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Systems programming is an indispensable part of Computer Science and
Computer Engineering education. System programming courses in Computer
Science/Engineering curriculums play two important roles. First, it provides
students with a wide range of knowledge about computer system software and
advanced programming skills, allowing them to interface with operating
system kernel, perform file operations and network programming, and make
efficient use of system resources to develop application programs. Second, it
prepares students with needed background to pursue advanced studies in
Computer Science/Engineering, such as operating systems, embedded
systems, database systems, data mining, artificial intelligence, computer
networks, and distributed and parallel computing. Due to its importance,
systems programming in Unix/Linux has been a popular subject matter in
CS/CE education and also for self-study by advanced programmers. As a
result, there are a tremendous number of books and online articles in this area.
Despite these, I still find it difficult to choose a suitable book for the Systems
Programming course I teach at WSU. For many years, I had to use my own
class notes and programming assignments in the course. After careful think-
ing, I have decided to put together the materials into a book form.

The purpose of this book is to provide a suitable platform for teaching and
learning the theory and practice of systems programming. Unlike most other
books, this book covers systems programming topics in greater depth and
it stresses programming practice. It uses a series of programming projects to
let students apply their acquired knowledge and programming skills to
develop practical and useful programs. The book is intended as a textbook
in technical-oriented systems programming courses. It contains detailed
example programs with complete source code, making it suitable for self-
study also.

Undertaking this book project has proved to be another very demanding
and time-consuming endeavor. While preparing the manuscripts for publica-
tion, I have been blessed with the encouragement and help from many people.
I would like to take this opportunity to thank all of them. I want to especially
thank Yan Zhang for his help in preparing figures for the book and proof-
reading the manuscript.
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Special thanks go to Cindy for her continuing support and inspirations,
which have made this book possible. Above all, I would like to thank my
family for bearing with me with endless excuses of being busy all the time.

Sample solutions of programming projects in the book are available for
download at http://wang.eecs.wsu.edu/~kcw. For source code, please contact
the author by email.

Pullman, WA, USA K. C. Wang
April, 2018
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Abstract

This chapter presents an introduction to the book. It describes the book’s scope, intended audience
and its suitability as a textbook in Computer Science/Engineering curriculums. It presents a brief
history of Unix, which includes early versions of Unix at Bell Labs, AT&T System V and other
developments of Unix, such as BSD, HP UX, IBM AIX and Sun/Solaris Unix. It describes the
development of Linux and various Linux distributions, which include Debian, Ubuntu, Mint, Red
Hat and Slackware. It lists both the hardware platforms and virtual machines for Linux. It shows
how to install Ubuntu Linux to both VirtualBox and Vmware virtual machines inside the Microsoft
Windows. It explains the startup sequence of Linux, from booting the Linux kernel to user login and
command execution. It describes the Unix/Linux file system organization, file types and commonly
used Unix/Linux commands. Lastly, it describes system administration tasks for users to manage
and maintain their Linux systems.

1.1 About This Book

This book is about systems programming in the Unix/Linux (Thompson and Ritchie 1974, 1978; Bach
1986; Linux 2017) environment. It covers all the essential components of Unix/Linux, which include
process management, concurrent programming, timer and time service, file systems, network program-
ming and MySQL database system. In addition to covering the functionalities of Unix/Linux, it
stresses on programming practice. It uses programming exercises and realistic programming projects
to allow students to practice systems programming with hands-on experiences.

1.2  Roles of Systems Programming

Systems programming is an indispensable part of Computer Science and Computer Engineering
education. System programming courses in Computer Science/Engineering curriculums serve two
main purposes. First, it provides students with a wide range of knowledge about computer system
software and advanced programming skills, allowing them to interface with operating system kernel,
make efficient use of system resources to develop application software. Second, it prepares students
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with the needed background to pursue advanced studies in Computer Science/Engineering, such as
operating systems, embedded systems, database systems, data mining, artificial intelligence, computer
networks, network security, distributed and parallel computing.

1.3  Objectives of This Book

This book is intended to achieve the following objectives.

1.3.1  Strengthen Students Programming Background

Computer Science/Engineering students usually take introductory programming courses in their first or
second year. Such courses typically cover basic programming in C, C++ or Java. Due to time
limitations, these courses can only cover the basic syntax of a programming language, data types,
simple program structures and using library functions for I/O. Students coming out of such course are
rather weak in programming skills due to a lack of sufficient practices. For instance, they usually do not
know much about the software tools, the steps of program development and run-time environment of
program executions. The first object of this book is to provide students with the needed background
and skills to do advanced programming. This book covers program development steps in detail. These
include assembler, compiler, linker, link library, executable file contents, program execution image,
function call conventions, parameter passing schemes, local variables, stack frames, link C program
with assembly code, program termination and exception handling. In addition, it also shows how to use
Makefiles to manage large programming projects and how to debug program executions by GDB.

1.3.2  Applications of Dynamic Data Structures

Most elementary data structure courses cover the concepts of link lists, queues, stacks and trees, etc.
but they rarely show where and how are these dynamic data structures used in practice. This book
covers these topics in detail. These include C structures, pointers, link lists and trees. It uses
programming exercises and programming projects to let the students apply dynamic data structures
in real life. Case in point: a programming exercise is for the students to display the stack contents of a
program with many levels of function calls, allowing them to see the function calling sequence, passed
parameters, local variables and stack frames. Another programming exercise is to let students imple-
ment a printf-like function with varying parameters, which requires them to apply parameter passing
schemes to access varying parameters on stack. Yet another programming exercise is to print the
partitions of a disk, in which the extended partitions form a “link list” in the disk, but not by the
conventional pointers as they learned in programming languages. A programming project is to
implement a binary tree to simulate the Unix/Linux file system tree, which supports pwd, 1Is, cd,
mkdir, rmdir, creat, rm operations as in a real file system. Besides using dynamic data structures, the
programming project allows them to apply a wide range of programming techniques, such as string
tokenization, search for nodes in a tree, insert and delete tree nodes, etc. It also allows them to apply
binary tree traversal algorithms to save binary trees as files and reconstruct binary trees from saved
files.
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1.3.3  Process Concept and Process Management

The major focus of systems programming is the abstract notion of processes, which is rather hard to
grasp. This book uses a simple C program together with a piece of assembly code to let students see
real processes in action. The program implements a multitasking environment to simulate process
operations in an OS kernel. It allows the students to create processes, schedule processes by priority,
run different processes by context switching, maintain process relations by a binary tree, use sleep and
wakeup to implement wait for child process termination, etc. This concrete example makes it much
easier for students to understand processes and process management functions. Then it covers process
management in Unix/Linux in detail, which includes fork(), exit(), wait() and change process execu-
tion image by exec(). It also covers I/O redirection and pipes. It uses a programming project to let the
students implement a sh simulator for command execution. The sh simulator behaves exactly the same
as the bash of Linux. It can execute all Unix/Linux commands with I/O redirections, as well as
compound commands connected by pipes.

1.3.4 Concurrent Programming

Parallel computing is the future of computing. It is imperative to introduce parallel computing and
concurrent programming to CS/CE students at an early stage. This book covers parallel computing and
concurrent programming. It explains the concept of threads and their advantages over processes. It
covers Pthreads (Pthreads 2017) programming in detail. It explains the various kinds of threads
synchronization tools, such as threads join, mutex lock, condition variables, semaphores and barriers.
It demonstrates applications of threads by practical examples, which include matrix computation,
quicksort and solving system of linear equations by concurrent threads. It also introduces the concepts
of race conditions, critical regions, deadlock and deadlock prevention schemes. In addition to using
Pthreads, it uses a programming project to let students experiment with user-level threads, implement
threads synchronization tools and practice concurrent programming by user-level threads.

1.3.5 Timer and Time Functions

Timer and time functions are essential to process management and file systems. This book covers the
principle of hardware timers, timer interrupts and time service function in Unix/Linux in detail. It
shows how to use interval timers and timer generated signals in systems programming. In addition, it
uses a programming project to let students implement interval timer support for concurrent tasks.

1.3.6  Signals, Signal Processing and IPC

Signals and signal processing are keys to understanding program exceptions and Inter-Process
Communication (IPC). This book covers signals, signal processing and IPC in Unix/Linux. It explains
signal origins, signal delivery and processing in the OS kernel and the relation between signals and
exceptions. It shows how to install signal catchers to handle program exceptions in user mode. It uses a
programming project to let students use Linux signals and pipes to implement an IPC mechanism for
concurrent tasks to exchange messages.
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1.3.7  File system

Besides process management, file system is the second major component of an operating system. This
book provides an in depth coverage of file systems. It describes file operations at different levels and
explains their relationships. These include storage devices, file system support in Unix/Linux kernel,
system calls for file operations, library I/O functions, user commands and sh scripts. It uses a series of
programming exercises to let the students implement a complete EXT?2 file system that is totally Linux
compatible. These not only allow the students to have a thorough understanding of file operations but
also provide them with the unique experience of writing a complete file system. Another programming
project is to implement and compare the performances of different I/O buffer management algorithms.
The simulation system supports I/O operations between processes and disk controllers. It allows the
students to practice I/O programming, interrupts processing and synchronization between processes
and I/O devices.

1.3.8  TCP/IP and Network Programming

Network programming is the third major component of an operating system. This book covers TCP/IP
protocols, socket API, UDP and TCP programming using sockets and the server-client model in
network computing. A programming project is for the students to implement a server-client based
system for remote file operations across the Internet. As of now, WWW and Internet services have
become an indispensable part of daily lives. It is essential to introduce CS/CE students to this
technology. This book covers HTTP and Web programming in detail. It allows the students to
configure the HTTPD server on their Linux machines to support HTTP programming. It shows how
to use HTML for static Web pages and PHP to create dynamic Web pages. It covers the MySQL
database system, shows how to create and manage databases in both command and batch modes and
interface MySQL with both C and PHP. A programming project is for the students to implement a Web
server to support file operations by HTTP forms and dynamic Web pages using CGI programming.

1.4 Intended Audience

This book is intended as a textbook for systems programming courses in technically oriented
Computer Science/Engineering curriculums that emphasize both theory and programming practice.
The book contains many detailed working example programs with complete source code. It is also
suitable for self-study by advanced programmers and computer enthusiasts.

1.5 Unique Features of This Book
This book has many unique features which distinguishes it from other books.

1. This book is self-contained. It includes all the foundation and background information for studying
systems programming. These include program development steps, program execution and termi-
nation, function call conventions, run-time stack usage and link C programs with assembly code. It
also covers C structures, pointers and dynamic data structures, such as link lists, queues and binary
trees. It shows applications of dynamic data structures in system programming.



10.

Unique Features of This Book 5

. It uses a simple multitasking system to introduce and illustrate the abstract notion of processes.

The multitasking system allows students to create processes, schedule and run different processes
by context switching, implement process synchronization mechanisms, control and observe
process executions. This unique approach allows the students to have a concrete feeling and better
understanding of process operations in real operating systems.

. It describes the origin and roles of processes in Unix/Linux in detail, from system booting to INIT

process, daemon processes, login processes and the user sh process. It describes the execution
environment of user processes, such as stdin, stdout, stderr file streams and environment variables.
It also explains how does the sh process execute user commands.

. It covers process management functions in Unix/Linux in detail. These include fork(), exit(), wait

(), changing process execution image by exec(), I/O redirection and pipes. Moreover, it allows the
students to apply these concepts and programming techniques to implement a sh simulator for
command execution. The sh simulator behaves exactly the same as the standard bash of Linux. It
supports executions of simple commands with I/O redirections, as well as compound commands
connected by pipes.

. It introduces parallel computing and concurrent programming. It covers Pthreads programming by

detailed examples, which include matrix computation, quicksort and solving systems of linear
equations by concurrent threads, and it demonstrate the use of threads synchronization tools of
join, mutex lock, condition variables and barriers. It also introduces the important concepts and
problems in concurrent programming, such as race conditions, critical regions, deadlock and
deadlock prevention schemes. In addition, it allows the students to experiment with user-level
threads, design and implement threads synchronizing tools, such as threads join, mutex lock,
semaphores and demonstrate the capabilities of user-level threads by concurrent programs. These
allow the students to have a deeper understanding how threads work in Linux.

. It covers timers and time service functions in detail. It also allows the reader to implement interval

timers for concurrent tasks in a multitasking system.

. It presents a unified treatment of interrupts and signals, treating signals as interrupts to processes,

similar to interrupts to a CPU. It explains signal sources, signal types, signal generation and signal
processing in great detail. It shows how to install signal catchers to allow processes to handle
signals in user mode. It discusses how to use signals for IPC and other [PC mechanisms in Linux.
It uses a programming project to let the students use Linux signals and pipes to implement an IPC
mechanism for tasks to exchange messages in a multitasking system.

. It organizes file operations into a hierarchy of different levels, ranging from storage devices, file

system support in Unix/Linux kernel, system calls for file operations, library I/O functions, user
commands and sh scripts. This hierarchical view provides the reader with a complete picture of file
operations. It covers file operations at the various levels in detail and explains their relationships. It
shows how to use system calls to develop file operation commands, such as Is for listing directory
and file information, cat for displaying file contents and cp for copying files.

. Tt uses a programming project to lead the students to implement a complete EXT2 file system. The

programming project has been used in the CS360, System Programming course, at Washington
State University for many years, and it has proved to be very successful. It provides students with
the unique experience of writing a complete file system that not only works but is also totally
Linux compatible. This is perhaps the most unique feature of this book.

It covers TCP/IP protocols, socket API, UDP and TCP programming using sockets and the server-
client model in network programming. It uses a programming project to let the students implement
a server-client based system for remote file operations across the Internet. It also covers HTTP and
Web programming in detail. It shows how to configure the Linux HTTPD server to support HTTP



11.

1.6

1 Introduction

programming, and how to use PHP to create dynamic Web pages. It uses a programming project to
let the students implement a Web server to support file operations via HTTP forms and dynamic
Web pages using CGI programming.

It emphasizes on programming practice. Throughout the book, it illustrates system programming
techniques by complete and concrete example programs. Above all, it uses a series of program-
ming projects to let students practice system programming. The programming projects include
(1) Implement a binary tree to simulate the Unix/Linux file system tree for file operations

(Chap. 2).

(2) Implement a sh simulator for command executions, including I/O redirections and pipes
(Chap. 3).

(3) Implement user-level threads, threads synchronization and concurrent programming
(Chap. 4).

(4) Implement interval timers for concurrent tasks in a multitasking system (Chap. 5).

(5) Use Linux signals and pipes to implement an [PC mechanism for concurrent task to exchange
messages (Chap. 6).

(6) Convert file pathname to file’s INODE in an EXT?2 file system (Chap. 7).

(7) Recursive file copy by system calls (Chap. 8).

(8) Implement a printf-like function for formatted printing using only the basic operation of
putchar() (Chap. 9).

(9) Recursive file copy using sh functions and sh scripts (Chap. 10).

(10) Implement a complete and Linux compatible EXT?2 file system (Chap. 11).

(11) Implement and compare I/O buffer management algorithms in an I/O system simulator
(Chap. 12).

(12) Implement a file server and clients on the Internet (Chap. 13).

(13) Implement a file server using HTTP forms and dynamic Web pages by CGI programming
(Chap. 13).

Among the programming projects, (1)-(3), (6)-(9), (12)—(13) are standard programming

assignments of the CS360 course at Washington State University. (10) has been the class project

of the CS360 course for many years. Many of the programming projects, e.g. (12)—(13) and

especially the file system project (10), require the students to form two-person teams, allowing

them to acquire and practice the skills of communication and cooperation with peers in a team-

oriented working environment.

Use This Book As Textbook in Systems Programming Courses

This book is suitable as a textbook for systems programming courses in technically oriented Computer
Science/Engineering curriculums that emphasize both theory and practice. A one-semester course
based on this book may include the following topics.

NN R W=

. Introduction to Unix/Linux (Chap. 1)

. Programming background (Chap. 2).

. Process management in Unix/Linux (Chap. 3)

. Concurrent programming (Parts of Chap. 4)

. Timer and time Service functions (Parts of Chap. 5)
. Signals and signal processing (Chap. 6)
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. File operation levels (Chap. 7)

. File system support in OS kernel and system calls for file operations (Chap. 8)
. 1/O library functions and file operation commands (Chap. 9)

10. Sh programming and sh scripts for file operations (Chap. 10)

11. Implementation of EXT?2 file system (Chap. 11)

12. TCP/IP and network programming, HTTP and Web programming (Chap. 13).
13. Introduction to MySQL database system (Parts of Chap. 14).

O 00

The problems section of each chapter contains questions designed to review the concepts and
principles presented in the chapter. Many problems are suitable as programming projects to let students
gain more experience and skills in systems programming.

Most materials of this book have been used and tested in the Systems Programming course, CS360,
in EECS at Washington State University. The course has been the backbone of both Computer Science
and Computer Engineering programs in EECS at WSU. The current CS360 course syllabus, class notes
and programming assignments are available for review and scrutiny at

http://www.eecs.wsu.edu/~cs360

The course project is to lead students to implement a complete EXT?2 file system that is totally Linux
compatible. The programming project has proved to be the most successful part of the CS360 course,
with excellent feedbacks from both industrial employers and academic institutions.

1.7 Other Reference Books

Due to its importance, systems programming in Unix/Linux has been a popular subject matter in
CS/CE education and also for self-study by advanced programmers. As a result, there are a tremendous
number of books and online articles in this area. Some of these books are listed in the reference section
(Curry 1996; Haviland et al. 1998; Kerrisk 2010; Love 2013; Robbins and Robbins 2003; Rochkind
2008; Stevens and Rago 2013). Many of these books are excellent programmer’s guides, which are
suitable as additional reference books.

1.8 Introduction to Unix

Unix (Thompson and Ritchie 1974, 1978) is a general purpose operating system. It was developed by
Ken Thompson and Dennis Ritchie on the PDP-11 minicomputers at Bell Labs in the early 70s. In
1975, Bell Labs released Unix to the general public. Initial recipients of this Unix system were mostly
universities and non-profit institutions. It was known as the V6 Unix. This early version of Unix,
together with the classic book on the C programming language (Kernighan and Ritchie 1988) started
the Unix revolution on Operating Systems, with long-lasting effects even to this day.

1.8.1 AT&T Unix

Development of Unix at AT&T continued throughout the 1980s, cumulating in the release of the
AT&T System V Unix (Unix System V 2017), which has been the representative Unix of AT&T.
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System V Unix was a uniprocessor (single CPU) system. It was extended to multiprocessor versions in
the late 80s (Bach 1986).

1.8.2 Berkeley Unix

Berkeley Unix (Leffler et al. 1989, 1996) refers to a set of variants of the Unix operating system
developed by the Berkeley Software Distribution (BSD) at the University of California, Berkeley, from
1977 to 1985. The most significant contributions of BSD Unix are implementation of the TCP/IP suite
and the socket interface, which are incorporated into almost all other operating systems as a standard
means of networking, which has helped the tremendous growth of the Internet in the 90s. In addition,
BSD Unix advocates open source from the beginning, which stimulated further porting and develop-
ment of BSD Unix. Later releases of BSD Unix provided a basis for several open source development
projects, which include FreeBSD (McKusick et al. 2004), OpenBSD and NetBSD, etc. that are still
ongoing to this day.

1.8.3 HP Unix

HP-UX (HP-UX 2017) is Hewlett Packard’s proprietary implementation of the Unix operating
system, first released in 1984. Recent versions of HP-UX support the HP 9000 series computer
systems, based on the PA-RISC processor architecture, and HP Integrity systems, based on Intel’s
Itanium. The unique features of HP-UX include a built-in logical volume manager for large file
systems and access control lists as an alternative to the standard rwx file permissions of Unix.

1.8.4 IBM Unix

AIX (IBM AIX 2017) is a series of proprietary Unix operating systems developed by IBM for several
of its computer platforms. Originally released for the IBM 6150 RISC workstation, AIX now supports
or has supported a wide variety of hardware platforms, including the IBM RS/6000 series and later
POWER and PowerPC-based systems, IBM System I, System/370 mainframes, PS/2 personal
computers, and the Apple Network Server. AIX is based on UNIX System V with BSD4.3-compatible
extensions.

1.8.5 Sun Unix

Solaris (Solaris 2017) is a Unix operating system originally developed by Sun Microsystems (Sun OS
2017). Since January 2010, it was renamed Oracle Solaris. Solaris is known for its scalability,
especially on SPARC systems. Solaris supports SPARC-based and x86-based workstations and
servers from Oracle and other vendors.

As can be seen, most Unix systems are proprietary and tied to specific hardware platforms. An
average person may not have access to these systems. This present a challenge to readers who wishes to
practice systems programming in the Unix environment. For this reason, we shall use Linux as the
platform for programming exercises and practice.
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1.9 Introduction to Linux

Linux (Linux 2017) is a Unix-like system. It started as an experimental kernel for the Intel x86 based
PCs by Linus Torvalds in 1991. Subsequently, it was developed by a group of people world-wide. A
big milestone of Linux occurred in the late 90s when it combined with GNU (Stallman 2017) by
incorporating many GNU software, such as the GCC compiler, GNU Emacs editor and bash, etc.
which greatly facilitated the further development of Linux. Not long after that, Linux implemented the
TCP/IP suite to access the Internet and ported X11 (X-windows) to support GUI, making it a
complete OS.

Linux includes many features of other Unix systems. In some sense, it represents a union of the
most popular Unix systems. To a large extent, Linux is POSIX compliant. Linux has been ported to
many hardware architectures, such as Motorola, SPARC and ARM, etc. The predominate Linux
platform is still the Intel x86 based PCs, including both desktops and laptops, which are widely
available. Also, Linux is free and easy to install, which makes it popular with computer science
students.

1.10 Linux Versions

The development of Linux kernel is under the strict supervision of the Linux kernel development
group. All Linux kernels are the same except for different release versions. However, depending on
distributions, Linux has many different versions, which may differ in distribution packages, user
interface and service functions. The following lists some of the most popular versions of Linux
distributions.

1.10.1 Debian Linux

Debian is a Linux distribution that emphasizes on free software. It supports many hardware
platforms. Debian distributions use the .deb package format and the dpkg package manager and its
front ends.

1.10.2 Ubuntu Linux

Ubuntu is a Linux distribution based on Debian. Ubuntu is designed to have regular releases, a
consistent user experience and commercial support on both desktops and servers. Ubuntu Linux has
several official distributions. These Ubuntu variants simply install a set of packages different from the
original Ubuntu. Since they draw additional packages and updates from the same repositories as
Ubuntu, the same set of software is available in all of them.

1.10.3 Linux Mint
Linux Mint is a community-driven Linux distribution based on Debian and Ubuntu. According to

Linux Mint, it strives to be a “modern, elegant and comfortable operating system which is both
powerful and easy to use”. Linux Mint provides full out-of-the-box multimedia support by including
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some proprietary software, and it comes bundled with a variety of free and open-source applications.
For this reason, it was welcomed by many beginner Linux users.

1.10.4 RPM-Based Linux

Red Hat Linux and SUSE Linux were the original major distributions that used the RPM file format,
which is still used in several package management systems. Both Red Hat and SUSE Linux divided
into commercial and community-supported distributions. For example, Red Hat Linux provides a
community-supported distribution sponsored by Red Hat called Fedora, and a commercially supported
distribution called Red Hat Enterprise Linux, whereas SUSE divided into openSUSE and SUSE Linux
Enterprise

1.10.5 Slackware Linux

Slackware Linux is known as a highly customizable distribution that stresses on ease of maintenance
and reliability over cutting-edge software and automated tools. Slackware Linux is considered as a
distribution for advanced Linux users. It allows users to choose Linux system components to install
and configure the installed system, allowing them to learn the inner workings of the Linux operating
system.

1.11 Linux Hardware Platforms

Linux was originally designed for the Intel x86 based PCs. Earlier versions of Linux run on Intel x86
based PCs in 32-bit protected mode. It is now available in both 32-bit and 64-bit modes. In addition to
the Intel x86, Linux has bee ported to many other computer architectures, which include MC6800 of
Motorola, MIP, SPARC, PowerPC and recently ARM. But the predominant hardware platform of
Linux is still the Intel x86 based PCs, although ARM based Linux for embedded systems are gaining
popularity rapidly.

1.12 Linux on Virtual Machines

Presently, most Intel x86 based PCs are equipped with Microsoft Windows, e.g. Windows 7, 8 or
10, as the default operating system. It is fairly easy to install Linux alongside Windows on the same PC
and use dual-boot to boot up either Windows or Linux when the PC starts. However, most users are
reluctant to do so due to either technical difficulty or preference to stay in the Windows environment. A
common practice is to install and run Linux on a virtual machine inside the Windows host. In the
following, we shall show how to install and run Linux on virtual machines inside the Microsoft
Windows 10.

1.12.1 VirtualBox

VirtualBox (VirtualBox 2017) is a powerful x86 and AMD64/Intel64 virtualization product of Oracle.
VirtualBox runs on Windows, Linux, Macintosh, and Solaris hosts. It supports a large number of guest
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operating systems, including Windows (NT 4.0, 2000, XP, Vista, Windows 7, Windows 8, Windows
10) and Linux (2.4, 2.6, 3.x and 4.x), Solaris and OpenSolaris, OS/2, and OpenBSD. To install
virtualBox on Windows 10, follow these steps.

(1). Download VirtualBox.

At the VirtualBox website, http://download.virtualbox.org, you will find links to VirtualBox
binaries and its source code. For Windows hosts, the VirtualBox binary is

VirtualBox-5.1.12-112440-win.exe

In addition, you should also download the

VirtualBox 5.1.12 Oracle VM VirtualBox Extension Pack

which provides support for USB 2.0 and USB 3.0 devices, VirtualBox RDP, disk encryption,
NVMe and PXE boot for Intel cards.

(2). Install VirtualBox

After downloading the VirtualBox-5.1.12-112440-win.exe file, double click on the file name to run
it, which will install the VirtualBox VM under Windows 10. It also creates an Oracle VM VirtualBox
icon on the desktop.

(3). Create a VirtualBox Virtual Machine
Start up the VirtualBox. An initial VM window will appear, as shown in Fig. 1.1.
Choose the New button to create a new VM with 1024 MB memory and a virtual disk of 12GB.

(4). Install Ubuntu 14.04 to VirtualBox VM
Insert the Ubuntu 14.04 install DVD to a DVD drive. Start up the VM, which will boot up from the
DVD to install Ubuntu 14.04 to the VM.

(5). Adjust Display Size

For some unknown reason, when Ubuntu first starts up, the screen size will be stuck at the
640 x 480 resolution. To change the display resolution, open a terminal and enter the command line
xdiagnose. On the X Diagnostic settings window, enable all the options under Debug, which
consist of

Extra graphic debug message
Display boot messages
Enable automatic crash bug reporting

Although none of these options seems to be related to the screen resolution, it does change the
resolution to 1024 x 768 for a normal Ubuntu display screen. Figure 1.2 shows the screen of Ubuntu
on the VirtualBox VM.

9
}r-‘- {:;;} A :\9 _ @ Detads (&8 Snapshots
New Settings Discard Start

Fig. 1.1 VirtualBox VM Window
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Fig. 1.2 Ubuntu Linux on VirtualBox VM

(6). Test C programming under Ubuntu
Ubuntu 14.04 has the gcc package installed. After installing Ubuntu, the user may create C source
files, compile them and run the C programs. If the user needs emacs, install it by

sudo apt-get install emacs

Emacs provides an Integrated Development Environment (IDE) for text-edit, compile C programs and
run the resulting binary executables under GDB. We shall cover and demonstrate the emacs IDE in
Chap. 2.

1.12.2 VMware

VMware is another popular VM for x86 based PCs. The full versions of VMware, which include VM
servers, are not free, but VMware Workstation Players, which are sufficient for simple VM tasks,
are free.

(1). Install VMware Player on Windows 10

The reader may get VMware Workstation Player from VMware’s download site. After
downloading, double click on the file name to run it, which will install VMware and create a VMware
Workstation icon on the Desktop. Click on the icon to start up the VMware VM, which displays a
VMware VM window, as shown in Fig. 1.3.
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Fig. 1.3 VMware VM Window

(2). Install Ubuntu 15.10 on VMware VM
To install Ubuntu 15.10 on the VMware VM, follow the following steps.
1. Download Ubuntu 15.10 install DVD image; burn it to a DVD disc.
2. Download Vmware Workstation Player 12 exe file for Windows 10.
3. Install Vmware Player.
4. Start up Vmware Player
Choose: Create a new virtual machine;
Choose: Installer disc: DVD RW Drive (D:)
=> insert the installer disc until it is ready to install
Then, enter Next
Choose: Linux
Version: ubuntu
Virtual machine name: change to a suitable name, e.g. ubuntu
Vmware will create a VM with 20GB disk size, IGB memory, etc.
Choose Finish to finish creating the new VM
Next Screen: Choose: play virtual machine to start the VM.
The VM will boot from the Ubuntu install DVD to install Ubuntu.
5. Run C Program under Ubuntu Linux
Figure 1.4 shows the startup screen of Ubuntu and running a C program under Ubuntu.
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Fig. 1.4 Ubuntu on VMware VM
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Fig. 1.5 Dual-Boot Window of Slackware and Ubuntu Linux
1.12.3 Dual Boot Slackware and Ubuntu Linux

It seems that free VMware Player only supports 32-bit VMs. The install steps are identical to above
except the installer disc is the Slackwarel4.2 install DVD. After installing both Slackware 14.2 and
Ubuntu 15.10, set up LILO to boot up either system when the VM starts up. If the reader installs
Slackware first followed by installing Ubuntu, Ubuntu will recognize Slackware and configure GRUB
for dual boot. The following figure shows the dual-boot menu of LILO (Fig. 1.5).
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1.13 Use Linux
1.13.1 Linux kernel image

In a typical Linux system, Linux kernel images are in the /boot directory. Bootable Linux kernel
images are named as

vmlinuz-generic-VERSION_NUMBER
initrd as the initial ramdisk image for the Linux kernel.

A bootable Linux kernel image is composed of three pieces:
[ BOOT | SETUP | linux kernel |

BOOT is a 512-byte booter for booting early versions of Linux from floppy disk images. It is no longer
used for Linux booting but it contains some parameters for SETUP to use. SETUP is a piece of 16-bit
and 32-bit assembly code, which provides transition from the 16-bit mode to 32-bit protected mode
during booting. Linux kernel is the actual kernel image of Linux. It is in compressed form but it has a
piece of decompressing code at beginning, which decompresses the Linux kernel image and relocates
it to high memory.

1.13.2 Linux Booters

The Linux kernel can be booted up by several different boot-loaders. The most popular Linux boot-
loaders are GRUB and LILO. Alternatively, the HD booter of (Wang 2015) can also be used to boot up
Linux.

1.13.3 Linux Booting
During booting, the Linux boot-loader first locates the Linux kernel image (file). Then it loads

BOOT+SETUP to 0x90000 in real mode memory
Linux kernel to IMB in high memory.

For generic Linux kernel images, it also loads an initial ramdisk image, initrd, to high memory. Then it
transfers control to run SETUP code at 0x 902000, which starts up the Linux kernel. When the Linux
kernel first starts up, it runs on initrd as a temporary root file system. The Linux kernel executes a sh
script, which directs the kernel to load the needed modules for the real root device. When the real root
device is activated and ready, the kernel abandons the initial ramdisk and mounts the real root device as
the root file system, thus completing a two-phase booting of the Linux kernel.
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1.13.4 Linux Run-levels

The Linux kernel starts up in the single user mode. It mimics the run-levels of System V Unix to run in
multi-user mode. Then it creates and run the INIT process P1, which creates the various daemon
processes and also terminal processes for users to login. Then the INIT process waits for any child
process to terminate.

1.13.5 Login Process

Each login process opens three file streams, stdin for input, stdout for output and stderr for error
output, on its terminal. Then it waits for users to login. On Linux systems using X-windows as user
interface, the X-window server usually acts as an interface for users to login. After a user login, the
(pseudo) terminals belong to the user by default.

1.13.6 Command Executions

After login, the user process typically executes the command interpreter sh, which prompts the user for
commands to execute. Some special commands, such as cd (change directory), exit, logout, &, are
performed by sh directly. Non-special commands are usually executable files. For a non-special
command, sh forks a child process and waits for the child to terminate. The child process changes
its execution image to the file and executes the new image. When the child process terminates, it wakes
up the parent sh, which prompts for another command, etc. In addition to simple commands, sh also
supports I/O redirections and compound commands connected by pipes. In addition to built-in
commands, the user may develop programs, compile-link them into binary executable files and run
the programs as commands.

1.14 Use Ubuntu Linux
1.14.1 Ubuntu Versions

Among the different versions of Linux, we recommend Ubuntu Linux 15.10 or later for the following
reasons.

(1) It is very easy to install. It can be installed online if the user has connection to the Internet.
(2) It is very easy to install additional software packages by
sudo apt-get install PACKAGE
(3) It is updated and improved regularly with new releases.
(4) It has a large user base, with many problems and solutions posted in discussion forums online.
(5) It provides easy connections to wireless networks and access to the Internet.



1.14  Use Ubuntu Linux 17

1.14.2 Special Features of Ubuntu Linux

Here are some helps on how to use the Ubuntu Linux.

(D

2

3)

“4)

(&)

(6)

When installing Ubuntu on a desktop or laptop computer, it will ask for a user name and a
password to create a user account with a default home directory /home/username. When Ubuntu
boots up, it immediately runs in the environment of the user because it already has the default user
logged in automatically. Enter Control-Alter-T to open a pseudo-terminal. Right click the Term
icon and choose “lock to launcher” to lock the Term icon in the menu bar. Subsequently, launch
new terminals by choosing the terminal->new terminal on the menu bar. Each new terminal runs
a sh for the user to execute commands.

For security reasons, the user is an ordinary user, not the root or superuser. In order to run any
privileged commands, the user must enter

sudo command

which will verify the user’s password first.

The user’s PATH environment variable setting usually does not include the user’s current
directory. In order to run programs in the current directory, the user must enter ./a.out every
time. For convenience, the users should change the PATH setting to include the current directory.
In the user’s home directory, create a .bashre file containing

PATH=$PATH:./

Every time the user opens a pseudo-terminal, sh will execute the .bashrc file first to set PATH to
include the current working directory ./

Many users may have installed 64-bit Ubuntu Linux. Some of the programming exercises and
assignments in this book are intended for 32-bit machines. In 64-bit Linux, use

gcc -m32 t.c # compile t.c into 32-bit code

to generate 32-bit code. If the 64-bit Linux does not take the -m32 option, the user must install
additional support for gcc to generate 32-bit code.

Ubuntu provides an excellent GUI user interface. Many users are so accustomed to the GUI that
they tend to rely on it too much, often wasting time by repeatedly dragging and clicking the
pointing device. In systems programming, the user should also learn how to use command lines
and sh scripts, which are much more general and powerful than GUL

Nowadays, most users can connect to computer networks. Ubuntu supports both wired and
wireless connections to networks. When Ubuntu runs on a PC/laptop with wireless hardware, it
displays a wireless icon on top and it allows wireless connections by a simple user interface. Open
the wireless icon. It will show a list of available wireless networks near by. Select a network and
open the Edit Connections submenu to edit the connection file by entering the required login
name and password. Close the Edit submenu. Ubuntu will try to login to the selected wireless
network automatically.
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|-—> bin {common commands)
|-—-> boot (Kernel images)
|--> der (special files)
|-—> etc (system maintenance file)
|--> home {user home directories)
f ———> |--> 1ib (1link libraries)
|-—> proc {(system information pseudo file system)
|-—> shin {(superuser commands)

| |--> bin { commands )

|-——> tmp |-—> include {(header files)

| |--> 1ib (libraries)

|--> usr —--———- >|--> local

| | -—> man (man pages)
|-—->= X11 {X-Windows)

Fig. 1.6 Unix/Linux File System Tree

1.15 Unix/Linux File System Organization

The Unix/Linux file system is organized as a tree, which is shown (sideway) in Fig. 1.6.
Unix/Linux considers everything that can store or provide information as a file. In a general sense,
each node of the file system tree is a FILE. In Unix/Linux, files have the following types.

1.15.1 File Types
(1). Directory files: A directory may contain other directories and (non-directory) files.

(2). Non-directory files: Non-directory files are either REGULAR or SPECIAL files, which can only
be leaf-nodes in the file system tree. Non-directory files can be classified further as

(2).1 REGULAR files: Regular files are also called ORDINARY files. They contain either ordinary
text or executable binary code.

(2).2 SPECIAL files: Special files are entries in the /dev directory. They represent I/O devices, which
are further classified as

CHAR special files: I/O by chars, e.g. /dev/tty0, /dev/pts/1, etc.
BLOCK special files: I/O by blocks, e.g. /dev/had, /dev/sda, etc.
Other types such as network (socket) special files, named pipes, etc.

(3). Symbolic LINK files: These are Regular files whose contents are pathnames of other files. As
such, they act as pointers to other files. As an example, the Linux command

1n -s aVeryLongFileName myLink

creates a symbolic link file, mylink, which points to aVeryLongFileName. Access to myLink will be
redirected to the actual file aVeryLongFileName.
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1.15.2 File Pathnames

The root node of a Unix/Linux file system tree, symbolized by /, is called the root directory or simply
the root. Each node of the file system tree is specified by a pathname of the form

/a/b/c/d OR a/b/c/d

A pathname is ABSOLUTE if it begins with a /. Otherwise, it is RELATIVE to the Current
Working Directory (CWD) of the process. When a user login to Unix/Linux, the CWD is set to
the user’s HOME directory. The CWD can be changed by the cd (change directory) command. The
pwd command prints the absolute pathname of the CWD.

1.15.3 Unix/Linux Commands

When using an operating system, the user must learn how to use the system commands. The following
lists the most often used commands in Unix/Linux.

Is: Is dirname: list the contents of CWD or a directory
cd dirname: change directory

pwd: print absolute pathname of CWD

touch filename: change filename timestamp (create file if it does not exist)
cat filename: display file contents

cp src dest: copy files

my src dest: move or rename files

mkdir dirname: create directory

rmdir dirname: remove (empty) directory

rm filename: remove or delete file

In oldfile newfile: create links between files

find: search for files

grep: search file for lines containing a pattern

ssh: login to remote hosts

gzip filename: compress filename to .gz file

gunzip file.gz: uncompress .gz file

tar —zcvf file.tgz . : create compressed tar file from current directory
tar -zxvf file.tgz . : extract files from .tgz file

man: display online manual pages

zip file.zip filenames : compress files to .zip file
unzip file.zip : uncompress .zip file

1.15.4 Linux Man Pages

Linux maintains online man (manual) pages in the standard /usr/man/directory. In Ubuntu Linux, it is
in /usr/share/man directory. The man pages are organized into several different categories, denoted by
manl, man2, etc.
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/usr/man/
|—— manl: commonly used commands: ls, cat, mkdir ...., etc.
|-- man2: system calls
|—— man3: library functions: strtok, strcat, basename, dirname
etc.

All the man pages are compressed .gz files. They contain text describing how to use the command with
input parameters and options. man is a program, which reads man page files and displays their contents
in a user friendly format. Here are some examples of using man pages.

man lIs : show man page of Is in manl
man 2 open  : show man page of open in man2
man strtok : show man page of strtok in man 3, etc.

man 3 dirname : show dirname in man3, NOT that of manl

Whenever needed, the reader should consult the man pages for how to use a specific Linux command.
Many of the so called Unix/Linux systems programming books are essentially condensed versions of
the Unix/Linux man pages.

1.16 Ubuntu Linux System Administration
1.16.1 User Accounts

As in all Linux, user accounts are maintained in the /etc/passwd file, which is owned by the superuser
but readable by anyone. Each user has a line in the /etc/passwd file of the form

loginName:x:gid:uid:usefInfo:homeDir:initialProgram

where the second field x indicates checking user password. Encrypted user passwords are maintained
in the /etc/shadow file. Each line of the shadow file contains the encrypted user password, followed by
optional aging limit information, such as expiration date and time, etc. When a user tries to login with a
login name and password, Linux will check both the /etc/passwd and /etc/shadow files to authenticate
the user. After a user login successfully, the login process becomes the user process by acquiring the
user’s gid and uid, changes directory to the user’s homeDir and executes the listed initialProgram,
which is usually the command interpreter sh.

1.16.2 Add New User
This may be a pathological case for most users who run Ubuntu Linux on their personal PCs or laptops.
But let’s assume that the reader may want to add a family member to use the same computer but as a

different user. As in all Linux, Ubuntu supports an adduser command, which can be run as

sudo adduer username
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It adds a new user by creating an account and also a default home directory /home/username for the
new user. Henceforth, Ubuntu will display a list of user names in its “About The Computer” menu. The
new user may login to the system by selecting the new username.

1.16.3 The sudo Command

For security reasons, the root or superuser account is disabled in Ubuntu, which prevents anyone from
login as the root user (well, not quite; there is a way but I won’t disclose it). sudo (“superuser do”)
allows a user to execute a command as another user, usually the superuser. It temporarily elevates the
user process to the superuser privilege while executing a command. When the command execution
finishes, the user process reverts back to its original privilege level. In order to be able to use sudo, the
user’s name must be in the /etc/sudoers file. To allow a user to issue sudo, simply add a line to sudoers
files, as in

username ALL(ALL) ALL

However, the /etc/sudoers file has a very rigid format. Any syntax error in the file could breech the
system security. Linux recommends editing the file only by the special command visudo, which
invokes the vi editor but with checking and validation.

1.17 Summary

This chapter presents an introduction to the book. It describes the book’s scope, intended audience and
its suitability as textbook in Computer Science/Engineering curriculums. It presents a brief history of
Unix, which includes early versions of Unix at Bell Labs, AT&T System V and other developments of
Unix, such as BSD, HP UX, IBM AIX and Sun/Solaris Unix. It describes the development of Linux
and various Linux distributions, which include Debian, Ubuntu, Mint, Red Hat and Slackware. It lists
both the hardware platforms and virtual machines for Linux. It shows how to install Ubuntu Linux to
both VirtualBox and Vmware virtual machines inside the Microsoft Windows. It explains the startup
sequence of Linux, from booting the Linux kernel to user login and command execution. It describes
the Linux file system organization, file types and commonly used Unix/Linux commands. Lastly, it
describes some system administration tasks for users to manage and maintain their Linux systems.
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Abstract

This chapter covers the background information needed for systems programming. It introduces several
GUI based text editors, such as vim, gedit and EMACS, to allow readers to edit files. It shows how to
use the EMACS editor in both command and GUI mode to edit, compile and execute C programs. It
explains program development steps. These include the compile-link steps of GCC, static and dynamic
linking, format and contents of binary executable files, program execution and termination. It explains
function call conventions and run-time stack usage in detail. These include parameter passing, local
variables and stack frames. It also shows how to link C programs with assembly code. It covers the
GNU make facility and shows how to write Makefiles by examples. It shows how to use the GDB
debugger to debug C programs. It points out the common errors in C programs and suggests ways
to prevent such errors during program development. Then it covers advanced programming techniques.
It describes structures and pointer in C. It covers link lists and list processing by detailed examples. It
covers binary trees and tree traversal algorithms. The chapter cumulates with a programming project,
which is for the reader to implement a binary tree to simulate operations in the Unix/Linux file system
tree. The project starts with a single root directory node. It supports mkdir, rmdir, creat, rm, cd, pwd, Is
operations, saving the file system tree as a file and restoring the file system tree from saved file. The
project allows the reader to apply and practice the programming techniques of tokenizing strings,
parsing user commands and using function pointers to invoke functions for command processing.

2.1 Text Editors in Linux
2.1.1 Vim

Vim (Linux Vi and Vim Editor 2017) is the standard built-in editor of Linux. It is an improved version
of the original default Vi editor of Unix. Unlike most other editors, vim has 3 different operating
modes, which are

. Command mode: for entering commands
. Insert mode: for entering and editing text
. Last-line mode: for saving files and exit
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When vim starts, it is in the default Command mode, in which most keys denote special commands.
Examples of command keys for moving the cursor are

h: move cursor one char to the left; 1: move cursor one char to the right
j: move cursor down one line; k: move cursor up one line

When using vim inside X-window, cursor movements can also be done by arrow keys. To enter text for
editing, the user must switch vim into Insert mode by entering either the i (insert) or a (append)
command:

i: switch to Insert mode to insert text;
a: switch to Insert mode to append text

To exit Insert mode, press the ESC key one or more times. While in Command mode, enter the : key to
enter the Last-line mode, which is for saving texts as files or exit vim:

:w write (save) file

:q exit vim

:wq save and exit

:q! force exit without saving changes

Although many Unix users are used to the different operating modes of vim, others may find it
somewhat unnatural and inconvenient to use as compared with other Graphic User Interface (GUI)
based editors. The following editors belong to what is commonly known as What You See Is What
You Get (WYSIWYG) type of editors. In a WYSIWYG editor, a user may enter text, move the cursor
by arrow keys, just like in regular typing. Commands are usually formed by entering a special meta
key, together with, or followed by, a letter key sequence. For example,

Control-C: abort or exit,

Control-K: delete line into a buffer,
Control-Y: yank or paste from buffer contents
Control-S: save edited text, etc.

Since there is no mode switching necessary, most users, especially beginners, prefer WYSUWYG type
editors over vim.

2.1.2 Gedit

Gedit is the default text editor of the GNOME desktop environment. It is the default editor of Ubuntu,
as well as other Linux that uses the GNOME GUI user interface. It includes tools for editing both
source code and structured text such as markup languages.

2.1.3 Emacs

Emacs (GNU Emacs 2015) is a powerful text editor, which runs on many different platforms. The
most popular version of Emacs is GNU Emacs, which is available in most Linux distributions.
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All the above editors support direct inputs and editing of text in full screen mode. They also support
search by keywords and replace strings by new text. To use these editors, the user only needs to learn a
few basics, such as how to start up the editor, input text for editing, save edited texts as files and then
exit the editor.

Depending on the Unix/Linux distribution, some of the editors may not be installed by default. For
example, Ubuntu Linux usually comes with gedit, nano and vim, but not emacs. One nice feature of
Ubuntu is that, when a user tries to run a command that is not installed, it will remind the user to install
it. As an example, if a user enters

emacs filename

Ubuntu will display a message saying “The program emacs is currently not installed. You can install it
by typing apt-get install emacs”. Similarly, the user may install other missing software packages by the
apt-get command.

2.2 Use Text Editors

All text editors are designed to perform the same task, which is to allow users to input texts, edit them
and save the edited texts as files. As noted above, there are many different text editors. Which text
editor to use is a matter of personal preference. Most Linux users seem to prefer either gedit or emacs
due to their GUI interface and ease to use. Between the two, we strongly recommend emacs. The
following shows some simple examples of using emacs to create text files.

2.2.1 Use Emacs
First, from a pseudo terminal of X-windows, enter the command line
emacs [FILENAME] # [ ] means optonal

to invoke the emacs editor with an optional file name, e.g. t.c. This will start up emacs in a separate
window as show in Fig. 2.1. On top of the emacs window is a menu bar, each of which can be opened
to show additional commands, which the user can invoke by clicking on the menu icons. To begin
with, we shall not use the menu bar and focus on the simple task of creating a C program source file.
When emacs starts, if the file t.c already exists, it will open the file and load its contents into a buffer for
editing. Otherwise, it will show an empty buffer, ready for user inputs. Fig. 2.1 shows the user input
lines. Emacs recognizes any .c file as source file for C programs. It will indent the lines in accordance
with the C code line conventions, e.g. it will match each left { with a right }with proper indentations
automatically. In fact, it can even detect incomplete C statements and show improper indentations to
alert the user of possible syntax errors in the C source lines.

After creating a source file, enter the meta key sequence Control-x-c to save the file and exit. If the
buffer contains modified and unsaved text, it will prompt the user to save file, as shown on the bottom
line of Fig. 2.2. Entering y will save the file and exit emacs. Alternatively, the user may also click the
Save icon on the menu bar to save and exit.
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Fig. 2.1 Use emacs 1 - emacs@D630

File Edit Optio Buffers To

RBRE

#include <stdio.h>
int main()

int i;
for (1=0; 1<5; i++)
printf("print test line %d times\n", i);

-1--- t.c All L7 (c/1 Abbrev)

Fig. 2.2 Use emacs 2 emacs@D630

File Edit Options Buffers Tools C Help

m Save &=, Undo

#include <stdio.h>
int main()
{ : :
int 1i;
for (1=0; 1<5; i++)
printf("print test line %d times\n", 1);

1l
Us*x- ¢£.c ALl L7 (C/1 Abbrev)
Save file /root/t.c? (y, n, !, ., q, C-r, d or C-h) I

2.2.2 Emacs Menus
At the top of the emacs window is a menu bar, which includes the icons
File Edit Options Buffers Tools C Help

The File menu supports the operations of open file, insert file and save files. It also supports printing
the editing buffer, open new windows and new frames.

The Edit menu supports search and replace operations.

The Options menu supports functions to configure emacs operations.

The Buffers menu supports selection and display of buffers.

The Tools menu supports compilation of source code, execution of binary executables and debugging.

The C menu supports customized editing for C source code.

The Help menu provides support for emacs usage, such as a simple emacs tutorial.

As usual, clicking on a menu item will display a table of submenus, allowing the user to choose

individual operations. Instead of commands, the user may also use the emacs menu bar to do text
editing, such as undo last operation, cut and past, save file and exit, etc.

2.2.3 IDE of Emacs

Emacs is more than a text editor. It provides an Integrated Development Environment (IDE) for
software development, which include compile C programs, run executable images and debugging
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program executions by GDB. We shall illustrate the IDE capability of emacs in the next section on

program development.

23 Program Development

2.3.1 Program Development Steps

The steps of developing an executable program are as follows.

(1). Create source files: Use a text editor, such as gedit or emacs, to create one or more source files of a
program. In systems programming, the most important programming languages are C and assembly.
We begin with C programs first.

Standard comment lines in C comprises matched pairs of /* and */. In addition to the standard
comments, we shall also use // to denote comment lines in C code for convenience. Assume that tl.c
and t2.c are the source files of a C program.

/********************** tl.c file *****************************/

100; //
//
//

int g =
int h;
static int s;

main(int argc, char *argv[ 1) //

initialized global variable
uninitialized global variable
static global variable

main function

{

int a = 1; int b; // automatic local variables

static int ¢ = 3; // static local variable
b = 2;
c = mysum(a,b);

// call mysum(), passing a, b

printf ("sum=%d\n", c); // call printf ()

}

[r* *hhkkkkkkkkkkkkkkkkk £2 ¢ file khkkkkdhkkhkkhkkkkhdkkkkkkhkk /

extern int g; // extern global variable

int mysum(int x, int y) // function heading

{

return x + y + g;

2.3.2 Variables in C
Variables in C programs can be classified as global, local, static, automatic and registers, etc. as
shown in Fig. 2.3.

Global variables are defined outside of any function. Local variables are defined inside functions.
Global variables are unique and have only one copy. Static globals are visible only to the file in which
they are defined. Non-static globals are visible to all the files of the same program. Global variables
can be initialized or uninitialized. Initialized globals are assigned values at compile time. Uninitialized
globals are cleared to 0 when the program execution starts. Local variables are visible only to the
function in which they are defined. By default, local variables are automatic; they come into existence
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- non-static-
- globhal- — initialized or uninitialized
- static
Variables -
- local -|- register—— |- in CPU register (if possible)
- automatic -|- allocated on stack
- static — |- initialized or uninitialized
Fig. 2.3 Variables in C
Fig. 2.4 Program co o Step 1 Step 2 Step 3

development steps

tl.c ->COMPILER|->tl.=s -3ASSEMBLER|->tl.o->
LIHKER |-> fa.ouf
tZ2.c —-{COMPILER|->tZ.s -3ASSEMBLER |->tZ.o0->

C_library

when the function is entered and they logically disappear when the function exits. For register
variables, the compiler tries to allocate them in CPU registers. Since automatic local variables do
not have any allocated memory space until the function is entered, they cannot be initialized at compile
time. Static local variables are permanent and unique, which can be initialized. In addition, C also
supports volatile variables, which are used as memory-mapped /O locations or global variables that
are accessed by interrupt handlers or multiple execution threads. The volatile keyword prevents the C
compiler from optimizing the code that operates on such variables.

In the above tl.c file, g is an initialized global, h is an uninitialized global and s is a static global.
Both g and h are visible to the entire program but s is visible only in the tl.c file. So t2.c can reference g
by declaring it as extern, but it cannot reference s because s is visible only in tl.c. In the main()
function, the local variables a, b are automatic and c is static. Although the local variable a is defined as
int a = 1, this is not an initialization because a does not yet exist at compile time. The generated code
will assign the value 1 to the current copy of a when main() is actually entered.

23.3 Compile-Link in GCC
(2). Use gcc to convert the source files into a binary executable, as in
gcc tl.c t2.c

which generates a binary executable file named a.out. In Linux, cc is linked to gcc, so they are
the same.

(3). What’s gcc? gee is a program, which consists of three major steps, as shown in Fig. 2.4.

Step 1. Convert C source files to assembly code files: The first step of cc is to invoke the C
COMPILER, which translates .c files into .s files containing assembly code of the target machine.
The C compiler itself has several phases, such as preprocessing, lexical analysis, parsing and code
generations, etc, but the reader may ignore such details here.

Step 2. Convert assembly Code to OBJECT code: Every computer has its own set of machine
instructions. Users may write programs in an assembly language for a specific machine. An
ASSEMBLER is a program, which translates assembly code into machine code in binary form.
The resulting .o files are called OBJECT code. The second step of cc is to invoke the ASSEMBLER
to translate .s files to .o files. Each .o file consists of
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. a header containing sizes of CODE, DATA and BSS sections

. a CODE section containing machine instructions

. a DATA section containing initialized global and initialized static local variables

. a BSS section containing uninitialized global and uninitialized static local variables
. relocation information for pointers in CODE and offsets in DATA and BSS

. a Symbol Table containing non-static globals, function names and their attributes.

Step 3: LINKING: A program may consist of several .o files, which are dependent on one another. In

addition, the .o files may call C library functions, e.g. printf(), which are not present in the source

files. The last step of cc is to invoke the LINKER, which combines all the .o files and the needed

library functions into a single binary executable file. More specifically, the LINKER does the
following:

. Combine all the CODE sections of the .o files into a single Code section. For C programs, the
combined Code section begins with the default C startup code crt0.0, which calls main(). This is
why every C program must have a unique main() function.

. Combine all the DATA sections into a single Data section. The combined Data section contains
only initialized globals and initialized static locals.

. Combine all the BSS sections into a single bss section.

. Use the relocation information in the .o files to adjust pointers in the combined Code section and
offsets in the combined Data and bss sections.

. Use the Symbol Tables to resolve cross references among the individual .o files. For instance,
when the compiler sees ¢ = mysum(a, b) in tl.c, it does not know where mysum is. So it leaves a
blank (0) in t1.0 as the entry address of mysum but records in the symbol table that the blank must
be replaced with the entry address of mysum. When the linker puts t1.0 and t2.0 together, it knows
where mysum is in the combined Code section. It simply replaces the blank in t1.o0 with the entry
address of mysum. Similarly for other cross referenced symbols. Since static globals are not in the
symbol table, they are unavailable to the linker. Any attempt to reference static globals from
different files will generate a cross reference error. Similarly, if the .o files refer to any undefined
symbols or function names, the linker will also generate cross reference errors. If all the cross
references can be resolved successfully, the linker writes the resulting combined file as a.out,
which is the binary executable file.

2.3.4 Static vs. Dynamic Linking

There are two ways to create a binary executable, known as static linking and dynamic linking. In
static linking, which uses a static library, the linker includes all the needed library function code and
data into a.out. This makes a.out complete and self-contained but usually very large. In dynamic
linking, which uses a shared library, the library functions are not included in a.out but calls to such
functions are recorded in a.out as directives. When execute a dynamically linked a.out file, the
operating system loads both a.out and the shared library into memory and makes the loaded library
code accessible to a.out during execution. The main advantages of dynamic linking are:

. The size of every a.out is reduced.
. Many executing programs may share the same library functions in memory.
. Modifying library functions does not need to re-compile the source files again.
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Libraries used for dynamic linking are known as Dynamic Linking Libraries (DLLs). They are
called Shared Libraries (.so files) in Linux. Dynamically loaded (DL) libraries are shared libraries
which are loaded only when they are needed. DL libraries are useful as plug-ins and dynamically
loaded modules.

2.3.5 Executable File Format

Although the default binary executable is named a.out, the actual file format may vary. Most C
compilers and linkers can generate executable files in several different formats, which include

(1) Flat binary executable: A flat binary executable file consists only of executable code and
initialized data. It is intended to be loaded into memory in its entirety for execution directly. For
example, bootable operating system images are usually flat binary executables, which simplifies
the boot-loader.

(2) a.out executable file: A traditional a.out file consists of a header, followed by code, data and bss
sections. Details of the a.out file format will be shown in the next section.

(3) ELF executable file: An Executable and Linking Format (ELF) (Youngdale 1995) file consists of
one or more program sections. Each program section can be loaded to a specific memory address.
In Linux, the default binary executables are ELF files, which are better suited to dynamic linking.

2.3.6 Contents of a.out File

For the sake of simplicity, we consider the traditional a.out files first. ELF executables will be covered
in later chapters. An a.out file consists of the following sections:

(1) header: the header contains loading information and sizes of the a.out file, where
tsize = size of Code section;
dsize = size of Data section containing initialized globals and static locals;
bsize = size of bss section containing uninitialized globals and static locals;
total_size = total size of a.out to load.
(2) Code Section: also called the Text section, which contains executable code of the program. It
begins with the standard C startup code crt0.0, which calls main().
(3) Data Section: The Data section contains initialized global and static data.
(4) Symbol table: optional, needed only for run-time debugging.

Note that the bss section, which contains uninitialized global and static local variables, is not in the a.
out file. Only its size is recorded in the a.out file header. Also, automatic local variables are not in a.out.
Figure 2.5 shows the layout of an a.out file.

In Fig. 2.5, _brk is a symbolic mark indicating the end of the bss section. The total loading size of a.
out is usually equal to _brk, i.e. equal to tsize+dsize+bsize. If desired, _brk can be set to a higher value
for a larger loading size. The extra memory space above the bss section is the HEAP area for dynamic
memory allocation during execution.
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Fig. 2.5 Contents of a.out |<— a.out file ->| hrk
file

header |Code|Data|....bss....

23.7 Program Execution
Under a Unix-like operating system, the sh command line
a.out one two three

executes a.out with the token strings as command-line parameters. To execute the command, sh
forks a child process and waits for the child to terminate. When the child process runs, it uses a.out to
create a new execution image by the following steps.

(1) Read the header of a.out to determine the total memory size needed, which includes the size of a
stack space:

TotalSize = _brk + stackSize

where stackSize is usually a default value chosen by the OS kernel for the program to start. There is
no way of knowing how much stack space a program will ever need. For example, the trivial C
program

main(){ main(); }

will generate a segmentation fault due to stack overflow on any computer. So the usual approach
of an OS kernel is to use a default initial stack size for the program to start and tries to deal with
possible stack overflow later during run-time.

(2) Itallocates a memory area of TotalSize for the execution image. Conceptually, we may assume that
the allocated memory area is a single piece of contiguous memory. It loads the Code and Data
sections of a.out into the memory area, with the stack area at the high address end. It clears the bss
section to 0, so that all uninitialized globals and static locals begin with the initial value 0. During
execution, the stack grows downward toward low address.

(3) Then it abandons the old image and begins to execute the new image, which is shown in Fig. 2.6.

In Fig. 2.6, _brk at the end of the bss section is the program's initial "break" mark and _splimit is the
stack size limit. The Heap area between bss and Stack is used by the C library functions malloc()/free()
for dynamic memory allocation in the execution image. When a.out is first loaded, _brk and _splimit
may coincide, so that the initial Heap size is zero. During execution, the process may use the brk
(address) or sbrk(size) system call to change _brk to a higher address, thereby increasing the Heap size.
Alternatively, malloc() may call brk() or sbrk() implicitly to expand the Heap size. During execution, a
stack overflow occurs if the program tries to extend the stack pointer below _splimit. On machines with
memory protection, this will be detected by the memory management hardware as an error, which traps
the process to the OS kernel. Subject to a maximal size limit, the OS kernel may grow the stack by
allocating additional memory in the process address space, allowing the execution to continue. A stack
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Fig. 2.6 Execution image I | O's | _brk |_splimit
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overflow is fatal if the stack cannot be grown any further. On machines without suitable hardware
support, detecting and handling stack overflow must be implement in software.

(4). Execution begins from crt0.o0, which calls main(), passing as parameters argc and argv to main(),
which can be written as

int main( int argc, char *argv[ 1 ) { .... }

where argc = number of command line parameters and each argv[ ] entry points to a corresponding
command line parameter string.

2.3.8 Program Termination
A process executing a.out may terminate in two possible ways.

(1). Normal Termination: If the program executes successfully, main() eventually returns to crt0.0,
which calls the library function exit(0) to terminate the process. The exit(value) function does some
clean-up work first, such as flush stdout, close I/O streams, etc. Then it issues an _exit(value) system
call, which causes the process to enter the OS kernel to terminate. A 0 exit value usually means normal
termination. If desired, a process may call exit(value) directly without going back to crt0.o0. Even more
drastically, a process may issue an _exit(value) system call to terminate immediately without doing the
clean-up work first. When a process terminates in kernel, it records the value in the _exit(value) system
call as the exit status in the process structure, notifies its parent and becomes a ZOMBIE. The parent
process can find the ZOMBIE child, get its pid and exit status by the system call

pid = wait(int *status);

which also releases the ZMOBIE child process structure as FREE, allowing it to be reused for another
process.

(2). Abnormal Termination: While executing a.out the process may encounter an error condition,
such as invalid address, illegal instruction, privilege violation, etc. which is recognized by the CPU as
an exception. When a process encounters an exception, it is forced into the OS kernel by a trap. The
kernel’s trap handler converts the trap error type to a magic number, called a SIGNAL, and delivers the
signal to the process, causing it to terminate. In this case, the exit status of the ZOMBIE process is the
signal number, and we may say that the process has terminated abnormally. In addition to trap errors,
signals may also originate from hardware or from other processes. For example, pressing the
Control_C key generates a hardware interrupt, which sends the number 2 signal SIGINT to all
processes on that terminal, causing them to terminate. Alternatively, a user may use the command

kill -s signal_number pid # signal_number = 1 to 31

to send a signal to a target process identified by pid. For most signal numbers, the default action of a
process is to terminate. Signals and signal handling will be covered later in Chap. 6.
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24 Function Call in C

Next, we consider the run-time behavior of a.out during execution. The run-time behavior of a program
stems mainly from function calls. The following discussions apply to running C programs on 32-bit
Intel x86 processors. On these machines, the C compiler generated code passes parameters on the stack
in function calls. During execution, it uses a special CPU register (ebp) to point at the stack frame of the
current executing function.

2.4.1 Run-Time Stack Usage in 32-Bit GCC

Consider the following C program, which consists of a main() function shown on the left-hand side,
which calls a sub() function shown on the right-hand side.

int sub(int x, int y)

{
int a, b, c; int u, v;
c = sub(a, b);
printf ("c=%d\n", c);

|
|
|

a=1; b=2; c = 3; | us=4; v=25;
| return x+y+u+v;
|
|

(1) When executing a.out, a process image is created in memory, which looks (logically) like the
diagram shown in Fig. 2.7, where Data includes both initialized data and bss.

(2) Every CPU has the following registers or equivalent, where the entries in parentheses denote
registers of the x86 CPU:

PC (IP): point to next instruction to be executed by the CPU.
SP (SP): point to top of stack.

FP (BP): point to the stack frame of current active function.
Return Value Register (AX): register for function return value.

(3) In every C program, main() is called by the C startup code crt0.0. When crt0.o calls main(), it
pushes the return address (the current PC register) onto stack and replaces PC with the entry
address of main(), causing the CPU to enter main(). For convenience, we shall show the stack
contents from left to right. When control enters main(), the stack contains the saved return PC on
top, as shown in Fig. 2.8, in which XXX denotes the stack contents before crt0.o calls main(), and
SP points to the saved return PC from where crt0.o calls main().

(4) Upon entry, the compiled code of every C function does the following:

. push FP onto stack # this saves the CPU's FP register on stack.

. let FP point at the saved FP # establish stack frame

. shift SP downward to allocate space for automatic local variables on stack

. the compiled code may shift SP farther down to allocate some temporary working
space on the stack, denoted by temps.

Low Address Code Data Heap| Stack High Address

Fig. 2.7 Process execution image
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For this example, there are 3 automatic local variables, int a, b, c, each of sizeof(int) = 4 bytes. After
entering main(), the stack contents becomes as shown in Fig. 2.9, in which the spaces of a, b, c are
allocated but their contents are yet undefined.

(5) Then the CPU starts to execute the code a=1; b=2; c=3; which put the values 1, 2, 3 into the
memory locations of a, b, c, respectively. Assume that sizeof(int) is 4 bytes. The locations of a, b, c
are at -4, -8, -12 bytes from where FP points at. These are expressed as -4(FP), -8(FP), -12(FP) in
assembly code, where FP is the stack frame pointer. For example, in 32-bit Linux the assembly
code for b=2 in C is

movl $2, -8(%ebp) # b=2 in C
where $2 means the value of 2 and %ebp is the ebp register.

(6) main() calls sub() by ¢ = sub(a, b); The compiled code of the function call consists of
. Push parameters in reverse order, i.e. push values of b=2 and a=1 into stack.
. Call sub, which pushes the current PC onto stack and replaces PC with the entry
address of sub, causing the CPU to enter sub().
When control first enters sub(), the stack contains a return address at the top, preceded by the
parameters, a, b, of the caller, as shown in Fig. 2.10.

(7) Since sub() is written in C, it actions are exactly the same as that of main(), i.e. it
. Push FP and let FP point at the saved FP;
. Shift SP downward to allocate space for local variables u, v.
. The compiled code may shift SP farther down for some temp space on stack.
The stack contents becomes as shown in Fig. 2.11.
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2.4.2 Stack Frames

While execution is inside a function, such as sub(), it can only access global variables, parameters
passed in by the caller and local variables, but nothing else. Global and static local variables are in the
combined Data section, which can be referenced by a fixed base register. Parameters and automatic
locals have different copies on each invocation of the function. So the problem is: how to reference
parameters and automatic locals? For this example, the parameters a, b, which correspond to the
arguments X, y, are at 8(FP) and 12(FP). Similarly, the automatic local variables u, v are at -4(FP) and
-8(FP). The stack area visible to a function, i.e. parameters and automatic locals, is called the Stack
Frame of a function, like a frame of movie to a person. Thus, FP is called the Stack Frame Pointer.
To a function, the stack frame looks like the following (Fig. 2.12).

From the above discussions, the reader should be able to deduce what would happen if we have a
sequence of function calls, e.g.

crt0.o0 --> main() --> A(par_a) --> B(par_b) --> C(par_c)

For each function call, the stack would grow (toward low address) one more frame for the called
function. The frame at the stack top is the stack frame of the current executing function, which is
pointed by the CPU's frame pointer. The saved FP points (backward) to the frame of its caller, whose
saved FP points back at the caller's caller, etc. Thus, the function call sequence is maintained in the
stack as a link list, as shown in Fig. 2.13.

By convention, the CPU’s FP = 0 when crt0.0 is entered from the OS kernel. So the stack frame link
list ends with a 0. When a function returns, its stack frame is deallocated and the stack shrinks back.

2.4.3 Return From Function Call

When sub() executes the C statement return x+y+u+v, it evaluates the expression and puts the
resulting value in the return value register (AX). Then it deallocates the local variables by
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.copy FP into SP; # SP now points to the saved FP in stack.
.pop stack into FP; # this restores FP, which now points to the caller's stack frame,
# leaving the return PC on the stack top.
(On the x86 CPU, the above operations are equivalent to the leave instruction).
.Then, it executes the RET instruction, which pops the stack top into PC register, causing the CPU to
execute from the saved return address of the caller.

(8) Upon return, the caller function catches the return value in the return register (AX). Then it cleans
the parameters a, b, from the stack (by adding 8 to SP). This restores the stack to the original
situation before the function call. Then it continues to execute the next instruction.

It is noted that some compilers, e.g. GCC Version 4, allocate automatic local variables in increasing
address order. For instance, int a, b; implies (address of a) < (address of b). With this kind of allocation
scheme, the stack contents may look like the following (Fig. 2.14).

In this case, automatic local variables are also allocated in "reverse order", which makes them
consistent with the parameter order, but the concept and usage of stack frames remain the same.

244 LongJump
In a sequence of function calls, such as
main() --> A() --> B()-->C();

when a called function finishes, it normally returns to the calling function, e.g. C() returns to B(), which
returns to A(), etc. It is also possible to return directly to an earlier function in the calling sequence by a
long jump. The following program demonstrates long jump in Unix/Linux.

/** longjump.c file: demonstrate long jump in Linux **/
#include <stdio.h>

#include <setjmp.h>

jmp_buf env; // for saving longjmp environment

int main()
{
int r, a=100;
printf("call setjmp to save environment\n") ;
if ((r=setjmp(env)) == 0){
A();
printf ("normal return\n");
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else
printf ("back to main() via long jump, r=%d a=%d\n", r, a);

int A()
{ printf("enter A()\n");
B();

printf ("exit A()\n");

int B()
{
printf ("enter B()\n");

printf("long jump? (y|n) ");
if (getchar()=='y’)
longjmp (env, 1234);

printf("exit B()\n");

In the longjump program, setjmp() saves the current execution environment in a jmp_buf structure and
returns 0. The program proceeds to call A(), which calls B(). While in the function B(), if the user
chooses not to return by long jump, the functions will show the normal return sequence. If the user
chooses to return by longjmp(env, value), execution will return to the last saved environment with a
nonzero value. In this case, it causes B() to return to main() directly, bypassing A(). The principle of
long jump is very simple. When a function finishes, it returns by the (callerPC, callerFP) in the current
stack frame, as shown in Fig. 2.15.

If we replace (callerPC, callerFP) with (savedPC, savedFP) of an earlier function in the calling
sequence, execution would return to that function directly. In addition to the (savedPC, savedFP),
setjmp() may also save CPU's general registers and the original SP, so that longjmp() can restore the
complete environment of the returned function. Long jump can be used to abort a function in a calling
sequence, causing execution to resume from a known environment saved earlier. Although rarely used
in user mode programs, it is a common technique in systems programming. For example, it may be
used in a signal catcher to bypass a user mode function that caused an exception or trap error. We shall
demonstrate this technique later in Chap. 6 on signals and signal processing.

2.4.5 Run-Time Stack Usage in 64-Bit GCC

In 64-bit mode, the CPU registers are expanded to rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8 to rl5, all
64-bit wide. The function call convention differs slightly from 32-bit mode. When calling a function,
the first 6 parameters are passed in rdi, rsi, rdx, rcx, 18, r9, in that order. Any extra parameters are
passed through the stack as they are in 32-bit mode. Upon entry, a called function first establishes the
stack frame (using rbp) as usual. Then it may shift the stack pointer (rsp) downward for local variables
and working spaces on the stack. The GCC compiler generated code may keep the stack pointer fixed,

Fig. 2.15 Function return
frame |params |callerPC|callerFP| .. .o e e e

CPU.FFP CFU. 3P
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with a default reserved Red Zone stack area of 128 bytes, while execution is inside a function, making
it possible to access stack contents by using rsp as the base register. However, the GCC compiler
generated code still uses the stack frame pointer rbp to access both parameters and locals. We illustrate
the function call convention in 64-bit mode by an example.

Example: Function Call Convention in 64-Bit Mode
(1) The following t.c file contains a main() function in C, which defines 9 local int (32-bit) variables, a
to i. It calls a sub() function with 8 int parameters.

/********* t.c file ********/

#include <stdio.h>

int sub(int a, int b, int ¢, int 4, int e, int £, int g, int h)
{

int u, v, w;

u=29;
v = 10;
w = 11;

return a+g+u+v; // use first and extra parameter, locals

int main()

{

int a, b, ¢, 4, e, £, g, h, i;
a=1;

b = 2;

c = 3;

d = 4;

e =5;

f = 6;

g =17;

h = 8;

i = sub(a,b,c,d,e,£f,g,h);

(2) Under 64-bit Linux, compile t.c to generate a t.s file in 64-bit assembly by
gcc -S t.c # generate t.s file

Then edit the t.s file to delete the nonessential lines generated by the compiler and add comments to
explain the code actions. The following shows the simplified t.s file with added comment lines.

o —— t.s file generated by 64-bit GCC compiler -------——————
.globl sub
sub: # int sub(int a,b,c,d,e,f,g,h)

# first 6 parameters a, b, ¢, d, e, f are in registers
# rdi,rsi,rdx,rcx,r8d4,r9d
# 2 extra parameters g,h are on stack.
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# Upon entry, stack top contains g, h

¥ el _____
# | h | g | pC | LOW address
T — [ —
# rsp

# establish stack frame
pushg %rbp
movqg $rsp, %rbp
# no need to shift rsp down because each function has a 128 bytes
# reserved stack area.
# rsp will be shifted down if function define more locals

# save first 6 parameters in registers on stack

movl %$edi, -20(%rbp) # a
mov1l %esi, -24(%rbp) # b
movl $edx, -28(%rbp) # C
movl %ecx, -32(%rbp) # d
movl %r8d, -36(%rbp) # e
movl %$r9d, -40(%rbp) # f

# access locals u, v, w at rbp -4 to -12
movl $9, -4 (%rbp)
movl $10, -8 (%rbp)
movl $11, -12(%rbp)

# compute x + g + u + v:
movl -20(%rbp), %edx # saved a on stack
movl 16 (%rbp), %eax # g at 16 (rbp)

addl $eax, %edx
movl -4 (%rbp), %eax # u at -4 (rbp)
addl %eax, %edx
movl -8 (%rbp), %eax # v at -8 (rbp)

addl %edx, %eax

# did not shift rsp down, so just popQ to restore rbp
popg  %rbp

ret
#====== main function code in assembly ======
.globl main

main:
# establish stack frame
pushg $%$rbp

movqg $rsp, %$rbp

# shit rsp down 48 bytes for locals
subg $48, %rsp
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# locals are at rbp -4 to -32

movl $1, -4 (%rbp =
movl $2, -8 (%rbp =
movl $3, -12(%rbp =
movl $4, -16(%rbp

movl $6, -24
movl $7, -28
movl $8, -32
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5 Q o0 % Q o o
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# call sub(a,b,c,d,e,f,g,h): first 6 parameters in registers

movl -24 (%rbp), %r9d # f in r9

movl -20(%rbp), %r8d # e in r8

movl -16(%rbp), %$ecx # d in ecx

movl -12(%rbp), %edx # c in edx

mov1l -8(%rbp), %esi # b in esi

movl -4 (%rbp), %eax # a in eax but will be in edi

# push 2 extra parameters h,g on stack

movl -32(%rbp), %edi # int h in edi

pushg %rdi # pushQ rdi ; only low 32-bits = h
movl -28(%rbp), %edi # int g in edi

pushg %rdi # pushQ rdi ; low 32-bits = g

movl %eax, %edi # parameter a in edi

call sub # call sub(a,b,c,d,e,f,g,h)

addq $16, %rsp # pop stack: h,g, 16 bytes

movl %eax, -36(%rbp) # i = sub return value in eax

movl S0, %eax # return 0 to crt0.o
leave
ret

# GCC compiler version 5.3.0
.ident "GCC: (GNU) 5.3.0"

2,5 Link C Program with Assembly Code

In systems programming, it is often necessary to access and control the hardware, such as CPU
registers and I/O port locations, etc. In these situations, assembly code becomes necessary. It is
therefore important to know how to link C programs with assembly code.
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2.5.1 Programming in Assembly

(1) C code to Assembly Code

/************* a.c flle ********************/

#include <stdio.h>
extern int B();

int A(int x, int vy)
{
int d, e, £;
d=4; e =5; £ =6;

f = B(d,e);
}
======= compile a.c file into 32-bit assembly code ======
cc -m32 -S a.c ===> a.s file
text
globl A
A
pushl %ebp
movl $esp, %ebp
subl $24, %esp
movl $4, -12(%ebp) # d=4
movl $5, -8 (%ebp) # e=5
movl $6, -4 (%ebp) # £=6
subl $8, %esp
pushl -8 (%ebp) # push e
pushl -12 (%ebp) # push d
call B
addl $16, %esp # clean stack
movl $eax, -4 (%ebp) # f=return value in AX
leave
ret

Explanations of the Assembly Code
The assembly code generated by GCC consists of three parts:

(1). Entry: also called the prolog, which establishes stack frame, allocates local variables and working
space on stack
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(2). Function body, which performs the function task with return value in AX register
(3). Exit: also called the epilog, which deallocates stack space and return to caller

The GCC generated assembly code are explained below, along with the stack contents

A: # A() start code location
(1). Entry Code:

pushl $ebp

movl %esp, %ebp # establish stack frame

The entry code first saves FP (%bp) on stack and let FP point at the saved FP of the caller. The stack
contents become

SP
————————— |---------------—---————-——- LOW address
xxx |PC|FP|
_________ [~ mm

FP

subl $24, %esp

Then it shift SP downward 24 bytes to allocate space for locals variables and working area.

(2). Function Body Code:

movl $4, -20(%ebp) // d=4
movl $5, -16(%ebp) // e=5
movl $6, -12(%ebp) // f=6

While inside a function, FP points at a fixed location and acts as a base register for accessing local
variables, as well as parameters. As can be seen, the 3 locals d, e, f, each 4 bytes long, are at the byte
offsets -20, -16, -12 from FP. After assigning values to the local variables, the stack contents become

sp --- -24 ----> SP

\ |
—————————— -4 -8 -12 -16 -20 -24|------------------ LOW address
xxx |PC|FP|? |2 | 6 | 5| 4 |2 |
————————— |--—-------f---e---d-———| -

FP

# call B(d,e): push parameters d, e in reverse order:

subl $8, %esp # create 8 bytes TEMP slots on stack
pushl -16 (%ebp) # push e
pushl -20 (%ebp) # push d
SP
————————————— |-4 -8 -12 -16 -20 -24|- TEMP -|-------|--- LOW address
xxx |retPC|FP|? |2 | 6 | 5| 4 |2 | 22| »?2 | e | 4 |
—————————— |----—----f---e---d--—— |-

FP
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call B

# when B() returns:
addl $16, %esp
movl $eax, -4 (%ebp)

(3). Exit Code:

# leave
movl %$ebp, %esp
popl %ebp

ret

43

# B() will grow stack to the RIGHT

# clean stack
# f = return value in AX

# SAME as leave

# pop retPC on stack top into PC

2.,5.2 Implement Functions in Assembly

Example 1: Get CPU registers. Since these functions are simple, they do not need to establish and

deallocate stack frames.

#============== g.g file ========
.global get_esp, get_ebp
get_esp:
movl $esp, %eax
ret
get_ebp:
movl $ebp, %eax
ret
$o—————=—=——=—=——=—=—=—=—=—=——=—=—=——========

{

int ebp, esp;

ebp = get_ebp();

esp = get_esp();

printf ("ebp=%8x esp=%8x\n",
}

ebp, esp);

Example 2: Assume int mysum(int x, int y) returns the sum of x and y. Write mysum() function in
ASSEMBLY. Since the function must use its parameters to compute the sum, we show the entry,
function body and exit parts of the function code.

.text
.global mysum, printf
mysum:

# Code section
# globals: export mysum, import printf
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# (1) Entry: (establish stack frame)

pushl %ebp
movl %esp, %ebp

# Caller has pushed y, x on stack, which looks like the following
# 12 8 4 0

B
# | v | x |retPC| ebp]|
o |-=—m -
# ebp

# (2): Function Body Code of mysum: compute x+y in AX register
movl 8 (%ebp), %eax # AX = X
addl 12 (%ebp), %eax # AX += vy

# (3) Exit Code: (deallocate stack space and return)
movl %ebp, %esp

Pop %ebp
ret
# =========== end of mysum.s file ==========================
int main() # driver program to test mysum() function
{
int a,b,c;
a = 123; b = 456;
c = mysum(a, b);
printf ("c=%d\n", c); // ¢ should be 579
}

2.5.3 Call C functions from Assembly

Example 3: Access global variables and call printf()

int a, b;
int main()

{
a = 100; b = 200;
sub () ;
}
#========== Assembly Code file ================
.text
.global sub, a, b, printf
sub:

pushl $ebp
movl %esp, %ebp
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pushl b

pushl a

pushl $fmt # push VALUE (address) of fmt
call printf # printf(fmt, a, b);

addl $12, %esp

movl %ebp, %esp
popl $ebp
ret
.data
fmt: .asciz "a=%d b=%d\n"

2.6 Link Library

A link library contains precompiled object code. During linking, the linker uses the link library to
complete the linking process. In Linux, there are two kinds of link libraries; static link library for
static linking, and dynamic link library for dynamic linking. In this section, we show how to create
and use link libraries in Linux.

Assume that we have a function

// musum.c file

int mysum(int x, int y){ return x + vy; }

We would like to create a link library containing the object code of the mysum() function, which can be
called from different C programs, e.g.

// t.c file
int main()

{
int sum = mysum(123,456);

2.6.1 Static Link Library

The following steps show how to create and use a static link library.

(1). gcc -c mysum.c # compile mysum.c into mysum.o
(2). ar rcs libmylib.a mysum.o # create static link library with member
mysum. o

(3). gcc =-static t.c -L. -lmylib # static compile-link t.c with libmylib.a
as link library
(4) . a.out # run a.out as usual
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In the compile-link step (4), -L. specifies the library path (current directory), and -1 specifies the library.
Note that the library (mylib) is specified without the prefex lib, as well as the suffix .a

2.6.2 Dynamic Link Library

The following steps show how to create and use a dynamic link library.

(1). gcc -c  -fPIC mysum.cC # compile to Position Independent
Code mysum.o

(2). gcc -shared -o libmylib.so mysum.o # create shared libmylib.so with
mysum. o
(3). gcc t.c -L. -1mylib # generate a.out using shared library

libmylib.so

(4) . export LD _LIBRARY PATH=./ # to run a.out, must export
LD_LIBRARY=./
(5). a.out # run a.out. 1d will load libmylib.so

In both cases, if the library is not in the current directory, simply change the —L. option and set the
LD_LIBRARY_PATH to point to the directory containing the library. Alternatively, the user may also
place the library in a standard lib directory, e.g. /lib or /usr/lib and run ldconfig to configure the
dynamic link library path. The reader may consult Linux ldconfig (man 8) for details.

2.7 Makefile

So far, we have used individual gcc commands to compile-link the source files of C programs. For
convenience, we may also use a sh script which includes all the commands. These schemes have a
major drawback. If we only change a few of the source files, the sh commands or script would still
compile all the source files, including those that are not modified, which is unnecessary and time-
consuming. A better way is to use the Unix/Linux make facility (GNU make 2008). make is a
program, which reads a makefile, or Makefile in that order, to do the compile-link automatically
and selectively. This section covers the basics of makefiles and shows their usage by examples.

2.7.1 Makefile Format

A make file consists of a set of targets, dependencies and rules. A target is usually a file to be created
or updated, but it may also be a directive to, or a label to be referenced by, the make program. A target
depends on a set of source files, object files or even other targets, which are described in a Dependency
List. Rules are the necessary commands to build the target by using the Dependency List. Figure 2.16
shows the format of a makefile.

2.7.2 The make Program

When the make program reads a makefile, it determines which targets to build by comparing the
timestamps of source files in the Dependency List. If any dependency has a newer timestamp since last
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Fig. 2.16 Makefile format
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Target Dependency List
target: file1 file2 ... fileN
Rules
<tab> commandi
<tab> command2
<tab> other command

build, make will execute the rule associated with the target. Assume that we have a C program

consisting of three source files:

(1). type.h file: // header file
int mysum(int x, int y) // types, constants,
(2). mysum.c file: // function in C

#include <stdio.h>
#incldue “type.h”

int mysum(int x, int y)
{

return x+y;

(3). t.c file: // main() in C
#include <stdio.h>
#include “type.h”
int main()
{
int sum = mysum(123,456) ;

printf(“sum = %d\n”, sum);

Normally, we would use the sh command

gcc -o myt main.c mysum.c

etc

to generate a binary executable named myt. In the following, we shall demonstrate compile-link of C

programs by using makefiles.

2.7.3 Makefile Examples

Makefile Example 1

(1). Create a makefile named mk1 containing:

myt: type.h t.c mysum.c

# target: dependency list

gcc -o myt t.c mysum.c # rule: line MUST begin with a TAB
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The resulting executable file name, myt in this example, usually matches that of the target name. This
allows make to decide whether or not to build the target again later by comparing its timestamp against
those in the dependency list.

(2). Run make using mk1 as the makefile: make normally uses the default makefile or Makefile,
whichever is present in the current directory. It can be directed to use a different makefile by the —f
flag, as in

make -f mkl

make will build the target file myt and show the command execution as

gce -o myt t.c mysum.c

(3). Run the make command again. It will show the message

make: ‘myt’ is up to date

In this case, make does not build the target again since none of the files has changed since last build.

(4). On the other hand, make will execute the rule command again if any of the files in the dependency
list has changed. A simple way to modify a file is by the touch command, which changes the

timestamp of the file. So if we enter the sh commands

touch type.h // or touch *.h, touch *.c, etc.
make -f mkl

make will recompile-link the source files to generate a new myt file

(5). If we delete some of the file names from the dependency list, make will not execute the rule
command even if such files are changed. The reader may try this to verify it.

As can be seen, mkl is a very simple makfile, which is not much different than sh commands. But we
can refine makefiles to make them more flexible and general.

Makefile Example 2: Macros in Makefile

(1). Create a makefile named mk2 containing:

CC = gcc # define CC as gcc

CFLAGS = -Wall # define CLAGS as flags to gcc

OBJS = t.o mysum.o # define Object code files

INCLUDE = -Ipath # define path as an INCLUDE directory
myt: type.h $(OBJS) # target: dependency: type.h and .o files

$(CC) $(CFLAGS) -o t $(OBJS) $(INCLUDE)

In a makefile, macro defined symbols are replaced with their values by $(symbol), e.g. $(CC) is
replaced with gec, $(CFLAGS) is replaced with —Wall, etc. For each .o file in the dependency list,
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make will compile the corresponding .c file into .o file first. However, this works only for .c files. Since
all the .c files depend on .h files, we have to explicitly include type.h (or any other .h files) in the
dependency list also. Alternatively, we may define additional targets to specify the dependency of .o
files on .h files, as in

t.o: t.c type.h # t.o depend on t.c and type.h
gcc -c t.c
mysum.o: mysum.c type.h # mysum.o depend type.h

gcc —C mysum.c

If we add the above targets to a makefile, any changes in either .c files or type.h will trigger make to
recompile the .c files. This works fine if the number of .c files is small. It can be very tedious if the
number of .c files is large. So there are better ways to include .h files in the dependency list, which will
be shown later.

(3). Run make using mk?2 as the makefile:
make -f mk2
(4). Run the resulting binary executable myt as before.

The simple makefiles of Examples 1 and 2 are sufficient for compile-link most small C programs. The
following shows some additional features and capabilities of makefiles.

Makefile Example 3: Make Target by Name

When make runs on a makefile, it normally tries to build the first target in the makefile. The behavior
of make can be changed by specifying a target name, which causes make to build the specific named
target. As an example, consider the makefile named mk3, in which the new features are highlighted in
bold face letters.

- mk3 file -----————-——-—————-———

CC = gcc # define CC as gcc

CFLAGS = -Wall # define CLAGS as flags to gcc

OBJS = t.o mysum.o # define Object code files

INCLUDE = -Ipath # define path as an INCLUDE directory
all: myt install # build all listed targets: myt, install
myt: t.o mysum.o # target: dependency list of .o files

$(CC) $(CFLAGS) -o myt $(OBJS) $ (INCLUDE)

t.o: t.c type.h # t.o depend on t.c and type.h
gcc -c t.c
mysum.o: mysum.c type.h # mysum.o depend mysum.c and type.h

gcc —C mysum.c

install: myt # depend on myt: make will build myt first
echo install myt to /usr/local/bin
sudo mv myt /usr/local/bin/ # install myt to /usr/local/bin/
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run: install # depend on install, which depend on myt

echo run executable image myt

myt || /bin/true # no make error 10 if main() return non-zero
clean:

rm -f *.o0 2> /dev/null # rm all *.o0 files

sudo rm -f /usr/local/bin/myt # rm myt

The reader may test the mk3 file by entering the following make commands:

(1). make [all] -f mk3 # build all targets: myt and install
(2). make install -f mk3 # build target myt and install myt
(3). make run -f mk3 # run /usr/local/bin/myt

(4) . make clean -f mk3 # remove all listed files

Makefile Variables: Makefiles support variables. In a makefile, % is a wildcard variable similar to *
in sh. A makefile may also contain automatic variables, which are set by make after a rule is matched.
They provide access to elements from the target and dependency lists so that the user does not have to
explicitly specify any filenames. They are very useful for defining general pattern rules. The following
lists some of the automatic variables of make.

$@ : name of current target.

$< : name of first dependency

$~ : names of all dependencies

$* : name of current dependency without extension

$? : list of dependencies changed more recently than current target.

In addition, make also supports suffix rules, which are not targets but directives to the make program.
We illustrate make variables and suffix rules by an example.

In a C program, .c files usually depend on all .h files. If any of the .h files is changed, all .c files must
be re-compiled again. To ensure this, we may define a dependency list containing all the .h files and
specify a target in a makefile as

DEPS = type.h # list ALL needed .h files
%.0: %.c $(DEPS) # for all .o files: if its .c or .h file changed

$(CC) -¢ -0 $@ # compile corresponding .c file again

In the above target, %.0 stands for all .o files and $ @ is set to the current target name, i.e. the current .o
file name. This avoids defining separate targets for individual .o files.

Makefile Example 4: Use make variables and suffix rules

# —--—————— mk4 file ----=----=---=
CC = gcc
CFLAGS = -I.

OBJS = t.o mysum.o
AS = as # assume we have .s files in assembly also
DEPS = type.h # list all .h files in DEPS
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.s.0: # for each fname.o, assemble fname.s into fname.o
$(AS) -0 $< -0 $@ # -0 $@ REQUIRED for .s files

.c.o: # for each fname.o, compile fname.c into fname.o
$(CC) -c $< -0 $@ # -o $@ optional for .c files

%.0: %.c $(DEPS) # for all .o files: if its .c or .h file changed
$(CC) -c -o %@ $< # compile corresponding .c file again

myt: $(OBJS)
$(CC) $(CFLAGS) -0 $@ $4

In the makefile mk4, the lines .s.0: and .c.o: are not targets but directives to the make program by the
suffix rule. These rules specify that, for each .o file, there should be a corresponding .s or .c file to build
if their timestamps differ, i.e. if the .s or .c file has changed. In all the target rules, $@ means the current
target, $< means the first file in the dependency list and $* means all files in the dependency list. For
example, in the rule of the myt target, -0 $@ specifies that the output file name is the current target,
which is myt. $2 means it includes all the files in the dependency list, i.e. both t.0 and mysum.o. If we
change $7 to $< and touch all the .c files, make would generate an “undefined reference to mysum”
error. This is because $< specifies only the first file (t.0) in the dependency list, make would only
recompile t.c but not mysum.c, resulting a linking error due to missing mysum.o file. As can be seen
from the example, we may use make variables to write very general and compact makefiles. The
downside is that such makefiles are rather hard to understand, especially for beginning programmers.

Makfiles in Subdirectories

A large C programming project usually consists of tens or hundreds of source files. For ease of
maintenance, the source files are usually organized into different levels of directories, each with its
own makefile. It’s fairly easy to let make go into a subdirectory to execute the local makefile in that
directory by the command

(cd DIR; $(MAKE)) OR cd DIR && $(MAKE)

After executing the local makefile in a subdirectory, control returns to the current directory form where
make continues. We illustrate this advanced capability of make by a real example.

Makefile Example 5: PMTX System Makefiles

PMTX (Wang 2015) is a Unix-like operating system designed for the Intel x86 architecture in 32-bit
protect mode. It uses 32-bit GCC assembler, compiler and linker to generate the PMTX kernel image.
The source files of PMTX are organized in three subdirectories:

Kernel : PMTX kernel files; a few GCC assembly files, mostly in C
Fs : file system source files; all in C
Driver : device driver source files; all in C

The compile-link steps are specified by Makefiles in different directories. The top level makefile in the
PMTX source directory is very simple. It first cleans up the directories. Then it goes into the Kernel
subdirectory to execute a Makefile in the Kernel directory. The Kernel Makefile first generates .o files
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for both .s and .c files in Kernel. Then it directs make to go into the Driver and Fs subdirectories to
generate .o file by executing their local Makfiles. Finally, it links all the .o files to a kernel image file.
The following shows the various Makefiles of the PMTX system.

Fomm PMTX Top level Makefile -------------
all: pmtx kernel

pmtx_kernel:
make clean

cd Kernel && $(MAKE)

clean: # rm mtx_kerenl, *.o file in all directories

- PMTX Kernel Makefile ------=----------
AS = as -Iinclude

CC = gcc

LD = 14

CPP = gcc -E -nostdinc
CFLAGS = -W -nostdlib -Wno-long-long -I include -fomit-frame-pointer

KERNEL_OBJS = entry.o init.o t.o ts.o traps.o trapc.o queue.o \
fork.o exec.o wait.o io.0 syscall.o loader.o pipe.o mes.o signal.o \
threads.o sbrk.o mtxlib.o

K_ADDR=0x80100000 # kernel start virtual address

all: kernel

.S.0: # build each .o if its .s file has changed
${AS} -a $< -0 S$*.0 > $*.map

pmtx_kernel: $ (KERNEL_OBJS) # kernel target: depend on all OBJs
cd ../Driver && $(MAKE) # cd to Driver, run local Makefile
cd ../Fs && $(MAKE) # cd to Fs/, run local Makefile

# link all .o files with entry=pm entry, start VA=0x80100000
${LD} --oformat binary -Map k.map -N -e pm_entry \
-Ttext ${K_ADDR} -0 $@ \
$ {KERNEL_OBJS} ../DRIVER/*.o ../FS/*.o
clean:
rm -f *.map *.o
rm —-f ../DRIVER.*.map ../DRIVER/*.0
rm -f ../FS/*.map ../FS/*.0

The PMTX kernel makfile first generates .o files from all .s (assembly) files. Then it generates other .o
files from .c files by the dependency lists in KERNEL_OBJ. Then it goes into Driver and Fs
directories to execute the local makefiles, which generate .o files in these directories. Finally, it links
all the .o files to generate the pmtx_kernel image file, which is the PMTX OS kernel. In contrast, since
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all files in F's and Driver are in C, their Makefiles only compile .c files to .o files, so there are no .s or Id
related targets and rules.

CC=gcc
CPP=gcc -E -nostdinc
CFLAGS=-W -nostdlib -Wno-long-long -I include -fomit-frame-pointer

DRIVER _OBJS = timer.o pv.o vid.o kbd.o fd.o hd.o serial.o pr.o atapi.o
driverobj: S${DRIVER_OBJS}

CC=gcc
CPP=gcc -E -nostdinc
CFLAGS=-W -nostdlib -Wno-long-long -I include -fomit-frame-pointer

FS OBJS = fs.o buffer.o util.o mount_root.o alloc_dealloc.o \
mkdir_creat.o cd_pwd.o rmdir.o link_unlink.o stat.o touch.o \
open_close.o read.o write.o dev.o mount_umount.o

fsobj: ${FS_OBJS}

- End of Makefile -- - ————------——————

2.8 The GDB Debugger

The GNU Debugger (GDB) (Debugging with GDB 2002; GDB 2017) is an interactive debugger,
which can debug programs written in C, C++ and several other languages. In Linux, the command
man gdb displays the manual pages of gdb, which provides a brief description of how to use GDB.
The reader may find more detailed information on GDB in the listed references. In this section, we shall
cover GDB basics and show how to use GDB to debug C programs in the Integrated Development
Environment (IDE) of EMACS under X-windows, which is available in all Linux systems. Since the
Graphic User Interface (GUI) part of different Linux distributions may differ, the following discussions
are specific to Ubuntu Linux Version 15.10 or later, but it should also be applicable to other Linux
distributions, e.g. Slackware Linux 14.2, etc.

2.8.1 Use GDB in Emacs IDE

1. Source Code: Under X-window, open a pseudo-terminal. Use EMACS to create a Makefile, as
shown below.

Makefile:

gcc =g -0 t t.c
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Then use EMACS to edit a C source file. Since the objective here is to show GDB usage, we shall use a
very simple C program.

/****kk** gource file: t.c Code ******%%/
#include <stdio.h>

int sub() ;

int g, h; // globals

int main()
{
int a, b, c¢;
printf ("enter main\n") ;
= 1;
= 2;
= 3;
123;
= 456;
= sub(a, b);
printf("c = %d\n", c);

Qb Q o oo
I

printf ("main exit\n");

int sub(int x, int y)

{
int u,v;
printf ("enter sub\n");
u = 4;
v = 5;
printf ("sub return\n");
return x+y+u+v+g+h;

2. Compile Source Code: When EMACS is running, it displays a menu and a tool bar at the top of the
edit window (Fig. 2.17).

Each menu can be opened to display a table of submenus. Open EMACS Tools menu and select
Compile. EMACS will show a prompt line at the bottom of the edit window

make -k
and waits for user response. EMACS normally compile-link the source code by a makefile. If the

reader already has a makefile in the same directory as shown above, press the Enter key to let EMACS
continue. In instead of a makefile, the reader may also enter the command line manually.

Fig. 2.17 EMACS menu o emacs@kwangdell
and tool bar File Edit Options Buffers Tools C Help

RR B
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Fig. 2.18 GDB menu and 9 & emacs@kwangdell
tool bar File Edit ¢ ffers Tools Gud Cor

Run & Run

gece -g -o t t.c

In order to generate a binary executable for GDB to debug, the —g flag is required. With the —g flag, the
GCC compiler-linker will build a symbol table in the binary executable file for GDB to access
variables and functions during execution. Without the —g flag, the resulting executable file can not
be debugged by GDB. After compilation finishes, EMACS will show the compile results, including
warning or error messages, if any, in a separate window below the source code window.

3. Start up GDB: Open EMACS Tools menu and select Debugger.
EMACS will show a prompt line at the bottom of the edit window and wait for user response.
gdb -i=mi ¢t
Press Enter to start up the GDB debugger. GDB will run in the upper window and display a menu and a
tool bar at the top of the EMACS edit window, as shown in Fig. 2.18.

The user may now enter GDB commands to debug the program. For example, to set break points,
enter the GDB commands

b main # set break point at main
b sub # set break point at sub
b 10 # set break point at line 10 in program

When the user enters the Run (r) command (or choose Run in the tool bar), GDB will display the
program code in the same GDB window. Other frames/windows can be activated through the submenu
GDB-Frames or GDB-Windows. The following steps demonstrate the debugging process by using
both commands and tool bar in the multi-windows layout of GDB.

4. GDB in Multi-Windows: From the GDB menu, choose Gud => GDB-MI => Display Other
Windows, where => means follow a submenu. GDB will display GDB buffers in different
windows, as shown in Fig. 2.19.

Figure 2.19 shows six (6) GDB windows, each displays a specific GDB buffer.

Gud-t: GDB buffer for user commands and GDB messages

t.c: Program source code to show progress of execution

Stack frames: show stack frames of function calling sequence
Local Registers: show local variables in current executing function
Input/output: for program I/O

Breakpoints: display current break points settings

It also shows some of the commonly used GDB commands in a tool bar, e.g. Run, Continue, Next
line, Step line, which allows the user to choose an action instead of entering commands.
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Fig. 2.19 Multi-windows emacs@kwangdell
of GDB

Breakpoint 1 at 0x804845c: file t.c, 1?» Locals| Registers
(gdb) b sub nt a 1
Breakpoint 2 at ox86484df: file t.c, 1* 1int b 2

int c 3
Breakpoint 1, main () at t.c:8 I
8 printf("enter main\n"); |
(gdb)ll
Uz**- *gud-t* Bot L24 (Debugg U:%*- *locals of t* ALl L1 (Local
#include <stdio.h= enter main
int sub();
int g, h;

int main()
{
int a,b,c;
® printf("enter main\n");
a=1;
2;
3;
123;
456;
c = sub(a, b);
printf("c = %d\n", c);
printf("exit main\n");
-1--- t.c Top L12 (C/L Ab U:**- =*ipputfoutput of t* All L2
*H in main of t.c:12 Breakpoints| Threads
Num Type Disp Enb Addr  [] Hits»
1 breakpoint keep y  0x0804845c 1 ?
2  breakpoint keep y 0x080484df 0 »

v
—_
Ta n o

U:%*- +*stack frames of t* All L1 U:%*- *breakpoints of t* All L1 (r

While the program is executing, GDB shows the execution progress by a dark triangular mark,
which points to the next line of program code to be executed. Execution will stop at each break point,
providing a break for the user to interact with GDB. Since we have set main as a break point, execution
will stop at main when GDB starts to run. While execution stops at a break point, the user may interact
with GDB by entering commands in the GDB window, such as set/clear break points, display/change
variables, etc. Then, enter the Continue (¢c) command or choose Continue in the tool bar to continue
program execution. Enter Next (n) command or choose Next line or Step line in the GDB tool bar to
execute in single line mode.

Figure 2.19 shows that execution in main() has already completed executing several lines of the
program code, and the next line mark is at the statement

g =123;
At the moment, the local variables a, b, c are already assigned values, which are shown in the Locals

registers windows as a=1, b=2, c=3. Global variables are not shown in any window, but the user may
enter Print (p) commands

bPg
p h

to print the global variables g and h, both of which should still be O since they are not assigned any
values yet.
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Fig. 2.20 Multi-windows o emacs@kwangdell
of GDB

$1 = 123 Locals Registers
(gdb) p h nt u 4
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c = sub(a, b); enter main
printf("c = %d\n", c); enter sub
printf("exit main\n");

}

int sub(int x, int y)
{ 1
int u, v;
® printf("enter sub\n");
u=4;
v = 5;
DD printf("return from sub\n");
return x+y+u+v+g+h;

}

~t-== f.€ Bot L25 (C/L Ab U:**- =*ipput/output of t* All L3
*H in sub of t.c:25 Breakpoints| Threads
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Figure 2.19 also shows the following GDB windows:

. input/output window shows the outputs of printf statements of main().
. stack frames window shows execution is now inside the main() function.
. breakpoints window shows the current breakpoints settings, etc.

This multi-windows layout provides the user with a complete set of information about the status of the
executing program.

The user may enter Continue or choose Continue in the tool bar to continue the execution. When
control reaches the sub() function, it will stop again at the break point. Figure 2.20 shows that the
program execution is now inside sub() and the execution already passed the statements before

printf (“*return from sub\n”);

At this moment, the Locals Registers window shows the local variables of sub() as u=4 and v=5. The
input/output window shows the print results of both main() and sub(). The Stack frames window
shows sub() is the top frame and main() is the next frame, which is consistent with the function calling
sequence.

(5). Additional GDB Commands: At each break point or while executing in single line mode, the user
may enter GDB commands either manually, by the GDB tool bar or by choosing submenu items in
the Gud menu, which includes all the commands in the GDB tool bar. The following lists some
additional GDB commands and their meanings.
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Clear Break Points:
clear line# : clear bp at line#
clear name : clear bp at function name

Change Variable Values
set var a=100 : set variable a to 100
set var b=200 : set b to 200, etc.

Watch Variable Changes:
watch c : watch for changes in variable c; whenever c changes, it will display its old value and new
value.

Back trace (bt):
bt stackFrame# to back trace stack frames

2.8.2 Advices on Using Debugging Tools

GDB is a powerful debugger, which is fairly easy to use. However, the reader should keep in mind that
all debugging tools can only offer limited help. In some cases, even a powerful debugger like the GDB
is of little use. The best approach to program development is to design the program’s algorithm
carefully and then write program code in accordance with the algorithm. Many beginning
programmers tend to write program code without any planning, just hoping their program would
work, which most likely would not. When their program fails to work or does not produce the right
results, they would immediately turn to a debugger, trying to trace the program executions to find out
the problem. Relying too much on debugging tools is often counter-productive as it may waste more
time than necessary. In the following, we shall point out some common programming errors and show
how to avoid them in C programs.

2.8.3 Common Errors in C programs

A program in execution may encounter many types of run-time errors, such as illegal instruction,
privilege violation, divide by zero, invalid address, etc. Such errors are recognized by the CPU as
exceptions, which trap the process to the operating system kernel. If the user has not made any
provision to handle such errors, the process will terminate by a signal number, which indicates the
cause of the exception. If the program is written in C, which is executed by a process in user mode,
exceptions such as illegal instruction and privilege violation should never occur. In system program-
ming, programs seldom use divide operations, so divide by zero exceptions are also rare. The
predominate type of run-time errors are due to invalid addresses, which cause memory access
exceptions, resulting in the dreadful and familiar message of segmentation fault. In the following,
we list some of the most probable causes in C programs that lead to memory access exceptions at
run-time.

(1). Uninitialized pointers or pointers with wrong values: Consider the following code segments,
with line numbers for ease of reference.
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1. int *p; // global, initial value = 0
int main()

{

int *qg; // a is local on stack, can be any value
*p = 1; // dereference a NULL pointer
4. *qg = 2; // dereference a pointer with unknown value

Line 1 defines a global integer pointer p, which is in the BSS section of the run-time image with an
initial value 0. So it’s a NULL pointer. Line 3 tries to dereference a NULL pointer, which will cause a
segmentation fault.

Line 2 defines a local integer pointer q, which is on the stack, so it can be any value. Line 4 tries to
dereference the pointer q, which points at an unknown memory location. If the location is outside of the
program’s writable memory area, it will cause a segmentation fault due to memory access violation. If
the location is within the program’s writable memory area, it may not cause an immediate error but it
may lead to other errors later due to corrupted data or stack contents. The latter kind of run-time error is
extremely difficult to diagnose because the errors may have propagated through the program execu-
tion. The following shows the correct ways of using these pointers. Modify the above code segment as
shown below.

int =x, *p; // or int *p = &x;
int main ()

{

int *q;

P = &x; // let p point at x

p o= 1;

g = (int *)malloc(sizeof(int); // q point at allocate memory
*q = 2;

The principle is very simple. When using any pointer, the programmer must ensure the pointer is not
NULL or has been set to point to a valid memory address.

(2). Array index out of bounds: In C programs, each array is defined with a finite number of N
elements. The index of the array must be in the range of [0, N-1]. If the array index exceeds the range at
run-time, it may cause invalid memory access, which either corrupt the program data area or result in a
segmentation fault. We illustrate this by an example. Consider the following code segment.

#define N 10

1. int a[N], i; // An array of N elements, followed by int i
int main()
{
2. for (i=0; 1i<N; 1++) // index i in range
ali] = i+1; // set al[ ] values = 1 to N
3. a[N] = 123456789; // set a[N] to a LARGE value
4. printf(“i = %d\n”, 1); // print current i value

printf (“%d\n”, al[il)); // segmentation fault !
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Line 1 defines an array of N elements, which is followed by the index variable i. Line 2 represents the
proper usage of the array index, which is within the bounds [0, N-1]. Line 3.sets a[N] to a large value,
which actually changes the variable i because a[N] and i are in the same memory location. Line 4 prints
the current value of i, which is no longer N but the large value. Line 5 will most likely to cause a
segmentation fault because a[123456789] tries to access a memory location outside of the program’s
data area.

(3). Improper use of string pointers and char arrays: Many string operation functions in the C
library are defined with char * parameters. As a specific example, consider the strcpy() function, which
is defined as

char * strcpy(char *dest, char *src)

It copies a string from src to dest. The Linux man page on strcpy() clearly specifies that the dest string
must be large enough to receive the copy. Many programmers, including some ‘experienced’ graduate
students, often overlook the specification and try to use strcpy() as follows.

char *s; // s is a char pointer
strcpy(s, ™ this is a string”);

The code segment is wrong because s is not pointing at any memory location with enough space to
receive the src string. If s is global, it is a NULL pointer. In this case, strcpy() will cause a segmentation
fault immediately. If s is local, it may point to an arbitrary memory location. In this case, strcpy() may
not cause an immediate error but it may lead to other errors later due to corrupted memory contents.
Such errors are very subtle and difficult to diagnose even with a debugger such as GDB. The correct
way of using strepy() is to ensure dest is NOT just a string pointer but a real memory area with enough
space to receive the copied string, as in

char s[128]; // s is a char array
strcpy(s, ™ this is a string”):;

Although the same s variable in both char *s and char s[128] can be used as an address, the reader must
beware there is a fundamental difference between them.

(4). The assert macro: Most Unix-like systems, including Linux, support an assert(condition) macro,
which can be used in C programs to check whether a specified condition is met or not. If the condition
expression evaluates to FALSE (0), the program will abort with an error message. As an example,
consider the following code segments, in which the mysum() function is designed to return the sum of
an integer array (pointed by int *ptr) of n<=128 elements. Since the function is called from other code
of a program, which may pass in invalid parameters, we must ensure the pointer ptr is not NULL and
the array size n does not exceed the LIMIT. These can be done by including assert() statements at the
entry point of a function, as shown below.

#define LIMIT 128
int mysum(int *ptr, int n)

{
int i = 0, sum = 0;
assert (ptr != NULL); // assert ptr not NULL
assert(n <= LIMIT); // assert n <= LIMIT

while(i++ < n)

sum += *ptr++
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When execution enters the mysum() function, if either assert(condition) fails, the function will abort
with an error message.

(5). Use fprintf() and getchar() in Program Code: When writing C programs, it is often very
useful to include fprintf(stderr, message) statements at key places in the program code to display
expected results. Since fprintf() to stderr is unbuffered, the printed message or results will show up
immediately before the next C statement is executed. If desired, the programmer may also user getchar
() to stop the program flow, allowing the user to examine the execution results at that moment before
continuing. We cite a simple program task to illustrate the point. A priority queue is a singly link
list ordered by priority, with high priority entries in front. Entries with the same priority are ordered
First-in-First-out (FIFO). Write an enqueue() function which insert an item into a priority queue by
priority.

typedef struct entry{

struct entry *next;

char name[64]; // entry name

int priority; // entry priority
}ENTRY;

void printQ (ENTRY *queue) // print queue contents
{
while (queue) {
printf(“[%s %d]-> “, Queue->name, queue->priority);
queue = queue->next;
}
printf (“\n”);

void enqueue (ENTRY **queue, ENTRY *p)
{
ENTRY *g = *queue;
printQ(q); // show queue before insertion
if (g==0 || p->priority > g->priority){ // first in queue
*queue = p;
p->next = qg;
}
else{ // not first in queue; insert to the right spot
while (g->next && p->priority <= g->priority)
g = g->next;
p->next = g->next;
b;

g->next

}
printQ(q); // show queue after insertion

In the above example code, if the enqueue() function code is incorrect, it may insert an entry to the
wrong spot in the queue, which will cause other program code to fail if they rely on the queue contents
being correct. In this case, using either assert() statements or relying on a debugger may offer very little
help, since all the pointers are valid and it would be too tedious to trace a long link list in a debugger.



62 2 Programming Background

Instead, we print the queue before inserting a new entry and print it again after the insertion. These
allow the user to see directly whether or not the queue is maintained correctly. After verifying the code
works, the user may comment out the printQ() statements.

29 Structures in C

A structure is a composite data type containing a collection of variables or data objects. Structure types
in C are defined by the struct keyword. Assume that we need a node structure containing the following
fields.

next : a pointer to the next node structure;
key : an integer;
name : an array of 64 chars;

Such a structure can be defined as
struct node{
struct node *next;
int key;
char name[64];
}i
Then, “struct node” can be used as a derived type to define variables of that type, as in

struct node x, *nodePtr;

These define x as a node structure and nodePtr a node pointer. Alternatively, we may define “struct
node” as a derived type by the typedef statement in C.

typedef struct node({
struct node *next;
int key;
char name[64];
}NODE;
Then, NODE is a derived type, which can be used to define variables of that type, as in
NODE x, *nodePtr;
The following summarizes the properties of C structures.
(1). When defining a C structure, every field of the structure must have a type already known to the
compiler, except for the self-referencing pointers. This is because pointers are always the same size,

e.g. 4 bytes in 32-bit architecture. As an example, in the above NODE type, the filed next is a

struct node *next;
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which is correct because the compiler knows struct node is a type (despite being incomplete yet) and
how many bytes to allocate for the next pointer. In contrast, the following statements

typedef struct node{
NODE *next; // error
int key;
char name[64];

}NODE;

would cause a compile-time error because the compiler does not know what is the NODE type yet,
despite next is a pointer.

(2). Each C structure data object is allocated a piece of contiguous memory. The individual fields of a C
structure are accessed by using the . operator, which identifies a specific field, as in

NODE Xx; // X 1s a structure of NODE type
Then the individual fields of x are accessed as

x.next; which is a pointer to another NODE type object.
x.key; which is an integer
x.name; which is an array of 64 chars

At run time, each field is accessed as an offset from the beginning address of the structure.

(3). The size of a structure can be determined by sizeof(struct type). The C compiler will calculate the
size in total number of bytes of the structure. Due to memory alignment constraints, the C compiler
may pad some of the fields of a structure with extra bytes. If needed, the user may define C structures
with the PACKED attribute, which prevents the C compiler from padding the fields with extra bytes,
as in

typedef struct node({
struct node *next;
int key;
char name[2];
}__attribute_ ((packed, aligned(1l))) NODE;

In this case, the size of the NODE structure will be 10 bytes. Without the packed attribute, it would be
12 bytes because the C compiler would pad the name field with 2 extra bytes, making every NODE
object a multiple of 4 bytes for memory alignment.

(4). Assume that NODE x, y; are two structures of the same type. Rather than copying the individual
fields of a structure, we can assign x to y by the C statement y = X. The compiler generated code uses
the library function memncpy(&y, &x, sizeof(NODE)) to copy the entire structure.

(5). Unions in C is similar to structures. To define a union, simply replace the keyword struct with the
keyword union, as in

union node({

int “*ptr; // pointer to integer
int ID; // 4-byte integer
char name([32]; // 32 chars

Yx; // x 1s a union of 3 fields
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Members in unions are accessed in exactly the same way as in structures. The major difference
between structures and unions is that, whereas each member in a structure has a unique memory
area, all members of a union share the same memory area, which is accessed by the attributes of the
individual members. The size of a union is determined by the largest member. For example, in the
union x the member name requires 32 bytes. All other members require only 4 bytes each. So the size
of the union x is 32 bytes. The following C statements show how to access the individual members of a
union.

x.ptr = 0x12345678; // use first 4 bytes of x
x.ID = 12345; // use first 4 bytes of x also
strcpy (x.name, “1234567890”); // uses first 11 bytes of x

2.9.1 Structure and Pointers

In C, pointers are variables which point to other data objects, i.e. they contain the address of other data
objects. In C programs, pointers are define with the * attribute, as in

TYPE *ptr;
which defines ptr as a pointer to a TYPE data object, where TYPE can be either a base type or a derived
type, such as struct, in C. In C programming, structures are often accessed by pointers to the structures.

As an example, assume that NODE is a structure type. The following C statements

NODE x, *p;
p = &%;

define x as a NODE type data object and p as a pointer to NODE objects. The statement p = &x;
assigns the address of x to p, so that p points at the data object x. Then *p denotes the object x, and the
members of x can be accessed as

(*p) .name, (*p).value, (*p).next

Alternatively, the C language allows us to reference the members of x by using the “point at” operator
->, as in

p->name, p->value, p->next;
which are more convenient than the . operator. In fact, using the -> operator to access members of
structures has become a standard practice in C programming.
29.2 TypecastinC

Typecast is a way to convert a variable from one data type to another data type by using the cast
operator (TYPE) variable. Consider the following code segments.
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char *cp, ¢ = ‘a’; // c is 1 byte
int *ip, 1 = 0x12345678; // i is 4 bytes

(1). i = c; // 1 = 0x00000061; lowest byte = c

(2). ¢ = 1i; // ¢ = 0x78 (c = lowest byte of i)

(3). cp = (char *)&i; // typecast to suppress compiler warning
(4). ip = (int *)&c; // typecast to suppress compiler warning
(5). ¢ = *(char *)ip; // use ip as a char *

(6). 1 = *(int *)cp; // use cp as an int *

Lines (1) and (2) do not need typecasting even though the assignments involve different data types.
The resulting values of the assignments are shown in the comments. Lines (4) and (5) need typecasting
in order to suppress compiler warnings. After the assignments of Lines (4) and (5), *cp is still a byte,
which is the lowest byte of the (4-byte) integer i. *ip is an integer = 0x00000061, with the lowest byte
= ‘c’ or Ox 61. Line (6) forces the compiler to use ip as a char *, so *(char *)ip dereferences to a single
byte. Line (7) forces the compiler to use cp as an int *, so *(int *)cp dereferences to a 4-byte value,
beginning from where cp points at.

Typecasting is especially useful with pointers, which allows the same pointer to point to data
objects of different sizes. The following shows a more practical example of typecasting. In an Ext2/3
file system, the contents of a directory are dir_entries defined as

struct dir_entry{

int ino; // inode number

int entry_len; // entry length in bytes
int name_len; // name_len

char name[ ] // name_len chars

Y
The contents of a directory consist of a linear list of dir_entries of the form
| ino elen nlen NAME | ino elen nlen NAME |

in which the entries are of variable length due to the different name_len of the entries. Assume that char
buff ] contains a list of dir_entries. The problem is how to traverse the dir_entries in buf[ ]. In order to
step through the dir_entires sequentially, we define

struct dir_entry *dp = (struct dir_entry *)buf; // typecasting

char *cp = buf; // no need for typecasting

// Use dp to access the current dir_entry;

// advance dp to next dir_entry:

cp = += dp->entry_len; // advance cp by entry_len

dp = (struct dir_entry *)cp; // pull dp to where cp points at
With proper typecasting, the last two lines of C code can be simplified as

dp = (struct dir_entry *) ((char *)dp + dp->rlen);

which eliminates the need for a char *cp.
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2.10 Link List Processing

Structures and pointers are often used to construct and manipulate dynamic data structures, such as
link lists, queues and trees, etc. The most basic type of dynamic data structures is the link list. In this
section, we shall explain the concepts of link list, list operations, and demonstrate list processing by
example programs.

2.10.1 Link Lists

Assume that nodes are structures of NODE type, as in

typedef struct node{

struct node *next; // next node pointer

int wvalue; // ID or key value

char name[32]; // name field if needed
}NODE;

A (singly) link list is a data structure consisting of a sequence of nodes, which are linked together by
the next pointers of the nodes, i.e. each node’s next pointer points to a next node in the list. Link lists
are represented by NODE pointers. For example, the following C statements define two link lists,
denoted by list and head.

NODE *1list, *head; // define list and head as link lists

A link list is empty if it contains no nodes, i.e. an empty link list is just a NULL pointer. In C
programming, the symbol NULL is defined by the macro (in stddef.h)

#define NULL (void *)0

as a pointer with a 0 value. For convenience, we shall use either NULL or O to denote the null pointer.
Thus, we may initialize link lists as empty by assigning them with null pointers, as in

list NULL; // list = null pointer
head = 0; // head = null pointer

2.10.2 Link List Operations
The most common types of operations on link lists are

Build: initialize and build list with a set of nodes

Traversal: step through the elements of a list

Search: search for an element by key

Insertion: insert new elements into a list

Deletion: delete an existing element from a list

Reorder: reorder a link list by (changed) element key or priority value

In the following, we shall develop C programs to demonstrate list processing.
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2.10.3 Build Link List

In many C programming books, dynamic data structures are usually constructed with data objects that
are dynamically allocated by the C library function malloc(). In these cases, data objects are allocated
from the program’s heap area. This is fine, but some books seem to over emphasize the notion that
dynamic data structures must use malloc(), which is false. Unlike static data structures, such as arrays,
in which the number of elements is fixed, dynamic data structures consists of data objects that can be
modified with ease, such as to insert new data objects, delete existing data objects and reorder the data
objects, etc. It has nothing to do with where the data objects are located, which can be in either the
program’s data area or heap area. We shall clarify and demonstrate this point in the following example
programs.

2.10.3.1 Link List in Data Area

Example Program C2.1: This program builds a link list from an array of node structures. The
program consists of a type.h header file and a C2.1.c file, which contains the main() function.

(1). type.h file: First, we write a type.h file, which includes the standard header files, defines the
constant N and the NODE type. The same type.h file will be used as an included file in all list
processing example programs.

/********** type.h file ***********/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define N 10

typedef struct node{
struct node *next;
int id;

char name[64];

}NODE;
/**xx%x** end of type.h file *****x%x*/

(2). C2.1 Program code: The program constructs a link list and prints the link list.

khkkhhkhkhkhkhkhhhkhkhkhkhhhkkkkhd 1 khkkhhkhkhkhkhkhhhhkhkhkhhhhkkk
«l.C lle

#include “type.h”
NODE *mylist, node[N]; // in bss section of program run-time image

int printlist(NODE *p) // print list function
{
while (p) {
printf(“[%s %d]->", p->name, p->id);
p = p->next;
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}
printf (“"NULL\n"”) ;

int main()
{
int i;
NODE *p;
for (i1=0; 1<N; 1i++) {
p = &nodel[i];
sprintf (p->name, "%s%d", "node", i); // node0, nodel, etc.
p->id = 1i; // used node index as ID
p->next = p+1; // nodel[i] .next = &nodel[i+1];
}
node[N-1] .next = 0;
mylist = &node[O0]; // mylist points to node[0]
printlist(mylist); // print mylist elements

(4). Explanation of the C2.1.c code

(4).1. Memory location of variables: The following diagram shows the memory location of the
variables, which are all in the program’s Data area. More precisely, they are in the bss section
of the combined program Data area.

NODE *mylist, node[N]; // in the bss section of run-time image
——————— - [ I T 9---
|z | |next | I I I I
------- lia | o
|name | I I I I
(4).2. The main() function: The main() function builds a link list with node names = “node0” to

“node9” and node id values=0 to 9. The link list ends with a null pointer. Note that the list
pointer and list elements are all in the array of node[N], which is the program’s data area.
(5). Run Results: The reader may compile and run the C2.1 program. It should print the list as

[node0 0]->[ndoel 1]-> ... [node9 9]->NULL

2.10.3.2 Link List in Heap Area
Example C2.2: The next example program, C2.2, builds a link list in the program’s heap area.

/**************** c2.2.c file *****************/

#include “type.h”
NODE *mylist, *node; // pointers, no NODE area yet

int printlist (NODE *p){ // same as in C2.1 }
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int main()
{
int 1i;
NODE *p;
node = (NODE *)malloc (N*sizeof (NODE)); // node->N*72 bytes in HEAP

for (i=0; 1 < N; i++){

p = &nodeli]; // access each NODE area in HEAP
sprintf (p->name, "%s%d", "node",i);

p->id = 1i;

p->next = p+1; // node[i] .next = &node[i1+1];

}

node[N-1] .next = 0;
mylist = &node[0];
printlist (mylist);

(1). Memory location of variables: In the C2.2 program, both the variables mylist and node are
NODE pointers, which are uninitialized globals. As such they are in the program’s bss section, as
shown in Fig. 2.21. The program does not have any memory locations for the actual node structures.

NODE *mylist, *node; // pointers, no NODE area yet

When the program starts, it uses the statement

node = (NODE *)malloc (N*sizeof (NODE)) ;
to allocate N*72 bytes in the program’s HEAP area, which will be used as nodes of the list. Since node
is a NODE pointer, which points to a memory area containing N adjacent nodes, we may regard the
memory area as an array and use node[i] (i=0 to N-1) to access each node element. This is a general
principle. Whenever we have a pointer pointing to a memory area containing N adjacent data objects,
we may access the memory area as a sequence of array elements. As a further example, assume

int *p = (int *)malloc(N*sizeof(int));

Then the memory area pointed by p can be accessed as *(p + 1) or p[i], i=0 to N-1.

Fig. 2.21 Variables in NODE -myllst -node.
BSS section ’ ’
? ?

’

‘\ . globals are in bss

.

CODE | DATA bss HEAP | stack




70 2 Programming Background

Example C2.3: The example program C2.3 builds a link list in the program’s heap area but with
individually allocated nodes.

/**************** c2.3.c file *****************/

#include “type.h”
NODE *mylist, *node; // pointers, no NODE area yet
int printlist (NODE *p){ // same as in Ll.c }

int main()
{
int i;
NODE *p, *q;
for (i=0; i < N; i++){
p = (NODE *)malloc(sizeof (NODE)); // allocate a node in heap
sprintf (p->name, "%s%d", "node",1i);
p->id = 1i;
p->next = 0; // nodel[i] .next = 0;
if (i==0){
mylist = g = p; // mylist -> node0O; g->current node
}
g->next = p;
qg = p;
}
printlist(mylist);

2.10.4 Link List Traversal

Link list traversal is to step through the list elements in sequential order. The simplest link list traversal
is to print the list elements. To do this, we may implement a generic printlist() function as follows.

int printlist(char *listname, NODE *list)
{
printf("%$s = ", name);
while(list) {
printf("[%s %d]->", list->name, list->id);
list = list->next;
}
printf ("NULL\n") ;

Alternatively, the printlist() function can be implemented by recursion.

void rplist (NODE *p)
{
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printf (“NULL\n”) ;

return;
}
printf(“[%s %d]->"“, p->name, p->id);
rplist (p->next); // recursive call to rplist(p->next)

int printlist(char *listname, NODE *list)
{
printf("%$s = ", name); // print list name
rplist(list); // recursively print each element

In addition to printing a link list, there are many other list operations that are essentially variations of
the list traversal problem. Here we cite such a problem, which is a favorite question during interviews
for Computer Science jobs.

This example implements a function which computes the SUM of the node values in a link list.
int sum(NODE *1list) // return SUM of node values in a link list
{
int sum = 0;
while(list) {
sum += list->value; // add value of current node

list = list->next; // step to next node

}

return sum;

Alternatively, the sum() function can be implemented recursively, as in

int sum(NODE *1list) // return SUM of node values in a link list

{
if (list == 0)
return 0;
return list->value + sum(list->next);

Using the ? operator of C, this can be simplified further as

int sum(NODE *list)
{ return (list==0)? 0: list->value + sum(list->next); }

When traversing a singly link list using a single node pointer, we can only access the current node
but not the previous node. A simple way to remedy this problem is to use two pointers while traversing
a link list. We illustrate this technique by an example.
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Traversing a (singly) link list with two pointers.

NODE *p, *q;

p =g = list; // both p and g start form list
while (p) {
// access current node by p AND previous node by q
q = p; // let g point at current node
p = p->next; // advance p to next node

In the above code segment, p points at the current node and q points at the previous node, if any. This
allows us to access both the current and previous nodes. This technique can be used in such operations
as to delete the current node, insert before the current node, etc.

2.10.5 Search Link List

The search operation searches a link list for an element with a given key, which can be either an integer
value or a string. It returns a pointer to the element if it exists, or NULL if not. Assuming that the key is
an integer value, we can implement a search() function as follows.

NODE *search(NODE *list, int key)

{
NODE *p = list;

while(p) {
if (p->key == key) // found element with key
return p; // return node pointer
p = p->next; // advance p to next node
}
return 0; // not found, return 0

2.10.6 Insert Operation

The insert operation inserts a new element into a link list by a specified criterion. For singly link lists,
the simplest insertion is to insert to the end of a list. This amounts to traversing the list to the last
element and then adding a new element to the end. We illustrate this by an example.

Example C2.4: The example program C2.4 builds a link list by inserting new nodes to the end of list.

(1) The insertion function: The insert() function enters a new node pointer p into a list. Since the
insert operation may modify the list itself, we must pass the list parameter by reference, i.e. passing
the address of the list. Normally, all elements in a link list should have unique keys. To ensure no
two elements with the same key, the insert function may check this first. It should reject the
insertion request if the node key already exists. We leave this as an exercise for the reader.
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int insert (NODE **list, NODE *p) // insert p to end of *list

{
NODE *g = *list;

if (q == 0) // if list is empty:
*list = p; // insert p as first element
else( // otherwise, insert p to end of list

while (g->next) // step to LAST element
q = g->next;
g->next = p; // let LAST element point to p
}

p->next = 0; // p is the new last element.

(2) The C2.4.c file:

/***************** C2'4.c file **************/
#include “type.h”
NODE *mylist;
int main()
{
char 1line[128], name[64];

int id;

NODE *p;

mylist = 0; // initialize mylist to empty list

while (1) {
printf ("enter node name and id value : ");
fgets(line, 128, stdin); // get an input line
line[strlen(line)-1] = 0; // kill \n at end

if (linel[0] == 0) // break out on empty input line
break;
sscanf (“%s %d”, name, &id); // extract name string and id value

p = (NODE *)malloc(sizeof (NODE));

if (p==0) exit(-1); // out of HEAP memory
strcpy (p->name, name) ;

p->id = id;

insert (&mylist, p); // insert p to list end

printlist (mylist);

2.10.7 Priority Queue

A priority queue is a (singly) link list ordered by priority, with high priority values in front. In a
priority queue, nodes with the same priority are ordered First-In-First-Out (FIFO). We can modify the
insert() function to an enqueue() function, which inserts nodes into a priority queue by priority.
Assume that each node has a priority field. The following shows the enqueue() function.
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int enqueue (NODE **gueue, NODE *p) // insert p into queue by priority
{
NODE *g = *queue;
if (g==0 || p->priority > g->priority) {
*queue = p;
p->next = g;
}
else{
while (g->next && p->priority <= g->next->priority)
g = g->next;
p->next = g->next;

g->next = p;

2.10.8 Delete Operation

Given a link list and a list element key, delete the element from the list if it exists. Since the delete
operation may modify the list, the list parameter must be passed by reference. Here we assume the
element key is an integer. The delete() function returns the deleted node pointer, which can be used to
free the node if it was dynamically allocated earlier.

NODE *delete(NODE **list, int key)
{
NODE *p, *q;

if (*list == 0) // empty list
return 0; // return 0 if deletion failed
p = *list;
if (p->key == key){ // found element at list beginning
*list = p->next; // modify *1list

return p;
}
// element to be deleted is not the first one; try to find it
g = p->next;
while(q) {
if (g->key == key){
p->next = g->next; // delete q from list

return q;

b = a;
a = g->next;

return 0; // failed to find element
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Fig. 2.22 Circular link list NODE *mylist,

:}—’ 0 1 2 n

2.10.9 Circular Link List

A circular link list is one in which the last element points to the first element. As usual, an empty
circular link list is a NULL pointer. Figure 2.22 shows a circular link list.

When traversing a circular list, we must detect the “end of list” condition properly to terminate the
traversal. Assume that list is a non-empty circular list.

NODE *list, *p = list;

while(p->next != list){ // stop after last element
// access current node p;
p = p->next;

2.10.10 Open-Ended C Structures

In the original C language, all members of a structure must be fully specified so that the size of every
structure is fixed at compile time. In practice, there are situations in which the size of a structure may
vary. For convenience, the C language is extended to support open-ended structures containing an
incompletely specified field. As an example, consider the following structure, in which the last member
is an array of unspecified size.

struct node{
struct node *next;
int ID;
char namel[ 1; // unspecified array size

Y

In the above open-ended structure, name[ ] denotes an incompletely specified field, which must be the
last entry. The size of an open-ended structure is determined by the specified fields. For the above
example, the structure size is 8 bytes. To use such a structure, the user must allocate the needed
memory for the actual structure, as in

struct node *sp = malloc(sizeof (struct node) + 32);
strcpy (sp->name, “this is a test string”);

The first line allocates a memory area of 8+32 bytes, with 32 bytes intended for the field name. The
next line copies a string into the name field in the allocated memory area. What if the user does not
allocate memory for an open-ended structure and use them directly? The following code lines illustrate
the possible consequences.
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struct node x; // define a variable x of size only 8 bytes
strcpy(x.name, “test”); // copy “test” into x.name field

In this case, x has only 8 bytes but there is no memory area for the name field. The second statement
would copy the string “test” into the memory area immediately following x at run-time, overwriting
whatever was in it. This may corrupt other data objects of the program, causing it to crash later.

2,10.11 Doubly Link Lists

A doubly link list, or dlist for short, is one in which the list elements are linked together in two
directions, both forward and backward. In a dlist, each element has two pointers, denoted by next and
prev, as shown below.

typedef struct node{
struct node *next; // pointer to next node
struct node *prev; // pointer to previous node
// other fields, e.g. key, name, etc.

}NODE; // list NODE type

In the node structure of dlist, the next pointer points to a next node, allowing forward traversal of the
dlist from left to right. The prev pointer points to a previous node, allowing backward traversal of the
dlist from right to left. Unlike a singly link list, which is represented by a single NODE pointer, doubly
link lists may be represented in three different ways, each with its advantages and disadvantages. In
this section, we shall use example programs to show doubly link list operations, which include

(1). Build dlist by inserting new elements to the end of list.
(2). Build dlist by inserting new elements to the front of list.
(4). Print dlist in both forward and backward directions.

(5). Search dlist for an element with a given key.

(6). Delete element from dlist.

2.10.12 Doubly Link Lists Example Programs

Example Program C2.5: Doubly Link List Version 1
In the first dlist example program, we shall assume that a dlist is represented by a single NODE pointer,
which points to the first list element, if any. Figure 2.23 shows such a dlist.

Since the first element has no predecessor, its prev pointer must be NULL. Likewise, the last element
has no successor, its next pointer must be NULL also. An empty dlist is just a NULL pointer. The
following lists the C code of the example program C2.5.

/********** dlist Program c2.5.c **********/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
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typedef struct node{
struct node *next;
struct node *prev;
int key;
}NODE;
NODE *dlist; // dlist is a NODE pointer

int insert2end(NODE **1list, int key) // insert to list END
{

NODE *p, *q;

//printf ("insert2end: key=%d ", key);

p = (NODE *)malloc (sizeof (NODE)) ;

p->key = key;

p->next = 0;

g = *list;

if (g==0){ // list empty
*list = p;

p->next = p->prev = 0;
}
else(
while (g->next) // step to LAST element

a = g->next;

g->next p; // add p as last element

p->prev = Jg;

int insert2front (NODE **list, int key) // insert to list FRONT
{
NODE *p, *q;
//printf ("insert2front: key=%d ", key);
p = (NODE *)malloc (sizeof (NODE)) ;
p->key = key;
p->prev = 0; // no previous node
g = *list;
if (g==0){ // list empty
*list = p;
p->next = 0;
}

else{

*list;

b

p->next

g->prev
*list = p;
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void printForward (NODE *1list) // print list forward
{
printf("list forward =");
while(list) {
printf("[%d]->", list->key);
list = list->next;
}
printf ("NULL\n") ;

void printBackward(NODE *1list) // print list backward
{
printf("list backward=") ;
NODE *p = list;
if (p){
while (p->next) // step to last element
p = p->next;
while(p) {
printf (" [%d]->", p->key);

p = p->prev;

}
printf ("NULL\n") ;

2 Programming Background

NODE *search(NODE *1list, int key) // search for an element with a key

{
NODE *p = list;
while (p) {
if (p->key==key) {
printf ("found %d at %x\n", key, (unsigned int)p);

return p;

}
p = p->next;
}

return O0;

int delete(NODE **list, NODE *p) // delete an element pointed by p

{

NODE *qg = *1list;

if (p->next==0 && p->prev==0) { // p 1is the only node
*list = 0;

}

else if (p->next==0 && p->prev != 0){ // last but NOT first
p->prev->next = 0;

}

else if (p->prev==0 && p->next != 0){ // first but NOT last

*list = p->next;
p->next->prev = 0;
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}

else( // p is an interior node
p->prev->next = p->next;
p->next->prev = p->prev;

}

free(p);

int main()
{
int i, key;
NODE *p;
printf("dlist program #1\n");

printf("insert to END\n");
dlist = 0; // initialize dlist to empty
for (i=0; 1i<8; i++){
insert2end(&dlist, 1i);
}
printForward (dlist) ;
printBackward (dlist) ;

printf("insert to FRONT\n");
dlist = 0; // initialize dlist to empty
for (1=0; 1<8; 1++){
insert2front (&dlist, 1i);
}
printForward (dlist) ;
printBackward (dlist) ;

printf("test delete\n");
while (1) {
printf ("enter a key to delete: ");
scanf ("%d", &key);
if (key < 0) exit(0); // exit if negative key
p = search(dlist, key);
if (p==0){
printf ("key %d not found\n", key);
continue;
}
delete(&dlist, p);
printForward (dlist) ;
printBackward(dlist) ;

Figure 2.24 show the outputs of running the Example program C2.5. First, it constructs a dlist by
inserting new elements to the list end, and prints the resulting list in both forward and backward
directions. Next, it constructs a dlist by inserting new elements to the list front, and prints the resulting



80 2 Programming Background

dlist program #1

insert to END

list forward =[0]->[1]->[2]->[3]->[4]->[5]->[6]->[7]->NULL
1ist backward=[7]-=[6]-=[5]-=[4]->[3]->[2]-=[1]-=[©]-=NULL
insert to FRONT

1ist forward =[7]->[6]1->[5]->[4]->[3]->[2]->[1]->[0]->NULL
list backward=[0]->[1]->[2]->[3]->[4]->[5]->[6]->[7]->NULL
test delete

enter a key to delete: ©

found © at 9567088

list forward =[7]->[6]->[5]->[4]->[3]->[2]->[1]-=NULL

list backward=[1]->[2]->[3]->[4]->[5]->[6]->[7]-=NULL
enter a key to delete: 7

found 7 at 95670f8

list forward =[6]->[5]->[4]->[3]->[2]->[1]->NULL

1ist backward=[1]->[2]->[3]->[4]->[5]->[6]->NULL

enter a key to delete: 4

found 4 at 95670c8

list forward =[6]->[5]-=[3]->[2]-=[1]->NULL

1ist backward=[1]->[2]->[3]->[5]->[6]->NULL

enter a key to delete: [

Fig. 2.24 Outputs of example program C2.5

list in both directions. Then, it shows how to search for an element with a given key. Lastly, it shows
how to delete elements from the list, and print the list after each delete operation to verify the results.

Discussions of Example C2.5: The primary advantage of the first version of dlist is that it only
requires a single NODE pointer to represent a dlist. The disadvantages of this kind of dlist are:

(1). It is hard to access the last element of the list. In order to access the last element, as in the cases of
inserting to the list end and print the list backward, we must use the next pointer to step to the last
element first, which is time-consuming if the list has many elements.

(2). When inserting a new element, we must detect and handle the various cases of whether the list is
empty or the new element is the first or last element, etc. These make the code non-uniform, which
does not fully realize the capability of doubly link lists.

(3). Similarly, when deleting an element, we must detect and handle the different cases also.

As can be seen, the complexity of the insertion/deletion code stems mainly from two cases:

. the list is empty, in which case we must insert the first element.
. the inserted/deleted node is the first or last node, in which case we must modify the list pointer.

Alternatively, a doubly link list may be regarded as two singly link lists merged into one. Accordingly,
we may represent doubly link lists by a listhead structure containing two pointers, as in

typedef struct listhead{

struct node *next; // head node pointer

struct node *prev; // tail node pointer
}DLIST; // doubly link list type
DLIST dlist; // dlsit is a structure

dlist.next = dlist.prev = 0; // initialize dlist as empty

Figure 2.25 show the second version of doubly link lists.
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NODE dlist,
next
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Fig. 2.25 Doubly link list version 2

NODE dlist,
next

nodel node2 - noden

prev

Fig. 2.26 Doubly link list version 3

The only advantage of using a list head structure is that it allows direct access to the last element via
the list’s prev pointer. The disadvantages are exactly the same as those in the first version of dlist.
Specifically,

(1) Since dlist is a structure, it must be passed by reference to all list operation functions.

(2) In both the insertion and deletion functions, we must detect and handle the various cases of
whether the list is empty, the element is the first or last element, etc. In these cases, doubly link lists
are no better than singly link list in terms of processing time.

In order to realize the capability of doubly link lists, we need a better way to represent doubly link lists.
In the next example, we shall define doubly lists as follows. A dlist is represented by a listhead, which
is a NODE structure but a dlist is initialized with both pointers to the listhead, as in

NODE dlist; // dlist is a NODE structure
dlist.next = dlist.prev = &dlist; // initialize both pointers to the NODE
structure

Such a dlist may be regarded as two circular link lists merged into one, with the listhead as the initial
dummy element. Figure 2.26 shows such a doubly link list.

Since there are no null pointers in the Version 3 dlist, every node can be treated as an interior node,
which greatly simplifies the list operation code. We demonstrate this kind of dlist by an example.

Example Program C2.6: This example program assumes a dlist is represented by a NODE structure,
which is initialized with both pointers to the NODE structure itself.

/************** c2.6.c Program COde *************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
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typedef struct node{
struct node *next;
struct node *prev;
int key;

}NODE;

2 Programming Background

NODE dlist; // dlist is NODE struct using only next & prev pointers

int insert2end(NODE *1list, int key)
{
NODE *p, *q;
//printf ("insert2end: key=%d\n", key);
p = (NODE *)malloc (sizeof (NODE)) ;
p->key = key;
p->prev = 0;
q = list->prev; // to LAST element
p->next = g->next;
g->next->prev = p;
g->next = p;

p->prev = q;

int insert2front (NODE *list, int key)

{
NODE *p, *q;
//printf ("insertFront key=%d\n", key);
p = (NODE *)malloc (sizeof (NODE)) ;
p->key = key;
p->prev = 0;
g = list->next; // to first element

p->prev = g->prev;

g->prev->next = p;

g->prev = p;

p->next = q;

void printForward(NODE *list)
{

NODE *p = list->next; // use dlist’s next pointer

printf("list forward =");

while(p != list){ // detect end of list
printf (" [%d]->", p->key);
p = p->next;

}

printf ("NULL\n") ;
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void printBackward(NODE *1list)
{
printf ("list backward=") ;

NODE *p = list->prev; // use dlist’s prev pointer
while(p != list)({ // detect end of list

printf (" [%d]->", p->key);
P = p->prev;

}

printf ("NULL\n") ;

NODE *search(NODE *list, int key)
{
NODE *p = list->next;

while(p != list){ // detect end of list

if (p->key==key) {

printf ("found %d at %x\n", key, (unsigned int)p);

return p;

}
p = p->next;
}

return 0;

int delete(NODE *list, NODE *p)
{
p->prev->next = p->next;
p->next->prev = p->prev;

free(p);

int main()
{
int 1, key;
NODE *p;
printf("dlist program #3\n");

printf("insert to END\n");

dlist.next = dlist.prev = &dlist;

for (i=0; 1<8; 1i++){
insert2end(&dlist, 1);

}

printForward (&dlist) ;

printBackward (&dlist) ;

printf("insert to front\n");
dlist.next = dlist.prev = &dlist;
for (i=0; i<8; i++){

insert2front (&dlist, 1i);

// empty dlist

// empty dlist to begin

83
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printForward (&dlist) ;
printBackward(&dlist) ;

printf ("do deletion\n");
while (1) {
printf ("enter key to delete: ");
scanf ("%d", &key);
if (key < 0) exit(0); // exit if key negative
p = search(&dlist, key);
if (p==0){
printf ("key %d not found\n", key);
continue;
}
delete(&dlist, p);
printForward (&dlist) ;
printBackward (&dlist) ;

Figure 2.27 shows the outputs of running the example program C2.6. Although the outputs are
identical to those of Fig. 2.24, their processing codes are very different.

The primary advantages of the Example program C2.6 are as follows. Since every node can be
treated as an interior node, it is no longer necessary to detect and handle the various cases of empty list,
first and last elements, etc. As a result, both insertion and deletion operations are greatly simplified.
The only modification needed is to detect the end of list condition during search or list traversal by the
code segment

NODE *p = list.next;
while (p != &list){
p = p->next;

dlist program #3

insert to END

1ist forward =[0]->[1]->[2]->[3]->[4]->[5]->[6]->[7]->NULL
list backward=[7]->[6]->[5]->[4]->[3]->[2]->[1]->[0]->NULL
insert to front

1ist forward =[7]->[6]->[5]->[4]->[3]->[2]->[1]->[0]->NULL
list backward=[8]->[1]->[2]->[3]->[4]->[5]->[6]->[7]->NULL
do deletion

enter key to delete: @

found © at 8a71088

list forward =[7]->[6]->[5]->[4]->[3]->[2]->[1]->NULL

1ist backward=[1]->[2]->[3]->[4]->[5]->[6]->[7]-=NULL
enter key to delete: 7

found 7 at 8a7viefs

1ist forward =[6]->[5]->[4]->[3]->[2]->[1]->NULL

list backward=[1]->[2]->[3]->[4]->[5]->[6]->NULL

enter key to delete: 4

found 4 at B8a716c8

list forward =[6]->[5]->[3]->[2]->[1]-=NULL

1ist backward=[1]->[2]->[3]->[5]->[6]->NULL

enter key to delete:

Fig. 2.27 Outputs of example program C2.6
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Fig. 2.28 A general tree

2.11 Trees

A tree is a dynamic data structure composed of multi-levels of linked lists. As a data structure, a tree is
defined as a node, which itself consists of a value together with a list of references to other nodes.
Symbolically, a tree is defined recursively as

node: value [&node[l], ..., &nodel[k]]

where each node[i] is itself a (possibly empty) tree. The very first node of a tree is called the root of the
tree. Each node is called a parent node if it points to a list of other nodes, which are called the children
nodes of the parent node. In a tree, each node has a unique parent, but each node may have a variable
number of children nodes, including none. A tree can be represented by a diagram, which is usually
drawn upside-down, with the root node at the top. Figure 2.28 shows a general tree.

2,12 Binary Tree

The simplest kind of tree is the binary tree, in which each node has two pointers, denoted by left and
right. We may define the node type containing a single key value for binary trees as

typedef struct node{
int key;
struct node *left;
struct node *right;
}NODE;

Every general tree can be implemented as a binary tree. We shall demonstrate this in Sect. 2.13.

2.12.1 Binary Search Tree

A Binary Search Tree (BST) is a binary tree with the following properties:

. All node keys are distinct, i.e. the tree contains no nodes with duplicated keys.

. The left subtree of a node contains only nodes with keys less than the node’s key.

. The right subtree of a node contains only nodes with keys greater than the node’s key.

. Each of the left and right subtrees is also a binary search tree.

As an example, Fig. 2.29 shows a binary search tree.
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Fig. 2.29 A binary
search tree

2 Programming Background

Binary Search Tree provides an ordering among the node keys so that operations such as finding the
minimum, maximum keys and search for a given key can be done quickly. The search depth of a BST
depends on the shape of the tree. If a binary tree is balanced, i.e. every node has two children nodes, the
search depth is log2(n) for a tree with n nodes. For unbalanced BST, the worst search depth would be n,

if the nodes are all to the left or all to the right.

2.12.2 Build a Binary Search Tree (BST)

Example Program C2.7: Build a Binary Search Tree

/************ c2.7.c file ************/

#include <stdio.h>
#include <stdlib.h>
typedef struct node{
int key;
struct node *left, *right;
}NODE;
#define N 7
int nodevalue[N] = {50,30,20,40,70,60,80};
// create a new node
NODE *new_node (int key)
{
NODE *node = (NODE *)malloc(sizeof (NODE)) ;
node->key = key;
node->left = node->right = NULL;
return node;
}
// insert a new node with given key into BST
NODE *insert (NODE *node, int key)
{
if (node == NULL)
return new_node (key) ;
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert (node->right, key):;

return node;
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Fig. 2.30 A binary search tree 50

int main()

{

int 1i;
NODE *root = NULL;
root = insert (root, nodevValuel[0]) ;

for (i=1; i<N; i++){

insert (root, nodeVlauel[il]);

Figure 2.30 shows the BST generated by the Example Program C2.7.

2.12.3 Binary Tree Traversal Algorithms

From elementary data structure courses, the reader should have learned the following binary tree
traversal algorithms.

. Pre-order Traversal: node; node.left; node.ight
. In-order traversal: node.left; node; node.right
. Post-order traversal: node.left; node.right; node

2.12.4 Depth-First Traversal Algorithms

All the above algorithms belong to Depth-First (DF) search/traversal algorithms, which use a stack for
back-tracking. As such, they can be implemented naturally by recursion. As an example, search a BST
for a given key can be implemented by rercusion, which is basically an in-order traversal of the BST.

[****kkk** Search BST for a give key *****kkx/
NODE *search(NODE *t, int key)
{

if (t == NULL || t->key == key)
return t;
if (key < t->key) // key is less than node key

return search(t->left, key);
else

return search(t->right, key); // key is greater than node key
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2.12.5 Breadth-First Traversal Algorithms

A tree can also be traversed by Breadth-First (BF) algorithms, which use a queue to store the yet to
be traversal parts of the tree. When applying BF traversal algorithm to a tree, we may print the tree
level by level, as shown by the next example program.

Example Program C2.8: Print Binary Tree by Levels
/****x*x C2,8.c file: print binary tree by levels *****x/
#include <stdio.h>

#include <stdlib.h>

typedef struct node({
struct node *left;

int key;
struct node *right;

}NODE;

typedef struct ge{ // queue element structure
struct qge *next; // queue pointer

struct node *node; // queue contents
}QE; // queue element type

int enqueue(QE **queue, NODE *node)
{
QE *g = *queue;

QE *r = (QE *)malloc (sizeof (QE));
r->node = node;
if (g == 0)
*queue = r;
else(

while (g->next)
g = g->next;
g->next = r;
}

r->next = 0;

NODE *dequeue (QE **queue)

QE *g = *queue;
if (q)
*queue = g->next;

return g->node;

int glength(QE *queue)
{

int n = 0;
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while (queue) {

n++;

queue = queue->next;
}

return n;

// print a binary tree by levels, each level on a line
void printLevel (NODE *root)
{

int nodeCount;

if (root == NULL) return;

QE qgueue = 0; // create a FIFO queue
enqueue (&Qqueue, root); // start with root
while (1) {

nodeCount = glength (queue) ;
if (nodeCount == 0) break;
// dequeue nodes of current level, engqueue nodes of next level
while (nodeCount > 0){
NODE *node = dequeue (&queue) ;
printf("%d ", node->key);
if (node->left != NULL)
enqueue (&queue, node->left);
if (node->right != NULL)
enqueue (&queue, node->right) ;
nodeCount--;
}
printf ("\n") ;

}
NODE *newNode(int key) // create a new node
{
NODE *t = (NODE *)malloc(sizeof (NODE)) ;
t->key = key;
t->left = NULL;
t->right = NULL;
return t;
}
int main() // driver program to test printLevel()
{
queue = 0;
// create a simple binary tree
NODE *root = newNode(1l);
root->left = newNode(2) ;
root->right = newNode(3);
root->left->left = newNode (4) ;
root->left->right = newNode (5) ;
root->right->leftt = newNode(6) ;
root->right->right = 0; // right child = 0
printLevel (root);
return 0;

89
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In the example program C2.8, each queue element has a next pointer and a NODE pointer to the node
in the tree. The tree will be traversed but not altered in anyway; only its nodes (pointers) will be used in
queue elements, which are entered into and removed from the queue. The printLevel() function starts
with the root node in the queue. For each iteration, it dequeues a node of the current level, prints its key
and enters the left child (if any), followed by the right child (if any), into the queue. The iteration
ends when the queue becomes empty. For the simple binary tree constructed in main(), the program
outputs are

SN
U W
()}

which print each level of the tree on a separate line.

2.13 Programming Project: Unix/Linux File System Tree Simulator

Summarizing the background information on C structures, link list processing and binary trees, we are
ready to integrate these concepts and techniques into a programming project to solve a practical
problem. The programming project is to design and implement a Unix/Linux file system tree simulator.

2.13.1 Unix/Linux File System Tree

The logical organization of a Unix file system is a general tree, as shown in the Fig. 2.28. Linux file
systems are organized in the same way, so the discussions here apply to Linux files systems also. The
file system tree is usually drawn upside down, with the root node / at the top. For simplicity, we shall
assume that the file system contains only directories (DIRs) and regular FILEs, i.e. no special files,
which are I/0 devices. A DIR node may have a variable number of children nodes. Children nodes of
the same parent are called siblings. In a Unix/Linux file system, each node is represented by a unique
pathname of the form /a/b/c or a/b/c. A pathname is absolute if it begins with /, indicating that it starts
from the root. Otherwise, it is relative to the Current Working Directory (CWD).

2.13.2 Implement General Tree by Binary Tree

A general tree can be implemented as a binary tree. For each node, let childPtr point to the oldest child,
and siblingPtr point to the oldest sibling. For convenience, each node also has a parentPtr pointing to its
parent node. For the root node, both parentPtr and siblingPtr point to itself. As an example, Fig. 2.31
shows a binary tree which is equivalent to the general tree of Fig. 2.28. In Fig. 2.31, thin lines represent
childPtr pointers and thick lines represent siblingPtr. For clarify, NULL pointers are not shown.

2.13.3 Project Specification and Requirements

The project is to design and implement a C program to simulate the Unix/Linux file system tree. The
program should work as follows.
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Structure of each node:

parentPtr

name
childPtr |siblingPtr

childPtr:

siblingPtr:

Fig. 2.31 Implementation of general tree by binary tree

(1). Start with a / node, which is also the Current Working Directory (CWD).
(2). Prompt the user for a command. Valid commands are:
mkdir, rmdir, cd, Is, pwd, creat, rm, save, reload, menu, quit
(3). Execute the command, with appropriate tracing messages.
(4). Repeat (2) until the "quit" command, which terminates the program.

2.13.4 Commands Specification

mkdir pathname :make a new directory for a given pathname

rmdir pathname :remove the directory, if it is empty.

cd [pathname] :change CWD to pathname, or to / if no pathname.
Is [pathname]  :list the directory contents of pathname or CWD
pwd :print the (absolute) pathname of CWD

creat pathname :create a FILE node.

rm pathname  :remove the FILE node.

save filename :save the current file system tree as a file

reload filename :construct a file system tree from a file

menu :show a menu of valid commands

quit :save the file system tree, then terminate the program.

2.13.5 Program Organization

There are many ways to design and implement such a simulator program. The following outlines the
suggested organization of the program.

(1) NODE type: Define a C structure for the NODE type containing
64 chars : name string of the node;

char : node type: 'D' for directory or 'F' for file
node pointers : *childPtr, *siblingPtr, *parentPtr;
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(2) Global Variables:

NODE *root, *cwd; // root and CWD pointers

char line[128]; // user input command line

char command[16], pathname[64]; // command and pathname strings

char dname[64], bnamel[64]; // dirname and basename string holders

(Others as needed)
(3) The main() function: The main function of the program can be sketched as follows.

int main()

{

initialize(); //initialize root node of the file system tree
while (1) {
get user input line = [command pathname];

identify the command;
execute the command;
break if command=‘“quit”;

(4) Get user inputs: Assume that each user input line contains a command with an optional pathname.
The reader may use scanf() to read user inputs from stdin. A better technique is as follows

fgets(line, 128, stdin); // get at most 128 chars from stdin
line([strlen(line)-1] = 0; // kill \n at end of line
sscanf (line, “%s %s”, command, pathname);

The sscanf() function extracts items from the line[ ] area by format, which can be either chars, strings or
integers. It is therefore more flexible than scanf().

(5) Identify command: Since each command is a string, most readers would probably try to identify
the command by using strcmp() in a series of if-else-if statements, as in

if (!strcmp (command, “mkdir)
mkdir (pathname) ;

else if (!strcmp(command, “rmdir”
rmdir (pathname) ;

else if

This requires many lines of string comparisons. A better technique is to use a command table
containing command strings (pointers), which ends with a NULL pointer.

char *cmd[] = {"mkdir", "rmdir", "ls", "cd", "pwd", "creat", "rm",

"reload", "save", “menu”, "quit", NULL};

For a given command, search the command table for the command string and return its index, as shown
by the following findCmd() function.
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int findCmd(char *command)
{
int i = 0;
while(cmd[1i]) {

if (!strcmp(command, cmd[i])
return i; // found command: return index i
i++;
}
return -1; // not found: return -1

As an example, for the command = “creat”,
int index = findCmd(“creat”);
returns the index 5, which can be used to invoke a corresponding creat() function.

(6) The main() function: Assume that, for each command, we have written a corresponding action
function, e.g. mkdir(), rmdir(), 1s(), cd(), etc. The main() function can be refined as shown below.

int main()
{

int index;

char 1line[128], command[16], pathname([64];
initialize(); //initialize root node of the file system tree
while (1) {

printf ("input a commad line : ");
fgets(line, 128, stdin) ;
line[strlen(line)-1] = 0;

sscanf (line, “%s %s”, command, pathname) ;
index = fidnCmd(command) ;

switch(index) {

case 0 : mkdir(pathname); break;
case 1 : rmdir(pathname); break;
case 2 : ls(pathname); break;
etc.

default: printf(“invalid command %s\n”, command);

The program uses the command index as different cases in a switch table. This works fine if the number
of commands is small. For large number of commands, it would be preferable to use a table of function
pointers. Assume that we have implemented the command functions

int mkdir (char *pathname){.......... }
int rmdir (char *pathname){.......... }
etc.
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Define a table of function pointers containing function names in the same order as their indices, as in

0 1 2 3 4 5 6
int (*fptr[ ]) (char *)={(int (*) () )mkdir,rmdir,ls,cd,pwd,creat,rm,. .};

The linker will populate the table with the entry addresses of the functions. Given a command index,
we may call the corresponding function directly, passing as parameter pathname to the function, as in

int r = fptr[index] (pathname);

2.13.6 Command Algorithms

Each user command invokes a corresponding action function, which implements the command. The
following describes the algorithms of the action functions

mkdir pathname

(1). Break up pathname into dirname and basename, e.g.
ABSOLUTE: pathname=/a/b/c/d. Then dirname=/a/b/c, basename=d
RELATIVE: pathname= a/b/c/d. Then dirname=a/b/c, basename=d
(2). Search for the dirname node:
ASSOLUTE pathname: start from /
RELATIVE pathname: start from CWD.
if nonexist : error messages and return FAIL
if exist but not DIR: error message and return FAIL

(3). (dirname exists and is a DIR):
Search for basename in (under) the dirname node:
if already exists: error message and return FAIL;
ADD a new DIR node under dirname;
Return SUCCESS

rmdir pathname
(1). if pathname is absolute, start =/
else start = CWD, which points CWD node

(2). search for pathname node:
tokenize pathname into components strings;
begin from start, search for each component;
return ERROR if fails
(3). pathname exists:
check it's a DIR type;
check DIR is empty; can't rmdir if NOT empty;
(4). delete node from parent's child list;
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creat pathname
SAME AS mkdir except the node type is ‘F’

rm pathname
SAME AS rmdir except check it's a file, no need to check for EMPTY.

cd pathname

(1). find pathname node;

(2). check it's a DIR;

(3). change CWD to point at DIR

Is pathname
(1). find pathname node
(2). list all children nodes in the form of [TYPE NAME] [TYPE NAME] ...

pwd
Start from CWD, implement pwd by recursion:

(1). Save the name (string) of the current node
(2). Follow parentPtr to the parent node until the root node;
(3). Print the names by adding / to each name string

Save Tree to a FILE The simulator program builds a file system tree in memory. When the program
exits, all memory contents will be lost. Rather than building a new tree every time, we may save the
current tree as a file, which can be used to restore the tree later. In order to save the current tree as a file,
we need to open a file for write mode. The following code segment shows how to open a file stream for
writing, and then write (text) lines to it.

FILE *fp = fopen("myfile", "w+"); // fopen a FILE stream for WRITE
fprintf (fp, "%c %s", ‘D’, "string\n"); // print a line to file
fclose(fp); // close FILE stream when done

save(filename) This function save the absolute pathnames of the tree as (text) lines in a file opened for
WRITE. Assume that the file system tree is as shown in Fig. 2.32.

type pathname

D

F /A/x
F /Ay
D /B

F /B/z
D /C

D /C/E
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Fig. 2.32 A file system childPtr, — o
tree

where uppercase names A, siblingPtr:
B, C, E are DIRs and

lowercase names X, y, z are °
FILEs. The tree can be

represented by the (text) ° o
lines

The pathnames are generated by PRE-ORDER traversal of a binary tree:

print node name; // current node
print node.left name; // left pointer = childPtr
print node.right name; // right pointer = siblingPtr

Each print function prints the absolute pathname of a node, which is essentially the same as pwd().
Since the root node always exists, it can be omitted from the save file.

reload(filename) The function reconstructs a tree from a file. First, initialize the tree as empty,
i.e. with only the root node. Then read each line of the file. If the line contains “D pathname”, call

mkdir(pathname) to make a directory.
If the line contains “F pathname”, call

creat(pathname) to create a file.
These will reconstruct the tree saved earlier.

Quit Command save the current tree to a file. Then terminate the program execution.
On subsequent runs of the simulator program, the user may use the reload command to restore the
tree saved earlier.

(8). Additional Programming HELP
(8).1. Tokenize pathname into components: Given a pathname, e.g. “/a/b/c/d”, the following code
segment shows how to tokenize pathname into component strings.

int tokenize(char *pathname)
{
char *s;
s = strtok(path, "/"); // first call to strtok()
while(s) {
printf(“%s %, s);
s = strtok(0, "/"); // call strtok() until it returns NULL
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The strtok() function divides a string into substrings by the specified delimiter char “/”. The substrings
reside in the original string, thus destroying the original string. In order to preserve the original
pathname, the user must pass a copy of pathname to the strtok() function. In order to access the
tokenized substrings, the user must ensure that they are accessible by one of the following schemes.

. The copied pathname is a global variable, e.g. char path[128], which contains the tokenized
substrings.
. If the copied pathname path[ ] is local in a function, access the substrings only in the function

(8).2. dir_name and base_name: For the simulator program, it is also often necessary to decompose a
pathname into dir_name, and base_name, where dir_name is the directory part of pathname and
base_name is the last component of pathname. As an example, if pathname="/a/b/c”, then
dir_name="/a/b” and base_name="c”. This can be done by the library functions dirname() and
basename(), both of which destroy the pathname also. The following code segments show how to
decompose a pathname into dir_name and base_name.

#include <libgen.h>
char dname[64], bname[64]; // for decomposed dir_name and base_name

int dbname (char *pathname)
{
char temp([128]; // dirname(), basename() destroy original pathname
strcpy (temp, pathname) ;
strcpy (dname, dirname (temp)) ;
strcpy (temp, pathname) ;
strcpy (bname, basename (temp)) ;

2.13.7 Sample Solution

Sample solution of the programming project is available online at the book’s website for download.
Source code of the project solution is available to instructors upon request from the author.

2.14 Summary

This chapter covers the background information needed for systems programming. It introduces
several GUI based text editors, such as vim, gedit and EMACS, to allow readers to edit files. It
shows how to use the EMACS editor in both command and GUI mode to edit, compile and execute C
programs. It explains program development steps. These include the compile-link steps of GCC, static
and dynamic linking, format and contents of binary executable files, program execution and termina-
tion. It explains function call conventions and run-time stack usage in detail. These include parameter
passing, local variables and stack frames. It also shows how to link C programs with assembly code. It
covers the GNU make facility and shows how to write makefiles by examples. It shows how to use the
GDB debugger to debug C programs. It points out the common errors in C programs and suggests
ways to prevent such errors during program development. Then it covers advanced programming
techniques. It describes structures and pointer in C. It covers link lists and list processing by detailed
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examples. It covers binary trees and tree traversal algorithms. The chapter cumulates with a program-
ming project, which is for the reader to implement a binary tree to simulate operations in the Unix/
Linux file system tree. The project starts with a single root directory node. It supports mkdir, rmdir,
creat, rm, cd, pwd, Is operations, saving the file system tree as a file and restoring the file system tree
from saved file. The project allows the reader to apply and practice the programming techniques of
tokenizing strings, parsing user commands and using function pointers to invoke functions for
command processing.

Problems

1. Refer to the assembly code generated by GCC in Sect. 2.5.1. While in the function A(int x, int y),
show how to access parameters x and y:

2. Refer to Example 1 in Sect. 2.5.2, Write assembly code functions to get CPU's ebx, ecx, edx, esi and
edi registers.

3. Assume: The Intel x86 CPU registers CX=N, BX points to a memory area containing N integers.
The following code segments implements a simple loop in assembly, which loads AX with each
successive element of the integer array.

loop: movl (%ebx), %eax # AX = *BX (consider BX as int * in C)

addl $4, %ebx # ++BX
subl $1, %ecx # CX--;
jne # jump to loop if CX NON-zero

Implement a function int Asum(int *a, int N) in assembly, which computes and returns the sum of N
integers in the array int a[N]. Test your Asum() function by

int a[100], N = 100;
int main()
{
int i, sum;
for (i=0; i<N; i++) // set al] values to 1 to 100
ali] = 1i+1;
sum = Asum(a, N); // all is an int array, a is int *
printf (“*sum = %d\n”, sum);

The value of sum should be 5050.
4. Every C program must have a main() function.
(1) Why?
(2) The following program consists of a t.c file in C and a ts.s file in 32-bit assembly. The program’s
main() function is written in assssembly, which calls mymain() in C. The program is compile-
linked by

gcc -m32 ts.s t.c

It is run as a.out one two three.
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# *kkkkkk ts.s file *kkkkkk
.global main, mymain # int mymain() is in C
main: pushl %ebp
movl %esp, %ebp
(2).1: WRITE assembly CODE TO call mymain(argc, argv, env)
call mymain
leave
ret

/*********** t.c file Of a c program *************/
int mymain(int argc, char *argv[], char *env[ ])
{
int i;
printf (“argc=%d\n”, argc);
i =0;
while(argv[i]) {
printf (“argv[%d] = %s\n”, i, argvl[il);
i++;
}
(2).2: WRITE C code to print all env[ ] strings
}

Complete the missing code at the labels (2).1 and (2).2 to make the program work.
5. In the Makefile Example 5 of Sect. 2.7.3, the suffix rule

.8.0: # build each .o file if its .s file has changed
${AS} -a $< -0 $*.0 > $*.map

$(AS) —a tells the assembler to generate an assembly listing, which is redirected to a map file.
Assume that the PMTX Kernel directory contains the following assembly code files:

entry.s, init.s, traps.s, ts.s

What are the file names of the resulting .0 and .map files?

6. Refer to the Insertion function in Sect. 2.10.6. Rewrite the insert() function to ensure there are no
duplicated keys in the link list.

7. Refer to the delete() function in Sect. 2.10.8. Rewrite the delete() function as

NODE *delete(NODE **list, NODE *p)

which deletes a given node pointed by p from list..
8. The following diagram shows a Multilevel Priority Queue (MPQ).
(1) Design a data structure for a MPQ.
(2) Design and implement an algorithm to insert a queue element with a priority between 1 and n
into a MPQ.
9. Assume that a Version 1 doubly link list is represented by a single NODE pointer, as in the Example
Program C2.5 in Sect. 2.10.12.
(1). Implement a insertAfter(NODE **dlist, NODE *p, int key) function, which inserts a new node
with a given key into a dlist AFTER a given node p. If p does not exist, e.g. p=0, insert to the
list end.
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(2). Implement a insertBefore(NODE **dlist, NODE *p, int key) function, which inserts a new
node with a given key BEFORE the node p. If p does not exist, e.g. p=0, insert to the list front.
(3). Write a complete C program, which builds a dlist by the insertAfter() and insertBefore()
functions.
10. Assume that a Version 2 doubly link list is represented by a list head structure.
(1). Implement a insertAfter(NODE *dlist, NODE *p, int key) function, which inserts a new node
with a given key into a dlist AFTER a given node p. If p does not exist, insert to the list end.
(2). Implement a insertBefore(NODE *dlist, NODE *p, int key) function, which inserts a new
node with a given key BEFORE the node p. If p does not exist, insert to list front.
(3). Write a complete C program, which builds a dlist by the insertAfter() and insertBefore()
functions.
11. Assume that a doubly link list is represented by an initialized listhead as in Example Program
C2.6.
(1). Implement a insertBefore(NODE *dlist, NODE *p, NODE *new) function, which inserts a
new node into a dlist BEFORE an existing node p.
(2). Implement a insertAfter(NODE *dlist, NODE *p, NODE *new) function, which inserts a new
node into a dlist AFTER an existing node p.
(3). Write a complete C program to build a dlist by using the insertAfter() and insertBefore()
functions.
12. Refer to the binary search tree (BST) program C2.7 in Sect. 2.9.2.
(1) Prove that the insert() function does not insert nodes with the same key twice.
(2) Rewrite the main() function, which builds a BST by keys generated by rand() % 100, so that
the keys are in the range of [0-99]
13. A shortcoming of the print tree by level program in Sect. 2.10.1.is that it does not show whether
any child node is NULL. Modify the program to print a ‘~* if any child node is NULL.
14. For the Programming Project, implement a rename command, which changes the name of a node
in the file tree.

rename (char *pathname, char *newname)

15. For the Programming project, design and implement a mv command, which moves pathnamel to
pathname?2

mv (char *pathnamel, char *pathname2);

16. For the Programming Project, discuss whether we can use IN-ORDER or POST-ORDER traversal
to save and reconstruct a binary tree.
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Abstract

This chapter covers process management in Unix/Linux. It explains the principle of multitasking
and introduces the process concept. It uses a programming example to illustrate the principles and
techniques of multitasking, context switching and processes. The multitasking system supports
dynamic process creation, process termination, process synchronization by sleep and wakeup,
process relations and implementation of process family tree as a binary tree, allowing parent
process to wait for child process termination. It provides a concrete example of how process
management functions work in an operating system kernel. Then it explains the origin of processes
in Unix/Linux, from the initial process during booting to INIT process, daemon processes, login
processes and sh process for user command execution. Next, it explains the execution modes of
processes, transitions from User mode to Kernel mode by interrupts, exceptions and system calls.
Then it describes Unix/Linux system calls for process management, which include fork, wait, exec
and exit. It explains the relationship between parent and child processes, including a detailed
description between process termination and the wait operation by parent process. It explains
how to handle orphan processes by the INIT process, including subreaper processes in current
Linux, and it demonstrates subreaper process by example. Then it explains changing process
execution image by exec in detail, which includes the execve system call, command-line parameters
and environment variables. It explains the principles and techniques of I/O redirections, pipes and
shows pipe programming by examples. The programming project of this chapter is for the reader to
integrate the concepts and techniques of process management to implement a sh simulator for
command execution. The sh simulator works exactly the same as the standard sh. It supports
executions of simple commands, commands with I/O redirections and multiple commands
connected by pipes.

3.1 Multitasking

In general, multitasking refers to the ability of performing several independent activities at the same
time. For example, we often see people talking on their cell phones while driving. In a sense, these
people are doing multitasking, although a very bad kind. In computing, multitasking refers to the
execution of several independent tasks at the same time. In a uniprocessor (single CPU) system, only
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one task can execute at a time. Multitasking is achieved by multiplexing the CPU's execution time
among different tasks, i.e. by switching the CPU’s execution from one task to another. The mechanism
of switching executions among different tasks is called context switching, which changes the execution
environment of one task to that of another. If the switch is fast enough, it gives the illusion that all the
tasks are executing simultaneously. This logical parallelism is called concurrency. In multiprocessor
systems with many CPUs or processor cores, tasks can execute on different CPUs in parallel in real
time. In addition, each processor may also do multitasking by executing different tasks concurrently.
Multitasking is the basis of all operating systems. It is also the basis of concurrent programming in
general.

3.2 The Process Concept

An operating system is a multitasking system. In an operating system, tasks are also called processes.
For all practical purposes, the terms task and process can be used interchangeably. In Chap. 2, we
defined an execution image as a memory area containing the execution’s code, data and stack.
Formally, we define process as

A process is the execution of an image.

It is a sequence of executions regarded by the OS kernel as a single entity for using system resources.
System resources include memory space, I/O devices and, most importantly, CPU time. In an OS
kernel, each process is represented by a unique data structure, called the Process Control Block (PCB)
or Task Control Block (TCB), etc. In this book, we shall simply call it the PROC structure. Like a
personal record, which contains all the information of a person, a PROC structure contains all the
information of a process. In a real OS, the PROC structure may contain many fields and quite large. To
begin with, we shall define a very simple PROC structure to represent processes.

typedef struct proc({

struct proc *next; // next proc pointer

int *ksp; // saved sp: at byte offset 4

int pid; // process ID

int ppid; // parent process pid

int status; // PROC status=FREE|READY, etc.

int priority; // scheduling priority

int kstack[1024]; // process execution stack
}PROC;

In the PROC structure, next is a pointer to the next PROC structure. It is used to maintain the PROCs in
various dynamic data structures, such as link lists and queues. The field ksp is the saved stack pointer.
When a process gives up the CPU, it saves the execution context in stack and saves the stack pointer in
PROC ksp for resumption later. Among the other fields of the PROC structure, pid is the process ID
number that identifies a process, ppid is the parent process ID number, status is the current status of the
process, priority is the process scheduling priority and kstack is the process stack when it is executing.
An OS kernel usually defines a finite number of PROC structures in its data area, denoted by

PROC proc [NPROC] ; // NPROC a constant, e.g. 64



33 A Multitasking System 103

which are used to represent processes in the system. In a single CPU system, only one process can be
executing at a time. The OS kernel usually uses a global PROC pointer, running or current, to point at
the PROC that is currently executing. In a multiprocessor OS with multiple CPUs, many processes
may be executing on different CPUs in parallel in real time. Accordingly, in a MP system running
[NCPU] may be an array of pointers, each points at a PROC running on a specific CPU. For simplicity,
we shall only consider single CPU systems.

3.3 A Multitasking System

In order for the reader to have a better understanding of multitasking and processes, we begin with a
programming example, which is designed to illustrate the principles of multitasking, context switching
and processes. The program implements a multitasking environment, which simulates the kernel mode
operations of an operating system. The multitasking system, denoted by MT, consists of the following
components.

3.3.1  type.hfile

The type.h file defines system constants and a simple PROC structure to represent processes.

/*********** type.h file ************/

#define NPROC 9 // number of PROCs
#define SSIZE 1024 // stack size = 4KB

// PROC status
#define FREE

#define READY
#define SLEEP
#define ZOMBIE

w N PO

typedef struct proc({

struct proc *next; // next proc pointer

int *ksp; // saved stack pointer

int pid; // pid = 0 to NPROC-1

int ppid; // parent pid

int status; // PROC status

int priority; // scheduling priority

int kstack[SSIZE]; // process stack
}PROC;

As we expand the MT system, we shall add more fields to the PROC structure later.

3.3.2 The ts.s file

The ts.s file implements process context switching in 32-bit GCC assembly code, which will be
explained in later sections.
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————————————— ts.s file file ---------—----u---
.globl running, scheduler, tswitch

tswitch:
SAVE: pushl %eax

pushl %ebx

pushl %ecx

pushl %$edx

pushl %ebp

pushl %esi

pushl %edi

pushfl

movl running, $ebx # ebx -> PROC

movl %esp, 4 (%ebx) # PORC.save_sp = esp

FIND: call scheduler
RESUME: movl running, $ebx # ebx -> PROC

movl 4 (%ebx) , $esp # esp = PROC.saved_sp
popfl

popl %edi

popl %esi

popl %ebp

popl %$edx

popl %ecx

popl %ebx

popl %eax

ret

# stack contents = |retPC|eax|ebx|ecx|edx|ebp|esi|edi|eflag]

#

-1 -2 -3 -4 -5 -6 -7 -8 -9

3.3.3 The queue.c file

The queue.c file implements queue and list operation functions. The function enqueue() enters a PROC
into a queue by priority. In a priority queue, PROCs of the same priority are ordered by First-In-First-
Out (FIFO). The function dequeue() returns the first element removed from a queue or a link list. The
function printList() prints the elements of a link list.

/***************** queue.c file *****************/

int enqueue (PROC **queue, PROC *p)

{

PROC *g = *queue;
if (g == 0 || p->priority > g->priority){
*queue = p;
p->next = g;
}
else(
while (g->next && p->priority <= g->next->priority)
a = g->next;
p->next = g->next;

b

g->next
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}
}
PROC *dequeue (PROC **queue)
{
PROC *p = *queue;
if (p)
*queue = (*queue)->next;
return p;
}
int printList(char *name, PROC *p)
{
printf("%s = ", name);
while (p) {
printf("[%d %d]->", p->pid, p->priority);
p = p->next;
}
printf (“NULL\n") ;
}

3.3.4 The t.cfile

The t.c file defines the MT system data structures, system initialization code and process management
functions.

[F*xxxxxk%xk £ c file of A Multitasking System *****%*xx/
#include <stdio.h>
#include "type.h"

PROC proc [NPROC]; // NPROC PROCs

PROC *freeList; // freeList of PROCs

PROC *readyQueue; // priority queue of READY procs
PROC *running; // current running proc pointer
#include "queue.c" // include queue.c file

/‘k********‘k‘k**‘k**‘k*****‘k‘k*‘k‘k**‘k******‘k*‘k‘k*‘k‘k*‘k*‘k‘k*‘k‘k****

kfork() creates a child process; returns child pid.

When scheduled to run, child PROC resumes to body () ;
********************************************************/
int kfork()
{

int 1i;

PROC *p = dequeue (&freeList) ;

if (Ip){

printf ("no more proc\n");

return(-1);
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/* initialize the new proc and its stack */
p->status = READY;
p->priority = 1; // ALL PROCs priority=1,except PO
p->ppid = running->pid;
[*xFxFxExAxkx* pnew task initial stack contents FrxEAAAxFAFAK
kstack contains: |retPC|eax|ebx|ecx|edx|ebp|esi|edi|eflag]
-1 -2 -3 -4 -5 -6 -7 -8 -9

*****‘k*****‘k*********‘k*****‘k*‘k**‘k*************************/

for (i=1; i<10; i++) // zero out kstack cells
p->kstack[SSIZE - i] = 0;

p->kstack[SSIZE-1] = (int)body; // retPC -> body()

p->ksp = &(p->kstack[SSIZE - 9]); // PROC.ksp -> saved eflag

enqueue (&readyQueue, p); // enter p into readyQueue

return p->pid;

int kexit()

{

running->status = FREE;
running->priority = 0;

enqueue (&freelList, running) ;
printList ("freeList", freelList);
tswitch() ;

int do_kfork()

{

}

int child = kfork():;
if (child < 0)
printf ("kfork failed\n");

else{

printf ("proc %d kforked a child = %d\n", running->pid, child);

printList ("readyQueue", readyQueue) ;

}

return child;

int do_switch()

{

}

tswitch() ;

int do_exit

{

kexit () ;

int body() // process body function

{

int c;
printf ("proc %d starts from body()\n", running->pid);
while (1) {

3 Process Management in Unix/Linux
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printf("****‘k‘k**************‘k‘k**‘k************‘k*\n") ;
printf ("proc %$d running: parent=%d\n", running->pid,running->ppid) ;
printf("enter a key [fls|g] : ");
c = getchar(); getchar(); // kill the \r key
switch(c) {
case 'f’: do_kfork(); break;
case ’'s’: do_switch(); break;
case 'q’: do_exit(); break;
}
}
}
// initialize the MT system; create PO as initial running process
int init()
{
int 1i;
PROC *p;

for (i=0; 1i<NPROC; i++){ // initialize PROCs
p = &proc(i];
p->pid = i; // PID = 0 to NPROC-1
p->status = FREE;
p->priority = 0;
p->next = p+1;

}

proc [NPROC-1] .next = 0;

freeList = &proc[0]; // all PROCs in freeList
readyQueue = 0; // readyQueue = empty

// create PO as the initial running process

p = running = dequeue (&freelList); // use proc[0]
p->status = READY;

p->ppid = 0; // PO is its own parent
printList("freeList", freeList);

printf("init complete: PO running\n");

/********‘k****** maln() function *********‘k**‘k**/

int main()

{

printf ("Welcome to the MT Multitasking System\n") ;

init(); // initialize system; create and run PO
kfork () ; // kfork Pl into readyQueue
while (1) {

printf ("P0: switch process\n");
if (readyQueue)
tswitch() ;
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/‘k*********‘k Scheduler ‘k**‘k**‘k******/

int scheduler()
{
printf ("proc %$d in scheduler()\n", running->pid);
if (running->status == READY)
enqueue (&readyQueue, running) ;
printList ("readyQueue", readyQueue) ;
running = dequeue (&readyQueue) ;
printf ("next running = %d\n", running->pid);

3.3.5 Explanations of the Multitasking System Code
We explain the base code of the MT multitasking system by the following steps.
(1). The Virtual CPU: The MT system is compile-linked under Linux as

gcc -m32 t.c ts.s

Then run a.out. The entire MT system runs as Linux process in user mode. Within the Linux process,
we create independent execution entities called tasks and schedule them to run inside the Linux process
by our own scheduling algorithm. To the tasks in the MT system, the Linux process behaves as a
virtual CPU. Barring any confusion, we shall refer to the execution entities in the MT system as either
tasks or processes.

(2). init(): When the MT system starts, main() calls init() to initialize the system. Init() initializes the
PROC structures and enters them into a freeList. It also initializes the readyQueue to empty. Then
it uses proc[0] to create PO as the initial running process. PO has the lowest priority 0. All other
tasks will have priority 1, so that they will take turn to run from the readyQueue.

(3). PO calls kfork() to create a child process P1 with priority 1 and enter it into the ready queue. Then
PO calls tswitch(), which will switch task to run P1.

(4). tswitch(): The tswitch() function implements process context switching. It acts as a process switch
box, where one process goes in and, in general, another process emerges. tswitch() consists of
3 separated steps, which are explained in more detail below.

(4).1. SAVE part of tswitch(): When an executing task calls tswitch(), it saves the return address on
stack and enters tswitch() in assembly code. In tswitch(), the SAVE part saves CPU registers into
the calling task’s stack and saves the stack pointer into proc.ksp. The Intel x86 CPU in 32-bit
mode has many registers, but only the registers eax, ebx, ecx, edx, ebp, esi, edi and eflag are
visible to a Linux process in user mode, which is the virtual CPU of the MT system. So we only
need to save and restore these registers of the virtual CPU. The following diagram shows the
stack contents and the saved stack pointer of the calling task after executing the SAVE part of
tswitch(), where xxx denote the stack contents before calling tswitch().

proc.ksp

| xxx | retPC | eax | ebx |ecx|edx|ebp |esi|edi|eflag|
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In the Intel x86 based PCs in 32-bit mode, every CPU register is 4 bytes wide and stack
operations are always in units of 4 bytes. Therefore, we may define each PROC stack as an
integer array in the PROC structure.

scheduler(): After executing the SAVE part of tswitch(), the task calls scheduler() to pick the
next running task. In scheduler(), if the calling task is still READY to run, it calls enqueue() to
put itself into the readyQueue by priority. Otherwise, it will not be in the readyQueue, which
makes it non-runnable. Then it calls dequeue(), which returns the first PROC removed from
readyQueue as the new running task.

RESUME part of tswitch(): When execution returns from scheduler(), running may have
changed to point at the PROC of a different task. Whichever PROC running points at, it is the
current running task. The RESUME part of tswitch() sets the CPU’s stack pointer to the saved
stack pointer of the current running task. Then it pops saved registers, followed by RET, causing
the current running task return to where it called tswitch() earlier.

(5). kfork(): The kfork() function creates a child task and enters it into the readyQueue. Every newly
created task begins execution from the same body() function. Although the new task never existed
before, we may pretend that it not only existed before but also ran before. The reason why it is not
running now is because it called tswitch() to give up CPU earlier. If so, its stack must contain a
frame saved by the SAVE part of tswitch(), and its saved ksp must point at the stack top. Since the
new task never really ran before, we may assume that its stack was empty and all CPU register
contents are O when it called tswitch(). Thus, in kfork(), we initialize the stack of the new task as
follows.

proc.ksp
|
|< - all saved registers = 0 ->|
| body | eax | ecx|edx|ebx|ebp |esi|edi|eflags|
-1 -2 -3 -4 -5 -6 -7 -8 -9

where the index —i means SSIZE-i. These are done by the following code segment in kfork().

/************** task initial Stack contents kkkhkkhkkkkkhkkkkk
kstack contains: |retPC|eax|ebx|ecx|edx|ebp|esi|edi|eflag]|
-1 -2 -3 -4 -5 -6 -7 -8 -9

‘k********‘k‘k*‘k‘k**‘k********‘k‘k*‘k‘k**‘k******‘k*‘k‘k**‘k**‘k******‘k**/

for (i=1; i<10; i++) // zero out kstack cells

p-
p-

p->kstack[SSIZE-i] = 0;
>kstack[SSIZE-1] = (int)body; // retPC -> body()
>ksp = &(p->kstack[SSIZE-9]); // PROC.ksp -> saved eflag

When the new task starts to run, it begins by executing the RESUME part of tswitch(), which causes
it to return to the entry address of the body() function. When execution first enters body(), the task’s
stack is logically empty. As soon as execution starts, the task’s stack will grow and shrink as
described in Chap. 2 on stack usage and stack frames. In practice, the body() function never returns,
so there is no need for a return address in the stack. For variations of the initial stack contents, the
reader may consult Problem 3.2 in the Problem section.
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(5).

(6).

).

3 Process Management in Unix/Linux

body(): For demonstration purpose, all tasks are created to execute the same body() function. This
shows the difference between processes and programs. Many processes may execute the same
program code, but each process executes in its own context. For instance, all (automatic) local
variables in body() are private to the process since they are all allocated in the per process stack. If
the body() function calls other functions, all the calling sequences are maintained in the per process
stack, etc. While executing in body(), a process prompts for a command char = [flslq], where

f : kfork a new child process to execute body();

s : switch process;

q : terminate and return the PROC as FREE to freeList

The Idle Task P0: PO is special in that it has the lowest priority among all the tasks. After system
initialization, PO creates P1 and switches to run P1. PO will run again if and only if there are no
runnable tasks. In that case, PO simply loops. It will switch to another task whenever readyQueue
becomes nonempty. In the base MT system, PO runs again if all other processes have terminated.
To end the MT system, the user may enter Control-C to kill the Linux process.

Running the MT Multitasking System: Under Linux, enter

gcc -m32 t.c s.s

to compile-link the MT system and run the resulting a.out Figure 3.1 shows the sample outputs of
running the MT multitasking system. The figures show the MT system initialization, the initial
process PO, which creates P1 and switches task to run P1. P1 kforks a child process P2 and
switches task to run P2. While a process is running, the reader may enter other commands to test
the system.

Welcome to the MT Multitasking System

freeList = [1 0] ->[20] ->[30] ->[40] ->[580] ->[60] ->[7 0] ->[8 0] ->NULL
init complete: P@ running

PO: switch task

proc 0 in scheduler()

readyQueue = [1 1] -> [0 0] -> NULL

next running = 1

proc 1 starts from body()

o e o o o e o oo oo o o o o o o o e o o o e o e o oo o ol o o ok

proc 1 running: Parent = @

child = NULL

input a char [f|s|q] : f

proc 1 kforked a child = 2

readyQueue = [2 1] -> [0 0] -> NULL

s o o o o o o o o o o oo o o o o o o o o o R o ok o K o ok
proc 1 running: Parent = ©

child = NULL

input a char [f[s|q] : s

proc 1 switching task

proc 1 in scheduler()

readyQueue = [2 1] -> [1 1] -> [8 8] -> NULL
next running = 2

proc 2 starts from body()

T

proc 2 running: Parent = 1
child = NULL
input a char [f|s|q] : |}

Fig.

3.1 Sample Outputs of the MT Multitasking System
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3.4  Process Synchronization

An operating system comprises many concurrent processes, which may interact with one another.
Process synchronization refers to the rules and mechanisms used to control and coordinate process
interactions to ensure their proper executions. The simplest tools for process synchronization are sleep
and wakeup operations.

3.4.1 Sleep Operation

Whenever a process needs something, e.g. a memory area for exclusive use, an input char from stdin,
etc. that’s currently not available, it goes to sleep on an event value, which represents the reason of the
sleep. To implement the sleep operation, we can add an event field to the PROC structure and
implement a ksleep(int event) function, which lets a process go to sleep. In the following, we shall
assume that the PROC structure is modified to include the added fields shown in bold face.

typedef struct proc{

struct proc *next; // next proc pointer
int *ksp; // saved sp: at byte offset 4
int pid; // process ID
int ppid; // parent process pid
int status; // PROC status=FREE|READY, etc.
int priority; // scheduling priority
int event; // event value to sleep on
int exitCode; // exit value
struct proc *child; // f£irst child PROC pointer
struct proc *sibling; // sibling PROC pointer
struct proc *parent; // parent PROC pointer
int kstack[1024]; // process stack

}PROC;

The algorithm of ksleep() is
/************ Algorithm of ksleep(int event) **************/

1. record event value in PROC.event: running->event = event;

2. change status to SLEEP: running->status = SLEEP;

3. for ease of maintenance, enter caller into a PROC *sleepList
enqueue (&sleepList, running);

4. give up CPU: tswitch();

Since a sleeping process is not in the readyQueue, it’s not runnable until it is woken up by another
process. So after putting itself to sleep, the process calls tswitch() to give up the CPU.
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3.4.2 Wakeup Operation

Many processes may sleep on the same event, which is natural since all of them may need the same
resource, e.g. a printer, which is currently busy. In that case, all such processes would go to sleep on the
same event value. When an awaited event occurs, another execution entity, which may be either a
process or an interrupt handler, will call kwakeup(event), which wakes up ALL the processes sleeping
on the event value. If no process is sleeping on the event, kwakeup() has no effect, i.e. it does nothing.
The algorithm of kwakeup() is

[*****xkkkk* Algorithm of kwakeup (int event) *****k¥xxi/
// Assume SLEEPing procs are in a global sleepList
for each PROC *p in sleepList dof{

if (p->event == event) { // if p is sleeping for the event
delete p from sleepList;
p->status = READY; // make p READY to run again
enqueue (&readyQueue, p); // enter p into readyQueue

}

It is noted that an awakened process may not run immediately. It is only put into the readyQueue,
waiting for its turn to run. When an awakened process runs, it must try to get the resource again if it was
trying to get a resource before the sleep. This is because the resource may no longer be available by the
time it runs. The ksleep() and kwakeup() functions are intended for process synchronization in general,
but they are also used in the special case to synchronize parent and child processes, which is our next
topic.

3.5 Process Termination

In an operating system, a process may terminate or die, which is a common term of process termina-
tion. As mentioned in Chap. 2, a process may terminate in two possible ways:

Normal termination: The process calls exit(value), which issues _exit(value) system call to execute
kexit(value) in the OS kernel, which is the case we are discussing here.

Abnormal termination: The process terminates abnormally due to a signal. Signals and signal handling
will be covered later in Chap. 6.

In either case, when a process terminates, it eventually calls kexit() in the OS kernel. The general
algorithm of kexit() is as follows.

3.5.1 Algorithm of kexit()

/**************** Algorith.“l Of kexit(int exitValue) *****************/
1. Erase process user-mode context, e.g. close file descriptors,
release resources, deallocate user-mode image memory, etc.
2. Dispose of children processes, if any
3. Record exitValue in PROC.exitCode for parent to get
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4. Become a ZOMBIE (but do not free the PROC)
5. Wakeup parent and, if needed, also the INIT process Pl

All processes in the MT system run in the simulated kernel mode of an OS. As such they do not
have any user mode context. So we begin by discussing Step 2 of kexit(). In some OS, the execution
environment of a process may depend on that of its parent. For example, the child's memory area may
be within that of the parent, so that the parent process can not die unless all of its children have died. In
Unix/Linux, processes only have the very loose parent-child relation but their execution environments
are all independent. Thus, in Unix/Linux a process may die any time. If a process with children dies
first, all the children processes would have no parent anymore, i.e. they become orphans. Then the
question is: what to do with such orphans? In human society, they would be sent to grandma's house.
But what if grandma already died? Following this reasoning, it immediately becomes clear that there
must be a process which should not die if there are other processes still existing. Otherwise, the parent-
child process relation would soon break down. In all Unix-like systems, the process P1, which is also
known as the INIT process, is chosen to play this role. When a process dies, it sends all the orphaned
children, dead or alive, to P1, i.e. become P1's children. Following suit, we shall also designate P1 in
the MT system as such a process. Thus, P1 should not die if there are other processes still existing. The
remaining problem is how to implement Step 2 of kexit() efficiently. In order for a dying process to
dispose of orphan children, the process must be able to determine whether it has any child and, if it has
children, find all the children quickly. If the number of processes is small, e.g. only a few as in the MT
system, both questions can be answered effectively by searching all the PROC structures. For example,
to determine whether a process has any child, simply search the PROCs for any one that is not FREE
and its ppid matches the process pid. If the number of processes is large, e.g. in the order of hundreds or
even thousands, this simple search scheme would be too slow to be acceptable. For this reason, most
large OS kernels keep track of process relations by maintaining a process family tree.

3.5.2 Process Family Tree

Typically, the process family tree is implemented as a binary tree by a pair of child and sibling pointers
in each PROC, as in

PROC *child, *sibling, *parent;

where child points to the first child of a process and sibling points to a list of other children of the same
parent. For convenience, each PROC also uses a parent pointer to point at its parent. As an example,
the process tree shown on the left-hand side of Fig. 3.2 can be implemented as the binary tree shown on
the right-hand side, in which each vertical link is a child pointer and each horizontal link is a sibling
pointer. For the sake of clarity, parent and null pointers are not shown.

With a process tree, it is much easier to find the children of a process. First, follow the child pointer
to the first child PROC. Then follow the sibling pointers to traverse the sibling PROCs. To send all
children to P1, simply detach the children list and append it to the children list of P1 (and change their
ppid and parent pointer also).

Each PROC has an exitCode field, which is the process exitValue when it terminates. After
recording exitValue in PROC.exitCode, the process changes its status to ZOMBIE but does not free
the PROC structure. Then the process calls kwakeup(event) to wake up its parent, where event must be
the same unique value used by both the parent and child processes, e.g. the address of the parent PROC
structure or the parent pid. It also wakes up P1 if it has sent any orphans to P1. The final act of a dying



114 3 Process Management in Unix/Linux

Fig. 3.2 Process Tree and PO PO (sibling = NULL)
Binary Tree | |
P1 P1

| |
- P2 => P3 => P4
P2 P3 P4 I

I PS5 => P6

PS5 P6

process is to call tswitch() for the last time. After these, the process is essentially dead but still has a
dead body in the form of a ZOMBIE PROC, which will be buried (set FREE) by the parent process
through the wait operation.

3.5.3  Wait for Child Process Termination
At any time, a process may call the kernel function

pid = kwait(int *status)

to wait for a ZOMBIE child process. If successful, the returned pid is the ZOMBIE child's pid and
status contains the exitCode of the ZOMBIE child. In addition, kwait() also releases the ZOMBIE child
PROC back to the freeList for reuse. The algorithm of kwait is

/******* Algorith]n Of kwait() *******/
int kwait(int *status)
{
if (caller has no child) return -1 for error;
while (1) { // caller has children
search for a (any) ZOMBIE child;
if (found a ZOMBIE child) {
get ZOMBIE child pid
copy ZOMBIE child exitCode to *status;
bury the ZOMBIE child (put its PROC back to freeList)
return ZOMBIE child pid;
}
//**** has children but none dead yet ***%*

ksleep(running); // sleep on its PROC address

In the kwait algorithm, the process returns -1 for error if it has no child. Otherwise, it searches for a
ZOMBIE child. If it finds a ZOMBIE child, it collects the ZOMBIE child’s pid and exitCode, releases
the ZOMBIE PROC to freeList and returns the ZOMBIE child’s pid. Otherwise, it goes to sleep on its
own PROC address, waiting for a child to terminate. Since each PROC address is a unique value,
which is also known to all children processes, a waiting parent may sleep on its own PROC address for
child to wake it up later. Correspondingly, when a process terminates, it must issue

kwakeup (running->parent) ;
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to wake up the parent. Instead of the parent PROC address, the reader may verify that using the parent
pid should also work. In the kwait() algorithm, when the process wakes up, it will find a dead child
when it executes the while loop again. Note that each kwait() call handles only one ZOMBIE child, if
any. If a process has many children, it may have to call kwait() multiple times to dispose of all the dead
children. Alternatively, a process may terminate first without waiting for any dead child. When a
process dies, all of its children become children of P1. In a real system, P1 executes in an infinite loop,
in which it repeatedly waits for dead children, including adopted orphans. Therefore, in a Unix-like
system, the INIT process P1 wears many hats.

. It is the ancestor of all processes except P0. In particular, it is the grand daddy of all user processes
since all login processes are children of P1.

. It is the head of an orphanage since all orphans are sent to his house and call him Papa.

. It is the manager of a morgue since it keeps looking for ZOMBIESs to bury their dead bodies.

So, in a Unix-like system if the INIT process P1 dies or gets stuck, the system would stop functioning
because no user can login again and the system will soon be full of rotten corpses.

3.6 Process Management in the MT Multitasking System

This section presents a programming exercise for the reader to refine the base MT system to implement
process management functions for the MT system. Specifically,

(1). Implement process family tree as a binary tree.

(2). Implement ksleep() and kwakeup() for process synchronization.
(3). Implement kexit() and kwait() for process management.

(4). Add a ‘w’ command to test and demonstrate the wait operation.

Sample solution to the programming exercise is available online for download. Figure 3.3 shows the
sample outputs of running the modified MT system. As the figure shows, P1 forked a child P2, which
forked its own children P3 and P4. Then P2 executes the ‘q” command to terminate. The figure shows
that P2 becomes a ZOMBIE and sends all the orphan children to P1, whose children list now includes
all the orphans from P2. When P1 executes the ‘w’ command, it finds the ZOMBIE child P2 and
returns it to the freeList. Alternatively, the reader may change the child-exit and parent-wait order to
verify that the order does not matter.

3.7  Processes in Unix/Linux

With the above background information, we are now ready to describe processes in Unix/Linux
(Bach 1990; Bovet and Cesati 2005; Silberschatz et al 2009; Love 2005). The reader may correlate
the descriptions with processes in the MT system since all the terms and concepts apply equally well in
both systems.

3.71 Process Origin

When an operating system starts, the OS kernel’s startup code creates an initial process with PID=0 by
brute force, i.e. by allocating a PROC structure, usually proc[0], initializes the PROC contents and lets
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proc 2 running: Parent=1 child = NULL

input a char [f|s|q[w] : f

readyQ = [1 1] -> [3 1] -> [0 @] -> NULL

proc 2 kforked a child = 3

readyQueue = [1 1] -> [3 1] -> [0 8] -> NULL

o e o o oo o o oo o o e o o e e ol o e o o oo o o o o o oo ol o e ol o e ok

proc 2 running: Parent=1 child = [3 READY ]->NULL

input a char [f|s|q|w] : f

readyQ = [1 1] -> [3 1] -> [4 1] -> [@ @] -> NULL

proc 2 kforked a child = 4

readyQueue = [1 1] -> [3 1] -> [4 1] -> [0 ©] -> NULL

o o o o e o o o ol o ol ol o o e ol ol e ol o o o o ol o o o o o o e oo o

proc 2 running: Parent=1 child = [3 READY ]->[4 READY ]->NULL
input a char [f|s|q|w] : g

proc 2 in kexit()

P2 child [3 READY ]->[4 READY ]->NULL

P1 child [2 ZOMBIE]->[3 READY ]->[4 READY ]->null

proc 2 in scheduler()

readyQueue = [1 1] -> [3 1] -> [4 1] -> [0 ©] -> NULL

next running = 1

proc 1 resuming

o o oo o o o o o oo o ool o ol o o o o ool ok R o ol oo o ok o ok

proc 1 running: Parent=0 child = [2 ZOMBIE]->[3 READY ]->[4 READY ]->NULL
input a char [f|s|q|w] : w

freeList = [5 0] -> [6 0] -> [7 @] -> [8 @] -> [2 @] -> NULL
proc 1 waited for a ZOMBIE child 2 status=2

e o o o o o o oo o o o o ol oo o o o o oo o R o o oo o ke

proc 1 running: Parent=0 child = [3 READY ]->[4 READY ]->NULL
input a char [f|s|qlw]l : ||

Fig. 3.3 Sample Outputs of Modified MT System

running point at proc[0]. Henceforth, the system is executing the initial process PO. This is how most
operating systems start to run the first process. PO continues to initialize the system, which include both
the system hardware and kernel data structures. Then it mounts a root file system to make files
available to the system. After initializing the system, PO forks a child process P1 and switches process
to run P1 in user mode.

3.7.2 INIT and Daemon Processes

When the process P1 starts to run, it changes its execution image to the INIT program. Thus, P1 is
commonly known as the INIT process because its execution image is the init program. P1 starts to
fork many children processes. Most children processes of P1 are intended to provide system services.
They run in the background and do not interact with any user. Such processes are called daemon
processes. Examples of daemon processes are

syslogd: log daemon process

inetd : Internet service daemon process
httpd : HTTP server daemon process

etc.
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3.7.3 Login Processes

In addition to daemon processes, P1 also forks many LOGIN processes, one on each terminal, for
users to login. Each LOGIN process opens three FILE streams associated with its own terminal. The
three file streams are stdin for standard input, stdout for standard output and stderr for standard error
messages. Each file stream is a pointer to a FILE structure in the process HEAP area. Each FILE
structure records a file descriptor (number), which is O for stdin, 1 for stdout and 2 for stderr. Then each
LOGIN process displays a

login:

to its stdout, waiting for users to login. User accounts are maintained in the files /etc/passwd and /etc/
shadow. Each user account has a line in the /etc/passwd file of the form

name:x:gid:uid:description:home:program

in which name is the user login name, x means check password during login, gid is the user’s group ID,
uid is the user ID, home is the user’s home directory and program is the initial program to execute after
the user login. Additional user account information are maintained in the /etc/shadow file. Each line of
the shadow file contains the encrypted user password, followed by optional aging limit information,
such as expiration date and time, etc. When a user tries to login with a login name and password, Linux
will check both the /etc/passwd and /etc/shadow files to authenticate the user.

3.7.4 Sh Process

When a user login successfully, the LOGIN process acquires the user’s gid and uid, thus becoming the
user’s process. It changes directory to the user’s home directory and executes the listed program, which
is usually the command interpreter sh. The user process now executes sh, so it is commonly known as
the sh process. It prompts the user for commands to execute. Some special commands, such as cd
(change directory), exit, logout, etc. are performed by sh itself directly. Most other commands are
executable files in the various bin directories, such as /bin, /sbin, /usr/bin, /usr/local/bin, etc. For each
(executable file) command, sh forks a child process and waits for the child to terminate. The child
process changes its execution image to the command file and executes the command program. When
the child process terminates, it wakes up the parent sh, which collects the child process termination
status, frees the child PROC structure and prompts for another command, etc. In addition to simple
commands, sh also supports I/O redirections and multiple commands connected by pipes.

3.7.5 Process Execution Modes

In Unix/Linux, a process may execute in two different modes; Kernel mode and User mode, denoted
by Kmode and Umode for short. In each mode, a process has an execution image, as shown in Fig. 3.4.

In Fig.3.4, the index i indicates these are the images of process i. In general, the Umode images of
processes are all different. However, while in Kmode they share the same Kcode, Kdata and Kheap,
which are those of the OS Kernel, but each process has its own Kstack.
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Images of Process i:

Kmode: Kcode_ i Kdata_i Kheapi Kstack i (Kmode Space)

Umode: Ucode_ i Udata_i Uheapi Ustack i (Umode Space)

Fig. 3.4 Process Execution Images

A process migrates between Kmode and Umode many times during its life time. Every process
comes into existence and begins execution in Kmode. In fact, it does everything of interest in Kmode,
including termination. While in Kmode, it can come to Umode very easily by changing CPU's status
register from K to U mode. However, once in Umode it cannot change CPU's status arbitrarily for
obvious reasons. A Umode process may enter Kmode only by one of three possible ways:

(1). Interrupts: Interrupts are signals from external devices to the CPU, requesting for CPU service.
While executing in Umode, the CPU’s interrupts are enabled so that it will respond to any
interrupts. When an interrupt occurs, the CPU will enter Kmode to handle the interrupt, which
causes the process to enter Kmode.

(2). Traps: Traps are error conditions, such as invalid address, illegal instruction, divide by 0, etc.
which are recognized by the CPU as exceptions, causing it to enter Kmode to deal with the error.
In Unix./Linux, the kernel trap handler converts the trap reason to a signal number and delivers
the signal to the process. For most signals, the default action of a process is to terminate.

(3). System Calls: System call, or syscall for short, is a mechanism which allows a Umode process to
enter Kmode to execute Kernel functions. When a process finishes executing Kernel functions, it
returns to Umode with the desired results and a return value, which is normally O for success or -1
for error. In case of error, the external global variable errno (in errno.h) contains an ERROR code
which identifies the error. The user may use the library function

perror (“error message”) ;
to print an error message, which is followed by a string describing the error.
Every time a process enters Kmode, it may not return to Umode immediately. In some cases, it may
not return to Umode at all. For example, the _exit() syscall and most traps would cause the process to

terminate in kernel, so that it never returns to Umode again. When a process is about to exit Kmode, the
OS kernel may switch process to run another process of higher priority.

3.8 System Calls for Process Management

In this section, we shall discuss the following system calls in Linux, which are related to process
management (Stallings 2011; Tanenbaum and Woodhull 2006).

fork(), wait(), exec(), exit()
Each is a library function which issues an actual syscall

int syscall(int a, int b, int ¢, int 4);
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where the first parameter a is the syscall number and b, ¢, d are parameters to the corresponding kernel
function. In Intel x86 based Linux, syscall is implemented by the assembly instruction INT 0x80,
which causes the CPU to enter the Linux kernel to execute the kernel function identified by the syscall
number a.

3.8.1 fork()

Usage: int pid = fork();

fork() creates a child process and returns the child's pid or -1 if fork() fails. In Linux, each user can only
have a finite number of processes at the same time. User resource limits are set in the /etc/security/
limits.conf file. A user may run the command ulimit —a to see the various resource limit values.
Figure 3.5 shows the actions of fork(), which are explained below.

(1). The left-hand side of Fig. 3.5 shows the images of a process Pi, which issues the syscall pid=fork
() in Umode.

(2). Pi goes to Kmode to execute the corresponding kfork() function in kernel, in which it creates a
child process PROC] with its own Kmode stack and Umode image, as shown in the right-hand
side of the figure. The Umode image of Pj is an IDENTICAL copy of Pi's Umode image.
Therefore, Pj's code section also has the statement

pid=fork();
Furthermore, kfork() lets the child inherit all opened files of the parent. Thus, both the parent and
child can get inputs from stdin and display to the same terminal of stdout and stderr.
(3). After creating a child, Pi returns to the statement
pid = fork(); // parent return child PID
in its own Umode image with the child's pid = j. It returns -1 if fork() failed, in which case no

child is created.
(4). When the child process Pj runs, it exits Kmode and returns to the same statement

pid = fork(); // child returns 0
PROCi | PROC)
________ | _———————————

Kmode : Kcodei kfork{){..... } I (WYhen Pj rung:)-———->———
Kdatai A = | | |
kstacki | = | | Kstack]j |

I I ===

Umode : Ucodei pid=fork().: <- | Ucodej pid=fork() <-
Udatai | Udataj
Ustacki | Ustack]

Fig. 3.5 Actions of fork()



120 3 Process Management in Unix/Linux

in its own Umode image with a O return value.

After a successful fork(), both the parent and child execute their own Umode images, which are
identical immediately after fork(). From the program code point of view, the only way to tell which
process is executing now is by the returned pid. Thus the program code should be written as

int pid = fork();
if (pid){
// parent executes this part
}
else{
// child executes this part

We illustrate fork() by an example.

Example 3.1: The example program C3.1 demonstrates fork().

[rrEk kIR kkhkhkkhhkkkkk 03 ,1,.c: Fork() ***kkkkkkkhkkhkhkhhkhkkn/

#include <stdio.h>

int main()

int pid;

printf ("THIS IS %$d MY PARENT=%d\n", getpid(), getppid());
(1). pid = fork(): // fork syscall; parent returns child pid,

if (pid){ // PARENT EXECUTES THIS PART

(2). printf ("THIS IS PROCESS %d CHILD PID=d\n", getpid(), pid);
}
else{ // child executes this part
(3). printf("this is process %d parent=%d\n", getpid(), getppid());

The program is run by a child process of sh. In the example code, getpid() and getppid() are system
calls. getpid() returns the calling process PID and getppid() returns the parent process PID.

Line (1) forks a child process.

Line 2 prints (in uppercase for easier identification) the PID of the executing process and the newly
forked child PID.

Line (3) prints (in lowercase) the child process PID, which should be the same child PID in Line (2),
and its parent PID, which should be the same process PID in Line (2).

3.8.2 Process Execution Order

After fork(), the child process competes with the parent and all other processes in the system for CPU
time to run. Which process will run next depends on their scheduling priorities, which change
dynamically. The following example illustrates the possible different execution orders of processes.
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Example 3.2: The example program C3.2 demonstrates process execution orders.

/***************** c3_2.c file ********************/
#include <stdio.h>
int main()

{

int pid=fork(); // fork a child
if (pid){ // PARENT
printf (*PARENT $d CHILD=%d\n”, getpid(), pid);
(1). // sleep(l); // sleep 1 second ==> let child run next
printf ("PARENT %d EXIT\n", getpid());
}
else{ // child
printf("child %d start my parent=%d\n", getpid(), getppid()):;
(2). // sleep(2); // sleep 2 seconds => let parent die first
printf("child %d exit my parent=%d\n", getpid(), getppid());

In the Example 3.2 code, the parent process forks a child. After fork(), which process will run next
depends on their priority. The child may run and terminate first, but it may also be the other way
around. If the processes execute very lengthy code, they may take turn to run, so that their outputs may
be interleaved on the screen. In order to see the different process execution orders, the reader may
perform the following experiments.

(1). Uncomment line (1) to let the parent sleep for one second. Then the child should run to completion
first.

(2). Uncomment Line (2) but not Line (1) to let the child sleep for 2 seconds. Then the parent will run
to completion first. If the parent process terminates first, the child’s ppid will change to 1 or to
some other PID number. The reason for this will be explained later.

(3). Uncomment both Line (1) and Line (2). The results should be the same as in case (2).

In addition to sleep(seconds), which suspends a calling process for a number of seconds, Unix/Linux
also provide the following syscalls, which may affect the execution order of processes.

. nice(int inc): nice() increases the process priority value by a specified value, which lowers the process
scheduling priority (larger priority value means lower priority). If there are processes with higher
priority, this will trigger a process switch to run the higher priority process first. In a non-preemptive
kernel, process switch may not occur immediately. It occurs only when the executing process is about
to exit Kmode to return to Umode.

. sched_yield(void): sched_yield() causes the calling process to relinquish the CPU, allowing other
process of higher priority to run first. However, if the calling process still has the highest priority, it
will continue to run.

3.8.3 Process Termination

As pointed in Chap. 2 (Sect. 2.3.8), a process executing a program image may terminate in two
possible ways.
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(1). Normal Termination: Recall that the main() function of every C program is called by the C
startup code crt0.0. If the program executes successfully, main() eventually returns to crt0.o,
which calls the library function exit(0) to terminate the process. The exit(value) function does
some clean-up work first, such as flush stdout, close I/O streams, etc. Then it issues an _exit
(value) system call, which causes the process to enter the OS kernel to terminate. A 0 exit value
usually means normal termination. If desired, a process may call exit(value) directly from
anywhere inside a program without going back to crt0.0. Even more drastically, a process may
issue a _exit(value) system call to terminate immediately without doing the clean-up work first.
When a process terminates in kernel, it records the value in the _exit(value) system call as the exit
status in the process PROC structure, notifies its parent and becomes a ZOMBIE. The parent
process can find the ZOMBIE child, get its pid and exit status by the

pid = wait(int *status);

system call, which also releases the ZMOBIE child PROC structure as FREE, allowing it to be
reused for another process.

(2). Abnormal Termination: While executing a program, the process may encounter an error
condition, such as illegal address, privilege violation, divide by zero, etc. which is recognized
by the CPU as an exception. When a process encounters an exception, it is forced into the OS
kernel by a trap. The kernel’s trap handler converts the trap error type to a magic number, called
SIGNAL, and delivers the signal to the process, causing it to terminate. In this case, the process
terminates abnormally and the exit status of the ZOMBIE process is the signal number. In addition
to trap errors, signals may also originate from hardware or from other processes. For example,
pressing the Control_C key generates a hardware interrupt, which sends a number 2 signal
(SIGINT) to all processes on the terminal, causing them to terminate. Alternatively, a user may
use the command

kill -s signal_number pid # signal_number=1 to 31

to send a signal to a target process identified by pid. For most signal numbers, the default action of a
process is to terminate. Signals and signal handling will be covered later in Chap. 6.

In either case, when a process terminates, it eventually calls a kexit() function in the OS kernel. The
general algorithm of kexit() was described in Sect. 3.5.1. The only difference is that the Unix/Linux
kernel will erase the user mode image of the terminating process.

In Linux, each PROC has a 2-byte exitCode field, which records the process exit status. The high
byte of exitCode is the exitValue in the _exit(exitValue) syscall, if the process terminated normally.
The low byte is the signal number that caused it to terminate abnormally. Since a process can only die
once, only one of the bytes has meaning.

3.8.4 Wait for Child Process Termination
At any time, a process may use the

int pid = wait(int *status);
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system call, to wait for a ZOMBIE child process. If successful, wait() returns the ZOMBIE child PID
and status contains the exitCode of the ZOMBIE child. In addition, wait() also releases the ZOMBIE
child PROC as FREE for reuse. The wait() syscall invokes the kwait() function in kernel. The
algorithm of kwait() is exactly the same as that described in Sect. 3.5.3

Example 3.3: The example program C3.3 demonstrates wait and exit system calls

[rEEk kIR KR R**** C3,3.C: wait() and exit () ****kkkkkkkkkkkk/
#include <stdio.h>
#include <stdlib.h>

int main()
{
int pid, status;
pid = fork();
if (pid){ // PARENT:
printf ("PARENT %d WAITS FOR CHILD %d TO DIE\n", getpid(),pid);
pid=wait (&status); // wait for ZOMBIE child process
printf ("DEAD CHILD=%d, status=0x%04x\n", pid, status);
}
else{// child:
printf("child %d dies by exit (VALUE)\n", getpid());
(1). exit (100);
}

When running the Example 3.3 program, the child termination status will be 0x6400, in which the high
byte is the child’s exit value 100.

The reason why wait() waits for any ZOMBIE child can be justified as follows. After forking
several login processes, P1 waits for any ZOMBIE children. As soon as a user logout from a terminal,
P1 must respond immediately to fork another login process on that terminal. Since P1 does not know
which login process will terminate first, it must wait for any ZOMBIE login child, rather than waiting
for a specific one. Alternatively, a process may use the syscall

int pid = waitpid(int pid, int *status, int options);
to wait for a specific ZOMBIE child specified by the pid parameter with several options. For instance,

wait(&status) is equivalent to waitpid(-1, &status, 0). The reader may consult the Linux man pages of
wait for more details.

3.8.5 Subreaper Process in Linux

Since kernel version 3.4, Linux handles orphan processes in a slightly different way. A process may
define itself as a subreaper by the syscall

prctl (PR_SET_CHILD_ SUBREAPER) ;
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If so, the init process P1 will no longer be the parent of orphan processes. Instead, the nearest living
ancestor process that is marked as a subreaper will become the new parent. If there is no living
subreaper process, orphans still go to the INIT process as usual. The reason to implement this
mechanism is as follows. Many user space service managers, such as upstart, systemd, etc. need to
track their started services. Such services usually create daemons by forking twice but let the
intermediate child exit immediately, which elevates the grandchild to be a child of P1. The drawback
of this scheme is that the service manager can no longer receive the SIGCHLD (death_of_child)
signals from the service daemons, nor can it wait for any ZOMBIE children. All information about the
children will be lost when P1 cleans up the re-parented processes. With the subreaper mechanism, a
service manager can mark itself as a "sub-init", and is now able to stay as the parent for all orphaned
processes created by the started services. This also reduces the workload of P1, which does not have to
handle all orphaned processes in the system. A good analogy is the following. Whenever a corporation
gets too big, it’s time to break it up to prevent monopoly, as what happened to AT&T in the early 80’s.
In the original Linux, P1 is the only process that is authorized to operate an orphanage. The subreaper
mechanism essentially breaks the monopoly of P1, allowing any process to operate a local orphanage
by declaring itself as a subreaper (even without a license!). As an example, in Ubuntu-15.10 and later,
the per user init process is marked as a subreaper. It runs in Umode and belongs to the user. The reader
may use the sh command

ps fxau | grep USERNAME | grep “/sbin/upstart”

to display the PID and information of the subreaper process. Instead of P1, it will be the parent of all
orphaned processes of the user. We demonstrate the subreaper process capability of Linux by an
example.

Example 3.4: The example program C3.4 demonstrates subreaper processes in Linux

/************** c3.4.c= Subreaper Process ***************/
#include <stdio.h>
#include <unistd.h>
#include <wait.h>
#include <sys/prctl.h>
int main()
{
int pid, r, status;
printf ("mark process %d as a subreaper\n", getpid());
r = prctl(PR_SET_CHILD_SUBREAPER) ;
pid = fork();

if (pid){ // parent
printf ("subreaper %d child=%d\n", getpid(), pid);
while (1) {
pid = wait(&status); // wait for ZOMBIE children
if (pid>0)
printf ("subreaper %d waited a ZOMBIE=%d\n", getpid(), pid);
else // no more children

break;


http://upstart.ubuntu.com/
http://www.freedesktop.org/wiki/Software/systemd/
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Fig. 3.6 Sample Outputs mark process 9620 as a subreaper

of Example 3.4 subreaper 9620 child=9621

child 9621 parent=9620

child=9621 grandchild=9622
child=9621 EXIT: grandchild=9622
grandchild=9622 start: myparent=9621
subreaper 9620 waited a ZOMBIE=9621
grandchild=9622 EXIT : myparent=9620
subreaper 9620 waited a ZOMBIE=9622

else{ // child
printf("child %d parent=%d\n", getpid(), (pid_t)getppid());
pid = fork(); // child fork a grandchild
if (pid){ // child
printf ("child=%d start: grandchild=%d\n", getpid(), pid);
printf ("child=%d EXIT : grandchild=%d\n", getpid(), pid);
}
else{ // grandchild
printf ("grandchild=%d start: myparent=%d\n", getpid(),
getppid());

printf ("grandchild=%d EXIT : myparent=%d\n", getpid(),
getppid());

Figure 3.6 shows the sample outputs of running the Example 3.4 program.

In the Example 3.4 program, the process (9620) first marks itself as a subreaper. Then it forks a child
(9621) and uses a while loop to wait for ZOBMIE children until there is none. The child process forks a
child of its own, which is the grandchild (9622) of the first process. When the program runs, either the
child (9621) or the grandchild (9622) may terminate first. If the grandchild terminates first, its parent
would still be the same (9621). However, if the child terminates first, the grandchild would become a
child of P1 if there is no living ancestor marked as a subreaper. Since the first process (9620) is a
subreaper, it will adopt the grandchild as an orphan if its parent died first. The outputs show that the
parent of the grandchild was 9621 when it starts to run, but changed to 9620 when it exits since its
original parent has already died. The outputs also show that the subreaper process 9620 has reaped both
9621 and 9622 as ZOMBIE children. If the user kills the per user init process, it would amounts to a
user logout. In that case, P1 would fork another user init process, asking the user to login again.

3.8.6 exec(): Change Process Execution Image

A process may use exec() to change its Umode image to a different (executable) file. The exec() library
functions have several members:

int execl( const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...):
int execle(const char *path, const char *arg,..,char *const envpl[]):;
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int execv( const char *path, char *const argv([]);
int execvp(const char *file, char *const argvl[]);

All of these are wrapper functions, which prepare the parameters and eventually issue the syscall
int execve(const char *filename, char *const argv[ ], char *const envp[ ]1);
In the execve() syscall, the first parameter filename is either relative to the Current Working Directory
(CWD) or an absolute pathname. The parameter argv[ ] is a NULL terminated array of string pointers,
each points to a command line parameter string. By convention, argv[0] is the program name and other
argv| ] entries are command line parameters to the program. As an example, for the command line
a.out one two three

the following diagram shows the layout of argv [ ].

0 1 2 3 4
argv[ 1 = [ . | . | . | . | NULL ]

“a.out” “one” “two” “three”

3.8.7 Environment Variables

Environment variables are variables that are defined for the current sh, which are inherited by children
sh or processes. Environment variables are set in the login profiles and .bashrc script files when sh
starts. They define the execution environment of subsequent programs. Each Environment variable is
defined as

KEYWORD=string

Within a sh session the user can view the environment variables by using the env or printenv
command. The following lists some of the important environment variables

SHELL=/bin/bash

TERM=xterm

USER=kcw
PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:./
HOME=/home /kcw

SHELL: This specifies the sh that will be interpreting any user commands.

TERM : his specifies the type of terminal to emulate when running the sh.

USER : The current logged in user.

PATH : A list of directories that the system will check when looking for commands.
HOME: home directory of the user. In Linux, all user home directories are in /home
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While in a sh session, environment variables can be set to new (string) values, as in
HOME=/home/newhome
which can be passed to descendant sh by the EXPORT command, as in
export HOME

They can also be unset by setting them to null strings. Within a process, environment variables are
passed to C programs via the env[ ] parameter, which is a NULL terminated array of string pointers,
each points to an environment variable.

Environment variables define the execution environment of subsequent programs. For example,
when sh sees a command, it searches for the executable command (file) in the directories of the PATH
environment variable. Most full screen text editors must know the terminal type they are running on,
which is set in the TERM environment variable. Without the TERM information, a text editor may
misbehave. Therefore, both command line parameters and environment variables must be passed to an
executing program. This is the basis of the main() function in all C programs, which can be written as

int main(int argc, char *argv[ ], char *env[ ])

Exercise 3.1. Inside the main() function of a C program, write C code to print all the command line
parameters and environment variables.

Exercise 3.2. Inside the main() function of a C program, find the PATH environment variable, which
is of the form

PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:./
Then write C code to tokenize the PATH variable string into individual directories.

If successful, exec("filename",....) replaces the process Umode image with a new image from the
executable filename. It's still the same process but with a new Umode image. The old Umode image is
abandoned and therefore never returned to, unless exec() fails, e.g. filename does not exist or is
non-executable.

In general, after exec(), all opened files of the process remain open. Opened file descriptors that are
marked as close-on-exec are closed. Most signals of the process are reset to default. If the executable
file has the setuid bit turned on, the process effective uid/gid are changed to the owner of the
executable file, which will be reset back to the saved process uid/gid when the execution finishes.

Example 3.5: The example program C3.5 demonstrates change process image by execl(), which is of
the form

execl ("a.out", "a.out", argl, arg2, ..., 0);

The library function execl() assembles the parameters into argv[ ] form first before calling execve
(“a.out”, argv[ ], env[ ]).
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/********** c3.5 program files ***************/
// (). --——————- b.c file: gcc to b.out ----———---
#include <stdio.h>
int main(int argc, char *argvl[])
{
printf("this is %d in %s\n", getpid(), argv[0]);

/1l (2). ——====——- a.c file: gcc to a.out ----------
#include <stdio.h>
int main(int argc, char *argvl([])
{
printf ("THIS IS %d IN %s\n", getpid(), argv[0]);
int r = execl("b.out", "b.out", "hi", 0);
printf ("SEE THIS LINE ONLY IF execl() FAILED\n");

The reader may compile b.c into b.out first. Then compile a.c and run a.out, which will change the
execution image from a.out to b.out, but the process PID does not change, indicating that it’s still the
same process.

Example 3.6: The example program C3.6 demonstrates change process image by execve().

In this example program, we shall demonstrate how to run Linux commands in the /bin directory by
execve(). The program should be run as

a.out command [options]

where command is any Linux command in the /bin directory and [options] are optional parameters to
the command program, e.g.

a.out 1s -1; a.out cat filename; etc.
The program assembles command and [options] into myargv|[ ] and issues the syscall
execve (“/bin/command”, myargv, env);
to execute the /bin/command file. The process returns to the old image if execve() fails.
[***kkkkkkkt C3 ., 6.c file: compile and run a.out ***kkkkkkkkk/
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

char *dir[64], *myargv[64]; // assume at most 64 parameters
char cmd[128];

int main(int argc, char *argv([], char *env[])
{

int i, r;
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printf ("THIS IS PROCESS %d IN %s\n", getpid(), argv([0]);
if (argc < 2){
printf (“Usage: a.out command [options]\n”);

exit (0);

}

printf (“argc = %d\n”, argc);

for (i=0; i<argc; 1i++) // print argv[ ] strings
printf ("argv[%d] = %s\n", i, argvI[i]);

for (i=0; i<argc-1; i++) // create myargv[ 1]
myargv[i] = argv[i+l];

myargv([i] = 0; // NULL terminated array

strepy(cmd, “/bin/"); // create /bin/command

strcat (cmd, myargv([0]) ;

printf(cmd = %s\n”, cmd); // show filename to be executed
int r = execve(cmd, myargv, env);

// come to here only if execve() failed

printf ("execve() failed: r = %d\n", r);

3.9 1/0 Redirection
3.9.1 FILE Streams and File Descriptors

Recall that the sh process has three FILE streams for terminal I/O: stdin, stdout and stderr. Each is a
pointer to a FILE structure in the execution image’s HEAP area, as shown below.

char fbuf[SIZE]
int counter, index, etc.
int £f4 = 0; // £4[0] in PROC <== from KEYBOARD

char fbuf[SIZE]

int counter, index, etc.
int £fd = 1; // £4[1l] in PROC ==> to SCREEN

char fbuf[SIZE]

int counter, index, etc.
int £4 = 2; // £4[2] in PROC ==> to SCREEN also
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Each FILE stream corresponds to an opened file in the Linux kernel. Each opened file is represented
by a file descriptor (number). The file descriptors of stdin, stdout, stderr are 0, 1, 2, respectively. When
a process forks a child, the child inherits all the opened files of the parent. Therefore, the child also has
the same FILE streams and file descriptors as the parent.

3.9.2  FILE Stream 1/0 and System Call
When a process executes the library function
scanf ("%s", &item);

it tries to input a (string) item from stdin, which points to a FILE structure. If the FILE structure's fbuf] ]
is empty, it issues a READ system call to the Linux kernel to read data from the file descriptor 0, which
is mapped to the keyboard of a terminal (/dev/ttyX) or a pseudo-terminal (/dev/pts/#).

3.9.3 Redirect stdin

If we replace the file descriptor 0 with a newly opened file, inputs would come from that file rather than
the original input device. Thus, if we do

#include <fcntl.h> // contains O_RDONLY, O_WRONLY,O_APPEND, etc

close(0); // syscall to close file descriptor 0

int fd=open("filename", O_RDONLY); // open filename for READ,
// £d replace 0

The syscall close(0) closes the file descriptor 0, making 0 an unused file descriptor. The open() syscall
opens a file and uses the lowest unused descriptor number as the file descriptor. In this case, the file
descriptor of the opened file would be 0. Thus the original fd O is replaced by the newly opened file.
Alternatively, we may also use

int £4 = open(“filename”, O_RDOMLY); // get a f4 first
close(0); // zero out £4[0]
dup (£4) ; // duplicate fd to 0

The syscall dup(fd) duplicates fd into the lowest numbered and unused file descriptor, allowing both fd
and O to access the same opened file. In addition, the syscall

dup2 (£dl, £d42)

duplicates fd1 into fd2, closing fd2 first if it was already open. Thus, Unix/Linux provides several ways
to replace/duplicate file descriptors. After any one of the above operations, the file descriptor 0 is either
replaced or duplicated with the opened file, so that every scanf() call will get inputs from the
opened file.
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3.9.4 Redirect stdout
When a process executes the library function
printf ("format=%s\n", items);

it tries to write to the fbuf[ ] in the stdout FILE structure, which is line buffered. If fbuf[ ] has a
complete line, it issues a WRITE syscall to write data from fbuf] ] to file descriptor 1, which is mapped
to the terminal screen. To redirect the standard outputs to a file, do as follows.

close(1);
open("filename", 0_WRONLY|O_CREAT, 0644);

These change file descriptor 1 to point to the opened filename. Then the outputs to stdout will go to that
file instead of the screen. Likewise, we may also redirect stderr to a file. When a process terminates
(in Kernel), it closes all opened files.

3.10 Pipes

Pipes are unidirectional inter-process communication channels for processes to exchange data. A pipe
has a read end and a write end. Data written to the write end of a pipe can be read from the read end of
the pipe. Since their debut in the original Unix, pipes have been incorporated into almost all OS, with
many variations. Some systems allow pipes to be bidirectional, in which data can be transmitted in both
directions. Ordinary pipes are for related processes. Named pipes are FIFO communication channels
between unrelated processes. Reading and writing pipes are usually synchronous and blocking. Some
systems support non-blocking and asynchronous read/write operations on pipes. For the sake of
simplicity, we shall consider a pipe as a finite-sized FIFO communication channel between a set of
related processes. Reader and writer processes of a pipe are synchronized in the following manner.
When a reader reads from a pipe, if the pipe has data, the reader reads as much as it needs (up to the
pipe size) and returns the number of bytes read. If the pipe has no data but still has writers, the reader
waits for data. When a writer writes data to a pipe, it wakes up the waiting readers, allowing them to
continue. If the pipe has no data and also no writer, the reader returns 0. Since readers wait for data if
the pipe still has writers, a 0 return value means only one thing, namely the pipe has no data and also no
writer. In that case, the reader can stop reading from the pipe. When a writer writes to a pipe, if the pipe
has room, it writes as much as it needs to or until the pipe is full, i.e. no more room. If the pipe has no
room but still has readers, the writer waits for room. When a reader reads data from the pipe to create
more room, it wakes up the waiting writers, allowing them to continue. However, if a pipe has no more
readers, the writer must detect this as a broken pipe error and aborts.

3.10.1 Pipe Programming in Unix/Linux
In Unix/Linux, pipes are supported by a set of pipe related syscalls. The syscall

int pdl2]; // array of 2 integers
int r = pipe(pd); // return value r=0 if OK, -1 if failed
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¥WriterProc ReaderProc
fd[pd[1]] -—-> writeOFT --> PIPE --> readOFT --> fd[pd[0]]
—_— I _______________________________________________ I _________

1 I
int n=write(pd[1l] ,wbuf nbhytes) | int n=read(pd[0] ,rbuf nbytes)

Fig. 3.7 Pipe Operation Model

creates a pipe in kernel and returns two file descriptors in pd[2], where pd[0] is for reading from the
pipe and pd[1] is for writing to the pipe. However, a pipe is not intended for a single process. For
example, after creating a pipe, if the process tries to read even 1 byte from the pipe, it would never
return from the read syscall. This is because when the process tries to read from the pipe, there is no
data yet but the pipe has a writer, so it waits for data. But who is the writer? It’s the process itself. So the
process waits for itself, thereby locking itself up so to speak. Conversely, if the process tries to write
more than the pipe size (4KB in most cases), the process would again wait for itself when the pipe
becomes full. Therefore, a process can only be either a reader or a writer on a pipe, but not both. The
correct way of using pipes is as follows. After creating a pipe, the process forks a child process to share
the pipe. During fork, the child inherits all the opened file descriptors of the parent. Thus the child also
has pd[0] for read from the pipe and pd[1] for write to the pipe. The user must designate one of the
processes as a writer and the other one as a reader of the pipe. The order does not matter as long as each
process is designated to play only a single role. Assume that the parent is chosen as the writer and the
child as the reader. Each process must close its unwanted pipe descriptor, i.e. writer must close its pd
[0] and reader must close its pd[1]. Then the parent can write to the pipe and the child can read from the
pipe. Figure 3.7 shows the system model of pipe operations.

On the left-hand side of Fig. 3.7, a writer process issues a

write(pd[1l], wbuf, nbytes)

syscall to enter the OS kernel. It uses the file descriptor pd[1] to access the PIPE through the writeOFT.
It executes write_pipe() to write data into the PIPE's buffer, waiting for room if necessary.
On the right-hand side of Fig. 3.7, a reader process issues a

read (pd[0], rbuf,nbytes)

syscall to enter the OS kernel. It uses the file descriptor pd[0] to access the PIPE through the readOFT.
Then it executes read_pipe() to read data from the PIPE's buffer, waiting for data if necessary.

The writer process may terminate first when it has no more data to write, in which case the reader
may continue to read as long as the PIPE still has data. However, if the reader terminates first, the writer
should see a broken pipe error and also terminate.

Note that the broken pipe condition is not symmetrical. It is a condition of a communication channel
in which there are writers but no reader. The converse is not a broken pipe since readers can still read as
long as the pipe has data. The following program demonstrates pipes in Unix/Linux.
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Example 3.7: The example program C3.7 demonstrates pipe operations.

/‘k*k*k‘k**k***k***k***k C3‘7: Plpe OperathnS ************/
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

int pd[2], n, 1i;
char line[256];

int main()
{
pipe(pd); // create a pipe
printf ("pd=[%d, %d]l\n", pd[0], pd[l]);
if (fork()){ // fork a child to share the pipe
printf ("parent %$d close pd[0]\n", getpid());
close(pd[0]); // parent as pipe WRITER

while(i++ < 10){ // parent writes to pipe 10 times
printf ("parent %d writing to pipe\n", getpid());
n = write(pd[1l], "I AM YOUR PAPA", 16);
printf ("parent %d wrote %d bytes to pipe\n", getpid(), n);
}
printf ("parent %d exit\n", getpid());
}
else(
printf("child %d close pd[l]\n", getpid()):;
close(pdll]); // child as pipe READER
while (1) { // child read from pipe
printf("child %d reading from pipe\n", getpid());
if ((n = read(pd[0], line, 128))){ // try to read 128 bytes
line[n]=0;
printf("child read %d bytes from pipe: %s\n", n, line);
}
else // pipe has no data and no writer
exit (0);
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The reader may compile and run the program under Linux to observe its behavior. Figure 3.8 shows the

sample outputs of running the Example 3.7 program.

In the above pipe program, both the parent and child will terminate normally. The reader may

modify the program to do the following experiments and observe the results.

1. Let the parent be the reader and child be the writer.
2. Let the writer write continuously and the reader only read a few times.

In the second case, the writer should terminate by a BROKEN_PIPE error.
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pd=[3, 4]

child 5101 close pd[1]

child 5101 reading from pipe

parent 5100 close pd[@]

parent 5100 writing to pipe

child read 16 bytes from pipe: I AM YOUR PAPA
child 5101 reading from pipe

parent 5100 wrote 16 bytes to pipe

parent 5100 writing to pipe

child read 16 bytes from pipe: I AM YOUR PAPA
child 5101 reading from pipe

parent 5100 wrote 16 bytes to pipe

parent 5100 writing to pipe

child read 16 bytes from pipe: I AM YOUR PAPA

Fig. 3.8 Sample Outputs of Pipe Program

3.10.2 Pipe Command Processing
In Unix/Linux, the command line
cmdl | cmd2

4|9

contains a pipe symbol ‘I’. Sh will run cmd1 by a process and cmd2 by another process, which are
connected by a PIPE, so that the outputs of cmdl become the inputs of cmd2. The following shows
typical usages of pipe commands.

ps x | grep "httpd" # show lines of ps x containing httpd
cat filename | more # display one screen of text at a time

3.10.3 Connect PIPE writer to PIPE reader
(1). When sh gets the command line cmdl | cmd2, it forks a child sh and waits for the child sh to
terminate as usual.
(2). Child sh: scan the command line for | symbol. In this case,
cmdl | cmd2

has a pipe symbol |. Divide the command line into head=cmdl, tail=cmd?2

(3). Then the child sh executes the following code segment

int pd[2];

pipe(pd) ; // creates a PIPE

pid = fork():; // fork a child (to share the PIPE)

if (pid){ // parent as pipe WRITER
close(pd[0]); // WRITER MUST close pd[0]

close (1) ; // close 1
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dup (pd[1]1); // replace 1 with pdl[1l]
close(pd[l]l); // close pdl[1l]

exec (head) ; // change image to cmdl

}

else( // child as pipe READER
close(pd[1]); // READER MUST close pd[l]
close(0);

dup (pd[0]1); // replace 0 with pdl[0]
close(pdl[0]); // close pdl0]
exec (tail); // change image to cmd2

The pipe writer redirects its fd=1 to pd[1], and the pipe reader redirects its f{d=0 to pd[0]. Thus, the two
processes are connected through the pipe.

3.10.4 Named pipes

Named pipes are also called FIFOs. They have "names" and exist as special files within the file system.
They exist until they are removed with rm or unlink. They can be used with unrelated process, not just
descendants of the pipe creator.

Examples of named pipe

(D).

2).

3.

From the sh, create a named pipe by the mknod command
mknod mypipe p
OR from C program, issue the mknod() syscall
int r = mknod(“mypipe”, S_IFIFO, 0);
Either (1) or (2) creates a special file named mypipe in the current directory. Enter
ls -1 mypipe
will show it as
prw-r—r— 1 root root 0 time mypipe
where the file type p means it’s a pipe, link count =1 and size=0
Processes may access named pipe as if they are ordinary files. However, write to and read from
named pipes are synchronized by the Linux kernel
The following diagram shows the interactions of writer and reader processes on a named pipe

via sh commands. It shows that the writer stops if no one is reading from the pipe. The reader stops
if the pipe has no data.
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Writer commands | Reader commands

cat mypipe
(writer continues) test (data read from pipe)

echo test again > mypipe

I

I

I

| cat mypipe (reader stops)

| test again (data read from pipe)
I

(writer continues) (reader continues)

Instead of sh commands, processes created in C programs may also use named pipes.

Example 3.8: The example program C3.8 demonstrates named pipe operations. It shows how to open
a named pipe for read/write by different processes.

/***k*kk*k*k C3,8: Create and read/write named pipe ********/
(3).1 Writer process program:

#include <stdio.h>

#include <sys/stat.h>

#include <fcntl.h>

char *line = “tesing named pipe”;

int main()
{
int £d4;
mknod (“mypipe”, I_SFIFO, 0); // create a named pipe
fd = open(“mypipe), O_WRONLY); // open named pipe for write
write (fd, line, strlen(line)); // write to pipe
close (£fd);

(3).2. Reader process program:

#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>

int main()
{
char buf[128];
int £f4d = open("mypipe", O_RDONLY);
read(fd, buf, 128);
printf ("%$s\n", buf);
close (fd);
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3.11 Programming Project: sh Simulator

The programming project is to write a C program which simulates the Linux sh for commands
executions. The object is for the reader to understand how Linux sh works. The tools used are fork
(), exec(), close(), exit(), pipe() system calls and string operations. It is suggested that the reader should
try to implement the project in successive steps.

3.11.1 Single Command with I/O Redirection
1. Prompt the user for an input line, which is of the form
cmd argl arg2 arg3 .... argn
where cmd is a command, and argl to argn are command line parameters to the cmd program. Valid
commands include "cd", "exit" and ANY Linux executable files, e.g. echo, Is, date, pwd, cat, cp,
mv, cc, emacs, etc. In short, the sh simulator can run the same set of commands as Linux sh.

2. Handle simple commands:

cmd = "cd" : chdir(argl) OR chdir (HOME) if no argl;
cmd

"exit" : exit(0) to terminate;
3. For all other commands:
fork a child process;
wait for the child to terminate;
print child’s exit status code
continue step 1;

4. Child process: First, assume NO pipe in command line:

4-1. Handle I/0O redirection:

cmd argl arg2 ... < infile // take inputs from infile
cmd argl arg2 ... > outfile // send outputs to outfile
cmd argl arg2 ... >> outfile // APPEND outputs to outfile

4-2. Execute cmd by execve(), passing parameters
char *myargv|[ 1, char *env[ ]
to the cmd file, where myargv][ ] is an array of char * with
myargv[0]->cmd,

myargv([l]->argl, ..... ,
End with a NULL pointer
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Sh searches for executable commands in the directories of the PATH environment variable. The sh
simulator must do the same. Thus, the simulator program must tokenize the PATH variable into
individual directories for locating the command files.

3.11.2 Commands with Pipes

5. After verifying mysh works for simple commands, extend it to handle pipes. If the command line
has a | symbol, divide it into head and tail: e.g.

cmdl < infile | cmd 2 > outfile
head = "cmd < infile"; tail = "cmd 2 > outfile"

Then implement the pipe by the following steps.
create a pipe
fork a child process to share the pipe

arrange one process as the pipe writer, and the other one as the pipe reader.
Then let each process execve() its command (possibly with I/O redirection).

6. Multiple pipes: If the command line contains multiple pipe symbols, implement the pipes by
recursion. The reader may consult Chap. 13 of (Wang 2015) for the recursive algorithm.

3.11.3 ELF executable vs. sh script files

In Linux, binary executables are in the ELF file format. The first 4 bytes of an ELF file are the ELF
identifier ‘Ox7F’ELF. Sh scripts are text files. The first line of most sh script files contains

#! /bin/sh

With these hints, the reader should be able to devise ways to test whether a command is an ELF
executable or a sh script. For sh script files, run the Linux command /bin/bash on the files.

3.11.4 Sample Solution

Sample solution of the programming project is available online for download. The reader may
download the binary executable file kcsh.bin and run it under Linux. Source code of the project for
instructors is also available on request. Figure 3.9 shows the sample outputs of running the sh simulator
program.
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root@wang:~/abc/360/F17/sh.simulator# kcsh.bin
sk ik Walcome to Kosh eksoksorskimordk

show PATH: PATH=PATH=/usr/local/sbin:/usr/sbin:/sbin:/usr/local/bin:/usr/bin:/b

in:/usr/games:.:/usr/lib/java/bin: /usr/lib/java/jre/bin: /usr/lib/qt/bin

decompose PATH into dir strings:

/usr/local/sbin /usr/sbin /sbin /usr/local/bin /usr/bin /bin /usr/games
/usr/lib/java/bin /usr/lib/java/jre/bin /usr/lib/qt/bin

show HOME directory: HOME = /root

okkdokkkkdk kesh processing 1o°p ok oo o o

kesh % : 1s

32431 line=ls

32431 scan: head=ls tail=(null)

32431 do_command: line=ls

32431 tries 1ls in each PATH dir

i=0 cmd=/usr/local/sbin/ls

i=1  cmd=/usr/sbin/ls

i=2  cmd=/sbin/ls

i=3 cmd=/usr/local/bin/1s

i=4 cmd=/usr/bin/1s

kesh.bin shve.c

parent kcsh 32430 forks a child process 32431

parent sh 32430 waits

child sh 32431 died : exit status = 0000

kesh % : |

Fig. 3.9 Sample Outputs of sh Simulator Program

3.12 Summary

This chapter covers process management in Unix/Linux. It explains the principle of multitasking and
introduces the process concept. It uses a programming example to illustrate the principles and
techniques of multitasking, context switching and processes. The multitasking system supports
dynamic process creation, process termination, process synchronization by sleep and wakeup, process
relations and implementation of process family tree as a binary tree, allowing parent process to wait for
child process termination. It provides a concrete example of how process management functions work
in an operating system kernel. Then it explains the origin of processes in Unix/Linux, from the initial
process during booting to INIT process, daemon processes, login processes and sh process for user
command execution. Next, it explains the execution modes of processes, transitions from User mode to
Kernel mode by interrupts, exceptions and system calls. Then it describes Unix/Linux system calls for
process management, which include fork, wait, exec and exit. It explains the relationship between
parent and child processes, including a detailed description between process termination and the wait
operation by parent process. It explains how to handle orphan processes by the INIT process, including
subreaper processes in current Linux, and it demonstrates subreaper process by example. Then it
explains changing process execution image by exec in detail, which includes the execve system call,
command-line parameters and environment variables. It explains the principles and techniques of I/O
redirections, pipes and shows pipe programming by examples. The programming project of this
chapter is for the reader to integrate the concepts and techniques of process management to implement
a sh simulator for command execution. The sh simulator works exactly the same as the standard sh. It
supports executions of simple commands, commands with I/O redirections and multiple commands
connected by pipes.
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Problems

1. On the Intel 32-bit x86 CPU, the assembly instruction pushal pushes CPU registers eax, ecx, ebx,
old_esp, ebp, esi, edi in that order. Correspondingly, the instruction popal pops the registers in
reverse order. Assume that the tswitch() function in the MT system is written as

tswitch:
SAVE: pushal # save all CPU registers on stack
pushfl
movl running, $ebx # ebx -> PROC
movl %esp, 4 (%ebx) # PORC.save_sp = esp
FIND: call scheduler
RESUME: movl running, $ebx # ebx -> PROC
movl 4 (%ebx) ,%esp # esp = PROC>saved_sp
popfl
popal # restore all saved CPU registers from stack
ret

Show how to initialize new processes in kfork() for them to execute the body() function. Recompile
and run the modified MT system and demonstrate it works.
2. Assume that in the MT system the body() function is written as

int body(int pid){ // use pid inside the body function }

where pid is the PID of the new task. Show how to initialize the new task stack in kfork(). HINT:
parameter passing in function calls as described in Chap. 2.
3. Refer to the Example Program C3.3. What is the child exit status value if Line (1) is replaced with
(1). exit(123); Ans: 0x7B00 // normal termination
(2). { int ¥*p=0; *p = 123; } Ans: 0x000B // died by signal 11
(3). { int a,b=0; a = a/b; } Ans: 0x0008 // died by signal 8
4. Refer to the Example Program C3.5. Explain what would happen if
(1). In the a.c file, replace the execl() line with execl(“a.out”, “a.out”, “hi”, 0);
(2). In the b.c file, add a line execl(“a.out”, “a.out”, “again”, 0);
Verify your answers by running the modified programs.
5. Linux has a vfork() system call, which creates a child process just like fork() but is more efficient
than fork().
(1). Read the Linux man pages of vfork() to find out why it is more efficient than fork().
(2). Replace all fork() system calls with vfork() in the programming project. Verify that the project
program still works.
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Abstract

This chapter covers concurrent programming. It introduces the concept of parallel computing and
points out its importance. It compares sequential algorithms with parallel algorithms, and
parallelism vs. concurrency. It explains the principles of threads and their advantages over pro-
cesses. It covers threads operations in Pthreads by examples. These include threads management
functions, threads synchronization tools of mutex, join, condition variables and barriers.
It demonstrates concurrent programming using threads by detailed examples. These include matrix
computation, quicksort and solving systems of linear equations by concurrent threads. It explains
the deadlock problem and shows how to prevent deadlocks in concurrent programs. It covers
semaphores and demonstrates their advantages over condition variables. It also explains the unique
way of supporting threads in Linux. The programming project is to implement user-level threads.
It presents a base system to help the reader get started. The base system supports dynamic creation,
execution and termination of concurrent tasks, which are equivalent to threads executing in the
same address space of a process. The project is for the reader to implement threads join, mutex and
semaphores for threads synchronization and demonstrate their usage in concurrent programs. The
programming project should allow the reader to have a deeper understanding of the principles and
techniques of multitasking, threads synchronization and concurrent programming.

4.1 Introduction to Parallel Computing

In the early days, most computers have only one processing element, known as the processor or Central
Processing Unit (CPU). Due to this hardware limitation, computer programs are traditionally written
for serial computation. To solve a problem, a person would first design an algorithm, which describes
how to solve the problem step by step, and then implement the algorithm by a computer program as a
serial stream of instructions. With only a single CPU, both the individual instructions and the steps of
an algorithm can only be executed sequentially one at a time. However, algorithms based on the
principle of divide and conquer, e.g. binary search and quicksort, etc. often exhibit a high degree of
parallelism, which can be exploited by using parallel or concurrent executions to speed up the
computation. Parallel computing is a computing scheme which tries to use multiple processors
executing parallel algorithms to solve problems faster. In the past, parallel computing is rarely

© Springer International Publishing AG, part of Springer Nature 2018 141
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accessible to average programmers due to its extensive requirements of computing resources. With the
advent of multicore processors in recent years, most operating systems, such as Linux, support
Symmetrical Multiprocessing (SMP). Parallel computing has become a reality even for average
programmers. The future of computing is clearly in the direction of parallel computing. It is imperative
to introduce parallel computing to Computer Science and Computer Engineering students in an early
stage. In this chapter, we shall cover the basic concepts and techniques of parallel computing through
concurrent programming.

4.1.1 Sequential Algorithms vs. Parallel Algorithms

When describing sequential algorithms, a common way is to express the algorithm in a begin-end
block, as show in the left-hand side of the following diagram.

--- Sequential Algorithm---|--- Parallel Algorithm ---

|
begin | cobegin
step_1 | task_1
step_2 | task_2
|
step_n | task_n
end | coend
|

// next step // next step

The sequential algorithm inside the begin-end block may consist of many steps. All the steps are to be
performed by a single task serially one step at a time. The algorithm ends when all the steps have
completed. In contrast, the right-hand side of the diagram shows the description of a parallel algorithm,
which uses a cobegin-coend block to specify separate tasks of a parallel algorithm. Within the
cobegin-coend block, all tasks are to be performed in parallel. The next step following the cobegin-
coend block will be performed only after all such tasks have completed.

4.1.2 Parallelism vs. Concurrency

In general, a parallel algorithm only identifies tasks that can be executed in parallel, but it does not
specify how to map the tasks to processing elements. Ideally, all the tasks in a parallel algorithm should
be executed simultaneously in real time. However, true parallel executions can only be achieved in
systems with multiple processing elements, such as multiprocessor or multicore systems. On single
CPU systems, only one task can execute at a time. In this case, different tasks can only execute
concurrently, i.e. logically in parallel. In single CPU systems, concurrency is achieved through
multitasking, which was covered in Chap. 3. We shall explain and demonstrate the principle and
techniques of multitasking again in a programming project at the end of this chapter.
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4.2 Threads
4.2.1 Principle of Threads

An operating system (OS) comprises many concurrent processes. In the process model, processes are
independent execution units. Each process executes in either kernel mode or user mode. While in user
mode, each process executes in a unique address space, which is separated from other processes.
Although each process is an independent unit, it has only one execution path. Whenever a process must
wait for something, e.g. an I/O completion event, it becomes suspended and the entire process
execution stops. Threads are independent execution units in the same address space of a process.
When creating a process, it is created in a unique address space with a main thread. When a process
begins, it executes the main thread of the process. With only a main thread, there is virtually no
difference between a process and a thread. However, the main thread may create other threads. Each
thread may create yet more threads, etc. All threads in a process execute in the same address space of
the process but each thread is an independent execution unit. In the threads model, if a thread becomes
suspended, other threads may continue to execute. In addition to sharing a common address space,
threads also share many other resources of a process, such as user id, opened file descriptors and
signals, etc. A simple analogy is that a process is a house with a house master (the main thread).
Threads are people living in the same house of a process. Each person in a house can catry on his/her
activities independently, but they share some common facilities, such as the same mailbox, kitchen and
bathroom, etc. Historically, most computer vendors used to support threads in their own proprietary
operating systems. The implementations vary considerably from system to system. Currently, almost
all OS support Pthreads, which is the threads standard of IEEE POSIX 1003.1c (POSIX 1995). For
more information, the reader may consult numerous books (Buttlar et al. 1996) and online articles on
Pthreads programming (Pthreads 2017).

4.2.2 Advantages of Threads
Threads have many advantages over processes.

(1). Thread creation and switching are faster: The context of a process is complex and large. The
complexity stems mainly from the need for managing the process image. For example, in a system
with virtual memory, a process image may be composed of many units of memory called pages.
During execution some of the pages are in memory while others may not. The OS kernel must use
several page tables and many levels of hardware assistances to keep track of the pages of each
process. To create a new process, the OS must allocate memory and build the page tables for the
process. To create a thread within a process, the OS does not have to allocate memory and build
page tables for the new thread since it shares the same address space of the process. So, creating a
thread is faster than creating a process. Also, thread switching is faster than process switching for
the following reasons. Process switching involves replacing the complex paging environment of
one process with that of another, which requires a lot of operations and time. In contrast, switching
among threads in the same process is much simpler and faster because the OS kernel only needs to
switch the execution points without changing the process image.

(2). Threads are more responsive: A process has only a single execution path. When a process
becomes suspended, the entire process execution stops. In contrast, when a thread becomes
suspended, other threads in the same process can continue to execute. This allows a program
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with threads to be more responsive. For example, in a process with multiple threads, while one
thread becomes blocked to wait for I/O, other threads can still do computations in the background.
In a server with threads, the server can serve multiple clients concurrently.

(3). Threads are better suited to parallel computing: The goal of parallel computing is to use
multiple execution paths to solve problems faster. Algorithms based on the principle of divide and
conquer, e.g. binary search and quicksort, etc. often exhibit a high degree of parallelism, which
can be exploited by using parallel or concurrent executions to speed up the computation. Such
algorithms often require the execution entities to share common data. In the process model,
processes cannot share data efficiently because their address spaces are all distinct. To remedy this
problem, processes must use Interprocess Communication (IPC) to exchange data or some
other means to include a common data area in their address spaces. In contrast, threads in the same
process share all the (global) data in the same address space. Thus, writing programs for parallel
executions using threads is simpler and more natural than using processes.

4.2.3 Disadvantages of Threads
On the other hand, threads also have some disadvantages, which include

(1). Because of shared address space, threads needs explicit synchronization from the user.

(2). Many library functions may not be threads safe, e.g. the traditional strtok() function, which divides
a string into tokens in-line. In general, any function which uses global variables or relies on
contents of static memory is not threads safe. Considerable efforts are needed to adapt library
functions to the threads environment.

(3). On single CPU systems, using threads to solve problems is actually slower than using a sequential
program due to the overhead in threads creation and context switching at run-time.

4.3 Threads Operations

The execution locus of a thread is similar to that a process. A thread can execute in either kernel mode
or user mode. While in user mode, threads executes in the same address space of a process but each has
its own execution stack. As an independent execution unit, a thread can make system calls to the OS
kernel, subject to the kernel’s scheduling policy, becomes suspended, activated to resume execution,
etc. To take advantage of the shared address space of threads, the OS kernel’s scheduling policy may
favor threads of the same process over those in different processes. As of now, almost all operating
systems support POSIX Pthreads, which defines a standard set of Application Programming
Interfaces (APISs) to support threads programming. In the following, we shall discuss and demonstrate
concurrent programming by Pthreads in Linux (Goldt et al 1995; IBM; Love 2005; Linux Man Page
Project 2017).

44 Threads Management Functions
The Pthreads library offers the following APIs for threads management.

pthread_create(thread, attr, function, arg): create thread
pthread_exit (status) : terminate thread
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pthread_cancel (thread) : cancel thread
pthread_attr_init (attr) : initialize thread attributes
pthread_attr_destroy(attr): destroy thread attribute

44.1 Create Thread
threads are created by the pthread_create() function.

int pthread create (pthread_t *pthread_id, pthread_attr_t *attr,
void *(*func) (void *), void *arg);

which returns O on success or an error number on failure. Parameters to the pthread_create()
function are

.pthread_id is a pointer to a variable of the pthread_t type. It will be filled with the unique thread ID
assigned by the OS kernel. In POSIX, pthread_t is an opaque type. The programmer should not
know the contents of an opaque object because it may depend on implementation. A thread may get
its own ID by the pthread_self() function. In Linux, pthread_t type is defined as unsigned long, so
thread ID can be printed as %lu.

.attr is a pointer to another opaque data type, which specifies the thread attributes, which are explained
in more detail below.

Jfunc is the entry address of a function for the new thread to execute.

.arg is a pointer to a parameter for the thread function, which can be written as

void *func(void *arg)

Among these, the attr parameter is the most complex one. The steps of using an attr parameter are as
follows.

(1). Define a pthread attribute variable pthread attr t attr

(2). Initialize the attribute variable with pthread attr init (&attr)
(3). Set the attribute variable and use it in pthread_create() call

(4). If desired, free the attr resource by pthread attr destroy (&attr)

The following shows some examples of using the attribute parameter. By default, every thread is
created to be joinable with other threads. If desired, a thread can be created with the detached attribute,
which makes it non-joinable with other threads. The following code segment shows how to create a
detached thread.

pthread_attr_t attr; // define an attr variable
pthread_attr_init (&attr) ; // initialize attr
pthread_attr_setdetachstate (&attr, PTHREAD CREATE_DETACHED); // set attr
pthread_create(&thread_id, &attr, func, NULL); // create thread with attr
pthread_attr_destroy (&attr) ; // optional: destroy attr

Every thread is created with a default stack size. During execution, a thread may find out its stack size
by the function
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size_t pthread attr_ getstacksize()

which returns the default stack size. The following code segment shows how to create a thread with a
specific stack size.

pthread_attr_t attr; // attr variable

size_t stacksize; // stack size

pthread_attr_init (&attr); // initialize attr

stacksize = 0x10000; // stacksize=16KB;

pthread_attr setstacksize (&attr, stacksize); // set stack size in attr

pthread_create(&threads[t], &attr, func, NULL); // create thread with stack

size
If the attr parameter is NULL, threads will be created with default attributes. In fact, this is the
recommended way of creating threads, which should be followed unless there is a compelling reason to

alter the thread attributes. In the following, we shall always use the default attributes by setting attr
to NULL.

4.4.2 Thread ID

Thread ID is an opaque data type, which depends on implementation. Therefore, thread IDs should not
be compared directly. If needed, they can be compared by the pthread equal () function.

int pthread equal (pthread_t tl, pthread_t t2);

which returns zero if the threads are different threads, non-zero otherwise.

443 Thread Termination
A thread terminates when the thread function finishes. Alternatively, a thread may call the function
int pthread exit (void *status);

to terminate explicitly, where status is the exit status of the thread. As usual, a 0 exit value means
normal termination, and non-zero values mean abnormal termination.

4.44 Thread Join
A thread can wait for the termination of another thread by
int pthread join (pthread_t thread, void **status_ptr);

The exit status of the terminated thread is returned in status_ptr.
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4.5 Threads Example Programs
4.5.1 Sum of Matrix by Threads

Example 4.1: Assume that we want to compute the sum of all the elements in an N x N matrix of
integers. The problem can be solved by a concurrent algorithm using threads. In this example, the main
thread first generates an N x N matrix of integers. Then it creates N working threads, passing as
parameter a unique row number to each working thread, and waits for all the working threads to
terminate. Each working thread computes the partial sum of a distinct row, and deposits the partial sum
in a corresponding row of a global array int sum[N]. When all the working threads have finished, the
main thread resumes. It computes the total sum by adding the partial sums generated by the working
threads. The following shows the complete C code of the example program C4.1. Under Linux, the
program must be compiled as

gcc C4.l1l.c -pthread

/**** C4.1.c file: compute matrix sum by threads ***/
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define N 4

int A[N][N], sum[N];

void *func(void *arg) // threads function
{
int j, row;
pthread_t tid = pthread_self(); // get thread ID number
row = (int)arg; // get row number from arg
printf ("Thread %d [%1lu] computes sum of row %d\n", row, tid, row);
for (Jj=0; Jj<N; J++) // compute sum of A[row]in global sum[row]
sum[row] += Alrow] [j];
printf ("Thread %d [%$1lu] done: sum[%d] = %d\n",
row, tid, row, sum[row]);

pthread_exit ((void*)0); // thread exit: O=normal termination

int main (int argc, char *argv[])
{
pthread_t thread[N]; // thread IDs
int i, j, r, total = 0;
volid *status;
printf("Main: initialize A matrix\n");
for (i=0; i<N; i++){
sum[i] = 0;
for (Jj=0; j<N; Jj++){
Ali]l[J] = 1i*N + J + 1;
printf("%44 ", A[i]1[3J]);
}
printf("\n");
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}
printf("Main: create %d threads\n", N);
for (i=0; i<N; i++) {

pthread_create(&thread[i], NULL, func, (void *)i);
}
printf("Main: try to join with threads\n");
for(i=0; i<N; i++) {

pthread_join(thread[i], &status);

printf("Main: joined with %d [%1lu]: status=%d\n",

i, thread[i], (int)status);
}
printf ("Main: compute and print total sum: ");
for (i=0; 1i<N; i++)
total += sum[i];

printf("tatal = %d\n", total);
pthread_exit (NULL) ;

Figure 4.1 shows the outputs of running the Example Program C4.1. It shows the executions of
individual threads and their computed partial sums. It also demonstrates the thread join operation.

4.5.2 Quicksort by Threads

Example 4.2: Quicksort by Concurrent Threads

In this example, we shall implement a parallel quicksort program by threads. When the program
starts, it runs as the main thread of a process. The main thread calls gsort(&arg), with arg
=[lowerbound=0, upperbound=N-1]. The gsort() function implements quicksort of an array of N
integers. In gsort(), the thread picks a pivot element to divide the array into two parts such that all
elements in the left part are less than the pivot and all elements in the right part are greater than the

Main: initialize A matrix
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Main: create 4 threads
Thread © [3075390272] computes sum of row ©

Thread © [3075390272] done: sum[@] = 10
Thread 3 [3050212160] computes sum of row 3
Thread 3 [3050212160] done: sum[3] = 58
Thread 2 [3058604864] computes sum of row 2
Thread 2 [3058604864] done: sum[2] = 42

Thread 1 [3066997568] computes sum of row 1
Main: try to join with threads

Thread 1 [3066997568] done: sum[1] = 26

Main: joined with © [3075390272]: status=0
Main: joined with 1 [3066997568]: status=0
Main: joined with 2 [3058604864]: status=0
Main: joined with 3 [3050212160]: status=0
Main: compute and print total sum: tatal = 136

Fig. 4.1 Sample Outputs of Example 4.1
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pivot. Then it creates two subthreads to sort each of the two parts, and waits for the subthreads to finish.
Each subthread sorts its own range by the same algorithm recursively. When all the subthreads have
finished, the main thread resumes. It prints the sorted array and terminates. As is well known, the
number of sorting steps of quicksort depends on the order of the unsorted data, which affects the
number of threads needed in the gsort program.

[****k*k*k C4,2.c: quicksort by threads *****/
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

typedef struct({
int upperbound;
int lowerbound;
}PARM;

#define N 10
int A[N] = {5,1,6,4,7,2,9,8,0,3}; // unsorted data

int print() // print current a[] contents
{
int i;
printf("[ ");
for (i=0; i<N; i++)
printf("sd ", alil);
printf ("1\n");

void *gsort(void *aptr)

{
PARM *ap, aleft, aright;
int pivot, pivotIndex, left, right, temp;
int upperbound, lowerbound;

pthread t me, leftThread, rightThread;
me = pthread_self();

ap = (PARM *)aptr;

upperbound = ap->upperbound;
lowerbound = ap->lowerbound;

pivot = alupperbound]; // pick low pivot value
left = lowerbound - 1; // scan index from left side
right = upperbound; // scan index from right side

if (lowerbound >= upperbound)
pthread_exit (NULL) ;

while (left < right) { // partition loop
do { left++;} while (al[left] < pivot);
do { right--;} while (alright] > pivot):;
if (left < right ) {



150

temp alleft];
alleft]

alright]

alright];

temp;

}
print();

left;
al[pivotIndex];

pivotIndex // put

temp

al[pivotIndex] pivot;

a [upperbound]
// start the

temp;
"recursive threads"

aleft.upperbound pivotIndex - 1;

aleft.lowerbound lowerbound;

aright.upperbound upperbound;

aright.lowerbound pivotIndex + 1;
printf("%$lu: create left and right
pthread_create(&leftThread, NULL,
pthread_create (&rightThread, NULL,
// wait for left and right threads
pthread_join(leftThread, NULL) ;
pthread_join(rightThread, NULL) ;

printf("%1lu:

int main(int argc, char *argv[])
PARM arg;

int i, *array;
pthread_t me, thread;
pthread_self () ;

unsorted array

me

printf ("main %$lu:

print();
arg.upperbound = N-1;
arg.lowerbound = 0;

printf ("main %$1lu

// wait for QS thread to finish
pthread_join(thread, NULL);
printf("main %lu sorted array = ",
print();

joined with left & right threads\n",

create a thread to do QS\n",

pthread_create(&thread, NULL, gsort,
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pivot back

threads\n",
(void *)&aleft);
(void *)&aright);
to finish

me) ;
gsort,
gsort,

me) ;

", me);

me) ;
(void *)&arg) ;

me) ;

Figure 4.2 shows the outputs of running the Example Program C4.2, which demonstrates parallel

quicksort by concurrent threads.
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main 3075553024: unsorted array = [ 516 47 2980 3 ]

[61247
3075550016
[061237
3067157312
e 237
3057646400
[061234
3049253696
[61234
3003116352:
[061234
2986330944
[61234

6985 3]
create left
69854]
create left
6985 4]
create left
69857]
create left
65897]
create left
65798]
create left
65789 ]

and
and
and
and
and

and

right
right
right
right
right

right

main 3075553024 create a thread to do QS

threads
threads
threads
threads
threads

threads

2994723648: create left and right threads
3049253696: joined with left & right threads
3067157312: joined with left & right threads
2986330944: joined with left & right threads
2994723648: joined with left & right threads
3003116352: joined with left & right threads
3057646400: joined with left & right threads

& right threads
=[06123456789]

3075550016: joined with left
main 3075553024 sorted array

Fig. 4.2 Outputs of Parallel Quicksort Program

4.6 Threads Synchronization

Since threads execute in the same address space of a process, they share all the global variables and
data structures in the same address space. When several threads try to modify the same shared variable
or data structure, if the outcome depends on the execution order of the threads, it is called a race
condition. In concurrent programs, race conditions must not exist. Otherwise, the results may be
inconsistent. In addition to the join operation, concurrently executing threads often need to cooperate
with one another. In order to prevent race conditions, as well as to support threads cooperation, threads
need synchronization. In general, synchronization refers to the mechanisms and rules used to ensure
the integrity of shared data objects and coordination of concurrently executing entities. It can be
applied to either processes in kernel mode or threads in user mode. In the following, we shall discuss
the specific problem of threads synchronization in Pthreads.

4.6.1 Mutex Locks

The simplest kind of synchronizing tool is a lock, which allows an execution entity to proceed only if it
possesses the lock. In Pthreads, locks are called mutex, which stands for Mutual Exclusion. Mutex
variables are declared with the type pthread_mutex_t, and they must be initialized before using. There
are two ways to initialize a mutex variable.

(1) Statically, as in

pthread mutex t m = PTHREAD MUTEX INITIALIZER;

which defines a mutex variable m and initializes it with default attributes.
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(2) Dynamically with the pthread_mutex_init() function, which allows setting the mutex attributes
by an attr parameter, as in

pthread mutex_init (pthread mutex t *m, pthread mutexattr_ t, *attr);
As usual, the attr parameter can be set to NULL for default attributes.
After initialization, mutex variables can be used by threads via the following functions.

int pthread mutex_ lock (pthread mutex_ t *m); // lock mutex

int pthread mutex_unlock (pthread mutex t *m); // unlock mutex

int pthread mutex_trylock (pthread mutex t *m); // try to lock mutex
int pthread mutex_destroy (pthread mutex t *m); // destroy mutex

Threads use mutexes as locks to protect shared data objects. A typical usage of mutex is as follows.
A thread first creates a mutex and initializes it once. A newly created mutex is in the unlocked state
and without an owner. Each thread tries to access a shared data object by

pthread mutex lock(&m); // lock mutex
access shared data object; // access shared data in a critical region
pthread _mutex unlock(&m); // unlock mutex

When a thread executes pthread_mutex_lock(&m), if the mutex is unlocked, it locks the mutex,
becomes the mutex owner and continues. Otherwise, it becomes blocked and waits in the mutex
waiting queue. Only the thread which has acquired the mutex lock can access the shared data object. A
sequence of executions which can only be performed by one execution entity at a time is commonly
known as a Critical Region (CR). In Pthreads, mutexes are used as locks to protect Critical Regions to
ensure at most one thread can be inside a CR at any time. When the thread finishes with the shared data
object, it exits the CR by calling pthread_mutex_unlock(&m) to unlock the mutex. A locked mutex can
only be unlocked by the current owner. When unlocking a mutex, if there are no blocked threads in the
mutex waiting queue, it unlocks the mutex and the mutex has no owner. Otherwise, it unblocks a
waiting thread from the mutex waiting queue, which becomes the new owner, and the mutex remains
locked. When all the threads are finished, the mutex may be destroyed if it was dynamically allocated.
We demonstrate threads synchronization using mutex lock by an example.

Example 4.3: This example is a modified version of Example 4.1. As before, we shall use N working
threads to compute the sum of all the elements of an N x N matrix of integers. Each working thread
computes the partial sum of a row. Instead of depositing the partial sums in a global sum[ ] array, each
working thread tries to update a global variable, total, by adding its partial sum to it. Since all the
working threads try to update the same global variable, they must be synchronized to prevent race
conditions. This can be achieved by a mutex lock, which ensures that only one working thread can
update the total variable at a time in a Critical Region. The following shows the Example Program
C4.3.

/** C4.3.c: matrix sum by threads with mutex lock **/
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>
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#define N 4

int A[N] [N];

int total = 0; // global total

pthread mutex_t *m; // mutex pointer

void *func(void *arg) // working thread function
{

int i, row, sum = 0;
pthread_t tid = pthread_self(); // get thread ID number
row = (int)arg; // get row number from arg
printf ("Thread %d [%$1lu] computes sum of row %d\n", row, tid, row);
for (i=0; 1i<N; i++) // compute partial sum of A[row]in
sum += Alrow] [1];

printf ("Thread %d [%$1lu] update total with %4 : %, row, tid, sum);
pthread mutx_lock(m) ;

total += sum; // update global total inside a CR
pthread mutex unlock(m) ;
printf(“total = %d\n”, total);

int main (int argc, char *argvl[])

{

pthread_t thread[N];

int i, j, r;

void *status;

printf("Main: initialize A matrix\n");

for (i=0; 1i<N; i++){

sum[i] = 0;

for (j=0; J<N; j++){
Ali][J] = 1i*N + J + 1;
printf("%4d ", A[i]1[3j1);

}

printf("\n");

}
// create a mutex m
m = (pthread mutex_ t *)malloc(sizeof (pthread_mutex t));
pthread mutex_init(m, NULL); // initialize mutex m
printf("Main: create %d threads\n", N);
for(i=0; i<N; i++) {

pthread_create(&thread[i], NULL, func, (void *)i);
}
printf("Main: try to join with threads\n");
for (i=0; i<N; i++) {

pthread_join(thread[i], &status);

printf("Main: joined with %d [%1lu]: status=%d\n",

i, thread[i], (int)status);

}
printf("Main: tatal = %d\n", total);
pthread_mutex_destroy(m); // destroy mutex m
pthread_exit (NULL) ;
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Main: initialize A matrix
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Main: create thread ©
Main: create thread 1
Main: create thread 2
Thread 0 [3076299584] computes sum of row ©

thread 0 [3076299584] update total with 10 : Thread 0: total = 10
Main: create thread 3

Thread 1 [3067906880] computes sum of row 1

thread 1 [3067906880] update total with 26 : Thread 1: total = 36
Thread 2 [3059514176] computes sum of row 2

thread 2 [3059514176] update total with 42 : Thread 2: total = 78
Thread 3 [3051019072] computes sum of row 3

thread 3 [3051019072] update total with 58 : Thread 3: total = 136

Main: joined with © [3076299584]: status=0
Main: joined with 1 [3067906880]: status=0
Main: joined with 2 [3059514176]: status=0
Main: joined with 3 [3651019072]: status=0
Main: tatal = 136

Fig. 4.3 Outputs of Example 4.3 Program

Figure 4.3 show the sample outputs of running the Example 4.3 program, which demonstrates
mutex lock in Pthreads.

4.6.2 Deadlock Prevention

Mutexes use the locking protocol. If a thread can not acquire a mutex lock, it becomes blocked, waiting
for the mutex to be unlocked before continuing. In any locking protocol, misuse of locks may lead to
problems. The most well-known and prominent problem is deadlock. Deadlock is a condition, in
which many execution entities mutually wait for one another so that none of them can proceed. To
illustrate this, assume that a thread T1 has acquired a mutex lock m1 and tries to lock another mutex
m2. Another thread T2 has acquired the mutex lock m2 and tries to lock the mutex m1, as shown in the
following diagram.

Thread T1: | Thread T2:
___________________ |________________
lock(ml) ; | lock (m2) ;
lock(m2) ; | lock(ml) ;

In this case, T1 and T2 would mutually wait for each other forever, so they are in a deadlock due to
crossed locking requests. Similar to no race conditions, deadlocks must not exist in concurrent
programs. There are many ways to deal with possible deadlocks, which include deadlock prevention,
deadlock avoidance, deadlock detection and recovery, etc. In real systems, the only practical way is
deadlock prevention, which tries to prevent deadlocks from occurring when designing parallel
algorithms. A simple way to prevent deadlock is to order the mutexes and ensure that every thread
requests mutex locks only in a single direction, so that there are no loops in the request sequences.
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However, it may not be possible to design every parallel algorithm with only uni-directional locking
requests. In such cases, the conditional locking function, pthread_mutex_trylock(), may be used to
prevent deadlocks. The trylock() function returns immediately with an error if the mutex is already
locked. In that case, the calling thread may back-off by releasing some of the locks it already holds,
allowing other threads to continue. In the above crossed locking example, we may redesign one of the
threads, e.g. T1, as follows, which uses conditional locking and back-off to prevent the deadlock.

Thread T1:
while (1) {
lock(ml) ;
if (!'trylock(m2)) // if trylock m2 fails
unlock(ml); // back-off and retry
else
break;

// delay some random time before retry

4.6.3 Condition Variables

Mutexes are used only as locks, which ensure threads to access shared data objects exclusively in
Critical Regions. Condition variables provide a means for threads cooperation. Condition variables are
always used in conjunction with mutex locks. This is no surprise because mutual exclusion is the basis
of all synchronizing mechanisms. In Pthreads, condition variables are declared with the type
pthread cond t, and must be initialized before using. Like mutexes, condition variables can
also be initialized in two ways.

(1) Statically, when it is declared, as in
pthread_cond_t con = PTHREAD_COND_INITIALIZER;

which defines a condition variable, con, and initializes it with default attributes.

(2) Dynamically with the pthread cond init () function, which allows setting a condition
variable with an attr parameter. For simplicity, we shall always use a NULL attr parameter for
default attributes.

The following code segments show how to define a condition variable with an associated
mutex lock.

pthread mutex_t con_mutex; // mutex for a condition variable
pthread_cond_t con; // a condition variable that relies on con_mutex
pthread mutex_init (&con_mutex, NULL); // initialize mutex
pthread_cond_init(&con, NULL); // initialize con
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When using a condition variable, a thread must acquire the associated mutex lock first. Then it
performs operations within the Critical Region of the mutex lock and releases the mutex lock, as in

pthread mutex lock(&con_mutex);

modify or test shared data objects

use condition variable con to wait or signal conditions
pthread _mutex unlock(&con_mutex) ;

Within the CR of the mutex lock, threads may use condition variables to cooperate with one another
via the following functions.

pthread cond wait (condition, mutex) : This function blocks the calling thread until
the specified condition is signaled. This routine should be called while mutex is locked. It will
automatically release the mutex lock while the thread waits. After signal is received and a blocked
thread is awakened, mutex will be automatically locked.

pthread cond signal(condition): This function is used to signal, i.e. to wake up or
unblock, a thread which is waiting on the condition variable. It should be called after mutex is
locked, and must unlock mutex in order for pthread cond wait () to complete.

pthread cond broadcast (condition) : This function unblocks all threads that are blocked
on the condition variable. All unblocked threads will compete for the same mutex to access the
condition variable. Their order of execution depends on threads scheduling.

We demonstrate thread cooperation using condition variables by an example.

4.6.4 Producer-Consumer Problem

Example 4.4: In this example, we shall implement a simplified version of the producer-consumer
problem, which is also known as the bounded buffer problem, using threads and condition variables.
The producer-consumer problem is usually defined with processes as executing entities, which can be
regarded as threads in the current context. The problem is defined as follows.

A set of producer and consumer processes share a finite number of buffers. Each buffer contains a
unique item at a time. Initially, all the buffers are empty. When a producer puts an item into an empty
buffer, the buffer becomes full. When a consumer gets an item from a full buffer, the buffer becomes
empty, etc. A producer must wait if there are no empty buffers. Similarly, a consumer must wait if there
are no full buffers. Furthermore, waiting processes must be allowed to continue when their awaited
events occur.

In the example program, we shall assume that each buffer holds an integer value. The shared global
variables are defined as

// shared global variables

int buf [NBUF]; // circular buffers
int head, tail; // indices
int data; // number of full buffers

The buffers are used as a set of circular buffers. The index variables head is for putting an item into an
empty buffer, and tail is for taking an item out of a full buffer. The variable data is the number of full
buffers. To support cooperation between producer and consumer, we define a mutex and two condition
variables.
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pthread mutex_t mutex; // mutex lock
pthread cond_t empty, full; // condition variables

where empty represents the condition of any empty buffers, and full represents the condition of any
full buffers. When a producer finds there are no empty buffers, it waits on the empty condition
variable, which is signaled whenever a consumer has consumed a full buffer. Likewise, when a
consumer finds there are no full buffers, it waits on the full condition variable, which is signaled
whenever a producer puts an item into an empty buffer.

The program starts with the main thread, which initializes the buffer control variables and the
condition variables. After initialization, it creates a producer and a consumer thread and waits for the
threads to join. The buffer size is set to NBUF=5 but the producer tries to put N=10 items into the
buffer area, which would cause it to wait when all the buffers are full. Similarly, the consumer tries to
get N=10 items from the buffers, which would cause it to wait when all the buffers are empty. In either
case, a waiting thread is signaled up by another thread when the awaited conditions are met. Thus, the
two threads cooperate with each other through the condition variables. The following shows the
program code of Example Program C4.4, which implements a simplified version of the producer-
consumer problem with only one producer and one consumer.

/* C4.4.c: producer-consumer by threads with condition variables */
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define NBUF 5
#define N 10

// shared global variables

int buf [NBUF]; // circular buffers

int head, tail; // indices

int data; // number of full buffers
pthread mutex_t mutex; // mutex lock

pthread cond_t empty, full; // condition variables

int init ()

{
head = tail = data = 0;
pthread_mutex_init (&mutex, NULL) ;
pthread_cond_init (&fullBuf, NULL) ;
pthread_cond_init (&emptyBuf, NULL) ;

void *producer()
{
int 1i;
pthread_t me = pthread_self();
for (i=0; i<N; i++){ // try to put N items into buf[ ]
pthread mutex_lock(&mutex) ; // lock mutex
if (data == NBUF) {
printf ("producer %lu: all bufs FULL: wait\n", me);
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pthread_cond wait (&empty, &mutex); // wait
}

buf [head++] = i+1; // item = 1,2,..,N
head %= NBUF; // circular bufs
data++; // inc data by 1

printf ("producer %lu: data=%d value=%d\n", me, bp->data, i+1);
pthread mutex_unlock(&mutex); // unlock mutex
pthread_cond_signal(&full); // unblock a consumer, if any

}

printf ("producer %lu: exit\n", me);

void *consumer ()
{
int 1, c;
pthread_t me = pthread_self();

for (i=0; i<N; i++) {

pthread_mutex lock(&mutex); // lock mutex
if (data == 0) {
printf ("consumer %lu: all bufs EMPTY: wait\n", me);

pthread cond_wait (&full, &mutex); // wait
}

c = bufl[tail++]; // get an item

tail %= NBUF;

data--; // dec data by 1

printf ("consumer %lu: value=%d\n", me, c);

pthread mutex unlock (&mutex) ; // unlock mutex
pthread_cond_signal (&empty) ; // unblock a producer, if any

}

printf ("consumer %$lu: exit\n", me);

int main ()

{
pthread_t pro, con;
init () ;
printf ("main: create producer and consumer threads\n");
pthread_create (&pro, NULL, producer, NULL) ;
pthread_create(&con, NULL, consumer, NULL) ;
printf("main: join with threads\n");
pthread_join(pro, NULL) ;
pthread_join(con, NULL) ;

printf ("main: exit\n");

Figure 4.4 shows the output of running the producer-consumer example program.
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main: create producer and consumer threads
main: join with threads

producer
producer
producer
producer
producer
producer
consumer
consumer
consumer
consumer
consumer
consumer
producer
producer
producer
producer
consumer
consumer
consumer
consumer
consumer
producer
producer
consumer
consumer

3076275008:
3076275008:
3076275008:
3076275008:
3076275008:
3076275008:
3067882304:
3067882304:
3067882304:
3067882304:
3067882304:
3067882304:
3076275008:
3076275008:
3076275008:
3076275008:
3067882304:
3067882304:
3067882304:
3067882304:
3067882304:
3076275008:
3076275008:
3067882304:
3067882304:

main: exit

data=1 value=1
data=2 value=2
data=3 value=3
data=4 value=4
data=5 value=5

all bufs FULL: wait

value=1
value=2
value=3
value=4
value=5

all bufs EMPTY:
data=1 value=6
data=2 value=7
data=3 value=8
data=4 value=9
value=6
value=7
value=8
value=9

all bufs EMPTY:
data=1 value=10
exit

value=10

exit

Fig. 4.4 Outputs of Producer-Consumer Program

4.6.5 Semaphores

wait

wailt

Semaphores are general mechanisms for process synchronization. A (counting) semaphore is a data

structure

struct sem{

int value;

struct process *queue

}s;

// semaphore (counter) value;

// a queue of blocked processes

Before using, a semaphore must be initialized with an initial value and an empty waiting queue.
Regardless of the hardware platform, i.e. whether on single CPU systems or multiprocessing systems,
the low level implementation of semaphores guarantees that each semaphore can only be operated by
one executing entity at a time and operations on semaphores are atomic (indivisible) or primitive from
the viewpoint of executing entities. The reader may ignore such details here and focus on the high level
operations on semaphores and their usage as a mechanism for process synchronization. The most well-

known operations on semaphores are P and V (Dijkstra 1965), which are defined as follows.

P(struct sempahore *s)

{

s->value--;

if (s->value < 0)
BLOCK(s) ;

V(struct semaphore *s)

{

if

[
|
| s->value++;
|
|
|

(s->value <= 0)
SIGNAL(s) ;
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where BLOCK(s) blocks the calling process in the semaphore’s waiting queue, and SIGNAL
(s) unblocks a process from the semaphore’s waiting queue.

Semaphores are not part of the original Pthreads standard. However, most Pthreads now support
semaphores of POSIX 1003.1b. POSIX semaphores include the following functions

int sem init(sem, value) : initialize sem with an initial value
int sem wait (sem) : similar to P(sem)
int sem_post (sem) : similar to V(sem)

The major difference between semaphores and condition variables is that the former includes a
counter, manipulate the counter, test the counter value to make decisions, etc. all in the Critical Region
of atomic or primitive operations, whereas the latter requires a specific mutex lock to enforce the
Critical Region. In Pthreads, mutexes are strictly for locking and condition variables are for threads
cooperation. In contrast, counting semaphores with initial value 1 can be used as locks. Semaphores
with other initial values can be used for cooperation. Therefore, semaphores are more general and
flexible than condition variables. The following example illustrates the advantages of semaphores over
condition variables.

Example 4.5: The producer-consumer problem can be solved more efficiently by using semaphores.
In this example, empty=N and full=0 are semaphores for producers and consumers to cooperate with
one another, and mutex =1 is a lock semaphore for processes to access shared buffers one at a time in a
Critical Region. The following shows the pseudo code of the producer-consumer problem using
semaphores.

ITEM buf [N]; // N buffers of ITEM type
int head=0, tail=0; // buffer indices
struct semaphore empty=N, full=0, mutex=1l; // semaphores

————————— Producer ------------- COnSumer-------—-----
while (1) { | while (1) {
produce an item; | ITEM item;
P (&empty) ; | P(&full);
P (&mutex) ; P (&mutex)

|

buf [head++]=item; | item=buf[tail++];

head %= N; | tail %= N;

V(&mutex) ; | V(&mutex) ;

V(&full) ; | V (&empty) ;
|

4.6.6 Barriers

The threads join operation allows a thread (usually the main thread) to wait for the termination of other
threads. After all awaited threads have terminated, the main thread may create new threads to continue
executing the next parts of a parallel program. This requires the overhead of creating new threads.
There are situations in which it would be better to keep the threads alive but require them not to go on
until all of them have reached a prescribed point of synchronization. In Pthreads, the mechanism is the
barrier, along with a set of barrier functions. First, the main thread creates a barrier object
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pthread_barrier_t barrier;

and calls
pthread_barrier init (&barrier NULL, nthreads);

to initialize it with the number of threads that are to be synchronized at the barrier. Then the main
thread creates working threads to perform tasks. The working threads use

pthread_barrier wait( &barrier)

to wait at the barrier until the specified number of threads have reached the barrier. When the last thread
arrives at the barrier, all the threads resume execution again. In this case, a barrier acts as a rendezvous
point, rather than as a graveyard, of threads. We illustrate the use of barriers by an example.

4.6.7 Solve System of Linear Equations by Concurrent Threads

We demonstrate applications of concurrent threads and threads join and barrier operations by an
example.

Example 4.6: The example is to solve a system of linear equations by concurrent threads. Assume
AX = B is a system of linear equations, where A is an N x N matrix of real numbers, X is a column
vector of N unknowns and B is column vector of constants. The problem is to compute the solution
vector X. The most well known algorithm for solving systems of linear equations is Gauss elimina-
tion. The algorithm consists of 2 major steps; row reduction, which reduces the combined matrix
[AIB] to an upper-triangular form, followed by back substitution, which computes the solution
vector X. In the row-reduction steps, partial pivoting is a scheme which ensures the leading element
of the row used to reduce other rows has the maximum absolute value. Partial pivoting helps improve
the accuracy of the numerical computations. The following shows a Gauss elimination algorithm with
partial pivoting.

[FEEEREEE Gauss Elimination Algorithm with Partial Pivoting *%#*%#*%%/
Step 1: Row reduction: reduce [AIB] to upper triangular form

for (i1=0; i<N ; i++){ // for rows i = 0 to N-1
do partial pivoting; // exchange rows if needed
(1). // barrier

for (j=i+1; J<=N; Jj++){ // for rows j = i+l to N

for (k=i+1l; k<=N; k++){ // for columns k = i+l to N
f = A[j,11/A[i,1]; // reduction factor
Alj, k] -= A[j,k1*f; // reduce row j

}

A[j1[i] = 0O; // Al3,i]1 =0

}
(2). // barrier
}
(3). // join
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Step 2: Back Substitution: compute xN-1, xN-2, ..., x0 in that order

The Gauss elimination algorithm can be parallelized as follows. The algorithm starts with a main
thread, which creates N working threads to execute the ge(thread_id) function and waits for all the
working threads to join. The threads function ge() implements the row reduction step of the Gauss
elimination algorithm. In the ge() function, for each iteration of row = 0 to N-2, the thread with
thread_ID=i does the partial pivoting on a corresponding row i. All other threads wait at a barrier
(1) until partial pivoting is complete. Then each working thread does row reduction on a unique row
equal to its ID number. Since all working threads must have finished the current row reductions before
iteration on the next row can start, so they wait at another barrier (2). After reducing the matrix [AIB] to
upper triangular form, the final step is to compute the solutions x[N-i], for i=1 to N in that order, which
is inherently sequential. The main thread must wait until all the working threads have ended before
starting the back substitution. This is achieved by join operations by the main thread. The following
shows the complete code of the Example Program C4.5.

/** C4.5.c: Gauss Elimination with Partial Pivoting **/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <pthread.h>

#define N 4
double A[N] [N+1];
pthread_barrier t barrier;

int print_matrix()
{
int i, 3j;
printf("--------------- \n") ;
for (i=0; i<N; i++){
for (j=0;j<N+1;j++)
printf("%6.2f ", A[i][j]);
printf("\n");

void *ge(void *arg) // threads function: Gauss elimination
{
int 1, j, prow;
int myid = (int)arg;
double temp, factor;
for (i=0; i<N-1; i++){
if (1 == myid) {
printf ("partial pivoting by thread %d on row %d: ", myid, 1i);
temp = 0.0; prow = i;
for (j=i; j<=N; J++){
if (fabs(A[jl1[i]l) > temp) {
temp = fabs(A[j][i]);
prow = j;
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}
printf ("pivot_row=%d pivot=%6.2f\n", prow, Alprow] [i]);
if (prow != i){ // swap rows
for (J=1i; J<N+1; J++){
temp = A[i][3];
A[i1]1[3] = Alprow] [j];
Alprow] [J] = temp;

}
// wait for partial pivoting done
pthread_barrier wait (&barrier);
for(j=i+1; j<N; j++){
if (J == myid) {

printf ("thread %$d do row %d\n", myid, Jj);

factor = A[J1[i]/A[4i1[4];

for (k=i+1; k<=N; k++)

A[j]1[k] -= A[i] [k]*factor;
A[j]1[i] = 0.0;

}
// wait for current row reductions to finish
pthread_barrier wait (&barrier);
if (i == myid)
print_matrix();

int main(int argc, char *argv[])

{

int 1, 3;
double sum;
pthread_t threads[N];

printf("main: initialize matrix A[N][N+1] as [A|B]\n“);
for (i=0; i<N; i++)
for (j=0; J<N; J++)
A[i][3] = 1.0;
for (i1=0; i<N; 1i++)
A[i] [N-i-1] = 1.0*N;
for (1=0; 1i<N; 1i++){
A[i] [N] = 2.0*N - 1;
}

print_matrix(); // show initial matrix [A|B]
pthread barrier_init (&barrier, NULL, N); // set up barrier
printf ("main: create N=%d working threads\n", N);

for (i=0; 1i<N; i++){

pthread_create(&threads[i], NULL, ge, (void *)i);
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printf ("main: wait for all %d working threads to join\n", N);
for (i=0; i<N; i++){
pthread_join(threads[i], NULL) ;
}
printf ("main: back substitution : ");
for (i=N-1; i>=0; i--){
sum = 0.0;
for (j=1i+1; J<N; Jj++)
sum += A[i][j]1*A[]J][N];
A[i][N] = (A[i][N]- sum)/A[i][i];
}
// print solution
printf ("The solution is :\n");
for(i=0; 1i<N; i++){
printf("%6.2f ", A[i][N]);
}
printf ("\n") ;

Figure 4.5 shows the sample outputs of running the Example 4.6 program, which solves a system of
equations with N=4 unknowns by Gauss elimination with partial pivoting.

main: initialize matrix A[N][N+1] as [A|B]
1.00 1.00 1.00 4.00 7.00
1.00 1.00 4.00 1.00 7.00
1.00 4.00 1.00 1.00 7.00
4.00 1.00 1.00 1.00 7.00
main: create N=4 working threads
partial pivoting by thread © on row @: pivot_row=3 pivot= 4.00
main: wait for all 4 working threads to join
thread 1 do row 1
thread 2 do row 2
thread 3 do row 3

4.00 1.00 1.00 1.00 7.00
0.00 0.75 3.75 0.75 5.25
0.00 3.75 0.75 0.75 5.25
0.00 0.75 0.75 3.75 5.25

partial pivoting by thread 1 on row 1: pivot_row=2 pivot= 3.75
thread 3 do row 3
thread 2 do row 2
partial pivoting by thread 2 on row 2: pivot_row=2 pivot= 3.60

4.00 1.00 1.00 1.00 7.00
0.00 3.75 8.75 0.75 5.25
0.00 .00 3.60 0.60 4.20
0.00 0.00 0.60 3.60 4.20
thread 3 do row 3
4.00 1.00 1.00 1.00 7.00
0.00 3.75 0.75 0.75 5.25
0.00 .00 3.60 0.60 4.20
0.00 0.080 0.00 3.50 3.50
main: back substition : The solution is :
1.00 1.00 1.00 1.00

Fig. 4.5 Sample Outputs of Example 4.6 Program
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4.6.8 Threads in Linux

Unlike many other operating systems, Linux does not distinguish processes from threads. To the Linux
kernel, a thread is merely a process that shares certain resources with other processes. In Linux both
processes and threads are created by the clone() system call, which has the prototype

int clone(int (*£fn) (void *), void *child_stack, int flags, void *arg)

As can be seen, clone() is more like a thread creation function. It creates a child process to execute a
function fn(arg) with a child_stack. The flags field specifies the resources to be shared by the parent and
child, which includes

CLONE_VM: parent and child share address space

CLONE_FS: parent and child share file system information, e.g. root. CWD
CLONE_FILES: parent and child share opened files

CLONE_SIGHAND: parent and child share signal handlers and blocked signals

If any of the flags is specified, both processes share exactly the SAME resource, not a separate copy of
the resource. If a flag is not specified, the child process usually gets a separate copy of the resource. In
this case, changes made to a resource by one process do not affect the resource of the other process.
The Linux kernel retains fork() as a system call but it may be implemented as a library wrapper that
calls clone() with appropriate flags. An average user does not have to worry about such details. It
suffices to say that Linux has an efficient way of supporting threads. Moreover, most current Linux
kernels support Symmetric Multiprocessing (SMP). In such Linux systems, processes (threads) are
scheduled to run on multiprocessors in parallel.

4,7 Programming Project: User-Level Threads

The programming project is to implement user-level threads to simulate threads operations in Linux.
The project consists of 4 parts. Part 1 presents the base code of the project to help the reader get started.
The base code implements a multitasking system, which supports independent executions of tasks
within a Linux process. It is the same MT multitasking system presented in Chap. 3, but adapted to the
user-level threads environment. Part 2 is to extend the base code to implement support for task join
operation. Part 3 is to extend the base code to support mutex operations. Part 4 is to implement
counting semaphores to support task cooperation, and demonstrate semaphores in the multitasking
system.

4.7.1 Project Base Code: A Multitasking System

Programming Project PART 1: Base Code: The following shows the base code of the programming
project, which will be explained in latter sections.
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(1). ts.s file in 32-bit GCC assembly code:

- ts.s file -----==-=---
.global tswitch, running, scheduler
tswitch:
SAVE: pushal

pushfl

movl running, $ebx

movl %esp, 4(%ebx) # integers in GCC are 4 bytes
FIND: call scheduler
RESUME : movl running, %ebx

movl 4 (%ebx), %$esp

popfl

popal

ret

(2). type.h file: This file defines the system constants and the PROC structure

[rrKkEkkkkkkk* type.h File *kkkkkkkkkkkk/
#define NPROC 9

#define SSIZE 1024

// PROC status
#define FREE
#define READY
#define SLEEP
#define BLOCK
#define ZOMBIE

B W N P O

typedef struct proc({

struct proc *next; // next proc pointer

int ksp; // saved stack pointer

int pid; // proc PID

int priority; // proc scheduling priority

int status; // current status: FREE|READY, etc.

int event; // for sleep/wakeup

int exitStatus; // exit status

int joinPid; // join target pid

struct proc *joinPtr; // join target PROC pointer

int stack[SSIZE]; // proc 4KB stack area
}PROC;

(3). queue.c file, which implements queue operation functions
// same as in MT system of Chapter 3
(4). t.c file, which is the main file of the program

#include <stdio.h>

#include "type.h"
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PROC proc [NP

ROC] ; // NPROC proc structures

PROC *freelList; // free PROC list

PROC *readyQueue; // ready proc priority queue
PROC *sleepList; // sleep PROC list

PROC *running; // running proc pointer
#include "queue.c" // enqueue(), dequeue(),

int init ()
{
int 1, 3;
PROC *p;
(1i=0;
&pro

for
p =
p->pid =
p->prior
p->statu
p->event

1<NPROC;

clil;

1++4) {

i;
ity = 0;
s = FREE;
=0;

p->joinPid = 0;

p->joinPtr = 0;

p->next

}

= p+1;

proc [NPROC-1] .next = 0;

freeList = &proc[0]; // all PROCs in freeList
readyQueue = 0;

sleepList = 0;

// create PO as initial running task

running =

p->status

p = dequeue (&freelist) ;

= READY;

p->priority = 0;

printList (

printf("init complete:

"freeList", freelList);

PO running\n") ;

int texit (int wvalue)

{

printf ("task %$d in texit value=%d\n",

running->status =

running->pid,
FREE;

running->priority = 0;

enqueue (&freelList,

printList (
tswitch() ;

running) ;

"freeList", freelList);

int do_create()

{
int pid =

create(func, running->pid); // parm = pid

printList ()

running->pid) ;

167
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int do_switch()
{
tswitch() ;

int do_exit()
{

texit (running->pid); // for simplicity: exit with pid value

void func(void *parm)
{
int c;
printf("task %d start: parm = %d\n", running->pid, (int)parm);
while (1) {
printf ("task %d running\n", running->pid);
printList ("readyQueue", readyQueue) ;
printf ("enter a key [c|s|ql : ");

c = getchar(); getchar();

switch (c){
case 'c’ : do_create(); break;
case ’'s’ : do_switch(); break;
case 'q’ : do_exit(); break;

int create(void (*£f) (), void *parm)
{
int 1i;
PROC *p = dequeue (&freelist) ;
if (!'p){
printf ("create failed\n");
return -1;
}
p->status = READY;
p->priority = 1;
p->joinPid = 0;
p->joinPtr = 0;

// initialize new task stack for it to resume to f(parm)

for (i=1; i<13; i++) # zero out stack cells
p->stack[SSIZE-i] = 0;

p->stack[SSIZE-1] = (int)parm; # function parameter

p->stack[SSIZE-2] = (int)do_exit; # function return address

p->stack[SSIZE-3] (int) £; # function entry
p->ksp = (int)&p->stack[SSIZE-12]; # ksp -> stack top
enqueue (&readyQueue, D) ;

printList ("readyQueue", readyQueue) ;
printf ("task %d created a new task %d\n", running->pid, p->pid);
return p->pid;
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int main()
{
printf ("Welcome to the MT User-Level Threads System\n");
init();
create((void *)func, 0);
printf ("PO switch to P1\n");
while (1) {
if (readyQueue)
tswitch() ;

int scheduler()
{
if (running->status == READY)
enqueue (&readyQueue, running) ;
running = dequeue (&readyQueue) ;
printf ("next running = %d\n", running->pid) ;

To compile and run the base code under Linux, enter
gcc -m32 t.c ts.s

Then run a.out. While running the program, the reader may enter the commands

‘c’: create a new task

‘s’: switch to run the next task from readyQueue

‘q’: let the running task terminate
to test and observe task executions in the system. Figure 4.6 shows the sample outputs of running
the base code program.

4.7.2 User-Level Threads

The entire base code program runs as a Linux process in user mode. Inside the Linux process are
independent execution entities, which are equivalent to conventional threads. In order not to be
confused with either Linux process or threads, we shall refer to the execution entities as tasks. In the
system, tasks run concurrently by multitasking. Figure 4.7 shows the model of concurrent tasks inside
a Linux process.

Since all the tasks execute inside a Linux process, the Linux kernel does not know their existence.
To the Linux kernel, the entire MT system is a single Linux process, but we subdivide the CPU’s
execution time to run different tasks inside the Linux process. For this reason, the tasks are known as
user-level threads. The purpose of this programming project is to create a multitasking environment in
a Linux process to support user-level threads. The same technique can also be used to create user-level
threads under any operating system. Next, we explain the base code in more detail by the following
steps.
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Welcome to the MT User-Level Threads System
freeLlist = [1 0]->[2 ©0]->[3 ©]->[4 8]->[5 ©]->[6 ©]->[7 0]->[8 ©]->NULL
init complete
readyQueue = [1 1]->NULL
task © created a new task 1
P® switch to P1
next running = 1
task 1 start: parm = 0
task 1 running
readyQueue = [0 0]->NULL
enter a key [c|siq] : ¢
readyQueue = [2 1]-=[6 8]-=NULL
task 1 created a new task 2
task 1 running
readyQueue = [2 1]->[0 ©]->NULL
enter a key [c|s|q] : s
next running = 2
task 2 start: parm = 1
task 2 running
readyQueue = [1 1]->[0 ©]->NULL
enter a key [c|s|q] : q
task 2 in texit value=2
freeList = [3 0]->[4 0]->[5 0]->[6 0]->[7 0]->[8 0]->[2 ©0]->NULL
next running = 1
task 1 running
readyQueue = [6 0]->NULL
enter a key [c|s|q] :
Fig. 4.6 Sample Outputs of the Base Code Program
Fig. 4.7 Concurrent Tasks = =—————————— a.out = Linux Process ————————
in a Linux Process [concurrent tasks)

(1).

Q).

(3).
.

| |
| taskl task2 . . . . taskn |
| |
| |

Task PROC structure: A major difference between processes and threads is that the former obey
a parent-child relation but the latter do not. In the threads model, all threads are equal. Relations
between threads are peer-to-peer, rather than parent to child. So there is no need for parent task PID
and the task family tree. Therefore, these fields are deleted from the PROC structure. The new
fields joinPid and joinPtr are for implementing the threads join operation, which will be discussed
later.

init(): When the system starts, main() calls init() to initialize the system. Init() initializes the PROC
structures and enter them into a freeList. It also initializes the readyQueue to empty. Then it uses
proc[0] to creates PO as the initial running task. PO has the lowest priority 0. All other tasks have a
priority 1, so that they will take turn to run from the readyQueue.

PO calls create() to create a task P1 to execute the func(parm) function with a parameter parm=0,
and enters it into the readyQueue. Then PO calls tswitch() to switch task to run P1.

tswitch(): The tswitch() function implements task context switching. Instead of pushl/popl
individual CPU registers, it uses the PUSHAL and POPAL instructions. tswitch() acts as a task
switch box, where one task goes in and, in general, another tasks emerges. It consists of 3 separated
steps, which are explained in more detail below.

(4).1. SAVE part of tswitch(): When a task calls tswitch(), it saves the return address on its own stack

and enters tswitch() in assembly code. In tswitch(), the SAVE part saves CPU registers into the
calling task’s stack, save the stack pointer into proc.ksp. The Intel x86 CPU in 32-bit mode has
many registers, but only the registers eax, ebx, ecx, edx, esp, ebp, esi, edi and eflags are visible to
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user mode processes. So we only need to save and restore these registers while a (Linux) process
is executing. The following diagram shows the stack contents and the saved stack pointer of the
calling task after executing the SAVE part of tswitch(), where xxx denote the stack contents
before calling tswitch().

proc.ksp

| xxx | retPC|eax|ecx|edx|ebx|old_esp|ebp|esi|edi|eflags|

In the Intel x86 based PCs in 32-bit mode, every CPU register is 4 bytes wide and stack operations
are always in units of 4 bytes. Thus, we may define the PROC stack as an integer array.

(4).2. scheduler(): After executing the SAVE part of tswitch(), the task calls scheduler() to pick the
next running task. In scheduler(), if the calling task is still READY to run, it calls enqueue() to
put itself into the readyQueue by priority. Otherwise, the task will not be in readyQueue, which
makes it non-runnable. Then it calls dequeue(), which returns the first ready PROC removed
from readyQueue as the next running task.

(4).3. RESUME part of tswitch(): When execution returns from scheduler(), running may have
changed to point at the PROC of a different task. The RESUME part of tswitch() sets the CPU’s
stack pointer to the saved stack pointer of the current running task. Then it pops saved registers,
followed by RET, causing the current running task return to where it called tswitch() earlier.

(5). create(): The create(func, parm) function creates a new task and enters it into the readyQueue.

The new task will begin execution from the named func() function with parm as parameter.
Although the new task never existed before, we may pretend it not only existed before but also ran
before. The reason why it is not running now is because it called tswitch() to give up CPU earlier.
If so, its stack must contain a frame saved by the SAVE part of tswitch(), and its saved ksp must
point at the stack top. Furthermore, when a new task begins execution from func(), which is written
as func(void *parm), it must have a return address and a parameter parm on the stack. When func()
finishes, the task shall “return to where func() was called earlier”. Thus, in create(), we initialize
the stack of the new task as follows.

proc.ksp
< —=—-—-- all saved registers = 0- ----- > |
|parm|do_exit |func|eax|ecx|edx|ebx|oldesp|ebp|esi|edi|eflags]|
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

where the index —i means SSIZE-i. These are done by the following code segment in create().

for (i=1; i<13; i++) # zero out stack cells
p->stack[SSIZE-i] = 0;

p->stack[SSIZE-1] = (int)parm; # function parameter

p->stack[SSIZE-2] = (int)do_exit; # function return address

p->stack[SSIZE-3] = (int) func; # function entry

p->ksp = (int)&p->stack[SSIZE-12]; # ksp -> stack top

When the new task begins to run, it executes the RESUME part of tswitch(), causing it to return to
the entry address of func(). When execution enters func(), the stack top contains a pointer to do_exit
() and a parameter parm, as if it was called as func(parm) from the entry address of do_exit(). In
practice, the task function rarely returns. If it does, it would return to do_texit(), which causes the
task to terminate.
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(5). func(): For demonstration purpose, all tasks are created to execute the same function, func(parm).
For simplicity, the function parameter is set to the pid of the creator task, but the reader may pass
any parameter, e.g. a structure pointer, to the function. While executing in func(), a task prompts
for a command char = [c | s | q], where

‘c’ : create a new task to execute func(parm), with parm=caller pid
‘s’ : switch task;
‘q’ : terminate and return the PROC as FREE to freeList

(6). The Idle Task PO: PO is special in that it has the lowest priority among all the tasks. After system
initialization, PO creates P1 and switches to run P1. PO will run again if and only if there are no
runnable tasks. In that case, PO simply loops. The reader may enter Control-C to terminate the
(Linux) process. It is noted that the stack of PO is actually the user mode stack of the Linux process.

4.7.3 Implementation of Thread Join Operation
PART 2: Extend Base Code to support task join operation. The extensions are listed in order below.

(1). tsleep(int event): Whenever a task must wait for something that’s not available, it calls tsleep() to
go to sleep on an event value, which represents the reason of the sleep. The algorithm of tsleep() is

/************ Algorithm Of tsleep(int event) **************/
1. record event value in proc.event: running->event = event;
2. change status to SLEEP: running->status = SLEEP;
3. for ease of maintenance, enter caller into a (global) PROC *sleepList:
enqueue (&sleeplList, running);
4. give up CPU: tswitch () ;

A sleeping task is not runnable until it is woken up by another task. So in tsleep(), the task calls
tswitch() to give up the CPU.

(2). int twakeup(int event): twakeup() wakes up ALL tasks that are sleeping on the specified event
value. If no task is sleeping on the event, it does nothing. The algorithm of twakeup() is

[*****xkkkkk* Algorithm of twakeup(int event) *****k¥kxi/
for each PROC *p in sleepList do{ // assume sleepers are in a global sleepList
if (p->event == event) {
delete p from sleepList;
p->status = READY; // make p READY to run again
enqueue (&readyQueue, p); // enter p into readyQueue by priority

(3). texit(int status): Modified texit() in the base code for tasks to terminate. In the process model,
every process has a unique parent (which may be the INIT process P1), which always waits for the
process to terminate. So a terminating process can become a ZOMBIE and wakes up its parent,
which will dispose of the ZOMBIE child. If a terminating process has children, it must give away
the children to either the INIT process or a subreaper process before becoming a ZOMBIE. In the
threads model, threads are all equal. A thread does not have a parent or children. When a thread
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terminates, if there is no other threads waiting for it to terminate, it must exit as FREE. If there is
any thread waiting for it to terminate, it should become a ZOMBIE, wake up all such threads,
allowing one of them to find and dispose of the ZOMBIE. In the threads model, the thread
termination algorithm is

/************ Algoritm of texit(int status) ************/

1. try to £find a (any) task which wants to join with this task;
2. if no task wants to join with this task: exit as FREE
// some task is waiting for this task to terminate
3. record status value in proc.exitStatus: running->exitStatus = status;
4. become a ZOMBIE: running->status = ZOMBIE;
5. wake up joining tasks: twakeup (running->pid)
6. give up CPU: tswitch();

join(int targetPid, int *status): The join operation waits for a thread with targetPid to terminate.
In the process model, every process can only be waited by a unique parent, and a process never
waits for its own parent to terminate. So the waiting sequence is always a unidirectional chain. In
the threads model, a thread is allowed to join with any other thread. This may cause two problems.
First, when a thread tries to join with a target thread, the target thread may no longer exist. In this
case, the joining thread must return with an error. If the target thread exists but has not terminated
yet, the joining thread must go to sleep on the target thread PID, waiting for the target thread to
terminate. Second, since threads do not obey the parent-child relation, a sequence of joining
threads may lead to a deadlock waiting loop. In order to prevent such deadlocks, every joining
thread must record the identity of the target thread in its PROC structure to allow other joining
threads to check whether the join request would lead to a deadlock. When the targeted thread
terminates, it can check whether there are any threads waiting for it to terminate. If so, it would
become a ZOMBIE and wake up all such joining threads. Upon waking up, the joining threads
must execute the join operation again since the ZOMBIE may already be freed by another joining
thread. Thus, the algorithm of the thread join operation is as follows.

[***xx%kx%x Algorithm of join(int targetPid, int *status) *******x%/
while (1)

if (no task with targetPid) return NOPID error;
2. if (targetPid’s joinPtr list leads to this task) return DEADLOCK error;
3. set running->joinPid = targetPid, running->joinPtr ->targetPid’s PROC;
4. if (found targetPid’s ZOMBIE proc *p){
*status = p->exitStatus; // extract ZOMBIE exit status
p->status = FREE; p->priority = 0;
enqueue (&freeList, p); // release p to freelList
return p->pid;
}
5. tsleep(targetPid); // sleep on targetPID until woken up by target task

Steps 2 of the join() algorithm prevents deadlock due to either crossed or circular joining requests,
which can be checked by traversing the targetPid’s joinPtr pointer list. Each joining task’s joinPtr
points to a target PROC it intends to join with. If the list points back to the current running task, it
would be a circular waiting list, which must be rejected due to a potential deadlock.
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Programming Project PART 2: Part 2 of the programming project is for the reader to implement
the tsleep(), twakeup() and join() functions. Then test the resulting system by the following
program code, which uses task creation and join operations of the programming project.

/************ PART 2 of Programing Project ***********/
#include <stdio.h>

#include <stdlib.h>

#include "type.h"

PROC proc [NPROC] ;
PROC *freelList;
PROC *sleepList;
PROC *readyQueue;
PROC *running;

/****%* implement these functions ******/
int tsleep(int event){ }

int twakeup(int event){ }

int texit(int status){ }

int join(int pid, int *status){ }

/****** end of implementations *****k*i%/
int init(){ } // SAME AS in PART 1

int do_exit ()

{
// for simplicity: exit with pid value as status
texit (running->pid) ;

void taskl(void *parm) // taskl: demonstrate create-join operations
{
int pid[2];
int 1, status;
//printf ("task %d create subtasks\n", running->pid);
for (1=0; 1<2; 1i++){ // Pl creates P2, P3
pid[i] = create(func, running->pid);
}
join (5, &status); // try to join with targetPid=5
for (i=0; i<2; i++){ // try to join with P2, P3
pid[i] = join(pid[i], &status):;
printf ("task%d joined with task%d: status = %d\n",
running->pid, pid[i], status);

void func(void *parm) // subtasks: enter g to exit

{
char c¢;
printf("task %d start: parm = %d\n", running->pid, parm) ;
while (1) {
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printList ("readyQueue", readyQueue) ;
printf ("task %d running\n", running->pid);
printf("enter a key [cl|s|g|3l: ");

c = getchar(); getchar(); // kill \r
switch (c){
case ‘c’ : do_create(); break;
case ’'s’ : do_switch(); break;
case 'q’ : do_exit(); break;
case ’j’ : do_join(); break;

int create(void (*£f) (), void *parm)

{
int 1i;
PROC *p = dequeue (&freelist) ;
if (!'p){
printf ("create failed\n");
return -1;
}
p->status = READY;
p->priority = 1;
p->joinPid = 0;
p->joinPtr = 0;
for (i=1; i<13; 1i++)
p->stack[SSIZE-i] = 0;
p->stack[SSIZE-1] = (int)parm;
p->stack[SSIZE-2] = (int)do_exit;
p->stack[SSIZE-3] = (int)Ef;
p->ksp = &p->stack[SSIZE-12];
enqueue (&readyQueue, D) ;
printList ("readyQueue", readyQueue) ;
printf ("task%d created a new task%d\n", running->pid, p->pid);
return p->pid;
}

int main()
{
int i, pid, status;
printf ("Welcome to the MT User-Threads System\n");
init();
create((void *)taskl, 0);
printf ("PO0 switch to P1\n");
tswitch() ;
printf (*All tasks ended: PO loops\n”);
while (1) ;
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Welcome to the MT User-Level Threads System

freelist =1 --> 2 -->3 -->4 --> 5 --> 6 --> 7 --> 8 --> NULL
init complete

task® create a new task 1

P@ switch to P1

task 1 running

taskl create a new task 2

taskl create a new task 3

taskl try to join with task5: join error: no such pid 5
taskl try to join with task2: sleepList = 1 --> NULL
readyQueue = 3 --> @ --> NULL

task 2 running: enter a key [c|s|qlj]: ]

enter a pid to join with : 1

task2 try to join with taski: join error: DEADLOCK
readyQueue = 3 --> 0 --> NULL

task 2 running: enter a key [c|s|qlil: q

readyQueue = 3 --> 1 --> 0 --> NULL

task 2 exited with status = 2

readyQueue = 1 --> 0 --> NULL

task 3 running: enter a key [c|slqljl: q

task 3: no joiner=s>exit as FREE: task 3 exited with status = 3
taskl joined with task2 status = 2

taskl try to join with task3: join error: no such pid 3

task 1: no joiner=s>exit as FREE: task 1 exited with status = 1

ALL tasks ended: P® loops

Fig. 4.8 Sample Outputs of Task Join Program

int scheduler()
{
if (running->status == READY)
enqueue (&readyQueue, running) ;
running = dequeue (&readyQueue) ;

In the test program, PO creates a new task P1, which executes the function task1(). When P1 runs, it
creates two new tasks P2 and P3 to execute the function func(). P1 first tries to join the targetPid =5.
Then it tries to join with both P2 and P3. Figure 4.8 shows the sample outputs of running Part 2 of the
Project Program, which demonstrates task join operations. As the figure shows, when P1 tries to join
with P5, it results in a join error due to invalid targetPid. Then P1 tries to join with task 2, which causes
it to wait. When P2 runs, it tries to join with P1, which is rejected because this would lead to a
deadlock. Then P2 exits, which switches task to run P3. When P3 exits, P1 is still waiting to join with
P2, so P3 exits as FREE, allowing P1 to complete its join operation with P2. When P1 tries to join with
P3, it gets an invalid targetPid error since P3 no longer exists. Instead of letting P3 exit first, the reader
may let P3 switch to P1, which will dispose of the ZOMBIE P2 and then tries to join with P3. In that
case, when P3 exits, P1 will complete its join operation with P3 successfully. The reader may modify
the test program to create more tasks and enter different command sequences to test the system.

4.7.4 Implementation of Mutex Operations

Programming Project PART 3: Extend Part 2 of the project to support mutex operations. The
extensions are described below.



4.7  Programming Project: User-Level Threads 177

(1). Mutex Structure

typedef struct mutex{

int lock; // mutex lock state: 0 for unlocked, 1 for locked
PROC *owner; // pointer to owner of mutex; may also use PID
PROC *queue; // FIFO queue of BLOCKED waiting PROCs

}MUTEX ;

MUTEX *mutex create() // create a mutex and initialize it
{

MUTEX *mp = (MUTEX *)malloc(sizeof (MUTEX));

mp->lock = mp->owner = mp->queue = 0;

return mp;

void mutex_destroy (MUTEX *mp){ free(mp); }
int mutex_lock (MUTEX *mp){ // implement mutex locking operation }
int mutex_unlock (MUTEX *mp){// implement mutex unlocking operation }

/******** Algorithﬂl of mutexﬁlock() ************/
(1). if (mutex is in unlocked state) {

change mutex to locked state;

record caller as mutex owner;

}

(2). else{

BLOCK caller in mutex waiting queue;

switch task;

[****kk*x Algorithm of mutex unlock() ****kkkii*/
(1). if (mutex is unlocked ||(mutex is locked && caller NOT owner))
return error;
(2). // mutex is locked && caller is owner
if (no waiter in mutex waiting queue) {
change mutex to unlocked state;
clear mutex owner field to 0;
}
(3). else{ // mutex has waiters
PROC *p = dequeue a waiter from mutex waiting queue;
change mutex owner to p; // mutex remains locked
enter p into readyQueue;

4.7.5 Test Project with Mutex by Concurrent Programs

Part 3: Implement mutex_lock() and mutex_unlock() functions for the MT system. Test mutex
operations by the following program. The test program is a modified version of the Example 4.3
program using Pthreads. It computes the sum of the elements of a matrix by concurrent tasks and mutex
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of the MT system. In the test program, PO initializes a 4 x 4 matrix, creates P1 to execute task1(). P1
creates 4 working tasks to execute the function func(parm). Each working task computes the partial
sum of a row and updates the global variable total using mutex for synchronization. The outputs should
look like Fig. 4.9.

[***kkkkkkkkk test program for mutex operations **kkkkkkkkkk/
#include <stdio.h>

#include <stdlib.h>

#include "type.h"

PROC proc[NPROC], *freeList, *sleepList, *readyQueue, *running;

#include "queue.c" // queue operation functions
#include "wait.c" // tsleep/twakeup/texit/join functions
#include "mutex.c" // mutex operation functions

#define N 4

int A[N] [N]; // matrix A
MUTEX *mp; // mutex for task synchronization
int total; // global total

int init()
{
int 1, 3;
PROC *p;
for (i=0; i<NPROC; i++){
p = &proclil];
p->pid = 1i;
p->ppid = 1;
p->priority = 0;
p->status = FREE;
p->event = 0;
p->next = p+l;
}
proc [NPROC-1] .next = 0;
freelList = &proc[0];
readyQueue = 0;
sleepList = 0;
p = running = dequeue (&freelList);
p->status = READY;
p->priority = 0;
printList("freeList", freelList);

printf("P0: initialize A matrix\n");
for (i=0; i<N; i++)({
for (j=0; j<N; j++){
A[i]l[j] = i*N + J + 1;
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int myexit ()

{

for (i=0; i<N; i++)({ // show the matrix

for (j=0; j<N; j++){
printf("%4d ", A[il[j1);

}

printf("\n");
}
mp = mutex create(); // create a mutex
total = 0;
printf("init complete\n");

// for task exit

texit (0) ;

void func(void *arg)

{

int i, row, s;
int me = running->pid;

row = (int)arg;

printf ("task %d computes sum of row %d\n",

s = 0;
for (i=0; i < N; i++){
s += Alrow] [i];

}

printf ("task %d update total with %d\n", me,

mutex_lock(mp) ;
total += s;
printf (" [total

%d] ", total):;

mutex_unlock (mp) ;

void taskl(void *parm)

{

int pid[N];

int i, status;

int me = running->pid;

printf ("task %d: create working tasks
for(i=0; 1 < N; i++) {

pid[i] = create(func, (void *)1i);
printf("%d ", pid[il);

}

printf (" to compute matrix row sums\n");

for(i=0; i<N; i++) {

printf("task %d tries to join with task %d\n",

running->pid, pid[il);
join(pid[i], &status);

me,

me) ;

s);

179
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printf("task %d : total = %d\n", me, total);

int create(void (*f) (), void *parm)

{
int i;
PROC *p = dequeue (&freelList) ;
if (!p){
printf("fork failed\n");
return -1;
}

p->ppid = running->pid;

p->status = READY;

p->priority = 1;

p->joinPid = 0;

p->joinPtr = 0;

for (i=1; i<12; i++){
p->stack[SSIZE-i] = 0;
p->stack[SSIZE-1] = (
p->stack[SSIZE-2] = (
p->stack[SSIZE-3] = (int)f;
p->ksp = &p->stack[SSIZE-12];

int)parm;

int)myexit;

}
enqueue (&readyQueue, p);
return p->pid;

int main()
{
printf ("Welcome to the MT User-Level Threads System\n");
init () ;
create((void *)taskl, 0);
//printf ("PO0 switch to P1\n");
tswitch();
printf("all task ended: PO loops\n");
while (1) ;

int scheduler ()
{
if (running->status == READY)
enqueue (&readyQueue, running) ;
running = dequeue (&readyQueue) ;

Figure 4.9 shows the sample outputs of running the test program of mutex.
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Welcome to the MT User-Level Threads System
freeList =1 -->2 --> 3 --> 4 --> § --> 6 --> 7 --> 8 --> NULL
PO: initialize A matrix

1 2 3 4
5 6 7 8
9 1 11 12

13 14 15 16
init complete
task 1: create working tasks : 2 3 4 5 to compute matrix row sums
task 1 tries to join with task 2
sleepList = 1 --> NULL
task 2 computes sum of row @

task 2 update total with 10

task 2 mutex_lock() [total = 18] task 2 mutex_unlock()
task 3 computes sum of row 1

task 3 update total with 26

task 3 mutex_lock() [total = 36] task 3 mutex_unlock()
task 4 computes sum of row 2

task 4 update total with 42

task 4 mutex_lock() [total = 78] task 4 mutex_unlock()
task 5 computes sum of row 3

task 5 update total with 58

task 5 mutex_lock() [total = 136] task 5 mutex_unlock()
task 1 tries to join with task 3

task 1 tries to join with task 4

1

task 1 tries to join with task 5
task 1 : tatal = 136
211 task ended: P@ loops

Fig. 4.9 Matrix Sum by Concurrent Tasks and Mutex
4.7.6 Implementation of Semaphores

Programming Project PART 4: Implement counting semaphores as described in Sect. 4.6.5.
Demonstrate semaphores by the following test program, which is the producer-consumer problem of
Example 4.5 adapted to the MT system.

4.7.7 Producer-Consumer Problem using Semaphores

[***kkkkk*k* test program for semaphore operations ****k*i*/
#include <stdio.h>

#include "type.h"

PROC proc[NPROC], *freeList, *sleepList, *readyQueue, *running;
#include "queue.c" // queue operation function

#include "wait.c" // tsleep/twakeup/texit/join functions

#define NBUF 4
#define N 8
int buf[NBUF], head, tail; // buffers for producer-consumer

typedef struct{
int value;
PROC *qQueue;
} SEMAPHORE;
SEMAPHORE full, empty, mutex; // semaphores
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int P(SEMAPHORE *sg)
{ // implement P function }

int V(SEMAPHORE *sg)
{ // implement V function }

void producer() // produce task code
{
int 1i;
printf ("producer %d start\n", running->pid);
for (i=0; i<N; i++){
P (&empty) ;
P (&mutex) ;
buf [head++] = i+1;

printf ("producer %d: item = %$d\n", running->pid, i+1);

head %= NBUF;
V (&mutex) ;

V(&full) ;
}
printf ("producer %d exit\n", running->pid);
}
void consumer () // consumer task code
{

int i, c;
printf ("consumer %d start\n", running->pid);
for (i=0; i<N; i++) {

P(&full);

P (&mutex) ;

c = bufl[tail++];

tail %= NBUF;

4 Concurrent Programming

printf ("consumer %d: got item = %d\n", running->pid, c);

V(&mutex) ;
V (&empty) ;
}

printf ("consumer %d exit\n", running->pid);

int init()
{
int i, 3;
PROC *p;
for (i=0; i<NPROC; i++){
p = &proc(i];
p->pid = 1i;
p->ppid = 1;
p->priority = 0;
p->status = FREE;
p->event = 0;
p->next = p+1;
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proc [NPROC-1] .next = 0;

freeList = &proc[0];

readyQueue = 0;

sleepList = 0;

p = running = dequeue (&freelList) ;
p->status = READY;

p->priority = 0;

printList ("freeList", freeList);

// initialize semaphores full, empty, mutex
head = tail = 0;
full.value = 0; full.gqueue = 0;
empty.value=NBUF; empty.queue = 0;
mutex.value = 1; mutex.queue = 0;
printf("init complete\n");

}

int myexit () { texit(0); }

int taskl()
{
int status;
printf ("task %d creates producer-consumer tasks\n", running->pid);
create((void *)producer, 0);
create((void *)consumer, 0);
join(2, &status);
join(3, &status);
printf("task %d exit\n", running->pid);

int create(void (*£f) (), void *parm)
{
int 1i;
PROC *p = dequeue (&freeList) ;
if (!p){
printf ("fork failed\n");
return -1;
}
p->ppid = running->pid;
p->status = READY;
p->priority = 1;
p->joinPid = 0;
p->joinPtr = 0;
for (i=1; 1i<12; i++){
p->stack[SSIZE-i] = 0;
p->stack[SSIZE-1] = (
p->stack[SSIZE-2] = (
p->stack[SSIZE-3] = (int)f;
p->ksp = &p->stack[SSIZE-12];

int)parm;
int)myexit;

}
enqueue (&readyQueue, D) ;
return p->pid;
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int main()
{
printf ("Welcome to the MT User-Level Threads System\n");
init();
create((void *)taskl, 0);
printf ("PO0 switch to P1\n");
tswitch();
printf("all task ended: PO loops\n");
while (1) ;

int scheduler()

{
if

READY)

running) ;

(running->status
enqueue (&readyQueue,

running = dequeue (&readyQueue) ;

Figure 4.10 shows the sample outputs of the producer-consumer problem using semaphores.
Solutions to the programming project are available online for download. Source code of the

programming project is available for instructors upon request.

Welcome to the MT User-Level Threads System

freelist =1 -->2 -->3 -->4 -->5 --> 6 --> 7 --> 8 --> NULL

init complete
PO switch to P1
task 1 creates producer-consumer tasks
sleepList = 1 --> NULL
producer 2 start
producer 2: item
producer 2: item
producer 2: item
producer 2: item
task 2 block on
consumer 3 start
consumer 3: got item = 1
task 3 V up 2 on sem=0x80541e8
consumer 3: got item = 2
consumer 3: got item = 3
consumer 3: got item = 4
task 3 block on sem=0x805420c
producer 2: item = 5
task 2 V up 3 on sem=0x805420c
producer 2: item = 6
producer 2: item = 7
producer 2: item = 8
producer 2 exit
consumer 3: got item

3

3

3

W=

sem=0x80541e8

consumer 3: got item
consumer 3: got item
consumer 3: got item
consumer 3 exit

task 1 exit

211 task ended: PO loops

nmaumnn
o~ un

Fig. 4.10 Producer-Consumer Problem using Semaphores
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48 Summary

This chapter covers concurrent programming. It introduces the concept of parallel computing and
points out its importance. It compares sequential algorithms with parallel algorithms, and
parallelism vs. concurrency. It explains the principles of threads and their advantages over processes.
It covers threads operations in Pthreads by examples. These include threads management functions,
threads synchronization tools of mutex, join, condition variables and barriers. It demonstrates concur-
rent programming using threads by detailed examples. These include matrix computation, quicksort
and solving systems of linear equations by concurrent threads. It explains the deadlock problem and
shows how to prevent deadlocks in concurrent programs. It covers semaphores and demonstrates their
advantages over condition variables. It also explains the unique way of supporting threads in Linux.
The programming project is to implement user-level threads. It presents a base system to help the
reader get started. The base system supports dynamic creation, execution and termination of concurrent
tasks, which are equivalent to threads executing in the same address space of a process. The project is
for the reader to implement threads join, mutex and semaphores for threads synchronization and
demonstrate their usage in concurrent programs. The programming project should allow the reader to
have a deeper understanding of the principles and techniques of multitasking, threads synchronization
and concurrent programming.

Problems

1. Modify the Example Program C4.1 to find the maximum element value of an N x N matrix by
concurrent threads.

2. In the gsort() function of the Example Program C4.2, it picks the rightmost element of an unsorted
interval as the pivot. Modify it to use the leftmost element as the pivot, and compare the number of
sorting steps needed in both cases.

3. Modify the Example Program C4.4 to create multiple producer and consumer threads.

. Implement the producer-consumer problem using semaphores, as suggested in Example 4.5.

5. In the Example Program C4.5, the number of working threads, N, is equal to the dimension of the A
matrix. This may be undesirable if N is large. Modify the program to use NTHREADS working
threads, where NTHREADS <= N. For example, with N=8, NTHREADS may be 2, 4 or any
number <=N.

6. Modify the Example Program C4.1 to compute the sum of all the elements in a matrix by concurrent
tasks in the MT system. The results should be the same as in Example 4.1.

7. Assume that in the user-level threads MT system every task will be joined by some task. When the
system ends, there should be no ZOMBIE tasks left behind. Implement texit() and join() to meet
these requirements.

N
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Abstract

This chapter covers timers and timer services. It explains the principle of hardware timers and the
hardware timers in Intel x86 based PCs. it covers CPU operations and interrupts processing. It
describes timer related system calls, library functions and commands for timer services in Linux. It
discusses process interval timers, timer generated signals and demonstrates process interval timers
by examples. The programming project is to implement timer, timer interrupts and interval timers in
a multitasking system. The multitasking system runs as a Linux process, which acts as a virtual CPU
for concurrent tasks inside the Linux process. The real-time mode interval timer of the Linux
process is programmed to generate SIGALRM signals periodically, which acts as timer interrupts to
the virtual CPU, which uses a SIGALRM signal catcher as the timer interrupt handler. The project is
for the reader to implement interval timers for tasks by a timer queue. It also lets the reader use
Linux signal masks to implement critical regions to prevent race conditions between tasks and
interrupt handlers.

5.1 Hardware Timer

A timer is a hardware device comprising a clock source and a programmable counter. The clock source
is usually a crystal oscillator, which generates periodic electrical signals to drive the counter at a
precise frequency. The counter is programmed with a count-down value, which decrements by 1 on
each clock signal. When the count decrements to 0, the counter generates a timer interrupt to the
CPU, reloads the count value into the counter and repeats the count-down again. The period of the
counter is known as a timer tick, which is the basic timing unit of the system.

5.2 PC Timers

The Intel x86 based PC has several timers (Bovet and Cesati 2005).

(1). Real-Time Clock (RTC): The RTC is powered by a small backup battery. It runs continually even
when the PC’s power is turned off. It is used to keep real time to provide time and date information.
When Linux boots up, it uses the RTC to update a system time variable to keep track of the current
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time. In all Unix-like systems, the time variable is a long integer containing the number of seconds
elapsed since the beginning of January 1 of 1970.

(2). Programmable Interval Timer (PIT) (Wang 2015]: The PIT is a hardware timer separated from
the CPU. It can be programmed to provide timer ticks in resolutions of milliseconds. Among all
1/0O devices, the PIT interrupts at the highest priority IRQO. PIT timer interrupts are handled by the
timer interrupt handler of the Linux kernel to provide basic timing units for system operation, such
as process scheduling, process interval timers and a host of other timing events.

(3). Local Timers in Multicore CPUs (Intel 1997; Wang 2015): In a multicore CPU, each core is an
independent processor, which has its own local timer driven by the CPU clock.

(4). High Resolution Timers: Most PCs have a Time Stamp Counter (TSC), which is driven by the
system clock. Its contents can be read via a 64-bit TSC register. Since the clock rates of different
system boards may vary, the TSC is unsuited as a real-time device but it can provide timer
resolutions in nanoseconds. Some high-end PCs may also be equipped with a special high speed
timer to provide timer resolutions in nanoseconds range.

5.3 CPU Operations

Every CPU has a Program Counter (PC), also known as the Instruction Pointer (IP), a flag or status
register (SR), a Stack Pointer (SP) and several general registers, where PC points to the next instruction
to be executed in memory, SR contains current status of the CPU, e.g. operating mode, interrupt mask
and condition code, and SP points to the top of the current stack. The stack is a memory area used by
the CPU for special operations, such as push, pop call and return, etc. The operations of a CPU can be
modeled by an infinite loop.

while (power-on) {

(1). fetch instruction: load *PC as instruction, increment PC to point to the
next instruction in memory;

(2). decode instruction: interpret the instruction’s operation code and
generate operands;

(3). execute instruction: perform operation on operands, write results to
memory if needed; execution may use the stack, implicitly change PC,
etc.

(4). check for pending interrupts; may handle interrupts;

In each of the above steps, an error condition, called an exception or trap, may occur due to invalid
address, illegal instruction, privilege violation, etc. When the CPU encounters an exception, it follows a
pre-installed pointer in memory to execute an exception handler in software. At the end each instruction
execution, the CPU checks for pending interrupts. Interrupts are external signals from I/O devices or
coprocessors to the CPU, requesting for CPU service. If there is a pending interrupt request but the CPU
is not in the state of accepting interrupts, i.e. its status register has interrupts masked out, the CPU will
ignore the interrupt request and continue to execute the next instruction. Otherwise, it will direct its
execution to do interrupt processing. At the end of interrupt processing, it will resume the normal
execution of instructions. Interrupts handling and exceptions processing are handled in the operating
system kernel. For the most part they are inaccessible from user level programs but they are keys to
understanding timer services and signals in operating systems, such as Linux.
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54 Interrupt Processing

Interrupts from external devices, such as the timer, are fed to predefined input lines of an Interrupt
Controller (Intel 1990; Wang 2015) which prioritizes the interrupt inputs and routes the interrupt with
the highest priority as an interrupt request (IRQ) to the CPU. At the end of each instruction execution,
if the CPU is not in the state of accepting interrupts, i.e. it has interrupts masked out in the CPU’s status
register, it will ignore the interrupt request, keeping it pending, and continue to execute the next
instruction. If the CPU is in the state of accepting interrupts, i.e. interrupts are not masked out, the CPU
will divert its normal execution sequence to do interrupt processing. For each interrupt, the Interrupt
Controller can be programmed to generate a unique number, called an interrupt vector, which
identifies the interrupt source. After acquiring an interrupt vector number, the CPU uses it as an
index to an entry in an Interrupt Vector Table (AMD64 2011) in memory, which contains a pointer
to the entry address of an Interrupt handler, which actually handles the interrupt. When interrupt
processing finishes, the CPU resumes normal execution of instructions.

5.5 Time Service Functions

In almost every operating system (OS), the OS kernel provides a variety of time related services. Time
services can be invoked by system calls, library functions and user level commands. In this section, we
shall cover some of the basic time service functions of Linux.

5.5.1 Gettimeofday-Settimeofday

#include <sys/time.h>
int gettimeofday(struct timeval *tv, struct timezone *tz);
int settimeofday(const struct timeval *tv, const struct timezone *tz);

These are system calls to the Linux kernel. The first parameter, tv, points to a timeval structure.

struct timeval {
time t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
};

The second parameter, timezone, is obsolete and should be set to NULL. The gettimeofday() function
returns the current time in seconds and microseconds of the current second. The settimeofday()
function sets the current time. In Unix/Linux, time is represented by the number of seconds elapsed
since 00:00:00 of January 1, 1970. It can be converted to calendar form by the library function ctime
(&time). The following examples demonstrate gettimeofday() and settimeofday().

(1). Gettimeofday system call
Example 5.1 Get system time by gettimeofday()

/********* gettimeofday.c file *********/

#include <stdio.h>



190 5 Timers and Time Service

#include <stdlib.h>
#include <sys/time.h>

struct timeval t;

int main()

{
gettimeofday(&t, NULL);
printf ("sec=%1d usec=%d\n", t.tv_sec, t.tv_usec);
printf ((char *)ctime(&t.tv_sec));

The program should display the current time in seconds, microseconds and also the current date and
time in calendar form, as in

sec=1515624303 usec=860772
Wed Jan 10 14:45:03 2018

(2). Settimeofday system call
Example 5.2 Set system time by settimeofday()

/********* Settimeofday.c file *********/
#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <time.h>

struct timeval t;

int main()
{
int r;
t.tv_sec = 123456789;
t.tv_usec= 0;
r = settimeofday(&t, NULL);
if ('r){
printf (“settimeofday () failed\n”);
exit (1) ;
}
gettimeofday(&t, NULL);
printf ("sec=%1d usec=%1d\n", t.tv_sec, t.tv_usec);
printf (“%s”, ctime(&t.tv_sec)); // show time in calendar form

The output of the program should show something like

sec=123456789 usec=862
Thu Nov 29 13:33:09 1973
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Based on the printed date and year (1973), it seems that the settimeofday() operation has succeeded.
However, in some Linux systems, e.g. Ubuntu 15.10, the effect may only be temporary. If the reader
runs the gettimeofday program again, it will show that Linux has changed the system time back to the
correct real time. This shows that the Linux kernel has the ability to use the real-time clock (and other
time synchronization protocols) to correct any deviations of system time from real time.

5.5.2 The Time System Call
Example 5.3 The time system call

time_t time(time_t *t)
returns the current time in seconds. If the parameter t is not NULL, it also stores the time in the memory
pointed by t. The limitation of the time system call is that it only provides resolutions in seconds, not in
microseconds. This example shows how to get system time in seconds.

/************ time.c file ***********/

#include <stdio.h>
#include <time.h>

time_t start, end;

int main()
{
int 1i;
start = time (NULL);
printf (“start=%1d\n”, start);
for (i=0; 1i<123456789; i++); // delay to simulate computation
end = time (NULL);
printf(“end =%1d time=%1d\n”, end, end-start);

The output should print the start time, end time and the number of seconds from start to end.

5.5.3 The Times System Call
The times system call
clock_t times(struct tms *buf);

can be used to get detailed execution time of a process. It stores the process time in a struct tms buf,
which is

struct tms({
clock t tms_utime; // user mode time
clock t tms_stime; // system mode time
clock_t tms_cutime; // user time of children
clock_t tms_cstime; // system time of children



192 5 Timers and Time Service

All times reported are in clock ticks. This provides information for profiling an executing process,
including the time of its children processes, if any.

5.54 Time and Date Commands

date: print or set the system date and time
time: report process execution time in user mode, system mode and total time
hwclock: query and set the hardware clock (RTC), can also be done through BIOS.

5.6 Interval Timers

Linux provides each process with three different kinds of interval timers, which can be used as virtual
clocks for process timing. Interval timers are created by the setitimer() system call. The getitimer()
system call returns the status of an interval timer.

int getitimer (int which, struct itimerval *curr_ value);
int setitimer (int which, const struct itimerval *new_value,
struct itimerval *old_value);

Each interval timer operates in a distinct time domain specified by the parameter which. When an
interval timer expires, a signal is sent to the process, and the timer is reset to the specified interval value
(if nonzero). A signal is a number (1 to 31) sent to a process for the process to handle. Signals and
signal processing will be covered in Chap. 6. For the time being, the reader may regard timer related
signals as interrupts to a process, just like physical timer interrupts to a CPU. The 3 kinds of interval
timers are

(1). ITIMER_REAL: decrement in real time, generate a SIGALRM (14) signal upon expiration.

(2). ITIMER_VIRTUAL: decrement only when the process is executing in user mode, generate a
SIGVTALRM (26) signal upon expiration.

(3). ITIMER_PROF: decrement when the process is executing in user mode and also in system
(kernel) mode. Coupled with ITIMER_VIRTUAL, this interval timer is usually used to profile the
time spent by the application in user and kernel modes. It generates a SIGPROF (27) signal upon
expiration.

Interval timer values are defined by the following structures (in <sys/time.h>):

struct itimerval {
struct timeval it_interval; /* interval for periodic timer */
struct timeval it_value; /* time until next expiration */
}i
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
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The function getitimer() fills the structure pointed to by curr_value with the current value i.e., the time
remaining until the next expiration, of the timer specified by which (one of ITIMER_REAL,
ITIMER_VIRTUAL, or ITIMER_PROF). The subfields of the field it_value are set to the amount
of time remaining on the timer, or zero if the timer is disabled. The it_interval field is set to the timer
interval (period); a value of zero returned in (both subfields of) this field indicates that this is a single-
shot tim