in C

Let us now implement the simple matrix multiplication in OpenCL.

The Naive Multiplication Kernel

To implement the above matrix multiplication in OpenCL N × N work-items will be

needed. Let us have each work-item compute an element of the matrix C. Each work-

item should first discover its ID within 2D NDRange and compute the corresponding

element of C. Listing 5.25 shows the kernel function for naive matrix multiplication.

5.3 Programming in OpenCL 187

Fig. 5.13 Matrix multiplication

1 // OpenCL Kernel Function for naive matrix multiplication
2 __kernel void matrixmulNaive(
3 __global float* matrixA ,
4 __global float* matrixB ,
5 __global float* matrixC ,
6 int N) {
7

8 // global thread index
9 int xGID = get_global_id (0); // column in NDRange

10 int yGID = get_global_id (1); // row in NDRange
11

12 float dotprod = 0.0;
13

14 // each work item calculates one element of the matrix C:
15 for (int i = 0; i < N; i++) {

188 5 OpenCL for Massively Parallel Graphic Processors

16 dotprod += matrixA[yGID * N + i] * matrixB[i * N + xGID←֓

];
17 }
18 matrixC[yGID * N + xGID] = dotprod;
19 }

Listing 5.25 The naive multiplication kernel

Each work item first discovers its global ID in 2D NDRange. The index of the

column xGID is obtained from the first dimension of NDRange using get_
global_id(0). Similarly, the index of the row yGID is obtained from the second

dimension of NDRange usingget_global_id(1). After obtaining its global ID,

each work-item do the dot product between the yGID-th row of A and the xGID-th

column of B. The dot product is stored to the element in the yGID-th row and the

xGID-th column of C.

The Host Code

As we learned previously, the host code should probe for devices, create context, cre-

ate buffers, and compile the OpenCL program containing kernels. These steps are the

same as in the vector addition example from Sect. 5.3.1. Assuming you have already

initialized OpenCL, created the context and the queue, and created the appropriate

buffers and memory copies. Listing 5.26 shows how to compile the kernel for naive

matrix multiplication.

1 // ***
2 // STEP 8: Create and compile the kernel
3 // ***
4 ckKernel = clCreateKernel(
5 cpProgram ,
6 "matrixmulNaive",
7 &ciErr);
8 if (! ckKernel || ciErr != CL_SUCCESS)
9 {

10 printf("Error: Failed to create compute kernel !\n");
11 exit (1);
12 }

Listing 5.26 Create and compile the kernel for naive matrix multiplication

Prior to launch the kernel we should set the kernel arguments as in Listing 5.27.

1 // ***
2 // STEP 9: Set the kernel arguments
3 // ***
4 ciErr = clSetKernelArg(ckKernel , 0, sizeof(cl_mem), (void*)&←֓

bufferA);
5 ciErr |= clSetKernelArg(ckKernel , 1, sizeof(cl_mem), (void*)&←֓

bufferB);
6 ciErr |= clSetKernelArg(ckKernel , 2, sizeof(cl_mem), (void*)&←֓

bufferC);
7 ciErr |= clSetKernelArg(ckKernel , 3, sizeof(cl_int), (void*)&←֓

iRows);

Listing 5.27 Set the kernel arguments for naive matrix multiplication

5.3 Programming in OpenCL 189

Finally, we are ready to launch the kernel matrixmulNaive. Listing 5.28 shows

how you launch the kernel.

1 // ***
2 // Start Core sequence ... copy input data to GPU , compute ,
3 // copy results back
4

5 // set and log Global and Local work size dimensions
6 const cl_int iWI = 16;
7 const size_t szLocalWorkSize [2] = { iWI , iWI };
8 const size_t szGlobalWorkSize [2] = { iRows , iRows };
9 cl_event kernelevent;

10

11 // ***
12 // STEP 10: Enqueue the kernel for execution
13 // ***
14 ciErr = clEnqueueNDRangeKernel(
15 cmdQueue ,
16 ckKernel ,
17 2,
18 NULL ,
19 szGlobalWorkSize ,
20 szLocalWorkSize ,
21 0,
22 NULL ,
23 &kernelevent);

Listing 5.28 Enqueue the kernel for naive matrix multiplication

As can be seen from the code in Listing 5.28, NDRange is of 2D size (iRows,

iRows). That means that we launch (iRows, iRows) work-items. These work-

items are further grouped into work-groups of dimension (16,16). If for exam-

ple the size of matrices (iRows, iRows) is (4096, 4096), we launch 256 × 256

work-groups. As the number of work-groups is probably larger than the number of

compute-units present in a GPU, we keep all compute-units busy. Recall that we

should always keep the occupancy high, because this is a way to hide latency when

executing instructions.

Execution time for naive matrix multiplication of two square matrices of size

3584 × 3584 on an Apple laptop with an Intel GPU is

Kernel execution time = 30.154823 s

5.3.6 Tiled Matrix Multiplication in OpenCL

Looking at the loop in the kernel code from Listing 5.25, we can notice that each work-

item loads 2 × N elements from global memory—two for each iteration through the

loop, one from the matrix A and one from the matrix B. Since accesses to global

memory are relatively slow, this can slow down the kernel, leaving the work-items

idle for hundreds of clock cycles, for each access. Also, we can notice that for each

element of C in a row, we use the same row of A and that each work-item in a

work-group uses the same columns of B.

190 5 OpenCL for Massively Parallel Graphic Processors

But not only are we accessing the GPU’s off-chip memory way too much, we do

not even care about memory coalescing! Assuming row-major order when storing

matrices in global memory, the elements from the matrix A are accessed with unit

stride, while elements from the matrix B are accessed with stride N.

Recall from Sect. 5.1.4 that to ensure memory coalescing, we want work-items

from the same warp to access contiguous elements in memory so to minimize the

number of required memory transactions. As work-items of the same warp access

32 contiguous floating-point elements from the same row of A, all these elements

fall into the same 128-bytes segment and data is delivered in a single transaction.

On the other hand, work-items of the same warp access 32 floating-point elements

from B that are 4N bytes apart, so for each element from the matrix B a new memory

transaction is needed. Although the GPU’s caches probably will help us out a bit,

we can get much more performance by manually caching sub-blocks of the matrices

(tiles) in the GPU’s on-chip local memory.

In other words, one way to reduce the number of accesses to global memory is

to have the work-items load portions of matrices A and B into local memory, where

we can access them much more quickly. So we will use local memory to avoid non-

coalesced global memory access. Ideally, we would load both matrices entirely into

local memory, but unfortunately, local memory is a rather limited resource and cannot

hold two large matrices. Recall that older devices have 16kB of local memory per

compute unit, and more recent devices have 48 kB of local memory per compute unit.

So we will content ourselves with loading portions of A and B into local memory as

needed, and making as much use of them as possible while they are there.

Assume that we multiply two matrices as shown in Fig. 5.14. To calculate the

elements of the square submatrix C (tile C), we should multiply the corresponding

rows and columns of matrices A and B. Also, we can subdivide the matrices A and

B into submatrices (tiles) such as shown in Fig. 5.14. Now, we can multiply the

corresponding row and the column from the A and B tiles and sum up these partial

products. The process is shown in the lower part of Fig. 5.14. We can also observe

that the individual rows and columns in tiles A and B are accessed several times.

For example, in the 3 × 3 tiles from Fig. 5.14, all elements on the same row of the

tile C are computed using the same data of the A tiles and all elements on the same

column of the submatrix C are computed using the same data of the B tile. As the

tiles are in local memory, these accesses are fast.

The idea of using tiles in matrix multiplication is as follows. The number of work-

items that we start is equal to the number of elements in the matrix. Each work-item

will be responsible for computing one element of the product matrix C. The index

of the element in the matrix is equal to the global index of a work-item in NDrange.

At the same time, we create the same number of work-groups as is the number of

tiles. The number of elements in a tile will be equal to the number of threads in a

work-group. This means that the element index within a tile will be the same as the

local index in the group.

For reference, consider the matrix multiplication in Fig. 5.15. All matrices are of

size 8 × 8, so we will have 64 work-items in NDrange. We divide matrices A, B and

C in non-overlapping sub-blocks (tiles) of size T W × T W , where T W = 4 as in

5.3 Programming in OpenCL 191

Fig. 5.14 Matrix multiplication using tiles

Fig. 5.15. Let us also suppose that tiles are indexed starting in the upper left corner.

Now, consider the element c5,2 in the matrix C, in Fig. 5.15. The element c5,2 falls

into the tile (0,1). The work-item responsible for computing the element c5,2 has the

global row index 5 and the global column index 2. Also, the same work-item has the

local row index 1 and local column index 2. This work-item computes the element

c5,2 in C by multiplying together row 5 in A, and column 2 in B, but it will do it

in pieces using tiles. As we already said, all work-items responsible for computing

192 5 OpenCL for Massively Parallel Graphic Processors

Fig. 5.15 Matrix multiplication with tiles

elements of the same tile in the matrix C should be in the same work-group. Let us

explain this process for the work-item that computes the element c5,2. The work-item

should access the tiles (0,1) and (1,1) from A and tiles (0,0) and (1,1) from B. The

computation is performed in two steps. First, the work-item computes dot product

between the row 1 from the tile (0,1) in A and the column 2 from the tile (0,0) in B.

In the second step, the same work-item computes dot product between the the row

1 from the tile (1,1) in A and the column 2 from the tile (1,0) in B. Finally, it adds

this dot product to the one computed in the first step.

5.3 Programming in OpenCL 193

If we want to compute the first dot product as fast as possible, the elements form

the row 1 from the tile (0,1) in A and the elements from the column 2 from the tile

(0,0) in B should be in the local memory. The same is true for all rows in the tile

(0,1) in A and all columns in the tile (0,0) in B because all work-items from the

same work-group will access these elements concurrently. Also, once the first step

is finished, the same will be true for the second step but this time for the tile (1,1) in

A and the tile (1,0) in B.

So, before every step, all work-items from the same work-group should perform

a collaborative load of tiles A and B into local memory. This is performed in such

a way that the work-item in the i th local row and the j th local column performs

two loads from global memory per tile: the element with local index (i, j) from

the corresponding tile in matrix A and the element with local index (i, j) from the

corresponding tile in matrix B. Figure 5.15 illustrates this process. For example, the

work item that computes the element c5,2 reads:

1. the elements a5,2 and b1,2 in the first step, and

2. the elements a5,6 and b5,2 in the second step.

Where is the benefit of using tiles? If we load the left-most (0,1) tile of matrix

A into local memory, and the top-most (0,0) of those tiles of matrix B into local

memory, then we can compute the first T W × T W products and add them together

just by reading from local memory. But here is the benefit: as long as we have those

tiles in local memory, every work-item from the work-group computing a tile form

C can compute that portion of their sum from the same data in local memory. When

each work item has computed this sum, we can load the next T W × T W tiles from

A and B, and continue adding the term-by-term products to our value in C. And after

all of the tiles have been processed, we will have computed our entries in C.

The Tiled Multiplication Kernel

The kernel code for the tiled matrix multiplication is shown in Listing 5.29.

1 #define TILE_WIDTH 16
2

3 // OpenCL Kernel Function for tiled matrix multiplication
4 __kernel void matrixmulTiled(
5 __global float* matrixA ,
6 __global float* matrixB ,
7 __global float* matrixC ,
8 int N) {
9

10

11 // Local memory to fit the tiles
12 __local float matrixAsub[TILE_WIDTH][TILE_WIDTH];
13 __local float matrixBsub[TILE_WIDTH][TILE_WIDTH];
14

15 // global thread index
16 int xGID = get_global_id (0); // column in NDRange
17 int yGID = get_global_id (1); // row in NDRange
18

19 // local thread index
20 int xLID = get_local_id (0); // column in tile
21 int yLID = get_local_id (1); // row in tile

194 5 OpenCL for Massively Parallel Graphic Processors

22

23 float dotprod = 0.0;
24

25 for(int tile = 0; tile < N/TILE_WIDTH; tile ++){
26 // Collaborative loading of tiles into shared memory:
27 // Load a tile of matrixA into local memory
28 matrixAsub[yLID][xLID] =
29 matrixA[yGID * N + (xLID + tile*TILE_WIDTH)];
30 // Load a tile of matrixB into local memory
31 matrixBsub[yLID][xLID] =
32 matrixB [(yLID + tile*TILE_WIDTH) * N + xGID];
33

34 // Synchronise to make sure the tiles are loaded
35 barrier(CLK_LOCAL_MEM_FENCE);
36

37 for (int i = 0; i < TILE_WIDTH; i++) {
38 dotprod +=
39 matrixAsub[yLID][i] * matrixBsub[i][xLID];
40 }
41

42 // Wait for other work -items to finish
43 // before loading next tile
44 barrier(CLK_LOCAL_MEM_FENCE);
45 }
46

47 matrixC[yGID * N + xGID] = dotprod;
48 }

Listing 5.29 The tiled multiplication kernel

Tiles are stored in matrixAsub and matrixBsub. Each work-item finds its

global index and its local index. The outer loop goes through all the tiles necessary

to calculate the products in C. Each work-item in the work-group in one iteration of

the outer loop first reads its elements from the global memory and writes them to the

tile element with its local index. After loading its elements, each work-item waits

at the barrier until the tiles are loaded. Then, in the innermost loop, each work-item

calculates dot product between a row yLID form the tile matrixAsub and the

column xLID from the tile matrixBsub. After that the work-item waits again at

the barrier for the other work-items to finish their dot products. Then all work-items

load next tiles and repeat the process.

The Host Code

To implement tiling, we will leave our host code from the previous naive kernel

intact. The only thing we should change is to create and compile the appropriate

kernel function:

1 // ***
2 // STEP 8: Create and compile the kernel
3 // ***
4 ckKernel = clCreateKernel(
5 cpProgram ,
6 "matrixmulTiled",
7 &ciErr);
8 if (! ckKernel || ciErr != CL_SUCCESS)
9 {

10 printf("Error: Failed to create compute kernel !\n");
11 exit (1);
12 }

5.3 Programming in OpenCL 195

Listing 5.30 Create and compile the kernel for tiled matrix multiplication

Note that it already uses 2D work-groups of 16 by 16. This means that the tiles are

also 16 by 16.

Execution time for tiled matrix multiplication of two square matrices of size

3584 × 3584 on an Apple laptop with an Intel GPU is

Kernel execution time = 16.409384 s

5.4 Exercises

1. To verify that you understand how to control the argument definitions for a kernel,

modify the kernel in Listing 5.3 so it adds four vectors together. Modify the host

code to define four vectors and associate them with relevant kernel arguments.

Read back the final result and verify that it is correct.

2. Use local memory to minimize memory movement costs and optimize perfor-

mance of the matrix multiplication kernel in Listing 5.25. Modify the kernel so

that each work-item copies its own row of A into local memory. Report kernel

execution time.

3. Modify the kernel from the previous exercise so that each work-group collabo-

ratively copies its own column of B into local memory. Report kernel execution

time.

4. Write an OpenCL program that computes the Mandelbrot set. Start with the

program in Listing 3.21.

5. Write an OpenCL program that computes π . Start with the program in List-

ing 3.15. Hint: the parallelization is similar to the parallelization of a dot product.

6. Write an OpenCL program that transposes a matrix. Use local memory and collab-

oratively reads to minimize memory movement costs and optimize performance

of the kernel.

7. Given an input array {a0, a1, . . . , an−1} in pointerd_a, write an OpenCL program

that stores the reversed array {an−1, an−2, . . . , a0} in pointer d_b. Use multiple

blocks. Try to revert data in local memory. Hint: using work-groups and local

memory revert data in array slices. Then, revert slices in global memory.

8. Write an OpenCL program to detect edges on black and with images using the

Sobel filter.

5.5 Bibliographical Notes

The primary source of information including all details of OpenCL is available at

Khronos web site [15] where the complete reference guide is available. Another

good online source of OpenCL tutorials and dozen of examples is HandsOnOpenCL

196 5 OpenCL for Massively Parallel Graphic Processors

training course [14]. A comprehensive hands-on presentation of OpenCL can be

found in the book OpenCL in Action by Matthew Scarpino [24]. A gentle introduction

to OpenCL by the same author can be found in [23]. The books by Munshi et al. [17]

and Gaster et al. [11] provide a deep dive into OpenCL.

Part III

Engineering

The aim of Part III is to explain why a parallel program can be more or less efficient.

A basic approaches are described for the performance evaluation and analysis of

parallel programs. Instead of analyzing complex applications, we focus on two simple

cases, i.e. a parallel computation of number π , by using numerical integration, and

a solution of simplified partial differential equation on 1-D domain, by using

explicit solution methodology. Both cases, already mentioned in previous chapters,

even so simple, they already incorporate most of possible pitfalls that could arise

during their parallelization. The first case, computation of pi, requires just a few

communication among parallel tasks, while in the explicit solution of PDE, each

process communicate with its neighbors in every time step.

Besides these two cases, we also evaluate the Seam Carving algorithm in terms

of performance on CPU and a GPU platform. Seam Carving is an image process-

ing algorithm in 2-D domain and as such appropriate for implementation on GPU

platforms. It comprises a few steps of which some cannot be effectively parallelized.

Parallel programs run on adequate platforms, i.e. multi-core computers, intercon-

nected computers or computing clusters, and GPU accelerators. After an implemen-

tation of any parallel program, several questions remain to be answered, e.g.:

• How the execution time decreases with larger number of processors?

• How many processors are optimal for a specific task?

• Will execution time always decrease, if the number of processors is increased?

• Which parallelization methodology provides the best results?

• and similar.

We will answer the above questions by running the programs with different param-

eters, e.g. size of the computation domain and the number of processors. We will

follow also the execution efficiency and limitations that are specific for each of the

three parallel methodologies: OpenMP, MPI, and OpenCL.

An electronic extension of the Engineering part will be permanently available on

a book web, hosted by Springer server. Our aim is that it become a vivid forum of

readers, students, teachers and other developers. We expect your inputs in a form of

your own cases, solutions, comments, and proposals. Soon after the publication of

this book more complex cases will be provided, i.e. a numerical solution of a 2-D

198

diffusion equation, a simulation of N-body interactions with possible application in

molecular dynamics, and similar.

Each of engineering cases will be introduced with a basic description of the

selected problem, sequential algorithm and its solution methodology. Then, for all

considered parallelization approaches: OpenMP, MPI and OpenCL, initial parallel

algorithms will be developed and their expected performance will be estimated.

Results will be compared in terms of programming complexity, execution time,

and scalability. The complete implementations will be provided with an adequate

program code. Any improvements and feed back from all users are welcome.

6Engineering: Parallel Computation
of the Number π

Chapter Summary

In computing the number π , by simple numerical integration, the focus is in par-

allel implemention on three different parallel architectures and programming envi-

ronments: OpenMP on the multicore processor, MPI on a cluster, and OpenCL on a

GPU. In all three cases a spatial domain decomposition is used for paralelization, but

differences in communication between parallel tasks and in combining the results of

these tasks are shown. Measurements of the running time and speed-up are included

to assist self-studying readers.

A detailed description of the parallel computation of π is available in Chap. 3

Example 3.4 and in Chap. 4 Example 4.4. The solution methodology relies on a

numerical integration of unit circle:

π = 4

∫ 1

0

√

1 − x2dx

that is in a direct relation with the value of π . The numerical integration is performed

by calculation and summation of all N sub-interval areas. A sequential version of

the algorithm in a pseudocode, which results in an approximate value of π , is given

below:

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_6

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_6&domain=pdf

200 6 Engineering: Parallel Computation of the Number π

100 102 104 106 108 1010

N -number of sub-intervals

10-6

10-4

10-2

100

102

ru
n

-t
im

e
 [
s
]

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

e
rr

o
r

[s
]

run-time [s]

abs-error

Fig. 6.1 Run-time and absolute error on a single MPI process in computation of π as a function of

number of sub-intervals N

Algorithm 1 Sequential Algorithm: Compute_π

Input: N - number of sub-intervals on interval [0, 1]

1: for i = 1 . . . N do

2: xi = (1/N)(i − 0.5)

3: yi =

√

1 − x2
i

4: Pi = Pi + 4(yi /N)

5: end for

Output: Pi - an approximation for the number π

We validate the Algorithm 1 on a single computer in order to prove its correct

behavior. It is expected that with an increased number of sub-intervals N , the approx-

imation of π will become better and better, which should be confirmed by calculated

absolute error of approximate π value. This is easy, because we know the π value with

arbitrary accuracy. However, with the increased N the run-time will also increase.

Embedding the existing MPI program from Listing 4.5 in an additional for loop

that increases the number of intervals by a factor of two, followed by compiling and

running the program:

>mpiexec -n 1 MSMPIPi

on a HP EliteBook 840 notebook, based on Intel Core 64-bit processor i7-7500U

CPU with 2 physical cores and 4 logical processor, on MS Windows 10 operating

system with Visual Studio 2017 compiler, we get the results shown in Fig. 6.1. Note,

that for all presented MPI experiments in this book, the same notebook was used.

We compile in Release mode with optimization for maximal speed, e.g., /O2.

To see the full response, the results are shown in logarithmic scale on both axes.

The run-time mostly increases as expected, except with a few smallest values of sub-

6 Engineering: Parallel Computation of the Number π 201

intervals, where the impact of MPI program setup time, cache memory, or interactions

with operating system could be present. In the same way, the approximation error

becomes smaller and smaller, until the largest number of intervals, where a small jump

is presents, possibly because of a limited precision of the floating point arithmetic.

The next step is to find out the most efficient way to parallelize the problem, i.e., to

engage a greater number of cooperating processors in order to speed up the program

execution. Even though the sequential Algorithm 1 is very simple, it implies most

of the problems that arise also in more complex examples. First, the program needs

to distribute tasks among cooperating processors in a balanced way. A relatively

small portion of data should be communicated to cooperating processes, because the

processes will generate their local data by a common equation for a unit circle. All

processes have to implement their local computation of partial sums, and finally, the

partial results should be assembled, usually by a global communication, in a host

process to be available for users.

Regarding sequential Algorithm 1, we see that the calculation of each sub-interval

area is independent, and consequently, the algorithm has a potential to be parallelized.

In order to make the calculation parallel, we will use domain decomposition approach

and master–slave implementation. Because all values of yi can be calculated locally

and because the domain decomposition is known explicitly, there is no need for a

massive data transfer between the master process and slave processes. The master

process will just broadcast the number of intervals. Then, the local integration will

run in parallel on all processes. Finally, the master process reduces the partial sums

into the final approximation of π . The parallelized algorithm is shown below:

Algorithm 2 Parallel Algorithm: Compute_π

Input: N - number of sub-intervals on interval [0, 1]

1: Get myI D and the number of cooperating processes p

2: Master broadcast N to all processes

3: Compute a shorter for loop:

4: for j = 1 . . . N/p do

5: x j = (1/N)(j − 0.5)

6: y j =

√

1 − x2
j

7: P j = P j + 4(y j /N)

8: end for

9: Master reduce partial sums P j to the final result Pi

Output: Pi - approximate value of π

We have learned from this simple example that, besides the calculation, there

are other tasks to be done (i) domain decomposition, (ii) their distribution, and

(iii) assembling of the final result, which are inherently sequential, and therefore

limit the final speedup. We further see that all processes are not identical. Some

of the processes are slaves because they just calculate their portion of data. The

master process has to distribute the number of intervals and to gather and sum up the

202 6 Engineering: Parallel Computation of the Number π

local results. Parallel implementation approaches on different computing platforms

differ significantly, and therefore their results are presented in the following sections,

separately for: OpenMP, MPI, and OpenCL.

6.1 OpenMP

Computing π on a multicore processor has been covered in Chap. 3.

The numerical integration of a unit square (the part of it that lies in the first

quadrant) has been explained in Example 3.4, where the program for computing π

is shown Listing 3.15. To analyze the performance of the program, it has been run

on a quad-core processor with hyperthreading (Intel Core i7 6700HQ). For 109 sub-

intervals of the interval [0, 1] (when the error is approximately 10−8), the results are

shown in Fig. 6.2: the bars show the measured wall clock time and the dashed curve

illustrates the expected wall clock time in case of the ideal speedup in regard to the

number of threads used.

The wall clock time decreases when the number of threads increases, but only up

to the number of logical cores the processor can provide. Once the number of threads

exceeds the number of logical cores, the program (its OpenMP run-time component,

to be precise) places multiple threads on the same core and no reduction of wall

clock time can be gained.

In fact, one must observe that up to the number of logical cores, almost ideal

speedup is achieved. This is not to be expected very often. In this case, however, it

is a consequence of the fact that the entire computation is almost perfectly paral-

lelizable, with the exception of the final reduction. But if 109 intervals are divided

among 8 threads, the time of the reduction becomes insignificant if compared to the

computation of the local sums.

As shown in Example 3.5, π can also be computed by random shooting into the

square [0, 1] × [0, 1] and count the number of shots that hit inside the unit square.

The program for computing π using this method is shown in Listing 3.18. As with

the numerical integration, the program has been tested on a quad-core processor with

hyperthreading (Intel Core i7 6700HQ). For 108 shots, the measured wall clock time

is shown in Fig. 6.3. Again, the dashed line illustrates the expected wall clock time

in case of the ideal speedup in regard to the number of threads used.

As can be seen in Fig. 6.3, (almost) ideal speedup is achieved only for up to 4

threads, i.e., for one thread per physical, not logical core. That implies that instruc-

tions and memory accesses of threads placed on the same physical core result in too

many conflicts to sustain the speedup and truly benefit from multithreading. This can

happen and it is a lesson not to be forgotten.

Even though the wall clock time is what it matters in the end, the CPU time has been

measured as well. In Fig. 6.4 the total amount of CPU time needed for computing π

using both methods explained in Chap. 3, namely numerical integration and random

shooting, is shown.

6.1 OpenMP 203

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s
e
c
o
n
d
s

number of threads

wall clock time
ideal speedup

Fig. 6.2 Computing π using the numerical integration of the unit circle using 109 intervals on a

quad-core processor with hyperthreading

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s
e
c
o
n
d
s

number of threads

wall clock time
ideal speedup

Fig. 6.3 Computing π using random shooting into the square [0, 1] × [0, 1] using 108 shots

Although the wall clock time shown in Fig. 6.2 in Fig. 6.3 decreases with the

number of threads the total amount of CPU time increases. These can be expected,

since more threads require more administrative tasks from the OpenMP run-time.

204 6 Engineering: Parallel Computation of the Number π

6.90

6.95

7.00

7.05

7.10

7.15

7.20

7.25

7.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s
e
c
o
n
d
s

number of threads

cpu time

2.50

3.00

3.50

4.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s
e
c
o
n
d
s

number of threads

cpu time

Fig. 6.4 The total CPU time needed to compute π using numerical integration (left) and random

shooting (right)

6.2 MPI

An MPI C code for the parallel computation of π , together with some explanation

and comments, are provided in Chap. 4 Listing 4.5. We would like to test the behavior

of run-time as a function of the number of MPI processes p. On the test notebook

computer, two cores are present. Taking into account that four logical processors

are available, we could expect some speedup of the execution with up to four MPI

processes. With more than four processes, the run-time could start increasing, because

of an MPI overhead. We will test our program with up to eight processes. Starting a

same program on different number of processes can be accomplished by consecutive

mpiexec commands with appropriate value of parameter -n or by a simple bash

file that prepares the execution parameters, which are passed to the main program

through its argc and argv arguments.

The behavior of approximation error should be the same as in the case of a sin-

gle process. In the computation of π , the following number of sub-intervals have

been used N = [5e9, 5e8, 5e7, 5e6] (5e9 is a scienific notation for 5.109). Note,

that such big numbers of sub-intervals were used because we want to have a com-

putationally complex task, even that the computation of sub-interval areas is quite

simple. Usually, in realistic tasks, there is much more computation by itself and tasks

become complex automatically. Two smaller values of N have been used to test the

impact of the ratio calculation/communication complexity on the program execution.

The obtained results for parallel run-times (RT) in seconds and speedups (SU), in

computation of π , on a notebook computer are shown in Fig. 6.5.

We have first checked that the error in parallel approximation of π is the same as

in the case of a single process. The run-time behaves as expected, with the maximum

speedup of 2.6 with four processes and large N . With two processes the speedup

is almost 2, because the physical cores have been allocated. Up to four processes,

the speedup increases but not ideal, because logical processors cannot provide the

same performance as the physical cores because of hyperthreading technology. The

program is actually executed on a shared memory computer with potentially negli-

gible communication delays. However, if N is decreased, e.g., to 5e6 or more, the

6.2 MPI 205

1 2 3 4 5 6 7 8

p - number of MPI processes

0

0.5

1

1.5

2

2.5

3

3.5

4

ru
n

-t
im

e
 [

s
]

1

1.5

2

2.5

3

3.5

4

s
p

e
e

d
-u

p

RT-5e9 [s]

RT-5e8 [s]

RT-5e7 [s]

RT-5e6 [s]

SU-5e9

SU-5e8

SU-5e7

SU-5e6

Fig. 6.5 Parallel run-time (RT) and speedup (SU) in computation of π on a notebook computer for

p = [1, . . . , 8] MPI processes and N = [5e9, 5e8, 5e7, 5e6] sub-intervals

speedup is becoming smaller because more processes introduce a larger execution

overhead that diminish the speedup.

Let us finally check the behavior of the parallel MPI program on a computing

cluster. It is built of 36 computing nodes connected in a 6 × 6 mesh, each with 6

Gigabit ports to a Gigabit switch. Computing nodes are built as a dual 64-bit CPU Intel

Xeon 5520, each of CPUs with 4 physical cores (two threads/core) and 6 GB of local

memory. The computing cluster runs under server version of Ubuntu 16.04.3 LTS

with GCC Version 7.3 compiler. Only 8 out of 36 interconnected cluster computers

(CPUs) have been devoted for our tests, resulting in 32 physical cores. All programs

are compiled for maximum speed. Note, that the same computing cluster has been

used in all presented MPI tests of this book. The hostfile is:

k1:4 k2:4 k3:4 k4:4 k5:4 k6:4 k7:4 k8:4

where k1...k8 are names of 8 cluster computing nodes.

Because, in the π test case program, there is no significant communication load,

and because two threads/core are available, we expect practically ideal speedup up

to 64 MPI processes. Then, if more processes are generated, the speedup is not so

predictable. We will try to explain the results after performing all experiments.

The program is compiled with:

>mpicc.mpich -O3 MPIPI.c -o MPIPI

Parallel program performances are tested on MPICH MPI with various options for

mpirun.mpich. First, we run np = 1...128 experiments, for 1 to 128 MPI

processes, with default parameters:

206 6 Engineering: Parallel Computation of the Number π

0 20 40 60 80 100 120 140

p - number of MPI processes

0

2

4

6

8

10

12

ru
n
-t

im
e
 [
s
]

0

5

10

15

20

25

30

35

s
p
e
e
d
-u

p

RT-D-5e9 [s]

RT-D-5e6 [s]

SU-D-5e9

SU-D-5e6

Fig. 6.6 Parallel run-time (RT-D) and speedup (SU-D) in computations of π on a cluster of 8

interconnected computers with total 32 cores and p = [1, . . . , 128] MPI processes with default

parameters of mpirun.mpich

>mpirun.mpich --hostfile myhosts.mpich.txt -np $np ./MPIPi $N

Parameters N and np are provided from bash file as N = [5e9, 5e8, 5e7, 5e6]

and np = [1, . . . , 8]. The maximum number of MPI processes, i.e., 128, was deter-

mined from the command line when running the bash file:

>./run.sh 128 > data.txt

where data.txt is an output file for results. The obtained results for parallel run-

times, in seconds, with default parameters of mpirun (RT-D) and corresponding

speedups (SU-D), are shown in Fig. 6.6. For better visibility only two pairs of graphs

are shown, for largest and smallest N .

Let us look first the speedup for N = 5e9 intervals. We see that the speedup

increases up to 64 processes, where reaches its maximal value 32. For more processes,

it drops and deviates around 17. The situation is similar with thousand times smaller

number of intervals N = 5e6, however, the maximal speedup is only 5 and for more

than 64 processes there is no speedup. We expected this, because calculation load

decreases with smaller number of sub-intervals and the impact of communication

and operating system overheads prevail.

We further see that the speedup scales but not ideal. 64 MPI processes are needed

to execute the program 32 times faster as a single computer. The reason could be

in the allocation of processes along the physical and logical cores. Therefore, we

repeat experiments with mpirun parameter -bind-to core:1, which forces to

run just a single process on each core and possibly prevents operating system to move

6.2 MPI 207

0 20 40 60 80 100 120 140

p - number of MPI processes

0

2

4

6

8

10

12

ru
n
-t

im
e
 [
s
]

0

5

10

15

20

25

30

35

s
p
e
e
d
-u

p

RT-B-5e9 [s]

RT-B-5e6 [s]

SU-B-5e9

SU-B-5e6

Fig. 6.7 Parallel run-time (RT-B) and speedup (SU-B) in computations of π on a cluster of 8

interconnected computers for p = [1, . . . , 128] MPI processes, bound to cores

processes around cores. The obtained results for parallel run-times in seconds (RT-B)

with processes bound to cores and corresponding speedups (SU-B), are shown in

Fig. 6.7. The remaining execution parameters are the same as in previous experiment.

Thebind parameter improves the execution performance with N = 5e9 intervals

in the sense that the speedup of 32 is achieved already with 32 processes, which is

ideal. But then the speedup falls abruptly by a factor of 2, possibly because of the

fact, that with more than 32 MPI processes, some processing cores must manage two

processes, which slows down the whole program execution.

We further see that with more than 64 processes speedups fall significantly in all

tests, which is a possible consequence of inability to use the advantage of hyper-

threading. With larger number of processes, larger than the number of cores, on

several cores run more than two processes, which slows down the whole program

by a factor of 2. Consequently, the slope of speedup scaling, with more than 32 pro-

cesses, is also reduced by 2. With this reduced slope, the speedup reaches the second

peak by 64 processes. Then the speedup falls again to an approximate value of 22.

The speedup with N = 5e6 intervals remains similar as in previous experiment

because of lower computation load. It is a matter of even more detailed analysis, why

the speedup behaves quite unstable for some cases. The reasons could be in cache

memory faults, MPI overheads, collective communication delays, interaction with

operating system, etc.

208 6 Engineering: Parallel Computation of the Number π

6.3 OpenCL

If we look at Algorithm 1, we can see that it is very similar to dot product calculation

covered in Sect. 5.3.4. We use the same principle: we will use a buffer in local memory

named LocalPiValues to store each work-item’s running sum of the π value.

This buffer will store szLocalWorkSize partial π values so each work-item in

the work-group will have a place to store its temporary result. Then, we use the

principle of reduction to sum up all π values in the work-group. We now store the

final value of each work-group to an array in global memory. Because this array is

relatively small, we return control to the host and let the CPU finish the final step of

the addition. Listing 6.1 shows the kernel code for computing π .

1 __kernel void CalculatePiShared(

2 __global float* c,

3 ulong iNumIntervals)

4 {

5 __local float LocalPiValues [256]; // work -group size = 256

6

7 // work -item global index

8 int iGID = get_global_id (0);

9 // work -item local index

10 int iLID = get_local_id (0);

11 // work -group index

12 int iWGID = get_group_id (0);

13 // how many work -items are in WG?

14 int iWGS = get_local_size (0);

15

16 float x = 0.0;

17 float y = 0.0;

18 float pi = 0.0;

19

20 while (iGID < iNumIntervals) {

21 x = (float)(1.0f/(float)iNumIntervals)*((float)iGID -0.5f);

22 y = (float)sqrt (1.0f - x*x);

23 pi += 4.0f * (float)(y/(float)iNumIntervals);

24 iGID += get_global_size (0);

25 }

26

27 //store the product

28 LocalPiValues[iLID] = pi;

29 // wait for all threads in WG:

30 barrier(CLK_LOCAL_MEM_FENCE);

31

32 // Summation reduction:

33 int i = iWGS /2;

34 while(i!=0){

35 if (iLID < i) {

36 LocalPiValues[iLID] += LocalPiValues[iLID+i];

37 }

38 barrier(CLK_LOCAL_MEM_FENCE);

39 i=i/2;

40 }

41

42 // store partial dot product into global memory:

43 if (iLID == 0) {

44 c[iWGID] = LocalPiValues [0];

45 }

46 }

Listing 6.1 The compute π kernel.

6.3 OpenCL 209

Table 6.1 Experimental

results for OpenCL π

computation

No. of

intervals

CPU time [s] GPU time [s] Speedup

106 0.01 0.0013 7.69

33 × 106 0.31 0.035 8.86

109 9.83 1.07 9.18

To analyze the performance of the OpenCL program for computing π , the sequential

version has been run on a quad-core processor Intel Core i7 6700HQ running at

2,2 GHz, while the parallel version has been run on an Intel Iris Pro 5200 GPU

running at 1,1 GHz. This is a small GPU integrated on the same chip as the CPU and

has only 40 processing elements. The results are presented in Table 6.1. We run the

kernel in NDrange of size:

szLocalWorkSize = 256; // # of work-items in work-group

szGlobalWorkSize = 256*128; // total # of work-work-items

As can be seen from the measured execution times, noticeable acceleration is

achieved, although we do not achieve the ideal speedup. The main reason for that

lies in reduction summation that cannot be fully parallelized. The second reason is

the use of complex arithmetic operations (square root). The execution units usually

do not have their own unit for such a complex operation, but several execution units

share one special function unit that performs complex operations such as square root,

sine, etc.

7Engineering: Parallel Solution of 1-D
Heat Equation

Chapter Summary

This chapter presents a simplified model for a computer simulation of changes in

the temperature of a thin bar. The phenomena is modelled by a heat equation PDE

dependant on space and time. Explicite finite differences in 1-D domain are used

as a solution methodology. The paralelization of the problem, on both OpenMP and

MPI, leads to a program with significant communication requirements. The obtained

experimental measurements of program run-time are analysed in order to optimize

performances of the parallel program.

Partial differential equations (PDE) are a useful tool for the description of natural

phenomena like heat transfer, fluid flow, mechanical stresses, etc. The phenomena

are described with spatial and time derivatives. For example, a temperature evolution

in a thin isolated bar of length L , with no heat sources, can be described by a PDE

of the following form:

∂T (x, t)

∂t
= c

∂2T (x, t)

∂x2

where T (x, t) is an unknown temperature at position x in time t , and c is a thermal

diffusivity constant with typical values for metals being about 10−5 m2/s. The PDE

says that the first derivative of temperature T by t is equal to the second derivative

of T by x . To fully determine the solution of the above PDE, we need the initial

temperature of the bar, a constant T0 in our simplified case:

T (x, 0) = T0.

Finally, fixed temperatures, independent of time, at both ends of the bar are imposed

as T (0) = TL and T (L) = TR .

In the case of strong solution methodology, the problem domain is discretized in

space and the derivatives are approximated by, e.g., finite differences. This results in

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_7

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_7&domain=pdf

212 7 Engineering: Parallel Solution of 1-D Heat Equation

a sparse system matrix A, with three diagonals in the case of 1-D domain or with five

diagonals in 2-D case. To save memory, and because the matrix structure is known,

the vectors with old and new temperatures are only needed. The evolution in time

can be obtained by an explicit iterative calculation, e.g., Euler method, based on

the extrapolation of the current solution and its derivatives into the next time-step,

respecting the boundary conditions. A developing solution in time can be obtained

by a simple matrix-vector multiplication. If only a stationary solution is desired, then

the time derivatives of the solution become zero, and the solution can be obtained

in a single step, through a solution of the resulting linear system, Au = b, where A

is a system matrix, u is a vector of unknown solution values in discretization nodes,

and b is a vector of boundary conditions.

We will simplify the problem by analyzing 1-D domain only. Note that an exten-

sion in 2-D domain, i.e., a plate, is quite straightforward, and can be left for a mini

project. For our simplified case, an isolated thin long bar, an exact analytic solution

exists. Temperature is spanning in a linear way between both fixed temperatures at

boundaries. However, in real cases, with realistic domain geometry and complex

boundary conditions, the analytic solution may not exist. Therefore, an approximate

numerical solution is the only option. To find the numerical solution, the domain

has to be discretized in space with j = 1 . . . N points. To simplify the problem, the

discretization points are equidistant, so x j+1 − x j = ∆x is a constant. Discretized

temperatures T j (t) for j = 2 . . . (N − 1) solution values in inner points and T1 = TL

and TN = TR are boundary points with fixed boundary conditions.

Finally, we also have to discretize time in equal time-steps ti+1 − ti = ∆t . Using

finite difference approximations for time and spatial derivatives:

∂T (x j , t)

∂t
=

T j (ti+1) − T j (ti)

∆t
and

∂2T (x, t)

∂x2
=

T j−1(ti) − 2T j (ti) + T j+1(ti)

(∆x)2
,

as a replacement of derivatives in our continuous PDE, provides one linear equation

for each point x j . Using explicit Euler method for time integration, we obtain, after

some rearrangement of factors, a simple algorithm for calculation of new tempera-

tures T (ti+1) from old temperatures:

T j (ti+1) = T j (ti) +
c ∆t

(∆x)2

(

T j−1(ti) − 2T j (ti) + T j+1(ti)
)

.

In each discretization point, a new temperature T j (ti+1) is obtained by summing

the old temperature with a product of a constant factor and linear combination of

temperatures in three neighboring points. After we set the initial temperatures of

inner points and fix the temperatures in boundary points, we can start marching in

time to obtain the updated values of the bar temperature.

Note that in the explicit Euler method, thermal conductivity c, spatial discretiza-

tion ∆x , and time-step ∆t must be in an appropriate relation that fulfils CFL stability

condition, which is for our case: c ∆t/(∆x)2 ≤ 0.5. The CFL condition could be

informally explained with a fact that a numerical method has to step in a time slower

than the simulated physical phenomenon. In our case, the impact of a change in dis-

cretization point temperature is at most in neighboring discretization points. Hence,

7 Engineering: Parallel Solution of 1-D Heat Equation 213

with smaller ∆x (denser discretization points), shorter time-steps are required in

order to correctly capture the simulated diffusion of temperature.

When we have to stop the iteration? Either after a fixed number of time-steps nt ,

or when the solution achieves a specified accuracy, or if the maximum difference

between previous and current temperatures falls below a specified value. A sequential

algorithm for an explicit finite differences solution of our PDE is provided below:

Algorithm 3 Sequential Algorithm: 1- D_heat_equation

Input: err - desired accuracy;

N - number of discretization points

T0 - initial temperature

TL and TR - boundary temperatures

1: Discretize domain

2: Set initial solution vectors Ti and Ti+1

3: while Stopping criteria NOT fulfilled do

4: for j = 2 . . . (N − 1) do

5: Calculate new temperature T j (ti+1)

6: end for

7: end while

Output: T - Approximate temperature solution in discretization points.

We start again with the validation of our program, on a notebook with a single

MPI process and with the code from Listing 7.2. The test parameters were set as

follows: p = 1, N = 30, nt = [1, . . . , 1000], c = 9e - 3, T0 = 20, TL = 25, TR =

18, time = 60, L = 1. Because the exact solution is known, i.e., a line between TL ,

TR , the maximal absolute error of the numerical solution was calculated to validate

the solution behavior. If the model and numerical method are correct, the error should

converge to zero.The resulting temperatures evolution in time, on the simulated bar,

are shown in Fig. 7.1.

The set of curves in Fig. 7.1 confirms that the numerical method produces in initial

time-steps a solution near to initial temperature. Then, the simulated temperatures

change as expected. While the number of time-steps nt increases, the temperatures

advance toward the correct result, which we know that is a straight line between left

and right boundary temperatures, i.e., in our case, between 25◦ and 18◦.

We have learned, that in the described solution methodology, the calculation of

a temperature T j in a discretization point depends only on temperatures in two

neighboring points, consequently, the algorithm has a potential to be parallelized.

We will again use domain decomposition, however, the communication between

processes will be needed in each time-step, because the left and right discretization

point of a sub-domain is not immediately available for neighboring processes. A

point-to-point communication is needed to exchange boundaries of sub-domains. In

1-D case, the discretized bar is decomposed into a number of sub-domains, which are

equal to the number of processes. All sub-domains should manage a similar number

214 7 Engineering: Parallel Solution of 1-D Heat Equation

Fig. 7.1 Temperature

evolution in space and time

as solved by heat equation

0 5 10 15 20 25 30

 x

18

19

20

21

22

23

24

25

T
[

]

T (x, nt = [1...1000])

of points, because an even load balance is desired. Some special treatment is needed

for calculation near the domain boundaries.

Regarding the communication load, some collective communication is needed at

the beginning and end of the calculation. Additionally, a point-to-point communica-

tion is needed in each time-step to exchange the temperature of sub-domain border

points. In our simplified case, the calculation will stop after a predefined number of

time-steps, hence, no communication is needed for this purpose. The parallelized

algorithm is shown below:

Algorithm 4 Parallel Algorithm: 1- D_heat_equation

Input: err - desired accuracy;

N - number of discretization points

T0 - initial temperature

TL and TR - boundary temperatures

1: Get myI D and the number of cooperating processes p

2: Master broadcast Input parameters to all processes

3: Set local solution vectors Ti p and Ti p+1

4: while Stopping criteria NOT fulfilled do

5: for j = 1 . . . N/p do

6: Exchange T j (ti) of sub-domain border points

7: Calculate new temperature T j (ti p+1)

8: end for

9: Master gather sub-domain temperatures as a final result T

10: end while

Output: T - Approximate temperature solution in discretization points.

7 Engineering: Parallel Solution of 1-D Heat Equation 215

We see that in the parellelized program several tasks have to be implemented,

i.e., user interface for input/output data, decomposition of domain, allocation of

memory for solution variables, some global communication, calculation and local

communication in each time-step, and assembling of the final result. Some of the

tasks are inherently sequential and will, therefore, limit the speedup, which will be

more pronounced in smaller systems.

The processes are not identical. We will again use a master process and several

slave processes, two of them responsible for domain boundary. The master process

will manage input/output interface, broadcast of solution parameters and gathering

of final results. The analysis of parallel program performances for: OpenMP, and

MPI, are described in the following sections.

7.1 OpenMP

Computing 1-D heat transfer using a multicore processor is simple if Algorithm 3 is

taken as the starting point for parallelization. As already explained above, iterations

of the inner loop are independent (while the iterations of the outer loop must be

executed one after another). The segment of the OpenMP program implementing

Algorithm 3 is shown in Listing 7.1: Told and Tnew are two arrays where the

temperatures computed in the previous and in the current outer loop iteration are

stored; C contains the constant c∆t/(∆x)2.

1 #pragma omp parallel firstprivate(k)

2 {

3 double *To = Told;

4 double *Tn = Tnew;

5 while (k--) {

6 #pragma omp for

7 for (int i = 1; i <= n; i++) {

8 Tn[i] = To[i]

9 + C * (To[i - 1] - 2.0 * To[i] + To[i + 1]);

10 }

11 double *T = To; To = Tn; Tn = T;

12 }

13 }

Listing 7.1 Computing heat transfer in one dimension by OpenMP.

It is worth examining the wall clock time of this algorithm first. Figure 7.2 sum-

marizes the wall clock time needed for 106 iterations in 105 points using a quad-core

processor with multithreading. With more than 4 threads nothing is gained in terms

of a wall clock time. As this is a floating-point-intensive application run on a proces-

sor with one floating-point unit per physical core, this can be expected: two threads

running on two logical cores of the same physical core must share the same floating

point unit. This leads to more synchronizing among threads and, consequently, to

the increase of the total CPU time as shown in Fig. 7.3.

The interested reader might investigate how the wall clock time and the speedup

change if the ratio between the number of points along the bar and the number

216 7 Engineering: Parallel Solution of 1-D Heat Equation

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8

s
e

c
o

n
d

s

number of threads

wall clock time
ideal speedup

Fig. 7.2 The wall clock time needed to compute 106 iterations of 1-D heat transfer along a bar in

105 points

Fig. 7.3 The total CPU time

needed to compute 106

iterations of 1-D heat transfer

along a bar in 105 points

100

150

200

250

300

1 2 3 4 5 6 7 8

s
e

c
o

n
d

s

number of threads

cpu time

of iterations in time change. Namely, decreasing the number of points along the bar

makes the synchronization at the barrier at the end of the parallel for loop relatively

more expensive.

7.2 MPI

In the solution of heat equation, the problem domain is discretized first. In our

simplified case, a temperature diffusion in a thin bar is computed, which is modeled

by 1-D domain. For efficient use of parallel computers, the problem domain must

be partitioned (decomposed) into possibly equal sub-domains. The number of sub-

domains should be equal to the number of MPI processes p. We prescribe a certain

7.2 MPI 217

number of discretization points per process Np, which automatically guarantees a

balanced computational load. Note that the total number of discretization points N

scales with the number of processes. In all active processes, an appropriate amount of

memory is allocated for current and new solution vectors and initialized with initial

and boundary values. Then, the CFL stability condition is verified.

In each time-step, every process that computes its sub-domain, exchanges sub-

domain border temperatures with processes that compute its left-end right sub-

domains. In our implementation, blocking communication is used that can adequately

maintain short messages. Then, new temperatures are calculated for all discretization

points in each sub-domain, by the methodology explained at the beginning of this

chapter. We determine a fixed number of time-steps, and therefore, a special stopping

criterion is not needed.

An exemplar MPI program implementation of a solution of 1-D heat equation for

our simplified case is given in Listing 7.2.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include "mpi.h"

5

6 void solve(int my_id , int num_p);

7

8 int main(int argc , char *argv [])

9 {

10 int my_id , num_p;

11 double start , end;

12

13 MPI_Init (&argc , &argv);

14 MPI_Comm_rank(MPI_COMM_WORLD , &my_id);

15 MPI_Comm_size(MPI_COMM_WORLD , &num_p);

16 if (my_id == 0)

17 start = MPI_Wtime ();

18 solve(my_id , num_p);

19 if (my_id == 0)

20 printf("Elapsed seconds = %f\n", MPI_Wtime () - start);

21 MPI_Finalize ();

22 return 0;

23 }

24 void solve(int my_id , int num_p) // compute time step T

25 {

26 double cfl , *T, *T_new;

27 int i, j, tag , j_min = 0;

28 int j_max = 10000; // number of time -steps

29 int N = 5000; // number of points per process

30 double c = 1e-11; // diffusivity

31 double T_0 = 20.0, T_L = 25.0, T_R = 18.0; // temperatures

32 double time , time_new , delta_time , time_min = 0.0, time_max = 60.0;

33 double *X, delta_X , X_min = 0.0, Length = 0.1;

34 MPI_Status status;

35

36 if (my_id == 0)

37 {

38 printf(" dT/dt = c * d^2T/dx^2 for %f < x < %f\n",X_min ,Length);

39 printf(" and %f < t <= %f.\n", time_min , time_max);

40 printf(" space discretized by %d equidistant points \n",num_p*N);

41 printf(" each processor works on %d points !!\n", N);

42 printf(" time discretizted with %d equal time -steps.\n", j_max);

43 printf(" number of cooperating processes is %d\n", num_p);

44 }

218 7 Engineering: Parallel Solution of 1-D Heat Equation

45 // allocate local buffers and calculate new temperatures

46 X = (double *) malloc ((N+2)*sizeof(double)); //N+2 point coordinates

47 for (i = 0; i <= N + 1; i++) // ghost points are in X[0] and X[N+1]

48 {

49 X[i] = ((double)(my_id * N + i - 1) * Length

50 + (double)(num_p* N - my_id * N - i) * X_min)

51 / (double)(num_p* N - 1);

52 }

53 T = (double *) malloc ((N + 2) * sizeof(double)); // allocate

54 T_new = (double *) malloc ((N + 2) * sizeof(double));

55 for (i = 1; i <= N; i++)

56 T[i] = T_0;

57 T[0] = 0.0; T[N + 1] = 0.0;

58 delta_time = (time_max - time_min) / (double)(j_max - j_min);

59 delta_X = (Length - X_min) / (double)(num_p* N - 1);

60

61 cfl = c * delta_time / pow(delta_X ,2); // check CFL

62 if (my_id == 0)

63 printf(" CFL stability condition value = %f\n", cfl);

64 if (cfl >= 0.5)

65 {

66 if (my_id == 0)

67 printf(" Computation cancelled: CFL condition failed .\n");

68 return;

69 }

70 for (j = 1; j <= j_max; j++) // compute T_new

71 {

72 time_new = ((double)(j - j_min) * time_max

73 + (double)(j_max - j) * time_min)

74 / (double)(j_max - j_min);

75 if (0 < my_id) //send T[1] to my_id -1 // replace with SendRecv?

76 {

77 tag = 1;

78 MPI_Send (&T[1], 1, MPI_DOUBLE , my_id -1, tag , MPI_COMM_WORLD);

79 }

80 if (my_id < num_p - 1) // receive T[N+1] from my_id +1.

81 {

82 tag = 1;

83 MPI_Recv (&T[N+1],1, MPI_DOUBLE ,my_id+1,tag ,MPI_COMM_WORLD ,& status);

84 }

85 if (my_id < num_p - 1) //send T[N] to my_id+1

86 {

87 tag = 2;

88 MPI_Send (&T[N], 1, MPI_DOUBLE , my_id+1, tag , MPI_COMM_WORLD);

89 }

90 if (0 < my_id) // receive T[0] from my_id -1

91 {

92 tag = 2;

93 MPI_Recv (&T[0],1, MPI_DOUBLE ,my_id -1,tag ,MPI_COMM_WORLD ,& status);

94 }

95 for (i = 1; i <= N; i++) // update temperatures

96 {

97 T_new[i] = T[i] + (delta_time * c/pow(delta_X ,2)) *

98 (T[i-1] - 2.0 * T[i] + T[i+1]);

99 }

100 if (my_id == 0) T_new [1] = T_L; // update boundaries T with BC

101 if (my_id == num_p - 1) T_new[N] = T_R;

102 for (i = 1; i <= N; i++) T[i] = T_new[i]; // update inner T

103 }

104 free(T);

105 free(T_new);

106 free(X);

107 return;

108 }

Listing 7.2 MPI implementation of a solution of 1-D heat equation.

7.2 MPI 219

After the successful validation, already presented, the analysis of run-time behav-

ior, again on a two-core notebook computer and on eight cluster computers, has been

performed. To fulfil the CFL condition, variables: t , nt , Np, and c has to be appropri-

ately selected. We set the number of all discretization points to N = [5e5, 5e4, 5e3],

and, therefore, the number of points per process Np is obtained by scaling with the

number of processes p. For example, if N = 5e5 and p = 4, Np = 1.25e5, etc. For

accurate timings and balanced communication and computation load nt was set to

1e4. To be sure about CFL condition, constant c is set to 1e - 11. Other parameters

remain the same as in the PDE validation test. The parallel program run-time (RT) in

seconds and speedup (SU), as a function of the number of processes p = [1, . . . , 8]

and discretization points, on a notebook computer, are shown in Fig. 7.4.

The obtained results bring two important messages. First, the maximum speedup

is only about two, which is smaller than in the case of π calculation. The explanation

for this could be in a smaller computation/communication time ratio. It seems that

the time spent on communication is almost the same as on the calculation. Second,

the speedup drops significantly on more than 4 MPI processes, below one, which is

even more pronounced with smaller number of discretization points. The explanation

of such a behavior is in the relative amount of communication, which is performed

after each time-step.

Next experiments were performed on eight computing cluster nodes with the same

approach as in Chap. 6 and with the same parameters as in the notebook test. In this

case, we use mpirun parameter -bind-to core:1, which appears to be more

promising in previous tests. We can expect a high impact of communication load.

Even that the messages are short, with just a few doubles, the delay is significant

1 2 3 4 5 6 7 8

p - number of MPI processes

0

5

10

15

20

25

30

ru
n
-t

im
e
 [
s
]

0

0.5

1

1.5

2

2.5

3

3.5

4

s
p
e
e
d
-u

p

RT-5e5 [s]

RT-5e4 [s]

RT-5e3 [s]

SU-5e5

SU-5e4

SU-5e3

Fig. 7.4 Parallel run-time (RT) and speedup (SU) of heat equation solution for N =

[5e5, 5e4, 5e3] and 1 to 8 MPI processes on a notebook computer

220 7 Engineering: Parallel Solution of 1-D Heat Equation

0 20 40 60 80 100 120 140

p - number of MPI processes

0

100

200

300

400

500

600

700

800

ru
n

-t
im

e
 [

s
]

0

2

4

6

8

10

12

14

16

18

s
p

e
e

d
-u

p

RT-B-5e5 [s]

RT-B-5e3 [s]

SU-B-5e5

SU-B-5e3

Fig.7.5 Parallel run-time (RT-B) and speedup (SU-B) of heat equation solution for N = [5e5, 5e3]

and 1 to 128 MPI processes bound to cores

mainly because of the communication start-up time. The run-time (RT-B) in seconds

and corresponding speedup (SU-B), as a function of the number of MPI processes

p = [1, . . . , 128] and the number of discretization points N = [5e5, 5e3] is shown

in Fig. 7.5.

The results are a surprise! The speedup is very unstable and approaches to maxi-

mum value 14 with about 30 processes. Then it jumps to 6 and remains stable until

64 processes with another jump to almost 0, with more than 64 processes. We guess

that the problem is in communication.

The first step occurs when the number of MPI processes increases from 28 to 29.

This step happens because one communication channel gets the additional burden.

Such a behavior slows-down the whole program because the remaining processes

are waiting.

The results are a surprise! The speedup is very unstable and approaches to maxi-

mum value 14 with about 30 processes. Then it jumps to 6 and remains stable until

64 processes with another jump to almost 0, with more than 64 processes. We guess

that the problem is in communication. The first step occurs when the number of MPI

processes increases from 28 to 29. This step happens because one communication

channel gets the additional burden. Such a behavior slows-down the whole program

because the remaining processes are waiting. Then processes from number 30 to 64

are only adding to communication burden of other neighboring nodes, which hap-

pens in parallel and, therefore, does not additionally degrade the performance. Since

the communication overhead at this number of MPI processes easily overwhelms

calculation, the speedup seems constant from there on.

Then processes from number 30 to 64 are only adding to communication burden

of other neighboring nodes, which happens in parallel and, therefore, does not addi-

7.2 MPI 221

0 10 20 30 40 50 60 70

p - number of MPI processes

0

2

4

6

8

10

12

14

ru
n

-t
im

e
 [

s
]

0

2

4

6

8

10

12

14

16

18

s
p

e
e

d
-u

p

RT-R-5e5 [s]

RT-R-5e3 [s]

SU-R-5e5

SU-R-5e3

Fig.7.6 Parallel run-time (RT-R) and speedup (SU-R) of heat equation solution for N = [5e5, 5e3]

and 1 to 65 MPI processes on a ring interconnection topology and implemented byMPI_Sendrecv

tionally degrade the performance. Since the communication overhead at this number

of MPI processes easily overwhelms calculation, the speedup seems constant from

there on.

Second step happens, when number of processes passes 64. Process 65 is assigned

to node 1. This makes it the ninth MPI process allocated on this node, which only

supports 8 threads. Ninth and first process on node 1, therefore, have to share to

the same core, which seems to be the recipe for abysmal performance. The speedup

drop is so overwhelming at this point because MPI uses busy waiting as a part of its

synchronous send and receive operations. Busy waiting means that processes are not

immediately switched when waiting for MPI communication, since the operating

systems do not see them as idle but rather as busy. Therefore, the waiting times for

MPI communication dramatically increase and with them the execution times.

Therefore, we repeat the experiment again. Now the processors are connected in a

true physical ring topology with two communication ports per processor. Addition-

ally, we replace theMPI_Send andMPI_Recv pairs byMPI_Sendrecv function.

We reduce the number of processes in this experiment to 64, because larger numbers

have been proved as useless. The run-time (RT-R) in seconds and corresponding

speedup (SU-R), as a function of the number of MPI processes p = [1, . . . , 64] and

the number of discretization points N = [5e5, 5e3] is shown in Fig. 7.6.

We can notice several improvements now. With a larger number of discretization

points, the speedup is quite stable but the maximum is not higher than in the previous

experiment from Fig. 7.5. With smaller number of discretization point a speedup is

detected only in up to four processes, because a local memory communication is

used, which confirms that the communication load is prevailing in this case. Further

222 7 Engineering: Parallel Solution of 1-D Heat Equation

investigation needs a lot of exciting engineering work, however, it is beyond the

scope of this book and is left to enthusiastic readers.

8Engineering: Parallel Implementation
of Seam Carving

Chapter Summary

In this chapter we present the parallelization of Seam Carving - a content-aware

image resizing algorithm. Effective parallelization of seam carving is a challenging

problem due to its complex computation model. Two main reasons prevent effective

parallelization: computation dependence and irregular memory access. We show,

which parts of the original seam carving algorithm can be accelerated on GPU and

which parts cannot, and how this affects the overall performance.

Seam carving is a content-aware image resizing technique where the image is reduced

in size by one pixel of width (or height) at a time. Seam carving attempts to reduce

the size of a picture while preserving the most interesting content of the image.

Seam Carving was originally published in a 2007 paper by Shai Avidan and Ariel

Shamir. Ideally, one would remove the “lowest energy” pixels (where energy means

the amount of important information contained in a pixel) from the image to preserve

the most important features. However, that would create artifacts and not preserve

the rectangular shape of the image. To balance removing low-energy pixels while

minimizing artifacts, we remove exactly one pixel in each row (or column) where

every pixel in the row must touch the pixel in the next row either via an edge or

corner. Such a connected path of pixels is called seam. If we are going to resize the

image horizontally, we need to remove one pixel from each row of the image. Our

goal is to find a path of connected pixels from the bottom of the image to the top.

By “connected”, we mean that we will never jump more than one pixel left or right

as we move up the image from row to row. A vertical seam in an image is a path

of pixels connected from the top to the bottom with one pixel in each row. Each row

has exactly only one pixel which is the part of the vertical seam. By removing the

vertical seams iteratively, we can compress the image in the horizontal direction.

The seam carving method produces a resized image by searching for the seam which

has the lowest user-specified “image energy”. To shrink the image, the lowest energy

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_8

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_8&domain=pdf

224 8 Engineering: Parallel Implementation of Seam Carving

seam is removed and the process is repeated until the desired dimensions are reached.

Seam Carving is a three-step process:

1. Assign an energy value to every pixel. This will define the important parts of the

image that we want to preserve.

2. Find an 8-connected path of the pixels with the least energy. We use dynamic

programming to calculate the costs of every potential path through the image.

3. Follow the cheapest path to remove one pixel from each row or column to resize

the image.

Following these steps will shrink the image by one pixel. We can repeat the process

as many times as we want to resize the image as much as necessary. What we need

to is to implement a function which takes an image as an input and produce a resized

image in one dimension or two dimensions as an output which is expected by the

users.

Why is seam carving interesting for us? Effective parallelization of seam carving

is a challenging problem due to its complex computation model. There are two main

reasons why effective parallelization is prevented: (1) Computation dependence:

dynamic programming is a key step to compute an optimal seam during image

resizing and takes a large fraction of the program execution time. It is very hard

to parallelize the dynamic programming on GPU devices due to the computation

dependency. (2) Intensive and irregular memory access: in order to compute various

intermediate results a large number of irregular memory access patterns is required.

This worsens the program performance significantly. In this chapter, we are not

going to find or present a better algorithm for seam carving that can be parallelized.

We are just going to show, which part of the original seam carving algorithm can

Fig. 8.1 Original cyclist image to be made narrower with seam carving

Engineering:Parallel Implementation of Seam Carving 225

be accelerated on GPU and which parts cannot and how this affects the overall

performance. For illustration purposes, we will use the cyclist image from Fig. 8.1

as an input image, which is to be made narrower with seam carving.

8.1 Energy Calculation

What are the most important parts of an image? Which parts of a given image should

we eliminate first when resizing and which should we hold onto the longest? The

answer to these questions lies in the energy value of each pixel. The energy value

of a pixel is the amount of important information contained in that pixel. So, the

first step is to compute the energy value for every pixel, which is a measure of its

importance—the higher the energy, the less likely that the pixel will be included as

part of a seam and eventually removed.

The simplest and frequently most-effective measure of energy is the gradient of the

image. An image gradient highlights the parts of the original image that are changing

the most. It is calculated by looking at how similar each pixel is to its neighbors.

Large uniform areas of the image will have a low gradient (i.e., energy) value and

the more interesting areas (edges of objects or places with a lot of detail) will have

a high energy value. There exist a variety of energy measures (e.g., Sobel operator).

In this book, which is not primarily devoted to image processing, we will use a very

simple energy function, although a number of other energy functions exist and may

work better. Let each pixel (i, j) in the image has its color denoted as I (i, j). The

energy of the pixel (i, j) is given by the following equation:

E(i, j) = |I (i, j)− I (i, j +1)|+ |I (i, j)− I (i +1, j)|+ |I (i, j)− I (i +1, j +1)|

(8.1)

A sequential algorithm for pixel energy calculation is given in Algorithm 5.

Algorithm 5 Seam carving: energy calculation

Input: I - RxC image

1: for i = 1 . . . R do

2: for j = 1 . . . C do

3: E(i, j) = |I (i, j) − I (i, j + 1)| + |I (i, j) − I (i + 1, j)| + |I (i, j) − I (i + 1, j + 1)|

4: end for

5: end for

Output: E - RxC energy map

226 8 Engineering: Parallel Implementation of Seam Carving

Fig. 8.2 a) Original black and white image. b) Energies of the pixels in the image

We will illustrate this step on a simple example. Let us suppose a black and white

image as in Fig. 8.2a and let us suppose that the color of black pixels is coded with the

value 1, and the color of white pixels is coded with 0. Figure 8.2b shows energy map

for the image from Fig. 8.2a. Energies of the pixels in the last column and the last

row are computed with the assumption that the image is zero-padded. For example,

the energy of the first pixel in the fourth row (black pixel) is according to Eq. 8.1:

E(3, 0) = |1 − 1| + |1 − 0| + |1 − 1| = 1,

and the energy of the last pixel in the fifth row is:

E(4, 5) = |1 − 0| + |1 − 0| + |1 − 0| = 3.

The resulting cyclist image of this step is shown in Fig. 8.3. We can see that large

uniform areas of the image have a low gradient value (black) and the more interesting

edges of objects have a high gradient value (white).

8.2 Seam Identification

Now that we have calculated the value of each pixel, our next objective is to find a

path from the bottom of the image to the top of the image with the least energy. The

line must be 8-connected: this means that every pixel in the row must be touched by

the pixel in the next row either via an edge or corner. That would be a vertical seam

of minimum total energy. One way to do this would be to simply calculate the costs

of each possible path through the image one-by-one. Start with a single pixel in the

bottom row, navigate every path from there to the top of the image, keep track of

the cost of each path as you go. But we will end up with thousands or millions of

Engineering:Parallel Implementation of Seam Carving 227

Fig. 8.3 The calculated energy function of the cyclist image

possible paths. To overcome this, we can apply the dynamic programming method as

described in the paper by Avidan and Shamir. Dynamic programming lets us touch

each pixel in the image only once, aggregating the total cost as we go, in order to

calculate the final cost of an individual path. Once we have found the energy of every

pixel, we start at the bottom of the image and go up row by row, setting each element

in the row to the energy of the corresponding pixel plus the minimum energy of the

3 possibly path pixels “below” (the pixel directly below and the lower left and right

diagonal). Thus, we have to traverse the image from the bottom row to the first row

and compute the cumulative minimum energy M for all possible connected seams

for each pixel (i, j):

M(i, j) = E(i, j) + min(M(i + 1, j − 1), M(i + 1, j), M(i + 1, j + 1)) (8.2)

In the bottom most row cumulative energy is equal to pixel energy, i.e., M(i, j) =

E(i, j). A sequential algorithm for cumulative energy calculation is given in Algo-

rithm 6.

228 8 Engineering: Parallel Implementation of Seam Carving

Fig. 8.4 a) Energies of the pixels. b) Cumulative energies

Algorithm 6 Seam carving: cumulative energy calculation

Input: E - RxC energy map

1: for j = 1 . . . C do

2: M(R, j) = E(R, j)

3: end for

4: for i = R − 1 . . . 1 do

5: for j = 1 . . . C do

6: M(i, j) = E(i, j) + min(M(i + 1, j − 1), M(i + 1, j), M(i + 1, j + 1))

7: end for

8: end for

Output: M - RxC cumulative energy map

We will illustrate this step with Fig. 8.4. We start with the last (bottom most) row.

Cumulative energies in that row are the same as pixel energies. Then, we move up

to the fifth row. Cumulative energy of the fifth pixel in the fifth row is the sum of its

energy and the minimal energy of three pixels below it:

M(4, 4) = 2 + min(1, 2, 0) = 2.

On the other hand, cumulative energy of the last pixel in the fifth row is

M(4, 5) = 3 + min(2, 0,∞) = 3.

As the element (4, 6) does not exist, we assume it has the maximal energy. In other

words, we ignore it. Once we have computed all the values M , we simply find the

lowest value of M in the top row and return the corresponding path as our minimum

energy vertical seam.

Engineering:Parallel Implementation of Seam Carving 229

Fig. 8.5 The calculated cumulative energy function of the cyclist image. Please note that due to

summation, almost all pixel values are greater than 255 and are represented only with least significant

eight bits in the image

This effect of this step is easy to see in Fig. 8.5. Notice how the spots where the

gradient image was brightest are now the roots of inverted triangles of brightness as

the cost of those pixels propagate into all of the pixels within the range of the widest

possible paths upwards. For example, the brightest inverted triangle at the center of

the image (in the form of the cyclist) is created because the white edge at horizon

propagates upwards. When we arrive at the top row, the lowest valued pixel will

necessarily be the root of the cheapest path through the image. Now, we are ready to

start removing seams.

8.3 Seam Labeling and Removal

The final step is to remove all of the pixels along the vertical seam. Due to the power

of dynamic programming, the process of actually removing seams is quite easy. All

we have to do to calculate the cheapest seam is to start with the lowest value M in the

top row and work our way up from there, selecting the cheapest of the three adjacent

pixels in the row below. Dynamic programming guarantees that the pixel with the

lowest value M will be the root of the cheapest connected path from there. Once we

have selected which pixels we want to remove, all that we have to do is go through

and copy the remaining pixels on the right side of the seam from right to left and the

230 8 Engineering: Parallel Implementation of Seam Carving

image will be one pixel narrower. A sequential algorithm for seam removal is given

in Algorithm 7.

Algorithm 7 Seam carving: seam removal

Input: M - RxC cumulative energy map

Input: I - RxC original image

1: min = M(1, 1)

2: col = 1

3: for j = 2 . . . C do

4: if M(1, j) < min then

5: min = M(1, j)

6: col = j

7: end if

8: end for

9: for i = 1 . . . R do

10: for j = col . . . C do

11: I (i, j) = I (i, j + 1)

12: end for

13: if M(i + 1, col − 1) < M(i + 1, col) then

14: col = col − 1

15: end if

16: if M(i + 1, col + 1) < M(i + 1, col − 1) then

17: col = col + 1

18: end if

19: end for

Output: I - RxC resized image

We will illustrate this step with Fig. 8.6. We start with the top most row and

find the pixel with the smallest value M . In our case, this is the third pixel in the

Fig. 8.6 a) Cumulative energies. b) The seam (in grey) with the minimal energy

Engineering:Parallel Implementation of Seam Carving 231

Fig. 8.7 a) The first seam in the cyclist image. b) The first 50 seams in the cyclist image

first row with M(0, 2) = 0. Then, we select the pixel below that one with the

minimal M. In our case, this is the third pixel in the second row with M(1, 2) = 0.

We continue downwards and select the pixel below the current with the minimal

cumulative energy. This is the fourth pixel in the third row with M(2, 3) = 0. We

232 8 Engineering: Parallel Implementation of Seam Carving

Fig. 8.8 a) The image resized by removing 100 seams. b) The image resized by removing 350

seams

continue this process until the last row. The seam with minimal energy is depicted

in gray in Fig. 8.6b.

Figure 8.7 shows the labeled (with white pixels) seams in the cyclist image. The

very first vertical seam found in the cyclist image is depicted in Fig. 8.7a. It goes

through the darkest parts of the energy map form Fig. 8.3 and thus through the pixels

with minimal amount of information. Figure 8.7b depicts the first 50 seams found in

the cyclist image. It can be observed how seams are “avoiding” the regions with the

highest pixel energy and thus the highest amount of information.

Once we have labeled a vertical seam we go through the image and move the

pixels that are located at the right of the vertical seam from right to left. The new

image would be one pixel narrower than the original. We repeat the whole process

for as many seams as we like to remove. Figure 8.8 shows two cyclist images reduced

in size by (a) 100 pixels and (b) 350 pixels.

8.4 Seam Carving on GPU

In this section, we present and compare the implementations of seam carving on

CPU and GPU.

Engineering:Parallel Implementation of Seam Carving 233

8.4.1 Seam Carving on CPU

We will first present the CPU code for seam carving. Emphasis will be only on the

functions that implement the main operations of the seam carving algorithm. Other

helper functions and code are available on the book’s companion site.

Energy Calculation on CPU

Listing 8.1 shows how to calculate pixel energy following Algorithm 5. The function

simpleEnergyCPU reads input PGM image input, calculates the energy for

every pixel and writes the energy to the corresponding pixel in PGM imageoutput.

1 void simpleEnergyCPU(PGMData *input , PGMData *output , int new_width)

2 {

3 int i, j;

4 int diffx , diffy , diffxy;

5 int tempPixel;

6

7 for(i=0; i<(input ->height); i++)

8 for(j=0; j<new_width; j++)

9 {

10 diffx = abs(getPixelCPU(input , i, j) -

11 getPixelCPU(input , i, j+1));

12 diffy = abs(getPixelCPU(input , i, j) -

13 getPixelCPU(input , i+1, j));

14 diffxy = abs(getPixelCPU(input , i, j) -

15 getPixelCPU(input , i+1, j+1));

16

17 tempPixel = diffx + diffy + diffxy;

18 if(tempPixel >255)

19 output ->image[i*output ->width+j] = 255;

20 else

21 output ->image[i*(output ->width)+j] = tempPixel;

22 }

23 }

Listing 8.1 Compute pixel energy

The function Listing 8.1 implements image gradient, which highlights the parts of

the original image that are changing the most. The image gradient is calculated using

Eq. 8.1, which looks at how similar each pixel is to its neighbors. The third argument

new_width keeps track of the current image width.

Cumulative Energies on CPU

Now that we have calculated the energy value of each pixel, our goal is to find a path

of connected pixels from the bottom of the image to the top. As we previously said,

we are looking for a very specific path: the one who’s pixels have the lowest total

value. In other words, we want to find the path of connected pixels from the bottom to

the top of the image that touches the darkest pixels in our gradient image. Listing 8.2

shows how to calculate cumulative pixel energy following Algorithm 6. The function

cumulativeEnergiesCPU reads input PGM image input, which contains the

energy of pixels, and writes the cumulative energy to the corresponding pixel in PGM

image output.

234 8 Engineering: Parallel Implementation of Seam Carving

1 void cumulativeEnergiesCPU(PGMData *input , PGMData *output , int←֓

new_width){

2 //Start from the bottom -most row:

3 for(int i = input ->height -2; i >= 0; i--){

4 for(int j = 0; j < new_width; j++){

5 output ->image[i*(input ->width) + j] =

6 input ->image[i*(input ->width) + j] +

7 getPreviousMin(output , i, j, new_width);

8 }

9 }

10 }

Listing 8.2 Compute cumulative energies

Using dynamic programming approach, we start at the bottom and work our way

up, adding the cost of the cheapest below neighbor to each pixel. This way, we

accumulate cost as we go—setting the value of each pixel not just to its own cost,

but to the full cost of the cheapest path from there to the bottom of the image.

The helper function getPreviousMin() returns the minimal energy value from

the previous row. It contains a few compare statements to find the minimal value.

As we can see, each iteration in the outermost loop depends on the results from

the previous iterations, so it cannot be parallelized and only the iterations in the

innermost loop are mutually independent and can be run concurrently. Also, to find

the minimal value from the previous row, we should use conditional statements in

the helper function getPreviousMin(). We already know that these statements

will prevent the work-items to follow the same execution path and thus it will prevent

effective execution of warps.

Seam Labeling and Removal on CPU

The process of labeling and removing a seam with minimal energy is quite easy. All

we have to do to is to start with the darkest pixel with minimal cumulative energy in

the top row and work our way down from there, selecting the cheapest of the three

adjacent pixels in the row below and changing the color of the corresponding pixel

in the original image to white. Listing 8.3 shows how to color the seam with minimal

energy and Listing 8.4 shows how to remove the seam with minimal energy.

1 void seamIdentificationCPU(PGMData *input , PGMData *output , int new_width←֓

){

2 int column = 0;

3 int minvalue = input ->image [0];

4 //find the minimum in the topmost row (0) and return column index:

5 for(int j = 1; j < new_width; j++){

6 if (input ->image[j] < minvalue) {

7 column = j;

8 minvalue = input ->image[j];

9 }

10 }

11

12 //Start from the top -most row :

13 for(int i = 0; i < input ->height; i++){

14 output ->image[(i)*(input ->width) + column] = 255;

15 column = getNextMinColumn(input , i, column , new_width);

16 }

17 }

Listing 8.3 Labeling the seam with the minimal energy

Engineering:Parallel Implementation of Seam Carving 235

1 void seamRemoveCPU(PGMData *input , PGMData *output , int new_width){

2 int column = 0;

3 int minvalue = input ->image [0];

4 //find the minimum in the topmost row (0) and return column index:

5 for(int j = 1; j < new_width; j++){

6 if (input ->image[j] < minvalue) {

7 column = j;

8 minvalue = input ->image[j];

9 }

10 }

11

12 //Start from the top -most row:

13 for(int i = 0; i < input ->height; i++){

14 // make this row narrower:

15 for(int k = column; k < new_width; k++){

16 output ->image[i*(input ->width) + k] =

17 output ->image[i*(input ->width) + k+1];

18 }

19 column = getNextMinColumn(input , i, column , new_width);

20 }

21 }

Listing 8.4 Seam removal

We can see in Listing 8.4 that seam removal starts with the loop in which we locate

the pixel with minimal cumulative energy, i.e., the first pixel in the vertical seam with

the minimal energy. Then we proceed to the loop nest. The outermost loop indexes

rows in the image. In each row we remove the seam pixel—we move the pixels that

are located at the right of the vertical seam from right to left. After that, we have to

find the column index of the seam pixel in the next row. We do this using the helper

function getNextMinColumn(). As in the previous step, we use conditional

statements in the helper function getPreviousMin(), which will prevent the

work-items to follow the same execution path.

8.4.2 Seam Carving in OpenCL

In this subsection , we will discuss the possible implementation of seam carving on

GPU. The host code would be responsible for the following steps:

1. Load image from a file into a buffer. For example, we can use grayscale PGM

images, which are easy to handle.

2. Transfer the image in the buffer to the device.

3. Execute four kernels: the energy calculation kernel, the cumulative energy kernel,

the seam labeling kernel, and the seam removal kernel.

4. Read the resized image from GPU.

As discussed before, seam carving consists of three steps. We will implement each

step as one or more kernel functions. The complete OpenCL code for seam carving

can be found on the book’s companion site.

236 8 Engineering: Parallel Implementation of Seam Carving

OpenCL Kernel Function: Energy Calculation

The first step of seam carving is embarrassingly (or perfectly) parallel, because

the calculation of the energy of individual pixels is completely independent of the

energy of adjacent pixels. Each work-item will calculate the energy of the pixel

whose index is the same as its global index. Energy is calculated from the values of

adjacent pixels. Depending on the energy function used, we may need three, eight or

even 24 adjacent pixels. Here, we will use our simple energy function from Eq. 8.1.

The parallel algorithm for the energy calculation is given in Algorithm 8.

Algorithm 8 Seam carving: parallel energy calculation

Input: I - RxC image

1: for all work-item(i, j) in 2-dim NDRange do

2: E(i, j) = |I (j, j) − I (rowG I D, j + 1)| + |I (i, j) − I (i + 1, j)| + |I (i, j) − I (i + 1, j + 1)|

3: end for

Output: E - RxC energy map

Listing 8.5 shows the code for the energy calculation kernel.

1 __kernel void simpleEnergyGPU(

2 __global int* imageIn ,

3 __global int* imageOut ,

4 int width ,

5 int height ,

6 int new_width) {

7

8 // global thread index

9 int columnGID = get_global_id (0); // column in NDRange

10 int rowGID = get_global_id (1); // row in NDRange

11 int tempPixel;

12 int diffx , diffy , diffxy;

13

14 diffx = abs_diff(imageIn[rowGID * width + columnGID],

15 imageIn[rowGID * width + columnGID + 1]);

16 diffy = abs_diff(imageIn[rowGID * width + columnGID],

17 imageIn [(rowGID +1) * width + columnGID]);

18 diffxy = abs_diff(imageIn[rowGID * width + columnGID],

19 imageIn [(rowGID +1) * width + columnGID + 1]);

20 tempPixel = diffx + diffy + diffxy;

21

22 if(tempPixel >255)

23 imageOut[rowGID*width+columnGID] = 255;

24 else

25 imageOut[rowGID*width+columnGID] = tempPixel;

26 }

Listing 8.5 The energy calculation kernel

Each pixel will also affect the energy of other adjacent pixels, so its will also be

read by other work-items from the global memory. That means that the same word

from the global memory will be accessed multiple times. Therefore, it makes sense

to first load a block of pixels and their neighbors into the local memory and only

Engineering:Parallel Implementation of Seam Carving 237

then start the calculation of energy. The reader should add the code for collaborative

loading of the pixel block into local memory. Do not forget to wait for other work-

items at the barrier before starting to calculate the pixel energy.

OpenCL Kernel Function: Seam Identification

Prior to calculating the cumulative energy of the pixels in one row, we should have

already calculated the cumulative energy of all the pixels in the previous row. Because

of this data dependency, we can only run as many work-items at a time as the number

of pixels in one row. When all work-items finish the calculation of the cumulative

energy in one row, they move on to the next row. One work-item will calculate the

cumulative energy of all pixels in the same column, but it will move to the next

row (pixel above) only when all other work-items have finished the computation in

the current row. Therefore, we need a way to synchronize work-items that calculate

cumulative energies. We can synchronize work-items in two different ways:

1. We can run all work-items in the same (only one) work-group. The advantage

of this method is that we can synchronize all work-items using barriers. The

disadvantage of this approach lies in the fact that only one block of work-items

can be run, so only one compute unit on GPU will be active during this step. In this

approach, we will enqueue one kernel. The parallel algorithm for the cumulative

energy calculation is given in Algorithm 9.

Algorithm 9 Seam carving: parallel cumulative energy calculation

in one work- group

Input: E - RxC energy map

1: for all work-item(j) in 1-dim NDRange do

2: M(R, j) = E(R, j)

3: for i = R − 1 . . . 1 do

4: M(i, j) = E(i, j) + min(M(i + 1, j − 1), M(i + 1, j), M(i + 1, j + 1))

5: barrier()

6: end for

7: end for

Output: M - RxC cumulative energy map

2. We can organize work-items in more than one work-group. The disadvantage of

this approach is that work-groups cannot be synchronized with each other using

barriers. But we can synchronize blocks by running one kernel at a time. One

kernel, consisting of several work-groups will compute cumulative energies in

just one row. When finished, we will have to rerun the same kernel, but with

different arguments (i.e., the address of the new row). Thus, we will enqueue the

same kernel in a loop from the host code.

Which of two presented approaches is more appropriate depends on the size of the

problem. For smaller images, the first approach may be more appropriate, while the

238 8 Engineering: Parallel Implementation of Seam Carving

second approach is more appropriate for images with very long rows since we can

employ more compute units.

Listing 8.6 shows the code for the cumulative energy calculation kernel, which

will be used for testing purposes in this book. The kernel does not use local memory

and does not implement collaborative loading. The reader should implement this

functionality and compare both kernels in terms of execution times. The reader should

also implement the kernel for the second approach and measure the execution time.

1 __kernel void cumulativeEnergiesGPU(

2 __global int* imageIn ,

3 __global int* imageOut ,

4 int width ,

5 int height ,

6 int new_width) {

7

8 // global thread index

9 int columnGID = get_global_id (0); // column in NDRange

10

11 //Start from the bottom -most row:

12 for(int i = height -2; i >= 0; i--){

13 imageOut[i*width+columnGID] = imageIn[i*width+columnGID] +

14 getPreviousMinGPU(imageOut , i, columnGID ,

15 width , height , ←֓

new_width);

16 // Synchronise to make sure the tiles are loaded

17 barrier(CLK_LOCAL_MEM_FENCE);

18 }

19 }

Listing 8.6 Cumulative energy calculation kernel - one work-group approach

OpenCL Kernel Function: Seam Labeling and Removal

The last step is to label and remove the seam with the minimal energy. Unfortunately,

this step is inherently sequential because each pixel position in the seam strongly

depends on the position of the previous pixel in the seam. So we cannot label all

pixels in the seam in parallel. How can we implement this sequential function as a

kernel on a massively parallel computer such as GPU? One possible solution would

be that only one work-item labels and removes the whole seam. So the function

for the GPU kernel would be almost the same as the function in Listing 8.3. The

NDrange would have the dimension (1,1), i.e., we run only one work-item in the

NDrange.

A better solution would be to divide this step into to operations: seam labeling and

seam removal. The first step (seam labeling) should return column indices of every

pixel in the seam. The kernel for this step will run in NDrange of dimension (1,1),

i.e., only one work-item labels the whole seam. While the first step is inherently

sequential, the second could be parallelized as follows. We run as many work-items

as the number of rows in the input image. Each work-item removes the seam pixel

in its row and copies the remaining pixels on its right one position to the left. The

second step uses the array of column indices from the first step to locate its seam

pixel. A parallel algorithm for seam removal is given in Algorithm 10.

Engineering:Parallel Implementation of Seam Carving 239

Algorithm 10 Seam carving: seam removal

Input: I - RxC original image

Input: C - 1x R vector of column indices

1: for all work-item(i) in 1-dim NDrange do

2: column = C(i)

3: for j = col . . . C do

4: I (i, j) = I (i, j + 1)

5: end for

6: end for

Output: I - RxC resized image

Listing 8.7 shows the code for the seam labeling kernel and Listing 8.8 shows the

code for the seam removal kernel.

1 __kernel void getSeamGPU(

2 __global int* imageIn ,

3 __global int* seamColumns ,

4 int width ,

5 int height ,

6 int new_width) {

7

8 int column = 0;

9 int minvalue = imageIn [0];

10

11 //find the minimum in the topmost row (0) and

12 // return column index:

13 for(int j = 1; j < new_width; j++){

14 if (imageIn[j] < minvalue) {

15 column = j;

16 minvalue = imageIn[j];

17 }

18 }

19

20 //Start from the top -most row:

21 for(int i = 0; i < height; i++){

22 column = getNextMinColumnGPU(imageIn , i,

23 column , width ,

24 height , new_width);

25 seamColumns[i] = column;

26 }

27 }

Listing 8.7 Seam labeling kernel

1 __kernel void seamRemoveGPU(

2 __global int* imageIn ,

3 __global int* imageOut ,

4 __global int* seamColumns ,

5 int width ,

6 int height ,

7 int new_width) {

8

9 int iGID = get_global_id (0); // row in NDRange

10

11 // get the column index of the seam pixel in my row:

240 8 Engineering: Parallel Implementation of Seam Carving

12 int column = seamColumns[iGID];

13

14 // make my row narrower:

15 for(int k = column; k < new_width; k++){

16 imageOut[iGID*width + k] = imageOut[iGID*width + k+1];

17 }

18 }

Listing 8.8 Seam removal kernel

To analyze the performance of the seam carving program, the sequential version

has been run on a quad-core processor Intel Core i7 6700HQ running at 2,2 GHz,

while the parallel version has been run on an Intel Iris Pro 5200 GPU running at

1,1 GHz. This is a small GPU integrated on the same chip as the CPU and has only

40 processing elements. The results of seam carving for an image of size 512 × 320

are presented in Table 8.1.

As can be seen from the measured execution times, noticeable acceleration is

achieved only for the first step. Although this step is embarrassingly parallel, we do

not achieve the ideal speedup. The reason is that when calculating the energies of

individual pixels, the work-items irregularly access the global memory and there is

no memory coalescing. The execution times could be reduced if the work-items used

local memory, as we did in matrix multiplication.

At the second step, the speedup is barely noticeable. The first reason for this is the

data dependency between the individual rows. The other reason is, as before, irregular

access to global memory. And the third factor that prevents effective parallelization is

the usage of conditional statements when searching for minimal elements in previous

rows. Here too, the times would be improved by using local memory.

At the third step, we do not even get speed up, but almost a 10X slow down! The

reason for such a slowdown lies in the fact that only one thread can be used to mark

the seam.

And last but not least, the processing elements on the GPU runs at a 2X lower

frequency than the CPU.

Table 8.1 Experimental results

Step CPU time [s] GPU time [s] Speedup

Energy calculation 0.010098 0.000698 14.46

Cumulative energy 0.004696 0.003276 1.43

Seam removal 0.000601 0.005690 0.11

Total 0.014314 0.009664 1.48

9Final Remarks and Perspectives

Chapter Summary

After reading the book, the reader will be able to start parallel programming on any

of the three main parallel platforms using the corresponding libraries OpenMP, MPI,

or OpenCL. Until a new production technology for significantly faster computing

devices is invented, such parallel programming will be—besides the parallel algo-

rithm design—the only way to increase parallelism in almost any area of parallel

processing.

Now that we have come to the end of the book; the reader should be well aware

and informed that parallelism is ubiquitous in computing; it is present in hardware

devices, in computational problems, in algorithms, and in software on all levels.

Consequently, many opportunities for improving the efficiency of parallel pro-

grams are ever present. For example, theoreticians and scientists can search for and

design new, improved parallel algorithms; programmers can develop better tools for

compiling and debugging parallel programs; and cooperation with engineers can lead

to faster and more efficient parallel programs and hardware devices.

Being so, it is our hope that our book will serve as the first step of a reader who

wishes to join this ever evolving journey. We will be delighted if the book will also

encourage the reader to delve further in the study and practice of parallel computing.

As the reader now knows, the book provides many basic insights into parallel

computing. It focuses on three main parallel platforms, the multi-core computers, the

distributed computers, and the massively parallel processors. In addition, it explicates

and demonstrates the use of the three main corresponding software libraries and

tools, the OpenMP, the MPI, and the OpenCL library. Furthermore, the book offers

hands-on practice and miniprojects so that the reader can gain experience.

After reading the book, the reader may have become aware of the follow-

ing three general facts about the libraries and their use on parallel computers:

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7_9

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98833-7_9&domain=pdf

242 9 Final Remarks and Perspectives

• OpenMP is relatively easy to use yet limited with the number of cooperating

computers.

• MPI is harder to program and debug but—due to the excellent support and long

tradition—manageable and not limited with number of cooperating computers.

• Accelerators, programmed with OpenCL, are even more complex and usually

tailored to specific problems. Nevertheless, users may benefit from excellent

speedups of naturally parallel applications, and from low power consumption

which results from massive parallelization with moderate system frequency.

What about near future? How will develop high-performance computers and the

corresponding programming tools in the near future? Currently, the only possibility

to increase computing power is to increase parallelism in algorithms and programs,

and to increase the number of cooperating processors, which are often supported by

massively parallel accelerators. Why is that so? The reason is that state-of-the-art

production technology is already faced with physical limits dictated by space (e.g.,

dimension of transistors) and time (e.g., system frequency) [8].

Current high-performance computers, containing millions of cores, can execute

more than 1017 floating point operations per second (100 petaFLOPS). According to

the Moore’s law, the next challenge is to reach the exascale barrier in the next decade.

However, due to abovementioned physical and technological limitations, the validity

of Moore’s law is questionable. So it seems that the most effective approach to future

parallel computing is an interplay of controlflow and dataflow paradigms, that is, in

the heterogeneous computing. But programming of heterogeneous computers is

still a challenging interdisciplinary task.

In this book, we did not describe programming of such extremely high-

performance computers; rather, we described and trained the reader for program-

ming of parallel computers at hand, e.g., our personal computers, computers in

cloud, or in computing clusters. Fortunately, the approaches and methodology of

parallel programming are fairly independent of the complexity of computers.

In summary, it looks like that we cannot expect any significant shift in computing

performance until a new production technology for computing devices is invented.

Until then, the maximal exploitation of parallelism will be our delightful challenge.

Appendix
Hints for Making Your Computer a
Parallel Machine

Practical advises for the installation of required supporting software for parallel

program execution on different operating systems are given. Note that this guide and

Internet links can change in the future, and therefore always look for the up-to-date

solution proposed by software tools providers.

A.1 Linux

OpenMP

OpenMP 4.5 has been a part of GNU GCC C/C++, the standard C/C++ compiler on

Linux, by default since GCC’s version 6, and thus it comes preinstalled on virtually

any recent mainstream Linux distribution. You can check the version of your GCC

C/C++ compiler by running command

$ gcc --version

The first line, e.g., something like

gcc (Ubuntu 6.3.0-12ubuntu2) 6.3.0 20170406

contains the information about the version of GCC C/C++ compiler (6.3.0 in this

example).

Utility time can be used to measure the execution time of a given program.

Furthermore, Gnome’s System Monitor or the command-line utilities top (with

separate-cpu-states displayed—press 1 once top starts) and htop can be used to

monitor the load on individual logical cores.

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7

243

244 Appendix: Hints for Making Your Computer a Parallel Machine

MPI

The message passing interface (MPI) standard implementation can be already provid-

ed as a part of the operating system, most often as MPICH [1] or Open MPI [2,10].

If it is not, it can usually be installed through the provided package management

systems, for example, the apt in Ubuntu:

sudo apt install libmpich-dev

The MPICH is an open high-performance and widely portable implementation

of the MPI, which is well maintained and supports the latest standards of the MPI.

MPICH runs on parallel systems of all sizes, from multi-core nodes to computer

clusters in large supercomputers. Alternative open-source implementations exist,

e.g., Open MPI, with similar performances and user interface. Other implementations

are dedicated to a specific hardware, and some of them are commercial; however,

the beauty of the MPI remains, your program will possibly execute with all of the

MPI implementations, eventually after some initial difficulties. In the following, we

will mostly use the acronym MPI, regardless of the actual implementation of the

standard, except in cases if such a distinguishing is necessary.

Invoke the MPI execution manager: >mpiexec to check for the installed im-

plementation of the MPI library on your computer. Either a note that the program is

currently not installed or a help text will be printed. Let us assume that an Open MPI

library is installed on your computer. The command: >mpiexec -h shows all the

available options. Just a few of them will suffice for testing your programs.

We start working with typing the first program. Make your local directory, e.g.,

with OpenMPI:

>mkdir OMPI

retype the “Hello World” program from Sect. 4.3 in your editor and save your code in

file OMPIHello.c. Compile and link the program with a setup for maximal speed:

>mpicc -O3 -o OMPIHello OMPIHello.c

which, besides compiling, also links appropriate MPI libraries with your program.

Note that on some system an additional option -lm could be needed for correct

inclusion of all required files and libraries.

The compiled executable can be run by:

>mpiexec -n 3 OMPIHello

The output of the program should be in three lines, each line with a notice from

a separate process:

Appendix: Hints for Making Your Computer a Parallel Machine 245

Hello world from process 0 of 3

Hello world from process 1 of 3

Hello world from process 2 of 3

as the program has run on three processes, because the option -n 3 was used.

Note that the line order is arbitrary, because there is no rule about the MPI process

execution order. This issue is addressed in more detail in Chap. 4.

OpenCL

First of all you need to download the newest drivers to your graphics card. This is

important because OpenCL will not work if you do not have drivers that support

OpenCL. To install OpenCL, you need to download an implementation of OpenCL.

The major graphic vendors NVIDIA, AMD, and Intel have both released implemen-

tations of OpenCL for their GPUs. Besides the drivers, you should get the OpenCL

headers and libraries included in the OpenCL SDK from your favorite vendor. The

installation steps differ for each SDK and the OS you are running. Follow the in-

stallation manual of the SDK carefully. For OpenCL headers and libraries, the main

options you can choose from are NVIDIA CUDA Toolkit, AMD APP SDK, or Intel

SDK for OpenCL. After the installation of drivers and SDK, you should the OpenCL

headers:

#include<CL/cl.h>

If the OpenCL header and library files are located in their proper folders, the following

command will compile an OpenCL program:

gcc prog.c -o prog -l OpenCL.

A.2 macOS

OpenMP

Unfortunately, the LLVM C/C++ compiler on macOS comes without OpenMP sup-

port (and the command gcc is simply a link to the LLVM compiler). To check your

C/C++ compiler, run

$ gcc --version

If the output contains the line

Apple LLVM version 9.1.0 (clang-902.0.39.1)

where some numbers might change from one version to another, the compiler most

likely do not support OpenMP. To use OpenMP, you have to install the original GNU

246 Appendix: Hints for Making Your Computer a Parallel Machine

GCC C/C++ compiler (use MacPorts or Homebrew, for instance) which prints out

something like

gcc-mp-7 (MacPorts gcc7 7.3.0_0) 7.3.0

informing that this is indeed the GNU GCC C/C++ compiler (version 7.3.0 in this

example).

The running time can be measured in the same way as on Linux (see above).

Monitoring the load on individual cores can be performed using macOS’s Activity

Monitor (open its CPU Usage window) or htop (but not with macOS’s top).

MPI

In order to use MPI on macOS systems, XDeveloper and GNU compiler must be

installed. Download XCode from the Mac App Store and install it by double-clicking

the downloaded .dmg file. Use the command: >mpiexec to check for installed

implementation of the MPI library on your computer. Either a note that the program

is currently not installed or a help text will be printed.

If the latest stable release of Open MPI is not present, download it, for example,

from the Open Source High Performance Computing website: https://www.open-

mpi.org/. To install Open MPI on your computer, first extract the downloaded archive

by typing the following command in your terminal (assuming that the latest stable

release in 3.0.1):

>tar -zxvf openmpi-3.0.1.tar.gz

Then, prepare the config.log file needed for the installation. The

config.log file collects information about your system:

>cd openmpi-3.0.1

>./configure --prefix=/usr/local

Finally, make the executables for installation and finalize the installation:

>make all

>sudo make install

After successful installation of Open MPI, we start working by typing our first

program. Make your local directory, e.g., with >mkdir OMPI.

Copy or retype the “Hello World” program from Sect. 4.3 in your editor and save

your code in file OMPIHello.c.

Compile and link the program with

>mpicc -O3 -o OMPIHello OMPIHello.c

https://www.open-mpi.org/
https://www.open-mpi.org/

Appendix: Hints for Making Your Computer a Parallel Machine 247

Execute your program “Hello World” with

>mpiexec -n 3 OMPIHello.

The output of the program should be similar to the output of the “Hello World”

MPI program from Appendix A.1.

OpenCL

If you are using Apple Mac OS X, the Apple’s OpenCL implementation should

already be installed on your system. MAC OS X 10.6 and later ships with a native

implementation of OpenCL. The implementation consists of the OpenCL application

programming interface, the OpenCL runtime engine, and the OpenCL compiler.

OpenCL is fully supported by Xcode. If you use Xcode, all you need to do is to

include the OpenCL header file:

#include <OpenCL/opencl.h>.

A.3 MS Windows

OpenMP

There are several options for using OpenMP on Microsoft Windows. To follow the

examples in the book as closely as possible, it is best to use Linux Subsystem for Win-

dows 10. If a Linux distribution brings recent enough version of GNU GCC C/C++

compiler, e.g., Debian, one can compile OpenMP programs with it. Furthermore,

one can use commands time, top, and htop to measure and monitor programs.

Another option is of course using Microsoft Visual C++ compiler. OpenMP has

been supported by it since 2005. Apart from using it from within Microsoft Visu-

al Studio, one can start x64 Native Tools Command Prompt for VS 2017 where

programs can be compiled and run as follows:

> cl /openmp /O2 hello-world.c

> set OMP_NUM_THREADS=8

> hello-world.exe

With PowerShell run in x64Native Tools Command Prompt for VS 2017, programs

can be compiled and run as

> powershell

> cl /openmp /O2 fibonacci.c

> $env:OMP_NUM_THREADS=8

> ./fibonacci.exe

Within PowerShell, the running time of a program can be measured using the

command Measure-Command as follows:

248 Appendix: Hints for Making Your Computer a Parallel Machine

> Measure-Command {./hello-world.exe}

Regardless of the compiler used, the execution of the programs can be monitored

using Task Manager (open the CPU tab within the Resource Monitor).

MPI

More detailed instructions for installation of necessary software for compiling and

running the Microsoft MPI can be found, for example, on https://blogs.technet.

microsoft.com/windowshpc/2015/02/02/how-to-compile-and-run-a-simple-ms-mp

i-program/. A short summary is listed below:

• Download stand-alone redistributables for Microsoft SDK msmpisdk.msi

and Microsoft MPI MSMpiSetup.exe installers from https://www.microsoft.

com/en-us/download/confirmation.aspx?id=55991, which will provide execute

utility for MPI programs mpiexec.exe and MPI service—process manager

smpd.exe.

• Set the MS-MPI environment variables in a terminal window by

C:\Windows\System32>set MSMPI, which should print the following

lines, if the installation of SDK and MSMPI has been correctly completed:

MSMPI_BIN=C:\Program Files\Microsoft MPI\Bin\

MSMPI_INC=C:\Program Files (x86)\Microsoft SDKs\MPI\Include\

MSMPI_LIB32=C:\Program Files (x86)\Microsoft SDKs\MPI\Lib\x86\

MSMPI_LIB64=C:\Program Files (x86)\Microsoft SDKs\MPI\Lib\x64\

The command: >mpiexec should respond with basic library options.

• Download Visual Studio Community C++ 2017 from https://www.visualstudio.

com/vs/visual-studio-express/ and install the compiler on your computer, e.g., by

selecting a simple desktop development installation.

• You will be forced to restart your computer. After a restarting, start Visual Studio

and create File/New/Project/Windows Console Application,

named, e.g., MSMPIHello, with default settings except the following:

1. To include the proper header files, open Project Property pages and

insert in C/C++/General under Additional Include

Directories:

$(MSMPI_INC);$(MSMPI_INC)\x64

if 64-bit solution will be built. Use ..\x86 for 32 bits.

2. To set up the linker library in Project Property pages insert in Linker/

General under Additional Library Directories:

$(MSMPI_LIB64)

if 64-bit platform will be used. Use $(MSMPI_LIB32) for 32 bits.

3. In Linker/Input under Additional Dependencies add:

msmpi.lib;

https://blogs.technet.microsoft.com/windowshpc/2015/02/02/how-to-compile-and-run-a-simple-ms-mpi-program/
https://blogs.technet.microsoft.com/windowshpc/2015/02/02/how-to-compile-and-run-a-simple-ms-mpi-program/
https://blogs.technet.microsoft.com/windowshpc/2015/02/02/how-to-compile-and-run-a-simple-ms-mpi-program/
https://www.microsoft.com/en-us/download/confirmation.aspx?id=55991
https://www.microsoft.com/en-us/download/confirmation.aspx?id=55991
https://www.visualstudio.com/vs/visual-studio-express/
https://www.visualstudio.com/vs/visual-studio-express/

Appendix: Hints for Making Your Computer a Parallel Machine 249

4. Close the Project Property window and check in the main Visual Studio window

that Release solution configuration is selected and select also a solution

platform of your computer, e.g., x64.

• Copy or retype “Hello World” program from Sect. 4.3 and build the project.

• Open a Command prompt window, change directory to the folder where the project

was built, e.g., ..\source\repos\MSMPIHello\x64\Debug and run the

program from the command window with execute utility:

mpiexec -n 3 MSMPIHello

that should result in the same output as in Appendix A.1, with three lines, each

with a notice from a separate process.

OpenCL

First of all you need to download the newest drivers to your graphics card. This is

important because OpenCL will not work if you do not have drivers that support

OpenCL. To install OpenCL, you need to download an implementation of OpenCL.

The major graphic vendors NVIDIA, AMD, and Intel have both released implemen-

tations of OpenCL for their GPUs. Besides the drivers, you should get the OpenCL

headers and libraries included in the OpenCL SDK from your favorite vendor. The

installation steps differ for each SDK and the OS you are running. Follow the in-

stallation manual of the SDK carefully. For OpenCL headers and libraries, the main

options you can choose from are NVIDIA CUDA Toolkit, AMD APP SDK, or Intel

SDK for OpenCL. After the installation of drivers and SDK, you should the OpenCL

headers:

#include<CL/cl.h>

Suppose you are using Visual Studio 2013, you need to tell the compiler where the

OpenCL headers are located and tell the linker where to find the OpenCL .lib files.

References

1. MPICH: High-performance portable MPI. https://www.mpich.org/. Accessed 28 Dec 2017

2. Open MPI: A high performance message passing library. https://www.open-mpi.org/. Accessed

28 Dec 2017

3. Atallah, M., Blanton, M. (eds.): Algorithms and Theory of Computation Handbook, chap. 25.

Chapman and Hall, Boca Raton (2010)

4. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel Programming

in OpenMP. Morgan Kaufmann, Burlington (2000)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.

The MIT Press, Cambridge (2009)

6. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Morgan Kauf-

mann, Burlington (2004)

7. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks. Morgan Kaufmann, Burlington

(2002)

8. Flynn, M.J., Mencer, O., Milutinovic, V., Rakocevic, G., Stenstrom, P., Trobec, R., Valero, M.:

Moving from petaflops to petadata. Commun. ACM 56(5), 39–42 (2013). https://doi.org/10.

1145/2447976.2447989

9. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software

Engineering. Addison-Wesley Longman Publishing Co., Inc, Boston (1995)

10. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kam-

badur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.:

Open MPI: Goals, concept, and design of a next generation MPI implementation. Proceedings.

11th European PVM/MPI Users’ Group Meeting, pp. 97–104. Budapest, Hungary (2004)

11. Gaster, B., Howes, L., Kaeli, D.R., Mistry, P., Schaa, D.: Heterogeneous Computing with

OpenCL, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

12. Grama, A., Gupta, A., Karypis, V., Kumar, V.: Introduction to Parallel Computing, 2nd edn.

Pearson (2003)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading (1979)

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7

251

https://www.mpich.org/
https://www.open-mpi.org/
https://doi.org/10.1145/2447976.2447989
https://doi.org/10.1145/2447976.2447989

252 References

14. Jason Long: Hands On OpenCL: An open source two-day lecture course for teaching and

learning OpenCL. https://handsonopencl.github.io/ (2018). Accessed 25 Jun 2018

15. Khronos Group: OpenCL: The open standard for parallel programming of heterogeneous sys-

tems. https://www.khronos.org/opencl/f (2000–2018). Accessed 25 Jun 2018

16. MPI Forum: MPI: A message-passing interface standard (Version 3.1). Technical report,

Knoxville (2015)

17. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Programming Guide,

1st edn. Addison-Wesley Professional, Reading (2011)

18. OpenMP architecture review board: OpenMP application programming interface, version 4.5,

November 2015. http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf (1997–2015).

Accessed 18 Dec 2017

19. OpenMP architecture review board: OpenMP application programming interface examples,

version 4.5.0, November 2016. http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

(1997–2016). Accessed 18 Dec 2017

20. OpenMP architecture review board: OpenMP. http://www.openmp.org (2012). Accessed 18

Dec 2017

21. van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP - The Next Step: Affinity, Accelerators,

Tasking, and SIMD (Scientific and Engineering Computation). The MIT Press, Cambridge

(2017)

22. Robič, B.: The Foundations of Computability Theory. Springer, Berlin (2015)

23. Scarpino, M.: A gentle introduction to OpenCL. http://www.drdobbs.com/parallel/a-gentle-

introduction-to-opencl/231002854. Accessed 10 Apr 2018

24. Scarpino, M.: OpenCL in action: how to accelerate graphics and computations. Manning Pub-

lications (2011). http://amazon.com/o/ASIN/1617290173/

25. Trobec, R.: Two-dimensional regular d-meshes. Parallel Comput. 26(13–14), 1945–1953 (2002)

26. Trobec, R., Vasiljević, R., Tomašević, M., Milutinović, V., Beivide, R., Valero, M.: Interconnec-

tion networks in petascale computer systems: a survey. ACM Comput. Surv. 49(3), 44:1–44:24

(2016)

https://handsonopencl.github.io/
https://www.khronos.org/opencl/f
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org
http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854
http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854
http://amazon.com/o/ASIN/1617290173/

Index

A

Amdahl’s Law, 37

Application Programming Interface (API),

50

Atomic access, 49, 64, 67

atomic, OpenMP directive, 67

B

Bandwidth

bisection, 21

channel, 21

cut, 21

Barrier, 51

Blocking communication, 115

Brent’s Theorem, 36

C

Canonical form (of a loop), 55

collapse (OpenMP clause), 55

Communication and computation overlap,

114

Communication modes, 115

Core, 47

logical, 48

critical, OpenMP directive, 65

Critical section, 63, 65

D

Data sharing, 56

E

Efficiency, 10

Engineering

heat equation, 212

MPI, 216

OpenMP, 215

F

Features of message passing, 122

Features of MPI communication - MPI ex-

ample, 122

final (OpenMP clause), 80

Final remarks, 241

perspectives, 242

firstprivate (OpenMP clause), 56

Flow control, 19

Flynn’s taxonomy, 47

for, OpenMP directive, 55

G

GPU, 133

compute unit, 137

constant memory, 144

global memory, 144

local memory, 144

memory coalescing, 144

memory hierarchy, 142

occupancy, 174

processing element, 137

registers, 143

seam carving, 232

© Springer Nature Switzerland AG 2018

R. Trobec et al., Introduction to Parallel Computing,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-319-98833-7

253

254 Index

texture memory, 144

warp, 140, 141

work-group, 139, 140

work-item, 139

H

Hiding latency - MPI example, 119

Hints - parallel machine

Linux

MPI, 244

OpenCL, 245

OpenMP, 243

macOS

MPI, 246

OpenCL, 247

OpenMP, 245

MS Windows

MPI, 248

OpenCL, 249

OpenMP, 247

I

if (OpenMP clause), 80

Interconnection network, 19

bisection bandwidth, BBW, 21

channel, 19

channel bandwidth, 21

communication link, 19

communication node, 19

diameter, 20

direct, 23

fully connected, 23

expansion scalability, 20

FLIT, 21

hop count, 20

indirect, 23

blocking, 23

blocking rearrangeable, 23

fat tree, 30

fully connected crossbar, 23

multistage, 24, 29

non-blocking, 23

switch, 23

latency, 21

node degree, 20

packet, 21

path diversity, 20

PHIT, 21

regularity, 20

symmetry, 20

topology

hypercube, 28

k-ary d-cube, 28

mesh, 26, 27

ring, 26

torus, 27

L

lastprivate (OpenMP clause), 56

Load balancing, 43, 49

Locking, 49, 65

Logical core, 48

Loop

canonical form, 55

parallel, 53

M

Manycore, 48

Master thread, 51, 54

MIMD, 47

Model of communication

communication time, 21

data transfer time, 21

start-up time, 21

transfer time per word, 21

Model of parallel computation, 11

LMM, 17

MMM, 18

PRAM, 13

CRCW, 15

CRCW-ARBITRARY, 15

CRCW-CONSISTENT, 15

CRCW-FUSION, 15

CRCW-PRIORITY, 15

CREW, 15

EREW, 15

MPI

collective communication, 107

configuring processes, 95

data types, 93

distributed memory computers, 87

error handling, 95

installation, 95

interconnected computers, 97

message passing interface, 89

operation syntax, 92

process-to-process communication, 99

running processes, 95

single computer, 96

MPI communicators, 123

MPI example

communication bandwidth, 104

Index 255

Hello World, 90

parallel computation of π , 111

ping-pong message transfer, 101

MPI_ALLREDUCE, 111

MPI_BARRIER, 107

MPI_BCAST, 108

MPI_COMM_DUP, 125

MPI_COMM_RANK, 98

MPI_COMM_SIZE, 98

MPI_COMM_SPLIT, 125

MPI_FINALIZE, 98

MPI_GATHER, 108

MPI_INIT, 98

MPI_RECV, 101

MPI_REDUCE, 110

MPI_SCATTER, 109

MPI_SEND, 100

MPI_SENDRECV, 103

MPI_WTIME, 104

Multi-core, 47

Multiprocessor model, 13

Multithreading, 47

N

NC, Nick’s class, 33

Nested parallelism, 59

Network topology, 19

Non-blocking communication, 116

nowait (OpenMP clause), 55, 80

num_threads (OpenMP clause), 51

O

omp_get_max_threads, 52

omp_get_nested, 59

omp_get_num_threads, 52

OMP_NUM_THREADS, 52

omp_set_nested, 59

omp_set_num_threads, 52

OMP_THREAD_LIMIT, 52, 59

OpenCL, 145

address space qualifier, 149

barrier, 181

clBuildProgram, 166

clCreateBuffer, 167

clCreateCommandQueue, 163

clCreateContext, 162

clCreateKernel, 170

clCreateProgramWithSource, 164

clEnqueueNDRangeKernel, 172

clEnqueueReadBuffer, 173

clEnqueueWriteBuffer, 168

clGetDeviceIDs, 159

clGetDeviceInfo, 160

clGetEventProfilingInfo, 177

clSetKernelArg, 170

constant memory, 149

device, 146

dot product, 176

dot product using local memory, 180

execution model, 146

get_global_id, 151

global memory, 149

global work size, 147

heterogeneous system, 146

host, 146

host code, 152

kernel, 145

kernel function, 145

local memory, 149

local work size, 147

matrix multiplication, 186

memory coalescing, 144

memory model, 148

NDRange, 146

occupancy, 174

private memory, 148

reduction, 182

seam carving, 235

synchronization, 181

tile, 190

tiled matrix multiplication, 189

timing the execution, 177

vector addition, 150

warp, 141

work-group, 139, 140

work-item, 139

OpenMP, 51, 52, 55, 56, 59, 65, 67, 73

OpenMP clause, 51, 55, 56, 67, 80

OpenMP directive, 50, 51, 55, 65, 67, 80, 84

OpenMP function, 50, 52, 59

OpenMP shell variable, 50, 52, 59

P

Parallel algorithm, 9

Parallel computational complexity, 31

Parallel computer, 9

Parallel execution time, 10

Parallelism in program, 9

Parallel loop, 53, 55, 73

parallel, OpenMP directive, 51

Parallel region, 51

Parallel runtime, 10

256 Index

Partial differential equation—PDE, 211

PCAM parallelization, 129

Performance of a parallel program, 10

Potential prallelism, 10

private (OpenMP clause), 56, 80

Processing unit, 9

R

Race condition, 48

RAM, 11

read, atomic access, 67

Reduction, 65, 67

reduction (OpenMP clause), 67

Reentrant, 70

Routing, 19

S

Seam carving, 223

CPU implementation, 233

GPU, 232

OpenCL implementation, 235

Shared memory multiprocessor, 47

shared (OpenMP clause), 56

single, OpenMP directive, 78

Singlesingle, OpenMP directive, 80

Slave thread, 54

Sources of deadlocks, 117

Speedup, 10

Splitting MPI communicators - MPI exam-

ple, 126

T

task, OpenMP directive, 78, 80

taskwait, OpenMP directive, 84

Team of threads, 50, 51, 54

Thread, 48

master, 51, 54

slave, 54

team of, 54

Thread-safe, 70

U

update, atomic access, 67

W

Warp, 141

Work (of a program), 36, 43

write, atomic access, 67

	Preface
	Contents
	Part I Foundations
	1 Why Do We Need Parallel Programming
	1.1 Why—Every Computer Is a Parallel Computer
	1.2 How—There Are Three Prevailing Types of Parallelism
	1.3 What—Time-Consuming Computations Can Be Sped up
	1.4 And This Book—Why Would You Read It?

	2 Overview of Parallel Systems
	2.1 History of Parallel Computing, Systems and Programming
	2.2 Modeling Parallel Computation
	2.3 Multiprocessor Models
	2.3.1 The Parallel Random Access Machine
	2.3.2 The Local-Memory Machine
	2.3.3 The Memory-Module Machine

	2.4 The Impact of Communication
	2.4.1 Interconnection Networks
	2.4.2 Basic Properties of Interconnection Networks
	2.4.3 Classification of Interconnection Networks
	2.4.4 Topologies of Interconnection Networks

	2.5 Parallel Computational Complexity
	2.5.1 Problem Instances and Their Sizes
	2.5.2 Number of Processing Units Versus Size of Problem Instances
	2.5.3 The Class NC of Efficiently Parallelizable Problems

	2.6 Laws and Theorems of Parallel Computation
	2.6.1 Brent's Theorem
	2.6.2 Amdahl's Law

	2.7 Exercises
	2.8 Bibliographical Notes

	Part II Programming
	3 Programming Multi-core and Shared Memory Multiprocessors Using OpenMP
	3.1 Shared Memory Programming Model
	3.2 Using OpenMP to Write Multithreaded Programs
	3.2.1 Compiling and Running an OpenMP Program
	3.2.2 Monitoring an OpenMP Program

	3.3 Parallelization of Loops
	3.3.1 Parallelizing Loops with Independent Iterations
	3.3.2 Combining the Results of Parallel Iterations
	3.3.3 Distributing Iterations Among Threads
	3.3.4 The Details of Parallel Loops and Reductions

	3.4 Parallel Tasks
	3.4.1 Running Independent Tasks in Parallel
	3.4.2 Combining the Results of Parallel Tasks

	3.5 Exercises and Mini Projects
	3.6 Bibliographic Notes

	4 MPI Processes and Messaging
	4.1 Distributed Memory Computers Can Execute in Parallel
	4.2 Programmer's View
	4.3 Message Passing Interface
	4.3.1 MPI Operation Syntax
	4.3.2 MPI Data Types
	4.3.3 MPI Error Handling
	4.3.4 Make Your Computer Ready for Using MPI
	4.3.5 Running and Configuring MPI Processes

	4.4 Basic MPI Operations
	4.4.1 MPI_INIT (int *argc, char ***argv)
	4.4.2 MPI_FINALIZE ()
	4.4.3 MPI_COMM_SIZE (comm, underlinesize)
	4.4.4 MPI_COMM_RANK (comm, underlinerank)

	4.5 Process-to-Process Communication
	4.5.1 MPI_SEND (buf, count, datatype, dest, tag, comm)
	4.5.2 MPI_RECV (underlinebuf, count, datatype, source, tag, comm, underlinestatus)
	4.5.3 MPI_SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag, underlinerecvbuf, recvcount, recvtype, source, recvtag, comm, underlinestatus)
	4.5.4 Measuring Performances

	4.6 Collective MPI Communication
	4.6.1 MPI_BARRIER (comm)
	4.6.2 MPI_BCAST (underlineinbuf, incnt, intype, root, comm)
	4.6.3 MPI_GATHER (inbuf, incnt, intype, underlineoutbuf, outcnt, outtype, root, comm)
	4.6.4 MPI_SCATTER (inbuf, incnt, intype, underlineoutbuf, outcnt, outtype, root, comm)
	4.6.5 Collective MPI Data Manipulations

	4.7 Communication and Computation Overlap
	4.7.1 Communication Modes
	4.7.2 Sources of Deadlocks
	4.7.3 Some Subsidiary Features of Message Passing
	4.7.4 MPI Communicators

	4.8 How Effective Are Your MPI Programs?
	4.9 Exercises and Mini Projects
	4.10 Bibliographical Notes

	5 OpenCL for Massively Parallel Graphic Processors
	5.1 Anatomy of a GPU
	5.1.1 Introduction to GPU Evolution
	5.1.2 A Modern GPU
	5.1.3 Scheduling Threads on Compute Units
	5.1.4 Memory Hierarchy on GPU

	5.2 Programmer's View
	5.2.1 OpenCL
	5.2.2 Heterogeneous System
	5.2.3 Execution Model
	5.2.4 Memory Model

	5.3 Programming in OpenCL
	5.3.1 A Simple Example: Vector Addition
	5.3.2 Sum of Arbitrary Long Vectors
	5.3.3 Dot Product in OpenCL
	5.3.4 Dot Product in OpenCL Using Local Memory
	5.3.5 Naive Matrix Multiplication in OpenCL
	5.3.6 Tiled Matrix Multiplication in OpenCL

	5.4 Exercises
	5.5 Bibliographical Notes

	Part III Engineering
	6 Engineering: Parallel Computation of the Number π
	6.1 OpenMP
	6.2 MPI
	6.3 OpenCL

	7 Engineering: Parallel Solution of 1-D Heat Equation
	7.1 OpenMP
	7.2 MPI

	8 Engineering: Parallel Implementation of Seam Carving
	8.1 Energy Calculation
	8.2 Seam Identification
	8.3 Seam Labeling and Removal
	8.4 Seam Carving on GPU
	8.4.1 Seam Carving on CPU
	8.4.2 Seam Carving in OpenCL

	9 Final Remarks and Perspectives
	 Appendix Hints for Making Your Computer a Parallel Machine
	A.1 Linux
	A.2 macOS
	A.3 MS Windows

	 References
	Index

