
Data Science
and Predictive
Analytics

Ivo D. Dinov

Biomedical and Health Applications
using R

Data Science and Predictive Analytics

Ivo D. Dinov

Data Science and Predictive
Analytics

Biomedical and Health Applications using R

Ivo D. Dinov
University of Michigan–Ann Arbor
Ann Arbor, Michigan, USA

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-3-319-72346-4 ISBN 978-3-319-72347-1 (eBook)
https://doi.org/10.1007/978-3-319-72347-1

Library of Congress Control Number: 2018930887

© Ivo D. Dinov 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of
Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://extras.springer.com
https://doi.org/10.1007/978-3-319-72347-1

. . . dedicated to my lovely and encouraging

wife, Magdalena, my witty and persuasive

kids, Anna-Sophia and Radina, my very

insightful brother, Konstantin, and my

nurturing parents, Yordanka and Dimitar . . .

Foreword

Instructors, formal and informal learners, working professionals, and readers looking

to enhance, update, or refresh their interactive data skills and methodological

developments may selectively choose sections, chapters, and examples they want

to cover in more depth. Everyone who expects to gain new knowledge or acquire

computational abilities should review the overall textbook organization before they

decide what to cover, how deeply, and in what order. The organization of the

chapters in this book reflects an order that may appeal to many, albeit not all, readers.

Chapter 1 (Motivation) presents (1) the DSPA mission and objectives, (2) sev-

eral driving biomedical challenges including Alzheimer’s disease, Parkinson’s dis-

ease, drug and substance use, and amyotrophic lateral sclerosis, (3) provides

demonstrations of brain visualization, neurodegeneration, and genomics computing,

(4) identifies the six defining characteristics of big (biomedical and healthcare) data,

(5) explains the concepts of data science and predictive analytics, and (6) sets the

DSPA expectations.

Chapter 2 (Foundations of R) justifies the use of the statistical programming

language R and (1) presents the fundamental programming principles; (2) illustrates

basic examples of data transformation, generation, ingestion, and export; (3) shows

the main mathematical operators; and (4) presents basic data and probability distri-

bution summaries and visualization.

In Chap. 3 (Managing Data in R), we present additional R programming details

about (1) loading, manipulating, visualizing, and saving R Data Structures;

(2) present sample-based statistics measuring central tendency and dispersion;

(3) explore different types of variables; (4) illustrate scrapping data from public

websites; and (5) show examples of cohort-rebalancing.

A detailed discussion of Visualization is presented in Chap. 4 where we

(1) show graphical techniques for exposing composition, comparison, and relation-

ships in multivariate data; and (2) present 1D, 2D, 3D, and 4D distributions along

with surface plots.

The foundations of Linear Algebra and Matrix Computing are shown in

Chap. 5. We (1) show how to create, interpret, process, and manipulate

vii

second-order tensors (matrices); (2) illustrate variety of matrix operations and their

interpretations; (3) demonstrate linear modeling and solutions of matrix equations;

and (4) discuss the eigen-spectra of matrices.

Chapter 6 (Dimensionality Reduction) starts with a simple example reducing

2D data to 1D signal. We also discuss (1) matrix rotations, (2) principal component

analysis (PCA), (3) singular value decomposition (SVD), (4) independent compo-

nent analysis (ICA), and (5) factor analysis (FA).

The discussion of machine learning model-based and model-free techniques

commences in Chap. 7 (Lazy Learning – Classification Using Nearest Neigh-

bors). In the scope of the k-nearest neighbor algorithm, we present (1) the general

concept of divide-and-conquer for splitting the data into training and validation sets,

(2) evaluation of model performance, and (3) improving prediction results.

Chapter 8 (Probabilistic Learning: Classification Using Naive Bayes) pre-

sents the naive Bayes and linear discriminant analysis classification algorithms,

identifies the assumptions of each method, presents the Laplace estimator, and

demonstrates step by step the complete protocol for training, testing, validating,

and improving the classification results.

Chapter 9 (Decision Tree Divide and Conquer Classification) focuses on

decision trees and (1) presents various classification metrics (e.g., entropy,

misclassification error, Gini index), (2) illustrates the use of the C5.0 decision tree

algorithm, and (3) shows strategies for pruning decision trees.

The use of linear prediction models is highlighted in Chap. 10 (Forecasting

Numeric Data Using Regression Models). Here, we present (1) the fundamentals

of multivariate linear modeling, (2) contrast regression trees vs. model trees, and

(3) present several complete end-to-end predictive analytics examples.

Chapter 11 (Black Box Machine-Learning Methods: Neural Networks and

Support Vector Machines) lays out the foundation of Neural Networks as silicon

analogues to biological neurons. We discuss (1) the effects of network layers and

topology on the resulting classification, (2) present support vector machines (SVM),

and (3) demonstrate classification methods for optical character recognition (OCR),

iris flowers clustering, Google trends and the stock market prediction, and quanti-

fying quality of life in chronic disease.

Apriori Association Rules Learning is presented in Chap. 12 where we discuss

(1) the foundation of association rules and the Apriori algorithm, (2) support and

confidence measures, and (3) present several examples based on grocery shopping

and head and neck cancer treatment.

Chapter 13 (k-Means Clustering) presents (1) the basics of machine learning

clustering tasks, (2) silhouette plots, (3) strategies for model tuning and improve-

ment, (4) hierarchical clustering, and (5) Gaussian mixture modeling.

General protocols for measuring the performance of different types of classifica-

tion methods are presented in Chap. 14 (Model Performance Assessment). We

discuss (1) evaluation strategies for binary, categorical, and continuous outcomes;

(2) confusion matrices quantifying classification and prediction accuracy; (3) visual-

ization of algorithm performance and ROC curves; and (4) introduce the foundations

of internal statistical validation.

viii Foreword

Chapter 15 (Improving Model Performance) demonstrates (1) strategies for

manual and automated model tuning, (2) improving model performance with meta-

learning, and (3) ensemble methods based on bagging, boosting, random forest, and

adaptive boosting.

Chapter 16 (Specialized Machine Learning Topics) presents some technical

details that may be useful for some computational scientists and engineers. There, we

discuss (1) data format conversion; (2) SQL data queries; (3) reading and writing

XML, JSON, XLSX, and other data formats; (4) visualization of network bioinfor-

matics data; (4) data streaming and on-the-fly stream classification and clustering;

(5) optimization and improvement of computational performance; and (6) parallel

computing.

The classical approaches for feature selection are presented in Chap. 17 (Vari-

able/Feature Selection) where we discuss (1) filtering, wrapper, and embedded

techniques, and (2) show the entire protocols from data collection and preparation to

model training, testing, evaluation and comparison using recursive feature

elimination.

In Chap. 18 (Regularized Linear Modeling and Controlled Variable Selec-

tion), we extend the mathematical foundation we presented in Chap. 5 to include

fidelity and regularization terms in the objective function used for model-based

inference. Specifically, we discuss (1) computational protocols for handling complex

high-dimensional data, (2) model estimation by controlling the false-positive rate of

selection of critical features, and (3) derivations of effective forecasting models.

Chapter 19 (BigBig Longitudinal Data Analysis) is focused on interrogating

time-varying observations. We illustrate (1) time series analysis, e.g., ARIMA

modeling, (2) structural equation modeling (SEM) with latent variables, (3) longitu-

dinal data analysis using linear mixed models, and (4) the generalized estimating

equations (GEE) modeling.

Expanding upon the term-frequency and inverse document frequency techniques

we saw in Chap. 8, Chap. 20 (Natural Language Processing/Text Mining) pro-

vides more details about (1) handling unstructured text documents, (2) term fre-

quency (TF) and inverse document frequency (IDF), and (3) the cosine similarity

measure.

Chapter 21 (Prediction and Internal Statistical Cross Validation) provides a

broader and deeper discussion of method validation, which started in Chap. 14.

Here, we present (1) general prediction and forecasting methods, (2) demonstrate

internal statistical n-fold cross-validation, and (3) comparison strategies for multiple

prediction models.

Chapter 22 (Function Optimization) presents technical details about minimiz-

ing objective functions, which are present virtually in any data science oriented

inference or evidence-based translational study. Here, we explain (1) constrained

and unconstrained cost function optimization, (2) Lagrange multipliers, (3) linear

and quadratic programming, (4) general nonlinear optimization, and (5) data

denoising.

The last chapter of this textbook is Chap. 23 (Deep Learning). It covers

(1) perceptron activation functions, (2) relations between artificial and biological

Foreword ix

neurons and networks, (3) neural nets for computing exclusive OR (XOR) and

negative AND (NAND) operators, (3) classification of handwritten digits, and

(4) classification of natural images.

We compiled a few dozens of biomedical and healthcare case-studies that are

used to demonstrate the presented DSPA concepts, apply the methods, and validate

the software tools. For example, Chap. 1 includes high-level driving biomedical

challenges including dementia and other neurodegenerative diseases, substance use,

neuroimaging, and forensic genetics. Chapter 3 includes a traumatic brain injury

(TBI) case-study, Chap. 10 described a heart attacks case-study, and Chap. 11 uses

a quality of life in chronic disease data to demonstrate optical character recognition

that can be applied to automatic reading of handwritten physician notes. Chapter 18

presents a predictive analytics Parkinson’s disease study using neuroimaging-

genetics data. Chapter 20 illustrates the applications of natural language processing

to extract quantitative biomarkers from unstructured text, which can be used to study

hospital admissions, medical claims, or patient satisfaction. Chapter 23 shows

examples of predicting clinical outcomes for amyotrophic lateral sclerosis and

irritable bowel syndrome cohorts, as well as quantitative and qualitative classifica-

tion of biological images and volumes. Indeed, these represent just a few examples,

and the readers are encouraged to try the same methods, protocols and analytics on

other research-derived, clinically acquired, aggregated, secondary-use, or simulated

datasets.

The online appendices (http://DSPA.predictive.space) are continuously expanded

to provide more details, additional content, and expand the DSPA methods and

applications scope. Throughout this textbook, there are cross-references to appro-

priate chapters, sections, datasets, web services, and live demonstrations (Live

Demos). The sequential arrangement of the chapters provides a suggested reading

order; however, alternative sorting and pathways covering parts of the materials are

also provided. Of course, readers and instructors may further choose their own

coverage paths based on specific intellectual interests and project needs.

x Foreword

http://DSPA.predictive.space

Preface

Genesis

Since the turn of the twenty-first century, the evidence overwhelming reveals that the

rate of increase for the amount of data we collect doubles each 12–14 months

(Kryder’s law). The growth momentum of the volume and complexity of digital

information we gather far outpaces the corresponding increase of computational

power, which doubles each 18 months (Moore’s law). There is a substantial imbal-

ance between the increase of data inflow and the corresponding computational

infrastructure intended to process that data. This calls into question our ability to

extract valuable information and actionable knowledge from the mountains of digital

information we collect. Nowadays, it is very common for researchers to work with

petabytes (PB) of data, 1PB ¼ 1015 bytes, which may include nonhomologous

records that demand unconventional analytics. For comparison, the Milky Way

Galaxy has approximately 2 � 1011 stars. If each star represents a byte, then one

petabyte of data correspond to 5,000 Milky Way Galaxies.

This data storage-computing asymmetry leads to an explosion of innovative data

science methods and disruptive computational technologies that show promise to

provide effective (semi-intelligent) decision support systems. Designing, under-

standing and validating such new techniques require deep within-discipline basic

science knowledge, transdisciplinary team-based scientific collaboration, open-

scientific endeavors, and a blend of exploratory and confirmatory scientific discov-

ery. There is a pressing demand to bridge the widening gaps between the needs and

skills of practicing data scientists, advanced techniques introduced by theoreticians,

algorithms invented by computational scientists, models constructed by biosocial

investigators, network products and Internet of Things (IoT) services engineered by

software architects.

xi

Purpose

The purpose of this book is to provide a sufficient methodological foundation for a

number of modern data science techniques along with hands-on demonstration of

implementation protocols, pragmatic mechanics of protocol execution, and interpre-

tation of the results of these methods applied on concrete case-studies. Successfully

completing the Data Science and Predictive Analytics (DSPA) training materials

(http://predictive.space) will equip readers to (1) understand the computational

foundations of Big Data Science; (2) build critical inferential thinking; (3) lend a

tool chest of R libraries for managing and interrogating raw, derived, observed,

experimental, and simulated big healthcare datasets; and (4) furnish practical skills

for handling complex datasets.

Limitations/Prerequisites

Prior to diving into DSPA, the readers are strongly encouraged to review the

prerequisites and complete the self-assessment pretest. Sufficient remediation mate-

rials are provided or referenced throughout. The DSPA materials may be used for

variety of graduate level courses with durations of 10–30 weeks, with 3–4 instruc-

tional credit hours per week. Instructors can refactor and present the materials in

alternative orders. The DSPA chapters in this book are organized sequentially.

However, the content can be tailored to fit the audience’s needs. Learning data

science and predictive analytics is not a linear process – many alternative pathways

http://socr.umich.edu/people/dinov/2017/Spring/
DSPA_HS650/DSPA_CertPlanning.html

Fig. 1 DSPA topics flowchart

xii Preface

http://predictive.space
http://socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/DSPA_CertPlanning.html
http://socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/DSPA_CertPlanning.html
http://socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/DSPA_CertPlanning.html

can be completed to gain complementary competencies. We developed an interac-

tive and dynamic flowchart (http://socr.umich.edu/people/dinov/courses/DSPA_

Book_FlowChart.html) that highlights several tracks illustrating reasonable path-

ways starting with Foundations of R and ending with specific competency topics.

The content of this book may also be used for self-paced learning or as a refresher for

working professionals, as well as for formal and informal data science training,

including massive open online courses (MOOCs). The DSPA materials are designed

to build specific data science skills and predictive analytic competencies, as

described by the Michigan Institute for Data Science (MIDAS).

Scope of the Book

Throughout this book, we use a constructive definition of “Big Data” derived by

examining the common characteristics of many dozens of biomedical and healthcare

case-studies, involving complex datasets that required special handling, advanced

processing, contemporary analytics, interactive visualization tools, and translational

interpretation. These six characteristics of “Big Data” are defined in the Motivation

Chapter as size, heterogeneity and complexity, representation incongruency, incom-

pleteness, multiscale format, and multisource origins. All supporting electronic

materials, including datasets, assessment problems, code, software tools, videos,

and appendices, are available online at http://DSPA.predictive.space.

This textbook presents a balanced view of the mathematical formulation, com-

putational implementation, and health applications of modern techniques for man-

aging, processing, and interrogating big data. The intentional focus on human health

applications is demonstrated by a diverse range of biomedical and healthcare case-

studies. However, the same techniques could be applied in other domains, e.g.,

climate and environmental sciences, biosocial sciences, high-energy physics, astron-

omy, etc., that deal with complex data possessing the above characteristics. Another

specific feature of this book is that it solely utilizes the statistical computing

language R, rather than any other scripting, user-interface based, or software pro-

gramming alternatives. The choice for R is justified in the Foundations Chapter.

All techniques presented here aim to obtain data-driven and evidence-based

scientific inference. This process starts with collecting or retrieving an appropriate

dataset, and identifying sources of data that need to be harmonized and aggregated

into a joint computable data object. Next, the data are typically split into training and

testing components. Model-based or model-free methods are fit, estimated, or

learned on the training component and then validated on the complementary testing

data. Different types of expected outcomes and results from this process include

prediction, prognostication, or forecasting of specific clinical traits (computable

phenotypes), clustering, or classification that labels units, subjects, or cases in the

data. The final steps include algorithm fine-tuning, assessment, comparison, and

statistical validation.

Preface xiii

http://socr.umich.edu/people/dinov/courses/DSPA_Book_FlowChart.html
http://socr.umich.edu/people/dinov/courses/DSPA_Book_FlowChart.html
http://DSPA.predictive.space

Acknowledgements

The work presented in this textbook relies on deep basic science, as well as holistic

interdisciplinary connections developed by scholars, teams of scientists, and trans-

disciplinary collaborations. Ideas, datasets, software, algorithms, and methods intro-

duced by the wider scientific community were utilized throughout the DSPA

resources. Specifically, methodological and algorithmic contributions from the fields

of computer vision, statistical learning, mathematical optimization, scientific infer-

ence, biomedical computing, and informatics drove the concept presentations, data-

driven demonstrations, and case-study reports. The enormous contributions from the

entire R statistical computing community were critical for developing these

resources. We encourage community contributions to expand the techniques, bolster

their scope and applications, enhance the collection of case-studies, optimize the

algorithms, and widen the applications to other data-intense disciplines or complex

scientific challenges.

The author is profoundly indebted to all of his direct mentors and advisors for

nurturing my curiosity, inspiring my studies, guiding the course of my career, and

providing constructive and critical feedback throughout. Among these scholars are

Gencho Skordev (Sofia University); Kenneth Kuttler (Michigan Tech University);

De Witt L. Sumners and Fred Huffer (Florida State University); Jan de Leeuw,

Nicolas Christou, and Michael Mega (UCLA); Arthur Toga (USC); and Brian

Athey, Patricia Hurn, Kathleen Potempa, Janet Larson, and Gilbert Omenn

(University of Michigan).

Many other colleagues, students, researchers, and fellows have shared their

expertise, creativity, valuable time, and critical assessment for generating, validat-

ing, and enhancing these open-science resources. Among these are Christopher

Aakre, Simeone Marino, Jiachen Xu, Ming Tang, Nina Zhou, Chao Gao, Alexandr

Kalinin, Syed Husain, Brady Zhu, Farshid Sepehrband, Lu Zhao, Sam Hobel, Hanbo

Sun, Tuo Wang, and many others. Many colleagues from the Statistics Online

Computational Resource (SOCR), the Big Data for Discovery Science (BDDS)

Center, and the Michigan Institute for Data Science (MIDAS) provided encourage-

ment and valuable suggestions.

The development of the DSPA materials was partially supported by the US

National Science Foundation (grants 1734853, 1636840, 1416953, 0716055, and

1023115), US National Institutes of Health (grants P20 NR015331, U54 EB020406,

P50 NS091856, P30 DK089503, P30AG053760), and the Elsie Andresen Fiske

Research Fund.

Ann Arbor, MI, USA Ivo D. Dinov

xiv Preface

DSPA Application and Use Disclaimer

The Data Science and Predictive Analytics (DSPA) resources are designed to help

scientists, trainees, students, and professionals learn the foundation of data science,

practical applications, and pragmatics of dealing with concrete datasets, and to

experiment in a sandbox of specific case-studies. Neither the author nor the publisher

have control over, or make any representation or warranties, expressed or implied,

regarding the use of these resources by researchers, users, patients, or their

healthcare provider(s), or the use or interpretation of any information stored on,

derived, computed, suggested by, or received through any of the DSPA materials,

code, scripts, or applications. All users are solely responsible for deriving,

interpreting, and communicating any information to (and receiving feedback from)

the user’s representatives or healthcare provider(s).

Users, their proxies, or representatives (e.g., clinicians) are solely responsible for

reviewing and evaluating the accuracy, relevance, and meaning of any information

stored on, derived by, generated by, or received through the application of any of the

DSPA software, protocols, or techniques. The author and the publisher cannot and

do not guarantee said accuracy. The DSPA resources, their applications, and any

information stored on, generated by, or received through them are not intended to be

a substitute for professional or expert advice, diagnosis, or treatment. Always seek

the advice of a physician or other qualified professional with any questions regard-

ing any real case-study (e.g., medical diagnosis, conditions, prediction, and prog-

nostication). Never disregard professional advice or delay seeking it because of

something read or learned through the use of the DSPA material or any information

stored on, generated by, or received through the SOCR resources.

All readers and users acknowledge that the DSPA copyright owners or licensors,

in their sole discretion, may from time to time make modifications to the DSPA

resources. Such modifications may require corresponding changes to be made in the

code, protocols, learning modules, activities, case-studies, and other DSPA mate-

rials. Neither the author, publisher, nor licensors shall have any obligation to furnish

any maintenance or support services with respect to the DSPA resources.

xv

The DSPA resources are intended for educational purposes only. They are not

intended to offer or replace any professional advice nor provide expert opinion.

Please speak to qualified professional service providers if you have any specific

concerns, case-studies, or questions.

Biomedical, Biosocial, Environmental, and Health Disclaimer

All DSPA information, materials, software, and examples are provided for general

education purposes only. Persons using the DSPA data, models, tools, or services for

any medical, social, healthcare, or environmental purposes should not rely on

accuracy, precision, or significance of the DSPA reported results. While the DSPA

resources may be updated periodically, users should independently check against

other sources, latest advances, and most accurate peer-reviewed information.

Please consult appropriate professional providers prior to making any lifestyle

changes or any actions that may impact those around you, your community, or

various real, social, and virtual environments. Qualified and appropriate profes-

sionals represent the single best source of information regarding any Biomedical,

Biosocial, Environmental, and Health decisions. None of these resources have either

explicit or implicit indication of FDA approval!

Any and all liability arising directly or indirectly from the use of the DSPA

resources is hereby disclaimed. The DSPA resources are provided “as is” and

without any warranty expressed or implied. All direct, indirect, special, incidental,

consequential, or punitive damages arising from any use of the DSPA resources or

materials contained herein are disclaimed and excluded.

xvi DSPA Application and Use Disclaimer

Notations

The following common notations are used throughout this textbook.

Notation Description

A link to an interactive live web demonstration.

require(ggplot2)

Comments Loading required package:

ggplot2

Data_R_SAS_SPSS_Pubs <-

read.csv('https://umich.edu/data',

header=T)

df <- data.frame(Data_R_SAS_SPSS_Pubs)

convert to long format

df <- melt(df , id.vars = 'Year',

variable.name = 'Software')

ggplot(data=df, aes(x=Year, y=value,

color=Software, group =

Software)) +

geom_line() + geom

3 1 a

…

20 3 c

data_long

CaseID Gender Feature

Measurement

1 1 M Age

5.0

2 2 F Age

6.0

R fragments of code, reported results in the output shell, or

comments. The complete library of all code presented in the

textbook is available in electronic format on the DSPA site.

Note that:

“#“ is used for comments,

“##” indicates R textual output,

the R code is color-coded to identify different

types of comments, instructions, commands

and parameters,

Output like “## … ##” suggests that some of

the R output is deleted or compressed to

save space, and

indenting is used to visually determine the

scope of a method, command, or an expression

In an asymptotic or limiting sense, tending to, convergence, or

approaching a value or a limit.

Left hand size is substantially smaller or larger than the right

hand side.

package::function
A standard reference notation to functions members of

specific R packages.

Case-studies
https://umich.instructure.com/courses/38100/files/folder/Ca

se_Studies

Electronic Materials http://DSPA.predictive.space

Also see the Glossary and the Index, located in the end of the book.

Depending on the context, model definition, similar to, approxi-

mately equal to, or equivalent (in probability distribution sense).

http://www.socr.umich.edu/

people/dinov/courses/

DSPA_Topics.html
Some of these Live Demos require modern Java and

JavaScript enabled browsers and Internet access.

Fig. 2 Common DSPA notations

xvii

http://www.socr.umich.edu/people/dinov/courses/DSPA_Topics.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_Topics.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_Topics.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_Topics.html
https://umich.edu/data
https://umich.instructure.com/courses/38100/files/folder/Case_Studies
https://umich.instructure.com/courses/38100/files/folder/Case_Studies
http://DSPA.predictive.space

Contents

1 Motivation . 1

1.1 DSPA Mission and Objectives . 1

1.2 Examples of Driving Motivational Problems and Challenges 2

1.2.1 Alzheimer’s Disease . 2

1.2.2 Parkinson’s Disease . 2

1.2.3 Drug and Substance Use . 3

1.2.4 Amyotrophic Lateral Sclerosis 4

1.2.5 Normal Brain Visualization . 4

1.2.6 Neurodegeneration . 4

1.2.7 Genetic Forensics: 2013–2016 Ebola Outbreak 5

1.2.8 Next Generation Sequence (NGS) Analysis 6

1.2.9 Neuroimaging-Genetics . 7

1.3 Common Characteristics of Big (Biomedical and Health) Data . . . 8

1.4 Data Science . 9

1.5 Predictive Analytics . 9

1.6 High-Throughput Big Data Analytics . 10

1.7 Examples of Data Repositories, Archives, and Services 10

1.8 DSPA Expectations . 11

2 Foundations of R . 13

2.1 Why Use R? . 13

2.2 Getting Started . 15

2.2.1 Install Basic Shell-Based R . 15

2.2.2 GUI Based R Invocation (RStudio) 15

2.2.3 RStudio GUI Layout . 15

2.2.4 Some Notes . 16

2.3 Help . 16

2.4 Simple Wide-to-Long Data format Translation 17

2.5 Data Generation . 18

2.6 Input/Output (I/O) . 22

xix

2.7 Slicing and Extracting Data . 24

2.8 Variable Conversion . 25

2.9 Variable Information . 25

2.10 Data Selection and Manipulation . 27

2.11 Math Functions . 30

2.12 Matrix Operations . 32

2.13 Advanced Data Processing . 32

2.14 Strings . 37

2.15 Plotting . 39

2.16 QQ Normal Probability Plot . 41

2.17 Low-Level Plotting Commands . 45

2.18 Graphics Parameters . 45

2.19 Optimization and model Fitting . 47

2.20 Statistics . 48

2.21 Distributions . 49

2.21.1 Programming . 49

2.22 Data Simulation Primer . 50

2.23 Appendix . 56

2.23.1 HTML SOCR Data Import . 56

2.23.2 R Debugging . 57

2.24 Assignments: 2. R Foundations . 60

2.24.1 Confirm that You Have Installed R/RStudio 60

2.24.2 Long-to-Wide Data Format Translation 61

2.24.3 Data Frames . 61

2.24.4 Data Stratification . 61

2.24.5 Simulation . 61

2.24.6 Programming . 62

References . 62

3 Managing Data in R . 63

3.1 Saving and Loading R Data Structures 63

3.2 Importing and Saving Data from CSV Files 64

3.3 Exploring the Structure of Data . 66

3.4 Exploring Numeric Variables . 66

3.5 Measuring the Central Tendency: Mean, Median, Mode 67

3.6 Measuring Spread: Quartiles and the Five-Number

Summary . 68

3.7 Visualizing Numeric Variables: Boxplots 70

3.8 Visualizing Numeric Variables: Histograms 71

3.9 Understanding Numeric Data: Uniform

and Normal Distributions . 72

3.10 Measuring Spread: Variance and Standard Deviation 73

3.11 Exploring Categorical Variables . 76

xx Contents

3.12 Exploring Relationships Between Variables 77

3.13 Missing Data . 79

3.13.1 Simulate Some Real Multivariate Data 84

3.13.2 TBI Data Example . 98

3.13.3 Imputation via Expectation-Maximization 122

3.14 Parsing Webpages and Visualizing Tabular HTML Data 130

3.15 Cohort-Rebalancing (for Imbalanced Groups) 135

3.16 Appendix . 138

3.16.1 Importing Data from SQL Databases 138

3.16.2 R Code Fragments . 139

3.17 Assignments: 3. Managing Data in R . 140

3.17.1 Import, Plot, Summarize and Save Data 140

3.17.2 Explore some Bivariate Relations in the Data 140

3.17.3 Missing Data . 141

3.17.4 Surface Plots . 141

3.17.5 Unbalanced Designs . 141

3.17.6 Aggregate Analysis . 141

References . 141

4 Data Visualization . 143

4.1 Common Questions . 143

4.2 Classification of Visualization Methods 144

4.3 Composition . 144

4.3.1 Histograms and Density Plots 144

4.3.2 Pie Chart . 147

4.3.3 Heat Map . 149

4.4 Comparison . 152

4.4.1 Paired Scatter Plots . 152

4.4.2 Jitter Plot . 157

4.4.3 Bar Plots . 159

4.4.4 Trees and Graphs . 164

4.4.5 Correlation Plots . 167

4.5 Relationships . 171

4.5.1 Line Plots Using ggplot . 171

4.5.2 Density Plots . 173

4.5.3 Distributions . 173

4.5.4 2D Kernel Density and 3D Surface Plots 174

4.5.5 Multiple 2D Image Surface Plots 176

4.5.6 3D and 4D Visualizations . 178

4.6 Appendix . 183

4.6.1 Hands-on Activity (Health Behavior Risks) 183

4.6.2 Additional ggplot Examples 187

Contents xxi

4.7 Assignments 4: Data Visualization . 198

4.7.1 Common Plots . 198

4.7.2 Trees and Graphs . 198

4.7.3 Exploratory Data Analytics (EDA) 199

References . 199

5 Linear Algebra & Matrix Computing . 201

5.1 Matrices (Second Order Tensors) . 202

5.1.1 Create Matrices . 202

5.1.2 Adding Columns and Rows . 203

5.2 Matrix Subscripts . 204

5.3 Matrix Operations . 204

5.3.1 Addition . 204

5.3.2 Subtraction . 205

5.3.3 Multiplication . 205

5.3.4 Element-wise Division . 207

5.3.5 Transpose . 207

5.3.6 Multiplicative Inverse . 207

5.4 Matrix Algebra Notation . 209

5.4.1 Linear Models . 209

5.4.2 Solving Systems of Equations 210

5.4.3 The Identity Matrix . 212

5.5 Scalars, Vectors and Matrices . 213

5.5.1 Sample Statistics (Mean, Variance) 215

5.5.2 Least Square Estimation . 218

5.6 Eigenvalues and Eigenvectors . 219

5.7 Other Important Functions . 220

5.8 Matrix Notation (Another View) . 220

5.9 Multivariate Linear Regression . 224

5.10 Sample Covariance Matrix . 227

5.11 Assignments: 5. Linear Algebra & Matrix Computing 229

5.11.1 How Is Matrix Multiplication Defined? 229

5.11.2 Scalar Versus Matrix Multiplication 229

5.11.3 Matrix Equations . 229

5.11.4 Least Square Estimation . 230

5.11.5 Matrix Manipulation . 230

5.11.6 Matrix Transpose . 230

5.11.7 Sample Statistics . 230

5.11.8 Least Square Estimation . 230

5.11.9 Eigenvalues and Eigenvectors 231

References . 231

6 Dimensionality Reduction . 233

6.1 Example: Reducing 2D to 1D . 233

6.2 Matrix Rotations . 237

6.3 Notation . 242

xxii Contents

6.4 Summary (PCA vs. ICA vs. FA) . 242

6.5 Principal Component Analysis (PCA) . 243

6.5.1 Principal Components . 243

6.6 Independent Component Analysis (ICA) 250

6.7 Factor Analysis (FA) . 254

6.8 Singular Value Decomposition (SVD) 256

6.9 SVD Summary . 258

6.10 Case Study for Dimension Reduction (Parkinson’s Disease) 258

6.11 Assignments: 6. Dimensionality Reduction 265

6.11.1 Parkinson’s Disease Example 265

6.11.2 Allometric Relations in Plants Example 266

References . 266

7 Lazy Learning: Classification Using Nearest Neighbors 267

7.1 Motivation . 268

7.2 The kNN Algorithm Overview . 269

7.2.1 Distance Function and Dummy Coding 269

7.2.2 Ways to Determine k . 270

7.2.3 Rescaling of the Features . 270

7.2.4 Rescaling Formulas . 271

7.3 Case Study . 271

7.3.1 Step 1: Collecting Data . 271

7.3.2 Step 2: Exploring and Preparing the Data 272

7.3.3 Normalizing Data . 273

7.3.4 Data Preparation: Creating Training

and Testing Datasets . 274

7.3.5 Step 3: Training a Model On the Data 274

7.3.6 Step 4: Evaluating Model Performance 274

7.3.7 Step 5: Improving Model Performance 275

7.3.8 Testing Alternative Values of k 276

7.3.9 Quantitative Assessment (Tables 7.2 and 7.3) 282

7.4 Assignments: 7. Lazy Learning: Classification Using Nearest

Neighbors . 286

7.4.1 Traumatic Brain Injury (TBI) 286

7.4.2 Parkinson’s Disease . 286

7.4.3 KNN Classification in a High Dimensional Space 287

7.4.4 KNN Classification in a Lower Dimensional Space . . . 287

References . 287

8 Probabilistic Learning: Classification Using Naive Bayes 289

8.1 Overview of the Naive Bayes Algorithm 289

8.2 Assumptions . 290

8.3 Bayes Formula . 290

8.4 The Laplace Estimator . 292

Contents xxiii

8.5 Case Study: Head and Neck Cancer Medication 293

8.5.1 Step 1: Collecting Data . 293

8.5.2 Step 2: Exploring and Preparing the Data 293

8.5.3 Step 3: Training a Model on the Data 299

8.5.4 Step 4: Evaluating Model Performance 300

8.5.5 Step 5: Improving Model Performance 301

8.5.6 Step 6: Compare Naive Bayesian against LDA 302

8.6 Practice Problem . 303

8.7 Assignments 8: Probabilistic Learning: Classification

Using Naive Bayes . 304

8.7.1 Explain These Two Concepts 304

8.7.2 Analyzing Textual Data . 305

References . 305

9 Decision Tree Divide and Conquer Classification 307

9.1 Motivation . 307

9.2 Hands-on Example: Iris Data . 308

9.3 Decision Tree Overview . 310

9.3.1 Divide and Conquer . 311

9.3.2 Entropy . 312

9.3.3 Misclassification Error and Gini Index 313

9.3.4 C5.0 Decision Tree Algorithm 313

9.3.5 Pruning the Decision Tree . 315

9.4 Case Study 1: Quality of Life and Chronic Disease 316

9.4.1 Step 1: Collecting Data . 316

9.4.2 Step 2: Exploring and Preparing the Data 316

9.4.3 Step 3: Training a Model On the Data 319

9.4.4 Step 4: Evaluating Model Performance 322

9.4.5 Step 5: Trial Option . 323

9.4.6 Loading the Misclassification Error Matrix 324

9.4.7 Parameter Tuning . 325

9.5 Compare Different Impurity Indices . 331

9.6 Classification Rules . 331

9.6.1 Separate and Conquer . 331

9.6.2 The One Rule Algorithm . 332

9.6.3 The RIPPER Algorithm . 332

9.7 Case Study 2: QoL in Chronic Disease (Take 2) 332

9.7.1 Step 3: Training a Model on the Data 332

9.7.2 Step 4: Evaluating Model Performance 333

9.7.3 Step 5: Alternative Model1 . 334

9.7.4 Step 5: Alternative Model2 . 334

9.8 Practice Problem . 337

xxiv Contents

9.9 Assignments 9: Decision Tree Divide and Conquer

Classification . 342

9.9.1 Explain These Concepts . 342

9.9.2 Decision Tree Partitioning . 342

References . 343

10 Forecasting Numeric Data Using Regression Models 345

10.1 Understanding Regression . 345

10.1.1 Simple Linear Regression . 345

10.2 Ordinary Least Squares Estimation . 347

10.2.1 Model Assumptions . 349

10.2.2 Correlations . 349

10.2.3 Multiple Linear Regression . 350

10.3 Case Study 1: Baseball Players . 352

10.3.1 Step 1: Collecting Data . 352

10.3.2 Step 2: Exploring and Preparing the Data 352

10.3.3 Exploring Relationships Among Features:

The Correlation Matrix . 356

10.3.4 Visualizing Relationships Among Features:

The Scatterplot Matrix . 356

10.3.5 Step 3: Training a Model on the Data 358

10.3.6 Step 4: Evaluating Model Performance 359

10.4 Step 5: Improving Model Performance 361

10.4.1 Model Specification: Adding Non-linear

Relationships . 369

10.4.2 Transformation: Converting a Numeric Variable

to a Binary Indicator . 370

10.4.3 Model Specification: Adding Interaction Effects 371

10.5 Understanding Regression Trees and Model Trees 373

10.5.1 Adding Regression to Trees 373

10.6 Case Study 2: Baseball Players (Take 2) 374

10.6.1 Step 2: Exploring and Preparing the Data 374

10.6.2 Step 3: Training a Model On the Data 375

10.6.3 Visualizing Decision Trees . 375

10.6.4 Step 4: Evaluating Model Performance 377

10.6.5 Measuring Performance with Mean Absolute Error . . . 378

10.6.6 Step 5: Improving Model Performance 378

10.7 Practice Problem: Heart Attack Data . 380

10.8 Assignments: 10. Forecasting Numeric Data Using

Regression Models . 381

References . 381

Contents xxv

11 Black Box Machine-Learning Methods: Neural Networks

and Support Vector Machines . 383

11.1 Understanding Neural Networks . 383

11.1.1 From Biological to Artificial Neurons 383

11.1.2 Activation Functions . 384

11.1.3 Network Topology . 386

11.1.4 The Direction of Information Travel 386

11.1.5 The Number of Nodes in Each Layer 386

11.1.6 Training Neural Networks with Backpropagation . . . 387

11.2 Case Study 1: Google Trends and the Stock Market:

Regression . 388

11.2.1 Step 1: Collecting Data . 388

11.2.2 Step 2: Exploring and Preparing the Data 389

11.2.3 Step 3: Training a Model on the Data 391

11.2.4 Step 4: Evaluating Model Performance 392

11.2.5 Step 5: Improving Model Performance 393

11.2.6 Step 6: Adding Additional Layers 394

11.3 Simple NN Demo: Learning to Compute √ 394

11.4 Case Study 2: Google Trends and the Stock Market –

Classification . 396

11.5 Support Vector Machines (SVM) . 398

11.5.1 Classification with Hyperplanes 399

11.6 Case Study 3: Optical Character Recognition (OCR) 403

11.6.1 Step 1: Prepare and Explore the Data 404

11.6.2 Step 2: Training an SVM Model 405

11.6.3 Step 3: Evaluating Model Performance 406

11.6.4 Step 4: Improving Model Performance 408

11.7 Case Study 4: Iris Flowers . 409

11.7.1 Step 1: Collecting Data . 409

11.7.2 Step 2: Exploring and Preparing the Data 409

11.7.3 Step 3: Training a Model on the Data 411

11.7.4 Step 4: Evaluating Model Performance 412

11.7.5 Step 5: RBF Kernel Function 413

11.7.6 Parameter Tuning . 413

11.7.7 Improving the Performance of Gaussian Kernels 415

11.8 Practice . 416

11.8.1 Problem 1 Google Trends and the Stock Market 416

11.8.2 Problem 2: Quality of Life and Chronic Disease 416

11.9 Appendix . 420

11.10 Assignments: 11. Black Box Machine-Learning Methods:

Neural Networks and Support Vector Machines 421

11.10.1 Learn and Predict a Power-Function 421

11.10.2 Pediatric Schizophrenia Study 421

References . 422

xxvi Contents

12 Apriori Association Rules Learning . 423

12.1 Association Rules . 423

12.2 The Apriori Algorithm for Association Rule Learning 424

12.3 Measuring Rule Importance by Using Support

and Confidence . 424

12.4 Building a Set of Rules with the Apriori Principle 425

12.5 A Toy Example . 426

12.6 Case Study 1: Head and Neck Cancer Medications 427

12.6.1 Step 1: Collecting Data . 427

12.6.2 Step 2: Exploring and Preparing the Data 427

12.6.3 Step 3: Training a Model on the Data 432

12.6.4 Step 4: Evaluating Model Performance 433

12.6.5 Step 5: Improving Model Performance 435

12.7 Practice Problems: Groceries . 438

12.8 Summary . 441

12.9 Assignments: 12. Apriori Association Rules Learning 442

References . 442

13 k-Means Clustering . 443

13.1 Clustering as a Machine Learning Task 443

13.2 Silhouette Plots . 446

13.3 The k-Means Clustering Algorithm . 447

13.3.1 Using Distance to Assign and Update Clusters 447

13.3.2 Choosing the Appropriate Number of Clusters 448

13.4 Case Study 1: Divorce and Consequences on Young

Adults . 448

13.4.1 Step 1: Collecting Data . 448

13.4.2 Step 2: Exploring and Preparing the Data 449

13.4.3 Step 3: Training a Model on the Data 450

13.4.4 Step 4: Evaluating Model Performance 451

13.4.5 Step 5: Usage of Cluster Information 454

13.5 Model Improvement . 455

13.5.1 Tuning the Parameter k . 457

13.6 Case Study 2: Pediatric Trauma . 459

13.6.1 Step 1: Collecting Data . 459

13.6.2 Step 2: Exploring and Preparing the Data 460

13.6.3 Step 3: Training a Model on the Data 461

13.6.4 Step 4: Evaluating Model Performance 462

13.6.5 Practice Problem: Youth Development 465

13.7 Hierarchical Clustering . 467

13.8 Gaussian Mixture Models . 470

13.9 Summary . 472

13.10 Assignments: 13. k-Means Clustering 472

References . 473

Contents xxvii

14 Model Performance Assessment . 475

14.1 Measuring the Performance of Classification Methods 475

Evaluation Strategies . 477

14.1.1 Binary Outcomes . 477

14.1.2 Confusion Matrices . 478

14.1.3 Other Measures of Performance Beyond Accuracy . . . 480

14.1.4 The Kappa (κ) Statistic . 481

14.1.5 Computation of Observed Accuracy and Expected

Accuracy . 484

14.1.6 Sensitivity and Specificity . 485

14.1.7 Precision and Recall . 486

14.1.8 The F-Measure . 487

14.2 Visualizing Performance Tradeoffs (ROC Curve) 488

14.3 Estimating Future Performance (Internal Statistical

Validation) . 491

14.3.1 The Holdout Method . 491

14.3.2 Cross-Validation . 492

14.3.3 Bootstrap Sampling . 494

14.4 Assignment: 14. Evaluation of Model Performance 495

References . 496

15 Improving Model Performance . 497

15.1 Improving Model Performance by Parameter Tuning 497

15.2 Using caret for Automated Parameter Tuning 497

15.2.1 Customizing the Tuning Process 501

15.2.2 Improving Model Performance with Meta-learning . . . 502

15.2.3 Bagging . 503

15.2.4 Boosting . 505

15.2.5 Random Forests . 506

15.2.6 Adaptive Boosting . 508

15.3 Assignment: 15. Improving Model Performance 510

15.3.1 Model Improvement Case Study 511

References . 511

16 Specialized Machine Learning Topics . 513

16.1 Working with Specialized Data and Databases 513

16.1.1 Data Format Conversion . 514

16.1.2 Querying Data in SQL Databases 515

16.1.3 Real Random Number Generation 521

16.1.4 Downloading the Complete Text of Web Pages 522

16.1.5 Reading and Writing XML with the XML Package . . . 523

16.1.6 Web-Page Data Scraping . 524

16.1.7 Parsing JSON from Web APIs 525

16.1.8 Reading and Writing Microsoft Excel Spreadsheets

Using XLSX . 526

xxviii Contents

16.2 Working with Domain-Specific Data . 527

16.2.1 Working with Bioinformatics Data 527

16.2.2 Visualizing Network Data . 528

16.3 Data Streaming . 533

16.3.1 Definition . 533

16.3.2 The stream Package . 534

16.3.3 Synthetic Example: Random Gaussian Stream 534

16.3.4 Sources of Data Streams . 536

16.3.5 Printing, Plotting and Saving Streams 537

16.3.6 Stream Animation . 538

16.3.7 Case-Study: SOCR Knee Pain Data 540

16.3.8 Data Stream Clustering and Classification (DSC) 542

16.3.9 Evaluation of Data Stream Clustering 545

16.4 Optimization and Improving the Computational Performance . . . 546

16.4.1 Generalizing Tabular Data Structures with dplyr . . . 547

16.4.2 Making Data Frames Faster with Data.Table 548

16.4.3 Creating Disk-Based Data Frames with ff 548

16.4.4 Using Massive Matrices with bigmemory 549

16.5 Parallel Computing . 549

16.5.1 Measuring Execution Time . 550

16.5.2 Parallel Processing with Multiple Cores 550

16.5.3 Parallelization Using foreach

and doParallel . 552

16.5.4 GPU Computing . 553

16.6 Deploying Optimized Learning Algorithms 553

16.6.1 Building Bigger Regression Models with biglm 553

16.6.2 Growing Bigger and Faster Random Forests with

bigrf . 553

16.6.3 Training and Evaluation Models in Parallel

with caret . 554

16.7 Practice Problem . 554

16.8 Assignment: 16. Specialized Machine Learning Topics 555

16.8.1 Working with Website Data 555

16.8.2 Network Data and Visualization 555

16.8.3 Data Conversion and Parallel Computing 555

References . 556

17 Variable/Feature Selection . 557

17.1 Feature Selection Methods . 557

17.1.1 Filtering Techniques . 557

17.1.2 Wrapper Methods . 558

17.1.3 Embedded Techniques . 558

17.2 Case Study: ALS . 559

17.2.1 Step 1: Collecting Data . 559

17.2.2 Step 2: Exploring and Preparing the Data 559

Contents xxix

17.2.3 Step 3: Training a Model on the Data 560

17.2.4 Step 4: Evaluating Model Performance 564

17.3 Practice Problem . 569

17.4 Assignment: 17. Variable/Feature Selection 571

17.4.1 Wrapper Feature Selection . 571

17.4.2 Use the PPMI Dataset . 571

References . 572

18 Regularized Linear Modeling and Controlled Variable

Selection . 573

18.1 Questions . 574

18.2 Matrix Notation . 574

18.3 Regularized Linear Modeling . 574

18.3.1 Ridge Regression . 576

18.3.2 Least Absolute Shrinkage and Selection

Operator (LASSO) Regression 579

18.3.3 Predictor Standardization . 582

18.3.4 Estimation Goals . 582

18.4 Linear Regression . 582

18.4.1 Drawbacks of Linear Regression 583

18.4.2 Assessing Prediction Accuracy 583

18.4.3 Estimating the Prediction Error 583

18.4.4 Improving the Prediction Accuracy 584

18.4.5 Variable Selection . 585

18.5 Regularization Framework . 586

18.5.1 Role of the Penalty Term . 586

18.5.2 Role of the Regularization Parameter 586

18.5.3 LASSO . 587

18.5.4 General Regularization Framework 587

18.6 Implementation of Regularization . 588

18.6.1 Example: Neuroimaging-Genetics Study

of Parkinson’s Disease Dataset 588

18.6.2 Computational Complexity 590

18.6.3 LASSO and Ridge Solution Paths 590

18.6.4 Choice of the Regularization Parameter 598

18.6.5 Cross Validation Motivation 599

18.6.6 n-Fold Cross Validation . 599

18.6.7 LASSO 10-Fold Cross Validation 600

18.6.8 Stepwise OLS (Ordinary Least Squares) 601

18.6.9 Final Models . 602

18.6.10 Model Performance . 604

18.6.11 Comparing Selected Features 604

18.6.12 Summary . 605

18.7 Knock-off Filtering: Simulated Example 605

18.7.1 Notes . 607

xxx Contents

18.8 PD Neuroimaging-Genetics Case-Study 608

18.8.1 Fetching, Cleaning and Preparing the Data 608

18.8.2 Preparing the Response Vector 609

18.8.3 False Discovery Rate (FDR) 617

18.8.4 Running the Knockoff Filter 620

18.9 Assignment: 18. Regularized Linear Modeling

and Knockoff Filtering . 621

References . 622

19 Big Longitudinal Data Analysis . 623

19.1 Time Series Analysis . 623

19.1.1 Step 1: Plot Time Series . 626

19.1.2 Step 2: Find Proper Parameter Values

for ARIMA Model . 628

19.1.3 Check the Differencing Parameter 629

19.1.4 Identifying the AR and MA Parameters 630

19.1.5 Step 3: Build an ARIMA Model 632

19.1.6 Step 4: Forecasting with ARIMA Model 637

19.2 Structural Equation Modeling (SEM)-Latent Variables 638

19.2.1 Foundations of SEM . 638

19.2.2 SEM Components . 641

19.2.3 Case Study – Parkinson’s Disease (PD) 642

19.2.4 Outputs of Lavaan SEM . 647

19.3 Longitudinal Data Analysis-Linear Mixed Models 648

19.3.1 Mean Trend . 648

19.3.2 Modeling the Correlation . 652

19.4 GLMM/GEE Longitudinal Data Analysis 653

19.4.1 GEE Versus GLMM . 655

19.5 Assignment: 19. Big Longitudinal Data Analysis 657

19.5.1 Imaging Data . 657

19.5.2 Time Series Analysis . 658

19.5.3 Latent Variables Model . 658

References . 658

20 Natural Language Processing/Text Mining 659

20.1 A Simple NLP/TM Example . 660

20.1.1 Define and Load the Unstructured-Text

Documents . 661

20.1.2 Create a New VCorpus Object 663

20.1.3 To-Lower Case Transformation 664

20.1.4 Text Pre-processing . 664

20.1.5 Bags of Words . 666

20.1.6 Document Term Matrix . 667

Contents xxxi

20.2 Case-Study: Job Ranking . 669

20.2.1 Step 1: Make a VCorpus Object 670

20.2.2 Step 2: Clean the VCorpus Object 670

20.2.3 Step 3: Build the Document Term Matrix 670

20.2.4 Area Under the ROC Curve 674

20.3 TF-IDF . 676

20.3.1 Term Frequency (TF) . 676

20.3.2 Inverse Document Frequency (IDF) 676

20.3.3 TF-IDF . 677

20.4 Cosine Similarity . 685

20.5 Sentiment Analysis . 686

20.5.1 Data Preprocessing . 686

20.5.2 NLP/TM Analytics . 689

20.5.3 Prediction Optimization . 692

20.6 Assignment: 20. Natural Language Processing/Text Mining 694

20.6.1 Mining Twitter Data . 694

20.6.2 Mining Cancer Clinical Notes 695

References . 695

21 Prediction and Internal Statistical Cross Validation 697

21.1 Forecasting Types and Assessment Approaches 697

21.2 Overfitting . 698

21.2.1 Example (US Presidential Elections) 698

21.2.2 Example (Google Flu Trends) 698

21.2.3 Example (Autism) . 700

21.3 Internal Statistical Cross-Validation is an Iterative Process 701

21.4 Example (Linear Regression) . 702

21.4.1 Cross-Validation Methods . 703

21.4.2 Exhaustive Cross-Validation 703

21.4.3 Non-Exhaustive Cross-Validation 704

21.5 Case-Studies . 704

21.5.1 Example 1: Prediction of Parkinson’s Disease

Using Adaptive Boosting (AdaBoost) 705

21.5.2 Example 2: Sleep Dataset . 708

21.5.3 Example 3: Model-Based (Linear Regression)

Prediction Using the Attitude Dataset 710

21.5.4 Example 4: Parkinson’s Data (ppmi_data) 711

21.6 Summary of CV output . 712

21.7 Alternative Predictor Functions . 712

21.7.1 Logistic Regression . 713

21.7.2 Quadratic Discriminant Analysis (QDA) 714

21.7.3 Foundation of LDA and QDA for Prediction,

Dimensionality Reduction, and Forecasting 715

21.7.4 Neural Networks . 717

21.7.5 SVM . 718

xxxii Contents

21.7.6 k-Nearest Neighbors Algorithm (k-NN) 719

21.7.7 k-Means Clustering (k-MC) 720

21.7.8 Spectral Clustering . 727

21.8 Compare the Results . 730

21.9 Assignment: 21. Prediction and Internal Statistical

Cross-Validation . 733

References . 734

22 Function Optimization . 735

22.1 Free (Unconstrained) Optimization . 735

22.1.1 Example 1: Minimizing a Univariate Function

(Inverse-CDF) . 736

22.1.2 Example 2: Minimizing a Bivariate Function 738

22.1.3 Example 3: Using Simulated Annealing to Find

the Maximum of an Oscillatory Function 739

22.2 Constrained Optimization . 740

22.2.1 Equality Constraints . 740

22.2.2 Lagrange Multipliers . 740

22.2.3 Inequality Constrained Optimization 741

Quadratic Programming (QP) . 747

22.3 General Non-linear Optimization . 748

22.3.1 Dual Problem Optimization . 749

22.4 Manual Versus Automated Lagrange Multiplier

Optimization . 753

22.5 Data Denoising . 756

22.6 Assignment: 22. Function Optimization 761

22.6.1 Unconstrained Optimization 761

22.6.2 Linear Programming (LP) . 761

22.6.3 Mixed Integer Linear Programming (MILP) 762

22.6.4 Quadratic Programming (QP) 762

22.6.5 Complex Non-linear Optimization 762

22.6.6 Data Denoising . 763

References . 763

23 Deep Learning, Neural Networks . 765

23.1 Deep Learning Training . 766

23.1.1 Perceptrons . 766

23.2 Biological Relevance . 768

23.3 Simple Neural Net Examples . 770

23.3.1 Exclusive OR (XOR) Operator 770

23.3.2 NAND Operator . 771

23.3.3 Complex Networks Designed Using Simple

Building Blocks . 772

23.4 Classification . 773

23.4.1 Sonar Data Example . 774

23.4.2 MXNet Notes . 781

Contents xxxiii

23.5 Case-Studies . 782

23.5.1 ALS Regression Example . 783

23.5.2 Spirals 2D Data . 785

23.5.3 IBS Study . 789

23.5.4 Country QoL Ranking Data 792

23.5.5 Handwritten Digits Classification 795

23.6 Classifying Real-World Images . 806

23.6.1 Load the Pre-trained Model . 806

23.6.2 Load, Preprocess and Classify New Images – US

Weather Pattern . 806

23.6.3 Lake Mapourika, New Zealand 810

23.6.4 Beach Image . 811

23.6.5 Volcano . 812

23.6.6 Brain Surface . 814

23.6.7 Face Mask . 815

23.7 Assignment: 23. Deep Learning, Neural Networks 816

23.7.1 Deep Learning Classification 816

23.7.2 Deep Learning Regression . 817

23.7.3 Image Classification . 817

References . 817

Summary . 819

Glossary . 823

Index . 825

xxxiv Contents

Chapter 1

Motivation

1.1 DSPA Mission and Objectives

This textbook is based on the Data Science and Predictive Analytics (DSPA) course

taught by the author at the University of Michigan. These materials collectively aim

to provide learners with a solid foundation of the challenges, opportunities, and

strategies for designing, collecting, managing, processing, interrogating, analyzing,

and interpreting complex health and biomedical datasets. Readers that finish this

textbook and successfully complete the examples and assignments will gain unique

skills and acquire a tool-chest of methods, software tools, and protocols that can be

applied to a broad spectrum of Big Data problems.

The DSPA textbook vision, values, and priorities are summarized below:

• Vision: Enable active learning by integrating driving motivational challenges

with mathematical foundations, computational statistics, and modern scientific

inference.

• Values: Effective, reliable, reproducible, and transformative data-driven discov-

ery supporting open science.

• Strategic priorities: Trainees will develop scientific intuition, computational

skills, and data-wrangling abilities to tackle big biomedical and health data

problems. Instructors will provide well-documented R-scripts and software rec-

ipes implementing atomic data filters as well as complex end-to-end predictive

big data analytics solutions.

Before diving into the mathematical algorithms, statistical computing methods,

software tools, and health analytics covered in the remaining chapters, we will

discuss several driving motivational problems. These will ground all the subsequent

scientific discussions, data modeling techniques, and computational approaches.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_1&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_1

1.2 Examples of Driving Motivational Problems

and Challenges

For each of the studies below, we illustrate several clinically relevant scientific

questions, identify appropriate data sources, describe the types of data elements,

and pinpoint various complexity challenges.

1.2.1 Alzheimer’s Disease

• Identify the relation between observed clinical phenotypes and expected

behavior.

• Prognosticate future cognitive decline (3–12 months, prospectively) as a function

of imaging data and clinical assessment (both model-based and model-free

machine learning prediction methods will be used).

• Derive and interpret the classifications of subjects into clusters using the harmo-

nized and aggregated data from multiple sources (Fig. 1.1).

1.2.2 Parkinson’s Disease

• Predict the clinical diagnosis of patients using all available data (with and without

the unified Parkinson’s disease rating scale (UPDRS) clinical assessment, which

is the basis of the clinical diagnosis by a physician).

• Compute derived neuroimaging and genetics biomarkers that can be used to

model the disease progression and provide automated clinical decisions support.

• Generate decision trees for numeric and categorical responses (representing

clinically relevant outcome variables) that can be used to suggest an appropriate

course of treatment for specific clinical phenotypes (Fig. 1.2).

Data

Source
Sample Size/Data Type Summary

ADNI

Archive

Clinical data: demographics, clinical assessments, cognitive

assessments; Imaging data: sMRI, fMRI, DTI, PiB/FDG PET;

Genetics data: Illumina SNP genotyping; Chemical

biomarker: lab tests, proteomics. Each data modality comes

with a different number of cohorts. Generally,

. For instance, previously conducted ADNI studies

with [doi: 10.3233/JAD-150335, doi:

10.1111/jon.12252, doi: 10.3389/fninf.2014.00041].

ADNI provides interesting

data modalities, multiple

cohorts (e.g., early-onset,

mild, and severe dementia,

controls) that allow effective

model training and validation

NACC Archive.

Fig. 1.1 Outline of an Alzheimer’s disease case-study

2 1 Motivation

1.2.3 Drug and Substance Use

• Is the Risk for Alcohol Withdrawal Syndrome (RAWS) screen a valid and

reliable tool for predicting alcohol withdrawal in an adult medical inpatient

population?

• What is the optimal cut-off score from the AUDIT-C to predict alcohol with-

drawal based on RAWS screening?

• Should any items be deleted from, or added to, the RAWS screening tool to

enhance its performance in predicting the emergence of alcohol withdrawal

syndrome in an adult medical inpatient population? (Fig. 1.3)

Data

Source
Sample Size/Data Type Summary

PPMI

Archive

Demographics: age, medical history, sex; Clinical data:

physical, verbal learning and language, neurological and

olfactory (University of Pennsylvania Smell

Identification Test, UPSIT) tests, vital signs, MDS-UPDRS

scores (Movement Disorder; Society-Unified Parkinson's

Disease Rating Scale), ADL (activities of daily living),

Montreal Cognitive Assessment (MoCA), Geriatric

Depression Scale (GDS-15); Imaging data: structural

MRI; Genetics data: lllumina ImmunoChip (196,524

variants) and NeuroX (covering 240,000 exonic variants)

with 100% sample success rate, and 98.7% genotype

success rate genotyped for APOE e2/e3/e4. Three

cohorts of subjects; Group 1 = {de novo PD Subjects

with a diagnosis of PD for two years or less who are not

taking PD medications}, N1 = 263; Group 2 = {PD

Subjects with Scans without Evidence of a Dopaminergic

Deficit (SWEDD)}, N2 = 40; Group 3 = {Control Subjects

without PD who are 30 years or older and who do not

have a first degree blood relative with PD}, N3 = 127.

The longitudinal PPMI dataset

including clinical, biological, and

imaging data (screening, baseline,

12, 24, and 48 month follow-ups)

may be used conduct model-based

predictions as well as model-free

classification and forecasting

analyses.

Fig. 1.2 Outline of a Parkinson’s disease case-study

Data

Source

Sample Size/Data Type Summary

MAWS

Data /

UMHS EHR

/ WHO

AWS Data

Scores from Alcohol Use Disorders

Identification Test-Consumption (AUDIT-

C), including dichotomous variables for

any current alcohol use (AUDIT-C,

question 1), total AUDIT-C score > 8, and

~1,000 positive cases per year among 10,000

adult medical inpatients, % RAWS screens

completed, % positive screens, % entered

into MAWS protocol who receive

pharmacological treatment for AWS, %

any positive history of alcohol

withdrawal syndrome (HAWS).

entered into MAWS protocol without a

completed RAWS screen.

Fig. 1.3 Outline of a substance use case-study

1.2 Examples of Driving Motivational Problems and Challenges 3

1.2.4 Amyotrophic Lateral Sclerosis

• Identify the most highly significant variables that have power to jointly predict the

progression of ALS (in terms of clinical outcomes like ALSFRS and muscle

function).

• Provide a decision tree prediction of adverse events based on subject phenotype

and 0–3-month clinical assessment changes (Fig. 1.4).

1.2.5 Normal Brain Visualization

The SOCR Brain Visualization tool (http://socr.umich.edu/HTML5/BrainViewer)

has preloaded sMRI, ROI labels, and fiber track models for a normal brain. It also

allows users to drag and drop their data into the browser to visualize and navigate

through the stereotactic data (including imaging, parcellations, and tractography)

(Fig. 1.5).

1.2.6 Neurodegeneration

A recent study of Structural Neuroimaging in Alzheimer’s disease (https://www.

ncbi.nlm.nih.gov/pubmed/26444770) illustrates the Big Data challenges in model-

ing complex neuroscientific data. Specifically, 808 ADNI subjects were divided into

3 groups: 200 subjects with Alzheimer’s disease (AD), 383 subjects with mild

cognitive impairment (MCI), and 225 asymptomatic normal controls (NC). Their

sMRI data were parcellated using BrainParser, and the 80 most important neuroim-

aging biomarkers were extracted using the global shape analysis pipeline workflow.

Using a pipeline implementation of Plink, the authors obtained 80 SNPs highly

associated with the imaging biomarkers. The authors observed significant

Data

Source
Sample Size/Data Type Summary

ProAct

Archive

Over 100 clinical variables are recorded for all

subjects including: Demographics: age, race,

medical history, sex; Clinical data: Amyotrophic

Lateral Sclerosis Functional Rating Scale (ALSFRS),

adverse events, onset_delta, onset_site, drugs use

(riluzole). The PRO-ACT training dataset contains

clinical and lab test information of 8,635 patients.

Information of 2,424 study subjects with valid gold

standard ALSFRS slopes will be used in out

processing, modeling and analysis.

The time points for all longitudinally

varying data elements will be

aggregated into signature vectors.

This will facilitate the modeling and

prediction of ALSFRS slope changes

over the first three months (baseline

to month 3).

Fig. 1.4 Outline of an amyotrophic lateral sclerosis (Lou Gehrig’s disease) case-study

4 1 Motivation

http://socr.umich.edu/HTML5/BrainViewer
https://www.ncbi.nlm.nih.gov/pubmed/26444770
https://www.ncbi.nlm.nih.gov/pubmed/26444770

correlations between genetic and neuroimaging phenotypes in the 808 ADNI sub-

jects. These results suggest that differences between AD, MCI, and NC cohorts may

be examined by using powerful joint models of morphometric, imaging, and geno-

typic data (Fig. 1.6).

1.2.7 Genetic Forensics: 2013–2016 Ebola Outbreak

This Howard Hughes Medical Institute (HHMI) disease detective activity illustrates

the genetic analysis of sequences of Ebola viruses isolated from patients in Sierra

Leone during the Ebola outbreak of 2013–2016. Scientists track the spread of the

virus using the fact that most of the genome is identical among individuals of the

same species, most similar for genetically related individuals, and more different as

the hereditary distance increases. DNA profiling capitalizes on these genetic differ-

ences particularly in regions of noncoding DNA, which is DNA that is not tran-

scribed and translated into a protein. Variations in noncoding regions have less

impact on individual traits. Such changes in noncoding regions may be immune to

natural selection. DNA variations called short tandem repeats (STRs) are com-

prised on short bases, typically 2–5 bases long, that repeat multiple times. The repeat

units are found at different locations, or loci, throughout the genome. Every STR has

multiple alleles. These allele variants are defined by the number of repeat units

present or by the length of the repeat sequence. STRs are surrounded by

nonvariable segments of DNA known as flanking regions. The STR allele in

Fig. 1.7 could be denoted by “6”, as the repeat unit (GATA) repeats 6 times, or as

70 base pairs (bps) because its length is 70 bases in length, including the starting/

ending flanking regions. Different alleles of the same STR may correspond to

different number of GATA repeats, with the same flanking regions.

Fig. 1.5 Interactive 3D brain visualization

1.2 Examples of Driving Motivational Problems and Challenges 5

1.2.8 Next Generation Sequence (NGS) Analysis

Whole-genome and exome sequencing include essential clues for identifying genes

responsible for simple Mendelian inherited disorders. A recent paper proposed

methods that can be applied to complex disorders based on population genetics.

Fig. 1.6 Indices of the 56 regions of interest (ROIs): A and B – extracted by the BrainParser

software using the LPBA40 brain atlas

6 1 Motivation

Next generation sequencing (NGS) technologies include bioinformatics resources to

analyze the dense and complex sequence data. The Graphical Pipeline for Compu-

tational Genomics (GPCG) performs the computational steps required to analyze

NGS data. The GPCG implements flexible workflows for basic sequence alignment,

sequence data quality control, single nucleotide polymorphism analysis, copy num-

ber variant identification, annotation, and visualization of results. Applications of

NGS analysis provide clinical utility for identifying miRNA signatures in diseases.

Enabling hypotheses testing about the functional role of variants in the human

genome will help to pinpoint the genetic risk factors many diseases (e.g., neuropsy-

chiatric disorders).

1.2.9 Neuroimaging-Genetics

A computational infrastructure for high-throughput neuroimaging-genetics

(doi: https://doi.org/10.3389/fninf.2014.00041) facilitates the data aggregation, har-

monization, processing, and interpretation of multisource imaging, genomic, clini-

cal, and cognitive data. A unique feature of this architecture is the graphical user

interface to the Pipeline environment. Through its client-server architecture, the

Pipeline environment provides a graphical user interface for designing, executing,

monitoring, validating, and disseminating complex protocols that utilize diverse

suites of software tools and web services. These pipeline workflows are represented

as portable Extensible Markup Language (XML) objects, which transfer the execu-

tion instructions and user specifications from the client user machine to remote

pipeline servers for distributed computing. Using Alzheimer’s and Parkinson’s

data, this study provides examples of translational applications using this infrastruc-

ture (Figs. 1.8 and 1.9).

Fig. 1.7 Snippet of the

Ebola STR genomic

sequence

1.2 Examples of Driving Motivational Problems and Challenges 7

https://doi.org/10.3389/fninf.2014.00041

1.3 Common Characteristics of Big (Biomedical

and Health) Data

Software developments, student training, utilization of Cloud or IoT (Internet of

Things) service platforms, and methodological advances associated with Big Data

Discovery Science all present existing opportunities for learners, educators,

Fig. 1.8 A collage of modules and pipeline workflows from genomic sequence analyses

Fig. 1.9 A schematic of a distributed high-throughput computational environment for managing,

processing, and visualization of large, complex, and heterogeneous biomedical data

8 1 Motivation

researchers, practitioners, and policy makers alike. A review of many biomedical,

health informatics, and clinical studies suggests that there are indeed common

characteristics of complex big data challenges. For instance, imagine analyzing the

observational data of thousands of Parkinson’s disease patients, based on tens of

thousands of signature biomarkers derived from multisource imaging, genetics, and

clinical, physiologic, phenomics, and demographic data elements. IBM had defined

the qualitative characteristics of Big Data as 4 Vs: Volume, Variety, Velocity, and

Veracity (there are additional V-qualifiers that can be added).

More recently (PMID:26998309) we defined a constructive characterization of

Big Data that clearly identifies the methodological gaps and necessary tools to

handle such archives, Table 1.1.

1.4 Data Science

Data science is an emerging new field that (1) is extremely transdisciplinary –

bridging between the theoretical, computational, experimental, and biosocial areas;

(2) deals with enormous amounts of complex, incongruent, and dynamic data from

multiple sources; and (3) aims to develop algorithms, methods, tools, and services

capable of ingesting such datasets and generating semiautomated decision support

systems. The latter can mine the data for patterns or motifs, predict expected

outcomes, suggest clustering or labeling of retrospective or prospective observa-

tions, compute data signatures or fingerprints, extract valuable information, and offer

evidence-based actionable knowledge. Data science techniques often involve data

manipulation (wrangling), data harmonization and aggregation, exploratory or con-

firmatory data analyses, predictive analytics, validation, and fine-tuning.

1.5 Predictive Analytics

Predictive analytics is the process of utilizing advanced mathematical formulations,

powerful statistical computing algorithms, efficient software tools and services to

represent, interrogate, and interpret complex data. As its name suggests, a core aim

of predictive analytics is to forecast trends, predict patterns in the data, or

Table 1.1 The characteristic six dimensions of Big biomedical and healthcare data

BD dimensions Necessary techniques, tools, services, and support infrastructure

Size Harvesting and management of vast amounts of data

Complexity Wranglers for dealing with heterogeneous data

Incongruency Tools for data harmonization and aggregation

Multisource Transfer and joint modeling of disparate elements

Multiscale Macro to meso- to microscale observations

Incomplete Reliable management of missing data

1.5 Predictive Analytics 9

prognosticate the process behavior either within the range or outside the range of the

observed data (e.g., in the future, or at locations where data may not be available). In

this context, process refers to a natural phenomenon that is being investigated by

examining proxy data. Presumably, by collecting and exploring the intrinsic data

characteristics, we can track the behavior and unravel the underlying mechanism of

the system.

The fundamental goal of predictive analytics is to identify relationships, associ-

ations, arrangements, or motifs in the dataset, in terms of space, time, and features

(variables) that may prune the dimensionality of the data, i.e., reduce its complexity.

Using these process characteristics, predictive analytics may predict unknown out-

comes, produce estimations of likelihoods or parameters, generate classification

labels, or contribute other aggregate or individualized forecasts. We will discuss

how the outcomes of these predictive analytics may be refined, assessed, and

compared, e.g., between alternative methods. The underlying assumptions of the

specific predictive analytics technique determine its usability, affect the expected

accuracy, and guide the (human) actions resulting from the (machine) forecasts. In

this textbook, we will discuss supervised and unsupervised, model-based and model-

free, classification and regression, as well as deterministic, stochastic, classical, and

machine learning-based techniques for predictive analytics. The type of the expected

outcome (e.g., binary, polytomous, probability, scalar, vector, tensor, etc.) deter-

mines if the predictive analytics strategy provides prediction, forecasting, labeling,

likelihoods, grouping, or motifs.

1.6 High-Throughput Big Data Analytics

The pipeline environment provides a large tool chest of software and services that

can be integrated, merged, and processed. The Pipeline workflow library and the

workflow miner illustrate much of the functionality that is available. Java-based and

HTML5 webapp graphical user interfaces (GUIs) provide access to a powerful 4,000

core grid compute server (Fig. 1.10).

1.7 Examples of Data Repositories, Archives, and Services

There are many sources of data available on the Internet. A number of them provide

open access to the data based on FAIR (Findable, Accessible, Interoperable, Reus-

able) principles. Below are examples of open-access data sources that can be used to

test the techniques presented in this textbook. We demonstrate the tasks of retrieval,

manipulation, processing, analytics, and visualization using example datasets from

these archives.

• SOCR Wiki Data, http://wiki.socr.umich.edu/index.php/SOCR_Data

• SOCR Canvas datasets, https://umich.instructure.com/courses/38100/files/folder/

data

10 1 Motivation

http://wiki.socr.umich.edu/index.php/SOCR_Data
https://umich.instructure.com/courses/38100/files/folder/data
https://umich.instructure.com/courses/38100/files/folder/data

• SOCR Case-Studies, http://wiki.socr.umich.edu/index.php/SOCR_Data

• XNAT, https://central.xnat.org

• IDA, http://ida.loni.usc.edu

• NIH dbGaP, https://dbgap.ncbi.nlm.nih.gov

• Data.gov (http://data.gov)

1.8 DSPA Expectations

The heterogeneity of data science makes it difficult to identify a precise and

complete list of prerequisites guaranteeing deep and lasting understanding of all

the presented methods and techniques. However, the reader is strongly encouraged

to glance over the preliminary prerequisites, the self-assessment pretest and reme-

diation materials, and the outcome competencies. Throughout this journey, it is

useful to remember the following points:

• You don’t have to satisfy all prerequisites, be versed in all mathematical foun-

dations, have substantial statistical analysis expertise, or be an experienced

programmer.

• You don’t have to complete all chapters and sections in the order they appear in

the DSPA Topics Flowchart. Completing one, or several, of the suggested

pathways may be sufficient for many readers.

http://pipeline.loni.usc.edu/webapp/

(JavaScript App) http://myumi.ch/LryM8

(JavaScript App) http://bit/ly/1DjhkG9

Fig. 1.10 The pipeline environment provides a client-server platform for designing, executing,

tracking, sharing, and validating complex data analytic protocols

1.8 DSPA Expectations 11

http://wiki.socr.umich.edu/index.php/SOCR_Data
https://central.xnat.org
http://ida.loni.usc.edu
https://dbgap.ncbi.nlm.nih.gov
http://data.gov
http://pipeline.loni.usc.edu/webapp/
http://pipeline.loni.usc.edu/webapp/
http://myumi.ch/LryM8
http://bit/ly/1DjhkG9

• The DSPA textbook aims to expand the trainees’ horizons, improve understand-

ing, enhance skills, and provide a set of advanced, validated, and practice-

oriented code, scripts, and protocols.

• To varying degrees, readers will develop abilities to skillfully utilize the tool

chest of resources provided in the DSPA textbook. These resources can be

revised, improved, customized, expanded, and applied to other biomedicine and

biosocial studies, as well as to Big Data predictive analytics challenges in other

disciplines.

• The DSPA materials will challenge most readers. When the going gets tough,

seek help, engage with fellow trainees, search for help on the DSPA site and the

Internet, communicate via DSPA discussion forum/chat, and review references

and supplementary materials. Be proactive! Remember that you will gain, but it

will require commitment, prolonged emersion, hard work, and perseverance. If it

were easy, its value would be compromised.

• When covering some chapters, some readers may be underwhelmed or bored.

Feel free to skim over chapters or sections that sound familiar and move forward

to the next topic. Still, it is worth trying the corresponding assignments to ensure

that you have a firm grasp of the material, and that your technical abilities are

sound.

• Although the return on investment (e.g., time, effort) may vary between readers,

those that complete the DSPA textbook will discover something new, acquire

some advanced skills, learn novel data analytic protocols, and may conceive of

cutting-edge ideas.

• The complete R code (R and Rmd markdown) for all examples and demonstra-

tions presented in this textbook are available as electronic supplements.

• The author acknowledges that these materials may be improved. If you discover

problems, typos, errors, inconsistencies, or other problems, please contact us

(DSPA.info@umich.edu) to correct, expand, or polish the resources, accordingly.

If you have alternative ideas, suggestions for improvements, optimized code,

interesting data and case-studies, or any other refinements, please send these

along, as well. All suggestions and critiques will be carefully reviewed, and

potentially incorporated in revisions or new editions with appropriate credits.

12 1 Motivation

Chapter 2

Foundations of R

This Chapter introduces the foundations of R programming for visualization, statis-

tical computing and scientific inference. Specifically, in this Chapter we will (1) dis-

cuss the rationale for selecting R as a computational platform for all DSPA

demonstrations; (2) present the basics of installing shell-based R and RStudio

user-interface; (3) show some simple R commands and scripts (e.g., translate long-

to-wide data format, data simulation, data stratification and subsetting); (4) introduce

variable types and their manipulation; (5) demonstrate simple mathematical func-

tions, statistics, and matrix operators; (6) explore simple data visualization; and

(7) introduce optimization and model fitting. The chapter appendix includes refer-

ences to R introductory and advanced resources, as well as a primer on debugging.

2.1 Why Use R?

There are many different classes of software that can be used for data interrogation,

modeling, inference, and statistical computing. Among these are R, Python, Java,
C/C++, Perl, and many others. The table below compares R to various other

statistical analysis software packages and more detailed comparison is available

online (Fig. 2.1), https://en.wikipedia.org/wiki/Comparison_of_statistical_packages.

The reader may also review the following two comparisons of various statistical

computing software packages:

• UCLA Stats Software Comparison

• Wikipedia Stats Software Comparison

Let’s start by looking at an exemplary R script that shows the estimates of the

citations of three statistical computing software packages over two decades

(1995–2015). More details about these command lines will be presented in later

chapters. However, it’s worth looking at the four specific steps, each indicated by a

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_2&domain=pdf
https://en.wikipedia.org/wiki/Comparison_of_statistical_packages
https://doi.org/10.1007/978-3-319-72347-1_2

line of code: (1) we start by loading 2 of the necessary R packages for data

transformation (reshape2) and visualization (ggplot2); (2) loading the software

citation data from the Internet; (3) reformatting the data; and (4) displaying the

composite graph of citations over time (Fig. 2.2).

Statistical

Software
Advantages Disadvantages

R R is actively maintained (developers,

packages). Excellent connectivity to various types of data and

other systems. Versatile for solving problems in many domains.

It's free, open-source code. Anybody can access/review/extend

the source code. R is very stable and reliable. If you change or

redistribute the R source code, you have to make those changes

available for anybody else to use. R runs anywhere (platform

agnostic). Extensibility: R supports extensions, e.g., for data

manipulation, statistical modeling, and graphics. Active and

engaged community supports R. Unparalleled question-and-

answer (Q&A) websites. R connects with other languages

(Java/C/JavaScript/Python/Fortran) & database systems, and

other programs, SAS, SPSS, etc. Other packages have add-ons to

connect with R. SPSS has incorporated a link to R, and SAS has

protocols to move data and graphics between the two packages.

Mostly scripting language.

Steeper learning curve

SAS Large datasets. Commonly used in business & Government Expensive. Somewhat dated

programming language.

Expensive/proprietary

Stata Easy statistical analyses Mostly classical stats

SPSS Appropriate for beginners Simple interfaces Weak in more cutting edge

statistical procedures lacking

in robust methods and survey

methods

Fig. 2.1 Comparison of several statistical software platforms (R, SAS, Stata, SPSS)

0

1995 2000 2005
Year

2010 2015

Software

R

SAS

SPSS
50000

100000

C
it
a
ti
o
n
s

150000Fig. 2.2 Estimated peer-

reviewed publication

citations for R, SAS and

SPSS softwares

14 2 Foundations of R

require(ggplot2)

require(reshape2)

Data_R_SAS_SPSS_Pubs <- read.csv('https://umich.instructure.com/files/2361245
/download?download_frd=1', header=T)
df <- data.frame(Data_R_SAS_SPSS_Pubs)
convert to long format (http://www.cookbook-r.com/Manipulating_data/Convert

ing_data_between_wide_and_long_format/)

df <- melt(df , id.vars = 'Year', variable.name = 'Software')
ggplot(data=df, aes(x=Year, y=value, color=Software, group = Software)) + ge

om_line() + geom_line(size=4) + labs(x='Year', y='Citations')

2.2 Getting Started

2.2.1 Install Basic Shell-Based R

R is a free software that can be installed on any computer. The ‘R’ website is: http://

R-project.org. There you can download the shell-based R-environment following

this protocol:

• click download CRAN in the left bar

• choose a download site

• choose your operation system (e.g., Windows, Mac, Linux)

• click base

• choose the latest version to Download R (3.4, or higher (newer) version for your

specific operating system, e.g., Windows).

2.2.2 GUI Based R Invocation (RStudio)

For many readers, it’s best to also install and run R via RStudio GUI (graphical user

interface). To install RStudio, go to: http://www.rstudio.org/ and do the following:

• click Download RStudio

• click Download RStudio Desktop

• click Recommended For Your System

• download the .exe file and run it (choose default answers for all questions)

2.2.3 RStudio GUI Layout

The RStudio interface consists of several windows.

• Bottom left: console window (also called command window). Here you can type

simple commands after the “>” prompt and R will then execute your command.

This is the most important window, because this is where R actually does stuff.

2.2 Getting Started 15

http://R-project.org
http://R-project.org
http://www.rstudio.org/
https://umich.instructure.com/files/2361245/download?download_frd=1
https://umich.instructure.com/files/2361245/download?download_frd=1
http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/
http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/

• Top left: editor window (also called script window). Collections of commands

(scripts) can be edited and saved. When you don’t get this window, you can open

it with File > New > R script. Just typing a command in the editor window is not

enough; it has to get into the command window before R executes the command.

If you want to run a line from the script window (or the whole script), you can

click Run or press CTRL + ENTER to send it to the command window.

• Top right: workspace / history window. In the workspace window, you can see

which data and values R has in its memory. You can view and edit the values by

clicking on them. The history window shows what has been typed before.

• Bottom right: files / plots / packages / help window. Here you can open files, view

plots (also previous plots), install and load packages or use the help function. You

can change the size of the windows by dragging the grey bars between the

windows.

2.2.4 Some Notes

• The basic R environment installation comes with limited core functionality.

Everyone eventually will have to install more packages, e.g., reshape2,
ggplot2, and we will show how to expand your RStudio library throughout

these materials.

• The core R environment also has to be upgraded occasionally, e.g., every

3–6 months to get R patches, to fix known problems, and to add new function-

ality. This is also easy to do.

• The assignment operator in R is <- (although ¼ may also be used), so to assign a

value of 2 to a variable x, we can write x <- 2 or equivalently x ¼ 2.

2.3 Help

R provides documentations for different R functions. The function call to get these

documentations is help(). Just put help(topic) in the R console and you can

get detailed explanations for each R topic or function. Another way of doing it is to

call ?topic, which is even easier, or more generally ??topic.

For example, if we want to check the function for linear models (i.e. function lm
()), we can use the following function.

help(lm)
?lm

16 2 Foundations of R

2.4 Simple Wide-to-Long Data format Translation

Let’s start by experimenting with an R script for transforming (melting) a simple

dataset.

rawdata_wide <- read.table(header=TRUE, text='
CaseID Gender Age Condition1 Condition2

1 M 5 13 10.5
2 F 6 16 11.2
3 F 8 10 18.3
4 M 9 9.5 18.1
5 M 10 12.1 19

')
Make the CaseID column a factor

rawdata_wide$subject <- factor(rawdata_wide$CaseID)

rawdata_wide

CaseID Gender Age Condition1 Condition2 subject
1 1 M 5 13.0 10.5 1
2 2 F 6 16.0 11.2 2
3 3 F 8 10.0 18.3 3
4 4 M 9 9.5 18.1 4
5 5 M 10 12.1 19.0 5

library(reshape2)

Specify id.vars: the variables to keep (don't split apart on!)

melt(rawdata_wide, id.vars=c("CaseID", "Gender"))

CaseID Gender variable value
1 1 M Age 5
2 2 F Age 6
3 3 F Age 8
4 4 M Age 9
5 5 M Age 10
6 1 M Condition1 13
7 2 F Condition1 16
8 3 F Condition1 10
9 4 M Condition1 9.5
10 5 M Condition1 12.1
11 1 M Condition2 10.5
12 2 F Condition2 11.2
13 3 F Condition2 18.3
14 4 M Condition2 18.1
15 5 M Condition2 19
16 1 M subject 1
17 2 F subject 2
18 3 F subject 3
19 4 M subject 4
20 5 M subject 5

2.4 Simple Wide-to-Long Data format Translation 17

There are options for melt that can make the output a little easier to work with:

data_long <- melt(rawdata_wide,
ID variables - all the variables to keep but not split apart on

id.vars=c("CaseID", "Gender"),
The source columns

measure.vars=c("Age", "Condition1", "Condition2"),
Name of the destination column that will identify the original

column that the measurement came from

variable.name="Feature",
value.name="Measurement"

)
data_long

CaseID Gender Feature Measurement
1 1 M Age 5.0
2 2 F Age 6.0
3 3 F Age 8.0
4 4 M Age 9.0
5 5 M Age 10.0
6 1 M Condition1 13.0
7 2 F Condition1 16.0
8 3 F Condition1 10.0
9 4 M Condition1 9.5
10 5 M Condition1 12.1
11 1 M Condition2 10.5
12 2 F Condition2 11.2
13 3 F Condition2 18.3
14 4 M Condition2 18.1
15 5 M Condition2 19.0

For an elaborate justification, detailed description, and multiple examples of

handling long-and-wide data, messy and tidy data, and data cleaning strategies see

the (JSS Tidy Data article by Hadley Wickham) [https://www.jstatsoft.org/article/

view/v059i10].

2.5 Data Generation

Popular data generation functions are c(), seq(), rep(), and data.frame().
Sometimes, we may also use list() and array() to generate data.

c()

c() creates a (column) vector. With option recursive ¼ T, it descends through
lists combining all elements into one vector.

a<-c(1, 2, 3, 5, 6, 7, 10, 1, 4)
a

[1] 1 2 3 5 6 7 10 1 4

c(list(A = c(Z = 1, Y = 2), B = c(X = 7), C = c(W = 7, V=3, U=-1.9)), recurs
ive = TRUE)

A.Z A.Y B.X C.W C.V C.U
1.0 2.0 7.0 7.0 3.0 -1.9

18 2 Foundations of R

https://www.jstatsoft.org/article/view/v059i10
https://www.jstatsoft.org/article/view/v059i10

When combined with list(), c() successfully created a vector with all the

information in a list with three members A, B, and C.

seq(from, to)

seq(from, to) generates a sequence. Adding option by ¼ can help us specify

increment; Option length¼ specifies desired length. Also, seq(along ¼ x)
generates a sequence 1, 2, ..., length(x). This is used for loops to create ID
for each element in x.

seq(1, 20, by=0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.
5
[15] 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.
5
[29] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

seq(1, 20, length=9)

[1] 1.000 3.375 5.750 8.125 10.500 12.875 15.250 17.625 20.000

seq(along=c(5, 4, 5, 6))

[1] 1 2 3 4

rep(x, times)

rep(x, times) creates a sequence that repeats x a specified number of times. The

option each ¼ allows us to repeat first over each element of x certain number of

times.

rep(c(1, 2, 3), 4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

rep(c(1, 2, 3), each=4)

[1] 1 1 1 1 2 2 2 2 3 3 3 3

Compare this to replicating using replicate().

X <- seq(along=c(1, 2, 3)); replicate(4, X+1)

[,1] [,2] [,3] [,4]
[1,] 2 2 2 2
[2,] 3 3 3 3
[3,] 4 4 4 4

data.frame()

data.frame() creates a data frame of named or unnamed arguments. We can

combine multiple vectors. Each vector is stored as a column. Shorter vectors are

recycled to the length of the longest one. With data.frame() you can mix

numeric and characteristic vectors.

2.5 Data Generation 19

data.frame(v=1:4, ch=c("a", "B", "C", "d"), n=c(10, 11))

v ch n
1 1 a 10
2 2 B 11
3 3 C 10
4 4 d 11

Note that the 1:4 means from 1 to 4. The operator : generates a sequence.

list()

Like we mentioned in function c(), list() creates a list of the named or unnamed

arguments – indexing rule: from 1 to n, including 1 and n.

l<-list(a=c(1, 2), b="hi", c=-3+3i)
l

$a
[1] 1 2

$b
[1] "hi"

$c
[1] -3+3i

Note Complex Numbers a <- -1+3i; b <- -2-2i; a+b

We use $ to call each member in the list and [[]] to call the element

corresponding to specific index. For example,

l$a[[2]]

[1] 2

l$b
[1] "hi"

Note that R uses 1-based numbering rather than 0-based like some other lan-

guages (C/Java), so the first element of a list has index 1.

array(x, dim¼)

array(x, dim¼) creates an array with specific dimensions. For example,

dim ¼ c(3, 4, 2) means two 3 � 4 matrices. We use [] to extract specific

elements in the array. [2, 3, 1] means the element at the second row third column

in the first page. Leaving one number in the dimensions empty would help us to get a

specific row, column or page. [2, ,1] means the second row in the 1st page. See

this image (Fig. 2.3):

20 2 Foundations of R

ar <- array(1:24, dim=c(3, 4, 2)); ar

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

ar[2, 3, 1]

[1] 8

ar[2, ,1]

[1] 2 5 8 11

In general, multi-dimensional arrays are called “tensors” (of order ¼ number of

dimensions).

Other useful functions are:

• matrix(x, nrow¼, ncol¼): creates matrix elements of nrow rows and

ncol columns.

• factor(x, levels¼): encodes a vector x as a factor.

• gl(n, k, length¼n*k, labels ¼ 1:n): generate levels (factors) by

specifying the pattern of their levels. k is the number of levels, and n is the

number of replications.

• expand.grid(): a data frame from all combinations of the supplied vectors or

factors.

• rbind() combine arguments by rows for matrices, data frames, and others.

• cbind() combine arguments by columns for matrices, data frames, and others.

Fig. 2.3 Indexing cell values in multidimensional arrays (tensors)

2.5 Data Generation 21

2.6 Input/Output (I/O)

The first pair of functions we will talk about are load(), which helps us reload

datasets written with the save() function.

Let’s create some data first.

x <- seq(1, 10, by=0.5)
y <- list(a = 1, b = TRUE, c = "oops")
save(x, y, file="xy.RData")
load("xy.RData")

data(x) loads the specified data sets and library(x) loads the necessary

add-on packages.

data("iris")
summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50

read.table(file) reads a file in table format and creates a data frame from it. The

default separator sep¼ "" is any whitespace. Use header¼ TRUE to read the first

line as a header of column names. Use as.is ¼ TRUE to prevent character vectors

from being converted to factors. Use comment.char ¼ "" to prevent “#” from

being interpreted as a comment. Use skip ¼ n to skip n lines before reading data.

See the help for options on row naming, NA treatment, and others.

Let’s use read.table() to read a text file in our class file.

data.txt<-read.table("https://umich.instructure.com/files/1628628/download?d
ownload_frd=1", header=T, as.is = T) # 01a_data.txt
summary(data.txt)

Name Team Position Height
Length:1034 Length:1034 Length:1034 Min. :67.0
Class :character Class :character Class :character 1st Qu.:72.0
Mode :character Mode :character Mode :character Median :74.0
Mean :73.7
3rd Qu.:75.0
Max. :83.0
Weight Age
Min. :150.0 Min. :20.90
1st Qu.:187.0 1st Qu.:25.44
Median :200.0 Median :27.93
Mean :201.7 Mean :28.74
3rd Qu.:215.0 3rd Qu.:31.23
Max. :290.0 Max. :48.52

22 2 Foundations of R

https://umich.instructure.com/files/1628628/download?download_frd=1
https://umich.instructure.com/files/1628628/download?download_frd=1

read.csv("filename", header ¼ TRUE) is identical to read.table() but

with defaults set for reading comma-delimited files.

data.csv<-read.csv("https://umich.instructure.com/files/1628650/download?dow
nload_frd=1", header = T) # 01_hdp.csv
summary(data.csv)

tumorsize co2 pain wound
Min. : 33.97 Min. :1.222 Min. :1.000 Min. :1.000
1st Qu.: 62.49 1st Qu.:1.519 1st Qu.:4.000 1st Qu.:5.000
Median : 70.07 Median :1.601 Median :5.000 Median :6.000
Mean : 70.88 Mean :1.605 Mean :5.473 Mean :5.732
3rd Qu.: 79.02 3rd Qu.:1.687 3rd Qu.:6.000 3rd Qu.:7.000
Max. :116.46 Max. :2.128 Max. :9.000 Max. :9.000
mobility ntumors nmorphine remission
Min. :1.00 Min. :0.000 Min. : 0.000 Min. :0.0000
1st Qu.:5.00 1st Qu.:1.000 1st Qu.: 2.000 1st Qu.:0.0000
Median :6.00 Median :3.000 Median : 3.000 Median :0.0000
Mean :6.08 Mean :3.066 Mean : 3.624 Mean :0.2957
3rd Qu.:7.00 3rd Qu.:5.000 3rd Qu.: 5.000 3rd Qu.:1.0000
Max. :9.00 Max. :9.000 Max. :18.000 Max. :1.0000
lungcapacity Age Married FamilyHx SmokingHx
Min. :0.01612 Min. :26.32 Min. :0.0 no :6820 current:1705
1st Qu.:0.67647 1st Qu.:46.69 1st Qu.:0.0 yes:1705 former :1705
Median :0.81560 Median :50.93 Median :1.0 never :5115
Mean :0.77409 Mean :50.97 Mean :0.6
3rd Qu.:0.91150 3rd Qu.:55.27 3rd Qu.:1.0
Max. :0.99980 Max. :74.48 Max. :1.0
Sex CancerStage LengthofStay WBC RBC
female:5115 I :2558 Min. : 1.000 Min. :2131 Min. :3.919
male :3410 II :3409 1st Qu.: 5.000 1st Qu.:5323 1st Qu.:4.802
III:1705 Median : 5.000 Median :6007 Median :4.994
IV : 853 Mean : 5.492 Mean :5998 Mean :4.995
3rd Qu.: 6.000 3rd Qu.:6663 3rd Qu.:5.190
Max. :10.000 Max. :9776 Max. :6.065
BMI IL6 CRP DID
Min. :18.38 Min. : 0.03521 Min. : 0.0451 Min. : 1.0
1st Qu.:24.20 1st Qu.: 1.93039 1st Qu.: 2.6968 1st Qu.:100.0
Median :27.73 Median : 3.34400 Median : 4.3330 Median :199.0
Mean :29.07 Mean : 4.01698 Mean : 4.9730 Mean :203.3
3rd Qu.:32.54 3rd Qu.: 5.40551 3rd Qu.: 6.5952 3rd Qu.:309.0
Max. :58.00 Max. :23.72777 Max. :28.7421 Max. :407.0
Experience School Lawsuits HID
Min. : 7.00 average:6405 Min. :0.000 Min. : 1.00
1st Qu.:15.00 top :2120 1st Qu.:1.000 1st Qu.: 9.00
Median :18.00 Median :2.000 Median :17.00
Mean :17.64 Mean :1.866 Mean :17.76
3rd Qu.:21.00 3rd Qu.:3.000 3rd Qu.:27.00
Max. :29.00 Max. :9.000 Max. :35.00
Medicaid
Min. :0.1416
1st Qu.:0.3369
Median :0.5215
Mean :0.5125
3rd Qu.:0.7083
Max. :0.8187

2.6 Input/Output (I/O) 23

https://umich.instructure.com/files/1628650/download?download_frd=1
https://umich.instructure.com/files/1628650/download?download_frd=1

read.delim("filename", header ¼ TRUE) is very similar to the first two.

However, it has defaults set for reading tab-delimited files.

Also, we have read.fwf(file, widths, header¼ FALSE, sep¼ "\t",
as.is ¼ FALSE) to read a table of fixed width formatted data into a data frame.

match(x, y) returns a vector of the positions of (first) matches of its first argument

in its second. For a specific element in x, if no elements matches it in y, the output
for that elements would be NA.

match(c(1, 2, 4, 5), c(1, 4, 4, 5, 6, 7))

[1] 1 NA 2 4

save.image(file) saves all objects in the current work space.

write.table(x, file ¼ "", row.names ¼ TRUE, col.names ¼ TRUE, sep ¼ "")

prints x after converting to a data frame and stores it into a specified file. If quote is

TRUE, character or factor columns are surrounded by quotes ("). sep is the field

separator. eol is the end-of-line separator. na is the string for missing values. Use

col.names¼NA to add a blank column header to get the column headers aligned

correctly for spreadsheet input.

Most of the I/O functions have a file argument. This can often be a character string

naming a file or a connection. File ¼ "" means the standard input or output.

Connections can include files, pipes, zipped files, and R variables. On windows, the

file connection can also be used with description ¼ "clipboard". To read a
table copied from Excel, use x < � read.delim("clipboard").

To write a table to the clipboard for Excel, use write.table(x, "clip-
board", sep ¼ "\t", col.names ¼ NA). For database interaction, see

packages RODBC, DBI, RMySQL, RPgSQL, and ROracle, as well as packages

XML, hdf5, netCDF for reading other file formats. We will talk about some of them

in later Chapters.

Note, an alternative library called rio handles import/export of multiple data

types using a simple syntax.

2.7 Slicing and Extracting Data

Table 2.1 shows us how to index vectors.

Indexing lists are similar to indexing vectors, but some of the symbols are

different (Table 2.2).

Indexing for matrices is a higher dimensional version of indexing vectors

(Table 2.3).

24 2 Foundations of R

2.8 Variable Conversion

The following functions can be used to convert data types:

as.array(x), as.data.frame(x), as.numeric(x), as.logical(x),
as.complex(x), as.character(x), ...

Typing methods(as) in the console will generate a complete list for variable

conversion functions.

2.9 Variable Information

The following functions will test if the each data element is a specific type:

is.na(x), is.null(x), is.array(x), is.data.frame(x), is.
numeric(x), is.complex(x), is.character(x), ...

For a complete list, type methods(is) in R console. The output for these

functions are a bunch of TRUE or FALSE logical statements. One statement for one

element in the dataset.

Table 2.1 Vector indexing in R

Expression Explanation

x[n] Nth element

x[�n] All but the nth element

x[1:n] First n elements

x[�(1:n)] Elements from n + 1 to the end

x[c(1, 4, 2)] Specific elements

x["name"] Element named "name"

x[x > 3] All elements greater than 3

x[x > 3 & x < 5] All elements between 3 and 5

x[x %in% c("a", "and", "the")] Elements in the given set

Table 2.2 List indexing in R Expression Explanation

x[n] List with n elements

x[[n]] Nth element of the list

x[["name"]] Element of the list named "name"

Table 2.3 Matrix indexing

in R
Expression Explanation

x[i, j] Element at row i, column j

x[i,] Row i

x[, j] Column j

x[, c(1, 3)] Columns 1 and 3

x["name",] Row named "name"

2.9 Variable Information 25

length(x) gives us the number of elements in x.

x<-c(1, 3, 10, 23, 1, 3)
length(x)

[1] 6

dim(x) retrieves or sets the dimension of an object.

x<-1:12
dim(x)<-c(3, 4)
x

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

dimnames(x) retrieves or sets the dimension names of an object. For higher

dimensional objects like matrix or arrays we can combine dimnames() with list.

dimnames(x)<-list(c("R1", "R2", "R3"), c("C1", "C2", "C3", "C4")); x

C1 C2 C3 C4
R1 1 4 7 10
R2 2 5 8 11
R3 3 6 9 12

nrow(x) number of rows; ncol(x) number of columns.

nrow(x)

[1] 3

ncol(x)

[1] 4

class(x) get or set the class of x. Note that we can use unclass(x) to remove

the class attribute of x.

class(x)

[1] "matrix"

class(x)<-"myclass"
x<-unclass(x)
x

C1 C2 C3 C4
R1 1 4 7 10
R2 2 5 8 11
R3 3 6 9 12

26 2 Foundations of R

attr(x, which) get or set the attribute which of x.

attr(x, "class")

NULL

attr(x, "dim")<-c(2, 6)
x

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12

From the above commands we know that when we unclass x, its class would

be NULL.
attributes(obj) get or set the list of attributes of object.

attributes(x) <- list(mycomment = "really special", dim = 3:4,
dimnames = list(LETTERS[1:3], letters[1:4]), names = paste(1:12))

x

a b c d
A 1 4 7 10
B 2 5 8 11
C 3 6 9 12
attr(,"mycomment")
[1] "really special"
attr(,"names")
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

2.10 Data Selection and Manipulation

In this section, we will introduce some data manipulation functions. In addition,

tools from dplyr provide easy dataset manipulation routines.

which.max(x) returns the index of the greatest element of x. which.min(x)

returns the index of the smallest element of x. rev(x) reverses the elements of

x. Let’s see these three functions first.

x<-c(1, 5, 2, 1, 10, 40, 3)
which.max(x)

[1] 6

which.min(x)

[1] 1

rev(x)

[1] 3 40 10 1 2 5 1

2.10 Data Selection and Manipulation 27

sort(x) sorts the elements of x in increasing order. To sort in decreasing order we

can use rev(sort(x)).

sort(x)

[1] 1 1 2 3 5 10 40

rev(sort(x))

[1] 40 10 5 3 2 1 1

cut(x, breaks) divides x into intervals with same length (sometimes factors).

breaks is the number of cut intervals or a vector of cut points. Cut divides the

range of x into intervals coding the values in x according to the intervals they

fall into.

x

[1] 1 5 2 1 10 40 3

cut(x, 3)

[1] (0.961,14] (0.961,14] (0.961,14] (0.961,14] (0.961,14] (27,40]
[7] (0.961,14]
Levels: (0.961,14] (14,27] (27,40]

cut(x, c(0, 5, 20, 30))

[1] (0,5] (0,5] (0,5] (0,5] (5,20] <NA> (0,5]
Levels: (0,5] (5,20] (20,30]

which(x ¼¼ a) returns a vector of the indices of x if the comparison operation is

true (TRUE). For example it returns the value i, if x[i]¼¼ a is true. Thus, the

argument of this function (like x¼¼a) must be a variable of mode logical.

x

[1] 1 5 2 1 10 40 3

which(x==2)

[1] 3

na.omit(x) suppresses the observations with missing data (NA). It suppresses the
corresponding line if x is a matrix or a data frame. na.fail(x) returns an error message

if x contains at least one NA.

28 2 Foundations of R

df<-data.frame(a=1:5, b=c(1, 3, NA, 9, 8)); df

a b
1 1 1
2 2 3
3 3 NA
4 4 9
5 5 8

na.omit(df)

a b
1 1 1
2 2 3
4 4 9
5 5 8

unique(x) If x is a vector or a data frame, it returns a similar object but with the

duplicate elements suppressed.

df1<-data.frame(a=c(1, 1, 7, 6, 8), b=c(1, 1, NA, 9, 8))
df1

a b
1 1 1
2 1 1
3 7 NA
4 6 9
5 8 8

unique(df1)

a b
1 1 1
3 7 NA
4 6 9
5 8 8

table(x) returns a table with the different values of x and their frequencies

(typically for integers or factors). Also check prob.table().

v<-c(1, 2, 4, 2, 2, 5, 6, 4, 7, 8, 8)
table(v)

v
1 2 4 5 6 7 8
1 3 2 1 1 1 2

subset(x, ...) returns a selection of x with respect to criteria ... (typically ...
are comparisons like x$V1 < 10). If x is a data frame, the option select ¼ gives

the variables to be kept or dropped using a minus sign.

2.10 Data Selection and Manipulation 29

sub<-subset(df1, df1$a>5); sub

a b
3 7 NA
4 6 9
5 8 8

sub<-subset(df1, select=-a)
sub

b
1 1
2 1
3 NA
4 9
5 8

sample(x, size) resamples randomly and without replacement size elements in the

vector x, the option replace ¼ TRUE allows to resample with replacement.

v

[1] 1 2 4 2 2 5 6 4 7 8 8

sample(df1$a, 20, replace = T)

[1] 7 8 1 6 1 1 7 8 1 7 8 1 6 7 8 7 1 6 8 8

prop.table(x, margin¼) table entries as fraction of marginal table.

prop.table(table(v))

v
1 2 4 5 6 7
0.09090909 0.27272727 0.18181818 0.09090909 0.09090909 0.09090909
8
0.18181818

2.11 Math Functions

Basic math functions like sin, cos, tan, asin, acos, atan, atan2, log,
log10, exp. and “set” functions union(x, y), intersect(x, y),
setdiff(x, y), setequal(x, y), is.element(el, set) are available

in R.

lsf.str("package:base") displays all base functions built in a specific R

package (like base).
Also we have the Table 2.4 of functions that you might need when using R for

calculations.

Note: many math functions have a logical parameter na.rm. ¼ FALSE to

specify missing data (NA) removal.

30 2 Foundations of R

Table 2.4 Common mathematics, statistics, and processing R functions

Expression Explanation

choose(n, k) Computes the combinations of k events among n objects. Mathematically

it equals to n!

n2 kð Þ!k!½ �

max(x) Maximum of the elements of x

min(x) Minimum of the elements of x

range(x) Minimum and maximum of the elements of x

sum(x) Sum of the elements of x

diff(x) Lagged and iterated differences of vector x

prod(x) Product of the elements of x

mean(x) Mean of the elements of x

median(x) Median of the elements of x

quantile(x,
probs¼)

Sample quantiles corresponding to the given probabilities (defaults to

0, 0.25, 0.5, 0.75, 1)

weighted.mean
(x, w)

Mean of x with weights w

rank(x) Ranks of the elements of x

var(x) or

cov(x)
Variance of the elements of x (calculated on n > 1). If x is a matrix or a

data frame, the variance-covariance matrix is calculated

sd(x) Standard deviation of x

cor(x) Correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)

var(x, y) or

cov(x, y)
Covariance between x and y, or between the columns of x and those of y if

they are matrices or data frames

cor(x, y) Linear correlation between x and y, or correlation matrix if they are

matrices or data frames

round(x, n) Rounds the elements of x to n decimals

log(x, base) Computes the logarithm of x with base "base"

scale(x) If x is a matrix, centers and reduces the data. Without centering use the

option center ¼ FALSE. Without scaling use scale ¼ FALSE
(by default center ¼ TRUE, scale ¼ TRUE)

pmin(x, y, ...) a vector which ith element is the minimum of x[i], y[i],. . .

pmax(x, y, ...) a vector which ith element is the maximum of x[i], y[i],. . .

cumsum(x) a vector which ith element is the sum from x[1] to x[i]

cumprod(x) id. for the product

cummin(x) id. for the minimum

cummax(x) id. for the maximum

Re(x) Real part of a complex number

Im(x) Imaginary part of a complex number

Mod(x) Modulus. Abs(x) is the same

Arg(x) Angle in radians of the complex number

Conj(x) Complex conjugate

convolve(x, y) Compute the several kinds of convolutions of two sequences

fft(x) Fast Fourier Transform of an array

mvfft(x) FFT of each column of a matrix

filter(x,
filter)

Applies linear filtering to a univariate time series or to each series

separately of a multivariate time series

2.11 Math Functions 31

2.12 Matrix Operations

The following table summarizes basic operation functions. We will discuss this topic

in detail in Chap. 5 (Table 2.5).

mat1 <- cbind(c(1, -1/5), c(-1/3, 1))
mat1.inv <- solve(mat1)

mat1.identity <- mat1.inv %*% mat1
mat1.identity

[,1] [,2]
[1,] 1 0
[2,] 0 1

b <- c(1, 2)
x <- solve (mat1, b)
x

[1] 1.785714 2.357143

2.13 Advanced Data Processing

In this section, we will introduce some fancy functions that can save time

remarkably.

apply(X, INDEX, FUN¼) a vector or array or list of values obtained by applying

a function FUN to margins (INDEX ¼ 1 means row, INDEX ¼ 2 means column)

of X.

Table 2.5 Common R operators

Expression Explanation

t(x) Transpose

diag(x) Diagonal

%*% Matrix multiplication

solve(a, b) Solves a %*% x ¼ b for x

solve(a) Matrix inverse of a

rowsum(x) Sum of rows for a matrix-like object. rowSums(x)
is a faster version

colSums(x) id. for columns

rowMeans(x) Fast version of row means

colMeans(x) id. for columns

32 2 Foundations of R

df1

a b
1 1 1
2 1 1
3 7 NA
4 6 9
5 8 8

apply(df1, 2, mean, na.rm=T)

a b
4.60 4.75

Note that we can add options for the FUN after the function.

lapply(X, FUN) apply FUN to each member of the list X. If X is a data frame,

it will apply the FUN to each column and return a list.

lapply(df1, mean, na.rm=T)

$a
[1] 4.6

$b
[1] 4.75

lapply(list(a=c(1, 23, 5, 6, 1), b=c(9, 90, 999)), median)

$a
[1] 5

$b
[1] 90

tapply(X, INDEX, FUN¼) apply FUN to each cell of a ragged array given by X

with indexes equals to INDEX. Note that X is an atomic object, typically a vector.

v

[1] 1 2 4 2 2 5 6 4 7 8 8

fac <- factor(rep(1:3, length = 11), levels = 1:3)
table(fac)

fac
1 2 3
4 4 3

tapply(v, fac, sum)

1 2 3
17 16 16

2.13 Advanced Data Processing 33

by(data, INDEX, FUN) apply FUN to data frame data subsetted by INDEX.

by(df1, df1[, 1], sum)

df1[, 1]: 1
[1] 4
--
df1[, 1]: 6
[1] 15
--
df1[, 1]: 7
[1] NA
--
df1[, 1]: 8
[1] 16

This code applies the sum function to df1 using column 1 as an index.

merge(a, b) merge two data frames by common columns or row names. We can

use option by ¼ to specify the index column.

df2<-data.frame(a=c(1, 1, 7, 6, 8), c=1:5)
df2

a c
1 1 1
2 1 2
3 7 3
4 6 4
5 8 5

df3<-merge(df1, df2, by="a")
df3

a b c
1 1 1 1
2 1 1 2
3 1 1 1
4 1 1 2
5 6 9 4
6 7 NA 3
7 8 8 5

34 2 Foundations of R

xtabs(a ~ b, data ¼ x) a contingency table from cross-classifying factors.

DF <- as.data.frame(UCBAdmissions)
'DF' is a data frame with a grid of the factors and the counts
in variable 'Freq'.
DF

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
…
23 Admitted Female F 24
24 Rejected Female F 317

Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)

Admit
Gender Admitted Rejected
Male 1198 1493
Female 557 1278

And for testing independence ...
summary(xtabs(Freq ~ ., DF))

Call: xtabs(formula = Freq ~ ., data = DF)

Number of cases in table: 4526

Number of factors: 3

Test for independence of all factors:

Chisq = 2000.3, df = 16, p-value = 0

aggregate(x, by, FUN) splits the data frame x into subsets, computes summary

statistics for each, and returns the result in a convenient form. by is a list of grouping

elements, that each have the same length as the variables in x.

list(rep(1:3, length=7))

[[1]]
[1] 1 2 3 1 2 3 1

aggregate(df3, by=list(rep(1:3, length=7)), sum)

Group.1 a b c
1 1 10 10 8
2 2 7 10 6
3 3 8 NA 4

The above code applied the function sum to data frame df3 according to the

index created by list(rep(1:3, length¼7)).
stack(x, ...) transform data, stored as separate columns in a data frame or a list,

into a single column and unstack(x, ...) is the inverse of stack().

2.13 Advanced Data Processing 35

stack(df3)

values ind
1 1 a
2 1 a
3 1 a
…
20 3 c
21 5 c

unstack(stack(df3))

a b c
1 1 1 1
2 1 1 2
3 1 1 1
4 1 1 2
5 6 9 4
6 7 NA 3
7 8 8 5

reshape(x, ...) reshapes a data frame between "wide" format with repeated

measurements in separate columns of the same record and "long" format with the

repeated measurements in separate records. Use direction ¼ "wide" or

direction ¼ "long".

df4 <- data.frame(school = rep(1:3, each = 4), class = rep(9:10, 6),
time = rep(c(1, 1, 2, 2), 3), score = rnorm(12))

wide <- reshape(df4, idvar = c("school", "class"), direction = "wide")
wide

school class score.1 score.2
1 1 9 -0.1575202 -1.415503816
2 1 10 0.5804452 1.754559537
5 2 9 0.1553872 1.693809827
6 2 10 -0.7540783 0.478035367
9 3 9 -0.6490757 -0.002922609
10 3 10 -0.2122064 0.276259031

long <- reshape(wide, idvar = c("school", "class"), direction = "long")
long

school class time score.1
1.9.1 1 9 1 -0.157520208
1.10.1 1 10 1 0.580445243
2.9.1 2 9 1 0.155387189
2.10.1 2 10 1 -0.754078345
3.9.1 3 9 1 -0.649075721
3.10.1 3 10 1 -0.212206430
1.9.2 1 9 2 -1.415503816
1.10.2 1 10 2 1.754559537
2.9.2 2 9 2 1.693809827
2.10.2 2 10 2 0.478035367
3.9.2 3 9 2 -0.002922609
3.10.2 3 10 2 0.276259031

36 2 Foundations of R

Notes

• The x in this function has to be longitudinal data.

• The call to rnorm used in reshape might generate different results for each call,

unless set.seed(1234) is used to ensure reproducibility of random-number

generation.

2.14 Strings

The following functions are useful for handling strings in R.

paste(...) concatenates vectors after converting to character. It has a few options.

Sep ¼ is the string to separate terms (a single space is the default). collapse ¼ is

an optional string to separate “collapsed” results.

a<-"today"
b<-"is a good day"
paste(a, b)

[1] "today is a good day"

paste(a, b, sep=", ")

[1] "today, is a good day"

substr(x, start, stop) substrings in a character vector. It can also assign values

(with the same length) to part of a string, as substr(x, start, stop) < �
value.

a<-"When the going gets tough, the tough get going!"
substr(a, 10, 40)

[1] "going gets tough, the tough get"
substr(a, 1, 9)<-"........."
a

[1] ".........going gets tough, the tough get going!"

Note that characters at start and stop indexes are inclusive in the output.

strsplit(x, split) split x according to the substring split. Use fixed ¼ TRUE for

non-regular expressions.

strsplit("a.b.c", ".", fixed = TRUE)

[[1]]
[1] "a" "b" "c"

grep(pattern, x) searches for matches to pattern within x. It will return a vector of

the indices of the elements of x that yielded a match. Use regular expression for

pattern(unless fixed ¼ TRUE). See ?regex for details.

2.14 Strings 37

letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
[18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

grep("[a-z]", letters)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[24] 24 25 26

gsub(pattern, replacement, x) replacement of matches determined by regular

expression matching. sub() is the same but only replaces the first occurrence.

a<-c("e", 0, "kj", 10, ";")
gsub("[a-z]", "letters", a)

[1] "letters" "0" "lettersletters" "10"
[5] ";"

sub("[a-z]", "letters", a)

[1] "letters" "0" "lettersj" "10" ";"

tolower(x) convert to lowercase. toupper(x) convert to uppercase.

match(x, table) a vector of the positions of first matches for the elements of x

among table, with a short hand x %in% table, which returns a logical vector.

x<-c(1, 2, 10, 19, 29)
match(x, c(1, 10))

[1] 1 NA 2 NA NA

x %in% c(1, 10)

[1] TRUE FALSE TRUE FALSE FALSE

pmatch(x, table) partial matches for the elements of x among table.

pmatch("m", c("mean", "median", "mode")) # returns NA

[1] NA

pmatch("med", c("mean", "median", "mode")) # returns 2

[1] 2

The first one returns NA, and dependent on the R-version, possibly a warning,

because all elements have the pattern "m".
nchar(x) number of characters in x.

Dates and Times

The class Date has dates without times. POSIXct() has dates and times, includ-

ing time zones. Comparisons (e.g. >), seq(), and difftime() are useful.

?DateTimeClasses gives more information. See also package chron.
as.Date(s) and as.POSIXct(s) convert to the respective class; format

(dt) converts to a string representation. The default string format is 2001–02-21.

38 2 Foundations of R

These accept a second argument to specify a format for conversion. Some common

formats are (Table 2.6):

Where leading zeros are shown they will be used on output but are optional on

input. See ?strftime for details.

2.15 Plotting

This is only an introduction for plotting functions in R. In Chap. 4, we will discuss

visualization in more detail.

plot(x) plot of the values of x (on the y-axis) ordered on the x-axis.

plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis).

hist(x) histogram of the frequencies of x.

barplot(x) histogram of the values of x. Use horiz ¼ FALSE for horizontal

bars.

dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-

line and column-by-column).

pie(x) circular pie-chart.

boxplot(x) ‘box-and-whiskers’ plot.

sunflowerplot(x, y) id. than plot() but the points with similar coordinates are

drawn as flowers which petal number represents the number of points.

stripplot(x) plot of the values of x on a line (an alternative to boxplot() for

small sample sizes).

Table 2.6 R date formatting specifications

Formats Explanations

%a, %A Abbreviated and full weekday name.

%b, %B Abbreviated and full month name.

%d Day of the month (01 ... 31).

%H Hours (00 ... 23).

%I Hours (01 ... 12).

%j Day of year (001 ... 366).

%m Month (01 ... 12).

%M Minute (00 ... 59).

%p AM/PM indicator.

%S Second as decimal number (00 ... 61).

%U Week (00 ... 53); the first Sunday as day 1 of week 1.

%w Weekday (0 ... 6, Sunday is 0).

%W Week (00 ... 53); the first Monday as day 1 of week 1.

%y Year without century (00 ... 99). Don’t use.

%Y Year with century.

%z (output only) Offset from Greenwich; �0800 is 8 hours west of Greenwich Meridian.

%Z (output only) Time zone as a character string (empty if not available).

2.15 Plotting 39

coplot(x~y | z) bivariate plot of x and y for each value or interval of values of z.

interaction.plot (f1, f2, y) if f1 and f2 are factors, plots the means of y (on the

y-axis) with respect to the values of f1 (on the x-axis) and of f2 (different curves).

The option fun allows choosing the summary statistic of y (by default

fun ¼ mean).
matplot(x, y) bivariate plot of the first column of x vs. the first one of y, the

second one of x vs. the second one of y, etc.

fourfoldplot(x) visualizes, with quarters of circles, the association between two

dichotomous variables for different populations (x must be an array with dim ¼ c

(2, 2, k), or a matrix with dim ¼ c(2, 2) if k ¼ 1).

assocplot(x) Cohen’s Friendly graph shows the deviations from independence of

rows and columns in a two dimensional contingency table.

mosaicplot(x) “mosaic” “graph of the residuals from a log-linear regression of a

contingency table.

pairs(x) if x is a matrix or a data frame, draws all possible bivariate plots between

the columns of x.

plot.ts(x) if x is an object of class “ts”, it plots x with respect to time. x may be

multivariate but the series must have the same frequency and dates. Detailed

examples are in Chap. 19: Big Longitudinal Data Analysis.

ts.plot(x) id. but if x is multivariate the series may have different dates and must

have the same frequency.

qqnorm(x) quantiles of x with respect to the values expected under a normal law.

qqplot(x, y) quantiles of y with respect to the quantiles of x.

contour(x, y, z) contour plot (data are interpolated to draw the curves), x and y

must be vectors and z must be a matrix so that dim(z) ¼ c(length(x),
length(y)) (x and y may be omitted).

filled.contour(x, y, z) areas between the contours are colored, and a legend of the

colors is drawn as well.

image(x, y, z) plotting actual data with colors.

persp(x, y, z) plotting actual data in perspective view.

stars(x) if x is a matrix or a data frame, draws a graph with segments or a star

where each row of x is represented by a star and the columns are the lengths of the

segments.

symbols(x, y, ...) draws, at the coordinates given by x and y, symbols (circles,

squares, rectangles, stars, thermometers or “boxplots”“) which sizes, colors, etc. are

specified by supplementary arguments.

termplot(mod.obj) plot of the (partial) effects of a regression model (mod.obj).
The following parameters are common to many plotting functions (Table 2.7):

40 2 Foundations of R

2.16 QQ Normal Probability Plot

Let’s look at one simple example – quantile-quantile probability plot. Suppose

X � N(0, 1) and Y � Cauchy represent the observed/raw and simulated/synthetic

data for one feature (variable) in the data (Figs. 2.4, 2.5, 2.6 and 2.7).

X <- rnorm(1000)
Y <- rcauchy(1500)

compare X to StdNormal distribution

qqnorm(X,
main="Normal Q-Q Plot of the data",
xlab="Theoretical Quantiles of the Normal",
ylab="Sample Quantiles of the X (Normal) Data")

qqline(X)

qqplot(X, Y)

Y against StdNormal

qqnorm(Y,
main="Normal Q-Q Plot of the data",
xlab="Theoretical Quantiles of the Normal",
ylab="Sample Quantiles of the Y (Cauchy) Data", ylim= range(-4, 4))
Why is the y-range specified here?

qqline(Y)

Q-Q plot data (X) vs. simulation(Y)

myQQ <- function(x, y, ...) {
#rang <- range(x, y, na.rm=T)

rang <- range(-4, 4, na.rm=T)
qqplot(x, y, xlim=rang, ylim=rang)

}
myQQ(X, Y) # where the Y is the newly simulated data for X
qqline(X)

Table 2.7 Basic R plotting parameters

Parameters Explanations

add¼FALSE If TRUE superposes the plot on the previous one (if it exists)

axes¼TRUE If FALSE does not draw the axes and the box

type ¼ "p" Specifies the type of plot, "p": Points, "l": Lines, "b": Points connected by lines,

"o": Id. But the lines are over the points, "h": Vertical lines, "s": Steps, the data

are represented by the top of the vertical lines, "S": Id. However, the data are

represented at the bottom of the vertical lines

xlim¼,
ylim¼

Specifies the lower and upper limits of the axes, for example with xlim ¼ c
(1, 10) or xlim ¼ range(x)

xlab¼,
ylab¼

Annotates the axes, must be variables of mode character

main¼ Main title, must be a variable of mode character

sub¼ Subtitle (written in a smaller font)

2.16 QQ Normal Probability Plot 41

-3

-4
-2

0

S
a
m

p
le

 Q
u
a
n
ti
le

s
 o

f
th

e
 Y

 (
C

a
u
c
h
y
)

D
a
ta 2

4

-2 -1 0

Theoretical Quantiles of the Normal

Normal Q-Q Plot of the data

1 2 3

Fig. 2.6 Comparing

Cauchy sample to Normal

quantiles

-3
-3

-2
-1

0

S
a
m

p
le

 Q
u
a
n
ti
le

s
 o

f
th

e
 X

 (
N

o
rm

a
l)
 D

a
ta 1

2
3

-2 -1 0

Theoretical Quantiles of the Normal

Normal Q-Q Plot of the data

1 2 3

Fig. 2.4 Quantile-quantile

plot comparing the sample

distribution to normal

distribution

-3

-5
0
0

0
Y

5
0
0

1
0
0
0

-2 -1 0

X

1 2 3

Fig. 2.5 Comparing a

Cauchy sample distribution

to Normal sample

distribution via Q-Q plot

42 2 Foundations of R

Subsampling

x <- matrix(rnorm(100), ncol = 5)
y <- c(1, seq(19))
z <- cbind(x, y)
z.df <- data.frame(z)
z.df

V1 V2 V3 V4 V5 y
1 -0.5202336 0.5695642 -0.8104910 -0.775492348 1.8310536 1
2 -1.4370163 -3.0437691 -0.4895970 -0.018963095 2.2980451 1
3 1.1510882 -1.5345341 -0.5443915 1.176473324 -0.9079013 2
4 0.2937683 -1.1738992 1.1329062 0.050817201 -0.1975722 3
5 0.1011329 1.1382172 -0.3353099 1.980538873 -1.4902878 4
6 -0.3842767 1.7629568 -0.1734520 0.009448173 0.4166688 5
7 -0.1897151 -0.2928122 0.9917801 0.147767309 -0.3447306 6
8 -1.5184068 -0.6339424 -1.4102368 0.471592965 1.0748895 7
9 -0.6475764 0.3884220 1.5151532 -1.977356193 -0.9561620 8
10 0.1476949 -0.2219758 0.6255156 -0.755406330 -0.3411347 9
11 1.1927071 -0.2031697 0.6926743 1.263878207 -0.2628487 10
12 0.6117842 -0.3206093 -1.0544746 0.074048308 -0.3483535 11
13 1.7865743 -0.9457715 -0.2907310 1.520606318 2.3182403 12
14 -0.2075467 0.6440087 0.6277978 -1.670570757 0.1356807 13
15 0.2087459 1.2049360 1.2614003 1.102632278 0.4413631 14
16 -0.8663415 -0.4149625 1.3974565 0.432508163 -0.7408295 15
17 -0.4808447 0.6163081 -0.8693709 -0.830734957 -0.2094428 16
18 -0.3456697 2.5622196 -0.9398627 0.363765941 -1.4032376 17
19 1.1240451 -0.1887518 -0.6514363 -0.988661412 -1.2906608 18
20 -0.9783920 1.0246003 -0.6001832 -0.568181332 0.2374808 19

names(z.df)

[1] "V1" "V2" "V3" "V4" "V5" "y"
subsetting rows

z.sub <- subset(z.df, y > 2 & (y<10 | V1>0))
z.sub

-4
-4

-2
0y

2
4

-2 0
x

2 4

Fig. 2.7 Using isotropic

scales to compare Cauchy

sample to Normal quantiles

2.16 QQ Normal Probability Plot 43

z.sub2 <- z.df[z.df$y %in% c(1, 4),]
z.sub2

V1 V2 V3 V4 V5 y
1 -0.5202336 0.5695642 -0.8104910 -0.77549235 1.831054 1
2 -1.4370163 -3.0437691 -0.4895970 -0.01896309 2.298045 1
5 0.1011329 1.1382172 -0.3353099 1.98053887 -1.490288 4

subsetting columns

z.sub6 <- z.df[, 1:2]
z.sub6

V1 V2
1 -0.5202336 0.5695642
2 -1.4370163 -3.0437691
3 1.1510882 -1.5345341
4 0.2937683 -1.1738992
5 0.1011329 1.1382172
6 -0.3842767 1.7629568
7 -0.1897151 -0.2928122
8 -1.5184068 -0.6339424
9 -0.6475764 0.3884220
10 0.1476949 -0.2219758
11 1.1927071 -0.2031697
12 0.6117842 -0.3206093
13 1.7865743 -0.9457715
14 -0.2075467 0.6440087
15 0.2087459 1.2049360
16 -0.8663415 -0.4149625
17 -0.4808447 0.6163081
18 -0.3456697 2.5622196
19 1.1240451 -0.1887518
20 -0.9783920 1.0246003

V1 V2 V3 V4 V5 y
1 -0.5202336 0.5695642 -0.8104910 -0.77549235 1.831054 1
2 -1.4370163 -3.0437691 -0.4895970 -0.01896309 2.298045 1
5 0.1011329 1.1382172 -0.3353099 1.98053887 -1.490288 4

subsetting columns

z.sub6 <- z.df[, 1:2]
z.sub6

V1 V2
1 -0.5202336 0.5695642
2 -1.4370163 -3.0437691
3 1.1510882 -1.5345341
4 0.2937683 -1.1738992
5 0.1011329 1.1382172
6 -0.3842767 1.7629568
7 -0.1897151 -0.2928122
8 -1.5184068 -0.6339424
9 -0.6475764 0.3884220
10 0.1476949 -0.2219758
11 1.1927071 -0.2031697
12 0.6117842 -0.3206093
13 1.7865743 -0.9457715
14 -0.2075467 0.6440087
15 0.2087459 1.2049360
16 -0.8663415 -0.4149625
17 -0.4808447 0.6163081
18 -0.3456697 2.5622196
19 1.1240451 -0.1887518
20 -0.9783920 1.0246003

V1 V2 V3 V4 V5 y
4 0.2937683 -1.1738992 1.1329062 0.050817201 -0.1975722 3
5 0.1011329 1.1382172 -0.3353099 1.980538873 -1.4902878 4
6 -0.3842767 1.7629568 -0.1734520 0.009448173 0.4166688 5
7 -0.1897151 -0.2928122 0.9917801 0.147767309 -0.3447306 6
8 -1.5184068 -0.6339424 -1.4102368 0.471592965 1.0748895 7
9 -0.6475764 0.3884220 1.5151532 -1.977356193 -0.9561620 8
10 0.1476949 -0.2219758 0.6255156 -0.755406330 -0.3411347 9
11 1.1927071 -0.2031697 0.6926743 1.263878207 -0.2628487 10
12 0.6117842 -0.3206093 -1.0544746 0.074048308 -0.3483535 11
13 1.7865743 -0.9457715 -0.2907310 1.520606318 2.3182403 12
15 0.2087459 1.2049360 1.2614003 1.102632278 0.4413631 14
19 1.1240451 -0.1887518 -0.6514363 -0.988661412 -1.2906608 18

z.sub1 <- z.df[z.df$y == 1,]
z.sub1

V1 V2 V3 V4 V5 y
1 -0.5202336 0.5695642 -0.810491 -0.77549235 1.831054 1
2 -1.4370163 -3.0437691 -0.489597 -0.01896309 2.298045 1

44 2 Foundations of R

2.17 Low-Level Plotting Commands

points(x, y) adds points (the option type ¼ can be used).

lines(x, y) a line plot of (x,y) pairs.

text(x, y, labels, ...) adds text given by labels at coordinates (x, y). Typical use:

plot(x, y, type ¼ "n"); text(x, y, names).
mtext(text, side ¼ 3, line ¼ 0, ...) adds text given by text in the margin specified

by side (see axis() below); line specifies the line from the plotting area.

segments(x0, y0, x1, y1) draws lines from points (x0, y0) to points (x1,
y1).

arrows(x0, y0, x1, y1, angle ¼ 30, code ¼ 2) draw arrows between pairs of

points. With arrows at points (x0, y0), if code ¼ 2, or at point (x1, y1), if
code ¼ 1. Arrows are at both if code ¼ 3. Angle controls the angle from the shaft

of the arrow to the edge of the arrow head.

abline(a, b) draws a line of slope b and intercept a.
abline(h ¼ y) draws a horizontal line at ordinate y.

abline(v ¼ x) draws a vertical line at abscissa x.

abline(lm.obj) draws the regression line given by lm.obj. Abline(h ¼ 0,

col. ¼ 2) #color (col) is often used.

rect(x1, y1, x2, y2) draws a rectangle which left, right, bottom, and top limits are

x1, x2, y1, and y2, respectively.

polygon(x, y) draws a polygon linking the points with coordinates given by x

and y.

legend(x, y, legend) adds the legend at the point (x, y) with the symbols given

by legend.
title() adds a plot title and optionally a subtitle.

axis(side, vect) adds an axis at the bottom (side¼ 1), on the left (side¼ 2), at
the top (side ¼ 3), or on the right (side ¼ 4); vect (optional) gives the abscissa

(or ordinates) where tick-marks are drawn.

rug(x) draws the data x on the x-axis as small vertical lines.

locator(n, type ¼ "n", ...) returns the coordinates (x, y) after the user has

clicked n times on the plot with the mouse; also draws symbols (type ¼ "p") or
lines (type ¼ "l") with respect to optional graphic parameters (...); by default

nothing is drawn (type ¼ "n").

2.18 Graphics Parameters

These can be set globally with par(...). Many can be passed as parameters to plotting

commands (Table 2.8).

adj controls text justification (adj ¼ 0 left-justified, adj ¼ 0.5 centered,

adj ¼ 1 right-justified).

2.18 Graphics Parameters 45

bg specifies the color of the background (ex.: bg¼ "red", bg¼ "blue", ...the
list of the 657 available colors is displayed with colors()).

bty controls the type of box drawn around the plot. Allowed values are: "o", "l",

"7", "c", "u" ou "]" (the box looks like the corresponding character). If bty ¼ "n"
the box is not drawn.

cex a value controlling the size of texts and symbols with respect to the default.

The following parameters have the same control for numbers on the axes-cex.
axis, the axis labels-cex.lab, the title-cex.main, and the subtitle-cex.sub.

col. controls the color of symbols and lines. Use color names: "red", "blue" see

colors() or as "#RRGGBB"; see rgb(), hsv(), gray(), and rainbow();
as for cex there are: col.axis, col.lab, col.main, col.sub.

font an integer which controls the style of text (1: normal, 2: italics, 3: bold, 4:

bold italics); as for cex there are: font.axis, font.lab, font.main, font.
sub.

las an integer which controls the orientation of the axis labels (0: parallel to the

axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical).

lty controls the type of lines, can be an integer or string (1: "solid", 2: "dashed", 3:

"dotted", 4: "dotdash", 5: "longdash", 6: "twodash", or a string of up to eight

characters (between "0" and "9") which specifies alternatively the length, in points

or pixels, of the drawn elements and the blanks, for example lty ¼ "44" will have

the same effect than lty ¼ 2.
lwd a numeric which controls the width of lines, default ¼ 1.

Table 2.8 Common plotting functions for displaying variable relationships subject to conditioning

(trellis plots) available in the R lattice package

Expression Explanation

xyplot(y~x) Bivariate plots (with many functionalities).

barchart(y~x) Histogram of the values of y with respect to those of x.

dotplot(y~x) Cleveland dot plot (stacked plots line-by-line and column-by-column)

densityplot(~x) Density functions plot

histogram(~x) Histogram of the frequencies of x

bwplot(y~x) “Box-and-whiskers” plot

qqmath(~x) Quantiles of x with respect to the values expected under a theoretical

distribution

stripplot(y~x) Single dimension plot, x must be numeric, y may be a factor

qq(y~x) Quantiles to compare two distributions, x must be numeric, y may be

numeric, character, or factor but must have two “levels”

splom(~x) Matrix of bivariate plots

parallel(~x) Parallel coordinates plot

Levelplot

(z � x ∗ y k g1 ∗ g2)

Colored plot of the values of z at the coordinates given by x and y (x, y

and z are all of the same length)

wireframe

(z � x ∗ y k g1 ∗ g2)

3d surface plot

cloud

(z � x ∗ y k g1 ∗ g2)

3d scatter plot

46 2 Foundations of R

mar a vector of 4 numeric values which control the space between the axes and

the border of the graph of the form c(bottom, left, top, right), the default
values are c(5.1, 4.1, 4.1, 2.1).

mfcol a vector of the form c(nr, nc) which partitions the graphic window as a

matrix of nr lines and nc columns, the plots are then drawn in columns.

mfrow id. but the plots are drawn by row.

pch controls the type of symbol, either an integer between 1 and 25, or any single

character within "".

ts.plot(x) id. but if x is multivariate the series may have different dates by x and y.

ps an integer which controls the size in points of texts and symbols.

pty a character, which specifies the type of the plotting region, "s": square, "m":

maximal.

tck a value which specifies the length of tick-marks on the axes as a fraction of the

smallest of the width or height of the plot; if tck ¼ 1 a grid is drawn.

tcl a value which specifies the length of tick-marks on the axes as a fraction of the

height of a line of text (by default tcl ¼ �0.5).
xaxt if xaxt ¼ "n" the x-axis is set but not drawn (useful in conjunction with

axis(side ¼ 1, ...)).
yaxt if yaxt ¼ "n" the y-axis is set but not drawn (useful in conjunction with

axis(side ¼ 2, ...)).

Lattice (Trellis) graphics.

In the normal Lattice formula, y~x|g1*g2 has combinations of optional condi-

tioning variables g1 and g2 plotted on separate panels. Lattice functions take many

of the same arguments as base graphics plus also data ¼ the data frame for the

formula variables and subset ¼ for subsetting. Use panel ¼ to define a custom

panel function (see apropos("panel") and ?lines). Lattice functions return

an object of class trellis and have to be printed to produce the graph. Use print
(xyplot(...)) inside functions where automatic printing doesn’t work. Use

lattice.theme and lset to change Lattice defaults.

2.19 Optimization and model Fitting

optim(par, fn, method ¼ c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B",

"SANN")) general-purpose optimization; par is initial values, fn is function to

optimize (normally minimize).

nlm(f, p) minimize function fusing a Newton-type algorithm with starting

values p.

lm(formula) fit linear models; formula is typically of the form response ~
termA + termB + ...; use I(x*y) + I(x^2) for terms made of nonlinear

components.

glm(formula, family¼) fits generalized linear models, specified by giving a

symbolic description of the linear predictor and a description of the error

2.19 Optimization and model Fitting 47

distribution; family is a description of the error distribution and link function to be

used in the model; see ?family.
nls(formula) nonlinear least-squares estimates of the nonlinear model

parameters.

approx(x, y¼) linearly interpolate given data points; x can be an xy plotting

structure.

spline(x, y¼) cubic spline interpolation.

loess(formula) (locally weighted scatterplot smoothing) fit a polynomial surface

using local fitting.

Many of the formula-based modeling functions have several common arguments:

data¼ the data frame for the formula variables, subset¼ a subset of variables

used in the fit, na.action ¼ action for missing values: "na.fail", "na.
omit", or a function.

The following generics often apply to model fitting functions:

predict(fit, ...) predictions from fit based on input data.

df.residual(fit) returns the number of residual degrees of freedom.

coef(fit) returns the estimated coefficients (sometimes with their standard-

errors).

residuals(fit) returns the residuals.

deviance(fit) returns the deviance.

fitted(fit) returns the fitted values.

logLik(fit) computes the logarithm of the likelihood and the number of

parameters.

AIC(fit) computes the Akaike information criterion (AIC).

2.20 Statistics

There are many R packages and functions for computing a wide spectrum of

statistics. Below are some commonly used examples, and we will see many more

throughout:

aov(formula) analysis of variance model.

anova(fit, ...) analysis of variance (or deviance) tables for one or more fitted

model objects.

density(x) kernel density estimates of x.

Other functions include: binom.test(), pairwise.t.test(), power.
t.test(), prop.test(), t.test(), ... use help.search("test") to

see details.

48 2 Foundations of R

2.21 Distributions

It’s easy to generate random samples from different distributions. Remember to

include set.seed() if you want to get reproducibility during exercises

(Table 2.9).

Also, all of these functions can be used by replacing the letter r with d, p or q to

get, respectively, the probability density (dfunc(x, ...)), the cumulative prob-

ability density (pfunc(x, ...)), and the value of quantile (qfunc(p, ...),
with 0 < p < 1).

2.21.1 Programming

The standard setting for defining new functions is:

function.name<-function(x) { expr(an expression) return(value) },

where x is the parameter in the expression. A simple example of this is:

adding<-function(x=0, y=0){z<-x+y
return(z)}
adding(x=5, y=10)

[1] 15

Table 2.9 Examples of R random number generators

Expression Explanation

rnorm(n, mean ¼ 0, sd ¼ 1) Gaussian (normal)

rexp(n, rate ¼ 1) Exponential

rgamma(n, shape, scale ¼ 1) Gamma

rpois(n, lambda) Poisson

rweibull(n, shape, scale ¼ 1) Weibull

rcauchy(n, location ¼ 0, scale ¼ 1) Cauchy

rbeta(n, shape1, shape2) Beta

rt(n, df) Student’s (t)

rf(n, df1, df2) Fisher’s (F) (df1, df2)

rchisq(n, df) Pearson rbinom(n, size, prob) binomial

rgeom(n, prob) Geometric

rhyper(nn, m, n, k) Hypergeometric

rlogis(n, location ¼ 0, scale ¼ 1) Logistic

rlnorm(n, meanlog ¼ 0, sdlog ¼ 1) Lognormal

rnbinom(n, size, prob) Negative binomial

runif(n, min ¼ 0, max ¼ 1) Uniform

rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon’s statistics

2.21 Distributions 49

Conditions setting

if(cond) {expr}

or

x<-10
if(x>10) z="T" else z="F"
z

[1] "F"

if(cond) cons.expr else alt.expr

Alternatively, ifelse represents a vectorized and extremely efficient condi-

tional mechanism that provides one of the main advantages of R.

For loop

x<-c()
for(i in 1:10) x[i]=i
x

[1] 1 2 3 4 5 6 7 8 9 10

for(var in seq) expr

Other loops

While loop: while(cond) expr.
Repeat: repeat expr.
Applied to innermost of nested loops: break, next.
Use braces {} around statements.

ifelse(test, yes, no) a value with the same shape as test filled with elements from

either yes or no.

do.call(funname, args) executes a function call from the name of the function

and a list of arguments to be passed to it.

2.22 Data Simulation Primer

Before we demonstrate how to synthetically simulate data that closely resemble the

characteristics of real observations from the same process. Start by importing some

observed data for initial exploratory analytics.

Using the SOCR Health Evaluation and Linkage to Primary (HELP) Care Dataset

we can extract some sample data: 00_Tiny_SOCR_HELP_Data_Simmulation.csv

(Table 2.10, Figs. 2.8 and 2.9).

50 2 Foundations of R

data_1 <- read.csv("https://umich.instructure.com/files/1628625/download?dow
nload_frd=1", as.is=T, header=T)
data_1 = read.csv(file.choose())

attach(data_1)
to ensure all variables are accessible within R, e.g., using "age" instead

of data_1$age

Table 2.10 A fragment of the SOCR Health Evaluation and Linkage to Primary (HELP) Care

dataset

ID i2 age treat homeless pcs mcs cesd . . . female Substance racegrp

1 0 25 0 0 49 7 46 . . . 0 Cocaine Black 2

3 39 36 0 0 76 9 33 . . . 0 Heroin Black

100 81 22 0 0 37 17 19 . . . 0 Alcohol Other

-40

0
1

0
2

0

F
re

q
u
e
n
c
y

3
0

4
0

-20 0 20
x.norm

N(10, 20) Histogram

40 60

Fig. 2.8 Histogram of a

sample of 200 random

Normal(m ¼ 10, sd ¼ 20)

observations

0

0
.0

0
0

.0
2

D
e

n
s
it
y

0
.0

4

10 20 30 40

data_1$age

 Histogram of data_1$age

50 60

Raw Data
Simulated Data

70

Fig. 2.9 Comparing the

histogram (black) of the real

ages of the PD patients to

the synthetically generated/

simulated ages (blue)

2.22 Data Simulation Primer 51

https://umich.instructure.com/files/1628625/download?download_frd=1
https://umich.instructure.com/files/1628625/download?download_frd=1

i2 maximum number of drinks (standard units) consumed per day (in the pas

t 30 days range 0-184) see also i1

treat randomization group (0=usual care, 1=HELP clinic)

pcs SF-36 Physical Component Score (range 14-75)

mcs SF-36 Mental Component Score(range 7-62)

cesd Center for Epidemiologic Studies Depression scale (range 0-60)

indtot Inventory of Drug Use Consequences (InDUC) total score (range 4-45)

pss_fr perceived social supports (friends, range 0-14) see also dayslink

drugrisk Risk-Assessment Battery(RAB) drug risk score (range0-21)
satreat any BSAS substance abuse treatment at baseline (0=no, 1=yes)

summary(data_1)

ID i2 age treat
Min. : 1.00 Min. : 0.00 Min. : 3.00 Min. :0.0000
1st Qu.: 24.25 1st Qu.: 1.00 1st Qu.:27.00 1st Qu.:0.0000
Median : 50.50 Median : 15.50 Median :34.00 Median :0.0000
Mean : 50.29 Mean : 27.08 Mean :34.31 Mean :0.1222
3rd Qu.: 74.75 3rd Qu.: 39.00 3rd Qu.:43.00 3rd Qu.:0.0000
Max. :100.00 Max. :137.00 Max. :65.00 Max. :2.0000
homeless pcs mcs cesd
Min. :0.0000 Min. : 6.00 Min. : 0.00 Min. : 0.00
1st Qu.:0.0000 1st Qu.:41.25 1st Qu.:20.25 1st Qu.:17.25
Median :0.0000 Median :48.50 Median :29.00 Median :30.00
Mean :0.1444 Mean :47.61 Mean :30.49 Mean :30.21
3rd Qu.:0.0000 3rd Qu.:57.00 3rd Qu.:39.75 3rd Qu.:43.00
Max. :1.0000 Max. :76.00 Max. :93.00 Max. :68.00
indtot pss_fr drugrisk sexrisk
Min. : 0.00 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.:31.25 1st Qu.: 2.000 1st Qu.: 0.000 1st Qu.: 1.250
Median :36.00 Median : 6.000 Median : 0.000 Median : 5.000
Mean :37.03 Mean : 6.533 Mean : 2.578 Mean : 4.922
3rd Qu.:45.00 3rd Qu.:10.000 3rd Qu.: 3.000 3rd Qu.: 7.750
Max. :60.00 Max. :20.000 Max. :23.000 Max. :13.000
satreat female substance racegrp
Min. :0.00000 Min. :0.00000 Length:90 Length:90
1st Qu.:0.00000 1st Qu.:0.00000 Class :character Class :character
Median :0.00000 Median :0.00000 Mode :character Mode :character
Mean :0.07778 Mean :0.05556
3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.00000 Max. :1.00000

x.norm <- rnorm(n=200, m=10, sd=20)
hist(x.norm, main='N(10, 20) Histogram')

mean(data_1$age)

[1] 34.31111

sd(data_1$age)

[1] 11.68947

Next, we will simulate new synthetic data to match the properties/characteristics

of the observed data (using Uniform, Normal, and Poisson distributions):

52 2 Foundations of R

i2 [0: 184]

age m=34, sd=12

treat {0, 1}

homeless {0, 1}

pcs 14-75

mcs 7-62

cesd 0-60

indtot 4-45

pss_fr 0-14

drugrisk 0-21

sexrisk

satreat (0=no, 1=yes)

female (0=no, 1=yes)

racegrp (black, white, other)

Demographics variables

Define number of subjects

NumSubj <- 282
NumTime <- 4

Define data elements

Cases

Cases <- c(2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24,
25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 41, 42, 43, 44, 45, 53, 55, 58,
60, 62, 67, 69, 71, 72, 74, 79, 80, 85, 87, 90, 95, 97, 99, 100, 101, 106,
107, 109, 112, 120, 123, 125, 128, 129, 132, 134, 136, 139, 142, 147, 149,
153, 158, 160, 162, 163, 167, 172, 174, 178, 179, 180, 182, 192, 195, 201,
208, 211, 215, 217, 223, 227, 228, 233, 235, 236, 240, 245, 248, 250, 251,
254, 257, 259, 261, 264, 268, 269, 272, 273, 275, 279, 288, 289, 291, 296,
298, 303, 305, 309, 314, 318, 324, 325, 326, 328, 331, 332, 333, 334, 336,
338, 339, 341, 344, 346, 347, 350, 353, 354, 359, 361, 363, 364, 366, 367,
368, 369, 370, 371, 372, 374, 375, 376, 377, 378, 381, 382, 384, 385, 386,
387, 389, 390, 393, 395, 398, 400, 410, 421, 423, 428, 433, 435, 443, 447,
449, 450, 451, 453, 454, 455, 456, 457, 458, 459, 460, 461, 465, 466, 467,
470, 471, 472, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 488,
489, 492, 493, 494, 496, 498, 501, 504, 507, 510, 513, 515, 528, 530, 533,
537, 538, 542, 545, 546, 549, 555, 557, 559, 560, 566, 572, 573, 576, 582,
586, 590, 592, 597, 603, 604, 611, 619, 621, 623, 624, 625, 631, 633, 634,
635, 637, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 652, 654, 656,
658, 660, 664, 665, 670, 673, 677, 678, 679, 680, 682, 683, 686, 687, 688,
689, 690, 692)

Imaging Biomarkers

L_caudate_ComputeArea <- rpois(NumSubj, 600)
L_caudate_Volume <- rpois(NumSubj, 800)
R_caudate_ComputeArea <- rpois(NumSubj, 893)
R_caudate_Volume <- rpois(NumSubj, 1000)
L_putamen_ComputeArea <- rpois(NumSubj, 900)
L_putamen_Volume <- rpois(NumSubj, 1400)
R_putamen_ComputeArea <- rpois(NumSubj, 1300)
R_putamen_Volume <- rpois(NumSubj, 3000)
L_hippocampus_ComputeArea <- rpois(NumSubj, 1300)
L_hippocampus_Volume <- rpois(NumSubj, 3200)
R_hippocampus_ComputeArea <- rpois(NumSubj, 1500)
R_hippocampus_Volume <- rpois(NumSubj, 3800)
cerebellum_ComputeArea <- rpois(NumSubj, 16700)
cerebellum_Volume <- rpois(NumSubj, 14000)
L_lingual_gyrus_ComputeArea <- rpois(NumSubj, 3300)
L_lingual_gyrus_Volume <- rpois(NumSubj, 11000)

2.22 Data Simulation Primer 53

Sex <- ifelse(runif(NumSubj)<.5, 0, 1)

Weight <- as.integer(rnorm(NumSubj, 80, 10))

Age <- as.integer(rnorm(NumSubj, 62, 10))

Diagnostic labels (DX):

Dx <- c(rep("PD", 100), rep("HC", 100), rep("SWEDD", 82))

Genetics traits

chr12_rs34637584_GT <- c(ifelse(runif(100)<.3, 0, 1), ifelse(runif(100)<.6,
0, 1), ifelse(runif(82)<.4, 0, 1)) # NumSubj Bernoulli trials

chr17_rs11868035_GT <- c(ifelse(runif(100)<.7, 0, 1), ifelse(runif(100)<.4,
0, 1), ifelse(runif(82)<.5, 0, 1)) # NumSubj Bernoulli trials

Clinical # rpois(NumSubj, 15) + rpois(NumSubj, 6)

UPDRS_part_I <- c(ifelse(runif(100)<.7,0,1) + ifelse(runif(100) < .7, 0, 1),

ifelse(runif(100)<.6, 0, 1)+ ifelse(runif(100)<.6, 0, 1),

ifelse(runif(82)<.4, 0, 1)+ ifelse(runif(82)<.4, 0, 1))

UPDRS_part_II <- c(sample.int(20, 100, replace=T), sample.int(14, 100,
replace=T),

sample.int(18, 82, replace=T))

UPDRS_part_III <- c(sample.int(30, 100, replace=T), sample.int(20, 100,
replace=T), sample.int(25, 82, replace=T))

L_fusiform_gyrus_ComputeArea <- rpois(NumSubj, 3600)
L_fusiform_gyrus_Volume <- rpois(NumSubj, 11000)
R_fusiform_gyrus_ComputeArea <- rpois(NumSubj, 3300)
R_fusiform_gyrus_Volume <- rpois(NumSubj, 10000)

Assign the column names

colnames(sim_PD_Data) <- c(
"Cases",

R_lingual_gyrus_ComputeArea <- rpois(NumSubj, 3300)
R_lingual_gyrus_Volume <- rpois(NumSubj, 12000)

Data (putting all components together)

sim_PD_Data <- cbind(
rep(Cases, each= NumTime), # Cases
rep(L_caudate_ComputeArea, each= NumTime), # Imaging
rep(Sex, each= NumTime), # Demographics
rep(Weight, each= NumTime),
rep(Age, each= NumTime),
rep(Dx, each= NumTime), # Dx
rep(chr12_rs34637584_GT, each= NumTime), # Genetics
rep(chr17_rs11868035_GT, each= NumTime),
rep(UPDRS_part_I, each= NumTime), # Clinical
rep(UPDRS_part_II, each= NumTime),
rep(UPDRS_part_III, each= NumTime),
rep(c(0, 6, 12, 18), NumSubj) # Time

)

Time: VisitTime - done automatically below in aggregator

54 2 Foundations of R

some QC
summary(sim_PD_Data)

Cases L_caudate_ComputeArea Sex Weight Age
10 : 4 594 : 36 0:592 77 : 72 59 : 68
100 : 4 607 : 36 1:536 83 : 60 58 : 56
101 : 4 618 : 32 76 : 56 61 : 56
106 : 4 581 : 28 78 : 56 60 : 52
107 : 4 585 : 28 70 : 44 67 : 52
109 : 4 599 : 28 75 : 44 65 : 48
(Other):1104 (Other):940 (Other):796 (Other):796
Dx chr12_rs34637584_GT chr17_rs11868035_GT UPDRS_part_I
HC :400 0:464 0:592 0:412
PD :400 1:664 1:536 1:520
SWEDD:328 2:196

UPDRS_part_II UPDRS_part_III Time
13 :108 1 : 80 0 :282
9 :100 13 : 68 12:282
5 : 88 19 : 60 18:282
14 : 76 7 : 60 6 :282
6 : 76 12 : 56
3 : 72 6 : 56
(Other):608 (Other):748

dim(sim_PD_Data)

[1] 1128 12

head(sim_PD_Data)

Cases L_caudate_ComputeArea Sex Weight Age Dx chr12_rs34637584_GT
[1,] "2" "618" "0" "75" "59" "PD" "1"
[2,] "2" "618" "0" "75" "59" "PD" "1"
[3,] "2" "618" "0" "75" "59" "PD" "1"
[4,] "2" "618" "0" "75" "59" "PD" "1"
[5,] "3" "621" "0" "61" "44" "PD" "1"
[6,] "3" "621" "0" "61" "44" "PD" "1"
chr17_rs11868035_GT UPDRS_part_I UPDRS_part_II UPDRS_part_III Time
[1,] "0" "1" "2" "4" "0"
[2,] "0" "1" "2" "4" "6"
[3,] "0" "1" "2" "4" "12"
[4,] "0" "1" "2" "4" "18"
[5,] "1" "1" "13" "6" "0"
[6,] "1" "1" "13" "6" "6"

hist(data_1$age, freq=FALSE, right=FALSE, ylim = c(0,0.05))
lines(density(as.numeric(as.data.frame(sim_PD_Data)$Age)),lwd=2, col="blue")
legend("topright", c("Raw Data", "Simulated Data"), fill=c("black", "blue"))

"L_caudate_ComputeArea",
"Sex", "Weight", "Age",
"Dx", "chr12_rs34637584_GT", "chr17_rs11868035_GT",
"UPDRS_part_I", "UPDRS_part_II", "UPDRS_part_III", "Time"

)

2.22 Data Simulation Primer 55

Save Results

Write out (save) the result to a file that can be shared

write.table(sim_PD_Data, "output_data.csv", sep=", ", row.names=FALSE, col.n
ames=TRUE)

2.23 Appendix

2.23.1 HTML SOCR Data Import

SOCR Datasets can automatically be downloaded into the R environment using the

following protocol, which uses the Parkinson's Disease dataset as an example:

library(rvest)

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_Bio
medBigMetadata")
html_nodes(wiki_url, "#content")

{xml_nodeset (1)}
[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top
...

pd_data <- html_table(html_nodes(wiki_url, "table")[[1]])
head(pd_data); summary(pd_data)
Cases L_caudate_ComputeArea L_caudate_Volume R_caudate_ComputeArea
1 2 597 767 855
2 2 597 767 855
3 2 597 767 855
4 2 597 767 855
5 3 604 873 935
6 3 604 873 935
…

chr17_rs11868035_GT UPDRS_part_I UPDRS_part_II UPDRS_part_III Time
1 0 1 12 1 0
2 0 1 12 1 6
3 0 1 12 1 12
4 0 1 12 1 18
5 1 0 19 22 0
6 1 0 19 22 6

Cases L_caudate_ComputeArea L_caudate_Volume
Min. : 2.0 Min. :525.0 Min. :719.0
1st Qu.:158.0 1st Qu.:582.0 1st Qu.:784.0
Median :363.5 Median :600.0 Median :800.0
Mean :346.1 Mean :600.4 Mean :800.3
3rd Qu.:504.0 3rd Qu.:619.0 3rd Qu.:819.0
Max. :692.0 Max. :667.0 Max. :890.0
…

Also see: http://wiki.socr.umich.edu/index.php/SMHS_DataSimulation.

56 2 Foundations of R

http://wiki.socr.umich.edu/index.php/SMHS_DataSimulation
http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata
http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata

2.23.2 R Debugging

Most programs that give incorrect results are impacted by logical errors. When errors

(bugs, exceptions) occur, we need explore deeper – this procedure to identify and fix

bugs is “debugging”.

Common R tools for debugging inlcude traceback(), debug(), browser(), trace()

and recover().

traceback(): Failing R functions report the error to the screen immediately the

error. Calling traceback() will show the function where the error occurred. The

traceback() function prints the list of functions that were called before the error

occurred.

The function calls are printed in reverse order.

f1<-function(x) { r<- x-g1(x); r }

g1<-function(y) { r<-y*h1(y); r }

h1<-function(z) { r<-log(z); if(r<10) r^2 else r^3}

f1(-1)

Warning in log(z): NaNs produced

Error in if (r < 10) r^2 else r^3: missing value where TRUE/FALSE needed
traceback()
3: h(y)

Error in eval(expr, envir, enclos): could not find function "h"

2: g(x)

Error in eval(expr, envir, enclos): could not find function "g"

1: f(-1)

Error in eval(expr, envir, enclos): could not find function "f"

debug()

traceback() does not tell you where is the error. To find out which line causes

the error, we may step through the function using debug().
debug(foo) flags the function foo() for debugging. Undebug(foo)

unflags the function.

When a function is flagged for debugging, each statement in the function is

executed one at a time. After a statement is executed, the function suspends and

user can interact with the R shell.

This allows us to inspect a function line-by-line.

An example computing the sum of squared errors, SS.

2.23 Appendix 57

compute sum of squares
SS<-function(mu, x) {
d<-x-mu;
d2<-d^2;
ss<-sum(d2);
ss }

set.seed(100);
x<-rnorm(100);
SS(1, x)

to debug
debug(SS); SS(1, x)

debugging in: SS(1, x)
debug at <text>#2: {
d <- x - mu
d2 <- d^2
ss <- sum(d2)
ss
}
debug at <text>#3: d <- x - mu
debug at <text>#4: d2 <- d^2
debug at <text>#5: ss <- sum(d2)
debug at <text>#6: ss
exiting from: SS(1, x)

[1] 202.5614519

In the debugging shell ("Browse[1] > "), users can:

• Enter n (next) executes the current line and prints the next one;

• Typing c (continue) executes the rest of the function without stopping;

• Enter Q quits the debugging;

• Enter ls() list all objects in the local environment;

• Enter an object name or print() tells the current value of an object.

Example:

debug(SS)
SS(1, x)

debugging in: SS(1, x)
debug at <text>#2: {
d <- x - mu
d2 <- d^2
ss <- sum(d2)
ss
}
debug at <text>#3: d <- x - mu
debug at <text>#4: d2 <- d^2
debug at <text>#5: ss <- sum(d2)
debug at <text>#6: ss
exiting from: SS(1, x)

[1] 202.5614519

58 2 Foundations of R

Browse[1]> n

debug: d <- x - mu ## the next command

Browse[1]> ls() ## current environment [1] "mu" "x" ## there is no d

Browse[1]> n ## go one step debug: d2 <- d^2 ## the next command

Browse[1]> ls() ## current environment [1] "d" "mu" "x" ## d has been created

Browse[1]> d[1:3] ## first three elements of d [1] -1.5021924 -0.8684688 -1.0789171

Browse[1]> hist(d) ## histogram of d

Browse[1]> where ## current position in call stack where 1: SS(1, x)

Browse[1]> n

debug: ss <- sum(d2)

Browse[1]> Q ## quit

undebug(SS) ## remove debug label, stop debugging process
SS(1, x) ## now call SS again will without debugging

You can label a function for debugging while debugging another function.

f<-function(x)
{ r<-x-g(x);
r }

g<-function(y)
{ r<-y*h(y);
r }

h<-function(z)
{ r<-log(z);
if(r<10)
r^2

else
r^3 }

debug(f) # ## If you only debug f, you will not go into g
f(-1)

Warning in log(z): NaNs produced

Error in if (r < 10) r^2 else r^3: missing value where TRUE/FALSE needed

Browse[1]> n

Browse[1]> n

But, we can also label g and h for debugging when we debug f.

f(-1)

Browse[1]> n

Browse[1]> debug(g)

Browse[1]> debug(h)

Browse[1]> n

Inserting a call to browser() in a function will pause the execution of a function at

the point where browser() is called. This is similar to using debug(), except you can

control where execution gets paused.

2.23 Appendix 59

Example

h<-function(z) {
browser() ## a break point inserted here
r<-log(z);
if(r<10)
r^2
else
r^3
}

f(-1)

Error in if (r < 10) r^2 else r^3: missing value where TRUE/FALSE needed

Browse[1]> ls() Browse[1]> z

Browse[1]> n

Browse[1]> n

Browse[1]> ls()

Browse[1]> c

Calling trace() on a function allows inserting new code into a function. The

syntax for trace() may be challenging.

as.list(body(h))

trace("h", quote(

if(is.nan(r))

{browser()}), at=3, print=FALSE)

f(1)

f(-1)

trace("h", quote(if(z<0) {z< -1}), at=2, print=FALSE)

f(-1)

untrace()

During the debugging process, recover() allows checking the status of variables

in upper level functions. Recover() can be used as an error handler using options()

(e.g. options(error¼ recover)). When functions throw exceptions, execution stops at

point of failure. Browsing the function calls and examining the environment may

indicate the source of the problem.

2.24 Assignments: 2. R Foundations

2.24.1 Confirm that You Have Installed R/RStudio

You should be able to download and load the Foundations of R code in RStudio and

then run all the examples.

60 2 Foundations of R

2.24.2 Long-to-Wide Data Format Translation

Load the SOCR Parkinson’s Disease data in the long-format (http://wiki.socr.umich.

edu/index.php/SOCR_Data_PD_BiomedBigMetadata#Data_Table) and export it in

the wide format. You can only do five variables you choose (not all), but note that

there are several time observations for each subject. You can try using the reshape
command.

2.24.3 Data Frames

Create a Data Frame of the SOCR Parkinson’s Disease data and compute a summary

of three features you select.

2.24.4 Data Stratification

Using the same SOCR Parkinson’s Disease data:

• Extract the first 10 subjects

• Find the cases for which L_caudate_ComputeArea < 600
• Sort the subjects based on L_caudate_Volume
• Gernerate frequency and probability tables for Gender and Age
• Compute the mean Age and the correlation between Age and Weight
• Plot Histogram and density of R_fusiform_gyrus_Volume and scatterplot

L_fusiform_gyrus_Volume and R_fusiform_gyrus_Volume.

Note: You don’t have to apply these data filters sequentially, but this can also be

done for deeper stratification.

2.24.5 Simulation

Generate 1,000 standard normal variables and 1,200 Cauchy distributed random

variables and generate a quantile-quantile (Q-Q) probability plot of the two samples.

Repeat this with 1,500 student t distributed random variables with df ¼ 20 and

generate a quantile-quantile (Q-Q) probability plot.

2.24 Assignments: 2. R Foundations 61

http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata#Data_Table
http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata#Data_Table

2.24.6 Programming

Generate a function that computes the arithmetic average and compare it against the

mean() function using the simulation data you generated in the last question.

References

Some R fundamentals: http://wiki.socr.umich.edu/index.php/SMHS_Usage_Rfundamentals

The Software Carpentry Foundation.

Programming with R: http://swcarpentry.github.io/r-novice-inflammation

R for Reproducible Scientific Analysis: http://swcarpentry.github.io/r-novice-gapminder

A very gentle stats intro using R Book (Verzani): http://cran.r-project.org/doc/contrib/Verzani-

SimpleR.pdf

Quick-R web examples: http://www.statmethods.net/index.html

R-tutor Introduction: http://www.r-tutor.com/r-introduction

R project Introduction: http://cran.r-project.org/doc/manuals/r-release/R-intro.html

UCLA ITS/IDRE R Resources: https://stats.idre.ucla.edu/r/

62 2 Foundations of R

http://wiki.socr.umich.edu/index.php/SMHS_Usage_Rfundamentals
http://swcarpentry.github.io/r-novice-inflammation
http://swcarpentry.github.io/r-novice-gapminder
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://www.statmethods.net/index.html
http://www.r-tutor.com/r-introduction
http://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://stats.idre.ucla.edu/r/

Chapter 3

Managing Data in R

In this Chapter, we will discuss strategies to import data and export results.

Also, we are going to learn the basic tricks we need to know about processing

different types of data. Specifically, we will illustrate common R data structures and

strategies for loading (ingesting) and saving (regurgitating) data. In addition, we will

(1) present some basic statistics, e.g., for measuring central tendency (mean, median,

mode) or dispersion (variance, quartiles, range); (2) explore simple plots; (3) dem-

onstrate the uniform and normal distributions; (4) contrast numerical and categorical

types of variables; (5) present strategies for handling incomplete (missing) data; and

(6) show the need for cohort-rebalancing when comparing imbalanced groups of

subjects, cases or units.

3.1 Saving and Loading R Data Structures

Let’s start by extracting the Edgar Anderson’s Iris Data from the package

datasets. The iris dataset quantifies morphologic shape variations of 50 Iris

flowers of three related genera – Iris setosa, Iris virginica and Iris versicolor. Four

shape features were measured from each sample – length and the width of the sepals

and petals (in centimeters). These data were used by Ronald Fisher in his 1936 linear

discriminant analysis paper (Fig. 3.1).

data()
data(iris)
class(iris)

[1] "data.frame"

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_3&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_3

As an I/O (input/output) demonstration, after we load the iris data and examine

its class type, we can save it into a file named "myData.RData" and then reload it

back into R.

save(iris, file="myData.RData")
load("myData.RData")

3.2 Importing and Saving Data from CSV Files

Importing the data from"CaseStudy07_WorldDrinkingWater_Data.csv"

from these case-studies (https://umich.instructure.com/courses/38100/files/folder/

Case_Studies) and saving it into the R dataset named “water” The variables in the

dataset are as follows:

• Time: Years (1990, 1995, 2000, 2005, 2010, 2012)

• Demographic: Country (across the world)

• Residence Area Type: Urban, rural, or total

• WHO Region

• Population using improved drinking water sources: The percentage of the

population using an improved drinking water source.

• Population using improved sanitation facilities: The percentage of the popu-

lation using an improved sanitation facility.

Generally, the separator of a CSV file is comma. By default, we have option

sep ¼ ", " in the command read.csv(). Also, we can use colnames() to

rename the column variables.

Fig. 3.1 Definitions of petal width and length for the three iris flower genera used in the example

below

64 3 Managing Data in R

https://umich.instructure.com/courses/38100/files/folder/Case_Studies
https://umich.instructure.com/courses/38100/files/folder/Case_Studies

water <- read.csv('https://umich.instructure.com/files/399172/download?downl
oad_frd=1', header=T)
water[1:3,]

Year..string. WHO.region..string. Country..string.
1 1990 Africa Algeria
2 1990 Africa Angola
3 1990 Africa Benin
Residence.Area.Type..string.
1 Rural
2 Rural
3 Rural
Population.using.improved.drinking.water.sources......numeric.
1 88
2 42
3 49
Population.using.improved.sanitation.facilities......numeric.
1 77
2 7
3 0

colnames(water)<-c("year", "region", "country", "residence_area", "improved_
water", "sanitation_facilities")
water[1:3,]

year region country residence_area improved_water sanitation_facilities
1 1990 Africa Algeria Rural 88 77
2 1990 Africa Angola Rural 42 7
3 1990 Africa Benin Rural 49 0

which.max(water$year);

913

rowMeans(water[,5:6])
mean(water[,6], trim=0.08, na.rm=T)

[1] 71.63629

This code loads CSV files that already include a header line listing the names of

the variables. If we don’t have a header in the dataset, we can use the

header ¼ FALSE option (https://umich.instructure.com/courses/38100/files/

folder/Case_Studies). R will assign default names to the column variables of the

dataset.

Simulation <- read.csv("https://umich.instructure.com/files/354289/download?
download_frd=1", header = FALSE)
Simulation[1:3,]

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
1 ID i2 age treat homeless pcs mcs cesd indtot pss_fr drugrisk sexrisk
2 1 0 25 0 0 49 7 46 37 0 1 6
3 2 18 31 0 0 48 34 17 48 0 0 11
V13 V14 V15 V16
1 satreat female substance racegrp
2 0 0 cocaine black
3 0 0 alcohol white

3.2 Importing and Saving Data from CSV Files 65

https://umich.instructure.com/courses/38100/files/folder/Case_Studies
https://umich.instructure.com/courses/38100/files/folder/Case_Studies
https://umich.instructure.com/files/399172/download?download_frd=1
https://umich.instructure.com/files/399172/download?download_frd=1
https://umich.instructure.com/files/354289/download?download_frd=1
https://umich.instructure.com/files/354289/download?download_frd=1

To save a data frame to CSV files, we could use the write.csv() function.

The option file ¼ "a/local/file/path" allows us edit the saved file path.

write.csv(iris, file = "C:/Users/iris.csv") # Iris data

write.csv(water, file = "C:/Users/WHO_Water.csv") # World Drinking Water

3.3 Exploring the Structure of Data

We can use the command str() to explore the structure of a dataset. For instance,

using the World Drinking Water dataset:

str(water)

'data.frame': 3331 obs. of 6 variables:
$ year : int 1990 1990 1990 1990 1990 1990 1990 1990 19
90 1990 ...
$ region : Factor w/ 6 levels "Africa","Americas",..: 1 1
1 1 1 1 1 1 1 1 ...
$ country : Factor w/ 192 levels "Afghanistan",..: 3 5 19 2
3 26 27 30 32 33 37 ...
$ residence_area : Factor w/ 3 levels "Rural","Total",..: 1 1 1 1
1 1 1 1 1 1 ...
$ improved_water : num 88 42 49 86 39 67 34 46 37 83 ...
$ sanitation_facilities: num 77 7 0 22 2 42 27 12 4 11 ...

We can see that this (World Drinking Water) dataset has 3331 observations

and 6 variables. The output also give us the class of each variable and first few

elements in the variable.

3.4 Exploring Numeric Variables

Summary statistics for numeric variables in the dataset could be accessed by using

the command summary() (Fig. 3.2).

Fig. 3.2 Density plot of the

water improvement variable

in the World Health

Organization (WHO) water

quality case-study.

66 3 Managing Data in R

summary(water$year)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1990 1995 2005 2002 2010 2012

summary(water[c("improved_water", "sanitation_facilities")])

improved_water sanitation_facilities
Min. : 3.0 Min. : 0.00
1st Qu.: 77.0 1st Qu.: 42.00
Median : 93.0 Median : 81.00
Mean : 84.9 Mean : 68.87
3rd Qu.: 99.0 3rd Qu.: 97.00
Max. :100.0 Max. :100.00
NA's :32 NA's :135

plot(density(water$improved_water,na.rm = T))

variables need not be continuous, we can still get intuition about their
distribution

The six summary statistics and NA’s (missing data) are reported in the R output

above.

3.5 Measuring the Central Tendency: Mean, Median, Mode

Mean and median are two frequent measurements of the central tendency. Mean is

“the sum of all values divided by the number of values”. Median is the number in the

middle of an ordered list of values. In R, mean() and median() functions provide

us with these two measurements.

vec1<-c(40, 56, 99)
mean(vec1)

[1] 65

mean(c(40, 56, 99))

[1] 65

median(vec1)

[1] 56

median(c(40, 56, 99))

[1] 56

install.packages("psych");
library("psych")
geometric.mean(vec1, na.rm=TRUE)

[1] 60.52866

3.5 Measuring the Central Tendency: Mean, Median, Mode 67

The mode is the value that occurs most often in the dataset. It is often used in

categorical data, where mean and median are inappropriate measurements.

We can have one or more modes. In the water dataset, we have “Europe” and

“Urban” as the modes for region and residence area, respectively. These two vari-

ables are unimodal, which has a single mode. For the year variable, we have two

modes: 2000 and 2005. Both of the categories have 570 counts. The year variable is

an example of a bimodal. We also have multimodal data that has two or more modes.

Mode is just one of the measures for the central tendency. The best way to use it is

to compare the counts of the mode to other values. This help us to judge whether one

or several categories dominates all others in the data. After that, we are able to

analyze the meaning behind these common centrality measures.

In numeric datasets, the mode(s) represents the highest bin(s) in the histogram.

In this way, we can also examine if the numeric data is multimodal.

More information about measures of centrality is available here (http://wiki.socr.

umich.edu/index.php/AP_Statistics_Curriculum_2007_EDA_Center).

3.6 Measuring Spread: Quartiles and the Five-Number

Summary

The five-number summary describes the spread of a dataset. They are:

• Minimum (Min.), representing the smallest value in the data

• First quantile/Q1 (1st Qu.), representing the 25th percentile, which splits off the

lowest 25% of data from the highest 75%

• Median/Q2 (Median), representing the 50th percentile, which splits off the

lowest 50% of data from the top 50%

• Third quantile/Q3 (3rd Qu.), representing the 75th percentile, which splits off

the lowest 75% of data from the top 25%

• Maximum (Max.), representing the largest value in the data.

Min and Max can be obtained by using min() and max() respectively.

The difference between maximum and minimum is known as range. In R, the

range() function gives us both the minimum and maximum. A combination of

range() and diff() could do the trick of getting the actual range value.

range(water$year)

[1] 1990 2012

diff(range(water$year))

[1] 22

Q1 and Q3 are the 25th and 75th percentiles of the data. Median (Q2) is right in

the middle of Q1 and Q3. The difference between Q3 and Q1 is called the

68 3 Managing Data in R

http://wiki.socr.umich.edu/index.php/AP_Statistics_Curriculum_2007_EDA_Center
http://wiki.socr.umich.edu/index.php/AP_Statistics_Curriculum_2007_EDA_Center

interquartile range (IQR). Within the IQR lies half of our data that has no extreme

values.

In R, we use the IQR() to calculate the interquartile range. If we use IQR() for a

data with NA‘s, the NA’s are ignored by the function while using the option na.

rm ¼ TRUE.

IQR(water$year)

[1] 15

summary(water$improved_water)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
3.0 77.0 93.0 84.9 99.0 100.0 32

IQR(water$improved_water, na.rm = T)

[1] 22

Similar to the command summary() that we talked about earlier in this Chapter,

the function quantile() could be used to obtain the five-number summary.

quantile(water$improved_water, na.rm = T)

0% 25% 50% 75% 100%
3 77 93 99 100

We can also calculate specific percentiles in the data. For example, if we want the

20th and 60th percentiles, we can do the following.

quantile(water$improved_water, probs = c(0.2, 0.6), na.rm = T)

20% 60%
71 97

Using the seq() function, we can generate percentiles that are evenly-spaced.

quantile(water$improved_water, seq(from=0, to=1, by=0.2), na.rm = T)

0% 20% 40% 60% 80% 100%
3 71 89 97 100 100

Let’s reexamine the five-number summary for the improved_water variable.

When we ignore the NA‘s, the difference between minimum and Q1 is 74 while the

difference between Q3 and maximum is only 1. The interquartile range is 22%.

Combining these facts, the first quarter is more widely spread than the middle 50% of

values. The last quarter is the most condensed one that has only two percentages:

99% and 100%. Also, we can notice that the mean is smaller than the median. The

mean is more sensitive to the extreme values than the median. We have a very small

minimum that makes the range of first quantile very large. This extreme value

impacts the mean more than the median.

3.6 Measuring Spread: Quartiles and the Five-Number Summary 69

3.7 Visualizing Numeric Variables: Boxplots

We can visualize the five-number summary by a boxplot (box-and-whiskers plot).

With the boxplot() function we can specify the title (main ¼ "") and labels for

x (xlab ¼ "") and y (ylab ¼ "") axes (Fig. 3.3).

boxplot(water$improved_water, main="Boxplot for Percent improved_water",
ylab="Percentage")

In the boxplot, we have five horizontal lines. Each represents the corresponding

value in the five-number summary. The box in the middle represents the middle 50%

of values. The bold line in the box is the median. Mean value is not illustrated on the

graph.

Boxplots only allow the two ends to extend to a minimum or maximum of 1.5

times the IQR. Therefore, any value that falls outside of the 3 � IQR range will be

represented as circles or dots. They are considered as potential outliers. We can see

that there are a lot of candidate outliers with small values on the low end of the graph.

Fig. 3.3 Boxplot of the

water improvement variable

in the WHO dataset

70 3 Managing Data in R

3.8 Visualizing Numeric Variables: Histograms

A histogram is another way to show the spread of a numeric variable (See Chap. 4

for additional information). It uses predetermined number of bins as containers for

values to divide the original data. The height of the bins indicates frequency

(Figs. 3.4 and 3.5).

hist(water$improved_water, main = "Histogram of Percent improved_water", xl
ab="Percentage")

hist(water$sanitation_facilities, main = "Histogram of Percent sanitation_f
acilities", xlab = "Percentage")

We could see that the shape of two graphs are somewhat similar. They are both

left skewed patterns (mean < median). Other common skew patterns are shown in

Fig. 3.6.

Fig. 3.4 Histogram plot of

the water improvement data

Fig. 3.5 Histogram plot of

overall proportion of regions

with sanitation facilities

(WHO water dataset)

Fig. 3.6 Shape differences between skewed and symmetric distributions

3.8 Visualizing Numeric Variables: Histograms 71

You can see the density plots of over 80 different probability distributions using

the SOCR Java Distribution Calculators (http://socr.umich.edu/html/dist/) or the

Distributome HTML5 Distribution Calculators (http://www.distributome.org/tools.

html), Fig. 3.7.

3.9 Understanding Numeric Data: Uniform

and Normal Distributions

If the data follows a uniform distribution, then all values are equally likely to occur in

any interval of a fixed width. The histogram for a uniformly distributed dataset

would have equal heights for each bin, see Fig. 3.9.

x <- rnorm(N, 0, 1)
hist(x, probability=T,
col='lightblue', xlab=' ', ylab=' ', axes=F,
main='Normal Distribution')

lines(density(x, bw=0.4), col='red', lwd=3)

Often, but not always, real world processes behave as normally distributed. A

normal distribution would have a higher frequency for middle values and lower

frequency for more extreme values. It has a symmetric and bell-curved shape just

like in Fig. 3.8. Many parametric-based statistical approaches assume normality of

the data. In cases where this parametric assumption is violated, variable transforma-

tions or distribution-free tests may be more appropriate.

Fig. 3.7 Live visualization demonstrations using SOCR and Distributome resources

72 3 Managing Data in R

http://socr.umich.edu/html/dist/
http://www.distributome.org/tools.html
http://www.distributome.org/tools.html

3.10 Measuring Spread: Variance and Standard Deviation

Distribution is a great way to characterize data using only a few parameters. For

example, normal distribution can be defined by only two parameters: center and

spread, or statistically by the mean and standard deviation.

A way to estimate the mean is to divide the sum of the data values by the total

number of values. So, we have the following formula:

Mean Xð Þ ¼ μ ¼
1

n

X

n

i¼1

xi:

The variance is the average sum of squares and the standard devision is a square

root of the variance:

Var Xð Þ ¼ σ2 ¼
1

n� 1

X

n

i¼1

xi � μð Þ2

StdDev Xð Þ ¼ σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Xð Þ
p

:

Since the water dataset is non-normal, we use a new dataset, including the

demographics of baseball players, to illustrate normal distribution properties. The

"01_data.txt" dataset has following variables:

Fig. 3.9 Uniform

distribution density and

sample histogram plot

Fig. 3.8 Overlay of a

Nornal distribution density

(red) and a corresponding

Normal sample histogram

(blue)

3.10 Measuring Spread: Variance and Standard Deviation 73

• Name

• Team

• Position

• Height

• Weight

• Age

We can check the histogram for approximate normality of the players’ weight and

height (Figs. 3.10 and 3.11).

baseball<-read.table("https://umich.instructure.com/files/330381/download?do
wnload_frd=1", header=T)
hist(baseball$Weight, main = "Histogram for Baseball Player's Weight", xlab=
"weight")

hist(baseball$Height, main = "Histogram for Baseball Player's Height", xlab
="height")

These plots allow us to visually inspect the normality of the players’ heights and

weights. We could also obtain mean and standard deviation of the weight and height

variables.

Fig. 3.10 Histogram plot of

the players’ weights, Major

League Baseball (MLB)

dataset

Fig. 3.11 Histogram plot of

the players’ heights,

MLB data

74 3 Managing Data in R

https://umich.instructure.com/files/330381/download?download_frd=1
https://umich.instructure.com/files/330381/download?download_frd=1

mean(baseball$Weight)

[1] 201.7166

mean(baseball$Height)

[1] 73.69729

var(baseball$Weight)

[1] 440.9913

sd(baseball$Weight)

[1] 20.99979

var(baseball$Height)

[1] 5.316798

sd(baseball$Height)

[1] 2.305818

Larger standard deviation, or variance, suggest the data is more spread out from

the mean. Therefore, the weight variable is more spread than the height variable.

Given the first two moments (mean and standard deviation), we can easily

estimate how extreme a specific value is. Assuming we have a normal distribution,

the values follow a 68 � 95 � 99.7 rule. This means 68% of the data lies within the

interval [μ� σ, μ + σ]; 95% of the data lies within the interval [μ� 2∗ σ, μ + 2∗ σ]

and 99.7% of the data lies within the interval [μ � 3 ∗ σ, μ + 3 ∗ σ]. The following

graph plotted by R illustrates the 68 � 95 � 99.7% rule (Fig. 3.12).

Applying the 68-95-99.7 rule to our baseball weight variable, we know that 68%

of our players weighted between 180.7 pounds and 222.7 pounds; 95% of the players

weighted between 159.7 pounds and 243.7 pounds; And 99.7% of the players

weighted between 138.7 pounds and 264.7 pounds.

68-95-99.7 Rule

68%

95%

99.7%

µ − 3σ µ + 2σ µ + 3σµ − 2σ µ − σ µ + σµ

Fig. 3.12 68-95-99.7% rule for Normal distribution

3.10 Measuring Spread: Variance and Standard Deviation 75

3.11 Exploring Categorical Variables

Back to our water dataset, we can treat the year variable as a categorical rather than a

numeric variable. Since the year variable only has six distinctive values, it is

reasonable to treat it as a categorical feature, where each value is a category that

could apply to multiple WHO regions. Moreover, region and residence area vari-

ables are also categorical.

Different from numeric variables, the categorical variables are better examined by

tables rather than summary statistics. A one-way tables represent a single categorical

variable. It gives us the counts of different categories. The table() function can

create one-way tables for our water dataset:

water <- read.csv('https://umich.instructure.com/files/399172/download?downl
oad_frd=1', header=T)
table(water$Year)

1990 1995 2000 2005 2010 2012
520 561 570 570 556 554

table(water$WHO.region)

Africa Americas Eastern Mediterranean
797 613 373
Europe South-East Asia Western Pacific
910 191 447

table(water$Residence.Area)

Rural Total Urban
1095 1109 1127

Given that we have a total of 3331 observations, the WHO region table tells us

that about 27% (910/3331) of the areas examined in the study are in Europe.

R can directly give us table proportions when using the prop.table()

function. The proportion values can be transformed as percentages.

year_table<-table(water$Year..string.)
prop.table(year_table)

1990 1995 2000 2005 2010 2012
0.1561093 0.1684179 0.1711198 0.1711198 0.1669168 0.1663164

year_pct<-prop.table(year_table)*100
round(year_pct, digits=1)

1990 1995 2000 2005 2010 2012
15.6 16.8 17.1 17.1 16.7 16.6

76 3 Managing Data in R

https://umich.instructure.com/files/399172/download?download_frd=1
https://umich.instructure.com/files/399172/download?download_frd=1

3.12 Exploring Relationships Between Variables

So far, the methods and statistics that we have seen are univariate. Sometimes, we

want to examine the relationship between two or multiple variables. For example,

did the percentage of the population that uses improved drinking-water sources

increase over time? To address such problems, we need to look at bivariate or

multivariate relationships.

Visualizing Relationships: scatterplots

Let’s look at a bivariate case first. A scatterplot is a good way to visualize bivariate

relationships. We have the x-axis and y-axis each representing one of the variables.

Each observation is illustrated on the graph by a dot. If the graph shows a clear

pattern, rather than a cluster of random dots, the two variables may be correlated with

each other.

In R, we can use the plot() function to create scatterplots. We have to define

the variables for the x and y-axes. The labels in the graph are editable (Fig. 3.13).

plot.window(c(400,1000), c(500,1000))
plot(x=water$year, y=water$improved_water,

main= "Scatterplot of Year vs. Improved_water",
xlab= "Year",
ylab= "Percent of Population Using Improved Water")

We can see from the scatterplot that there appears to be a pattern.

Examining Relationships: two-way cross-tabulations

Scatterplot is a useful tool to examine the relationship between two variables

where at least one of them is numeric. When both variables are nominal, two-way

Fig. 3.13 Scatterplot of the

percent of world population

using improved water

quality (WHO dataset)

3.12 Exploring Relationships Between Variables 77

cross-tabulation would be a better choice (also called crosstab or contingency

table).

The function CrossTable() is available in R under the package gmodels.

Let’s install it first.

#install.packages("gmodels", repos = "http://cran.us.r-project.org")
library(gmodels)

We are interested in investigating the relationship between World Health Orga-

nization (WHO) region and residence area type in the water study. We might want to

know if there is a difference in terms of residence area type between the African

WHO region and all other WHO regions.

To address this problem, we need to create an indicator variable for the African

WHO region first.

water$africa<-water$WHO.region=="Africa"

Let’s revisit the table() function to see how many WHO regions are in Africa.

table(water$africa)
FALSE TRUE
2534 797

Now, let’s create a two-way cross-tabulation using CrossTable().

CrossTable(x=water$Residence.Area, y=water$africa)

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 3331

| water$africa
water$Residence.Area | FALSE | TRUE | Row Total |
---------------------|-----------|-----------|-----------|
Rural | 828 | 267 | 1095 |
| 0.030 | 0.096 | |
| 0.756 | 0.244 | 0.329 |
| 0.327 | 0.335 | |
| 0.249 | 0.080 | |
---------------------|-----------|-----------|-----------|

78 3 Managing Data in R

http://cran.us.r-project.org

Total | 845 | 264 | 1109 |
| 0.002 | 0.007 | |
| 0.762 | 0.238 | 0.333 |
| 0.333 | 0.331 | |
| 0.254 | 0.079 | |
---------------------|-----------|-----------|-----------|
Urban | 861 | 266 | 1127 |
| 0.016 | 0.050 | |
| 0.764 | 0.236 | 0.338 |
| 0.340 | 0.334 | |
| 0.258 | 0.080 | |
---------------------|-----------|-----------|-----------|
Column Total | 2534 | 797 | 3331 |
| 0.761 | 0.239 | |
---------------------|-----------|-----------|-----------|

Each cell in the table contains five numbers. The first one N gives us the count

that fall into its corresponding category. The Chi-square contribution yields infor-

mation about the cell’s contribution in the Pearson’s Chi-squared test for indepen-

dence between two variables. This number measures the probability that the

differences in cell counts are due to chance alone.

The numbers of interest include Col Total and Row Total. In this case, these

numbers represent the marginal distributions for residence area type among African

regions and the regions in the rest of the world. We can see that the numbers are very

close between African and non-African regions for each type of residence area.

Therefore, we can conclude that African WHO regions do not have a difference in

terms of residence area types compared to the rest of the world.

3.13 Missing Data

In the previous sections, we simply ignored the incomplete observations in our water

dataset (na.rm ¼ TRUE). Is this an appropriate strategy to handle incomplete data?

Could the missingness pattern of those incomplete observations be important? It is

possible that the arrangement of the missing observations may reflect an important

factor that was not accounted for in our statistics or our models.

Missing Completely at Random (MCAR) is an assumption about the probabil-

ity of missingness being equal for all cases; Missing at Random (MAR) assumes

the probability of missingness has a known but random mechanism (e.g., different

rates for different groups);Missing not at Random (MNAR) suggest a missingness

mechanism linked to the values of predictors and/or response, e.g., some participants

may drop out of a drug trial when they have side-effects.

There are a number of strategies to impute missing data. The expectation max-

imization (EM) algorithm provides one example for handling missing data. The

SOCR EM tutorial, activity, and documentations provide the theory, applications

and practice for effective (multidimensional) EM parameter estimation.

3.13 Missing Data 79

The simplest way to handle incomplete data is to substitute each missing value

with its (feature or column) average. When the missingness proportion is small, the

effect of substituting the means for the missing values will have little effect on the

mean, variance, or other important statistics of the data. Also, this will preserve those

non-missing values of the same observation or row, see Fig. 3.14.

m1<-mean(water$Population.using.improved.drinking, na.rm = T)
m2<-mean(water$Population.using.improved.sanitation, na.rm = T)
water_imp<-water
for(i in 1:3331){
if(is.na(water_imp$Population.using.improved.drinking[i])){
water_imp$Population.using.improved.drinking[i]=m1

}
if(is.na(water_imp$Population.using.improved.sanitation[i])){
water_imp$Population.using.improved.sanitation=m2

}
}
summary(water_imp)

Year..string. WHO.region..string. Country..string.
Min. :1990 Africa :797 Albania : 18
1st Qu.:1995 Americas :613 Algeria : 18
Median :2005 Eastern Mediterranean:373 Andorra : 18
Mean :2002 Europe :910 Angola : 18
3rd Qu.:2010 South-East Asia :191 Antigua and Barbuda: 18
Max. :2012 Western Pacific :447 Argentina : 18
(Other) :3223
Residence.Area.Type..string.
Rural:1095
Total:1109
Urban:1127
Population.using.improved.drinking.water.sources......numeric.
Min. : 3.0
1st Qu.: 77.0
Median : 93.0
Mean : 84.9
3rd Qu.: 99.0
Max. :100.0
NA's :32

Fig. 3.14 Schematic data

representation indexing data

values by case (rows) and

feature (columns)

80 3 Managing Data in R

Population.using.improved.sanitation.facilities......numeric.
Min. : 0.00
1st Qu.: 42.00
Median : 81.00
Mean : 68.87
3rd Qu.: 97.00
Max. :100.00
NA's :135
africa Population.using.improved.sanitation
Mode :logical Min. :68.87
FALSE:2534 1st Qu.:68.87
TRUE :797 Median :68.87
NA's :0 Mean :68.87
3rd Qu.:68.87
Max. :68.87

Population.using.improved.drinking
Min. : 3.0
1st Qu.: 77.0
Median : 93.0
Mean : 84.9
3rd Qu.: 99.0
Max. :100.0

A more sophisticated way of resolving missing data is to use a model (e.g., linear

regression) to predict the missing feature and impute its missing values. This is

called the predictive mean matching approach. This method is good for

data with multivariate normality. However, a disadvantage of it is that it can only

predict one value at a time, which is very time consuming. Also, the multivariate

normality assumption might not be satisfied and there may be important multivariate

relations that are not accounted for. We are using the mi package to demonstrate

predictive mean matching.

Let’s install the mi package first.

install.packages("mi", repos = "http://cran.us.r-project.org")
library(mi)

Then, we need to get the missing information matrix. We are using the imputation

method pmm (predictive mean matching approach) for both missing variables.

mdf<-missing_data.frame(water)
head(mdf)

Year..string. WHO.region..string. Country..string.
1 1990 Africa Algeria
2 1990 Africa Angola
3 1990 Africa Benin
4 1990 Africa Botswana
5 1990 Africa Burkina Faso
6 1990 Africa Burundi

3.13 Missing Data 81

http://cran.us.r-project.org

WHO.region..string. unordered-categorical
Country..string. unordered-categorical
Residence.Area.Type..string. unordered-categorical
Population.using.improved.drinking.water.sources......numeric.
continuous
Population.using.improved.sanitation.facilities......numeric.
continuous
africa
binary

Residence.Area.Type..string.
1 Rural
2 Rural
3 Rural
4 Rural
5 Rural
6 Rural
##
Population.using.improved.drinking.water.sources......numeric.
1 88
2 42
3 49
4 86
5 39
6 67
Population.using.improved.sanitation.facilities......numeric. africa
1 77 TRUE
2 7 TRUE
3 0 TRUE
4 22 TRUE
5 2 TRUE
6 42 TRUE
missing_Population.using.improved.drinking.water.sources......numeric.
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE
6 FALSE
missing_Population.using.improved.sanitation.facilities......numeric.
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE
6 FALSE

show(mdf)

Object of class missing_data.frame with 3331 observations on 7 variables

There are 3 missing data patterns

Append '@patterns' to this missing_data.frame to access the corresponding
pattern for every observation or perhaps use table()

type
Year..string.
continuous

82 3 Managing Data in R

missing
Year..string. 0
WHO.region..string. 0
Country..string. 0
Residence.Area.Type..string. 0
Population.using.improved.drinking.water.sources......numeric. 32
Population.using.improved.sanitation.facilities......numeric. 135
africa 0
method
Year..string. <NA>
…
africa
<NA>

mdf<-change(mdf, y="Population.using.improved.drinking", what = "imputation_
method", to="pmm")
mdf<-change(mdf, y="Population.using.improved.sanitation", what = "imputatio
n_method", to="pmm")

Notes

• Converting the input data.frame to a missing_data.frame allows us to

include in the DF enhanced metadata about each variable, which is essential for the

subsequent modeling, interpretation, and imputation of the initial missing data.

• show() displays all missing variables and their class-labels (e.g., continuous),

along with meta-data. The missing_data.frame constructor suggests the

most appropriate classes for each missing variable; however, the user often needs

to correct, modify, or change these meta-data, using change().

• Use the change() function to change/correct meta-data in the constructed

missing_data.frame object which may be incorrectly reported by show

(mfd).

• To get a sense of the raw data, look at the summary, image, or hist of the

missing_data.frame.

• The mi vignettes provide many useful examples of handling missing data.

Next, we can perform the initial imputation. Here we imputed three times, which

will create three different datasets with slightly different imputed values.

imputations<-mi(mdf, n.iter=10, n.chains=3, verbose=T)

Next, we need to extract several multiply imputed data.frames from impu-

tations object. Finally, we can compare the summary statistics between the

original dataset and the imputed datasets.

data.frames <- complete(imputations, 3)
summary(water)

Year..string. WHO.region..string. Country..string
.
Min. :1990 Africa :797 Albania : 18
1st Qu.:1995 Americas :613 Algeria : 18
Median :2005 Eastern Mediterranean:373 Andorra : 18
Mean :2002 Europe :910 Angola : 18

3.13 Missing Data 83

3rd Qu.:2010 South-East Asia :191 Antigua and Barbuda: 18
Max. :2012 Western Pacific :447 Argentina : 18
(Other) :3223
Residence.Area.Type..string.
Rural:1095
Total:1109
Urban:1127
…
missing_Population.using.improved.sanitation.facilities......numeric.
Mode :logical
FALSE:3196
TRUE :135
NA's :0

This is just a brief introduction for handling incomplete datasets. In later

Chapters, we will discuss more about missing data with different imputation

methods and how to evaluate the complete imputed results.

3.13.1 Simulate Some Real Multivariate Data

Suppose we would like to generate a synthetic dataset:

sim data ¼ y; x1; x2; x3; x4; x5; x6; x7; x8; x9; x10f g:

Then, we can introduce a method that takes a dataset and a desired proportion of

missingness and wipes out the same proportion of the data, i.e., introduces random

patterns of missingness. Note that there are already R functions that automate the

introduction of missingness, e.g., missForest::prodNA(); however, writing

such method from scratch is also useful. Figure 3.15 shows the results of introducing

30% missingness in the simulated data.

800

Standardized Variable

1.5

1.0

0.5

0.0

-0.5

-1.0

Clustered by missingness

Dark represents missing data

y

x
1

x
2

x
3 x
4

x
5

x
6 x
7

x
8

x
9

x
1
0

600

O
b
s
e
rv

a
ti
o
n
 N

u
m

b
e
r

400

200

Fig. 3.15 Incomplete data

image plot illustrating the

pattern of data missingness

84 3 Managing Data in R

set.seed(123)
create MCAR missing-data generator
create.missing <- function (data, pct.mis = 10)
{

n <- nrow(data)
J <- ncol(data)
if (length(pct.mis) == 1) {

if(pct.mis>= 0 & pct.mis <=100) {
n.mis <- rep((n * (pct.mis/100)), J)

}
else {

warning("Percent missing values should be an integer between
0 and 100! Exiting"); break

}
}

else {
if (length(pct.mis) < J)

stop("The length of the missing-vector is not equal to the numbe
r of columns in the data! Exiting!")

n.mis <- n * (pct.mis/100)
}
for (i in 1:ncol(data)) {

if (n.mis[i] == 0) { # if column has no missing do nothing.
data[, i] <- data[, i]

}
else {

data[sample(1:n, n.mis[i], replace = FALSE), i] <- NA
For each given column (i), sample the row indices (1:n),
a number of indices to replace as "missing", n.mis[i], "NA",
without replacement

}
}
return(as.data.frame(data))

}

Next, let’s synthetically generate (simulate) 1,000 cases including all 11 features

in the data ({y, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}).

n <- 1000; u1 <- rbinom(n, 1, .5); v1<-log(rnorm(n, 5, 1)); x1 <- u1*exp(v1)
u2 <- rbinom(n, 1, .5); v2 <- log(rnorm(n, 5, 1)); x2 <- u2*exp(v2)
x3 <- rbinom(n,1,prob=0.45); x4<-ordered(rep(seq(1, 5), n)[sample(1:n, n)]);
x5 <- rep(letters[1:10], n)[sample(1:n, n)]; x6 <- trunc(runif(n, 1, 10));
x7 <- rnorm(n); x8 <- factor(rep(seq(1, 10), n)[sample(1:n, n)]);
x9 <- runif(n,0.1,0.99); x10 <- rpois(n, 4); y<-x1 + x2 + x7 + x9 + rnorm(n)

package the simulated data as a data frame object
sim_data <- cbind.data.frame(y, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)

randomly create missing values
sim_data_30pct_missing <- create.missing(sim_data, pct.mis=30);
head(sim_data_30pct_missing); summary(sim_data_30pct_missing)

3.13 Missing Data 85

y x1 x2 x3 x4 x5 x6 x7 x8 x9
1 NA NA 0.000000 0 1 h 8 NA 3 NA
2 11.449223 NA 5.236938 0 1 i NA NA 10 0.2639489
3 -1.188296 0.000000 0.000000 0 5 a 3 -1.1469495 <NA> 0.4753195
4 NA NA NA 0 <NA> e 6 1.4810186 10 0.6696932
5 4.267916 3.490833 0.000000 0 <NA> <NA> NA 0.9161912 <NA> 0.9578455
6 NA 0.000000 4.384732 1 <NA> a NA NA 10 0.6095176
x10
1 1
2 2
3 NA
4 3
5 8
6 6

y x1 x2 x3
Min. :-3.846 Min. :0.000 Min. :0.000 Min. :0.0000
1st Qu.: 2.410 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.0000
Median : 5.646 Median :0.000 Median :3.068 Median :0.0000
Mean : 5.560 Mean :2.473 Mean :2.545 Mean :0.4443
3rd Qu.: 8.503 3rd Qu.:4.958 3rd Qu.:4.969 3rd Qu.:1.0000
Max. :16.487 Max. :8.390 Max. :8.421 Max. :1.0000
NA's :300 NA's :300 NA's :300 NA's :300
x4 x5 x6 x7 x8
1 :138 c : 80 Min. :1.00 Min. :-2.5689 3 : 78
2 :129 h : 76 1st Qu.:3.00 1st Qu.:-0.6099 7 : 77
3 :147 b : 74 Median :5.00 Median : 0.0202 5 : 75
4 :144 a : 73 Mean :4.93 Mean : 0.0435 4 : 73
5 :142 j : 72 3rd Qu.:7.00 3rd Qu.: 0.7519 1 : 70
NA's:300 (Other):325 Max. :9.00 Max. : 3.7157 (Other):327
NA's :300 NA's :300 NA's :300 NA's :300
x9 x10
Min. :0.1001 Min. : 0.000
1st Qu.:0.3206 1st Qu.: 2.000
Median :0.5312 Median : 4.000
Mean :0.5416 Mean : 3.929
3rd Qu.:0.7772 3rd Qu.: 5.000
Max. :0.9895 Max. :11.000
NA's :300 NA's :300

install.packages("mi")
install.packages("betareg")
library("betareg"); library("mi")

get show the missing information matrix
mdf <- missing_data.frame(sim_data_30pct_missing)
show(mdf)

Object of class missing_data.frame with 1000 observations on 11 variables

There are 542 missing data patterns

Append '@patterns' to this missing_data.frame to access the corresponding
pattern for every observation or perhaps use table()

type missing method model
y continuous 300 ppd linear

86 3 Managing Data in R

x1 continuous 300 ppd linear
x2 continuous 300 ppd linear
x3 binary 300 ppd logit
x4 ordered-categorical 300 ppd ologit
x5 unordered-categorical 300 ppd mlogit
x6 continuous 300 ppd linear
x7 continuous 300 ppd linear
x8 unordered-categorical 300 ppd mlogit
x9 proportion 300 ppd betareg
x10 continuous 300 ppd linear

family link transformation
y gaussian identity standardize
x1 gaussian identity standardize
x2 gaussian identity standardize
x3 binomial logit <NA>
x4 multinomial logit <NA>
x5 multinomial logit <NA>
x6 gaussian identity standardize
x7 gaussian identity standardize
x8 multinomial logit <NA>
x9 binomial logit identity
x10 gaussian identity standardize

mdf@patterns # to get the textual missing pattern
image(mdf) # remember the visual pattern of this MCAR

The histogram plots display the distributions of:

• The observed data (in blue color),

• The imputed data (in red color), and

• The completed values (observed plus imputed, in gray color) (Figs. 3.16, 3.17

and 3.18).

Next, try to impute the missing values.

Get the Graph Parameters (plotting canvas/margins)
set to plot the histograms for the 3 imputation chains
mfcol=c(nr, nc). Subsequent histograms are drawn as nr-by-nc arrays on
the graphics device by columns (mfcol), or rows (mfrow)
oma: oma=c(bottom, left, top, right) giving the size of the outer
margins in lines of text
mar=c(bottom, left, top, right) gives the number of lines of margin
to be specified on the four sides of the plot.
tcl=length of tick marks as a fraction of the height of a line of
text (default=0.5)
par(mfcol=c(5, 5), oma=c(1, 1, 0, 0), mar=c(1, 1, 1, 0), tcl=-0.1,
mgp=c(0, 0, 0))
imputations <- mi(sim_data_30pct_missing, n.iter=5, n.chains=3,verbose=TRUE)
hist(imputations)

3.13 Missing Data 87

0.0

0
4
0

1
0
0

0
1
5
0

3
0
0

0
2
0
0

5
0
0

0
5
0

1
5
0

0
1
5
0

3
0
0

0
1
5
0

3
0
0

0
0

2
0
0

0
0

4
0

8
0

0
4
0

8
0

2
0
0

1
0
0

2
0
0

0.2 -2

-1.5

1 2 3 4 5 a c e f g i j

-0.5 0.5 1.5-2 -1 0

0

-1.5 -0.5 0.5

x3 x4 x5

x8

1.5

1

-1.0 0.0 0.5 1.0 1.5 -1.5 -0.5 0.5 1.

1 2

-1 0 1

1 3 5 7 9

20.4

x9 (identity) x10 (standardize)

x6 (standardize) x7 (standardize)

y (standardize) x1 (standardize) x2 (standardize)

0.6 0.8 1.0

Fig. 3.16 Imputation chain 1: Histogram plots comparing the initially observed (blue), imputed

(red), and imputed complete (gray) data

0.0 0.2 0.4 0.6 0.8 1.0 –2 –1

–1.5 –0.5

x6 (standardize)

x9 (identity)

x7 (standardize)

x1 (standardize) x2 (standardize)y (standardize)

x10 (standardize)

x8

x3 x4 x5

–0.5–1.50.5 0.51.5 1.5

–1.5 –0.5 –0.5–1.50.5 0.51.5 1.5

1 3 5 7 9

0 1 2

0 11 2 3 4 5 a c e f g i j

–2 –1 0 1 2

0
0

0
0

5
0

1
5
0

1
0
0

2
0
0

2
0
0

5
0
0

0
1
5
0

3
0
0

0 0
4
0

8
0

0
4
0

8
0

1
5
0

3
0
0

0
0

1
0
0

2
0
0

2
0
0

0
2
0
0

4
0
0

4
0

1
0
0

Fig. 3.17 Imputation chain 2: Histogram plots comparing the initially observed (blue), imputed

(red), and imputed complete (gray) data

Extracts several multiply imputed data.frames from "imputations" object
data.frames <- complete(imputations, 3)

Compare the summaries for the original data (prior to introducing missing
values) with missing data and the re-completed data following imputation
summary(sim_data);summary(sim_data_30pct_missing);summary(data.frames[[1]]);

y x1 x2 x3 x4
Min. :-3.846 Min. :0.000 Min. :0.000 Min. :0.000 1:200
1st Qu.: 2.489 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.000 2:200
Median : 5.549 Median :0.000 Median :2.687 Median :0.000 3:200
Mean : 5.562 Mean :2.472 Mean :2.516 Mean :0.431 4:200
3rd Qu.: 8.325 3rd Qu.:4.996 3rd Qu.:5.007 3rd Qu.:1.000 5:200
Max. :16.487 Max. :8.390 Max. :8.421 Max. :1.000

…

y x1 x2 x3
Min. :-3.846 Min. :0.000 Min. :0.000 Min. :0.0000
1st Qu.: 2.410 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.0000
Median : 5.646 Median :0.000 Median :3.068 Median :0.0000
Mean : 5.560 Mean :2.473 Mean :2.545 Mean :0.4443
3rd Qu.: 8.503 3rd Qu.:4.958 3rd Qu.:4.969 3rd Qu.:1.0000
Max. :16.487 Max. :8.390 Max. :8.421 Max. :1.0000
NA's :300 NA's :300 NA's :300 NA's :300
…

0
0

0
0

5
0

2
0
0

1
0
0

4
0

1
0
0

5
0
0

−0.5 −0.50.5 0.50

0

y (standardize)

x3

x6 (standardize)

x9 (identity) x10 (standardize)

x7 (standardize)

x1 (standardize)

x4

x2 (standardize)

x5

x8

1

1 1

1

2 3 a c e g i jf

3

4 5

5 7 9

21.5 1.5−1.5 −1.5−2 −1

−0.5 0.5 1.0

0.0 0.2 0.4 0.6 0.8 1.0

1.5−1.5

−0.5 0.5 1.5−1.5

−0.5 0.5 1.5−1.5

0
0

1
0
0

1
5
0

2
0
0

3
0
0

0
1
5
0

3
0
0

0
4
0

8
0

0
4
0

1
0
0

1
5
0

0
2
0
0

0
2
0
0

4
0
0

Fig. 3.18 Imputation chain 3: Histogram plots comparing the initially observed (blue), imputed

(red), and imputed complete (gray) data

3.13 Missing Data 89

y x1 x2 x3 x4
Min. :-5.132 Min. :-8.769 Min. :-3.643 0:538 1:200
1st Qu.: 2.414 1st Qu.: 0.000 1st Qu.: 0.000 1:462 2:182
Median : 5.632 Median : 2.034 Median : 2.610 3:215
Mean : 5.537 Mean : 2.417 Mean : 2.530 4:211
3rd Qu.: 8.434 3rd Qu.: 4.836 3rd Qu.: 4.812 5:192
Max. :16.945 Max. :10.335 Max. :11.683
…
missing_x10
Mode :logical
FALSE:700
TRUE :300
NA's :0

missing_x10
Mode :logical
FALSE:700
TRUE :300
NA's :0
lapply(data.frames, summary)

$`chain:1`
y x1 x2 x3 x4
Min. :-6.852 Min. :-3.697 Min. :-4.920 0:545 1:203
1st Qu.: 2.475 1st Qu.: 0.000 1st Qu.: 0.000 1:455 2:189
Median : 5.470 Median : 2.510 Median : 1.801 3:201
Mean : 5.458 Mean : 2.556 Mean : 2.314 4:202
3rd Qu.: 8.355 3rd Qu.: 4.892 3rd Qu.: 4.777 5:205
Max. :16.487 Max. :10.543 Max. : 8.864

…
missing_x10
Mode :logical
FALSE:700
TRUE :300
NA's :0

$`chain:2`
y x1 x2 x3 x4
Min. :-4.724 Min. :-4.744 Min. :-5.740 0:558 1:211
1st Qu.: 2.587 1st Qu.: 0.000 1st Qu.: 0.000 1:442 2:193
Median : 5.669 Median : 2.282 Median : 2.135 3:211
Mean : 5.528 Mean : 2.486 Mean : 2.452 4:187
3rd Qu.: 8.367 3rd Qu.: 4.884 3rd Qu.: 4.782 5:198
Max. :17.054 Max. :10.445 Max. :10.932
…
$`chain:3`

Let’s check the imputation convergence (details provided below) (Figs. 3.19 and

3.20).

90 3 Managing Data in R

Fig. 3.19 Plots of the

imputation iterations for the

simulated dataset

3.13 Missing Data 91

round(mipply(imputations, mean, to.matrix = TRUE), 3)

chain:1 chain:2 chain:3
y -0.013 -0.004 -0.003
x1 0.016 0.003 -0.011
x2 -0.045 -0.018 -0.003
x3 1.455 1.442 1.462
x4 3.017 2.968 3.013
x5 5.321 5.406 5.480
x6 0.023 0.004 0.005
x7 -0.015 -0.005 -0.006
x8 5.431 5.409 5.202
x9 0.548 0.536 0.541
x10 -0.015 -0.020 -0.009
missing_y 0.300 0.300 0.300
missing_x1 0.300 0.300 0.300
missing_x2 0.300 0.300 0.300
missing_x3 0.300 0.300 0.300
missing_x4 0.300 0.300 0.300
missing_x5 0.300 0.300 0.300
missing_x6 0.300 0.300 0.300
missing_x7 0.300 0.300 0.300
missing_x8 0.300 0.300 0.300
missing_x9 0.300 0.300 0.300
missing_x10 0.300 0.300 0.300

Rhats(imputations, statistic = "moments")
assess the convergence of MI algorithm

mean_y mean_x1 mean_x2 mean_x3 mean_x4 mean_x5 mean_x6
1.0235026 1.1125720 1.1565542 0.9460979 1.0543446 1.3207898 0.9855947
mean_x7 mean_x8 mean_x9 mean_x10 sd_y sd_x1 sd_x2
1.0023935 0.9438358 1.0192697 0.9927675 0.9658852 1.6248062 1.0025950
sd_x3 sd_x4 sd_x5 sd_x6 sd_x7 sd_x8 sd_x9
0.9463044 1.0706666 1.4470270 1.2510790 0.9008732 1.2865944 1.0195947
sd_x10
1.1760195

plot(imputations);hist(imputations);image(imputations);summary(imputations)

200 1.0

−1.0

0.0

1.0

−1.0

0.0

400
600
800

200

y

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1

0

y

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1

0

400
600
800

O
b

s
e

rv
a

ti
o

n
N

u
m

b
e

r
O

b
s
e

rv
a

ti
o

n
N

u
m

b
e

r

Original data

Average completed data

Fig. 3.20 Comparison of the missingness patterns in the raw (top) and imputed (bottom) datasets

92 3 Managing Data in R

$y
yis_missing
missing
FALSE TRUE
700 300

yimputed
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.55100 -0.36930 -0.01107 -0.02191 0.30080 1.43600

yobserved
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.17500 -0.39350 0.01069 0.00000 0.36770 1.36500

$x1
$x1$is_missing
missing
FALSE TRUE
700 300

$x1$imputed
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.168000 -0.353600 -0.023620 0.008851 0.379800 1.556000

$x1$observed
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.4768 -0.4768 -0.4768 0.0000 0.4793 1.1410
…
$x10$observed
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.01800 -0.49980 0.01851 0.00000 0.27760 1.83200

Finally, pool over them¼ 3 completed datasets when we fit the “model”. In order

to estimate a linear regression model, we pool from across the three chains.

Figure 3.21 shows the distribution of a simple bivariate linear model (y¼ x1þ x2).

Fig. 3.21 Density plots comparing the observed and imputed outcome variable y

3.13 Missing Data 93

model_results<-pool(y~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=imputations, m=3)
display (model_results); summary (model_results)

bayesglm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 +
x9 + x10, data = imputations, m = 3)
coef.est coef.se
(Intercept) 0.77 0.84
x1 0.94 0.05
x2 0.97 0.04
x31 -0.27 0.37
x4.L 0.21 0.21
x4.Q -0.09 0.16
x4.C 0.03 0.24
x4^4 0.25 0.20
x5b 0.03 0.42
x5c -0.41 0.26
x5d -0.22 0.86
x5e 0.11 0.56
x5f -0.13 0.55
x5g -0.27 0.67
x5h -0.17 0.66
x5i -0.69 0.81
x5j 0.21 0.28
x6 -0.04 0.07
x7 0.98 0.09
x82 0.44 0.39
x83 0.40 0.20
x84 -0.14 0.62
x85 0.20 0.30
x86 0.19 0.25
x87 0.19 0.38
x88 0.51 0.34
x89 0.25 0.26
x810 0.17 0.48
x9 0.88 0.71
x10 -0.06 0.05
n = 970, k = 30
residual deviance = 2056.5, null deviance = 15851.5 (difference=13795.0)
overdispersion parameter = 2.1
residual sd is sqrt(overdispersion) = 1.46

Call:
pool(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10, data = imputations, m = 3)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.8821 -0.6925 -0.0005 0.6859 3.7035

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.76906 0.83558 0.920 0.440149
x1 0.94250 0.04535 20.781 0.000388 ***
x2 0.97495 0.03517 27.721 2.01e-05 ***
x31 -0.27349 0.37377 -0.732 0.533696
x4.L 0.21116 0.21051 1.003 0.378488
x4.Q -0.08567 0.15627 -0.548 0.602349
x4.C 0.02957 0.24490 0.121 0.911557

94 3 Managing Data in R

x4^4 0.24987 0.19504 1.281 0.271639
x5b 0.03327 0.41563 0.080 0.940649
x5c -0.41124 0.25525 -1.611 0.129304
x5d -0.21576 0.86290 -0.250 0.824194
x5e 0.11334 0.56396 0.201 0.854842
x5f -0.13162 0.55187 -0.238 0.827734
x5g -0.27014 0.67022 -0.403 0.719913
x5h -0.16951 0.66294 -0.256 0.818576
x5i -0.68619 0.80975 -0.847 0.477639
x5j 0.20681 0.27823 0.743 0.473891
x6 -0.04009 0.07306 -0.549 0.633836
x7 0.98130 0.08527 11.508 0.000197 ***
x82 0.43774 0.38574 1.135 0.322775
x83 0.40307 0.20475 1.969 0.049445 *
x84 -0.13651 0.62307 -0.219 0.843284
x85 0.19905 0.29973 0.664 0.528335
x86 0.18662 0.24702 0.755 0.452036
x87 0.18792 0.38029 0.494 0.647992
x88 0.51106 0.34272 1.491 0.192478
x89 0.25125 0.26340 0.954 0.356132
x810 0.17383 0.47841 0.363 0.740434
x9 0.87514 0.71484 1.224 0.334593
x10 -0.05722 0.05035 -1.136 0.331688

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 2.120095)

Null deviance: 15851.5 on 999 degrees of freedom
Residual deviance: 2056.5 on 970 degrees of freedom
AIC: 3616.9
Number of Fisher Scoring iterations: 7

Report the summaries of the imputations
data.frames <- complete(imputations, 3) # extract the first 3 chains
lapply(data.frames, summary)

$`chain:1`
y x1 x2 x3 x4
Min. :-6.852 Min. :-3.697 Min. :-4.920 0:545 1:203
1st Qu.: 2.475 1st Qu.: 0.000 1st Qu.: 0.000 1:455 2:189
Median : 5.470 Median : 2.510 Median : 1.801 3:201
Mean : 5.458 Mean : 2.556 Mean : 2.314 4:202
3rd Qu.: 8.355 3rd Qu.: 4.892 3rd Qu.: 4.777 5:205
Max. :16.487 Max. :10.543 Max. : 8.864

x5 x6 x7 x8
c :118 Min. :-4.291 Min. :-2.73138 5 :117
b :113 1st Qu.: 3.000 1st Qu.:-0.61765 7 :109
d :111 Median : 5.000 Median : 0.00085 3 :105
h :108 Mean : 5.051 Mean : 0.01486 1 :104
a :105 3rd Qu.: 7.000 3rd Qu.: 0.71796 2 :102
j : 99 Max. :13.284 Max. : 3.71572 10 :100
(Other):346 (Other):363
x9 x10 missing_y missing_x1
Min. :0.0073 Min. :-1.930 Mode :logical Mode :logical
1st Qu.:0.3383 1st Qu.: 2.115 FALSE:700 FALSE:700
Median :0.5417 Median : 4.000 TRUE :300 TRUE :300

3.13 Missing Data 95

Mean :0.5476 Mean : 3.870 NA's :0 NA's :0
3rd Qu.:0.7635 3rd Qu.: 5.000
Max. :0.9975 Max. :11.000

missing_x2 missing_x3 missing_x4 missing_x5
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:700 FALSE:700 FALSE:700 FALSE:700
TRUE :300 TRUE :300 TRUE :300 TRUE :300
NA's :0 NA's :0 NA's :0 NA's :0

missing_x6 missing_x7 missing_x8 missing_x9
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:700 FALSE:700 FALSE:700 FALSE:700
TRUE :300 TRUE :300 TRUE :300 TRUE :300
NA's :0 NA's :0 NA's :0 NA's :0

missing_x10
Mode :logical
FALSE:700
TRUE :300
NA's :0

$`chain:2`
y x1 x2 x3 x4
Min. :-4.724 Min. :-4.744 Min. :-5.740 0:558 1:211
1st Qu.: 2.587 1st Qu.: 0.000 1st Qu.: 0.000 1:442 2:193
Median : 5.669 Median : 2.282 Median : 2.135 3:211
Mean : 5.528 Mean : 2.486 Mean : 2.452 4:187
3rd Qu.: 8.367 3rd Qu.: 4.884 3rd Qu.: 4.782 5:198
Max. :17.054 Max. :10.445 Max. :10.932

x5 x6 x7 x8
c :114 Min. :-1.498 Min. :-2.65008 3 :123
h :114 1st Qu.: 3.000 1st Qu.:-0.58182 1 :110
b :109 Median : 5.000 Median : 0.02262 7 :108
g :104 Mean : 4.948 Mean : 0.03298 5 :106
a :103 3rd Qu.: 7.000 3rd Qu.: 0.71906 10 :101
d :102 Max. :12.954 Max. : 3.71572 4 :100
(Other):354 (Other):352
x9 x10 missing_y missing_x1
Min. :0.0132 Min. :-1.954 Mode :logical Mode :logical
1st Qu.:0.3200 1st Qu.: 2.097 FALSE:700 FALSE:700
Median :0.5269 Median : 4.000 TRUE :300 TRUE :300
Mean :0.5357 Mean : 3.851 NA's :0 NA's :0
3rd Qu.:0.7612 3rd Qu.: 5.000
Max. :0.9954 Max. :11.000

missing_x2 missing_x3 missing_x4 missing_x5
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:700 FALSE:700 FALSE:700 FALSE:700
TRUE :300 TRUE :300 TRUE :300 TRUE :300
NA's :0 NA's :0 NA's :0 NA's :0

missing_x6 missing_x7 missing_x8 missing_x9
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:700 FALSE:700 FALSE:700 FALSE:700
TRUE :300 TRUE :300 TRUE :300 TRUE :300
NA's :0 NA's :0 NA's :0 NA's :0

96 3 Managing Data in R

missing_x10
Mode :logical
FALSE:700
TRUE :300
NA's :0

$`chain:3`
y x1 x2 x3 x4
Min. :-5.132 Min. :-8.769 Min. :-3.643 0:538 1:200
1st Qu.: 2.414 1st Qu.: 0.000 1st Qu.: 0.000 1:462 2:182
Median : 5.632 Median : 2.034 Median : 2.610 3:215
Mean : 5.537 Mean : 2.417 Mean : 2.530 4:211
3rd Qu.: 8.434 3rd Qu.: 4.836 3rd Qu.: 4.812 5:192
Max. :16.945 Max. :10.335 Max. :11.683

x5 x6 x7 x8
b :123 Min. :-2.223 Min. :-2.76469 2 :139
j :115 1st Qu.: 3.000 1st Qu.:-0.64886 5 :111
c :111 Median : 5.000 Median : 0.03266 1 :110
h :103 Mean : 4.957 Mean : 0.03220 3 :109
i :103 3rd Qu.: 7.000 3rd Qu.: 0.71341 7 :106
a :100 Max. :11.785 Max. : 3.71572 9 :100
(Other):345 (Other):325
x9 x10 missing_y missing_x1
Min. :0.007236 Min. :-1.522 Mode :logical Mode :logical
1st Qu.:0.320579 1st Qu.: 2.224 FALSE:700 FALSE:700
Median :0.531962 Median : 4.000 TRUE :300 TRUE :300
Mean :0.541147 Mean : 3.894 NA's :0 NA's :0
3rd Qu.:0.772802 3rd Qu.: 5.000
Max. :0.992118 Max. :11.000

missing_x2 missing_x3 missing_x4 missing_x5
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:700 FALSE:700 FALSE:700 FALSE:700
TRUE :300 TRUE :300 TRUE :300 TRUE :300
NA's :0 NA's :0 NA's :0 NA's :0

missing_x6 missing_x7 missing_x8 missing_x9
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:700 FALSE:700 FALSE:700 FALSE:700
TRUE :300 TRUE :300 TRUE :300 TRUE :300
NA's :0 NA's :0 NA's :0 NA's :0

missing_x10
Mode :logical
FALSE:700
TRUE :300
NA's :0

coef(summary(model_results))[, 1:2] # get the model coef's and their SE's
Estimate Std. Error
(Intercept) 0.76906403 0.83558319
x1 0.94250085 0.04535482
x2 0.97494755 0.03517050
x31 -0.27348764 0.37377108
x4.L 0.21116072 0.21050885
x4.Q -0.08566591 0.15626753
x4.C 0.02957084 0.24489775

3.13 Missing Data 97

x4^4 0.24986739 0.19503550
x5b 0.03327092 0.41562660
x5c -0.41123612 0.25525293
x5d -0.21576243 0.86289626
x5e 0.11334262 0.56396149
x5f -0.13161632 0.55187362
x5g -0.27013537 0.67021765
x5h -0.16951449 0.66293826
x5i -0.68618715 0.80974757
x5j 0.20681081 0.27822872
x6 -0.04008539 0.07305886
x7 0.98130349 0.08526896
x82 0.43773548 0.38574473
x83 0.40306683 0.20475089
x84 -0.13651311 0.62306988
x85 0.19905219 0.29973411
x86 0.18661601 0.24702280
x87 0.18792270 0.38028640
x88 0.51105644 0.34272121
x89 0.25124560 0.26340027
x810 0.17382802 0.47841078
x9 0.87514342 0.71483501
x10 -0.05721504 0.05035334

library("lattice")
densityplot(y ~ x1 + x2, data=imputations)

This plot, Fig. 3.21, allows us to compare the density of observed data and

imputed data–these should be similar (though not identical) under MAR

assumptions.

3.13.2 TBI Data Example

Next, we will see an example using the traumatic brain injury (TBI) dataset.

Load the (raw) data from the table into a plain text file "08_EpiBioSData_
Incomplete.csv"
TBI_Data <- read.csv("https://umich.instructure.com/files/720782/download?do
wnload_frd=1", na.strings=c("", ".", "NA"))
summary(TBI_Data)

id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. : 3 Min. : 3.000 Min. : 0.000 Min. : 0.0
1st Qu.: 3 1st Qu.: 4.000 1st Qu.: 3.000 1st Qu.: 3.0

98 3 Managing Data in R

https://umich.instructure.com/files/720782/download?download_frd=1
https://umich.instructure.com/files/720782/download?download_frd=1

Median : 7 Median : 7.500 Median : 6.000 Median : 3.0
Mean : 8 Mean : 8.182 Mean : 6.378 Mean : 5.4
3rd Qu.:12 3rd Qu.:12.250 3rd Qu.: 8.000 3rd Qu.: 7.0
Max. :15 Max. :15.000 Max. :14.000 Max. :14.0
NA's :2 NA's :2 NA's :1 NA's :1
X6m.gose X2013.gose skull.fx temp.injury
Min. :2.000 Min. :2.000 Min. :0.0000 Min. :0.000
1st Qu.:3.000 1st Qu.:5.000 1st Qu.:0.0000 1st Qu.:0.000
Median :5.000 Median :7.000 Median :1.0000 Median :1.000
Mean :4.805 Mean :5.804 Mean :0.6087 Mean :0.587
3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:1.0000 3rd Qu.:1.000
Max. :8.000 Max. :8.000 Max. :1.0000 Max. :1.000
NA's :5
surgery spikes.hr min.hr max.hr
Min. :0.0000 Min. : 1.280 Min. : 0.000 Min. : 12.00
1st Qu.:0.0000 1st Qu.: 5.357 1st Qu.: 0.000 1st Qu.: 35.25
Median :1.0000 Median : 18.170 Median : 0.000 Median : 97.50
Mean :0.6304 Mean : 52.872 Mean : 3.571 Mean : 241.89
3rd Qu.:1.0000 3rd Qu.: 57.227 3rd Qu.: 0.000 3rd Qu.: 312.75
Max. :1.0000 Max. :294.000 Max. :42.000 Max. :1199.00
NA's :18 NA's :18 NA's :18
acute.sz late.sz ever.sz
Min. :0.0000 Min. :0.0000 Min. :0.000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
Median :0.0000 Median :1.0000 Median :1.000
Mean :0.1739 Mean :0.5652 Mean :0.587
3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.000
Max. :1.0000 Max. :1.0000 Max. :1.000

1. Convert to a missing_data.frame (Fig. 3.22)

a
g

e
s
e

x
m

e
c
h

a
n

s
m

fi
ld

.g
c
s

e
r.

g
c
s

ic
u

.g
c
s

w
rs

t.
g

c
s

X
6

m
.g

o
s
e

X
2

0
1

3
.g

s
s
k
u

ll.
fx

tm
p

.n
jr
y

s
u

rg
e

ry
s
p

ik
s
.h

r
m

in
.h

r
m

a
x
.h

r
a

c
u

te
.s

z
la

te
.s

z
e

v
e

r.
s
z

10
1.500000e+00

1.000000e+00

5.000000e−01

−6.666667e−09

−1.000000e+00

−5.000000e−01

20

30

40

Dark represents missing data

Clustered by missingness

Standardized Variable

O
b

s
e

rv
a

ti
o

n
 N

u
m

b
e

r

Fig. 3.22 Missing data pattern for the TBI case-study

3.13 Missing Data 99

Get information matrix of the data
library("betareg"); library("mi")
mdf <- missing_data.frame(TBI_Data) # warnings about missingness patterns

NOTE: The following pairs of variables appear to have the same missingnes
s pattern.
Please verify whether they are in fact logically distinct variables.
[,1] [,2]
[1,] "icu.gcs" "worst.gcs"

show(mdf); mdf@patterns; image(mdf)

Object of class missing_data.frame with 46 observations on 19 variables

There are 7 missing data patterns

Append '@patterns' to this missing_data.frame to access the corresponding
pattern for every observation or perhaps use table()

type missing method model
id irrelevant 0 <NA> <NA>
age continuous 0 <NA> <NA>
sex binary 0 <NA> <NA>
mechanism unordered-categorical 0 <NA> <NA>
field.gcs continuous 2 ppd linear
er.gcs continuous 2 ppd linear
icu.gcs continuous 1 ppd linear
worst.gcs continuous 1 ppd linear
X6m.gose continuous 5 ppd linear
X2013.gose continuous 0 <NA> <NA>
skull.fx binary 0 <NA> <NA>
temp.injury binary 0 <NA> <NA>
surgery binary 0 <NA> <NA>
spikes.hr continuous 18 ppd linear
min.hr continuous 18 ppd linear
max.hr continuous 18 ppd linear
acute.sz binary 0 <NA> <NA>
late.sz binary 0 <NA> <NA>
ever.sz binary 0 <NA> <NA>

family link transformation
id <NA> <NA> <NA>
age <NA> <NA> standardize
sex <NA> <NA> <NA>
mechanism <NA> <NA> <NA>
field.gcs gaussian identity standardize
er.gcs gaussian identity standardize
icu.gcs gaussian identity standardize
worst.gcs gaussian identity standardize
X6m.gose gaussian identity standardize
X2013.gose <NA> <NA> standardize
skull.fx <NA> <NA> <NA>
temp.injury <NA> <NA> <NA>
surgery <NA> <NA> <NA>
spikes.hr gaussian identity standardize
min.hr gaussian identity standardize
max.hr gaussian identity standardize
acute.sz <NA> <NA> <NA>
late.sz <NA> <NA> <NA>

100 3 Managing Data in R

ever.sz <NA> <NA> <NA>

[1] spikes.hr, min.hr, max.hr
[2] field.gcs
[3] nothing
[4] nothing
[5] nothing
[6] nothing
[7] spikes.hr, min.hr, max.hr
[8] nothing
[9] nothing
[10] nothing
[11] nothing
[12] nothing
[13] spikes.hr, min.hr, max.hr
[14] nothing
[15] spikes.hr, min.hr, max.hr
[16] spikes.hr, min.hr, max.hr
[17] nothing
[18] spikes.hr, min.hr, max.hr
[19] spikes.hr, min.hr, max.hr
[20] spikes.hr, min.hr, max.hr
[21] X6m.gose, spikes.hr, min.hr, max.hr
[22] nothing
[23] spikes.hr, min.hr, max.hr
[24] spikes.hr, min.hr, max.hr
[25] spikes.hr, min.hr, max.hr
[26] spikes.hr, min.hr, max.hr
[27] spikes.hr, min.hr, max.hr
[28] X6m.gose
[29] spikes.hr, min.hr, max.hr
[30] nothing
[31] X6m.gose, spikes.hr, min.hr, max.hr
[32] spikes.hr, min.hr, max.hr
[33] nothing
[34] nothing
[35] nothing
[36] nothing
[37] field.gcs, er.gcs, icu.gcs, worst.gcs, X6m.gose
[38] er.gcs
[39] nothing
[40] nothing
[41] nothing
[42] spikes.hr, min.hr, max.hr
[43] nothing
[44] nothing
[45] nothing
[46] X6m.gose
7 Levels: nothing field.gcs X6m.gose er.gcs ... field.gcs, er.gcs, icu.gc
s, worst.gcs, X6m.gose

2. Configuring the imputation process.

mi::change() method changes the family imputation method,
size, type, and so forth of a missing variable. It's called
before calling mi to affect how the conditional expectation of each
missing variable is modeled.
mdf <- change(mdf, y = "spikes.hr", what = "transformation", to="identity")

3.13 Missing Data 101

3. Examine the missingness patterns.

summary(mdf); hist(mdf);

id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. : 3 Min. : 3.000 Min. : 0.000 Min. : 0.0
1st Qu.: 3 1st Qu.: 4.000 1st Qu.: 3.000 1st Qu.: 3.0
Median : 7 Median : 7.500 Median : 6.000 Median : 3.0
Mean : 8 Mean : 8.182 Mean : 6.378 Mean : 5.4
3rd Qu.:12 3rd Qu.:12.250 3rd Qu.: 8.000 3rd Qu.: 7.0
Max. :15 Max. :15.000 Max. :14.000 Max. :14.0
NA's :2 NA's :2 NA's :1 NA's :1
X6m.gose X2013.gose skull.fx temp.injury
Min. :2.000 Min. :2.000 Min. :0.0000 Min. :0.000
1st Qu.:3.000 1st Qu.:5.000 1st Qu.:0.0000 1st Qu.:0.000
Median :5.000 Median :7.000 Median :1.0000 Median :1.000
Mean :4.805 Mean :5.804 Mean :0.6087 Mean :0.587
3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:1.0000 3rd Qu.:1.000
Max. :8.000 Max. :8.000 Max. :1.0000 Max. :1.000
NA's :5
surgery spikes.hr min.hr max.hr
Min. :0.0000 Min. : 1.280 Min. : 0.000 Min. : 12.00
1st Qu.:0.0000 1st Qu.: 5.357 1st Qu.: 0.000 1st Qu.: 35.25
Median :1.0000 Median : 18.170 Median : 0.000 Median : 97.50
Mean :0.6304 Mean : 52.872 Mean : 3.571 Mean : 241.89
3rd Qu.:1.0000 3rd Qu.: 57.227 3rd Qu.: 0.000 3rd Qu.: 312.75
Max. :1.0000 Max. :294.000 Max. :42.000 Max. :1199.00
NA's :18 NA's :18 NA's :18
acute.sz late.sz ever.sz
Min. :0.0000 Min. :0.0000 Min. :0.000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
Median :0.0000 Median :1.0000 Median :1.000
Mean :0.1739 Mean :0.5652 Mean :0.587
3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.000
Max. :1.0000 Max. :1.0000 Max. :1.000

image(mdf)

4. Perform the initial imputation (Fig. 3.23).

imputations <- mi(mdf, n.iter=10, n.chains=5, verbose=TRUE)
hist(imputations)

102 3 Managing Data in R

5. Extracts several multiply imputed data.frames from the

“imputations” object.

data.frames <- complete(imputations, 5)

Fig. 3.23 Validation plots for the original, imputed and complete TBI datasets

3.13 Missing Data 103

6. Report a list of “summaries” for each element (imputation

instance).

lapply(data.frames, summary)

$`chain:1`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. :-3.424 Min. : 3.000 Min. : 0.000 Min. : 0.000
1st Qu.: 3.000 1st Qu.: 4.250 1st Qu.: 3.000 1st Qu.: 3.000
Median : 6.500 Median : 8.000 Median : 6.000 Median : 3.000
Mean : 7.593 Mean : 8.442 Mean : 6.285 Mean : 5.494
3rd Qu.:12.000 3rd Qu.:13.000 3rd Qu.: 7.750 3rd Qu.: 7.750
Max. :15.000 Max. :15.000 Max. :14.000 Max. :14.000

X6m.gose X2013.gose skull.fx temp.injury surgery
Min. :2.000 Min. :2.000 0:18 0:19 0:17
1st Qu.:3.000 1st Qu.:5.000 1:28 1:27 1:29
Median :5.000 Median :7.000
Mean :5.031 Mean :5.804
3rd Qu.:6.815 3rd Qu.:7.000
Max. :8.169 Max. :8.000

Fig. 3.23 (continued)

104 3 Managing Data in R

Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. :-3.324 Min. : 3.000 Min. : 0.00 Min. : 0.000
1st Qu.: 3.000 1st Qu.: 4.000 1st Qu.: 3.00 1st Qu.: 3.000
Median : 6.500 Median : 7.000 Median : 6.00 Median : 3.000
Mean : 7.658 Mean : 8.046 Mean : 6.24 Mean : 5.466
3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.: 7.75 3rd Qu.: 7.750
Max. :15.000 Max. :15.000 Max. :14.00 Max. :14.000

X6m.gose X2013.gose skull.fx temp.injury surgery
Min. :-3.196 Min. :2.000 0:18 0:19 0:17
1st Qu.: 3.000 1st Qu.:5.000 1:28 1:27 1:29
Median : 5.000 Median :7.000
Mean : 4.755 Mean :5.804
3rd Qu.: 6.117 3rd Qu.:7.000
Max. : 8.000 Max. :8.000

spikes.hr min.hr max.hr acute.sz late.sz
Min. :-138.854 Min. :-30.603 Min. :-432.95 0:38 0:20
1st Qu.: 5.518 1st Qu.: 0.000 1st Qu.: 28.75 1: 8 1:26
Median : 34.522 Median : 0.000 Median : 97.50

spikes.hr min.hr max.hr acute.sz late.sz
Min. :-86.914 Min. :-11.697 Min. :-153.94 0:38 0:20
1st Qu.: 3.953 1st Qu.: 0.000 1st Qu.: 42.25 1: 8 1:26
Median : 28.125 Median : 0.000 Median : 211.49
Mean : 59.108 Mean : 7.133 Mean : 282.79
3rd Qu.:113.615 3rd Qu.: 11.329 3rd Qu.: 390.63
Max. :294.000 Max. : 43.706 Max. :1199.00

ever.sz missing_field.gcs missing_er.gcs missing_icu.gcs
0:19 Mode :logical Mode :logical Mode :logical
1:27 FALSE:44 FALSE:44 FALSE:45
TRUE :2 TRUE :2 TRUE :1
NA's :0 NA's :0 NA's :0

missing_worst.gcs missing_X6m.gose missing_spikes.hr missing_min.hr
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:45 FALSE:41 FALSE:28 FALSE:28
TRUE :1 TRUE :5 TRUE :18 TRUE :18
NA's :0 NA's :0 NA's :0 NA's :0

missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

$`chain:2`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13

Mean : 61.310 Mean : 2.329 Mean : 209.53
3rd Qu.: 97.394 3rd Qu.: 4.306 3rd Qu.: 306.98

3.13 Missing Data 105

Median : 7.000 Median : 7.500 Median : 6.000 Median : 3.000
Mean : 8.218 Mean : 8.513 Mean : 6.325 Mean : 5.304
3rd Qu.:12.000 3rd Qu.:12.750 3rd Qu.: 7.750 3rd Qu.: 7.000
Max. :17.978 Max. :26.831 Max. :14.000 Max. :14.000

X6m.gose X2013.gose skull.fx temp.injury surgery
Min. :2.000 Min. :2.000 0:18 0:19 0:17
1st Qu.:3.000 1st Qu.:5.000 1:28 1:27 1:29
Median :5.000 Median :7.000
Mean :4.892 Mean :5.804
3rd Qu.:6.000 3rd Qu.:7.000
Max. :8.000 Max. :8.000

spikes.hr min.hr max.hr acute.sz late.sz
Min. :-40.459 Min. :-27.222 Min. :-236.6 0:38 0:20
1st Qu.: 5.518 1st Qu.: 0.000 1st Qu.: 37.5 1: 8 1:26
Median : 34.864 Median : 0.000 Median : 195.6
Mean : 65.781 Mean : 2.619 Mean : 281.8
3rd Qu.:100.137 3rd Qu.: 5.681 3rd Qu.: 476.1
Max. :294.000 Max. : 42.000 Max. :1199.0

ever.sz missing_field.gcs missing_er.gcs missing_icu.gcs
0:19 Mode :logical Mode :logical Mode :logical

Max. : 294.000 Max. : 42.000 Max. :1336.12

ever.sz missing_field.gcs missing_er.gcs missing_icu.gcs
0:19 Mode :logical Mode :logical Mode :logical
1:27 FALSE:44 FALSE:44 FALSE:45
TRUE :2 TRUE :2 TRUE :1
NA's :0 NA's :0 NA's :0

missing_worst.gcs missing_X6m.gose missing_spikes.hr missing_min.hr
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:45 FALSE:41 FALSE:28 FALSE:28
TRUE :1 TRUE :5 TRUE :18 TRUE :18
NA's :0 NA's :0 NA's :0 NA's :0

missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

$`chain:3`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. : 3.000 Min. : 3.000 Min. : 0.000 Min. : 0.000
1st Qu.: 3.250 1st Qu.: 4.191 1st Qu.: 3.000 1st Qu.: 3.000

1:27 FALSE:44 FALSE:44 FALSE:45
TRUE :2 TRUE :2 TRUE :1

106 3 Managing Data in R

1st Qu.:3.000 1st Qu.:5.000 1:28 1:27 1:29
Median :5.000 Median :7.000
Mean :5.095 Mean :5.804
3rd Qu.:6.997 3rd Qu.:7.000
Max. :8.930 Max. :8.000

spikes.hr min.hr max.hr acute.sz late.sz
Min. :-106.439 Min. :-28.5276 Min. :-536.00 0:38 0:20
1st Qu.: 4.577 1st Qu.: 0.0000 1st Qu.: 32.21 1: 8 1:26
Median : 29.593 Median : 0.0000 Median : 98.15
Mean : 52.290 Mean : -0.1032 Mean : 197.81
3rd Qu.: 84.794 3rd Qu.: 0.1667 3rd Qu.: 333.46
Max. : 294.000 Max. : 42.0000 Max. :1199.00

ever.sz missing_field.gcs missing_er.gcs missing_icu.gcs
0:19 Mode :logical Mode :logical Mode :logical
1:27 FALSE:44 FALSE:44 FALSE:45
TRUE :2 TRUE :2 TRUE :1
NA's :0 NA's :0 NA's :0

NA's :0 NA's :0 NA's :0

missing_worst.gcs missing_X6m.gose missing_spikes.hr missing_min.hr
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:45 FALSE:41 FALSE:28 FALSE:28
TRUE :1 TRUE :5 TRUE :18 TRUE :18
NA's :0 NA's :0 NA's :0 NA's :0

missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

$`chain:4`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. : 3.000 Min. :-7.960 Min. :-1.610 Min. :-4.339
1st Qu.: 3.250 1st Qu.: 4.000 1st Qu.: 3.000 1st Qu.: 3.000
Median : 7.000 Median : 7.000 Median : 6.000 Median : 3.000
Mean : 8.001 Mean : 7.746 Mean : 6.204 Mean : 5.188
3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.: 7.750 3rd Qu.: 7.000
Max. :15.000 Max. :15.000 Max. :14.000 Max. :14.000

X6m.gose X2013.gose skull.fx temp.injury surgery
Min. :2.000 Min. :2.000 0:18 0:19 0:17

missing_worst.gcs missing_X6m.gose missing_spikes.hr missing_min.hr
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:45 FALSE:41 FALSE:28 FALSE:28
TRUE :1 TRUE :5 TRUE :18 TRUE :18

3.13 Missing Data 107

Min. :-74.552 Min. :-11.877 Min. :-570.4 0:38 0:20
1st Qu.: 5.518 1st Qu.: -1.924 1st Qu.: 37.5 1: 8 1:26
Median : 32.297 Median : 0.000 Median : 175.3
Mean : 54.268 Mean : 1.022 Mean : 253.7
3rd Qu.: 71.288 3rd Qu.: 0.000 3rd Qu.: 432.1
Max. :294.000 Max. : 42.000 Max. :1199.0

ever.sz missing_field.gcs missing_er.gcs missing_icu.gcs
0:19 Mode :logical Mode :logical Mode :logical
1:27 FALSE:44 FALSE:44 FALSE:45
TRUE :2 TRUE :2 TRUE :1
NA's :0 NA's :0 NA's :0

missing_worst.gcs missing_X6m.gose missing_spikes.hr missing_min.hr
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:45 FALSE:41 FALSE:28 FALSE:28
TRUE :1 TRUE :5 TRUE :18 TRUE :18
NA's :0 NA's :0 NA's :0 NA's :0

missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

NA's :0 NA's :0 NA's :0 NA's :0

missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

$`chain:5`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
field.gcs er.gcs icu.gcs worst.gcs
Min. : 3.000 Min. :-15.73 Min. : 0.000 Min. :-2.742
1st Qu.: 3.250 1st Qu.: 4.00 1st Qu.: 3.000 1st Qu.: 3.000
Median : 7.000 Median : 7.32 Median : 6.000 Median : 3.000
Mean : 8.473 Mean : 7.65 Mean : 6.439 Mean : 5.223
3rd Qu.:12.750 3rd Qu.: 12.00 3rd Qu.: 8.000 3rd Qu.: 7.000
Max. :20.172 Max. : 15.00 Max. :14.000 Max. :14.000

X6m.gose X2013.gose skull.fx temp.injury surgery
Min. : 2.000 Min. :2.000 0:18 0:19 0:17
1st Qu.: 3.000 1st Qu.:5.000 1:28 1:27 1:29
Median : 5.000 Median :7.000
Mean : 4.972 Mean :5.804
3rd Qu.: 6.000 3rd Qu.:7.000
Max. :11.481 Max. :8.000

spikes.hr min.hr max.hr acute.sz late.sz

108 3 Managing Data in R

7. Cast the imputed numbers as integers.

(not necessary, but may be useful)
indx <- sapply(data.frames[[5]], is.numeric) # get the indices of
numeric columns
data.frames[[5]][indx] <- lapply(data.frames[[5]][indx], function(x)
as.numeric(as.integer(x)))

cast each value as integer data.frames[[5]]$spikes.hr

8. Save results out.

write.csv(data.frames[[5]], "C:\\Users\\User\\Desktop\\TBI_MIData.csv")

9. Complete Data analytics functions.

library("mi")
lm.mi(); glm.mi(); polr.mi(); bayesglm.mi(); bayespolr.mi(); lmer.mi(); gl
mer.mi()

10. Fit a linear model for one multiply imputed chain.

Also see Step (9)
##linear regression for each imputed data set - 5 regression models are fit
fit_lm1 <- glm(ever.sz ~ surgery + worst.gcs + factor(sex) + age, data.frame
s$`chain:1`, family = "binomial"); summary(fit_lm1); display(fit_lm1)

Call:
glm(formula = ever.sz ~ surgery + worst.gcs + factor(sex) + age,
family = "binomial", data = data.frames$`chain:1`)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7000 -1.2166 0.8222 1.0007 1.3871

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.249780 1.356397 0.184 0.854
surgery1 0.947392 0.685196 1.383 0.167
worst.gcs -0.068734 0.097962 -0.702 0.483
factor(sex)Male -0.329313 0.842761 -0.391 0.696
age 0.004453 0.019431 0.229 0.819

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 62.371 on 45 degrees of freedom
Residual deviance: 60.046 on 41 degrees of freedom
AIC: 70.046

Number of Fisher Scoring iterations: 4

3.13 Missing Data 109

glm(formula = ever.sz ~ surgery + worst.gcs + factor(sex) + age,
family = "binomial", data = data.frames$`chain:1`)
coef.est coef.se
(Intercept) 0.25 1.36
surgery1 0.95 0.69
worst.gcs -0.07 0.10
factor(sex)Male -0.33 0.84
age 0.00 0.02

n = 46, k = 5
residual deviance = 60.0, null deviance = 62.4 (difference = 2.3)

11. Fit the appropriate model and pool the results.

(estimates over MI chains)
model_results <- pool(ever.sz ~ surgery + worst.gcs + factor(sex) + age,
family = "binomial", data=imputations, m=5)
display (model_results); summary (model_results)

bayesglm(formula = ever.sz ~ surgery + worst.gcs + factor(sex) +
age, data = imputations, m = 5, family = "binomial")
coef.est coef.se
(Intercept) 0.46 1.34
surgery1 0.94 0.66
worst.gcs -0.09 0.10
factor(sex)Male -0.33 0.77
age 0.00 0.02
n = 41, k = 5
residual deviance = 59.3, null deviance = 62.4 (difference = 3.0)

Call:
pool(formula = ever.sz ~ surgery + worst.gcs + factor(sex) +
age, data = imputations, m = 5, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6796 -1.1802 0.8405 1.0225 1.3824

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.459917 1.344700 0.342 0.732
surgery1 0.938109 0.661646 1.418 0.156
worst.gcs -0.089340 0.098293 -0.909 0.363
factor(sex)Male -0.332875 0.770327 -0.432 0.666
age 0.001582 0.019685 0.080 0.936

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 62.371 on 45 degrees of freedom
Residual deviance: 59.343 on 41 degrees of freedom
AIC: 69.343

Number of Fisher Scoring iterations: 6.6

110 3 Managing Data in R

12. Report the summaries of the imputations.

data.frames <- complete(imputations, 3) # extract the first 3 chains
lapply(data.frames, summary)
$`chain:1`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
…
missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

$`chain:2`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
…
missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

$`chain:3`
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
…
missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

13. Validation:

Next, we can verify whether enough iterations were conducted. One validation

criteria demands that the mean of each completed variable is similar to the

corresponding meen of the complete data (Fig. 3.24).

3.13 Missing Data 111

Fig. 3.24 TBI data imputation quality plots

112 3 Managing Data in R

Fig. 3.24 (continued)

3.13 Missing Data 113

Fig. 3.24 (continued)

114 3 Managing Data in R

Fig. 3.24 (continued)

3.13 Missing Data 115

Fig. 3.24 (continued)

116 3 Managing Data in R

Fig. 3.24 (continued)

3.13 Missing Data 117

should be similar for each of the k chains (in this case k=5).
mipply is wrapper for sapply invoked on mi-class objects to

compute the col means
round(mipply(imputations, mean, to.matrix = TRUE), 3)

chain:1 chain:2 chain:3 chain:4 chain:5
id 23.500 23.500 23.500 23.500 23.500
age 0.000 0.000 0.000 0.000 0.000
sex 1.804 1.804 1.804 1.804 1.804
..
missing_max.hr 0.391 0.391 0.391 0.391 0.391

Rhat convergence statistics compares the variance between chains to the va
riance
across chains.
Rhat Values ~ 1.0 indicate likely convergence,
Rhat Values > 1.1 indicate that the chains should be run longer
(use large number of iterations)
Rhats(imputations, statistic = "moments") # assess the convergence of MI alg
orithm

mean_field.gcs mean_er.gcs mean_icu.gcs mean_worst.gcs mean_X6m.gose
1.858663 2.200902 1.484120 2.360286 1.752000
mean_spikes.hr mean_min.hr mean_max.hr sd_field.gcs sd_er.gcs
1.972090 1.393025 1.743846 1.291126 1.479967
sd_icu.gcs sd_worst.gcs sd_X6m.gose sd_spikes.hr sd_min.hr
1.417884 1.861408 1.355365 1.514089 1.723325
sd_max.hr
1.497625

Fig. 3.24 (continued)

118 3 Managing Data in R

When convergence is unstable, we can continue the iterations for

all chains, e.g.
imputations <- mi(imputations, n.iter=20) # add additional 20 iterations

To plot the produced mi results, for all missing_variables we can generate
a histogram of the observed, imputed, and completed data.
We can compare of the completed data to the fitted values

implied by the model for the completed data, by plotting binned residuals.
hist function works similarly as plot.
image function gives a sense of the missingness patterns in the data

plot(imputations);hist(imputations)

image(imputations); summary(imputations)

$id
idis_missing
[1] "all values observed"

idobserved
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 12.25 23.50 23.50 34.75 46.00

$age
ageis_missing
[1] "all values observed"

ageobserved
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.6045 -0.4019 -0.1126 0.0000 0.2997 1.3340

$sex
sexis_missing
[1] "all values observed"

sexobserved

1 2
9 37
…
$late.sz$observed

1 2
20 26
$ever.sz
$ever.sz$is_missing
[1] "all values observed"

$ever.sz$observed

1 2
19 27

3.13 Missing Data 119

14. Pool over them m ¼ 5 imputed chains when fitting the “linear

model”. We can pool from across the five chains in order to

estimate the final linear model (Fig. 3.25).

regression model and impact of various predictors
model_results <- pool(ever.sz ~ surgery + worst.gcs + factor(sex) + age,
data = imputations, m=5); display (model_results); summary (model_results)

bayesglm(formula = ever.sz ~ surgery + worst.gcs + factor(sex) +
age, data = imputations, m = 5)
coef.est coef.se
(Intercept) 0.58 1.35
surgery1 0.99 0.66
worst.gcs -0.11 0.10
factor(sex)Male -0.36 0.77
age 0.00 0.02
n = 41, k = 5
residual deviance = 59.0, null deviance = 62.4 (difference = 3.4)

Call:
pool(formula = ever.sz ~ surgery + worst.gcs + factor(sex) +
age, data = imputations, m = 5)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6927 -1.1539 0.8245 1.0052 1.4009

10
3
1

−1
−3

3
1

−1
−3

30

Original data

Average completed data

O
b

s
e

rv
a

ti
o

n
N

u
m

b
e

r
O

b
s
e

rv
a

ti
o

n
N

u
m

b
e

r

a
g
e

s
e
x

m
c
h
n
s

fl
d
.g

e
r.

g
c

ic
.g

c

w
rs

t.

X
6
m

.g

X
2
0
1
3

s
k
ll.

tm
p
.n

s
rg

ry

s
p
k
s
.

m
n
.h

r

m
x
.h

r

a
c
t.
s

lt
.s

z

e
v
r.

s

a
g
e

s
e
x

m
c
h
n
s

fl
d
.g

e
r.

g
c

ic
.g

c

w
rs

t.

X
6
m

.g

X
2
0
1
3

s
k
ll.

tm
p
.n

s
rg

ry

s
p
k
s
.

m
n
.h

r

m
x
.h

r

a
c
t.
s

lt
.s

z

e
v
r.

s

10

30

Fig. 3.25 Comparison of the missing data patterns in the original (top) and the completed (bottom)

TBI sets

120 3 Managing Data in R

Peds_vs_Auto: 6
…
missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

[[2]]
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
…
missing_max.hr
Mode :logical

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.578917 1.348831 0.429 0.668
surgery1 0.990656 0.662991 1.494 0.135
worst.gcs -0.105240 0.095335 -1.104 0.270
factor(sex)Male -0.357285 0.772307 -0.463 0.644
age 0.000198 0.019702 0.010 0.992
##
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 62.371 on 45 degrees of freedom
Residual deviance: 58.995 on 41 degrees of freedom
AIC: 68.995

Number of Fisher Scoring iterations: 7

coef(summary(model_results))[, 1:2] # get the model coef's and their SE's

Estimate Std. Error
(Intercept) 0.5789166170 1.34883106
surgery1 0.9906554934 0.66299111
worst.gcs -0.1052399155 0.09533513
factor(sex)Male -0.3572845034 0.77230674
age 0.0001980042 0.01970153

Report the summaries of the imputations
data.frames <- complete(imputations, 3) # extract the first 3 chains
lapply(data.frames, summary) # report summaries

[[1]]
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10

3.13 Missing Data 121

FALSE:28
TRUE :18
NA's :0

[[3]]
id age sex mechanism
Min. : 1.00 Min. :16.00 Female: 9 Bike_vs_Auto: 4
1st Qu.:12.25 1st Qu.:23.00 Male :37 Blunt : 4
Median :23.50 Median :33.00 Fall :13
Mean :23.50 Mean :36.89 GSW : 2
3rd Qu.:34.75 3rd Qu.:47.25 MCA : 7
Max. :46.00 Max. :83.00 MVA :10
Peds_vs_Auto: 6
…

missing_max.hr
Mode :logical
FALSE:28
TRUE :18
NA's :0

3.13.3 Imputation via Expectation-Maximization

Below we present the theory and practice of one specific statistical computing

strategy for imputing incomplete datasets.

Types of Missing Data

Recall that we have the following three distinct types of incomplete data.

• MCAR: Data which is Missing Completely At Random has nothing systematic

about which observations are missing. There is no relationship between

missingness and either observed or unobserved covariates.

• MAR: Missing At Random is weaker than MCAR. The missingness is still

random, but solely due to the observed variables. For example, those from a

lower socioeconomic status (SES) may be less willing to provide salary informa-

tion (but we know their SES). The key is that the missingness is not due to the

values which are not observed. MCAR implies MAR, but not vice-versa.

• MNAR: If the data are Missing Not At Random, then the missingness depends on

the values of the missing data. Examples include censored data, self-reported data

for individuals who are heavier, who are less likely to report their weight, and

response-measuring device that can only measure values above 0.5, anything

below that is missing.

General Idea of EM Algorithm

Expectation-Maximization (EM) is an iterative parameter estimation process involv-

ing two steps, expectation andmaximization, which are applied in tandem. EM can be

employed to find parameter estimates using maximum likelihood and is specifically

122 3 Managing Data in R

useful when the equations determining the relations of the data-parameters cannot be

directly solved. For example, a Gaussian mixture modeling assumes that each data

point (X) has a corresponding latent (unobserved) variable or a missing value (Y),

which may be specified as a mixture of coefficients determining the affinity of the

data as a linear combination of Gaussian kernels, determined by a set of parameters

(θ), e.g., means and variance-covariances. Thus, EM estimation relies on:

• An observed data set X,

• A set of missing (or latent) values Y,

• A parameter θ, which may be a vector of parameters,

• A likelihood function L(θ|X,Y) ¼ p(X,Y| θ), and

• The maximum likelihood estimate (MLE) of the unknown parameter(s) θ that is

computed using the marginal likelihood of the observed data:

L θjXð Þ ¼ p Xjθð Þ ¼

Z

p X; Yjθð ÞdY:

Most of the time, this equation may not be directly solved, e.g., when Y is missing.

• Expectation step (E step): computes the expected value of the log likelihood

function, with respect to the conditional distribution of Z given X using the

parameter estimates at the previous iteration (or at the position of initialization,

for the first iteration), θt:

Q θjθ tð Þ
� �

¼ EY jX,θ tð Þ

�

log L θjX; Yð Þð �;

• Maximization step (M step): Determine the parameters, θ, that maximize the

expectation above,

θ tþ1ð Þ ¼ argmax
θ

Q θjθ tð Þ
� �

:

EM-Based Imputation

The EM algorithm is an alternative to Newton-Raphson, or the method of scoring,

for computing MLE in cases where the complications in calculating the MLE are

due to incomplete observation and data are MAR, missing at random, with separate

parameters for observation and the missing data mechanism, so the missing data

mechanism can be ignored.

Complete Data: Z ¼
X

Y

� �

, ZZT ¼
XXT XYT

YXT YYT

� �

,

where X is the observed data and Y is the missing data.

• E-step: (Expectation) Get the expectations of Y and YYT based on observed data.

• M-step: (Maximization) Maximize the conditional expectation in E-step to esti-

mate the parameters.

3.13 Missing Data 123

Details: If o¼ obs and m¼ mis stand for observed and missing, the mean vector,

(μobs, μmis)
T, and the variance-covariance matrix, Σ tð Þ ¼

Σoo Σom

Σmo Σmm

� �

, are

represented by:

μ tð Þ ¼
μobs
μmis

� �

, Σ tð Þ ¼
Σoo Σom

Σmo Σmm

� �

E-step:

E ZjXð Þ ¼
X

E YjXð Þ

� �

, E ZZT jX
� 	

¼
XXT XE YjXð ÞT

E YjXð ÞXT E YYT jXð Þ

 !

:

E YjXð Þ ¼ μmis þ ΣmoΣ
�1
oo X � μobsð Þ:

E YYT jX
� 	

¼ Σmm � ΣmoΣ
�1
oo Σom

� 	

þ E YjXð ÞE YjXð ÞT :

M-step:

μ tþ1ð Þ ¼
1

n

Xn

i¼1
E ZjXð Þ and Σ tþ1ð Þ ¼

1

n

X n

i¼1
E ZZT jX
� 	

� μ tþ1ð Þμ tþ1ð ÞT
:

A Simple Manual Implementation of EM-Based Imputation

To demonstrate the implementation of an EM-based imputation method from first

principles, let’s simulate 20 (feature) vectors of 200 (cases) Normal Distributed

random values.

set.seed(202227)
mu <- as.matrix(rep(2,20))
sig <- diag(c(1:20))
Add a noise item. The noise is
$ \epsilon ~ MVN(as.matrix(rep(0,20)), diag(rep(1,20)))$
sim_data <- mvrnorm(n = 200, mu, sig) +
mvrnorm(n=200, as.matrix(rep(0,20)), diag(rep(1,20)))

save these in the "original" object
sim_data.orig <- sim_data

introduce 500 random missing indices (in the total of 4000=200*20)
discrete distribution where the probability of the elements of values is p
roportional to probs, which are normalized to add up to 1.
rand.miss <- e1071::rdiscrete(500, probs = rep(1,length(sim_data)), values =
seq(1, length(sim_data)))
sim_data[rand.miss] <- NA
sum(is.na(sim_data)) # check now many missing (NA) are there < 500
[1] 459

cast the data into a data.frame object and report 15*10 elements
sim_data.df <- data.frame(sim_data)
kable(sim_data.df[1:15, 1:10], caption = "The first 15 rows and first 10 co
lumns of the simulation data")

The first 15 rows and first 10 columns of the simulation data are included below,

mind the missing values, Table 3.1.

Now, let’s define the EM imputation method function:

124 3 Managing Data in R

T
a
b
le
3
.1

E
x
ce
rp
t
o
f
1
5
ro
w
s
an
d
1
0
co
lu
m
n
s
o
f
th
e
o
b
fu
sc
at
ed

si
m
u
la
ti
o
n
d
at
a

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1
0

0
.1
7
1
0
5
5
9

4
.8
5
0
0
2
8
4

1
.7
2
8
2
0
2
5

N
A

4
.5
5
1
1
4
0
9

2
.1
6
9
9
7
1
9

4
.7
1
1
8
5
7
1

2
.6
9
7
2
9
0
5

N
A

�
0
.9
2
5
0
1
0
1

1
.7
7
2
1
8
9
8

�
1
.6
9
5
5
5
3
5

0
.4
2
3
4
2
9
5

6
.2
6
1
9
7
6
4

�
3
.1
3
3
9
3
0
7

�
1
.8
0
4
3
8
8
9

1
.2
9
3
2
9
1
3

0
.9
9
0
6
4
1
0

1
.0
7
9
0
3
6
6

1
.1
6
3
8
1
6
1

2
.2
8
5
9
2
3
7

4
.2
7
1
3
4
9
4

3
.8
9
0
0
6
7
0

3
.5
1
0
4
5
7
8

3
.0
0
2
5
6
0
7

3
.9
0
5
8
6
1
9

3
.0
5
4
8
3
0
9

N
A

2
.7
2
0
8
5
4
8

1
.3
6
0
1
2
3
1

1
.4
9
0
6
3
4
5

6
.9
2
5
3
7
0
3

1
.3
3
8
7
5
6
1

�
2
.6
1
7
7
6
7
5

�
1
.4
0
7
4
4
3
3

�
2
.0
8
6
1
7
9
0

�
0
.8
8
4
7
1
2
5

5
.6
4
8
5
1
0
5

1
.3
3
4
8
6
8
9

0
.6
5
1
2
7
5
4

�
0
.0
3
0
5
0
6
2

2
.3
0
6
9
3
3
7

N
A

1
.2
4
7
4
3
9
8

�
0
.2
0
9
1
8
6
2

1
.1
7
2
6
2
9
8

1
.4
6
2
2
4
9
1

0
.6
4
9
2
3
9
0

0
.1
4
5
8
7
8
1

7
.2
1
9
5
0
2
6

1
.9
4
1
1
6
7
4

3
.6
6
0
6
0
1
9

6
.3
0
0
4
9
4
3

0
.3
5
4
3
8
1
7

1
.0
8
7
5
4
6
0

1
.3
0
7
7
3
0
7

0
.0
2
6
9
9
3
5

�
0
.0
1
1
2
3
5
2

2
.9
7
2
4
3
5
5

2
.4
6
1
6
4
6
6

0
.5
2
0
9
3
2
1

4
.2
2
2
5
9
8
3

�
0
.6
3
2
8
7
9
6

N
A

5
.7
1
0
3
0
1
5

N
A

4
.5
8
0
3
1
3
6

0
.2
5
3
5
1
5
8

�
0
.9
7
5
8
1
4
7

N
A

3
.3
1
1
1
7
2
7

0
.1
2
4
5
4
2
7

0
.9
7
6
8
4
2
5

4
.7
7
6
4
8
5
1

4
.9
8
1
0
8
6
0

�
0
.0
4
3
8
3
7
5

�
0
.3
2
1
3
5
2
3

4
.3
6
1
2
9
0
3

2
.7
4
8
3
4
9
7

3
.7
7
4
4
1
0
5

2
.1
0
9
7
8
1
3

0
.2
4
2
7
5
4
3

1
.1
7
1
8
8
2
3

3
.6
7
9
1
0
3
2

3
.7
7
8
4
7
9
5

5
.5
5
3
3
7
9
4

1
.8
6
3
5
8
9
8

0
.1
5
6
5
8
5
8

4
.6
7
4
3
0
1
2

�
1
.0
2
3
2
2
7
7

1
.6
2
0
3
3
8
2

N
A

1
.3
6
2
5
5
4
3

1
.4
0
0
6
8
1
6

�
1
.3
4
6
7
0
4
9

6
.1
6
3
6
7
6
9

3
.1
7
0
3
0
7
0

�
3
.4
3
0
8
3
0
0

0
.2
1
9
5
4
4
7

�
2
.2
9
2
1
1
0
7

N
A

0
.5
6
0
1
7
7
9

N
A

2
.1
6
5
2
7
6
9

0
.1
0
6
0
7
0
0

2
.3
7
6
3
6
6
8

�
3
.7
6
2
9
1
9
6

�
0
.9
7
1
8
4
0
6

1
.2
1
9
6
6
0
6

0
.7
0
3
8
2
5
3

1
.8
5
7
0
6
3
4

1
.6
7
1
4
6
1
4

0
.2
0
0
0
2
5
5

2
.3
3
0
8
9
6
8

0
.4
5
9
3
5
4
3

0
.1
7
1
6
6
1
3

�
0
.5
7
9
5
1
5
9

�
1
.3
3
2
7
3
3
0

N
A

1
.2
6
0
7
4
6
5

2
.5
4
1
6
9
1
4

1
.0
3
8
8
1
8
6

4
.7
4
2
1
1
2
0

2
.3
1
1
0
1
8
7

N
A

�
1
.5
2
9
1
6
6
8

2
.4
5
7
4
5
0
1

N
A

2
.5
3
6
4
2
9
7

N
A

0
.9
3
9
3
9
2
5

1
.8
6
6
8
5
1
3

3
.4
7
0
2
1
1
7

1
.6
7
9
7
6
2
0

0
.7
7
9
7
3
2
3

2
.5
5
4
8
2
8
4

�
3
.5
4
9
8
8
1
3

3
.6
5
9
5
2
9
6

3
.2
1
2
4
6
9
4

5
.3
1
2
0
1
3
3

�
0
.8
3
3
4
9
7
3

N
A

1
.1
9
4
9
4
1
4

�
0
.6
5
7
3
3
0
5

1
.7
4
8
4
1
6
9

�
1
.7
7
4
3
4
9
5

1
.7
1
6
8
3
4
0

2
.1
0
6
5
8
7
8

2
.9
4
7
8
5
2
8

�
0
.5
5
6
2
3
4
9

3.13 Missing Data 125

EM_algorithm <- function(x, tol = 0.001) {
identify the missing data entries (Boolean indices)
missvals <- is.na(x)
instantialize the EM-iteration
new.impute <- x
old.impute <- x
count.iter <- 1
reach.tol <- 0

compute \Sigma on complete data
sigma <- as.matrix(var(na.exclude(x)))
compute the vector of feature (column) means
mean.vec <- as.matrix(apply(na.exclude(x), 2, mean))

while (reach.tol != 1) {
for (i in 1:nrow(x)) {
pick.miss <- (c(missvals[i,]))
if (sum(pick.miss) != 0) {

compute invese-Sigma_completeData, variance-covariance matrix
inv.S <- solve(sigma[!pick.miss, !pick.miss], tol = 1e-40)

Expectation Step
$$E(Y|X)=\mu_{mis}+\Sigma_{mo}\Sigma_{oo}^{-1}(X-\mu_{obs})$$
new.impute[i, pick.miss] <- mean.vec[pick.miss] +
sigma[pick.miss,!pick.miss] %*% inv.S %*%
(t(new.impute[i, !pick.miss]) - t(t(mean.vec[!pick.miss])))

}
}

Maximization Step
Compute the complete \Sigma complete vector of feature (column) means
$$\Sigma^{(t+1)} = \frac{1}{n}\sum_{i=1}^nE(ZZ^T|X) -
\mu^{(t+1)}{\mu^{(t+1)}}^T$$

sigma <- var((new.impute))
#$$\mu^{(t+1)} = \frac{1}{n}\sum_{i=1}^nE(Z|X)$$
mean.vec <- as.matrix(apply(new.impute, 2, mean))

Inspect for convergence tolerance, start with the 2nd iteration
if (count.iter > 1) {
for (l in 1:nrow(new.impute)) {
for (m in 1:ncol(new.impute)) {
if (abs((old.impute[l, m] - new.impute[l, m])) > tol) {
reach.tol < -0

} else {
reach.tol <- 1

}
}

}
}
count.iter <- count.iter + 1
old.impute <- new.impute

}

sim_data.imputed <- EM_algorithm(sim_data.df, tol=0.0001)

return the imputation output of the current iteration that passed the
tolerance level
return(new.impute)

}

126 3 Managing Data in R

Plotting Complete and Imputed Data

Smaller black colored points represent observed data, and magenta-color and circle-

shapes denote the imputated data (Fig. 3.26).

−5 5

5.0

10

20

10

−10

−20

0

5

10

−10

0

0

−5

2.5

−2.5

0.0

0

X1

X
2

X
6

X
1
9

X
2
0

X5

X13 X18

−5 5 10−10 0 −5 5 10−10 0

−5 5 10 150

Fig. 3.26 Four scatterplots for pairs of features illustrating the complete data (small-black points),

the imputed data points (larger-pink points), and 2D Gaussian kernels

3.13 Missing Data 127

plot.me <- function(index1, index2){
plot.imputed <- sim_data.imputed[row.names(
subset(sim_data.df, is.na(sim_data.df[, index1]) |

is.na(sim_data.df[, index2]))),]
p = ggplot(sim_data.imputed, aes_string(paste0("X",index1) ,

paste0("X",index2))) +
geom_point(alpha = 0.5, size = 0.7)+theme_bw() +
stat_ellipse(type = "norm", color = "#000099", alpha=0.5) +
geom_point(data = plot.imputed, aes_string(paste0("X",index1) ,

paste0("X",(index2))),size = 1.5, color = "Magenta", alpha = 0.8)
}

gridExtra::grid.arrange(plot.me(1,2), plot.me(5,6), plot.me(13,20),
plot.me(18,19), nrow = 2)

Validation of EM-Imputation Using the Amelia R Package

See this Amelia paper (https://gking.harvard.edu/files/gking/files/amelia_jss.pdf)

and the corresponding R manual.

Comparison

Let’s use the amelia function to impute the original data sim_data_df and compare

the results to the simpler manual EM_algorithm imputation defined above.

install.packages("Amelia")
library(Amelia)

dim(sim_data.df)

[1] 200 20

amelia.out <- amelia(sim_data.df, m = 5)

-- Imputation 1 --
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-- Imputation 2 --
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-- Imputation 3 --
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-- Imputation 4 --
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24
-- Imputation 5 --
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

amelia.out

Amelia output with 5 imputed datasets.
Return code: 1
Message: Normal EM convergence.

Chain Lengths:

Imputation 1: 20
Imputation 2: 15
Imputation 3: 16
Imputation 4: 24
Imputation 5: 17

amelia.imputed.5 <- amelia.out$imputations[[5]]

128 3 Managing Data in R

https://gking.harvard.edu/files/gking/files/amelia_jss.pdf

• Magenta-color and circle-shape denote manual imputation via

EM_algorithm

• Orange-color and square-shapes denote Amelia imputation (Figs. 3.27 and

3.28).

−2.5 0.0 2.5 5.0

8

4

−4

0

X2

X
4

Fig. 3.27 Scatter plot of the second and fourth features. Magenta-circles and Orange-squares

represent the manual imputation via EM_algorithm and the automated Amelia-based imputation

0 10

10

5

−5

−10

0

X17

X
1
8

Fig. 3.28 Same as Fig. 3.27, for features 17 and 18

3.13 Missing Data 129

plot.me2 <- function(index1, index2){
plot.imputed <- sim_data.imputed[row.names(
subset(sim_data.df, is.na(sim_data.df[, index1]) |

is.na(sim_data.df[, index2]))),]
plot.imputed2 <- amelia.imputed.5[row.names(
subset(sim_data.df, is.na(sim_data.df[, index1]) |

is.na(sim_data.df[, index2]))),]
p = ggplot(sim_data.imputed, aes_string(paste0("X",index1) ,

paste0("X",index2))) +
geom_point(alpha = 0.8, size = 0.7)+theme_bw() +
stat_ellipse(type = "norm", color = "#000099", alpha=0.5) +
geom_point(data = plot.imputed, aes_string(paste0("X",index1) ,

paste0("X",(index2))),size=2.5, color="Magenta", alpha=0.9, shape=16) +
geom_point(data = plot.imputed2, aes(X1 , X2),size = 2.5,

color = "#FF9933", alpha = 0.8, shape = 18)
return(p)

}

plot.me2(2, 4)

plot.me2(17, 18)

Density Plots

Finally, we can compare the densities of the original, manually-imputed and Amelia-

imputed datasets. Remember that in this simulation, we had about 500 observations

missing out of the 4000 that we synthetically generated (Fig. 3.29).

3.14 Parsing Webpages and Visualizing Tabular

HTML Data

In this section, we will utilize the Earthquakes dataset on the SOCR website. It stores

information about earthquakes of magnitudes larger than 5 on the Richter scale that

were recorded between 1969 and 2007. Here is how we download and parse the data

on the source webpage and ingest the information into R:

install.packages("xml2")
library("XML"); library("xml2")
library("rvest")
wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_
021708_Earthquakes")
html_nodes(wiki_url, "#content")

{xml_nodeset (1)}
[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top
...

earthquake<- html_table(html_nodes(wiki_url, "table")[[2]])

130 3 Managing Data in R

http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes
http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes

In this dataset, Magt (magnitude type) may be used as grouping variable. We will

draw a “Longitude vs. Latitude” line plot from this dataset. The function we are

using is called ggplot(), available from R package ggplot2. The input type for

this function is a data frame, and aes() specifies the axes (Fig. 3.30).

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.20

0.15

0.05

0.00

0.10

0.15

0.05

0.00

0.4

0.3

0.2

0.1

0.0

0.10

0.15

0.05

0.00

0.10

0.15

0.05

0.00

0.12

0.08

0.04

0.00

0.10

0.15

0.05

0.00

0.10
0.15

0.05

0.00

0.10

0.20

–5 0 5 –2.5 0.0 2.5 5.0

d
e

n
s

it
y

d
e

n
s

it
y

d
e
n

s
it

y

d
e
n

s
it

y

d
e
n

s
it

y

d
e
n

s
it

y

d
e
n

s
it

y

d
e
n

s
it

y

d
e
n

s
it

y

d
e
n

s
it

y

x

–5 0 5

x

–5–10 0 5

x

–5–10 0 5 10

x

–5 0 5 10 15

x

–5 0 5 10

x

–5 0 5 10

x

x

–2.5 0.0 2.5 7.5 –4 0 4 85.0

x x

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

category

amelia

obs

simplelmplement

Fig. 3.29 Density plots of the original, manually-imputed and Amelia-imputed datasets,

10 features only

3.14 Parsing Webpages and Visualizing Tabular HTML Data 131

We can see the plotting script consists of two parts. The first part ggplot

(earthquake, aes(Longitude, Latitude, group ¼ Magt,

color¼Magt)) specifies the setting of the plot: dataset, group and color. The

second part specifies that we are going to draw points for all data points. In later

Chapters, we will frequently use ggplot2; which always takes multiple function

calls, e.g., function1 + function2.

We can visualize the distribution for different variables using density plots. The

following chunk of codes plots the distribution for Latitude among different Mag-

nitude types. Also, it uses the ggplot() function combined with

geom_density() (Fig. 3.31).

plot5<-ggplot(earthquake, aes(Latitude, size=1))+
geom_density(aes(color=Magt))

plot5

We can also compute and display 2D Kernel Density and 3D Surface Plots.

Plotting 2D Kernel Density and 3D Surface plots is very important and useful in

multivariate exploratory data analytic.

We will use the plot_ly() function under plotly package, which takes data

frame inputs.

To create a surface plot, we use two vectors: x and y, with length m and

n, respectively. We also need a matrix: z of size m � n. This z matrix is created

from matrix multiplication between x and y.

45.0

42.5

40.0

37.5

35.0

32.5
−128 −124 −120 −116

L
a
ti

tu
d

e

Longitude

Magt

Md
ML
Mw
Mx

Fig. 3.30 Earthquake data plot of magnitude type (color/shape) against longitude (x) and

latitude (y)

132 3 Managing Data in R

The kde2d() function is needed for 2D kernel density estimation.

kernal_density <- with(earthquake, MASS::kde2d(Longitude, Latitude, n = 50))

Here, z is an estimate of the kernel density function. Then, we apply plot_ly to

the list kernal_density via the with() function.

library(plotly)

with(kernal_density, plot_ly(x=x, y=y, z=z, type="surface"))

Note that we used the option “surface”, however you can experiment with the

type option.

Alternatively, one can plot 1D, 2D, or 3D plots (Fig. 3.32):

plot_ly(x = ~ earthquake$Longitude)

No trace type specified:
Based on info supplied, a 'histogram' trace seems appropriate.
Read more about this trace type->https://plot.ly/r/reference/#histogram

plot_ly(x = ~ earthquake$Longitude, y = ~earthquake$Latitude)

plot_ly(x=~earthquake$Longitude, y=~earthquake$Latitude, z=~earthquake$Mag)

df3D <- data.frame(x=earthquake$Longitude, y=earthquake$Latitude,
z=earthquake$Mag)

Convert he Long (X, Y, Z) Earthquake format data into a Matrix Format
install.packages("Matrix")
library("Matrix")
matrix_EarthQuakes <- with(df3D, sparseMatrix(i = as.numeric(180-x),

1.00

0.75

0.50

0.25

0.00

32.5 35.0 37.5 40.0

Latitude

d
e

n
s

it
y

42.5 45.0

1
1

Magt
Md
ML
Mw
Mx

Fig. 3.31 Modified Earthquake density plot (y) of magnitude type against latitude coordinates (x)

3.14 Parsing Webpages and Visualizing Tabular HTML Data 133

https://plot.ly/r/reference/#histogram

j=as.numeric(y), x=z, use.last.ij=T, dimnames=list(levels(x), levels(y))))
dim(matrix_EarthQuakes)

[1] 307 44

View(as.matrix(matrix_EarthQuakes))

view matrix is 2D heatmap :
library("ggplot2"); library("gplots")

heatmap.2(as.matrix(matrix_EarthQuakes[280:307, 30:44]), Rowv=FALSE,
Colv=FALSE, dendrogram='none', cellnote=as.matrix(matrix_EarthQuakes[
280:307, 30:44]), notecol="black", trace='none', key=FALSE, lwid =
c(.01, .99), lhei = c(.01, .99), margins = c(5, 15))

Long -180<x<-170, Lat: 30<y<45, Z: 5<Mag<8
matrix_EarthQuakes <- with(df3D, sparseMatrix(i = as.numeric(180+x),
j=as.numeric(y), x=z,use.last.ij=TRUE,dimnames=list(levels(x), levels(y))))
mat1 <- as.matrix(matrix_EarthQuakes)
plot_ly(z = ~mat1, type = "surface")

To plot the Aggregate (Summed) Magnitudes at all Long/Lat:
matrix_EarthQuakes <- with(df3D, sparseMatrix(i = as.numeric(180+x),
j=as.numeric(y), x=z, dimnames=list(levels(x), levels(y))))
mat1 <- as.matrix(matrix_EarthQuakes)
plot_ly(z = ~mat1, type = "surface")
plot_ly(z = ~mat1[30:60, 20:40], type = "surface")

Fig. 3.32 Image

representation of the kernel-

density estimation of the

Earthquake magnitude

rendered as a heatmap

134 3 Managing Data in R

You can see interactive surface plot generated by plotly in the live demo listed on

Fig. 3.33.

3.15 Cohort-Rebalancing (for Imbalanced Groups)

Comparing cohorts with imbalanced sample sizes (unbalanced designs) may present

hidden biases in the results. Frequently, a cohort-rebalancing protocol is necessary to

avoid such unexpected effects. Extremely unequal sample sizes can invalidate

various parametric assumptions (e.g., homogeneity of variances). Also, there may

be insufficient data representing the patterns belonging to the minority class(es)

leading to inadequate capturing of the feature distributions. Although, the groups do

not have to have equal sizes, a general rule of thumb is 0:5 < size1
size2

< 2. Tat is group

sizes where one group is more than an order of magnitude larger than the size of

another group has the potential for bias.

Example 1 Parkinson’s Diseases Study involving neuroimaging, genetics,

clinical, and phenotypic data for over 600 volunteers produced multivariate data

for three cohorts: HC¼Healthy Controls(166), PD¼Parkinson’s (434),

SWEDD ¼ subjects without evidence for dopaminergic deficit (61) (Figs. 3.34 and

3.35).

http://www.socr.umich.edu/people/

dinov/courses/DSPA_notes/

02_ManagingData.html

Fig. 3.33 Live demo of 3D kernel density surface plots using the Earthquake and 2D brain

imaging data (http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.

html)

3.15 Cohort-Rebalancing (for Imbalanced Groups) 135

http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.html
http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/02_ManagingData.html

update.packages()
load the data: 06_PPMI_ClassificationValidationData_Short.csv
ppmi_data <-read.csv("https://umich.instructure.com/files/330400/download?do
wnload_frd=1", header=TRUE)

table(ppmi_data$ResearchGroup)

binarize the Dx classes
ppmi_data$ResearchGroup <- ifelse(ppmi_data$ResearchGroup == "Control",
"Control", "Patient")
attach(ppmi_data)

head(ppmi_data)

b
a

la
n

c
e

d
D

a
ta

[,
 5

]

input[, 5]

0
.1

0
.3

0
.5

0
.7

0.1 0.2 0.40.3 0.5 0.6 0.7

Fig. 3.34 Validation that cohort rebalancing does not substantially alter the distributions of

features. This QQ plot of one variable shows the linearity of the quantiles of the initial (x) and

rebalanced (y) data

0.0 0.2 0.4

test.results.raw

te
s

t.
re

s
u

lt
s

.c
o

rr

0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 3.35 Scatter plot of the raw (x) and corrected/adjusted (y) p-values corresponding to the paired

two-sample Wilcoxon non-parametric test comparing the raw and rebalanced features

136 3 Managing Data in R

https://umich.instructure.com/files/330400/download?download_frd=1
https://umich.instructure.com/files/330400/download?download_frd=1

percUnder=150, verbose=TRUE)

percOver = A number that drives the decision of how many extra cases from
the minority class are generated (known as over-sampling).
k = A number indicating the number of nearest neighbors that are used to g
enerate the new examples of the minority class.
percUnder = A number that drives the decision of how many extra cases from
the majority classes are selected for each case generated from the minority
class (known as under-sampling)

Model-free analysis, classification
install.packages("crossval")
install.packages("ada")
library("crossval")
require(crossval)
require(ada)
#set up adaboosting prediction function

Define a new classification result-reporting function
my.ada <- function (train.x, train.y, test.x, test.y, negative, formula)

ada.fit <- ada(train.x, train.y)
predict.y <- predict(ada.fit, test.x)
#count TP, FP, TN, FN, Accuracy, etc.
out <- confusionMatrix(test.y, predict.y, negative = negative)

negative is the label of a negative "null" sample (default: "control").
return (out)

}

balance cases
SMOTE: Synthetic Minority Oversampling Technique to handle class
misbalance in binary classification.
set.seed(1000)
install.packages("unbalanced") to deal with unbalanced group data
require(unbalanced)
ppmi_data$PD <- ifelse(ppmi_data$ResearchGroup=="Control", 1, 0)
uniqueID <- unique(ppmi_data$FID_IID)
ppmi_data <- ppmi_data[ppmi_data$VisitID==1,]
ppmi_data$PD <- factor(ppmi_data$PD)

colnames(ppmi_data)
ppmi_data.1<-ppmi_data[, c(3:281, 284, 287, 336:340, 341)]
n <- ncol(ppmi_data)
output.1 <- ppmi_data$PD

remove Default Real Clinical subject classifications!
ppmi_data$PD <- ifelse(ppmi_data$ResearchGroup=="Control", 1, 0)
input <- ppmi_data[, -which(names(ppmi_data) %in% c("ResearchGroup",
"PD", "X", "FID_IID"))]
output <- as.matrix(ppmi_data[, which(names(ppmi_data) %in% {"PD"})])
output <- as.factor(ppmi_data$PD)
c(dim(input), dim(output))

#balance the dataset
data.1<-ubBalance(X= input, Y=output, type="ubSMOTE", percOver=300,

{

3.15 Cohort-Rebalancing (for Imbalanced Groups) 137

balancedData<-cbind(data.1$X, data.1$Y)
table(data.1$Y)

nrow(data.1$X); ncol(data.1$X)
nrow(balancedData); ncol(balancedData)
nrow(input); ncol(input)

colnames(balancedData) <- c(colnames(input), "PD")

check visually for differences between the distributions of the raw
(input) and rebalanced data (for only one variable, in this case)
qqplot(input[, 5], balancedData [, 5])

###Check balance
Wilcoxon test
alpha.0.05 <- 0.05
test.results.bin <- NULL # binarized/dichotomized p-values
test.results.raw <- NULL # raw p-values

for (i in 1:(ncol(balancedData)-1))
{

test.results.raw[i]<-wilcox.test(input[, i], balancedData [, i])$p.value
test.results.bin [i] <- ifelse(test.results.raw [i] > alpha.0.05, 1, 0)
print(c("i=", i, "Wilcoxon-test=", test.results.raw [i]))

}
print(c("Wilcoxon test results: ", test.results.bin))

test.results.corr <- stats::p.adjust(test.results.raw, method = "fdr", n = l

ength(test.results.raw))
where methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none")
plot(test.results.raw, test.results.corr)

zeros (0) are significant independent between-group T-test differences,
ones (1) are insignificant

Check the Differences between the rate of significance between the raw and
FDR-corrected p-values
test.results.bin <- ifelse(test.results.raw > alpha.0.05, 1, 0)
table(test.results.bin)
test.results.corr.bin <- ifelse(test.results.corr > alpha.0.05, 1, 0)
table(test.results.corr.bin)

3.16 Appendix

3.16.1 Importing Data from SQL Databases

We can also import SQL databases into R. First, we need to install and load the

RODBC(R Open Database Connectivity) package.

install.packages("RODBC", repos = "http://cran.us.r-project.org")
library(RODBC)

138 3 Managing Data in R

http://cran.us.r-project.org

Then, we could open a connection to the SQL server database with Data Source

Name (DSN), via Microsoft Access. More details are provided online.

3.16.2 R Code Fragments

Below are some code snippets used to generate some of the graphs shown in this

Chapter.

#Right Skewed
N <- 10000
x <- rnbinom(N, 10, .5)
hist(x,
xlim=c(min(x), max(x)), probability=T, nclass=max(x)-min(x)+1,
col='lightblue', xlab=' ', ylab=' ', axes=F,
main='Right Skewed')

lines(density(x, bw=1), col='red', lwd=3)

#No Skew
N <- 10000
x <- rnorm(N, 0, 1)
hist(x, probability=T,
col='lightblue', xlab=' ', ylab=' ', axes=F,
main='No Skew')

lines(density(x, bw=0.4), col='red', lwd=3)

#Uniform density
x<-runif(1000, 1, 50)
hist(x, col='lightblue', main="Uniform Distribution", probability = T, xlab=
"", ylab="Density", axes=F)
abline(h=0.02, col='red', lwd=3)

#68-95-99.7 rule
x <- rnorm(N, 0, 1)
hist(x, probability=T,
col='lightblue', xlab=' ', ylab=' ', axes = F,
main='68-95-99.7 Rule')

lines(density(x, bw=0.4), col='red', lwd=3)
axis(1, at=c(-3, -2, -1, 0, 1, 2, 3), labels = expression(mu-3*sigma,
mu-2*sigma, mu-sigma, mu, mu+sigma, mu+2*sigma, mu+3*sigma))
abline(v=-1, lwd=3, lty=2)
abline(v=1, lwd=3, lty=2)
abline(v=-2, lwd=3, lty=2)
abline(v=2, lwd=3, lty=2)
abline(v=-3, lwd=3, lty=2)
abline(v=3, lwd=3, lty=2)
text(0, 0.2, "68%")
segments(-1, 0.2, -0.3, 0.2, col = 'red', lwd=2)
segments(1, 0.2, 0.3, 0.2, col = 'red', lwd=2)
text(0, 0.15, "95%")
segments(-2, 0.15, -0.3, 0.15, col = 'red', lwd=2)
segments(2, 0.15, 0.3, 0.15, col = 'red', lwd=2)
text(0, 0.1, "99.7%")
segments(-3, 0.1, -0.3, 0.1, col = 'red', lwd=2)
segments(3, 0.1, 0.3, 0.1, col = 'red', lwd=2)

3.16 Appendix 139

3.17 Assignments: 3. Managing Data in R

3.17.1 Import, Plot, Summarize and Save Data

Load the following two datasets, generate summary statistics for all variables, plot

some of the features (e.g., histograms, box plots, density plots, etc.), and save the

data locally as CSV files:

• ALS case-study data, https://umich.instructure.com/courses/38100/files/folder/

Case_Studies/15_ALS_CaseStudy.

• SOCR Knee Pain Data, http://wiki.socr.umich.edu/index.php/SOCR_Data_

KneePainData_041409.

3.17.2 Explore some Bivariate Relations in the Data

Use ALS case-study data or SOCR Knee Pain Data to explore some bivariate

relations (e.g. bivariate plot, correlation, table, crosstable, etc.)

Use 07_UMich_AnnArbor_MI_TempPrecipitation_HistData_1900_2015 data to

show the relations between temperature and time. [Hint: use geom_line or

geom_bar].

Some sample code for dealing with the table of temperatures data is included

below.

<code>
Temp_Data <- as.data.frame(read.csv("https://umich.instructure.com/files/706163/download?

download_frd=1", header=T, na.strings=c("", ".", "NA", "NR")))
summary(Temp_Data)
View(Temp_Data); colnames(Temp_Data)

Wide-to-Long transformation: reshape arguments include
(1) list of variable names that define the different times or metrics (varying),
(2) the name we wish to give the variable containing these values in our long dataset (

v.names),
(3) the name we wish to give the variable describing the different times or metrics (ti

mevar),
(4) the values this variable will have (times), and
(5) the end format for the data (direction)
Before reshaping make sure all data types are the same as putting them in 1 column will
otherwise generate inconsistencies/errors
colN <- colnames(Temp_Data[,-1])
longTempData <- reshape(Temp_Data, varying = colN, v.names = "Temps", timevar="Months", t

imes = colN, direction = "long")

View(longTempData)
bar2 <- ggplot(longTempData, aes(x = Months, y = Temps, fill = Months)) +
geom_bar(stat = "identity")
print(bar2)
bar3 <- ggplot(longTempData, aes(x = Year, y = Temps, fill = Months)) +
geom_bar(stat = "identity")
print(bar3)

p <- ggplot(longTempData, aes(x=Year, y=as.integer(Temps), colour=Months)) +
geom_line()
p

</code>

140 3 Managing Data in R

https://umich.instructure.com/courses/38100/files/folder/Case_Studies/15_ALS_CaseStudy
https://umich.instructure.com/courses/38100/files/folder/Case_Studies/15_ALS_CaseStudy
http://wiki.socr.umich.edu/index.php/SOCR_Data_KneePainData_041409
http://wiki.socr.umich.edu/index.php/SOCR_Data_KneePainData_041409
https://umich.instructure.com/files/706163/download?download_frd=1
https://umich.instructure.com/files/706163/download?download_frd=1

3.17.3 Missing Data

Introduce (artificially) some missing data, impute the missing values and examine

the differences between the original, incomplete, and imputed data.

3.17.4 Surface Plots

Generate a surface plot for the (RF) Knee Pain data illustrating the 2D distribution of

locations of the patient reported knee pain (use plot_ly and kernel density

estimation).

3.17.5 Unbalanced Designs

Rebalance the groups of ALS (training data) patients according to Age > 50 and

Age� 50 using synthetic minoroty oversampling (SMOTE) to ensure approximately

equal cohort sizes. (Hint: you may need to set 1 as the minority class.)

3.17.6 Aggregate Analysis

Use the California Ozone Data to generate a summary report. Make sure to include:

summary for every variable, the structure of the data, convert to appropriate data

type, discuss the tendency of the ozone average concentration, explore the differ-

ences of the ozone concentration a specific area (you may select year 2006), explore

the seasonal change of ozone concentration.

References

https://plot.ly/r/

http://www.statmethods.net/management

References 141

https://plot.ly/r/
http://www.statmethods.net/management

Chapter 4

Data Visualization

In this chapter, we use a broad range of simulations and hands-on activities to

highlight some of the basic data visualization techniques using R. A brief discussion

of alternative visualization methods is followed by demonstrations of histograms,

density, pie, jitter, bar, line and scatter plots, as well as strategies for displaying trees,

more general graphs, and 3D surface plots. Many of these are also used throughout

the textbook in the context of addressing the graphical needs of specific case-studies.

It is practically impossible to cover all options of every different visualization

routine. Readers are encouraged to experiment with each visualization type, change

input data and parameters, explore the function documentation using R-help (e.g.,

?plot), and search online for new R visualization packages and new functionality,

which are continuously being developed.

We will cover (1) one specific classification of visualization methods, (2) com-

position (e.g., density, histogram), comparison (e.g., jitter, bar, correlation) and

relationship (e.g., line) plots, (3) 2D kernel density and 3D surface plots, and

(4) 3D and 4D visualization of solids, (hyper)volumes.

4.1 Common Questions

• What exploratory visualization techniques are available to graphically interrogate

my specific data?

• How do we examine paired associations and correlations in a multivariate

dataset?

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_4

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_4&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_4

4.2 Classification of Visualization Methods

Scientific data-driven or simulation-driven visualization methods are hard to clas-

sify. The following list of criteria can be used to characterize alternative data

visualization strategies:

• Data Type: structured/unstructured, small/large, complete/incomplete, time/

space, ASCII/binary, Euclidean/non-Euclidean, etc.

• Task type: Task type is one of the aspects considered in classification of

visualization techniques, which provides a means of interaction between the

researcher, the data, and the display software/platform

• Scalability: Visualization techniques are subject to some limitations, such as the

amount of data that a particular technique can exhibit

• Dimensionality: Visualization techniques can also be classified according to the

number of attributes

• Positioning and Attributes: the distribution of attributes on the chart may affect

the interpretation of the display representation, e.g., correlation analysis, where

the relative distance among the plotted attributes is relevant for observation

• Investigative Need: the specific scientific question or exploratory interest may

also determine the type of visualization:

– Examining the composition of the data

– Exploring the distribution of the data

– Contrasting or comparing several data elements, relations, association

– Unsupervised exploratory data mining.

Also, we have the following table for common data visualization methods

according to task types (Fig. 4.1):

We introduce common data visualization methods according to this classification

criterion, albeit this is not a unique or even broadly agreed upon ontological

characterization of exploratory data visualization.

4.3 Composition

In this section, we will see composition plots for different types of variables and data

structures.

4.3.1 Histograms and Density Plots

One of the first few graphs we learn is a histogram plot. In R, the command hist()

is applied to a vector of values and used for plotting histograms. The famous

nineteenth century statistician Karl Pearson introduced histograms as graphical

144 4 Data Visualization

representations of the distribution of a sample of numeric data. The histogram plot

uses the data to infer and display the probability distribution of the underlying

population that the data is sampled from. Histograms are constructed by selecting

a certain number of bins covering the range of values of the observed process.

Typically, the number of bins for a data array of size N should be equal to
ffiffiffiffi

N
p

. These

bins form a partition (disjoint and covering sets) of the range. Finally, we compute

the relative frequency representing the number of observations that fall within each

bin interval. The histogram just plots a piece-wise step-function defined over the

union of the bin interfaces whose height equals the observed relative frequencies

(Fig. 4.2).

Fig. 4.1 Schematic depiction of a hierarchical classification of different visualization methods

4.3 Composition 145

set.seed(1)

x<-rnorm(1000)

hist(x, freq=T, breaks = 10)

lines(density(x), lwd=2, col="blue")

t <- seq(-3, 3, by=0.01)

lines(t, 550*dnorm(t,0,1), col="magenta") # add the theoretical density line

Here, freq¼T shows the frequency for each x value and breaks controls for

number of bars in our histogram.

The shape of the last histogram we drew is very close to a Normal distribution

(because we sampled from this distribution by rnorm). We can add a density line to

the histogram (Fig. 4.3).

hist(x, freq=F, breaks = 10)

lines(density(x), lwd=2, col="blue")

Fig. 4.2 Overlay of Normal

distribution histogram and

density curve plot

Fig. 4.3 Overlay of

histogram plot and a density

curve estimate

146 4 Data Visualization

We used the option freq¼F to make the y axis represent the “relative fre-

quency”, or “density”. We can also use plot(density(x)) to draw the density

plot by itself (Fig. 4.4).

plot(density(x))

4.3.2 Pie Chart

We are all very familiar with pie charts that show us the components of a big “cake”.

Although pie charts provide effective simple visualization in certain situations, it

may also be difficult to compare segments within a pie chart or across different pie

charts. Other plots like bar chart, box or dot plots may be attractive alternatives.

We will use the Letter Frequency Data on SOCR website to illustrate the use of

pie charts.

library(rvest)

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_LetterFrequ

encyData")

html_nodes(wiki_url, "#content")

{xml_nodeset (1)}

[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top

...

letter<- html_table(html_nodes(wiki_url, "table")[[1]])

summary(letter)

Fig. 4.4 Direct plot of the

estimated Normal

distribution density curve

4.3 Composition 147

http://wiki.socr.umich.edu/index.php/SOCR_LetterFrequencyData
http://wiki.socr.umich.edu/index.php/SOCR_LetterFrequencyData

Letter English French German

Length:27 Min. :0.00000 Min. :0.00000 Min. :0.00000

Class :character 1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01000

Mode :character Median :0.02000 Median :0.03000 Median :0.03000

Mean :0.03667 Mean :0.03704 Mean :0.03741

3rd Qu.:0.06000 3rd Qu.:0.06500 3rd Qu.:0.05500

Max. :0.13000 Max. :0.15000 Max. :0.17000

Spanish Portuguese Esperanto Italian

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.01000 1st Qu.:0.00500 1st Qu.:0.01000 1st Qu.:0.00500

Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000

Mean :0.03815 Mean :0.03778 Mean :0.03704 Mean :0.03815

3rd Qu.:0.06000 3rd Qu.:0.05000 3rd Qu.:0.06000 3rd Qu.:0.06000

Max. :0.14000 Max. :0.15000 Max. :0.12000 Max. :0.12000

Turkish Swedish Polish Toki_Pona

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01500 1st Qu.:0.00000

Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000

Mean :0.03667 Mean :0.03704 Mean :0.03704 Mean :0.03704

3rd Qu.:0.05500 3rd Qu.:0.05500 3rd Qu.:0.04500 3rd Qu.:0.05000

Max. :0.12000 Max. :0.10000 Max. :0.20000 Max. :0.17000

Dutch Avgerage

Min. :0.00000 Min. :0.00000

1st Qu.:0.01000 1st Qu.:0.01000

Median :0.02000 Median :0.03000

Mean :0.03704 Mean :0.03741

3rd Qu.:0.06000 3rd Qu.:0.06000

Max. :0.19000 Max. :0.12000

We can try to plot the frequency for the first ten English letters. The left hand side

shows a table made by the function legend (Fig. 4.5).

par(mfrow=c(1, 2))

pie(letter$English[1:10], labels=letter$Letter[1:10], col=rainbow(10, start=

0.1, end=0.8), clockwise=TRUE, main="First 10 Letters Pie Chart")

pie(letter$English[1:10], labels=letter$Letter[1:10], col=rainbow(10, start=

0.1, end=0.8), clockwise=TRUE, main="First 10 Letters Pie Chart")

legend("topleft", legend=letter$Letter[1:10], cex=1.3, bty="n", pch=15, pt.c

ex=1.8, col=rainbow(10, start=0.1, end=0.8), ncol=1)

Fig. 4.5 Pie chart showing

the frequency of English

use of the first ten Latin

letters (a–j)

148 4 Data Visualization

The input type for pie() is a vector of non-negative numerical quantities. In the

pie function, we list the data that we are going to use (positive and numeric), the labels

for each of them, and the colorswewant to use for each sector. In thelegend function,

we put the location in the first slot and use legend as the labels for the colors. Also

cex, bty, pch, and pt.cex are all graphic parameters that we have talked about in

Chap. 2.

More elaborate pie charts, using the Latin letter data, will be demonstrated using

ggplot below (in the Appendix of this chapter).

4.3.3 Heat Map

Another common data visualization method is the heat map. Heat maps can help us

visualize intuitively the individual values in a matrix. It is widely used in genetics

research and financial applications.

We will illustrate the use of heat maps, based on a neuroimaging genetics case-

study data about the association (p-values) of different brain regions of interest

(ROIs) and genetic traits (SNPs) for Alzheimer’s disease (AD) patients, subjects

with mild cognitive impairment (MCI), and normal controls (NC). First, let’s import

the data into R. The data are 2D arrays where the rows represent different genetic

SNPs, columns represent brain ROIs, and the cell values represent the strength of the

SNP-ROI association, a probability value (smaller p-values indicate stronger

neuroimaging-genetic associations).

AD_Data <- read.table("https://umich.instructure.com/files/330387/download?d

ownload_frd=1", header=TRUE, row.names=1, sep=",", dec=".")

MCI_Data <- read.table("https://umich.instructure.com/files/330390/download?

download_frd=1", header=TRUE, row.names=1, sep=",", dec=".")

NC_Data <- read.table("https://umich.instructure.com/files/330391/download?d

ownload_frd=1", header=TRUE, row.names=1, sep=",", dec=".")

Then, we load the R packages we need for heat maps (use install.pack-

ages("package name") first if you have not previously install them).

require(graphics)

require(grDevices)

library(gplots)

We can convert the datasets into matrices.

AD_mat <- as.matrix(AD_Data); class(AD_mat) <- "numeric"

MCI_mat <- as.matrix(MCI_Data); class(MCI_mat) <- "numeric"

NC_mat <- as.matrix(NC_Data); class(NC_mat) <- "numeric"

We may also want to set up the row (rc) and column (cc) colors for each cohort.

4.3 Composition 149

https://umich.instructure.com/files/330387/download?download_frd=1
https://umich.instructure.com/files/330387/download?download_frd=1
https://umich.instructure.com/files/330390/download?download_frd=1
https://umich.instructure.com/files/330390/download?download_frd=1
https://umich.instructure.com/files/330391/download?download_frd=1
https://umich.instructure.com/files/330391/download?download_frd=1

rcAD <- rainbow(nrow(AD_mat), start = 0, end = 1.0); ccAD<-rainbow(ncol(AD_m

at), start = 0, end = 1.0)

rcMCI <- rainbow(nrow(MCI_mat), start = 0, end=1.0); ccMCI<-rainbow(ncol(MCI

_mat), start=0, end=1.0)

rcNC <- rainbow(nrow(NC_mat), start = 0, end = 1.0); ccNC<-rainbow(ncol(NC_m

at), start = 0, end = 1.0)

Finally, we can plot the heat maps by specifying the input type of heatmap() to

be a numeric matrix (Figs. 4.6, 4.7, and 4.8).

hvAD <- heatmap(AD_mat, col=cm.colors(256), scale="column", RowSideColors =

rcAD, ColSideColors = ccAD, margins = c(2, 2), main="AD Cohort")

hvMCI <- heatmap(MCI_mat, col = cm.colors(256), scale = "column", RowSideCol

ors = rcMCI, ColSideColors = ccMCI, margins = c(2, 2), main="MCI Cohort")

Fig. 4.6 Hierarchically clustered heatmap for the Alzheimer’s disease (AD) cohort of the dementia

study. The rows indicate the unique SNP reference sequence (rs) IDs and the columns index specific

brain regions of interest (ROIs) that are associated with the genomic biomarkers (rows)

150 4 Data Visualization

hvNC <- heatmap(NC_mat, col=cm.colors(256), scale="column", RowSideColors =

rcNC, ColSideColors = ccNC, margins = c(2, 2), main="NC Cohort")

In the heatmap() function, the first argument provides the input matrix we

want to use. col is the color scheme; scale is a character indicating if the values

should be centered and scaled in either the row direction or the column direction, or

none ("row", "column", and "none"); RowSideColors and ColSideColors

creates the color names for horizontal side bars.

The differences between the AD, MCI, and NC heat maps are suggestive of

variations of genetic traits or alternative brain regions that may be affected in the

three clinically different cohorts.

Fig. 4.7 Hierarchically clustered heatmap for the Mild Cognitive Impairment (MCI) cohort

4.3 Composition 151

4.4 Comparison

Plots used for comparing different individuals, groups of subjects, or multiple units

represent another set of popular exploratory visualization tools.

4.4.1 Paired Scatter Plots

Scatter plots use the 2D Cartesian plane to display a pair of variables. 2D points

represent the values of the two variables corresponding to the two coordinate axes.

The position of each 2D point on is determined by the values of the first and second

variables, which represent the horizontal and vertical axes. If no clear dependent

Fig. 4.8 Hierarchically clustered heatmap for the healthy normal controls (NC) cohort

152 4 Data Visualization

variable exists, either variable can be plotted on the X axis and the corresponding

scatter plot will illustrate the degree of correlation (not necessarily causation)

between the two variables.

Basic scatter plots can be plotted by function plot(x, y) (Fig. 4.9).

x<-runif(50)

y<-runif(50)

plot(x, y, main="Scatter Plot")

qplot() is another way to display elaborate scatter plots. We can manage the

colors and sizes of dots. The input type for qplot() is a data frame. In the

following example, larger x will have larger dot sizes. We also grouped the data as

ten points per group (Fig. 4.10).

library(ggplot2)

cat <- rep(c("A", "B", "C", "D", "E"), 10)

plot.1 <- qplot(x, y, geom="point", size=5*x, color=cat, main="GGplot with R

elative Dot Size and Color")

print(plot.1)

Now, let’s draw a paired scatter plot with three variables. The input type for

pairs() function is a matrix or data frame (Fig. 4.11).

z<-runif(50)

pairs(data.frame(x, y, z))

We can see that variable names are on the diagonal of this scatter plot matrix.

Each plot uses the column variable as its X-axis and row variable as its Y-axis.

Let’s see a real word data example. First, we can import the Mental Health

Services Survey Data into R, which is on the case-studies website.

Fig. 4.9 Scatter plot of

bivariate uniform process

4.4 Comparison 153

0.8

x

y

z

0.40.0 0.80.40.0

0.80.40.0

0
.8

0
.4

0
.0

0
.8

0
.4

0
.0

0
.8

0
.4

0
.0

Fig. 4.11 A pairs plot depicts the bivariate relations in multivariate datasets

1.00

0.50

0.25

0.00

0.00 0.25 0.50

x

GGplot with Relative Dot Size and Color

y

0.75 1.00

0.75

cat

5 * x

A

B

C

D

E

1

2

3

4

Fig. 4.10 Simulated bubble plot depicting four variable features represented as x and y axes, size

and color

154 4 Data Visualization

data1 <- read.table('https://umich.instructure.com/files/399128/download?dow

nload_frd=1', header=T)

head(data1)

STFIPS majorfundtype FacilityType Ownership Focus PostTraum GLBT

1 southeast 1 5 2 1 0 0

2 southeast 3 5 3 1 0 0

3 southeast 1 6 2 1 1 1

4 greatlakes NA 2 2 1 0 0

5 rockymountain 1 5 2 3 0 0

6 mideast NA 2 2 1 0 0

num qual supp

1 5 NA NA

2 4 15 4

3 9 15 NA

4 7 14 6

5 9 18 NA

6 8 14 NA

attach(data1)

From the head() output, we observe that there are a lot of NA’s in the dataset.

pairs automatically deals with this problem (Figs. 4.12 and 4.13).

plot(data1[, 9], data1[, 10], pch=20, col="red", main="qual vs supp")

pairs(data1[, 5:10])

Figure 4.12 represents just one of the plots shown in the collage on Fig. 4.13. We

can see that Focus and PostTraum have no relationship - Focus can equal to

3 or 1 in either of the PostTraum values (0 or 1). On the other hand, larger supp

tends to correspond to larger qual values.

To see this trend we can also make a plot using qplot function. This allow us to

add a smooth model curve forecasting a possible trend (Fig. 4.14).

Fig. 4.12 Each of the

bivariate plots in a pairs plot

collage may be zoomed up

and explored further

4.4 Comparison 155

https://umich.instructure.com/files/399128/download?download_frd=1
https://umich.instructure.com/files/399128/download?download_frd=1

Fig. 4.13 A more elaborate 6D pairs plot showing the type and scale of each variable and their

bivariate relations

Fig. 4.14 Plotting the bivariate trend along with its confidence limits

156 4 Data Visualization

plot.2 <- qplot(qual, supp, data = data1, geom = c("point", "smooth"))

print(plot.2)

You can also use the human height and weight dataset or the knee pain dataset to

illustrate some interesting scatter plots.

4.4.2 Jitter Plot

Jitter plots can help us deal with the complexity issues when we have many points in

the data. The function we will be using is in package ggplot2 is called

position_jitter().

Let’s use the earthquake data for this example. We will compare the differences

with and without the position_jitter() function (Figs. 4.15 and 4.16).

45.0

42.5

40.0

37.5

35.0

32.5
0 25 50

Depth

L
a
ti

tu
d

e

75 100

Magt

Md

ML

Mw

Mx

Fig. 4.15 Jitter plot of magnitude type against depth and latitude (Earthquake dataset)

4.4 Comparison 157

library("xml2"); library("rvest")

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_

021708_Earthquakes")

html_nodes(wiki_url, "#content")

{xml_nodeset (1)}

[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top

...

earthquake <- html_table(html_nodes(wiki_url, "table")[[2]])

plot6.1<-ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt))+ge

om_point()

plot6.2<-ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt))+ge

om_point(position = position_jitter(w = 0.3, h = 0.3), alpha=0.5)

print(plot6.1)

print(plot6.2)

Note that with option alpha¼0.5 the “crowded” places are darker than the

places with only one data point. Sometimes, we need to add text to these points, i.e.,

add label in aes or add geom_text. The result may look messy (Fig. 4.17).

ggplot(earthquake, aes(Depth, Latitude, group=Magt,

color=Magt,label=rownames(earthquake)))+

geom_point(position = position_jitter(w = 0.3, h = 0.3), alpha=0.5)+

geom_text()

L
a
ti

tu
d

e

Magt

Md

ML

Mw

Mx

0 25 50

Depth

75 100

45.0

42.5

40.0

37.5

35.0

32.5

Fig. 4.16 A lower opacity jitter plot of magnitude type against depth and latitude

158 4 Data Visualization

http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes
http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes

Let’s try to fix the overlap of points and labels. We need to add

check_overlap in geom_text and adjust the positions of the text labels with

respect to the points (Figs. 4.18 and 4.19).

ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt,

label=rownames(earthquake)))+

geom_point(position = position_jitter(w = 0.3, h = 0.3), alpha=0.5)+

geom_text(check_overlap = T,vjust = 0, nudge_y = 0.5, size = 2,angle = 45)

Or you can simply use the text to denote the positions of points.

ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt,

label=rownames(earthquake)))+

geom_text(check_overlap = T,vjust = 0, nudge_y = 0, size = 3,angle = 45)

4.4.3 Bar Plots

Bar plots, or bar charts, represent group data with rectangular bars. There are many

variants of bar charts for comparison among categories. Typically, either horizontal

or vertical bars are used where one of the axes shows the compared categories and

the other axis represents a discrete value. It’s possible, and sometimes desirable, to

plot bar graphs including bars clustered by groups.

Fig. 4.17 Another version of the jitter plot of magnitude type explicitly listing the Earthquake ID

label

4.4 Comparison 159

Fig. 4.18 Yet another version of the previous jitter plot illustrating label specifications

Fig. 4.19 This jitter plot suppresses the scatter point bubbles in favor of ID labels

160 4 Data Visualization

In R, we have the barplot() function to generate bar plots. The input for

barplot() is either a vector or a matrix (Fig. 4.20).

x <- matrix(runif(50), ncol=5, dimnames=list(letters[1:10], LETTERS[1:5]))

x

A B C D E

a 0.64397479 0.75069788 0.4859278 0.068299279 0.5069665

b 0.21981304 0.84028392 0.7489431 0.130542241 0.2694441

c 0.08903728 0.87540556 0.2656034 0.146773063 0.6346498

d 0.13075121 0.01106876 0.7586781 0.860316695 0.9976566

e 0.87938851 0.04156918 0.1960069 0.949276015 0.5050743

f 0.65204025 0.21135891 0.3774320 0.896443296 0.9332330

g 0.02814806 0.72618285 0.5603189 0.113651731 0.1912089

h 0.13106307 0.79411904 0.4526415 0.793385952 0.4847625

i 0.15759514 0.63369297 0.8861631 0.004317772 0.6341256

j 0.47347613 0.14976052 0.5887866 0.698139910 0.2023031

barplot(x[1:4,], ylim=c(0, max(x[1:4,])+0.3), beside=TRUE, legend.text = l

etters[1:4],

args.legend = list(x = "topleft"))

text(labels=round(as.vector(as.matrix(x[1:4,])), 2), x=seq(1.5, 21, by=1) +

rep(c(0, 1, 2, 3, 4), each=4), y=as.vector(as.matrix(x[1:4,]))+0.1)

It may require some creativity to add value labels on each bar. First, let’s specify

the location on the x-axis x¼seq(1.5, 21, by¼1)+ rep(c(0, 1, 2, 3, 4),

each¼4). In this example there are 20 bars. The x location for middle of the first

bar is 1.5 (there is one empty space before the first bar). The middle of the last bar is

Fig. 4.20 Example of a labeled boxplot using simulated data with grouping categorical labels

4.4 Comparison 161

24.5. seq(1.5, 21, by¼1) starts at 1.5 and creates 20 bars that end with x¼21.

Then, we use rep(c(0, 1, 2, 3, 4), each¼4) to add 0 to the first group, 1 to

the second group, and so forth. Thus, we have the desired positions on the x-axis.

The y-axis positions are obtained just by adding 0.1 to each bar height.

We can also add standard deviations to the means on the bars. To do this, we need

to use the arrows() function and the option angle ¼ 90, the result is shown on

Fig. 4.21.

bar <- barplot(m <- rowMeans(x) * 10, ylim=c(0, 10))

stdev <- sd(t(x[1:4,]))

arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)

Let’s look at a more complex example. We will utilize the dataset

Case_04_ChildTrauma for illustration. This case study examines associations

between post-traumatic psychopathology and service utilization by trauma-exposed

children.

data2 <- read.table('https://umich.instructure.com/files/399129/download?dow

nload_frd=1', header=T)

attach(data2)

head(data2)

id sex age ses race traumatype ptsd dissoc service

1 1 1 6 0 black sexabuse 1 1 17

2 2 1 14 0 black sexabuse 0 0 12

3 3 0 6 0 black sexabuse 0 1 9

4 4 0 11 0 black sexabuse 0 1 11

5 5 1 7 0 black sexabuse 1 1 15

6 6 0 9 0 black sexabuse 1 0 6

We have two character variables. Our goal is to draw a bar plot comparing the

means of age and service among different races in this study, and we want to add

standard deviation to each bar. The first thing to do is to delete the two character

columns. Remember, the input for barplot() is a numerical vector or a matrix.

Fig. 4.21 Statistical barplot

showing point-estimates and

their error limits (simulated

data)

162 4 Data Visualization

https://umich.instructure.com/files/399129/download?download_frd=1
https://umich.instructure.com/files/399129/download?download_frd=1

However, we will need race information for the categorical classification. Thus, we

will store race in a different variable.

data2.sub <- data2[, c(-5, -6)]

data2<-data2[, -6]

We are now ready to separate the groups and compute the group means.

data2.matrix <- as.data.frame(data2)

Blacks <- data2[which(data2$race=="black"),]

Other <- data2[which(data2$race=="other"),]

Hispanic <- data2[which(data2$race=="hispanic"),]

White <- data2[which(data2$race=="white"),]

B <- c(mean(Blacks$age), mean(Blacks$service))

O <- c(mean(Other$age), mean(Other$service))

H <- c(mean(Hispanic$age), mean(Hispanic$service))

W <- c(mean(White$age), mean(White$service))

x <- cbind(B, O, H, W)

x

B O H W

[1,] 9.165 9.12 8.67 8.950000

[2,] 9.930 10.32 9.61 9.911667

Now that we have a numerical matrix for the means, we can compute a second

order statistics, standard deviation, and plot it along with the means, to illustrate the

amount of dispersion for each variable (Fig. 4.22).

bar <- barplot(x, ylim=c(0, max(x)+2.0), beside=TRUE,

legend.text = c("age", "service") , args.legend = list(x = "right"))

text(labels=round(as.vector(as.matrix(x)), 2),

x=seq(1.4, 21, by=1.5), #y=as.vector(as.matrix(x[1:2,]))+0.3)

y=11.5)

m <- x; stdev <- sd(t(x))

arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)

Fig. 4.22 Barplot showing

point-estimates and their

error limits (Child Trauma

dataset)

4.4 Comparison 163

Here, we want the y margin to be a little higher than the greatest value (ylim¼c

(0, max(x)+2.0)) because we need to leave space for value labels. The plot

shows that Hispanic trauma-exposed children may be younger, in terms of average

age, and less likely to utilize services like primary care, emergency room, outpatient

therapy, outpatient psychiatrist, etc.

Another way to plot bar plots is to use ggplot() in the ggplot package. This

kind of bar plot is quite different from the one we introduced previously. It displays

the counts of character variables rather than the means of numerical variables. It

takes the values from a data.frame. Unlike barplot(), drawing bar plots

using ggplot2 requires that the character variables remain in the original data

frame (Fig. 4.23).

library(ggplot2)

data2 <- read.table('https://umich.instructure.com/files/399129/download?dow

nload_frd=1', header=T)

bar1 <- ggplot(data2, aes(race, fill=race)) + geom_bar()+

facet_grid(. ~ traumatype)

print(bar1)

This plot helps us compare the occurrence of different types of child-trauma

among different races.

4.4.4 Trees and Graphs

In general, a graph is an ordered pair G¼ (V,E) of vertices (V), i.e., nodes or points,

and edges (E), arcs or lines connecting pairs of nodes in V. A tree is a special type of

acyclic graph that does not include looping paths. Visualization of graphs is critical

in many biosocial and health studies, and we will see menu such examples through-

out this textbook.

In Chaps. 10 and 13, we will learn more about how to build tree models and other

clustering methods, and in Chap. 23, we will discuss deep learning and neural

networks, which have a direct graphical representation.

This section will be focused on displaying tree graphs. We will use a self-efficacy

study, 02_Nof1_Data.csv, for this demonstration.

data3<- read.table("https://umich.instructure.com/files/330385/download?down

load_frd=1", sep=",", header = TRUE)

head(data3)

ID Day Tx SelfEff SelfEff25 WPSS SocSuppt PMss PMss3 PhyAct

1 1 1 1 33 8 0.97 5.00 4.03 1.03 53

2 1 2 1 33 8 -0.17 3.87 4.03 1.03 73

3 1 3 0 33 8 0.81 4.84 4.03 1.03 23

4 1 4 0 33 8 -0.41 3.62 4.03 1.03 36

5 1 5 1 33 8 0.59 4.62 4.03 1.03 21

6 1 6 1 33 8 -1.16 2.87 4.03 1.03 0

164 4 Data Visualization

https://umich.instructure.com/files/399129/download?download_frd=1
https://umich.instructure.com/files/399129/download?download_frd=1
https://umich.instructure.com/files/330385/download?download_frd=1
https://umich.instructure.com/files/330385/download?download_frd=1

F
ig
.
4
.2
3

B
ar
p
lo
t
o
f
co
u
n
ts
fo
r
d
if
fe
re
n
t
ty
p
es

o
f
ch
il
d
tr
au
m
a
b
y
ra
ce

(c
o
lo
r
la
b
el
)

4.4 Comparison 165

We will use hclust to build the hierarchical cluster model. hclust takes only

inputs that have dissimilarity structure as produced by dist(). Also, we use the

ave method for agglomeration, see the tree graph on Fig. 4.24.

hc<-hclust(dist(data3), method='ave')

par (mfrow=c(1, 1))

plot(hc)

When we specify no limit for the maximum cluster groups, we will get the graph,

on Fig. 4.24, which is not easy to interpret. Luckily, cutree will help us limit the

cluster numbers. cutree() takes a hclust object and returns a vector of group

indicators for all observations.

require(graphics)

mem <- cutree(hc, k = 10)

mem; # to print the hierarchical tree labels for each case

which(mem==5) # to identify which cases belong to class/cluster 5

#To see the number of Subjects in which cluster:

table(cutree(hc, k=5))

Usinf a for loop, we can get the mean of each variable within groups.

cent <- NULL

for(k in 1:10){

cent <- rbind(cent, colMeans(data3[mem == k, , drop = FALSE]))

}

Now, we can plot a new tree graph with ten groups. Using the

members¼table(mem) option, the matrix is taken to be a dissimilarity matrix

between clusters, instead of dissimilarities between singletons, and members repre-

sents the number of observations per cluster (Fig. 4.25).

hc1 <- hclust(dist(cent), method = "ave", members = table(mem))

plot(hc1, hang = -1, main = "Re-start from 10 clusters")

Fig. 4.24 Hierarchical

clustering dendrogram of

the 900 self-efficacy records

of 30 participants including

the nine features tracked

over a month

166 4 Data Visualization

4.4.5 Correlation Plots

The corrplot package enables the graphical display of correlation matrices,

confidence intervals, and other plots showing matrix reordering. There are seven

visualization methods (parameter methods) in corrplot package, named "circle",

"square", "ellipse", "number", "shade", "color", and "pie".

Let’s use 03_NC_SNP_ROI_Assoc_P_values.csv again to investigate the asso-

ciations among SNPs using correlation plots.

The corrplot() function we will be using only accepts correlation matrices.

So, we need to first obtain the correlation matrix of our data first using the cor()

function.

install.packages("corrplot")

library(corrplot)

NC_Associations_Data <- read.table("https://umich.instructure.com/files/3303

91/download?download_frd=1", header=TRUE, row.names=1, sep=",", dec=".")

M <- cor(NC_Associations_Data)

M[1:10, 1:10]

P2 P5 P9 P12 P13

P2 1.00000000 -0.05976123 0.99999944 -0.05976123 0.21245299

P5 -0.05976123 1.00000000 -0.05976131 -0.02857143 0.56024640

P9 0.99999944 -0.05976131 1.00000000 -0.05976131 0.21248635

P12 -0.05976123 -0.02857143 -0.05976131 1.00000000 -0.05096471

P13 0.21245299 0.56024640 0.21248635 -0.05096471 1.00000000

P14 -0.05976123 1.00000000 -0.05976131 -0.02857143 0.56024640

P15 -0.08574886 0.69821536 -0.08574898 -0.04099594 0.36613665

P16 -0.08574886 0.69821536 -0.08574898 -0.04099594 0.36613665

P17 -0.05976123 -0.02857143 -0.05976131 -0.02857143 -0.05096471

P18 -0.05976123 -0.02857143 -0.05976131 -0.02857143 -0.05096471

P14 P15 P16 P17 P18

P2 -0.05976123 -0.08574886 -0.08574886 -0.05976123 -0.05976123

P5 1.00000000 0.69821536 0.69821536 -0.02857143 -0.02857143

P9 -0.05976131 -0.08574898 -0.08574898 -0.05976131 -0.05976131

P12 -0.02857143 -0.04099594 -0.04099594 -0.02857143 -0.02857143

P13 0.56024640 0.36613665 0.36613665 -0.05096471 -0.05096471

P14 1.00000000 0.69821536 0.69821536 -0.02857143 -0.02857143

P15 0.69821536 1.00000000 1.00000000 -0.04099594 -0.04099594

P16 0.69821536 1.00000000 1.00000000 -0.04099594 -0.04099594

P17 -0.02857143 -0.04099594 -0.04099594 1.00000000 -0.02857143

P18 -0.02857143 -0.04099594 -0.04099594 -0.02857143 1.00000000

Fig. 4.25 A ten-cluster

hierarchical dendrogram of

the same dataset as before

4.4 Comparison 167

https://umich.instructure.com/files/330391/download?download_frd=1
https://umich.instructure.com/files/330391/download?download_frd=1

We will illustrate alternative correlation plots using the corrplot function in

Figs. 4.26, 4.27, 4.28, 4.29, 4.30, and 4.31.

corrplot(M, method = "circle", title = "circle", tl.cex = 0.5, tl.col = 'bla

ck', mar=c(1, 1, 1, 1))
par specs c(bottom, left, top, right) which gives the margin size

specified in inches

corrplot(M, method = "square", title = "square", tl.cex = 0.5, tl.col =

'black', mar=c(1, 1, 1, 1))
corrplot(M, method = "ellipse", title = "ellipse", tl.cex = 0.5, tl.col =

'black', mar=c(1, 1, 1, 1))
corrplot(M, method = "pie", title = "pie", tl.cex = 0.5, tl.col = 'black',

mar=c(1, 1, 1, 1))
corrplot(M, type = "upper", tl.pos = "td",

method = "circle", tl.cex = 0.5, tl.col = 'black',

order = "hclust", diag = FALSE, mar=c(1, 1, 0, 1))
corrplot.mixed(M, number.cex = 0.6, tl.cex = 0.6)

Fig. 4.26 Correlation plot of regional brain volumes of the healthy normal controls using circles

168 4 Data Visualization

Fig. 4.27 The same correlation plot of regional NC brain volumes using squares

Fig. 4.28 The same correlation plot of regional NC brain volumes using ellipses

Fig. 4.29 The same correlation plot of regional NC brain volumes using pie segments

Fig. 4.30 Upper diagonal correlation plot of regional NC brain volumes using circles

In the figures above, different shades of colors represent low-and-high correla-

tions of the two variables corresponding to the x and y indices.

4.5 Relationships

4.5.1 Line Plots Using ggplot

Line charts display a series of data points (e.g., observed intensities (Y) over time

(X)) by connecting them with straight-line segments. These can be used to either

track temporal changes of a process or compare the trajectories of multiple cases,

time series, or subjects over time, space, or state.

In this section, we will utilize the Earthquakes dataset on SOCR website. It

records information about earthquakes that occurred between 1969 and 2007 with

magnitudes larger than 5 on the Richter scale.

Fig. 4.31 Mixed correlation plot of regional NC brain volumes using circles and numbers

4.5 Relationships 171

library("xml2"); library("rvest")

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_

021708_Earthquakes")

html_nodes(wiki_url, "#content")

{xml_nodeset (1)}

[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top

...

earthquake<- html_table(html_nodes(wiki_url, "table")[[2]])

In this dataset, we group the data by Magt (magnitude type). We will draw a

“Depth vs. Latitude” line plot from this dataset. The function we are using is called

ggplot() under ggplot2. The input type for this function is a data frame and

aes() specifies aesthetic mappings of how variables in the data are mapped to

visual properties (aesthetics) of the geom objects, e.g., lines (Fig. 4.32).

library(ggplot2)

plot4<-ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt))+

geom_line()

print(plot4)

There are two important components in the script. The first part, ggplot

(earthquake, aes(Depth, Latitude, group¼Magt,

color¼Magt)), specifies the setting of the plot: dataset, group, and color. The

second part specifies that we are going to draw lines between data points. In later

chapters, we will frequently use package ggplot2 whose generic structure always

involves concatenating function calls like function1+function2+….

Fig. 4.32 Line plot of Earthquake magnitude type by its ground depth and latitude

172 4 Data Visualization

http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes
http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes

4.5.2 Density Plots

We can visualize the distribution of different variables using density plots.

The following segment of R code plots the distribution for latitude among

different earthquake magnitude types. Also, it uses the ggplot() function com-

bined with geom_density() (Fig. 4.33).

library("ggplot2")

plot5<-ggplot(earthquake, aes(Latitude, group=Magt, newsize=2))+

geom_density(aes(color=Magt), size = 2) +

theme(legend.position = 'right',

legend.text = element_text(color= 'black', size = 12, face = 'bold'),

legend.key = element_rect(size = 0.5, linetype='solid'),

legend.key.size = unit(1.5, 'lines'))

print(plot5)
table(earthquake$Magt) # to see the distribution of magnitude types

Note the green magt type (Local (ML) earthquakes) peaks at latitude 37.5, which

represents 37–38� North, near San Francisco, California.

4.5.3 Distributions

Probability distribution plots depict the characteristics of the underlying process that

can be used to contrast and compare the shapes of distributions as proxy of the

corresponding natural phenomena. For univariate, bivariate, and multivariate

processes, the distribution plots are drawn as curves, surfaces, or manifolds, respec-

tively. These plots may be used to inspect areas under the distribution plot that

correspond to either probabilities or data values. The Distributome Cauchy distribu-

tion calculator and the SOCR 2D bivariate Normal Distribution plot provide simple

examples of distribution plots in 1D and 2D, respectively (Fig. 4.34).

Fig. 4.33 Density plot of Earthquakes according to their magnitude types and latitude location

4.5 Relationships 173

4.5.4 2D Kernel Density and 3D Surface Plots

Density estimation is the process of using observed data to compute an estimate of

the underlying process’ probability density function. There are several approaches to

obtain density estimation, but the most basic technique is to use a rescaled histogram.

Plotting 2D Kernel Density and 3D Surface plots is very important and useful in

multivariate exploratory data analytics.

We will use plot_ly() function under plotly package, which requires a

data frame input.

To create a surface plot, we use two vectors: x and y with length m and

n respectively. We also need a matrix: z of size m � n. This z matrix is created

from matrix multiplication between x and y.

To plot the 2D Kernel Density estimation plot we will use the eruptions data from

the “Old Faithful” geyser in Yellowstone National Park, Wyoming, stored in R as

geyser. Also, the kde2d() function is needed for 2D kernel density estimation.

Fig. 4.34 Univariate and

bivariate probability

distribution calculators

(Distributome Project)

174 4 Data Visualization

kd <- with(MASS::geyser, MASS::kde2d(duration, waiting, n = 50))

kd$x[1:5]

[1] 0.8333333 0.9275510 1.0217687 1.1159864 1.2102041

kd$y[1:5]

[1] 43.00000 44.32653 45.65306 46.97959 48.30612

kd$z[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 9.068691e-13 4.238943e-12 1.839285e-11 7.415672e-11 2.781459e-10

[2,] 1.814923e-12 8.473636e-12 3.671290e-11 1.477410e-10 5.528260e-10

[3,] 3.428664e-12 1.599235e-11 6.920273e-11 2.780463e-10 1.038314e-09

[4,] 6.114498e-12 2.849475e-11 1.231748e-10 4.942437e-10 1.842547e-09

[5,] 1.029643e-11 4.793481e-11 2.070127e-10 8.297218e-10 3.088867e-09

Here z¼t(x)%*%y and we apply plot_ly to the list kd via the with()

function (Fig. 4.35).

library(plotly)

with(kd, plot_ly(x=x, y=y, z=z, type="surface"))

Note that we used the option "surface".

For 3D surfaces, we have a built-in dataset in R called volcano. It records the

volcano height at location x, y (longitude, latitude). Because z is always made from

x and y, we can simply specify z to get the complete surface plot (Fig. 4.36).

0.015

0.005

0

50

60

70

80

90

100 5

4

3

x

z

z

y

2

1

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

0.01

Fig. 4.35 Interactive surface plot of kernel density for the Old Faithful geyser eruptions

4.5 Relationships 175

volcano[1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 100 100 101 101 101 101 101 100 100 100

[2,] 101 101 102 102 102 102 102 101 101 101

[3,] 102 102 103 103 103 103 103 102 102 102

[4,] 103 103 104 104 104 104 104 103 103 103

[5,] 104 104 105 105 105 105 105 104 104 103

[6,] 105 105 105 106 106 106 106 105 105 104

[7,] 105 106 106 107 107 107 107 106 106 105

[8,] 106 107 107 108 108 108 108 107 107 106

[9,] 107 108 108 109 109 109 109 108 108 107

[10,] 108 109 109 110 110 110 110 109 109 108

plot_ly(z=volcano, type="surface")

4.5.5 Multiple 2D Image Surface Plots

Let’s look at another example using a 2D brain image (Fig. 4.37).

180

160

140

120

100

volcano

volcano

180

160

140

120

100

0

20

40

0
10

20

30

40

50

60
x

y

Fig. 4.36 Interactive surface plot of kernel density for the R volcano dataset

176 4 Data Visualization

#install.packages("jpeg") ## if necessary

library(jpeg)

Get an image file downloaded (default: MRI_ImageHematoma.jpg)

img_url <- "https://umich.instructure.com/files/1627149/download?download_fr

d=1"

img_file <- tempfile(); download.file(img_url, img_file, mode="wb")

img <- readJPEG(img_file)

file.info(img_file)

file.remove(img_file) # cleanup

[1] TRUE

img <- img[, , 1] # extract the first channel (from RGB intensity spectrum)

as a univariate 2D array

install.packages("spatstat")

package spatstat has a function blur() that applies a Gaussian blur

library(spatstat)

img_s <- as.matrix(blur(as.im(img), sigma=10)) # the smoothed version of the

image

z2 <- img_s + 1 # abs(rnorm(1, 1, 1)) # Upper confidence surface

z3 <- img_s - 1 # abs(rnorm(1, 1, 1)) # Lower confidence limit

Plot the image surfaces

p <- plot_ly(z=img, type="surface", showscale=FALSE) %>%

add_trace(z=z2, type="surface", showscale=FALSE, opacity=0.98) %>%

add_trace(z=z3, type="surface", showscale=FALSE, opacity=0.98)

p # Plot the mean-surface along with lower and upper confidence services.

Fig. 4.37 Interactive surface plot of kernel density for the 2D brain imaging data

4.5 Relationships 177

https://umich.instructure.com/files/1627149/download?download_frd=1
https://umich.instructure.com/files/1627149/download?download_frd=1

The DSPA Online appendix provides additional details on shape representation,

modeling, and computing on surfaces and manifolds.

4.5.6 3D and 4D Visualizations

Many datasets have intrinsic multi-dimensional characteristics. For instance, the

human body is a 3D solid of matter (three spatial dimensions can be used to describe

the position of every component, e.g., sMRI volume) that changes over time (the

fourth dimension, e.g., fMRI hypervolumes).

The SOCR BrainViewer shows how to use a web-browser to visualize 2D cross-

sections of 3D volumes, display volume-rendering, and show 1D (e.g., 1-manifold

curves embedded in 3D) and 2D (e.g., surfaces, shapes) models jointly into the same

3D scene (Fig. 4.38).

We will now illustrate an example of 3D/4D visualization in R using the packages

brainR and rgl.

install.packages("brainR") ## if necessary

require(brainR)

Test data: http://socr.umich.edu/HTML5/BrainViewer/data/TestBrain.nii.gz

brainURL <- "http://socr.umich.edu/HTML5/BrainViewer/data/TestBrain.nii.gz"

brainFile <- file.path(tempdir(), "TestBrain.nii.gz")

download.file(brainURL, dest=brainFile, quiet=TRUE)

brainVolume <- readNIfTI(brainFile, reorient=FALSE)

brainVolDims <- dim(brainVolume); brainVolDims

[1] 181 217 181

try different levels at which to construct contour surfaces (10 fast)

lower values yield smoother surfaces # see ?contour3d

contour3d(brainVolume, level = 20, alpha = 0.1, draw = TRUE)

multiple levels may be used to show multiple shells

"activations" or surfaces like hyper-intense white matter

This will take 1-2 minutes to rend!

contour3d(brainVolume, level = c(10, 120), alpha = c(0.3, 0.5),

add = TRUE, color=c("yellow", "red"))

http://socr.umich.edu/

HTML5/BrainViewer/

Fig. 4.38 Live demo: interactive brain viewer

178 4 Data Visualization

http://socr.umich.edu/HTML5/BrainViewer/
http://socr.umich.edu/HTML5/BrainViewer/
http://socr.umich.edu/HTML5/BrainViewer/data/TestBrain.nii.gz
http://socr.umich.edu/HTML5/BrainViewer/data/TestBrain.nii.gz

create text for orientation of right/left

text3d(x=brainVolDims[1]/2, y=brainVolDims[2]/2, z = brainVolDims[3]*0.98,

text="Top")

text3d(x=brainVolDims[1]*0.98, y=brainVolDims[2]/2, z = brainVolDims[3]/2,

text="Right")

render this on a webpage and view it!

#browseURL(paste("file://",

writeWebGL_split(dir= file.path(tempdir(),"webGL"),

template = system.file("my_template.html", package="brainR"),

width=500), sep=""))

For 4D fMRI time-series, we can load the hypervolumes similarly and then

display them (Figs. 4.39, 4.40, 4.41, 4.42, 4.43, and 4.44):

Fig. 4.39 2D cross-sectional (axial) views of the 4D fMRI data

4.5 Relationships 179

Fig. 4.41 Coronal

(top-left), sagittal (to-right),

and axial (bottom-left)

views of the 4D fMRI data

Fig. 4.42 Truncated

histogram of the fMRI

hyper-volume intensities

Fig. 4.40 Histogram plot of

the fMRI intensities

180 4 Data Visualization

Fig. 4.43 Intensities of the fifth timepoint epoch of the 4D fMRI time series

Fig. 4.44 The complete time course of the raw (blue) and two smoothed versions of the fMRI

timeseries at one specific voxel location (30, 30, 15)

4.5 Relationships 181

See examples here: https://cran.r-project.org/web/packages/oro.nifti/vigne

ttes/nifti.pdf

and here: http://journals.plos.org/plosone/article?id=10.1371/journal.pone

.0089470

fMRIURL <- "http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4

D.nii.gz"

fMRIFile <- file.path(tempdir(), "fMRI_FilteredData_4D.nii.gz")

download.file(fMRIURL, dest=fMRIFile, quiet=TRUE)

(fMRIVolume <- readNIfTI(fMRIFile, reorient=FALSE))

NIfTI-1 format

Type : nifti

Data Type : 4 (INT16)

Bits per Pixel : 16

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

Qform Code : 1 (Scanner_Anat)

Sform Code : 0 (Unknown)

Dimension : 64 x 64 x 21 x 180

Pixel Dimension : 4 x 4 x 6 x 3

Voxel Units : mm

Time Units : sec

dimensions: 64 x 64 x 21 x 180 ; 4mm x 4mm x 6mm x 3 sec

fMRIVolDims <- dim(fMRIVolume); fMRIVolDims

[1] 64 64 21 180

time_dim <- fMRIVolDims[4]; time_dim

[1] 180

Plot the 4D array of imaging data in a 5x5 grid of images

The first three dimensions are spatial locations of the voxel (volume elem

ent) and the fourth dimension is time for this functional MRI (fMRI) acquisi

tion.

image(fMRIVolume, zlim=range(fMRIVolume)*0.95)

hist(fMRIVolume)

Plot an orthographic display of the fMRI data using the axial plane

containing the left-and-right thalamus to approximately center

the crosshair vertically

orthographic(fMRIVolume, xyz=c(34,29,10), zlim=range(fMRIVolume)*0.9)

stat_fmri_test <- ifelse(fMRIVolume > 15000, fMRIVolume, NA)

hist(stat_fmri_test)

dim(stat_fmri_test)

[1] 64 64 21 180

overlay(fMRIVolume, fMRIVolume[,,,5], zlim.x=range(fMRIVolume)*0.95)

182 4 Data Visualization

https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf
https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089470
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089470
http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz
http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz

overlay(fMRIVolume, stat_fmri_test[,,,5], zlim.x=range(fMRIVolume)*0.95)

To examine the time course of a specific 3D voxel (say the one at x=30, y=

30, z=15):

plot(fMRIVolume[30, 30, 10,], type='l', main="Time Series of 3D Voxel \n (x=

30, y=30, z=15)", col="blue")

x1 <- c(1:180)

y1 <- loess(fMRIVolume[30, 30, 10,]~ x1, family = "gaussian")

lines(x1, smooth(fMRIVolume[30, 30, 10,]), col = "red", lwd = 2)

lines(ksmooth(x1, fMRIVolume[30, 30, 10,], kernel = "normal", bandwidth = 5)

, col = "green", lwd = 3)

Chapter 19 provides more details about longitudinal and time-series data

analysis.

4.6 Appendix

4.6.1 Hands-on Activity (Health Behavior Risks)

load data CaseStudy09_HealthBehaviorRisks_Data

data_2 <- read.csv("https://umich.instructure.com/files/602090/download?down

load_frd=1", sep=",", header = TRUE)

Classify the cases using these variables: "AGE_G" "SEX" "RACEGR3"

"IMPEDUC" "IMPMRTL" "EMPLOY1" "INCOMG" "CVDINFR4"

"CVDCRHD4" "CVDSTRK3" "DIABETE3" "RFSMOK3" "FRTLT1" "VEGLT1"

data.raw <- data_2[, -c(1, 14, 17)]

Does the classification match either of these:

TOTINDA (Leisure time physical activities per month, 1=Yes, 2=No,

9=Don't know/Refused/Missing)

RFDRHV4 (Heavy alcohol consumption, 1=No, 2=Yes,

9=Don't know/Refused/Missing)

hc = hclust(dist(data.raw), 'ave')

the agglomeration method can be specified "ward.D", "ward.D2", "single",

"complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC)

or "centroid" (= UPGMC)

Plot a clustering diagram (Fig. 4.45)

par (mfrow=c(1, 1))

very simple dendrogram

plot(hc)

4.6 Appendix 183

https://umich.instructure.com/files/602090/download?download_frd=1
https://umich.instructure.com/files/602090/download?download_frd=1

summary(data_2$TOTINDA); summary(data_2$RFDRHV4)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.00 1.00 1.56 2.00 9.00

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.0 1.0 1.3 1.0 9.0

cutree(hc, k = 2)

[1] 1

…

[885] 1

[919] 1 1 1 1 1 1 1 1 1 1 1 1 2

[953] 2

[987] 2 2 2 2 2 2 2 2 2 2 2 2 2 2

alternatively specify the height, which is, the value of the criterion ass

ociated with the

clustering method for the particular agglomeration -- cutree(hc, h= 10)

table(cutree(hc, h= 10)) # cluster distribution

1 2

930 70

Let’s try to identify the number of cases for varying number of clusters.

To identify the number of cases for varying number of clusters we

can combine calls to cutree and table in a call to sapply –

to see the sizes of the clusters for $2\ge k \ge 10$ cluster-solutions:

numbClusters=4;

myClusters = sapply(2:5, function(numbClusters)table(cutree(hc,

numbClusters)))

names(myClusters) <- paste("Number of Clusters=", 2:5, sep = "")

myClusters

Fig. 4.45 Clustering dendrogram using the Health Behavior Risks case-study

184 4 Data Visualization

$`Number of Clusters=2`

1 2

930 70

$`Number of Clusters=3`

1 2 3

930 50 20

$`Number of Clusters=4`

1 2 3 4

500 430 50 20

$`Number of Clusters=5`

1 2 3 4 5

500 430 10 40 20

Next, inspect the cluster labels for all SubjectIDs:

#To see which SubjectIDs are in which clusters:

table(cutree(hc, k=2))

1 2

930 70

groups.k.2 <- cutree(hc, k = 2)

sapply(unique(groups.k.2), function(g)data_2$ID[groups.k.2 == g])

We can examine which TOTINDA (Leisure time physical activities per month,

1 ¼ Yes, 2 ¼ No, 9 ¼ Don’t know/Refused/Missing) and which RFDRHV4 are in

which clusters (Fig. 4.46):

Fig. 4.46 Scatterplot

between two variables in the

Health Behavior Risks case-

study

4.6 Appendix 185

groups.k.3 <- cutree(hc, k = 3)

sapply(unique(groups.k.3), function(g)data_2$TOTINDA [groups.k.3 == g])

[[1]]

[1] 1

1

…

[911] 2

[[2]]

[1] 2 9 9 9 9 9

[36] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

[[3]]

[1] 9

sapply(unique(groups.k.3), function(g)data_2$RFDRHV4[groups.k.3 == g])

[[1]]

[1] 1

1

…

[911] 2

[[2]]

[1] 2

[36] 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9

[[3]]

[1] 9

Perhaps there are intrinsically 3 groups here e.g., 1, 2 and 9 .

groups.k.3 <- cutree(hc, k = 3)

sapply(unique(groups.k.3), function(g)data_2$TOTINDA [groups.k.3 == g])

[[1]]

[1] 1

1

…

[911] 2

[[2]]

[1] 2 9 9 9 9 9

[36] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

[[3]]

[1] 9

sapply(unique(groups.k.3), function(g)data_2$RFDRHV4 [groups.k.3 == g])

[[1]]

[1] 1

…

[911] 2

[[2]]

186 4 Data Visualization

[1] 2

[36] 2 2 2 2 2 9 9 9 9 9 9 9 9 9 9

[[3]]

[1] 9

Note that there is quite a dependence between the outcome variables.

plot(data_2$RFDRHV4, data_2$TOTINDA)

drill down deeper

table(groups.k.3, data_2$RFDRHV4)

groups.k.3 1 2 9

1 910 20 0

2 0 40 10

3 0 0 20

To characterize the clusters, we can look at cluster summary statistics, like the

median, of the variables that were used to perform the cluster analysis. These can be

broken down by the groups identified by the cluster analysis. The aggregate function

will compute statistics (e.g., median) on many variables simultaneously. Let’s

examine the median values for each variable we used in the cluster analysis, broken

up by cluster groups:

aggregate(data_2, list(groups.k.3), median)

Group.1 ID AGE_G SEX RACEGR3 IMPEDUC IMPMRTL EMPLOY1 INCOMG CVDINFR4

1 1 465.5 5 2 1 5 1 2 4 2

2 2 955.5 6 2 4 6 5 8 6 2

3 3 990.5 6 2 9 6 6 8 6 2

CVDCRHD4 CVDSTRK3 DIABETE3 RFSMOK3 RFDRHV4 FRTLT1 VEGLT1 TOTINDA

1 2.0 2 3 1 1 1 1 1

2 2.0 2 3 2 2 9 9 2

3 4.5 2 4 9 9 9 9 9

4.6.2 Additional ggplot Examples

Below, we will show additional visualization examples.

Housing Price Data

This example uses the SOCR Home Price Index data of 19 major US cities from

1991 to 2009 (Fig. 4.47).

4.6 Appendix 187

Fig. 4.47 Home price index plot over time

188 4 Data Visualization

library(rvest)

draw data

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_

091609_SnP_HomePriceIndex")

hm_price_index<- html_table(html_nodes(wiki_url, "table")[[1]])

head(hm_price_index)

Index Year Month AZ-Phoenix CA-LosAngeles CA-SanDiego CA-SanFrancisco

1 1 1991 January 65.26 95.28 83.13 71.17

2 2 1991 February 65.29 94.12 81.87 70.27

3 3 1991 March 64.60 92.83 80.89 69.56

4 4 1991 April 64.35 92.83 80.73 69.46

5 5 1991 May 64.37 93.37 81.41 70.13

6 6 1991 June 64.88 94.25 82.20 70.83

CO-Denver DC-Washington FL-Miami FL-Tampa GA-Atlanta IL-Chicago

1 48.67 89.38 79.08 81.75 69.61 70.04

2 48.68 88.80 78.55 81.76 69.17 70.50

3 48.85 87.59 78.44 81.43 69.05 70.63

4 49.20 87.56 78.55 81.46 69.40 71.09

5 49.51 88.61 77.95 81.33 69.69 71.36

6 50.09 89.28 78.49 81.77 70.14 71.66

MA-Boston MI-Detroit MN-Minneapolis NC-Charlotte NV-LasVegas NY-NewYork

1 64.97 58.24 64.21 73.32 80.96 74.59

2 64.17 57.76 64.20 73.26 81.58 73.69

3 63.57 57.63 64.19 72.75 81.65 72.87

4 63.35 57.85 64.30 72.88 81.67 72.29

5 63.84 58.36 64.75 73.26 82.02 72.63

6 64.25 58.90 64.95 73.49 81.91 73.50

OH-Cleveland OR-Portland WA-Seattle Composite-10

1 68.24 56.53 65.53 78.53

2 67.96 56.94 64.60 77.77

3 68.18 58.03 64.47 77.00

4 69.10 58.39 65.09 76.86

5 69.92 58.90 66.03 77.31

6 70.55 59.54 66.68 78.02

hm_price_index <- hm_price_index[, c(-2, -3)]

colnames(hm_price_index)[1] <- c('time')

require(reshape)

hm_index_melted = melt(hm_price_index, id.vars='time') #a common trick for p

lot, wide -> long format

ggplot(data=hm_index_melted, aes(x=time, y=value, color=variable)) +

geom_line(size=1.5) + ggtitle("HomePriceIndex:1991-2009")

Modeling the Home Price Index Data (Fig. 4.48)

Linear regression and predict

hm_price_index$pred = predict(lm(`CA-SanFrancisco` ~ `CA-LosAngeles`,

data=hm_price_index))

ggplot(data=hm_price_index, aes(x = `CA-LosAngeles`)) +

geom_point(aes(y = `CA-SanFrancisco`)) +

geom_line(aes(y = pred), color='Magenta', size=2) +

ggtitle("PredictHomeIndex SF - LA")

4.6 Appendix 189

http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_091609_SnP_HomePriceIndex
http://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_091609_SnP_HomePriceIndex

We can also use ggplot to draw pairs plots (Fig. 4.49).

install.packages("GGally")

require(GGally)

pairs <- hm_price_index[, 10:15]

head(pairs)

GA-Atlanta IL-Chicago MA-Boston MI-Detroit MN-Minneapolis NC-Charlotte

1 69.61 70.04 64.97 58.24 64.21 73.32

2 69.17 70.50 64.17 57.76 64.20 73.26

3 69.05 70.63 63.57 57.63 64.19 72.75

4 69.40 71.09 63.35 57.85 64.30 72.88

5 69.69 71.36 63.84 58.36 64.75 73.26

6 70.14 71.66 64.25 58.90 64.95 73.49

colnames(pairs) <- c("Atlanta", "Chicago", "Boston", "Detroit",

"Minneapolis", "Charlotte")

ggpairs(pairs) # you can define the plot design by claim "upper", "lower",

"diag" etc.

Fig. 4.48 Predicting the San Francisco home process using data from the Los Angeles home sales

190 4 Data Visualization

Map of the Neighborhoods of Los Angeles (LA)

This example interrogates data of 110 LA neighborhoods, which includes measures

of education, income, and population demographics.

Here, we select the Longitude and Latitude as the axes, mark these 110 Neigh-

borhoods according to their population, fill out those points according to the income

of each area, and label each neighborhood (Fig. 4.50).

Fig. 4.49 A more elaborate pairs plot of the home price index dataset illustrating the distributions

of home prices within a metropolitan area, as well as the paired relations between regions

4.6 Appendix 191

library(rvest)

require(ggplot2)

#draw data

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_LA_Nei

ghborhoods_Data")

html_nodes(wiki_url, "#content")

{xml_nodeset (1)}

[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top

...

Fig. 4.50 Bubble plot of Los Angeles neighborhood location (longitude vs latitude), population

size, and income

192 4 Data Visualization

http://wiki.socr.umich.edu/index.php/SOCR_Data_LA_Neighborhoods_Data
http://wiki.socr.umich.edu/index.php/SOCR_Data_LA_Neighborhoods_Data

LA_Nbhd_data <- html_table(html_nodes(wiki_url, "table")[[2]])

#display several lines of data

head(LA_Nbhd_data);

LA_Nbhd Income Schools Diversity Age Homes Vets Asian

1 Adams_Normandie 29606 691 0.6 26 0.26 0.05 0.05

2 Arleta 65649 719 0.4 29 0.29 0.07 0.11

3 Arlington_Heights 31423 687 0.8 31 0.31 0.05 0.13

4 Atwater_Village 53872 762 0.9 34 0.34 0.06 0.20

5 Baldwin_Hills/Crenshaw 37948 656 0.4 36 0.36 0.10 0.05

6 Bel-Air 208861 924 0.2 46 0.46 0.13 0.08

Black Latino White Population Area Longitude Latitude

1 0.25 0.62 0.06 31068 0.8 -118.3003 34.03097

2 0.02 0.72 0.13 31068 3.1 -118.4300 34.24060

3 0.25 0.57 0.05 22106 1.0 -118.3201 34.04361

4 0.01 0.51 0.22 14888 1.8 -118.2658 34.12491

5 0.71 0.17 0.03 30123 3.0 -118.3667 34.01909

6 0.01 0.05 0.83 7928 6.6 -118.4636 34.09615

theme_set(theme_grey())

#treat ggplot as a variable

#When claim "data", we can access its column directly eg"x = Longitude"

plot1 = ggplot(data=LA_Nbhd_data, aes(x=LA_Nbhd_data$Longitude,

y=LA_Nbhd_data$Latitude))

#you can easily add attribute, points, label(eg:text)

plot1 + geom_point(aes(size=Population, fill=LA_Nbhd_data$Income), pch=21,

stroke=0.2, alpha=0.7, color=2)+

geom_text(aes(label=LA_Nbhd_data$LA_Nbhd), size=1.5, hjust=0.5, vjust=2,

check_overlap = T)+

scale_size_area() + scale_fill_distiller(limits=c(range(LA_Nbhd_data$Incom

e)), palette='RdBu', na.value='white', name='Income') +

scale_y_continuous(limits=c(min(LA_Nbhd_data$Latitude), max(LA_Nbhd_data$L

atitude))) +

coord_fixed(ratio=1) + ggtitle('LA Neughborhoods Scatter Plot (Location,

Population, Income)')

Observe that some areas (e.g., Beverly Hills) have disproportionately higher

incomes. In addition, it is worth pointing out that the resulting plot resembles this

plot of LA County (Fig. 4.51).

Latin Letter Frequency in Different Languages

This example uses ggplot to interrogate the SOCR Latin letter frequency data,

which includes the frequencies of the 26 common Latin characters in several

derivative languages. There is quite a variation between the frequencies of Latin

letters in different languages (Figs. 4.52 and 4.53).

4.6 Appendix 193

Fig. 4.51 The Los Angeles county map resembles the plot on Fig. 4.50

194 4 Data Visualization

Fig. 4.52 Frequency distributions of Latin letters in several languages

4.6 Appendix 195

library(rvest)

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_LetterFrequ

encyData")

letter<- html_table(html_nodes(wiki_url, "table")[[1]])

summary(letter)

Letter English French German

Length:27 Min. :0.00000 Min. :0.00000 Min. :0.00000

Class :character 1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01000

Mode :character Median :0.02000 Median :0.03000 Median :0.03000

Mean :0.03667 Mean :0.03704 Mean :0.03741

3rd Qu.:0.06000 3rd Qu.:0.06500 3rd Qu.:0.05500

Max. :0.13000 Max. :0.15000 Max. :0.17000

Spanish Portuguese Esperanto Italian

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.01000 1st Qu.:0.00500 1st Qu.:0.01000 1st Qu.:0.00500

Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000

Mean :0.03815 Mean :0.03778 Mean :0.03704 Mean :0.03815

3rd Qu.:0.06000 3rd Qu.:0.05000 3rd Qu.:0.06000 3rd Qu.:0.06000

Max. :0.14000 Max. :0.15000 Max. :0.12000 Max. :0.12000

Fig. 4.53 Pie chart similar to the stacked bar chart, Fig. 4.52

196 4 Data Visualization

http://wiki.socr.umich.edu/index.php/SOCR_LetterFrequencyData
http://wiki.socr.umich.edu/index.php/SOCR_LetterFrequencyData

1 0.12 0.09 0.08 0.17 0.07 0.11

2 0.03 0.01 0.01 0.00 0.02 0.01

3 0.01 0.01 0.04 0.00 0.01 0.03

4 0.05 0.05 0.03 0.00 0.06 0.04

5 0.09 0.10 0.07 0.07 0.19 0.12

6 0.00 0.02 0.00 0.00 0.01 0.01

sum(letter[, -1]) #reasonable

[1] 13.08

require(reshape)

library(scales)

dtm = melt(letter[, -14], id.vars = c('Letter'))

p = ggplot(dtm, aes(x = Letter, y = value, fill = variable)) +

geom_bar(position = "fill", stat = "identity") +

scale_y_continuous(labels = percent_format())+ggtitle('Pie Chart')

#or exchange

#p = ggplot(dtm, aes(x = variable, y = value, fill = Letter)) +

geom_bar(position = "fill", stat = "identity") +

scale_y_continuous(labels = percent_format())

p

Turkish Swedish Polish Toki_Pona

Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000

1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01500 1st Qu.:0.00000

Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000

Mean :0.03667 Mean :0.03704 Mean :0.03704 Mean :0.03704

3rd Qu.:0.05500 3rd Qu.:0.05500 3rd Qu.:0.04500 3rd Qu.:0.05000

Max. :0.12000 Max. :0.10000 Max. :0.20000 Max. :0.17000

Dutch Avgerage

Min. :0.00000 Min. :0.00000

1st Qu.:0.01000 1st Qu.:0.01000

Median :0.02000 Median :0.03000

Mean :0.03704 Mean :0.03741

3rd Qu.:0.06000 3rd Qu.:0.06000

Max. :0.19000 Max. :0.12000

head(letter)

Letter English French German Spanish Portuguese Esperanto Italian

1 a 0.08 0.08 0.07 0.13 0.15 0.12 0.12

2 b 0.01 0.01 0.02 0.01 0.01 0.01 0.01

3 c 0.03 0.03 0.03 0.05 0.04 0.01 0.05

4 d 0.04 0.04 0.05 0.06 0.05 0.03 0.04

5 e 0.13 0.15 0.17 0.14 0.13 0.09 0.12

6 f 0.02 0.01 0.02 0.01 0.01 0.01 0.01

Turkish Swedish Polish Toki_Pona Dutch Avgerage

#gg pie plot actually is stack plot + polar coordinate

p + coord_polar()

You can experiment with the SOCR interactive motion chart, see Fig. 4.54.

4.6 Appendix 197

4.7 Assignments 4: Data Visualization

4.7.1 Common Plots

Use the Divorce data (Case Study 01) or the TBI dataset (CaseStudy11_TBI) to

generate appropriate visualization of histograms, density plots, pie charts, heatmaps,

barplots, and paired correlation plots.

4.7.2 Trees and Graphs

Use the SOCR Resource Hierarchical data (JSON) or the DSPA Dynamic Certificate

Map (JSON) to generate some tree/graph displays of the structural information.

The code fragment below shows an example of processing a JSON hierarchy.

library(jsonlite)

library(RCurl)
library(data.tree)
url <- "http://socr.umich.edu/html/navigators/D3/xml/SOCR_HyperTree.json"

raw_data <- getURL(url)
document <- fromJSON(raw_data)
tree <- Node$new(document$name)

for(i in seq_len(length(document))) {
tree$AddChild(document$children$name[[i]])
for(j in seq_len(length(document$children$children[[i]]))) {

tree$children[[i]]$AddChild(document$children$children[[i]]$name[[j]])
for(k in seq_len(length(document$children$children[[i]]$children[[j]]))){
tree$children[[i]]$children[[j]]$AddChild((document$children$children[[i]]$ch

ildren[[j]]$name[[k]]))
}

}

}
suppressMessages(library(igraph))
plot(as.igraph(tree, directed = T, direction = "climb"))

suppressMessages(library(networkD3))

treenetwork <- ToDataFrameNetwork(tree, "name")
simpleNetwork(treenetwork, fontSize = 10)

http://socr.umich.edu/HTML5/

MotionChart/

Fig. 4.54 Live demo: 6D SOCR MotionChart

198 4 Data Visualization

http://socr.umich.edu/HTML5/MotionChart/
http://socr.umich.edu/HTML5/MotionChart/
http://socr.umich.edu/HTML5/MotionChart/
http://socr.umich.edu/html/navigators/D3/xml/SOCR_HyperTree.json

4.7.3 Exploratory Data Analytics (EDA)

• Use SOCR Oil Gas Data to generate plots: (i) read data table, you may need to fill

the inconsistent values with NAs; (ii) data preprocessing: select variables, type

convert, etc.; (iii) generate two plots: the first plots includes two subplots,

consumption plots and production plots; the second figure includes three sub-

plots, for fossil, nuclear and renewable, respectively. To draw the subplots, you

can use facet_grid(); (iv) all figures should have year as x axis; (v) the first

figure should include three curves (fossil, nuclear and renewable) for each

subplot; the second figure should include two curves (consumption and produc-

tion) for each subplot.

• Use SOCR Ozone Data to generate a correlation plot with the variables MTH_1,

MTH_2, . . ., MTH_12. (Hint: you need to obtain the correlation matrix first, then

apply the corrplot package. Try some alternative methods as well, circle,

pie, mixed etc.)

• Use SOCR CA Ozone Data to generate a 3D surface plot (Using variables

Longitude, Latitude and O3).

• Generate a sequence of random numbers from student t distribution. Draw the

sample histogram and compare it with normal distribution. Try different degrees

of freedom. What do you find? Does varying the seed and regenerating the

student t sample change that conclusion?

• Use the SOCR Parkinson’s Big Meta data (only rows with time¼0) to generate

a heatmap plot. Set RowSideColors, ColSideColors and rainbow. (Hint: you may

need to select columns, properly convert the data, and normalize it.)

• Use SOCR 2011 US Jobs Ranking draw scatter plot Overall_Score

vs. Average_Income(USD) include title and label the axes. Then try

qplot for Overall_Score vs. Average_Income(USD): (1) fill with the

Stress_Level; (2) size the points according to Hiring_Potential; and

(3) label using Job_Title.

• Use SOCR Turkiye Student Evaluation Data to generate trees and graphs, using

cutree() and select any k you prefer. (Use variables Q1–Q28).

References

http://www.statmethods.net/graphs/

http://www.springer.com/us/book/9783319497501

www.r-graph-gallery.com

References 199

http://www.statmethods.net/graphs/
http://www.springer.com/us/book/9783319497501
http://www.r-graph-gallery.com

Chapter 5

Linear Algebra & Matrix Computing

Linear algebra is a branch of mathematics that studies linear associations using

vectors, vector-spaces, linear equations, linear transformations, and matrices. It is

generally challenging to visualize complex data, e.g., large vectors, tensors, and

tables in n-dimensional Euclidian spaces (n > 3). Linear algebra allows us to

mathematically represent, computationally model, statistically analyze, synthetically

simulate, and visually summarize such complex data.

Virtually all natural processes permit first-order linear approximations. This is

useful because linear equations are easy to write, interpret, and solve. These first

order approximations may be useful to practically assess the process, determine

general trends, identify potential patterns, and suggest associations in the data.

Linear equations represent the simplest type of models for many processes.

Higher order models may include additional non-linear terms, e.g., Taylor-series

expansions. Linear algebra provides the foundation for linear representation, analyt-

ics, computatiponal solutions, inference, and visualization of first-order affine

models. Linear algebra is a small part of the larger mathematics field of functional

analysis, which is actually the infinite-dimensional version of linear algebra.

Specifically, linear algebra allows us to computationally manipulate, model,

solve, and interpret complex systems of equations representing large numbers of

dimensions and variables. Arbitrarily large problems can be mathematically

transformed into simple matrix equations of the form Ax ¼ b or Ax ¼ λx.

In this chapter, we review the fundamentals of linear algebra, matrix manipulation

and their applications to represent, model, and analyse real data. Specifically, we will

cover (1) construction of matrices and matrix operations, (2) general matrix algebra

notations, (3) eigenvalues and eigenvectors of linear operators, (4) least squares

estimation, and (5) linear regression and variance-covariance matrices.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_5

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_5&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_5

5.1 Matrices (Second Order Tensors)

5.1.1 Create Matrices

The easiest way to create a matrix is by using the matrix() function, which

organizes the elements of a vector into specified positions into a matrix.

seq1<-seq(1:6)
m1<-matrix(seq1, nrow=2, ncol=3)
m1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

m2<-diag(seq1)
m2

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 0 0
[2,] 0 2 0 0 0 0
[3,] 0 0 3 0 0 0
[4,] 0 0 0 4 0 0
[5,] 0 0 0 0 5 0
[6,] 0 0 0 0 0 6

m3<-matrix(rnorm(20), nrow=5)
m3

[,1] [,2] [,3] [,4]

[1,] 0.4877535 0.22081284 -0.6067573 -0.8982306

[2,] -0.1672924 -1.49020015 0.3038424 -0.1875045

[3,] -0.4771204 -0.39004837 1.1160825 -0.6948070

[4,] -0.9274687 0.08378863 0.3846627 0.2386284

[5,] 0.8672767 -0.86752831 1.5536853 0.3222158

The function diag() is very useful. When the object is a vector, it creates a

diagonal matrix with the vector in the principal diagonal.

diag(c(1, 2, 3))

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

When the object is a matrix, diag() returns its principal diagonal.

diag(m1)

[1] 1 4

202 5 Linear Algebra & Matrix Computing

When the object is a scalar, diag(k) returns a k � k identity matrix.

diag(4)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

5.1.2 Adding Columns and Rows

Function cbind() and rbind() are used throughout the textbook.

c1<-1:5
m4<-cbind(m3, c1)
m4

c1
[1,] 0.4877535 0.22081284 -0.6067573 -0.8982306 1
[2,] -0.1672924 -1.49020015 0.3038424 -0.1875045 2
[3,] -0.4771204 -0.39004837 1.1160825 -0.6948070 3
[4,] -0.9274687 0.08378863 0.3846627 0.2386284 4
[5,] 0.8672767 -0.86752831 1.5536853 0.3222158 5

r1<-1:4
m5<-rbind(m3, r1)
m5

[,1] [,2] [,3] [,4]
0.4877535 0.22081284 -0.6067573 -0.8982306
-0.1672924 -1.49020015 0.3038424 -0.1875045
-0.4771204 -0.39004837 1.1160825 -0.6948070
-0.9274687 0.08378863 0.3846627 0.2386284
0.8672767 -0.86752831 1.5536853 0.3222158
r1 1.0000000 2.00000000 3.0000000 4.0000000

Note that m5 has a row name r1 in the fourth row. We can remove row/column

names by naming them as NULL.

dimnames(m5)<-list(NULL, NULL)
m5

[,1] [,2] [,3] [,4]
[1,] 0.4877535 0.22081284 -0.6067573 -0.8982306
[2,] -0.1672924 -1.49020015 0.3038424 -0.1875045
[3,] -0.4771204 -0.39004837 1.1160825 -0.6948070
[4,] -0.9274687 0.08378863 0.3846627 0.2386284
[5,] 0.8672767 -0.86752831 1.5536853 0.3222158
[6,] 1.0000000 2.00000000 3.0000000 4.0000000

5.1 Matrices (Second Order Tensors) 203

5.2 Matrix Subscripts

Each element in amatrix has a location.A[i,j]means the ith row and jth column in a

matrix A. We can also access specific rows or columns using matrix subscripts.

m6<-matrix(1:12, nrow=3)
m6

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

m6[1, 2]

[1] 4

m6[1,]

[1] 1 4 7 10

m6[, 2]

[1] 4 5 6

m6[, c(2, 3)]

[,1] [,2]

[1,] 4 7

[2,] 5 8

[3,] 6 9

5.3 Matrix Operations

5.3.1 Addition

Elements in the same position are added to represent the result at the same location.

m7<-matrix(1:6, nrow=2)
m7

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

m8<-matrix(2:7, nrow = 2)
m8

[,1] [,2] [,3]
[1,] 2 4 6
[2,] 3 5 7

m7+m8

[,1] [,2] [,3]
[1,] 3 7 11
[2,] 5 9 13

204 5 Linear Algebra & Matrix Computing

5.3.2 Subtraction

Similar to addition, matrix subtraction reflects differences between elements in same

position.

m8-m7

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1

m8-1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

5.3.3 Multiplication

Multiplicative oparations are different than additive operations. We can do

elementwise multiplication or matrix multiplication. For matrix multiplication, the

matrix dimensions have to match. That is, the number of columns in the first matrix

must equal to the number of rows in the second matrix.

Elementwise Multiplication

Multiplication between elements in same position.

m8*m7

[,1] [,2] [,3]
[1,] 2 12 30
[2,] 6 20 42

Matrix Multiplication

The resulting matrix will have the same number of rows as the first matrix and the

same number of columns as the second matrix.

5.3 Matrix Operations 205

dim(m8)

[1] 2 3

m9<-matrix(3:8, nrow=3)
m9

[,1] [,2]
[1,] 3 6
[2,] 4 7
[3,] 5 8

dim(m9)

[1] 3 2

m8%*%m9

[,1] [,2]

[1,] 52 88

[2,] 64 109

We made a 2 � 2 matrix resulting from multiplying two matrices 2 � 3 * 3 � 2.

The process of multiplying two vectors is called outer product. Assume we have

two vectors u and v, in matrix multiplication their outer product is represented

mathematically as uvT. In R, the operator for outer product is %o%.

u<-c(1, 2, 3, 4, 5)
v<-c(4, 5, 6, 7, 8)
u%o%v

[,1] [,2] [,3] [,4] [,5]
[1,] 4 5 6 7 8
[2,] 8 10 12 14 16
[3,] 12 15 18 21 24
[4,] 16 20 24 28 32
[5,] 20 25 30 35 40

u%*%t(v)

[,1] [,2] [,3] [,4] [,5]
[1,] 4 5 6 7 8
[2,] 8 10 12 14 16
[3,] 12 15 18 21 24
[4,] 16 20 24 28 32
[5,] 20 25 30 35 40

What are the differences between u % ∗ % t(v), u % ∗ % t(v), u ∗ t(v), and

u ∗ v?

206 5 Linear Algebra & Matrix Computing

5.3.4 Element-wise Division

Elementwise division is defined similarly to alement-wize multipliaiton, however,

this is different than multiplicative inversion.

m8/m7

[,1] [,2] [,3]
[1,] 2.0 1.333333 1.200000
[2,] 1.5 1.250000 1.166667

m8/2

[,1] [,2] [,3]
[1,] 1.0 2.0 3.0
[2,] 1.5 2.5 3.5

5.3.5 Transpose

The transpose of a matrix is a new matrix created by swapping the columns and the

rows of the original matrix. Do this in a simple function t().

m8

[,1] [,2] [,3]
[1,] 2 4 6
[2,] 3 5 7

t(m8)

[,1] [,2]

[1,] 2 3

[2,] 4 5

[3,] 6 7

Notice that the [1, 2] element in m8 is the [2, 1] element in the transpose matrix

t(m8).

5.3.6 Multiplicative Inverse

The inverse of a matrix (A�1) is its multiplicative inverse. That is, multiplying the

original matrix (A) by it’s inverse (A�1) yields an identity matrix that has 1’s on the

diagonal and 0’s off the diagonal.

AA�1 ¼ I

Assume we have the following 2 � 2 matrix:

a b

c d

� �

5.3 Matrix Operations 207

Its matrix inverse is

1

ad � bc

d �b

�c a

� �

For higher dimensions, the formula for computing the inverse matrix is more

complex. In R, we can use the solve() function to calculate the matrix inverse, if it

exists.

m10<-matrix(1:4, nrow=2)
m10

[,1] [,2]
[1,] 1 3
[2,] 2 4

solve(m10)

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

m10%*%solve(m10)

[,1] [,2]
[1,] 1 0
[2,] 0 1

Note that only some matrices have inverses. These are square matrices, i.e., they

have the same number of rows and columns, and are non-singular.

Another function that can help us compute the inverse of a matrix is the ginv()

function under the MASS package, which reports the Moore-Penrose Generalized

Inverse of a matrix.

require(MASS)

Loading required package: MASS

ginv(m10)

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

Also, the samae function solve() can be used to solve matrix equations.

solve(A, b) returns vector x in the equation b ¼ Ax (i.e., x ¼ A�1b).

s1<-diag(c(2, 4, 6, 8))
s2<-c(1, 2, 3, 4)
solve(s1, s2)

[1] 0.5 0.5 0.5 0.5

The following Table 5.1 summarizes some basic matrix operation functions.

208 5 Linear Algebra & Matrix Computing

mat1 <- cbind(c(1, -1/5), c(-1/3, 1))
mat1.inv <- solve(mat1)

mat1.identity <- mat1.inv %*% mat1
mat1.identity

[,1] [,2]
[1,] 1 0
[2,] 0 1

b <- c(1, 2)
x <- solve (mat1, b)
x

[1] 1.785714 2.357143

5.4 Matrix Algebra Notation

Let’s introduce the basic matrix notation. The product AB between matrices A and

B is defined only if the number of columns in A equals the number of rows in B. That

is, we can multiply an m � n matrix A by an n � k matrix B and the result will be

ABm � kmatrix. Each element of the product matrix, (ABi, j), represents the product of

the ith row in A and the jth column in B, which are of the same size n. Matrix

multiplication is row-by-column.

5.4.1 Linear Models

Linear algebra notation simplifies the mathematical descriptions and manipulations

of linear models, as well as coding in R.

The main point is to show how we can write linear models using matrix notation.

Later, we’ll explain how this is useful for solving the least squares matrix equation.

Let’s start by defining the notation and matrix multiplication.

Table 5.1 Basic matrix operators in R

Expression Explanation

t(x) Transpose

diag(x) Diagonal

%*% Matrix multiplication

solve(a, b) Solves a %*% x ¼ b for x

solve(a) Matrix inverse of a

rowsum(x) Sum of rows for a matrix-like object. rowSums(x)

is a faster version

colSums(x), colSums(x) Id. for columns

rowMeans(x) Fast version of row means

colMeans(x) Id. for columns

5.4 Matrix Algebra Notation 209

5.4.2 Solving Systems of Equations

Linear algebra notation enables the mathematical analysis and the analytical solution

of systems of linear equations:

aþ bþ 2c ¼ 6

3a� 2bþ c ¼ 2

2aþ b� c ¼ 3

:

It provides a generic machinery for solving these problems.

1 1 2

3 �2 1

2 1 �1

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

a

b

c

0

@

1

A

|fflffl{zfflffl}

x

¼
6

2

3

0

@

1

A

|fflffl{zfflffl}

b

:

That is: Ax ¼ b, which yields a solution vector x:

x ¼
a

b

c

0

@

1

A ¼
1 1 2

3 �2 1

2 1 �1

0

@

1

A

�1
6

2

3

0

@

1

A:

In other words, A�1
Ax ¼ x ¼ A

�1
b.

Notice that this parallels the solution of simple (univariate) linear equations like:

2
|{z}

design matrixð Þ A

x
|{z}

unknown x

� 3
|{z}

simple constant term

¼ 5
|{z}

b

:

The constant term,�3, can be simply joined with the right-hand-size, b, to form a

new term b
0

¼ 5 + 3¼ 8. Thus, the shifting factor is mostly ignored in linear models,

or linear equations, to simplify the equation to:

2
|{z}

design matrixð Þ A

x
|{z}

unknown x

¼ 5þ 3
|fflffl{zfflffl}

b0

¼ 8
|{z}

b0

:

This (simple) linear equation is solved by multiplying both sides by the inverse

(reciprocal) of the x multiplier, 2:

1

2
2x ¼

1

2
8:

Thus, the unique solution is:

x ¼
1

2
8 ¼ 4:

210 5 Linear Algebra & Matrix Computing

So, let’s use exactly the same protocol to solve the corresponding matrix equation

(linear equations, Ax¼ b) using R (the unknown is x, and the design matrix A and the

constant vector b are known):

1 1 2

3 �2 1

2 1 �1

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

a

b

c

0

@

1

A

|fflfflffl{zfflfflffl}

x

¼
6

2

3

0

@

1

A

|fflfflffl{zfflfflffl}

b

:

A_matrix_values <- c(1, 1, 2, 3, -2, 1, 2, 1, -1)
A <- matrix(A_matrix_values, nrow=3, ncol=3))
b <- c(

t(
6, 2, 3)

to solve Ax = b, x=A^{-1}*b

x <- solve (A, b)
Ax = b ==> x = A^{-1} * b

x

[1] 1.35 1.75 1.45

Check the Solution x=(1.35 1.75 1.45)

LHS <- A %*% x
round (LHS-b)

[,1]

[1,] 0

[2,] 0

[3,] 0

How about if we want to triple-check the accuracy of the solve method to

provide accurate solutions to matrix-based systems of linear equations?

We can generate the solution (x) to the equation Ax ¼ b using first principles:

x ¼ A�1b:

A.inverse <- solve(A) # the inverse matrix A^{-1}

x1 <- A.inverse %*% b
check if X and x1 are the same

x; x1

[1] 1.35 1.75 1.45

[,1]
[1,] 1.35
[2,] 1.75
[3,] 1.45

round(x-x1,6)

[,1]
[1,] 0
[2,] 0
[3,] 0

5.4 Matrix Algebra Notation 211

5.4.3 The Identity Matrix

The identity matrix is the matrix analog to the multiplicative numeric identity, i.e.,

the number 1. Multiplying the identity matrix by any other matrix (B) does not

change the matrix B. For this to happen, the multiplicative identity matrix must look

like:

I ¼

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 . . . 1 0

0 0 0 . . . 0 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

The identity matrix is always a square matrix with diagonal elements 1 and 0 at

the off-diagonal elements.

If you follow the matrix multiplication rule above, you notice this works out:

X�I ¼

x1,1 . . . x1,p

⋮

xn,1 . . . xn,p

0

@

1

A

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

⋮

0 0 0 . . . 1 0

0 0 0 . . . 0 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

x1,1 . . . x1,p

⋮

xn,1 . . . xn,p

0

@

1

A:

In R, you can form an identity matrix as follows:

n <- 3 #pick dimensions

I <- diag(n); I

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

A %*% I; I %*% A

[,1] [,2] [,3]
[1,] 1 3 2
[2,] 1 -2 1
[3,] 2 1 -1

[,1] [,2] [,3]
[1,] 1 3 2
[2,] 1 -2 1
[3,] 2 1 -1

212 5 Linear Algebra & Matrix Computing

5.5 Scalars, Vectors and Matrices

Let’s look at this notation deeper. In the baseball player data, there are three

quantitative variables: Heights, Weight, and Age. Suppose the variable

Weight is represented as a response Y1, . . ., Yn random vector.

We can examine players’ Weight as a function of Age and Height.

Data: https://umich.instructure.com/courses/38100/files/folder/data

(01a_data.txt)

data <- read.table('https://umich.instructure.com/files/330381/download?down
load_frd=1', as.is=T, header=T)
attach(data)
head(data)

Name Team Position Height Weight Age

1 Adam_Donachie BAL Catcher 74 180 22.99

2 Paul_Bako BAL Catcher 74 215 34.69

3 Ramon_Hernandez BAL Catcher 72 210 30.78

4 Kevin_Millar BAL First_Baseman 72 210 35.43

5 Chris_Gomez BAL First_Baseman 73 188 35.71

6 Brian_Roberts BAL Second_Baseman 69 176 29.39

We can also use vector notation. We usually use bold to distinguish vectors from

the individual elements:

Y ¼

Y1

Y2

⋮

Yn

0

B
B
B
@

1

C
C
C
A
:

The default representation of data vectors is as columns, i.e., we have dimension

n � 1, as opposed to 1 � n rows.

Similarly, we can use math notation to represent the covariates or predictors: Age

and Height. In a case with two predictors, we can represent them like this:

X1 ¼

x1,1

⋮

xn,1

0

@

1

A and X2 ¼

x1,2

⋮

xn,2

0

@

1

A:

Note that for the baseball players example, x1, 1 ¼ Age1 and xi, 1 ¼ Agei with Agei
represent the Age of the ith player, and similarly, xi, 2 ¼ Heighti, represents the

height of the ith player. These vectors are also thought of as n � 1 matrices.

It is convenient to represent both covariates as a matrix:

X ¼ X1X2½ � ¼
x1,1 x1,2

⋮

xn,1 xn,2

0

@

1

A:

5.5 Scalars, Vectors and Matrices 213

https://umich.instructure.com/courses/38100/files/folder/data
https://umich.instructure.com/files/330381/download?download_frd=1
https://umich.instructure.com/files/330381/download?download_frd=1

This matrix is of dimension n � 2 and can be create in R this way:

X <- cbind(Age, Height)
head(X)

Age Height
[1,] 22.99 74
[2,] 34.69 74
[3,] 30.78 72
[4,] 35.43 72
[5,] 35.71 73
[6,] 29.39 69

dim(X)

[1] 1034 2

We can also use this notation to denote an arbitrary number of covariates (k) with

the following n � k matrix:

X ¼

x1,1 . . . x1,k
x2,1 . . . x2,k

⋮

xn,1 . . . xn,k

0

B
B
@

1

C
C
A
:

You can simulate such a matrix in R now using matrix, instead of cbind:

n <- 1034; k <- 5
X <- matrix(1:(n*k), n, k)
head(X)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1035 2069 3103 4137
[2,] 2 1036 2070 3104 4138
[3,] 3 1037 2071 3105 4139
[4,] 4 1038 2072 3106 4140
[5,] 5 1039 2073 3107 4141
[6,] 6 1040 2074 3108 4142

dim(X)

[1] 1034 5

By default, the matrices are filled in a column-by-column order; however using

the byrow¼TRUE argument allows us to change that order to row-by-row:

n <- 1034; k <- 5
X <- matrix(1:(n*k), n, k, byrow=TRUE)
head(X)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25
[6,] 26 27 28 29 30

dim(X)

[1] 1034 5

214 5 Linear Algebra & Matrix Computing

A scalar is just a univariate number, which is different from vectors and matrices,

that is usually denoted by lower case letters.

5.5.1 Sample Statistics (Mean, Variance)

Mean

To compute the sample average and variance of a dataset, we use the formulas:

�Y ¼
1

n

Xn

i¼1

Y i

and

var Yð Þ ¼
1

n� 1

Xn

i¼1

�
Y i � �Y

�2
,

which can be represented with matrix multiplication.

Define a n � 1 matrix made of 1’s:

A ¼

1

1

⋮

1

0

B
B
@

1

C
C
A
:

This implies that:

1

n
A⊤Y ¼

1

n
1 1 . . . 1ð Þ

Y1

Y2

⋮

Yn

0

B
B
@

1

C
C
A

¼
1

n

Xn

i¼1

Y i ¼ �Y:

Note that we multiply matrices by scalars, like 1
n
, using the traditional multipli-

cation operator *, whereas we multiply two matrices using this operator %*%:

Using the Baseball dataset

y <- data$Height
print(mean(y))

[1] 73.69729

n <- length(y)
Y<- matrix(y, n, 1)
A <- matrix(1, n, 1)
barY=t(A)%*%Y / n

5.5 Scalars, Vectors and Matrices 215

print(barY)

[,1]
[1,] 73.69729

double-check the result

mean(data$Height)

[1] 73.69729

Note: Multiplying the transpose of a matrix with another matrix is very common in

statistical modeling and computing. Thus, there is an R function for this operation,

crossprod():

barY=crossprod(A, Y) / n
print(barY)

[,1]

[1,] 73.69729

Variance

For the variance, we note that if:

Y0 �
Y1 � �Y

⋮

Yn � �Y

0

@

1

A,
1

n� 1
Y0⊤Y0 ¼

1

n� 1

Xn

i¼1

�
Y i � �Y

�2
:

A crossprod with only one matrix input computes: Y0⊤Y
0

Thus, to compute the

variance, we can simply type:

Y1 <- y - barY
crossprod(Y1)/(n-1) # Y1.man <- (1/(n-1))* t(Y1) %*% Y1

[,1]

[1,] 5.316798

Applications of Matrix Algebra: Linear Modeling

Let’s use these matrices:

Y ¼

Y1

Y2

⋮

Yn

0

B
B
@

1

C
C
A
,X ¼

1 x1
1 x2

⋮

1 xn

0

B
B
@

1

C
C
A
,β ¼

β0
β1

� �

and ε ¼

ε1
ε2
⋮

εn

0

B
B
@

1

C
C
A
:

Then, we can write a simple linear model:

216 5 Linear Algebra & Matrix Computing

Y i ¼ β0 þ β1xi þ εi, i ¼ 1, . . . , n

as:

Y1

Y2

⋮

Yn

0

B
B
@

1

C
C
A

¼

1 x1
1 x2

⋮

1 xn

0

B
B
@

1

C
C
A

β0
β1

� �

þ

ε1
ε2
⋮

εn

0

B
B
@

1

C
C
A

or simply:

Y ¼ Xβþ ε,

which is a brief way to write the same model equation.

The optimal solution is achieved when all residuals (Ei) are as small as possible

(indicating a good model fit). This corresponds to the least squares (LS) solution to

this matrix equation (Y ¼ Xβ + E), which can be obtained by minimizing the residual

square error:

< E
T , E >¼ Y � Xβð ÞT � Y � Xβð Þ:

This can be achieved using the following cross-product:

β̂ ¼ Y� Xβð Þ⊤ Y� Xβð Þ:

We can determine the values of β by minimizing this expression, using calculus to

find the minimum of the cost (objective) function, more about optimization is in

Chap. 22.

Finding Function Extrema (Min/Max) Using Calculus

There are a series of rules that permit us to solve partial derivative equations in

matrix notation. By setting the derivative of a cost function to zero and solving for

the unknown parameter β, we obtain a candidate solution(s). The derivative of the

above equation is:

2X⊤
�
Y� Xβ̂

�
¼ 0

X⊤Xβ̂ ¼ X⊤Y

β̂ ¼ X⊤X
� ��1

X⊤Y,

which represents the desired solution. Hat notation (^) is used to denote estimates.

For instance, the solution for the unknown β parameters is denoted by the (data-

driven) estimate β̂ .

5.5 Scalars, Vectors and Matrices 217

The least squares minimization works because minimizing a function corre-

sponds to finding the roots of its (first) derivative. In the ordinary least squares

(OLS), we square the residuals:

Y� Xβð Þ⊤ Y� Xβð Þ:

Notice that the minima of f (x) and f 2(x) are achieved at the same roots of f 0(x), as

the derivative of f 2(x) is 2f(x)f 0(x).

5.5.2 Least Square Estimation

#x=cbind(data$Height, data$Age)

x=data$Height
y=data$Weight
X <- cbind(1, x)
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y
###or
beta_hat <- solve(crossprod(X)) %*% crossprod(X, y)

Now we can see the results of this by computing the estimated β̂ 0 þ β̂ 1x for any

value of x (Fig. 5.1):

newx <- seq(min(x), max(x), len=100)

X <- cbind(1, newx)

fitted <- X%*%beta_hat

plot(x, y, xlab="MLB Player's Height", ylab="Playeer's Weight")

lines(newx, fitted, col=2)

β̂ ¼ X⊤X
� ��1

X⊤Y is one of the most widely used results in data analytics. One

of the advantages of this approach is that we can use it in many different situations.

Fig. 5.1 A linear model of

player’s weight as a function

of their height overlayed on

the paired scatterplot

218 5 Linear Algebra & Matrix Computing

The R lm Function

R has a very convenient function that fits these models. We will learn more about this

function later, but here is a preview:

X <- cbind(data$Height, data$Age) # more complicated model

X <- data$Height # simple model
y <- data$Weight
fit <

fit

- lm(y ~ X);

Note that we obtain the same estimates of the solution using either the built-in

lm() function or using first-principles.

5.6 Eigenvalues and Eigenvectors

Eigen-spectrum decomposition of linear operators (matrices) into eigenvalues and

eigenvectors enables us to easily understand linear transformations. The eigen-

vectors represent the “axes” (directions) along which a linear transformation acts

by stretching, compressing, or flipping. The eigenvalues represent the amounts of

this linear transformation into the specified eigenvector direction. In higher dimen-

sions, there are more directions along which we need to understand the behavior of

the linear transformation. The eigen-spectrum makes it easier to understand the

linear transformation, especially when many (perhaps all) of the eigenvectors are

linearly independent (orthogonal).

For a matrix A, if we have A~v ¼ λ~v then we say~v (a non-zero vector) is a right

eigenvector of the matrix A, and the scale factor λ is the eigenvalue corresponding to

that eigenvector.

With some calculations we know that A~v ¼ λ~v is the same as λIn � Að Þ~v ¼ ~0 .

Here In is the n � n identity matrix. So, when we solve this equation, we get our

eigenvalues and eigenvectors. Of course, as this is a very common operation, we

don’t need to do that by hand – the eigen() function in R help us with this

calculation.

m11<-diag(nrow = 2, ncol=2)
m11

[,1] [,2]
[1,] 1 0
[2,] 0 1

eigen(m11)

$values
[1] 1 1

$vectors
[,1] [,2]
[1,] 0 -1
[2,] 1 0

5.6 Eigenvalues and Eigenvectors 219

We can use R to prove that λIn � Að Þ~v ¼ ~0 .

(eigen(m11)$values*diag(2)-m11)%*%eigen(m11)$vectors

[,1] [,2]
[1,] 0 0
[2,] 0 0

As we mentioned earlier, diag(n) creates an n� n identity matrix. Thus, diag

(2) is the I2 matrix in the equation. The output zero matrix proves that the equation

λIn � Að Þ~v ¼ ~0 holds true.

Some of the many interesting applications of the eigen-spectrum are

shown below.

5.7 Other Important Functions

Other useful matrix operation are listed in the following Table 5.2.

5.8 Matrix Notation (Another View)

Some flexible matrix operations can help us save time calculating row or column

averages. For example, column averages can be calculated by the following matrix

operation.

Table 5.2 Other matrix operators and operands

Functions Math expression or explanation

crossprod(A, B) ATB where A, B are matrices

y<-svd(A) The Singular Value Decomposition output has the fol-

lowing components

-y$d Vector containing the singular values of A

-y$u Matrix with columns contain the left singular vectors of

A

-y$v Matrix with columns contain the right singular vectors

of A

k <- qr(A) The output has the following components

-k$qr Has an upper triangle that contains the decomposition

and a lower triangle that contains information

on the Q decomposition.

-k$rank Is the rank of A

-k$qraux A vector which contains additional information on Q

-k$pivot Contains information on the pivoting strategy used.

rowMeans(A)/colMeans(A) Returns vector of row/column means

rowSums(A)/colSums(A) Returns vector of row/column sums

220 5 Linear Algebra & Matrix Computing

AX ¼
1

N

1

N
. . .

1

N

� �
X1,1 . . . X1,p

X2,1 . . . X2,p

.

XN,1 . . . XN,p

0

B
B
@

1

C
C
A

¼
�
�X1

�X2 . . . �XN

�
:

While row averages can be calculated by the next operation:

XB ¼

X1,1 . . . X1,p

X2,1 . . . X2,p

.

XN,1 . . . XN,p

0

B
B
@

1

C
C
A

1

p
1

p
. . .
1

p

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

�X1

�X2

. . .

�Xq

0

B
B
@

1

C
C
A
:

We see that fast calculations can be done by multiplying a matrix in the front or at

the back of the original feature matrix. In general, multiplying a vector in front can

give us the following equation.

AX ¼ a1 a2 . . . aNð Þ

X1,1 . . . X1,p

X2,1 . . . X2,p

.

XN,1 . . . XN,p

0

B
B
@

1

C
C
A

¼
�XN

i¼1

ai �Xi,1

XN

i¼1

ai �Xi,2 . . .

XN

i¼1

ai �Xi,N

�
:

Now let’s do an example to practice matrix notation. We will use genetic

expression data including 8,793 different genes and 208 subjects. These gene

expression data represents a microarray experiment—GSE5859—comparing Gene

Expression Profiles from Lymphoblastoid cells. Specifically, the data compares the

expression level of genes in lymphoblasts from individuals in three HapMap

populations {CEU, CHB, JPT}. The study found that more than 1,000 genes were

significantly different (a < 0.05) in mean expression level between the {CEU} and

{CHB + JPT} samples.

The gene expression profiles data has two components:

• The gene expression intensities (exprs_GSE5859.csv) where the rows represent

features on the microarray (e.g., genes), and columns represent different micro-

array samples,

• Meta-data about each of the samples (exprs_MetaData_GSE5859.csv) where

rows represent samples, and columns represent meta-data (e.g., sex, age, treat-

ment status, the date the sample processing).

gene<-read.csv("https://umich.instructure.com/files/2001417/download?downloa
d_frd=1", header = T) # exprs_GSE5859.csv
info<-read.csv("https://umich.instructure.com/files/2001418/download?downloa
d_frd=1", header=T) # exprs_MetaData_GSE5859.csv

5.8 Matrix Notation (Another View) 221

https://umich.instructure.com/files/2001417/download?download_frd=1
https://umich.instructure.com/files/2001417/download?download_frd=1
https://umich.instructure.com/files/2001418/download?download_frd=1
https://umich.instructure.com/files/2001418/download?download_frd=1

Like the lapply() function that we will discuss in Chap. 7, the sapply()

function can be used to calculate column and row averages. Let’s compare the output

by using sapply for first-principles matrix calculations.

colmeans<-sapply(gene[, -1], mean)
gene1<-as.matrix(gene[, -1])
can also use built in funcitons

colMeans <- colMeans(gene1)

colmeans.matrix<-crossprod(rep(1/nrow(gene1), nrow(gene1)), gene1)
colmeans[1:15]

GSM25581.CEL.gz GSM25681.CEL.gz GSM136524.CEL.gz GSM136707.CEL.gz
5.703998 5.721779 5.726300 5.743632
GSM25553.CEL.gz GSM136676.CEL.gz GSM136711.CEL.gz GSM136542.CEL.gz
5.835499 5.742565 5.751601 5.732211
GSM136535.CEL.gz GSM25399.CEL.gz GSM25552.CEL.gz GSM25542.CEL.gz
5.741741 5.618825 5.805147 5.733117
GSM136544.CEL.gz GSM25662.CEL.gz GSM136563.CEL.gz
5.733175 5.716855 5.750600

colmeans.matrix[1:15]

[1] 5.703998 5.721779 5.726300 5.743632 5.835499 5.742565 5.751601
[8] 5.732211 5.741741 5.618825 5.805147 5.733117 5.733175 5.716855
[15] 5.750600

The same output is reported. Here, we use rep(1/nrow(gene1), nrow

(gene1)) to create the vector

1

N

1

N
. . .

1

N

� �

needed to obtain the column averages. We may visualize the column means using a

histogram (Fig. 5.2).

colmeans<-as.matrix(colmeans)
hist(colmeans)

The histogram shows that the distribution is mostly symmetric and bell shaped.

We can address harder problems using matrix notation. For example, let’s calculate

the differences between genders for each gene. First, we need to get the gender

information for each subject.

gender<-info[, c(3, 4)]
rownames(gender)<-gender$filename

Then, we have to reorder the columns to make then consistent with the feature

matrix gene1.

gender<-gender[colnames(gene1),]

After that, we will construct the design the matrix and multiply it by the feature

matrix. The plan is to multiply the following two matrices.

222 5 Linear Algebra & Matrix Computing

X1,1 . . . X1,p

X2,1 . . . X2,p

.

XN,1 . . . XN,p

0

B
B
B
@

1

C
C
C
A

1

p
a1

1

p
a2

.

1

p
ap

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

�X1 gender:dif f 1
�X2 gender:dif f 2
.

�Xq gender:dif f N

0

B
B
@

1

C
C
A
:

where ai¼ � 1/NF if the subject is female and ai¼ 1/NM if the subject is male. Thus,

we gave each female and male the same weight before the subtraction. We average

each gender and get their difference. �Xi represents the average across both genders

and gender. diffi represents the gender difference for the ith gene.

table(gender$sex)

F M
86 122

gender$vector<-ifelse(gender$sex=="F", -1/86, 1/122)
vec1<-as.matrix(data.frame(rowavg=rep(1/ncol(gene1), ncol(gene1)),
gender.diff=gender$vector))
gender.matrix<-gene1%*%vec1
gender.matrix[1:15,]

rowavg gender.diff
[1,] 6.383263 -0.003209464
[2,] 7.091630 -0.031320597
[3,] 5.477032 0.064806978
[4,] 7.584042 -0.001300152
[5,] 3.197687 0.015265502
[6,] 7.338204 0.078434938
[7,] 4.232132 0.008437864
[8,] 3.716460 0.018235650
[9,] 2.810554 -0.038698101
[10,] 5.208787 0.020219666
[11,] 6.498989 0.025979654
[12,] 5.292992 -0.029988980
[13,] 7.069081 0.038575442
[14,] 5.952406 0.030352616
[15,] 7.247116 0.046020066

Fig. 5.2 Histogram of the

column means of the gene

expression data

5.8 Matrix Notation (Another View) 223

5.9 Multivariate Linear Regression

As we mentioned earlier, the formula for multivariate linear regression can be

written as

Y i ¼ β0 þ Xi,1β1 þ � � � þ Xi,pβp þ Ei, i ¼ 1, . . . ,N:

We can rewrite this in a matrix form.

Y1

Y2

. . .

YN

0

B
B
@

1

C
C
A

¼

1

1

. . .

1

0

B
B
@

1

C
C
A
β0 þ

X1,1

X2,1

. . .

XN,1

0

B
B
@

1

C
C
A
β1 þ . . .þ

X1,p

X2,p

. . .

XN,p

0

B
B
@

1

C
C
A
βp þ

E1

E2

. . .

EN

0

B
B
@

1

C
C
A
:

Which is the same as Y ¼ Xβ + E or

Y1

Y2

. . .

YN

0

B
B
@

1

C
C
A

¼

1 X1,1 . . . X1,p

1 X2,1 . . . X2,p

.

1 XN,1 . . . XN,p

0

B
B
@

1

C
C
A

βo
β1
. . .

βp

0

B
B
@

1

C
C
A

þ

E1

E2

. . .

EN

0

B
B
@

1

C
C
A
:

Y ¼ Xβ + E implies that XT
Y � X

T(Xβ) ¼ (XT
X)β, and thus the solution for β is

obtained by multiplying both hand sides by (XTX)�1:

β̂ ¼ XTX
� ��1

XTY:

Matrix calculation would be faster than fitting a regression model. Let’s apply

this to the Lahman baseball data representing yearly stats and standings. Let’s

download the baseball.data (https://umich.instructure.com/files/2018445/download?

download_frd=1) and put it in the R working directory. We can use the load()

function to load a local RData object. For this example, we subset the dataset by

G¼¼162 and yearID<2002. Also, we create a new feature named Singles that

is equal to H(Hits by batters) - X2B(Doubles) - X3B(Tripples) - HR

(Homeruns by batters). Finally, we only pick some features: R (Runs scored),

Singles, HR (Homeruns by batters) and BB (Walks by batters).

#If you downloaded the .RData locally first, then you can easily load it

into the R workspace by:

load("Teams.RData")

Alternatively you can also download the data in CSV format from

http://umich.instructure.com/courses/38100/files/folder/data (teamsData.csv)

Teams <- read.csv('https://umich.instructure.com/files/2798317/download?down
load_frd=1', header=T)

dat<-Teams[Teams$G==162&Teams$yearID<2002,]
dat$Singles<-dat$H-dat$X2B-dat$X3B-dat$HR
dat<-dat[, c("R", "Singles", "HR", "BB")]
head(dat)

224 5 Linear Algebra & Matrix Computing

https://umich.instructure.com/files/2018445/download?download_frd=1
https://umich.instructure.com/files/2018445/download?download_frd=1
http://umich.instructure.com/courses/38100/files/folder/data
https://umich.instructure.com/files/2798317/download?download_frd=1
https://umich.instructure.com/files/2798317/download?download_frd=1

R Singles HR BB
439 505 997 11 344
1367 683 989 90 580
1368 744 902 189 681
1378 652 948 156 516
1380 707 1017 92 620
1381 632 1020 126 504

Now let’s do a simple example. We will use runs scored (R) as the response

variable and batters walks (BB) as the independent variable. Also, we need to add a

column of 1’s to the X matrix.

Y<-dat$R
X<-cbind(rep(1, n=nrow(dat)), dat$BB)
X[1:10,]

[,1] [,2]
[1,] 1 344
[2,] 1 580
[3,] 1 681
[4,] 1 516
[5,] 1 620
[6,] 1 504
[7,] 1 498
[8,] 1 502
[9,] 1 493
[10,] 1 556

Let’s solve for the effect-sizes (the beta coefficients) by

β̂ ¼ XTX
� ��1

XTY:

beta<-solve(t(X)%*%X)%*%t(X)%*%Y
beta

[,1]
[1,] 326.8241628
[2,] 0.7126402

To examine this manual calculation, we refit the linear equation using the lm()

function. After comparing the time used for computations, we may notice that matrix

calculation are more time efficient.

fit<-lm(R~BB, data=dat)
fit<-lm(R~., data=dat)

'.' indicates all other variables, very useful when fitting models

with many predictors

fit

Call:
lm(formula = R ~ BB, data = dat)

5.9 Multivariate Linear Regression 225

Coefficients:
(Intercept) BB
326.8242 0.7126

summary(fit)

Call:
lm(formula = R ~ BB, data = dat)

Residuals:
Min 1Q Median 3Q Max
-187.788 -53.977 -2.995 55.649 258.614

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 326.82416 22.44340 14.56 <2e-16 ***
BB 0.71264 0.04157 17.14 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 76.95 on 661 degrees of freedom
Multiple R-squared: 0.3078, Adjusted R-squared: 0.3068
F-statistic: 294 on 1 and 661 DF, p-value: < 2.2e-16

system.time(fit<-lm(R~BB, data=dat))

user system elapsed
0 0 0

system.time(beta<-solve(t(X)%*%X)%*%t(X)%*%Y)

user system elapsed
0 0 0

We can visualize the relationship between R and BB by drawing a scatter plot

(Fig. 5.3).

Fig. 5.3 Scatterplot and

model of walks (BB) and

runs (R) by batters, using the

MLB dataset

226 5 Linear Algebra & Matrix Computing

plot(datBB, datR, xlab = "BB", ylab = "R", main = "Scatter plot/regression
for baseball data")
abline(beta[1, 1], beta[2, 1], lwd=4, col="red")

On Fig. 5.3, the red line is our regression line calculated by matrix calculation.

Matrix calculation can still work if we have multiple independent variables. Next, we

will add another variable, HR, to the model, Fig. 5.4.

X<-cbind(rep(1, n=nrow(dat)), datBB, datHR)
beta<-solve(t(X)%*%X)%*%t(X)%*%Y
beta

[,1]
[1,] 287.7226756
[2,] 0.3897178
[3,] 1.5220448

#install.packages("scatterplot3d")

library(scatterplot3d)
scatterplot3d(datBB, datHR, dat$R)

5.10 Sample Covariance Matrix

We can also obtain the covariance matrix for our features using matrix operations.

Suppose

XN�K ¼

X1,1 . . . X1,K

X2,1 . . . X2,K

.

XN,1 . . . XN,K

0

B
B
@

1

C
C
A

¼ X1;X2; . . . ;XN½ �T :

Fig. 5.4 3D Scatterplot of walks (BB), homeruns (HR), and runs (R) by batters, using the baseball

dataset

5.10 Sample Covariance Matrix 227

Then the covariance matrix is:

Σ ¼ Σi, j

� �
,

where Σi, j ¼ Cov(Xi,Xj) ¼ E((Xi � μi)(Xj � μj)), 1 � i, j, � N.

The sample covariance matrix is:

Σi, j ¼
1

N � 1

XN

m¼1

�
xm, i � �xi

��
xm, j � �xj

�
,

where

�xi ¼
1

N

XN

m¼1

xm, i, i ¼ 1, . . . ,K:

In general,

Σ ¼
1

n� 1

�
X � �X

�T�
X � �X

�
:

Assume we want to get the sample covariance matrix of the following 5 � 3

feature matrix x.

x<-matrix(c(4.0, 4.2, 3.9, 4.3, 4.1, 2.0, 2.1, 2.0, 2.1, 2.2, 0.60, 0.59,
0.58, 0.62, 0.63), ncol=3)
x

[,1] [,2] [,3]
[1,] 4.0 2.0 0.60
[2,] 4.2 2.1 0.59
[3,] 3.9 2.0 0.58
[4,] 4.3 2.1 0.62
[5,] 4.1 2.2 0.63

Notice that we have three features and five observations in this matrix. Let’s get

the column means first.

vec2<-matrix(c(1/5, 1/5, 1/5, 1/5, 1/5), ncol=5)
#column means

x.bar<-vec2%*%x
x.bar

[,1] [,2] [,3]
[1,] 4.1 2.08 0.604

Then, we repeat each column mean 5 times to match the layout of feature matrix.

Finally, we are able to plug everything in the formula above.

228 5 Linear Algebra & Matrix Computing

x.bar<-matrix(rep(x.bar, each=5), nrow=5)
S<-1/4*t(x-x.bar)%*%(x-x.bar)
S

[,1] [,2] [,3]
[1,] 0.02500 0.00750 0.00175
[2,] 0.00750 0.00700 0.00135
[3,] 0.00175 0.00135 0.00043

In the covariance matrix, S[i, i] is the variance of the ith feature and S[i, j]

is the covariance of ith and jth features.

Compare this to the automated calculation of the variance-covariance matrix.

autoCov <- cov(x)
autoCov

[,1] [,2] [,3]
[1,] 0.02500 0.00750 0.00175
[2,] 0.00750 0.00700 0.00135
[3,] 0.00175 0.00135 0.00043

5.11 Assignments: 5. Linear Algebra & Matrix Computing

5.11.1 How Is Matrix Multiplication Defined?

Validate that Ak,n � Bn,mð ÞT ¼ BT
m,n

� �
� AT

n,k

� �
, by using math notation, as well as

by using R functions.

5.11.2 Scalar Versus Matrix Multiplication

Demonstrate the differences between the scalar multiplication (∗) and matrix

multiplication (% ∗ %) for numbers, vectors, and matrices (second-order tensors).

5.11.3 Matrix Equations

Write a simple matrix solver (b ¼ Ax, i.e., x ¼ A�1b) and validate its acuracy using

the R command solve(A,b). Solve this equation:

2a� bþ 2c ¼ 5

�a� 2bþ c ¼ 3

aþ b� c ¼ 2

:

5.11 Assignments: 5. Linear Algebra & Matrix Computing 229

5.11.4 Least Square Estimation

Use the SOCR Knee Pain dataset, extract the RB ¼ Right-Back locations (x, y),

and fit in a linear model for vertical locations (y) in terms of the horizontal locations

(x). Display the linear model on top of the scatter plot of the paired data. Comment

on the model you obtain.

5.11.5 Matrix Manipulation

Create a matrix A with elements seq(1, 15, length ¼ 6) and argument nrow

¼ 3. Then, add a row to this matrix and add two columns to A to obtain a matrix

C4, 4. Next, generate a diagonal matrix D with dim ¼ 4 and elements rnorm

(4,0,1). Apply elementwise addition, subtraction, multiplication, and division

to the matrix C and D; apply matrix multiplication to D and C; obtain the inverse of

the C and compare it with the generalized inverse, MASS::ginv().

5.11.6 Matrix Transpose

Validate the multiplication transposition formula, Ak,n � Bn,mð ÞT ¼ BT
n,m � AT

k,n, by

using math notation, as well as computationally using R and some example matrices.

E.g. you can try

A = matrix(1:6,nrow=3); B = matrix(2:7, nrow = 2)

5.11.7 Sample Statistics

Use the SOCR Data Iris Sepal Petal Classes and extract the rows of setosa

flowers. Compute the sample mean and variance of each variables; then calculate

sample covariance and correlation between sepal width and sepal height.

5.11.8 Least Square Estimation

Use the SOCR Knee Pain dataset, extract the RB ¼ Right-Back locations (x, y),

and fit in a linear model for vertical location (y) in terms of the horizontal

230 5 Linear Algebra & Matrix Computing

location (x). Display the linear model on top of the scatter plot of the paired data.

Comment on the model you obtained.

5.11.9 Eigenvalues and Eigenvectors

Generate a random matrix with A ¼ matrix(rnorm(9,0,1),nrow ¼ 3),

compute eigenvalues and eigenvectors for A; then try to solve this equation det

(A � λI) ¼ 0, where λ is a vector of length 3. Compare λ and the eigenvalues you

solved above.

Example of manual and automated calculations of eigen-spectra (eigenvalues and

eigenvectors):

A <- matrix(rnorm(9,0,1),nrow = 3); A

define a random design matrix, may generate complex solutions
A <- matrix(c(0,1/4,1/4,3/4,0,1/4,1/4,3/4,1/2),3,3,byrow=T); A
eigen_spectrum <- eigen(A); eigen_spectrum

compute the eigen spectrum (eigen-values, l, and eigen-vectors, v),

$ A \times v = l \times v$.
B <- A-eigen(A)$values*diag(3); B

compute B = (A - eigen_value \times I)
det(A-eigen(A)\$values*diag(3))

verrify that the det(A-eigen(A)\$values*diag(3)) is not trivial (0)
A%*%eigen(A)$vector - eigen(A)$value*diag(3)

validate that $ A \times v = l \times v$.
all.equal(A, eigen(A)\$vector %*% diag(eigen(A)\$values) %*%
solve(eigen(A)$vector)) # compare A = v*l*inv(v)
all.equal(diag(3), A%*%eigen(A)$vector - eigen(A)$values * eigen(A)$vector)
The last line compares I == AV - lambda*v, mind the $*$ and

$%*%$ scalar and matrix operators

References

http://www.statmethods.net/advstats/matrix.html

Vinod, Hrishikesh D. (2011) Hands-On Matrix Algebra Using R: Active and Motivated Learning

with Applications, World Scientific Publishing, ISBN 981310080X, 9789813100800.

Gentle, James E. (2007) Matrix Algebra: Theory, Computations, and Applications in Statistics,

Springer, ISBN 0387708723, 9780387708720.

References 231

http://www.statmethods.net/advstats/matrix.html

Chapter 6

Dimensionality Reduction

Now that we have most of the fundamentals covered in the previous chapters, we can

delve into the first data analytic method, dimension reduction, which reduces the

number of features when modeling a very large number of variables. Dimension

reduction can help us extract a set of “uncorrelated” principal variables and reduce

the complexity of the data. We are not simply picking some of the original variables.

Rather, we are constructing new “uncorrelated” variables as functions of the old

features.

Dimensionality reduction techniques enable exploratory data analyses by reduc-

ing the complexity of the dataset, still approximately preserving important proper-

ties, such as retaining the distances between cases or subjects. If we are able to

reduce the complexity down to a few dimensions, we can then plot the data and

untangle its intrinsic characteristics.

We will (1) start with a synthetic example demonstrating the reduction of a 2D

data into 1D; (2) explain the notion of rotation matrices; (3) show examples of

principal component analysis (PCA), singular value decomposition (SVD), inde-

pendent component analysis (ICA) and factor analysis (FA); and (4) present a

Parkinson’s disease case-study at the end. The supplementary DSPA electronic

materials for this chapter also include the theory and practice of t-Distributed

Stochastic Neighbor Embedding (t-SNE), which represents high-dimensional data

via projections into non-linear low-dimensional manifolds.

6.1 Example: Reducing 2D to 1D

We consider an example looking at twin heights. Suppose we simulate 1000 2D

points that representing normalized individual heights, i.e., number of standard

deviations from the mean height. Each 2D point represents a pair of twins. We will

simulate this scenario using Bivariate Normal Distribution (Table 6.1 and Fig. 6.1).

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_6

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_6&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_6

library(MASS)

set.seed(1234)

n <- 1000

y=t(mvrnorm(n, c(0, 0), matrix(c(1, 0.95, 0.95, 1), 2, 2)))

yT2�500 ¼
y 1;½ � ¼ Twin1Height

y 2;½ � ¼ Twin2Height

" #

¼ BVN μ ¼
Twin1Height

Twin2Height

" #

;Σ ¼
1 0:95

0:95 1

" # !

:

plot(y[1,], y[2,], xlab="Twin 1 (standardized height)",

ylab="Twin 2 (standardized height)", xlim=c(-3, 3), ylim=c(-3, 3))

points(y[1, 1:2], y[2, 1:2], col=2, pch=16) # plot the first 2 points

These data may represent a fraction of the information included in a high-

throughput neuroimaging genetics study of twins, like the pediatric study example

shown here (http://wiki.socr.umich.edu/index.php/SOCR_Data_Oct2009_ID_NI).

Tracking the distances between any two samples can be accomplished using the

dist function. For example, here is the distance between the two RED points in the

Fig. 6.1:

d=dist(t(y))

as.matrix(d)[1, 2]

[1] 2.100187

Table 6.1 Schematic data

structure representation and

indexing of twin heights

Twin1Height Twin2Height

y[1, 1] y[1, 2]

y[2, 1] y[2, 2]

y[3, 1] y[3, 2]

� � � � � �
y[500,1] y[500,2]

Fig. 6.1 Scatterplot of

paired twin heights. The red

points show the heights of

the first two pairs of twins

234 6 Dimensionality Reduction

http://wiki.socr.umich.edu/index.php/SOCR_Data_Oct2009_ID_NI

To transform the 2D data to a simpler 1D plot, we can reduce the data to a 1D

matrix (vector) approximately preserving the distances between the 2D points.

The 2D plot shows the Euclidean distance between the pair of red points, Fig. 6.2.

The length of this line is the distance between the two points. In 2D, these lines tend

to go along the direction of the diagonal. If we rotate the plot so that the diagonal

is in the x-axis (Fig. 6.3):

z1 = (y[1,]+y[2,])/2 # the sum (or rather average)

z2 = (y[1,]-y[2,]) # the difference

z = rbind(z1, z2) #matrix now same dimensions as y

thelim <- c(-3, 3)

par(mar=c(1, 2))

par(mfrow=c(2,1))

plot(y[1,], y[2,], xlab="Twin 1 (standardized height)",

ylab="Twin 2 (standardized height)",

xlim=thelim, ylim=thelim)

points(y[1, 1:2], y[2, 1:2], col=2, pch=16)

Fig. 6.2 Scatterplots of the raw twin heights

Fig. 6.3 Scatterplots of the transformed twin heights, compare to Fig. 6.2

6.1 Example: Reducing 2D to 1D 235

par(mfrow=c(1,1))

plot(z[1,], z[2,], xlim=thelim, ylim=thelim, xlab="Average height", ylab="

Difference in height")

points(z[1, 1:2], z[2, 1:2], col=2, pch=16)

Of course, matrix linear algebra notation can be used to represent this affine

transformation of the data. Here we can see that to get z we multiplied y by the

matrix:

A ¼
1=2 1=2

1 �1

 !

⟹z ¼ A� y:

We can invert this transform by multiplying the result by the inverse matrix

A�1 as follows:

A�1 ¼
1 1=2

1 �1=2

 !

⟹y ¼ A�1 � z:

You can try this in R:

A <- matrix(c(1/2, 1, 1/2, -1), nrow=2, ncol=2); A # define a matrix

[,1] [,2]

[1,] 0.5 0.5

[2,] 1.0 -1.0

A_inv <- solve(A); A_inv # inverse

[,1] [,2]

[1,] 1 0.5

[2,] 1 -0.5

A %*% A_inv # Verify result

[,1] [,2]

[1,] 1 0

[2,] 0 1

Note that this matrix transformation did not preserve distances, i.e., the matrix

A is not a simple rotation in 2D:

d=dist(t(y)); as.matrix(d)[1, 2] # distance between first two points of Y

[1] 2.100187

d1=dist(t(z)); as.matrix(d1)[1, 2] # distance between first two points of

Z=A*Y

[1] 1.541323

236 6 Dimensionality Reduction

6.2 Matrix Rotations

One important question to ask is how we can identify transformations that preserve

distances. In mathematics, transformations between metric spaces that are distance-

preserving are called isometries (or congruences or congruent transformations).

First, let’s test the MA transformation we used above (Fig. 6.3):

M ¼ Y1 � Y2

A ¼ Y1 þ Y2

2
:

�

�

�

�

�

�

MA <- matrix(c(1/2, 1, 1/2, -1), 2, 2)

MA_z <- MA%*%y

d <- dist(t(y))

d_MA <- dist(t(MA_z))

plot(as.numeric(d), as.numeric(d_MA))

abline(0, 1, col=2)

Observe that this MA transformation is not an isometry – the distances are not

preserved. Here is one example with v1 ¼ v1x ¼ 0

v1y ¼ 1

� �

, v2 ¼ v2x ¼ 1

v2y ¼ 0

� �

, which are

distance
ffiffiffi

2
p

apart in their native space, but separated further by the transformation

MA, d(MA(v1),MA(v2)) ¼ 2.

Fig. 6.4 The above MA

transformation is not an

isometry. This scatterplot

shows that the relation

between the transformed

(y-axis) and the native-space

(x-axis) twin-pairs distances

are not preserved

6.2 Matrix Rotations 237

MA; t(MA); solve(MA); t(MA) - solve(MA)

[,1] [,2]

[1,] 0.5 0.5

[2,] 1.0 -1.0

[,1] [,2]

[1,] 0.5 1

[2,] 0.5 -1

[,1] [,2]

[1,] 1 0.5

[2,] 1 -0.5

[,1] [,2]

[1,] -0.5 0.5

[2,] -0.5 -0.5

v1 <- c(0,1); v2 <- c(1,0); rbind(v1,v2)

[,1] [,2]

v1 0 1

v2 1 0

euc.dist <- function(x1, x2) sqrt(sum((x1 - x2) ^ 2))

euc.dist(v1,v2)

[1] 1.414214

v1_t <- MA %*% v1; v2_t <- MA %*% v2

euc.dist(v1_t,v2_t)

[1] 2

More generally, if
Y1

Y2

� �

� N
μ1
μ2

� �

;
σ21 σ12
σ12 σ22

� �� �

:

Then,

Z ¼ AY þ η � BVN ηþ Aμ;AΣAT
� 	

:

Where BVN denotes bivariate normal distribution (see http://socr.umich.edu/

HTML5/BivariateNormal/),

A ¼ a b

c d

� �

,Y ¼ Y1; Y2ð ÞT , μ ¼ μ1; μ2ð Þ,Σ ¼ σ21 σ12
σ12 σ22

� �

:

You can verify this by using the change of variable theorem. Thus, affine trans-

formations preserve bivariate normality. However, in general, there is no means to

guarantee isometry.

The question now is: Under what additional conditions for a transformation

matrix A, can we guarantee an isometry?

238 6 Dimensionality Reduction

http://socr.umich.edu/HTML5/BivariateNormal/
http://socr.umich.edu/HTML5/BivariateNormal/

Notice that,

d2 Pi;Pj

� 	

¼
X

T

k¼1

Pjk � Pik

� 	2 ¼ Pk k2 ¼ PTP,

where P ¼ (Pj,1 � Pi,1, . . .,Pj,T � Pi,T)
T, Pi and Pj is any two points in T dimensions.

Thus, the only requirement we need is (AY)T(AY) ¼ YTY, i. e. , ATA ¼ I, which

implies that A is an orthogonal (rotational) matrix.

Let’s use a two dimension orthogonal matrix to illustrate this concept. Set

A ¼ 1
ffiffi

2
p 1 1

1 �1

� �

. It’s easy to verify that A is an orthogonal (2D rotation) matrix.

The simplest way to test the isometry is to perform the linear transformation

directly (Fig. 6.5).

A <- 1/sqrt(2)*matrix(c(1, 1, 1, -1), 2, 2)

z <- A%*%y

d <- dist(t(y))

d2 <- dist(t(z))

plot(as.numeric(d), as.numeric(d2))

abline(0, 1, col=2)

We can observe that the distances computed using the original data are preserved

after the transformation. This transformation is called a rotation (isometry) of y. Note

the difference compared to the earlier plot, Fig. 6.4.

An alternative method is to simulate from the joint distribution of Z ¼ (Z1,Z2)
T.

As we have mentioned above:

Z ¼ AY þ η � BVN ηþ Aμ;AΣAT
� 	

,

where η ¼ (0, 0)T, Σ ¼ 1 0:95
0:95 1

� �

, A ¼ 1
ffiffi

2
p 1 1

1 �1

� �

.

Fig. 6.5 The matrix

A transformation above is

distance preserving (i.e., an

isometry), as illustrated by

the perfect linear relation

between the native-space

and the transformed pairs of

twin height distances

6.2 Matrix Rotations 239

We can compute AΣAT by hand or by using matrix multiplication in R:

sig <- matrix(c(1,0.95,0.95,1),nrow=2)

A%*%sig%*%t(A)

[,1] [,2]

[1,] 1.95 0.00

[2,] 0.00 0.05

AΣAT represents the transformed variance-covariance matrix, cov(z1, z2) ¼ 0. We

can simulate z1, z2 independently from z1 � N(0,1.95) and z2 � N(0,0.05) (Note:

independence and uncorrelation are equivalent for bivariate normal distribution)

(Fig. 6.6).

set.seed(2017)

zz1 = rnorm(1000,0,sd = sqrt(1.95))

zz2 = rnorm(1000,0,sd = sqrt(0.05))

zz = rbind(zz1,zz2)

d3 = dist(t(zz))

qqplot(d,d3)

abline(a = 0,b=1,col=2)

We can observe that the distances computed using the original data and the

simulated data are the same (Figs. 6.7 and 6.8).

thelim <- c(-3, 3)

#par(mfrow=c(2,1))

plot(y[1,], y[2,], xlab="Twin 1 (standardized height)",

ylab="Twin 2 (standardized height)",

xlim=thelim, ylim=thelim)

points(y[1, 1:2], y[2, 1:2], col=2, pch=16)

plot(z[1,], z[2,], xlim=thelim, ylim=thelim, xlab="Average height",

ylab="Difference in height")

points(z[1, 1:2], z[2, 1:2], col=2, pch=16)

Fig. 6.6 QQ-plot of the

distanced between twin

heights (d) and distances

between the simulated

bivariate Normal

distribution data (d3)

240 6 Dimensionality Reduction

We applied this transformation and observed that the distances between points

were unchanged after the rotation. This rotation achieves the goals of:

• Preserving the distances between points, and

• Reducing the dimensionality of the data (see plot reducing 2D to 1D).

Removing the second dimension and recomputing the distances, we get

(Fig. 6.9):

d4 = dist(z[1,]) ##distance computed using just the first dimension

plot(as.numeric(d), as.numeric(d4))

abline(0, 1)

The 1D distances provide a very good approximation to the actual 2D distances.

This first dimension of the transformed data is called the first principal

component. In general, this idea motivates the use of principal component analysis

(PCA) and the singular value decomposition (SVD) to achieve dimensionality

reduction.

Fig. 6.8 Twin height scatterplot after the rotation

Fig. 6.7 Twin height scatterplot before rotation

6.2 Matrix Rotations 241

6.3 Notation

In the notation above, the rows represent variables and columns represent cases. In

general, rows represent cases and columns represent variables. Hence, in our exam-

ple shown here, Y would be transposed to be a N � 2 matrix. This is the most

common way to represent the data: individuals in the rows, features in the columns.

In genomics, it is more common to represent subjects/SNPs/genes in the columns.

For example, genes are rows and samples are columns. The sample covariance

matrix usually denoted with XTX and has cells representing covariance between

two units. Yet, for this to be the case, we need the rows of X to represent the subjects

and the columns to represent the variables, or features. Here, we have to compute,YYT

instead following the rescaling.

6.4 Summary (PCA vs. ICA vs. FA)

Principle Component Analysis (PCA), Independent Component Analysis (ICA), and

Factor Analysis (FA) are similar strategies, seeking to identify a new basis (vectors

representing the principal directions) that the data is projected against to maximize

certain (specific to each technique) objective functions. These basis functions, or

vectors, are just linear combinations of the original features in the data/signal.

The singular value decomposition (SVD), discussed later in this chapter, provides

a specific matrix factorization algorithm that can be employed in various techniques

to decompose a data matrix Xm � n as UΣV
T, where U is an m � m real or complex

unitary matrix (UUT ¼ UTU ¼ I), Σ is a m � n rectangular diagonal matrix of

singular values, representing non-negative values on the diagonal, and V is an n � n

unitary matrix (Table 6.2).

Fig. 6.9 Comparing the twin distances, computed using just one dimension, following the rotation

transformation against the actual twin pair height distances. The strong linear relation suggests that

measuring distances in the native space is equivalent to measuring distances in the transformed

space, where we reduced the dimension of the data from 2D to 1D

242 6 Dimensionality Reduction

6.5 Principal Component Analysis (PCA)

PCA (principal component analysis) is a mathematical procedure that transforms a

number of possibly correlated variables into a smaller number of uncorrelated vari-

ables through a process known as orthogonal transformation.

6.5.1 Principal Components

Let’s consider the simplest situation where we have n observations {p1, p2, . . ., pn}

with two features pi¼ (xi, yi). When we draw them on a plot, we use the x-axis and y-

axis for positioning. However, we can make our own coordinate system by principal

components (Fig. 6.10).

Table 6.2 Summary of some dimensionality reduction methods

Method Assumptions Cost function optimization Applications

PCA Gaussian

signals

Aims to explain the variance in

the original signal. Minimizes

the covariance of the data and

yields high-energy orthogonal

vectors in terms of the signal

variance. PCA looks for an

orthogonal linear transformation

that maximizes the variance of

the variables

Relies on first and second

moments of the measured data,

which makes it useful when data

features are close to Gaussian

ICA No Gaussian

signal

assumptions

Minimizes higher-order statistics

(e.g., third and fourth order

skewness and kurtosis), effec-

tively minimizing the mutual

information of the transformed

output. ICA seeks a linear trans-

formation where the basis vec-

tors are statistically independent,

but neither Gaussian, orthogonal

or ranked in order

Applicable for non-Gaussian,

very noisy, or mixture processes

composed of simultaneous input

from multiple sources

FA Approximately

Gaussian data

Objective function relies on sec-

ond order moments to compute

likelihoods. FA factors are linear

combinations that maximize the

shared portion of the variance

underlying latent variables,

which may use a variety of opti-

mization strategies (e.g., maxi-

mum likelihood)

PCA-generalization used to test

a theoretical model of latent

factors causing the observed

features

6.5 Principal Component Analysis (PCA) 243

ex<-data.frame(x=c(1, 3, 5, 6, 10, 16, 50), y=c(4, 6, 5, 7, 10, 13, 12))

reg1<-lm(y~x, data=ex)

plot(ex)

abline(reg1, col='red', lwd=4)

text(40, 10.5, "pc1")

segments(10.5, 11, 15, 7, lwd=4)

text(11, 7, "pc2")

Illustrated on the graph, the first PC, pc1 is a minimum distance fit in the feature

space. The second PC is a minimum distance fit to a line perpendicular to the first

PC. Similarly, the third PC would be a minimum distance fit to all previous PCs. In

our case of a 2D space, two PC’s is the most we can have. In higher dimensional

spaces, we have to figure out howmany PCs are needed to make the best performance.

In general, the formula for the first PC is pc1 ¼ aT
1 X ¼

XN

i¼1
ai,1Xi where Xi is

a n � 1 vector representing a column of the matrix X (complete design matrix with

a total of n observations and N features). The weights a1 ¼ {a1, 1, a2, 1, . . ., aN, 1}

are chosen to maximize the variance of pc1. According to this rule, the kth PC

pck ¼ aT
k X ¼

XN

i¼1
ai,kXi, where ak ¼ {a1, k, a2, k, . . ., aN, k} has to be constrained

by more conditions:

1. Variance of pck is maximized

2. Cov(pck, pcl) ¼ 0, 8 1 � l < k

3. aT
k ak ¼ 1 (the weights vectors are unitary).

Let’s figure out how to find a1. To begin, we need to express the variance of our

first principal component using the variance covariance matrix of X:

Var pc1ð Þ ¼ E pc21
� 	

� E pc1ð Þð Þ2 ¼
X

N

i, j¼1

ai,1aj,1E xi xj
� 	

�
X

N

i, j¼1

ai,1aj,1E xið ÞE xj
� 	

¼

X

N

i, j¼1

ai,1aj,1Si, j,

where Si, j ¼ E(xixj) � E(xi)E(xj).

Fig. 6.10 Schematic

representation of the first

two principal components

(simulated data)

244 6 Dimensionality Reduction

This implies Var pc1ð Þ ¼ aT
1 Sa1, where S ¼ Si, j is the covariance matrix of

X ¼ {X1, . . .,XN}. Since a1 maximized Var(pc1) and the constrain aT
1 a1 ¼ 1 holds,

we can rewrite a1 as:

a1 ¼ arg maxa1 aT
1 Sa1 � λ aT

1 a1 � 1
� 	� 	

:

Where the part after the subtraction should be trivial. Take the derivative of this

expression w.r.t. a1 and set the derivative to zero, which yields (S � λIN)a1 ¼ 0.

In Chap. 5 we showed that a1 will correspond to the largest eigenvalue of S, the

variance covariance matrix of X. Hence, pc1 retains the largest amount of variation in

the sample. Likewise, ak is the kth largest eigenvalue of S.

PCA requires data matrix to have zero empirical means for each column. That is,

the sample mean of each column has been shifted to zero.

Let’s use a subset (N ¼ 33) of Parkinson's Progression Markers Initiative (PPMI)

database to demonstrate the relationship between S and PC loadings. First, we need

to import the dataset into R and delete the patient ID column.

library(rvest)

wiki_url <-read_html("http://wiki.socr.umich.edu/index.php/SMHS_PCA_ICA_FA")

html_nodes(wiki_url, "#content")

pd.sub <- html_table(html_nodes(wiki_url, "table")[[1]])

summary(pd.sub)

Patient_ID Top_of_SN_Voxel_Intensity_Ratio

Min. :3001 Min. :1.058

1st Qu.:3012 1st Qu.:1.334

Median :3029 Median :1.485

Mean :3204 Mean :1.532

3rd Qu.:3314 3rd Qu.:1.755

Max. :3808 Max. :2.149

Side_of_SN_Voxel_Intensity_Ratio Part_IA Part_IB

Min. :0.9306 Min. :0.000 Min. : 0.000

1st Qu.:0.9958 1st Qu.:0.000 1st Qu.: 2.000

Median :1.1110 Median :1.000 Median : 5.000

Mean :1.1065 Mean :1.242 Mean : 4.909

3rd Qu.:1.1978 3rd Qu.:2.000 3rd Qu.: 7.000

Max. :1.3811 Max. :6.000 Max. :13.000

Part_II Part_III

Min. : 0.000 Min. : 0.00

1st Qu.: 0.000 1st Qu.: 2.00

Median : 2.000 Median :12.00

Mean : 4.091 Mean :13.39

3rd Qu.: 6.000 3rd Qu.:20.00

Max. :17.000 Max. :36.00

pd.sub<-pd.sub[, -1]

Then, we need to center the pdsub by subtracting the average of all column

means from each element. Next we change pd.sub to a matrix and get its variance

covariance matrix, S. Now, we are able to calculate the eigenvalues and eigen-

vectors of S.

6.5 Principal Component Analysis (PCA) 245

http://wiki.socr.umich.edu/index.php/SMHS_PCA_ICA_FA

mu<-apply(pd.sub, 2, mean)

mean(mu)

[1] 4.379068

pd.center<-as.matrix(pd.sub)-mean(mu)

S<-cov(pd.center)

eigen(S)

$values

[1] 1.315073e+02 1.178340e+01 6.096920e+00 1.424351e+00 6.094592e-02

[6] 8.035403e-03

$vectors

[,1] [,2] [,3] [,4] [,5]

[1,] -0.007460885 -0.0182022093 0.016893318 0.02071859 0.97198980

[2,] -0.005800877 0.0006155246 0.004186177 0.01552971 0.23234862

[3,] 0.080839361 -0.0600389904 -0.027351225 0.99421646 -0.02352324

[4,] 0.229718933 -0.2817718053 -0.929463536 -0.06088782 0.01466136

[5,] 0.282109618 -0.8926329596 0.344508308 -0.06772403 -0.01764367

[6,] 0.927911126 0.3462292153 0.127908417 -0.05068855 0.01305167

[,6]

[1,] -0.232667561

[2,] 0.972482080

[3,] -0.009618592

[4,] 0.003019008

[5,] 0.006061772

[6,] 0.002456374

The next step is to calculate the PCs using the prcomp() function in R. Note

that we will use the uncentered version of the data and use center¼T option. We

stored the model information into pca1. Then pca1$rotation provides the

loadings for each PC.

pca1<-prcomp(as.matrix(pd.sub), center = T)

summary(pca1)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 11.4677 3.4327 2.46919 1.19346 0.2469 0.08964

Proportion of Variance 0.8716 0.0781 0.04041 0.00944 0.0004 0.00005

Cumulative Proportion 0.8716 0.9497 0.99010 0.99954 1.0000 1.00000

pca1$rotation

PC1 PC2 PC3

Top_of_SN_Voxel_Intensity_Ratio 0.007460885 -0.0182022093 0.016893318

Side_of_SN_Voxel_Intensity_Ratio 0.005800877 0.0006155246 0.004186177

Part_IA -0.080839361 -0.0600389904 -0.027351225

Part_IB -0.229718933 -0.2817718053 -0.929463536

246 6 Dimensionality Reduction

Part_II -0.282109618 -0.8926329596 0.344508308

Part_III -0.927911126 0.3462292153 0.127908417

PC4 PC5 PC6

Top_of_SN_Voxel_Intensity_Ratio 0.02071859 -0.97198980 -0.232667561

Side_of_SN_Voxel_Intensity_Ratio 0.01552971 -0.23234862 0.972482080

Part_IA 0.99421646 0.02352324 -0.009618592

Part_IB -0.06088782 -0.01466136 0.003019008

Part_II -0.06772403 0.01764367 0.006061772

Part_III -0.05068855 -0.01305167 0.002456374

The loadings are just the eigenvectors times -1. This actually represents the same

line in 6D dimensional space (we have six columns for the original data). The

multiplier -1 represents the opposite direction in the same line. For further compar-

isons, we can load the factoextra package to get the eigenvalues of PCs.

install.packages("factoextra")

library("factoextra")

eigen<-get_eigenvalue(pca1); eigen

eigenvalue variance.percent cumulative.variance.percent

Dim.1 1.315073e+02 87.159638589 87.15964

Dim.2 1.178340e+01 7.809737384 94.96938

Dim.3 6.096920e+00 4.040881920 99.01026

Dim.4 1.424351e+00 0.944023059 99.95428

Dim.5 6.094592e-02 0.040393390 99.99467

Dim.6 8.035403e-03 0.005325659 100.00000

The eigenvalues correspond to the amount of the variation explained by each

principal component (PC), which represesnts the eigenvalues for the S matrix.

To see detailed information about the variances that each PC explains, we utilize

the plot() function. We can also visualize the PC loadings (Figs. 6.11, 6.12,

and 6.13).

Fig. 6.11 Scree plot of the

magnitude of the

eigenvalues corresponding

to the principal components

6.5 Principal Component Analysis (PCA) 247

Fig. 6.12 A biplot,

enhanced scatterplot,

showing both points and

vectors representing

structure of the data in terms

of the projections of the

features onto the main two

principal component

directions

Fig. 6.13 A more elaborate biplot of the same Parkinson’s disease dataset

248 6 Dimensionality Reduction

plot(pca1)

library(graphics)

biplot(pca1, choices = 1:2, scale = 1, pc.biplot = F)

library("factoextra")

Data for the supplementary qualitative variables

qualit_vars <- as.factor(pd.sub$Part_IA)

head(qualit_vars)

[1] 0 3 1 0 1 1

Levels: 0 1 2 3 4 6

for plots of individuals

fviz_pca_ind(pca1, habillage = qualit_vars, addEllipses = TRUE,

ellipse.level = 0.68) +

theme_minimal()

for Biplot of individuals and variables

fviz_pca_biplot(pca1, axes = c(1, 2), geom = c("point", "text"),

col.ind = "black", col.var = "steelblue", label = "all",

invisible = "none", repel = T, habillage = qualit_vars,

palette = NULL, addEllipses = TRUE, title = "PCA - Biplot")

The histogram plot has a clear “elbow” point at the second PC. Two PCs explains

about 95% of the total variation. Thus, we can use the first 2 PCs to represent the

data. In this case, the dimension of the data is substantially reduced.

Here, biplot uses PC1 and PC2 as the axes and red vectors to represent the

direction of variables after adding loadings as weights. It help us to visualize how the

loadings are used to rearrange the structure of the data.

Next, let’s try to obtain a bootstrap test for the confidence interval of the

explained variance (Fig. 6.14).

set.seed(12)

num_boot = 1000

bootstrap_it = function(i) {

data_resample = pd.sub[sample(1:nrow(pd.sub),nrow(pd.sub),replace=TRUE),]

p_resample = princomp(data_resample,cor = T)

return(sum(p_resample$sdev[1:3]^2)/sum(p_resample$sdev^2))

}

pco = data.frame(per=sapply(1:num_boot, bootstrap_it))

quantile(pco$per, probs = c(0.025,0.975))

specify 95-th % Confidence Interval

2.5% 97.5%

0.8134438 0.9035291

corpp = sum(pca1$sdev[1:3]^2)/sum(pca1$sdev^2)

require(ggplot2)

plot = ggplot(pco, aes(x=pco$per)) +

geom_histogram() + geom_vline(xintercept=corpp, color='yellow')+

labs(title = "Percent Var Explained by the first 3 PCs") +

theme(plot.title = element_text(hjust = 0.5))+

labs(x='perc of var')

show(plot)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

6.5 Principal Component Analysis (PCA) 249

6.6 Independent Component Analysis (ICA)

ICA aims to find basis vectors representing independent components of the original

data. For example, this may be achieved by maximizing the norm of the fourth order

normalized kurtosis, which iteratively projects the signal on a new basis vector,

computes the objective function (e.g., the norm of the kurtosis) of the result, slightly

adjusts the basis vector (e.g., by gradient ascent), and recomputes the kurtosis again.

The end of this iterative process generates a basis vector corresponding to the highest

(residual) kurtosis representing the next independent component.

The process of Independent Component Analysis is to maximize the statistical

independence of the estimated components. Assume that each variable Xi is gener-

ated by a sum of n independent components.

Xi ¼ ai,1s1 þ � � � þ ai,nsn:

Fig. 6.14 A histogram plot illustrating the proportion of the energy of the original dataset

accounted for by the first three principal components

250 6 Dimensionality Reduction

Here, Xi is generated by s1 : sn and ai,1 : ai,n are the corresponding weights.

Finally, we rewrite X as

X ¼ As,

where X ¼ (X1, . . .,Xn)
T, A ¼ (a1, . . ., an)

T, ai ¼ (ai,1, . . ., ai,n) and s ¼ (s1, . . ., sn)
T.

Note that s is obtained by maximizing the independence of the components. This

procedure is done by maximizing some independence objective function.

ICA assumes all of its components (si) are non-Gaussian and independent of each

other.

We will now introduce the fastICA function in R.

fastICA(X, n.comp, alg.typ, fun, rownorm, maxit, tol)

• X: data matrix

• n.comp: number of components,

• alg.type: components extracted simultaneously (alg.typ ¼¼ "parallel")

or one at a time (alg.typ ¼¼ "deflation")

• fun: functional form of F to approximate to neg-entropy,

• rownorm: whether rows of the data matrix X should be standardized beforehand

• maxit: maximum number of iterations

• tol: a positive scalar giving the tolerance at which the un-mixing matrix is

considered to have converged.

Let’s generate a correlated X matrix.

S <- matrix(runif(10000), 5000, 2)

S[1:10,]

[,1] [,2]

[1,] 0.19032887 0.92326457

[2,] 0.64582044 0.36716717

[3,] 0.09673674 0.51115358

[4,] 0.24813471 0.03997883

[5,] 0.51746238 0.03503276

[6,] 0.94568595 0.86846372

[7,] 0.29500222 0.76227787

[8,] 0.93488888 0.97061365

[9,] 0.89622932 0.62092241

[10,] 0.33758057 0.84543862

A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)

X <- S %*% A # In R, "*" and "%*%" indicate "scalar" and matrix multiplicat

ion, respectively!

cor(X)

[,1] [,2]

[1,] 1.0000000 -0.4563297

[2,] -0.4563297 1.0000000

6.6 Independent Component Analysis (ICA) 251

The correlation between two variables is�0.4563297. Then we can start to fit the

ICA model.

install.packages("fastICA")

library(fastICA)

a <- fastICA(X, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,

method = "C", row.norm = FALSE, maxit = 200,

tol = 0.0001)

To visualize how correlated the pre-processed data is and how independent the

resulting S is, we can draw the following two plots (Fig. 6.15).

par(mfrow = c(1, 2))

plot(a$X, main = "Pre-processed data")

plot(a$S, main = "ICA components")

Finally, we can check the correlation of two components in the ICA result, S; it is

nearly 0.

cor(a$S)

[,1] [,2]

[1,] 1.000000e+00 -7.677818e-16

[2,] -7.677818e-16 1.000000e+00

-1.0

-2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1

0

1

2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5-0.5 0.0

a$X[,1]

Pre-processed data ICA components

a
$
X

[,
 2

]

a
$
S

[,
 2

]

a$S[,1]

0.5 1.0

Fig. 6.15 Scatterplots of the raw data (left) illustrating intrinsic relation in the simulated bivariate

data and the ICA-transformed data (right) showing random scattering

252 6 Dimensionality Reduction

To do a more interesting example, we can use the pd.sub dataset (Parkinson’s

disease). It has six variables and the correlation is relatively high. After fitting the

ICA model, the components are nearly independent.

cor(pd.sub)

Top_of_SN_Voxel_Intensity_Ratio

Top_of_SN_Voxel_Intensity_Ratio 1.00000000

Side_of_SN_Voxel_Intensity_Ratio 0.54747225

Part_IA -0.10144191

Part_IB -0.26966299

Part_II -0.04358545

Part_III -0.33921790

Side_of_SN_Voxel_Intensity_Ratio

Top_of_SN_Voxel_Intensity_Ratio 0.5474722

Side_of_SN_Voxel_Intensity_Ratio 1.0000000

Part_IA -0.2157587

Part_IB -0.4438992

Part_II -0.3766388

Part_III -0.5226128

Part_IA Part_IB Part_II

Top_of_SN_Voxel_Intensity_Ratio -0.1014419 -0.2696630 -0.04358545

Side_of_SN_Voxel_Intensity_Ratio -0.2157587 -0.4438992 -0.37663875

Part_IA 1.0000000 0.4913169 0.50378157

Part_IB 0.4913169 1.0000000 0.57987562

Part_II 0.5037816 0.5798756 1.00000000

Part_III 0.5845831 0.6735584 0.63901337

Part_III

Top_of_SN_Voxel_Intensity_Ratio -0.3392179

Side_of_SN_Voxel_Intensity_Ratio -0.5226128

Part_IA 0.5845831

Part_IB 0.6735584

Part_II 0.6390134

Part_III 1.0000000

a1<-fastICA(pd.sub, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,

method = "C", row.norm = FALSE, maxit = 200,

tol = 0.0001)

par(mfrow = c(1, 2))

cor(a1$X)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00000000 0.5474722 -0.1014419 -0.2696630 -0.04358545 -0.3392179

[2,] 0.54747225 1.0000000 -0.2157587 -0.4438992 -0.37663875 -0.5226128

[3,] -0.10144191 -0.2157587 1.0000000 0.4913169 0.50378157 0.5845831

[4,] -0.26966299 -0.4438992 0.4913169 1.0000000 0.57987562 0.6735584

[5,] -0.04358545 -0.3766388 0.5037816 0.5798756 1.00000000 0.6390134

[6,] -0.33921790 -0.5226128 0.5845831 0.6735584 0.63901337 1.0000000

cor(a1$S)

[,1] [,2]

[1,] 1.000000e+00 1.088497e-15

[2,] 1.088497e-15 1.000000e+00

Notice that we only have two ICA components instead of six variables, success-

fully reducing the dimension of the data.

6.6 Independent Component Analysis (ICA) 253

6.7 Factor Analysis (FA)

Similar to ICA and PCA, FA tries to find components in the data. As a generalization

of PCA, FA requires that the number of components is smaller than the original

number of variables (or columns of the data matrix). FA optimization relies on

iterative perturbations with full-dimensional Gaussian noise and maximum-

likelihood estimation where every observation in the data represents a sample

point in a subspace. Whereas PCA assumes the noise is spherical, Factor Analysis

allows the noise to have an arbitrary diagonal covariance matrix and estimates the

subspace as well as the noise covariance matrix.

Under FA, the centered data can be expressed in the following form:

xi � μi ¼ li,1F1 þ � � � þ li,kFk þ Ei ¼ LF þ Ei,

where i 2 1, . . ., p, j 2 1, . . ., k, k < p and Ei are independently distributed error terms

with zero mean and finite variance.

Let’s do FA in R with function factanal(). According to PCA, our pd.sub

dataset can explain 95% of variance with the first two principal components. This

suggest that we might need two factors in FA. We can double check that by the

following commands (Fig. 6.16).

Fig. 6.16 Scree plots of various solutions

254 6 Dimensionality Reduction

Report For a nScree Class

Details: components

Eigenvalues Prop Cumu Par.Analysis Pred.eig OC Acc.factor AF

1 3 1 1 1 1 NA (< AF)

2 1 0 1 1 1 (< OC) 1

3 1 0 1 1 0 1

4 0 0 1 1 0 0

5 0 0 1 1 NA 0

6 0 0 1 0 NA NA

Number of factors retained by index

noc naf nparallel nkaiser

1 2 1 2 2

Three out of four rules in Cattell’s Scree test summary suggest we should use two

factors. Thus, in function factanal() we use factors¼2 and the varimax

rotation as performing arithmetic to obtain a new set of factor loadings. Oblique

promax and Procrustes rotation (projecting the loadings to a target matrix

with a simple structure) are two other commonly used matrix rotations.

fit<-factanal(pd.sub, factors=2, rotation="varimax")

fit<-factanal(pd.sub, factors=2, rotation="promax") # the most popular obl

ique rotation; And fitting a simple structure

fit

Call:

factanal(x = pd.sub, factors = 2, rotation = "varimax")

Uniquenesses:

Top_of_SN_Voxel_Intensity_Ratio Side_of_SN_Voxel_Intensity_Ratio

0.018 0.534

Part_IA Part_IB

0.571 0.410

Part_II Part_III

0.392 0.218

Loadings:

Factor1 Factor2

Top_of_SN_Voxel_Intensity_Ratio 0.991

Side_of_SN_Voxel_Intensity_Ratio -0.417 0.540

Part_IA 0.650

Part_IB 0.726 -0.251

Part_II 0.779

Part_III 0.825 -0.318

Factor1 Factor2

SS loadings 2.412 1.445

Proportion Var 0.402 0.241

Cumulative Var 0.402 0.643

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 1.35 on 4 degrees of freedom.

The p-value is 0.854

6.7 Factor Analysis (FA) 255

Here the p-value 0.854 is very large, suggesting that we failed to reject the null-

hypothesis that two factors are sufficient. We can also visualize the loadings for all

the variables (Fig. 6.17).

load <- fit$loadings

plot(load, type="n") # set up plot

text(load, labels=colnames(pd.sub), cex=.7) # add variable names

This plot displays factors 1 and 2 on the x-axis and y-axis, respectively.

6.8 Singular Value Decomposition (SVD)

SVD is a factorization of a real or complex matrix. If we have a data matrix X with

n observation and p variables, it can be factorized into the following form:

X ¼ UDVT ,

where U is a n� p unitary matrix, thatUTU¼ I,D is a p� p diagonal matrix, and VT

is a p � p unitary matrix, which is the conjugate transpose of the n � n unitary

matrix, V. Thus, we have VTV ¼ I.

SVD is closely linked to PCA (when correlation matrix is used for calculation).

U are the left singular vectors. D are the singular values. U gives PCA scores. V are

the right singular vectors-PCA loadings.

Fig. 6.17 Factor analysis results projecting the key features on the first two factor dimensions

256 6 Dimensionality Reduction

We can compare the output from the svd() function and the princomp()

function (another R function for PCA). Still, we are using the pd.sub dataset.

Before the SVD, we need to scale our data matrix.

#SVD output

df<-nrow(pd.sub)-1

zvars<-scale(pd.sub)

z.svd<-svd(zvars)

z.svd$d/sqrt(df)

[1] 1.7878123 1.1053808 0.7550519 0.6475685 0.5688743 0.5184536

z.svd$v

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.2555204 0.71258155 -0.37323594 0.10487773 -0.4773992 0.22073161

[2,] 0.3855208 0.47213743 0.35665523 -0.43312945 0.5581867 0.04564469

[3,] -0.3825033 0.37288211 0.70992668 0.31993403 -0.2379855 -0.22728693

[4,] -0.4597352 0.09803466 -0.11166513 -0.79389290 -0.2915570 -0.22647775

[5,] -0.4251107 0.34167997 -0.46424927 0.26165346 0.5341197 -0.36505061

[6,] -0.4976933 0.06258370 0.03872473 -0.01769966 0.1832789 0.84438182

#PCA output

pca2<-princomp(pd.sub, cor=T)

pca2

Call:

princomp(x = pd.sub, cor = T)

Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

1.7878123 1.1053808 0.7550519 0.6475685 0.5688743 0.5184536

6 variables and 33 observations.

loadings(pca2)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

Top_of_SN_Voxel_Intensity_Ratio -0.256 -0.713 -0.373 -0.105 0.477 -0.221

##Side_of_SN_Voxel_Intensity_Ratio -0.386 -0.472 0.357 0.433 -0.558

Part_IA 0.383 -0.373 0.710 -0.320 0.238 0.227

Part_IB 0.460 -0.112 0.794 0.292 0.226

Part_II 0.425 -0.342 -0.464 -0.262 -0.534 0.365

Part_III 0.498 -0.183 -0.844

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167

Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000

When the correlation matrix is used for calculation (cor¼T), the V matrix of

SVD contains the loadings of the PCA.

6.8 Singular Value Decomposition (SVD) 257

6.9 SVD Summary

Intuitively, the SVD approach X¼UDVT represents a composition of the (centered!)

data into three geometrical transformations: a rotation or reflection (U), a scaling

(D), and a rotation or reflection (V). Here we assume that the data X stores samples/

cases in rows and variables/features in columns. If these are reversed, then the

interpretations of the U and V matrices reverse as well.

• The columns of V represent the directions of the principal axes, the columns of

UD are the principal components, and the singular values in D are related to

the eigenvalues of data variance-covariance matrix (Σ) via λi ¼
d2i

n� 1
, where

the eigenvalues λi capture the magnitude of the data variance in the

respective PCs.

• The standardized scores are given by columns of
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

U and the corresponding

loadings are given by columns of 1
n�1

VD. However, these “loadings” are not the

principal directions. The requirement for X to be centered is needed to ensure that

the covariance matrix Cov Xð Þ ¼ 1
n�1

XTX.

• Alternatively, to perform PCA on the correlation matrix (instead of the

covariance matrix), the columns of X need to be scaled (centered and

standardized).

• To reduce the data dimensionality from p to k < p, we multiply the first k columns

of U by the k � k upper-left corner of the matrix D to get an n � k matrix UkDk

containing the first k PCs.

• Multiplying the first k PCs by their corresponding principal directions V T
k

reconstructs the original data from the first k PCs, Xk¼UkDkVk
T, with the lowest

possible reconstruction error.

• Typically, we have more subjects/cases (n) than variables/features (p < n). As

Un � n and Vp � p, the last n � p > 0 columns of U may be trivial (zeros). It’s

customary to drop the zero columns of U for n � p to avid dealing with

unnecessarily large (trivial) matrices.

6.10 Case Study for Dimension Reduction

(Parkinson’s Disease)

Step 1: Collecting Data

The data we will be using in this case study is the Clinical, Genetic and Imaging

Data for Parkinson’s Disease in the SOCR website. A detailed data explanation

is available online http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_

BiomedBigMetadata. Let’s import the data into R.

258 6 Dimensionality Reduction

http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata
http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata

Loading required package: xml2

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_Bio

medBigMetadata")

html_nodes(wiki_url, "#content")

{xml_nodeset (1)}

[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top

...

pd_data <- html_table(html_nodes(wiki_url, "table")[[1]])

head(pd_data); summary(pd_data)

Cases L_caudate_ComputeArea L_caudate_Volume R_caudate_ComputeArea

1 2 597 767 855

2 2 597 767 855

3 2 597 767 855

4 2 597 767 855

5 3 604 873 935

6 3 604 873 935

…

chr17_rs11868035_GT UPDRS_part_I UPDRS_part_II UPDRS_part_III Time

1 0 1 12 1 0

2 0 1 12 1 6

3 0 1 12 1 12

4 0 1 12 1 18

5 1 0 19 22 0

6 1 0 19 22 6

Cases L_caudate_ComputeArea L_caudate_Volume

Min. : 2.0 Min. :525.0 Min. :719.0

1st Qu.:158.0 1st Qu.:582.0 1st Qu.:784.0

Median :363.5 Median :600.0 Median :800.0

Mean :346.1 Mean :600.4 Mean :800.3

3rd Qu.:504.0 3rd Qu.:619.0 3rd Qu.:819.0

Max. :692.0 Max. :667.0 Max. :890.0

…

Min. : 0.0

1st Qu.: 4.5

Median : 9.0

Mean : 9.0

3rd Qu.:13.5

Max. :18.0

Step 2: Exploring and Preparing the Data

To make sure that the data is ready for further modeling, we need to fix a few things.

First, the Dx variable, or diagnosis, is a factor. We need to change it to a numeric

variable. Second, we don’t need the patient ID and time variable in the dimension

reduction procedures.

pd_data$Dx <- gsub("PD", 1, pd_data$Dx)

pd_data$Dx <- gsub("HC", 0, pd_data$Dx)

pd_data$Dx <- gsub("SWEDD", 0, pd_data$Dx)

pd_data$Dx <- as.numeric(pd_data$Dx)

attach(pd_data)

pd_data<-pd_data[, -c(1, 33)]

6.10 Case Study for Dimension Reduction (Parkinson’s Disease) 259

http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata
http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata

Step 3: Training a Model on the Data

1. PCA

Now we start the process of fitting a PCA model. Here we will use the

princomp() function and use the correlation rather than the covariance matrix

for calculation.

pca.model <- princomp(pd_data, cor=TRUE)

summary(pca.model) # pc loadings (i.e., igenvector columns)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 1.39495952 1.28668145 1.28111293 1.2061402

Proportion of Variance 0.06277136 0.05340481 0.05294356 0.0469282

Cumulative Proportion 0.06277136 0.11617617 0.16911973 0.2160479

Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 1.18527282 1.15961464 1.135510 1.10882348 1.0761943

Proportion of Variance 0.04531844 0.04337762 0.041593 0.03966095 0.037361

Cumulative Proportion 0.26136637 0.30474399 0.346337 0.38599794 0.423359

Comp.10 Comp.11 Comp.12 Comp.13

Standard deviation 1.06687730 1.05784209 1.04026215 1.03067437

Proportion of Variance 0.03671701 0.03609774 0.03490791 0.03426741

Cumulative Proportion 0.46007604 0.49617378 0.53108169 0.56534910

Comp.14 Comp.15 Comp.16 Comp.17

Standard deviation 1.0259684 0.99422375 0.97385632 0.96688855

Proportion of Variance 0.0339552 0.03188648 0.03059342 0.03015721

Cumulative Proportion 0.5993043 0.63119078 0.66178421 0.69194141

Comp.18 Comp.19 Comp.20 Comp.21

0.0
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

pca.model

0.5

1.0

V
a
ri
a
n
c
e
s

1.5

Fig. 6.18 Barplot illustrating the decay of the eigenvectors corresponding to the PCA linear

transformation of the variables in the Parkinson’s disease dataset (Figs. 6.19 and 6.20)

260 6 Dimensionality Reduction

plot(pca.model)

Standard deviation 0.87005195 0.86433816 0.84794183 0.82232529

Proportion of Variance 0.02441905 0.02409937 0.02319372 0.02181351

Cumulative Proportion 0.82315289 0.84725226 0.87044598 0.89225949

Comp.26 Comp.27 Comp.28 Comp.29

Standard deviation 0.80703739 0.78546699 0.77505522 0.76624322

Proportion of Variance 0.02100998 0.01990188 0.01937776 0.01893963

Cumulative Proportion 0.91326947 0.93317135 0.95254911 0.97148875

Comp.30 Comp.31

Standard deviation 0.68806884 0.64063259

Proportion of Variance 0.01527222 0.01323904

Cumulative Proportion 0.98676096 1.00000000

0.9## Standard deviation 2687735 0.92376374 0.89853718 0.88924412

Proportion of Variance 0.02771296 0.02752708 0.02604416 0.02550823

Cumulative Proportion 0.71965437 0.74718145 0.77322561 0.79873384

Comp.22 Comp.23 Comp.24 Comp.25##

biplot(pca.model)

fviz_pca_biplot(pca.model, axes = c(1, 2), geom = "point",

col.ind = "black", col.var = "steelblue", label = "all",

invisible = "none", repel = F, habillage = pd_data$Sex,

palette = NULL, addEllipses = TRUE, title = "PCA - Biplot")

Fig. 6.19 Biplot of the PD variables onto the first two principle axes

6.10 Case Study for Dimension Reduction (Parkinson’s Disease) 261

We can see that in real world examples PCs do not necessarily have an “elbow” in

the scree plot (Fig. 6.18). In our model, each PC explains about the same amount of

variation. Thus, it is hard to tell how many PCs, or factors, we need to pick. This

would be an ad hoc decision.

2. FA

Let’s set up a Cattell’s Scree test to determine the number of factors first.

ev <- eigen(cor(pd_data)) # get eigenvalues

ap <- parallel(subject=nrow(pd_data), var=ncol(pd_data), rep=100, cent=.05)

nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)

summary(nS)

Report For a nScree Class

Details: components

Eigenvalues Prop Cumu Par.Analysis Pred.eig OC Acc.factor AF

1 2 0 0 1 2 (< OC) NA (< AF)

2 2 0 0 1 2 0

3 2 0 0 1 1 0

4 1 0 0 1 1 0

5 1 0 0 1 1 0

…

Fig. 6.20 Enhanced biplot of the PD data explicitly labeling the patients and control volunteers

262 6 Dimensionality Reduction

30 0 0 1 1 NA 0

31 0 0 1 1 NA NA

Number of factors retained by index

noc naf nparallel nkaiser

1 1 1 14 14

Although the Cattell’s Scree test suggest that we should use 14 factors, the real fit

shows 14 is not enough. Previous PCA results suggest we need around 20 PCs to

obtain a cumulative variance of 0.6. After a few trials, we find that 19 factors can

pass the chi square test for sufficient number of factors at 0.05 level.

fa.model<-factanal(pd_data, 19, rotation="varimax")

fa.model

Call:

factanal(x = pd_data, factors = 19, rotation = "varimax")

Uniquenesses:

L_caudate_ComputeArea L_caudate_Volume

0.840 0.005

R_caudate_ComputeArea R_caudate_Volume

0.868 0.849

L_putamen_ComputeArea L_putamen_Volume

0.791 0.702

R_putamen_ComputeArea R_putamen_Volume

0.615 0.438

L_hippocampus_ComputeArea L_hippocampus_Volume

0.476 0.777

R_hippocampus_ComputeArea R_hippocampus_Volume

0.798 0.522

cerebellum_ComputeArea cerebellum_Volume

0.137 0.504

L_lingual_gyrus_ComputeArea L_lingual_gyrus_Volume

0.780 0.698

R_lingual_gyrus_ComputeArea R_lingual_gyrus_Volume

0.005 0.005

L_fusiform_gyrus_ComputeArea L_fusiform_gyrus_Volume

0.718 0.559

R_fusiform_gyrus_ComputeArea R_fusiform_gyrus_Volume

0.663 0.261

Sex Weight

0.829 0.005

Age Dx

0.005 0.005

chr12_rs34637584_GT chr17_rs11868035_GT

0.638 0.721

UPDRS_part_I UPDRS_part_II

0.767 0.826

UPDRS_part_III

0.616

6.10 Case Study for Dimension Reduction (Parkinson’s Disease) 263

L_lingual_gyrus_Volume

R_lingual_gyrus_ComputeArea 0.989

R_lingual_gyrus_Volume 0.983

L_fusiform_gyrus_ComputeArea

L_fusiform_gyrus_Volume

R_fusiform_gyrus_ComputeArea

R_fusiform_gyrus_Volume

Sex -0.111

Weight 0.983

Age

Dx 0.965

chr12_rs34637584_GT 0.124

chr17_rs11868035_GT -0.303

UPDRS_part_I -0.260

UPDRS_part_II

UPDRS_part_III 0.332 0.104

Factor6 Factor7 Factor8 Factor9 Factor10

L_caudate_ComputeArea -0.101

L_caudate_Volume
…

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

SS loadings 1.282 1.029 1.026 1.019 1.013 1.011 0.921

Proportion Var 0.041 0.033 0.033 0.033 0.033 0.033 0.030

Cumulative Var 0.041 0.075 0.108 0.140 0.173 0.206 0.235

Factor8 Factor9 Factor10 Factor11 Factor12 Factor13

SS loadings 0.838 0.782 0.687 0.647 0.615 0.587

Proportion Var 0.027 0.025 0.022 0.021 0.020 0.019

Cumulative Var 0.263 0.288 0.310 0.331 0.351 0.370

Factor14 Factor15 Factor16 Factor17 Factor18 Factor19

SS loadings 0.569 0.566 0.547 0.507 0.475 0.456

Proportion Var 0.018 0.018 0.018 0.016 0.015 0.015

Cumulative Var 0.388 0.406 0.424 0.440 0.455 0.470

Test of the hypothesis that 19 factors are sufficient.

The chi square statistic is 54.51 on 47 degrees of freedom.

The p-value is 0.211

Loadings:

Factor1 Factor2 Factor3 Factor4 Factor5

L_caudate_ComputeArea

L_caudate_Volume 0.980

R_caudate_ComputeArea

R_caudate_Volume

L_putamen_ComputeArea

L_putamen_Volume

R_putamen_ComputeArea

R_putamen_Volume

L_hippocampus_ComputeArea

L_hippocampus_Volume

R_hippocampus_ComputeArea -0.102

R_hippocampus_Volume

cerebellum_ComputeArea

cerebellum_Volume

L_lingual_gyrus_ComputeArea 0.107

264 6 Dimensionality Reduction

This data matrix has relatively low correlation. Thus, it is not suitable for ICA.

cor(pd_data)[1:10, 1:10]

L_caudate_ComputeArea L_caudate_Volume

L_caudate_ComputeArea 1.000000000 0.05794916

L_caudate_Volume 0.057949162 1.00000000

R_caudate_ComputeArea -0.060576361 0.01076372

R_caudate_Volume 0.043994457 0.07245568

L_putamen_ComputeArea 0.009640983 -0.06632813

L_putamen_Volume -0.064299184 -0.11131525

R_putamen_ComputeArea 0.040808105 0.04504867

R_putamen_Volume 0.058552841 -0.11830387

L_hippocampus_ComputeArea -0.037932760 -0.04443615

L_hippocampus_Volume -0.042033469 -0.04680825

…

L_caudate_ComputeArea 0.04080810 0.058552841

L_caudate_Volume 0.04504867 -0.118303868

R_caudate_ComputeArea 0.07864348 0.007022844

R_caudate_Volume 0.05428747 -0.094336376

L_putamen_ComputeArea 0.09049611 0.176353726

L_putamen_Volume 0.09093926 -0.057687648

R_putamen_ComputeArea 1.00000000 0.052245264

R_putamen_Volume 0.05224526 1.000000000

L_hippocampus_ComputeArea -0.05508472 0.131800075

L_hippocampus_Volume -0.08866344 -0.001133570

L_hippocampus_ComputeArea L_hippocampus_Volume

L_caudate_ComputeArea -0.037932760 -0.04203347

L_caudate_Volume -0.044436146 -0.04680825

R_caudate_ComputeArea 0.051359613 0.08578833

R_caudate_Volume 0.006123355 -0.07791361

L_putamen_ComputeArea 0.094604791 -0.06442537

L_putamen_Volume 0.025303302 0.04041557

R_putamen_ComputeArea -0.055084723 -0.08866344

R_putamen_Volume 0.131800075 -0.00113357

L_hippocampus_ComputeArea 1.000000000 -0.02633816

L_hippocampus_Volume -0.026338163 1.00000000

6.11 Assignments: 6. Dimensionality Reduction

6.11.1 Parkinson’s Disease Example

Apply principal component analysis (PCA), singular value decomposition (SVD),

independent component analysis (ICA), and factor analysis (FA) to reduce the

dimensionality of the PD data. Interpret the results.

6.11 Assignments: 6. Dimensionality Reduction 265

6.11.2 Allometric Relations in Plants Example

Load Data

Load Allometric Relations in Plants data and perform a proper type conversion, e.g.,

convert “Province” and “Born”.

Dimensionality Reduction

• Apply Principal Component Analysis protocol.

• Generate a data summary

• Apply prcomp

• Report the rotations (scores)

• Display screen plot

• Select the number of PCs and employ a bootstrap test

• Apply factoextra to draw biplot and grouped by Province/Sites

• Perform SVD and ICA and compare the results of PCA.

• Use these three variables L, M, D to perform ICA and show pair plots before

ICA and after ICA. (Hint: scatter3dplot() may be helpful, which you

saw in Chap. 5.)

• Perform factor analysis.

• Use require(nFactors) to determine the number of the factors and show

a scree plot as stated in notes

• Use factanal() to apply FA and compare the rotation varimax and

promax

• Report the loadings and consider an appropriate visualization method.

• Interpret the findings in the context of the case-study.

References

Jolliffe, I.T. (2002) Principal Component Analysis, Springer.

Karhunen, J. and Hyvärinen, A. (2001) Independent Component Analysis, Wiley-Interscience.

Cattell, R.B. (1952) Factor analysis. New York: Harper.

266 6 Dimensionality Reduction

Chapter 7

Lazy Learning: Classification Using Nearest

Neighbors

In the next several Chapters, we will concentrate on various progressively advanced

machine learning, classification and clustering techniques. There are two categories

of learning techniques we wil explore: supervised (human-guided) classification and

unsupervised (fully-automated) clustering. In general, supervised classification aims

to identify or predict predefined classes and label new objects as members of specific

classes. Whereas, unsupervised clustering attempts to group objects into sets, with-

out knowing a priori labels, and determine relationships between objects.

In the context of machine learning, classification refers to supervised learning and

clustering to unsupervised learning.

Unsupervised classification refers to methods where the outcomes (groupings

with common characteristics) are automatically derived based on intrinsic affinities

and associations in the data without prior human indication of clustering.

Unsupervised learning is purely based on input data (X) without corresponding

output labels. The goal is to model the underlying structure, affinities, or distribution

in the data in order to learn more about its intrinsic characteristics. It is called

unsupervised learning because there are no a priori correct answers and there is no

human guidance. Algorithms are left to their own devises to discover and present the

interesting structure in the data. Clustering (discovers the inherent groupings in the

data) and association (discovers association rules that describe the data) represent

the core unsupervised learning problems. The k-means clustering and the Apriori

association rule provide solutions to unsupervised learning problems.

Supervised classification methods utilize user provided labels representative of

specific classes associated with concrete observations, cases, or units. These training

classes/outcomes are used as references for the classification. Many problems can be

addressed by decision-support systems utilizing combinations of supervised and

unsupervised classification processes. Supervised learning involves input variables

(X) and an outcome variable (Y) to learn mapping functions from the input to the

output: Y ¼ f(X). The goal is to approximate the mapping function so that when it is

applied to new (validation) data (Z) it (accurately) predicts the (expected) outcome

variables (Y). It is called supervised learning because the learning process is

© Ivo D. Dinov 2018
I. D. Dinov, Data Science and Predictive Analytics,
https://doi.org/10.1007/978-3-319-72347-1_7

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_7&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_7

supervised by initial training labels guiding and correcting the learning until the

algorithm achieves an acceptable level of performance.

Regression (output variable is a real value) and classification (output variable is a

category) problems represent the two types of supervised learning. Examples of

supervised machine learning algorithms include Linear regression and Random

forest. Both provide solutions for regression problems, but Random forest also

provides solutions to classification problems.

Just like categorization of exploratory data analytics (Chap. 4) is challenging, so

is systematic codification of machine learning techniques. Table 7.1 attempts to

provide a rough representation of common machine learning methods. However, it is

not really intended to be a gold-standard protocol for choosing the best analytical

method. Before you settle on a specific strategy for data analysis, you should always

review the data characteristics in light of the assumptions of each technique and

assess the potential to gain new knowledge or extract valid information from

applying a specific technique (Table 7.1).

Many of these will be discussed in later Chapters. In this Chapter, we will present

step-by-step the k-nearest neighbor (kNN) algorithm. Specifically, we will show

(1) data retrieval and normalization; (2) splitting the data into training and testing

sets; (3) fitting models on the training data; (4) evaluating model performance on

testing data; (5) improving model performance; and (6) determining optimal values

of k.

In Chap. 14, we will present detailed strategies, and evaluation metrics, to assess

the performance of all clustering and classification methods.

7.1 Motivation

Classification tasks could be very difficult when the features and target classes are

numerous, complicated, or extremely difficult to understand. In those scenarios

where the items of similar class type tend to be homogeneous, nearest neighbor

classifying method are well-suited because assigning unlabeled examples to most

similar labeled examples would be fairly easy.

Table 7.1 Summary of supervised classification and unsupervised clustering techniques

Inference Outcome Supervised Unsupervised

Classification
& prediction

Binary Classification-rules, OneR, kNN,
NaiveBayes, Decision-Tree,
C5.0, AdaBoost, XGBoost,
LDA/QDA, Logit/Poisson, SVM

Apriori, Association-rules,
k-Means, NaiveBayes

Classification
& prediction

Categorical Regression modeling &
forecasting

Apriori, Association-rules,
k-Means, NaiveBayes

Regression
modeling

Real
quantitative

LDA/QDA, SVM, Decision-
Tree, NeuralNet

(MLR) Regression modeling,
Regression modeling tree,
Apriori/Association-rules

268 7 Lazy Learning: Classification Using Nearest Neighbors

Such classification methods can help us to understand the story behind the

complicated case-studies. This is because machine learning methods generally

have no distribution assumptions. However, this non-parametric manner makes the

methods rely heavily on large and representative training datasets.

7.2 The kNN Algorithm Overview

The kNN algorithm involves the following steps:

1. Create a training dataset that has classified examples labeled by nominal variables

and different features in ordinal or numerical variables.

2. Create a test dataset containing unlabeled examples with similar features as the

training data.

3. Given a predetermined number k, match each test record with k training records

that are “nearest” in similarity.

4. Assigning the class that contains the majority of the k training records to the test

record.

The Fig. 7.1 demonstration shows the dynamic classification of the mouse location

(x, y) coordinates that are used as new data. You can specify the number of points (n)

and the number of nearest neighbors (k). The app automatically computes the neigh-

borhood size and the corresponding label (color) for the mouse location and draws the

connecting edges to the nearest neighbors showing the dynamic classification process.

7.2.1 Distance Function and Dummy Coding

How to measure the similarity between records? We can measure the similarity as

the geometric distance between the two records. There are many distance functions

to choose from. Traditionally, we use Euclidean distance as our distance function.

https://codepen.io/gangtao/pen/

PPoqMW

Fig. 7.1 Live Demo: k-nearest neighbor classification webapp

7.2 The kNN Algorithm Overview 269

https://codepen.io/gangtao/pen/PPoqMW
https://codepen.io/gangtao/pen/PPoqMW
https://codepen.io/gangtao/pen/PPoqMW

If we use a line to link the two dots created by the test record and the training

record in n dimensional space, the length of the line is the Euclidean distance.

Suppose a, b both have n features with coordinates (a1, a2, . . ., an) and (b1, b2, . . .,

bn). A simple Euclidian distance could be defined by:

dist a; bð Þ ¼
ffi

a1 � b1ð Þ2 þ a2 � b2ð Þ2 þ . . . þ an � bnð Þ2
q

:

When we have nominal features, it requires a little trick to apply the Euclidean

distance formula. We could create dummy variables as indicators of the nominal

feature. The dummy variable would equal to one when we have the feature and zero

otherwise. We show two examples:

Gender ¼ 0 X ¼ male

1 X ¼ female

�

,

Cold ¼ 0 Temp � 37F

1 Temp < 37F
:

�

This allows only binary expressions. If we have multiple nominal categories, just

make each one as a dummy variable and apply the Euclidean distance.

7.2.2 Ways to Determine k

The parameter k could be neither too large nor too small. If our k is too large, the test

record tends to be classified as the most popular class in the training records rather

than the most similar one. On the other hand, if the k is too small, outliers or noisy

data, like mislabeling the training data, might lead to errors in predictions.

A common practice is to calculate the square root of the number of training

examples and use that number as k.

A more robust way would be to choose several k’s and select the one with best

classifying performance.

7.2.3 Rescaling of the Features

Different features might have different scales. For example, we can have a measure

of pain scaling from one to ten or one to one hundred. They could be transferred into

the same scale. Re-scaling can make each feature contribute to the distance in a

relatively equal manner.

270 7 Lazy Learning: Classification Using Nearest Neighbors

7.2.4 Rescaling Formulas

1. min-max normalization

Xnew ¼ X � min Xð Þ
max Xð Þ � min Xð Þ :

After re-scaling, Xnew would range between 0 and 1. It measures the distance

between each value and its minimum as a percentage. The larger a percentage the

further a value is from the minimum. 100% means that the value is at the maximum.

2. z-Score Standardization

Xnew ¼ X � μ

σ
¼ X �Mean Xð Þ

SD Xð Þ :

This is based on the properties of normal distribution that we have talked about in

Chap. 3. After z-score standardization, the re-scaled feature will have unbounded

range. This is different from the min-max normalization that has a limited range from

0 to 1. However, after z-score standardization, the new X is assumed to follow a

standard normal distribution.

7.3 Case Study

7.3.1 Step 1: Collecting Data

The data we are using for this case study is the “Boys Town Study of Youth

Development”, which is the second case study, CaseStudy02_Boystown_Data.csv.

Variables:

• ID: Case subject identifier.

• Sex: dichotomous variable (1 ¼ male, 2 ¼ female).

• GPA: Interval-level variable with range of 0–5 (0-"A" average, 1- "B" average, 2-

"C" average, 3- "D" average, 4-"E", 5-"F"").

• Alcohol use: Interval level variable from 0 to 11 (drink everyday - never drinked).

• Attitudes on drinking in the household: Alcatt- Interval level variable from 0 to

6 (totally approve - totally disapprove).

• DadJob: 1-yes, dad has a job: and 2- no.

• MomJob: 1-yes and 2-no.

• Parent closeness (example: In your opinion, does your mother make you feel

close to her?)

– Dadclose: Interval level variable 0–7 (usually-never)

– Momclose: interval level variable 0–7 (usually-never).

7.3 Case Study 271

• Delinquency:

– larceny (how many times have you taken things >$50?): Interval level data

0–4 (never - many times),

– vandalism: Interval level data 0–7 (never - many times).

7.3.2 Step 2: Exploring and Preparing the Data

First, we need to load in the data and do some data manipulation. We are using the

Euclidean distance, so dummy variable should be used. The following code transfers

sex, dadjob and momjob into dummy variables.

boystown<-read.csv("https://umich.instructure.com/files/399119/download?down
load_frd=1", sep=" ")
boystown$sex<-boystown$sex-1
boystown$dadjob<--1*(boystown$dadjob-2)
boystown$momjob<--1*(boystown$momjob-2)
str(boystown)

'data.frame': 200 obs. of 11 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : num 0 0 0 0 1 1 0 0 1 1 ...
$ gpa : int 5 0 3 2 3 3 1 5 1 3 ...
$ Alcoholuse: int 2 4 2 2 6 3 2 6 5 2 ...
$ alcatt : int 3 2 3 1 2 0 0 3 0 1 ...
$ dadjob : num 1 1 1 1 1 1 1 1 1 1 ...
$ momjob : num 0 0 0 0 1 0 0 0 1 1 ...
$ dadclose : int 1 3 2 1 2 1 3 6 3 1 ...
$ momclose : int 1 4 2 2 1 2 1 2 3 2 ...
$ larceny : int 1 0 0 3 1 0 0 0 1 1 ...
$ vandalism : int 3 0 2 2 2 0 5 1 4 0 ...

The str() function reports that we have 200 observations and 11 variables.

However, the ID variable is not important in this case study so we can delete it. The

variable of most interest is GPA. We can classify it into two categories. Whoever

gets a "C" or higher will be classified into the "above average" category; Students

who have average score below "C" will be in the "average or below" category. These

two are the classes of interest for this case study.

boystown<-boystown[, -1]
table(boystown$gpa)

0 1 2 3 4 5
30 50 54 40 14 12

boystown$grade<-boystown$gpa %in% c(3, 4, 5)
boystown$grade<-factor(boystown$grade, levels=c(F, T), labels = c("above_avg
", "avg_or_below"))
table(boystown$grade)

above_avg avg_or_below
134 66

272 7 Lazy Learning: Classification Using Nearest Neighbors

https://umich.instructure.com/files/399119/download?download_frd=1
https://umich.instructure.com/files/399119/download?download_frd=1

Let’s look at the proportions for the two categorizes.

round(prop.table(table(boystown$grade))*100, digits=1)

above_avg avg_or_below
67 33

We can see that most of the students are above average (67%).

The remaining ten features are all numeric but with different scales. If we use

these features directly, the ones with larger scale will have a greater impact on the

classification performance. Therefore, re-scaling is needed in this scenario.

summary(boystown[c("Alcoholuse", "larceny", "vandalism")])

Alcoholuse larceny vandalism
Min. : 0.00 Min. :0.00 Min. :0.0
1st Qu.: 2.00 1st Qu.:0.00 1st Qu.:1.0
Median : 4.00 Median :1.00 Median :2.0
Mean : 3.87 Mean :0.92 Mean :1.9
3rd Qu.: 5.00 3rd Qu.:1.00 3rd Qu.:3.0
Max. :11.00 Max. :4.00 Max. :7.0

7.3.3 Normalizing Data

First let’s create a function of our own using the min-max normalization formula. We

can check the function using some trial vectors.

normalize<-function(x){
be careful, the denominator may be trivial!

return((x-min(x))/(max(x)-min(x)))
}

some test examples:

normalize(c(1, 2, 3, 4, 5))
[1] 0.00 0.25 0.50 0.75 1.00

normalize(c(1, 3, 6, 7, 9))

[1] 0.000 0.250 0.625 0.750 1.000

After confirming that it is working properly, we use the lapply() function to

apply the normalization to each element in a “list.” First, we need to make our dataset

into a list. The as.data.frame() function converts our data into a data frame,

which is a list of equal-length column vectors. Thus, each feature is an element in the

list that we can apply the normalization function to.

boystown_n<-as.data.frame(lapply(boystown[-11], normalize))

Let’s see one of the features that have been normalized.

summary(boystown_n$Alcoholuse)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.1818 0.3636 0.3518 0.4545 1.0000

This looks great! Now we can move to the next step.

7.3 Case Study 273

7.3.4 Data Preparation: Creating Training and Testing

Datasets

We have 200 observations in this dataset. The more data we use to train the

algorithm, the more precise the prediction would be. We can use 3/4 of the data

for training and the remaining 1/4 for testing.

Ideally, we want to randomly split the raw data into training and testing

For example: 80% training + 20% testing

subset_int <- sample(nrow(boystown_n), floor(nrow(boystown_n)*0.8))

bt_train<- boystown_n [subset_int,]; bt_test<-boystown_n[-subset_int,]

Below, we use a simpler 3:1 split for simplicity

bt_train<-boystown_n[1:150, -11]
bt_test<-boystown_n[151:200, -11]

The following step is to extract the labels or classes (column ¼ 11, Delinquency

in terms of reoccurring vandalism) for our two subsets.

bt_train_labels<-boystown[1:150, 11]
bt_test_labels<-boystown[151:200, 11]

7.3.5 Step 3: Training a Model On the Data

We are using the class package for the kNN algorithm in R.

#install.packages('class', repos = "http://cran.us.r-project.org")

library(class)

The function knn() has following components:

p<-knn(train, test, class, k)

• train: data frame containing numeric training data (features)

• test: data frame containing numeric testing data (features)

• class/cl: class for each observation in the training data

• k: predetermined integer indication the number of nearest neighbors

The first k we chose shoud be the square root of our number of observations:
ffiffiffiffiffiffiffiffi

200
p

� 14.

bt_test_pred<-knn(train=bt_train, test=bt_test, cl=bt_train_labels, k=14)

7.3.6 Step 4: Evaluating Model Performance

We utilize the CrossTable() function in Chap. 3 to evaluate the kNN model. We

have two classes in this example. The goal is to create a 2 � 2 table that shows the

274 7 Lazy Learning: Classification Using Nearest Neighbors

http://cran.us.r-project.org

matched true and predicted classes, as well as the unmatched ones. However

chi-square values are not needed, so we use option `prop.chisq¼False’ to suppress

reporting them.

install.packages("gmodels", repos="http://cran.us.r-project.org")

library(gmodels)
CrossTable(x=bt_test_labels, y=bt_test_pred, prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 50

| bt_test_pred
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 30 | 0 | 30 |
| 1.000 | 0.000 | 0.600 |
| 0.769 | 0.000 | |
| 0.600 | 0.000 | |
---------------|--------------|--------------|--------------|
avg_or_below | 9 | 11 | 20 |
| 0.450 | 0.550 | 0.400 |
| 0.231 | 1.000 | |
| 0.180 | 0.220 | |
---------------|--------------|--------------|--------------|
Column Total | 39 | 11 | 50 |
| 0.780 | 0.220 | |
---------------|--------------|--------------|--------------|

From the table, the diagonal first row first cell and the second row second cell

contain the counts for records that have predicted classes matching the true classes.

The other two cells are the counts for unmatched cases. The accuracy in this case is

calculated by:
cell 1;1½ �þcell 2;2½ �

total
:This accuracy will vary each time we run the algorithm.

In this situation, we got accuracy ¼ cell 1;1½ �þcell 2;2½ �
total

¼ 41
50
¼ 0:82, however, a previous

run generated an accuracy ¼ cell 1;1½ �þcell 2;2½ �
total

¼ 38
50
¼ 0:76:

7.3.7 Step 5: Improving Model Performance

The above Normalization may be suboptimal. We can try an alternative stan-

dardization method, e.g., standard Z-score centralization and normalization (via

scale() method). Let’s give it a try:

7.3 Case Study 275

http://cran.us.r-project.org

bt_z<-as.data.frame(scale(boystown[, -11]))
summary(bt_z$Alcoholuse)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.04800 -0.98960 0.06879 0.00000 0.59800 3.77300

The summary() shows the re-scaling is working properly. Then, we can

proceed to next steps (retraining the kNN, predicting and assessing the accuracy of

the results):

bt_train<-bt_z[1:150, -11]
bt_test<-bt_z[151:200, -11]
bt_train_labels<-boystown[1:150, 11]
bt_test_labels<-boystown[151:200, 11]
bt_test_pred<-knn(train=bt_train, test=bt_test,

cl=bt_train_labels, k=14)
CrossTable(x=bt_test_labels, y=bt_test_pred, prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 50

| bt_test_pred
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 30 | 0 | 30 |
| 1.000 | 0.000 | 0.600 |
| 0.769 | 0.000 | |
| 0.600 | 0.000 | |
---------------|--------------|--------------|--------------|
avg_or_below | 9 | 11 | 20 |
| 0.450 | 0.550 | 0.400 |
| 0.231 | 1.000 | |
| 0.180 | 0.220 | |
---------------|--------------|--------------|--------------|
Column Total | 39 | 11 | 50 |
| 0.780 | 0.220 | |
---------------|--------------|--------------|--------------|

Under the z-score method, the prediction result is similar to the previous run.

7.3.8 Testing Alternative Values of k

Originally, we used the square root of 200 as our k. However, this might not be the

best k in this case study. We can test different k’s for their predicting performance.

276 7 Lazy Learning: Classification Using Nearest Neighbors

bt_train<-boystown_n[1:150, -11]
bt_test<-boystown_n[151:200, -11]
bt_train_labels<-boystown[1:150, 11]
bt_test_labels<-boystown[151:200, 11]
bt_test_pred1<-knn(train=bt_train, test=bt_test,

cl=bt_train_labels, k=1)
bt_test_pred5<-knn(train=bt_train, test=bt_test,

cl=bt_train_labels, k=5)
bt_test_pred11<-knn(train=bt_train, test=bt_test,

cl=bt_train_labels, k=11)
bt_test_pred21<-knn(train=bt_train, test=bt_test,

cl=bt_train_labels, k=21)
bt_test_pred27<-knn(train=bt_train, test=bt_test,

cl=bt_train_labels, k=27)
ct_1<-CrossTable(x=bt_test_labels, y=bt_test_pred1, prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 50

| bt_test_pred1
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 27 | 3 | 30 |
| 0.900 | 0.100 | 0.600 |
| 0.818 | 0.176 | |
| 0.540 | 0.060 | |
---------------|--------------|--------------|--------------|
avg_or_below | 6 | 14 | 20 |
| 0.300 | 0.700 | 0.400 |
| 0.182 | 0.824 | |
| 0.120 | 0.280 | |
---------------|--------------|--------------|--------------|
Column Total | 33 | 17 | 50 |
| 0.660 | 0.340 | |
---------------|--------------|--------------|--------------|

ct_5<-CrossTable(x=bt_test_labels, y=bt_test_pred5,
prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

7.3 Case Study 277

Total Observations in Table: 50

| bt_test_pred5
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 30 | 0 | 30 |
| 1.000 | 0.000 | 0.600 |
| 0.857 | 0.000 | |
| 0.600 | 0.000 | |
---------------|--------------|--------------|--------------|
avg_or_below | 5 | 15 | 20 |
| 0.250 | 0.750 | 0.400 |
| 0.143 | 1.000 | |
| 0.100 | 0.300 | |
---------------|--------------|--------------|--------------|
Column Total | 35 | 15 | 50 |
| 0.700 | 0.300 | |
---------------|--------------|--------------|--------------|

ct_11<-CrossTable(x=bt_test_labels, y=bt_test_pred11,
prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 50

| bt_test_pred11
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 30 | 0 | 30 |
| 1.000 | 0.000 | 0.600 |
| 0.769 | 0.000 | |
| 0.600 | 0.000 | |
---------------|--------------|--------------|--------------|
avg_or_below | 9 | 11 | 20 |
| 0.450 | 0.550 | 0.400 |
| 0.231 | 1.000 | |
| 0.180 | 0.220 | |
---------------|--------------|--------------|--------------|

278 7 Lazy Learning: Classification Using Nearest Neighbors

Column Total | 39 | 11 | 50 |
| 0.780 | 0.220 | |
---------------|--------------|--------------|--------------|
ct_21<-CrossTable(x=bt_test_labels, y=bt_test_pred21,

prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 50

| bt_test_pred21
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 30 | 0 | 30 |
| 1.000 | 0.000 | 0.600 |
| 0.714 | 0.000 | |
| 0.600 | 0.000 | |
---------------|--------------|--------------|--------------|
avg_or_below | 12 | 8 | 20 |
| 0.600 | 0.400 | 0.400 |
| 0.286 | 1.000 | |
| 0.240 | 0.160 | |
---------------|--------------|--------------|--------------|
Column Total | 42 | 8 | 50 |
| 0.840 | 0.160 | |
---------------|--------------|--------------|--------------|

ct_27<-CrossTable(x=bt_test_labels, y=bt_test_pred27,prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 50

| bt_test_pred27
bt_test_labels | above_avg | avg_or_below | Row Total |
---------------|--------------|--------------|--------------|
above_avg | 30 | 0 | 30 |
| 1.000 | 0.000 | 0.600 |
| 0.682 | 0.000 | |
| 0.600 | 0.000 | |
---------------|--------------|--------------|--------------|
avg_or_below | 14 | 6 | 20 |
| 0.700 | 0.300 | 0.400 |
| 0.318 | 1.000 | |
| 0.280 | 0.120 | |
---------------|--------------|--------------|--------------|
Column Total | 44 | 6 | 50 |
| 0.880 | 0.120 | |
---------------|--------------|--------------|--------------|

The choice of k in kNN clustering is very important.

7.3 Case Study 279

install.packages("e1071")

library(e1071)
knntuning = tune.knn(x= bt_train, y = bt_train_labels, k = 1:30)
knntuning

Parameter tuning of 'knn.wrapper':

- sampling method: 10-fold cross validation

- best parameters:
k
9

- best performance: 0.1733333

summary(knntuning)

Parameter tuning of 'knn.wrapper':
- sampling method: 10-fold cross validation
- best parameters:
k
9
- best performance: 0.1733333
- Detailed performance results:
k error dispersion
1 1 0.2400000 0.08432740
2 2 0.2800000 0.10795518
3 3 0.2133333 0.10327956
4 4 0.2466667 0.04499657
5 5 0.1866667 0.10327956
6 6 0.1866667 0.11243654
7 7 0.1800000 0.10446808
8 8 0.1866667 0.12090196
9 9 0.1733333 0.10976968
10 10 0.2133333 0.12090196
11 11 0.2266667 0.12649111
12 12 0.2066667 0.11088867
13 13 0.2133333 0.11243654
14 14 0.2266667 0.13033670
15 15 0.2133333 0.12090196
16 16 0.2133333 0.09838197
17 17 0.2200000 0.10909278
18 18 0.2266667 0.11842589
19 19 0.2200000 0.10909278
20 20 0.2333333 0.11439589
21 21 0.2333333 0.11439589
22 22 0.2200000 0.08916623
23 23 0.2533333 0.10327956
24 24 0.2466667 0.10446808
25 25 0.2466667 0.11779874
26 26 0.2600000 0.11088867
27 27 0.2533333 0.11674600
28 28 0.2666667 0.10886621
29 29 0.2866667 0.11352924
30 30 0.2800000 0.11674600

It’s useful to visualize the error rate against the value of k. This can help us

select a k parameter that minimizes the cross-validation (CV) error (Fig. 7.2).

280 7 Lazy Learning: Classification Using Nearest Neighbors

library(class)
library(ggplot2)

define a function that generates CV folds

cv_partition <- function(y, num_folds = 10, seed = NULL) {
if(!is.null(seed)) {

set.seed(seed)
}
n <- length(y)

folds <- split(sample(seq_len(n), n), gl(n = num_folds, k=1, length=n))
folds <- lapply(folds, function(fold) {

list(
training = which(!seq_along(y) %in% fold),
test = fold

)
})
names(folds) <- paste0("Fold", names(folds))
return(folds)

}
Generate 10-folds of the data

folds = cv_partition(bt_train_labels, num_folds = 10)

0

0.0

0.1

0.2

C
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r

0.3

10

4 5

20
Number of nearest neighbors (k)

30

Train

CV

Test

4444 5555

Fig. 7.2 Classification error plots (y-axis) for training data (red), internal statistical cross-validation
(green) and external out of box data (blue) against different k-parameters of the kNN method

7.3 Case Study 281

Define a trainingset_CV_error calculation function

train_cv_error = function(K) {
#Train error

knnbt = knn(train = bt_train, test = bt_train,
cl = bt_train_labels, k = K)

train_error = mean(knnbt != bt_train_labels)

#CV error

cverrbt = sapply(folds, function(fold) {
mean(bt_train_labels[fold$test] != knn(train=bt_train[fold$training,],

cl = bt_train_labels[fold$training], test = bt_train[fold$test,], k=K))
}

)

cv_error = mean(cverrbt)

#Test error

knn.test = knn(train = bt_train, test = bt_test,
cl = bt_train_labels, k = K)

test_error = mean(knn.test != bt_test_labels)
return(c(train_error, cv_error, test_error))

}

k_err = sapply(1:30, function(k) train_cv_error(k))
df_errs = data.frame(t(k_err), 1:30)
colnames(df_errs) = c('Train', 'CV', 'Test', 'K')

require(ggplot2)
library(reshape2)

dataL <- melt(df_errs, id="K")
ggplot(dataL, aes_string(x="K", y="value", colour="variable",

group="variable", linetype="variable", shape="variable")) +
geom_line(size=0.8) + labs(x = "Number of nearest neighbors (k)",

y = "Classification error",
colour="", group="",
linetype="", shape="") +

geom_point(size=2.8) +
geom_vline(xintercept=4:5, colour = "pink")+
geom_text(aes(4,0,label = "4", vjust = 1)) +
geom_text(aes(5,0,label = "5", vjust = 1))

7.3.9 Quantitative Assessment (Tables 7.2 and 7.3)

The reader should first review the fundamentals of hypothesis testing inference.

Table 7.2 shows the basic components of binary classification, and Table 7.3 reports

the results of the classification for several k values.

Table 7.2 Basic evaluation metrics of binary classification

kNN fails to reject TN FN

kNN rejects FP TP

Specificity: TN/(TN + FP) Sensitivity: TP/(TP + FN)

282 7 Lazy Learning: Classification Using Nearest Neighbors

Suppose we want to evaluate the kNN model (5) as to how well it predicts the

below-average boys. Let’s report manually some of the accuracy metrics for

model5. Combining the results, we get the following sensitivity and specificity:

bt_test_pred5<-knn(train=bt_train, test=bt_test, cl=bt_train_labels, k=5)

ct_5<-CrossTable(x=bt_test_labels, y=bt_test_pred5, prop.chisq = F)

mod5_TN <- ct_5$prop.row[1, 1]
mod5_FP <- ct_5$prop.row[1, 2]
mod5_FN <- ct_5$prop.row[2, 1]
mod5_TP <- ct_5$prop.row[2, 2]

mod5_sensi <- mod5_TN/(mod5_TN+mod5_FP)
mod5_speci <- mod5_TP/(mod5_TP+mod5_FN)
print(paste0("mod5_sensi=", mod5_sensi))

[1] "mod5_sensi=1"

print(paste0("mod5_speci=", mod5_speci))

[1] "mod5_speci=0.75"

Therefore, model5 yields a good choice for the number of clusters k ¼ 5.

Nevertheless, we can always examine further near 5 to get potentially better choices

of k.

Another strategy for model validation and improvement involves the use of the

confusionMatrix() method, which reports several complementary metrics

quantifying the performance of the prediction model.

Let’s focus on model5 power to predict Delinquency in terms of reoccurring

vandalism.

Table 7.3 Summary results of the kNN classification for different values of the parameter k

k value Total unmatched counts Accuracy

1 9 0.82

5 5 0.90

1 1 9 0.82

21 12 0.76

27 14 0.72

7.3 Case Study 283

corr5 <- cor(as.numeric(bt_test_labels), as.numeric(bt_test_pred5))
corr5

[1] 0.8017837

plot(as.numeric(bt_test_labels), as.numeric(bt_test_pred5))

install.packages("caret")

library("caret")

Loading required package: lattice

compute the accuracy, LOR, sensitivity/specificity of 3 kNN models

Model 1: bt_test_pred1

confusionMatrix(as.numeric(bt_test_labels), as.numeric(bt_test_pred1))

Confusion Matrix and Statistics

Reference
Prediction 1 2
1 27 3
2 6 14

Accuracy : 0.82
95% CI : (0.6856, 0.9142)
No Information Rate : 0.66
P-Value [Acc > NIR] : 0.009886

Kappa : 0.6154
Mcnemar's Test P-Value : 0.504985

Sensitivity : 0.8182

Accuracy : 0.9
95% CI : (0.7819, 0.9667)
No Information Rate : 0.7
P-Value [Acc > NIR] : 0.0007229

Kappa : 0.7826
Mcnemar's Test P-Value : 0.0736383

Specificity : 0.8235
Pos Pred Value : 0.9000
Neg Pred Value : 0.7000
Prevalence : 0.6600
Detection Rate : 0.5400
Detection Prevalence : 0.6000
Balanced Accuracy : 0.8209

'Positive' Class : 1

Model 5: bt_test_pred5

confusionMatrix(as.numeric(bt_test_labels), as.numeric(bt_test_pred5))

Confusion Matrix and Statistics

Reference
Prediction 1 2
1 30 0
2 5 15

284 7 Lazy Learning: Classification Using Nearest Neighbors

Sensitivity : 0.8571
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.7500
Prevalence : 0.7000
Detection Rate : 0.6000
Detection Prevalence : 0.6000
Balanced Accuracy : 0.9286

'Positive' Class : 1

Model 11: bt_test_pred11

confusionMatrix(as.numeric(bt_test_labels), as.numeric(bt_test_pred11))

Confusion Matrix and Statistics

Reference
Prediction 1 2
1 30 0
2 9 11
##
Accuracy : 0.82
95% CI : (0.6856, 0.9142)
No Information Rate : 0.78
P-Value [Acc > NIR] : 0.313048

Kappa : 0.5946
Mcnemar's Test P-Value : 0.007661

Sensitivity : 0.7692
Specificity : 1.0000
Pos Pred Value : 1.0000
Neg Pred Value : 0.5500
Prevalence : 0.7800
Detection Rate : 0.6000
Detection Prevalence : 0.6000
Balanced Accuracy : 0.8846

'Positive' Class : 1

Finally, we can use a 3D plot to display the results of model5 (mod5_TN,

mod5_FN, mod5_FP, mod5_TP), Fig. 7.3.

install.packages("scatterplot3d")

library(scatterplot3d)
grid_xy <- matrix(c(0, 1, 1, 0), nrow=2, ncol=2)
intensity <- matrix(c(mod5_TN, mod5_FN, mod5_FP, mod5_TP), nrow=2, ncol=2)

scatterplot3d(grid_xy, intensity, pch=16, highlight.3d=TRUE, type="h",

main="3D Scatterplot")

s3d.dat <- data.frame(cols=as.vector(col(grid_xy)),
rows=as.vector(row(grid_xy)),
value=as.vector(intensity))

scatterplot3d(s3d.dat, pch=16, highlight.3d=TRUE, type="h", xlab="real",
ylab="predicted", zlab="Agreement", main="3D Scatterplot: Model5 Results
(FP, FN, TP, TN)")

7.3 Case Study 285

scatterplot3d(s3d.dat, type="h", lwd=5, pch=" ", xlab="real", ylab="predic

ted", zlab="Agreement", main="Model5 Results (FP, FN, TP, TN)")

7.4 Assignments: 7. Lazy Learning: Classification Using

Nearest Neighbors

7.4.1 Traumatic Brain Injury (TBI)

Use the kNN algorithm to provide a classification of the data in the TBI case study,

(CaseStudy11_TBI). Determine an appropriate k, train, and evaluate the perfor-

mance of the classification model on the data. Report some model quality statistics

for a couple of different values of k and use these to rank-order (and perhaps plot the

classification results of) the models.

7.4.2 Parkinson’s Disease

Use 05_PPMI_top_UPDRS_Integrated_LongFormat1 data to practice KNN

classification.

1.0
0.0

0.2

A
g
re

e
m

e
n
t

p
re

d
ic

te
d

0.4

0.6

0.8

1.0

1.2 1.4 1.6

real

3D Scatterplot: Model5 Results (FP, FN, TP, TN)

1.8 2.0
1.0

1.2
1.4

1.6
1.8

2.0

Fig. 7.3 5-NN classification metrics

286 7 Lazy Learning: Classification Using Nearest Neighbors

7.4.3 KNN Classification in a High Dimensional Space

• Preprocess the data: delete the index and ID columns; convert the response

variable ResearchGroup to binary 0-1 factor; detect NA (missing) values

(impute if necessary)

• Summarize the dataset: use str, summary, cor, ggpairs

• Scale/Normalize the data: As appropriate, scale to [0, 1]; transform log(x + 1);

discretize (0 or 1), etc.

• Partition data into training and testing sets: use set.seed and random

sample, train:test ¼ 2:1

• Select the optimal k for each of the scaled data: Plot an error graph for k,

including three lines: training_error, cross-validation error, and testing error,

respectively

• What is the impact of k? Formulate a hypothesis about the relation between

k and the error rates. You can try to use knn.tunning to verify the results

(Hint: select the same folds, all you may obtain a result slightly different)

• Interpret the results: Hint: Considering the number of dimension of the data,

how many points are necessary to obtain the same density result for 100 dimen-

sional space compared to a 1 dimensional space?

• Report the error rates for both the training and the testing data. What do you

find?

7.4.4 KNN Classification in a Lower Dimensional Space

Try all the above again but select only the variables:

UPDRS_Part_I_Summary_Score_Baseline,

UPDRS_Part_I_Summary_Score_Month_24,

UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Base-

line,

UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Mont-

h_24, UPDRS_Part_III_Summary_Score_Baseline, UPDRS_Part_

III_Summary_Score_Month_24, as predictors. Now, what about the specific

k you select and the error rates for each kind of data (original data, normalized data,

log-transformed data, and binary data). Comment on any interesting observations.

References

Kidwell , David A. (2013) Lazy Learning, Springer Science & Business Media, ISBN 9401720533,
9789401720533

Interactive kNN webapp: https://codepen.io/gangtao/pen/PPoqMW
Aggarwal, Charu C. (ed.) (2015) Data Classification: Algorithms and Applications, Chapman &

Hall/CRC, ISBN 1498760589, 9781498760584

References 287

https://codepen.io/gangtao/pen/PPoqMW

Chapter 8

Probabilistic Learning: Classification

Using Naive Bayes

The introduction to Chap. 7 presented the types of machine learning methods and

described lazy classification for numerical data. What about nominal features or

textual data? In this Chapter, we will begin to explore some classification techniques

for categorical data. Specifically, we will (1) present the Naive Bayes algorithm;

(2) review its assumptions; (3) discuss Laplace estimation; and (4) illustrate the

Naive Bayesian classifier on a Head and Neck Cancer Medication case-study.

Later, in Chap. 20, we will also discuss text mining and natural language

processing of unstructured text data.

8.1 Overview of the Naive Bayes Algorithm

Start by reviewing the basics of probability theory and Bayesian inference.

Bayes classifiers use training data to calculate an observed probability of each

class based on all the features. The probability links feature values to classes like a

map. When labeling the test data, we utilize the feature values in the test data and the

“map” to classify our test data with the most likely class. This idea seems simple but

the corresponding algorithmic implementations might be very sophisticated.

The best scenario of accurately estimating the probability of an outcome-class

map is when all features in Bayes classifiers attribute to the class simultaneously.

The Naive Bayes algorithm is frequently used for text classifications. The maximum

a posteriori assignment to the class label is based on obtaining the conditional

probability density function for each feature given the value of the class variable.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_8

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_8&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_8

8.2 Assumptions

Naive Bayes is named for its “naive” assumptions. Its most important assumption is

that all of the features are equally important and independent. This rarely happens in

real world data. However, sometimes even when the assumptions are violated, Naive

Bayes still performs fairly accurately, particularly when the number of features p is

large. This is why the Naive Bayes algorithm may be used as a powerful text

classifier.

There are interesting relations between QDA (Quadratic Discriminant Analysis),

LDA (Linear Discriminant Analysis), and Naive Bayes classification. Additional

information about LDA and QDA is available online (http://wiki.socr.umich.edu/

index.php/SMHS_BigDataBigSci_CrossVal_LDA_QDA).

8.3 Bayes Formula

Let’s first define the set-theoretic Bayes formula. We assume that Bi
0s are mutually

exclusive events, for all i = 1, 2, . . ., n, where n represents the number of features.

If A and B are two events, the Bayes conditional probability formula is as follows:

Posterior Probability ¼
likelihood � Prior Probability

Marginal Likelihood

Symbolically,

P AjBð Þ ¼
P BjAð ÞP Að Þ

P Bð Þ
:

WhenBi

0

s represent a partition of the event space, S¼ [Bi andBi\Bj= ∅ 8 i 6¼ j.

So we have:

P AjBð Þ ¼
P BjAð Þ � P Að Þ

P BjB1ð Þ � P B1ð Þ þ P BjB2ð Þ � P B2ð Þ . . .þ P BjBnð Þ � P Bnð Þ
:

Now, let’s represent the Bayes formula in terms of classification using observed

features. Having observed n features, Fi, for each of K possible class outcomes,

Ck. The Bayesian model may be reformulate to make it more tractable using the

Bayes’ theorem, by decomposing the conditional probability.

P Ck j F1; . . . ;Fnð Þ ¼
P F1; . . . ;FnjCkð ÞP Ckð Þ

P F1; . . . ;Fnð Þ
:

290 8 Probabilistic Learning: Classification Using Naive Bayes

http://wiki.socr.umich.edu/index.php/SMHS_BigDataBigSci_CrossVal_LDA_QDA
http://wiki.socr.umich.edu/index.php/SMHS_BigDataBigSci_CrossVal_LDA_QDA

In the above expression, only the numerator depends on the class label, Ck, as the

values of the features Fi are observed (or imputed) making the denominator constant.

Let’s focus on the numerator.

The numerator essentially represents the joint probability model:

P F1; . . . ;FnjCkð ÞP Ckð Þ ¼ P F1; . . . ;Fn;Ckð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

joint model

Repeatedly using the chain rule and the definition of conditional probability

simplifies this to:

P F1; . . . ;Fn;Ckð Þ ¼ P F1jF2; . . . ;Fn;Ckð Þ � P F2; . . . ;Fn;Ckð Þ ¼

¼ P F1jF2; . . . ;Fn;Ckð Þ � P F2jF3; . . . ;Fn;Ckð Þ � P F3; . . . ;Fn;Ckð Þ ¼

¼ P F1jF2; . . . ;Fn;Ckð Þ � P F2jF3; . . . ;Fn;Ckð Þ � P F3jF4; . . . ;Fn;Ckð Þ

�P F4; . . . ;Fn;Ckð Þ ¼

¼ . . . ¼

¼ P F1jF2; . . . ;Fn;Ckð Þ � P F2jF3; . . . ;Fn;Ckð Þ � P F3jF4; . . . ;Fn;Ckð Þ � � � �

�P FnjCkð Þ � P Ckð Þ

Note that the “naive” qualifier in the Naive Bayes classifier name is attributed to

the oversimplification of the conditional probability. Assuming each feature Fi is

conditionally statistical independent of every other feature Fj, 8j 6¼ i, given the

category Ck, we get:

P FijFiþ1; . . . ;Fn;Ckð Þ ¼ P FijCkð Þ:

This reduces the joint probability model to:

P F1; . . . ;Fn;Ckð Þ ¼ P F1jCkð Þ � P F2jCkð Þ � P F3jCkð Þ � � � � � P FnjCkð Þ � P Ckð Þ

Therefore, the joint model is:

P F1; . . . ;Fn;Ckð Þ ¼ P Ckð Þ
Yn

i¼1

P FijCkð Þ

Essentially, we express the probability of class level L given an observation,

represented as a set of independent features F1, F2, . . ., Fn. Then the posterior

probability that the observation is in class L is equal to:

P CLjF1; . . . ;Fnð Þ ¼
P CLð Þ

Qn
i¼1 P FijCLð Þ

Qn
i¼1 P Fið Þ

,

8.3 Bayes Formula 291

where the denominator,
Yn

i¼1
P Fið Þ, is a scaling factor that represents the

marginal probability of observing all features jointly.

For a given case X = (F1,F2, . . .,Fn), i.e., given vector of features, the naive

Bayes classifier assigns themost likely class Ĉ by calculating
P CLð Þ

Qn
i¼1 P FijCLð Þ

Qn
i¼1 P Fið Þ

for all class labels L, and then assigning the class Ĉ corresponding to the maximum

posterior probability. Analytically, Ĉ is defined by:

Ĉ ¼ argmax
L

P CLð Þ
Qn

i¼1 P FijCLð Þ
Qn

i¼1 P Fið Þ
:

As the denominator is static for L, the posterior probability above is maximized

when the numerator is maximized, i.e., Ĉ ¼ argmaxLP CLð Þ
Yn

i¼1
P FijCLð Þ:

The contingency table below illustrates schematically how the Bayesian, mar-

ginal, conditional, and joint probabilities may be calculated for a finite number of

features (columns) and classes (rows).

Features/

Classes

F1 F2 . . . Fn Total

C1 Marginal P(C1)

C2 Joint P(C2,Fn) . . .

.

CL Conditional

P F1 j CLð Þ ¼ P F1 ;CLð Þ
P CLð Þ

.

Total Marginal P(F2) N

In the DSPA Appendix, we provide additional technical details, code, and

applications of Bayesian simulation, modeling and inference.

8.4 The Laplace Estimator

If at least one P(Fi|CL) ¼ 0, then P(CL|F1, . . .,Fn) ¼ 0, which means the probability

of being in this class is zero. However, P(Fi|CL) ¼ 0 could be result from a random

chance in picking the training data.

One of the solutions to this scenario is Laplace estimation, also known as

Laplace smoothing, which can be accomplished in two ways. One is to add small

number to each cell in the frequency table, which allows each class-feature combi-

nation to be at least one in the training data. Then P(Fi|CL) > 0 for all i. Another

strategy is to add some small value, E, to the numerator and denominator when

calculating the posterior probability. Note that these small perturbations of the

denominator should be larger than the changes in the numerator to avoid trivial

(0) posterior for another class.

292 8 Probabilistic Learning: Classification Using Naive Bayes

https://doi.org/10.1007/978-3-319-72347-1_BM1

8.5 Case Study: Head and Neck Cancer Medication

8.5.1 Step 1: Collecting Data

We utilize the Inpatient Head and Neck Cancer Medication data for this case study,

which is the case study 14 in our data archive.

Variables:

• PID: coded patient ID.

• ENC_ID: coded encounter ID.

• Seer_stage: SEER cancer stage (0 ¼ In situ, 1 ¼ Localized, 2 ¼ Regional by

direct extension, 3 ¼ Regional to lymph nodes, 4 ¼ Regional (both codes 2

and 3), 5 ¼ Regional, NOS, 7 ¼ Distant metastases/systemic disease, 8 ¼ Not

applicable, 9 ¼ Unstaged, unknown, or unspecified). See: http://seer.cancer.gov/

tools/ssm.

• Medication_desc: description of the chemical composition of the medication.

• Medication_summary: brief description about medication brand and usage.

• Dose: the dosage in the medication summary.

• Unit: the unit for dosage in the Medication_summary.

• Frequency: the frequency of use in the Medication_summary.

• Total_dose_count: total dosage count according to the Medication_summary.

8.5.2 Step 2: Exploring and Preparing the Data

Let’s load our data first.

hn_med<-read.csv("https://umich.instructure.com/files/1614350/download?downl
oad_frd=1", stringsAsFactors = FALSE)
str(hn_med)

'data.frame': 662 obs. of 9 variables:
$ PID : int 10000 10008 10029 10063 10071 10103 1012 1013
5 10136 10143 ...
$ ENC_ID : int 46836 46886 47034 47240 47276 47511 3138 4773
9 47744 47769 ...
$ seer_stage : int 1 1 4 1 9 1 1 1 9 1 ...
$ MEDICATION_DESC : chr "ranitidine" "heparin injection" "ampicillin/
sulbactam IVPB UH" "fentaNYL injection UH" ...
$ MEDICATION_SUMMARY: chr "(Zantac) 150 mg tablet oral two times a day"
"5,000 unit subcutaneous three times a day" "(Unasyn) 15 g IV every 6 hours"
"25 - 50 microgram IV every 5 minutes PRN severe pain\nMaximum dose 200 mcg
Per PACU protocol" ...
$ DOSE : chr "150" "5000" "1.5" "50" ...
$ UNIT : chr "mg" "unit" "g" "microgram" ...
$ FREQUENCY : chr "two times a day" "three times a day" "every
6 hours" "every 5 minutes" ...
$ TOTAL_DOSE_COUNT : int 5 3 11 2 1 2 2 6 15 1 ...

8.5 Case Study: Head and Neck Cancer Medication 293

http://seer.cancer.gov/tools/ssm
http://seer.cancer.gov/tools/ssm
https://umich.instructure.com/files/1614350/download?download_frd=1
https://umich.instructure.com/files/1614350/download?download_frd=1

Change the seer_stage (cancer stage indicator) variable into a factor.

hn_med$seer_stage <- factor(hn_med$seer_stage)
str(hn_med$seer_stage)

Factor w/ 9 levels "0","1","2","3",..: 2 2 5 2 9 2 2 2 9 2 ...

table(hn_med$seer_stage)

0 1 2 3 4 5 7 8 9
21 265 53 90 46 18 87 14 68

Data Preparation: Processing Text Data for Analysis

As you can see, the medication_summary contains a great amount of text. We

should do some text mining to prepare the data for analysis. In R, the tm package is a

good choice for text mining.

install.packages("tm", repos = "http://cran.us.r-project.org")

requires R V.3.3.1 +

The first step for text mining is to convert text features (text elements) into a

corpus object, which is a collection of text documents.

hn_med_corpus<-Corpus(VectorSource(hn_med$MEDICATION_SUMMARY))
print(hn_med_corpus)

After we construct the corpus object, we could see that we have 662 documents.

Each document represents an encounter (e.g., notes onmedical treatment) for a patient.

inspect(hn_med_corpus[1:3])

<<SimpleCorpus>>
Metadata: corpus specific: 1, document level (indexed): 0
Content: documents: 3

[1] (Zantac) 150 mg tablet oral two times a day
[2] 5,000 unit subcutaneous three times a day
[3] (Unasyn) 15 g IV every 6 hours

hn_med_corpus[[1]]$content

[1] "(Zantac) 150 mg tablet oral two times a day"

hn_med_corpus[[2]]$content

[1] "5,000 unit subcutaneous three times a day"

hn_med_corpus[[3]]$content

[1] "(Unasyn) 15 g IV every 6 hours"

294 8 Probabilistic Learning: Classification Using Naive Bayes

http://cran.us.r-project.org

There are unwanted punctuation and other symbols in the corpus document that

we want to remove. We use the tm::tm_map() function for the cleaning.

corpus_clean <- tm_map(hn_med_corpus, tolower)
corpus_clean <- tm_map(corpus_clean, removePunctuation)
corpus_clean <- tm_map(corpus_clean, stripWhitespace)
corpus_clean <- tm_map(corpus_clean, removeNumbers)
corpus_clean <- tm_map(corpus_clean, PlainTextDocument)

The above lines of code changed all the characters to lower case, removed all

punctuations and extra white spaces (typically created by deleting punctuations), and

removed numbers (we could also convert the corpus to plain text).

inspect(corpus_clean[1:3])

<<SimpleCorpus>>
Metadata: corpus specific: 1, document level (indexed): 0
Content: documents: 3

[1] zantac mg tablet oral two times a day
[2] unit subcutaneous three times a day
[3] unasyn g iv every hours

corpus_clean[[1]]$content

[1] "zantac mg tablet oral two times a day"

corpus_clean[[2]]$content

[1] " unit subcutaneous three times a day"

corpus_clean[[3]]$content

[1] "unasyn g iv every hours"

The DocumentTermMatrix() function can tokenize the medication sum-

mary into words. It can count frequent terms in each document in the corpus object.

hn_med_dtm<-DocumentTermMatrix(corpus_clean)

Data Preparation: Creating Training and Test Datasets

Just like in Chap. 7, we need to separate the dataset into training and test subsets. We

have to subset the raw data with other features, the corpus object and the document

term matrix.

8.5 Case Study: Head and Neck Cancer Medication 295

set.seed(12)
80% training + 20% testing

subset_int <- sample(nrow(hn_med),floor(nrow(hn_med)*0.8))

hn_med_train<-hn_med[subset_int,]
hn_med_test<-hn_med[-subset_int,]
hn_med_dtm_train<-hn_med_dtm[subset_int,]
hn_med_dtm_test<-hn_med_dtm[-subset_int,]
corpus_train<-corpus_clean[subset_int]
corpus_test<-corpus_clean[-subset_int]

hn_med_train<-hn_med[1:562,]

#hn_med_test<-hn_med[563:662,]

hn_med_dtm_train<-hn_med_dtm[1:562,]

hn_med_dtm_test<-hn_med_dtm[563:662,]

#corpus_train<-corpus_clean[1:562]

#corpus_test<-corpus_clean[563:662]

Let’s examine the distribution of seer stages in the training and test datasets.

prop.table(table(hn_med_train$seer_stage))

0 1 2 3 4 5
0.03024575 0.38374291 0.08317580 0.14555766 0.06616257 0.03402647
7 8 9
0.13421550 0.02268431 0.10018904

prop.table(table(hn_med_test$seer_stage))

0 1 2 3 4 5
0.03759398 0.46616541 0.06766917 0.09774436 0.08270677 0.00000000
7 8 9
0.12030075 0.01503759 0.11278195

We can separate (dichotomize) the seer_stage into two categories:

• No stage or early stage cancer, and

• later stage cancer.

296 8 Probabilistic Learning: Classification Using Naive Bayes

hn_med_train$stage<-hn_med_train$seer_stage %in% c(4, 5, 7)
hn_med_train$stage<-factor(hn_med_train$stage, levels=c(F, T), labels = c("e
arly_stage", "later_stage"))
hn_med_test$stage<-hn_med_test$seer_stage %in% c(4, 5, 7)
hn_med_test$stage<-factor(hn_med_test$stage, levels=c(F, T), labels = c("ear
ly_stage", "later_stage"))
prop.table(table(hn_med_train$stage))

early_stage later_stage
0.7655955 0.2344045

prop.table(table(hn_med_test$stage))

early_stage later_stage
0.7969925 0.2030075

Visualizing Text Data: Word Clouds

Aword cloud can help us visualize text data. More frequent words would have larger

fonts in the figure, while less common words appear in smaller fonts. There is a

wordcloud package in R that is commonly used for creating these figures

(Figs. 8.1, 8.2, 8.3).

install.packages("wordcloud", repos = "http://cran.us.r-project.org")

library(wordcloud)

wordcloud(corpus_train, min.freq = 40, random.order = FALSE)

The random.order¼FALSE option made more frequent words appear in the

middle. min.freq¼40 option sets the cutoff word frequency to be at least

40 times in the corpus object. Therefore, the words must be appear in at least

40 medication summaries to be shown on the graph.

We can also visualize the difference between early stages and later stages using

this type of graph (Figs. 8.2 and 8.3).

Fig. 8.1 A wordle diagram

representing the common

terms (frequency exceeding

40) in the head and neck

(H&N) text corpus

8.5 Case Study: Head and Neck Cancer Medication 297

http://cran.us.r-project.org

early<-subset(hn_med_train, stage=="early_stage")
later<-subset(hn_med_train, stage=="later_stage")
wordcloud(early$MEDICATION_SUMMARY, max.words = 20)
wordcloud(later$MEDICATION_SUMMARY, max.words = 20)

We can see that the frequent words are somewhat different in the medication

summary between early stage and later stage patients.

Data Preparation: Creating Indicator Features for Frequent Words

For simplicity, we utilize the medication summary as the only feature to classify

cancer stages. You may recall that in Chap. 7 we used features for classifications.

In this study, we are going to make the frequencies of words into features.

Fig. 8.2 Wordle plot of the

common tersm included in

the medical treatment

summary corpus of the

early stage cancer patients

Fig. 8.3 Wordle plot of the

common terms included in

the medical treatment

summary corpus of the later

stage cancer patients

(compare to Fig. 8.2)

298 8 Probabilistic Learning: Classification Using Naive Bayes

summary(findFreqTerms(hn_med_dtm_train, 5))

Length Class Mode
103 character character

hn_med_dict <-as.character(findFreqTerms(hn_med_dtm_train, 5))
hn_train <-DocumentTermMatrix(corpus_train, list(dictionary=hn_med_dict))
hn_test <-DocumentTermMatrix(corpus_test, list(dictionary=hn_med_dict))

The above code limits the document term matrix with words that have appeared in

at least five different documents. This created 103 features for us to use.

The Naive Bayes classifier trains on data with categorical features. Thus, we need

to transform our word count features into categorical data. A way to do this is to

change the count into an indicator of whether this word appears. We can create a

function of our own to deal with this.

convert_counts <- function(x) {
x <- ifelse(x > 0, 1, 0)
x <- factor(x, levels = c(0, 1), labels = c("No", "Yes"))
return(x)

}

An important statement is x<-ifelse(x>0, 1, 0). This is saying that if we

have an x that is greater than 0, we assign value 1 to it, otherwise the value is set to 0.

Now let’s apply our own function convert_counts() on each column

(MARGIN¼2) of the training and testing datasets.

hn_train <- apply(hn_train, MARGIN = 2, convert_counts)
hn_test <- apply(hn_test, MARGIN = 2, convert_counts)

So far, we successfully created indicators for words that appeared at least in five

different documents in the training data.

8.5.3 Step 3: Training a Model on the Data

The package we will use for Naive Bayes classifier is called e1071.

install.packages("e1071", repos = "http://cran.us.r-project.org")

library(e1071)

The function NaiveBayes() has following components:

m<-naiveBayes(train, class, laplace=0)

• train: data frame containing numeric training data (features)

• class: factor vector with the class for each row in the training data.

• laplace: positive double controlling Laplace smoothing; default is zero and dis-

ables Laplace smoothing.

8.5 Case Study: Head and Neck Cancer Medication 299

http://cran.us.r-project.org

Let’s build our classifier first.

hn_classifier <- naiveBayes(hn_train, hn_med_train$stage)

Then, we can use the classifier to make predictions using predict(). Recall

that when we presented the AdaBoost example in Chap. 3, we saw the basic

mechanism of machine-learning training, prediction and assessment.

The function predict() has the following components:

p<-predict(m, test, type="class")

• m: classifier trained by NaiveBayes()

• test: test data frame or matrix

• type: either "class" or "raw" specifies whether the predictions should be the

most likely class value or the raw predicted probabilities.

hn_test_pred<-predict(hn_classifier, hn_test)

8.5.4 Step 4: Evaluating Model Performance

Similarly to the approach in Chap. 7, we use cross table to compare predicted class

and the true class of our test dataset.

library(gmodels)
CrossTable(hn_test_pred, hn_med_test$stage)

Cell Contents
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 133
| hn_med_test$stage
hn_test_pred | early_stage | later_stage | Row Total |
-------------|-------------|-------------|-------------|
early_stage | 90 | 24 | 114 |
| 0.008 | 0.032 | |
| 0.789 | 0.211 | 0.857 |
| 0.849 | 0.889 | |
| 0.677 | 0.180 | |
-------------|-------------|-------------|-------------|
later_stage | 16 | 3 | 19 |
| 0.049 | 0.190 | |
| 0.842 | 0.158 | 0.143 |
| 0.151 | 0.111 | |
| 0.120 | 0.023 | |
-------------|-------------|-------------|-------------|
Column Total | 106 | 27 | 133 |
| 0.797 | 0.203 | |

300 8 Probabilistic Learning: Classification Using Naive Bayes

It may be worth skipping forward to Chap. 14, where we present a summary table

for the key measures used to evaluate the performance of binary tests, classifiers, or

predictions.

The prediction accuracy:

ACC ¼
TPþ TN

TPþ FPþ FN þ TN
¼

93

133
¼ 0:7:

From the cross table we can see that our prediction accuracy is 93
133

¼ 0:70.

However, the later stage classification only has three counts. This might be due to

the P(Fi|CL) � 0 problem that we discussed above.

8.5.5 Step 5: Improving Model Performance

After setting laplace¼15, the accuracy goes up to 76%. Although this is a small

improvement in terms of accuracy, we have a better chance of detecting later stage

patients.

hn_classifier <- naiveBayes(hn_train, hn_med_train$stage, laplace = 15)
hn_test_pred<-predict(hn_classifier, hn_test)
CrossTable(hn_test_pred, hn_med_test$stage)

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 133

| hn_med_test$stage
hn_test_pred | early_stage | later_stage | Row Total |
-------------|-------------|-------------|-------------|
early_stage | 99 | 25 | 124 |
| 0.000 | 0.001 | |
| 0.798 | 0.202 | 0.932 |
| 0.934 | 0.926 | |
| 0.744 | 0.188 | |
-------------|-------------|-------------|-------------|
later_stage | 7 | 2 | 9 |
| 0.004 | 0.016 | |
| 0.778 | 0.222 | 0.068 |
| 0.066 | 0.074 | |
| 0.053 | 0.015 | |
-------------|-------------|-------------|-------------|
Column Total | 106 | 27 | 133 |
| 0.797 | 0.203 | |
-------------|-------------|-------------|-------------|

8.5 Case Study: Head and Neck Cancer Medication 301

8.5.6 Step 6: Compare Naive Bayesian against LDA

As mentioned earlier, Naive Bayes with normality assumption is a special case of

Discriminant Analysis. It might be interesting to compare the results against LDA.

library(MASS)
df_hn_train = data.frame(lapply(as.data.frame(hn_train),as.numeric), stage =
hn_med_train$stage)
df_hn_test = data.frame(lapply(as.data.frame(hn_test),as.numeric), stage = h
n_med_test$stage)

hn_lda <- lda(data=df_hn_train, stage~.)

hn_pred = predict(hn_lda, df_hn_test[,-104])

hn_pred = predict(hn_lda, df_hn_test)
CrossTable(hn_pred$class, df_hn_test$stage)

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 133

| df_hn_test$stage
hn_pred$class | early_stage | later_stage | Row Total |
--------------|-------------|-------------|-------------|
early_stage | 66 | 22 | 88 |
| 0.244 | 0.957 | |
| 0.750 | 0.250 | 0.662 |
| 0.623 | 0.815 | |
| 0.496 | 0.165 | |
--------------|-------------|-------------|-------------|
later_stage | 40 | 5 | 45 |
| 0.477 | 1.872 | |
| 0.889 | 0.111 | 0.338 |
| 0.377 | 0.185 | |
| 0.301 | 0.038 | |
--------------|-------------|-------------|-------------|
Column Total | 106 | 27 | 133 |
| 0.797 | 0.203 | |
--------------|-------------|-------------|-------------|

Here, Naive Bayes outperforms LDA classifier in terms of the overall accuracy.

However, LDA has a lower type II error 22
133

� �
, which is clinically important in order

to avoid misdiagnosing later-stage cancer patients as early stage.

In later chapters, we will step deeper into the space of classification problems and

see more sophisticated approaches.

302 8 Probabilistic Learning: Classification Using Naive Bayes

8.6 Practice Problem

In the previous case study, we classified the patients with seer_stage of

“not applicable”(seer_stage¼8) and “unstaged, unknown or

unspecified”(seer_stage¼9) as no cancer or early cancer stages. Let’s remove

these two categories and replicate the Naive Bayes classifier case study again.

hn_med1<-hn_med[!hn_med$seer_stage %in% c(8, 9),]
str(hn_med1); dim(hn_med1)

'data.frame': 580 obs. of 9 variables:
$ PID : int 10000 10008 10029 10063 10103 1012 10135 10143
10152 10184 ...
$ ENC_ID : int 46836 46886 47034 47240 47511 3138 47739 47769
47800 47938 ...
$ seer_stage : Factor w/ 9 levels "0","1","2","3",..: 2 2 5 2 2 2
2 2 7 2 ...
$ MEDICATION_DESC : chr "ranitidine" "heparin injection" "ampicillin/
sulbactam IVPB UH" "fentaNYL injection UH" ...
$ MEDICATION_SUMMARY: chr "(Zantac) 150 mg tablet oral two times a day"
"5,000 unit subcutaneous three times a day" "(Unasyn) 15 g IV every 6 hours"
"25 - 50 microgram IV every 5 minutes PRN severe pain\nMaximum dose 200 mcg
Per PACU protocol" ...
$ DOSE : chr "150" "5000" "1.5" "50" ...
$ UNIT : chr "mg" "unit" "g" "microgram" ...
$ FREQUENCY : chr "two times a day" "three times a day" "every
6 hours" "every 5 minutes" ...
$ TOTAL_DOSE_COUNT : int 5 3 11 2 2 2 6 1 24 2 ...

[1] 580 9

Now we have only 580 observations. We can either use the first 480 of them as

the training dataset and the last 100 as the test dataset, or select 80–20 (training-

testing) split, and evaluate the prediction accuracy when laplace¼1?

We can use the same code for creating the classes in training and test dataset.

Since the seer_stage¼8 or 9 is not in the data, we classify seer_stage¼0,

1, 2 or 3 as “early_stage” and seer_stage¼4, 5 or 7 as “later_stage”.

hn_med_train1$stage<-hn_med_train1$seer_stage %in% c(4, 5, 7)
hn_med_train1$stage<-factor(hn_med_train1$stage, levels=c(F, T), labels = c(
"early_stage", "later_stage"))
hn_med_test1$stage<-hn_med_test1$seer_stage %in% c(4, 5, 7)
hn_med_test1$stage<-factor(hn_med_test1$stage, levels=c(F, T), labels = c("e
arly_stage", "later_stage"))
prop.table(table(hn_med_train1$stage))

early_stage later_stage
0.7392241 0.2607759

prop.table(table(hn_med_test1$stage))

early_stage later_stage

0.7413793 0.2586207

8.6 Practice Problem 303

Use terms that have appeared in five or more documents in the training dataset to

build the document term matrix.

Length Class Mode
112 character character

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 116

| hn_med_test1$stage
hn_test_pred1 | early_stage | later_stage | Row Total |
--------------|-------------|-------------|-------------|
early_stage | 84 | 28 | 112 |
| 0.011 | 0.032 | |
| 0.750 | 0.250 | 0.966 |
| 0.977 | 0.933 | |
| 0.724 | 0.241 | |
--------------|-------------|-------------|-------------|
later_stage | 2 | 2 | 4 |
| 0.314 | 0.901 | |
| 0.500 | 0.500 | 0.034 |
| 0.023 | 0.067 | |
| 0.017 | 0.017 | |
--------------|-------------|-------------|-------------|
Column Total | 86 | 30 | 116 |
| 0.741 | 0.259 | |
--------------|-------------|-------------|-------------|

ACC ¼
TPþ TN

TPþ FPþ FN þ TN
¼

86

116
¼ 0:74:

Try to reproduce these results with some new data from the list of our Case-

Studies.

8.7 Assignments 8: Probabilistic Learning: Classification

Using Naive Bayes

8.7.1 Explain These Two Concepts

• Bayes Theorem

• Laplace Estimation

304 8 Probabilistic Learning: Classification Using Naive Bayes

8.7.2 Analyzing Textual Data

Load the SOCR 2011 US Job Satisfaction data. The last column (Description)

contains free text about each job. Notice that spaces are replaced by underscores, __.

Mine the text field and suggest some the meta-data analytics.

• Convert the textual meta-data into a corpus object.

• Triage some of the irrelevant punctuation and other symbols in the corpus

document, change all text to lower case, etc.

• Tokenize the job descriptions into words. Examine the distributions of

Stress_Category and Hiring_Potential.

• Classify the job stress into two categories.

• Generate a word cloud to visualize the job description text.

• Graphically visualize the difference between low and high Stress_Category

graph.

• Transform the word count features into categorical data

• Ignore those low frequency words and report the sparsity of your categorical data

matrix with or without delete those low frequency words.

• Apply the Naive Bayes classifier to original matrix and lower dimension matrix.

What do you observe?

• Apply and compare LDA and Naive Bayes classifiers with respect to the error,

specificity and sensitivity.

References

Kidwell , David A. (2013) Lazy Learning, Springer Science & Business Media, ISBN 9401720533,

9789401720533

Aggarwal, Charu C. (ed.) (2015) Data Classification: Algorithms and Applications, Chapman &

Hall/CRC, ISBN 1498760589, 9781498760584

References 305

Chapter 9

Decision Tree Divide and Conquer

Classification

When classification needs to be apparent, kNN or naive Bayes we presented earlier

may not be useful as they do not generate explicit classification rules. In some cases,

we need to specify well stated rules for our decisions, just like a scoring criterion for

driving ability or credit scoring for loan underwriting. The decisions in many

situations actually require having a clear and easily understandable decision tree to

follow the classification process start to finish.

In this chapter, we will (1) see a simple motivational example of decision trees

based on the Iris data; (2) describe decision-tree divide and conquer methods;

(3) examine certain measures quantifying classification accuracy; (4) show strategies

for pruning decision trees; (5) work through a Quality of Life in Chronic Disease

case-study; and (6) review the One Rule and RIPPER algorithms.

9.1 Motivation

Decision tree learners enable classification via tree structures modeling the relation-

ships among all features and potential outcomes in the data. All decision trees begin

with a trunk (all data are part of the same cohort), which is then split into narrower

and narrower branches by forking decisions based on the intrinsic data structure. At

each step, splitting the data into branches may include binary or multinomial

classification. The final decision is obtained when the tree branching process termi-

nates. The terminal (leaf) nodes represent the action to be taken as the result of the

series of branching decisions. For predictive models, the leaf nodes provide the

expected forecasting results given the series of events in the tree.

There are a number of R packages available for decision tree classification

including rpart, C5.0, party, etc.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_9

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_9&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_9

9.2 Hands-on Example: Iris Data

Let’s start by seeing a simple example using the Iris dataset, which we saw in Chap. 3.

The data features or attributes include Sepal.Length, Sepal.Width, Petal.

Length, and Petal.Width, and classes are represented by the Species taxa

(setosa; versicolor; and virginica).

'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1
1 1 1 1 ...

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

setosa versicolor virginica
50 50 50

The ctree(Species ~ Sepal.Length + Sepal.Width + Petal.

Length + Petal.Width, data¼iris) function will build a decision tree

(Figs. 9.1 and 9.2).

iris_ctree <- ctree(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Pe
tal.Width, data=iris)
print(iris_ctree)

Conditional inference tree with 4 terminal nodes

Response: Species
Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
Number of observations: 150

1) Petal.Length <= 1.9; criterion = 1, statistic = 140.264
2)* weights = 50
1) Petal.Length > 1.9
3) Petal.Width <= 1.7; criterion = 1, statistic = 67.894
4) Petal.Length <= 4.8; criterion = 0.999, statistic = 13.865
5)* weights = 46
4) Petal.Length > 4.8
6)* weights = 8
3) Petal.Width > 1.7
7)* weights = 46

plot(iris_ctree, cex=2)

308 9 Decision Tree Divide and Conquer Classification

Fig. 9.1 Decision tree classification illustrating four leaf node labels corresponding to the three iris

genera

Fig. 9.2 An alternative decision tree classification of the iris flowers dataset

9.2 Hands-on Example: Iris Data 309

head(iris); tail(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Similarly, we can demonstrate a classification of the iris taxa via rpart:

library(rpart)
iris_rpart = rpart(Species~., data=iris)
print(iris_rpart)

n= 150

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
2) Petal.Length< 2.45 50 0 setosa (1.000 0.00000000 0.00000000) *
3) Petal.Length>=2.45 100 50 versicolor (0.000 0.50000000 0.50000000)
6) Petal.Width< 1.75 54 5 versicolor (0.000 0.90740741 0.09259259) *
7) Petal.Width>=1.75 46 1 virginica (0.000 0.02173913 0.97826087) *

Use the `rattle::fancyRpartPlot` to generates an elegant plot
library(rattle)

Rattle: A free graphical interface for data mining with R.
Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
Type 'rattle()' to shake, rattle, and roll your data.

fancyRpartPlot(iris_rpart, cex = 1.5)

9.3 Decision Tree Overview

The decision tree algorithm represents an upside down tree with lots of tree branch

bifurcations where a series of logical decisions are encoded as tree node splits. The

classification begins at the root node and goes through many branches until it gets to

the terminal nodes. This iterative process splits the data into different classes by rigid

criteria.

310 9 Decision Tree Divide and Conquer Classification

9.3.1 Divide and Conquer

Decision trees involve recursive partitioning that uses data features and attributes to

split the data into groups (nodes) of similar classes.

To make classification trees using data features, we need to observe the pattern

between the data features and potential classes using training data. We can draw

scatter plots and separate groups that are clearly clotted together. Each group is

considered a segment of the data. After getting the approximate range of each feature

value under each group, we can make the decision tree.

X ¼ X1;X2;X3; . . . ;Xk½ � ¼

x1,1 x1,2 . . . x1,k
x2,1 x2,2 . . . x2,k
.

xn,1 xn,2 . . . xn,k

0

B
B
@

1

C
C
A

|ffl{zffl}

features=attributes

cases

8

<

:

The decision tree algorithms use a top-down recursive divide-and-conquer

approach (sometimes they may also use bottom up or mixed splitting strategies) to

divide and evaluate the splits of a dataset D (input). The best split decision corre-

sponds to the split with the highest information gain, reflecting a partition of the

data into K subsets (using divide-and-conquer). The iterative algorithm terminates

when some stopping criteria are reached. Examples of stopping conditions used to

terminate the recursive process include:

• All the samples belong to the same class, that is they have the same label and the

sample is already pure.

• Stop when majority of the points are already of the same class (relative to some

error threshold).

• There are no remaining attributes on which the samples may be further

partitioned.

One objective criteria for splitting or clustering data into groups is based on the

information gain measure, or impurity reduction, which can be used to select the

test attribute at each node in the decision tree. The attribute with the highest

information gain (i.e., greatest entropy reduction) is selected as the test attribute

for the current node. This attribute minimizes the information needed to classify the

samples in the resulting partitions. There are three main indices to evaluate the

impurity reduction: Misclassification error, Gini index and Entropy.

For a given table containing pairs of attributes and their class labels, we can assess

the homology of the classes in the table. A table is pure (homogenous) if it only

contains a single class. If a data table contains several classes, then we say that the

table is impure or heterogeneous. This degree of impurity or heterogeneity can be

quantitatively evaluated using impurity measures like entropy, Gini index, and

misclassification error.

9.3 Decision Tree Overview 311

9.3.2 Entropy

The Entropy is an information measure of the amount of disorder or uncertainty in

a system. Suppose we have a data set D ¼ (X1,X2, . . .,Xn) that includes n features

(variables) and suppose each of these features can take on any of k possible values

(states). Then the cardinality of the entire system is kn as each of the features are

assumed to have k independent states, thus the total number of different datasets that

can be expected is k � k � . . . � k
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

n

¼ kn. Suppose p1, p2, . . ., pn represent the

proportions of each class (note:
P

i pi ¼ 1) present in the child node that results

from a split in a decision tree classifier. Then the entropy measure is defined by:

Entropy Dð Þ ¼ �
X

i
pilog2pi:

If each of the 1� i� k states for each feature is equally likely to be observed with

probability pi ¼
1
k
, then the entropy is maximized:

Entropy Dð Þ ¼ �
Xk

i¼1

1

k
log

1

k
¼
Xk

i¼1

1

k
logk ¼

1

k

Xk

i¼1

1 ¼ 1:

In the other extreme, the entropy is minimized. Note that by L’Hopital’s Rule

limx!0x� log xð Þ ¼ limx!0

1
x

� 1

x2

¼ limx!0x ¼ 0) for a single class classification

where the probability of one class is unitary (pio ¼ 1) and the other ones are trivial

(pi6¼io
¼ 0):

Entropy Dð Þ ¼ �
X

i

1

k
log

1

k

� �

¼ pio � log pio

� �
þ
X

i 6¼io
pi log pið Þ ¼

¼ 1� log 1ð Þ þ lim
x!0

X

i6¼io
x log xð Þ ¼ 0þ 0 ¼ 0:

In classification settings, higher entropy (i.e., more disorder) corresponds to a

sample that has amixed collection of labels. Conversely, lower entropy corresponds

to a classification where we have mostly pure partitions. In general, the entropy of a

sample D ¼ {x1, x2, . . ., xn} is defined by:

H Dð Þ ¼ �
Xk

i¼1

P cijDð ÞlogP cijDð Þ,

where P(ci|D) is the probability of a data point in D being labeled with class ci,

and k is the number of classes (clusters). P(ci|D) can be estimated from the observed

data by:

312 9 Decision Tree Divide and Conquer Classification

P cijDð Þ ¼
j xj2Djxj has label yj ¼ ci
� �

j

j D j
:

Observe that if the observations are evenly split amongst all k classes, then P

cijDð Þ ¼ 1
k
and

H Dð Þ ¼ �
Xk

i¼1

1

k
log

1

k
¼ 1:

At the other extreme, if all the observations are from one class then:

H Dð Þ ¼ �1∗logk 1ð Þ ¼ 0:

Also note that the base of the log function is somewhat irrelevant and can be used

to normalize (scale) the range of the entropy logb xð Þ ¼ log2 xð Þ
log2 bð Þ

	

.

The Gain is the expected reduction in entropy caused by knowing the value of an

attribute.

9.3.3 Misclassification Error and Gini Index

Similar to the Entropy measure, the Misclassification error and the

Gini index are also applied to evaluate information gain. The Misclassification

error is defined by the formula:

ME ¼ 1�max
k

pkð Þ:

And the Gini index is expressed as:

GI ¼
Xk

pk 1� pkð Þ ¼ 1�
Xk

p2k :

9.3.4 C5.0 Decision Tree Algorithm

C5.0 algorithm is a popular implementation of decision trees.

To begin with, let’s consider the term purity. If the segments of data contains a

single class, they are considered pure. The entropy represents a mathematical

formalism measuring purity of data segments.

9.3 Decision Tree Overview 313

Entropy Sð Þ ¼ �
Xc

i¼1

pilog2 pið Þ,

where entropy is the measurement, c is the number of total class levels, and pi
refers to the proportion of observations that fall into each class (i.e., probability of a

randomly selected data point to belong to the ith class level. For two possible classes,

the entropy ranges from 0 to 1. For n classes, the entropy ranges from 0 to log2(n),

where the minimum entropy corresponds to data that is purely homogeneous

(completely deterministic/predictable) and the maximum entropy represents

completely disordered data (stochastic or extremely noisy). You might wonder

what is the benefit of using the entropy? Another way to say this is the smaller the

entropy, the more information is contained in this split method. Systems (data) with

high entropy indicate significant information content (randomness) and data with

low entropy indicates highly-compressible data with structure in it.

If we only have one class in the segment, then Entropy(S) ¼ (�1) � log2(1) ¼ 0.

Let’s try another example. If we have a segment of data that contains two classes,

the first class contains 80% of the data and the second class contains the remaining

20%. Then, we have the following entropy:

Entropy Sð Þ ¼ �0:8log2 0:8ð Þ � 0:2log2 0:2ð Þ ¼ 0:7219281:

The relationship for two class proportions and entropy are illustrated in Fig. 9.3,

where x is the proportion for elements in one of the classes.

Fig. 9.3 Plot of the entropy of a (symmetric) binary process as a function of the proportion of class

1 cases

314 9 Decision Tree Divide and Conquer Classification

set.seed(1234)
x<-runif(100)
curve(-x*log2(x)-(1-x)*log2(1-x), col="red", main="Entropy for Different
Proportions", xlab = "x (proportion for class 1)", ylab = "Entropy", lwd=3)

The closer the binary proportion split is to 0.5, the greater the entropy. The more

homogeneous the split (one class becomes the majority) the lower the entropy.

Decision trees aim to find splits in the data that reduce the entropy, i.e., increasing

the homogeneity of the elements within all classes.

This measuring mechanism could be used to measure and compare the informa-

tion we get using different features as data partitioning characteristics. Let’s consider

this scenario. Suppose S and S1 represent the entropy of the system before and after

the splitting/partitioning of the data according to a specific data feature attribute (F).

Denote the entropies of the original and the derived partition by Entropy(S) and

Entropy(S1), respectively. The information we gained from partitioning the data

using this specific feature (F) is calculated as a change in the entropy:

Gain Fð Þ ¼ Entropy Sð Þ � Entropy S1ð Þ:

Note that smaller entropy Entropy(S1) corresponds with better classification and

more information gained. A more complicated case would be that the partitions

create multiple segments. Then, the entropy for each partition method is calculated

by the following formula:

Entropy Sð Þ ¼
Xn

i¼1

wiEntropy Pið Þ ¼
Xn

i¼1

wi

Xc

j¼1

�pilog2 pið Þ

 !

,

where wi is the proportion of examples falling in that segment and Pi is segment i.

Thus, the total entropy of a partition method is calculated by a weighted sum of

entropies for each segment created by this method.

When we get the maximum reduction in entropy with a feature (F), then the Gain

(F)¼ Entropy(S), since Entropy(S1)¼ 0. On the contrary, if we gain no information

with this feature, we have Gain(F) ¼ 0.

9.3.5 Pruning the Decision Tree

While making a decision tree, we can classify those observations using as many

splits as we want. This eventually might over classify our data. An extreme example

of this would be that we make each observation as a class, which is meaningless.

So how do we control the size of the decision tree? One possible solution is to

make a cutoff for the number of decisions that a decision tree could make. Similarly,

we can control the number of examples in each segment to be not too small. This

method is called early stopping or pre-pruning the decision tree. However, this

might make the decision procedure stop prematurely, before some important parti-

tion occurs.

9.3 Decision Tree Overview 315

Another solution post-pruning is that we begin with growing a big decision tree

and subsequently reduce the branches based on error rates with penalty at the nodes.

This is often more effective than the pre-prunning solution.

The C5.0 algorithm uses the post-pruning method to control the size of the

decision tree. It first grows an overfitting large tree to contain all the possibilities of

partitioning. Then, it cuts out nodes and branches with little effect on classification

errors.

9.4 Case Study 1: Quality of Life and Chronic Disease

9.4.1 Step 1: Collecting Data

In this Chapter, we are using the Quality of life and chronic disease dataset,

Case06_QoL_Symptom_ChronicIllness.csv. This dataset has 41 vari-

ables. Detailed description for each variable is provided here (https://umich.

instructure.com/files/399150/download?download_frd=1).

Important variables:

• Charlson Comorbidity Index: ranging from 0 to 10. A score of 0 indicates no

comorbid conditions. Higher scores indicate a greater level of comorbidity.

• Chronic Disease Score: A summary score based on the presence and complexity

of prescription medications for select chronic conditions. A high score in decades

the patient has severe chronic diseases. Entries stored as�9 indicate missing value.

9.4.2 Step 2: Exploring and Preparing the Data

Let’s load the data first.

qol<-read.csv("https://umich.instructure.com/files/481332/download?download_
frd=1")
str(qol)

'data.frame': 2356 obs. of 41 variables:
$ ID : int 171 171 172 179 180 180 181 182 183 186 ...
$ INTERVIEWDATE : int 0 427 0 0 0 42 0 0 0 0 ...
$ LANGUAGE : int 1 1 1 1 1 1 1 1 1 2 ...
$ AGE : int 49 49 62 44 64 64 52 48 49 78 ...
$ RACE_ETHNICITY : int 3 3 3 7 3 3 3 3 3 4 ...
$ SEX : int 2 2 2 2 1 1 2 1 1 1 ...
$ QOL_Q_01 : int 4 4 3 6 3 3 4 2 3 5 ...
$ QOL_Q_02 : int 4 3 3 6 2 5 4 1 4 6 ...
$ QOL_Q_03 : int 4 4 4 6 3 6 4 3 4 4 ...
$ QOL_Q_04 : int 4 4 2 6 3 6 2 2 5 2 ...
$ QOL_Q_05 : int 1 5 4 6 2 6 4 3 4 3 ...
$ QOL_Q_06 : int 4 4 2 6 1 2 4 1 2 4 ...

316 9 Decision Tree Divide and Conquer Classification

https://umich.instructure.com/files/399150/download?download_frd=1
https://umich.instructure.com/files/399150/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1

$ QOL_Q_07 : int 1 2 5 -1 0 5 8 4 3 7 ...
$ QOL_Q_08 : int 6 1 3 6 6 6 3 1 2 4 ...
$ QOL_Q_09 : int 3 4 3 6 2 2 4 2 2 4 ...
$ QOL_Q_10 : int 3 1 3 6 3 6 3 2 4 3 ...
$ MSA_Q_01 : int 1 3 2 6 2 3 4 1 1 2 ...
$ MSA_Q_02 : int 1 1 2 6 1 6 4 3 2 4 ...
$ MSA_Q_03 : int 2 1 2 6 1 2 3 3 1 2 ...
$ MSA_Q_04 : int 1 3 2 6 1 2 1 4 1 5 ...
$ MSA_Q_05 : int 1 1 1 6 1 2 1 6 3 2 ...
$ MSA_Q_06 : int 1 2 2 6 1 2 1 1 2 2 ...
$ MSA_Q_07 : int 2 1 3 6 1 1 1 1 1 5 ...
$ MSA_Q_08 : int 1 1 1 6 1 1 1 1 2 1 ...
$ MSA_Q_09 : int 1 1 1 6 2 2 4 6 2 1 ...
$ MSA_Q_10 : int 1 1 1 6 1 1 1 1 1 3 ...
$ MSA_Q_11 : int 2 3 2 6 1 1 2 1 1 5 ...
$ MSA_Q_12 : int 1 1 2 6 1 1 2 6 1 3 ...
$ MSA_Q_13 : int 1 1 1 6 1 6 2 1 4 2 ...
$ MSA_Q_14 : int 1 1 1 6 1 2 1 1 3 1 ...
$ MSA_Q_15 : int 2 1 1 6 1 1 3 2 1 3 ...
$ MSA_Q_16 : int 2 3 5 6 1 2 1 2 1 2 ...
$ MSA_Q_17 : int 2 1 1 6 1 1 1 1 1 3 ...
$ PH2_Q_01 : int 3 2 1 5 1 1 3 1 2 3 ...
$ PH2_Q_02 : int 4 4 1 5 1 2 1 1 4 2 ...
$ TOS_Q_01 : int 2 2 2 4 1 1 2 2 1 1 ...
$ TOS_Q_02 : int 1 1 1 4 4 4 1 2 4 4 ...
$ TOS_Q_03 : int 4 4 4 4 4 4 4 4 4 4 ...
$ TOS_Q_04 : int 5 5 5 5 5 5 5 5 5 5 ...
$ CHARLSONSCORE : int 2 2 3 1 0 0 2 8 0 1 ...
$ CHRONICDISEASESCORE: num 1.6 1.6 1.54 2.97 1.28 1.28 1.31 1.67 2.21 2
.51 ...

Most of the coded variables like QOL_Q_01(heath rating) have ordinal values

(1¼ excellent, 2¼ very good, 3¼ good, 4¼ fair, 5¼ poor, 6¼ no answer). We can

use the table() function to see their distributions. We also have some numerical

variables in the dataset like CHRONICDISEASESCORE. We can take a look at it by

using summary().

Our variable of interest CHRONICDISEASESCORE has some missing data. A

simple way to address this is just deleting those observations with missing values.

You could also try to impute the missing value using various imputation methods

mentioned in Chap. 3.

table(qol$QOL_Q_01)

1 2 3 4 5 6
44 213 801 900 263 135

qol<-qol[!qol$CHRONICDISEASESCORE==-9,]
summary(qol$CHRONICDISEASESCORE)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.880 1.395 1.497 1.970 4.760

9.4 Case Study 1: Quality of Life and Chronic Disease 317

Let’s create two classes using variable CHRONICDISEASESCORE.

We classify the patients with CHRONICDISEASESCORE < mean

(CHRONICDISEASESCORE) as having minor disease and the rest as having

severe disease. This dichotomous classification (qol$cd) may not be perfect and

we will talk about alternative classification strategies in the practice problem in the

end of the chapter.

qol$cd<-qol$CHRONICDISEASESCORE>1.497
qol$cd<-factor(qol$cd, levels=c(F, T), labels = c("minor_disease", "severe_d
isease"))

Data Preparation: Creating Random Training and Test Datasets

To make the qol data more organized, we can order the data by the variable ID.

qol<-qol[order(qol$ID),]

Remove ID (col=1) # the clinical Diagnosis (col=41) will be handled later
qol <- qol[, -1]

Then, we are able to subset training and testing datasets. Here is an example of a

non-random split of the entire data into training (2114) and testing (100) sets:

qol_train<-qol[1:2114,]
qol_test<-qol[2115:2214,]

And here is an example of random assignments of cases into training and testing

sets (80–20% slit):

set.seed(1234)
train_index <- sample(seq_len(nrow(qol)), size = 0.8*nrow(qol))
qol_train<-qol[train_index,]
qol_test<-qol[-train_index,]

We can quickly inspect the distributions of the training and testing data to ensure

they are not vastly different. We can see that the classes are split fairly equal in

training and testing datasets.

prop.table(table(qol_train$cd))
minor_disease severe_disease
0.5279503 0.4720497

prop.table(table(qol_test$cd))

minor_disease severe_disease
0.503386 0.496614

318 9 Decision Tree Divide and Conquer Classification

9.4.3 Step 3: Training a Model On the Data

In this section, we are using the C5.0() function from the C50 package.

The function C5.0() has following components:

m<-C5.0(train, class, trials=1, costs=NULL)

• train: data frame containing numeric training data (features).

• class: factor vector with the class for each row in the training data.

• trials: an optional number to control the boosting iterations (default ¼ 1).

• costs: an optional matrix to specify the costs of false positive and false negative.

You could delete the # in the following code and run it in R to install and load the

C50 package.

install.packages("C50")
library(C50)

In the qol dataset (ID column is already removed), column 41 is the class vector

(qol$cd), and column 40 is the numerical version of vector 41 (qol

$CHRONICDISEASESCORE). We need to delete these two columns to create our

training data that only contains features.

summary(qol_train[,-c(40, 41)])

INTERVIEWDATE LANGUAGE AGE RACE_ETHNICITY
Min. : 0.00 Min. :1.000 Min. :20.00 Min. :1.000
1st Qu.: 0.00 1st Qu.:1.000 1st Qu.:52.00 1st Qu.:3.000
Median : 0.00 Median :1.000 Median :59.00 Median :3.000
Mean : 21.68 Mean :1.217 Mean :58.74 Mean :3.614
3rd Qu.: 0.00 3rd Qu.:1.000 3rd Qu.:67.00 3rd Qu.:4.000
Max. :440.00 Max. :2.000 Max. :90.00 Max. :7.000
SEX QOL_Q_01 QOL_Q_02 QOL_Q_03
Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.:1.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000
Median :1.000 Median :4.000 Median :3.000 Median :4.000
Mean :1.422 Mean :3.661 Mean :3.408 Mean :3.714
3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :2.000 Max. :6.000 Max. :6.000 Max. :6.000
…

TOS_Q_03 TOS_Q_04 CHARLSONSCORE
Min. :1.000 Min. :1.000 Min. :-9.0000
1st Qu.:4.000 1st Qu.:5.000 1st Qu.: 0.0000
Median :4.000 Median :5.000 Median : 1.0000
Mean :3.787 Mean :4.686 Mean : 0.8826
3rd Qu.:4.000 3rd Qu.:5.000 3rd Qu.: 1.0000
Max. :5.000 Max. :6.000 Max. :10.0000

set.seed(1234)
qol_model<-C5.0(qol_train[,-c(40, 41)], qol_train$cd)
qol_model

9.4 Case Study 1: Quality of Life and Chronic Disease 319

Call:
C5.0.default(x = qol_train[, -c(40, 41)], y = qol_train$cd)

Classification Tree
Number of samples: 1771
Number of predictors: 39

Tree size: 25

Non-standard options: attempt to group attributes

summary(qol_model)

Call:
C5.0.default(x = qol_train[, -c(40, 41)], y = qol_train$cd)

C5.0 [Release 2.07 GPL Edition] Tue Jun 20 16:09:16 2017

Class specified by attribute `outcome'

Read 1771 cases (40 attributes) from undefined.data

Decision tree:

CHARLSONSCORE <= 0: minor_disease (665/180)
CHARLSONSCORE > 0:

:...AGE <= 47:
:...MSA_Q_08 > 2: severe_disease (15/4)
: MSA_Q_08 <= 2:
: :...MSA_Q_14 <= 1: minor_disease (86/20)
: MSA_Q_14 > 1:
: :...MSA_Q_10 > 4: minor_disease (6)
: MSA_Q_10 <= 4:
: :...TOS_Q_03 > 4: severe_disease (8)
: TOS_Q_03 <= 4:
: :...MSA_Q_17 > 2: minor_disease (8/1)
: MSA_Q_17 <= 2:
: :...QOL_Q_01 <= 2: minor_disease (4)
: QOL_Q_01 > 2: severe_disease (38/13)
AGE > 47:
:...RACE_ETHNICITY > 3:
:...QOL_Q_07 > 5: severe_disease (133/26)
: QOL_Q_07 <= 5:
: :...QOL_Q_10 > 5: severe_disease (24/2)
: QOL_Q_10 <= 5:
: :...MSA_Q_14 <= 5: severe_disease (202/72)
: MSA_Q_14 > 5: minor_disease (11/2)
RACE_ETHNICITY <= 3:
:...QOL_Q_01 <= 2: minor_disease (50/20)
QOL_Q_01 > 2:
:...CHARLSONSCORE > 1: severe_disease (184/58)
CHARLSONSCORE <= 1:
:...MSA_Q_04 > 5: minor_disease (27/8)

320 9 Decision Tree Divide and Conquer Classification

MSA_Q_04 <= 5:
:...QOL_Q_07 <= 5:
:...QOL_Q_05 <= 2:
: :...TOS_Q_04 <= 2: minor_disease (5)
: : TOS_Q_04 > 2: severe_disease (52/15)
: QOL_Q_05 > 2:
: :...MSA_Q_06 <= 5: minor_disease (119/46)
: MSA_Q_06 > 5: severe_disease (10/2)
QOL_Q_07 > 5:
:...QOL_Q_09 <= 2: severe_disease (18/1)
QOL_Q_09 > 2:
:...RACE_ETHNICITY <= 2: minor_disease (12/5)
RACE_ETHNICITY > 2:
:...MSA_Q_17 > 3: severe_disease (19/2)
MSA_Q_17 <= 3:
...PH2_Q_01 <= 3: severe_disease (50/14)
PH2_Q_01 > 3:
...MSA_Q_14 <= 3: minor_disease (21/6)
MSA_Q_14 > 3: severe_disease (4)

Evaluation on training data (1771 cases):

Decision Tree

Size Errors
25 497(28.1%) <<

(a) (b) <-classified as
---- ----
726 209 (a): class minor_disease
288 548 (b): class severe_disease

Attribute usage:

100.00% CHARLSONSCORE
62.45% AGE
53.13% RACE_ETHNICITY
38.40% QOL_Q_07
34.61% QOL_Q_01
21.91% MSA_Q_14
19.03% MSA_Q_04
13.38% QOL_Q_10
10.50% QOL_Q_05
9.32% MSA_Q_08
8.13% MSA_Q_17
7.28% MSA_Q_06
7.00% QOL_Q_09
4.23% PH2_Q_01
3.61% MSA_Q_10
3.27% TOS_Q_03
3.22% TOS_Q_04

The output of qol_model indicates that we have a tree that has 25 terminal

nodes. summary(qol_model) suggests that the classification error for decision

tree is 28% in the training data.

9.4 Case Study 1: Quality of Life and Chronic Disease 321

9.4.4 Step 4: Evaluating Model Performance

Now we can make predictions using the decision tree that we just built. The

predict() function we will use is the same as the one we showed in earlier

chapters, e.g., Chaps. 3 and 8. In general, predict() is extended by each specific

type of regression, classificaiton, clustering, or forecasting machine learning tech-

nique. For example, randomForest::predict.randomForest() is

invoked by:

predict(RF_model, newdata, type="response", norm.votes=TRUE,

predict.all=FALSE, proximity=FALSE, nodes=FALSE, cutoff, ...),

where type represents type of prediction output to be generated - "response"

(equivalent to "class"), "prob" or "votes". Thus, the predicted values are either

predicted "response" class labels, matrix of class probabilities, or vote counts.

This time we are going to introduce the confusionMatrix() function under

package caret as the evaluation method. When we combine it with a table()

function, the output of the evaluation is very straight forward.

qol_pred<-predict(qol_model, qol_test[,-c(40, 41)]) # removing the last 2
columns CHRONICDISEASESCORE and cd, which represent the clinical outcomes we

are predicting!

install.packages("caret")
library(caret)

confusionMatrix(table(qol_pred, qol_test$cd))

Confusion Matrix and Statistics

qol_pred minor_disease severe_disease
minor_disease 149 89
severe_disease 74 131

Accuracy : 0.6321
95% CI : (0.5853, 0.6771)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 3.317e-08

Kappa : 0.2637
Mcnemar's Test P-Value : 0.2728

Sensitivity : 0.6682
Specificity : 0.5955
Pos Pred Value : 0.6261
Neg Pred Value : 0.6390
Prevalence : 0.5034
Detection Rate : 0.3363
Detection Prevalence : 0.5372
Balanced Accuracy : 0.6318

'Positive' Class : minor_disease

322 9 Decision Tree Divide and Conquer Classification

The Confusion Matrix shows that the testing data prediction accuracy is about

63%. However, this may vary (see the corresponding confidence interval).

9.4.5 Step 5: Trial Option

The C5.0 function includes, an option trials¼, which is an integer specifying

the number of boosting iterations. The default value of one indicates that a single

model is used, and we can specify a larger number of iterations, for instance

trials¼6.

set.seed(1234)
qol_boost6<-C5.0(qol_train[, -c(40, 41)], qol_train$cd, trials=6) # try alt
ernative values for the trials option
qol_boost6

Call:
C5.0.default(x = qol_train[, -c(40, 41)], y = qol_train$cd, trials = 6)

Classification Tree
Number of samples: 1771
Number of predictors: 39

Number of boosting iterations: 6
Average tree size: 11.7

Non-standard options: attempt to group attributes

We can see that the size of the tree reduced to about 12 (this may vary at

each run).

Since this is a fairly small tree, we can visualize it by the function plot(). We

also use the option type¼"simple" to make the tree look more condensed

(Fig. 9.4).

Fig. 9.4 Classification tree plot of the quality of lofe (QoL) data

9.4 Case Study 1: Quality of Life and Chronic Disease 323

plot(qol_boost6, type="simple")

Caution The plotting of decision trees will fail if you have columns that start with

numbers or special characters (e.g., "5variable", "!variable"). In general, avoid

spaces, special characters, and other non-terminal symbols in column/row names.

The next step would be making predictions and testing the corresponding

accuracy.

qol_boost_pred6 <- predict(qol_boost6, qol_test[,-c(40, 41)])
confusionMatrix(table(qol_boost_pred6, qol_test$cd))

Confusion Matrix and Statistics
qol_boost_pred6 minor_disease severe_disease
minor_disease 140 75
severe_disease 83 145

Accuracy : 0.6433
95% CI : (0.5968, 0.688)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 1.987e-09
Kappa : 0.2868
Mcnemar's Test P-Value : 0.5776
Sensitivity : 0.6278
Specificity : 0.6591
Pos Pred Value : 0.6512
Neg Pred Value : 0.6360
Prevalence : 0.5034
Detection Rate : 0.3160
Detection Prevalence : 0.4853
Balanced Accuracy : 0.6434

'Positive' Class : minor_disease

The accuracy is about 64%. However, this may vary each time we run the

experiment (mind the confidence interval). In some studies, the trials option pro-

vides significant improvement to the overall accuracy. A good choice for this option

is trials ¼ 10.

9.4.6 Loading the Misclassification Error Matrix

Suppose we want to reduce the false negative rate, in this case, misclassifying a

severe case as minor. False negative (failure to detect a severe disease case) may be

more costly than false positive (misclassifying a minor disease case as severe).

Misclassification errors can be expressed as a matrix:

324 9 Decision Tree Divide and Conquer Classification

error_cost<-matrix(c(0, 1, 4, 0), nrow = 2)
error_cost

[,1] [,2]
[1,] 0 4
[2,] 1 0

Let’s build a decision tree with the option cpsts¼error_cost.

set.seed(1234)
qol_cost<-C5.0(qol_train[-c(40, 41)], qol_train$cd, costs=error_cost)
qol_cost_pred<-predict(qol_cost, qol_test)
confusionMatrix(table(qol_cost_pred, qol_test$cd))

Confusion Matrix and Statistics

qol_cost_pred minor_disease severe_disease
minor_disease 60 17
severe_disease 163 203

Accuracy : 0.5937
95% CI : (0.5463, 0.6398)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 8.352e-05

Kappa : 0.1909
Mcnemar's Test P-Value : < 2.2e-16

Sensitivity : 0.2691
Specificity : 0.9227
Pos Pred Value : 0.7792
Neg Pred Value : 0.5546
Prevalence : 0.5034
Detection Rate : 0.1354
Detection Prevalence : 0.1738
Balanced Accuracy : 0.5959

'Positive' Class : minor_disease

Although the overall accuracy decreased, the false negative cell labels were

reduced from 75 (without specifying a cost matrix) to 17 (when specifying a

non-trivial (loaded) cost matrix). This comes at the cost of increasing the rate of

false-positive labeling (minor disease cases misclassified as severe).

9.4.7 Parameter Tuning

There are multiple choices to plot trees fitted by rpart, C50.

9.4 Case Study 1: Quality of Life and Chronic Disease 325

library("rpart")
remove CHRONICDISEASESCORE, but keep *cd* label

set.seed(1234)
qol_model<-rpart(cd~., data=qol_train[, -40], cp=0.01)
here we use rpart::cp = *complexity parameter* = 0.01
qol_model

n= 1771

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1771 836 minor_disease (0.5279503 0.4720497)
2) CHARLSONSCORE< 0.5 665 180 minor_disease (0.7293233 0.2706767) *
3) CHARLSONSCORE>=0.5 1106 450 severe_disease (0.4068716 0.5931284)
6) AGE< 47.5 165 65 minor_disease (0.6060606 0.3939394) *
7) AGE>=47.5 941 350 severe_disease (0.3719447 0.6280553) *

You can also plot directly using rpart.plot (Fig. 9.5).

library(rpart.plot)
rpart.plot(qol_model, type = 4,extra = 1,clip.right.labs = F)

We can use fancyRpartPlot (Figs. 9.6).

library("rattle")
fancyRpartPlot(qol_model, cex = 1)

Fig. 9.5 Decision tree classification of the QoL data

326 9 Decision Tree Divide and Conquer Classification

qol_pred<-predict(qol_model, qol_test,type = 'class')
confusionMatrix(table(qol_pred, qol_test$cd))
Confusion Matrix and Statistics
qol_pred minor_disease severe_disease
minor_disease 133 64
severe_disease 90 156

Accuracy : 0.6524
95% CI : (0.606, 0.6967)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 1.759e-10
Kappa : 0.3053
Mcnemar's Test P-Value : 0.04395
Sensitivity : 0.5964
Specificity : 0.7091
Pos Pred Value : 0.6751
Neg Pred Value : 0.6341
Prevalence : 0.5034
Detection Rate : 0.3002
Detection Prevalence : 0.4447
Balanced Accuracy : 0.6528
'Positive' Class : minor_disease

These results are consistent with their counterparts reported using C5.0. How

can we tune the parameters to further improve the results? (Fig. 9.7).

set.seed(1234)
control = rpart.control(cp = 0.000, xxval = 100, minsplit = 2)
qol_model= rpart(cd ~ ., data = qol_train[, -40], control = control)
plotcp(qol_model)

Fig. 9.6 Another decision tree classification of the QoL data, compare to Fig. 9.5

9.4 Case Study 1: Quality of Life and Chronic Disease 327

printcp(qol_model)

Classification tree:
rpart(formula = cd ~ ., data = qol_train[, -40], control = control)

Variables actually used in tree construction:
[1] AGE CHARLSONSCORE INTERVIEWDATE LANGUAGE
[5] MSA_Q_01 MSA_Q_02 MSA_Q_03 MSA_Q_04
[9] MSA_Q_05 MSA_Q_06 MSA_Q_07 MSA_Q_08
[13] MSA_Q_09 MSA_Q_10 MSA_Q_11 MSA_Q_12
[17] MSA_Q_13 MSA_Q_14 MSA_Q_15 MSA_Q_16
[21] MSA_Q_17 PH2_Q_01 PH2_Q_02 QOL_Q_01
[25] QOL_Q_02 QOL_Q_03 QOL_Q_04 QOL_Q_05
[29] QOL_Q_06 QOL_Q_07 QOL_Q_08 QOL_Q_09
[33] QOL_Q_10 RACE_ETHNICITY SEX TOS_Q_01
[37] TOS_Q_02 TOS_Q_03 TOS_Q_04

Root node error: 836/1771 = 0.47205

n= 1771

CP nsplit rel error xerror xstd
1 0.24641148 0 1.0000000 1.00000 0.025130
2 0.04186603 1 0.7535885 0.75359 0.024099
3 0.00717703 2 0.7117225 0.71651 0.023816
4 0.00657895 3 0.7045455 0.72967 0.023920
5 0.00598086 9 0.6543062 0.74282 0.024020
6 0.00478469 14 0.6244019 0.74282 0.024020
7 0.00418660 17 0.6100478 0.75239 0.024090
8 0.00398724 21 0.5933014 0.75359 0.024099
9 0.00358852 32 0.5466507 0.75957 0.024141

Fig. 9.7 Tuning the decision tree classification by reducing the error across the spectrum of cost-

complexity pruning parameter (cp) and tree size

328 9 Decision Tree Divide and Conquer Classification

10 0.00318979 41 0.5143541 0.77033 0.024215
11 0.00299043 53 0.4665072 0.78110 0.024286
12 0.00239234 59 0.4485646 0.78469 0.024309
13 0.00209330 91 0.3708134 0.80024 0.024406
14 0.00199362 95 0.3624402 0.82057 0.024522
15 0.00191388 108 0.3349282 0.83014 0.024574
16 0.00179426 122 0.2978469 0.82416 0.024542
17 0.00159490 151 0.2416268 0.82656 0.024555
18 0.00153794 164 0.2177033 0.82895 0.024567
19 0.00149522 171 0.2069378 0.83134 0.024580
20 0.00119617 182 0.1866029 0.83134 0.024580
21 0.00089713 295 0.0514354 0.86842 0.024758
22 0.00079745 306 0.0406699 0.87440 0.024783
23 0.00071770 309 0.0382775 0.87321 0.024778
24 0.00068353 314 0.0346890 0.87321 0.024778
25 0.00059809 321 0.0299043 0.88876 0.024841
26 0.00039872 367 0.0023923 0.88995 0.024846
27 0.00000000 373 0.0000000 0.89474 0.024864

Now, we can prune the tree according to the optimal cp, complexity parameter to

which the rpart object will be trimmed. Instead of using the real error (e.g., 1� R2,

RMSE) to capture the discrepancy between the observed labels and the model-

predicted labels, we will use the xerror, which averages the discrepancy between

observed and predicted classifications using cross-validation, see Chap. 21. Figs. 9.8,

9.9, and 9.10 show some alternative decision tree prunning results.

set.seed(1234)
selected_tr <- prune(qol_model, cp= qol_model$cptable[which.min(qol_model$cp
table[,"xerror"]),"CP"])
fancyRpartPlot(selected_tr, cex = 1)

Fig. 9.8 Prunned decision tree classification for the QoL data, compare to Figs. 9.5 and 9.6

9.4 Case Study 1: Quality of Life and Chronic Disease 329

qol_pred_tune<-predict(selected_tr, qol_test,type = 'class')
confusionMatrix(table(qol_pred_tune, qol_test$cd))

Confusion Matrix and Statistics
qol_pred_tune minor_disease severe_disease
minor_disease 133 64
severe_disease 90 156

Accuracy : 0.6524
95% CI : (0.606, 0.6967)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 1.759e-10
Kappa : 0.3053
Mcnemar's Test P-Value : 0.04395
Sensitivity : 0.5964
Specificity : 0.7091
Pos Pred Value : 0.6751
Neg Pred Value : 0.6341
Prevalence : 0.5034
Detection Rate : 0.3002
Detection Prevalence : 0.4447
Balanced Accuracy : 0.6528
'Positive' Class : minor_disease

The result is roughly same as that of C5.0. Despite the fact that there is no

substantial classification improvement, the tree-pruning process generates a graph-

ical representation of the decision making protocol (selected_tr) that is much

simpler and intuitive compared to the original (un-pruned) tree (qol_model):

fancyRpartPlot(qol_model, cex = 0.1)

Fig. 9.9 Testing data (QoL dataset) decision tree prediction results (for chronic disease, CD)

330 9 Decision Tree Divide and Conquer Classification

9.5 Compare Different Impurity Indices

We can change split ¼ "entropy" to "error" or "gini" to apply an alternative

information gain index. Experiment with these setting and compare the results.

set.seed(1234)
qol_model = rpart(cd ~ ., data=qol_train[, -40],
parms = list(split = "entropy"))
fancyRpartPlot(qol_model, cex = 1)

Modify and test using "error" and "gini"

qol_pred<-predict(qol_model, qol_test,type = 'class')
confusionMatrix(table(qol_pred, qol_test$cd))

9.6 Classification Rules

In addition to the classification trees we just saw, we can explore classification rules

that utilize if-else logical statements to assign classes to unlabeled data. Below

we review three classification rule strategies.

9.6.1 Separate and Conquer

Separate and conquer repeatedly splits the data (and subsets of the data) by rules that

cover a subset of examples. This procedure is very similar to the Divide and conquer

Fig. 9.10 Training data QoL decision tree plot

9.6 Classification Rules 331

approach. However, a notable difference is that each rule can be independent, and

yet, each decision node in a tree has to be linked to past decisions.

9.6.2 The One Rule Algorithm

To understand the One Rule (OneR) algorithm, we need to know about its

"sibling" - ZeroR rule. ZeroR rule means that we assign the mode class to

unlabeled test observations regardless of its feature value. The One rule algorithm

is an improved version of ZeroR that uses a single rule for classification. In other

words, OneR splits the training dataset into several segments based on feature

values. Then, it assigns the modes of the classes with in each segment to related

observations in the unlabeled test data. In practice, we first test multiple rules and

pick the rule with the smallest error rate to be our One Rule. Remember, these rules

may be subjective.

9.6.3 The RIPPER Algorithm

The Repeated Incremental Pruning to Produce Error Reduction algorithm is a

combination of the ideas behind decision tree and classification rules. It consists of

a three-step process:

• Grow: add conditions to a rule until it cannot split the data into more segments.

• Prune: delete some of the conditions that have large error rates.

• Optimize: repeat the above two steps until we cannot add or delete any of the

conditions.

9.7 Case Study 2: QoL in Chronic Disease (Take 2)

Let’s take another look at the same dataset as Case Study 1 - this time applying

classification rules. Naturally, we will skip over the first two data handling steps and

go directly to step three.

9.7.1 Step 3: Training a Model on the Data

Let’s start by using the OneR() function in the RWeka package. Before installing

the package you might want to check that the Java program in your computer is up to

date. Also, its version has to match the version of R (i.e., 64bit R needs 64bit Java).

The function OneR() has the following invocation protocol:

m<-OneR(class~predictors, data=mydata)

332 9 Decision Tree Divide and Conquer Classification

• class: factor vector with the class for each row in mydata.

• predictors: feature variables in mydata. If we want to include x1, x2 as predictors

and y as the class label variable, we do y� x1 + x2. To specify a full model, we use

this notation: y ~ ., which includes all of the column variables as predictors.

• mydata: the dataset where the features and labels can be found.

install.packages("RWeka")

library(RWeka)
just remove the CHRONICDISEASESCORE but keep cd

set.seed(1234)
qol_1R<-OneR(cd~., data=qol[, -40])
qol_1R

CHARLSONSCORE:
< -4.5 -> severe_disease
< 0.5 -> minor_disease
< 5.5 -> severe_disease
< 8.5 -> minor_disease
>= 8.5 -> severe_disease
(1453/2214 instances correct)

Note that 1,453 out of 2,214 cases are correctly classified, 66%, by the “one rule”.

9.7.2 Step 4: Evaluating Model Performance

summary(qol_1R)

=== Summary ===

Correctly Classified Instances 1453 65.6278 %
Incorrectly Classified Instances 761 34.3722 %
Kappa statistic 0.3206
Mean absolute error 0.3437
Root mean squared error 0.5863
Relative absolute error 68.8904 %
Root relative squared error 117.3802 %
Total Number of Instances 2214

=== Confusion Matrix ===

a b <-- classified as
609 549 | a = minor_disease
212 844 | b = severe_disease

We obtained a single rule that correctly specifies 66% of the patients, which is in line

with the prior decision tree classification results. Due to algorithmic stochasticity,

it’s normal that these results may vary each time you run the algorithm, albeit we

used seed(1234) to ensure some result reproducibility.

9.7 Case Study 2: QoL in Chronic Disease (Take 2) 333

9.7.3 Step 5: Alternative Model1

Another possible option for the classification rules would be the RIPPER rule

algorithm that we discussed earlier in the chapter. In R we use the Java based

function JRip() to invoke this algorithm.

JRip() function has the same components as the OneR() function:

m<-JRip(class~predictors, data=mydata)

set.seed(1234)
qol_jrip1<-JRip(cd~., data=qol[, -40])
qol_jrip1

JRIP rules:
===========
(CHARLSONSCORE >= 1) and (RACE_ETHNICITY >= 4) and (AGE >= 49) => cd=seve
re_disease (448.0/132.0)
(CHARLSONSCORE >= 1) and (AGE >= 53) => cd=severe_disease (645.0/265.0)
=> cd=minor_disease (1121.0/360.0)

Number of Rules : 3

summary(qol_jrip1)

Correctly Classified Instances 1457 65.8085 %
Incorrectly Classified Instances 757 34.1915 %
Kappa statistic 0.3158
Mean absolute error 0.4459
Root mean squared error 0.4722
Relative absolute error 89.3711 %
Root relative squared error 94.5364 %
Total Number of Instances 2214
=== Confusion Matrix ===
a b <-- classified as
761 397 | a = minor_disease
360 696 | b = severe_disease

This JRip() classifier uses only three rules and has a relatively similar accuracy

66%. As each individual has unique characteristics, classification in real world data

is rarely perfect (close to 100% accuracy).

9.7.4 Step 5: Alternative Model2

Another idea is to repeat the generation of trees multiple times, predict according to

each tree’s performance, and finally ensemble those weighted votes into a combined

classification result. This is precisely the idea behind random forest classifica-

tion, see Chap. 15 (Figs. 9.11 and 9.12).

require(randomForest)

set.seed(12)
rf.fit <- tuneRF(qol_train[, -40], qol_train[, 40], stepFactor=1.5)

rf.fit <- randomForest(cd~. , data=qol_train[, -40],importance=TRUE,ntree=2
000,mtry=26)
varImpPlot(rf.fit); print(rf.fit)

334 9 Decision Tree Divide and Conquer Classification

Fig. 9.11 Variable importance plots of random forest classification of the QoL CD variable using

accuracy (left) and Gini index (right) as evaluation metrics

Fig. 9.12 Error plots of the random forest prediction of CD (QoL chronic disease) using three

different trees models

9.7 Case Study 2: QoL in Chronic Disease (Take 2) 335

Call:
randomForest(formula = cd ~ ., data = qol_train[, -40],
importance = TRUE, ntree = 2000, mtry = 26)
Type of random forest: classification
Number of trees: 2000
No. of variables tried at each split: 26

OOB estimate of error rate: 35.86%
Confusion matrix:
minor_disease severe_disease class.error
minor_disease 576 359 0.3839572
severe_disease 276 560 0.3301435

rf.fit1 <- randomForest(cd~. , data=qol_train[, -40],importance=TRUE,ntree=
2000,mtry=26)
rf.fit2 <- randomForest(cd~. , data=qol_train[, -40], importance=TRUE, node
size=5, ntree=5000, mtry=26)

plot(rf.fit,log="x",main="rf.fit (Black), rf.fit1 (Red), rf.fit2 (Green)")
points(1:5000, rf.fit1$mse, col="red", type="l")
points(1:5000, rf.fit2$mse, col="green", type="l")

qol_pred<-predict(rf.fit2, qol_test, type = 'class')
confusionMatrix(table(qol_pred, qol_test$cd))

Confusion Matrix and Statistics
qol_pred minor_disease severe_disease
minor_disease 138 69
severe_disease 85 151

Accuracy : 0.6524
95% CI : (0.606, 0.6967)
No Information Rate : 0.5034
P-Value [Acc > NIR] : 1.759e-10
Kappa : 0.305
Mcnemar's Test P-Value : 0.2268
Sensitivity : 0.6188
Specificity : 0.6864
Pos Pred Value : 0.6667
Neg Pred Value : 0.6398
Prevalence : 0.5034
Detection Rate : 0.3115
Detection Prevalence : 0.4673
Balanced Accuracy : 0.6526
'Positive' Class : minor_disease

These variable importance plots (varplot) show the rank order of importance

of the features according to the specific index (Accuracy, left, and Gini, right). More

information about random forests is available in Chap. 15: Improving Model

Performance.

In random forest (RF) classification, the node size (nodesize) refers to the

smallest node that can be split, i.e., nodes with fewer cases than the nodesize are

never subdivided. Increasing the node size leads to smaller trees, which may

compromise previous predictive power. On the flip side, increasing the tree size

336 9 Decision Tree Divide and Conquer Classification

(maxnodes) and the number of trees (ntree) tends to increase the predictive

accuracy. However, there are tradeoffs between increasing node-size and tree-size

simultaneously. To optimize the RF predictive accuracy, try smaller node sizes and

more trees. Ensembling (forest) results from a larger number of trees will likely

generate better results.

9.8 Practice Problem

In the previous case study, we classified the CHRONICDISEASESCORE into two

groups. What will happen if we use three groups? Let’s separate

CHRONICDISEASESCORE evenly into three groups. Recall the quantile()

function that we talked about in Chap. 3. We can use it to get the cut-points for

classification. Then, a for loop will help us split the variable

CHRONICDISEASESCORE into three categories.

quantile(qol$CHRONICDISEASESCORE, probs = c(1/3, 2/3))

33.33333% 66.66667%
1.06 1.80

for(i in 1:2214){
if(qol$CHRONICDISEASESCORE[i]>0.7&qol$CHRONICDISEASESCORE[i]<2.2){
qol$cdthree[i]=2

}
else if(qol$CHRONICDISEASESCORE[i]>=2.2){
qol$cdthree[i]=3

}
else{
qol$cdthree[i]=1

}
}

qol$cdthree<-factor(qol$cdthree, levels=c(1, 2, 3), labels =
c("minor_disease", "mild_disease", "severe_disease"))

After labeling the three categories in the new variable cdthree, our job of

preparing the class variable is done. Let’s follow along the earlier sections in the

chapter to determine how well the tree classifiers and the rule classifiers perform in

the three-category case. First, try to build a tree classifier using C5.0() with

10 boost trials. One small tip is that in the training dataset, we cannot have column

40 (CHRONICDISEASESCORE), 41 (cd), and now 42 (cdthree) because they all

contain class outcome related variables.

9.8 Practice Problem 337

qol_train1<-qol[1:2114,]

qol_test1<-qol[2115:2214,]

train_index <- sample(seq_len(nrow(qol)), size = 0.8*nrow(qol))
qol_train1<-qol[train_index,]
qol_test1<-qol[-train_index,]

prop.table(table(qol_train1$cdthree))

minor_disease mild_disease severe_disease
0.1699605 0.6459627 0.1840768

prop.table(table(qol_test1$cdthree))

minor_disease mild_disease severe_disease
0.1760722 0.6478555 0.1760722

set.seed(1234)
qol_model1<-C5.0(qol_train1[, -c(40, 41, 42)], qol_train1$cdthree,
trials=10)
qol_model1

Call:
C5.0.default(x = qol_train1[, -c(40, 41, 42)], y =
qol_train1$cdthree, trials = 10)

Classification Tree
Number of samples: 1771
Number of predictors: 39

Number of boosting iterations: 10
Average tree size: 230.5

Non-standard options: attempt to group attributes

qol_pred1<-predict(qol_model1, qol_test1)

confusionMatrix(table(qol_test1$cdthree, qol_pred1))

Confusion Matrix and Statistics

qol_pred1
minor_disease mild_disease severe_disease
minor_disease 12 58 8
mild_disease 23 239 25
severe_disease 3 61 14

Overall Statistics

Accuracy : 0.5982
95% CI : (0.5509, 0.6442)
No Information Rate : 0.8081
P-Value [Acc > NIR] : 1

Kappa : 0.0923
Mcnemar's Test P-Value : 4.174e-07

Statistics by Class:

338 9 Decision Tree Divide and Conquer Classification

Class: minor_disease Class: mild_disease
Sensitivity 0.31579 0.6676
Specificity 0.83704 0.4353
Pos Pred Value 0.15385 0.8328
Neg Pred Value 0.92877 0.2372
Prevalence 0.08578 0.8081
Detection Rate 0.02709 0.5395
Detection Prevalence 0.17607 0.6479
Balanced Accuracy 0.57641 0.5514
Class: severe_disease
Sensitivity 0.2979
Specificity 0.8384
Pos Pred Value 0.1795
Neg Pred Value 0.9096
Prevalence 0.1061
Detection Rate 0.0316
Detection Prevalence 0.1761
Balanced Accuracy 0.5681

We can see that the prediction accuracy with three categories is way lower than

the one we did with two categories.

Next, try to build a rule classifier with OneR().

set.seed(1234)
qol_1R1<-OneR(cdthree~., data=qol[, -c(40, 41)])
qol_1R1

INTERVIEWDATE:
< 3.5 -> mild_disease
< 28.5 -> severe_disease
< 282.0 -> mild_disease
< 311.5 -> severe_disease
>= 311.5 -> mild_disease
(1436/2214 instances correct)
summary(qol_1R1)

=== Summary ===

Correctly Classified Instances 1436 64.86 %
Incorrectly Classified Instances 778 35.14 %
Kappa statistic 0.022
Mean absolute error 0.2343
Root mean squared error 0.484
Relative absolute error 67.5977 %
Root relative squared error 116.2958 %
Total Number of Instances 2214

=== Confusion Matrix ===

a b c <-- classified as
0 375 4 | a = minor_disease
0 1422 9 | b = mild_disease
0 390 14 | c = severe_disease

qol_pred1<-predict(qol_1R1, qol_test1)

confusionMatrix(table(qol_test1$cdthree, qol_pred1))

Confusion Matrix and Statistics

9.8 Practice Problem 339

qol_pred1
minor_disease mild_disease severe_disease
minor_disease 0 78 0
mild_disease 0 285 2
severe_disease 0 76 2

Overall Statistics

Accuracy : 0.6479
95% CI : (0.6014, 0.6923)
No Information Rate : 0.991
P-Value [Acc > NIR] : 1

Kappa : 0.012
Mcnemar's Test P-Value : NA

Statistics by Class:

Class: minor_disease Class: mild_disease
Sensitivity NA 0.64920
Specificity 0.8239 0.50000
Pos Pred Value NA 0.99303
Neg Pred Value NA 0.01282

Prevalence 0.0000 0.99097
Detection Rate 0.0000 0.64334
Detection Prevalence 0.1761 0.64786
Balanced Accuracy NA 0.57460
Class: severe_disease
Sensitivity 0.500000
Specificity 0.826879
Pos Pred Value 0.025641
Neg Pred Value 0.994521
Prevalence 0.009029
Detection Rate 0.004515
Detection Prevalence 0.176072
Balanced Accuracy 0.663440

The OneRule classifier that is purely based on the value of the

INTERVIEWDATE has 65% internal classification accuracy, and also 65% external

(validation data) prediction accuracy. Although, the latter assessment is a bit mis-

leading, as the vast majority of external validation data are classified in only one

class - mild_disease.

Finally, let’s revisit the JRip() classifier with the same three class labels

according to cdthree.

340 9 Decision Tree Divide and Conquer Classification

set.seed(1234)
qol_jrip1<-JRip(cdthree~., data=qol[, -c(40, 41)])
qol_jrip1

JRIP rules:
===========
(CHARLSONSCORE <= 0) and (AGE <= 50) and (MSA_Q_06 <= 1) and
(QOL_Q_07 >= 1) and (MSA_Q_09 <= 1) => cdthree=minor_disease (35.0/11.0)
(CHARLSONSCORE >= 1) and (QOL_Q_10 >= 4) and (QOL_Q_07 >= 9) =>
cdthree=severe_disease (54.0/20.0)
(CHARLSONSCORE >= 1) and (QOL_Q_02 >= 5) and (MSA_Q_09 <= 4) and
(MSA_Q_04 >= 3) => cdthree=severe_disease (64.0/30.0)
(CHARLSONSCORE >= 1) and (QOL_Q_02 >= 4) and (PH2_Q_01 >= 3) and
(QOL_Q_10 >= 4) and (RACE_ETHNICITY >= 4) => cdthree=severe_disease
(43.0/19.0)
=> cdthree=mild_disease (2018.0/653.0)

Number of Rules : 5

summary(qol_jrip1)

=== Summary ===

Correctly Classified Instances 1481 66.8925 %
Incorrectly Classified Instances 733 33.1075 %
Kappa statistic 0.1616
Mean absolute error 0.3288
Root mean squared error 0.4055
Relative absolute error 94.8702 %
Root relative squared error 97.42 %
Total Number of Instances 2214
=== Confusion Matrix ===

a b c <-- classified as
24 342 13 | a = minor_disease
10 1365 56 | b = mild_disease
1 311 92 | c = severe_disease

qol_pred1<-predict(qol_jrip1, qol_test1)

confusionMatrix(table(qol_test1$cdthree, qol_pred1))

Confusion Matrix and Statistics

qol_pred1
minor_disease mild_disease severe_disease
minor_disease 5 70 3
mild_disease 2 275 10
severe_disease 0 61 17

Overall Statistics
Accuracy : 0.6704
95% CI : (0.6245, 0.7141)
No Information Rate : 0.9165
P-Value [Acc > NIR] : 1

Kappa : 0.1583
Mcnemar's Test P-Value : <2e-16

Statistics by Class:
Class: minor_disease Class: mild_disease

9.8 Practice Problem 341

Sensitivity 0.71429 0.6773
Specificity 0.83257 0.6757
Pos Pred Value 0.06410 0.9582
Neg Pred Value 0.99452 0.1603
Prevalence 0.01580 0.9165
Detection Rate 0.01129 0.6208
Detection Prevalence 0.17607 0.6479
Balanced Accuracy 0.77343 0.6765
Class: severe_disease
Sensitivity 0.56667
Specificity 0.85230
Pos Pred Value 0.21795
Neg Pred Value 0.96438
Prevalence 0.06772
Detection Rate 0.03837
Detection Prevalence 0.17607
Balanced Accuracy 0.70948

In terms of the predictive accuracy on the testing data (qol_test1$cdthree),

we can see from these outputs that the RIPPER algorithm performed better (67%)

than the C5.0 decision tree (60%) and similarly to the OneR algorithm (65%),

which suggests that simple algorithms might outperform complex methods for

certain real world case-studies. Later, in Chap. 15, we will provide more details

about optimizing and improving classification and prediction performance.

Try to replicate these results with other data from the list of our Case-Studies.

9.9 Assignments 9: Decision Tree Divide and Conquer

Classification

9.9.1 Explain These Concepts

• Information Gain Measure

• Impurity

• Entropy

• Gini

9.9.2 Decision Tree Partitioning

Use the SOCR Neonatal Pain data to build and display a decision tree recursively

partitioning the data using the provided features and attributes to split the data into

similar classes.

• Collect and preprocess the data, e.g., data conversion and variable selection.

• Randomly split the data into training and testing sets.

• Train decision tree models on the data using C5.0 and rpart.

342 9 Decision Tree Divide and Conquer Classification

• Evaluate and compare the two models.

• Tune the rpart parameter and repeat the evaluation and comparison again.

• Assess the prediction accuracy and report the confusion matrix.

• Comment on different aspects of the prediction performance.

• Use various impurity measures and re-estimate the models.

• Try to use the RWeka package to train decision models and compare the results.

• Try to apply Random Forest and obtain variables importance plot.

References

Fischetti, T, Lantz, B, Abedin, J, Mittal, HV, Makhabel, B, Berlinger, E, Illes, F, Badics, M,

Banai, A, Daroczi, G (2016) R: Data Analysis and Visualization, Packt Publishing Ltd, ISBN

1786460483, 9781786460486.

Liu, H, Gegov, A, Cocea, M. (2015) Rule Based Systems for Big Data: A Machine Learning

Approach, Springer, Volume 13 (Studies in Big Data), ISBN 3319236962, 9783319236964.

Witten, IH, Frank, E, Hall, MA, Pal, CJ. (2016) Data Mining: Practical Machine Learning Tools

and Techniques, Morgan Kaufmann, Series in Data Management Systems, ISBN 0128043571,

9780128043578.

References 343

Chapter 10

Forecasting Numeric Data Using Regression

Models

In the previous Chaps. 7, 8, and 9, we covered classification methods that use

mathematical formalism to address everyday life prediction problems. In this Chap-

ter, we will focus on specific model-based statistical methods providing forecasting

and classification functionality. Specifically, we will (1) demonstrate the predictive

power of multiple linear regression; (2) show the foundation of regression trees and

model trees; and (3) examine two complementary case-studies (Baseball Players and

Heart Attack).

It may be helpful to first review Chap. 5 (Linear Algebra/Matrix Manipulations)

and Chap. 7 (Introduction to Machine Learning).

10.1 Understanding Regression

Regression is a measurement of relationship between a dependent variable (value to

be predicted) and a group of independent variables (predictors similar to features,

discussed in Chap. 7). We assume the relationship between our dependent variable

and independent variables follows a predefined model, e.g., an affine or hyper-linear

model.

10.1.1 Simple Linear Regression

First recall the material presented in Chap. 5 (Linear Algebra &Matrix Computing).

The simplest case of regression modeling involves a single predictor.

y ¼ aþ bx:

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_10

345

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_10&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_10

This formula should appear familiar by now. In this slope-intercept analytical

expression, a is our intercept while b is the slope. That is an equation form of the

simple linear regression model. If we know a and b, for any given x (input) we can

predict y (output) via the above formula. If we plot x and y in a 2D coordinate

system, the model is graphically represented as a straight line.

However, this is the ideal case. When we plot using real world data, the pattern may

be harder to recognize. Let’s look at the scatter plot (see Chap. 3) and simple linear

regression line of two variables “hospital charges” orCHARGES (independent variable)

and length of stay in the hospital or LOS (predictor). The data is available online,

CaseStudy12_AdultsHeartAttack_Data. We removed two observations

that have missing data using the command heart_attack<-heart_attack
[complete.cases(heart_attack),].

heart_attack<-
read.csv("https://umich.instructure.com/files/1644953/download?download_frd
=1", stringsAsFactors = F) heart_attack$CHARGES<-as.numeric
(heart_attack$CHARGES)

Warning: NAs introduced by coercion

heart_attack<-heart_attack[complete.cases(heart_attack),]

fit1<-lm(CHARGES~LOS, data=heart_attack)
par(cex=.8)
plot(heart_attack$LOS, heart_attack$CHARGES, xlab="LOS", ylab = "CHARGES")
abline(fit1, lwd=2)

It seems to be common sense that the longer you stay in the hospital, the higher

the medical costs will be. However, on the scatter plot, we have only a bunch of dots

showing some sign of an increasing pattern (Fig. 10.1).

Fig. 10.1 Scatterplot and a linear model of length of stay (LOS) vs. hospital charges for the heart

attack data

346 10 Forecasting Numeric Data Using Regression Models

https://umich.instructure.com/files/1644953/download?download_frd=1
https://umich.instructure.com/files/1644953/download?download_frd=1

The estimated expression for this regression line is:

ŷ ¼ 4582:70þ 212:29� x,

or equivalently

CHARGES ¼ 4582:70þ 212:29� LOS:

It is simple to make predictions with this regression line. Assumewe have a patient

that spent 10 days in hospital, thenwe haveLOS¼10. The predicted charge is likely to
be $4582.70 + $212.29 � 10 ¼ $6705.6. Plugging x into the expression equation

automatically gives us an estimated value of the outcome y. This Chapter of the

Probability and statistics EBook provides an introduction to linear modeling (http://

wiki.socr.umich.edu/index.php/EBook#Chapter_X:_Correlation_and_Regression).

10.2 Ordinary Least Squares Estimation

How did we get the estimated expression? The most common estimating method in

statistics is ordinary least squares (OLS). OLS estimators are obtained byminimizing

the sum of the squared errors – that is the sum of squared vertical distances between

each point on the scatter plot and its predicted value on the regression line (Fig. 10.2).

Fig. 10.2 Graphical representation of the residuals representing the difference between observed

and predicted values

10.2 Ordinary Least Squares Estimation 347

http://wiki.socr.umich.edu/index.php/EBook#Chapter_X:_Correlation_and_Regression
http://wiki.socr.umich.edu/index.php/EBook#Chapter_X:_Correlation_and_Regression

OLS is minimizing the following formula:

X

n

i¼1

�

yi � ŷ i

�2
¼

X

n

i¼1

yi � aþ b� xið Þð Þ2 ¼
X

n

i¼1

e2i :

Some simple mathematical operations to minimize the sum square error yield the

following solution for the slope parameter b:

b ¼

P
�

xi � �x
��

yi � �y
�

P
�

xi � �x
�2

:

While the intercept a is given by:

a ¼ �y� b�x:

Recall what we learned in Chap. 3, where the variance was obtained by averaging

the sum of squares var xð Þ ¼
1

n

Xn

i¼1
xi � μð Þ2

��

. When we use �x to estimate the

mean of x, we have the following formula for the sample variance:

var xð Þ ¼
1

n� 1

Xn

i¼1

�

xi � �x
�2
. We can see that this is 1

n�1
times the denominator

of b. Similar to the variance, the covariance of x and y measures the average sum of

the x deviance times the y deviance.

Cov x; yð Þ ¼
1

n

X

n

i¼1

xi � μxð Þ yi � μy
� �

:

If we use sample averages (�x, �y), we have: Cov x; yð Þ ¼
1

n� 1

Xn

i¼1

�

xi � �x
�

�

yi � �y
�

. This is 1
n�1

times the numerator of b.

Combining the above, we get an estimate of the slope coefficient (effect-size of

LOS on Charge):

b ¼
Cov x; yð Þ

var xð Þ
:

Let’s examine these closed-form analytical expressions using the heart

attack data.

b<-cov(heart_attack$LOS, heart_attack$CHARGES)/var(heart_attack$LOS); b

[1] 212.2869

a<-mean(heart_attack$CHARGES)-b*mean(heart_attack$LOS); a

[1] 4582.7

We can see that these estimates are exactly the same result as the previously

reported.

348 10 Forecasting Numeric Data Using Regression Models

10.2.1 Model Assumptions

Regression modeling has the following five key assumptions:

• Linear relationship,

• Multivariate normality,

• No or little multicollinearity,

• No auto-correlation, independence,

• Homoscedasticity.

10.2.2 Correlations

The SOCR Interactive Scatterplot Game (requires Java enabled browser) provides a

dynamic interface demonstrating linear models, trends, correlations, slopes, and

residuals.

Using the covariance, we can calculate the correlation, which indicates how

closely the relationship between two variables follows a straight line.

ρx,y ¼ Corr x; yð Þ ¼
Cov x; yð Þ

σxσy
¼

Cov x; yð Þ
ffi

Var xð ÞVar yð Þ
p :

In R, correlation is given by cor() while square root of variance, or standard

deviation, is given by sd().

r<-cov(heart_attack$LOS, heart_attack$CHARGES)/(sd(heart_attack$LOS)*
sd(heart_attack$CHARGES))
r
[1] 0.2449743
cor(heart_attack$LOS, heart_attack$CHARGES)
[1] 0.2449743

The same outputs are obtained by the manual and the automated correlation

calculations. This correlation is a positive number that is relatively small. We can

say there is a weak positive linear association between these two variables. If we

have a negative correlation estimate, it suggests a negative linear association. We

have a weak association when 0.1 � Cor < 0.3, a moderate association for

0.3 � Cor < 0.5, and a strong association for 0.5 � Cor � 1.0. If the correlation is

below 0.1 then it suggests little to no linear relation between the variables.

10.2 Ordinary Least Squares Estimation 349

10.2.3 Multiple Linear Regression

In practice, most interesting problems involve multiple predictors and one dependent

variable, which requires estimating a multiple linear model. That is:

y ¼ αþ β1x1 þ β2x2 þ . . .þ βkxk þ E,

or equivalently

y ¼ β0 þ β1x1 þ β2x2 þ . . .þ βkxk þ E:

We usually use the second notation method in statistics. This equation shows the

linear relationship between k predictors and a dependent variable. In total we have

k + 1 coefficients to estimate.

The matrix notation for corresponding to the above equation is:

Y ¼ Xβ þ E,

where

Y ¼

y1

y2

. . .

yn

0

B

B

B

B

@

1

C

C

C

C

A

,

X ¼

1 x11 x21 . . . xk1

1 x12 x22 . . . xk2

: : : : :

1 x1n x2n . . . xkn

0

B

B

B

B

@

1

C

C

C

C

A

,

β ¼

β1

β2

. . .

βk

0

B

B

B

B

@

1

C

C

C

C

A

,

and

E ¼

E1

E2

. . .

En

0

B

B

B

B

@

1

C

C

C

C

A

is the error term.

350 10 Forecasting Numeric Data Using Regression Models

Similar to simple linear regression, our goal is to minimize sum of squared errors.

Solving for β, we get:

β̂ ¼ XTX
� ��1

XTY:

This is the matrix form solution, where X�1 is the inverse matrix of X and XT is the

transpose matrix.

Let’s write a simple R function reg (x,y), that implements this matrix formula.

reg<-function(y, x){
x<-as.matrix(x)
x<-cbind(Intercept=1, x)
solve(t(x)%*%x)%*%t(x)%*%y

}

The method solve() is used to compute the matrix inverse and %*% is matrix

multiplication.

Next, we will apply this function to our heart attack dataset. To begin, let’s check

if the simple linear regression output is the same as we calculated earlier.

reg(y=heart_attack$CHARGES, x=heart_attack$LOS)

[,1]
Intercept 4582.6997
212.2869

As the slope and intercept and consistent with our previous estimates, we can

continue and include additional variables as predictors. For instance, we can just add

age into the model.

str(heart_attack)

'data.frame': 148 obs. of 8 variables:
$ Patient : int 1 2 3 4 5 6 7 8 9 10 ...
$ DIAGNOSIS: int 41041 41041 41091 41081 41091 41091 41091 41091 41041
41041 ...
$ SEX : chr "F" "F" "F" "F" ...
$ DRG : int 122 122 122 122 122 121 121 121 121 123 ...
$ DIED : int 0 0 0 0 0 0 0 0 0 1 ...
$ CHARGES : num 4752 3941 3657 1481 1681 ...
$ LOS : int 10 6 5 2 1 9 15 15 2 1 ...
$ AGE : int 79 34 76 80 55 84 84 70 76 65 ...

reg(y=heart_attack$CHARGES, x=heart_attack[, c(7, 8)])

[,1]
Intercept 7280.55493
LOS 259.67361
AGE -43.67677

10.2 Ordinary Least Squares Estimation 351

10.3 Case Study 1: Baseball Players

10.3.1 Step 1: Collecting Data

We utilize the MLB data "01a_data.txt". The dataset contains 1034 records of

heights and weights for some current and recent Major League Baseball (MLB)

Players. These data were obtained from different resources (e.g., IBM Many Eyes).

This dataset includes the folloing variables:

• Name: MLB Player Name,

• Team: The Baseball team the player was a member of at the time the data was

acquired,

• Position: Player field position,

• Height: Player height in inch,

• Weight: Player weight in pounds, and

• Age: Player age at time of record.

10.3.2 Step 2: Exploring and Preparing the Data

Let’s load this dataset first. We use as.is¼T to make non-numerical vectors into

characters. Also, we delete the Name variable because we don’t need players’ names

in this case study.

mlb<- read.table('https://umich.instructure.com/files/330381/download?downlo
ad_frd=1', as.is=T, header=T)
str(mlb)

'data.frame': 1034 obs. of 6 variables:
$ Name : chr "Adam_Donachie" "Paul_Bako" "Ramon_Hernandez"
"Kevin_Millar" ...
$ Team : chr "BAL" "BAL" "BAL" "BAL" ...
$ Position: chr "Catcher" "Catcher" "Catcher" "First_Baseman" ...
$ Height : int 74 74 72 72 73 69 69 71 76 71 ...
$ Weight : int 180 215 210 210 188 176 209 200 231 180 ...
$ Age : num 23 34.7 30.8 35.4 35.7 ...

mlb<-mlb[, -1]

By looking at the srt() output, we notice that the variable TEAM and Posi-
tion are misspecified as characters. To fix this, we can use the function as.
factor() to convert numerical or character vectors to factors.

mlb$Team<-as.factor(mlb$Team)
mlb$Position<-as.factor(mlb$Position)

The data is good to go. Let’s explore it using some summary statistics and plots

(Fig. 10.3).

352 10 Forecasting Numeric Data Using Regression Models

https://umich.instructure.com/files/330381/download?download_frd=1
https://umich.instructure.com/files/330381/download?download_frd=1

summary(mlb$Weight)
Min. 1st Qu. Median Mean 3rd Qu. Max.
150.0 187.0 200.0 201.7 215.0 290.0
hist(mlb$Weight, main = "Histogram for Weights")

The above plot illustrates our dependent variable Weight. As we learned in

Chap. 3, this distribution appears somewhat right-skewed (Fig. 10.3).

Applying GGpairs to obtain a compact dataset summary we can mark heavy

weight and light weight players (according to light < median < heavy) by different

colors in the plot on Fig. 10.4

require(GGally)
mlb_binary = mlb

mlb_binary$bi_weight =
as.factor(ifelse(mlb_binary$Weight>median(mlb_binary$Weight),1,0))
g_weight <- ggpairs(data=mlb_binary[-1], title="MLB Light/Heavy Weights",

mapping=ggplot2::aes(colour = bi_weight),
lower=list(combo=wrap("facethist",binwidth=1)))

g_weight

Next, we may also mark player positions by different colors in the plot

(Fig. 10.5).

g_position <- ggpairs(data=mlb[-1], title="MLB by Position",
mapping=ggplot2::aes(colour = Position),
lower=list(combo=wrap("facethist",binwidth=1)))

g_position

What about potential predictors?

Fig. 10.3 Frequency

histogram of the MLB

player’s weights

10.3 Case Study 1: Baseball Players 353

table(mlb$Team)
ANA ARZ ATL BAL BOS CHC CIN CLE COL CWS DET FLA HOU KC LA MIN MLW NYM
35 28 37 35 36 36 36 35 35 33 37 32 34 35 33 33 35 38
NYY OAK PHI PIT SD SEA SF STL TB TEX TOR WAS
32 37 36 35 33 34 34 32 33 35 34 36

table(mlb$Position)

Catcher Designated_Hitter First_Baseman Outfielder
76 18 55 194
Relief_Pitcher Second_Baseman Shortstop Starting_Pitcher
315 58 52 221
Third_Baseman
45

summary(mlb$Height)

Fig. 10.4 Pair plots of the MLB data by player’s light (red) or heavy (blue) weights

354 10 Forecasting Numeric Data Using Regression Models

Min. 1st Qu. Median Mean 3rd Qu. Max.
67.0 72.0 74.0 73.7 75.0 83.0

summary(mlb$Age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.90 25.44 27.92 28.74 31.23 48.52

In this case, we have two numerical predictors, two categorical predictors and

1,034 observations. Let’s see how R treats different classes of variables.

Fig. 10.5 Pair plots of the MLB data by position type

10.3 Case Study 1: Baseball Players 355

10.3.3 Exploring Relationships Among Features:

The Correlation Matrix

Before fitting a model, let’s examine the independence of our potential predictors

and the dependent variable. Multiple linear regression assumes that predictors are all

independent of each other. Is this assumption valid? As we mentioned earlier, the

cor() function can answer this question in pairwise manner. Note that we only

look at numerical variables.

cor(mlb[c("Weight", "Height", "Age")])

Weight Height Age
Weight 1.0000000 0.53031802 0.15784706
Height 0.5303180 1.00000000 -0.07367013
Age 0.1578471 -0.07367013 1.00000000

Observe that cor(y, x)¼ cor(x, y) and cov(x, x)¼ 1. Also, our Height variable is

weakly related to the players’ age in a negative manner. This looks very good and

wouldn’t cause any multicollinearity problem. If two of our predictors are highly

correlated, they both provide almost the same information, which could imply

multicollinearity. A common practice is to delete one of them in the model or use

dimensionality reduction methods.

10.3.4 Visualizing Relationships Among Features:

The Scatterplot Matrix

To visualize pairwise correlations, we could use scatterplot or pairs() plot

(Fig. 10.6).

pairs(mlb[c("Weight", "Height", "Age")])

You might get a sense of the data, but it is difficult to see any linear pattern. We

can make a more sophisticated graph using pairs.panels() in the psych
package (Fig. 10.7).

install.packages("psych")

library(psych)
pairs.panels(mlb[, c("Weight", "Height", "Age")])

This plot provides much more information about the three variables. Above the

diagonal, we have our correlation coefficients in numerical form. On the diagonal, there

are histograms of variables. Below the diagonal, visual information is presented to help

us understand the trend. This specific graph shows that height and weight are positively

and strongly correlated. Also, the relationships between age and height, as well as, age

and weight are very weak, see the horizontal red line in the panel below the main

diagonal graphs, which indicates weak relationships (Fig. 10.7).

356 10 Forecasting Numeric Data Using Regression Models

Fig. 10.6 MLB players weights, heights and ages

Fig. 10.7 A more detailed pairs plot of MLB players weights, heights and ages

10.3 Case Study 1: Baseball Players 357

10.3.5 Step 3: Training a Model on the Data

The function we are going to use now is lm(). No additional package is needed

when using this function.

The lm() function has the following components:

m<-lm(dv ~ iv, data¼mydata)

• dv: dependent variable

• iv: independent variables. Just like OneR() in Chap. 9, if we use . as iv, then all
of the variables, except the dependent variable (dv), are included as predictors.

• data: specifies the data containing both dependent viable and independent

variables.

fit<-lm(Weight~., data=mlb)
fit

Call:
lm(formula = Weight ~ ., data = mlb)

Coefficients:
(Intercept) TeamARZ
-164.9995 7.1881
TeamATL TeamBAL
-1.5631 -5.3128
TeamBOS TeamCHC
-0.2838 0.4026
TeamCIN TeamCLE
2.1051 -1.3160
TeamCOL TeamCWS
-3.7836 4.2944
TeamDET TeamFLA
2.3024 2.6985
TeamHOU TeamKC
-0.6808 -4.7664
TeamLA TeamMIN
2.8598 2.1269
TeamMLW TeamNYM
4.2897 -1.9736
TeamNYY TeamOAK
1.7483 -0.5464
TeamPHI TeamPIT
-6.8486 4.3023
TeamSD TeamSEA
2.6133 -0.9147
TeamSF TeamSTL
0.8411 -1.1341
TeamTB TeamTEX
-2.6616 -0.7695
TeamTOR TeamWAS
1.3943 -1.7555
PositionDesignated_Hitter PositionFirst_Baseman
8.9037 2.4237
PositionOutfielder PositionRelief_Pitcher
-6.2636 -7.7695

358 10 Forecasting Numeric Data Using Regression Models

PositionSecond_Baseman PositionShortstop
-13.0843 -16.9562
PositionStarting_Pitcher PositionThird_Baseman
-7.3599 -4.6035
Height Age
4.7175 0.8906

As we can see from the output, factors are included in the model by creating

several indicators, one for each factor level. For each numerical variable, a

corresponding model coefficient is estimated.

10.3.6 Step 4: Evaluating Model Performance

As we did in previous case-studies, let’s examine the model performance (Figs. 10.8

and 10.9).

Fig. 10.8 Scatterplot of the residuals vs. model fitted values

Fig. 10.9 QQ-normal plot of the residuals suggesting a linear model may explain the players’

weight

10.3 Case Study 1: Baseball Players 359

summary(fit)

Call:
lm(formula = Weight ~ ., data = mlb)

Residuals:
Min 1Q Median 3Q Max
-48.692 -10.909 -0.778 9.858 73.649

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -164.9995 19.3828 -8.513 < 2e-16 ***
TeamARZ 7.1881 4.2590 1.688 0.091777 .
TeamATL -1.5631 3.9757 -0.393 0.694278
TeamBAL -5.3128 4.0193 -1.322 0.186533
TeamBOS -0.2838 4.0034 -0.071 0.943492
TeamCHC 0.4026 3.9949 0.101 0.919749
TeamCIN 2.1051 3.9934 0.527 0.598211
TeamCLE -1.3160 4.0356 -0.326 0.744423
TeamCOL -3.7836 4.0287 -0.939 0.347881
TeamCWS 4.2944 4.1022 1.047 0.295413
TeamDET 2.3024 3.9725 0.580 0.562326
TeamFLA 2.6985 4.1336 0.653 0.514028
TeamHOU -0.6808 4.0634 -0.168 0.866976
TeamKC -4.7664 4.0242 -1.184 0.236525
TeamLA 2.8598 4.0817 0.701 0.483686
TeamMIN 2.1269 4.0947 0.519 0.603579
TeamMLW 4.2897 4.0243 1.066 0.286706
TeamNYM -1.9736 3.9493 -0.500 0.617370
TeamNYY 1.7483 4.1234 0.424 0.671655
TeamOAK -0.5464 3.9672 -0.138 0.890474
TeamPHI -6.8486 3.9949 -1.714 0.086778 .
TeamPIT 4.3023 4.0210 1.070 0.284890
TeamSD 2.6133 4.0915 0.639 0.523148
TeamSEA -0.9147 4.0516 -0.226 0.821436
TeamSF 0.8411 4.0520 0.208 0.835593
TeamSTL -1.1341 4.1193 -0.275 0.783132
TeamTB -2.6616 4.0944 -0.650 0.515798
TeamTEX -0.7695 4.0283 -0.191 0.848556
TeamTOR 1.3943 4.0681 0.343 0.731871
TeamWAS -1.7555 4.0038 -0.438 0.661142
PositionDesignated_Hitter 8.9037 4.4533 1.999 0.045842 *
PositionFirst_Baseman 2.4237 3.0058 0.806 0.420236
PositionOutfielder -6.2636 2.2784 -2.749 0.006084 **
PositionRelief_Pitcher -7.7695 2.1959 -3.538 0.000421 ***
PositionSecond_Baseman -13.0843 2.9638 -4.415 1.12e-05 ***
PositionShortstop -16.9562 3.0406 -5.577 3.16e-08 ***
PositionStarting_Pitcher -7.3599 2.2976 -3.203 0.001402 **
PositionThird_Baseman -4.6035 3.1689 -1.453 0.146613
Height 4.7175 0.2563 18.405 < 2e-16 ***
Age 0.8906 0.1259 7.075 2.82e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.78 on 994 degrees of freedom
Multiple R-squared: 0.3858, Adjusted R-squared: 0.3617
F-statistic: 16.01 on 39 and 994 DF, p-value: < 2.2e-16

plot(fit, which = 1:2)

360 10 Forecasting Numeric Data Using Regression Models

The model summary shows us how well the model fits the data.

Residuals This tells us about the residuals. If we have extremely large or extremely

small residuals for some observations compared to the rest of residuals, either they

are outliers due to reporting error or the model fits data poorly. We have 73.649 as

our maximum and �48.692 as our minimum. The residuals could be characterized

by examining their range and by viewing the residual diagnostic plots.

Coefficients In this section of the output, we look at the very right column that has

symbols like stars or dots showing if that variable is significant and should be

included in the model. However, if no symbol is included next to a variable, then

it means this estimated covariate coefficient in the linear model covariance could be

trivial. Another thing we can look at is the Pr(>|t|) column. A number close to

zero in this column indicates the row variable is significant, otherwise it could be

removed from the model.

In this example, some of the teams and positions are significant and some are not.

Both Age and Height are significant.

R-squared What percent in y is explained by the included predictors? Here, we

have 38.58%, which indicates the model is not bad but could be improved. Usually a

well-fitted linear regression would have R-squared over 70%.

The diagnostic plots also help us understand the model quality.

Residual vs. Fitted This is the main residual diagnostic plot, Fig. 10.8. We can see

that the residuals of observations indexed 65, 160 and 237 are relatively far apart

from the rest. They may represent potential influential points or outliers.

Normal Q-Q This plot examines the normality assumption of the model, Fig. 10.9.

The scattered dots represent the matched quantiles of the data and the normal

distribution. If the Q-Q plot closely resembles a line bisecting the first quadrant in

the plane, the normality assumption is valid. In our case, it is relatively close to the

line. So, we can say that our model is valid in terms of normality.

10.4 Step 5: Improving Model Performance

We can employ the step function to perform forward or backward selection of

important features/predictors. It works for both lm and glm models. In most cases,

backward-selection is preferable because it tends to retain much larger models. On

the other hand, there are various criteria to evaluate a model. The common model

evaluation metrics include AIC, BIC, Adjusted R2, etc. In Chap. 14, we will present

more details about prediction evaluation and assessment of classificaiton. Let’s

compare the backward and forward model selection approaches. The step function

argument direction allows this control (default is both, which will select the

better result from either backward or forward selection).

10.4 Step 5: Improving Model Performance 361

step(fit,direction = "backward")

Start: AIC=5871.04
Weight ~ Team + Position + Height + Age

Df Sum of Sq RSS AIC
- Team 29 9468 289262 5847.4
<none> 279793 5871.0
- Age 1 14090 293883 5919.8
- Position 8 20301 300095 5927.5
- Height 1 95356 375149 6172.3

Step: AIC=5847.45
Weight ~ Position + Height + Age

Df Sum of Sq RSS AIC
<none> 289262 5847.4
- Age 1 14616 303877 5896.4
- Position 8 20406 309668 5901.9
- Height 1 100435 389697 6153.6

Call:
lm(formula = Weight ~ Position + Height + Age, data = mlb)

Coefficients:
(Intercept) PositionDesignated_Hitter
-168.0474 8.6968
PositionFirst_Baseman PositionOutfielder
2.7780 -6.0457
PositionRelief_Pitcher PositionSecond_Baseman
-7.7782 -13.0267
PositionShortstop PositionStarting_Pitcher
-16.4821 -7.3961
PositionThird_Baseman Height
-4.1361 4.7639
Age
0.8771

step(fit,direction = "forward")

Start: AIC=5871.04
Weight ~ Team + Position + Height + Age

Call:
lm(formula = Weight ~ Team + Position + Height + Age, data = mlb)

Coefficients:
(Intercept) TeamARZ
-164.9995 7.1881
TeamATL TeamBAL
-1.5631 -5.3128
TeamBOS TeamCHC
-0.2838 0.4026
TeamCIN TeamCLE
2.1051 -1.3160
TeamCOL TeamCWS

362 10 Forecasting Numeric Data Using Regression Models

-3.7836 4.2944
TeamDET TeamFLA
2.3024 2.6985
TeamHOU TeamKC
-0.6808 -4.7664
TeamLA TeamMIN
2.8598 2.1269
TeamMLW TeamNYM
4.2897 -1.9736
TeamNYY TeamOAK
1.7483 -0.5464
TeamPHI TeamPIT
-6.8486 4.3023
TeamSD TeamSEA
2.6133 -0.9147
TeamSF TeamSTL
0.8411 -1.1341
TeamTB TeamTEX
-2.6616 -0.7695
TeamTOR TeamWAS
1.3943 -1.7555
PositionDesignated_Hitter PositionFirst_Baseman
8.9037 2.4237
PositionOutfielder PositionRelief_Pitcher
-6.2636 -7.7695
PositionSecond_Baseman PositionShortstop
-13.0843 -16.9562
PositionStarting_Pitcher PositionThird_Baseman
-7.3599 -4.6035
Height Age
4.7175 0.8906

step(fit,direction = "both")

Start: AIC=5871.04
Weight ~ Team + Position + Height + Age

Df Sum of Sq RSS AIC
- Team 29 9468 289262 5847.4
<none> 279793 5871.0
- Age 1 14090 293883 5919.8
- Position 8 20301 300095 5927.5
- Height 1 95356 375149 6172.3

Step: AIC=5847.45
Weight ~ Position + Height + Age

Df Sum of Sq RSS AIC
<none> 289262 5847.4
+ Team 29 9468 279793 5871.0
- Age 1 14616 303877 5896.4
- Position 8 20406 309668 5901.9
- Height 1 100435 389697 6153.6

Call:
lm(formula = Weight ~ Position + Height + Age, data = mlb)

10.4 Step 5: Improving Model Performance 363

Coefficients:
(Intercept) PositionDesignated_Hitter
-168.0474 8.6968
PositionFirst_Baseman PositionOutfielder
2.7780 -6.0457
PositionRelief_Pitcher PositionSecond_Baseman
-7.7782 -13.0267
PositionShortstop PositionStarting_Pitcher
-16.4821 -7.3961
PositionThird_Baseman Height
-4.1361 4.7639
Age
0.8771

We can observe that forward retains the whole model. The better feature selection

model uses backward step-wise selection.

Both backward and forward are greedy algorithms and neither guarantees an

optimal model result. The optimal feature selection requires exploring every possible

combination of the predictors, which is practically not feasible, due to computational

complexity, n
k

� �

combinations.

Alternatively, we can choose models based on various information criteria.

step(fit,k=2)

Start: AIC=5871.04
Weight ~ Team + Position + Height + Age

Df Sum of Sq RSS AIC
- Team 29 9468 289262 5847.4
<none> 279793 5871.0
- Age 1 14090 293883 5919.8
- Position 8 20301 300095 5927.5
- Height 1 95356 375149 6172.3

Step: AIC=5847.45
Weight ~ Position + Height + Age

Df Sum of Sq RSS AIC
<none> 289262 5847.4
- Age 1 14616 303877 5896.4
- Position 8 20406 309668 5901.9
- Height 1 100435 389697 6153.6

Call:
lm(formula = Weight ~ Position + Height + Age, data = mlb)

Coefficients:
(Intercept) PositionDesignated_Hitter
-168.0474 8.6968
PositionFirst_Baseman PositionOutfielder

364 10 Forecasting Numeric Data Using Regression Models

Coefficients:
(Intercept) PositionDesignated_Hitter
-168.0474 8.6968
PositionFirst_Baseman PositionOutfielder
2.7780 -6.0457
PositionRelief_Pitcher PositionSecond_Baseman
-7.7782 -13.0267
PositionShortstop PositionStarting_Pitcher
-16.4821 -7.3961
PositionThird_Baseman Height
-4.1361 4.7639
Age
0.8771

- Position 8 20406 309668 5916.8
- Age 1 14616 303877 5945.8
- Height 1 100435 389697 6203.0

Call:
lm(formula = Weight ~ Position + Height + Age, data = mlb)

2.7780 -6.0457
PositionRelief_Pitcher PositionSecond_Baseman
-7.7782 -13.0267
PositionShortstop PositionStarting_Pitcher
-16.4821 -7.3961
PositionThird_Baseman Height
-4.1361 4.7639
Age
0.8771

step(fit,k=log(nrow(mlb)))

Start: AIC=6068.69
Weight ~ Team + Position + Height + Age

Df Sum of Sq RSS AIC
- Team 29 9468 289262 5901.8
<none> 279793 6068.7
- Position 8 20301 300095 6085.6
- Age 1 14090 293883 6112.5
- Height 1 95356 375149 6365.0

Step: AIC=5901.8
Weight ~ Position + Height + Age

Df Sum of Sq RSS AIC
<none> 289262 5901.8

k¼ 2 yields the AIC criterion, and k¼ log (n) refers to BIC. Let’s try to evaluate

the model performance again (Figs. 10.10 and 10.11).

10.4 Step 5: Improving Model Performance 365

Fig. 10.10 Residuals vs. fitted values scatterplot

Fig. 10.11 QQ normal probability plot of the model residuals

366 10 Forecasting Numeric Data Using Regression Models

fit2 = step(fit,k=2,direction = "backward")

Start: AIC=5871.04
Weight ~ Team + Position + Height + Age

Df Sum of Sq RSS AIC
- Team 29 9468 289262 5847.4
<none> 279793 5871.0
- Age 1 14090 293883 5919.8
- Position 8 20301 300095 5927.5
- Height 1 95356 375149 6172.3

Step: AIC=5847.45
Weight ~ Position + Height + Age

Df Sum of Sq RSS AIC
<none> 289262 5847.4
- Age 1 14616 303877 5896.4
- Position 8 20406 309668 5901.9
- Height 1 100435 389697 6153.6

summary(fit2)

Call:
lm(formula = Weight ~ Position + Height + Age, data = mlb)

Residuals:
Min 1Q Median 3Q Max
-49.427 -10.855 -0.344 10.110 75.301

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -168.0474 19.0351 -8.828 < 2e-16 ***
PositionDesignated_Hitter 8.6968 4.4258 1.965 0.049679 *
PositionFirst_Baseman 2.7780 2.9942 0.928 0.353741
PositionOutfielder -6.0457 2.2778 -2.654 0.008072 **
PositionRelief_Pitcher -7.7782 2.1913 -3.550 0.000403 ***
PositionSecond_Baseman -13.0267 2.9531 -4.411 1.14e-05 ***
PositionShortstop -16.4821 3.0372 -5.427 7.16e-08 ***
PositionStarting_Pitcher -7.3961 2.2959 -3.221 0.001316 **
PositionThird_Baseman -4.1361 3.1656 -1.307 0.191647
Height 4.7639 0.2528 18.847 < 2e-16 ***
Age 0.8771 0.1220 7.190 1.25e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.82 on 1023 degrees of freedom
Multiple R-squared: 0.365, Adjusted R-squared: 0.3588
F-statistic: 58.81 on 10 and 1023 DF, p-value: < 2.2e-16

plot(fit2, which = 1:2)

Sometimes, we prefer a simpler model even if there is slight loss in performance.

In this case, we have a simpler model and R2 ¼ 0.365. The whole model is still very

significant. Some potential influential points or outliers that are relatively far from

other residuals observations are shown on Fig. 10.12.

10.4 Step 5: Improving Model Performance 367

Half-normal plot for leverages

install.packages("faraway")

library(faraway)

halfnorm(lm.influence(fit)$hat, nlab = 2, ylab="Leverages")

mlb[c(226,879),]
Team Position Height Weight Age
226 NYY Designated_Hitter 75 230 36.14
879 SD Designated_Hitter 73 200 25.60
summary(mlb)
Team Position Height Weight
NYM : 38 Relief_Pitcher :315 Min. :67.0 Min. :150.0
ATL : 37 Starting_Pitcher:221 1st Qu.:72.0 1st Qu.:187.0
DET : 37 Outfielder :194 Median :74.0 Median :200.0
OAK : 37 Catcher : 76 Mean :73.7 Mean :201.7
BOS : 36 Second_Baseman : 58 3rd Qu.:75.0 3rd Qu.:215.0
CHC : 36 First_Baseman : 55 Max. :83.0 Max. :290.0
(Other):813 (Other) :115
Age
Min. :20.90
1st Qu.:25.44
Median :27.93
Mean :28.74
3rd Qu.:31.23
Max. :48.52

A deeper discussion of variable selection, controlling the false discovery rate, is

provided in Chaps. 17 and 18.

Fig. 10.12 A half-normal probability plot suggesting important factors or interactions by estimat-

ing the impact of a given main effect, or interaction, and its rank relative to other main effects and

interactions computed via least squares estimation. The horizontal and vertical axes represent the

(n-1) theoretical order statistic medians from a half-normal distribution and the ordered absolute

value of the estimated effects for the main factors and available interactions, respectively

368 10 Forecasting Numeric Data Using Regression Models

10.4.1 Model Specification: Adding Non-linear Relationships

In linear regression, the relationship between independent and dependent variables is

assumed to be linear. However, this might not be the case. The relationship between

age and weight could be quadratic, since middle-aged people might gain weight

dramatically.

mlb$age2<-(mlb$Age)^2
fit2<-lm(Weight~., data=mlb)
summary(fit2)

Call:
lm(formula = Weight ~ ., data = mlb)

Residuals:
Min 1Q Median 3Q Max
-49.068 -10.775 -1.021 9.922 74.693

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -209.07068 27.49529 -7.604 6.65e-14 ***
TeamARZ 7.41943 4.25154 1.745 0.081274 .
TeamATL -1.43167 3.96793 -0.361 0.718318
TeamBAL -5.38735 4.01119 -1.343 0.179552
TeamBOS -0.06614 3.99633 -0.017 0.986799
TeamCHC 0.14541 3.98833 0.036 0.970923
TeamCIN 2.24022 3.98571 0.562 0.574201
TeamCLE -1.07546 4.02870 -0.267 0.789563
TeamCOL -3.87254 4.02069 -0.963 0.335705
TeamCWS 4.20933 4.09393 1.028 0.304111
TeamDET 2.66990 3.96769 0.673 0.501160
TeamFLA 3.14627 4.12989 0.762 0.446343
TeamHOU -0.77230 4.05526 -0.190 0.849000
TeamKC -4.90984 4.01648 -1.222 0.221837
TeamLA 3.13554 4.07514 0.769 0.441820
TeamMIN 2.09951 4.08631 0.514 0.607512
TeamMLW 4.16183 4.01646 1.036 0.300363
TeamNYM -1.25057 3.95424 -0.316 0.751870
TeamNYY 1.67825 4.11502 0.408 0.683482
TeamOAK -0.68235 3.95951 -0.172 0.863212
TeamPHI -6.85071 3.98672 -1.718 0.086039 .
TeamPIT 4.12683 4.01348 1.028 0.304086
TeamSD 2.59525 4.08310 0.636 0.525179
TeamSEA -0.67316 4.04471 -0.166 0.867853
TeamSF 1.06038 4.04481 0.262 0.793255
TeamSTL -1.38669 4.11234 -0.337 0.736037
TeamTB -2.44396 4.08716 -0.598 0.550003
TeamTEX -0.68740 4.02023 -0.171 0.864270
TeamTOR 1.24439 4.06029 0.306 0.759306
TeamWAS -1.87599 3.99594 -0.469 0.638835
PositionDesignated_Hitter 8.94440 4.44417 2.013 0.044425 *
PositionFirst_Baseman 2.55100 3.00014 0.850 0.395368
PositionOutfielder -6.25702 2.27372 -2.752 0.006033 **
PositionRelief_Pitcher -7.68904 2.19166 -3.508 0.000471 ***
PositionSecond_Baseman -13.01400 2.95787 -4.400 1.20e-05 ***
PositionShortstop -16.82243 3.03494 -5.543 3.81e-08 ***
PositionStarting_Pitcher -7.08215 2.29615 -3.084 0.002096 **

10.4 Step 5: Improving Model Performance 369

PositionThird_Baseman -4.66452 3.16249 -1.475 0.140542
Height 4.71888 0.25578 18.449 < 2e-16 ***
Age 3.82295 1.30621 2.927 0.003503 **
age2 -0.04791 0.02124 -2.255 0.024327 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.74 on 993 degrees of freedom
Multiple R-squared: 0.3889, Adjusted R-squared: 0.3643
F-statistic: 15.8 on 40 and 993 DF, p-value: < 2.2e-16

This actually brought up the overall R2 up to 0.3889.

10.4.2 Transformation: Converting a Numeric Variable

to a Binary Indicator

As discussed earlier, middle-aged people might have a different pattern in weight

increase compared to younger people. The overall pattern could be not cumulative,

but could rather represent alternative lines for the young and the middle-aged people.

We assume 30 is the age threshold separating young from middle-age players.

Players over 30 may have a steeper line for weight increase than those under 30.

Here, we use the ifelse() function that we mentioned in Chap. 8 to create the

indicator of this Age threshold.

mlb$age30<-ifelse(mlb$Age>=30, 1, 0)
fit3<-lm(Weight~Team+Position+Age+age30+Height, data=mlb)
summary(fit3)

Call:
lm(formula = Weight ~ Team + Position + Age + age30 + Height,
data = mlb)

Residuals:
Min 1Q Median 3Q Max
-48.313 -11.166 -0.916 10.044 73.630

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -159.8884 19.8862 -8.040 2.54e-15 ***
TeamARZ 7.4096 4.2627 1.738 0.082483 .
TeamATL -1.4379 3.9765 -0.362 0.717727
TeamBAL -5.3393 4.0187 -1.329 0.184284
TeamBOS -0.1985 4.0034 -0.050 0.960470
TeamCHC 0.4669 3.9947 0.117 0.906976
TeamCIN 2.2124 3.9939 0.554 0.579741
TeamCLE -1.1624 4.0371 -0.288 0.773464
TeamCOL -3.6842 4.0290 -0.914 0.360717
TeamCWS 4.1920 4.1025 1.022 0.307113
TeamDET 2.4708 3.9746 0.622 0.534314
TeamFLA 2.8563 4.1352 0.691 0.489903

370 10 Forecasting Numeric Data Using Regression Models

TeamHOU -0.4964 4.0659 -0.122 0.902846
TeamKC -4.7138 4.0238 -1.171 0.241692
TeamLA 2.9194 4.0814 0.715 0.474586
TeamMIN 2.2885 4.0965 0.559 0.576528
TeamMLW 4.4749 4.0269 1.111 0.266731
TeamNYM -1.8173 3.9510 -0.460 0.645659
TeamNYY 1.7074 4.1229 0.414 0.678867
TeamOAK -0.3388 3.9707 -0.085 0.932012
TeamPHI -6.6192 3.9993 -1.655 0.098220 .
TeamPIT 4.6716 4.0332 1.158 0.247029
TeamSD 2.8600 4.0965 0.698 0.485243
TeamSEA -1.0121 4.0518 -0.250 0.802809
TeamSF 1.0244 4.0545 0.253 0.800587
TeamSTL -1.1094 4.1187 -0.269 0.787703
TeamTB -2.4485 4.0980 -0.597 0.550312
TeamTEX -0.6112 4.0300 -0.152 0.879485
TeamTOR 1.3959 4.0674 0.343 0.731532
TeamWAS -1.4189 4.0139 -0.354 0.723784
PositionDesignated_Hitter 9.2378 4.4621 2.070 0.038683 *
PositionFirst_Baseman 2.6074 3.0096 0.866 0.386501
PositionOutfielder -6.0408 2.2863 -2.642 0.008367 **
PositionRelief_Pitcher -7.5100 2.2072 -3.403 0.000694 ***
PositionSecond_Baseman -12.8870 2.9683 -4.342 1.56e-05 ***
PositionShortstop -16.8912 3.0406 -5.555 3.56e-08 ***
PositionStarting_Pitcher -7.0825 2.3099 -3.066 0.002227 **
PositionThird_Baseman -4.4307 3.1719 -1.397 0.162773
Age 0.6904 0.2153 3.207 0.001386 **
age30 2.2636 1.9749 1.146 0.251992
Height 4.7113 0.2563 18.380 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.77 on 993 degrees of freedom
Multiple R-squared: 0.3866, Adjusted R-squared: 0.3619
F-statistic: 15.65 on 40 and 993 DF, p-value: < 2.2e-16

This model performs worse than the quadratic model in terms of R2. Moreover,

age30 is not significant. So, we will stick with the earlier quadratic model.

10.4.3 Model Specification: Adding Interaction Effects

So far, each feature’s individual effect was considered in our models. It is possible

that features act in pairs to affect the independent variable. Let’s examine that

deeper.

Interactions are combined effects of two or more features. If we are not sure

whether two features interact term we could test by adding an interaction term into

the model. If the interaction term is significant, it confirms that there may be non-

trivial interaction between the features.

10.4 Step 5: Improving Model Performance 371

fit4<-lm(Weight~Team+Height+Age*Position+age2, data=mlb)
summary(fit4)

Call:
lm(formula = Weight ~ Team + Height + Age * Position + age2,
data = mlb)

Residuals:
Min 1Q Median 3Q Max
-48.761 -11.049 -0.761 9.911 75.533

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -199.15403 29.87269 -6.667 4.35e-11 ***
TeamARZ 8.10376 4.26339 1.901 0.0576 .
TeamATL -0.81743 3.97899 -0.205 0.8373
TeamBAL -4.64820 4.03972 -1.151 0.2502
TeamBOS 0.37698 4.00743 0.094 0.9251
TeamCHC 0.33104 3.99507 0.083 0.9340
TeamCIN 2.56023 3.99603 0.641 0.5219
TeamCLE -0.66254 4.03154 -0.164 0.8695
TeamCOL -3.72098 4.03759 -0.922 0.3570
TeamCWS 4.63266 4.10884 1.127 0.2598
TeamDET 3.21380 3.98231 0.807 0.4199
TeamFLA 3.56432 4.14902 0.859 0.3905
TeamHOU -0.38733 4.07249 -0.095 0.9242
TeamKC -4.66678 4.02384 -1.160 0.2464
TeamLA 3.51766 4.09400 0.859 0.3904
TeamMIN 2.31585 4.10502 0.564 0.5728
TeamMLW 4.34793 4.02501 1.080 0.2803
TeamNYM -0.28505 3.98537 -0.072 0.9430
TeamNYY 1.87847 4.12774 0.455 0.6491
TeamOAK -0.23791 3.97729 -0.060 0.9523
TeamPHI -6.25671 3.99545 -1.566 0.1177
TeamPIT 4.18719 4.01944 1.042 0.2978
TeamSD 2.97028 4.08838 0.727 0.4677
TeamSEA -0.07220 4.05922 -0.018 0.9858
TeamSF 1.35981 4.07771 0.333 0.7388
TeamSTL -1.23460 4.11960 -0.300 0.7645
TeamTB -1.90885 4.09592 -0.466 0.6413
TeamTEX -0.31570 4.03146 -0.078 0.9376
TeamTOR 1.73976 4.08565 0.426 0.6703
TeamWAS -1.43933 4.00274 -0.360 0.7192
Height 4.70632 0.25646 18.351 < 2e-16 ***
Age 3.32733 1.37088 2.427 0.0154 *
PositionDesignated_Hitter -44.82216 30.68202 -1.461 0.1444
PositionFirst_Baseman 23.51389 20.23553 1.162 0.2455
PositionOutfielder -13.33140 15.92500 -0.837 0.4027
PositionRelief_Pitcher -16.51308 15.01240 -1.100 0.2716
PositionSecond_Baseman -26.56932 20.18773 -1.316 0.1884
PositionShortstop -27.89454 20.72123 -1.346 0.1786
PositionStarting_Pitcher -2.44578 15.36376 -0.159 0.8736
PositionThird_Baseman -10.20102 23.26121 -0.439 0.6611
age2 -0.04201 0.02170 -1.936 0.0531 .
Age:PositionDesignated_Hitter 1.77289 1.00506 1.764 0.0780 .

372 10 Forecasting Numeric Data Using Regression Models

Age:PositionRelief_Pitcher 0.30374 0.50564 0.601 0.5482
Age:PositionSecond_Baseman 0.46281 0.68281 0.678 0.4981
Age:PositionShortstop 0.38257 0.70998 0.539 0.5901
Age:PositionStarting_Pitcher -0.17104 0.51976 -0.329 0.7422
Age:PositionThird_Baseman 0.18968 0.79561 0.238 0.8116

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.73 on 985 degrees of freedom
Multiple R-squared: 0.3945, Adjusted R-squared: 0.365
F-statistic: 13.37 on 48 and 985 DF, p-value: < 2.2e-16

Age:PositionFirst_Baseman -0.71111 0.67848 -1.048 0.2949
Age:PositionOutfielder 0.24147 0.53650 0.450 0.6527

The results indicates that the overall R2 improved and some of the interactions are

significant at the under 0.1 level.

10.5 Understanding Regression Trees and Model Trees

As we saw in Chap. 9, a decision tree builds by multiple if-else logical decisions

and can classify observations. We could add regression into decision trees so that a

decision tree can make numerical predictions.

10.5.1 Adding Regression to Trees

Numeric prediction trees are built in the same way as classification trees. Data are

partitioned first via a divide-and-conquer strategy based on features. Recall that,

homogeneity in classification trees may be assessed by measures like the entropy. In

prediction, tree homogeneity is measured by statistics such as variance, standard

deviation or absolute deviation, from the mean.

A common splitting criterion for regression trees is the standard deviation

reduction (SDR).

SDR ¼ sd Tð Þ �
X

n

i¼1

T i

T

�

�

�

�

�

�

�

�

� sd T ið Þ,

where sd(T) is the standard deviation for the original data. After the summation of all

segments, T i

T

�

�

�

� is the proportion of observations in the ith segment compared to the

total number of observations and sd(Ti) is the standard deviation for the ith segment.

Let’s look at one simple example.

Original data : 1; 2; 3; 3; 4; 5; 6; 6; 7; 8f g,

Split method 1 : 1, 2, 3j3, 4, 5, 6, 6, 7, 8f g, and

Split method 2 : 1, 2, 3, 3, 4, 5j6, 6, 7, 8f g:

10.5 Understanding Regression Trees and Model Trees 373

In split method 1, T1 ¼ {1, 2, 3}, T2 ¼ {3, 4, 5, 6, 6, 7, 8}. In split method

2, T1 ¼ {1, 2, 3, 3, 4, 5}, T2 ¼ {6, 6, 7, 8}.

ori<-c(1, 2, 3, 3, 4, 5, 6, 6, 7, 8)
at1<-c(1, 2, 3)
at2<-c(3, 4, 5, 6, 6, 7, 8)
bt1<-c(1, 2, 3, 3, 4, 5)
bt2<-c(6, 6, 7, 8)
sdr_a <- sd(ori)-(length(at1)/length(ori)*sd(at1)+length(at2)/length(ori) *
sd(at2))
sdr_b <- sd(ori)-(length(bt1)/length(ori)*sd(bt1)+length(bt2)/length(ori) *
sd(bt2))
sdr_a

[1] 0.7702557

sdr_b

[1] 1.041531

length() is used in the above R codes to get the number of elements in a

specific vector.

Larger SDR indicates greater reduction in standard deviation after splitting.

Here, split method 2 yields greater SDR, so the regression tree split will use the

second method, which results in more homogeneous sets than the first method.

Now, the tree will be split under bt1 and bt2 following the same rules (greater

SDR wins). When we cannot split further bt1 and bt2 are terminal nodes. The

observations classified into bt1 will be predicted with mean(bt1) ¼ 3, and those

classified as bt2 with mean(bt2) ¼ 6.75.

10.6 Case Study 2: Baseball Players (Take 2)

10.6.1 Step 2: Exploring and Preparing the Data

Wewill continue with the MLB dataset, which includes 1,034 observations. Let’s try

to randomly separate them into training and testing datasets first.

set.seed(1234)
train_index <- sample(seq_len(nrow(mlb)), size = 0.75*nrow(mlb))
mlb_train<-mlb[train_index,]
mlb_test<-mlb[-train_index,]

We used a random 75–25% split to divide the data into training and testing sets.

374 10 Forecasting Numeric Data Using Regression Models

10.6.2 Step 3: Training a Model On the Data

In R, the function rpart(), under the rpart package, provides regression tree

modeling:

m<-rpart(dv~iv, data¼mydata)

• dv: dependent variable

• iv: independent variable

• mydata: training data containing dv and iv.

We use two numerical features in the MLB data "01a_data.txt" Age and Height
as features.

#install.packages("rpart")

library(rpart)

mlb.rpart<-rpart(Weight~Height+Age, data=mlb_train)
mlb.rpart

n= 775

node), split, n, deviance, yval
* denotes terminal node

1) root 775 323502.600 201.4361
2) Height< 73.5 366 112465.500 192.5000
4) Height< 70.5 55 9865.382 178.7818 *
5) Height>=70.5 311 90419.300 194.9260
10) Age< 31.585 234 71123.060 192.8547 *
11) Age>=31.585 77 15241.250 201.2208 *
3) Height>=73.5 409 155656.400 209.4328
6) Height< 76.5 335 118511.700 206.8627
12) Age< 28.6 194 75010.250 202.2938
24) Height< 74.5 76 20688.040 196.8026 *
25) Height>=74.5 118 50554.610 205.8305 *
13) Age>=28.6 141 33879.870 213.1489 *
7) Height>=76.5 74 24914.660 221.0676
14) Age< 25.37 12 3018.000 206.0000 *
15) Age>=25.37 62 18644.980 223.9839 *

The output contains rich information. split indicates the decision criterion; n is

the number of observations that fall in this segment; yval is the predicted value if

the test data falls into a segment.

10.6.3 Visualizing Decision Trees

A fancy way of drawing the rpart decision tree is by the rpart.plot()
function under rpart.plot package (Fig. 10.13).

install.packages("rpart.plot")

library(rpart.plot)
rpart.plot(mlb.rpart, digits=3)

10.6 Case Study 2: Baseball Players (Take 2) 375

Amore detailed graph can be obtained by specifying more options in the function

call (Fig. 10.14).

rpart.plot(mlb.rpart, digits = 4, fallen.leaves = T, type=3, extra=101)

We may also use a more elaborate tree plot from package rattle to observe the

order and rules of splits (Fig. 10.15).

library(rattle)

fancyRpartPlot(mlb.rpart, cex = 0.8)

Fig. 10.13 MLB decision tree partitioning

Fig. 10.14 Expanding the decision tree by specifying significant digits, drawing separate split

labels for the left and right directions, displaying the number and percentage of observations in the

node, and positioning the leaf nodes at the bottom of the graph

376 10 Forecasting Numeric Data Using Regression Models

10.6.4 Step 4: Evaluating Model Performance

Let’s make predictions with the regression tree model using the predict()
command.

mlb.p<-predict(mlb.rpart, mlb_test)
summary(mlb.p)

Min. 1st Qu. Median Mean 3rd Qu. Max.
185.4 194.2 201.3 201.8 213.4 222.3

summary(mlb_test$Weight)

Min. 1st Qu. Median Mean 3rd Qu. Max.
150.0 190.0 200.0 202.4 215.0 260.0

Comparing the five-number statistics for the predicted and true Weight, we can
see that the model cannot precisely identify extreme cases such as the maximum.

However, within the IQR, the predictions are relatively accurate. Correlation could

be used to measure the correspondence of two equal length numeric variables. Let’s

use cor() to examine the prediction accuracy.

cor(mlb.p, mlb_test$Weight)
[1] 0.4940257

The predicted values are moderately correlated with the true values.

Fig. 10.15 An alternative plot of the MLB decision tree

10.6 Case Study 2: Baseball Players (Take 2) 377

10.6.5 Measuring Performance with Mean Absolute Error

To measure the distance between predicted value and the true value, we can use a

measurement called mean absolute error (MAE) defined by the formula:

MAE ¼
1

n

X

n

i¼1

j predi � obsi j ,

where the predi is the ith predicted value and obsi is the ith observed value. Let’s

make a corresponding MAE function in R and evaluate our model performance.

MAE<-function(obs, pred){
mean(abs(obs-pred))

}
MAE(mlb_test$Weight, mlb.p)

[1] 14.97519

This implies that on average, the difference between the predicted value and the

observed value is 14.975. Considering that the Weight variable in our test dataset

ranges from 150 to 260, the model is reasonable.

What if we used a more the most primitive method for prediction – the test data

mean?

mean(mlb_test$Weight)

[1] 202.3643

MAE(mlb_test$Weight, 202.3643)

[1] 17.11207

This shows that the regression decision tree is better than using the mean to

predict every observation in the test dataset. However, it is not dramatically better.

There might be room for improvement.

10.6.6 Step 5: Improving Model Performance

To improve the performance of our decision tree, we are going to use a model tree

instead of a regression tree. We can use the M5P() function, under the package

RWeka, which implements the M5 algorithm. This function uses similar syntax as

rpart().

378 10 Forecasting Numeric Data Using Regression Models

m<-M5P(dv~iv, data¼mydata)

#install.packages("RWeka")

Sometimes RWeka installations may be off a bit, see:

http://stackoverflow.com/questions/41878226/using-rweka-m5p-in-rstudio-yie

lds-java-lang-noclassdeffounderror-no-uib-cipr-ma

Sys.getenv("WEKA_HOME") # where does it point to? Maybe some obscure path?

[1] ""
if yes, correct the variable:

Sys.setenv(WEKA_HOME="C:\\MY\\PATH\\WEKA_WPM")
library(RWeka)
WPM("list-packages", "installed")

mlb.m5<-M5P(Weight~Height+Age, data=mlb_train)
mlb.m5

M5 pruned model tree:
(using smoothed linear models)
LM1 (776/82.097%)

LM num: 1
Weight =
4.9957 * Height
+ 1.0629 * Age
- 197.0898

Number of Rules : 1

Instead of using segment averages to predict the player’s weight, this model uses

a linear regression (LM1) as the terminal node. In some datasets with more variables,

M5P could yield different linear models at each terminal node.

summary(mlb.m5)

=== Summary ===

Correlation coefficient 0.571
Mean absolute error 13.3503
Root mean squared error 17.1622
Relative absolute error 80.3144 %
Root relative squared error 82.0969 %
Total Number of Instances 776

mlb.p.m5<-predict(mlb.m5, mlb_test)
summary(mlb.p.m5)

Min. 1st Qu. Median Mean 3rd Qu. Max.
166.1 193.5 201.7 202.0 209.7 247.8

cor(mlb.p.m5, mlb_test$Weight)

[1] 0.5500171

MAE(mlb_test$Weight, mlb.p.m5)

[1] 14.07716

10.6 Case Study 2: Baseball Players (Take 2) 379

http://stackoverflow.com/questions/41878226/using-rweka-m5p-in-rstudio-yields-java-lang-noclassdeffounderror-no-uib-cipr-ma
http://stackoverflow.com/questions/41878226/using-rweka-m5p-in-rstudio-yields-java-lang-noclassdeffounderror-no-uib-cipr-ma

summary(mlb.m5) reports some rough diagnostic statistics. We can see that

the correlation and MAE for this model are better than the previous rpart()
model.

10.7 Practice Problem: Heart Attack Data

Let’s go back to the heart attack dataset (CaseStudy12_ AdultsHeartAttack_Data.

csv) and practice this approach.

heart_attack<-read.csv("https://umich.instructure.com/files/1644953/download
?download_frd=1", stringsAsFactors = F)
str(heart_attack)

'data.frame': 150 obs. of 8 variables:
$ Patient : int 1 2 3 4 5 6 7 8 9 10 ...
$ DIAGNOSIS: int 41041 41041 41091 41081 41091 41091 41091 41091 41041
41041 ...
$ SEX : chr "F" "F" "F" "F" ...
$ DRG : int 122 122 122 122 122 121 121 121 121 123 ...
$ DIED : int 0 0 0 0 0 0 0 0 0 1 ...
$ CHARGES : chr "4752" "3941" "3657" "1481" ...
$ LOS : int 10 6 5 2 1 9 15 15 2 1 ...
$ AGE : int 79 34 76 80 55 84 84 70 76 65 ...

First, we need to convert the CHARGES (independent variable) to numerical form.

NA‘s are created, so let’s keep only the complete cases as mentioned in the

beginning of this Chapter. Also, let’s create a gender variable as an indicator for

female patients using ifelse() and delete the previous SEX column.

heart_attack$CHARGES<-as.numeric(heart_attack$CHARGES)

heart_attack<-heart_attack[complete.cases(heart_attack),]
heart_attack$gender<-ifelse(heart_attack$SEX=="F", 1, 0)
heart_attack<-heart_attack[, -3]

Next, we can build a model tree using M5P() with all the features in the model.

As usual, we need to separate the heart_attack data into training and test

datasets (e.g., use the 75–25% random split).

Using the model to predict CHARGES in the test dataset, we can obtain the

following correlation and MAE.

[1] 0.5616003

[1] 3193.502

We can see that the predicted values and observed values are strongly correlated.

In terms of MAE, it may seem very large at first glance.

380 10 Forecasting Numeric Data Using Regression Models

https://umich.instructure.com/files/1644953/download?download_frd=1
https://umich.instructure.com/files/1644953/download?download_frd=1

range(ha_test$CHARGES)

[1] 701 17137

17137-701

3193.502/16436

However, the test data itself has a wide range, and the MAE is within 20% of the

range. With only 148 observations, the model represents a fairly good prediction of

the expected hospital stay charges. Try to reproduce these results and also test the

same techniques to other data from the list of our Case-Studies.

10.8 Assignments: 10. Forecasting Numeric Data Using

Regression Models

Use the Quality of Life data (Case06_QoL_Symptom_ChronicIllness) to fit several

different Multiple Linear Regression models predicting clinically relevant outcomes,

e.g., Chronic Disease Score.

• Summarize and visualize data using summary, str, pairs.panels,
ggplot.

• Report correlation for numeric data and try to visualize it (e.g., heatmap, pairs

plot, etc.)

• Examine potential dependences of the predictors and the dependent response

variables.

• Fit a couple of Multiple Linear Regression models, report the results, and explain

the summary, residuals, effect-size coefficients, and the coefficient of determina-

tion, R2.

• Draw model diagnostic plots, at least QQ plot, residuals plot and leverage plot

(half norm plot).

• Report results in terms of the model.

• Predict outcomes for new data.

• Try to improve the model performance using step function based on AIC

and BIC.

• Fit a regression tree model and compare with OLS model.

• Try to use RWeka::M5P to improve the model.

References

Fahrmeir, L, Kneib, T, Lang, S, Marx, B. (2013) Regression: Models, Methods and Applications,

Springer Science & Business Media, ISBN 3642343333, 9783642343339.

Hyndman, RJ, Athanasopoulos, G. (2014) Forecasting: principles and practice, OTexts, ISBN
0987507109, 9780987507105.

Zhao, Y. (2012) R and Data Mining: Examples and Case Studies, Academic Press, ISBN

012397271X, 9780123972712.

http://wiki.socr.umich.edu/index.php/EBook#Chapter_X:_Correlation_and_Regression.

References 381

http://wiki.socr.umich.edu/index.php/EBook#Chapter_X:_Correlation_and_Regression

Chapter 11

Black Box Machine-Learning Methods:

Neural Networks and Support Vector
Machines

In this Chapter, we are going to cover two very powerful machine-learning algo-

rithms. These techniques have complex mathematical formulations; however, effi-

cient algorithms and reliable software packages have been developed to utilize them

for various practical applications. We will (1) describe Neural Networks as ana-

logues of biological neurons; (2) develop hands-on a neural net that can be trained to

compute the square-root function; (3) describe support vector machine (SVM)

classification; and (4) complete several case-studies, including optical character

recognition (OCR), the Iris flowers, Google Trends and the Stock Market, and

Quality of Life in chronic disease.

Later, in Chap. 23, we will provide more details and additional examples of deep

neural network learning. For now, let’s start by exploring the magic inside the

machine learning black box.

11.1 Understanding Neural Networks

11.1.1 From Biological to Artificial Neurons

An Artificial Neural Network (ANN) model mimics the biological brain

response to multisource inputs, e.g., sensory-motor stimuli. ANNs simulate the brain

using networks of interconnected neuron cells to create massively parallel proces-

sors. Of course, ANNs use networks of artificial nodes, not brain cells, to train data.

When we have three signals (or inputs) x1, x2 and x3, the first step is weighting the

features (w’s) according to their importance. Then, the weighted signals are summed

by the “neuron cell” and this sum is passed on according to an activation function

denoted by f. The last step is generating an output y at the end of the process.

A typical output will have the following mathematical relationship to the inputs.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_11

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_11&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_11

y xð Þ ¼ f
X

n

i¼1

wi xi

 !

:

There are three important components for building a neural network:

• Activation function: transforms weighted and summed inputs to an output.

• Network topology: describes the number of “neuron cells”, the number of layers

and manner in which the cells are connected.

• Training algorithm: how to determine weights wi.

Let’s look at each of these components one by one.

11.1.2 Activation Functions

One of the functions, known as threshold activation function, triggers an output

signal once a specified input threshold has been attained (Fig. 11.1).

f xð Þ ¼
0 x < 0

1 x � 0

(

:

This is the simplest form for activation functions. It is rarely used in real world

situations. The most commonly used alternative is the sigmoid activation function,

where f xð Þ ¼ 1
1þe�x. Here, e is Euler’s natural number, which is also the base of the

natural logarithm function. The output signal is no longer binary but can be any real

number ranged from 0 to 1 (Fig. 11.2).

Fig. 11.1 An example of a

hard threshold activation

function, f(x)

384 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

Other activation functions might also be useful, Fig. 11.3.

Basically, we can chose a proper activation function based on the corresponding

codomain of the function. For example, with hyperbolic tangent activation function,

we can only have outputs ranging from �1 to 1 regardless of the input. With linear

function we can go from�1 to +1. Our Gaussian activation function will give us a

model called Radial Basis Function network (Fig. 11.3).

Fig. 11.2 The S-shaped

sigmoid activation function

Fig. 11.3 Alternative types of activation functions

11.1 Understanding Neural Networks 385

11.1.3 Network Topology

Number of layers: The x’s or features in the dataset are called input nodes while the

predicted values are called the output nodes. Multilayer networks include multiple

hidden layers. Figure 11.4 shows a two layer neural network.

When we have multiple layers, the information flow could be complicated.

11.1.4 The Direction of Information Travel

The arrows in the last graph (with multiple layers) suggest a feed forward network.

In such a network, we can also have multiple outcomes modeled simultaneously

(Fig. 11.5).

Alternatively, in a recurrent network (feedback network), information can also

travel backwards in loops (or delay). This is illustrated in Fig. 11.6, where the short-

term memory increases the power of recurrent networks dramatically. However, in

practice, recurrent networks are rarely used.

11.1.5 The Number of Nodes in Each Layer

The number of input nodes and output nodes are predetermined by the dataset and

the predictive variables. The number we can specify determines the hidden nodes in

the model. To simplify the model, our goal is to add the least number of hidden

nodes possible when the model performance remains reasonable.

Fig. 11.4 A schematic of a two-layer neural network

386 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

11.1.6 Training Neural Networks with Backpropagation

This algorithm could determine the weights in the model using the strategy of back-

propagating errors. First, we assign random weights (but all weights must be

non-trivial). For example, we can use normal distribution, or any other random

process, to assign initial weights. Then we adjust the weights iteratively by repeating

the process until certain convergence or stopping criterion is met. Each iteration

contains two phases.

Fig. 11.6 A schematic of a delay (feedback) neural network

Fig. 11.5 A multi-output neural network example

11.1 Understanding Neural Networks 387

• Forward phase: from input layer to output layer using current weights. Outputs

are produced at the end of this phase, and

• Backward phase: compare the outputs and true target values. If the difference is

significant, we change the weights and go through the forward phase, again.

In the end, we pick a set of weights, which correspond to the least total error, to be

the final weights in our network.

11.2 Case Study 1: Google Trends and the Stock Market:

Regression

11.2.1 Step 1: Collecting Data

In this case study, we are going to use the Google trends and stock market dataset. A

doc file with the meta-data and the CSV data are available on the Case-Studies

Canvas Site. These daily data (between 2008 and 2009) can be used to examine the

associations between Google search trends and the daily marker index - Dow Jones

Industrial Average.

Variables

• Index: Time Index of the Observation

• Date: Date of the observation (Format: YYYY-MM-DD)

• Unemployment: The Google Unemployment Index tracks queries related to

"unemployment, social, social security, unemployment benefits" and so on.

• Rental: The Google Rental Index tracks queries related to “rent, apartments, for

rent, rentals,” etc. RealEstate: The Google Real Estate Index tracks queries related

to “real estate, mortgage, rent, apartments” and so on.

• Mortgage: The Google Mortgage Index tracks queries related to "mortgage,

calculator, mortgage calculator, mortgage rates".

• Jobs: The Google Jobs Index tracks queries related to "jobs, city, job, resume,

career, monster" and so forth.

• Investing: The Google Investing Index tracks queries related to "stock, finance,

capital, yahoo finance, stocks", etc.

• DJI_Index: The Dow Jones Industrial (DJI) index. These data are interpolated

from 5 records per week (Dow Jones stocks are traded on week-days only) to

7 days per week to match the constant 7-day records of the Google-Trends data.

• StdDJI: The standardized-DJI Index computed by: StdDJI ¼ 3 + (DJI-11,091)/

1,501, where m ¼ 11,091 and s ¼ 1,501 are the approximate mean and standard-

deviation of the DJI for the period (2005–2011).

388 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

• 30-Day Moving Average Data Columns: The 8 variables below are the 30-day

moving averages of the 8 corresponding (raw) variables above.

– Unemployment30MA, Rental30MA, RealEstate30MA, Mortgage30MA,

Jobs30MA, Investing30MA, DJI_Index30MA, StdDJI_30MA.

• 180-Day Moving Average Data Columns: The 8 variables below are the

180-day moving averages of the 8 corresponding (raw) variables.

– Unemployment180MA, Rental180MA, RealEstate180MA, Mortgage180MA,

Jobs180MA, Investing180MA, DJI_Index180MA, StdDJI_180MA.

Here we use the RealEstate as our dependent variable. Let’s see if the Google

Real Estate Index could be predicted by other variables in the dataset.

11.2.2 Step 2: Exploring and Preparing the Data

First, we need to load the dataset into R.

google<-read.csv("https://umich.instructure.com/files/416274/download?downlo
ad_frd=1", stringsAsFactors = F)

Let’s delete the first two columns, since the only goal is to predict Google Real

Estate Index with other indexes and DJI.

google<-google[, -c(1, 2)]
str(google)

'data.frame': 731 obs. of 24 variables:

$ Unemployment : num 1.54 1.56 1.59 1.62 1.64 1.64 1.71 1.85 1.82

1.78 ...

$ Rental : num 0.88 0.9 0.92 0.92 0.94 0.96 0.99 1.02 1.02 1

.01 ...

$ RealEstate : num 0.79 0.81 0.82 0.82 0.83 0.84 0.86 0.89 0.89

0.89 ...

$ Mortgage : num 1 1.05 1.07 1.08 1.1 1.11 1.15 1.22 1.23 1.24

...

$ Jobs : num 0.99 1.05 1.1 1.14 1.17 1.2 1.3 1.41 1.43 1.4

4 ...

$ Investing : num 0.92 0.94 0.96 0.98 0.99 0.99 1.02 1.09 1.1 1

.1 ...

$ DJI_Index : num 13044 13044 13057 12800 12827 ...

$ StdDJI : num 4.3 4.3 4.31 4.14 4.16 4.16 4.16 4 4.1 4.17 .

..

$ Unemployment_30MA : num 1.37 1.37 1.38 1.38 1.39 1.4 1.4 1.42 1.43 1.

44 ...

$ Rental_30MA : num 0.72 0.72 0.73 0.73 0.74 0.75 0.76 0.77 0.78

0.79 ...

$ RealEstate_30MA : num 0.67 0.67 0.68 0.68 0.68 0.69 0.7 0.7 0.71 0.

72 ...

$ Mortgage_30MA : num 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99

11.2 Case Study 1: Google Trends and the Stock Market: Regression 389

https://umich.instructure.com/files/416274/download?download_frd=1
https://umich.instructure.com/files/416274/download?download_frd=1

1 ...

$ Jobs_30MA : num 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.06 1.07

1.08 ...

$ Investing_30MA : num 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.98

0.98 ...

$ DJI_Index_30MA : num 13405 13396 13390 13368 13342 ...

$ StdDJI_30MA : num 4.54 4.54 4.53 4.52 4.5 4.48 4.46 4.44 4.41 4

.4 ...

$ Unemployment_180MA: num 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44

1.44 ...

$ Rental_180MA : num 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86

0.86 ...

$ RealEstate_180MA : num 0.89 0.89 0.88 0.88 0.88 0.88 0.88 0.88 0.88

0.87 ...

$ Mortgage_180MA : num 1.18 1.18 1.18 1.18 1.17 1.17 1.17 1.17 1.17

1.17 ...

$ Jobs_180MA : num 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24

1.24 ...

$ Investing_180MA : num 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04

1.04 ...

$ DJI_Index_180MA : num 13493 13492 13489 13486 13482 ...

$ StdDJI_180MA : num 4.6 4.6 4.6 4.6 4.59 4.59 4.59 4.58 4.58 4.58
...

As we can see from the structure of the data, these indices and DJI have different

ranges. We should rescale the data. In Chap. 6, we learned that normalizing these

features using our own normalize() function provides one solution. We can use

lapply() to apply the normalize() function to each column.

normalize <- function(x) {

return((x - min(x)) / (max(x) - min(x)))

}

google_norm<-as.data.frame(lapply(google, normalize))
summary(google_norm$RealEstate)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.4615 0.6731 0.6292 0.8077 1.0000

Looks like all the vectors are normalized into the [0, 1] range.

The next step would be to split the google dataset into training and testing

subsets. This time we will use the sample() and floor() function to separate the

training and testing sets. sample() is a function to create a set of indicators for row

numbers. We can subset the original dataset with random rows using these indica-

tors. floor() takes a number x and returns the closest integer to x

sample(row, size)

• row: rows in the dataset that you want to select from. If you want to select all of

the rows, you can use nrow(data) or 1 : nrow(data)(single number or vector).

• size: how many rows you want for your subset.

390 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

sub<-sample(nrow(google_norm), floor(nrow(google_norm)*0.75))

google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]

We are good to go and can move forward to the model training phase.

11.2.3 Step 3: Training a Model on the Data

Here, we use the function neuralnet() in package neuralnet. neuralnet

returns a NN object containing:

• call: the matched call.

• response: extracted from the data argument.

• covariate: the variables extracted from the data argument.

• model.list: a list containing the covariates and the response variables extracted

from the formula argument.

• err.fct and act.fct: the error and activation functions.

• net.result: a list containing the overall result of the neural network for every

repetition.

• weights: a list containing the fitted weights of the neural network for every

repetition.

• result.matrix: a matrix containing the reached threshold, needed steps, error, AIC,

BIC, and weights for every repetition. Each column represents one repetition.

m<-neuralnet(target�predictors, data¼mydata, hidden¼1),

where:

• target: variable we want to predict.

• predictors: predictors we want to use. Note that we cannot use "." to denote all the

variables in this function. We have to add all predictors one by one to the model.

• data: training dataset.

• hidden: number of hidden nodes that we want to use in the model. By default, it is

set to one.

install.packages("neuralnet")
library(neuralnet)

google_model<-neuralnet(RealEstate~Unemployment+Rental+Mortgage+Jobs+Investi

ng+DJI_Index+StdDJI, data=google_train)
plot(google_model)

Figure 11.7 shows that we have only one hidden node. Error stands for the sum

of squared errors and Steps is how many iterations the model had to go through.

These outputs could be different when you run the exact same code because the

weights are stochastically generated.

11.2 Case Study 1: Google Trends and the Stock Market: Regression 391

11.2.4 Step 4: Evaluating Model Performance

Similar to the predict() function that we have mentioned in previous Chapters,

compute() is an alternative method that helps with ANN model predictions.

p<�compute(m, test)

• m: a trained neural networks model.

• test: the test dataset. This dataset should only contain the same type of predictors

in the neural network model.

In our model, we picked Unemployment, Rental, Mortgage, Jobs,

Investing, DJI_Index, StdDJI as our predictors. So, we need to find these

corresponding column numbers in the test dataset (1, 2, 4, 5, 6, 7, 8, respectively).

google_pred<-compute(google_model, google_test[, c(1:2, 4:8)])

pred_results<-google_pred$net.result
cor(pred_results, google_test$RealEstate)

[,1]
[1,] 0.9653369986

As mentioned in Chap. 9, we can still use the correlation between predicted

results and observed Real Estate Index to evaluate the data. A correlation over 0.96 is

very good for real world datasets. Could this still be improved?

Fig. 11.7 A simple neural

network predicting the real

estate prices using Google

market data

392 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

11.2.5 Step 5: Improving Model Performance

This time we will include four hidden nodes in the model. Let’s see what results we

can get from this more elaborate ANN model (Fig. 11.8).

google_model2<-neuralnet(RealEstate~Unemployment+Rental+Mortgage+Jobs+Invest

ing+DJI_Index+StdDJI, data=google_train, hidden = 4)

plot(google_model2)

Although the graph looks complicated, we have smaller Error, or sum of

squared errors. Neural net models may be used for classification and regression,

which we will see in the next part. Let’s first try regression tree modeling.

Fig. 11.8 A more elaborate neural network showing decreased prediction error, compare to

Fig. 11.7

11.2 Case Study 1: Google Trends and the Stock Market: Regression 393

google_pred2<-compute(google_model2, google_test[, c(1:2, 4:8)])

pred_results2<-google_pred2$net.result
cor(pred_results2, google_test$RealEstate)

[,1]
[1,] 0.9869109731

We get an even higher correlation. This is almost an ideal result! The predicted

and observed indices have a very strong linear relationship. Nevertheless, too many

hidden nodes might even decrease the correlation between predicted and true values,

which will be examined in the practice problems later in this Chapter.

11.2.6 Step 6: Adding Additional Layers

We observe an even lower Error by using three hidden layers with numbers of

nodes 4,3,3 within each, respectively.

google_model2<-neuralnet(RealEstate~Unemployment+Rental+Mortgage+Jobs+Invest

ing+DJI_Index+StdDJI, data=google_train, hidden = c(4,3,3))

google_pred2<-compute(google_model2, google_test[, c(1:2, 4:8)])

pred_results2<-google_pred2$net.result
cor(pred_results2, google_test$RealEstate)

[,1]
[1,] 0.9853727545

11.3 Simple NN Demo: Learning to Compute √

This simple example demonstrates the foundation of the neural network prediction

of a basic mathematical function (square-root):
ffiffiffiffip

: R
þ ! R

þ (Fig. 11.9).

Fig. 11.9 The square-root

function evaluated at

random Uniform(0,100)

values

394 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

generate random training data: 1,000 |X_i|, where X_i ~ Uniform (0,10) or
perhaps ~ N(0,1)
rand_data <- abs(runif(1000, 0, 100))

create a 2 column data-frame (and_data, sqrt_data)
sqrt_df <- data.frame(rand_data, sqrt_data=sqrt(rand_data))

plot(rand_data, sqrt_df$sqrt_data)

Train the neural net
neuralnet hidden=10

threshold=0.01

report the NN
print(net.sqrt)

generate testing data seq(from=0.1, to=N, step=0.1)
200.0 # out of range [100: 200] is also included in the testing!

seq 0 0.1 sqrt

try to predict the square-root values using 10 hidden nodes
Compute or predict for test data, test_data

compute

net.sqrt <- (sqrt_data ~ rand_data, sqrt_df, ,
)

N <-

test_data <- (, N,); test_data_sqrt <- (test_data)

pred_sqrt <- (net.sqrt, test_data)$net.result

compute uses the trained neural net (net.sqrt),
to estimate the square-roots of the testing data

compare real (test_data_sqrt) and NN-predicted (pred_sqrt) square
roots of test_data
plot xlim=c 0 12 ylim=c 0 12

abline 0 1 col="red" lty=2

legend "bottomright" c "Pred vs. Actual SQRT" "Pred=Actual Line"
cex=0.8 lty=c 1 2 lwd=c 2 2 col=c "black" "red"

(pred_sqrt, test_data_sqrt, (,), (,));

(, , ,)

(, (,),
, (,), (,), (,))

compare_df <-data.frame(pred_sqrt, test_data_sqrt); # compare_df

plot(test_data, test_data_sqrt)

lines(test_data, pred_sqrt, pch=22, col="red", lty=2)

legend("bottomright", c("Actual SQRT","Predicted SQRT"), lty=c(1,2), lwd=c
(2,2),col=c("black","red"))

We observe that the NN, net.sqrt actually learns and predicts the complex

square root function with good accuracy, Figs 11.10 and 11.11. Of course, individual

results may vary, as we randomly generate the training data (rand_data) and due to

the stochastic construction of the ANN.

11.3 Simple NN Demo: Learning to Compute √ 395

11.4 Case Study 2: Google Trends and the Stock Market –

Classification

In practice, ANN models are also useful as classifiers. Let’s demonstrate this by

using again the Stock Market data. We will binarize the samples according to their

RealEstate values. For those higher than the 75%, we will lable them 0;

For those lower than the 25%, we will label them 2; all others will be labeled 1.

Even in the classification setting, the response still must be numeric.

google_class = google_norm

id1 = which(google_class$RealEstate>quantile(google_class$RealEstate,0.75))

id2 = which(google_class$RealEstate<quantile(google_class$RealEstate,0.25))

id3 = setdiff(1:nrow(google_class),union(id1,id2))

google_class$RealEstate[id1]=0

google_class$RealEstate[id2]=1

google_class$RealEstate[id3]=2
summary(as.factor(google_class$RealEstate))

0 1 2
179 178 374

Here, we divide the data to training and testing sets. We need three more column

indicators that correspond to the three derived RealEstate labels.

Fig. 11.10 Test data

validation of the neural

network predicting the

behavior of the square-root

function

Fig. 11.11 Plots illustrating

the agreement of the

NN-predicted and the

analytical square-root

function

396 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

set.seed(2017)

train = sample(1:nrow(google_class),0.7*nrow(google_class))

google_tr = google_class[train,]

google_ts = google_class[-train,]

train_x = google_tr[,c(1:2,4:8)]

train_y = google_tr[,3]

colnames(train_x)

[1] "Unemployment" "Rental" "Mortgage" "Jobs"

[5] "Investing" "DJI_Index" "StdDJI"

test_x = google_ts[,c(1:2,4:8)]

test_y = google_ts[3]

train_y_ind = model.matrix(~factor(train_y)-1)

colnames(train_y_ind) = c("High","Median","Low")
train = cbind(train_x, train_y_ind)

We use non-linear output and display every 2,000 iterations.

nn_single = neuralnet(High+Median+Low~Unemployment+Rental+Mortgage+Jobs+Inve

sting+DJI_Index+StdDJI,

data = train,

hidden=4,

linear.output=FALSE,
lifesign='full', lifesign.step=2000)

hidden: 4 thresh:0.01 rep:1/1 steps:2000 min thresh: 0.13702015

48

4000 min thresh: 0.08524054094

6000 min thresh: 0.08524054094

8000 min thresh: 0.08524054094

10000 min thresh: 0.08524054094
…

40000 min thresh: 0.02427719823

42000 min thresh: 0.02158221449

44000 min thresh: 0.01831644589

46000 min thresh: 0.01682874388

48000 min thresh: 0.01572773551

50000 min thresh: 0.01311388938

52000 min thresh: 0.01241004281

54000 min thresh: 0.01131407008
55420 error: 7.01191 time: 19.33 secs

Below is the prediction function translating this model to generate forecasting

results.

pred = function(nn, dat) {

compute uses the trained neural net (nn=nn_single), and
new testing data (dat=google_ts) to generate predictions (y_hat)
compute returns a list containing:
(1) neurons: a list of the neurons' output for each layer of the

neural network, and
(2) net.result: a matrix containing the overall result of the

neural network.
yhat = compute(nn, dat)$net.result

11.4 Case Study 2: Google Trends and the Stock Market – Classification 397

find the maximum in each row (1) in the net.result matrix
to determine the first occurrence of a specific element in each row (1)
we can use the apply function with which.max
yhat = apply(yhat, 1, which.max)-1

return(yhat)

}
mean(pred(nn_single, google_ts[,c(1:2,4:8)]) != as.factor(google_ts[,3]))

[1] 0.03181818182

Now let’s inspect the structure of the Neural Network.

plot(nn_single)

Similarly, we can change hidden to utilize multiple hidden layers. However, a

more complicated model won’t necessarily guarantee an improved performance.

nn_single = neuralnet(High+Median+Low~Unemployment+Rental+Mortgage+Jobs+Inve

sting+DJI_Index+StdDJI,

data = train,

hidden=c(4,5),

linear.output=FALSE,
lifesign='full', lifesign.step=2000)

hidden: 4, 5 thresh: 0.01 rep:1/1 steps:2000 min thresh: 0.307

4000 min thresh: 0.2875517033

6000 min thresh: 0.1383720887

8000 min thresh: 0.1115440575

10000 min thresh: 0.09233958192

12000 min thresh: 0.0766173347

14000 min thresh: 0.05763223509

16000 min thresh: 0.03417989426

18000 min thresh: 0.01473872843

20000 min thresh: 0.01101646653
20741 error: 7.00627 time: 11.3 secs

mean(pred(nn_single, google_ts[,c(1:2,4:8)]) != as.factor(google_ts[,3]))

[1] 0.03181818182

11.5 Support Vector Machines (SVM)

Recall that the Lazy learning methods in Chap. 6 assigned class labels using

geometrical distances of different features. In multidimensional spaces (multiple

features), we can use spheres with centers determined by the training dataset. Then,

we can assign labels to testing data according to their nearest spherical center. Let’s

see if we make a choose other hypersurfaces that may separate nD data and indice a

classification scheme.

398 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

11.5.1 Classification with Hyperplanes

The easiest shape would be a plane. Support Vector Machine (SVM) can use

hyperplanes to separate data into several groups or classes. This is used for datasets

that are linearly separable. Assume that we have only two features, will you use the

A or B hyperplane to separate the data on Fig. 11.12? Perhaps even another

hyperplane, C?

Finding the Maximum Margin

To answer the above question, we need to search for the Maximum Margin

Hyperplane (MMH). That is the hyperplane that creates the greatest separation

between the two closest observations.

We define support vectors as the points from each class that are closest to the

MMH. Each class must have at least one observation as a support vector.

Using support vectors alone is not sufficient for finding the MMH. Although

tricky mathematical calculations are involved, the fundamental process is fairly

simple. Let’s look at linearly separable data and non-linearly separable data

individually.

Linearly Separable Data

If the dataset is linearly separable, we can find the outer boundaries of our two

groups of data points. These boundaries are called convex hull (red lines in the

following graph). The MMH (black solid line) is the line that is perpendicular to the

shortest line between the two convex hulls (Fig. 11.13).

Fig. 11.12 Schematic

representation of linear-

kernel SVM classification

11.5 Support Vector Machines (SVM) 399

An alternative way would be picking two parallel planes that can separate the data

into two groups while the distance between two planes is as far as possible.

To mathematically define a plane, we need to use vectors. In n-dimensional

spaces planes could be expressed by the following equation:

w
! � x! þb ¼ 0,

where w
!
(weights) and x

!
both have n coordinates, and b is a single number known

as the bias.

To clarify this notation, let’s look at the situation in a 3D space where we can

express (embed) 2D Euclidean planes given a point ((xo, yo, zo)) and a normal-vector

((a, b, c)) form. This is just a linear equation, where d ¼ � (axo + byo + cz0):

axþ byþ czþ d ¼ 0,

or equivalently

w1x1 þ w2x2 þ w3x3 þ b ¼ 0:

We can see that it is equivalent to the vector notation.

Using the vector notation, we can specify two hyperplanes as follows:

w
! � x! þb � þ1

and

w
! � x! þb � �1:

We require that all class 1 observations fall above the first plane and all obser-

vations in the other class fall below the second plane.

The distance between two planes is calculated as:

2

kw!k
,

Fig. 11.13 Convex hulls of

the linearly separable groups

of points

400 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

where kw!k is the Euclidean norm. To maximize the distance, we need to minimize

the Euclidean norm.

To sum up we are going to find min
kw!k
2

with the following constrain:

yi
�

w
!� x! �b

�

� 1, 8~xi,

where 8 means “for all”.

For each nonlinear programming problem, called the primal problem, there is a

related nonlinear programming problem, called the Lagrangian dual problem.

Under certain assumptions for convexity and suitable constraints, the primal and

dual problems have equal optimal objective values. Primal optimization problems

are typically described as:

min
x

f xð Þ

subject to

gi xð Þ � 0

hj xð Þ ¼ 0

�

�

�

�

�

:

The Lagrangian dual problem is defined as a parallel nonlinear programming

problem:

min
u, v

θ u; vð Þð Þ
subject to u � 0,

where

θ u; vð Þ ¼ inf
x

f xð Þ þ
X

i

uigi xð Þ þ
X

j

vjhj xð Þ
 !

:

Chapter 21 provides additional technical details about optimization duality.

Suppose the Lagrange primal is:

Lp ¼
1

2
wk k2 �

X

n

i¼1

αi yi w0 þ xTi w
� �

� 1
� �

,where αi � 0:

To optimize that objective function, we can set the partial derivatives equal to

zero:

∂

∂w
: w ¼

X

n

i¼1

αiyi xi

∂

∂b
: 0 ¼

X

n

i¼1

αiyi:

11.5 Support Vector Machines (SVM) 401

Substituting into the Lagrange primal, we obtain the Lagrange dual:

LD ¼
X

n

i¼1

αi �
1

2

X

n

i¼1

αiα
0
iyiy

0
ix

T
i x

0
i:

We maximize LD subject to αi � 0 and
X

n

i¼1

αiyi ¼ 0.

The Karush-Kuhn-Tucker optimization conditions suggest that we have

α̂ yi
�

b̂ þ xTi ŵ
�

� 1
� �

¼ 0:

Which implies that if yi f̂ xið Þ > 1, then α̂ i ¼ 0. The support of a function (f) is

the smallest subset of the domain containing only arguments (x) which are not

mapped to zero (f(x) 6¼ 0). In our case, the solution ŵ is defined in terms of a linear

combination of the support points:

f̂ xð Þ ¼ wTx ¼
X

n

i¼1

αiyi xi:

That’s where the name of Support Vector Machines (SVM) comes from.

Non-linearly Separable Data

For non-linearly separable data, we need to use a small trick. We still use a plane, but

allow some of the points to be misclassified into the wrong class. To penalize for

that, we add a cost term after the Euclidean norm function that we need to minimize.

Therefore, the solution changes to:

min
kw!k
2

 !

þ C
X

n

i¼1

ξi

s:t:yi
�

w
!� x! �b

�

� 1, 8x!i, ξi � 0,

where C is the cost and ξi is the distance between the misclassified observation i and

the plane.

We have Lagrange dual problem:

Lp ¼
1

2
wk k2 þ C

X

n

i¼1

ξi �
X

n

i¼1

αi yi bþ xTi w
� �

� 1� ξið Þ
� �

�
X

n

i¼1

γi ξi,

where

αi, γi � 0:

Similar to what we did above for the separable case, we can use the derivatives of

the primal problem to solve the dual problem.

402 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

Notice the inner product in the final expression. We can replace this inner product

with a kernel function that maps the feature space into a higher dimensional space

(e.g., using a polynomial kernel) or an infinite dimensional space (e.g., using a

Gaussian kernel).

Using Kernels for Non-linear Spaces

An alternative way to solve for the non-linear separable is called the kernel trick.

That is to add some dimensions (or features) to make these non-linear separable data

to be separable in a higher dimensional space.

How can we do that? We transform our data using kernel functions. A general

form for kernel functions would be:

K
�

x
!
i ; x

!
j

�

¼ ϕ
�

x
!
i

�

� ϕ
�

x
!
j

�

The kernel is a mapping of the data into another space.

The linear kernel would be the simplest one that is just the dot product of the

features.

K
�

x
!
i ; x

!
j

�

¼ x
!
i � x

!
j:

The polynomial kernel of degree d transforms the data by adding a simple

non-linear transformation of the data.

K
�

x
!
i ; x

!
j

�

¼
�

x
!
i � x

!
j þ 1

�d
:

The sigmoid kernel is very similar to neural network. It uses a sigmoid activation

function.

K
�

x
!
i ; x

!
j

�

¼ tanh
�

kx
!
i � x

!
j � δ

�

:

The Gaussian RBF kernel is similar to RBF neural network and is a good place to

start investigating a dataset.

K
�

x
!
i ; x

!
j

�

¼ exp
� k x

!
i � x

!
jk2
�

2σ2

 !

:

11.6 Case Study 3: Optical Character Recognition (OCR)

This example illustrates interpreting, processing and recognizing handwritten notes

(text). Specifically, we will convert handwritten characters (unstructured image data)

to printed text (typeset characters).

11.6 Case Study 3: Optical Character Recognition (OCR) 403

Protocol:

• Divide the image (typically optical image of handwritten notes on paper) into a

fine grid where each cell contains one glyph (symbol, letter, number).

• Match the glyph in each cell to one of the possible characters in a dictionary.

• Combine individual characters together into words to reconstitute the digital

representation of the optical image of the handwritten notes.

In this example, we use an optical document image (data) that has already been

pre-partitioned into rectangular grid cells containing one character of the 26 English

letters, A through Z.

The resulting gridded dataset is distributed by the UCI Machine Learning Data

Repository. The dataset contains 20,000 examples of 26 English capital letters

printed using 20 different randomly reshaped and morphed fonts (Fig. 11.14).

11.6.1 Step 1: Prepare and Explore the Data

read in data and examine structure
hand_letters <- read.csv("https://umich.instructure.com/files/2837863/downlo

ad?download_frd=1", header = T)
str(hand_letters)

'data.frame': 20000 obs. of 17 variables:

$ letter: Factor w/ 26 levels "A","B","C","D",..: 20 9 4 14 7 19 2 1 10

13 ...

$ xbox : int 2 5 4 7 2 4 4 1 2 11 ...

$ ybox : int 8 12 11 11 1 11 2 1 2 15 ...

$ width : int 3 3 6 6 3 5 5 3 4 13 ...

$ height: int 5 7 8 6 1 8 4 2 4 9 ...

Fig. 11.14 Example of the

preprocessed gridded

handwritten letters

404 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

https://umich.instructure.com/files/2837863/download?download_frd=1
https://umich.instructure.com/files/2837863/download?download_frd=1

$ onpix : int 1 2 6 3 1 3 4 1 2 7 ...

$ xbar : int 8 10 10 5 8 8 8 8 10 13 ...

$ ybar : int 13 5 6 9 6 8 7 2 6 2 ...

$ x2bar : int 0 5 2 4 6 6 6 2 2 6 ...

$ y2bar : int 6 4 6 6 6 9 6 2 6 2 ...

$ xybar : int 6 13 10 4 6 5 7 8 12 12 ...

$ x2ybar: int 10 3 3 4 5 6 6 2 4 1 ...

$ xy2bar: int 8 9 7 10 9 6 6 8 8 9 ...

$ xedge : int 0 2 3 6 1 0 2 1 1 8 ...

$ xedgey: int 8 8 7 10 7 8 8 6 6 1 ...

$ yedge : int 0 4 3 2 5 9 7 2 1 1 ...
$ yedgex: int 8 10 9 8 10 7 10 7 7 8 ...

divide into training (3/4) and testing (1/4) data
hand_letters_train <- hand_letters[1:15000,]
hand_letters_test <- hand_letters[15001:20000,]

11.6.2 Step 2: Training an SVM Model

We can specify vanilladot as a linear kernel, or alternatively:

• rbfdot Radial Basis kernel i.e., “Gaussian”

• polydot Polynomial kernel

• tanhdot Hyperbolic tangent kernel

• laplacedot Laplacian kernel

• besseldot Bessel kernel

• anovadot ANOVA RBF kernel

• splinedot Spline kernel

• stringdot String kernel

begin by training a simple linear SVM
library(kernlab)

set.seed(123)

hand_letter_classifier <- ksvm(letter ~ ., data = hand_letters_train,
kernel = "vanilladot")

Setting default kernel parameters

look at basic information about the model
hand_letter_classifier

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 1

Linear (vanilla) kernel function.

Number of Support Vectors : 6618

11.6 Case Study 3: Optical Character Recognition (OCR) 405

Objective Function Value : -13.2947 -19.6051 -20.8982 -5.6651 -7.2092 -31

.5151 -48.3253 -17.6236 -57.0476 -30.532 -15.7162 -31.49 -28.2706 -45.741 -1

1.7891 -33.3161 -28.2251 -16.5347 -13.2693 -30.88 -29.4259 -7.7099 -11.1685

-29.4289 -13.0857 -9.2631 -144.1105 -52.7747 -71.052 -109.7783 -158.3152 -51

.2839 -39.6499 -67.0061 -23.8637 -27.6083 -26.3461 -35.2626 -38.6346 -116.89

67 -173.8336 -214.2196 -20.7925 -10.3812 -53.1156 -12.228 -46.6132 -8.6867 -

18.9108 -11.0535 -94.5751 -26.5689 -224.0215 -70.5714 -8.3232 -4.5265 -132.5

431 -74.6876 -19.5742 -12.7352 -81.7894 -11.6983 -25.4835 -17.582 -23.934 -2

7.022 -50.7092 -10.9228 -4.3852 -13.7216 -3.8547 -3.5723 -8.419 -36.9773 -47

.1418 -172.6874 -42.457 -44.0342 -42.7695 -13.0527 -16.7534 -78.7849 -101.81
46 -32.1141 -30.3349 -104.0695 -32.1258 -24.6301 -32.6087 -17.0808 -5.1347 -

40.5505 -6.684 -16.2962 -56.364 -147.3669 -49.0907 -37.8334 -32.8068 -73.248

-127.7819 -10.5342 -5.2495 -11.9568 -30.1631 -135.5915 -51.521 -176.2669 -99

.0973 -10.295 -14.5906 -3.7822 -64.1452 -7.4813 -84.9109 -40.9146 -87.2437 -

66.8629 -69.9932 -20.5294 -12.7577 -7.0328 -22.9219 -12.3975 -223.9411 -29.9

969 -24.0552 -132.6252 -133.7033 -9.2959 -33.1873 -5.8016 -57.3392 -60.9046

-27.1766 -200.8554 -29.9334 -15.9359 -130.0183 -154.4587 -43.5779 -24.4852 -

135.7896 -74.1531 -303.5043 -131.4741 -149.5403 -30.4917 -29.8086 -47.3454 -

24.6204 -44.2792 -6.2064 -8.6708 -36.4412 -68.712 -179.7303 -44.7489 -84.860

8 -136.6786 -569.3398 -113.0779 -138.435 -303.8556 -32.8011 -60.4546 -139.35

25 -108.9841 -34.277 -64.9071 -38.6148 -7.5086 -204.222 -12.9572 -29.0252 -2

.0352 -5.9916 -14.3706 -21.5773 -57.0064 -19.6546 -178.0543 -19.812 -4.145 -

4.5318 -0.8101 -116.8649 -7.8269 -53.3445 -21.4812 -13.5066 -5.3881 -15.1061

-27.6061 -18.9239 -68.8104 -26.1223 -93.0231 -15.1693 -9.7999 -7.6137 -1.530

1 -84.9531 -5.4551 -93.187 -93.4153 -43.8334 -23.6706 -59.1468 -22.0933 -47.

8381 -219.9936 -39.5596 -47.2643 -34.0752 -20.2532 -11.239 -118.4152 -6.4126

-5.1846 -8.7272 -9.4584 -20.8522 -22.0878 -113.0806 -29.0912 -80.397 -29.620

6 -13.7422 -8.9416 -3.0785 -79.842 -6.1869 -13.9663 -63.3665 -93.2067 -11.55

93 -13.0449 -48.2558 -2.9343 -8.25 -76.4361 -33.5374 -109.112 -4.1731 -6.197

8 -1.2664 -84.1287 -18.3054 -7.2209 -45.5509 -3.3567 -16.8612 -60.5094 -43.9

956 -53.0592 -6.1407 -17.4499 -2.3741 -65.023 -102.1593 -103.4312 -23.1318 -

17.3394 -50.6654 -31.4407 -57.6065 -19.6857 -5.2667 -4.1767 -55.8445 -30.92

-57.2396 -30.1101 -7.611 -47.7711 -12.1616 -19.1572 -53.5364 -3.8024 -53.124

-225.6075 -12.6791 -11.5852 -16.6614 -9.7186 -65.824 -16.3897 -42.3931 -50.5

13 -24.752 -14.513 -40.495 -16.5124 -57.1813 -4.7974 -5.2949 -81.7477 -3.272

-6.3448 -1.1259 -114.3256 -22.3232 -339.8619 -31.0491 -31.3872 -4.9625 -82.4

936 -123.6225 -72.8463 -23.4836 -33.1608 -11.7133 -19.7607 -1.8599 -50.1148

-8.2868 -143.3592 -1.8508 -1.9699 -9.4175 -0.5202 -25.0654 -30.0489 -5.6248
Training error : 0.129733

11.6.3 Step 3: Evaluating Model Performance

Let’s assess the SVM prediction using the testing data.

predictions on testing dataset
hand_letter_predictions<- predict(hand_letter_classifier, hand_letters_test)

head(hand_letter_predictions)

[1] C U K U E I
Levels: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

table(hand_letter_predictions, hand_letters_test$letter)

406 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

hand_letter_predictions A B C D E F G H I J K L

A 191 0 1 0 0 0 0 0 0 1 0 0

B 0 157 0 9 2 0 1 3 0 0 1 0

C 0 0 142 0 5 0 14 3 2 0 2 4

D 1 1 0 196 0 1 4 12 5 3 4 4

E 0 0 8 0 164 2 1 1 0 0 3 5

F 0 0 0 0 0 171 4 2 8 2 0 0

G 1 1 4 1 10 3 150 2 0 0 1 2

H 0 3 0 1 0 2 2 122 0 2 4 2

I 0 0 0 0 0 0 0 0 175 10 0 0

J 2 2 0 0 0 3 0 2 7 158 0 0

K 2 1 11 0 0 0 4 6 0 0 148 0

L 0 0 0 0 1 0 1 1 0 0 0 176

M 0 0 1 1 0 0 1 2 0 0 0 0

N 0 0 0 1 0 1 0 1 0 0 0 0

O 0 0 1 2 0 0 2 1 0 2 0 0

P 0 0 0 1 0 3 1 0 0 0 0 0

Q 0 0 0 0 0 0 9 3 0 0 0 3

R 2 5 0 1 1 0 2 9 0 0 11 0

S 1 2 0 0 1 1 5 0 2 2 0 3

T 0 0 0 0 3 6 0 1 0 0 1 0

U 1 0 3 3 0 0 0 2 0 0 0 0

V 0 0 0 0 0 1 6 3 0 0 0 0

W 0 0 0 0 0 0 1 0 0 0 0 0

X 0 1 0 0 2 0 0 1 3 0 2 6

Y 3 0 0 0 0 0 0 1 0 0 0 0

Z 2 0 0 0 2 0 0 0 3 3 0 0

hand_letter_predictions M N O P Q R S T U V W X

A 1 2 2 0 5 0 2 1 1 0 1 0

B 3 0 0 2 4 8 5 0 0 3 0 1

C 0 0 2 0 0 0 0 0 0 0 0 0

D 0 6 5 3 1 4 0 0 0 0 0 5

E 0 0 0 0 6 0 10 0 0 0 0 4

F 0 0 0 18 0 0 5 2 0 0 0 1

G 1 0 0 2 11 2 5 3 0 0 0 1

H 2 5 23 0 2 6 0 4 1 4 0 0

I 0 0 0 1 0 0 3 0 0 0 0 4

J 0 0 1 1 4 0 1 0 0 0 0 2

K 0 2 0 1 1 7 0 1 3 0 0 4

L 0 0 0 0 1 0 4 0 0 0 0 1

M 177 5 1 0 0 0 0 0 4 0 8 0

N 0 172 0 0 0 3 0 0 1 0 2 0

O 0 1 132 2 4 0 0 0 3 0 0 0

P 0 0 3 168 1 0 0 1 0 0 0 0

Q 0 0 5 1 163 0 5 0 0 0 0 0

R 1 1 1 1 0 176 0 1 0 2 0 0

S 0 0 0 0 11 0 135 2 0 0 0 2

T 0 0 0 0 0 0 3 163 1 0 0 0
U 0 1 0 1 0 0 0 0 197 0 1 1

V 0 3 1 0 2 1 0 0 0 152 1 0

W 2 0 4 0 0 0 0 0 4 7 154 0

X 0 0 1 0 0 1 2 0 0 0 0 160

Y 0 0 0 6 0 0 0 3 0 0 0 0

Z 0 0 0 0 1 0 18 3 0 0 0 0

11.6 Case Study 3: Optical Character Recognition (OCR) 407

hand_letter_predictions Y Z

A 0 0

B 0 0

C 0 0

D 3 1

E 0 3

F 3 0

G 0 0

H 3 0

I 1 1

J 0 11

K 0 0

L 0 1

M 0 0

N 0 0

O 0 0

P 1 0

Q 3 0

R 0 0

S 0 10

T 5 2

U 1 0

V 5 0

W 0 0

X 1 1

Y 157 0
Z 0 164

look only at agreement vs. non-agreement
construct a vector of TRUE/FALSE indicating correct/incorrect predictions
agreement <- hand_letter_predictions == hand_letters_test$letter

check if characters agree
table(agreement)

agreement

FALSE TRUE
780 4220

prop.table(table(agreement))

agreement

FALSE TRUE
0.156 0.844

11.6.4 Step 4: Improving Model Performance

Replacing the vanilladot linear kernel with rbfdot Radial Basis Function

kernel, i.e., “Gaussian” kernel, may improve the OCR prediction.

hand_letter_classifier_rbf <- ksvm(letter ~ ., data = hand_letters_train,

kernel = "rbfdot")

hand_letter_predictions_rbf <- predict(hand_letter_classifier_rbf,

hand_letters_test)

agreement_rbf <- hand_letter_predictions_rbf == hand_letters_test$letter
table(agreement_rbf)

408 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

agreement_rbf

FALSE TRUE
360 4640

prop.table(table(agreement_rbf))

agreement_rbf

FALSE TRUE
0.072 0.928

Note the improvement of the automated (SVM) classification accuracy (0.928)

for rbfdot compared to the previous (vanilladot) result (0.844).

11.7 Case Study 4: Iris Flowers

Let’s have another look at the iris data that we saw in Chap. 2.

11.7.1 Step 1: Collecting Data

SVM requires all features to be numeric, and each feature has to be scaled into a

relative small interval. We are using the Edgar Anderson’s Iris Data in R for this case

study. This dataset measures the length and width of sepals and petals from three Iris

flower species.

11.7.2 Step 2: Exploring and Preparing the Data

Let’s load the data first. In this case study we want to explore the variable Species.

data(iris)

str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1

1 1 1 1 ...

table(iris$Species)

setosa versicolor virginica

50 50 50

11.7 Case Study 4: Iris Flowers 409

The data look good but we still can normalize the features either by hand or using

an R function.

Next, we can separate the training and testing datasets using 75%–25% rule.

sub<-sample(nrow(iris), floor(nrow(iris)*0.75))

iris_train<-iris[sub,]
iris_test<-iris[-sub,]

We can try the linear and non-linear kernels on the iris data (Figs. 11.15 and

11.16).

require(e1071)

iris.svm_1 <- svm(Species~Petal.Length+Petal.Width, data=iris_train,

kernel="linear", cost=1)

iris.svm_2 <- svm(Species~Petal.Length+Petal.Width, data=iris_train,

kernel="radial", cost=1)

par(mfrow=c(2,1))

plot(iris.svm_1, iris[,c(5,3,4)]); legend("center", "Linear")

plot(iris.svm_2, iris[,c(5,3,4)]); legend("center", "Radial")

Fig. 11.15 Linear-SVM kernel classification of the iris flowers dataset

410 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

11.7.3 Step 3: Training a Model on the Data

We are going to use kernlab for this case study. However other packages like

e1071 and klaR are available if you are quite familiar with C++.

Let’s break down the function ksvm()

m <�ksvm(target�predictors, data ¼ mydata, ker-

nel ¼ "rbfdot", c ¼ 1)

• target: the outcome variable that we want to predict.

• predictors: features that the prediction based on. In this function we can use the

"." to represent all the variables in the dataset again.

• data: the training dataset that the target and predictors can be find.

• kernel: is the kernel mapping we want to use. By default it is the radio basis

function (rbfdot).

• C is a number that specifies the cost of misclassification.

Fig. 11.16 Radial-SVM kernel classification of the iris flowers dataset

11.7 Case Study 4: Iris Flowers 411

Let’s install the package and play with the data now.

install.packages("kernlab")
library(kernlab)

iris_clas<-ksvm(Species~., data=iris_train, kernel="vanilladot")

Setting default kernel parameters

iris_clas

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 1

Linear (vanilla) kernel function.

Number of Support Vectors : 24

Objective Function Value : -1.0066 -0.3309 -13.8658

Training error : 0.026786

Here, we used all the variables other than the Species in the dataset as pre-

dictors. We also used kernel vanilladot, which is the linear kernel in this model.

We get a training error that is less than 0.02.

11.7.4 Step 4: Evaluating Model Performance

Again, the predict() function is used to forecast the species for a test data. Here,

we have a factor outcome, so we need the command table() to show us how well

do the predictions and actual data match.

iris.pred<-predict(iris_clas, iris_test)
table(iris.pred, iris_test$Species)

iris.pred setosa versicolor virginica

setosa 13 0 0

versicolor 0 14 0

virginica 0 1 10

We can see a single case of Iris virginica misclassified as Iris versicolor. The taxa

of all other flowers are correctly predicted.

To see the results more clearly, we can use the proportional table to show the

agreements of the categories.

agreement<-iris.pred==iris_test$Species
prop.table(table(agreement))

agreement

FALSE TRUE
0.02631578947 0.97368421053

412 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

Here ¼¼ means “equal to”. Over 97% of predictions are correct. Nevertheless, is

there any chance that we can improve the outcome? What if we try a Gaussian

kernel?

11.7.5 Step 5: RBF Kernel Function

Linear kernel is the simplest one but usually not the best one. Let’s try the RBF

(Radial Basis “Gaussian” Function) kernel instead.

iris_clas1<-ksvm(Species~., data=iris_train, kernel="rbfdot")

iris_clas1

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 1

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.877982617394805

Number of Support Vectors : 52

Objective Function Value : -4.6939 -5.1534 -16.2297

Training error : 0.017857

iris.pred1<-predict(iris_clas1, iris_test)

table(iris.pred1, iris_test$Species)

iris.pred1 setosa versicolor virginica

setosa 13 0 0

versicolor 0 14 2
virginica 0 1 8

agreement<-iris.pred1==iris_test$Species
prop.table(table(agreement))

agreement

FALSE TRUE
0.07894736842 0.92105263158

Unfortunately, the model performance is actually worse than the previous one

(you might get slightly different results). This is because this Iris dataset has a linear

feature. In practice, we could try some alternative kernel functions and see which one

fits the dataset the best.

11.7.6 Parameter Tuning

We can tune the SVM using the tune.svm function in the package e1071

(Fig. 11.17).

11.7 Case Study 4: Iris Flowers 413

costs = exp(-5:8)
tune.svm(Species~., kernel = "radial", data = iris_train, cost = costs)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters:

cost

1

- best performance: 0.03636363636

Further, we can draw a Cross-Validation (CV) plot to gauge the model perfor-

mance, see cross-validation details in Chap. 21:

set.seed(2017)
require(sparsediscrim); require (reshape); require(ggplot2)

folds = cv_partition(iris$Species, num_folds = 5)

train_cv_error_svm = function(costC) {

#Train
ir.svm = svm(Species~., data=iris,

kernel="radial", cost=costC)

train_error = sum(ir.svm$fitted != iris$Species) / nrow(iris)

#Test
test_error = sum(predict(ir.svm, iris_test) != iris_test$Species) / nrow(i

ris_test)

#CV error
ire.cverr = sapply(folds, function(fold) {

svmcv = svm(Species~.,data = iris, kernel="radial", cost=costC, subset =

fold$training)

svmpred = predict(svmcv, iris[fold$test,])

return(sum(svmpred != iris$Species[fold$test]) / length(fold$test))

})

0.0

0.1 10.0 1000.0

Train

CV

Test

Cost

0.2

0.4

C
la

s
s
if

ic
a
ti

o
n

 e
r
r
o

r

0.6

Fig. 11.17 Training data,

cross-validation, and testing

data SVM classification

errors of the iris flowers

414 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

cv_error = mean(ire.cverr)

return(c(train_error, cv_error, test_error))

}

costs = exp(-5:8)

ir_cost_errors = sapply(costs, function(cost) train_cv_error_svm(cost))

df_errs = data.frame(t(ir_cost_errors), costs)

colnames(df_errs) = c('Train', 'CV', 'Test', 'Logcost')

dataL <- melt(df_errs, id="Logcost")

ggplot(dataL, aes_string(x="Logcost", y="value", colour="variable",

group="variable", linetype="variable", shape="variable")) +

geom_line(size=1) + labs(x = "Cost",

y = "Classification error", colour="",group="",
linetype="",shape="") + scale_x_log10()

11.7.7 Improving the Performance of Gaussian Kernels

Now, let’s attempt to improve the performance of a Gaussian kernel by tuning:

set.seed(2020)

gammas = exp(-5:5)

tune_g = tune.svm(Species~., kernel = "radial", data = iris_train, cost = co

sts,gamma = gammas)

tune_g

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters:

gamma cost

0.01831563889 20.08553692
- best performance: 0.025

We observe that the model achieves a better prediction now.

iris.svm_g <- svm(Species~., data=iris_train,

kernel="radial", gamma=0.0183, cost=20)
table(iris_test$Species, predict(iris.svm_g, iris_test))

setosa versicolor virginica

setosa 13 0 0

versicolor 0 14 1
virginica 0 0 10

agreement<-predict(iris.svm_g, iris_test)==iris_test$Species
prop.table(table(agreement))

agreement

FALSE TRUE

0.02631578947 0.97368421053

Chapter 23 provides more details about prediction and classification using neural

networks and deep learning.

11.7 Case Study 4: Iris Flowers 415

11.8 Practice

11.8.1 Problem 1 Google Trends and the Stock Market

Use the Google trend data. Fit a neural network model with the same training data as

case study 1. This time, use Investing as target and Unemployment,

Rental, RealEstate, Mortgage, Jobs, DJI_Index, StdDJI as pre-

dictors. Use three hidden nodes. Note: remember to change the columns you want to

include in the test dataset when predicting.

The following number is the correlation between predicted and observed values.

[,1]

[1,] 0.8845711444

You might get a slightly different results since the weights are generated

randomly.

11.8.2 Problem 2: Quality of Life and Chronic Disease

Use the same data in Chap. 8 – Quality of life and chronic disease (dataset and meta-

data doc).

Let’s load the data first. In this case study, we want to use the variable

CHARLSONSCORE as our target variable.

qol<-read.csv("https://umich.instructure.com/files/481332/download?download_

frd=1")

str(qol)

'data.frame': 2356 obs. of 41 variables:

$ ID : int 171 171 172 179 180 180 181 182 183 186 ...

$ INTERVIEWDATE : int 0 427 0 0 0 42 0 0 0 0 ...

$ LANGUAGE : int 1 1 1 1 1 1 1 1 1 2 ...

$ AGE : int 49 49 62 44 64 64 52 48 49 78 ...

$ RACE_ETHNICITY : int 3 3 3 7 3 3 3 3 3 4 ...

$ SEX : int 2 2 2 2 1 1 2 1 1 1 ...

$ QOL_Q_01 : int 4 4 3 6 3 3 4 2 3 5 ...

$ QOL_Q_02 : int 4 3 3 6 2 5 4 1 4 6 ...

$ QOL_Q_03 : int 4 4 4 6 3 6 4 3 4 4 ...

$ QOL_Q_04 : int 4 4 2 6 3 6 2 2 5 2 ...

$ QOL_Q_05 : int 1 5 4 6 2 6 4 3 4 3 ...

$ QOL_Q_06 : int 4 4 2 6 1 2 4 1 2 4 ...

$ QOL_Q_07 : int 1 2 5 -1 0 5 8 4 3 7 ...

$ QOL_Q_08 : int 6 1 3 6 6 6 3 1 2 4 ...

$ QOL_Q_09 : int 3 4 3 6 2 2 4 2 2 4 ...

$ QOL_Q_10 : int 3 1 3 6 3 6 3 2 4 3 ...

$ MSA_Q_01 : int 1 3 2 6 2 3 4 1 1 2 ...

416 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

https://umich.instructure.com/files/481332/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1

$ MSA_Q_02 : int 1 1 2 6 1 6 4 3 2 4 ...

$ MSA_Q_03 : int 2 1 2 6 1 2 3 3 1 2 ...

$ MSA_Q_04 : int 1 3 2 6 1 2 1 4 1 5 ...

$ MSA_Q_05 : int 1 1 1 6 1 2 1 6 3 2 ...

$ MSA_Q_06 : int 1 2 2 6 1 2 1 1 2 2 ...

$ MSA_Q_07 : int 2 1 3 6 1 1 1 1 1 5 ...

$ MSA_Q_08 : int 1 1 1 6 1 1 1 1 2 1 ...

$ MSA_Q_09 : int 1 1 1 6 2 2 4 6 2 1 ...

$ MSA_Q_10 : int 1 1 1 6 1 1 1 1 1 3 ...

$ MSA_Q_11 : int 2 3 2 6 1 1 2 1 1 5 ...

$ MSA_Q_12 : int 1 1 2 6 1 1 2 6 1 3 ...

$ MSA_Q_13 : int 1 1 1 6 1 6 2 1 4 2 ...

$ MSA_Q_14 : int 1 1 1 6 1 2 1 1 3 1 ...

$ MSA_Q_15 : int 2 1 1 6 1 1 3 2 1 3 ...

$ MSA_Q_16 : int 2 3 5 6 1 2 1 2 1 2 ...

$ MSA_Q_17 : int 2 1 1 6 1 1 1 1 1 3 ...

$ PH2_Q_01 : int 3 2 1 5 1 1 3 1 2 3 ...

$ PH2_Q_02 : int 4 4 1 5 1 2 1 1 4 2 ...

$ TOS_Q_01 : int 2 2 2 4 1 1 2 2 1 1 ...

$ TOS_Q_02 : int 1 1 1 4 4 4 1 2 4 4 ...

$ TOS_Q_03 : int 4 4 4 4 4 4 4 4 4 4 ...

$ TOS_Q_04 : int 5 5 5 5 5 5 5 5 5 5 ...

$ CHARLSONSCORE : int 2 2 3 1 0 0 2 8 0 1 ...

$ CHRONICDISEASESCORE: num 1.6 1.6 1.54 2.97 1.28 1.28 1.31 1.67 2.21 2
.51 ...

Remove the first two columns (we don’t need ID variables) and rows that have

missing CHARLSONSCORE values (e.g., CHARLSONSCORE equal to "-9"). Note

that, ! qol$CHARLSONSCORE¼¼ �9, implies that we only select the rows that

have CHARLSONSCORE not equal to �9. The exclamation sign indicates

“exclude”. Also, we need to convert our categorical variable CHARLSONSCORE

into a factor.

qol<-qol[!qol$CHARLSONSCORE==-9 , -c(1, 2)]

qol$CHARLSONSCORE<-as.factor(qol$CHARLSONSCORE)
str(qol)

'data.frame': 2328 obs. of 39 variables:

$ LANGUAGE : int 1 1 1 1 1 1 1 1 1 2 ...

$ AGE : int 49 49 62 44 64 64 52 48 49 78 ...

$ RACE_ETHNICITY : int 3 3 3 7 3 3 3 3 3 4 ...

$ SEX : int 2 2 2 2 1 1 2 1 1 1 ...

$ QOL_Q_01 : int 4 4 3 6 3 3 4 2 3 5 ...

$ QOL_Q_02 : int 4 3 3 6 2 5 4 1 4 6 ...

$ QOL_Q_03 : int 4 4 4 6 3 6 4 3 4 4 ...

$ QOL_Q_04 : int 4 4 2 6 3 6 2 2 5 2 ...

$ QOL_Q_05 : int 1 5 4 6 2 6 4 3 4 3 ...

$ QOL_Q_06 : int 4 4 2 6 1 2 4 1 2 4 ...

$ QOL_Q_07 : int 1 2 5 -1 0 5 8 4 3 7 ...

$ QOL_Q_08 : int 6 1 3 6 6 6 3 1 2 4 ...

$ QOL_Q_09 : int 3 4 3 6 2 2 4 2 2 4 ...

$ QOL_Q_10 : int 3 1 3 6 3 6 3 2 4 3 ...

$ MSA_Q_01 : int 1 3 2 6 2 3 4 1 1 2 ...

$ MSA_Q_02 : int 1 1 2 6 1 6 4 3 2 4 ...

11.8 Practice 417

$ MSA_Q_03 : int 2 1 2 6 1 2 3 3 1 2 ...

$ MSA_Q_04 : int 1 3 2 6 1 2 1 4 1 5 ...

$ MSA_Q_05 : int 1 1 1 6 1 2 1 6 3 2 ...

$ MSA_Q_06 : int 1 2 2 6 1 2 1 1 2 2 ...

$ MSA_Q_07 : int 2 1 3 6 1 1 1 1 1 5 ...

$ MSA_Q_08 : int 1 1 1 6 1 1 1 1 2 1 ...

$ MSA_Q_09 : int 1 1 1 6 2 2 4 6 2 1 ...

$ MSA_Q_10 : int 1 1 1 6 1 1 1 1 1 3 ...

$ MSA_Q_11 : int 2 3 2 6 1 1 2 1 1 5 ...

$ MSA_Q_12 : int 1 1 2 6 1 1 2 6 1 3 ...

$ MSA_Q_13 : int 1 1 1 6 1 6 2 1 4 2 ...

$ MSA_Q_14 : int 1 1 1 6 1 2 1 1 3 1 ...

$ MSA_Q_15 : int 2 1 1 6 1 1 3 2 1 3 ...

$ MSA_Q_16 : int 2 3 5 6 1 2 1 2 1 2 ...

$ MSA_Q_17 : int 2 1 1 6 1 1 1 1 1 3 ...

$ PH2_Q_01 : int 3 2 1 5 1 1 3 1 2 3 ...

$ PH2_Q_02 : int 4 4 1 5 1 2 1 1 4 2 ...

$ TOS_Q_01 : int 2 2 2 4 1 1 2 2 1 1 ...

$ TOS_Q_02 : int 1 1 1 4 4 4 1 2 4 4 ...

$ TOS_Q_03 : int 4 4 4 4 4 4 4 4 4 4 ...

$ TOS_Q_04 : int 5 5 5 5 5 5 5 5 5 5 ...
$ CHARLSONSCORE : Factor w/ 11 levels "0","1","2","3",..: 3 3 4 2 1

1 3 9 1 2 ...

$ CHRONICDISEASESCORE: num 1.6 1.6 1.54 2.97 1.28 1.28 1.31 1.67 2.21

2.51 ...

The dataset is now ready for processing. First, separate the dataset into training

and test datasets using the 75%–25% rule. Then, build a SVM model using all other

variables in the dataset to be predictor variables. Try to add different cost of

misclassification to the model. Rather than the default C ¼ 1, we will explore the

behavior of the model for C ¼ 2 and C ¼ 3 utilizing the radial basis kernel.

The output for C ¼ 2 is included below.

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 2

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0174510649312293

Number of Support Vectors : 1703

Objective Function Value : -1798.9778 -666.9432 -352.2265 -46.2968 -15.92

36 -9.2176 -7.1853 -27.9366 -16.3096 -3.5681 -697.4275 -362.6579 -47.0801 -1

6.3701 -9.6556 -6.9882 -28.2074 -16.4556 -3.5121 -321.0676 -44.7405 -15.8416

-9.1439 -6.8161 -26.7174 -15.4833 -3.3944 -43.1026 -15.2923 -7.994 -6.58 -24

.8459 -14.6379 -3.4484 -13.9377 -5.2876 -5.6728 -15.2542 -9.8408 -3.255 -4.6

982 -4.8924 -9.2482 -6.5144 -2.9608 -2.7409 -6.2056 -6.0476 -2.0833 -6.1775

-4.919 -2.7715 -10.5691 -3.0835 -2.566

Training error : 0.310997

qol.pred2 0 1 2 3 4 5 6 7 8 9 10

0 126 76 24 5 1 0 1 0 3 0 1

1 88 170 47 19 9 2 1 0 4 3 0

418 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

2 1 0 0 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

agreement

FALSE TRUE

0.4914089347 0.5085910653

The output for C ¼ 3 is included below.

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 3

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0168577510531693

Number of Support Vectors : 1695

Objective Function Value : -2440.0638 -915.9967 -492.6748 -63.2895 -21.09

29 -11.9108 -10.2404 -39.1843 -21.976 -5.0624 -970.6173 -514.9584 -64.7791 -

22.0947 -12.8987 -9.8114 -39.7908 -22.2957 -4.9403 -431.5178 -59.9296 -20.94

08 -11.7468 -9.4269 -36.602 -20.1783 -4.6829 -56.9469 -19.7357 -9.238 -8.904

7 -32.6121 -18.4667 -4.8007 -17.3102 -5.4133 -6.9733 -17.2097 -10.3016 -4.37

39 -4.7816 -5.7083 -9.7236 -6.6365 -3.723 -2.7726 -6.4151 -6.4453 -2.1222 -8

.03 -5.411 -3.3088 -11.9186 -3.996 -2.8572

Training error : 0.266896

qol.pred3 0 1 2 3 4 5 6 7 8 9 10

0 131 79 24 6 2 0 1 0 4 1 1

1 83 165 47 18 8 2 1 0 3 2 0

2 1 2 0 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

agreement

FALSE TRUE

0.4914089347 0.5085910653

Can you reproduce (approximately) these results?

11.8 Practice 419

11.9 Appendix

Below is some additional R code demonstrating the various results reported in this

Chapter.

#Picture 1
x<-runif(1000, -10, 10)

y<-ifelse(x>=0, 1, 0)

plot(x, y, xlab = "Sum of input signals", ylab = "Output signal", main = "Th

reshold")

abline(v=0, lty=2)

#Picture 2
x<-runif(100000, -10, 10)

y<-1/(1+exp(-x))

plot(x, y, xlab = "Sum of input signals", ylab = "Output signal", main = "Si

gmoid")

#Picture 3
x<-runif(100000, -10, 10)

y1<-x

y2<-ifelse(x<=-5, -5, ifelse(x>=5, 5, x))

y3<-(exp(x)-exp(-x))/(exp(x)+exp(-x))

y4<-exp(-x^2/2)

par(mfrow=c(2, 2))

plot(x, y1, main="Linear", xlab="", ylab="")

plot(x, y2, main="Saturated Linear", xlab="", ylab="")

plot(x, y3, main="Hyperbolic tangent", xlab="", ylab="")

plot(x, y4, main = "Gaussian", xlab="", ylab="")

#Picture 4
A<-c(1, 4, 3, 2, 4, 8, 6, 10, 9)

B<-c(1, 5, 3, 2, 3, 8, 8, 7, 10)

plot(A, B, xlab="", ylab="", pch=16, cex=2)

abline(v=5, col="red", lty=2)

text(5.4, 9, labels="A")

abline(12, -1, col="red", lty=2)

text(6, 5.4, labels="B")

#Picture 5
plot(A, B, xlab="", ylab="", pch=16, cex=2)

segments(1, 1, 4, 5, lwd=1, col = "red")

segments(1, 1, 4, 3, lwd = 1, col = "red")

segments(4, 3, 4, 5, lwd = 1, col = "red")

segments(6, 8, 10, 7, lwd = 1, col = "red")

segments(6, 8, 9, 10, lwd = 1, col = "red")

segments(10, 7, 9, 10, lwd = 1, col = "red")

segments(6, 8, 4, 5, lwd = 1, lty=2)
abline(9.833, -2/3, lwd=2)

Try to replicate these results with other data from the list of our Case-Studies.

420 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

11.10 Assignments: 11. Black Box Machine-Learning

Methods: Neural Networks and Support Vector

Machines

11.10.1 Learn and Predict a Power-Function

In Chap. 11, we learned about predicting the square-root function. It’s just one

instance of the power-function.

• Why did we observe a decrease in the accuracy of the NN prediction of the

square-root outside the interval [0, 1] (note we trained inside [0, 1])? How can you

improve on the prediction of the square-root network?

• Can you design a more generic NN network that can learn and predict a power-

function for a given power (λ2R)?

11.10.2 Pediatric Schizophrenia Study

Use the SOCR Normal and Schizophrenia pediatric neuroimaging study data to

complete the following tasks:

• Conduct some initial data visualization and exploration.

• Use derived neuroimaging biomarkers (e.g., Age, FS_IQ, TBV, GMV, WMV,

CSF, Background, L_superior_frontal_gyrus, R_superior_frontal_gyrus, ...,

brainstem) to train a NN model and predict DX (Normals ¼ 1;

Schizophrenia ¼ 2).

• Try one hidden layer with a different number of nodes.

• Try multiple hidden layers and compare the results to the single layer. Which

model is better?

• Compare the type I (false-positive) and type II (false-negative) errors for the

alternative methods.

• Train separate models to predict DX (diagnosis) for theMale and Female cohorts,

respectively. Explain your findings.

• Train an SVM, using ksvm and svm in e1071, for Age, FS_IQ, TBV, GMV,

WMV, CSF, Background to predict DX. Compare the results of linear, Gaussian,

and polynomial SVM kernels.

• Add Sex to your models and see if this makes a difference.

• Expand the model by training on all derived neuroimaging biomarkers and

re-train the SVM using Age, FS_IQ, TBV, GMV, WMV, CSF, Background,

L_superior_frontal_gyrus, R_superior_frontal_gyrus, ..., brainstem. Again, try

linear, Gaussian, and polynomial kernels. Compare the results.

• Are there differences between the alternative kernels?

• For Age, FS_IQ, TBV, GMV, WMV, CSF, and Background, tune parameters for

Gaussian and polynomial kernels.

11.10 Assignments: 11. Black Box Machine-Learning Methods: Neural Networks. . . 421

• Generate a CV (cross-validation) plot and interpret the resulting graph.

• Use different random seeds and repeat the experiment five times. Are the results

stable?

• Inspecting the results above, explain why it makes sense to set a tune over a range

such as exp(�5 : 8).

• How can we design alternative tuning strategies other than greedy search?

References

Schölkopf, B, Smola, AJ. (2002) Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond Adaptive computation and machine learning, MIT Press, ISBN

0262194759, 9780262194754.

Du, K-L, Swamy, MNS. (2013) Neural Networks and Statistical Learning, SpringerLink: Bücher,

ISBN 1447155718, 9781447155713.

Abe, S. (2010) Support Vector Machines for Pattern Classification, Advances in Computer Vision

and Pattern Recognition, Springer Science & Business Media, ISBN 1849960984,

9781849960984.

422 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines

Chapter 12

Apriori Association Rules Learning

HTTP cookies are used to monitor web-traffic and track users surfing the Internet.

We often notice that promotions (ads) on websites tend to match our needs, reveal

our prior browsing history, or reflect our interests. That is not an accident. Nowa-

days, recommendation systems are highly based on machine learning methods that

can learn the behavior, e.g., purchasing patterns, of individual consumers. In this

chapter, we will uncover some of the mystery behind recommendation systems for

transactional records. Specifically, we will (1) discuss association rules and their

support and confidence; (2) the Apriori algorithm for association rule learning; and

(3) cover step-by-step a set of case-studies, including a toy example, Head and Neck

Cancer Medications, and Grocery purchases.

12.1 Association Rules

Association rules are the result of process analytics (e.g., market analysis) that

specify patterns of relationships among items. One specific example would be:

charcoal; lighter; chicken wingsf g ! barbecue saucef g

In words, charcoal, lighter and chicken wings imply barbecue sauce. Those curly

brackets indicate that we have a set. Items in a set are called elements. When an item-

set like {charcoal, lighter, chicken wings, barbecue sauce} appears in our dataset

with some regularity, we can discover the above pattern.

Association rules are commonly used for unsupervised discovery of knowledge

rather than prediction of outcomes. In biomedical research, association rules are

widely used to:

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_12

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_12&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_12

• Search for interesting or frequently occurring patterns of DNA.

• Search for protein sequences in an analysis of cancer data.

• Find patterns of medical claims that occur in combination with fraudulent credit

card or insurance use.

12.2 The Apriori Algorithm for Association Rule Learning

Association rules are mostly applied to transactional data, like business, trade,

service or medical records. These datasets are typically very large in number of

transactions and features. This will add lots of possible orders and patterns when we

try to do analytics, which makes data mining a very hard task.

With the Apriori rule, this problem is easily solved. If we have a simple prior

(belief about the properties of frequent elements), we can efficiently reduce the

number of features or combinations that we need to look at.

The Apriori algorithm has a simple apriori belief that all subsets of a frequent

item-set must also be frequent. This is known as the Apriori property. The full set

in the last example, {charcoal, lighter, chicken wings, barbecue sauce}, can be fre-

quent if and only if itself and all its subsets of single elements, pairs and triples occur

frequently. We can see that this algorithm is designed for finding patterns in large

datasets. If a pattern happens frequently, it is considered “interesting”.

12.3 Measuring Rule Importance by Using Support

and Confidence

Support and confidence are the two criteria to help us decide whether a pattern is

“interesting”. By setting thresholds for these two criteria, we can easily limit the

number of interesting rules or item-sets reported.

For item-sets X and Y, the support of an item-set measures how frequently it

appears in the data:

support Xð Þ ¼
count Xð Þ

N
,

where N is the total number of transactions in the database and count(X) is the

number of observations (transactions) containing the item-set X. Of course, the union

of item-sets is an item-set itself. For example, if Z ¼ X, Y, then

support Zð Þ ¼ support X; Yð Þ:

For a rule X! Y, the rule’s confidencemeasures the relative accuracy of the

rule:

424 12 Apriori Association Rules Learning

confidence X ! Yð Þ ¼
support X; Yð Þ

support Xð Þ

This measures the joint occurrence of X and Y over the X domain. If whenever

X appears Y tends to be present too, we will have a high confidence(X ! Y). The

ranges of the support and confidence are 0 � support, confidence � 1. Note that in

probabilistic terms, Confidence (X!Y) is equivalent to the conditional probability

P(YjX).
{peanut butter} ! {bread} would be an example of a strong rule because it has

high support as well as high confidence in grocery store transactions. Shoppers tend

to purchase bread when they get peanut butter. These items tend to appear in the

same baskets, which yields high confidence for the rule {peanut butter}! {bread}.

12.4 Building a Set of Rules with the Apriori Principle

To build a set of rules, we need to go through two steps:

• Step 1: Filter all item-sets with a minimum support threshold. This is accom-

plished iteratively by increasing the size of the item-sets. In the first iteration,

we compute the support of singletons, 1-item-sets. At the next iteration, we

compute the support of pairs of items, and so on. Item-sets passing iteration

i could be considered as candidates for the next iteration, i + 1. If {A}, {B},

{C} are all frequent, but D is not frequent in the first singleton-selection

round, then in the second iteration we only consider the support of these

pairs {A, B}, {A,C}, {B,C}, ignoring all pairs including D. This substantially

reduces the cardinality of the potential item-sets and ensures the feasibility of

the algorithm. At the third iteration, if {A,C}, and {B,C} are frequently

occurring, but {A, B} is not, then the algorithm may terminate, as the support

of {A,B,C} is trivial (does not pass the support threshold), given that {A, B}

was not frequent enough.

• Step 2: Using the item-sets selected in Step 1, generate new rules with confidence

larger than a predefined minimum confidence threshold. The candidate item-sets

that passed Step 1 would include all frequent item-sets. For the highly-supported

item-set {A, C}, we would compute the confidence measures for {A} ! {C} as

well as {C} ! {A} and compare these against the minimum confidence thresh-

old. The surviving rules are the ones with confidence levels exceeding that

minimum threshold.

12.4 Building a Set of Rules with the Apriori Principle 425

12.5 A Toy Example

Assume that a large supermarket tracks sales data by stock-keeping unit (SKU) for

each item, i.e., each item, such as “butter” or “bread”, is identified by an SKU

number. The supermarket has a database of transactions where each transaction is a

set of SKUs that were bought together (Table 12.1).

Suppose the database of transactions consist of following item-sets, each

representing a purchasing order:

require(knitr)

item_table = as.data.frame(t(c("{1,2,3,4}","{1,2,4}","{1,2}","{2,3,4}",

"{2,3}","{3,4}","{2,4}")))

colnames(item_table) <- c("choice1","choice2","choice3","choice4",

"choice5","choice6","choice7")

kable(item_table, caption = "Item table")

We will use Apriori to determine the frequent item-sets of this database. To do so,

we will say that an item-set is frequent if it appears in at least 3 transactions of the

database, i.e., the value 3 is the support threshold (Table 12.2).

The first step of Apriori is to count up the number of occurrences, i.e., the support,

of each member item separately. By scanning the database for the first time, we

obtain get:

item_table = as.data.frame(t(c(3,6,4,5)))

colnames(item_table) <- c("item1","item2","item3","item4")

rownames(item_table) <- "support"

kable(item_table,caption = "Size 1 Support")

All the item-sets of size 1 have a support of at least 3, so they are all frequent. The

next step is to generate a list of all pairs of frequent items.

For example, regarding the pair {1, 2}: the first table of Example 2 shows items

1 and 2 appearing together in three of the item-sets; therefore, we say that the support

of the item {1, 2} is 3 (Tables 12.3 and 12.4).

Table 12.1 Item table

choice1 choice2 choice3 choice4 choice5 choice6 choice7

{1,2,3,4} {1,2,4} {1,2} {2,3,4} {2,3} {3,4} {2,4}

Table 12.2 Size 1 support item1 item2 item3 item4

support 3 6 4 5

Table 12.3 Size 2 support {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

support 3 1 2 3 4 3

426 12 Apriori Association Rules Learning

item_table = as.data.frame(t(c(3,1,2,3,4,3)))

colnames(item_table) <- c("{1,2}","{1,3}","{1,4}","{2,3}","{2,4}","{3,4}")

rownames(item_table) <- "support"

kable(item_table,caption = "Size 2 Support")

The pairs {1, 2}, {2, 3}, {2, 4}, and {3, 4} all meet or exceed the minimum

support of 3, so they are frequent. The pairs {1, 3} and {1, 4} are not and any larger

set which contains {1, 3} or {1, 4} cannot be frequent. In this way, we can prune sets:

we will now look for frequent triples in the database, but we can already exclude all

the triples that contain one of these two pairs:

item_table = as.data.frame(t(c(2)))

colnames(item_table) <- c("{2,3,4}")

rownames(item_table) <- "support"

kable(item_table,caption = "Size 3 Support")

In the example, there are no frequent triplets – the support of the item-set {2, 3, 4}

is below the minimal threshold, and the other triplets were excluded because they were

super sets of pairs that were already below the threshold. We have thus determined the

frequent sets of items in the database, and illustrated how some items were not

counted because some of their subsets were already known to be below the threshold.

12.6 Case Study 1: Head and Neck Cancer Medications

12.6.1 Step 1: Collecting Data

To demonstrate the Apriori algorithm in a real biomedical case-study, we will use a

transactional healthcare data representing a subset of the Head and Neck Cancer

Medication data, which is available in our case-studies collection as

10_medication_descriptions.csv. It consists of inpatient medications

for head and neck cancer patients.

The data is in wide format, see Chap. 2, where each row represents a patient.

During the study period, each patient had records for a maximum of 5 encounters.

NA represents no medication administration records in this specific time point for the

specific patient. This dataset contains a total of 528 patients.

12.6.2 Step 2: Exploring and Preparing the Data

Different from our data imports in the previous chapters, transactional data need to

be ingested in R using the read.transactions() function. This function will

store data as a matrix with each row representing an example and each column

representing a feature.

Table 12.4 Size 3 support {2,3,4}

support 2

12.6 Case Study 1: Head and Neck Cancer Medications 427

Let’s load the dataset and delete the irrelevant index column. With the write.

csv(R data, "path") function we can output our R data file into a local CSV

file. To avoid generating another index column in the output CSV file, we can use the

row.names ¼ F option.

med<-read.csv("https://umich.instructure.com/files/1678540/download?download

_frd=1", stringsAsFactors = FALSE)

med<-med[, -1]

write.csv(med, "medication.csv", row.names=F)

Now we can use read.transactions() in the arules package to read the

CSV file we just outputted.

install.packages("arules")

library(arules)

med<-read.transactions("medication.csv", sep = ",", skip = 1, rm.duplicates=

TRUE)

distribution of transactions with duplicates:

items

1 2 3

79 166 248

summary(med)

transactions as itemMatrix in sparse format with

528 rows (elements/itemsets/transactions) and

88 columns (items) and a density of 0.02085486

most frequent items:

fentanyl injection uh hydrocodone acetaminophen 5mg 325mg

211 165

cefazolin ivpb uh heparin injection

108 105

hydrocodone acetamin 75mg 500mg 15ml (Other)

60 320

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5

248 166 79 23 12

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 2.000 1.835 2.000 5.000

includes extended item information - examples:

labels

1 09 nacl

2 09 nacl bolus

3 acetaminophen multiroute uh

428 12 Apriori Association Rules Learning

https://umich.instructure.com/files/1678540/download?download_frd=1
https://umich.instructure.com/files/1678540/download?download_frd=1

Here we use the option rm.duplicates ¼ T because we may have similar

medication administration records for two different patients. The option skip ¼ 1

means we skip the heading line in the CSV file. Now we get a transactional data with

unique rows.

The summary of a transactional data contains rich information. The first block of

information tells us that we have 528 rows and 88 different medicines in this matrix.

Using the density number we can calculate how many non NA medication records

are in the data. In total, we have 528 � 88 ¼ 46,464 positions in the matrix. Thus,

there are 46,464 � 0.0209 ¼ 971 medicines prescribed during the study period.

The second block lists the most frequent medicines and their frequencies in the

matrix. For example, fentanyl injection uh appeared 211 times; that is

211/528 ¼ 40 of the (treatment) transactions. Since fentanyl is frequently used to

help prevent pain after surgery or other medical procedure, we can see that many of

these patients were going through some painful medical procedures.

The last block shows statistics about the size of the transaction. 248 patients

had only one medicine in the study period, while 12 of them had 5 medication

records one for each time point. On average, the patients are having 1.8 different

medicines.

Visualizing Item Support: Item Frequency Plots

The summary might still be fairly abstract; let’s visualize the data.

inspect(med[1:5,])

items

[1] {acetaminophen uh,

cefazolin ivpb uh}

[2] {docusate,

fioricet,

heparin injection,

ondansetron injection uh,

simvastatin}

[3] {hydrocodone acetaminophen 5mg 325mg}

[4] {fentanyl injection uh}

[5] {cefazolin ivpb uh,

hydrocodone acetaminophen 5mg 325mg}

The inspect() call shows the transactional dataset. We can see that the

medication records of each patient are nicely formatted as item-sets.

We can further analyze the frequent terms using itemFrequency(). This will

show all item frequencies alphabetically ordered from the first five outputs

(Fig. 12.1).

12.6 Case Study 1: Head and Neck Cancer Medications 429

itemFrequency(med[, 1:5])

09 nacl

0.013257576

09 nacl bolus

0.003787879

acetaminophen multiroute uh

0.001893939

acetaminophen codeine 120 mg 12 mg 5 ml

0.001893939

acetaminophen codeine 300mg 30 mg

0.020833333

itemFrequencyPlot(med, topN=20)

The above graph is showing us the top 20 medicines that are most frequently

present in this dataset. Consistent with the prior summary() output, fentanyl is

still the most frequent item. You can also try to plot the items with a threshold for

support. Instead of topN ¼ 20, just use the option support ¼ 0.1, which will

give you all the items have a support greater or equal to 0.1.

Visualizing Transaction Data: Plotting the Sparse Matrix

The sparse matrix will show what mediations were prescribed for each patient

(Fig. 12.2).

Fig. 12.1 Rank-order plot of item frequencies

430 12 Apriori Association Rules Learning

image(med[1:5,])

The image on Fig. 12.2 has 5 rows (we only requested the first 5 patients) and

88 columns (88 different medicines). Although the picture may be a little hard to

interpret, it gives a sense of what kind of medicine is prescribed for each patient in

the study.

Let’s see an expanded graph including 100 randomly chosen patients (Fig. 12.3).

subset_int <- sample(nrow(med), 100, replace = F)

image(med[subset_int,])

It shows us clearly that some medications are more popular than others. Now,

let’s fit the Apriori model.

Fig. 12.2 A characteristic plot of the prescribed medications (columns) for the first 5 patients

(rows)

Fig. 12.3 A characteristic

plot of the prescribed

medications (columns) for

100 random patients (rows)

12.6 Case Study 1: Head and Neck Cancer Medications 431

12.6.3 Step 3: Training a Model on the Data

With the data in place,we can build the association rules usingapriori() function.

myrules <- apriori(data=mydata, parameter=list(support=0.1, confidence=0.8,

minlen=1))

• Data: a sparse matrix created by read.transacations().

• Support: minimum threshold for support.

• Confidence: minimum threshold for confidence.

• minlen: minimum required rule items (in our case, medications).

Setting up the threshold could be hard. You don’t want it to be too high so that

you get no rules or rules that everyone knows. You don’t want to set it too low either,

to avoid too many rules present. Let’s see what we get under the default setting

support ¼ 0.1, confidence ¼ 0.8:

apriori(med)

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.8 0.1 1 none FALSE TRUE 5 0.1 1

maxlen target ext

10 rules FALSE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 52

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[88 item(s), 528 transaction(s)] done [0.00s].

sorting and recoding items ... [5 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 done [0.00s].

writing ... [0 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

set of 0 rules

Not surprisingly, we have 0 rules. The default setting is too high. In practice, we

might need some time to fine-tune these thresholds, which may require certain

familiarity with the underlying process or clinical phenomenon.

In this case study, we set support ¼ 0.1 and confidence ¼ 0.25. This

requires rules that have appeared in at least 10% of the head and neck cancer patients

in the study. Also, the rules have to have least 25% accuracy.Moreover, minlen¼ 2

would be a very helpful option because it removes all rules that have fewer than two

items.

432 12 Apriori Association Rules Learning

The results suggest we have a new rules object consisting of 29 rules.

med_rule<-apriori(med, parameter=list(support=0.01, confidence=0.25, minlen=

2))

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.25 0.1 1 none FALSE TRUE 5 0.01 2

maxlen target ext

10 rules FALSE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 5

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[88 item(s), 528 transaction(s)] done [0.00s].

sorting and recoding items ... [16 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [29 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

med_rule

set of 29 rules

12.6.4 Step 4: Evaluating Model Performance

First, we can obtain the overall summary of this set of rules.

summary(med_rule)

set of 29 rules

rule length distribution (lhs + rhs):sizes

2 3 4

13 12 4

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 2.00 3.00 2.69 3.00 4.00

summary of quality measures:

support confidence lift

Min. :0.01136 Min. :0.2500 Min. :0.7583

1st Qu.:0.01705 1st Qu.:0.3390 1st Qu.:1.3333

Median :0.01894 Median :0.4444 Median :1.7481

Mean :0.03448 Mean :0.4491 Mean :1.8636

3rd Qu.:0.03788 3rd Qu.:0.5000 3rd Qu.:2.2564

Max. :0.11174 Max. :0.8000 Max. :3.9111

mining info:

data ntransactions support confidence

med 528 0.01 0.25

12.6 Case Study 1: Head and Neck Cancer Medications 433

We have 13 rules that contain two items; 12 rules containing 3 items, and the

remaining 4 rules contain 4 items.

The lift column shows how much more likely one medicine is to be prescribed

to a patient given another medicine is prescribed. It is obtained by the following

formula:

lift X ! Yð Þ ¼
confidence X ! Yð Þ

support Yð Þ
:

Note that lift(X ! Y) is the same as lift(Y ! X). The range of lift is [0,1) and

higher lift is better. We don’t need to worry about support since we already set a

threshold that the support will exceed.

Using hte arugleViz package we can visualize the confidence and support

scatter plots for all the rules (Fig. 12.4).

install.packages("arulesViz")

library(arulesViz)

plot(sort(med_rule))

Again, we can utilize the inspect() function to see exactly what are these

rules.

Fig. 12.4 Confidence-Support scatterplot of 29 rules

434 12 Apriori Association Rules Learning

inspect(med_rule[1:3])

lhs rhs support

confidence lift

[1] {acetaminophen uh} => {cefazolin ivpb uh} 0.01136364

0.4615385 2.256410

[2] {ampicillin sulbactam ivpb uh} => {heparin injection} 0.01893939

0.3448276 1.733990

[3] {ondansetron injection uh} => {heparin injection} 0.01704545

0.2727273 1.371429

Here, lhs and rhs refer to “left hand side” and “right hand side” of the rule,

respectively. Lhs is the given condition and rhs is the predicted result. Using the

first row as an example: If a head-and-neck patient has been prescribed acetamino-

phen (pain reliever and fever reducer), it is likely that the patient is also prescribed

cefazolin (antibiotic that resist bacterial infections); bacterial infections are associ-

ated with fevers and some cancers.

12.6.5 Step 5: Improving Model Performance

Sorting the Set of Association Rules

Sorting the resulting association rules corresponding to high lift values will help us

select the most useful rules.

inspect(sort(med_rule, by="lift")[1:3])

lhs rhs

support confidence lift

[1] {fentanyl injection uh,

heparin injection,

hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}

0.01515152 0.8000000 3.911111

[2] {cefazolin ivpb uh,

fentanyl injection uh,

hydrocodone acetaminophen 5mg 325mg} => {heparin injection}

0.01515152 0.6153846 3.094505

[3] {heparin injection,

hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}

0.03787879 0.6250000 3.055556

These rules may need to be interpreted by clinicians and experts in the specific

context of the study. For instance, the first row, {fentanyl, heparin, hydrocodone

acetaminophen} implies {cefazolin}. Fentanyl and hydrocodone acetaminophen are

both pain relievers that may be prescribed after surgery. Heparin is usually used

before surgery to reduce the risk of blood clots. This rule may suggest that patients

who have undergone surgical treatments may likely need cefazolin to prevent post-

surgical bacterial infection.

12.6 Case Study 1: Head and Neck Cancer Medications 435

Taking Subsets of Association Rules

If we are more interested in investigating associations that are linked to a specific

medicine, we can narrow the rules down by making subsets. Let us try investigating

rules related to fentanyl, since it appears to be the most frequently prescribedmedicine.

fi_rules<-subset(med_rule, items %in% "fentanyl injection uh")

inspect(fi_rules)

lhs rhs

support confidence lift

[1] {ondansetron injection uh} => {fentanyl injection uh}

0.01893939 0.3030303 0.7582938

[2] {fentanyl injection uh,

ondansetron injection uh} => {hydrocodone acetaminophen

5mg 325mg} 0.01136364 0.6000000 1.9200000

[3] {hydrocodone acetaminophen 5mg 325mg,

ondansetron injection uh} => {fentanyl injection uh}

0.01136364 0.3750000 0.9383886

[4] {cefazolin ivpb uh,

fentanyl injection uh} => {heparin injection}

0.01893939 0.5000000 2.5142857

[5] {fentanyl injection uh,

heparin injection} => {cefazolin ivpb uh}

0.01893939 0.4761905 2.3280423

[6] {cefazolin ivpb uh,

fentanyl injection uh} => {hydrocodone acetaminophen

5mg 325mg} 0.02462121 0.6500000 2.0800000

[7] {fentanyl injection uh,

hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}

0.02462121 0.3250000 1.5888889

[8] {fentanyl injection uh,

heparin injection} => {hydrocodone acetaminophen

5mg 325mg} 0.01893939 0.4761905 1.5238095

[9] {heparin injection,

hydrocodone acetaminophen 5mg 325mg} => {fentanyl injection uh}

0.01893939 0.3125000 0.7819905

[10] {fentanyl injection uh,

hydrocodone acetaminophen 5mg 325mg} => {heparin injection}

0.01893939 0.2500000 1.2571429

[11] {cefazolin ivpb uh,

fentanyl injection uh,

heparin injection} => {hydrocodone acetaminophen

5mg 325mg} 0.01515152 0.8000000 2.5600000

[12] {cefazolin ivpb uh,

heparin injection,

hydrocodone acetaminophen 5mg 325mg} => {fentanyl injection uh}

0.01515152 0.4000000 1.0009479

[13] {cefazolin ivpb uh,

fentanyl injection uh,

hydrocodone acetaminophen 5mg 325mg} => {heparin injection}

0.01515152 0.6153846 3.0945055

[14] {fentanyl injection uh,

heparin injection,

hydrocodone acetaminophen 5mg 325mg} => {cefazolin ivpb uh}

0.01515152 0.8000000 3.9111111

In R scripting, the notation %in% signifies “belongs to.” There are 14 rules related

to this item. Let’s plot them (Fig. 12.5).

436 12 Apriori Association Rules Learning

plot(sort(fi_rules, by="lift"), method="grouped", control=list(type="items")

, main = "Grouped Matrix for the 14 Fentanyl-associated Rules")

Available control parameters (with default values):

main = Grouped Matrix for 14 Rules

k = 20

rhs_max = 10

lhs_items = 2

aggr.fun = function (x, na.rm = FALSE) UseMethod("median")

col = c("#EE0000FF", "#EE0303FF", "#EE0606FF", "#EE0909FF", "#EE0C0CFF

", "#EE0F0FFF", "#EE1212FF", "#EE1515FF", "#EE1818FF", "#EE1B1BFF", "#EE1E1E

FF", "#EE2222FF", "#EE2525FF", "#EE2828FF", "#EE2B2BFF", "#EE2E2EFF", "#EE31

31FF", "#EE3434FF", "#EE3737FF", "#EE3A3AFF", "#EE3D3DFF", "#EE4040FF", "#EE

4444FF", "#EE4747FF", "#EE4A4AFF", "#EE4D4DFF", "#EE5050FF", "#EE5353FF", "#

EE5656FF", "#EE5959FF", "#EE5C5CFF", "#EE5F5FFF", "#EE6262FF", "#EE6666FF",

"#EE6969FF", "#EE6C6CFF", "#EE6F6FFF", "#EE7272FF", "#EE7575FF", "#EE7878FF

", "#EE7B7BFF", "#EE7E7EFF", "#EE8181FF", "#EE8484FF", "#EE8888FF", "#EE8B8B

FF", "#EE8E8EFF", "#EE9191FF", "#EE9494FF", "#EE9797FF", "#EE9999FF", "#EE9B

9BFF", "#EE9D9DFF", "#EE9F9FFF", "#EEA0A0FF", "#EEA2A2FF", "#EEA4A4FF", "#EE

A5A5FF", "#EEA7A7FF", "#EEA9A9FF", "#EEABABFF", "#EEACACFF", "#EEAEAEFF", "#

EEB0B0FF", "#EEB1B1FF", "#EEB3B3FF", "#EEB5B5FF", "#EEB7B7FF", "#EEB8B8FF",

"#EEBABAFF", "#EEBCBCFF", "#EEBDBDFF", "#EEBFBFFF", "#EEC1C1FF", "#EEC3C3FF"

, "#EEC4C4FF", "#EEC6C6FF", "#EEC8C8FF", "#EEC9C9FF", "#EECBCBFF", "#EECDCD

FF", "#EECFCFFF", "#EED0D0FF", "#EED2D2FF", "#EED4D4FF", "#EED5D5FF", "#EED7

D7FF", "#EED9D9FF", "#EEDBDBFF", "#EEDCDCFF", "#EEDEDEFF", "#EEE0E0FF", "#EE

E1E1FF", "#EEE3E3FF", "#EEE5E5FF", "#EEE7E7FF", "#EEE8E8FF", "#EEEAEAFF", "#

EEECECFF", "#EEEEEEFF")

reverse = TRUE

xlab = NULL

ylab = NULL

legend = Size: support Color: lift

spacing = -1

Fig. 12.5 Bubble chart of the grouped matric for 14 rules

12.6 Case Study 1: Head and Neck Cancer Medications 437

panel.function = function (row, size, shading, spacing) { size[s

ize == 0] <- NA shading[is.na(shading)] <- 1 grid.circle(x = c(1:len

gth(size)), y = row, r = size/2 * (1 - spacing), default.units = "native", g

p = gpar(fill = shading, col = shading, alpha = 0.9)) }

gp_main = list(cex = 1.2, fontface = "bold", font = 2)

gp_labels = list(cex = 0.8)

gp_labs = list(cex = 1.2, fontface = "bold", font = 2)

gp_lines = list(col = "gray", lty = 3)

newpage = TRUE

interactive = FALSE

max.shading = NA

verbose = FALSE

Saving Association Rules to a File or Data Frame

We can save these rules into a CSV file using write(). It is similar with the

function write.csv() that we have mentioned in the beginning of this case

study.

write(med_rule, file = "medrule.csv", sep=",", row.names=F)

Sometimes it is more convenient to convert the rules into a data frame.

med_df<-as(med_rule, "data.frame")

str(med_df)

'data.frame': 29 obs. of 4 variables:

$ rules : Factor w/ 29 levels "{acetaminophen uh} => {cefazolin ivpb

uh}",..: 1 2 28 27 29 13 12 14 10 23 ...

$ support : num 0.0114 0.0189 0.017 0.0189 0.0303 ...

$ confidence: num 0.462 0.345 0.273 0.303 0.485 ...

$ lift : num 2.256 1.734 1.371 0.758 1.552 ...

As we can see, the rules are converted into a factor vector.

12.7 Practice Problems: Groceries

In this practice problem, we will investigate the associations of frequently purchased

groceries using the grocery dataset in the R base. Firstly, let’s load the data.

data("Groceries")

summary(Groceries)

transactions as itemMatrix in sparse format with

9835 rows (elements/itemsets/transactions) and

169 columns (items) and a density of 0.02609146

most frequent items:

whole milk other vegetables rolls/buns soda

2513 1903 1809 1715

yogurt (Other)

1372 34055

438 12 Apriori Association Rules Learning

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

5

2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 5

5

16 17 18 19 20 21 22 23 24 26 27 28 29 32

46 29 14 14 9 11 4 6 1 1 1 1 3 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:

labels level2 level1

1 frankfurter sausage meat and sausage

2 sausage sausage meat and sausage

3 liver loaf sausage meat and sausage

We will try to find out the top 5 frequent grocery items and plot them (Fig. 12.6).

Then, try to use support ¼ 0.006, confidence ¼ 0.25, minlen ¼ 2 to

set up the grocery association rules. Sort the top 3 rules with highest lift.

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.25 0.1 1 none FALSE TRUE 5 0.006 2

maxlen target ext

10 rules FALSE

Fig. 12.6 Top-5 grocery items according to their frequencies

12.7 Practice Problems: Groceries 439

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 59

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [109 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.02s].

writing ... [463 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

set of 463 rules

lhs rhs support confidence

lift

[1] {herbs} => {root vegetables} 0.007015760 0.4312500

3.956477

[2] {berries} => {whipped/sour cream} 0.009049314 0.2721713

3.796886

[3] {tropical fruit,

other vegetables,

whole milk} => {root vegetables} 0.007015760 0.4107143

3.768074

The number of rules (463) appears excessive. We can try stringer parameters. In

practice, it’s more possible to observe underlying rules if you set a higher confi-

dence. Here we set the confidence ¼ 0.6.

groceryrules <- apriori(Groceries, parameter = list(support = 0.006, confide

nce = 0.6, minlen = 2))

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.6 0.1 1 none FALSE TRUE 5 0.006 2

maxlen target ext

10 rules FALSE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 59

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [109 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.02s].

writing ... [8 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

groceryrules

set of 8 rules

440 12 Apriori Association Rules Learning

inspect(sort(groceryrules, by = "lift")[1:3])

lhs rhs support confidence

[1] {butter,whipped/sour cream} => {whole milk} 0.006710727 0.6600000

[2] {butter,yogurt} => {whole milk} 0.009354347 0.6388889

[3] {root vegetables,butter} => {whole milk} 0.008235892 0.6377953

lift

[1] 2.583008

[2] 2.500387

[3] 2.496107

We observe mainly rules between dairy products. It makes sense that customers

pick up milk when they walk down the dairy products isle. Experiment further with

various parameter settings and try to interpret the results in the context of this

grocery case-study (Fig. 12.7).

Mining association rules Demo https://rdrr.io/cran/arules/

copy-paste this R code into the live online demo:

https://rdrr.io/snippets/

press RUN, and examine the results.

The HYPERLINK "https://archive.ics.uci.edu/ml/datasets/adult" Adult dataset includes 48842 sparse transactions

(rows) and 115 items (columns).

library(arules)

data("Adult")

rules <- apriori(Adult,

 parameter = list(supp = 0.5, conf = 0.9, target = "rules"))

summary(rules)

inspect(sort(rules, by = "lift")[1:3])

Results: mining info:

data ntransactions support confidence

Adult 48842 0.5 0.9

lhs rhs support confidence lift count

[1] {sex=Male, native-country=United-States} => {race=White} 0.5415421 0.9051090 1.058554 26450

[2] {sex=Male, capital-loss=None, native-country=United-States} => {race=White} 0.5113632 0.9032585 1.056390 24976

[3] {race=White} => {native-country=United-States} 0.7881127 0.9217231 1.027076 38493

12.8 Summary

• The Apriori algorithm for association rule learning is only suitable for large

transactional data. For some small datasets, it might not be very helpful.

• It is useful for discovering associations, mostly in early phases of an exploratory

study.

Fig. 12.7 Live demo:

association rule mining

12.8 Summary 441

https://rdrr.io/cran/arules/
https://rdrr.io/snippets/
https://archive.ics.uci.edu/ml/datasets/adult

• Some rules can be built due to chance and may need further verifications.

• See also Chap. 20 (Text Mining and NLP).

Try to replicate these results with other data from the list of our Case-Studies.

12.9 Assignments: 12. Apriori Association Rules Learning

Use the SOCR Jobs Data to practice learning via Apriori Association Rules

• Load the Jobs Data. Use this guide to load HTML data.

• Focus on the Description feature. Replace all underscore characters “_” with

spaces.

• Review Chap. 8, use tm package to process text data to plain text. (Hint: need to

apply stemDocument as well, we will discuss more details in Chap. 20.)

• Generate a “transaction” matrix by considering each job as one record and

description words as “transaction” items. (Hint: You need to fill missing values

since records do not have the same length of description.)

• Save the data using write.csv() and then use read.transactions() in arules package

to read the CSV data file. Visualize the item support using item frequency plots.

What terms appear as more popular?

• Fit a model: myrules <� apriori(data ¼ jobs,parameter ¼ list(support ¼ 0.02,

confidence ¼ 0.6, minlen ¼ 2)). Try out several rule thresholds trading off gain

and accuracy.

• Evaluate the rules you obtained with lift and visualize their metics.

• Mine medical related rules (e.g., rules include “treatment”, “patient”, “care”,

“diagnos.” Notice that these are word stems).

• Sort the set of association rules for all and medical related subsets.

• Save these rules into a CSV file.

References

Witten, IH, Frank, E, Hall. MA. (2011) Data Mining: Practical Machine Learning Tools and

Techniques, The Morgan Kaufmann Series in Data Management Systems, Elsevier, ISBN

0080890369, 9780080890364.

Soh, PJ. Woo, WL, Sulaiman, HA, Othman, MA, Saat, MS (eds). (2016) Advances in Machine

Learning and Signal Processing: Proceedings of MALSIP 2015, Volume 387 of Lecture Notes

in Electrical Engineering, Springer, ISBN 3319322133, 9783319322131.

442 12 Apriori Association Rules Learning

Chapter 13

k-Means Clustering

As we learned in Chaps. 7, 8, and 9, classification could help us make predictions on

new observations. However, classification requires (human supervised) predefined

label classes. What if we are in the early phases of a study and/or don’t have the

required resources to manually define, derive or generate these class labels?

Clustering can help us explore the dataset and separate cases into groups

representing similar traits or characteristics. Each group could be a potential candi-

date for a class. Clustering is used for exploratory data analytics, i.e., as

unsupervised learning, rather than for confirmatory analytics or for predicting

specific outcomes.

In this chapter, we will present (1) clustering as a machine learning task, (2) the

silhouette plots for classification evaluation, (3) the k-Means clustering algorithm

and how to tune it, (4) examples of several interesting case-studies, including

Divorce and Consequences on Young Adults, Pediatric Trauma, and Youth Devel-

opment, (5) demonstrate hierarchical clustering, and (6) Gaussian mixture modeling.

13.1 Clustering as a Machine Learning Task

As we mentioned before, clustering represents classification of unlabeled cases.

Scatter plots depict a simple illustration of the clustering process. Assume we

don’t know much about the ingredients of frankfurter hot dogs and we have the

following graph (Fig. 13.1).

© Ivo D. Dinov 2018
I. D. Dinov, Data Science and Predictive Analytics,
https://doi.org/10.1007/978-3-319-72347-1_13

443

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_13&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_13

See Chapter 12 code for complete details

install.packages("rvest")

library(rvest)

wiki_url<-

read_html("http://wiki.socr.umich.edu/index.php/SOCR_012708_ID_Data_HotDogs"

)

html_nodes(wiki_url, "#content")

hotdog<- html_table(html_nodes(wiki_url, "table")[[1]])

plot(hotdog$Calories, hotdog$Sodium, main = "Hotdogs", xlab="Calories",

ylab="Sodium")

In terms of calories and sodium, these hot dogs are clearly separated into three

different clusters. Cluster 1 has hot dogs of low calories and medium sodium

content; Cluster 2 has both calorie and sodium at medium levels; Cluster 3 has

both sodium and calories at high levels. We can make a bold guess about the meats

used in these three clusters of hot dogs. For Cluster 1, it could be mostly chicken

meat since it has low calories. The second cluster might be beef, and the third one is

likely to be pork, because beef hot dogs have considerably less calories and salt than

pork hot dogs. However, this is just guessing. Some hot dogs have a mixture of two

or three types of meat. The real situation is somewhat similar to what we guessed but

with some random noise, especially in Cluster 2.

The following two plots show the primary type of meat used for each hot dog

labeled by name (top) and color-coded (bottom) (Figs. 13.2 and 13.3).

Fig. 13.1 Hotdogs dataset – scatterplot of calories and sodium content blocked by type of meat

444 13 k-Means Clustering

http://wiki.socr.umich.edu/index.php/SOCR_012708_ID_Data_HotDogs

Fig. 13.2 Scatterplot of calories and sodium content with meat type labels

Fig. 13.3 An alternative scatterplot of the hotdogs calories and sodium

13.1 Clustering as a Machine Learning Task 445

13.2 Silhouette Plots

Silhouette plots are useful for interpretation and validation of consistency of all

clustering algorithms. The silhouette value, 2[�1, 1], measures the similarity (cohe-

sion) of a data point to its cluster relative to other clusters (separation). Silhouette

plots rely on a distance metric, e.g., the Euclidean distance, Manhattan distance,

Minkowski distance, etc.

• High silhouette value suggest that the data matches its own cluster well.

• A clustering algorithm performs well when most Silhouette values are high.

• Low value indicates poor matching within the neighboring cluster.

• Poor clustering may imply that the algorithm configuration may have too many or

too few clusters.

Suppose a clustering method groups all data points (objects), {Xi}i, into k clusters

and define:

• di as the average dissimilarity of Xi with all other data points within its cluster. di
captures the quality of the assignment of Xi to its current class label. Smaller or

larger di values suggest better or worse overall assignment for Xi to its cluster,

respectively. The average dissimilarity of Xi to a cluster C is the average distance

between Xi and all points in the cluster of points labeled C.

• li as the lowest average dissimilarity of Xi to any other cluster, that Xi is not a

member of. The cluster corresponding to li, the lowest average dissimilarity, is

called the Xi neighboring cluster, as it is the next best fit cluster for Xi.

Then, the silhouette of Xi is defined by:

�1 � si ¼
li � di

max li; dif g
�

1�
di

li
, if di < li

0, if di ¼ li

li

di
� 1, if di > li

8

>

>

>

>

>

<

>

>

>

>

>

:

:

Note that:

• �1 � si � 1,

• si ! 1 when di � li, i.e., the dissimilarity of Xi to its cluster, C is much lower

relative to its dissimilarity to other clusters, indicating a good (cluster assignment)

match. Thus, high Silhouette values imply the data is appropriately clustered.

• Conversely,�1 siwhen li� di, di is large, implying a poor match of Xiwith its

current cluster C, relative to neighboring clusters. Xi may be more appropriately

clustered in its neighboring cluster.

• si � 0 means that the Xi may lie on the border between two natural clusters.

446 13 k-Means Clustering

13.3 The k-Means Clustering Algorithm

The k-means algorithm is one of the most commonly used algorithms for clustering.

13.3.1 Using Distance to Assign and Update Clusters

This algorithm is similar to k-nearest neighbors (KNN) presented in Chap. 7. In

clustering, we don’t have a priori pre-determined labels, and the algorithm is trying

to deduce intrinsic groupings in the data.

Similar to KNN, k-means uses Euclidean distance (k2 norm) most of the times,

however Manhattan distance (k1 norm), or the more general Minkowski distance
Xn

i¼1
pi � qij jc

� �1
c

� �

may also be used. For c ¼ 2, the Minkowski distance

represents the classical Euclidean distance:

dist x; yð Þ ¼

ffi

X

n

n¼1

xi � yið Þ2

s

:

How can we separate clusters using this formula? The k-means protocol is as

follows:

• Initiation: First, we define k points as cluster centers. Often these points are

k random points from the dataset. For example, if k ¼ 3, we choose three random

points in the dataset as cluster centers.

• Assignment: Second, we determine the maximum extent of the cluster boundaries

that all have maximal distance from their cluster centers. Now the data is

separated into k initial clusters. The assignment of each observation to a cluster

is based on computing the least within-cluster sum of squares according to the

chosen distance. Mathematically, this is equivalent to Voronoi tessellation of the

space of the observations according to their mean distances.

• Update: Third, we update the centers of our clusters to new means of the cluster

centroid locations. This updating phase is the essence of the k-means algorithm.

Although there is no guarantee that the k-means algorithm converges to a global

optimum, in practice, the algorithm tends to converge, i.e., the assignments no longer

change, to a local minimum as there are only a finite number of such Voronoi

partitionings.

13.3 The k-Means Clustering Algorithm 447

13.3.2 Choosing the Appropriate Number of Clusters

We don’t want our number of clusters to be either too large or too small. If it is too

large, the groups are too specific to be meaningful. On the other hand, too few groups

might be too broadly general to be useful. As we mentioned in Chap. 7, k ¼
ffiffi

n
2

p

is a

good place to start. However, it might generate a large number of groups. Also, the

elbow method may be used to determine the relationship of k and homogeneity of the

observations of each cluster. When we graph within-group homogeneity against k,

we can find an “elbow point” that suggests a minimum k corresponding to relatively

large within-group homogeneity (Fig. 13.4).

This graph shows that homogeneity barely increases above the “elbow point”.

There are various ways to measure homogeneity within a cluster. For detailed

explanations please read On clustering validation techniques, Journal of Intelligent

Information Systems Vol. 17, pp. 107–145, by M. Halkidi, Y. Batistakis, and

M. Vazirgiannis (2001).

13.4 Case Study 1: Divorce and Consequences on Young

Adults

13.4.1 Step 1: Collecting Data

The dataset we will be using is the Divorce and Consequences on Young Adults

dataset. This is a longitudinal study focused on examining the consequences of

recent parental divorce for young adults (initially ages 18–23) whose parents had

divorced within 15 months of the study’s first wave (1990–91). The sample

consisted of 257 White respondents with newly divorced parents. Here we have a

subset of this dataset with 47 respondents in our case-studies folder,

CaseStudy01_Divorce_YoungAdults_Data.csv.

Fig. 13.4 Elbow plot of the
within-group homogeneity
against the number of
groups parameter (k)

448 13 k-Means Clustering

Variables

• DIVYEAR: Year in which parents were divorced. Dichotomous variable with

1989 and 1990.

• Child affective relations:

– Momint: Mother intimacy. Interval level data with four possible responses

(1-extremely close, 2-quite close, 3-fairly close, 4- not close at all).

– Dadint: Father intimacy. Interval level data with four possible responses

(1-extremely close, 2-quite close, 3-fairly close, 4-not close at all).

– Live with mom: Polytomous variable with three categories (1- mother only, 2-

father only, 3- both parents).

• momclose: measure of how close the child is to the mother (1-extremely close,

2-quite close, 3-fairly close, 4-not close at all).

• Depression: Interval level data regarding feelings of depression in the past

4 weeks. Possible responses are 1-often, 2-sometimes, 3-hardly ever, 4-never.

• Gethitched: Polytomous variable with four possible categories indicating

respondent’s plan for marriage (1-Marry fairly soon, 2-marry sometime,

3-never marry, 8-don’t know).

13.4.2 Step 2: Exploring and Preparing the Data

Let’s load the dataset and pull out a summary of all variables.

divorce<-read.csv("https://umich.instructure.com/files/399118/download?downl

oad_frd=1")

summary(divorce)

DIVYEAR momint dadint momclose

Min. :89.00 Min. :1.000 Min. :1.000 Min. :1.000

1st Qu.:89.00 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:1.000

Median :90.00 Median :1.000 Median :2.000 Median :2.000

Mean :89.68 Mean :1.809 Mean :2.489 Mean :1.809

3rd Qu.:90.00 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:2.000

Max. :90.00 Max. :4.000 Max. :4.000 Max. :4.000

depression livewithmom gethitched

Min. :1.000 Min. :1.000 Min. :1.000

1st Qu.:2.000 1st Qu.:1.000 1st Qu.:2.000

Median :3.000 Median :1.000 Median :2.000

Mean :2.851 Mean :1.489 Mean :2.213

3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.:2.000

Max. :4.000 Max. :9.000 Max. :8.000

According to the summary, DIVYEAR is actually a dummy variable (either 89 or

90). We can recode (binarize) the DIVYEAR using the ifelse() function (men-

tioned in Chap. 8). The following line of code generates a new indicator variable for

divorce year ¼ 1990.

13.4 Case Study 1: Divorce and Consequences on Young Adults 449

https://umich.instructure.com/files/399118/download?download_frd=1
https://umich.instructure.com/files/399118/download?download_frd=1

divorce$DIVYEAR<-ifelse(divorce$DIVYEAR==89, 0, 1)

We also need another preprocessing step to deal with livewithmom, which has

missing values, livewithmom ¼ 9. We can impute these using momint and

dadint variables for each specific participant

table(divorce$livewithmom)

1 2 9

31 15 1

divorce[divorce$livewithmom==9,]

DIVYEAR momint dadint momclose depression livewithmom gethitched

45 1 3 1 3 3 9 2

For instance, respondents that feel much closer to their dads may be assigned

divorce$livewithmom¼¼2, suggesting they most likely live with their

fathers. Of course, alternative imputation strategies are also possible.

divorce[45, 6]<-2

divorce[45,]

DIVYEAR momint dadint momclose depression livewithmom gethitched

45 1 3 1 3 3 2 2

13.4.3 Step 3: Training a Model on the Data

We are only using R base functionality, so no need to install any additional packages

now, however library(stats) may still be necessary. Then, the function

kmeans() will provide the k-means clustering of the data.

myclusters<-kmeans(mydata, k)

• mydata: dataset in a matrix form.

• k: number of clusters we want to create.

• output:

– myclusters$cluster: vector indicating the cluster number for every observation.

– myclusters$center: a matrix showing the mean feature values for every center.

– mycluster$size: a table showing how many observations are assigned to each

cluster.

450 13 k-Means Clustering

Before we perform clustering, we need to standardize the features to avoid

biasing the clustering based on features that use large-scale values. Note that

distance calculations are sensitive to measuring units. The method as.data.

frame() will convert our dataset into a data frame allowing us to use the

lapply() function. Next, we use a combination of lapply() and scale()

to standardize our data.

di_z<- as.data.frame(lapply(divorce, scale))

str(di_z)

'data.frame': 47 obs. of 7 variables:

$ DIVYEAR : num 0.677 0.677 -1.445 0.677 -1.445 ...

$ momint : num 1.258 1.258 -0.854 1.258 -0.854 ...

$ dadint : num -0.514 -0.514 0.536 1.586 0.536 ...

$ momclose : num 0.225 1.401 -0.951 1.401 0.225 ...

$ depression : num 0.164 -0.937 1.265 0.164 -2.038 ...

$ livewithmom: num -0.711 1.377 -0.711 -0.711 -0.711 ...

$ gethitched : num 0.846 -0.229 -0.229 0.846 -0.229 ...

The resulting dataset, di_z, is standardized so all features are unitless and follow

approximately standardized normal distribution.

Next, we need to think about selecting a proper k. We have a relatively small

dataset with 47 observations. Obviously we cannot have a k as large as 10. The rule

of thumb suggests k ¼
ffiffiffiffiffiffiffiffiffiffi

47=2
p

¼ 4:8. This would be relatively large also because

we will have less than 10 observations for each cluster. It is very likely that for some

clusters we only have one observation. A better choice may be 3. Let’s see if this

will work.

library(stats)

set.seed(321)

diz_clussters<-kmeans(di_z, 3)

13.4.4 Step 4: Evaluating Model Performance

Let’s look at the clusters created by the k-means model.

diz_clussters$size

[1] 12 24 11

At first glance, it seems that 3 worked well for the number of clusters. We don’t

have any cluster that contains a small number of observations. The three clusters

have relatively equal number of respondents.

Silhouette plots represent the most appropriate evaluation strategy to assess the

quality of the clustering. Silhouette values are between �1 and 1. In our case, two

data points correspond to negative Silhouette values, suggesting these cases may be

“mis-clustered” or perhaps are ambiguous, as the Silhouette value is close to 0. We

can observe that the average Silhouette is reasonable, about 0.2 (Fig. 13.5).

13.4 Case Study 1: Divorce and Consequences on Young Adults 451

require(cluster)

dis = dist(di_z)

sil = silhouette(diz_clussters$cluster, dis)

summary(sil)

Silhouette of 47 units in 3 clusters from silhouette.default(x = diz_clus

sters$cluster, dist = dis) :

Cluster sizes and average silhouette widths:

12 24 11

0.16444649 0.27684356 0.07921684

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.08466 0.11760 0.20080 0.20190 0.30450 0.39820

plot(sil)

The next step would be to interpret the clusters in the context of this social study.

diz_clussters$centers

DIVYEAR momint dadint momclose depression livewithmom

1 0.5004720 1.1698438 -0.07631029 1.2049200 -0.1112567 0.1591755

2 -0.2953914 -0.5016290 0.36107795 -0.5096937 0.1180883 -0.7107373

3 0.0985208 -0.1817299 -0.70455885 -0.2023993 -0.1362761 1.3770536

gethitched

1 -0.1390230

2 -0.1390230

3 0.4549845

This result shows:

• Cluster 1: divyear ¼ mostly 90, momint ¼ very close, dadint ¼ not close,

livewithmom ¼ mostly mother, depression¼ not often, (gethiched) marry ¼ will

likely not get married. Cluster 1 represents mostly adolescents that are closer to

mom than dad. These young adults do not often feel depressed and they may

Fig. 13.5 Silhouette plot
for the 3 classes

452 13 k-Means Clustering

avoid getting married. These young adults tends to be not be too emotional and do

not value family.

• Cluster 2: divyear ¼ mostly 89, momint ¼ not close, dadint ¼ very close,

livewithmom ¼ father, depression ¼ mild, marry ¼ do not know/not inclined.

Cluster 2 includes children that mostly live with dad and only feel close to dad.

These people don’t felt severely depressed and are not inclined to marry. These

young adults may prefer freedom and tend to be more naive.

• Cluster 3: divyear ¼ mix of 89 and 90, momint ¼ not close, dadint ¼ not at all,

livewithmom ¼ mother, depression ¼ sometimes, marry ¼ tend to get married.

Cluster 3 contains children that did not feel close to either dad or mom. They

sometimes felt depressed and are willing to build their own family. These young

adults seem to be more independent.

We can see that these three different clusters do contain three alternative types of

young adults. Bar plots provide an alternative strategy to visualize the difference

between clusters (Fig. 13.6).

par(mfrow=c(1, 1), mar=c(4, 4, 4, 2))

myColors <- c("darkblue","red","green","brown","pink","purple","yellow")

barplot(t(diz_clussters$centers), beside = TRUE, xlab="cluster",

ylab="value", col = myColors)

legend("topleft", ncol=2, legend = c("DIVYEAR", "momint", "dadint",

"momclose", "depression", "livewithmom", "gethitched"), fill = myColors)

Fig. 13.6 Barplot illustrating the features discriminating between the three cohorts in the divorce
sonsequences on young adults dataset

13.4 Case Study 1: Divorce and Consequences on Young Adults 453

For each of the three clusters, the bars in the plot above represent the following

order of features DIVYEAR, momint, dadint, momclose, depression,

livewithmom, gethitched.

13.4.5 Step 5: Usage of Cluster Information

Clustering results could be utilized as new information augmenting the original

dataset. For instance, we can add a cluster label in our divorce dataset:

divorce$clusters<-diz_clussters$cluster

divorce[1:5,]

DIVYEAR momint dadint momclose depression livewithmom gethitched

1 1 3 2 2 3 1 3

2 1 3 2 3 2 2 2

3 0 1 3 1 4 1 2

4 1 3 4 3 3 1 3

5 0 1 3 2 1 1 2

clusters

1 1

2 1

3 2

4 1

5 2

We can also examine the relationship between live with mom and feel close to

mom by displaying a scatter plot of these two variables. If we suspect that young

adults’ personality might affect this relationship, then we could consider the poten-

tial personality (cluster type) in the plot. The cluster labels associated with each

participant are printed in different positions relative to each pair of observations,

(livewithmom, momint) (Fig. 13.7).

Fig. 13.7 Drill down for
one feature (leave-with-
mom) between the three
cohorts

454 13 k-Means Clustering

require(ggplot2)

ggplot(divorce, aes(livewithmom, momint), main="Scatterplot Live with mom vs

feel close to mom") +

geom_point(aes(colour = factor(clusters), shape=factor(clusters), stroke =

8), alpha=1) +

theme_bw(base_size=25) +

geom_text(aes(label=ifelse(clusters%in%1, as.character(clusters), ''), hju

st=2, vjust=2, colour = factor(clusters)))+

geom_text(aes(label=ifelse(clusters%in%2, as.character(clusters), ''), hju

st=-2, vjust=2, colour = factor(clusters)))+

geom_text(aes(label=ifelse(clusters%in%3, as.character(clusters), ''), hju

st=2, vjust=-1, colour = factor(clusters))) +

guides(colour = guide_legend(override.aes = list(size=8))) +

theme(legend.position="top")

We used ggplot() function in ggplot2 package to label points with cluster

types. ggplot(divorce, aes(livewithmom, momint)) + geom_point

() gives us the scatterplot, and the three geom_text() functions help us label the

points with the corresponding cluster identifiers.

This picture shows that live with mom does not necessarily mean young adults

will feel close to mom. For “emotional” (Cluster 1) young adults, they felt close to

their mom whether they live with their mom or not. “Naive” (Cluster 2) young adults

feel closer to mom if they live with mom. However, they tend to be estranged from

their mother. “Independent” (Cluster 3) young adults are opposite to Cluster 1. They

felt closer to mom if they don’t live with her.

13.5 Model Improvement

Let’s still use the divorce data to illustrate a model improvement using k-means++.

(Appropriate) initialization of the k-means algorithm is of paramount importance.

The k-means++ extension provides a practical strategy to obtain an optimal initial-

ization for k-means clustering using a predefined kpp_init method.

install.packages("matrixStats")

require(matrixStats)

kpp_init = function(dat, K) {

x = as.matrix(dat)

n = nrow(x)

Randomly choose a first center

centers = matrix(NA, nrow=K, ncol=ncol(x))

set.seed(123)

centers[1,] = as.matrix(x[sample(1:n, 1),])

for (k in 2:K) {

Calculate dist^2 to closest center for each point

dists = matrix(NA, nrow=n, ncol=k-1)

for (j in 1:(k-1)) {

temp = sweep(x, 2, centers[j,], '-')

dists[,j] = rowSums(temp^2)

}

dists = rowMins(dists)

13.5 Model Improvement 455

Draw next center with probability proportional to dist^2

cumdists = cumsum(dists)

prop = runif(1, min=0, max=cumdists[n])

centers[k,] = as.matrix(x[min(which(cumdists > prop)),])

}

return(centers)

}

clust_kpp = kmeans(di_z, kpp_init(di_z, 3), iter.max=100, algorithm='Lloyd')

We can observe some differences.

clust_kpp$centers

DIVYEAR momint dadint momclose depression livewithmom

1 0.3741445 1.2578161 -0.6636602 0.5610651 -0.1505730 -0.4124815

2 -0.2659149 -0.5798266 0.3805174 -0.2538624 0.1639572 -0.5560862

3 0.3508225 0.5269697 -0.4329499 0.2251408 -0.2594488 1.3770536

gethitched

1 0.9990071

2 -0.1489684

3 -0.2285310

This improvement is not substantial; the new overall average Silhouette value

remains 0.2 for k-means++. Third compares to the value of 0.2 reported for the

earlier k-means clustering, albeit the three groups generated by each method are

quite distinct. In addition, the number of “mis-clustered” instances remains

2 although their Silhouette values are rather smaller than before, and the overall

Cluster 1 Silhouette average value is low (0.006) (Fig. 13.8).

Fig. 13.8 Silhouette plot for k-means++ classification

456 13 k-Means Clustering

sil2 = silhouette(clust_kpp$cluster, dis)

summary(sil2)

Silhouette of 47 units in 3 clusters from silhouette.default(x = clust_kp

p$cluster, dist = dis) :

Cluster sizes and average silhouette widths:

7 27 13

0.00644352 0.24933847 0.19476785

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.12750 0.08781 0.22950 0.19810 0.29050 0.38120

plot(sil2)

13.5.1 Tuning the Parameter k

Similar to what we performed for KNN and SVM, we can tune the k-means

parameters, including centers initialization and k (Fig. 13.9).

Fig. 13.9 Evolution of the average silhouette value with respect to the number of clusters

13.5 Model Improvement 457

n_rows <- 21

mat = matrix(0,nrow = n_rows)

for (i in 2:n_rows){

set.seed(321)

clust_kpp = kmeans(di_z, kpp_init(di_z, i), iter.max=100, algorithm='Lloyd

')

sil = silhouette(clust_kpp$cluster, dis)

mat[i] = mean(as.matrix(sil)[,3])

}

colnames(mat) <- c("Avg_Silhouette_Value")

mat

Avg_Silhouette_Value

[1,] 0.0000000

[2,] 0.1948335

[3,] 0.1980686

[4,] 0.1789654

[5,] 0.1716270

[6,] 0.1546357

[7,] 0.1622488

[8,] 0.1767659

[9,] 0.1928883

[10,] 0.2026559

[11,] 0.2006313

[12,] 0.1586044

[13,] 0.1735035

[14,] 0.1707446

[15,] 0.1626367

[16,] 0.1609723

[17,] 0.1785733

[18,] 0.1839546

[19,] 0.1660019

[20,] 0.1573574

[21,] 0.1561791

ggplot(data.frame(k=2:n_rows,sil=mat[2:n_rows]),aes(x=k,y=sil))+

geom_line()+

scale_x_continuous(breaks = 2:n_rows)

This suggests that k� 3may be an appropriate number of clusters to use in this case.

Next, let’s set the maximal iteration of the algorithm and rerun the model with

optimal k ¼ 2, k ¼ 3 or k ¼ 10. Below, we just demonstrate the results for k ¼ 3.

There are still 2 mis-clustered observations, which is not a significant improvement

on the prior model according to the average Silhouette measure (Fig. 13.10).

k <- 3

set.seed(31)

clust_kpp = kmeans(di_z, kpp_init(di_z, k), iter.max=200, algorithm="MacQuee

n")

sil3 = silhouette(clust_kpp$cluster, dis)

summary(sil3)

Silhouette of 47 units in 3 clusters from silhouette.default(x = clust_kp

p$cluster, dist = dis) :

Cluster sizes and average silhouette widths:

10 22 15

0.02096194 0.30414984 0.15474729

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1365 0.1032 0.1971 0.1962 0.3122 0.4113

plot(sil3)

458 13 k-Means Clustering

Note that we now see 3 cases of group 1 that have negative silhouette values

(previously we had only 2), albeit the overall average silhouette remains 0.2.

13.6 Case Study 2: Pediatric Trauma

Let’s go through another example demonstrating the k-means clustering method

using a larger dataset.

13.6.1 Step 1: Collecting Data

The dataset we will interrogate now includes Services Utilization by Trauma-

Exposed Children in the US data, which is located in our case-studies folder. This

case study examines associations between post-traumatic psychopathology and

service utilization by trauma-exposed children.

Variables:

• id: Case identification number.

• sex: Female or male, dichotomous variable (1 ¼ female, 0 ¼ male).

• age: Age of child at time of seeking treatment services. Interval-level variable,

score range ¼ 0–18.

• race: Race of child seeking treatment services. Polytomous variable with 4 cate-

gories (1 ¼ black, 2 ¼ white, 3 ¼ hispanic, 4 ¼ other).

Fig. 13.10 Silhouette plot for the optimal k ¼ 3 andd kpp_init Initialization

13.6 Case Study 2: Pediatric Trauma 459

• cmt: The child was exposed to child maltreatment trauma - dichotomous variable

(1 ¼ yes, 0 ¼ no).

• traumatype: Type of trauma exposure the child is seeking treatment sore.

Polytomous variable with 5 categories ("sexabuse" ¼ sexual abuse,

"physabuse" ¼ physical abuse, "neglect" ¼ neglect, "psychabuse" ¼ psychologi-

cal or emotional abuse, "dvexp" ¼ exposure to domestic violence or intimate

partner violence).

• ptsd: The child has current post-traumatic stress disorder. Dichotomous variable

(1 ¼ yes, 0 ¼ no).

• dissoc: The child currently has a dissociative disorder (PTSD dissociative

subtype, DESNOS, DDNOS). Interval-level variable, score range ¼ 0–11.

• service: Number of services the child has utilized in the past 6 months, including

primary care, emergency room, outpatient therapy, outpatient psychiatrist, inpatient

admission, case management, in-home counseling, group home, foster care, treat-

ment foster care, therapeutic recreation or mentor, department of social services,

residential treatment center, school counselor, special classes or school, detention

center or jail, probation officer. Interval-level variable, score range ¼ 0–19.

• Note: These data (Case_04_ChildTrauma._Data.csv) are tab-delimited.

13.6.2 Step 2: Exploring and Preparing the Data

First, we need to load the dataset into R and report its summary and dimensions.

trauma<-read.csv("https://umich.instructure.com/files/399129/download?downlo

ad_frd=1", sep = " ")

summary(trauma); dim(trauma)

id sex age ses

Min. : 1.0 Min. :0.000 Min. : 2.000 Min. :0.00

1st Qu.: 250.8 1st Qu.:0.000 1st Qu.: 7.000 1st Qu.:0.00

Median : 500.5 Median :1.000 Median : 9.000 Median :0.00

Mean : 500.5 Mean :0.506 Mean : 8.982 Mean :0.18

3rd Qu.: 750.2 3rd Qu.:1.000 3rd Qu.:11.000 3rd Qu.:0.00

Max. :1000.0 Max. :1.000 Max. :25.000 Max. :1.00

race traumatype ptsd dissoc

black :200 dvexp :250 Min. :0.00 Min. :0.000

hispanic:100 neglect :350 1st Qu.:0.00 1st Qu.:0.000

other :100 physabuse :100 Median :0.00 Median :1.000

white :600 psychabuse:200 Mean :0.29 Mean :0.598

sexabuse :100 3rd Qu.:1.00 3rd Qu.:1.000

Max. :1.00 Max. :1.000

service

Min. : 0.000

1st Qu.: 8.000

Median :10.000

Mean : 9.926

3rd Qu.:12.000

Max. :20.000

[1] 1000 9

460 13 k-Means Clustering

https://umich.instructure.com/files/399129/download?download_frd=1
https://umich.instructure.com/files/399129/download?download_frd=1

In the summary we see two factors race and traumatype. Traumatype

codes the real classes we are interested in. If the clusters created by the model are

quite similar to the trauma types, our model may have a quite reasonable interpre-

tation. Let’s also create a dummy variable for each racial category.

trauma$black<-ifelse(trauma$race=="black", 1, 0)

trauma$hispanic<-ifelse(trauma$race=="hispanic", 1, 0)

trauma$other<-ifelse(trauma$race=="other", 1, 0)

trauma$white<-ifelse(trauma$race=="white", 1, 0)

Then, we will remove traumatype the class variable from the dataset to avoid

biasing the clustering algorithm. Thus, we are simulating a real biomedical case-

study where we do not necessarily have the actual class information available, i.e.,

classes are latent features.

trauma_notype<-trauma[, -c(1, 5, 6)]

13.6.3 Step 3: Training a Model on the Data

Similar to case-study 1, let’s standardize the dataset and fit a k-means model.

tr_z<- as.data.frame(lapply(trauma_notype, scale))

str(tr_z)

'data.frame': 1000 obs. of 10 variables:

$ sex : num 0.988 0.988 -1.012 -1.012 0.988 ...

$ age : num -0.997 1.677 -0.997 0.674 -0.662 ...

$ ses : num -0.468 -0.468 -0.468 -0.468 -0.468 ...

$ ptsd : num 1.564 -0.639 -0.639 -0.639 1.564 ...

$ dissoc : num 0.819 -1.219 0.819 0.819 0.819 ...

$ service : num 2.314 0.678 -0.303 0.351 1.66 ...

$ black : num 2 2 2 2 2 ...

$ hispanic: num -0.333 -0.333 -0.333 -0.333 -0.333 ...

$ other : num -0.333 -0.333 -0.333 -0.333 -0.333 ...

$ white : num -1.22 -1.22 -1.22 -1.22 -1.22 ...

set.seed(1234)

trauma_clusters<-kmeans(tr_z, 6)

Here we use k ¼ 6 in the hope that we may have 5 of these clusters match the

specific 5 trauma types. In this case study, we have 1000 observations and k¼ 6may

be a reasonable option.

13.6 Case Study 2: Pediatric Trauma 461

13.6.4 Step 4: Evaluating Model Performance

To assess the clustering model results, we can examine the resulting clusters

(Fig. 13.11).

trauma_clusters$centers

sex age ses ptsd dissoc

1 -0.001999144 0.061154336 -0.091055799 -0.077094361 0.02446247

2 -1.011566709 -0.006361734 -0.000275301 0.002214351 0.81949287

3 0.026286613 -0.043755817 0.029890657 0.064206246 -1.21904661

4 0.067970886 0.046116384 -0.078047828 0.044053921 -0.07746450

5 0.047979449 -0.104263129 0.156095655 0.022026960 -0.09784989

6 0.987576985 0.028799955 0.019511957 -0.038046568 0.81949287

service black hispanic other white

1 0.001308569 1.9989997 -0.3331666 -0.3331666 -1.2241323

2 0.126332303 -0.4997499 -0.3331666 -0.3331666 0.8160882

3 -0.030083167 -0.4997499 -0.3331666 -0.3331666 0.8160882

4 0.128894052 -0.4997499 -0.3331666 2.9984996 -1.2241323

5 -0.103376956 -0.4997499 2.9984996 -0.3331666 -1.2241323

6 -0.111481162 -0.4997499 -0.3331666 -0.3331666 0.8160882

myColors <- c("darkblue", "red", "green", "brown", "pink", "purple", "lightb

lue", "orange", "grey", "yellow")

barplot(t(trauma_clusters$centers), beside = TRUE, xlab="cluster",

ylab="value", col = myColors)

legend("topleft", ncol=4, legend = c("sex", "age", "ses", "ptsd", "dissoc",

"service", "black", "hispanic", "other", "white"), fill = myColors)

Fig. 13.11 Key predictors discriminating between the 6 cohorts in the trauma study

462 13 k-Means Clustering

On this barplot, the bars in each cluster represents sex, age, ses, ptsd,

dissoc, service, black, hispanic, other, and white, respectively.

It is quite obvious that each cluster has some unique features.

Next, we can compare the k-means computed cluster labels to the original labels.

Let’s evaluate the similarities between the automated cluster labels and their real

class counterparts using a confusion matrix table, where rows represent the k-means

clusters, columns show the actual labels, and the cell values include the frequencies

of the corresponding pairings.

trauma$clusters<-trauma_clusters$cluster

table(trauma$clusters, trauma$traumatype)

dvexp neglect physabuse psychabuse sexabuse

1 0 0 100 0 100

2 10 118 0 61 0

3 23 133 0 79 0

4 100 0 0 0 0

5 100 0 0 0 0

6 17 99 0 60 0

We can see that all of the children in Cluster 4 belong to dvexp (exposure to

domestic violence or intimate partner violence). If we use the mode of each cluster to

be the class for that group of children, we can classify 63 sexabuse cases,

279 neglect cases, 41 physabuse cases, 100 dvexp cases, and another

71 neglect cases. That is 554 cases out of 1,000 cases identified with correct

class. The model has a problem in distinguishing between neglect and

psychabuse, but it has a good accuracy.

Let’s review the output Silhouette value summary. It works well as only a small

portion of samples appear mis-clustered.

dis_tra = dist(tr_z)

sil_tra = silhouette(trauma_clusters$cluster, dis_tra)

summary(sil_tra)

Silhouette of 1000 units in 6 clusters from silhouette.default(x = trauma

_clusters$cluster, dist = dis_tra) :

Cluster sizes and average silhouette widths:

200 189 235 100 100 176

0.2595725 0.2185706 0.1039559 0.3223076 0.3199830 0.2423110

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.008893 0.139100 0.234400 0.224500 0.303300 0.388200

#plot(sil_tra)

report the overall mean silhouette value

mean(sil_tra[,"sil_width"])

[1] 0.2245298

The sil object colnames are ("cluster", "neighbor", "sil_width")

13.6 Case Study 2: Pediatric Trauma 463

Next, let’s try to tune k with k-means++ and see if k ¼ 6 appears to be optimal

(Fig. 13.12).

mat = matrix(0,nrow = 11)

for (i in 2:11){

set.seed(321)

clust_kpp = kmeans(tr_z, kpp_init(tr_z, i), iter.max=100, algorithm='Lloyd

')

sil = silhouette(clust_kpp$cluster, dis_tra)

mat[i] = mean(as.matrix(sil)[,3])

}

mat

[,1]

[1,] 0.0000000

[2,] 0.2433222

[3,] 0.1675486

[4,] 0.1997315

[5,] 0.2116534

[6,] 0.2400086

[7,] 0.2251367

[8,] 0.2199859

[9,] 0.2249569

[10,] 0.2347122

[11,] 0.2304451

ggplot(data.frame(k=2:11,sil=mat[2:11]),aes(x=k,y=sil))+geom_line()+scale_x_

continuous(breaks = 2:11)

Fig. 13.12 Evolution of the average silhouette value with respect to the number of clusters

464 13 k-Means Clustering

Finally, let’s use k-means++with k¼ 6 and set the algorithm’s maximal iteration

before rerunning the experiment:

set.seed(1234)

clust_kpp = kmeans(tr_z, kpp_init(tr_z, 6), iter.max=100, algorithm='Lloyd')

sil = silhouette(clust_kpp$cluster, dis_tra)

summary(sil)

Silhouette of 1000 units in 6 clusters from silhouette.default(x = clust_

kpp$cluster, dist = dis_tra) :

Cluster sizes and average silhouette widths:

422 100 178 85 15 200

0.2166778 0.3353976 0.1898492 0.2478090 0.2294502 0.2836607

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.03672 0.19730 0.23080 0.24000 0.27710 0.40650

plot(sil)

report the overall mean silhouette value

mean(sil[,"sil_width"])

[1] 0.2400086

13.6.5 Practice Problem: Youth Development

Use the Boys Town Study of Youth Development data, second case study,

CaseStudy02_Boystown_Data.csv, which we used in Chap. 7, to find clusters

using variables like GPA, alcohol abuse, attitudes on drinking, social status, parent

closeness, and delinquency for clustering (all variables other than gender and ID).

First, we must load the data and transfer sex, dadjob, and momjob into

dummy variables.

boystown<-read.csv("https://umich.instructure.com/files/399119/download?down

load_frd=1", sep=" ")

boystown$sex<-boystown$sex-1

boystown$dadjob <- (-1)*(boystown$dadjob-2)

boystown$momjob <- (-1)*(boystown$momjob-2)

str(boystown)

'data.frame': 200 obs. of 11 variables:

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

$ sex : num 0 0 0 0 1 1 0 0 1 1 ...

$ gpa : int 5 0 3 2 3 3 1 5 1 3 ...

$ Alcoholuse: int 2 4 2 2 6 3 2 6 5 2 ...

$ alcatt : int 3 2 3 1 2 0 0 3 0 1 ...

$ dadjob : num 1 1 1 1 1 1 1 1 1 1 ...

$ momjob : num 0 0 0 0 1 0 0 0 1 1 ...

$ dadclose : int 1 3 2 1 2 1 3 6 3 1 ...

$ momclose : int 1 4 2 2 1 2 1 2 3 2 ...

$ larceny : int 1 0 0 3 1 0 0 0 1 1 ...

$ vandalism : int 3 0 2 2 2 0 5 1 4 0 ...

13.6 Case Study 2: Pediatric Trauma 465

https://umich.instructure.com/files/399119/download?download_frd=1
https://umich.instructure.com/files/399119/download?download_frd=1

Then, extract all the variables, except the first two columns (subject identifiers

and genders).

boystown_sub<-boystown[, -c(1, 2)]

Next, we need to standardize and clustering the data with k ¼ 3. You may have

the following centers (numbers could be a little different) (Fig. 13.13).

gpa Alcoholuse alcatt dadjob momjob dadclose

1 -0.5101243 -0.08555163 -0.30098866 0.1939577 0.04868109 1.1914502

2 -0.2753631 0.49998217 0.13804858 -0.2421906 -0.30151766 -0.4521484

3 0.6590193 -0.51256447 0.04599325 0.1451756 0.31107377 -0.2896562

momclose larceny vandalism

1 0.65647213 -0.1755012 -0.4453044

2 -0.33341358 -0.4017282 0.5252308

3 -0.06343891 0.5769583 -0.2981561

Add k-means cluster labels as a new (last) column back in the original dataset.

To investigate the gender distribution within different clusters we may use

aggregate().

Compute the averages for the variable 'sex', grouped by cluster

aggregate(data=boystown, sex~clusters, mean)

clusters sex

1 1 0.6875000

2 2 0.5802469

3 3 0.6760563

Here clusters is the new vector indicating cluster labels. The gender distri-

bution does not vary much between different cluster labels (Fig. 13.14).

Fig. 13.13 Main features discriminating between the 3 cohorts in the divorce impact on youth
study

466 13 k-Means Clustering

This k-means live demo shows point clustering (Applies Multiclass AdaBoost.M1,

SAMME and Bagging algorithm) http://olalonde.github.com/kmeans.js.

13.7 Hierarchical Clustering

There are a number of R hierarchical clustering packages, including:

• hclust in base R.

• agnes in the cluster package.

Alternative distance measures (or linkages) can be used in all Hierarchical

Clustering, e.g., single, complete and ward.

We will demonstrate hierarchical clustering using case-study 1 (Divorce and

Consequences on Young Adults). Pre-set k ¼ 3 and notice that we have to use

normalized data for hierarchical clustering.

require(cluster)

pitch_sing = agnes(di_z, diss=FALSE, method='single')

pitch_comp = agnes(di_z, diss=FALSE, method='complete')

pitch_ward = agnes(di_z, diss=FALSE, method='ward')

sil_sing = silhouette(cutree(pitch_sing, k=3), dis)

sil_comp = silhouette(cutree(pitch_comp, k=3), dis)

try 10 clusters, see plot above

sil_ward = silhouette(cutree(pitch_ward, k=10), dis)

You can generate the hierarchical plot by ggdendrogram in the package

ggdendro (Figs. 13.15 and 13.16).

Fig. 13.14 Live demo: k-means point clustering

13.7 Hierarchical Clustering 467

http://olalonde.github.com/kmeans.js

install.packages("ggdendro")

require(ggdendro)

ggdendrogram(as.dendrogram(pitch_ward), leaf_labels=FALSE, labels=FALSE)

Fig. 13.16 Ten-level hierarchical clustering using the Ward method

Fig. 13.15 Hierarchical clustering using the Ward method

468 13 k-Means Clustering

mean(sil_ward[,"sil_width"])

[1] 0.2398738

ggdendrogram(as.dendrogram(pitch_ward), leaf_labels=TRUE, labels=T, size=10)

Generally speaking, the best result should come from wald linkage, but you

should also try complete linkage (method ¼ ‘complete’). We can see that the

hierarchical clustering result (average silhouette value �0.24) mostly agrees with

the prior k-means (0.2) and k-means++ (0.2) results (Fig. 13.17).

summary(sil_ward)

Silhouette of 47 units in 10 clusters from silhouette.default(x = cutree(

pitch_ward, k = 10), dist = dis) :

Cluster sizes and average silhouette widths:

4 5 6 3 6 12

0.25905454 0.29195989 0.29305926 -0.02079056 0.19263836 0.26268274

5 2 3 1

0.32594365 0.44074717 0.08760990 0.00000000

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.1477 0.1231 0.2577 0.2399 0.3524 0.5176

plot(sil_ward)

Fig. 13.17 Silhouette plot for hierarchical clustering using the Ward method

13.7 Hierarchical Clustering 469

13.8 Gaussian Mixture Models

More details about Gaussian mixture models (GMM) are provided in the supporting

materials online. Below is a brief introduction to GMM using the Mclust function

in the R package mclust.

For multivariate mixture, there are totally 14 possible models:

• "EII" ¼ spherical, equal volume

• "VII" ¼ spherical, unequal volume

• "EEI" ¼ diagonal, equal volume and shape

• "VEI" ¼ diagonal, varying volume, equal shape

• "EVI" ¼ diagonal, equal volume, varying shape

• "VVI" ¼ diagonal, varying volume and shape

• "EEE" ¼ ellipsoidal, equal volume, shape, and orientation

• "EVE" ¼ ellipsoidal, equal volume and orientation (*)

• "VEE" ¼ ellipsoidal, equal shape and orientation (*)

• "VVE" ¼ ellipsoidal, equal orientation (*)

• "EEV" ¼ ellipsoidal, equal volume and equal shape

• "VEV" ¼ ellipsoidal, equal shape

• "EVV" ¼ ellipsoidal, equal volume (*)

• "VVV" ¼ ellipsoidal, varying volume, shape, and orientation

For more practical details, you may refer to Mclust. For more theoretical details,

see C. Fraley and A. E. Raftery (2002).

Let’s use the Divorce and Consequences on Young Adults dataset for a

demonstration.

library(mclust)

set.seed(1234)

gmm_clust = Mclust(di_z)

gmm_clust$modelName

[1] "EEE"

Thus, the optimal model here is "EEE" (Figs. 13.18, 13.19, and 13.20).

plot(gmm_clust$BIC, legendArgs = list(x = "bottom", ncol = 2, cex = 1))

plot(gmm_clust,what = "density")

plot(gmm_clust,what = "classification")

470 13 k-Means Clustering

Fig. 13.18 Bayesian information criterion plots for different GMM classification models for the
divorce youth data

Fig. 13.19 Pairs plot of the GMM clustering density

13.8 Gaussian Mixture Models 471

13.9 Summary

• k-means clustering may be most appropriate for exploratory data analytics. It is

highly flexible and fairly efficient in terms of tessellating data into groups.

• It can be used for data that has no Apriori classes (labels).

• Generated clusters may lead to phenotype stratification and/or be compared

against known clinical traits.

Try to use these techniques with other data from the list of our Case-Studies.

13.10 Assignments: 13. k-Means Clustering

Use the Amyotrophic Lateral Sclerosis (ALS) dataset. This case-study examines the

patterns, symmetries, associations and causality in a rare but devastating disease,

amyotrophic lateral sclerosis (ALS). A major clinically relevant question in this

biomedical study is: What patient phenotypes can be automatically and reliably

identified and used to predict the change of the ALSFRS slope over time?. This

problem aims to explore the data set by unsupervised learning.

• Load and prepare the data.

• Perform summary and preliminary visualization.

Fig. 13.20 Pairs plot of the GMM classification results

472 13 k-Means Clustering

• Train a k-means model on the data, select k

• as we mentioned in Chap. 13.

• Evaluate the model performance and report the center of clusters and silhouette

plots. Explain details (Note: Since we have 100 dimensions, it may be difficult to

use bar plots, so show the centers only).

• Tune parameters and plot with k-means++.

• Rerun the model with optimal parameters and interpret the clustering results.

• Apply Hierarchical Clustering on three different linkages and compare the

corresponding Silhouette plots.

• Fit a Gaussian mixture model, select the optimal model and draw BIC and

Silhouette plots. (Hint, you need to sample part of data or it could be very time

consuming).

• Compare the result of the above methods.

References

Wu, J. (2012) Advances in K-means Clustering: A Data Mining Thinking, Springer Science &
Business Media, ISBN 3642298079, 9783642298073.

Dinov, ID. (2008) Expectation Maximization and Mixture Modeling Tutorial. Statistics Online
Computational Resource. UCLA: Statistics Online Computational Resource. Retrieved from:
http://escholarship.org/uc/item/1rb70972.

Celebi, ME (ed.) (2014) Partitional Clustering Algorithms, SpringerLink: Bücher,
ISBN 3319092596, 9783319092591.

Fraley, C and Raftery, AE. (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association, 97, 611–631.

References 473

http://escholarship.org/uc/item/1rb70972

Chapter 14

Model Performance Assessment

In previous chapters, we used prediction accuracy to evaluate classification models.

However, having accurate predictions in one dataset does not necessarily imply that

the model is perfect or that it will reproduce when tested on external data. We need

additional metrics to evaluate the model performance and to make sure it is robust,

reproducible, reliable, and unbiased.

In this chapter, we will discuss (1) various evaluation strategies for prediction,

clustering, classification, regression, and decision trees; (2) visualization of ROC

curves and performance tradeoffs; and (3) estimation of future performance, internal

statistical cross-validation and bootstrap sampling.

14.1 Measuring the Performance of Classification Methods

As mentioned previously, classification model performances could not be evaluated

by prediction accuracy alone. We make different classification models for different

purposes. For example, in newborns screening for genetic defects we want the model

to have as few true negatives as possible. We don’t want to classify anyone as “no

defect” when they actually have a defect gene, since early treatment might alter the

destiny of this newborn.

We can use the following three types of data to evaluate the performance of a

classifier model.

• Actual class values (for supervised classification).

• Predicted class values.

• Estimated probability of the prediction.

We are familiar with the first two cases. The last type of validation relies on the

predict(model, test_data) function that we have talked about in previous classifica-

tion and prediction chapters (Chaps. 7, 8, and 9). Let’s revisit the model and test

data we discussed in Chap. 8; the Inpatient Head and Neck Cancer Medication data.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_14

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_14&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_14

We will demonstrate prediction probability estimation using this case-study

CaseStudy14_HeadNeck_Cancer_Medication.csv

pred_raw<-predict(hn_classifier, hn_test, type="raw")
head(pred_raw)

early_stage later_stage
[1,] 0.9381891 0.06181090
[2,] 0.9381891 0.06181090
[3,] 0.8715581 0.12844188
[4,] 0.9382140 0.06178601
[5,] 0.9675997 0.03240026
[6,] 0.9675997 0.03240026

The above output includes the prediction probabilities for the first 6 rows of the

data. This example is based on the Naive Bayes classifier, however the same

approach works for any other machine-learning classification or prediction

technique.

In addition, we can report the predicted probability with the outputs of the Naive

Bayesian decision-support system (hn_classifier <- naiveBayes

(hn_train, hn_med_train$stage)):

pred_nb<-predict(hn_classifier, hn_test)
head(pred_nb)

[1] early_stage early_stage early_stage early_stage early_stage

early_stage

Levels: early_stage later_stage

(hn_classifier <- naiveBayes(hn_train, hn_med_train$stage)):

The general predict() method automatically subclasses to the specific pre-

dict.naiveBayes(object, newdata, type ¼ c("class", "raw"),

threshold¼ 0.001, ...) call where type¼ "raw" and type¼ "class"

specify the output as the conditional a-posterior probabilities for each class or the

class with maximal probability, respectively. Back in Chap. 9, we discussed the

C5.0 and the randomForest classifiers used to predict the chronic disease score

in a (different) Quality of Life Study.

Below are the (probability) results of the C5.0 classification prediction:

pred_prob<-predict(qol_model, qol_test, type="prob")
head(pred_prob)

minor_disease severe_disease
10 0.1979698 0.8020302
12 0.1979698 0.8020302
26 0.3468705 0.6531295
37 0.1263975 0.8736025
41 0.7290209 0.2709791
43 0.3163673 0.6836327

476 14 Model Performance Assessment

These can be contrasted against the C5.0 classification label results:

pred_tree<-predict(qol_model, qol_test)
head(pred_tree)
[1] severe_disease severe_disease severe_disease severe_disease
[5] minor_disease severe_disease
Levels: minor_disease severe_disease

The same complementary types of outputs can be reported for most machine-

learning classification and prediction approaches

14.2 Evaluation Strategies

In Chap. 7, we saw an attempt to categorize the supervised classification and

unsupervised clustering methods. Similarly, Table 14.1 summarizes the basic

types of evaluation and validation strategies for different forecasting, prediction,

ensembling, and clustering techniques. (Internal) Statistical Cross Validation or

external validation should always be applied to ensure reliability and reproducibility

of the results. The SciKit clustering performance evaluation and Classification

metrics page provide details about many alternative techniques and metrics for

performance evaluation of clustering and classification methods.

14.2.1 Binary Outcomes

More details about binary test assessment are available on the Scientific Methods for

Health Sciences (SMHS) EBook site. Table 14.2 summarizes the key measures

Table 14.1 Categories of clustering validation and classification evaluation strategies

Inference Outcome Evaluation metrics Example R functions

Classification

& Prediction

Binary Accuracy, Sensitivity, Specific-

ity, PPV/Precision,

NPV/Recall, LOR

caret::

confusionMatrix,

gmodels::CrossTable,

cluster::silhouette

Classification

& Prediction

Categorical Accuracy, Sensitivity/Specific-

ity, PPV, NPV, LOR, Silhouette

Coefficient

caret::

confusionMatrix,

gmodels::CrossTable,

cluster::silhouette

Regression

Modeling

Real

Quantitative

correlation coefficient, R2,

RMSE, Mutual Information,

Homogeneity and Complete-

ness Scores

cor, metrics::mse

14.2 Evaluation Strategies 477

commonly used to evaluate the performance of binary tests, classifiers, or

predictions.

See also SMHS EBook; Power, Sensitivity and Specificity section.

14.2.2 Confusion Matrices

We talked about this confusion matrices in Chap. 9. For binary classes, these will be

2 � 2 matrices. Each of the cells has specific meaning, see the 2 � 2 Table 14.2

where

• True Positive(TP): Number of observations that correctly classified as “yes” or

“success”

• True Negative(TN): Number of observations that correctly classified as “no” or

“failure”

• False Positive(FP): Number of observations that incorrectly classified as “yes” or

“success”

• False Negative(FN): Number of observations that incorrectly classified as “no”

or “failure”

Table 14.2 Evaluation of binary (dichotomous) statistical tests, classification methods, or forecast-

ing predictions

Actual condition(or real class label)

Test interpretationAbsent (H0 is true)

Present (H1 is

true)

Test Result

(Prediction

or Classifica-

tion

Label)

Negative (fail

to reject H0)

TN Condition

absent + Negative

result ¼ True

(accurate) Negative

FNCondition pre-

sent + Negative

result ¼ False

(invalid) Negative

Type II error

(proportional to β)

NPV ¼ TN
TNþFN

Positive(reject

H0)

FP Condition

absent + Positive

result ¼ False

Positive Type I

error (α)

TP Condition

Present + Positive

result ¼ True

Positive

PPV ¼ Precision

¼ TP
TPþFP

Test

Interpretation

Power ¼ 1 � β

¼

12 FN
FNþTP

Specificity ¼ TN
TNþFP

Power¼
Sensitivity¼

TP
TPþFN

LOR ¼ ln
S1=F1
S2=F2

� �

¼ ln S1�F2
S2�F1

� �

,

S ¼ success,

F ¼ failure for

2 binary variables,

1 and 2

Table 14.3 Cross-table Predict_T predict_F

TRUE TP TN

FALSE FP FN

478 14 Model Performance Assessment

Using Confusion Matrices to Measure Performance

The way we calculate accuracy using these four cells is summarized by the following

formula:

accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
¼

TPþ TN

Total number of observations
:

On the other hand, the error rate, or proportion of incorrectly classified observa-

tions, is calculated using:

errorrate ¼
FPþ FN

TPþ TN þ FPþ FN
¼¼

FPþ FN

Total number of observations

¼ 1� accuracy:

If we look at the numerator and denominator carefully, we can see that the error

rate and accuracy add up to 1. Therefore, 95% accuracy implies a 5% error rate.

In R, we have multiple ways to obtain confusion matrices. The simplest way

would be to use table(). For example, in Chap. 8, to report a plain 2� 2 table we

used:

hn_test_pred<-predict(hn_classifier, hn_test)
table(hn_test_pred, hn_med_test$stage)

hn_test_pred early_stage later_stage
early_stage 69 23
later_stage 8 0

Then why did we use CrossTable() function back in Chapter 8? Because it

reports additional useful information about the model performance.

library(gmodels)
CrossTable(hn_test_pred, hn_med_test$stage)

Cell Contents

|-------------------------|

| N |

| Chi-square contribution |

| N / Row Total |

| N / Col Total |

| N / Table Total |

|-------------------------|

Total Observations in Table: 100

| hn_med_test$stage

hn_test_pred | early_stage | later_stage | Row Total |

-------------|-------------|-------------|-------------|

early_stage | 69 | 23 | 92 |

| 0.048 | 0.160 | |

14.2 Evaluation Strategies 479

| 0.750 | 0.250 | 0.920 |

| 0.896 | 1.000 | |

| 0.690 | 0.230 | |

-------------|-------------|-------------|-------------|

later_stage | 8 | 0 | 8 |

| 0.550 | 1.840 | |

| 1.000 | 0.000 | 0.080 |

| 0.104 | 0.000 | |

| 0.080 | 0.000 | |

-------------|-------------|-------------|-------------|

Column Total | 77 | 23 | 100 |

| 0.770 | 0.230 | |

-------------|-------------|-------------|-------------|

With both tables, we can calculate accuracy and error rate by hand.

accuracy<-(69+0)/100
accuracy

[1] 0.69

error_rate<-(23+8)/100
error_rate

[1] 0.31

1-accuracy

[1] 0.31

For matrices larger than 2 � 2, all diagonal elements are observations that have

been correctly classified and off-diagonal elements are those that have been incor-

rectly classified.

14.2.3 Other Measures of Performance Beyond Accuracy

So far, we discussed two performance methods - table and cross-table. A third

function is confusionMatrix() which provides the easiest way to report

model performance. Notice that the first argument is an actual vector of the labels,

i.e., Test_Y, and the second argument, of the same length, represents the vector of

predicted labels.

This example was presented as the first case-study in Chap. 9.

480 14 Model Performance Assessment

library(caret)

qol_pred<-predict(qol_model, qol_test)
confusionMatrix(table(qol_pred, qol_test$cd), positive="severe_disease")

Confusion Matrix and Statistics

qol_pred minor_disease severe_disease

minor_disease 149 89

severe_disease 74 131

Accuracy : 0.6321

95% CI : (0.5853, 0.6771)

No Information Rate : 0.5034

P-Value [Acc > NIR] : 3.317e-08

Kappa : 0.2637

Mcnemar's Test P-Value : 0.2728

Sensitivity : 0.5955

Specificity : 0.6682

Pos Pred Value : 0.6390

Neg Pred Value : 0.6261

Prevalence : 0.4966

Detection Rate : 0.2957

Detection Prevalence : 0.4628

Balanced Accuracy : 0.6318

'Positive' Class : severe_disease

14.2.4 The Kappa (κ) Statistic

The Kappa statistic was originally developed to measure the reliability between two

human raters. It can be harnessed in machine-learning applications to compare the

accuracy of a classifier, where one rater represents the ground truth (for labeled

data, these are the actual values of each instance) and the second rater represents

the results of the automated machine-learning classifier. The order of listing the

raters is irrelevant.

Kappa statistic measures the possibility of a correct prediction by chance alone

and answers the question of How much better is the agreement (between

the ground truth and the machine-learning prediction) than

would be expected by chance alone? Its value is between 0 and 1. When

κ ¼ 1, we have a perfect agreement between a computed prediction (typically the

result of a model-based or model-free technique forecasting an outcome of interest)

14.2 Evaluation Strategies 481

and an expected prediction (typically random, by chance prediction). A common

interpretation of the Kappa statistics includes:

• Poor agreement: less than 0.20

• Fair agreement: 0.20–0.40

• Moderate agreement: 0.40–0.60

• Good agreement: 0.60–0.80

• Very good agreement: 0.80–1

In the above confusionMatrix output, we have a fair agreement. For differ-

ent problems, we may have different interpretations of Kappa statistics. To under-

stand the Kappa statistic better, let’s look at its definition:

kappa ¼
P að Þ � P eð Þ

1� P eð Þ
:

P(a) and P(e) simply denote probability of actual and expected agreement

between the classifier and true values.

table(qol_pred, qol_test$cd)

qol_pred minor_disease severe_disease

minor_disease 149 89

severe_disease 74 131

According to above table, actual agreement is the accuracy:

p_a<-(149+131)/(149+89+74+131)
p_a

[1] 0.6320542

The manually and automatically computed accuracies coincide (0.6321). It may

be trickier to obtain the expected agreement. Probability rules tell us that the

probability of the union of two disjoint events equals to the sum of the individual

(marginal) probabilities for these two events. Thus, we have:

P expect agreement for minor diseaseð Þ ¼ P actual type is minor diseaseð Þ
þ P predicted type is minor diseaseð Þ

Similarly:

P expect agreement for severe diseaseð Þ ¼ P actual type is severe diseaseð Þ
þ P predicted type is severe diseaseð Þ:

482 14 Model Performance Assessment

In our case:

p_e_minor <- (149+74)/(149+89+74+131))*((149+89)/(149+89+74+131)
p_e_severe <- ((131+74)/(149+89+74+131)) * ((89+131)/(149+89+74+131))
p_e<-p_e_minor+p_e_severe
p_e

[1] 0.5002522

Plugging in p_a and p_e into the formula we get:

kappa<-(p_a-p_e)/(1-p_e)
kappa

[1] 0.26

We get a similar value as the confusionTable() output. A more straight-

forward way of getting the Kappa statistics is by using Kappa() function in the

vcd package.

#install.packages(vcd)
library(vcd)

Loading required package: grid

Kappa(table(qol_pred, qol_test$cd))

value ASE z Pr(>|z|)
Unweighted 0.2637 0.04573 5.767 8.071e-09
Weighted 0.2637 0.04573 5.767 8.071e-09

The combination of Kappa() and table function yields a 2 � 4 matrix. The

Kappa statistic is under the unweighted value.

Generally speaking, predicting a severe disease outcome is a more critical

problem than predicting a mild disease state. Thus, weighted Kappa is also useful.

We give the severe disease a higher weight. The Kappa test result is not acceptable

since the classifier may make too many mistakes for the severe disease cases. The

Kappa value is only �0.0714. Notice that the range of Kappa is not [0,1] for the

weighted Kappa.

Kappa(table(qol_pred, qol_test$cd),weights = matrix(c(1,10,1,10),nrow=2))

value ASE z Pr(>|z|)
Unweighted 0.26374 0.04573 5.767 8.071e-09
Weighted 0.06818 0.04009 1.701 8.898e-02

When the predicted value is the first argument, the row and column names

represent the true labels and the predicted labels, respectively.

table(qol_pred, qol_test$cd)

qol_pred minor_disease severe_disease
minor_disease 149 89
severe_disease 74 131

14.2 Evaluation Strategies 483

Summary of the Kappa Score for Calculating Prediction Accuracy

Kappa compares an Observed classification accuracy (output of our ML classifier)

with an Expected classification accuracy (corresponding to random chance classi-

fication). It may be used to evaluate single classifiers and/or to compare among a set

of different classifiers. It takes into account random chance (agreement with a

random classifier). That makesKappamore meaningful than simply using accuracy

as a metric. For instance, the interpretation of an Observed Accuracy of 80% is

relative to the Expected Accuracy. Observed Accuracy of 80% is more

impactful for an Expected Accuracy of 50% compared to Expected Accu-

racy of 75%.

14.2.5 Computation of Observed Accuracy and Expected

Accuracy

Consider the following example of a classifier generating the following

confusion matrix. Columns represent the true labels and rows represent the

classifier-derived labels for this binary prediction example (Table 14.4).

In this example, there is a total of 150 observations (50 + 35 + 25 + 40). In reality,

75 are labeled as True (50 + 25) and another 75 are labeled as False (35 + 40). The

classifier labeled 85 as True (50 + 35) and the other 65 as False (25 + 40).

• Observed Accuracy (OA) is the proportion of instances that were

classified correctly throughout the entire confusion matrix:

OA ¼
50þ 40

150
¼ 0:6:

• Expected Accuracy (EA) is the accuracy that any random classifier would be

expected to achieve based on the given confusion matrix. EA is the propor-

tion of instances of each class (True and False), along with the number of

instances that the automated classifier agreed with the ground truth label. The EA

is calculated by multiplying the marginal frequencies of True for the true-state

and the machine classified instances, and dividing by the total number of

instances. The marginal frequency of True for the true-state is 75 (50 + 25)

Table 14.4 A simulated

confusion matrix.
Class True False Total

True 50 35 85

False 25 40 65

Total 75 75 150

484 14 Model Performance Assessment

and for the corresponding ML classifier is 85 (50 + 35). Then, the expected

accuracy for the True outcome is:

EA Trueð Þ ¼
75� 85

150
¼ 42:5:

We similarly compute the EA(False) for the second, False, outcome, by using the

marginal frequencies for the true-state ((False| true state) ¼ 75 ¼ 50 + 25) and the

ML classifier (False| classifier) ¼ 65(40 + 25). Then, the expected accuracy for the

True outcome is:

EA Falseð Þ ¼
75� 65

150
¼ 32:5:

Finally, the EA ¼ EA Trueð ÞþEA Falseð Þ
150

ExpectedAccuracy EAð Þ ¼
42:5þ 32:5

150
¼ 0:5:

Note that EA ¼ 0.5 whenever the true-state binary classification is balanced

(in reality, the frequencies of True and False are equal, in our case 75).

The calculation of the kappa statistic relies on OA ¼ 0.6 and EA ¼ 0.5:

Kappað Þ κ ¼
OA� EA

1� EA
¼

0:6� 0:5

1� 0:5
¼ 0:2:

14.2.6 Sensitivity and Specificity

If we take a closer look at the confusionMatrix() output, we find there are two

important statistics “sensitivity” and “specificity”.

Sensitivity, or true positive rate, measures the proportion of “success” observa-

tions that are correctly classified.

sensitivity ¼
TP

TPþ FN
:

Notice TP + FN are the total number of true “success” observations.

On the other hand, specificity, or true negative rate, measures the proportion of

“failure” observations that are correctly classified.

specificity ¼
TN

TN þ FP
:

Accordingly, TN + FP are the total number of true “failure” observations.

14.2 Evaluation Strategies 485

Using the table() output above and using "severe_disease" as “success”, we

can compute these two measures directly.

sens<-131/(131+89)
sens

[1] 0.5954545

spec<-149/(149+74)
spec

[1] 0.6681614

Another R package, caret, also provides functions to calculate sensitivity and

specificity.

library(caret)
sensitivity(qol_pred, qol_test$cd, positive="severe_disease")

[1] 0.5954545

Sensitivity and specificity both range from 0 to 1. For either measure, a value of 1

implies that the positive and negative predictions are very accurate. However,

simultaneously high sensitivity and specificity may not be attainable in real world

situations. There is a tradeoff between sensitivity and specificity. To compromise,

some studies loosen the demands on one and focus on achieving high values on the

other.

14.2.7 Precision and Recall

Very similar to sensitivity, precision measures the proportion of true “success”

observations among predicted “success” observations.

precision ¼
TP

TPþ FP
:

Recall is the proportion of true “positives” among all “true positive” conditions.

A model with high recall captures most “interesting” cases.

recall ¼
TP

TPþ FN
:

Again, let’s calculate these by hand for the QoL data:

prec<-131/(131+74)
prec

[1] 0.6390244

recall<-131/(131+89)
recall

[1] 0.5954545

486 14 Model Performance Assessment

Another way to obtain precisionwould be posPredValue() under the caret

package. Remember to specify which one is the “success” class.

posPredValue(qol_pred, qol_test$cd, positive="severe_disease")

[1] 0.6390244

From the definitions of precision and recall, we can derive the type 1 error and

type 2 errors as follow:

error1 ¼ 1� Precision ¼
FP

TPþ FP
, and

error2 ¼ 1� Recall ¼
FN

TPþ FN
:

Thus, we can compute the type 1 error (0.36) and type 2 error (0.40).

error1<-74/(131+74)
error2<-89/(131+89)
error1; error2

[1] 0.3609756

[1] 0.4045455

14.2.8 The F-Measure

The F-measure or F1-score combines precision and recall using the harmonic mean

assuming equal weights. High F-score means high precision and high recall. This is a

convenient way of measuring model performances and comparing models.

F � measure ¼
2� precision� recall

recallþ precision
¼

2� TP

2� TPþ FPþ FN
:

Let’s calculate the F1-score by hand using the confusion matrix derived from the

Quality of Life prediction:

F1<-(2*prec*recall)/(prec+recall); F1

[1] 0.6164706

The direct calculations of the F1-statistics can be obtained using caret:

precision <- posPredValue(qol_pred, qol_test$cd, positive="severe_disease")
recall <- sensitivity(qol_pred, qol_test$cd, positive="severe_disease")
F1 <- (2 * precision * recall) / (precision + recall); F1

[1] 0.6164706

14.2 Evaluation Strategies 487

14.3 Visualizing Performance Tradeoffs (ROC Curve)

Another choice for evaluating classifiers performance is by using graphs rather than

quantitative statistics. Graphs are usually more comprehensive than single statistics.

In R there is a package providing user-friendly functions for visualizing model

performance. Details can be found on the ROCR website.

Here, we evaluate the model performance for the Quality of Life case study, see

Chap. 9.

#install.packages("ROCR")
library(ROCR)

pred<-ROCR::prediction(predictions=pred_prob[, 2], labels=qol_test$cd)
avoid naming collision (ROCR::prediction), as
there is another prediction function in neuralnet package.

pred_prob[, 2] is the probability of classifying each observation as

"severe_disease". The above code saved all the model prediction information into

object pred.

The ROC (Receiver Operating Characteristic) curves are often used to examine

the tradeoff between detecting true positives and avoiding the false positives

(Fig. 14.1).

0%

Perfect Classifier

Test Classifier

Classifier with no predictive value

0%

20%

40%

60%

80%

20% 40%

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

60%

ROC curve

80% 100%

Fig. 14.1 Schematic of quantifying the efficacy of a classification method using the area under the

ROC curve

488 14 Model Performance Assessment

curve(log(x), from=0, to=100, xlab="False Positive Rate", ylab="True Positiv
e Rate", main="ROC curve", col="green", lwd=3, axes=F)
Axis(side=1, at=c(0, 20, 40, 60, 80, 100), labels = c("0%", "20%", "40%", "6
0%", "80%", "100%"))
Axis(side=2, at=0:5, labels = c("0%", "20%", "40%", "60%", "80%", "100%"))
segments(0, 0, 110, 5, lty=2, lwd=3)
segments(0, 0, 0, 4.7, lty=2, lwd=3, col="blue")
segments(0, 4.7, 107, 4.7, lty=2, lwd=3, col="blue")
text(20, 4, col="blue", labels = "Perfect Classifier")
text(40, 3, col="green", labels = "Test Classifier")
text(70, 2, col="black", labels= "Classifier with no predictive value")

The blue line in the above graph represents the perfect classifier where we have

0% false positive and 100% true positive. The middle green line is the test classifier.

Most of our classifiers trained by real data will look like this. The black diagonal line

illustrates a classifier with no predictive value predicts. We can see that it has the

same true positive rate and false positive rate. Thus, it cannot distinguish between

the two.

In terms of identifying positive value, we want our ROC curve to be as close to

the perfect line as possible. Thus, we measure the area under the ROC curve

(abbreviated as AUC) to show how close our curve is to the perfect classifier. To

do this, we have to change the scale of the graph above. Mapping 100% to 1, we

have a 1 � 1 square. The area under the perfect classifier would be one, and area

under classifier with no predictive value would be 0.5. Then, 1 and 0.5 will be the

upper and lower limits for our model ROC curve. We have the following scoring

system (numbers indicate area under the curve) for predictive model ROC curves:

• Outstanding: 0.9–1.0

• Excellent/good: 0.8–0.9

• Acceptable/fair: 0.7–0.8

• Poor: 0.6–0.7

• No discrimination: 0.5–0.6.

Note that this rating system is somewhat subjective. Let’s use the ROCR package

to draw a ROC curve.

roc<-performance(pred, measure="tpr", x.measure="fpr")

By specifying "tpr"(True positive rate) and "fpr"(False positive rate) we

made a “performance” object (Fig. 14.2).

plot(roc, main="ROC curve for Quality of Life model", col="blue", lwd=3)
segments(0, 0, 1, 1, lty=2)

The segments command draws the dotted line representing the classifier with no

predictive value.

To measure this quantitatively, we need to create a new performance object with

measure ¼ "auc" or area under the curve.

14.3 Visualizing Performance Tradeoffs (ROC Curve) 489

roc_auc<-performance(pred, measure="auc")

Now the roc_auc is stored as a S4 object. This is quite different than data frame

and matrices. First, we can use str() function to see its structure.

str(roc_auc)

Formal class 'performance' [package "ROCR"] with 6 slots
..@ x.name : chr "None"
..@ y.name : chr "Area under the ROC curve"
..@ alpha.name : chr "none"
..@ x.values : list()
..@ y.values :List of 1
.. ..$: num 0.65
..@ alpha.values: list()

The ROC object has six members. The AUC value is stored in y.values. To

extract that we use the @ symbol according to the output of the str() function.

roc_auc@y.values

[[1]]
[1] 0.6496739

Thus, the obtained AUC ¼ 0.65, which suggests a fair classifier, according to the

above scoring schema.

0.0

0.0

0.2

0.4

T
ru

e
 p

o
s
it
iv

e
 r

a
te 0.6

0.8

1.0

0.2 0.4 0.6

False positive rate

ROC curve for Quality of Life model

0.8 1.0

Fig. 14.2 ROC curve of the prediction of disease severity using the quality of life (QoL) data

490 14 Model Performance Assessment

14.4 Estimating Future Performance (Internal

Statistical Validation)

The evaluation methods we have talked about are all measuring re-substitution error.

That is, building the model on training data and measuring the model error on

separate testing data. This is one way of dealing with unseen data. First, let’s

introduce the basic ideas, and more details will be presented in Chap. 21.

14.4.1 The Holdout Method

The idea is to partition the entire dataset into two separate datasets, using one of them

to create the model and the other to test the model performances. In practice, we

usually use a fraction (e.g., 50%, or 2
3
) of our data for training the model, and reserve

the rest (e.g., 50%, or 1
3
) for testing. Note that the testing data may also be further split

into proportions for internal repeated (e.g., cross-validation) testing and final exter-

nal (independent) testing.

The partition has to be randomized. In R, the best way of doing this is to create a

parameter that randomly draws numbers and use this parameter to extract random

rows from the original dataset. In Chap. 11, we used this method to partition the

Google Trends data.

sub<-sample(nrow(google_norm), floor(nrow(google_norm)*0.75))
google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]

Another way of partitioning is by using createDataPartition() under the

caret package. Instead of using the entire original dataset, we can use the outcome

variable, google_norm$RealEstate, or any of the independent variables.

sub<-createDataPartition(google_norm$RealEstate, p=0.75, list = F)
google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]

To make sure that the model can be applied to future datasets, we can partition

the original dataset into three separate subsets. In this way, we have two subsets

for testing. The additional validation dataset can alleviate the probability that we

have a good model due to chance (non-representative subsets). A common split

among training, test, and validation subsets would be 50%, 25%, and 25%

respectively.

14.4 Estimating Future Performance (Internal Statistical Validation) 491

sub<-sample(nrow(google_norm), floor(nrow(google_norm)*0.50))
google_train<-google_norm[sub,]
google_test<-google_norm[-sub,]
sub1<-sample(nrow(google_test), floor(nrow(google_test)*0.5))
google_test1<-google_test[sub1,]
google_test2<-google_test[-sub1,]
nrow(google_norm)

[1] 731

nrow(google_train)

[1] 365

nrow(google_test1)

[1] 183

nrow(google_test2)

[1] 183

However, when we only have a very small dataset, it’s difficult to split off too

much data as this reduces the sample further. There are the following two options for

evaluation of model performance using (independent) unseen data: cross-validation

and holdout methods. These are implemented in the caret package.

14.4.2 Cross-Validation

For complete details see DSPA Cross-Validation (Chap. 21). Below, we describe the

fundamentals of cross-validation as an internal statistical validation technique.

This technique is known as k-fold cross-validation or k-fold CV, which is a

standard for estimating model performance. K-fold CV randomly divides the orig-

inal data into k separate random subsets called folds.

A common practice is to use k ¼ 10 or 10-fold CV to split the data into

10 different subsets. Each time using one of the subsets to be the test set and the

rest to build the model. createFolds() under caret package will help us to do

so. seet.seed() insures the folds created are the same if you run the code line

twice. 1234 is just a random number. You can use any number for set.seed().

We use the normalized Google Trend dataset in this section.

library("caret")
set.seed(1234)
folds<-createFolds(google_norm$RealEstate, k=10)
str(folds)
List of 10
$ Fold01: int [1:73] 5 9 11 12 18 19 28 29 54 65 ...
$ Fold02: int [1:73] 14 24 35 49 52 61 63 76 99 115 ...
$ Fold03: int [1:73] 1 8 41 45 51 74 78 92 100 104 ...

492 14 Model Performance Assessment

$ Fold04: int [1:73] 30 32 37 40 43 57 59 64 70 96 ...
$ Fold05: int [1:73] 13 16 25 53 56 68 77 81 93 95 ...
$ Fold06: int [1:73] 4 6 15 20 36 69 71 73 79 89 ...
$ Fold07: int [1:73] 34 42 44 84 90 98 102 110 112 117 ...
$ Fold08: int [1:73] 2 3 48 62 82 85 86 87 88 91 ...
$ Fold09: int [1:74] 10 21 23 27 33 39 46 55 58 75 ...
$ Fold10: int [1:73] 7 17 22 26 31 38 47 50 60 66 ...

Another way to cross-validate is to use cv_partition() in package

sparsediscrim.

install.packages("sparsediscrim")

require(sparsediscrim)

folds2 = cv_partition(1:nrow(google_norm), num_folds=10)

And the structure of folds may be reported by:

str(folds2)

List of 10
$ Fold1 :List of 2
..$ training: int [1:657] 4 5 6 8 9 10 11 12 16 17 ...
..$ test : int [1:74] 287 3 596 1 722 351 623 257 568 414 ...
$ Fold2 :List of 2
..$ training: int [1:658] 1 2 3 5 6 7 8 9 10 11 ...
..$ test : int [1:73] 611 416 52 203 359 195 452 258 614 121 ...
$ Fold3 :List of 2
..$ training: int [1:658] 1 2 3 4 5 7 8 9 10 11 ...
..$ test : int [1:73] 182 202 443 152 486 229 88 158 178 293 ...
$ Fold4 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 646 439 362 481 183 387 252 520 438 586 ...
$ Fold5 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 503 665 47 603 348 125 719 11 461 361 ...
$ Fold6 :List of 2
..$ training: int [1:658] 1 2 3 4 6 7 9 10 11 12 ...
..$ test : int [1:73] 666 411 159 21 565 298 537 262 131 600 ...
$ Fold7 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 269 572 410 488 124 447 313 255 360 473 ...
$ Fold8 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 11 ...
..$ test : int [1:73] 446 215 256 116 592 284 294 300 402 455 ...
$ Fold9 :List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 9 10 ...
..$ test : int [1:73] 25 634 717 545 76 378 53 194 70 346 ...
$ Fold10:List of 2
..$ training: int [1:658] 1 2 3 4 5 6 7 8 10 11 ...
..$ test : int [1:73] 468 609 40 101 595 132 248 524 376 618 ...

Now, we have 10 different subsets in the folds object. We can use lapply()

to fit the model. 90% of data will be used for training so we use [�x,] to represent

14.4 Estimating Future Performance (Internal Statistical Validation) 493

all observations not in a specific fold. In Chap. 11 we showed building a neutral

network model for the Google Trends data. We can do the same for each fold

manually; train, test, aggregate the results, and report the agreement (correlations

between the predicted and observed RealEstate values).

library(neuralnet)

fold_cv<-lapply(folds, function(x){
google_train<-google_norm[-x,]
google_test<-google_norm[x,]
google_model<-neuralnet(RealEstate~Unemployment+Rental+Mortgage+Jobs+Inves

ting+DJI_Index+StdDJI, data=google_train)
google_pred<-compute(google_model, google_test[, c(1:2, 4:8)])
pred_results<-google_pred$net.result
pred_cor<-cor(google_test$RealEstate, pred_results)
return(pred_cor)
})

str(fold_cv)

List of 10
$ Fold01: num [1, 1] 0.977
$ Fold02: num [1, 1] 0.97
$ Fold03: num [1, 1] 0.972
$ Fold04: num [1, 1] 0.979
$ Fold05: num [1, 1] 0.976
$ Fold06: num [1, 1] 0.974
$ Fold07: num [1, 1] 0.971
$ Fold08: num [1, 1] 0.982
$ Fold09: num [1, 1] -0.516
$ Fold10: num [1, 1] 0.974

From the output, we know that in most of the folds the model predicts very well.

In a typical run, one fold may yield bad results. We can use the mean of these

10 correlations to represent the overall model performance. But first, we need to use

unlist() function to transform fold_cv into a vector.

mean(unlist(fold_cv))

[1] 0.8258223801

This correlation is high, suggesting strong association between predicted and true

values. Thus, the model is very good in terms of its prediction.

14.4.3 Bootstrap Sampling

The second method is called bootstrap sampling. In k-fold CV, each observation can

only be used once. However, bootstrap sampling is a sampling process with replace-

ment. Before selecting a new sample, it recycles every observation so that each

observation could appear in multiple folds.

494 14 Model Performance Assessment

A very special setting of bootstrap uses at each iteration 63.2% of the original data

as our training dataset and the remaining 36.8% as the test dataset. Thus, compared

to k-fold CV, bootstrap sampling is less representative of the full dataset. A special

case of bootstrapping, 0.632 bootstrap, addresses this issue by changing the final

performance metric using the following formula:

error ¼ 0:632� errortest þ 0:368� errortrain:

This synthesizes the optimistic model performance on training data with the

pessimistic model performance on test data by weighting the corresponding errors.

This method is extremely good for small samples.

To see the rationale behind 0.632 bootstrap, consider a standard training set T of

cardinality n, where our bootstrap sampling generates m new training sets Ti, each of

size n0. Sampling from T is uniform with replacement, suggests that some observa-

tions may be repeated in each sample Ti. Suppose the size of the sub-samples are of

the same order as T, i.e., n0 ¼ n, then for large n the sample Di is expected to have

1� 1
e

� �

� 0:632 unique cases from the complete original collection T, the remaining

proportion 0.368 are expected to be repeated duplicates. Hence, the name 0.632

bootstrap sampling. In general, for large n � n0, the sample Di is expected to have

n 1� e�
n0

n

� �

unique cases, see On Estimating the Size and Confidence of a Statistical

Audit).

Having the bootstrap samples, the m models can be fitted (estimated) and

aggregated, e.g., by averaging the outputs (for regression) or by using voting

methods (for classification). We will discuss this more in later chapters.

Try to apply the same techniques to some of the other data in the list of Case-

Studies.

14.5 Assignment: 14. Evaluation of Model Performance

The ABIDE dataset includes imaging, clinical, genetics and phenotypic data for over

1000 pediatric cases – Autism Brain Imaging Data Exchange (ABIDE).

• Apply C5.0 to predict on part of data (training data).

• Evaluate the model’s performance, using confusion matrices, accuracy, κ,

precision, and recall, F-measure, etc.

• Explain and compare each evaluation.

• Use the ROC to examine the tradeoff between detecting true positives and

avoiding the false positives and report AUC.

• Finally, apply cross validation on C5.0 and report the CV error.

• You may apply the same analysis workflow to evaluate the performance of

alternative methods (e.g., KNN, SVM, LDA, QDA, Neural Networks, etc.)

14.5 Assignment: 14. Evaluation of Model Performance 495

References

SciKit: http://scikit-learn.org/stable/modules/classes.html

Sammut, C, Webb, GI (eds.) (2011) Encyclopedia of Machine Learning, Springer Science &

Business Media, ISBN 0387307680, 9780387307688.

Japkowicz, N, Shah. M. (2011) Evaluating Learning Algorithms: A Classification Perspective,

Cambridge University Press, ISBN 1139494147, 9781139494144.

496 14 Model Performance Assessment

http://scikit-learn.org/stable/modules/classes.html

Chapter 15

Improving Model Performance

We already explored several alternative machine learning (ML) methods for predic-

tion, classification, clustering, and outcome forecasting. In many situations, we

derive models by estimating model coefficients or parameters. The main question

now is How can we adopt the advantages of crowdsourcing and biosocial network-

ing to aggregate different predictive analytics strategies? Are there reasons to

believe that such ensembles of forecasting methods may actually improve the

performance (e.g., increase prediction accuracy) of the resulting consensus meta-

algorithm? In this chapter, we are going to introduce ways that we can search for

optimal parameters for a single ML method, as well as aggregate different methods

into ensembles to enhance their collective performance relative to any of the

individual methods part of the meta-aggregate.

After we summarize the core methods, we will present automated and customized

parameter tuning, and show strategies for improving model performance based on

meta-learning via bagging and boosting.

15.1 Improving Model Performance by Parameter Tuning

One of the methods for improving model performance relies on tuning, which is the

process of searching for the best parameters for a specific method. Table 15.1

summarizes the parameters for each method we covered in previous chapters.

15.2 Using caret for Automated Parameter Tuning

In Chap. 7, we used KNN and plugged in random k parameters for the number of

clusters. This time, we will test multiple k values simultaneously and pick the one

with the highest accuracy. When using the caret package, we need to specify a

© Ivo D. Dinov 2018
I. D. Dinov, Data Science and Predictive Analytics,
https://doi.org/10.1007/978-3-319-72347-1_15

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_15&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_15

class variable, a dataset containing a class variable, predicting features, and the

method we will be using. In Chap. 7, we used the Boys Town Study of Youth

Development dataset, normalized all the features, stored them in boystown_n, and

formulated the outcome class variable first (boystown$grade).

Table 15.1 Synopsis of the basic prediction, classification and clustering methods and their core
parameters

Model Learning task Method Parameters

KNN Classification class::knn data, k

K-Means Classification stats::kmeans data, k

Naïve Bayes Classification e1071::

naiveBayes

train, class, laplace

Decision Trees Classification C50::C5.0 train, class, trials,

costs

OneR Rule
Learner

Classification RWeka::OneR class~predictors, data

RIPPER Rule
Learner

Classification RWeka::JRip formula, data, subset,

na.action, control,

options

Linear Regression Regression stats::lm formula, data, subset,

weights, na.action,

method

Regression Trees Regression rpart::rpart dep_var ~ indep_var, data

Model Trees Regression RWeka::M5P formula, data, subset,

na.action, control

Neural Networks Dual use nnet::nnet x, y, weights, size, Wts,

mask,linout, entropy,

softmax, censored, skip,

rang, decay, maxit, Hess,

trace, MaxNWts, abstol,

reltol

Support Vector
Machines (Poly-
nomial Kernel)

Dual use caret::train::

svmLinear

C

Support Vector
Machines (Radial
Basis Kernel)

Dual use caret::train::

svmRadial

C, sigma

Support Vector
Machines
(general)

Dual use kernlab::ksvm formula, data, kernel

Random Forests Dual use randomForest::

randomForest

formula, data

498 15 Improving Model Performance

str(boystown_n)

'data.frame': 200 obs. of 10 variables:

$ sex : num 0 0 0 0 1 1 0 0 1 1 ...

$ gpa : num 1 0 0.6 0.4 0.6 0.6 0.2 1 0.2 0.6 ...

$ Alcoholuse: num 0.182 0.364 0.182 0.182 0.545 ...

$ alcatt : num 0.5 0.333 0.5 0.167 0.333 ...

$ dadjob : num 1 1 1 1 1 1 1 1 1 1 ...

$ momjob : num 0 0 0 0 1 0 0 0 1 1 ...

$ dadclose : num 0.143 0.429 0.286 0.143 0.286 ...

$ momclose : num 0.143 0.571 0.286 0.286 0.143 ...

$ larceny : num 0.25 0 0 0.75 0.25 0 0 0 0.25 0.25 ...
$ vandalism : num 0.429 0 0.286 0.286 0.286 ...

boystown_n<-cbind(boystown_n, boystown[, 11])
str(boystown_n)

'data.frame': 200 obs. of 11 variables:

$ sex : num 0 0 0 0 1 1 0 0 1 1 ...

$ gpa : num 1 0 0.6 0.4 0.6 0.6 0.2 1 0.2 0.6 ...

$ Alcoholuse : num 0.182 0.364 0.182 0.182 0.545 ...

$ alcatt : num 0.5 0.333 0.5 0.167 0.333 ...

$ dadjob : num 1 1 1 1 1 1 1 1 1 1 ...

$ momjob : num 0 0 0 0 1 0 0 0 1 1 ...

$ dadclose : num 0.143 0.429 0.286 0.143 0.286 ...
$ momclose : num 0.143 0.571 0.286 0.286 0.143 ...

$ larceny : num 0.25 0 0 0.75 0.25 0 0 0 0.25 0.25 ...

$ vandalism : num 0.429 0 0.286 0.286 0.286 ...

$ boystown[, 11]: Factor w/ 2 levels "above_avg","avg_or_below": 2 1 2 1

2 2 1 2 1 2 ...

colnames(boystown_n)[11]<-"grade"

The dataset including a specific class variable and predictive features is now

successfully created. We are using the KNN method as an example with the class

variable grade. So, we plug this information into the caret::train() func-

tion. Note that caret is using the full dataset because it will automatically do the

random sampling for us. To make the results reproducible, we utilize the set.seed

() function that we previously used, see Chap. 14.

library(caret)

set.seed(123)

m<-train(grade~., data=boystown_n, method="knn")

m; summary(m)

k-Nearest Neighbors

200 samples

10 predictor

2 classes: 'above_avg', 'avg_or_below'

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...

Resampling results across tuning parameters:

15.2 Using caret for Automated Parameter Tuning 499

k Accuracy Kappa

5 0.7952617 0.5193402

7 0.8143626 0.5585191

9 0.8070520 0.5348281

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 7.

Length Class Mode

learn 2 -none- list

k 1 -none- numeric

theDots 0 -none- list

xNames 10 -none- character

problemType 1 -none- character

tuneValue 1 data.frame list

obsLevels 2 -none- character

In this case, using str(m) to summarize the object m may report out too much

information. Instead, we can simply type the object name m to get more concise

information about it.

1. Description about the dataset: number of samples, features, and classes.

2. Re-sampling process: here, we use 25 bootstrap samples with 200 observations

(same size as the observed dataset) each to train the model.

3. Candidate models with different parameters that have been evaluated: by default,

caret uses 3 different choices for each parameter, but for binary parameters, it

only allows two choices, TRUE and FALSE). As KNN has only one parameter k,

we have three candidate models reported in the output above.

4. Optimal model: the model with largest accuracy is the one corresponding to k¼5.

Let’s see how accurate this “optimal model” is in terms of the re-substitution

error. Again, we will use the predict() function specifying the object m and the

dataset boystown_n. Then, we can report the contingency table showing the

agreement between the predictions and real class labels.

set.seed(1234)

p<-predict(m, boystown_n)
table(p, boystown_n$grade)

p above_avg avg_or_below

above_avg 132 17
avg_or_below 2 49

This model has (17 + 2)/200¼ 0.09 re-substitution error (9%). This means that in

the 200 observations that we used to train this model, 91% of them were correctly

classified. Note that re-substitution error is different from accuracy. The accuracy of

this model is 0.8, which is reported by a model summary call. As mentioned in

Chap. 14, we can obtain prediction probabilities for each observation in the original

boystown_n dataset.

500 15 Improving Model Performance

head(predict(m, boystown_n, type = "prob"))

above_avg avg_or_below

1 0.0000000 1.0000000

2 1.0000000 0.0000000

3 0.7142857 0.2857143

4 0.8571429 0.1428571

5 0.2857143 0.7142857
6 0.5714286 0.4285714

15.2.1 Customizing the Tuning Process

The default setting of train() might not meet the specific needs for every study.

In our case, the optimal k might be smaller than 5. The caret package allows us to

customize the settings for train().

caret::trianControl() can help us to customize re-sampling methods.

There are 6 popular re-sampling methods that we might want to use in the following

table (Table 15.2).

These methods are helping us find representative samples to train the model. Let’s

use 0.632 bootstrap for example. Just specify method¼"boot632" in the

trainControl() function. The number of different samples to include can be

customized by number¼ option. Another option in trainControl() is about

the model performance evaluation. We can change our preferred method of evalu-

ation to select the optimal model. The oneSE method chooses the simplest model

within one standard error of the best performance to be the optimal model. Other

methods are also available in caret package. For detailed information, type best

in R console.

We can also specify a list of k values we want to test by creating a matrix or a grid.

ctrl<-trainControl(method="boot632", number=25, selectionFunction="oneSE")

grid<-expand.grid(.k=c(1, 3, 5, 7, 9))
Creates a data frame from all combinations of the supplied factors

Table 15.2 Six complementary methods for customizing the caret::trainControl()

re-sampling

Resampling method Method name Additional options and default values

Holdout sampling LGOCV p ¼ 0.75 (training data proportion)

k-fold cross-validation cv number ¼ 10 (number of folds)

Repeated k-fold cross validation repeatedcv number ¼ 10 (number of folds),
repeats ¼ 10 (number of iterations)

Bootstrap sampling boot number ¼ 25 (resampling iterations)

0.632 bootstrap boot632 number ¼ 25 (resampling iterations)

Leave-one-out cross-validation LOOCV None

15.2 Using caret for Automated Parameter Tuning 501

Usually, to avoid ties, we prefer to choose an odd number of clusters k. Now the

constraints are all set. We can start to select models again using train().

set.seed(123)

m<-train(grade~., data=boystown_n, method="knn",

metric="Kappa",

trControl=ctrl,

tuneGrid=grid)
m

k-Nearest Neighbors

200 samples

10 predictor

2 classes: 'above_avg', 'avg_or_below'

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...

Resampling results across tuning parameters:

k Accuracy Kappa

1 0.8726660 0.7081751

3 0.8457584 0.6460742

5 0.8418226 0.6288675

7 0.8460327 0.6336463

9 0.8381961 0.6094088

Kappa was used to select the optimal model using the one SE rule.

The final value used for the model was k = 1.

Here we added metric¼"Kappa" to include the Kappa statistics as one of the

criteria to select the optimal model. We can see the output accuracy for all the

candidate models are better than the default bootstrap sampling. The optimal model

has k¼3, a high accuracy 0.846, and a high Kappa statistic, which is much better than

the model we had in Chap. 7. As you can see from the output, the SE rule no longer

choses the model with the highest accuracy or Kappa statistic to be the “optimal

model”. It is a more comprehensive method than only looks at one statistic or a

single quality measure.

15.2.2 Improving Model Performance with Meta-learning

Meta-learning involves building multiple learners (can be single or multiple learning

algorithms) at the same time. It combines the output from these learners and

generates more effective meta-classifiers.

502 15 Improving Model Performance

To decrease the variance (bagging) or bias (boosting), random forests attempt in

two steps to correct the general decision trees’ trend to overfit the model to the

training set:

1. Producing a distribution of simple ML models on subsets of the original data.

2. Combining the distribution into one “aggregated” model.

Before stepping into the details, let’s briefly summarize:

• Bagging (stands for Bootstrap Aggregating) is a way to decrease the variance of

your prediction by generating additional data for training from your original

dataset. It generates multiple sets of the same cardinality/size as your original

data, as combinations with repetitions. By increasing the size of your training set

you can’t improve the model predictive force, but just decrease the variance,

narrowly tuning the prediction to the expected outcome.

• Boosting is a two-step approach, where one first uses subsets of the original data

to produce a series of moderately performing models and then “boosts” their

performance by combining them together using a particular cost function (e.g.,

Accuracy). Unlike bagging, in classical boosting, the subset creation is not

random and depends upon the performance of the previous models: every new

subset contains the elements that were (likely to be) misclassified by previous

models. Usually, we prefer weaker classifiers in boosting. For example, a prev-

alent choice is to use stump (level-one decision tree) in AdaBoost (Adaptive

Boosting).

15.2.3 Bagging

One of the most well-known meta-learning method is bootstrap aggregating or

bagging. It builds multiple models with bootstrap samples using a single algorithm.

The models’ predictions are combined with voting (for classification) or averaging

(for numeric prediction). Voting means that bagging model’s prediction is based on

the majority of learners’ predictions for a class. Bagging is especially good with

unstable learners like decision trees or SVM models.

To illustrate the Bagging method, we will again use the Quality of Life and

chronic disease dataset in Chap. 9. Just like we did in the second practice problem in

Chap. 11, we will use CHARLSONSCORE as the classes labels, which has 11 different

class labels.

qol<-read.csv("https://umich.instructure.com/files/481332/download?download_

frd=1")

qol<-qol[!qol$CHARLSONSCORE==-9 , -c(1, 2)]
qol$CHARLSONSCORE<-as.factor(qol$CHARLSONSCORE)

To apply bagging(), we need to download the ipred package first. After

loading the package, we build a bagging model with CHARLSONSCORE as class

15.2 Using caret for Automated Parameter Tuning 503

https://umich.instructure.com/files/481332/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1

label and all other variables in the dataset as predictors. We can specify the number

of voters (decision tree models we want to have), the default number is 25.

install.packages("ipred")

library(ipred)

set.seed(123)
mybag<-bagging(CHARLSONSCORE~., data=qol, nbagg=25)

Next, we shall use the predict() function to apply this model for prediction.

For evaluation purposes, we create a table reporting the re-substitution error.

bt_pred<-predict(mybag, qol)

agreement<-bt_pred==qol$CHARLSONSCORE
prop.table(table(agreement))

agreement

FALSE TRUE
0.001718213 0.998281787

This model works very well with its training data. It labeled 99.8% of the cases

correctly. To see its performances on feature data, we apply the caret train()

function again with 10 repeated CV as re-sampling method. In caret, bagged trees

method is called treebag.

library(caret)

set.seed(123)

ctrl<-trainControl(method="repeatedcv", number = 10, repeats = 10)

train(CHARLSONSCORE~., data=as.data.frame(qol), method="treebag", trControl=
ctrl)

Bagged CART

2328 samples

38 predictor

11 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10'

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 10 times)

Summary of sample sizes: 2095, 2096, 2093, 2094, 2098, 2097, ...

Resampling results:

Accuracy Kappa
0.5234615 0.2173193

We got an accuracy of 52% and a fair Kappa statistics. This result is better than

our previous prediction attempt in Chap. 11 using the ksvm() function alone

(~50%). Here, we combined the prediction results of 38 decision trees to get this

level of prediction accuracy.

In addition to decision tree classification, caret allows us to explore alternative

bag() functions. For instance, instead of bagging based on decision trees, we can

bag using an SVM model. caret provides a nice setting for SVM training, making

504 15 Improving Model Performance

predictions and counting votes in a list object svmBag. We can examine these

objects by using the str() function.

str(svmBag)

List of 3

$ fit :function (x, y, ...)

$ pred :function (object, x)
$ aggregate:function (x, type = "class")

Clearly, fit provides the training functionality, pred the prediction and fore-

casting on new data, and aggregate is a way to combine many models and

achieve voting-based consensus. Using the member operator, the $ sign, we can

explore these three types of elements of the svmBag object. For instance, the fit

element may be extracted from the SVM object by:

svmBag$fit

function (x, y, ...)

{

loadNamespace("kernlab")

out <- kernlab::ksvm(as.matrix(x), y, prob.model = is.factor(y),

...)

out

}
<environment: namespace:caret>

fit relies on the ksvm() function in the kernlab package, which means this

package needs to be loaded. The other two methods, pred and aggregate, may

be explored in a similar way. They just follow the SVM model building and testing

process we discussed in Chap. 11.

This svmBag object could be used as an optional setting in the train()

function. However, this option requires that all features are linearly independent

with trivial covariances, which may be rare in real world data.

15.2.4 Boosting

Bagging uses equal weights for all learners we included in the model. Boosting is

quite different in terms of weights. Suppose we have the first learner correctly

classifying 60% of the observations. This 60% of data may be less likely to be

included in the training dataset for the next learner. So, we have more learners

working on “hard-to-classify” observations.

Mathematically, we are using a weighted sum of functions to predict the outcome

class labels. We can try to fit the true model using weighted additive modeling. We

start with a random learner that can classify some of the observations correctly,

possibly with some errors.

15.2 Using caret for Automated Parameter Tuning 505

ŷ 1 ¼ l1:

This l1 is our first learner and ŷ 1 denotes its predictions (this equation is in matrix

form). Then, we can calculate the residuals of our first learner.

E1 ¼ y� v1 � ŷ 1,

where v1 is a shrinkage parameter to avoid overfitting. Next, we fit the residual

with another learner. This learner minimizes the following function
XN

i¼1
kyi � Lk�1 � lkk, here k¼2. Then we obtain a second model l2 with:

ŷ 2 ¼ l2:

After that, we can update the residuals:

E2 ¼ E1 � v2 � ŷ 2:

We repeat this residual fitting until adding another learner lk results in an updated

residual Ek that is smaller than a small predefined threshold. At the end, we will have

an additive model like:

L ¼ v1 � l1 þ v2 � l2 þ . . .þ vk � lK ,

where we have k weak learners, but a very strong ensemble model.

Schapire and Freund found that although individual learners trained on the pilot

observations might be very weak in predicting in isolation, boosting the collective

power of all of them is expected to generate a model no worse than the best

of all individual constituent models included in the boosting ensem-

ble. Usually, the boosting results are quite a bit better than the best single model.

Boosting can be used for almost all models. Most commonly, it is applied to

decision trees.

15.2.5 Random Forests

Random forests, or decision tree forests, represent a boosting method focusing on

decision tree learners.

Training Random Forests

One approach to train and build random forests relies on using randomForest()

under the randomForest package. It has the following components:

m<-randomForest(expression, data, ntree=500, mtry=sqrt(p))

506 15 Improving Model Performance

• expression: the class variable and features we want to include in the model.

• data: training data containing class and features.

• ntree: number of voting decision trees.

• mtry: optional integer specifying the number of features to randomly select at

each split. The p stands for number of features in the data.

Let’s build a random forest using the Quality of Life dataset.

install.packages("randomForest")
library(randomForest)

set.seed(123)

rf<-randomForest(CHARLSONSCORE~., data=qol)
rf

Call:

randomForest(formula = CHARLSONSCORE ~ ., data = qol)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 6

OOB estimate of error rate: 46.13%

Confusion matrix:

0 1 2 3 4 5 6 7 8 9 10 class.error

0 574 301 2 0 0 0 0 0 0 0 0 0.3454960

1 305 678 1 0 0 0 0 0 0 0 0 0.3109756

2 90 185 2 0 0 0 0 0 0 0 0 0.9927798

3 25 101 1 0 0 0 0 0 0 0 0 1.0000000

4 5 19 0 0 0 0 0 0 0 0 0 1.0000000

5 3 4 0 0 0 0 0 0 0 0 0 1.0000000

6 1 4 0 0 0 0 0 0 0 0 0 1.0000000

7 1 1 0 0 0 0 0 0 0 0 0 1.0000000

8 7 8 0 0 0 0 0 0 0 0 0 1.0000000

9 3 5 0 0 0 0 0 0 0 0 0 1.0000000

10 1 1 0 0 0 0 0 0 0 0 0 1.0000000

By default the model contains 500 decision trees and tried 6 variables at each

split. Its OOB, or out-of-bag, error rate is about 46%, which corresponds to a poor

accuracy rate (54%). Note that the OOB error rate is not re-substitution error. The

confusion matrix next to it is reflecting OOB error rate for specific classes. All of

these error rates are reasonable estimates of future performances with unseen data.

We can see that this model is so far the best of all models, although it is still not good

at predicting high CHARLSONSCORE.

Evaluating Random Forest Performance

The caret package also supports random forest model building and evaluation. It

reports more detailed model performance evaluations. As usual, we need to specify a

re-sampling method and a parameter grid. As an example, we use the 10-fold CV

15.2 Using caret for Automated Parameter Tuning 507

re-sampling method. The grid for this model contains information about the mtry

parameter (the only tuning parameter for random forest). Previously we tried the

default value
ffiffiffiffiffi

38
p

¼ 6 (38 is the number of features). This time we could compare

multiple mtry parameters.

library(caret)

ctrl<-trainControl(method="cv", number=10)
grid_rf<-expand.grid(.mtry=c(2, 4, 8, 16))

Next, we apply the train() function with our ctrl and grid_rf settings.

set.seed(123)

m_rf <- train(CHARLSONSCORE ~ ., data = qol, method = "rf",

metric = "Kappa", trControl = ctrl,

tuneGrid = grid_rf)
m_rf

Random Forest

2328 samples

38 predictor

11 classes: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10'

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 2095, 2096, 2093, 2094, 2098, 2097, ...

Resampling results across tuning parameters:

mtry Accuracy Kappa

2 0.5223871 0.1979731

4 0.5403799 0.2309963

8 0.5382674 0.2287595

16 0.5421562 0.2367477

Kappa was used to select the optimal model using the largest value.

The final value used for the model was mtry = 16.

This call may take a while to complete. The result appears to be a good model,

when mtry¼16 we reached a relatively high accuracy and good kappa statistic.

This is a very good result for a learner with 11 classes.

15.2.6 Adaptive Boosting

We may achieve even higher accuracy using AdaBoost. Adaptive boosting

(AdaBoost) can be used in conjunction with many other types of learning algorithms

to improve their performance. The output of the other learning algorithms (‘weak

learners’) is combined into a weighted sum that represents the final output of the

508 15 Improving Model Performance

boosted classifier. AdaBoost is adaptive in the sense that subsequent weak learners

are tweaked in favor of those instances misclassified by the previous classifiers.

For binary classification, we could use ada() in package ada and for multiple

classes (multinomial/polytomous outcomes) we can use the package adabag. The

boosting() function allows us to select a type method by setting coeflearn.

Two prevalent types of adaptive boosting methods can be used. One is AdaBoost.

M1 algorithm including Breiman and Freund, and the other is Zhu’s SAMME

algorithm. Let’s see some examples:

set.seed(123)

qol<-read.csv("https://umich.instructure.com/files/481332/download?download_

frd=1")

qol<-qol[!qol$CHARLSONSCORE==-9 , -c(1, 2)]

qol$CHARLSONSCORE<-as.factor(qol$CHARLSONSCORE)

The key parameter in the adabag::boosting() method is coeflearn:

• Breiman (default), corresponding to α ¼ 1
2
� ln 1�err

err

� �

, using the AdaBoost.M1

algorithm, where α is the weight updating coefficient

• Freund, corresponding to α ¼ ln 1�err
err

� �

, or

• Zhu, corresponding to α ¼ ln 1�err
err

� �

þ ln nclasses� 1ð Þ.

The generalizations of AdaBoost for multiple classes (�2) include AdaBoost.

M1 (where individual trees are required to have an error < 1
2
) and SAMME (where

individual trees are required to have an error < 1� 1
nclasses

).

install.packages("ada"); install.packages("adabag")
library("ada"); library("adabag")

qol_boost <- boosting(CHARLSONSCORE~.,data=qol,mfinal = 100,coeflearn =

'Breiman')
mean(qol_boost$class==qol$CHARLSONSCORE)

[1] 0.5425258

qol_boost <- boosting(CHARLSONSCORE~.,data=qol,mfinal = 100,coeflearn =

'Freund')
mean(qol_boost$class==qol$CHARLSONSCORE)

[1] 0.5524055

qol_boost <- boosting(CHARLSONSCORE~.,data=qol, mfinal = 100, coeflearn =

'Zhu')
mean(qol_boost$class==qol$CHARLSONSCORE)

[1] 0.6542096

We observe that in this case, the Zhu approach achieves the best results. Notice

that the default method is M1 Breiman and mfinal is the number of iterations for

which boosting is run or the number of trees to use.

15.2 Using caret for Automated Parameter Tuning 509

https://umich.instructure.com/files/481332/download?download_frd=1
https://umich.instructure.com/files/481332/download?download_frd=1

Try applying model improvement techniques using other data from the list of our

Case-Studies (Fig. 15.1).

15.3 Assignment: 15. Improving Model Performance

Use some of the methods below to do classification, prediction, and model perfor-

mance evaluation (Table 15.3).

https://rdrr.io/cran/adabag/man/

adabag-package.html

Fig. 15.1 Live demo: Iris flowers classification using adabag

Table 15.3 Performance evaluation for several classification, prediction, and clustering methods

Model Learning task Method Parameters

KNN Classification knn k

Naïve Bayes Classification nb fL, usekernel

Decision Trees Classification C5.0 model, trials, winnow

OneR Rule Learner Classification OneR None

RIPPER Rule Learner Classification JRip NumOpt

Linear Regression Regression lm None

Regression Trees Regression rpart cp

Model Trees Regression M5 pruned, smoothed, rules

Neural Networks Dual use nnet size, decay

Support Vector Machines
(Linear Kernel)

Dual use svmLinear C

Support Vector Machines
(Radial Basis Kernel)

Dual use svmRadial C, sigma

Random Forests Dual use rf mtry

510 15 Improving Model Performance

https://rdrr.io/cran/adabag/man/adabag-package.html
https://rdrr.io/cran/adabag/man/adabag-package.html
https://rdrr.io/cran/adabag/man/adabag-package.html

15.3.1 Model Improvement Case Study

From the course datasets, use the 05_PPMI_top_UPDRS_Integrated_LongFormat1.

csv case-study data to perform a multi-class prediction.

Use ResearchGroup as response, which have “PD”, “Control” and

“SWEDD” three classes.

• Delete ID column, impute missing value with mean or median and justify your

choice.

• Normalize the covariates.

• Implement automated parameter tuning process and report the optimal accuracy

and κ.

• Set arguments and rerun the tuning, trying different method and number

settings.

• Train a random forest, tune the parameters, report the result and output cross

table.

• Use bagging algorithm and report the accuracy and κ.

• Perform randomForest and report the accuracy and κ.

• Report the accuracy by AdaBoost and make sure to try all three methods.

• Finally, give a brief summary about all the model improvement approaches.

• Try the procedure on other data in the list of Case-Studies, e.g., Traumatic Brain

Injury Study and the corresponding dataset.

References

Zhu, J, Zou, H, Rosset, S, Hastie, T. (2009) Multi-class AdaBoost, Statistics and Its Interface,
2, 349–360.

Breiman, L. (1998): Arcing classifiers, The Annals of Statistics, 26(3), 801–849.
Freund, Y, Schapire, RE. (1996) Experiments with a new boosting algorithm, In Proceedings of the

Thirteenth International Conference on Machine Learning, 148–156, Morgan Kaufmann

References 511

Chapter 16

Specialized Machine Learning Topics

This chapter presents some technical details about data formats, streaming, optimization

of computation, and distributed deployment of optimized learning algorithms.

Chapter 22 provides additional optimization details. We show format conversion and

working with XML, SQL, JSON, 15 CSV, SAS and other data objects. In addition, we

illustrate SQL server queries, describe protocols formanaging, classifying and predicting

outcomes from data streams, and demonstrate strategies for optimization, improvement

of computational performance, parallel (MPI) and graphics (GPU) computing.

The Internet of Things (IoT) leads to a paradigm shift of scientific inference –

from static data interrogated in a batch or distributed environment to on-demand

service-based Cloud computing. Here, we will demonstrate how to work with

specialized data, data-streams, and SQL databases, as well as develop and assess

on-the-fly data modeling, classification, prediction and forecasting methods. Impor-

tant examples to keep in mind throughout this chapter include high-frequency data

delivered real time in hospital ICU’s (e.g., microsecond Electroencephalography

signals, EEGs), dynamically changing stock market data (e.g., Dow Jones Industrial

Average Index, DJI), and weather patterns.

We will present (1) format conversion of XML, SQL, JSON, CSV, SAS and other

data objects, (2) visualization of bioinformatics and network data, (3) protocols for

managing, classifying and predicting outcomes from data streams, (4) strategies for

optimization, improvement of computational performance, parallel (MPI) and

graphics (GPU) computing, and (5) processing of very large datasets.

16.1 Working with Specialized Data and Databases

Unlike the case studies we saw in the previous chapters, some real world data may

not always be nicely formatted, e.g., as CSV files. We must collect, arrange, wrangle,

and harmonize scattered information to generate computable data objects that can be

further processed by various techniques. Data wrangling and preprocessing may take

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_16

513

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_16&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_16

over 80% of the time researchers spend interrogating complex multi-source data

archives. The following procedures will enhance your skills in collecting and han-

dling heterogeneous real world data. Multiple examples of handling long-and-wide

data, messy and tidy data, and data cleaning strategies can be found in this JSS Tidy

Data article by Hadley Wickham.

16.1.1 Data Format Conversion

The R package rio imports and exports various types of file formats, e.g.,

tab-separated (.tsv), comma-separated (.csv), JSON (.json), Stata (.dta),
SPSS (.sav and .por), Microsoft Excel (.xls and .xlsx), Weka (.arff), and
SAS (.sas7bdat and .xpt).

rio provides three important functionsimport(),export() andconvert().
They are intuitive, easy to understand, and efficient to execute. Take Stata (.dta) files

as an example. First, we can download 02_Nof1_Data.dta from our datasets folder.

install.packages("rio")

library(rio)
Download the SAS .DTA file first locally

Local data can be loaded by:

#nof1<-import("02_Nof1_Data.dta")

the data can also be loaded from the server remotely as well:

nof1<-read.csv("https://umich.instructure.com/files/330385/download?download
_frd=1")
str(nof1)

'data.frame': 900 obs. of 10 variables:
$ ID : int 1 1 1 1 1 1 1 1 1 1 ...
$ Day : int 1 2 3 4 5 6 7 8 9 10 ...
$ Tx : int 1 1 0 0 1 1 0 0 1 1 ...
$ SelfEff : int 33 33 33 33 33 33 33 33 33 33 ...
$ SelfEff25: int 8 8 8 8 8 8 8 8 8 8 ...
$ WPSS : num 0.97 -0.17 0.81 -0.41 0.59 -1.16 0.3 -0.34 -0.74 -0.38
...
$ SocSuppt : num 5 3.87 4.84 3.62 4.62 2.87 4.33 3.69 3.29 3.66 ...
$ PMss : num 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 ...
$ PMss3 : num 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 ...
$ PhyAct : int 53 73 23 36 21 0 21 0 73 114 ...

The data are automatically stored as a data frame. Note that rio sets

stingAsFactors¼FALSE as default.

rio can help us export files into any other format we choose. To do this we have

to use the export() function.

#Sys.getenv("R_ZIPCMD", "zip") # Get the C Zip application

Sys.setenv(R_ZIPCMD="E:/Tools/ZIP/bin/zip.exe")
Sys.getenv("R_ZIPCMD", "zip")

[1] "E:/Tools/ZIP/bin/zip.exe"

export(nof1, "02_Nof1.xlsx")

514 16 Specialized Machine Learning Topics

https://umich.instructure.com/files/330385/download?download_frd=1
https://umich.instructure.com/files/330385/download?download_frd=1

This line of code exports the Nof1 data in xlsx format located in the R working

directory. Mac users may have a problem exporting *.xslx files using rio
because of a lack of a zip tool, but still can output other formats such as ".csv".

An alternative strategy to save an xlsx file is to use package xlsx with default

row.name¼TRUE.
rio also provides a one step process to convert and save data into alternative

formats. The following simple code allows us to convert and save the

02_Nof1_Data.dta file we just downloaded into a CSV file.

convert("02_Nof1_Data.dta", "02_Nof1_Data.csv")

convert("02_Nof1.xlsx",
"02_Nof1_Data.csv")

You can see a new CSV file popup in the current working directory. Similar

transformations are available for other data formats and types.

16.1.2 Querying Data in SQL Databases

Let’s use as an example the CDC Behavioral Risk Factor Surveillance System

(BRFSS) Data, 2013-2015. This file for the combined landline and cell phone data

set was exported from SAS V9.3 in the XPT transport format. This file contains

330 variables and can be imported into SPSS or STATA. Please note: some of the

variable labels get truncated in the process of converting to the XPT format.

Be careful – this compressed (ZIP) file is over 315MB in size!

install.packages("Hmisc")

library(Hmisc)

memory.size(max=T)

[1] 115.81
pathToZip <- tempfile()
download.file("http://www.socr.umich.edu/data/DSPA/BRFSS_2013_2014_2015.zip"
, pathToZip)
let's just pull two of the 3 years of data (2013 and 2015)

brfss_2013 <- sasxport.get(unzip(pathToZip)[1])

Processing SAS dataset LLCP2013 ..

brfss_2015 <- sasxport.get(unzip(pathToZip)[3])

Processing SAS dataset LLCP2015 ..

dim(brfss_2013); object.size(brfss_2013)

[1] 491773 336

685581232 bytes

16.1 Working with Specialized Data and Databases 515

http://www.socr.umich.edu/data/DSPA/BRFSS_2013_2014_2015.zip

summary(brfss_2013[1:1000, 1:10]) # subsample the data

report the summaries for

summary(brfss_2013$has_plan)

Length Class Mode
0 NULL NULL

brfss_2013$x.race <- as.factor(brfss_2013$x.race)
summary(brfss_2013$x.race)

1 2 3 4 5 6 7 8 9 NA's
376451 39151 7683 9510 1546 2693 9130 37054 8530 25

clean up

unlink(pathToZip)

Let’s try to use logistic regression to find out if self-reported race/ethnicity

predicts the binary outcome of having a health care plan.

brfss_2013$has_plan <- brfss_2013$hlthpln1 == 1

system.time(
gml1 <- glm(has_plan ~ as.factor(x.race), data=brfss_2013,

family=binomial)
) # report execution time

user system elapsed
2.20 0.23 2.46

summary(gml1)

Call:
glm(formula = has_plan ~ as.factor(x.race), family = binomial,
data = brfss_2013)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.1862 0.4385 0.4385 0.4385 0.8047

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.293549 0.005649 406.044 <2e-16 ***
as.factor(x.race)2 -0.721676 0.014536 -49.647 <2e-16 ***
as.factor(x.race)3 -0.511776 0.032974 -15.520 <2e-16 ***
as.factor(x.race)4 -0.329489 0.031726 -10.386 <2e-16 ***
as.factor(x.race)5 -1.119329 0.060153 -18.608 <2e-16 ***
as.factor(x.race)6 -0.544458 0.054535 -9.984 <2e-16 ***
as.factor(x.race)7 -0.510452 0.030346 -16.821 <2e-16 ***
as.factor(x.race)8 -1.332005 0.012915 -103.138 <2e-16 ***
as.factor(x.race)9 -0.582204 0.030604 -19.024 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

516 16 Specialized Machine Learning Topics

Null deviance: 353371 on 491747 degrees of freedom
Residual deviance: 342497 on 491739 degrees of freedom
(25 observations deleted due to missingness)
AIC: 342515

Number of Fisher Scoring iterations: 5

Next, we’ll examine the odds (rather the log odds ratio, LOR) of having a health

care plan (HCP) by race (R). The LORs are calculated for two array dimensions,

separately for each race level (presence of health care plan (HCP) is binary, whereas

race (R) has 9 levels, R1, R2, . . ., R9). For example, the odds ratio of having a HCP

for R1 : R2 is:

OR R1 : R2ð Þ ¼

P HCPjR1ð Þ
1�P HCPjR1ð Þ

P HCPjR2ð Þ
1�P HCPjR2ð Þ

:

#load the vcd package to compute the LOR

library("vcd")

Loading required package: grid

lor_HCP_by_R <- loddsratio(has_plan ~ as.factor(x.race), data = brfss_2013)
lor_HCP_by_R

log odds ratios for has_plan and as.factor(x.race)

1:2 2:3 3:4 4:5 5:6 6:7
-0.72167619 0.20990061 0.18228646 -0.78984000 0.57487142 0.03400611
7:8 8:9
-0.82155382 0.74980101

Now, let’s see an example of querying a database containing structured relational

collection of data records. A query is a machine instruction (typically represented as

text) sent by a user to a remote database requesting a specific database operation

(e.g., search or summary). One database communication protocol relies on SQL

(Structured query language). MySQL is an instance of a database management

system that supports SQL communication and is utilized by many web applications,

e.g., YouTube, Flickr, Wikipedia, biological databases like GO, ensembl, etc. Below

is an example of an SQL query using the package RMySQL. An alternative way to

interface an SQL database is using the package RODBC.

install.packages("DBI"); install.packages("RMySQL")

install.packages("RODBC"); library(RODBC)

library(DBI)
library(RMySQL)

ucscGenomeConn <- dbConnect(MySQL(),
user='genome',
dbname='hg38',
host='genome-mysql.cse.ucsc.edu')

16.1 Working with Specialized Data and Databases 517

result <- dbGetQuery(ucscGenomeConn,"show databases;");

List the DB tables

allTables <- dbListTables(ucscGenomeConn); length(allTables)

Get dimensions of a table, read and report the head

dbListFields(ucscGenomeConn, "affyU133Plus2")
affyData <- dbReadTable(ucscGenomeConn, "affyU133Plus2"); head(affyData)

Select a subset, fetch the data, and report the quantiles

subsetQuery <- dbSendQuery(ucscGenomeConn, "select * from affyU133Plus2
where misMatches between 1 and 3")
affySmall <- fetch(subsetQuery); quantile(affySmall$misMatches)

Get repeat mask

bedFile <- 'repUCSC.bed'
df <- dbSendQuery(ucscGenomeConn,'select genoName,genoStart,genoEnd,
repName,swScore, strand,repClass, repFamily from rmsk') %>%

dbFetch(n=-1) %>%
mutate(genoName = str_replace(genoName,'chr','')) %>%
tbl_df %>%
write_tsv(bedFile,col_names=F)

message('written ', bedFile)

Once done, close the connection

dbDisconnect(ucscGenomeConn)

To complete the above database SQL commands, it requires access to the remote

UCSC SQL Genome server and user-specific credentials. You can see this functional

example on the DSPA website. Below is another example that can be done by all

readers, as it relies only on local services.

install.packages("RSQLite")

library("RSQLite")

generate an empty DB and store it in RAM

myConnection <- dbConnect(RSQLite::SQLite(), ":memory:")
myConnection

<SQLiteConnection>
Path: :memory:
Extensions: TRUE

dbListTables(myConnection)

character(0)

Add tables to the local SQL DB

data(USArrests); dbWriteTable(myConnection, "USArrests", USArrests)

[1] TRUE

dbWriteTable(myConnection, "brfss_2013", brfss_2013)

[1] TRUE

dbWriteTable(myConnection, "brfss_2015", brfss_2015)

[1] TRUE

518 16 Specialized Machine Learning Topics

16 6.0 115 66 18.0
17 9.7 109 52 16.3
18 15.4 249 66 22.2
19 2.1 83 51 7.8
20 11.3 300 67 27.8
21 4.4 149 85 16.3
22 12.1 255 74 35.1
23 2.7 72 66 14.9
24 16.1 259 44 17.1
25 9.0 178 70 28.2
26 6.0 109 53 16.4
27 4.3 102 62 16.5
28 12.2 252 81 46.0
29 2.1 57 56 9.5
30 7.4 159 89 18.8
31 11.4 285 70 32.1
32 11.1 254 86 26.1
33 13.0 337 45 16.1
34 0.8 45 44 7.3
35 7.3 120 75 21.4
36 6.6 151 68 20.0
37 4.9 159 67 29.3
38 6.3 106 72 14.9

Check again the DB content

dbListFields(myConnection, "brfss_2013")

[1] "x.state" "fmonth" "idate" "imonth" "iday"
[6] "iyear" "dispcode" "seqno" "x.psu" "ctelenum"
[11] "pvtresd1" "colghous" "stateres" "cellfon3" "ladult"
[16] "numadult" "nummen" "numwomen" "genhlth" "physhlth"
[21] "menthlth" "poorhlth" "hlthpln1" "persdoc2" "medcost"
…
[331] "rcsbrac1" "rcsrace1" "rchisla1" "rcsbirth" "typeinds"
[336] "typework" "has_plan"

dbListTables(myConnection);

[1] "USArrests" "brfss_2013" "brfss_2015"

Retrieve the entire DB table (for the smaller USArrests table)

dbGetQuery(myConnection, "SELECT * FROM USArrests")

Murder Assault UrbanPop Rape
1 13.2 236 58 21.2
2 10.0 263 48 44.5
3 8.1 294 80 31.0
4 8.8 190 50 19.5
5 9.0 276 91 40.6
6 7.9 204 78 38.7
7 3.3 110 77 11.1
8 5.9 238 72 15.8
9 15.4 335 80 31.9
10 17.4 211 60 25.8
11 5.3 46 83 20.2
12 2.6 120 54 14.2
13 10.4 249 83 24.0
14 7.2 113 65 21.0
15 2.2 56 57 11.3

16.1 Working with Specialized Data and Databases 519

14 188.00
15 186.00
16 102.00
17 156.00
18 113.00
19 122.25
20 229.50
21 151.00
22 231.50
23 172.00
24 145.00
25 255.00
26 120.00
27 110.00
28 204.00
29 237.50
30 252.00
31 147.50
32 149.00
33 254.00
34 174.00
35 159.00
36 276.00

39 3.4 174 87 8.3
40 14.4 279 48 22.5
41 3.8 86 45 12.8
42 13.2 188 59 26.9
43 12.7 201 80 25.5
44 3.2 120 80 22.9
45 2.2 48 32 11.2
46 8.5 156 63 20.7
47 4.0 145 73 26.2
48 5.7 81 39 9.3
49 2.6 53 66 10.8
50 6.8 161 60 15.6

Retrieve just the average of one feature

myQuery <- dbGetQuery(myConnection, "SELECT avg(Assault) FROM USArrests"); m
yQuery

avg(Assault)
1 170.76

myQuery <- dbGetQuery(myConnection, "SELECT avg(Assault) FROM USArrests GROU
P BY UrbanPop"); myQuery
avg(Assault)
1 48.00
2 81.00
3 152.00
4 211.50
5 271.00
6 190.00
7 83.00
8 109.00
9 109.00
10 120.00
11 57.00
12 56.00
13 236.00

520 16 Specialized Machine Learning Topics

1 0.4992652
2 -1.4952515
3 -2.5037326
4 -1.3536797

reset the DB query

dbClearResult(myQuery)

clean up

dbDisconnect(myConnection)

[1] TRUE

Or do it in batches (for the much larger brfss_2013 and brfss_2015 tables)

myQuery <- dbGetQuery(myConnection, "SELECT * FROM brfss_2013")

extract data in chunks of 2 rows, note: dbGetQuery vs. dbSendQuery

myQuery <- dbSendQuery(myConnection, "SELECT * FROM brfss_2013")

fetch2 <- dbFetch(myQuery, n = 2); fetch2

do we have other cases in the DB remaining?

extract all remaining data

fetchRemaining <- dbFetch(myQuery, n = -1);fetchRemaining

We should have all data in DB now

dbHasCompleted(myQuery)

compute the average (poorhlth) grouping by Insurance (hlthpln1)

Try some alternatives: numadult nummen numwomen genhlth physhlth menthlth

poorhlth hlthpln1

myQuery1_13 <- dbGetQuery(myConnection, "SELECT avg(poorhlth) FROM brfss_201
3 GROUP BY hlthpln1"); myQuery1_13

avg(poorhlth)
1 56.25466
2 53.99962
3 58.85072
4 66.26757

Compare 2013 vs. 2015: Health grouping by Insurance

myQuery1_15 <- dbGetQuery(myConnection, "SELECT avg(poorhlth) FROM brfss_201
5 GROUP BY hlthpln1"); myQuery1_15

avg(poorhlth)
1 55.75539
2 55.49487
3 61.35445
4 67.62125

myQuery1_13 - myQuery1_15

avg(poorhlth)

16.1.3 Real Random Number Generation

We are already familiar with (pseudo) random number generation (e.g., rnorm
(100, 10, 4) or runif(100, 10,20)), which generate algorithmically

computer values subject to specified distributions. There are also web services,

e.g., random.org, that can provide true random numbers based on atmospheric

16.1 Working with Specialized Data and Databases 521

noise, rather than using a pseudo random number generation protocol. Below is one

example of generating a total of 300 numbers arranged in 3 columns, each of

100 rows of random integers (in decimal format) between 100 and 200.

siteURL <- "http://random.org/integers/" # base URL

shortQuery<-"num=300&min=100&max=200&col=3&base=10&format=plain&rnd=new"
completeQuery <- paste(siteURL, shortQuery, sep="?") # concat url and
submit query string

#https://www.random.org/integers/?num=300&min=100&max=200&col=3&base=10&

format=plain&rnd=new

rngNumbers <- read.table(file=completeQuery) # and read the data

rngNumbers

V1 V2 V3
1 144 179 131
2 127 160 150
3 142 169 109
…
98 178 103 134
99 173 178 156
100 117 118 110

16.1.4 Downloading the Complete Text of Web Pages

RCurl package provides an amazing tool for extracting and scraping information

from websites. Let’s install it and extract information from a SOCR website.

install.packages("RCurl")

library(RCurl)

Loading required package: bitops

web<-getURL("http://wiki.socr.umich.edu/index.php/SOCR_Data", followlocation
= TRUE)
str(web, nchar.max = 200)

chr "<!DOCTYPE html>\n<html lang=\"en\" dir=\"ltr\" class=\"client-nojs\
">\n<head>\n<meta charset=\"UTF-8\" />\n<title>SOCR Data - SOCR</title>\n<me
ta http-equiv=\"X-UA-Compatible\" content=\"IE=EDGE\" />"| __truncated__

The web object looks incomprehensible. This is because most websites are

wrapped in XML/HTML hypertext or include JSON formatted metadata. RCurl
deals with special HTML tags and website metadata.

To deal with the web pages only, httr package would be a better choice than

RCurl. It returns a list that makes much more sense.

#install.packages("httr")

library(httr)
web<-GET("http://wiki.socr.umich.edu/index.php/SOCR_Data")
str(web[1:3])

List of 3
$ url : chr "http://wiki.socr.umich.edu/index.php/SOCR_Data"
$ status_code: int 200

522 16 Specialized Machine Learning Topics

https://www.random.org/integers/?num=300&min=100&max=200&col=3&base=10&format=plain&rnd=new
https://www.random.org/integers/?num=300&min=100&max=200&col=3&base=10&format=plain&rnd=new
http://random.org/integers/
http://wiki.socr.umich.edu/index.php/SOCR_Data
http://wiki.socr.umich.edu/index.php/SOCR_Data
http://wiki.socr.umich.edu/index.php/SOCR_Data

$ headers :List of 12
..$ date : chr "Mon, 03 Jul 2017 19:09:56 GMT"
..$ server : chr "Apache/2.2.15 (Red Hat)"
..$ x-powered-by : chr "PHP/5.3.3"
..$ x-content-type-options: chr "nosniff"
..$ content-language : chr "en"
..$ vary : chr "Accept-Encoding,Cookie"
..$ expires : chr "Thu, 01 Jan 1970 00:00:00 GMT"
..$ cache-control : chr "private, must-revalidate, max-age=0"
..$ last-modified : chr "Sat, 22 Oct 2016 21:46:21 GMT"
..$ connection : chr "close"
..$ transfer-encoding : chr "chunked"
..$ content-type : chr "text/html; charset=UTF-8"
..- attr(*, "class")= chr [1:2] "insensitive" "list"

16.1.5 Reading and Writing XML with the XML Package

A combination of the RCurl and the XML packages could help us extract only the

plain text in our desired webpages. This would be very helpful to get information

from heavy text-based websites.

web<-getURL("http://wiki.socr.umich.edu/index.php/SOCR_Data", followlocation
= TRUE)
#install.packages("XML")

library(XML)
web.parsed<-htmlParse(web, asText = T)
plain.text<-xpathSApply(web.parsed, "//p", xmlValue)
cat(paste(plain.text, collapse = "\n"))

The links below contain a number of datasets that may be used for demonst
ration purposes in probability and statistics education. There are two types
of data - simulated (computer-generated using random sampling) and observed
(research, observationally or experimentally acquired).

The SOCR resources provide a number of mechanisms to simulate data using
computer random-number generators. Here are some of the most commonly used S
OCR generators of simulated data:

The following collections include a number of real observed datasets from
different disciplines, acquired using different techniques and applicable in
different situations.

In addition to human interactions with the SOCR Data, we provide several
machine interfaces to consume and process these data.

Translate this page:

(default)

Deutsch
…
România

Sverige

16.1 Working with Specialized Data and Databases 523

http://wiki.socr.umich.edu/index.php/SOCR_Data

Here we extracted all plain text between the starting and ending paragraph

HTML tags, <p> and </p>.
More information about extracting text from XML/HTML to text via XPath is

available online.

16.1.6 Web-Page Data Scraping

The process that extracting data from complete web pages and storing it in structured

data format is called scraping. However, before starting a data scrape from a

website, we need to understand the underlying HTML structure for that specific

website. Also, we have to check the terms of that website to make sure that scraping

from this site is allowed.

The R package rvest is a very good place to start “harvesting” data from

websites.

To start with, we use read_html() to store the SOCR data website into a

xmlnode object.

library(rvest)

SOCR<-read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data")
SOCR

{xml_document}
<html lang="en" dir="ltr" class="client-nojs">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=
...
[2] <body class="mediawiki ltr sitedir-ltr ns-0 ns-subject page-SOCR_Dat
...

From the summary structure ofSOCR, we can discover that there are two important

hypertext section markups <head> and <body>. Also, notice that the SOCR data

website uses <title> and </title> tags to separate title in the <head> section.

Let’s use html_node() to extract title information based on this knowledge.

SOCR %>% html_node("head title") %>% html_text()

[1] "SOCR Data - SOCR"

Here we used %>% operator, or pipe, to connect two functions. The above line of

code creates a chain of functions to operate on the SOCR object. The first function in

the chain html_node() extracts the title from head section. Then,

html_text() translates HTML formatted hypertext into English. More on R

piping can be found in the magrittr package.

Another function, rvest::html_nodes() can be very helpful in scraping.

Similar to html_node(), html_nodes() can help us extract multiple nodes in

an xmlnode object. Assume that we want to obtain the meta elements (usually page

524 16 Specialized Machine Learning Topics

http://wiki.socr.umich.edu/index.php/SOCR_Data

description, keywords, author of the document, last modified, and other metadata)

from the SOCR data website. We apply html_nodes() to the SOCR object to

extract the hypertext data, e.g., lines starting with <meta> in the <head> section of

the HTML page source. It is optional to use html_attrs(), which extracts

attributes, text and tag names from HTML, obtain the main text attributes.

meta<-SOCR %>% html_nodes("head meta") %>% html_attrs()
meta

[[1]]
http-equiv content
"Content-Type" "text/html; charset=UTF-8"

[[2]]
charset
"UTF-8"

[[3]]
http-equiv content
"X-UA-Compatible" "IE=EDGE"

[[4]]
name content
"generator" "MediaWiki 1.23.1"

[[5]]
name content
"ResourceLoaderDynamicStyles" ""

16.1.7 Parsing JSON from Web APIs

Application Programming Interfaces (APIs) allow web-accessible functions to com-

municate with each other. Today most API is stored in JSON (JavaScript Object

Notation) format.

JSON represents a plain text format used for web applications, data structures or

objects. Online JSON objects could be retrieved by packages like RCurl and httr.
Let’s see a JSON formatted dataset first. We can use 02_Nof1_Data.json in the class

file as an example.

library(httr)
nof1<-GET("https://umich.instructure.com/files/1760327/download?download_frd
=1")
nof1

Response [https://instructure-uploads.s3.amazonaws.com/account_1770000000
0000001/attachments/1760327/02_Nof1_Data.json?response-content-disposition=a
ttachment%3B%20filename%3D%2202_Nof1_Data.json%22%3B%20filename%2A%3DUTF-8%2
7%2702%255FNof1%255FData.json&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credent
ial=AKIAJFNFXH2V2O7RPCAA%2F20170703%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Da
te=20170703T190959Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-Signa
ture=ceb3be3e71d9c370239bab558fcb0191bc829b98a7ba61ac86e27a2fc3c1e8ce]

16.1 Working with Specialized Data and Databases 525

https://umich.instructure.com/files/1760327/download?download_frd=1
https://umich.instructure.com/files/1760327/download?download_frd=1
https://instructure-uploads.s3.amazonaws.com/account_17700000000000001/attachments/1760327/02_Nof1_Data.json?response-content-disposition=attachment%3B%20filename%3D%2202_Nof1_Data.json%22%3B%20filename%2A%3DUTF-8%27%2702%255FNof1%255FData.json&X-Amz-Algorith=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJFNFXH2V2O7RPCAA%2F20170703%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20170703T190959Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-Signature=ceb3be3e71d9c370239bab558fcb0191bc829b98a7ba61ac86e27a2fc3c1e8ce
https://instructure-uploads.s3.amazonaws.com/account_17700000000000001/attachments/1760327/02_Nof1_Data.json?response-content-disposition=attachment%3B%20filename%3D%2202_Nof1_Data.json%22%3B%20filename%2A%3DUTF-8%27%2702%255FNof1%255FData.json&X-Amz-Algorith=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJFNFXH2V2O7RPCAA%2F20170703%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20170703T190959Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-Signature=ceb3be3e71d9c370239bab558fcb0191bc829b98a7ba61ac86e27a2fc3c1e8ce
https://instructure-uploads.s3.amazonaws.com/account_17700000000000001/attachments/1760327/02_Nof1_Data.json?response-content-disposition=attachment%3B%20filename%3D%2202_Nof1_Data.json%22%3B%20filename%2A%3DUTF-8%27%2702%255FNof1%255FData.json&X-Amz-Algorith=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJFNFXH2V2O7RPCAA%2F20170703%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20170703T190959Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-Signature=ceb3be3e71d9c370239bab558fcb0191bc829b98a7ba61ac86e27a2fc3c1e8ce

Date: 2017-07-03 19:10
Status: 200
Content-Type: application/json
Size: 109 kB
[{"ID":1,"Day":1,"Tx":1,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":2,"Tx":1,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":3,"Tx":0,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":4,"Tx":0,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":5,"Tx":1,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":6,"Tx":1,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":7,"Tx":0,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":8,"Tx":0,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":9,"Tx":1,"SelfEff":33,"SelfEff25":8,"WPSS"...
{"ID":1,"Day":10,"Tx":1,"SelfEff":33,"SelfEff25":8,"WPSS"...
...

We can see that JSON objects are very simple. The data structure is organized

using hierarchies marked by square brackets. Each piece of information is formatted

as a {key:value} pair.

The package jsonlite is a very useful tool to import online JSON formatted

datasets into data frame directly. Its syntax is very straight-forward.

#install.packages("jsonlite")

library(jsonlite)
nof1_lite<-
fromJSON("https://umich.instructure.com/files/1760327/download?download_frd=1")
class(nof1_lite)

[1] "data.frame"

16.1.8 Reading and Writing Microsoft Excel Spreadsheets

Using XLSX

We can transfer a xlsx dataset into CSV and use read.csv() to load this kind of

dataset. However, R provides an alternative read.xlsx() function in package

xlsx to simplify this process. Take our 02_Nof1_Data.xls data in the class file

as an example. We need to download the file first.

install.packages("xlsx")

library(xlsx)

nof1<-read.xlsx("C:/Users/Folder/02_Nof1.xlsx", 1)
str(nof1)

'data.frame': 900 obs. of 10 variables:
$ ID : num 1 1 1 1 1 1 1 1 1 1 ...
$ Day : num 1 2 3 4 5 6 7 8 9 10 ...
$ Tx : num 1 1 0 0 1 1 0 0 1 1 ...

526 16 Specialized Machine Learning Topics

https://umich.instructure.com/files/1760327/download?download_frd=1

$ SelfEff : num 33 33 33 33 33 33 33 33 33 33 ...
$ SelfEff25: num 8 8 8 8 8 8 8 8 8 8 ...
$ WPSS : num 0.97 -0.17 0.81 -0.41 0.59 -1.16 0.3 -0.34 -0.74 -0.38
...
$ SocSuppt : num 5 3.87 4.84 3.62 4.62 2.87 4.33 3.69 3.29 3.66 ...
$ PMss : num 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 ...
$ PMss3 : num 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 ...
$ PhyAct : num 53 73 23 36 21 0 21 0 73 114 ...

The last argument, 1, stands for the first excel sheet, as any excel file may include

a large number of tables in it. Also, we can download the xls or xlsx file into our

R working directory so that it is easier to find the file path.

Sometimes more complex protocols may be necessary to ingest data from XLSX

documents. For instance, if the XLSX doc is large, includes many tables and is only

accessible via HTTP protocol from a web-server. Below is an example of

downloading the second table, ABIDE_Aggregated_Data, from the multi-

table Autism/ABIDE XLSX dataset:

install.packages("openxlsx"); library(openxlsx)

tmp = tempfile(fileext = ".xlsx")
download.file(url = "https://umich.instructure.com/files/3225493/download?do
wnload_frd=1",
destfile = tmp, mode="wb") df_Autism <- openxlsx::read.xlsx(xlsxFile = tmp,

sheet = "ABIDE_Aggregated_Data", skipEmptyRows = TRUE)
dim(df_Autism)

[1] 1098 2145

16.2 Working with Domain-Specific Data

Powerful machine-learning methods have already been applied in many applica-

tions. Some of these techniques are very specialized and some applications require

unique approaches to address the corresponding challenges.

16.2.1 Working with Bioinformatics Data

Genetic data are stored in widely varying formats and usually have more feature

variables than observations. They could have 1,000 columns and only 200 rows. One

of the commonly used pre-processng steps for such datasets is variable selection. We

will talk about this in Chap. 17.

The Bioconductor project created powerful R functionality (packages and tools)

for analyzing genomic data, see Bioconductor for more detailed information.

16.2 Working with Domain-Specific Data 527

https://umich.instructure.com/files/3225493/download?download_frd=1
https://umich.instructure.com/files/3225493/download?download_frd=1

16.2.2 Visualizing Network Data

Social network data and graph datasets describe the relations between nodes (verti-

ces) using connections (links or edges) joining the node objects. Assume we have

N objects, we can have N ∗ (N � 1) directed links establishing paired associations

between the nodes. Let’s use an example with N¼4 to demonstrate a simple graph

potentially modeling the node linkage Table 16.1.

If we change the a ! b to an indicator variable (0 or 1) capturing whether we

have an edge connecting a pair of nodes, then we get the graph adjacency matrix.

Edge lists provide an alternative way to represent network connections. Every

line in the list contains a connection between two nodes (objects) (Table 16.2).

The edge list on Table 16.2 lists three network connections: object 1 is linked to

object 2; object 1 is linked to object 3; and object 2 is linked to object 3. Note that

edge lists can represent both directed as well as undirected networks or graphs.

We can imagine that if N is very large, e.g., social networks, the data represen-

tation and analysis may be resource intense (memory or computation). In R, we have

multiple packages that can deal with social network data. One user-friendly example

is provided using the igraph package. First, let’s build a toy example and visualize

it using this package (Fig. 16.1).

#install.packages("igraph")

library(igraph)

g<-graph(c(1, 2, 1, 3, 2, 3, 3, 4), n=10)
plot(g)

Here c(1, 2, 1, 3, 2, 3, 3, 4) is an edge list with 4 rows and n¼10
indicates that we have 10 nodes (objects) in total. The small arrows in the graph

show the directed network connections. We might notice that 5-10 nodes are

scattered out in the graph. This is because they are not included in the edge list, so

there are no network connections between them and the rest of the network.

Table 16.1 Schematic matrix

representation of network

connectivity

Objects 1 2 3 4

1 1 ! 2 1 ! 3 1 ! 4

2 2 ! 1 2 ! 3 2 ! 4

3 3 ! 1 3 ! 2 3 ! 4

4 4 ! 1 4 ! 2 4 ! 3

Table 16.2 List-based

representation of network

connectivity

Vertex Vertex

1 2

1 3

2 3

528 16 Specialized Machine Learning Topics

Now let’s examine the co-appearance network of Facebook circles. The data

contains anonymized circles (friends lists) from Facebook collected from survey

participants using a Facebook app. The dataset only includes edges (circles, 88,234)

connecting pairs of nodes (users, 4,039) in the member social networks.

The values on the connections represent the number of links/edges within a circle.

We have a huge edge-list made of scrambled Facebook user IDs. Let’s load this

dataset into R first. The data is stored in a text file. Unlike CSV files, text files in table

format need to be imported using read.table(). We are using the header¼F
option to let R know that we don’t have a header in the text file that contains only

tab-separated node pairs (indicating the social connections, edges, between

Facebook users).

soc.net.data<-read.table("https://umich.instructure.com/files/2854431/downlo
ad?download_frd=1", sep=" ", header=F)
head(soc.net.data)

V1 V2
1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6

Now the data is stored in a data frame. To make this dataset ready for igraph
processing and visualization, we need to convert soc.net.data into a matrix

object.

soc.net.data.mat <- as.matrix(soc.net.data, ncol=2)

9

8

6

5

7

2

1

3

4

10

Fig. 16.1 A simple

example of a social network

as a graph object

16.2 Working with Domain-Specific Data 529

https://umich.instructure.com/files/2854431/download?download_frd=1
https://umich.instructure.com/files/2854431/download?download_frd=1

By using ncol¼2, we made a matrix with two columns. The data is now ready

and we can apply graph.edgelist().

remove the first 347 edges (to wipe out the degenerate "0" node)

graph_m<-graph.edgelist(soc.net.data.mat[-c(0:347),], directed = F)

Before we display the social network graph we may want to examine our model

first.

summary(graph_m)

IGRAPH U--- 4038 87887 --

This is an extremely brief yet informative summary. The first line U--- 4038
87887 includes potentially four letters and two numbers. The first letter could be U
or D indicating undirected or directed edges. A second letter N would mean that the

objects set has a “name” attribute. A third letter is for weighted (W) graph. Since we
didn’t add weight in our analysis the third letter is empty (“-“). A fourth character is

an indicator for bipartite graphs, whose vertices can be divided into two disjoint
sets where each vertex from one set connects to one vertex in the other set. The

two numbers following the 4 letters represent the number of nodes and the

number of edges, respectively. Now let’s render the graph (Fig. 16.2).

plot(graph_m)

This graph is very complicated. We can still see that some words are surrounded

by more nodes than others. To obtain such information we can use the degree()
function, which lists the number of edges for each node.

degree(graph_m)

Skimming the table we can find that the 107-th user has as many as 1,044

connections, which makes the user a highly-connected hub. Likely, this node may

have higher social relevance.

Some edges might be more important than other edges because they serve as a

bridge to link a cloud of nodes. To compare their importance, we can use the

betweenness centrality measurement. Betweenness centrality measures centrality in

a network. High centrality for a specific node indicates influence. betweenness
() can help us to calculate this measurement.

betweenness(graph_m)

Again, the 107-th node has the highest betweenness centrality

(3.556221e + 06).

530 16 Specialized Machine Learning Topics

We can try another example using SOCR hierarchical data, which is also avail-

able for dynamic exploration as a tree graph. Let’s read its JSON data source using

the jsonlite package (Fig. 16.3).

Fig. 16.2 Social network connectivity of Facebook users

http://socr.umich.edu/html/Navigators.html

http://socr.ucla.edu/SOCR_HyperTree.json

Fig. 16.3 Live demo: a dynamic graph representation of the SOCR resources

16.2 Working with Domain-Specific Data 531

http://socr.umich.edu/html/Navigators.html
http://socr.umich.edu/html/Navigators.html
http://socr.ucla.edu/SOCR_HyperTree.json

tree.json<-fromJSON("http://socr.ucla.edu/SOCR_HyperTree.json",
simplifyDataFrame = FALSE)

This generates a list object representing the hierarchical structure of the

network. Note that this is quite different from an edge list. There is one root node,

its sub nodes are called children nodes, and the terminal nodes are call leaf nodes.

Instead of presenting the relationship between nodes in pairs, this hierarchical

structure captures the level for each node. To draw the social network graph, we

need to convert it as a Node object. We can utilize the as.Node() function in the

data.tree package to do so.

install.packages("data.tree")

library(data.tree)
tree.graph<-as.Node(tree.json, mode = "explicit")

Here we use mode¼"explicit" option to allow “children” nodes to have

their own “children” nodes. Now, the tree.json object has been separated into

four different node structures – "About SOCR", "SOCR Resources", "Get
Started", and "SOCR Wiki". Let’s plot the first one using igraph package

(Fig. 16.4).

Fig. 16.4 The SOCR resourceome network plotted as a static R graph

532 16 Specialized Machine Learning Topics

http://socr.ucla.edu/SOCR_HyperTree.json

plot(as.igraph(tree.graph$`About SOCR`), edge.arrow.size=5, edge.label.font=
0.05)

In this graph, "About SOCR", which is located at the center, represents the root

node of the tree graph.

16.3 Data Streaming

The proliferation of Cloud services and the emergence of modern technology in all

aspects of human experiences leads to a tsunami of data much of which is streamed

real-time. The interrogation of such voluminous data is an increasingly important

area of research. Data streams are ordered, often unbounded sequences of data

points created continuously by a data generator. All of the data mining, interrogation

and forecasting methods we discuss here are also applicable to data streams.

16.3.1 Definition

Mathematically, a data stream in an ordered sequence of data points

Y ¼ y1; y2; y3; � � �; yt; � � �f g,

where the (time) index, t, reflects the order of the observation/record, which may be

single numbers, simple vectors in multidimensional space, or objects, e.g., structured

Ann Arbor Weather (JSON) and its corresponding structured form. Some streaming

data is streamed because it’s too large to be downloaded shotgun style and some is

streamed because it’s continually generated and serviced. This presents the potential

problem of dealing with data streams that may be unlimited.

Notes:

• Data sources: Real or synthetic stream data can be used. Random simulation

streams may be created by rstream. Real stream data may be piped from

financial data providers, the WHO, World Bank, NCAR and other sources.

• Inference Techniques: Many of the data interrogation techniques we have seen

can be employed for dynamic stream data, e.g., factas, for PCA, rEMM and

birch for clustering, etc. Clustering and classification methods capable of

processing data streams have been developed, e.g., Very Fast Decision Trees

(VFDT), time window-based Online Information Network (OLIN), On-demand

Classification, and the APRIORI streaming algorithm.

• Cloud distributed computing: Hadoop2/HadoopStreaming, SPARK, Storm3/

RStorm provide an environments to expand batch/script-based R tools to the

Cloud.

16.3 Data Streaming 533

16.3.2 The stream Package

The R stream package provides data stream mining algorithms using fpc, clue,
cluster, clusterGeneration, MASS, and proxy packages. In addition, the

package streamMOA provides an rJava interface to the Java-based data stream

clustering algorithms available in the Massive Online Analysis (MOA) framework

for stream classification, regression and clustering.

If you need a deeper exposure to data streaming in R, we recommend you go over

the stream vignettes.

16.3.3 Synthetic Example: Random Gaussian Stream

This example shows the creation and loading of a mixture of 5 random 2D Gauss-

ians, centers at (x_coords, y_coords) with paired correlations rho_corr, representing

a simulated data stream.

Generate the stream:

install.packages("stream")

library("stream")

x_coords <- c(0.2,0.3, 0.5, 0.8, 0.9)
y_coords <- c(0.8,0.3, 0.7, 0.1, 0.5)
p_weight <- c(0.1, 0.9, 0.5, 0.4, 0.3) # A vector of probabilities that dete

rmines the likelihood of generated a data point from a particular

cluster set.seed(12345)
stream_5G <- DSD_Gaussians(k = 5, d = 2, mu=cbind(x_coords, y_coords),
p=p_weight)

k-Means Clustering

We will now try k-means and density-based data stream clustering algorithm,

D-Stream, where micro-clusters are formed by grid cells of size gridsize with density

of a grid cell (Cm) is least 1.2 times the average cell density. The model is updated

with the next 500 data points from the stream.

dstream <- DSC_DStream(gridsize = .1, Cm = 1.2)
update(dstream, stream_5G, n = 500)

First, let’s run the k-means clustering with k ¼ 5 clusters and plot the resulting

micro- and macro-clusters (Fig. 16.5).

534 16 Specialized Machine Learning Topics

kmc <- DSC_Kmeans(k = 5)
recluster(kmc, dstream)
plot(kmc, stream_5G, type = "both", xlab="X-axis", ylab="Y-axis")

In this clustering plot,micro-clusters are shown as circles andmacro-clusters are

shown as crosses and their sizes represent the corresponding cluster weight

estimates.

Next try the density-based data stream clustering algorithm D-Stream. Prior to

updating the model with the next 1,000 data points from the stream, we specify the

grid cells as micro-clusters, grid cell size (gridsize¼0.1), and a micro-cluster

(Cm¼1.2) that specifies the density of a grid cell as a multiple of the average cell

density.

dstream <- DSC_DStream(gridsize = 0.1, Cm = 1.2)
update(dstream, stream_5G, n=1000)

We can re-cluster the data using k-means with 5 clusters and plot the resulting

micro- and macro-clusters (Fig. 16.6).

km_G5 <- DSC_Kmeans(k = 5)
recluster(km_G5, dstream)
plot(km_G5, stream_5G, type = "both")

Note the subtle changes in the clustering results between kmc and km_G5.

Fig. 16.5 Micro and macro clusters of a 5-means clustering of the first 500 points of the streamed

simulated 2D Gaussian kernels

16.3 Data Streaming 535

16.3.4 Sources of Data Streams

Static Structure Streams

• DSD_BarsAndGaussians generates two uniformly filled rectangular and two

Gaussian clusters with different density.

• DSD_Gaussians generates randomly placed static clusters with random multi-

variate Gaussian distributions.

• DSD_mlbenchData provides streaming access to machine learning benchmark

data sets found in the mlbench package.

• DSD_mlbenchGenerator interfaces the generators for artificial data sets defined

in the mlbench package.

• DSD_Target generates a ball in circle data set.

• DSD_UniformNoise generates uniform noise in a d-dimensional (hyper) cube.

Concept Drift Streams

• DSD_Benchmark provides a collection of simple benchmark problems including

splitting and joining clusters, and changes in density or size, which can be used as

a comprehensive benchmark set for algorithm comparison.

• DSD_MG is a generator to specify complex data streams with concept drift. The

shape as well as the behavior of each cluster over time can be specified using

keyframes.

• DSD_RandomRBFGeneratorEvents generates streams using radial base func-

tions with noise. Clusters move, merge and split.

Fig. 16.6 Micro- and macro- clusters of a 5-means clustering of the next 1,000 points of the

streamed simulated 2D Gaussian kernels

536 16 Specialized Machine Learning Topics

Real Data Streams

• DSD_Memory provides a streaming interface to static, matrix-like data (e.g., a

data frame, a matrix) in memory which represents a fixed portion of a data stream.

Matrix-like objects also include large objects potentially stored on disk like ff::
ffdf.

• DSD_ReadCSV reads data line by line in text format from a file or an open

connection and makes it available in a streaming fashion. This way data that is

larger than the available main memory can be processed.

• DSD_ReadDB provides an interface to an open result set from a SQL query to a

relational database.

16.3.5 Printing, Plotting and Saving Streams

For DSD objects, some basic stream functions include print(), plot(), and
write_stream(). These can save part of a data stream to disk. DSD_Memory
and DSD_ReadCSV objects also includemember functions likereset_stream()
to reset the position in the stream to its beginning.

To request a new batch of data points from the stream we use get_points().
This chooses a random cluster (based on the probability weights in p_weight) and
a point is drawn from the multivariate Gaussian distribution (mean¼mu, covariance

matrix ¼ Σ) of that cluster. Below, we pull n ¼ 10 new data points from the stream

(Fig. 16.7).

Fig. 16.7 Scatterplot of the next batch of 700 random Gaussian points in 2D

16.3 Data Streaming 537

new_p <- get_points(stream_5G, n = 10)
new_p

X1 X2
1 0.4017803 0.2999017
2 0.4606262 0.5797737
3 0.4611642 0.6617809
4 0.3369141 0.2840991
5 0.8928082 0.5687830
6 0.8706420 0.4282589
7 0.2539396 0.2783683
8 0.5594320 0.7019670
9 0.5030676 0.7560124
10 0.7930719 0.0937701

new_p <- get_points(stream_5G, n = 100, class = TRUE)
head(new_p, n = 20)

X1 X2 class
1 0.7915730 0.09533001 4
2 0.4305147 0.36953997 2
3 0.4914093 0.82120395 3
4 0.7837102 0.06771246 4
5 0.9233074 0.48164544 5
6 0.8606862 0.49399269 5
7 0.3191884 0.27607324 2
8 0.2528981 0.27596700 2
9 0.6627604 0.68988585 3
10 0.7902887 0.09402659 4
11 0.7926677 0.09030248 4
12 0.9393515 0.50259344 5
13 0.9333770 0.62817482 5
14 0.7906710 0.10125432 4
15 0.1798662 0.24967850 2
16 0.7985790 0.08324688 4
17 0.5247573 0.57527380 3
18 0.2358468 0.23087585 2
19 0.8818853 0.49668824 5
20 0.4255094 0.81789418 3

plot(stream_5G, n = 700, method = "pc")

Note that if you add noise to your stream, e.g., stream_Noise <-
DSD_Gaussians(k ¼ 5, d ¼ 4, noise ¼ .1, p ¼ c(0.1, 0.5, 0.3,
0.9, 0.1)), then the noise points that are not classified as part of any cluster will

have an NA class label.

16.3.6 Stream Animation

Clusters can be animated over time by animate_data(). Use reset_stream
() to start the animation at the beginning of the stream and note that this method is

not implemented for streams of class DSD_Gaussians, DSD_R, DSD_data.
frame, and DSD. We’ll create a new DSD_Benchmark data stream (Fig. 16.8).

538 16 Specialized Machine Learning Topics

set.seed(12345)
stream_Bench <- DSD_Benchmark(1)
stream_Bench

Benchmark 1: Two clusters moving diagonally from left to right, meeting
in
the center (5% noise).
Class: DSD_MG, DSD_R, DSD_data.frame, DSD
With 2 clusters in 2 dimensions. Time is 1
library("animation")
reset_stream(stream_Bench)
animate_data(stream_Bench,n=10000,horizon=100,xlim=c(0,1), ylim=c(0,1))

This benchmark generator creates two 2D clusters moving in 2D. One moves

from top-left to bottom-right, the other from bottom-left to top-right. Then they meet

at the center of the domain, the 2 clusters overlap and then split again.

Concept drift in the stream can be depicted by requesting (10) times 300 data

points from the stream and animating the plot. Fast-forwarding the stream can be

accomplished by requesting, but ignoring, (2000) points in between the (10) plots.

The output of the animation below is suppressed to save space.

for(i in 1:10) {
plot(stream_Bench, 300, xlim = c(0, 1), ylim = c(0, 1))
tmp <- get_points(stream_Bench, n = 2000)

}

Fig. 16.8 Discrete snapshots of the animated stream clustering process

16.3 Data Streaming 539

reset_stream(stream_Bench)
animate_data(stream_Bench,n=8000,horizon=120, xlim=c(0,1), ylim=c(0,1))
Animations can be saved as HTML or GIF

#saveHTML(ani.replay(), htmlfile = "stream_Bench_Animation.html")

#saveGIF(ani.replay())

Streams can also be saved locally by write_stream(stream_Bench,
"dataStreamSaved.csv", n ¼ 100, sep¼",") and loaded back in R by

DSD_ReadCSV().

16.3.7 Case-Study: SOCR Knee Pain Data

These data represent the X and Y spatial knee-pain locations for over 8,000 patients,

along with labels about the knee Front, Back, Left and Right. Let’s try to read the

SOCR Knee Pain Dataset as a stream.

library("XML"); library("xml2"); library("rvest")

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_KneePa
inData_041409")
html_nodes(wiki_url, "#content")

{xml_nodeset (1)}
[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top
...

kneeRawData <- html_table(html_nodes(wiki_url, "table")[[2]])
normalize<-function(x){
return((x-min(x))/(max(x)-min(x)))

}
kneeRawData_df <- as.data.frame(cbind(normalize(kneeRawData$x),
normalize(kneeRawData$Y), as.factor(kneeRawData$View)))
colnames(kneeRawData_df) <- c("X", "Y", "Label")
randomize the rows of the DF as RF, RB, LF and LB labels of classes are

sequential

set.seed(1234)
kneeRawData_df <- kneeRawData_df[sample(nrow(kneeRawData_df)),]
summary(kneeRawData_df)

X Y Label
Min. :0.0000 Min. :0.0000 Min. :1.000
1st Qu.:0.1331 1st Qu.:0.4566 1st Qu.:2.000
Median :0.2995 Median :0.5087 Median :3.000
Mean :0.3382 Mean :0.5091 Mean :2.801
3rd Qu.:0.3645 3rd Qu.:0.5549 3rd Qu.:4.000
Max. :1.0000 Max. :1.0000 Max. :4.000

View(kneeRawData_df)

We can use the DSD::DSD_Memory class to get a stream interface for matrix or

data frame objects, like the Knee pain location dataset. The number of true clusters

k ¼ 4 in this dataset.

540 16 Specialized Machine Learning Topics

http://wiki.socr.umich.edu/index.php/SOCR_Data_KneePainData_041409
http://wiki.socr.umich.edu/index.php/SOCR_Data_KneePainData_041409

use data.frame to create a stream (3rd column contains label assignment)

kneeDF <- data.frame(x=kneeRawData_df[,1], y=kneeRawData_df[,2],
class=as.factor(kneeRawData_df[,3]))

head(kneeDF)
x y class
1 0.1188590 0.5057803 4
2 0.3248811 0.6040462 2
3 0.3153724 0.4971098 2
4 0.3248811 0.4161850 2
5 0.6941363 0.5289017 1
6 0.3217116 0.4595376 2

streamKnee <- DSD_Memory(kneeDF[,c("x", "y")], class=kneeDF[,"class"],
loop=T)
streamKnee

Memory Stream Interface
Class: DSD_Memory, DSD_R, DSD_data.frame, DSD
With NA clusters in 2 dimensions
Contains 8666 data points - currently at position 1 - loop is TRUE

Each time we get a point from *streamKnee*, the stream pointer moves

to the next position (row) in the data.

get_points(streamKnee, n=10)

x y
1 0.11885895 0.5057803
2 0.32488114 0.6040462
3 0.31537242 0.4971098
4 0.32488114 0.4161850
5 0.69413629 0.5289017
6 0.32171157 0.4595376
7 0.06497623 0.4913295
8 0.12519810 0.4682081
9 0.32329635 0.4942197
10 0.30744849 0.5086705

streamKnee

Memory Stream Interface
Class: DSD_Memory, DSD_R, DSD_data.frame, DSD
With NA clusters in 2 dimensions
Contains 8666 data points - currently at position 11 - loop is TRUE

Stream pointer is in position 11 now

We can redirect the current position of the stream pointer by:

reset_stream(streamKnee, pos = 200)
get_points(streamKnee, n=10)

x y
200 0.9413629 0.5606936
201 0.3217116 0.5664740
202 0.3122029 0.6416185
203 0.1553090 0.6040462
204 0.3645008 0.5346821
205 0.3122029 0.5000000
206 0.3549921 0.5404624
207 0.1473851 0.5260116
208 0.1870048 0.6329480
209 0.1220285 0.4132948

16.3 Data Streaming 541

streamKnee

Memory Stream Interface
Class: DSD_Memory, DSD_R, DSD_data.frame, DSD
With NA clusters in 2 dimensions
Contains 8666 data points - currently at position 210 - loop is TRUE

16.3.8 Data Stream Clustering and Classification (DSC)

Let’s demonstrate clustering using DSC_DStream, which assigns points to cells in
a grid. First, initialize the clustering, as an empty cluster and then use the update()
function to implicitly alter the mutable DSC object (Fig. 16.9).

dsc_streamKnee <- DSC_DStream(gridsize = 0.1, Cm = 0.4, attraction=T)
dsc_streamKnee

DStream
Class: DSC_DStream, DSC_Micro, DSC_R, DSC
Number of micro-clusters: 0
Number of macro-clusters: 0

stream::update

reset_stream(streamKnee, pos = 1)
update(dsc_streamKnee, streamKnee, n = 500)
dsc_streamKnee

DStream
Class: DSC_DStream, DSC_Micro, DSC_R, DSC
Number of micro-clusters: 16
Number of macro-clusters: 11

Fig. 16.9 Data stream clustering and classification of the SOCR knee-pain dataset (n¼500)

542 16 Specialized Machine Learning Topics

head(get_centers(dsc_streamKnee))

[,1] [,2]
[1,] 0.05 0.45
[2,] 0.05 0.55
[3,] 0.15 0.35
[4,] 0.15 0.45
[5,] 0.15 0.55
[6,] 0.15 0.65

plot(dsc_streamKnee, streamKnee, xlim=c(0,1), ylim=c(0,1))

plot(dsc_streamKnee, streamKnee, grid = TRUE)

Micro-clusters are plotted in red on top of gray stream data points

The size of the micro-clusters indicates their weight - it's proportional

to the number of data points represented by each micro-cluster.

Micro-clusters are shown as dense grid cells (density is coded with gray

values).

The purity metric represents an external evaluation criterion of cluster

quality, which is the proportion of the total number of points that were correctly

classified:

0 � Purity ¼
1

N

X k

i¼1
maxj ci \ tj

�

�

�

� � 1,

where N¼number of observed data points, k¼ number of clusters, ci is the i
th cluster,

and tj is the classification that has the maximum number of points with ci class labels.

High purity suggests that we correctly label points (Fig. 16.10).

Fig. 16.10 5-Means stream clustering of the SOCR knee pain data

16.3 Data Streaming 543

Next, we can use K-means clustering.

kMeans_Knee <- DSC_Kmeans(k=5) # use 4-5 clusters matching the 4 knee labels

recluster(kMeans_Knee, dsc_streamKnee)
plot(kMeans_Knee, streamKnee, type = "both")

Again, the graphical output of the animation sequence of frames is suppressed,

however, the readers are encouraged to run the command line and inspect the

graphical outcome (Figs. 16.11 and 16.12).

Fig. 16.11 Animated continuous 5-means stream clustering of the knee pain data

Fig. 16.12 Continuous stream clustering and purity index across iterations

544 16 Specialized Machine Learning Topics

animate_data(streamKnee, n=1000, horizon=100,xlim=c(0,1), ylim = c(0,1))

purity <- animate_cluster(kMeans_Knee, streamKnee, n=2500, type="both",

xlim=c(0,1), ylim=c(-,1), evaluationMeasure="purity", horizon=10)

animate_cluster(kMeans_Knee, streamKnee, horizon = 100, n = 5000,
measure = "purity", plot.args = list(xlim = c(0, 1), ylim = c(0, 1)))

points purity
1 1 0.9600000
2 101 0.9043478
3 201 0.9500000
…
49 4801 0.9047619
50 4901 0.8850000

16.3.9 Evaluation of Data Stream Clustering

Figure 16.13 shows the average clustering purty as we evaluate the stream clustering

across the streaming points.

Synthetic Gaussian example

stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

dstream <- DSC_DStream(gridsize = .1)

update(dstream, stream, n = 2000)

evaluate(dstream, stream, n = 100)

evaluate(dsc_streamKnee, streamKnee, measure = c("crand", "SSQ",
"silhouette"), n = 100, type = c("auto","micro","macro"), assign="micro",
assignmentMethod = c("auto", "model", "nn"), noise = c("class","exclude"))

Evaluation results for micro-clusters.
Points were assigned to micro-clusters.
cRand SSQ silhouette
0.3473634 0.3382900 0.1373143

clusterEval <- evaluate_cluster(dsc_streamKnee, streamKnee, measure =
c("numMicroClusters", "purity"), n = 5000, horizon = 100)
head(clusterEval)
points numMicroClusters purity
1 0 16 0.9555556
2 100 17 0.9733333
3 200 18 0.9671053
4 300 21 0.9687500
5 400 21 0.9880952
6 500 22 0.9750000

plot(clusterEval[, "points"], clusterEval[, "purity"], type = "l",
ylab = "Avg Purity", xlab = "Points")

animate_cluster(dsc_streamKnee, streamKnee, horizon = 100, n = 5000,
measure = "purity", plot.args = list(xlim = c(0, 1), ylim = c(0, 1)))

16.3 Data Streaming 545

points purity
1 1 0.9714286
2 101 0.9833333
3 201 0.9722222
…

49 4801 0.9772727
50 4901 0.9777778

The dsc_streamKnee represents the result of the stream clustering, where n is

the number of data points from the streamKnee stream. The evaluation measure
can be specified as a vector of character strings. Points are assigned to clusters in

dsc_streamKnee using get_assignment() and can be used to assess the

quality of the classification. By default, points are assigned to micro-clusters, or can

be assigned tomacro-cluster centers by assign¼ "macro". Also, new points can

be assigned to clusters by the rule used in the clustering algorithm by

assignmentMethod ¼ "model" or using nearest-neighbor assignment (nn),
Fig. 16.14.

16.4 Optimization and Improving the Computational

Performance

Here and in previous chapters, e.g., Chap. 15, we notice that R may sometimes be

slow and memory-inefficient. These problems may be severe, especially for

datasets with millions of records or when using complex functions. There are

packages for processing large datasets and memory optimization – bigmemory,
biganalytics, bigtabulate, etc.

Fig. 16.13 Average clustering purity

546 16 Specialized Machine Learning Topics

16.4.1 Generalizing Tabular Data Structures with dplyr

We have also seen long execution times when running processes that ingest, store or

manipulate huge data.frame objects. The dplyr package, created by Hadley

Wickham and Romain Francoi, provides a faster route to manage such large datasets

in R. It creates an object called tbl, similar to data.frame, which has an

in-memory column-like structure. R reads these objects a lot faster than data frames.

To make a tbl object we can either convert an existing data frame to tbl or

connect to an external database. Converting from data frame to tbl is quite easy. All

we need to do is call the function as.tbl().

#install.packages("dplyr")

library(dplyr)

nof1_tbl<-as.tbl(nof1); nof1_tbl

A tibble: 900 × 10
ID Day Tx SelfEff SelfEff25 WPSS SocSuppt PMss PMss3 PhyAct
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1 33 8 0.97 5.00 4.03 1.03 53
2 1 2 1 33 8 -0.17 3.87 4.03 1.03 73
3 1 3 0 33 8 0.81 4.84 4.03 1.03 23
…

8 1 8 0 33 8 -0.34 3.69 4.03 1.03 0
9 1 9 1 33 8 -0.74 3.29 4.03 1.03 73
10 1 10 1 33 8 -0.38 3.66 4.03 1.03 114
... with 890 more rows

This looks like a normal data frame. If you are using R Studio, displaying the

nof1_tbl will show the same output as nof1.

Fig. 16.14 Continuous k-means stream clustering with classificaiton purity

16.4 Optimization and Improving the Computational Performance 547

16.4.2 Making Data Frames Faster with Data.Table

Similar to tbl, the data.table package provides another alternative to data

frame object representation. data.table objects are processed in R much faster

compared to standard data frames. Also, all of the functions that can accept data

frame could be applied to data.table objects as well. The function fread() is

able to read a local CSV file directly into a data.table.

#install.packages("data.table")

library(data.table)

nof1<-fread("C:/Users/Dinov/Desktop/02_Nof1_Data.csv")

Another amazing property of data.table is that we can use subscripts to

access a specific location in the dataset just like dataset[row, column]. It also
allows the selection of rows with Boolean expression and direct application of

functions to those selected rows. Note that column names can be used to call the

specific column in data.table, whereas with data frames, we have to use the

dataset$columnName syntax.

nof1[ID==1, mean(PhyAct)]

[1] 52.66667

This useful functionality can also help us run complex operations with only a few

lines of code. One of the drawbacks of using data.table objects is that they are

still limited by the available system memory.

16.4.3 Creating Disk-Based Data Frames with ff

The ff (fast-files) package allows us to overcome the RAM limitations of finite

system memory. For example, it helps with operating datasets with billions of rows.

ff creates objects in ffdf formats, which is like a map that points to a location of

the data on a disk. However, this makes ffdf objects inapplicable for most R

functions. The only way to address this problem is to break the huge dataset into

small chunks. After processing a batch of these small chunks, we have to combine

the results to reconstruct the complete output. This strategy is relevant in parallel

computing, which will be discussed in detail in the next section. First, let’s download

one of the large datasets in our datasets archive, UQ_VitalSignsData_Case04.csv.

548 16 Specialized Machine Learning Topics

install.packages("ff")

library(ff)
vitalsigns<-read.csv.ffdf(file="UQ_VitalSignsData_Case04.csv", header=T)

vitalsigns<-
read.csv.ffdf(file="https://umich.instructure.com/files/366335/download?
download_frd=1", header=T)

As mentioned earlier, we cannot apply functions directly on this object.

mean(vitalsigns$Pulse)
Warning in mean.default(vitalsigns$Pulse): argument is not numeric or
logical: returning NA
[1] NA

For basic calculations on such large datasets, we can use another package,

ffbase. It allows operations on ffdf objects using simple tasks like: mathemat-

ical operations, query functions, summary statistics and bigger regression models

using packages like biglm, which will be mentioned later in this chapter.

install.packages("ffbase")

library(ffbase)
mean(vitalsigns$Pulse)
[1] 108.7185

16.4.4 Using Massive Matrices with bigmemory

The previously introduced packages include alternatives to data.frames. For
instance, the bigmemory package creates alternative objects to 2D matrices

(second-order tensors). It can store huge datasets and can be divided into small

chunks that can be converted to data frames. However, we cannot directly apply

machine-learning methods on this type of objects. More detailed information about

the bigmemory package is available online.

16.5 Parallel Computing

In previous chapters, we saw various machine-learning techniques applied as serial

computing tasks. The traditional protocol involves: First, applying function 1 to our

raw data. Then, using the output from function 1 as an input to function 2. This

process may be iterated over a series of functions. Finally, we have the terminal

output generated by the last function. This serial or linear computing method is

straightforward but time consuming and perhaps sub-optimal.

Now we introduce a more efficient way of computing - parallel computing, which

provides a mechanism to deal with different tasks at the same time and combine the

16.5 Parallel Computing 549

https://umich.instructure.com/files/366335/download?download_frd=1
https://umich.instructure.com/files/366335/download?download_frd=1

outputs for all of processes to get the final answer faster. However, parallel algo-

rithms may require special conditions and cannot be applied to all problems. If two

tasks have to be run in a specific order, this problem cannot be parallelized.

16.5.1 Measuring Execution Time

To measure how much time can be saved for different methods, we can use function

system.time().

system.time(mean(vitalsigns$Pulse))
user system elapsed
0 0 0

This means calculating the mean of Pulse column in the vitalsigns dataset

takes less than 0.001 seconds. These values will vary between computers, operating

systems, and states of operations.

16.5.2 Parallel Processing with Multiple Cores

We will introduce two packages for parallel computing multicore and snow
(their core components are included in the package parallel). They both have a

different way of multitasking. However, to run these packages, you need to have a

relatively modern multicore computer. Let’s check how many cores your computer

has. This function parallel::detectCores() provides this functionality.

parallel is a base package, so there is no need to install it prior to using it.

library(parallel); detectCores()

[1] 8

So, there are eight (8) cores in my computer. I will be able to run up to 6-8 parallel

jobs on this computer.

The multicore package simply uses the multitasking capabilities of the kernel,

the computer’s operating system, to “fork” additional R sessions that share the same

memory. Imagine that we open several R sessions in parallel and let each of them do

part of the work. Now, let’s examine how this can save time when running complex

protocols or dealing with large datasets. To start with, we can use the mclapply()
function, which is similar to lapply(), which applies functions to a vector and

returns a vector of lists. Instead of applying functions to vectors mcapply()
divides the complete computational task and delegates portions of it to each avail-

able core. To demonstrate this procedure, we will construct a simple, yet time

550 16 Specialized Machine Learning Topics

consuming, task of generating random numbers. Also, we can use the system.
time() function to track execution time.

set.seed(123)
system.time(c1<-rnorm(10000000))

user system elapsed
0.64 0.00 0.64

Note the multi core calls may not work on Windows, but will work on

Linux/Mac.

#This shows a 2-core and 4-vore invocations

system.time(c2<-unlist(mclapply(1:2, function(x){rnorm(5000000)},

mc.cores = 2)))

system.time(c4<-unlist(mclapply(1:4, function(x){rnorm(2500000)},

mc.cores = 4)))

And here is a Windows (single core invocation)

system.time(c2<-unlist(mclapply(1:2, function(x){rnorm(5000000)},
mc.cores = 1)))

user system elapsed
0.65 0.00 0.65

The unlist() is used at the end to combine results from different cores into a

single vector. Each line of code creates 10,000,000 random numbers. The c1 call

took the longest time to complete. The c2 call used two cores to finish the task (each

core handled 5,000,000 numbers) and used less time than c1. Finally, c4 used all

four cores to finish the task and successfully reduced the overall time. We can see

that when we use more cores the overall time is significantly reduced.

The snow package allows parallel computing on multicore multiprocessor

machines or a network of multiple machines. It might be more difficult to use but

it’s also certainly more flexible. First we can set how many cores we want to use via

makeCluster() function.

install.packages("snow")
library(snow)

cl<-makeCluster(2)

This call might cause your computer to pop up a message warning about access

though the firewall. To do the same task we can use parLapply() function in the

snow package. Note that we have to call the object we created with the previous

makeCluster() function.

system.time(c2<-unlist(parLapply(cl, c(5000000, 5000000), function(x) {
rnorm(x)})))

user system elapsed
0.11 0.11 0.64

16.5 Parallel Computing 551

While using parLapply(), we have to specify the matrix and the function that

will be applied to this matrix. Remember to stop the cluster we made after complet-

ing the task, to release back the system resources.

stopCluster(cl)

16.5.3 Parallelization Using foreach and doParallel

The foreach package provides another option of parallel computing. It relies on a

loop-like process basically applying a specified function for each item in the set,

which again is somewhat similar to apply(), lapply() and other regular

functions. The interesting thing is that these loops can be computed in parallel

saving substantial amounts of time. The foreach package alone cannot provide

parallel computing. We have to combine it with other packages like doParallel.
Let’s reexamine the task of creating a vector of 10,000,000 random numbers. First,

register the 4 compute cores using registerDoParallel().

install.packages("doParallel")

library(doParallel)

cl<-makeCluster(4)
registerDoParallel(cl)

Then we can examine the time saving foreach command.

#install.packages("foreach")

library(foreach)
system.time(c4<-foreach(i=1:4, .combine = 'c')

%dopar% rnorm(2500000))

user system elapsed
0.11 0.18 0.54

Here we used four items (each item runs on a separate core), .combine¼c
allows foreach to combine the results with the parameter c(), generating the

aggregate result vector.

Also, don’t forget to close the doParallel by registering the sequential

backend.

unregister<-registerDoSEQ()

552 16 Specialized Machine Learning Topics

16.5.4 GPU Computing

Modern computers have graphics cards, GPUs (Graphical Processing Units), that

consists of thousands of cores, however they are very specialized, unlike the

standard CPU chip. If we can use this feature for parallel computing, we may

reach amazing performance improvements, at the cost of complicating the

processing algorithms and increasing the constraints on the data format. Specific

disadvantages of GPU computing include reliance on proprietary manufacturer (e.g.,

NVidia) frameworks and Complete Unified Device Architecture (CUDA) program-

ming language. CUDA allows programming of GPU instructions into a common

computing language. This paper provides one example of using GPU computation to

significantly improve the performance of advanced neuroimaging and brain mapping

processing of multidimensional data.

The R package gputools is created for parallel computing using NVidia

CUDA. Detailed GPU computing in R information is available online.

16.6 Deploying Optimized Learning Algorithms

As we mentioned earlier, some tasks can be parallelized easier than others. In real

world situations, we can pick the algorithms that lend themselves well to

parallelization. Some of the R packages that allow parallel computing using ML

algorithms are listed below.

16.6.1 Building Bigger Regression Models with biglm

biglm allows training regression models with data from SQL databases or large

data chunks obtained from the ff package. The output is similar to the standard

lm() function that builds linear models. However, biglm operates efficiently on

massive datasets.

16.6.2 Growing Bigger and Faster Random Forests

with bigrf

The bigrf package can be used to train random forests combining the foreach
and doParallel packages. In Chap. 15, we presented random forests as machine

learners ensembling multiple tree learners. With parallel computing, we can split the

task of creating thousands of trees into smaller tasks that can be outsourced to each

16.6 Deploying Optimized Learning Algorithms 553

available compute core. We only need to combine the results at the end. Then, we

will obtain the exact same output in a relatively shorter amount of time.

16.6.3 Training and Evaluation Models in Parallel

with caret

Combining the caret package with foreach, we can obtain a powerful method

to deal with time-consuming tasks like building a random forest learner. Utilizing the

same example we presented in Chap. 15, we can see the time difference of utilizing

the foreach package.

#library(caret)

system.time(m_rf <- train(CHARLSONSCORE ~ ., data = qol, method = "rf",
metric = "Kappa", trControl = ctrl, tuneGrid = grid_rf))

user system elapsed
130.05 0.40 130.49

It took more than a minute to finish this task in standard execution model purely

relying on the regular caret function. Below, this same model training completes

much faster using parallelization (less than half the time) compared to the standard

call above.

set.seed(123)
cl<-makeCluster(4)
registerDoParallel(cl)
getDoParWorkers()

[1] 4

system.time(m_rf <- train(CHARLSONSCORE ~ ., data = qol, method = "rf",
metric = "Kappa", trControl = ctrl, tuneGrid = grid_rf))

user system elapsed
4.61 0.02 47.70

unregister<-registerDoSEQ()

16.7 Practice Problem

Try to analyze the co-appearance network in the novel “Les Miserables”. The data

contains the weighted network of co-appearances of characters in Victor Hugo’s

novel “Les Miserables”. Nodes represent characters as indicated by the labels and

edges connect any pair of characters that appear in the same chapter of the book. The

values on the edges are the number of such co-appearances.

554 16 Specialized Machine Learning Topics

miserables<-read.table("https://umich.instructure.com/files/330389/download?

download_frd¼1", sep¼"", header¼F) head(miserables)

Also, try to interrogate some of the larger datasets we have by using alternative

parallel computing and big data analytics.

16.8 Assignment: 16. Specialized Machine Learning Topics

16.8.1 Working with Website Data

• Download the Main SOCR Wiki Page and compare RCurl and httr.
• Read and write XML code for the SOCR Main Page.

• Scrape the data from the SOCR Main Page.

16.8.2 Network Data and Visualization

• Download 03_les_miserablese_GraphData.txt

• Visualize this undirected network.

• Summary the graph and explain the output.

• Calculate degree and the centrality of this graph.

• Find out some important characters.

• Will the result change or not if we assume the graph is directed?

16.8.3 Data Conversion and Parallel Computing

• Download CaseStudy12_ AdultsHeartAttack_Data.xlsx or require online.

• load this data as data frame.

• Use Export() or write.xlsx() to renew the xlsx file.

• Use rio package to convert this ".xlsx" "file to" ".csv".

• Generate generalizing tabular data structures.

• Generate data.table.

• Create disk-based data frames and perform basic calculation.

• Perform basic calculation on the last 5 columns as a big matrix.

• Use DIAGNOSIS, SEX, DRG, CHARGES, LOS and AGE to predict DIED with

randomForest setting ntree¼20000. Notice: sample without replacement to

get an as large as possible balanced dataset.

• Run train() in caret and detect the execute time.

• Detect cores and make proper number of clusters.

16.8 Assignment: 16. Specialized Machine Learning Topics 555

https://umich.instructure.com/files/330389/download?download_frd=1
https://umich.instructure.com/files/330389/download?download_frd=1

• Rerun train() parallelized and compare the execute time.

• Use foreach and doMC to design a parallelized random forest with

ntree¼20000 totally and compare the execute time with sequential execution.

References

Data Streams in R:https://cran.r-project.org/web/packages/stream/vignettes/stream.pdf

Dplyr:https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

doParallel:https://cran.rproject.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

Mailund, T. (2017) Beginning Data Science in R: Data Analysis, Visualization, and Modelling for

the Data Scientist, Apress, ISBN 1484226712, 9781484226711

556 16 Specialized Machine Learning Topics

https://cran.r-project.org/web/packages/stream/vignettes/stream.pdf
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
https://cran.rproject.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

Chapter 17

Variable/Feature Selection

As we mentioned in Chap. 16, variable selection is very important when dealing with

bioinformatics, healthcare, and biomedical data, where we may have more features

than observations. Variable selection, or feature selection, can help us focus only on

the core important information contained in the observations, instead of every piece

of information. Due to presence of intrinsic and extrinsic noise, the volume and

complexity of big health data, and different methodological and technological

challenges, this process of identifying the salient features may resemble finding a

needle in a haystack. Here, we will illustrate alternative strategies for feature

selection using filtering (e.g., correlation-based feature selection), wrapping (e.g.,

recursive feature elimination), and embedding (e.g., variable importance via random

forest classification) techniques.

The next Chap. 18, provides the details about another powerful technique for

variable-selection using decoy features to control the false discovery rate of

choosing inconsequential features.

17.1 Feature Selection Methods

There are three major classes of variable or feature selection techniques—filtering-

based, wrapper-based, and embedded methods.

17.1.1 Filtering Techniques

• Univariate: Univariate filtering methods focus on selecting single features with

high scores based on some statistics like χ
2 or Information Gain Ratio. Each

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_17

557

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_17&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_17

feature is viewed as independent of the others, effectively ignoring interactions

between features.

• Examples: χ2, Euclidean distance, i-test, and Information gain.

• Multivariate: Multivariate filtering methods rely on various (multivariate) statis-

tics to select the principal features. They typically account for between-feature

interactions by using higher-order statistics like correlation. The basic idea is that

we iteratively triage variables that have high correlations with other features.

• Examples: Correlation-based feature selection, Markov blanket filter, and fast

correlation-based feature selection.

17.1.2 Wrapper Methods

• Deterministic: Deterministic wrapper feature selection methods either start with

no features (forward-selection) or with all features included in the model

(backward-selection) and iteratively refine the set of chosen features according

to some model quality measures. The iterative process of adding or removing

features may rely on statistics like the Jaccard similarity coefficient.

• Examples: Sequential forward selection, Recursive Feature Elimination, Plus

q take-away r, and Beam search.

• Randomized: Stochastic wrapper feature selection procedures utilize a binary

feature-indexing vector indicating whether or not each variable should be

included in the list of salient features. At each iteration, we randomly perturb

the binary indicators vector and compare the combinations of features before and

after the random inclusion-exclusion indexing change. Finally, we pick the

indexing vector corresponding with the optimal performance based on some

metric, like acceptance probability measures. The iterative process continues

until no improvement of the objective function is observed.

• Examples: Simulated annealing, genetic algorithms, distribution- and kernel-

estimation algorithms.

17.1.3 Embedded Techniques

• Embedded-feature selection techniques are based on various classifiers, predic-

tors, or clustering procedures. For instance, we can accomplish feature selection

by using decision trees where the separation of the training data relies on features

associated with the highest information gain. Further tree branching, separating

the data deeper, may utilize weaker features. This process of choosing the vital

features based on their separability characteristics continues until the classifier

558 17 Variable/Feature Selection

generates group labels that are mostly homogeneous within clusters/classes and

largely heterogeneous across groups, and when the information gain of further

tree branching is marginal. The entire process may be iterated multiple times to

select the features that appear most frequently.

• Examples: Decision trees, random forests, weighted naive Bayes, and feature

selection using weighted-SVM.

The different types of feature selection methods have their own pros and cons. In this

chapter, we are going to introduce the randomized wrapper method using the

Boruta package, which utilizes the random forest classification method to output

variable importance measures (VIMs). Then, we will compare its results with

Recursive Feature Elimination, a classical deterministic wrapper method.

17.2 Case Study: ALS

17.2.1 Step 1: Collecting Data

First things first, let’s explore the dataset we will be using. Case Study

15, Amyotrophic Lateral Sclerosis (ALS), examines the patterns, symmetries, asso-

ciations and causality in a rare but devastating disease, amyotrophic lateral sclerosis

(ALS), also known as Lou Gehrig disease. This ALS case-study reflects a large

clinical trial including big, multi-source and heterogeneous datasets. It would be

interesting to interrogate the data and attempt to derive potential biomarkers that can

be used for detecting, prognosticating, and forecasting the progression of this

neurodegenerative disorder. Overcoming many scientific, technical and infrastruc-

ture barriers is required to establish complete, efficient, and reproducible protocols

for such complex data. These pipeline workflows start with ingesting the raw data,

preprocessing, aggregating, harmonizing, analyzing, visualizing and interpreting the

findings.

In this case-study, we use the training dataset that contains 2223 observations and

131 numeric variables. We select ALSFRS slope as our outcome variable, as it

captures the patients’ clinical decline over a year. Although we have more observa-

tions than features, this is one of the examples where multiple features are highly

correlated. Therefore, we need to preprocess the variables, e.g., apply feature

selection, before commencing with predictive analytics.

17.2.2 Step 2: Exploring and Preparing the Data

The dataset is located in our case-studies archive. We can use read.csv() to

directly import the CSV dataset into R using the URL reference.

17.2 Case Study: ALS 559

ALS.train<-read.csv("https://umich.instructure.com/files/1789624/download?do
wnload_frd=1")
summary(ALS.train)

ID Age_mean Albumin_max Albumin_median
Min. : 1.0 Min. :18.00 Min. :37.00 Min. :34.50
1st Qu.: 614.5 1st Qu.:47.00 1st Qu.:45.00 1st Qu.:42.00
Median :1213.0 Median :55.00 Median :47.00 Median :44.00
Mean :1214.9 Mean :54.55 Mean :47.01 Mean :43.95
3rd Qu.:1815.5 3rd Qu.:63.00 3rd Qu.:49.00 3rd Qu.:46.00
Max. :2424.0 Max. :81.00 Max. :70.30 Max. :51.10
…
Urine.Ph_median Urine.Ph_min
Min. :5.000 Min. :5.000
1st Qu.:5.000 1st Qu.:5.000
Median :6.000 Median :5.000
Mean :5.711 Mean :5.183
3rd Qu.:6.000 3rd Qu.:5.000
Max. :9.000 Max. :8.000

There are 131 features and some of variables represent statistics likemax,min and

median values of the same clinical measurements.

17.2.3 Step 3: Training a Model on the Data

Now let’s explore the Boruta() function in the Boruta package to perform

variables selection, based on random forest classification. Boruta() includes the

following components:

vs<-Boruta(class~features, data=Mydata, pValue = 0.01, mcAdj =

TRUE, maxRuns = 100, doTrace=0, getImp = getImpRfZ, ...)

• class: variable for class labels.

• features: potential features to select from.

• data: dataset containing classes and features.

• pValue: confidence level. Default value is 0.01 (Notice we are applying mul-

tiple variable selection.

• mcAdj: Default TRUE to apply a multiple comparisons adjustment using the

Bonferroni method.

• maxRuns: maximal number of importance source runs. You may increase it to

resolve attributes left Tentative.

• doTrace: verbosity level. Default 0 means no tracing, 1 means reporting

decision about each attribute as soon as it is justified, 2 means same as 1, plus

at each importance source run reporting the number of attributes. The default is

0 where we don’t do the reporting.

560 17 Variable/Feature Selection

https://umich.instructure.com/files/1789624/download?download_frd=1
https://umich.instructure.com/files/1789624/download?download_frd=1

• getImp: function used to obtain attribute importance. The default is getImpRfZ,

which runs random forest, from the ranger package, and gathers Z-scores of the

mean decreased accuracy measure.

The resulting vs object is of class Boruta and contains two important

components:

• finalDecision: a factor of three values: Confirmed, Rejected or Tenta-

tive, containing the final results of the feature selection process.

• ImpHistory: a data frame of importance of attributes gathered in each impor-

tance source run. Besides the predictors’ importance, it contains maximal, mean

and minimal importance of shadow attributes for each run. Rejected attributes

get -Inf importance. This output is set to NULL if we specify

holdHistory¼FALSE in the Boruta call.

Note: Running the code below will take several minutes.

install.packages("Boruta")

library(Boruta)
set.seed(123)
als<-Boruta(ALSFRS_slope~.-ID, data=ALS.train, doTrace=0)
print(als)

Boruta performed 99 iterations in 4.683657 mins.
28 attributes confirmed important: ALSFRS_Total_max,
ALSFRS_Total_median, ALSFRS_Total_min, ALSFRS_Total_range,
Creatinine_median and 23 more;
59 attributes confirmed unimportant: Albumin_max, Albumin_median,
Albumin_min, ALT.SGPT._max, ALT.SGPT._median and 54 more;
12 tentative attributes left: Age_mean, Albumin_range,
Creatinine_max, Hematocrit_median, Hematocrit_range and 7 more;

als$ImpHistory[1:6, 1:10]

Age_mean Albumin_max Albumin_median Albumin_min Albumin_range
[1,] 1.2031427 1.4969268 0.6976378 0.9385041 1.979510
[2,] -0.1998469 0.7204092 -1.5626360 0.5777092 2.573882
[3,] 1.9272058 -1.0274668 0.2216170 -1.2234402 1.843967
[4,] 0.5763244 0.9097371 0.2960979 0.6137624 2.184383
[5,] 3.3655147 1.9412326 0.3849548 1.7309793 1.134676
[6,] 0.2603118 -0.0287943 1.4164860 2.3251879 2.259974
ALSFRS_Total_max ALSFRS_Total_median ALSFRS_Total_min
[1,] 6.925233 9.551064 15.92924
[2,] 8.124101 7.867399 14.94650
[3,] 7.443326 8.735702 17.26469
[4,] 7.578267 7.868885 16.95563
[5,] 7.554582 7.248834 15.42697
[6,] 7.516362 7.145460 14.94824
ALSFRS_Total_range ALT.SGPT._max
[1,] 25.78135 4.1516252
[2,] 26.11722 1.2187027
[3,] 25.61523 2.1618804
[4,] 28.19229 0.4305607
[5,] 24.90620 1.2043325
[6,] 26.57093 0.8463782

17.2 Case Study: ALS 561

This is a fairly time-consuming computation. Boruta determines the important

attributes from unimportant and tentative features. Here the importance is measured

by the out-of-bag (OOB) error. The OOB estimates the prediction error of machine-

learning methods (e.g., random forests and boosted decision trees) that utilize

bootstrap aggregation to sub-sample training data. OOB represents the mean pre-

diction error on each training sample xi, using only the trees that did not include xi in

their bootstrap samples. Out-of-bag estimates provide internal assessment of the

learning accuracy and avoid the need for an independent external validation dataset.

The importance scores for all features at every iteration are stored in the data

frame als$ImpHistory. Let’s plot a graph depicting the essential features.

Note: Again, running this code will take several minutes to complete (Fig. 17.1).

plot(als, xlab="", xaxt="n")
lz<-lapply(1:ncol(als$ImpHistory), function(i)
als$ImpHistory[is.finite(als$ImpHistory[, i]), i])
names(lz)<-colnames(als$ImpHistory)
lb<-sort(sapply(lz, median))
axis(side=1, las=2, labels=names(lb), at=1:ncol(als$ImpHistory),
cex.axis=0.5, font =4)

Fig. 17.1 Ranked variables importance using box and whisker plots for each feature

562 17 Variable/Feature Selection

We can see that plotting the graph is easy but extracting matched feature names

may require more work. The basic plot is done by this call plot(als,

xlab¼"", xaxt¼"n"), where xaxt¼"n" means we suppress plotting of

x-axis. The following lines in the script reconstruct the x-axis plot. lz is a list created

by the lapply() function. Each element in lz contains all the important scores for

a single feature in the original dataset. Also, we excluded all rejected features with

infinite importance. Then, we sorted these non-rejected features according to their

median importance and printed them on the x-axis by using axis().

We have already seen similar groups of boxplots back in Chaps. 3 and 4. In this

graph, variables with green boxes are more important than the ones represented with

red boxes, and we can see the range of importance scores within a single variable in

the graph.

It may be desirable to get rid of tentative features. Notice that this function should

be used only when strict decision is highly desired, because this test is much weaker

than Boruta and can lower the confidence of the final result.

final.als<-TentativeRoughFix(als)
print(final.als)

Boruta performed 99 iterations in 4.683657 mins.
Tentatives roughfixed over the last 99 iterations.
32 attributes confirmed important: ALSFRS_Total_max,
ALSFRS_Total_median, ALSFRS_Total_min, ALSFRS_Total_range,
Creatinine_median and 27 more;
67 attributes confirmed unimportant: Age_mean, Albumin_max,
Albumin_median, Albumin_min, Albumin_range and 62 more;

final.als$finalDecision

Age_mean Albumin_max
Rejected Rejected
Albumin_median Albumin_min
Rejected Rejected
Albumin_range ALSFRS_Total_max
Rejected Confirmed
ALSFRS_Total_median ALSFRS_Total_min
Confirmed Confirmed
…
Urine.Ph_max Urine.Ph_median
Rejected Rejected
Urine.Ph_min
Rejected
Levels: Tentative Confirmed Rejected

getConfirmedFormula(final.als)

ALSFRS_slope ~ ALSFRS_Total_max+ALSFRS_Total_median + ALSFRS_Total_min +
ALSFRS_Total_range + Creatinine_median + Creatinine_min +
hands_max + hands_median + hands_min + hands_range+Hematocrit_max+
Hematocrit_min+Hematocrit_range+Hemoglobin_median+Hemoglobin_range +
leg_max + leg_median + leg_min + leg_range + mouth_max +
mouth_median + mouth_min + mouth_range + onset_delta_mean +
pulse_max+respiratory_median + respiratory_min + respiratory_range+
trunk_max + trunk_median + trunk_min + trunk_range
<environment: 0x000000000989d6f8>

17.2 Case Study: ALS 563

report the Boruta "Confirmed" & "Tentative" features, removing the

"Rejected" ones

print(final.als$finalDecision[final.als$finalDecision %in% c("Confirmed",
"Tentative")])

ALSFRS_Total_max ALSFRS_Total_median ALSFRS_Total_min
Confirmed Confirmed Confirmed
ALSFRS_Total_range Creatinine_median Creatinine_min
Confirmed Confirmed Confirmed
hands_max hands_median hands_min
Confirmed Confirmed Confirmed
hands_range Hematocrit_max Hematocrit_min
Confirmed Confirmed Confirmed
Hematocrit_range Hemoglobin_median Hemoglobin_range
Confirmed Confirmed Confirmed
leg_max leg_median leg_min
Confirmed Confirmed Confirmed
leg_range mouth_max mouth_median
Confirmed Confirmed Confirmed
mouth_min mouth_range onset_delta_mean
Confirmed Confirmed Confirmed
pulse_max respiratory_median respiratory_min
Confirmed Confirmed Confirmed
respiratory_range trunk_max trunk_median
Confirmed Confirmed Confirmed
trunk_min trunk_range
Confirmed Confirmed
Levels: Tentative Confirmed Rejected

how many are actually "confirmed" as important/salient?

impBoruta <- final.als$finalDecision[final.als$finalDecision %in%
c("Confirmed")]; length(impBoruta)

[1] 32

The report above shows the final features selection including only the “con-

firmed” and “Tentative” features.

17.2.4 Step 4: Evaluating Model Performance

Comparing with RFE

Let’s compare the Boruta results against a classical variable selection method—

recursive feature elimination (RFE). First, we need to load two packages: caret

and randomForest. Then, as we did in Chap. 15, we must specify a resampling

method. Here we use 10-fold CV to do the resampling.

library(caret)

library(randomForest)

set.seed(123)
control<-rfeControl(functions = rfFuncs, method = "cv", number=10)

Now, all preparations are complete and we are ready to do the RFE variable

selection.

564 17 Variable/Feature Selection

rf.train<-rfe(ALS.train[, -c(1, 7)], ALS.train[, 7], sizes=c(10,20,30,40),
rfeControl=control)
rf.train

Recursive feature selection
Outer resampling method: Cross-Validated (10 fold)
Resampling performance over subset size:
Variables RMSE Rsquared RMSESD RsquaredSD Selected
10 0.3500 0.6837 0.03451 0.03837
20 0.3471 0.6894 0.03230 0.03374
30 0.3468 0.6900 0.03135 0.02967 *
40 0.3473 0.6895 0.03061 0.02887
99 0.3503 0.6842 0.02995 0.02868

The top 5 variables (out of 30):
ALSFRS_Total_range,trunk_range,hands_range,mouth_range,ALSFRS_Total_min

This calculation may take a long time to complete. The RFE invocation is

different from Boruta. Here we have to specify the feature data frame and the

class labels separately. Also, the sizes¼ option allows us to specify the number of

features we want to include in the model. Let’s try sizes¼c(10, 20, 30, 40)

to compare the model performance for alternative numbers of features.

To visualize the results, we can plot the RMSE error for the five different feature

size combinations listed in the summary. The one with 30 features has the lowest

RMSE value. This result is similar to the Boruta output, which selected around

30 features (Fig. 17.2).

plot(rf.train, type=c("g", "o"), cex=1, col=1:5)

Fig. 17.2 Root-mean square cross-validation error rate for random forest classification of the ALS

study against the number of features

17.2 Case Study: ALS 565

Using the functions predictors() and getSelectedAttributes(),

we can compare the final results of the two alternative feature selection methods.

predRFE <- predictors(rf.train)
predBoruta <- getSelectedAttributes(final.als, withTentative = F)

The Boruta and RFE feature-selction results are almost identical.

intersect(predBoruta, predRFE)
[1] "ALSFRS_Total_max" "ALSFRS_Total_median" "ALSFRS_Total_min"
[4] "ALSFRS_Total_range" "Creatinine_min" "hands_max"
[7] "hands_median" "hands_min" "hands_range"
[10] "Hematocrit_max" "Hemoglobin_median" "leg_max"
[13] "leg_median" "leg_min" "leg_range"
[16] "mouth_median" "mouth_min" "mouth_range"
[19] "onset_delta_mean" "respiratory_median" "respiratory_min"
[22] "respiratory_range" "trunk_max" "trunk_median"
[25] "trunk_min" "trunk_range"

There are 26 common variables chosen by the two techniques, which suggests

that both the Boruta and RFE methods are robust. Also, notice that the Boruta

method can give similar results without utilizing the size option. If we want to

consider ten ormore different sizes, the procedurewill be quite time consuming. Thus,

the Boruta method is effective when dealing with complex real world problems.

Comparing with Stepwise Feature Selection

Next, we can contrast the Boruta feature selection results against another classical

variable selection method – stepwise model selection. Let’s start with fitting a

bidirectional stepwise linear model-based feature selection.

data2 <- ALS.train[, -1]
Define a base model - intercept only

base.mod <- lm(ALSFRS_slope ~ 1 , data= data2)
Define the full model - including all predictors

all.mod <- lm(ALSFRS_slope ~ . , data= data2)
ols_step <- lm(ALSFRS_slope ~ ., data=data2)

ols_step <- step(base.mod, scope = list(lower=base.mod, upper = all.mod),
direction = 'both', k=2, trace = F)
summary(ols_step); ols_step

Call:
lm(formula = ALSFRS_slope ~ ALSFRS_Total_range + ALSFRS_Total_median +
ALSFRS_Total_min + Calcium_range + Calcium_max + bp_diastolic_min +
onset_delta_mean + Calcium_min + Albumin_range + Glucose_range +
ALT.SGPT._median + AST.SGOT._median + Glucose_max + Glucose_min +
Creatinine_range + Potassium_range + Chloride_range + Chloride_min+
Sodium_median + respiratory_min +respiratory_range+respiratory_max+
trunk_range + pulse_range + Bicarbonate_max + Bicarbonate_range +
Chloride_max + onset_site_mean + trunk_max + Gender_mean +
Creatinine_min, data = data2)

566 17 Variable/Feature Selection

Residuals:
Min 1Q Median 3Q Max
-2.22558 -0.17875 -0.02024 0.17098 1.95100

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.176e-01 6.064e-01 0.689 0.491091
ALSFRS_Total_range -2.260e+01 1.359e+00 -16.631 < 2e-16 ***
ALSFRS_Total_median -3.388e-02 2.868e-03 -11.812 < 2e-16 ***
ALSFRS_Total_min 2.821e-02 3.310e-03 8.524 < 2e-16 ***
…

trunk_max 2.288e-02 8.453e-03 2.706 0.006854 **
Gender_mean -3.360e-02 1.751e-02 -1.919 0.055066 .
Creatinine_min 7.643e-04 4.977e-04 1.536 0.124771

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3355 on 2191 degrees of freedom
Multiple R-squared: 0.7135, Adjusted R-squared: 0.7094
F-statistic: 176 on 31 and 2191 DF, p-value: < 2.2e-16

Call:
lm(formula = ALSFRS_slope ~ ALSFRS_Total_range + ALSFRS_Total_median +
ALSFRS_Total_min + Calcium_range + Calcium_max + bp_diastolic_min +
onset_delta_mean + Calcium_min + Albumin_range + Glucose_range +
ALT.SGPT._median + AST.SGOT._median + Glucose_max + Glucose_min +
Creatinine_range + Potassium_range + Chloride_range +Chloride_min+
Sodium_median + respiratory_min+respiratory_range+respiratory_max+
trunk_range + pulse_range + Bicarbonate_max + Bicarbonate_range +
Chloride_max + onset_site_mean + trunk_max + Gender_mean +
Creatinine_min, data = data2)

bp_diastolic_min onset_delta_mean Calcium_min
-2.249e-03 -5.461e-05 3.579e-01
Albumin_range Glucose_range ALT.SGPT._median
-2.305e+00 -1.510e+01 -2.300e-03
AST.SGOT._median Glucose_max Glucose_min
3.369e-03 3.279e-02 -3.507e-02
Creatinine_range Potassium_range Chloride_range
5.076e-01 -4.535e+00 5.318e+00
Chloride_min Sodium_median respiratory_min
1.672e-02 -9.830e-03 -1.453e-01
respiratory_range respiratory_max trunk_range
-5.834e+01 1.712e-01 -8.705e+00
pulse_range Bicarbonate_max Bicarbonate_range
-5.117e-01 7.526e-03 -2.204e+00
Chloride_max onset_site_mean trunk_max
-6.918e-03 3.359e-02 2.288e-02
Gender_mean Creatinine_min
-3.360e-02 7.643e-04

Coefficients:
(Intercept) ALSFRS_Total_range ALSFRS_Total_median
4.176e-01 -2.260e+01 -3.388e-02
ALSFRS_Total_min Calcium_range Calcium_max
2.821e-02 2.410e+02 -4.258e-01

17.2 Case Study: ALS 567

We can report the stepwise “Confirmed” (salient) features:

get the shortlisted variable

stepwiseConfirmedVars <- names(unlist(ols_step[[1]]))
remove the intercept

stepwiseConfirmedVars <- stepwiseConfirmedVars[!stepwiseConfirmedVars %in% "
(Intercept)"]
print(stepwiseConfirmedVars)

[1] "ALSFRS_Total_range" "ALSFRS_Total_median" "ALSFRS_Total_min"
[4] "Calcium_range" "Calcium_max" "bp_diastolic_min"
[7] "onset_delta_mean" "Calcium_min" "Albumin_range"
[10] "Glucose_range" "ALT.SGPT._median" "AST.SGOT._median"
[13] "Glucose_max" "Glucose_min" "Creatinine_range"
[16] "Potassium_range" "Chloride_range" "Chloride_min"
[19] "Sodium_median" "respiratory_min" "respiratory_range"
[22] "respiratory_max" "trunk_range" "pulse_range"
[25] "Bicarbonate_max" "Bicarbonate_range" "Chloride_max"
[28] "onset_site_mean" "trunk_max" "Gender_mean"
[31] "Creatinine_min"

Again, the feature selection results of Boruta and step are similar.

library(mlbench)
library(caret)

estimate variable importance

predStepwise <- varImp(ols_step, scale=FALSE)
summarize importance

print(predStepwise)

Overall
ALSFRS_Total_range 16.630592
ALSFRS_Total_median 11.812263
ALSFRS_Total_min 8.523606
Calcium_range 5.754045
Calcium_max 4.812942
bp_diastolic_min 2.539766
onset_delta_mean 2.758465
Calcium_min 3.767450
Albumin_range 2.812018
Glucose_range 5.156259
ALT.SGPT._median 2.876338
AST.SGOT._median 2.641369
Glucose_max 4.629759
Glucose_min 4.022642
Creatinine_range 2.293301
Potassium_range 1.739268
Chloride_range 4.474709
Chloride_min 4.403551
Sodium_median 2.118710
respiratory_min 5.948488
respiratory_range 5.756735
respiratory_max 5.041816
trunk_range 2.819029
pulse_range 1.696811

568 17 Variable/Feature Selection

Bicarbonate_max 2.568068
Bicarbonate_range 2.303757
Chloride_max 1.750666
onset_site_mean 1.663481
trunk_max 2.706410
Gender_mean 1.919380
Creatinine_min 1.535642

plot predStepwise

plot(predStepwise)

Boruta vs. Stepwise feataure selection

intersect(predBoruta, stepwiseConfirmedVars)

[1] "ALSFRS_Total_median" "ALSFRS_Total_min" "ALSFRS_Total_range"
[4] "Creatinine_min" "onset_delta_mean" "respiratory_min"
[7] "respiratory_range" "trunk_max" "trunk_range"

There are about nine common variables chosen by the Boruta and Stepwise

feature selection methods.

There is another more elaborate stepwise feature selection technique that is

implemented in the function MASS::stepAIC() that is useful for a wider range

of object classes.

17.3 Practice Problem

You can practice variable selection using the SOCR_Data_AD_BiomedBigMetadata

on the SOCR website. This is a smaller dataset that has 744 observations and

63 variables. Here we utilize DXCURREN or current diagnostics as the class variable.

Let’s import the dataset first.

library(rvest)

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_AD_Bio
medBigMetadata")
html_nodes(wiki_url, "#content")

{xml_nodeset (1)}
[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top
...

alzh <- html_table(html_nodes(wiki_url, "table")[[1]])
summary(alzh)

SID MMSCORE FAQTOTAL GDTOTAL
Min. : 2.0 Min. :18.00 Length:744 Min. :0.000
1st Qu.: 355.5 1st Qu.:25.00 Class :character 1st Qu.:0.000
Median : 697.5 Median :27.00 Mode :character Median :1.000
Mean : 707.5 Mean :26.81 Mean :1.367
3rd Qu.:1063.0 3rd Qu.:29.00 3rd Qu.:2.000
Max. :1435.0 Max. :30.00 Max. :6.000

17.3 Practice Problem 569

http://wiki.socr.umich.edu/index.php/SOCR_Data_AD_BiomedBigMetadata
http://wiki.socr.umich.edu/index.php/SOCR_Data_AD_BiomedBigMetadata

…
CDHOME CDCARE CDGLOBAL
Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0.0000 Median :0.0000 Median :0.0000
Mean :0.2513 Mean :0.2849 Mean :0.0672
3rd Qu.:0.5000 3rd Qu.:0.5000 3rd Qu.:0.0000
Max. :2.0000 Max. :2.0000 Max. :2.0000

The data summary shows that we have several factor variables. After converting

their type to numeric we find some missing data. We can manage this issue by

selecting only the complete observation of the original dataset or by using multivar-

iate imputation, see Chap. 3.

chrtofactor<-c(3, 5, 8, 10, 21:22, 51:54)
alzh[chrtofactor]<-data.frame(apply(alzh[chrtofactor], 2, as.numeric))

alzh<-alzh[complete.cases(alzh),]

For simplicity, here we eliminated the missing data and are left with 408 complete

observations. Now, we can apply the Boruta method for feature selection.

Boruta performed 99 iterations in 9.413648 secs.

12 attributes confirmed important: adascog, BCBREATH, CDCARE,

CDCOMMUN, CDGLOBAL and 7 more;

47 attributes confirmed unimportant: Age, BC.USEA, BCABDOMN,

BCANKLE, BCCHEST and 42 more;

2 tentative attributes left: ApoEGeneAllele1, ApoEGeneAllele2;

You might get a result that is a little bit different. We can plot the variable

importance graph using some previous knowledge (Fig. 17.3).

The final step is to get rid of the tentative features.

Boruta performed 99 iterations in 9.413648 secs.

Tentatives roughfixed over the last 99 iterations.

14 attributes confirmed important: adascog, ApoEGeneAllele1,

ApoEGeneAllele2, BCBREATH, CDCARE and 9 more;

47 attributes confirmed unimportant: Age, BC.USEA, BCABDOMN,

BCANKLE, BCCHEST and 42 more;

[1] "MMSCORE" "FAQTOTAL" "adascog"

[4] "sobcdr" "DX_Confidence" "BCBREATH"

[7] "ApoEGeneAllele1" "ApoEGeneAllele2" "CDORIENT"

[10] "CDJUDGE" "CDCOMMUN" "CDHOME"

[13] "CDCARE" "CDGLOBAL"

Can you reproduce these results? Also try to apply some of these techniques to

other data from the list of our Case-Studies.

570 17 Variable/Feature Selection

17.4 Assignment: 17. Variable/Feature Selection

17.4.1 Wrapper Feature Selection

• Explain the three major types of feature selection methods

• Filter,

• Wrapper, and

• Embedded.

17.4.2 Use the PPMI Dataset

Use the 06_PPMI_ClassificationValidationData_Short dataset setting

ResearchGroup as class variable.

• Delete irrelevant columns (e.g. X, FID_IID) and select only the PD and Control

cases.

• Properly convert the variable types.

• Apply Boruta to train a model, try different parameters (e.g., try different

pValue, maxRuns). What are the differences?

• Summarize and visualize the results.

Fig. 17.3 Variable importance plot of predicting diagnosis for the Alzheimer’s disease case-study

17.4 Assignment: 17. Variable/Feature Selection 571

• Apply Random Feature Elimination (RFE) and tune the model size.

• Evaluate the Boruta model performance by comparing with REF.

• Output and compare the variables selected by both methods. How much overlap

is there in the selected variables?

References

Guyon, E, Gunn, S, Nikravesh, M, Zadeh, LA (eds.) (2008) Feature Extraction: Foundations and

Applications, Springer, ISBN 3540354883, 9783540354888

Liu, H and Motoda, H (eds.) (2007) Computational Methods of Feature Selection, Chapman &

Hall/CRC, ISBN 1584888792, 9781584888796

Pacheco, ER (2015) Unsupervised Learning with R, Packt Publishing, ISBN 1785885812,

9781785885815

572 17 Variable/Feature Selection

Chapter 18

Regularized Linear Modeling

and Controlled Variable Selection

Many biomedical and biosocial studies involve large amounts of complex data,

including cases where the number of features (k) is large and may exceed the number

of cases (n). In such situations, parameter estimates are difficult to compute or may

be unreliable as the system is underdetermined. Regularization provides one

approach to improve model reliability, prediction accuracy, and result interpretabil-

ity. It is based on augmenting the primary fidelity term of the objective function used

in the model-fitting process with a dual regularization term that provides restrictions

on the parameter space.

Classical techniques for choosing important covariates to include in a model of

complex multivariate data rely on various types of stepwise variable selection

processes, see Chap. 17. These tend to improve prediction accuracy in certain

situations, e.g., when a small number of features are strongly predictive, or associ-

ated, with the clinical outcome or biosocial trait. However, the prediction error may

be large when the model relies purely on a fidelity term. Including a regularization

term in the optimization of the cost function improves the prediction accuracy. For

example, below we show that by shrinking large regression coefficients, ridge

regularization reduces overfitting and decreases the prediction error. Similarly, the

Least Absolute Shrinkage and Selection Operator (LASSO) employs regularization

to perform simultaneous parameter estimation and variable selection. LASSO

enhances the prediction accuracy and provides a natural interpretation of the

resulting model. Regularization refers to forcing certain characteristics of

model-based scientific inference, e.g., discouraging complex models or extreme

explanations, even if they fit the data well, by enforcing model generalizability to

prospective data, or restricting model overfitting of accidental samples.

In this chapter, we extend the mathematical foundation we presented in Chap. 5

and (1) discuss computational protocols for handling complex high-dimensional

data, (2) illustrate model estimation by controlling the false-positive rate of selection

of salient features, and (3) derive effective forecasting models.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_18

573

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_18&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_18

18.1 Questions

• How to deal with extremely high-dimensional data (hundreds or thousands of

features)?

• Why mix fidelity (model fit) and regularization (model interpretability) terms in

objective function optimization?

• How to reduce the false-positive rate, increase scientific validation, and improve

result reproducibility (e.g., Knockoff filtering)?

18.2 Matrix Notation

We should review the basics of matrix notation, linear algebra, and matrix comput-

ing we covered in Chap. 5. At the core of matrix manipulations are scalars, vectors

and matrices.

• yi: output or response variable, i ¼ 1, . . ., n (cases/subjects).

• xij: input, predictor, or feature variable, 1 � j � k, 1 � i � n.

y ¼
y1
y2
⋮

yn

0

B
B
@

1

C
C
A
,

and

X ¼
x1,1 x1,2 � � � x1,k
x2,1 x2,2 � � � x2,k
⋮ ⋮ � � � ⋮

xn,1 xn,2 � � � xn,k

0

B
B
@

1

C
C
A

:

18.3 Regularized Linear Modeling

If we assume that the covariates are orthonormal, i.e., we have a special kind of a

design matrix XTX ¼ I, then:

• The ordinary least squares (OLS) estimates minimize

min
β2ℝk

1

N
y� Xβk k22

� �

,

and are defined by

574 18 Regularized Linear Modeling and Controlled Variable Selection

β̂
OLS ¼ XTX

� ��1
XTy ¼ XTy,

• LASSO estimates minimize

min
β2ℝk

1

N
ky� Xβk22 þλ k βk1

� �

,

and are defined as a soft-threshold function of the OLS estimates:

β̂ j ¼ SNλ
�
β̂ OLS
j

�
¼ β̂ OLS

j max 0; 1� Nλ

j β̂ OLS
j j

 !

,

where SNλ is a soft thresholding operator translating values towards zero, instead of

setting smaller values to zero and leaving larger ones untouched as the hard

thresholding operator would.

• Ridge regression estimates minimize the following objective funciton:

min
β2ℝk

1

N
k y� Xβ k22 þλ k β k22

� �

,

which yields estimates β̂ j ¼ 1þ Nλð Þ�1
β̂ OLS
j . Thus, ridge regression shrinks all

coefficients by a uniform factor, (1 + Nλ)�1, and does not set any coefficients to zero.

• Best subset selection regression, also called orthogonal matching pursuit

(OMP), minimizes:

min
β2ℝk

1

N
k y� Xβ k22 þλ k βk0

� �

,

where k. k0 is the “ℓ0 norm”, defined as jz j ¼ m if exactly m components of z are

nonzero. In this case, the estimates are:

β̂ j ¼ H ffiffiffiffi
Nλ

p
�
β̂ OLS
j

�
¼ β̂ OLS

j I β̂ OLS
j

�
�
�

�
�
� �

ffiffiffiffiffiffi

Nλ
p� 	

,

where Hα is a hard-thresholding function and I is an indicator function (it is

1 if its argument is true, and 0 otherwise).

The LASSO estimates share features of the estimates from both ridge and

best subset selection regression since they both shrink the magnitude of all the

coefficients, like ridge regression. However, LASSO, also sets some of them to zero,

as in the best subset selection does. Ridge regression scales all of the coefficients

by a constant factor, whereas LASSO translates the coefficients towards zero by a

constant value and sets some of them to zero.

18.3 Regularized Linear Modeling 575

18.3.1 Ridge Regression

Ridge regression relies on L2 regularization to improve the model prediction accu-

racy. It improves prediction error by shrinking large regression coefficients to reduce

overfitting. By itself, ridge regularization does not perform variable selection and

does not really help with model interpretation.

Let’s look at one example using one of our datasets 01a_data.txt (Figs. 18.1, 18.2

and 18.3).

Fig. 18.1 Plot of the MSE rate of the ridge-regularized linear model of MLB player’s weight

against the regularization weight parameter λ (log scale on the x-axis)

Fig. 18.2 Plot of the effect-size coefficients (Age and Height) of the ridge-regularized linear model

of MLB player’s weight against the regularization weight parameter λ

576 18 Regularized Linear Modeling and Controlled Variable Selection

Data: https://umich.instructure.com/courses/38100/files/folder/data

(01a_data.txt)

data <- read.table('https://umich.instructure.com/files/330381/download?down
load_frd=1', as.is=T, header=T)
attach(data); str(data)

'data.frame': 1034 obs. of 6 variables:
$ Name : chr "Adam_Donachie" "Paul_Bako" "Ramon_Hernandez"
"Kevin_Millar" ...
$ Team : chr "BAL" "BAL" "BAL" "BAL" ...
$ Position: chr "Catcher" "Catcher" "Catcher" "First_Baseman"
$ Height : int 74 74 72 72 73 69 69 71 76 71 ...
$ Weight : int 180 215 210 210 188 176 209 200 231 180 ...
$ Age : num 23 34.7 30.8 35.4 35.7 ...

Training Data

Full Model: x <- model.matrix(Weight ~ ., data = data[1:900,])

Reduced Model

x <- model.matrix(Weight ~ Age + Height, data = data[1:900,])
creates a design (or model) matrix, and adds 1 column for outcome

according to the formula.

y <- data[1:900,]$Weight

Testing Data

x.test <- model.matrix(Weight ~ Age + Height, data = data[901:1034,])
y.test <- data[901:1034,]$Weight

install.packages("glmnet")

library("glmnet")

cv.ridge <- cv.glmnet(x, y, type.measure = "mse", alpha = 0)
alpha =1 for lasso only, alpha = 0 for ridge only, and 0<alpha<1 to
blend ridge & lasso penalty !!!!
plot(cv.ridge)

Fig. 18.3 Effect of the regularization weight parameter λ on the model coefficients (Age and

Height) of the ridge-regularized linear model of MLB player’s weight

18.3 Regularized Linear Modeling 577

https://umich.instructure.com/courses/38100/files/folder/data
https://umich.instructure.com/files/330381/download?download_frd=1
https://umich.instructure.com/files/330381/download?download_frd=1

coef(cv.ridge)

4 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) -55.7491733
(Intercept) .
Age 0.6264096
Height 3.2485564

sqrt(cv.ridge$cvm[cv.ridge$lambda == cv.ridge$lambda.1se])

[1] 17.94358

#plot variable feature coefficients against the shrinkage parameter lambda.

glmmod <-glmnet(x, y, alpha = 0)
plot(glmmod, xvar="lambda")
grid()

for plot_glmnet with ridge/lasso coefficient path labels

install.packages("plotmo")

library(plotmo)

plot_glmnet(glmmod, lwd=4) #default colors

More elaborate plots can be generated using:

plot_glmnet(glmmod,label=2,lwd=4) #label the 2 biggest final coefs

specify color of each line

g <- "blue"

plot_glmnet(glmmod, lwd=4, col=c(2,g))

report the model coefficient estimates

coef(glmmod)[, 1]

(Intercept) (Intercept) Age Height
2.016556e+02 0.000000e+00 8.327372e-37 4.789383e-36

cv.glmmod <- cv.glmnet(x, y, alpha=0)

mod.ridge <- cv.glmnet(x, y, alpha = 0, thresh = 1e-12)
lambda.best <- mod.ridge$lambda.min
lambda.best

[1] 1.192177

ridge.pred <- predict(mod.ridge, newx = x.test, s = lambda.best)
ridge.RMS <- mean((y.test - ridge.pred)^2); ridge.RMS

[1] 264.083

ridge.test.r2 <- 1 - mean((y.test - ridge.pred)^2)/mean((y.test -
mean(y.test))^2)
plot(cv.glmmod)

best_lambda <- cv.glmmod$lambda.min
best_lambda

[1] 1.192177

578 18 Regularized Linear Modeling and Controlled Variable Selection

In the plots above, different colors represents the vector of features, and the

corresponding coefficients are displayed as a function of the regularization param-

eter, λ. The top axis indicates the number of nonzero coefficients at the current value

of λ. For LASSO regularization, this top-axis corresponds to the effective degrees of

freedom (df) for the model.

Notice the usefulness of Ridge regularization for model estimation in highly

ill-conditioned problems (n� k) where slight feature perturbations may cause dis-

proportionate alterations of the corresponding weight calculations. When λ is very

large, the regularization effect dominates the optimization of the objective function

and the coefficients tend to zero. At the other extreme, as λ! 0, the resulting model

solution tends towards the ordinary least squares (OLS) and the coefficients exhibit

large oscillations. In practice, we often need to tune λ to balance this tradeoff.

Also note that in the cv.glmnet call, alpha ¼ 0 (ridge) and alpha ¼ 1

(LASSO) correspond to different types of regularization, and 0 < alpha < 1 corre-

sponds to elastic net blended regularization.

18.3.2 Least Absolute Shrinkage and Selection Operator

(LASSO) Regression

Estimating the linear regression coefficients in a linear regression model using

LASSO involves minimizing an objective function that includes an L1 regularization

term which tends to shrink the number of features. A descriptive representation of

the fidelity (left) and regularization (right) terms of the objective function are shown

below:

Xn

i¼1

yi � β0 �
Xk

j¼1

βjxij

" #2

|ffl{zffl}

fidelity term

þ λ
|{z}

reg: weight

�
Xp

j¼1

j βj j
|fflfflfflfflffl{zfflfflfflfflffl}

regilarization term

:

LASSO jointly achieves model quality, reliability and variable selection by

penalizing the sum of the absolute values of the regression coefficients. This forces

the shrinkage of certain coefficients effectively acting as a variable selection process.

This is similar to ridge regression’s penalty on the sum of the squares of the

regression coefficients, although ridge regression only shrinks the magnitude of

the coefficients without truncating them to 0.

Let’s show how to select the regularization weight parameter λ using training

data and report the error (e.g., MSE) using testing data.

18.3 Regularized Linear Modeling 579

mod.lasso <- cv.glmnet(x, y, alpha = 1, thresh = 1e-12)
alpha =1 for lasso only, alpha = 0 for ridge only, and 0<alpha<1 for elas
tic net, a blend ridge & lasso penalty !!!!
lambda.best <- mod.lasso$lambda.min
lambda.best

[1] 0.05933494

lasso.pred <- predict(mod.lasso, newx = x.test, s = lambda.best)
LASSO.MSE <- mean((y.test - lasso.pred)^2); LASSO.MSE
[1] 261.8194

Let’s retrieve the estimates of the model coefficients.

mod.lasso <- glmnet(x, y, alpha = 1)
predict(mod.lasso, s = lambda.best, type = "coefficients")

4 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) -181.9254079
(Intercept) .
Age 0.9654354
Height 4.8284803

lasso.test.r2 <- 1 - mean((y.test - lasso.pred)^2)/mean((y.test -
mean(y.test))^2)

Perhaps obtain a classical OLS linear model, as well.

lm.fit <- lm(Weight ~ Age + Height, data = data[1:900,])
summary(lm.fit)

Call:
lm(formula = Weight ~ Age + Height, data = data[1:900,])

Residuals:
Min 1Q Median 3Q Max
-50.602 -12.399 -0.718 10.913 74.446

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -184.3736 19.4232 -9.492 < 2e-16 ***
Age 0.9799 0.1335 7.341 4.74e-13 ***
Height 4.8561 0.2551 19.037 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.5 on 897 degrees of freedom
Multiple R-squared: 0.3088, Adjusted R-squared: 0.3072
F-statistic: 200.3 on 2 and 897 DF, p-value: < 2.2e-16

The OLS linear (unregularized) model has slightly larger coefficients and greater

MSE than LASSO, which attests to the shrinkage of LASSO (Fig. 18.4).

580 18 Regularized Linear Modeling and Controlled Variable Selection

lm.pred <- predict(lm.fit, newx = x.test)
LM.MSE <- mean((y - lm.pred)^2); LM.MSE

[1] 305.1995

lm.test.r2 <- 1 - mean((y - lm.pred)^2) / mean((y.test - mean(y.test))^2)

barplot(c(lm.test.r2, lasso.test.r2, ridge.test.r2), col = "red", names.arg
= c("OLS", "LASSO", "Ridge"), main = "Testing Data Derived R-squared")

Compare the results of the three alternative models (LM, LASSO and Ridge) for

these data and contrast the derived MSE results (Table. 18.1).

library(knitr) # kable function to convert tabular R-results into Rmd tables

create table as data frame

MSE_Table = data.frame(LM=LM.MSE, LASSO=LASSO.MSE, Ridge=ridge.MSE)

convert to markdown

kable(MSE_Table, format="pandoc", caption="Results of test dataset errors",
align=c("c", "c", "c"))

As both the inputs (features or predictors) and the output (response) are observed

for the testing data, we can learn the relationship between the two types of features

(controlled covariates and observable responses). Most often, we are interested in

forecasting or predicting of responses using prospective (new, testing, or

validation) data.

Fig. 18.4 Comparison of the coefficients of determination (R2) for three alternative models

Table 18.1 Results of the test dataset errors (MSE) for the three methods

LM LASSO Ridge

305.1995 261.8194 264.083

18.3 Regularized Linear Modeling 581

18.3.3 Predictor Standardization

Prior to fitting regularized linear modeling and estimating the effects, covariates may

be standardized. This can be accomplished by using the classic “z-score” formula.

This puts each predictor on the same scale (unitless quantities) - the mean is 0 and the

variance is 1. We use β̂ 0 ¼ �y, for the mean intercept parameter, and estimate the

coefficients or the remaining predictors. To facilitate interpretation of the model or

results in the context of the specific case-study, we can transform the results back to

the original scale/units after the model is estimated.

18.3.4 Estimation Goals

The basic setting here is: given a set of predictors X, find a function, f(X), to model or

predict the outcome Y.

Let’s denote the objective (loss or cost) function by L(y, f(X)). It determines

adequacy of the fit and allows us to estimate the squared error loss:

L y; f Xð Þð Þ ¼ y� f Xð Þð Þ2:

We are looking to find f that minimizes the expected loss:

E Y � f Xð Þð Þ2
h i

) f ¼ E YjX ¼ x½ �:

18.4 Linear Regression

Let’s assume that:

Y i ¼ β0 þ xi1β1 þ xi2β2 þ . . .þ xipβp þ E:

• In shorthand matrix notation, that is: Y ¼ Xβþ E.

• And the expectation of the observed outcome given the data, E[Y|X ¼ x], is a

linear function, which in certain situations can be expressed as:

argmin
β

Xn

i¼1

yi �
Xp

j¼1

xijβj

 !2

¼ argmin
β

Xn

i¼1

yi � xTi β

 !2

:

Remember that matrix multiplication is not always commutative. Multiplying on

the left both hand sides by XT ¼ X
0
, the transpose of the design matrix X, yields:

XTY ¼ XT Xβð Þ ¼ XTX
� �

β:

582 18 Regularized Linear Modeling and Controlled Variable Selection

To solve for the effect-sizes β, we can multiply both sides of the equation by the

inverse of its (right hand side) multiplier:

XTX
� ��1

XTY
� �

¼ XTX
� ��1

XTX
� �

β ¼ β:

The ordinary least squares (OLS) estimate of β is given by:

β̂ ¼ argmin
β

Xn

i¼1

yi �
Xp

j¼1

xijβj

 !2

¼ argmin
β

k y� Xβ k22)

β̂
OLS ¼ X0Xð Þ�1

X0y) f̂ xið Þ ¼ xi
0β̂ :

18.4.1 Drawbacks of Linear Regression

Despite its wide use and elegant theory, linear regression has some shortcomings.

• Prediction accuracy – Often can be improved upon;

• Model interpretability – Linear model does not automatically do variable

selection.

18.4.2 Assessing Prediction Accuracy

Given a new input, x0, how do we assess our prediction f̂ x0ð Þ?
The Expected Prediction Error (EPE) is:

EPE x0ð Þ ¼ E Y0 � f̂ x0ð Þ
� �2
h i

¼Var Eð Þ þ Var f̂ x0ð Þ
� �

þ Bias f̂ x0ð Þ
� �2

¼Var Eð Þ þMSE f̂ x0ð Þ
� �

:

where

• Var(E): irreducible error variance

• Var f̂ x0ð Þ
� �

: sample-to-sample variability of f̂ x0ð Þ, and
• Bias f̂ x0ð Þ

� �
: average difference of f̂ x0ð Þ & f(x0).

18.4.3 Estimating the Prediction Error

Common approaches to estimating prediction errors include:

18.4 Linear Regression 583

• Randomly splitting the data into “training”and “testing”sets, where the testing

data has m observations that will be used to independently validate the model

quality. We estimate/calculate f̂ using training data;

• Estimating prediction error using the testing set MSE

^MSE
�
f̂
�
¼ 1

m

Xm

i¼1

yi � f̂ xið Þ
� �2

:

Ideally, we want our model/predictions to perform well with new or

prospective data.

18.4.4 Improving the Prediction Accuracy

If f(x) 	 linear, f̂ will have low bias but possibly high variance, e.g., in high-

dimensional setting due to correlated predictors, over (k features � n cases), or

underdetermination (k > n). The goal is to minimize total error by trading off bias and

precision:

MSE f̂ xð Þ
� �

¼ Var f̂ xð Þ
� �

þ Bias f̂ xð Þ
� �2

:

We can sacrifice bias to reduce variance, which may lead to a decrease in MSE.

So, regularization allows us to tune this tradeoff.

We aim to predict the outcome variable, Yn � 1, in terms of other features Xn,k.

Assume a first-order relationship relating Y and X is of the form Y ¼ f(X) + E, where

the error term E
 N(0, σ). An estimate model f̂ Xð Þ can be computed in many

different ways (e.g., using least squares calculations for linear regressions, Newton-

Raphson, steepest decent and other methods). Then, we can decompose the expected

squared prediction error at x as:

E xð Þ ¼ E Y � f̂ xð Þ
� �2
h i

¼ E f̂ xð Þ
� �

� f xð Þ
� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bias2

þE f̂ xð Þ � E f̂ xð Þ
� �� �2

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

precision varianceð Þ

þ σ2
|{z}

irreducible error noiseð Þ

:

When the true Y vs. X relation is not known, infinite data may be necessary to

calibrate the model f̂ and it may be impractical to jointly reduce both the model

bias and variance. In general, minimizing the bias at the same time as minimizing

the variance may not be possible.

Figure 18.5 illustrates diagrammatically the dichotomy between bias (accuracy)

and precision (variability). Additional information is available in the SOCR SMHS

EBook.

584 18 Regularized Linear Modeling and Controlled Variable Selection

18.4.5 Variable Selection

Oftentimes, we are only interested in using a subset of the original features as model

predictors. Thus, we need to identify the most relevant predictors, which usually

capture the big picture of the process. This helps us avoid overly complex models

that may be difficult to interpret. Typically, when considering several models that

achieve similar results, it’s natural to select the simplest of them.

Linear regression does not directly determine the importance of features to predict

a specific outcome. The problem of selecting critical predictors is therefore very

important.

Automatic feature subset selection methods should directly determine an optimal

subset of variables. Forward or backward stepwise variable selection and forward

stagewise are examples of classical methods for choosing the best subset by

assessing various metrics like MSE, Cp, AIC, or BIC, see Chap. 17.

Fig. 18.5 Graphical representation of the four extreme scenarios for bias and precision

18.4 Linear Regression 585

18.5 Regularization Framework

As before, we start with a given X and look for a (linear) function, f(X), to model or

predict y subject to certain objective cost function, e.g., squared error loss. Adding a

second term to the cost function minimization process yields (model parameter)

estimates expressed as:

β̂ λð Þ ¼ argmin
β

Xn

i¼1

yi �
Xp

j¼1

xijβj

 !2

þ λJ βð Þ

8

<

:

9

=

;
:

In the above expression, λ� 0 is the regularization (tuning or penalty) parameter,

J(β) is a user-defined penalty function - typically, the intercept is not

penalized.

18.5.1 Role of the Penalty Term

Consider J βð Þ ¼
X k

j¼1
β2j ¼k β k22 (Ridge Regression, RR). Then, the formulation

of the regularization framework is:

β̂ λð ÞRR ¼ argmin
β

Xn

i¼1

yi �
Xp

j¼1

xijβj

 !2

þ λ
Xk

j¼1

β2j

8

<

:

9

=

;
:

Or, alternatively:

β̂ tð ÞRR ¼ argmin
β

Xn

i¼1

yi �
Xp

j¼1

xijβj

 !2

,

subject to

Xk

j¼1

β2j � t:

18.5.2 Role of the Regularization Parameter

The regularization parameter λ � 0 directly controls the bias-variance trade-off:

• λ ¼ 0 corresponds to OLS, and

• λ!1 puts more weight on the penalty function and results in more shrinkage of

the coefficients, i.e., we introduce bias at the sake of reducing the variance.

586 18 Regularized Linear Modeling and Controlled Variable Selection

The choice of λ is crucial and will be discussed below as each λ results in a

different solution β̂ λð Þ.

18.5.3 LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) regularization

relies on:

J βð Þ ¼
Xk

j¼1

j βj j¼k βk1,

which leads to the following objective function:

β̂ λð ÞL ¼ argmin
β

Xn

i¼1

yi �
Xk

j¼1

xijβj

 !2

þ λ
Xk

j¼1

jβjj

8

<

:

9

=

;
:

In practice, subtle changes in the penalty terms frequently lead to big differences

in the results. Not only does the regularization term shrink coefficients towards zero,

but it sets some of them to be exactly zero. Thus, it performs continuous variable

selection, hence the name, Least Absolute Shrinkage and Selection Operator

(LASSO).

For further details, see “Tibshirani’s LASSO Page”.

18.5.4 General Regularization Framework

The general regularization framework involves optimization of a more general

objective function:

min
f2H

Xn

i¼1

L
�
yi; f xið Þ

�
þ λJ fð Þ

 �
,

where H is a space of possible functions, L is the fidelity term, e.g., squared error,

absolute error, zero-one, negative log-likelihood (GLM), hinge loss (support vector

machines), and J is the regularizer, e.g., ridge regression, LASSO, adaptive LASSO,

group LASSO, fused LASSO, thresholded LASSO, generalized LASSO,

constrained LASSO, elastic-net, Dantzig selector, SCAD, MCP, smoothing

splines, etc.

This represents a very general and flexible framework that allows us to incorpo-

rate prior knowledge (sparsity, structure, etc.) into the model estimation.

18.5 Regularization Framework 587

18.6 Implementation of Regularization

18.6.1 Example: Neuroimaging-Genetics Study

of Parkinson’s Disease Dataset

More information about this specific study and the included derived neuroimaging

biomarkers is available online. A link to the data and a brief summary of the features

are included below:

• 05_PPMI_top_UPDRS_Integrated_LongFormat1.csv.

• Data elements include: FID_IID, L_insular_cortex_ComputeArea,

L_insular_cortex_Volume, R_insular_cortex_ComputeArea, R_insular_cortex_

Volume, L_cingulate_gyrus_ComputeArea, L_cingulate_gyrus_Volume,

R_cingulate_gyrus_ComputeArea, R_cingulate_gyrus_Volume, L_caudate_

ComputeArea, L_caudate_Volume, R_caudate_ComputeArea, R_caudate_

Volume, L_putamen_ComputeArea, L_putamen_Volume, R_putamen_

ComputeArea, R_putamen_Volume, Sex, Weight, ResearchGroup, Age,

chr12_rs34637584_GT, chr17_rs11868035_GT, chr17_rs11012_GT, chr17_

rs393152_GT, chr17_rs12185268_GT, chr17_rs199533_GT, UPDRS_part_I,

UPDRS_part_II, UPDRS_part_III, time_visit.

Note that the dataset includes missing values and repeated measures.

The goal of this demonstration is to use OLS, ridge regression, and the

LASSO to find the best predictive model for the clinical outcomes – UPRDR

score (vector) and Research Group (factor variable), in terms of demographic,

genetics, and neuroimaging biomarkers.

We can utilize the glmnet package in R for most calculations.

Initial Stuff
clean up

rm(list=ls())
load required packages

install.packages("arm")

library(glmnet)
library(arm)
library(knitr) # kable function to convert tabular R-results into Rmd tables

pick a random seed, but set.seed(seed) only effects next block of code!

seed = 1234

Organize Data
load dataset

Data: https://umich.instructure.com/courses/38100/files/folder/data

(05_PPMI_top_UPDRS_Integrated_LongFormat1.csv)

data1 <- read.table('https://umich.instructure.com/files/330397/download?dow
nload_frd=1', sep=",", header=T)
we will deal with missing values using multiple imputation later. For now,

let's just ignore incomplete cases

data1.completeRowIndexes <- complete.cases(data1);

table(data1.completeRowIndexes)

588 18 Regularized Linear Modeling and Controlled Variable Selection

https://umich.instructure.com/courses/38100/files/folder/data
https://umich.instructure.com/files/330397/download?download_frd=1
https://umich.instructure.com/files/330397/download?download_frd=1

data1.completeRowIndexes
FALSE TRUE
609 1155

prop.table(table(data1.completeRowIndexes))

data1.completeRowIndexes
FALSE TRUE
0.3452381 0.6547619

attach(data1)
View(data1[data1.completeRowIndexes,])

define response and predictors

y <- data1$UPDRS_part_I + data1$UPDRS_part_II + data1$UPDRS_part_III
table(y) # Show Clinically relevant classification

y
##0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##54 20 25 12 8 7 11 16 16 9 21 16 13 13 22 25 21 31 25 29 29 28 20 25 28
##25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
##26 35 41 23 34 32 31 37 34 28 36 29 27 22 19 17 18 18 19 16 9 10 12 9 11
##50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 68 69 71 75 80 81 82
##7 10 11 5 7 4 1 5 9 4 3 2 1 6 1 2 1 2 1 1 2 3 1

y <- y[data1.completeRowIndexes]

X = scale(data1[,]) # Explicit Scaling is not needed, as glmnet auto

standardizes predictors

X = as.matrix(data1[, c("R_caudate_Volume", "R_putamen_Volume", "Weight",

"Age", "chr17_rs12185268_GT")]) # X needs to be a matrix, not a data frame

drop_features <- c("FID_IID", "ResearchGroup", "PDRS_part_I",
"UPDRS_part_II", "UPDRS_part_III")
X <- data1[, !(names(data1) %in% drop_features)]
X = as.matrix(X) # remove columns: index, ResearchGroup, and
y=(PDRS_part_I + UPDRS_part_II + UPDRS_part_III)

X <- X[data1.completeRowIndexes,]
summary(X)

Median :2522.52 Median : 7362.90
Mean :2306.89 Mean : 6710.18
3rd Qu.:2752.17 3rd Qu.: 8483.80
Max. :3650.81 Max. :13499.92
…
chr17_rs393152_GT chr17_rs12185268_GT chr17_rs199533_GT UPDRS_part_I
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. : 0.000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 0.000
Median :0.0000 Median :0.0000 Median :0.0000 Median : 1.000
Mean :0.4468 Mean :0.4268 Mean :0.4052 Mean : 1.306
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.: 2.000
Max. :2.0000 Max. :2.0000 Max. :2.0000 Max. :13.000
time_visit
Min. : 0.00
1st Qu.: 9.00
Median :24.00
Mean :23.83
3rd Qu.:36.00
Max. :54.00

L_insular_cortex_ComputeArea L_insular_cortex_Volume
Min. : 50.03 Min. : 22.63
1st Qu.:2174.57 1st Qu.: 5867.23

18.6 Implementation of Regularization 589

randomly split data into training (80%) and test (20%) sets

set.seed(seed)
train = sample(1 : nrow(X), round((4/5) * nrow(X)))
test = -train

subset training data

yTrain = y[train]
XTrain = X[train,]
XTrainOLS = cbind(rep(1, nrow(XTrain)), XTrain)

subset test data

yTest = y[test]
XTest = X[test,]

Model Estimation & Selection
Estimate models

fitOLS = lm(yTrain ~ XTrain) # Ordinary Least Squares
glmnet automatically standardizes the predictors

fitRidge = glmnet(XTrain, yTrain, alpha = 0) # Ridge Regression
fitLASSO = glmnet(XTrain, yTrain, alpha = 1) # The LASSO

Readers are encouraged to compare the two models, ridge and LASSO.

18.6.2 Computational Complexity

Recall that the regularized regression estimates depend on the regularization param-

eter λ. Fortunately, efficient algorithms for choosing optimal λ parameters do exist.

Examples of solution path algorithms include:

• LARS Algorithm for the LASSO (Efron et al. 2004)

• Piecewise linearity (Rosset and Zhu 2007)

• Generic path algorithm (Zhou and Wu 2013)

• Pathwise coordinate descent (Friedman et al. 2007)

• Alternating Direction Method of Multipliers (ADMM) (Boyd et al. 2011)

We will show how to visualize the relations between the regularization parameter

(ln(λ)) and the number and magnitude of the corresponding coefficients for each

specific regularized regression method.

18.6.3 LASSO and Ridge Solution Paths

Figures 18.6 and 18.7 show plots of the LASSO results and are obtained using the

R script below. Note that the top-horizontal axis lables indicate the number of

non-trivial parameters in the resulting model corresponding to the log(λ), which is

labeled on the bottom-horizontal axis.

590 18 Regularized Linear Modeling and Controlled Variable Selection

Fig. 18.7 Relations between Ridge-regularized model coefficient sizes (y-axis), magnitude of the

regularization parameter (bottom axis), and the efficacy of the model selection, i.e., number of

non-trivial coefficients (bottom axis)

Fig. 18.6 Relations between LASSO-regularized model coefficient sizes (y-axis), magnitude of the

regularization parameter (bottom axis), and the efficacy of the model selection, i.e., number of

non-trivial coefficients (bottom axis)

18.6 Implementation of Regularization 591

Plot Solution Path
LASSO

plot(fitLASSO, xvar="lambda", label="TRUE")
add label to upper x-axis

mtext("LASSO regularizer: Number of Nonzero (Active) Coefficients",
side=3, line=2.5)

Similarly, the plot for the Ridge regularization can be obtained by:

Plot Solution Path
Ridge

plot(fitRidge, xvar="lambda", label="TRUE")
add label to upper x-axis

mtext("Ridge regularizer: Number of Nonzero (Active) Coefficients",
side=3, line=2.5)

Let’s try to compare the paths of the LASSO and Ridge regression solutions.

Below, you will see that the curves of LASSO are steeper and non-differentiable at

some points, which is the result of using the L1 norm. On the other hand, the Ridge

path is smoother and asymptotically tends to 0 as λ increases.

Let’s start by examining the joint objective function (including LASSO and

Ridge terms):

min
β

X

i

yi � xiβð Þ2 þ 1� α

2
βk k22 þ α βk k1

 !

,

where βk k1 ¼
Xp

j¼1

j βj jand βk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xp

j¼1

βj
�
�
�
�2

v
u
u
t are the norms of β corresponding to

the L1 and L2 distance measures, respectively. When α ¼ 0 and α ¼ 1 correspond to

Ridge and LASSO regularization. The following two natural questions raise:

• What if 0 < α < 1?

• How does the regularization penalty term affect the optimal solution?

In Chap. 10, we explored the minimal SSE (Sum of Square Error) for the OLS

(without penalty) where the feasible parameter (β) spans the entire real solution

space. In penalized optimization problems, the best solution may actually be

unachievable. Therefore, we look for solutions that are “closest”, within the feasible

region, to the enigmatic best solution.

The effect of the penalty term on the objective function is separate from the

fidelity term (OLS solution). Thus, the effect of 0 � α � 1 is limited to the size and

shape of the penalty region. Let’s try to visualize the feasible region as:

• centrosymmetric, when α ¼ 0, and

• super diamond, then α ¼ 1.

Here is a hands-on example:

592 18 Regularized Linear Modeling and Controlled Variable Selection

require(needs)

Constructing Quadratic Formula

result <- function(a,b,c){
if(delta(a,b,c) > 0){ # first case D>0

x_1 = (-b+sqrt(delta(a,b,c)))/(2*a)
x_2 = (-b-sqrt(delta(a,b,c)))/(2*a)
result = c(x_1,x_2)

}
else if(delta(a,b,c) == 0){ # second case D=0

x = -b/(2*a)
}
else {"There are no real roots."} # third case D<0

}
Constructing delta

delta<-function(a,b,c){
b^2-4*a*c

}

To make this realistic, we will use the MLB dataset to first fit an OLS model. The

dataset contains 1,034 records of heights and weights for some current and recent

Major League Baseball (MLB) Players.

• Height: Player height in inches,

• Weight: Player weight in pounds,

• Age: Player age at time of record.

Then, we can obtain the SSE for any kβk:

SSE ¼ Y � Ŷ
�
�

�
�
2 ¼

�
Y � Ŷ

�T�
Y � Ŷ

�
¼ YTY � 2βTXTY þ βTXTXβ:

Next, we will compute the SSE contours in several situations.

library("ggplot2")

load data

mlb<- read.table('https://umich.instructure.com/files/330381/download?downlo
ad_frd=1', as.is=T, header=T)
str(mlb)

'data.frame': 1034 obs. of 6 variables:
$ Name : chr "Adam_Donachie" "Paul_Bako" "Ramon_Hernandez"
"Kevin_Millar" ...
$ Team : chr "BAL" "BAL" "BAL" "BAL" ...
$ Position: chr "Catcher" "Catcher" "Catcher" "First_Baseman" ...
$ Height : int 74 74 72 72 73 69 69 71 76 71 ...
$ Weight : int 180 215 210 210 188 176 209 200 231 180 ...
$ Age : num 23 34.7 30.8 35.4 35.7 ...

fit<-lm(Height~Weight+Age-1, data = as.data.frame(scale(mlb[,4:6])))
points = data.frame(x=c(0,fit$coefficients[1]),y=c(0,fit$coefficients[2]),
z=c("(0,0)","OLS Coef"))

Y=scale(mlb$Height)
X = scale(mlb[,c(5,6)])
beta1=seq(-0.556, 1.556, length.out = 100)
beta2=seq(-0.661, 0.3386, length.out = 100)
df <- expand.grid(beta1 = beta1, beta2 = beta2)

18.6 Implementation of Regularization 593

https://umich.instructure.com/files/330381/download?download_frd=1
https://umich.instructure.com/files/330381/download?download_frd=1

b = as.matrix(df)
df$sse <- rep(t(Y)%*%Y,100*100)-2*b%*%t(X)%*%Y + diag(b%*%t(X)%*%X%*%t(b))

base <- ggplot(df) +
stat_contour(aes(beta1, beta2, z = sse),breaks = round(quantile(df$sse,

seq(0, 0.2, 0.03)), 0),
size = 0.5,color="darkorchid2",alpha=0.8)+

scale_x_continuous(limits = c(-0.4,1))+
scale_y_continuous(limits = c(-0.55,0.4))+
coord_fixed(ratio=1)+
geom_point(data = points,aes(x,y))+
geom_text(data = points,aes(x,y,label=z),vjust = 2,size=3.5)+
geom_segment(aes(x = -0.4, y = 0, xend = 1, yend = 0),colour = "grey46",

arrow = arrow(length=unit(0.30,"cm")),size=0.5,alpha=0.8)+
geom_segment(aes(x = 0, y = -0.55, xend = 0, yend = 0.4),colour="grey46",

arrow = arrow(length=unit(0.30,"cm")),size=0.5,alpha=0.8)

plot_alpha = function(alpha=0,restrict=0.2,beta1_range=0.2,
annot=c(0.15,-0.25,0.205,-0.05)){
a=alpha; t=restrict; k=beta1_range; pos=data.frame(V1=annot[1:4])
tex=paste("(",as.character(annot[3]),",",as.character(annot[4]),")",

sep = "")
K = seq(0,k,length.out = 50)
y = unlist(lapply((1-a)*K^2/2+a*K-t,result,a=(1-a)/2,b=a))[seq(1,99,by=2)]
fills = data.frame(x=c(rev(-K),K),y1=c(rev(y),y),y2=c(-rev(y),-y))
p<-base+geom_line(data=fills,aes(x = x,y = y1),colour = "salmon1",

alpha=0.6,size=0.7)+
geom_line(data=fills,aes(x = x,y = y2),colour = "salmon1",alpha=0.6,

size=0.7)+
geom_polygon(data = fills, aes(x, y1),fill = "red", alpha = 0.2)+
geom_polygon(data = fills, aes(x, y2), fill = "red", alpha = 0.2)+

Coef of", "alpha=",fractions(a)),size=3)+
xlab(expression(beta[1]))+
ylab(expression(beta[2]))+
ggtitle(paste("alpha =",as.character(fractions(a))))+
theme(legend.position="none")

}
$\alpha=0$ - Ridge

p1 <- plot_alpha(alpha=0,restrict=(0.21^2)/2,beta1_range=0.21,
annot=c(0.15,-0.25,0.205,-0.05))
p1 <- p1 + ggtitle(expression(paste(alpha, "=0 (Ridge)")))
$\alpha=1/9$

p2 <- plot_alpha(alpha=1/9,restrict=0.046,beta1_range=0.22,
annot =c(0.15,-0.25,0.212,-0.02))
p2 <- p2 + ggtitle(expression(paste(alpha, "=1/9")))
$\alpha=1/5$

p3 <- plot_alpha(alpha=1/5,restrict=0.063,beta1_range=0.22,
annot=c(0.13,-0.25,0.22,0))
p3 <- p3 + ggtitle(expression(paste(alpha, "=1/5")))
$\alpha=1/2$

p4 <- plot_alpha(alpha=1/2,restrict=0.123,beta1_range=0.22,
annot=c(0.12,-0.25,0.22,0))

geom_segment(data=pos,aes(x = V1[1] , y = V1[2], xend = V1[3],
yend = V1[4]),

arrow = arrow(length=unit(0.30,"cm")),alpha=0.8,
colour = "magenta")+

ggplot2::annotate("text", x = pos$V1[1]-0.01, y = pos$V1[2]-0.11,
label = paste(tex,"\n","Point of Contact \n i.e.,

594 18 Regularized Linear Modeling and Controlled Variable Selection

p4 <- p4 + ggtitle(expression(paste(alpha, "=1/2")))
$\alpha=3/4$

p5 <- plot_alpha(alpha=3/4,restrict=0.17,beta1_range=0.22,
annot=c(0.12,-0.25,0.22,0))
p5 <- p5 + ggtitle(expression(paste(alpha, "=3/4")))

$\alpha=1$ - LASSO

t=0.22
K = seq(0,t,length.out = 50)
fills = data.frame(x=c(-rev(K),K),y1=c(rev(t-K),c(t-K)),
y2=c(-rev(t-K),-c(t-K)))
p6 <- base +

geom_segment(aes(x = 0, y = t, xend = t, yend = 0),colour = "salmon1",
alpha=0.1,size=0.2)+

geom_segment(aes(x = 0, y = t, xend = -t, yend = 0),colour = "salmon1",
alpha=0.1,size=0.2)+

geom_segment(aes(x = 0, y = -t, xend = t, yend = 0),colour = "salmon1",
alpha=0.1,size=0.2)+

geom_segment(aes(x = 0, y = -t, xend = -t, yend = 0),colour = "salmon1",
alpha=0.1,size=0.2)+

geom_polygon(data = fills, aes(x, y1),fill = "red", alpha = 0.2)+
geom_polygon(data = fills, aes(x, y2), fill = "red", alpha = 0.2)+
geom_segment(aes(x = 0.12 , y = -0.25, xend = 0.22, yend = 0),

colour = "magenta",
arrow = arrow(length=unit(0.30,"cm")),alpha=0.8)+

ggplot2::annotate("text", x = 0.11, y = -0.36,
label = "(0.22,0)\n Point of Contact \n i.e Coef of LASSO",size=3)+

xlab(expression(beta[1]))+
ylab(expression(beta[2]))+
theme(legend.position="none")+
ggtitle(expression(paste(alpha, "=1 (LASSO)")))

Then, let’s add the six feasible regions corresponding to α ¼ 0 (Ridge), α ¼ 1
9
,

α ¼ 1
5
, α ¼ 1

2
, α ¼ 3

4
and α ¼ 1 (LASSO).

Figures 18.8, 18.9 and 18.10 provide some intuition into the continuum from

Ridge to LASSO regularization. The feasible regions are drawn as ellipse contours

of the SSE in red. Curves around the corresponding feasible regions represent the

boundary of the constraint function
1� α

2
βk k22 þ α βk k1 � t.

In this example, β2 shrinks to 0 for α ¼ 1
5
, α ¼ 1

2
, α ¼ 3

4
and α ¼ 1.

We observe that it is almost impossible for the contours of Ridge regression to

touch the circle at any of the coordinate axes. This is also true in higher dimensions

(nD), where the L1 and L2 metrics are unchanged and the 2D ellipse representations

of the feasibility regions become hyper-ellipsoidal shapes.

Generally, as α goes from 0 to 1, the coefficients of more features tend to shrink

towards 0. This specific property makes LASSO useful for variable selection.

Let’s compare the feasibility regions corresponding to Ridge (top, p1) and LASSO

(bottom, p6) regularization.

plot(p1)

18.6 Implementation of Regularization 595

Fig. 18.8 Ridge-regularization SSE contour and penalty region

Fig. 18.9 LASSO-regularization SSE contour and penalty region

596 18 Regularized Linear Modeling and Controlled Variable Selection

plot(p6)

Then, we can plot the progression from Ridge to LASSO. This composite plot is

intense and may take several minutes to render, Fig. 18.10! Finally, Fig. 18.11

depicts the MSE of the cross-validated LASSO-regularized model against the

magnitude of number of non-trivial coefficients (top axis). The dashed vertical

lines suggest an optimal range [3:9] for number of features to include in the model.

library("gridExtra")
grid.arrange(p1,p2,p3,p4,p5,p6,nrow=3)

Fig. 18.10 SSE contour and penalty region for six continuous values of the alpha parameter

illustrating the smooth transition from Ridge (α ¼ 0) to LASSO (α ¼ 1) regularization

18.6 Implementation of Regularization 597

18.6.4 Choice of the Regularization Parameter

Efficiently obtaining the entire solution path is nice, but we still have to choose a

specific λ regularization parameter. This is critical as λ controls the bias-

variance tradeoff. Traditional model selection methods rely on various

metrics like Mallows’ Cp, AIC, BIC, and adjusted R2.

Internal statistical validation (Cross validation) is a popular modern alternative,

which offers some of these benefits:

• Choice is based on predictive performance,

• Makes fewer model assumptions,

• More widely applicable.

Fig. 18.11 MSE of the cross-validated LASSO-regularized model against the magnitude of the

regularization parameter (bottom axis), and the efficacy of the model selection, i.e., number of

non-trivial coefficients (top axis). The dashed vertical lines suggest an optimal range for the penalty

term and the number of features

598 18 Regularized Linear Modeling and Controlled Variable Selection

18.6.5 Cross Validation Motivation

Ideally, we would like a separate validation set for choosing λ for a given method.

Reusing training sets may encourage overfitting and using testing data to pick λmay

underestimate the true error rate. Often, when we do not have enough data for a

separate validation set, cross-validation provides an alternative strategy.

18.6.6 n-Fold Cross Validation

We have already seen examples of using cross-validation, e.g., Chap. 14, and

Chap. 21 provides additional details about this internal statistical assessment strategy.

We can use either automated or manual cross-validation. In either case, the

protocol involves the following iterative steps:

1. Randomly split the training data into n parts (“folds”).

2. Fit a model using data in n � 1 folds for multiple λs.

3. Calculate some prediction quality metrics (e.g., MSE, accuracy) on the last

remaining fold, see Chap. 14.

4. Repeat the process and average the prediction metrics across iterations.

Common choices of n are 5, 10, and n (which corresponds to leave-one-out

CV). One standard error rule is to choose λ corresponding to the smallest model with

MSE within one standard error of the minimum MSE.

Fig. 18.12 Ridge-regularization, similar to Fig. 18.11

18.6 Implementation of Regularization 599

18.6.7 LASSO 10-Fold Cross Validation

Now, let’s apply an internal statistical cross-validation to assess the quality of the

LASSO and Ridge models, based on our Parkinson’s disease case-study. Recall our

split of the PD data into training (yTrain, XTrain) and testing (yTest, XTest) sets

(Fig. 18.12).

10-fold cross validation
LASSO

library("glmnet")
set.seed(seed) # set seed
(10-fold) cross validation for the LASSO

cvLASSO = cv.glmnet(XTrain, yTrain, alpha = 1)
plot(cvLASSO)
mtext("CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

Report MSE LASSO

predLASSO <- predict(cvLASSO, s = cvLASSO$lambda.1se, newx = XTest)
testMSE_LASSO <- mean((predLASSO - yTest)^2); testMSE_LASSO

[1] 200.5609

10-fold cross validation
Ridge Regression

set.seed(seed) # set seed
(10-fold) cross validation for Ridge Regression

cvRidge = cv.glmnet(XTrain, yTrain, alpha = 0)
plot(cvRidge)
mtext("CV Ridge: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

Report MSE Ridge

predRidge <- predict(cvRidge, s = cvRidge$lambda.1se, newx = XTest)
testMSE_Ridge <- mean((predRidge - yTest)^2); testMSE_Ridge

[1] 195.7406

Note that the predict() method, applied to cv.gmlnet or glmnet fore-

casting models, is effectively a function wrapper to predict.gmlnet().

According to what you would like to get as a prediction output, you can use

type¼"..." to specify one of the following types of prediction outputs:

• type ¼ "link", reports the linear predictors for “binomial”, “multinomial”,

“poisson” or “cox” models; for “gaussian” models it gives the fitted values.

• type ¼ "response", reports the fitted probabilities for “binomial” or “multino-

mial”, fitted mean for “poisson” and the fitted relative-risk for “cox”; for “gauss-

ian” type “response” is equivalent to type “link”.

• type ¼ "coefficients", reports the coefficients at the requested values for `s`. Note

that for “binomial” models, results are returned only for the class corresponding

to the second level of the factor response.

600 18 Regularized Linear Modeling and Controlled Variable Selection

• type ¼ "class", applies only to “binomial” or “multinomial” models, and pro-

duces the class label corresponding to the maximum probability.

• type ¼ "nonzero", returns a list of the indices of the nonzero coefficients for each

value of `s`.

18.6.8 Stepwise OLS (Ordinary Least Squares)

For a fair comparison, let’s also obtain an OLS stepwise model selection, see Chap. 17.

dt = as.data.frame(cbind(yTrain,XTrain))
ols_step <- lm(yTrain ~., data = dt)
ols_step <- step(ols_step, direction = 'both', k=2, trace = F)
summary(ols_step)

Call:
lm(formula = yTrain ~ L_cingulate_gyrus_ComputeArea +
R_cingulate_gyrus_Volume +
L_caudate_Volume + L_putamen_ComputeArea + L_putamen_Volume +
R_putamen_ComputeArea + Weight + Age + chr17_rs11012_GT +
chr17_rs393152_GT + chr17_rs12185268_GT + UPDRS_part_I, data = dt)

Residuals:
Min 1Q Median 3Q Max
-29.990 -9.098 -0.310 8.373 49.027

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.8179771 4.5458868 -0.620 0.53548
L_cingulate_gyrus_ComputeArea 0.0045203 0.0013422 3.368 0.00079 ***
R_cingulate_gyrus_Volume -0.0010036 0.0003461 -2.900 0.00382 **
L_caudate_Volume -0.0021999 0.0011054 -1.990 0.04686 *
L_putamen_ComputeArea -0.0087295 0.0045925 -1.901 0.05764 .
L_putamen_Volume 0.0035419 0.0017969 1.971 0.04902 *
R_putamen_ComputeArea 0.0029862 0.0019036 1.569 0.11706
Weight 0.0424646 0.0268088 1.584 0.11355
Age 0.2198283 0.0522490 4.207 2.84e-05 ***
chr17_rs11012_GT -4.2408237 1.8122682 -2.340 0.01950 *
chr17_rs393152_GT -3.5818432 2.2619779 -1.584 0.11365
chr17_rs12185268_GT 8.2990131 2.7356037 3.034 0.00248 **
UPDRS_part_I 3.8780897 0.2541024 15.262 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.41 on 911 degrees of freedom
Multiple R-squared: 0.2556, Adjusted R-squared: 0.2457
F-statistic: 26.06 on 12 and 911 DF, p-value: < 2.2e-16

We use direction¼both for both forward and backward selection and

choose the optimal one. k¼2 specifies AIC and BIC criteria, and you can choose

k
 log (n).

18.6 Implementation of Regularization 601

Then, we use the ols_step model to predict the outcome Y for some new

test data.

betaHatOLS_step = ols_step$coefficients
var_step <- colnames(ols_step$model)[-1]
XTestOLS_step = cbind(rep(1, nrow(XTest)), XTest[,var_step])
predOLS_step = XTestOLS_step%*%betaHatOLS_step
testMSEOLS_step = mean((predOLS_step - yTest)^2)
Report MSE OLS Stepwise feature selection

testMSEOLS_step

[1] 186.3043

Alternatively, we can predict the outcomes directly using the predict()

function, and the results should be identical:

pred2 <- predict(ols_step,as.data.frame(XTest))
any(pred2 == predOLS_step)

[1] TRUE

18.6.9 Final Models

Let’s identify the most important (predictive) features, which can then be interpreted

in the context of the specific data.

Determine final models

Extract Coefficients

OLS coefficient estimates

betaHatOLS = fitOLS$coefficients
LASSO coefficient estimates

betaHatLASSO = as.double(coef(fitLASSO, s = cvLASSO$lambda.1se)) # s is lam
bda

Ridge coefficient estimates

betaHatRidge = as.double(coef(fitRidge, s = cvRidge$lambda.1se))

Test Set MSE

calculate predicted values

XTestOLS = cbind(rep(1, nrow(XTest)), XTest) # add intercept to test data

predOLS = XTestOLS%*%betaHatOLS
predLASSO = predict(fitLASSO, s = cvLASSO$lambda.1se, newx = XTest)
predRidge = predict(fitRidge, s = cvRidge$lambda.1se, newx = XTest)

calculate test set MSE

testMSEOLS = mean((predOLS - yTest)^2)
testMSELASSO = mean((predLASSO - yTest)^2)
testMSERidge = mean((predRidge - yTest)^2)

Figure 18.13 shows a rank-ordered list of the key predictors of the clinical

outcome variable (total UPDRS, y <- data1$UPDRS_part_I + data1

$UPDRS_part_II + data1$UPDRS_part_III).

602 18 Regularized Linear Modeling and Controlled Variable Selection

Plot Regression Coefficients

create variable names for plotting

library("arm")
par(mar=c(2, 13, 1, 1)) # extra large left margin
varNames <- colnames(data1[, !(names(data1) %in% drop_features)])

varNames; length(varNames)

[1] "L_insular_cortex_ComputeArea" "L_insular_cortex_Volume"
[3] "R_insular_cortex_ComputeArea" "R_insular_cortex_Volume"
[5] "L_cingulate_gyrus_ComputeArea" "L_cingulate_gyrus_Volume"
[7] "R_cingulate_gyrus_ComputeArea" "R_cingulate_gyrus_Volume"
[9] "L_caudate_ComputeArea" "L_caudate_Volume"
[11] "R_caudate_ComputeArea" "R_caudate_Volume"
[13] "L_putamen_ComputeArea" "L_putamen_Volume"
[15] "R_putamen_ComputeArea" "R_putamen_Volume"
[17] "Sex" "Weight"
[19] "Age" "chr12_rs34637584_GT"
[21] "chr17_rs11868035_GT" "chr17_rs11012_GT"
[23] "chr17_rs393152_GT" "chr17_rs12185268_GT"
[25] "chr17_rs199533_GT" "UPDRS_part_I"
[27] "time_visit"

[1] 27

Graph 27 regression coefficients (exclude intercept [1], betaHat

indices 2:27)

coefplot(betaHatOLS[2:27], sd = rep(0, 26), cex.pts = 5,
main = "Regression Coefficient Estimates", varnames = varNames)
coefplot(betaHatLASSO[2:27], sd = rep(0, 26), add = TRUE, col.pts = "red",
cex.pts = 5)
coefplot(betaHatRidge[2:27], sd = rep(0, 26), add = TRUE, col.pts = "blue",
cex.pts = 5)
legend("bottomright", c("OLS", "LASSO", "Ridge"), col = c("black", "red",
"blue"), pch = c(20, 20 , 20), bty = "o")

Fig. 18.13 Variables importance plot for the three alternative models

18.6 Implementation of Regularization 603

18.6.10 Model Performance

Table 18.2 quantifies the performance of the four models.

Test Set MSE Table

create table as data frame

MSETable = data.frame(OLS=testMSEOLS, OLS_step=testMSEOLS_step,
LASSO=testMSELASSO, Ridge=testMSERidge)

convert to markdown

kable(MSETable, format="pandoc", caption="Test Set MSE", align=c("c", "c",
"c", "c"))

18.6.11 Comparing Selected Features

var_step = names(ols_step$coefficients)[-1]
var_lasso=colnames(XTrain)[which(coef(fitLASSO,s=cvLASSO$lambda.min)!=0)-1]

intersect(var_step,var_lasso)

[1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
[3] "Weight" "Age"
[5] "chr17_rs12185268_GT" "UPDRS_part_I"

coef(fitLASSO, s = cvLASSO$lambda.min)
28 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) 1.7142107049
L_insular_cortex_ComputeArea .
L_insular_cortex_Volume .
R_insular_cortex_ComputeArea .
R_insular_cortex_Volume .
L_cingulate_gyrus_ComputeArea 0.0003399436
L_cingulate_gyrus_Volume 0.0002099980
R_cingulate_gyrus_ComputeArea .
R_cingulate_gyrus_Volume .
L_caudate_ComputeArea .
L_caudate_Volume .
R_caudate_ComputeArea .
R_caudate_Volume .
L_putamen_ComputeArea .
L_putamen_Volume .
R_putamen_ComputeArea 0.0010417502
R_putamen_Volume .
Sex .
Weight 0.0336216322
Age 0.2097678904
chr12_rs34637584_GT .
chr17_rs11868035_GT -0.0094055047
chr17_rs11012_GT .
chr17_rs393152_GT .
chr17_rs12185268_GT 0.2688574886
chr17_rs199533_GT 0.3730813890
UPDRS_part_I 3.7697168303
time_visit .

Table 18.2 Testing

data MSE
OLS OLS_step LASSO Ridge

183.3239 186.3043 200.5609 195.7406

604 18 Regularized Linear Modeling and Controlled Variable Selection

Stepwise variable selection for OLS selects 12 variables, whereas LASSO selects

9 variables with the best λ. There are 6 common variables identified as salient

features by both OLS and LASSO.

18.6.12 Summary

Traditional linear models are useful but also have their shortcomings:

• Prediction accuracy may be sub-optimal.

• Model interpretability may be challenging (especially when a large number of

features are used as regressors).

• Stepwise model selection may improve the model performance and add some

interpretations, but still may not be optimal.

Regularization adds a penalty term to the estimation:

• Enables exploitation of the bias-variance tradeoff.

• Provides flexibility on specifying penalties to allow for continuous variable

selection.

• Allows incorporation of prior knowledge.

18.7 Knock-off Filtering: Simulated Example

Variable selection that controls the false discovery rate (FDR) of salient features can

be accomplished in different ways. Knockoff filtering represents one strategy for

controlled variable selection. To show the usage of knockoff.filter we start

with a synthetic dataset constructed so that the true coefficient vector β has only a

few nonzero entries.

The essence of knockoff filtering is based on the following three-step process:

• Construct the decoy features (knockoff variables), one for each real observed

feature. These act as controls for assessing the importance of the real variables.

• For each feature, Xi, compute the knockoff statistic, Wj, which measures the

importance of the variable, relative to its decoy counterpart, ~X i.

• Determine the overall knockoff threshold. This is computed by rank-ordering the

Wj statistics (from large to small), walking down the list of Wj’s, selecting vari-

ables Xj corresponding to positive Wj’s, and terminating this search the last time

the ratio of negative to positive Wj’s is below the default FDR q value, e.g.,

q ¼ 0.10.

18.7 Knock-off Filtering: Simulated Example 605

Mathematically, we consider Xj to be unimportant (i.e., peripheral or extraneous)

if the conditional distribution of Y given X1, . . ., Xp does not depend on Xj. Formally,

Xj is unimportant if it is conditionally independent of Y given all other features, X�j:

Y⊥Xj j X�j:

We want to generate a Markov Blanket of Y, such that the smallest set of features

J satisfies this condition. Further, to make sure we do not make too many mistakes,

we search for a set Ŝ controlling the false discovery rate (FDR):

FDR
�
Ŝ
�
¼ E

#j2 Ŝ : xj unimportant

#j2 Ŝ

 !

� q e:g:10%ð Þ:

Let’s look at one simulation example.

Problem parameters

n = 1000 # number of observations

p = 300 # number of variables

k = 30 # number of variables with nonzero coefficients

amplitude = 3.5 # signal amplitude (for noise level = 1)

Problem data

X = matrix(rnorm(n*p), nrow=n, ncol=p)
nonzero = sample(p, k)
beta = amplitude * (1:p %in% nonzero)
y.sample <- function() X %*% beta + rnorm(n)

To begin with, we will invoke the knockoff.filter using the default settings.

install.packages("knockoff")

library(knockoff)
y = y.sample()
result = knockoff.filter(X, y)
print(result)

Call:
knockoff.filter(X = X, y = y)

Selected variables:
[1] 6 29 30 42 52 54 63 68 70 83 88 96 102 113 115 135 138
[18] 139 167 176 179 194 212 220 225 228 241 248 265 273 287 288 295

The false discovery proportion (fdp) is:

fdp <- function(selected) sum(beta[selected] == 0) / max(1, length(selected)
)
fdp(result$selected)

[1] 0.09090909

This yields an approximate FDR of 0.10.

606 18 Regularized Linear Modeling and Controlled Variable Selection

The default settings of the knockoff filter use a test statistic based on LASSO --

knockoff.stat.lasso_signed_max, which computes the Wj statistics that

quantify the discrepancy between a real (Xj) and a decoy, knockoff (~X j), feature:

W j ¼ max
�
Xj;

~X j

�
� sgn

�
Xj � ~X j

�
:

Effectively, theWj statistics measure how much more important the variable Xj is

relative to its decoy counterpart ~X j. The strength of the importance of Xj relative to
~X j is measured by the magnitude of Wj.

The knockoff package includes several other test statistics, with appropriate

names prefixed by knockoff.stat. For instance, we can use a statistic based on

forward selection (fs) and a lower target FDR of 0.10.

result = knockoff.filter(X, y, fdr = 0.10, statistic = knockoff.stat.fs)
fdp(result$selected)

[1] 0.1428571

One can also define additional test statistics, complementing the ones included in

the package already. For instance, if we want to implement the following test-

statistics:

W j ¼ kX t
j :yk � k ~Xt

:yk:

We can code it as:

new_knockoff_stat <- function(X, X_ko, y) {
abs(t(X) %*% y) - abs(t(X_ko) %*% y)

}
result = knockoff.filter(X, y, statistic = new_knockoff_stat)
fdp(result$selected)

[1] 0.3333333

18.7.1 Notes

The knockoff.filter function is a wrapper around several simpler functions that

(1) construct knockoff variables (knockoff.create); (2) compute the test statistic

W (various functions with prefix knockoff.stat); and (3) compute the threshold for

variable selection (knockoff.threshold).

The high-level function knockoff.filter will automatically normalize the

columns of the input matrix (unless this behavior is explicitly disabled). However,

18.7 Knock-off Filtering: Simulated Example 607

all other functions in this package assume that the columns of the input matrix have

unitary Euclidean norm.

18.8 PD Neuroimaging-Genetics Case-Study

Let’s illustrate controlled variable selection via knockoff filtering using the real PD

dataset.

The goal is to determine which imaging, genetics and phenotypic covariates

are associated with the clinical diagnosis of PD. The dataset is publicly available

online.

18.8.1 Fetching, Cleaning and Preparing the Data

The data set consists of clinical, genetics, and demographic measurements. To

evaluate our results, we will compare diagnostic predictions created by the model

for the UPDRS scores and the ResearchGroup factor variable. First, we download

the data and read it into data frames.

data1 <- read.table('https://umich.instructure.com/files/330397/download?dow
nload_frd=1', sep=",", header=T)
we will deal with missing values using multiple imputation later. For now,

let's just ignore incomplete cases

data1.completeRowIndexes <- complete.cases(data1)

table(data1.completeRowIndexes)

prop.table(table(data1.completeRowIndexes))

data1.completeRowIndexes
FALSE TRUE
0.3452381 0.6547619

attach(data1)

View(data1[data1.completeRowIndexes,])

data2 <- data1[data1.completeRowIndexes,]
Dx_label <- data2$ResearchGroup; table(Dx_label)

Dx_label
Control PD SWEDD
121 897 137

We now construct the design matrix X and the response vector Y. The

features (columns of X) represent covariates that will be used to explain the

response Y.

608 18 Regularized Linear Modeling and Controlled Variable Selection

https://umich.instructure.com/files/330397/download?download_frd=1
https://umich.instructure.com/files/330397/download?download_frd=1

Construct preliminary design matrix.

Define response and predictors

Y <- data1$UPDRS_part_I + data1$UPDRS_part_II + data1$UPDRS_part_III
table(Y) # Show Clinically relevant classification

Y
##0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##54 20 25 12 8 7 11 16 16 9 21 16 13 13 22 25 21 31 25 29 29 28 20 25 28
##25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
##26 35 41 23 34 32 31 37 34 28 36 29 27 22 19 17 18 18 19 16 9 10 12 9 11
##50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 68 69 71 75 80 81 82
##7 10 11 5 7 4 1 5 9 4 3 2 1 6 1 2 1 2 1 1 2 3 1

Y <- Y[data1.completeRowIndexes]

X = scale(ncaaData[, -20]) # Explicit Scaling is not needed, as

glmnet auto standardizes predictors

X = as.matrix(data1[, c("R_caudate_Volume", "R_putamen_Volume", "Weight",

"Age", "chr17_rs12185268_GT")]) # X needs to be a matrix, not a data frame

drop_features <- c("FID_IID", "ResearchGroup", "UPDRS_part_I",
"UPDRS_part_II", "UPDRS_part_III")
X <- data1[, !(names(data1) %in% drop_features)]
X = as.matrix(X) # remove columns: index, ResearchGroup, and
y=(PDRS_part_I + UPDRS_part_II + UPDRS_part_III)

X <- X[data1.completeRowIndexes,]; dim(X)

[1] 1155 26

summary(X)

L_insular_cortex_ComputeArea L_insular_cortex_Volume
Min. : 50.03 Min. : 22.63
1st Qu.:2174.57 1st Qu.: 5867.23
Median :2522.52 Median : 7362.90
Mean :2306.89 Mean : 6710.18
3rd Qu.:2752.17 3rd Qu.: 8483.80
Max. :3650.81 Max. :13499.92
…
chr17_rs393152_GT chr17_rs12185268_GT chr17_rs199533_GT time_visit
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. : 0.00
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 9.00
Median :0.0000 Median :0.0000 Median :0.0000 Median :24.00
Mean :0.4468 Mean :0.4268 Mean :0.4052 Mean :23.83
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:36.00
Max. :2.0000 Max. :2.0000 Max. :2.0000 Max. :54.00

mode(X) <- 'numeric'

Dx_label <- Dx_label[data1.completeRowIndexes]; length(Dx_label)

[1] 1155

18.8.2 Preparing the Response Vector

The knockoff filter is designed to control the FDR under Gaussian noise. A quick

inspection of the response vector shows that it is highly non-Gaussian (Figs. 18.14

and 18.5).

18.8 PD Neuroimaging-Genetics Case-Study 609

hist(Y, breaks='FD')

A log-transform may help to stabilize the clinical response measurements:

hist(log(Y), breaks='FD')

Fig. 18.14 Histogram of the outcome clinical diagnostic variable (Y) for the Parkinson’s disease

case-study

Fig. 18.15 Log-transformed histogram of the outcome clinical diagnostic variable (Y)

610 18 Regularized Linear Modeling and Controlled Variable Selection

For binary outcome variables, or ordinal categorical variables, we can employ

the logistic curve to transform the polytomous outcomes into real values

(Fig. 18.16).

The Logistic curve is y ¼ f xð Þ ¼ 1
1þe�x, where y and x represent probability and

quantitative-predictor values, respectively. A slightly more general form is:

y ¼ f xð Þ ¼ K
1þe�x, where the covariate x 2 (�1,1) and the response y 2 [0,

K]. For example,

library("ggplot2")
k=7
x <- seq(-10, 10, 1)
plot(x, k/(1+exp(-x)), xlab="X-axis (Covariate)", ylab="Outcome k/(1+exp(-x)
), k=7", type="l")

The point of this logistic transformation is that:

y ¼ 1

1þ e�x
, x ¼ ln

y

1� y
,

which represents the log-odds (where y is the probability of an event of interest)!

We use the logistic regression equation model to estimate the probability of

specific outcomes: (Estimate of) P Y ¼ 1jx1; x2; :; xlð Þ ¼ 1

1þ e
� aoþ

P l

k¼1
akxk

� �,

where the coefficients ao (intercept) and effects ak, k ¼ 1, 2, . . ., l, are estimated

using GLM according to a maximum likelihood approach. Using this model

allows us to estimate the probability of the dependent (clinical outcome) variable

Y ¼ 1 (CO), i.e., surviving surgery, given the observed values of the predictors Xk,

k ¼ 1, 2, . . ., l.

Fig. 18.16 Logistic curve transforming a continuous variable into a probability value

18.8 PD Neuroimaging-Genetics Case-Study 611

Probability of surviving a heart transplant based on surgeon’s experience. A

group of 20 patients undergo heart transplantation with different surgeons having

experience in the range {0(least), 2, ..., 10(most)}, representing 100’s of operating/

surgery hours. How does the surgeon’s experience affect the probability of the

patient survival?

The data below shows the outcome of a surgery (1 ¼ survival) or (0 ¼ death)

according to the surgeons’ experience in 100’s of hours of practice (Fig. 18.17 and

Table 18.3).

mydata <- read.csv("https://umich.instructure.com/files/405273/download?down
load_frd=1") # 01_HeartSurgerySurvivalData.csv
estimates a logistic regression model for the clinical outcome (CO),

survival, using the glm

(generalized linear model) function.

convert Surgeon's Experience (SE) to a factor to indicate it should be

treated as a categorical variable.

mydata$rank <- factor(mydata$SE)

mylogit <- glm(CO ~ SE, data = mydata, family = "binomial")

library(ggplot2)

ggplot(mydata, aes(x=SE, y=CO)) + geom_point() +
stat_smooth(method="glm",method.args=list(family="binomial"),se=FALSE)

Fig. 18.17 Estimate of the logistic function for the clinical outcome (CO) probability based on the

surgeon’s experience (SE)

Table 18.3 Survival outcomes of a hypothetical surgical transplant treatment based on surgeon’s

experience

Surgeon’s expe-

rience (SE)

1 1.5 2 2.5 3 3.5 3.5 4 4.5 5 5.5 6 6.5 7 8 8.5 9 9.5 10 10

Clinical out-

come (CO)

0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1

612 18 Regularized Linear Modeling and Controlled Variable Selection

https://umich.instructure.com/files/405273/download?download_frd=1
https://umich.instructure.com/files/405273/download?download_frd=1

Graph of a logistic regression curve showing probability of surviving the surgery

versus surgeon’s experience, Fig. 18.17.

The graph shows the probability of the clinical outcome, survival, (Y-axis) versus

the surgeon’s experience (X-axis), with the logistic regression curve fitted to

the data.

mylogit <- glm(CO ~ SE, data = mydata, family = "binomial")
summary(mylogit)

Call:
glm(formula = CO ~ SE, family = "binomial", data = mydata)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7131 -0.5719 -0.0085 0.4493 1.8220

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.1030 1.7629 -2.327 0.0199 *
SE 0.7583 0.3139 2.416 0.0157 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.726 on 19 degrees of freedom

AIC: 20.092

Number of Fisher Scoring iterations: 5

Residual deviance: 16.092 on 18 degrees of freedom

The output indicates that surgeon’s experience (SE) is significantly associated

with the probability of surviving the surgery (0.0157, Wald test). The output also

provides the coefficients for:

• Intercept ¼ �4.1030, and

• SE ¼ 0.7583.

These coefficients can then be used in the logistic regression equation model to

estimate the probability of surviving the heart surgery:

Probability of surviving heart surgery CO ¼ 1
1þexp � �4:1030þ0:7583�SEð Þð Þ :

For example, for a patient who is operated on by a surgeon with 200 h of

operating experience (SE ¼ 2), we plug in the value 2 in the equation to get an

estimated probability of survival, p ¼ 0.07:

SE=2
CO =1/(1+exp(-(-4.1030+0.7583*SE)))
CO

[1] 0.07001884

18.8 PD Neuroimaging-Genetics Case-Study 613

Similarly, a patient undergoing heart surgery with a doctor who has

400 operating hours experience (SE ¼ 4), the estimated probability of survival is

p ¼ 0.26:

SE=4; CO =1/(1+exp(-(-4.1030+0.7583*SE))); CO

[1] 0.2554411

CO

[1] 0.2554411

for (SE in c(1:5)) {
CO <- 1/(1+exp(-(-4.1030+0.7583*SE)));
print(c(SE, CO))

}

[1] 1.00000000 0.03406915
[1] 2.00000000 0.07001884
[1] 3.0000000 0.1384648
[1] 4.0000000 0.2554411
[1] 5.0000000 0.4227486

[1] 0.2554411

The table below shows the probability of surviving surgery for several values of

surgeons’ experience (Table. 18.4).

The output from the logistic regression analysis gives a p-value of p ¼ 0.0157,

which is based on the Wald z-score. In addition to the Wald method, we can

calculate the p-value for logistic regression using the Likelihood Ratio Test (LRT),

which for these data yields 0.0006476922 (Table 18.5).

Table 18.4 Estimates of the likelihood of transplant surgery patient survival based on SE

Surgeon’s experience (SE) Probability of patient survival (Clinical outcome)

1 0.034

2 0.07

3 0.14

4 0.26

5 0.423

Table 18.5 Estimates of the effect-size, standard error and p-value quantifying the significance of

SE on CO

. Estimate Std. error z value Pr(>z) Wald

SE 0.7583 0.3139 2.416 0.0157 *

614 18 Regularized Linear Modeling and Controlled Variable Selection

mylogit <- glm(CO ~ SE, data = mydata, family = "binomial")
summary(mylogit)

Call:
glm(formula = CO ~ SE, family = "binomial", data = mydata)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7131 -0.5719 -0.0085 0.4493 1.8220

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.1030 1.7629 -2.327 0.0199 *
SE 0.7583 0.3139 2.416 0.0157 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.726 on 19 degrees of freedom
Residual deviance: 16.092 on 18 degrees of freedom
AIC: 20.092
Number of Fisher Scoring iterations: 5

The logit of a number 0 � p � 1 is given by the formula: logit pð Þ ¼ log
p

1�p
, and

represents the log-odds ratio (of survival in this case) (Table. 18.6).

confint(mylogit)

2.5 % 97.5 %
(Intercept) -8.6083535 -1.282692
SE 0.2687893 1.576912

So, why do we need to exponentiate the coefficients? Because,

logit pð Þ ¼ log
p

1� p
! elogit pð Þ ¼ elog

p

1�p ! RHS ¼ p

1� p
, odds� ratio;ORð Þ:

exp(coef(mylogit)) # exponentiated logit model coefficients

(Intercept) SE
0.01652254 2.13474149

• (Intercept) SE

• 0.01652254 2.13474149 ¼¼ exp(0.7583456)

• coef(mylogit) # raw logit model coefficients

• (Intercept) SE

• �4.1030298 0.7583456

Table 18.6 Point and interval

estimates of the odds ratio of

survival

. OR 2.5% 97.5%

(Intercept) 0.01652254 0.0001825743 0.277290

SE 2.13474149 1.3083794719 4.839986

18.8 PD Neuroimaging-Genetics Case-Study 615

exp(cbind(OR = coef(mylogit), confint(mylogit)))

OR 2.5 % 97.5 %
(Intercept) 0.01652254 0.0001825743 0.277290
SE 2.13474149 1.3083794719 4.839986

We can compute the LRT and report its p-values (0.0006476922) by using the

with() function:

with(mylogit, df.null - df.residual)

with(mylogit, pchisq(null.deviance - deviance, df.null - df.residual,
lower.tail = FALSE))

[1] 0.0006476922

LRT p-value <0.001 tells us that our model as a whole fits significantly better than

an empty model. The deviance residual is -2*log likelihood, and we can

report the model’s log likelihood by:

logLik(mylogit)

'log Lik.' -8.046117 (df=2)

The LRT compares the data fit of two models. For instance, removing predictor

variables from a model may reduce the model quality (i.e., a model will have a lower

log likelihood). To statistically assess whether the observed difference in model fit is

significant, the LRT compares the difference of the log likelihoods of the two

models. When this difference is statistically significant, the full model (the one

with more variables) represents a better fit to the data, compared to the reduced

model. LRT is computed using the log likelihoods (ll) of the two models:

LRT ¼ �2 ln
L m1ð Þ
L m2ð Þ

� �

¼ 2 ll m2ð Þ � ll m1ð Þð Þ,

where:

• m1 and m2 are the reduced and the full models, respectively,

• L(m1) and L(m2) denote the likelihoods of the 2 models, and

• ll(m1) and ll(m2) represent the log likelihood (natural log of the model likelihood

function).

As n!1, the distribution of the LRT is asymptotically chi-squared with degrees

of freedom equal to the number of parameters that are reduced (i.e., the number of

variables removed from the model). In our case, LRT
 χ2df¼2, as we have an

intercept and one predictor (SE), and the null model is empty (no parameters).

616 18 Regularized Linear Modeling and Controlled Variable Selection

18.8.3 False Discovery Rate (FDR)

The FDR provides one measure of test or classifier performance:

FDR
|ffl{zffl}

False Discovery Rate

¼ E
|{z}

expectation

#FalsePositives

total number of selected features

� �

|ffl{zffl}

False Discovery Proportion

:

The Benjamini-Hochberg (BH) FDR procedure involves ordering the p-values,

specifying a target FDR, calculating and applying the threshold. Below we show

how this is accomplished in R.

#p-values entered from smallest to largest

pvals <- c(0.9, 0.35, 0.01, 0.013, 0.014, 0.19, 0.35, 0.5, 0.63, 0.67, 0.75,
0.81, 0.01, 0.051)
length(pvals)

[1] 14

#enter the target FDR

alpha.star <- 0.05

order the p-values small to large

pvals <- sort(pvals); pvals

[1] 0.010 0.010 0.013 0.014 0.051 0.190 0.350 0.350 0.500 0.630 0.670
[12] 0.750 0.810 0.900

#calculate the threshold for each p-value

threshold<-alpha.star*(1:length(pvals))/length(pvals)

#compare the p-value against its threshold and display results

cbind(pvals, threshold, pvals<=threshold)

pvals threshold
[1,] 0.010 0.003571429 0
[2,] 0.010 0.007142857 0
[3,] 0.013 0.010714286 0
…
[12,] 0.750 0.042857143 0
[13,] 0.810 0.046428571 0
[14,] 0.900 0.050000000 0

Start with the smallest p-value and move up we find that the largest k for which

the p-value is less than its threshold, α∗, which is k̂ ¼ 4.

Next, the algorithm rejects the null hypotheses for the tests that correspond to the

p-values p(1), p(2), p(3), p(4).

Note: that since we controlled FDR at α∗ ¼ 0.05, we are guaranteed that on

average only 5% of the tests that we rejected are spurious. Since α∗ ¼ 0.05 of 4 is

18.8 PD Neuroimaging-Genetics Case-Study 617

quite small and less than 1, we are confident that none of our rejections are expected

to be spurious.

The Bonferroni corrected α for these data is 0:05
14

¼ 0:0036. If we had used this

family-wise error rate in our individual hypothesis tests, then we would have

concluded that none of our 14 results were significant!

Graphical Interpretation of the Benjamini-Hochberg (BH) Method

There’s a graphical interpretation of the BH calculations.

• Sort the p-values from largest to smallest.

• Plot the ordered p-values p(k) on the y-axis versus their indexes on the x-axis.

• Superimpose on this plot a line that passes through the origin and has slope α∗.

Any p-value that falls on or below this line corresponds to a significant result

(Fig. 18.18).

Fig. 18.18 Graphical representation of the naïve, conservative Bonferroni, and FDR critical

p-values

618 18 Regularized Linear Modeling and Controlled Variable Selection

#generate the values to be plotted on x-axis

x.values<-(1:length(pvals))/length(pvals)
#widen right margin to make room for labels

par(mar=c(4.1, 4.1, 1.1, 4.1))

#plot points

plot(x.values, pvals, xlab=expression(k/m), ylab="p-value")
#, ylim=c(0.0, 0.4))

#add FDR line

abline(0, .05, col=2, lwd=2)

#add naive threshold line

abline(h=.05, col=4, lty=2)

#add Bonferroni-corrected threshold line

abline(h=.05/length(pvals), col=4, lty=2)

#label lines

mtext(c('naive', 'Bonferroni'), side=4, at=c(.05, .05/length(pvals)),
las=1, line=0.2)
#select observations that are less than threshold

for.test <- cbind(1:length(pvals), pvals)
pass.test <- for.test[pvals <= 0.05*x.values,]
pass.test
pvals
4.000 0.014
#use the largest k to color points that meet Benjamini-Hochberg FDR test

last<-ifelse(is.vector(pass.test), pass.test[1],
pass.test[nrow(pass.test), 1])
points(x.values[1:last], pvals[1:last], pch=19, cex=1.5)

FDR Adjusting the p-Values

R can automatically performs the Benjamini-Hochberg procedure. The adjusted

p-values are obtained by

pvals.adjusted <- p.adjust(pvals, "BH")

The adjusted p-values indicate the corresponding null hypothesis we need to

reject to preserve the initial α∗ false-positive rate. We can also compute the adjusted

p-values as follows:

18.8 PD Neuroimaging-Genetics Case-Study 619

#calculate the term that appears in the innermost minimum function

test.p <- length(pvals)/(1:length(pvals))*pvals
test.p

[1] 0.14000000 0.07000000 0.06066667 0.04900000 0.14280000 0.44333333
[7] 0.70000000 0.61250000 0.77777778 0.88200000 0.85272727 0.87500000
[13] 0.87230769 0.90000000

#use a loop to run through each p-value and carry out the adjustment

adj.p <- numeric(14)
for(i in 1:14) {

adj.p[i]<-min(test.p[i:length(test.p)])
ifelse(adj.p[i]>1, 1, adj.p[i])

}
adj.p

[1] 0.0490000 0.0490000 0.0490000 0.0490000 0.1428000 0.4433333 0.6125000
[8] 0.6125000 0.7777778 0.8527273 0.8527273 0.8723077 0.8723077 0.9000000

Note that the manually computed (adj.p) and the automatically computed

(pvals.adjusted) adjusted-p-values are the same.

18.8.4 Running the Knockoff Filter

We now run the knockoff filter along with the Benjamini-Hochberg (BH) procedure

for controlling the false-positive rate of feature selection. More details about the

knock-off filtering methods are available online.

Before running either selection procedure, remove rows with missing values,

reduce the design matrix by removing predictor columns that do not appear fre-

quently (e.g., at least three times in the sample), and remove any columns that are

duplicates.

library(knockoff)

Direct call to knockoff filtering looks like this:

fdr <- 0.1
result = knockoff.filter(X, Y, fdr = fdr, knockoffs = 'equicorrelated')

names(result$selected)

[1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
[3] "Sex" "Weight"
[5] "Age" "chr12_rs34637584_GT"
[7] "chr17_rs11012_GT" "chr17_rs199533_GT"

knockoff_selected <- names(result$selected)

Run BH (Benjamini-Hochberg)

k = ncol(X)
lm.fit = lm(Y ~ X - 1) # no intercept
Alternatively: dat = as.data.frame(cbind(Y,X))

lm.fit = lm(Y ~ . -1,data=dat) # no intercept

620 18 Regularized Linear Modeling and Controlled Variable Selection

p.values = coef(summary(lm.fit))[, 4]
cutoff = max(c(0, which(sort(p.values) <= fdr * (1:k) / k)))
BH_selected = names(which(p.values <= fdr * cutoff / k))

knockoff_selected; BH_selected

[1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
[3] "Sex" "Weight"
[5] "Age" "chr12_rs34637584_GT"
[7] "chr17_rs11012_GT" "chr17_rs199533_GT"

[1] "XL_putamen_ComputeArea" "XL_putamen_Volume"
[3] "XSex" "XWeight"
[5] "XAge" "Xchr17_rs11868035_GT"
[7] "Xchr17_rs11012_GT" "Xchr17_rs12185268_GT"

Housekeeping: remove the "X" prefixes in the BH_selected list of features

for(i in 1:length(BH_selected)){
BH_selected[i] <- substring(BH_selected[i], 2)

}

intersect(BH_selected,knockoff_selected)

[1] "Sex" "Weight" "Age"
[4] "chr17_rs11012_GT"

We see that there are some features that are selected by both methods suggesting

they may be indeed salient.

Try to apply some of these techniques to other data from the list of our Case-

Studies.

18.9 Assignment: 18. Regularized Linear Modeling

and Knockoff Filtering

Use the ALS (Case Study 15) data to:

• Detect and impute missing value if any.

• Use the ALSFRS_slope as a clinically relevant outcome variable.

• Randomly split data into training (70%) and testing (30%) datasets.

• Use the LASSO to fit a model with cross validation (with optimized regulariza-

tion parameter) and visualize the result.

• Similarly, train a ridge regression model.

• Train OLS model and improve it with stepwise variable selection.

• Report the coefficient estimates for OLS, Stepwise OLS with AIC, Ridge and

LASSO.

• Calculate the predicted values for all 4 models and report the models performance

metircs (RMSE and R2).

• Apply knockoff filtering for variable selection, controlling the false

discovery rate.

• Compare the variables selected by Stepwise OLS, LASSO and knockoff.

18.9 Assignment: 18. Regularized Linear Modeling and Knockoff Filtering 621

References

Barber RF, Candès EJ. Controlling the false discovery rate via knockoffs. The Annals of Statistics.

2015;43(5):2055-85.

https://web.stanford.edu/~candes/Knockoffs/

https://cran.r-project.org/web/packages/knockoff/vignettes/

Liu, H and Motoda, H (eds.) (2007) Computational Methods of Feature Selection, Chapman &

Hall/CRC, ISBN 1584888792.

http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata

https://umich.instructure.com/files/330397/download?download_frd=1

622 18 Regularized Linear Modeling and Controlled Variable Selection

https://web.stanford.edu/~candes/Knockoffs/
https://cran.r-project.org/web/packages/knockoff/vignettes/
http://wiki.socr.umich.edu/index.php/SOCR_Data_PD_BiomedBigMetadata
https://umich.instructure.com/files/330397/download?download_frd=1

Chapter 19

Big Longitudinal Data Analysis

The time-varying (longitudinal) characteristics of large information flows represent a

special case of the complexity and the dynamic multi-scale nature of big biomedical

data that we discussed in the DSPA Motivation section. Previously, in Chap. 4, we

saw space-time (4D) functional magnetic resonance imaging (fMRI) data, and in

Chap. 16 we discussed streaming data, which also has a natural temporal dimension.

Now we will go deeper into managing, modeling and analyzing big longitudinal data.

In this Chapter, we will expand our predictive data analytic strategies specifically

for analyzing big longitudinal data. We will interrogate datasets that track the same

type of information, for the same subjects, units or locations, over a period of time.

Specifically, we will present time series analysis, forecasting using autoregressive

integrated moving average (ARIMA) models, structural equation models (SEM),

and longitudinal data analysis via linear mixed models.

19.1 Time Series Analysis

Time series analysis relies on models like ARIMA (Autoregressive integrated mov-

ing average) that utilize past longitudinal information to predict near future outcomes.

Times series data tent to track univariate, sometimes multivariate, processes over a

continuous time interval. The stockmarket, e.g., daily closing value of the Dow Jones

Industrial Average index, electroencephalography (EEG) data, and functional mag-

netic resonance imaging provide examples of such longitudinal datasets (timeserties).

The basic concepts in time series analysis include:

• The characteristics of (second-order) stationary time series (e.g., first two

moments are stable over time) do not depend on the time at which the series

process is observed.

• Differencing – a transformation applied to time-series data to make it stationary.

Differences between consecutive time-observations may be computed by yt
0

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_19

623

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_19&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_19

¼ yt� yt � 1. Differencing removes the level changes in the time series, eliminates

trend, reduces seasonality, and stabilizes the mean of the time series. Differencing

the time series repeatedly may yield a stationary time series. For example, a

second order differencing:

y00t ¼ yt
0 � yt�1

0

¼ yt � yt�1ð Þ � yt�1 � yt�2ð Þ

¼ yt � 2yt�1 þ yt�2

:

• Seasonal differencing is computed as a difference between one observation and

its corresponding observation in the previous epoch, or season (e.g., annually,

there are m ¼ 4 seasons), like in this example:

yt
000

¼ yt � yt�m where m ¼ number of seasons:

• The differenced data may then be used to estimate an ARMA model.

We will use the Beijing air quality PM2.5 dataset as an example to demonstrate

the analysis process. This dataset measures air pollutants - PM2.5 particles in

micrograms per cubic meter over a period of 8 years (2008–2016). It measures the

hourly average of the number of particles that are of size 2.5 microns (PM2.5) once

per hour in Beijing, China.

Let’s first import the dataset into R.

beijing.pm25<-read.csv("https://umich.instructure.com/files/1823138/download
?download_frd=1")
summary(beijing.pm25)
Index Site Parameter Date..LST.
Min. : 1 Beijing:69335 PM2.5:69335 3/13/2011 3:00: 2
1st Qu.:17335 3/13/2016 3:00: 2
Median :34668 3/14/2010 3:00: 2
Mean :34668 3/8/2009 3:00 : 2
3rd Qu.:52002 3/8/2015 3:00 : 2
Max. :69335 3/9/2014 3:00 : 2
(Other) :69323
Year Month Day Hour
Min. :2008 Min. : 1.000 Min. : 1.00 Min. : 0.0
1st Qu.:2010 1st Qu.: 4.000 1st Qu.: 8.00 1st Qu.: 5.5
Median :2012 Median : 6.000 Median :16.00 Median :11.0
Mean :2012 Mean : 6.407 Mean :15.73 Mean :11.5
3rd Qu.:2014 3rd Qu.: 9.000 3rd Qu.:23.00 3rd Qu.:17.5
Max. :2016 Max. :12.000 Max. :31.00 Max. :23.0

Value Duration QC.Name
Min. :-999.00 1 Hr:69335 Missing: 4408
1st Qu.: 22.00 Valid :64927
Median : 63.00
Mean : 24.99
3rd Qu.: 125.00
Max. : 994.00

624 19 Big Longitudinal Data Analysis

https://umich.instructure.com/files/1823138/download?download_frd=1
https://umich.instructure.com/files/1823138/download?download_frd=1

The Value column records PM2.5 AQI (Air Quality Index) for 8 years. We

observe that there are some missing data in the Value column. By looking at the

QC.Name column, we only have about 6.5% (4408 observations) missing values.

One way of solving data-missingness problems, where incomplete observations are

recorded, is to replace the absent elements by the corresponding variable mean.

beijing.pm25[beijing.pm25$Value==-999, 9]<-NA
beijing.pm25[is.na(beijing.pm25$Value), 9]<-floor(mean(beijing.pm25$Value,
na.rm = T))

Here we first reassign the missing values into NA labels. Then we replace all NA

labels with the mean computed using all non-missing observations. Note that the

floor() function casts the arithmetic averages as integer numbers, which is needed

as AQI values are expected to be whole numbers.

Now, let’s observe the trend of hourly average PM2.5 across 1 day. You can see a

significant pattern: The PM2.5 level peeks in the afternoons and is the lowest in the

early mornings. It exhibits approximate periodic boundary conditions (these patterns

oscillate daily) (Fig. 19.1).

Fig. 19.1 Time course of the mean, top-20%, and bottom-20% air quality in Beijing (PPM2.5)

19.1 Time Series Analysis 625

require(ggplot2)

id = 1:nrow(beijing.pm25)
mat = matrix(0,nrow=24,ncol=3)
stat = function(x){

c(mean(beijing.pm25[iid,"Value"]),quantile(beijing.pm25[iid,"Value"],c(0.2
,0.8)))
}
for (i in 1:24){

iid = which(id%%24==i-1)
mat[i,] = stat(iid)

}

mat <- as.data.frame(mat)
colnames(mat) <- c("mean","20%","80%")
mat$time = c(15:23,0:14)
require(reshape2)

Loading required package: reshape2

dt <- melt(mat,id="time")
colnames(dt)

[1] "time" "variable" "value"

ggplot(data = dt,mapping = aes(x=time,y=value,color=variable))+geom_line()+
scale_x_continuous(breaks = 0:23)+ggtitle("Beijing hour average PM2.5 from

2008-2016")

Are there any daily or monthly trends? We can start the data interrogation by

building an ARIMA model and examining detailed patterns in the data.

19.1.1 Step 1: Plot Time Series

To begin with, we can visualize the overall trend by plotting PM2.5 values against

time. This can be achieved using the plyr package.

library(plyr)
ts<-ts(beijing.pm25$Value, start=1, end=69335, frequency=1)
ts.plot(ts)

The dataset is recorded hourly, and the 8-year time interval includes about 69,335 h

of records. Therefore, we start at the first hour and end with 69, 335th h. Each hour has

a univariate PM2.5 AQI value measurement, so frequency¼1.

From this time series plot, Fig. 19.2, we observe that the data has some peaks but

most of the AQIs stay under 300 (which is considered hazardous).

The original plot seems have no trend at all. Remember we have our measure-

ments in hours. Will there be any difference if we use monthly average instead of

hourly reported values? In this case, we can use Simple Moving Average (SMA)

technique to smooth the original graph.

626 19 Big Longitudinal Data Analysis

To accomplish this, we need to install the TTR package and utilize the SMA()

method (Fig. 19.3).

#install.packages("TTR")

library(TTR)
bj.month<-SMA(ts, n=720)
plot.ts(bj.month, main="Monthly PM2.5 Level SMA", ylab="PM2.5 AQI")

Here we chose n to be 24∗ 30¼ 720, and we can see some pattern. It seems that

for the first 4 years (or approximately 35,040 h), the AQI fluctuates less than the last

Fig. 19.3 Simple moving monthly average PM2.5 air quality index values

Fig. 19.2 Raw time-series plot of the Beijing air quality measures (2008–2016)

19.1 Time Series Analysis 627

5 years. Let’s see what happens if we use exponentially-weighted mean, instead of

arithmetic mean.

bj.month<-EMA(ts, n=1, ratio = 2/(720+1))
plot.ts(bj.month, main="Monthly PM2.5 Level EMA", ylab="PM2.5 AQI")

The pattern seems less obvious in this graph, Fig. 19.4. Here we used exponential

smoothing ratio of 2/(n + 1).

19.1.2 Step 2: Find Proper Parameter Values

for ARIMA Model

ARIMA models have 2 components: autoregressive (AR) part and moving average

(MA) part. An ARMA(p, d, q) model is a model with p terms in AR, q terms in MA,

and d representing the order difference. Differencing is used to make the

original dataset approximately stationary. ARMA(p, d, q) has the following analyti-

cal form:

1�
Xp

i¼1

ϕiL
i

 !

1� Lð ÞdXt ¼ 1þ
Xq

i¼1

θiL
i

 !

Et:

Fig. 19.4 Exponentially-weighted monthly mean of PM2.5 air quality

628 19 Big Longitudinal Data Analysis

19.1.3 Check the Differencing Parameter

First, let’s try to determine the parameter d. To make the data stationary on the mean

(remove any trend), we can use first differencing or second order differencing.

Mathematically, first differencing is taking the difference between two adjacent

data points:

yt
0 ¼ yt � yt�1:

While second order differencing is differencing the data twice:

y∗t ¼ yt
0 � yt�1

0 ¼ yt � 2yt�1 þ yt�2:

Let’s see which differencing method is proper for the Beijing PM2.5 dataset.

Function diff() in R base can be used to calculate differencing. We can plot the

differences by plot.ts() (Fig. 19.5).

par(mfrow= c(2, 1))
bj.diff2<-diff(ts, differences=2)
plot.ts(bj.diff2, main="2nd differencing")
bj.diff<-diff(ts, differences=1)
plot.ts(bj.diff, main="1st differencing")

Neither of them appears quite stationary. In this case, we can consider using some

smoothing techniques on the data like we just did above (bj.month<-SMA(ts,

n¼720)). Let’s see if smoothing by exponentially-weighted mean (EMA) can help

making the data approximately stationary (Fig. 19.6).

Fig. 19.5 First- and second-order differencing of the AQI data

19.1 Time Series Analysis 629

par(mfrow=c(2, 1))
bj.diff2<-diff(bj.month, differences=2)
plot.ts(bj.diff2, main="2nd differencing")
bj.diff<-diff(bj.month, differences=1)
plot.ts(bj.diff, main="1st differencing")

Both of these EMA-filtered graphs have tempered variance and appear pretty

stationary with respect to the first two moments, mean and variance.

19.1.4 Identifying the AR and MA Parameters

To decide the auto-regressive (AR) and moving average (MA) parameters in the

model we need to create autocorrelation factor (ACF) and partial autocorrelation

factor (PACF) plots. PACF may suggest a value for the AR-term parameter q, and

ACF may help us determine the MA-term parameter p. We plot the ACF and PACF

using the approximately stationary time series, bj.diff object (Fig. 19.7).

par(mfrow=c(1, 2))
acf(ts(bj.diff), lag.max = 20, main="ACF")
pacf(ts(bj.diff), lag.max = 20, main="PACF")

• Pure AR model, (q ¼ 0), will have a cut off at lag p in the PACF.

• Pure MA model, (p ¼ 0), will have a cut off at lag q in the ACF.

• ARIMA(p, q) will (eventually) have a decay in both.

Fig. 19.6 Monthly-smoothed first- and second-order differencing of the AQI data

630 19 Big Longitudinal Data Analysis

All spikes in the plots are outside of the (normal) insignificant zone in the ACF

plot while two of them are significant in the PACF plot. In this case, the best ARIMA

model is likely to have both AR and MA parts.

We can examine for seasonal effects in the data using stats::stl(), a

flexible function for decomposing and forecasting the series, which uses averaging

to calculate the seasonal component of the series and then subtracts the seasonality.

Decomposing the series and removing the seasonality can be done by subtracting the

seasonal component from the original series using forecast::seasadj().

The frequency parameter in the ts() object specifies the periodicity of the data

or the number of observations per period, e.g., 30, for monthly smoothed daily

data (Fig. 19.8).

count_ma = ts(bj.month, frequency=30)
decomp = stl(count_ma, s.window="periodic")
deseasonal_count <- forecast::seasadj(decomp)
plot(decomp)

The augmented Dickey-Fuller (ADF) test, tseries::adf.test can be used

to examine the timeseries stationarity. The null hypothesis is that the series is

non-stationary. The ADF test quantifies if the change in the series can be explained

by a lagged value and a linear trend. Non-stationary series can be corrected by

differencing to remove trends or cycles.

Fig. 19.7 Autocorrelation factor (ACF) and partial autocorrelation factor (PACF) plots of

bj.diff

19.1 Time Series Analysis 631

tseries::adf.test(count_ma, alternative = "stationary")

Augmented Dickey-Fuller Test

data: count_ma
Dickey-Fuller = -8.0313, Lag order = 41, p-value = 0.01
alternative hypothesis: stationary

tseries::adf.test(bj.diff, alternative = "stationary")

Augmented Dickey-Fuller Test

data: bj.diff
Dickey-Fuller = -29.188, Lag order = 41, p-value = 0.01
alternative hypothesis: stationary

We see that we can reject the null and therefore, there is no statistically significant

non-stationarity in the bj.diff timeseries.

19.1.5 Step 3: Build an ARIMA Model

As we have some evidence suggesting d ¼ 1, the auto.arima() function in the

forecast package can help us to find the optimal estimates for the remaining pair

parameters of the ARIMA model, p and q.

Fig. 19.8 Trend and seasonal decomposition of the time-series

632 19 Big Longitudinal Data Analysis

install.packages("forecast")

library(forecast)
fit<-auto.arima(bj.month, approx=F, trace = F)
fit

Series: bj.month
ARIMA(1,1,4)

Coefficients:
ar1 ma1 ma2 ma3 ma4
0.9426 0.0813 0.0323 0.0156 0.0074
s.e. 0.0016 0.0041 0.0041 0.0041 0.0041

sigma^2 estimated as 0.004604: log likelihood=88161.91
AIC=-176311.8 AICc=-176311.8 BIC=-176257

Acf(residuals(fit))

Finally, the optimal model determined by the step-wise selection is ARIMA

(1, 1, 4). The residual plot is show on Fig. 19.9.

We can also use external information to fit ARIMA models. For example, if we

want to add the month information, in case we suspect a seasonal change in PM2.5

AQI, we can use the following script.

Fig. 19.9 ACF of the time-series residuals

19.1 Time Series Analysis 633

fit1<-auto.arima(bj.month, xreg=beijing.pm25$Month, approx=F, trace = F)
fit1

Series: bj.month
Regression with ARIMA(1,1,4) errors

Coefficients:
ar1 ma1 ma2 ma3 ma4 beijing.pm25$Month
0.9427 0.0813 0.0322 0.0156 0.0075 -0.0021
s.e. 0.0016 0.0041 0.0041 0.0041 0.0041 0.0015

sigma^2 estimated as 0.004604: log likelihood=88162.9
AIC=-176311.8 AICc=-176311.8 BIC=-176247.8

fit3<-arima(bj.month, order = c(2, 1, 0))
fit3

Call:
arima(x = bj.month, order = c(2, 1, 0))

Coefficients:
ar1 ar2
1.0260 -0.0747
s.e. 0.0038 0.0038

sigma^2 estimated as 0.004606: log likelihood = 88138.32,aic=-176270.6

We want the model AIC and BIC to be as small as possible. In terms of AIC and

BIC, this model is not drastically different compared to the last model without

Month predictor. Also, the coefficient of Month is very small and not significant

(according to the t-test) and thus can be removed.

We can examine further the ACF and the PACF plots and the residuals to

determine the model quality. When the model order parameters and structure are

correctly specified, we expect no significant autocorrelations present in the model

residual plots.

tsdisplay(residuals(fit), lag.max=45, main='(1,1,4) Model Residuals')

There is a clear pattern present in ACF/PACF plots, Fig. 19.10, suggesting that

the model residuals repeat with an approximate lag of 12 or 24 months. We may try a

modified model with a different parameters, e.g., p ¼ 24 or q ¼ 24. We can define a

new displayForecastErrors() function to show a histogram of the fore-

casted errors (Figs. 19.11 and 19.12).

634 19 Big Longitudinal Data Analysis

Fig. 19.10 ARIMA(1,1,4) model plot, ACF and PACF plots of the resiguals for bj.month

Fig. 19.11 An improved ARIMA(1,1,24) model plot, ACF and PACF plots of the resiguals for

bj.month

19.1 Time Series Analysis 635

fit24 <- arima(deseasonal_count, order=c(1,1,24)); fit24

Call:
arima(x = deseasonal_count, order = c(1, 1, 24))

Coefficients:
ar1 ma1 ma2 ma3 ma4 ma5 ma6 ma7
0.9496 0.0711 0.0214 0.0054 -0.0025 -0.0070 -0.0161 -0.0149
s.e. 0.0032 0.0049 0.0049 0.0048 0.0047 0.0046 0.0045 0.0044
ma8 ma9 ma10 ma11 ma12 ma13 ma14
-0.0162 -0.0118 -0.0100 -0.0136 -0.0045 -0.0055 -0.0075
s.e. 0.0044 0.0043 0.0042 0.0042 0.0042 0.0041 0.0041
ma15 ma16 ma17 ma18 ma19 ma20 ma21 ma22
-0.0060 -0.0005 -0.0019 0.0066 0.0088 0.0156 0.0247 0.0117
s.e. 0.0041 0.0041 0.0041 0.0041 0.0041 0.0040 0.0040 0.0040
ma23 ma24
0.0319 0.0156
s.e. 0.0040 0.0039

sigma^2 estimated as 0.004585:log likelihood = 88295.88,aic = -176539.8

tsdisplay(residuals(fit24), lag.max=36, main='Seasonal Model Residuals')

displayForecastErrors <- function(forecastErrors)
{

Generate a histogram of the Forecast Errors

binsize <- IQR(forecastErrors)/4
sd <- sd(forecastErrors)
min <- min(forecastErrors) - sd
max <- max(forecastErrors) + sd

Generate 5K normal(0,sd) RVs

norm <- rnorm(5000, mean=0, sd=sd)
min2 <- min(norm)
max2 <- max(norm)

Fig. 19.12 Diagnostic plot of the residuals of the ARIMA(1,1,24) time-series model for bj.

month

636 19 Big Longitudinal Data Analysis

if (min2 < min) { min <- min2 }
if (max2 > max) { max <- max2 }

Plot red histogram of the forecast errors

bins <- seq(min, max, binsize)
hist(forecastErrors, col="red", freq=FALSE, breaks=bins)

myHist <- hist(norm, plot=FALSE, breaks=bins)

Overlay the Blue normal curve on top of forecastErrors histogram

points(myHist$mids, myHist$density, type="l", col="blue", lwd=2)
}

displayForecastErrors(residuals(fit24))

19.1.6 Step 4: Forecasting with ARIMA Model

Now, we can use our models to make predictions for future PM2.5 AQI. We will use

the function forecast() to make predictions. In this function, we have to specify

the number of periods we want to forecast. Using the smoothed data, we can make

predictions for the next month, July 2016. As each month has about

24 � 30 ¼ 720 h, we specify a horizon h ¼ 720 (Fig. 19.13).

par(mfrow=c(1, 1))
ts.forecasts<-forecast(fit, h=720)
plot(ts.forecasts, include = 2880)

When plotting the forecasted values with the original smoothed data, we include

only the last 3 months in the original smoothed data to see the predicted values clearer.

The shaded regions indicate ranges of expected errors. The darker (inner) region

represents by 80% confidence range and the lighter (outer) region bounds by the

Fig. 19.13 Prospective out-of-range prediction intervals of the ARIMA(1,1,4) time-series model

19.1 Time Series Analysis 637

95% interval. Obviously near-term forecasts have tighter ranges of expected errors,

compared to longer-term forecasts where the variability naturally expands. A live

demo of US Census data is shown on Fig. 19.14.

19.2 Structural Equation Modeling (SEM)-Latent

Variables

Timeseries analyses provide effective strategies to interrogate longitudinal univari-

ate data. What happens if we have multiple, potentially associated, measurements

recorded at each time point?

SEM is a general multivariate statistical analysis technique that can be used for

causal modeling/inference, path analysis, confirmatory factor analysis (CFA),

covariance structure modeling, and correlation structure modeling. This method

allows separation of observed and latent variables. Other standard statistical pro-

cedures may be viewed as special cases of SEM, where statistical significance may

be less important, and covariances are the core of structural equation models.

Latent variables are features that are not directly observed but may be inferred

from the actually observed variables. In other words, a combination or transforma-

tion of observed variables can create latent features, which may help us reduce the

dimensionality of data. Also, SEM can address multi-collinearity issues when we fit

models because we can combine some high collinearity variables to create a single

(latent) variable, which can then be included into the model.

19.2.1 Foundations of SEM

SEMs consist of two complementary components: (1) a path model, quantifying

specific cause-and-effect relationships between observed variables, and (2) a mea-

surement model, quantifying latent linkages between unobservable components and

observed variables. The LISREL (LInear Structural RELations) framework repre-

sents a unifying mathematical strategy to specify these linkages, see Grace 2006.

http://www.seasonal.website/

Fig. 19.14 Live Demo: Interactive US Census ARIMA modeling

638 19 Big Longitudinal Data Analysis

http://www.seasonal.website/
http://www.seasonal.website/

The most general kind of SEM is a structural regression path model with latent

variables, which account for measurement errors of observed variables. Model

identification determines whether the model allows for unique parameter estimates

and may be based on model degrees of freedom (dfM� 0) or a known scale for every

latent feature. If ν represents the number of observed variables, then the total degrees

of freedom for a SEM,
ν 1þνð Þ

2
, corresponds to the number of variances and unique

covariances in a variance-covariance matrix for all the features, and the model

degrees of freedom, dfM ¼ ν 1þνð Þ
2

� l, where l is the number of estimated parameters.

Examples include:

• Just-identified model (dfM ¼ 0) with unique parameter estimates,

• Over-identified model (dfM > 0) desirable for model testing and assessment,

• Under-identified model (dfM < 0) is not guaranteed unique solutions for all

parameters. In practice, such models occur when the effective degrees of freedom

are reduced due to two or more highly-correlated features, which presents

problems with parameter estimation. In these situations, we can exclude or

combine some of the features boosting the degrees of freedom.

The latent variables’ scale property reflects their unobservable, not measurable,

characteristics. The latent scale, or unit, may be inferred from one of its observed

constituent variables, e.g., by imposing a unit loading identification constraint fixing

at 1.0 the factor loading of one observed variable.

An SEMmodel with appropriate scale and degrees of freedom conditions may be

identifiable subject to Bollen’s two-step identification rule. When both the CFA path

components of the SEM model are identifiable, then the whole SR model is

identified, and model fitting can be initiated.

• For the confirmatory factor analysis (CFA) part of the SEM, identification

requires (1) a minimum of two observed variables for each latent feature, (2) inde-

pendence between measurement errors and the latent variables, and (3) indepen-

dence between measurement errors.

• For the path component of the SEM, ignoring any observed variables used to

measure latent variables, model identification requires: (1) errors associated with

endogenous latent variables to be uncorrelated, and (2) all causal effects to be

unidirectional.

The LISREL representation can be summarized by the following matrix

equations:

measurement model component
x ¼ Λxξþ δ,

y ¼ Λyηþ E:

�

And

path model component η ¼ Bηþ Γξþ ζ,

19.2 Structural Equation Modeling (SEM)-Latent Variables 639

where:

• xp � 1 is a vector of observed exogenous variables representing a linear function

of ξj � 1, vector of exogenous latent variables,

• δp � 1 is a vector of measurement error, Λx is a p � j matrix of factor loadings

relating x to ξ,

• yq � 1 is a vector of observed endogenous variables,

• ηk � 1 is a vector of endogenous latent variables,

• Eq � 1 is a vector of measurement error for the endogenous variables, and

• Λy is a q � k matrix of factor loadings relating y to η.

Let’s also denote the two variance-covariance matrices, Θδ(p� p) and Θ
E
(q� q),

representing the variance-covariance matrices among the measurement errors δ and

E, respectively. The third equation describing the LISREL path model component as

relationships among latent variables includes:

• Bk � k a matrix of path coefficients describing the relationships among endoge-

nous latent variables,

• Γk � j as a matrix of path coefficients representing the linear effects of exogenous

variables on endogenous variables,

• ζk � 1 as a vector of errors of endogenous variables, and the corresponding two

variance-covariance matrices Φj � j of the latent exogenous variables, and

• Ψ k � k of the errors of endogenous variables.

The basic statistic for a typical SEM implementation is based on covariance

structure modeling and model fitting relies on optimizing an objective function,

min{ f(Σ, S)}, representing the difference between the model-implied variance-

covariance matrix, Σ, predicted from the causal and non-causal associations speci-

fied in the model, and the corresponding observed variance-covariance matrix S,

which is estimated from observed data. The objective function, f(Σ, S) can be

estimated as shown below, see Shipley 2016.

In general, causation implies correlation, suggesting that if there is a causal rela-

tionship between two variables, there must also be a systematic relationship between

them. Specifying a set of theoretical causal paths, we can reconstruct themodel-implied

variance-covariance matrix, Σ, from total effects and unanalyzed associations. The

LISREL strategy specifies the following mathematical representation:

Σ ¼
ΛyA ΓΦΓ0 þ Ψð ÞA0Λ0

y þ ΘE ΛyAΓΦΛ
0
x

ΛxΦΓ
0A0Λ0

y ΛxΦΛ
0
x þ Θδ

�
�
�
�

�
�
�
�,

where A ¼ (I � B)�1. This representation of Σ does not involve the observed and

latent exogenous and endogenous variables, x, y, ξ, η. Maximum likelihood estima-

tion (MLE) may be used to obtain the Σ parameters via iterative searches for a set of

optimal parameters minimizing the element-wise deviations between Σ and S.

The process of optimizing the objective function f(Σ, S) can be achieved by

computing the log likelihood ratio, i.e., comparing the likelihood of a given fitted

model to the likelihood of a perfectly fit model. MLE estimation requires

640 19 Big Longitudinal Data Analysis

multivariate normal distribution for the endogenous variables and Wishart distribu-

tion for the observed variance-covariance matrix, S.

Using MLE estimation simplifies the objective function to:

f Σ; Sð Þ ¼ ln j Σ j þtr S� Σ�1
� �

� ln j S j �tr SS�1
� �

,

where tr() is the trace of a matrix. The optimization of f(Σ, S) also requires independent

and identically distributed observations and positive definite matrices, Σ, S. The

iterative MLE optimization generates estimated variance-covariance matrices and

path coefficients for the specified model. More details on model assessment (using

Root Mean Square Error of Approximation, RMSEA, and Goodness of Fit Index) and

the process of defining a priori SEMhypotheses are available in Lam&Maguire, 2012.

19.2.2 SEM Components

The R Lavaan package uses the following SEM syntax, Table 19.1, to represent

relationships between variables. We can follow the following table to specify

Lavaan models:

For example in R we can write the following model model<-

' # regressions

y1þ y2 � f 1þ f 2þ x1þ x2

f 1 � f 2þ f 3

f 2 � f 3þ x1þ x2

latent variable definitions

f 1 ¼� y1þ y2þ y3

f 2 ¼� y4þ y5þ y6

f 3 ¼� y7þ y8þ y9þ y10

variances and covariances

y1 �� y1

y1 �� y2

f 1 �� f 2

intercepts

y1 � 1

f 1 � 1

'

Note that the two "
0

" symbols (in the beginning and ending of a model descrip-

tion) are very important in the R-syntax.

19.2 Structural Equation Modeling (SEM)-Latent Variables 641

19.2.3 Case Study – Parkinson’s Disease (PD)

Let’s use the PPMI dataset in our class file as an example to illustrate SEM model

fitting.

Step 1 – Collecting Data

The Parkinson’s Disease Data represents a realistic simulation case-study to examine

associations between clinical, demographic, imaging and genetics variables for

Parkinson’s disease. This is an example of Big Data for investigating important

neurodegenerative disorders.

Step 2 – Exploring and Preparing the Data

Now, we can import the dataset into R and recode the ResearchGroup variable

into a binary variable.

par(mfrow=c(1, 1))
PPMI<-read.csv("https://umich.instructure.com/files/330397/download?download
_frd=1")
summary(PPMI)

FID_IID L_insular_cortex_ComputeArea L_insular_cortex_Volume
Min. :3001 Min. : 50.03 Min. : 22.63
1st Qu.:3272 1st Qu.:1976.88 1st Qu.: 4881.36
Median :3476 Median :2498.65 Median : 7236.76
Mean :3534 Mean :2255.20 Mean : 6490.84
3rd Qu.:3817 3rd Qu.:2744.05 3rd Qu.: 8405.43
Max. :4139 Max. :3650.81 Max. :13499.92
…
UPDRS_part_I UPDRS_part_II UPDRS_part_III time_visit
Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. : 0.00
1st Qu.: 0.000 1st Qu.: 2.000 1st Qu.:12.00 1st Qu.: 8.25
Median : 1.000 Median : 5.000 Median :20.00 Median :21.00
Mean : 1.286 Mean : 6.087 Mean :19.44 Mean :23.50
3rd Qu.: 2.000 3rd Qu.: 9.000 3rd Qu.:27.00 3rd Qu.:37.50
Max. :13.000 Max. :28.000 Max. :61.00 Max. :54.00
NA's :549 NA's :553 NA's :554

PPMI$ResearchGroup<-ifelse(PPMI$ResearchGroup=="Control", "1", "0")

Table 19.1 Lavaan syntax

for specifying the relations

between variables and their

variance-covariance structure

Formula type Operator Explanation

Latent variable definition ¼~ Is measured by

Regression ~ Is regressed on

(Residual) (co)variance ~~ Is correlated with

Intercept ~1 Intercept

642 19 Big Longitudinal Data Analysis

https://umich.instructure.com/files/330397/download?download_frd=1
https://umich.instructure.com/files/330397/download?download_frd=1

This large dataset has 1,746 observations and 31 variables with missing data in

some of them. A lot of the variables are highly correlated. You can inspect high

correlation using heat maps, which reorders these covariates according to correla-

tions to illustrate clusters of high-correlations (Fig. 19.15).

pp_heat <- PPMI[complete.cases(PPMI),-20]
corr_mat = cor(pp_heat)
Remove upper triangle

corr_mat_lower = corr_mat
corr_mat_lower[upper.tri(corr_mat_lower)] = NA
Melt correlation matrix and make sure order of factor variables is correct

corr_mat_melted = melt(corr_mat_lower)
colnames(corr_mat_melted) <- c("Var1", "Var2", "value")
corr_mat_melted$Var1 = factor(corr_mat_melted$Var1, levels=colnames(corr_mat
))
corr_mat_melted$Var2 = factor(corr_mat_melted$Var2, levels=colnames(corr_mat
))

Fig. 19.15 Pair-wise correlation structure of the Parkinson’s disease (PPMI) data.

19.2 Structural Equation Modeling (SEM)-Latent Variables 643

Plot

corr_plot = ggplot(corr_mat_melted, aes(x=Var1, y=Var2, fill=value)) +
geom_tile(color='white') +
scale_fill_distiller(limits=c(-1, 1), palette='RdBu', na.value='white',

name='Correlation') +
ggtitle('Correlations') +
coord_fixed(ratio=1) +
theme_minimal() +
scale_y_discrete(position="right") +
theme(axis.text.x=element_text(angle=45, vjust=1, hjust=1),

axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.grid.major=element_blank(),
legend.position=c(0.1,0.9),
legend.justification=c(0,1))

corr_plot

And here are some specific correlations

cor(PPMI$L_insular_cortex_ComputeArea, PPMI$L_insular_cortex_Volume)

[1] 0.9837297

cor(PPMI$UPDRS_part_I, PPMI$UPDRS_part_II, use = "complete.obs")

[1] 0.4027434

cor(PPMI$UPDRS_part_II, PPMI$UPDRS_part_III, use = "complete.obs")

[1] 0.5326681

One way to solve this substantial multivariate correlation issue is to create some

latent variables. We can consider the following model.

model1<-
'

Imaging =~ L_cingulate_gyrus_ComputeArea + L_cingulate_gyrus_Volume+R_c
ingulate_gyrus_ComputeArea+R_cingulate_gyrus_Volume+R_insular_cortex_Compute
Area+R_insular_cortex_Volume

UPDRS=~UPDRS_part_I+UPDRS_part_II+UPDRS_part_III
DemoGeno =~ Weight+Sex+Age

ResearchGroup ~ Imaging + DemoGeno + UPDRS
'

Here we try to create three latent variables: Imaging, DemoGeno, and UPDRS.

Let’s fit a SEM model using cfa(), a confirmatory factor analysis function. Before

fitting the data, we need to scale them. However, we don’t need to scale our binary

response variable. We can use the following code for normalizing the data.

mydata<-scale(PPMI[, -20])
mydata<-data.frame(mydata, PPMI$ResearchGroup)
colnames(mydata)[31]<-"ResearchGroup"

644 19 Big Longitudinal Data Analysis

Step 3 – Fitting a Model on the Data

Now, we can start to build the model. The cfa() function we will use is part of the

lavaan package.

install.packages("lavaan")

library(lavaan)

fit<-cfa(model1, data=mydata, missing = 'FIML')

Here we can see some warning messages. Both our covariance and error term

matrices are not positive definite. Non-positive definite matrices can cause the

estimates of our model to be biased. There are many factors that can lead to this

problem. In this case, we might create some latent variables that are not a good fit for

our data. Let’s try to delete the DemoGeno latent variable. We can add Weight,

Sex, and Age directly to the regression model.

model2 <-
'

(1) Measurement Model
Imaging =~ L_cingulate_gyrus_ComputeArea + L_cingulate_gyrus_Volume+R_cing
ulate_gyrus_ComputeArea+R_cingulate_gyrus_Volume+R_insular_cortex_ComputeAre
a+R_insular_cortex_Volume
UPDRS =~ UPDRS_part_I +UPDRS_part_II + UPDRS_part_III
(2) Regressions
ResearchGroup ~ Imaging + UPDRS +Age+Sex+Weight
'

When fitting model2, the warning messages are gone. We can see that falsely

adding a latent variable can cause those matrices to be not positive definite. Cur-

rently, the lavaan functions sem() and cfa() are the same.

fit<-cfa(model2, data=mydata, missing = 'FIML')
summary(fit, fit.measures=TRUE)
lavaan (0.5-23.1097) converged normally after 107 iterations

Number of observations 1764

Number of missing patterns 4

Estimator ML
Minimum Function Test Statistic 7714.119
Degrees of freedom 60
P-value (Chi-square) 0.000

Model test baseline model:

Minimum Function Test Statistic 30237.866
Degrees of freedom 75
P-value 0.000

19.2 Structural Equation Modeling (SEM)-Latent Variables 645

UPDRS_part_II 1.890 0.177 10.699 0.000
UPDRS_part_III 2.345 0.248 9.468 0.000

Regressions:
Estimate Std.Err z-value P(>|z|)
ResearchGroup ~
Imaging 0.008 0.010 0.788 0.431
UPDRS -0.828 0.080 -10.299 0.000
Age 0.019 0.009 2.121 0.034
Sex -0.010 0.010 -0.974 0.330
Weight 0.005 0.010 0.481 0.631

User model versus baseline model:

Comparative Fit Index (CFI) 0.746
Tucker-Lewis Index (TLI) 0.683

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) NA
Loglikelihood unrestricted model (H1) NA

Number of free parameters 35
Akaike (AIC) NA
Bayesian (BIC) NA

Root Mean Square Error of Approximation:

RMSEA 0.269
90 Percent Confidence Interval 0.264 0.274
P-value RMSEA <= 0.05 0.000

Standardized Root Mean Square Residual:

SRMR 0.052

Parameter Estimates:

Information Observed
Standard Errors Standard

Latent Variables:
Estimate Std.Err z-value P(>|z|)
Imaging =~
L_cnglt_gyr_CA 1.000
L_cnglt_gyrs_V 0.994 0.004 260.366 0.000
R_cnglt_gyr_CA 0.961 0.007 134.531 0.000
R_cnglt_gyrs_V 0.955 0.008 126.207 0.000
R_nslr_crtx_CA 0.930 0.009 101.427 0.000
R_nslr_crtx_Vl 0.920 0.010 94.505 0.000
UPDRS =~
UPDRS_part_I 1.000

646 19 Big Longitudinal Data Analysis

Covariances:
Estimate Std.Err z-value P(>|z|)
Imaging ~~
UPDRS 0.059 0.014 4.361 0.000

Intercepts:
Estimate Std.Err z-value P(>|z|)
.L_cnglt_gyr_CA -0.000 0.024 -0.001 1.000
.L_cnglt_gyrs_V -0.000 0.024 -0.001 1.000
.R_cnglt_gyr_CA -0.000 0.024 -0.001 1.000
.R_cnglt_gyrs_V -0.000 0.024 -0.001 1.000
.R_nslr_crtx_CA -0.000 0.024 -0.001 1.000
.R_nslr_crtx_Vl -0.000 0.024 -0.001 1.000
.UPDRS_part_I -0.135 0.032 -4.225 0.000
.UPDRS_part_II -0.255 0.033 -7.621 0.000
.UPDRS_part_III -0.317 0.034 -9.181 0.000
.ResearchGroup 1.290 0.011 119.239 0.000
Imaging 0.000
UPDRS 0.000

Variances:
Estimate Std.Err z-value P(>|z|)
.L_cnglt_gyr_CA 0.006 0.001 9.641 0.000
.L_cnglt_gyrs_V 0.019 0.001 23.038 0.000
.R_cnglt_gyr_CA 0.083 0.003 27.917 0.000
.R_cnglt_gyrs_V 0.093 0.003 27.508 0.000
.R_nslr_crtx_CA 0.141 0.005 28.750 0.000
.R_nslr_crtx_Vl 0.159 0.006 28.728 0.000
.UPDRS_part_I 0.877 0.038 23.186 0.000
.UPDRS_part_II 0.561 0.033 16.873 0.000
.UPDRS_part_III 0.325 0.036 9.146 0.000
.ResearchGroup 0.083 0.006 14.808 0.000
Imaging 0.993 0.034 29.509 0.000
UPDRS 0.182 0.035 5.213 0.000

19.2.4 Outputs of Lavaan SEM

In the output of our model, we have information about how to create these two latent

variables (Imaging, UPDRS) and the estimated regression model. Specifically, it

gives the following information.

1. First six lines are called the header contains the following information:

• Lavaan version number.

• Lavaan convergence information (normal or not), and #number of iterations

needed.

• The number of observations that were effectively used in the analysis.

• The estimator that was used to obtain the parameter values (here: ML).

• The model test statistic, the degrees of freedom, and a corresponding p-value.

2. Next, we have the Model test baseline model and the value for the SRMR

19.2 Structural Equation Modeling (SEM)-Latent Variables 647

3. The last section contains the parameter estimates, standard errors (if the informa-

tion matrix is expected or observed, and if the standard errors are standard, robust,

or based on the bootstrap). Then, it tabulates all free (and fixed) parameters that

were included in the model. Typically, first the latent variables are shown,

followed by covariances and (residual) variances. The first column (Estimate)

contains the (estimated or fixed) parameter value for each model parameter; the

second column (Std.err) contains the standard error for each estimated parameter;

the third column (Z-value) contains the Wald statistic (which is simply obtained

by dividing the parameter value by its standard error); and the last column

contains the p-value for testing the null hypothesis that the parameter equals

zero in the population.

19.3 Longitudinal Data Analysis-Linear Mixed Models

As mentioned earlier, longitudinal studies take measurements for the same individ-

ual repeatedly through a period of time. Under this setting, we can measure the

change after a specific treatment. However, the measurements for the same individ-

ual may be correlated with each other. Thus, we need special models that deal with

this type of internal multivariate dependencies.

If we use the latent variable UPDRS (created in the output of SEM model) rather

than the research group as our response we can obtain a longitudinal analysis model.

In longitudinal analysis, time is often an important model variable.

19.3.1 Mean Trend

According to the output of model fit, our latent variable UPDRS is a combination

of three observed variables-UPDRS_part_I, UPDRS_part_II, and

UPDRS_part_III. We can visualize how average UPDRS values differ among

the research groups over time.

mydata$UPDRS<-mydata$UPDRS_part_I+1.890*mydata$UPDRS_part_II+2.345*mydata$UP
DRS_part_III
mydata$Imaging<-mydata$L_cingulate_gyrus_ComputeArea +0.994*mydata$L_cingul
ate_gyrus_Volume+0.961*mydata$R_cingulate_gyrus_ComputeArea+0.955*mydata$R_c
ingulate_gyrus_Volume+0.930*mydata$R_insular_cortex_ComputeArea+0.920*mydata
$R_insular_cortex_Volume

The above code stores the latent UPDRS and Imaging variables into mydata.

By now, we are experienced with using the package ggplot2 for data visualiza-

tion. Now, we will use it to set the x and y axes as time and UPDRS, and then

display the trend of the individual level UPDRS.

648 19 Big Longitudinal Data Analysis

require(ggplot2)
p<-ggplot(data=mydata, aes(x=time_visit, y=UPDRS, group=FID_IID))
dev.off()

p+geom_point()+geom_line()

This graph is a bit messy without a clear pattern emerging. Let’s see if group-level

graphs may provide more intuition. We will use the aggregate() function to get

the mean, minimum and maximum of UPDRS for each time point. Then, we will use

separate color for the two research groups and examine their mean trends

(Fig. 19.16).

ppmi.mean<-aggregate(UPDRS~time_visit+ResearchGroup, FUN = mean, data=
mydata[, c(30, 31, 32)])
ppmi.min<-aggregate(UPDRS~time_visit+ResearchGroup, FUN = min, data=
mydata[, c(30, 31, 32)])
ppmi.max<-aggregate(UPDRS~time_visit+ResearchGroup, FUN = max, data=
mydata[, c(30, 31, 32)])
ppmi.boundary<-merge(ppmi.min, ppmi.max,by=c("time_visit","ResearchGroup"))
ppmi.all<-merge(ppmi.mean,ppmi.boundary,by=c("time_visit","ResearchGroup"))
pd <- position_dodge(0.1)
p1<-ggplot(data=ppmi.all, aes(x=time_visit, y=UPDRS, group=ResearchGroup,
colour=ResearchGroup))
p1+geom_errorbar(aes(ymin=UPDRS.x, ymax=UPDRS.y, width=0.1))+geom_point()+
geom_line()

Fig. 19.16 Average UPDRS scores of the two cohorts in the PPMI dataset, patients (1) and

controls (0)

19.3 Longitudinal Data Analysis-Linear Mixed Models 649

Despite slight overlaps in some lines, the resulting graph illustrates better the

mean differences between the two cohorts. The control group (1) appears to have

relative lower means and tighter ranges compared to the PD patient group (0).

However, we need further data interrogation to determine if this visual (EDA)

evidence translates into statistically significant group differences.

Generally speaking we can always use the General Linear Modeling (GLM)

framework. However, GLM may ignore the individual differences. So, we can try

to fit a Linear Mixed Model (LMM) to incorporate different intercepts for each

individual participant. Consider the following GLM:

UPDRSij � β0 þ β1∗Imagingij þ β2∗ResearchGroupi þ β3∗timeVisitj

þ β4∗ResearchGroupi∗timevisitj þ β5∗Agei þ β6∗Sexi
þ β7∗Weighti þ Eij:

If we fit a different intercept, bi, for each individual (indicated by FID_IID), we

obtain the following LMM model:

UPDRSij � β0 þ β1∗Imagingþ β2∗ResearchGroupþ β3∗timeVisitj
þ β4∗ResearchGroupi∗timeVisitj þ β5∗Agei þ β6∗Sexi
þ β7∗Weighti þ bi þ Eij:

The LMM actually has two levels:

Stage 1

Y i ¼ Z iβi þ Ei,

where both Zi and βi are matrices.

Stage 2

The second level allows fitting random effects in the model.

βi ¼ Ai∗β þ bi:

So, the full model in matrix form would be:

Y i ¼ Xi∗β þ Z i∗bi þ Ei:

In this case study, we only consider random intercept and avoid including random

slopes, however the model can indeed be extended. In other words, Zi ¼ 1 in our

simple model. Let’s compare the two models (GLM and LMM). One R package

implementing LMM is lme4.

#install.packages("lme4")

#install.packages("arm")

library(lme4)

library(arm)

#GLM

model.glm<-glm(UPDRS~Imaging+ResearchGroup*time_visit+Age+Sex+Weight,data=my
data)
summary(model.glm)

650 19 Big Longitudinal Data Analysis

Groups Name Variance Std.Dev. Corr
FID_IID (Intercept) 7.8821 2.8075
time_visit 0.2454 0.4954 0.16
Residual 3.1233 1.7673
Number of obs: 1206, groups: FID_IID, 440

Fixed effects:

Call:
glm(formula = UPDRS ~ Imaging + ResearchGroup * time_visit +
Age + Sex + Weight, data = mydata)

Deviance Residuals:
Min 1Q Median 3Q Max
-7.6065 -2.4581 -0.3159 1.8328 14.9746

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.70000 0.10844 6.455 1.57e-10 ***
Imaging 0.03834 0.01893 2.025 0.0431 *
ResearchGroup1 -6.93501 0.33445 -20.736 < 2e-16 ***
time_visit 0.05077 0.10843 0.468 0.6397
Age 0.54171 0.10839 4.998 6.66e-07 ***
Sex 0.16170 0.11967 1.351 0.1769
Weight 0.20980 0.11707 1.792 0.0734 .
ResearchGroup1:time_visit -0.06842 0.32970 -0.208 0.8356

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 12.58436)

Null deviance: 21049 on 1205 degrees of freedom
Residual deviance: 15076 on 1198 degrees of freedom
(558 observations deleted due to missingness)
AIC: 6486.6

Number of Fisher Scoring iterations: 2

#LMM

model.lmm<-lmer(UPDRS~Imaging+ResearchGroup*time_visit+Age+Sex+Weight+(time_
visit|FID_IID), data=mydata)
summary(model.lmm)

Linear mixed model fit by REML ['lmerMod']
Formula:
UPDRS ~ Imaging + ResearchGroup * time_visit + Age + Sex + Weight +
(time_visit | FID_IID)
Data: mydata

REML criterion at convergence: 5737.9

Scaled residuals:
Min 1Q Median 3Q Max
-3.2660 -0.4617 -0.0669 0.3575 4.6158

Random effects:

19.3 Longitudinal Data Analysis-Linear Mixed Models 651

Estimate Std. Error t value
(Intercept) 0.69803 0.16881 4.135
Imaging 0.04200 0.02669 1.574
ResearchGroup1 -6.93136 0.34425 -20.135
time_visit 0.02799 0.06385 0.438
Age 0.47720 0.15065 3.168
Sex 0.18662 0.17212 1.084
Weight 0.24146 0.17075 1.414
ResearchGroup1:time_visit -0.04785 0.30496 -0.157

Correlation of Fixed Effects:
(Intr) Imagng RsrcG1 tm_vst Age Sex Weight
Imaging -0.059
ReserchGrp1 -0.496 0.101
time_visit 0.067 -0.002 -0.033
Age -0.028 0.128 0.045 0.002
Sex -0.029 0.014 0.048 0.006 0.140
Weight -0.015 0.046 0.022 0.006 0.125 0.522
RsrchGrp1:_ -0.011 -0.053 -0.001 -0.209 -0.010 -0.005 0.000

display(model.lmm)

lmer(formula = UPDRS ~ Imaging + ResearchGroup * time_visit +
Age + Sex + Weight + (time_visit | FID_IID), data = mydata)
coef.est coef.se
(Intercept) 0.70 0.17
Imaging 0.04 0.03
ResearchGroup1 -6.93 0.34
time_visit 0.03 0.06
Age 0.48 0.15
Sex 0.19 0.17
Weight 0.24 0.17
ResearchGroup1:time_visit -0.05 0.30

Error terms:
Groups Name Std.Dev. Corr
FID_IID (Intercept) 2.81
time_visit 0.50 0.16
Residual 1.77

number of obs: 1206, groups: FID_IID, 440
AIC = 5761.9, DIC = 5702.5
deviance = 5720.2

Note that we use the notation ResearchGroup*time_visit that is identical

to ResearchGroup + time_visit + ResearchGroup*time_visit.

Here R will include both terms and their interaction into the model. According to

the model outputs, the LMM model has a relatively smaller AIC. In terms of AIC,

LMM may represent a better model fit than GLM.

19.3.2 Modeling the Correlation

In the summary of the LMM model, we can see a section called Correlation of

Fixed Effects. The original model made no assumption about the correlation

(unstructured correlation). In R, we usually have the following 4 types of correlation

models.

652 19 Big Longitudinal Data Analysis

• Independence: No correlation:

1 0 0

0 1 0

0 0 1

0

@

1

A:

• Exchangeable: Correlations are constant across measurements:

1 ρ ρ

ρ 1 ρ

ρ ρ 1

0

@

1

A:

• Autoregressive order 1(AR(1)): Correlations are stronger for closer measure-

ments and weaker for more distanced measurements:

1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

0

@

1

A:

• Unstructured: Correlation is different for each occasion:

1 ρ1,2 ρ1,3
ρ1,2 1 ρ2,3
ρ1,3 ρ2,3 1

0

@

1

A:

In the LMM model, the output also seems unstructured. So, we needn’t worry

about changing the correlation structure. However, if the output under unstructured

correlation assumption looks like an Exchangeable or AR(1) structure, we may

consider changing the LMM correlation structure accordingly.

19.4 GLMM/GEE Longitudinal Data Analysis

If the response is a binary variable like ResearchGroup, we need to use General

Linear Mixed Model (GLMM) instead of LMM. The marginal model of GLMM is

called GEE. However, GLMM and GEE are actually different.

In situations where the responses are discrete, there may not be a uniform or

systematic strategy for dealing with the joint multivariate distribution of Yi ¼ {(Yi1,

Yi2, . . .,Yin)}
T, . That’s where the GEE method comes into play as it’s based on the

concept of estimating equations. It provides a general approach for analyzing

discrete and continuous responses with marginal models.

GEE is applicable when:

1. β, a generalized linear model regression parameter, characterizes systematic

variation across covariate levels,

19.4 GLMM/GEE Longitudinal Data Analysis 653

2. The data represents repeated measurements, clustered data, multivariate response,

and

3. The correlation structure is a nuisance feature of the data.

Notation

• Response variables: Y i,1;Y i,2; . . . ; Y i,ntf g, where i 2 [1,N] is the index for

clusters or subjects, and j 2 [1, nt] is the index of the measurement within

cluster/subject.

• Covariate vector: Xi,1;Xi,2; . . . ;Xi,ntf g.

The primary focus of GEE is the estimation of the mean model: E(Yi, jjXi, j) ¼
μi, j, where

g μi, j
� �

¼ β0 þ β1Xi, j 1ð Þ þ β2Xi, j 2ð Þ þ β3Xi, j 3ð Þ þ . . .þ βpXi, j pð Þ ¼ Xi, j � β:

This mean model can be any generalized linear model. For example: P(Yi, j ¼
1jXi, j) ¼ πi, j (marginal probability, as we don’t condition on any other variables):

g μi, j
� �

¼ ln
πi, j

1� πi, j

� �

¼ Xi, j � β:

Since the data could be clustered (e.g., within subject, or within unit), we need to

choose a correlation model. Let’s introduce some notation:

V i, j ¼ var Y i, jjXi

� �
,

Ai ¼ diag V i, j

� �
,

the paired correlations:

ρi, j,k ¼ corr Y i, j; Y i,kjXi

� �
,

the correlation matrix:

Ri ¼ ρi, j,k
� �

, for all j and k,

and the paired predictor-response covariances are:

V i ¼ cov Y ijXið Þ ¼ A
1=2
i RiA

1=2
i :

Assuming different correlation structures in the data leads to alternative models,

see the examples above.

Notes

• GEE is a semi-parametric technique because:

– The specification of a mean model, μi, j(β), and a correlation model, Ri(α), does

not identify a complete probability model for Yi

654 19 Big Longitudinal Data Analysis

– The model {μi, j(β),Ri(α)} is semi-parametric since it only specifies the first

two multivariate moments (mean and covariance) of Yi. Higher order moments

are not specified.

• Without an explicit likelihood function, to estimate the parameter vector β (and

perhaps the covariance parameter matrix Ri(α)) and perform a valid statistical

inference that takes the dependence into consideration, we need to construct an

unbiased estimating function:

• Di βð Þ ¼ ∂μi
∂β
, the partial derivative, w.r.t. β, of the mean-model for subject i.

• Di j; kð Þ ¼
∂μi, j
∂βk

, the partial derivative, w.r.t. β, , the partial derivative, w.r.t. the kth

regression coefficient (βk), of the mean-model for subject i and measurement

(e.g., time-point) j.

Estimating (cost) function:

U βð Þ ¼
XN

i¼1

DT
i βð ÞV�1

i β; αð Þ Y i � μi βð Þf g:

Solving the Estimating Equations leads to parameter estimating solutions:

0 ¼ U
�
β̂
�
¼
XN

i¼1

DT
i

�
β̂
�

|fflfflffl{zfflfflffl}

scale

�
V�1
i β̂; α

�

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

variance weight

Y i � μi
�
β̂
�	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

model mean

:

Scale: A change of scale term transforming the scale of the mean, μi, to the scale

of the regression coefficients (covariates).

Variance weight: The inverse of the variance-covariance matrix is used to

weight in the data for subject i, i.e., giving more weight to differences between

observed and expected values for subjects that contribute more information.

Model Mean: Specifies the mean model, μi(β), compared to the observed data, Yi.

This fidelity term minimizes the difference between actually-observed and mean-

expected (within the ith cluster/subject). See also the SMHS EBook.

19.4.1 GEE Versus GLMM

There is a difference in the interpretation of the model coefficients between GEE and

GLMM. The fundamental difference between GEE and GLMM is in the target of the

inference: population-average vs. subject-specific. For instance, consider an example

where the observations are dichotomous outcomes (Y), e.g., single Bernoulli trials or

death/survival of a clinical procedure, that are grouped/clustered into hospitals and

units within hospitals, with N additional demographic, phenotypic, imaging and

genetics predictors. To model the failure rate between genders (males vs. females) in

a hospital, where all patients are spread among different hospital units (or clinical

teams), let Y represent the binary response (death or survival).

19.4 GLMM/GEE Longitudinal Data Analysis 655

In GLMM, the model will be pretty similar with the LMM model.

log
P Y ij ¼ 1
� �

P Y ij ¼ 0
� � jXij; bi

 !

¼ β0 þ β1xij þ bi þ Eij:

The only difference between GLMM and LMM in this situation is that GLMM

used a logit link for the binary response.

With GEE, we don’t have random intercept or slope terms.

log
P Y ij ¼ 1
� �

P Y ij ¼ 0
� � jXij; bi

 !

¼ β0 þ β1xij þ Eij:

In the marginal model (GEE), we are ignoring differences among hospital-units

and just aim to obtain population (hospital-wise) rates of failure (patient death) and

its association with patient gender. The GEE model fit estimates the odds ratio

representing the population-averaged (hospital-wide) odds of failure associated

with patient gender.

Thus, parameter estimates (β̂) from GEE and GLMM models may differ because

they estimate different things.

Let’s compare the results of the GLM and GLMM models for our PPMI dataset.

family = "binomial", data = mydata)

Coefficients:
(Intercept) UPDRS Imaging Age Sex
-10.64144 -1.96707 0.03889 0.71562 0.19361
Weight
0.40606

Degrees of Freedom: 1205 Total (i.e. Null); 1200 Residual
(558 observations deleted due to missingness)
Null Deviance: 811.9
Residual Deviance: 195.8 AIC: 207.8

#mydata1<-na.omit(mydata)

#attach(mydata1)

#model.gee<-gee(ResearchGroup~L_insular_cortex_ComputeArea+L_insular_cortex_

Volume+ Sex + Weight + Age + chr17_rs11012_GT + chr17_rs199533_GT + UPDRS_pa

rt_I + UPDRS_part_II + time_visit, id=FID_IID, data = mydata1, family=binomi

al(link = logit))

install.packages("gee")

library(gee)
model.glm1<-glm(ResearchGroup~UPDRS+Imaging+Age+Sex+Weight, data = mydata, f
amily="binomial")

model.glm1

Call: glm(formula = ResearchGroup ~ UPDRS + Imaging + Age + Sex + Weight
,

656 19 Big Longitudinal Data Analysis

model.glmm<-glmer(ResearchGroup~UPDRS+Imaging+Age+Sex+Weight+(1|FID_IID), da
ta=mydata, family="binomial")
display(model.glmm)

glmer(formula = ResearchGroup ~ UPDRS + Imaging + Age + Sex +
Weight + (1 | FID_IID), data = mydata, family = "binomial")
coef.est coef.se
(Intercept) -86.63 32.07
UPDRS -16.78 6.27
Imaging 0.59 0.61
Age 6.04 2.41
Sex 0.65 2.15
Weight 6.12 3.76

Error terms:
Groups Name Std.Dev.
FID_IID (Intercept) 40.72
Residual 1.00

number of obs: 1206, groups: FID_IID, 440
AIC = 129.5, DIC = -114.1
deviance = 0.7

In terms of AIC, the GLMM model is a lot better than the GLM model.

Try to apply some of these longitudinal data analytics on the fMRI data we

discussed in Chap. 4 (Visualization).

19.5 Assignment: 19. Big Longitudinal Data Analysis

19.5.1 Imaging Data

Review the 3D/4DMRI imaging data discussion in Chap. 4. Extract the time courses

of several time series at different 3D spatial locations, some near-by, and some

farther apart (distant voxels). Then, apply time-series analyses, report findings,

determine if near-by or farther-apart voxels may be more correlated.

Example of extracting time series from 4D fMRI data:

#See examples here: https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf

fMRIURL <- "http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz"
fMRIFile <- file.path(tempdir(), "fMRI_FilteredData_4D.nii.gz")
download.file(fMRIURL, dest=fMRIFile, quiet=TRUE)
(fMRIVolume <- readNIfTI(fMRIFile, reorient=FALSE))
dimensions: 64 x 64 x 21 x 180 ; 4mm x 4mm x 6mm x 3 sec

fMRIVolDims <- dim(fMRIVolume); fMRIVolDims
time_dim <- fMRIVolDims[4]; time_dim

hist(fMRIVolume)

19.5 Assignment: 19. Big Longitudinal Data Analysis 657

https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf
http://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz

To examine the time course of a specific 3D voxel (say the one at x=30, y=30, z=15):
plot(fMRIVolume[30, 30, 10,], type='l', main="Time Series of 3D Voxel \n (x=30, y=30, z=1

5)", col="blue")

x1 <- c(1:180)
y1 <- loess(fMRIVolume[30, 30, 10,]~ x1, family = "gaussian")
lines(x1, smooth(fMRIVolume[30, 30, 10,]), col = "red", lwd = 2)
lines(ksmooth(x1, fMRIVolume[30, 30, 10,], kernel = "normal", bandwidth = 5), col = "gree

n", lwd = 3)

19.5.2 Time Series Analysis

Use Google Web-Search Trends and Stock Market Data to:

• Plot time series for the variable Job.

• Apply TTR to smooth the original graph by month.

• Determine the differencing parameter.

• Decide the auto-regressive (AR) and moving average (MA) parameters.

• Build an ARIMA model, forecast the Job variable over the next year and

evaluate this model.

19.5.3 Latent Variables Model

Use the Hand written English Letters data to:

• Explore the data and evaluate the correlations between covariates.

• Justify the application of a latent variable model.

• Apply proper data conversion and scaling.

• Fit a Structural Equation Model (SEM) using the lavaan::cfa() function for these

data by adding proper latent variable.

• Summarize and interpret the outputs.

• Use the model you found above to fit GEE and GLMM models using the latent

variable as response and compare the models using AIC. (Hint: add a fake

variable as random effect for GLMM).

References

Box GE, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control: John

Wiley & Sons; 2015.

Grace JB. Structural equation modeling and natural systems: Cambridge University Press; 2006.

http://idaejin.github.io/bcam-courses/neiker-2016/material/mixed-models/

Liang K-Y, Zeger S. Longitudinal data analysis using generalized linear models. Biometrika.

1986;73(1):13-22. doi: https://doi.org/10.1093/biomet/73.1.13.

McCulloch CE, Neuhaus JM. Generalized linear mixed models: Wiley Online Library; 2013.

McIntosh A, Gonzalez-Lima F. Structural equation modeling and its application to network analysis

in functional brain imaging. Human Brain Mapping. 1994;2(1-2):2-22.

Shipley B. Cause and correlation in biology: a user’s guide to path analysis, structural equations and

causal inference with R: Cambridge University Press; 2016.

658 19 Big Longitudinal Data Analysis

http://idaejin.github.io/bcam-courses/neiker-2016/material/mixed-models/
https://doi.org/10.1093/biomet/73.1.13

Chapter 20

Natural Language Processing/Text Mining

As we have seen in the previous chapters, traditional statistical analyses and classical

data modeling are applied to relational data where the observed information is

represented by tables, vectors, arrays, tensors, or data-frames containing binary,

categorical, original, or numerical values. Such representations provide incredible

advantages (e.g., quick reference and de-reference of elements, search, discovery,

and navigation), but also limit the scope of applications. Relational data objects are

quite effective for managing information that is based only on existing attributes.

However, when data science inference needs to utilize attributes that are not included

in the relational model, alternative non-relational representations are necessary. For

instance, imagine that our data object includes a free text feature (e.g., physician/

nurse clinical notes, biospecimen samples) that contains information about medical

condition, treatment or outcome. It’s very difficult, or sometimes even impossible, to

include the raw text into the automated data analytics, using classical procedures and

statistical models available for relational datasets.

Natural Language Processing (NLP) and Text Mining (TM) refer to automated

machine-driven algorithms for semantically mapping, extracting information, and

understanding of (natural) human language. Sometimes, this involves extracting

salient information from large amounts of unstructured text. To do so, we need to

build semantic and syntactic mapping algorithms for effective processing of heavy

text. Related to NLP/TM, the work we did in Chap. 8 showed a powerful text

classifier using the naive Bayes algorithm.

In this Chapter, we will present more details about various text processing

strategies in R. Specifically, we will present simulated and real examples of text

processing and computing document term frequency (TF), inverse document fre-

quency (IDF), cosine similarity transformation, and machine learning based senti-

ment analysis.

Live demos will show various NLP tasks directly in the browser intermediate

stages of processing, as well as full text processing performing complete text

analysis.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_20

659

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_20&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_20

20.1 A Simple NLP/TM Example

Text mining or text analytics (TM/TA) examines large volumes of unstructured text

(corpus), aiming to extract new information, discover context, identify linguistic

motifs, or transform the text into a structured data format leading to derived

quantitative data that can be further analyzed. Natural language processing (NLP)

is one example of a TM analytical technique. Whereas TM’s goal is to discover

relevant contextual information, which may be unknown, hidden, or obfuscated,

NLP is focused on linguistic analysis that trains a machine to interpret voluminous

textual content. To decipher the semantics and ambiguities in human-interpretable

language, NLP employs automatic summarization, tagging, disambiguation, extrac-

tion of entities and relations, pattern recognition, and frequency analyses. As of

2018, the total amount of information generated by the human race exceeds 6 zetta-

bytes (1ZB¼ 1021¼ 270 bytes), which is projected to top 50ZB by 2020. The amount

of data we obtain, and record, doubles every 12–14 months (Kryder’s law). A small

fraction of this massive information (<0.0001% or <1PB ¼ 1015 bytes) represents

newly written or transcribed text, including code. However, it is impossible

(cf. efficiency, time, resources) for humans to read, synthesize, interpret and react

to all this information without direct assistance of TM/NLP. The information content

in text could be substantially higher than that of other information media. Remember

that “a picture may be worth a thousand words”, yet, “a word may also be worth a

thousand pictures”. As an example, the simple sentence “The data science and

predictive analytics textbook includes 23 Chapters” takes 63 bytes to store as text;

however, a color image showing this as printed text could reach 10 megabytes (MB),

and an HD video of a speaker reading the same sentence could easily surpass 50 MB.

Text mining and natural language processing may be used to automatically analyze

and interpret written, coded, or transcribed content to assess news, moods, emotions,

clinical notes, and biosocial trends related to specific topics.

In general, text analysis protocols involve:

• Construction of a document-term matrix (DTM) from the input documents,

vectorizing the text, e.g., creating a map of single words or n-grams into a

vector space. That is, the vectorizer is a function mapping terms to indices.

• Application of a model-based statistical analysis or a model-free machine learn-

ing technique for prediction, clustering, classification, similarity search, network/

sentiment analysis, or forecasting using the DTM. This step also includes tuning

and internally validating the performance of the method.

• Application and evaluation of the technique to new data.

We are going to demonstrate this protocol with a very simple example. Figure 20.1

points to a separate online demo.

660 20 Natural Language Processing/Text Mining

20.1.1 Define and Load the Unstructured-Text Documents

Let’s create some documents we can use to illustrate the use of the tm package for

text mining. The five documents below represent portions of the syllabi of five recent

courses taught by the author:

• HS650: Data Science and Predictive Analytics (DSPA)

• Bootcamp: Predictive Big Data Analytics using R

• HS 853: Scientific Methods for Health Sciences: Special Topics

• HS851: Scientific Methods for Health Sciences: Applied Inference, and

• HS550: Scientific Methods for Health Sciences: Fundamentals

We import the syllabi into several separate segments represented as

documents.

• As an exercise, try to use the rvest::read_html method to load in the

five course syllabi directly from the course websites listed above.

doc1 <-"HS650: The Data Science and Predictive Analytics(DSPA) course (offered
as a massive open online course, MOOC, as well as a traditional University of
Michigan class) aims to build computational abilities, inferential thinking,
and practical skills for tackling core data scientific challenges. It explores
foundational concepts in data management, processing, statistical computing,
and dynamic visualization using modern programming tools and agile web-
services. Concepts, ideas, and protocols are illustrated through examples of
real observational, simulated and research-derived datasets. Some prior quanti-
tative experience in programming, calculus, statistics, mathematical models,
or linear algebra will be necessary. This open graduate course will provide a
general overview of the principles, concepts, techniques, tools and services
for managing, harmonizing, aggregating, preprocessing, modeling, analyzing and
interpreting large, multisource, incomplete, incongruent, and heterogeneous
data (Big Data). The focus will be to expose students to common challenges
related to handling Big Data and present the enormous opportunities and power
associated with our ability to interrogate such complex datasets, extract useful
information, derive knowledge, and provide actionable forecasting. Biomedical,
healthcare, and social datasets will provide context for addressing specific
driving challenges. Students will learn about modern data analytic techniques
and develop skills for importing and exporting, cleaning and fusing, modeling
and visualizing, analyzing and synthesizing complex datasets. The collaborative
design, implementation, sharing and community validation of high throughput
analytic workflows will be emphasized throughout the course."

http://www.conversational-technologies.com/

nldemos/nlDemos.html

Fig. 20.1 Live demo: Dynamic NLP demonstration

20.1 A Simple NLP/TM Example 661

http://www.conversational-technologies.com/nldemos/nlDemos.html
http://www.conversational-technologies.com/nldemos/nlDemos.html
http://www.conversational-technologies.com/nldemos/nlDemos.html

doc2 < -"Bootcamp: A week-longintensive Bootcamp focused on methods, tech-
niques, tools, services and resources for big healthcare and biomedical data
analytics using the open-source statistical computing software R. Morning
sessions (3 hrs) will be dedicated to methods and technologies and applica-
tions. Afternoon sessions (3 hrs) will be for group-based hands-on practice
and team work. Commitment to attend the full week of instruction (morning
sessions) and self-guided work (afternoon sessions) is required. Certificates
of completion will be issued only to trainees with perfect attendance that
complete all work. This hands-on intensive graduate course (Bootcamp) will
providea general overview of the principles, concepts, techniques, tools and
services for managing, harmonizing, aggregating, preprocessing, modeling,
analyzing and interpreting large, multi-source, incomplete, incongruent, and
heterogeneous data (Big Data). The focus will be to expose students to common
challenges related to handling Big Data and present the enormous opportunities
and power associated with our ability to interrogate such complex datasets,
extract useful information, derive knowledge, and provide actionable forecast-
ing. Biomedical, healthcare, and social datasets will provide context for
addressing specific driving challenges. Students will learn about modern data
analytic techniques and develop skills for importing and exporting, cleaning
and fusing, modeling and visualizing, analyzing and synthesizing complex data-
sets. The collaborative design, implementation, sharing and community valida-
tion of high-throughput analytic workflows will be emphasized throughout the
course."

doc3 <- "HS 853: This course covers a number of modern analytical methods for
advanced healthcare research. Specific focus will be on reviewing and using
innovative modeling, computational, analytic and visualization techniques to
address concrete driving biomedical and healthcare applications. The course
will cover the 5 dimensions of Big-Data (volume, complexity, multiple scales,-
multiple sources, and incompleteness). HS853 is a 4 credit hour course
(3 lectures + 1 lab/discussion). Students will learn how to conduct research,
employ and report on recent advanced health sciences analytical methods; read,
comprehend and present recent reports of innovative scientific methods;
apply a broad range of health problems; experiment with real Big-Data.Topics
Covered include: Foundations of R, Scientific Visualization, Review of Multi-
variate and Mixed Linear Models, Causality/Causal Inference and Structural
Equation Models, Generalized Estimating Equations, PCOR/CER methods Heteroge-
neity of Treatment Effects, Big-Data, Big-Science, Internal statistical
cross-validation, Missing data, Genotype-Environment-Phenotype, associations,
Variable selection (regularized regression and controlled/knockoff filter-
ing), medical imaging, Databases/registries, Meta-analyses, classification
methods, Longitudinal data and time-series analysis, Geographic Information
Systems(GIS), Psychometrics and Rasch measurement model analysis, Bayesian
inference, and Network Analysis."

doc3 <- "HS 851: This course introduces students to applied inference methods
in studies involving multiple variables. Specific methods that will be dis-
cussed include linear regression, analysis of variance, and different regres-
sion models. This course will emphasize the scientific formulation, analytical
modeling, computational tools and applied statistical inference in diverse
health-sciences problems. Data interrogation, modeling approaches, rigorous
interpretation and inference will be emphasized throughout. HS851 is a 4
credit hour course (3 lectures + 1 lab/discussion). Students will learn how
to:, Understand the commonly used statistical methods of published scienti-
fic papers, Conduct statistical calculations/analyses on available data,
Use software tools to analyze specific case-studies data, Communicate advanced
statistical concepts/techniques, Determine, explain and interpret assump-
tions and limitations. Topics Covered include Epidemiology, Correlation/
SLR, and slope inference, 1-2 samples, ROC Curve, ANOVA, Non-parametric

662 20 Natural Language Processing/Text Mining

inference, Cronbach's α, Measurement Reliability/Validity, Survival
Analysis, Decision theory, CLT/LLNs - limiting results and misconceptions,
Association Tests, Bayesian Inference, PCA/ICA/Factor Analysis, Point/
Interval Estimation (CI) - MoM, MLE, Instrument performance Evaluation,
Study/Research Critiques, Common mistakes and misconceptions in using
probability and statistics, identifying potential assumption violations, and
avoiding them."

doc5 <- "HS550: This course provides students withan introduction to probabil-
ity reasoning and statistical inference. Students will learn theoretical
concepts and apply analytic skills for collecting, managing, modeling,
processing, interpreting and visualizing (mostly univariate) data. Students
will learn the basic probability modeling and statistical analysis methods and
acquire knowledge to read recently published health research publications.
HS550 is a 4 credithour course (3 lectures + 1 lab/discussion). Students will
learn how to: Apply data management strategies to sample data files, Carryout
statistical tests to answer common healthcare research questions using appro-
priate methods and software tools, Understand the core analytical data mode-
ling techniques and their appropriate use Examples of Topics Covered,
EDA/Charts, Ubiquitous variation, Parametric inference, Probability Theory,
Odds Ratio/Relative Risk, Distributions, Exploratory data analysis, Resam-
pling/Simulation, Design of Experiments, Intro to Epidemiology, Estimation,
Hypothesis testing, Experiments vs. Observational studies, Data management
(tables, streams, cloud, warehouses, DBs, arrays, binary, ASCII, handling,
mechanics), Power, sample-size, effect-size, sensitivity, specificity, Bias/-
Precision, Association vs. Causality, Rate-of-change, Clinical vs. Stat
significance, Statistical Independence Bayesian Rule."

20.1.2 Create a New VCorpus Object

The VCorpus object includes all the text and some meta-data (e.g., indexing) about

the entire text.

docs<-c(doc1, doc2, doc3, doc4, doc5)

class(docs)

[1] "character"

We can make a VCorpus object using tm package. To complete this task, we

need to know the source type. Here, docs has a vector with "character" class, so we

should use VectorSource(). If it is a dataframe, we should use

DataframeSource() instead. VCorpus() creates a volatile corpus, which is

the data type used by the tm package for text mining.

20.1 A Simple NLP/TM Example 663

library(tm)

doc_corpus<-VCorpus(VectorSource(docs))
doc_corpus

<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 5

doc_corpus[[1]]$content

[1] "HS650: The Data Science and Predictive Analytics (DSPA) course (offe
red as a massive open online course, MOOC, as well as a traditional Universi
ty of Michigan class) aims to build computational abilities, inferential thi
nking, … throughout the course."

This generates a list containing the information for the five documents we have

created. Now we can apply tm_map() function on this object to preprocess the text.

The goal is to automatically interpret the text and output more succinct information.

20.1.3 To-Lower Case Transformation

The text itself contains upper case letters as well as lower case letters. The first thing

to do is to convert all characters to lower case.

doc_corpus<-tm_map(doc_corpus, tolower)
doc_corpus[[1]]

[1] "hs650: the data science and predictive analytics (dspa) course (offe
red as a massive open online course, mooc, as well as a traditional universi
ty of michigan class) … community validation of high-throughput analytic wor
kflows will be emphasized throughout the course."

20.1.4 Text Pre-processing

Remove Stopwords

These documents contains a lot of "stopwords", or common words, that have

important semantic meaning but low analytic value. We can remove these by the

following command.

stopwords("english")

[1] "i" "me" "my" "myself" "we"
[6] "our" "ours" "ourselves" "you" "your"
[11] "yours" "yourself" "yourselves" "he" "him"
[16] "his" "himself" "she" "her" "hers"
…
[171] "so" "than" "too" "very"

664 20 Natural Language Processing/Text Mining

doc_corpus<-tm_map(doc_corpus, removeWords, stopwords("english"))
doc_corpus[[1]]

[1] "hs650: data science predictive analytics (dspa) course (offered
massive open online course, mooc, well traditional university michigan c
lass) aims build …, sharing community validation high-throughput analytic
workflows will emphasized throughout course."

We removed all the stopwords specified in the stopwords("english") list.

You can always make your own stopword list and just use doc_corpus<--

tm_map(doc_corpus, removeWords, your_own_words_list) to

apply this list.

From the output of doc1 we notice the removal of stopwords creates extra blank

spaces. Thus, the next step would be to remove them.

doc_corpus<-tm_map(doc_corpus, stripWhitespace)
doc_corpus[[1]]

[1] "hs650: data science predictive analytics (dspa) course (offered mass
ive open online course, mooc, well traditional university michigan class) ai
ms build computational abilities, …, sharing community validation high-throu
ghput analytic workflows will emphasized throughout course."

Remove Punctuation

Now we notice the irrelevant punctuation in the text, which can be removed by using

a combination of tm_map() and removePunctuation() functions.

doc_corpus<-tm_map(doc_corpus, removePunctuation)
doc_corpus[[2]]

[1] "bootcamp weeklong intensive bootcamp focused methods techniques tool
s services resources big healthcare biomedical data analytics using opensour
ce statistical computing software r morning sessions 3 hrs … collaborative d
esign implementation sharing community validation highthroughput analytic wo
rkflows will emphasized throughout course"

The above tm_map commands changed the structure of our doc_corpus

object. We may apply PlainTextDocument function if we need to convert it

back to the original format.

doc_corpus<-tm_map(doc_corpus, PlainTextDocument)

Stemming: Removal of Plurals and Action Suffixes

Let’s inspect the first three documents. We notice that there are some words ending

with “ing”, “es”, or “s”.

20.1 A Simple NLP/TM Example 665

doc_corpus[[1]]$content

[1] "hs650 data science predictive analytics dspa course offered massive
open online course mooc well traditional university michigan class aims buil
d computational abilities inferential … validation highthroughput analytic w
orkflows will emphasized throughout course"

doc_corpus[[2]]$content

[1] "bootcamp weeklong intensive bootcamp focused methods techniques tool
s services resources big healthcare biomedical data analytics using opensour
ce statistical computing software r morning sessions 3 … design implementat
ion sharing community validation highthroughput analytic workflows will emph
asized throughout course"

doc_corpus[[3]]$content

[1] "hs 853 course covers number modern analytical methods advanced healt
hcare research specific focus will reviewing using innovative modeling compu
tational analytic visualization … information systems gis psychometrics rasc
h measurement model analysis mcmc sampling bayesian inference network analys
is"

If we have multiple terms that only differ in their endings (e.g., past, present,

present-perfect-continuous tense), the algorithm will treat them differently because it

does not understand language semantics, the way a human would. To make things

easier for the computer, we can delete these endings by “stemming” documents.

Remember to load the package SnowballC before using the function

stemDocument(). The earliest stemmer was written by Julie Beth Lovins in

1968, which had great influence on all subsequent work. Currently, one of the most

popular stemming approaches was proposed by Martin Porter and is used in

stemDocument(), and you can read more on Porter algorithm online.

install.packages("SnowballC")

library(SnowballC)
doc_corpus<-tm_map(doc_corpus, stemDocument)
doc_corpus[[1]]$content

[1] "hs650 data scienc predict analyt dspa cours offer massiv open onlin
cours mooc well tradit univers michigan class aim build comput abil inferent
i think practic skill tackl core data scientif … fuse model visual analyz sy
nthes complex dataset collabor design implement share communiti valid highth
roughput analyt workflow will emphas throughout cours"

This stemming process has to be done after the PlainTextDocument function

because stemDocument can only be applied to plain text.

20.1.5 Bags of Words

It’s very useful to be able to tokenize text documents into n-grams, sequences of

words, e.g., a 2-gram represents two-word phrases that appear together in order.

This allows us to form bags of words and extract information about word ordering.

666 20 Natural Language Processing/Text Mining

The bag of words model is a common way to represent documents in matrix form

based on their term frequencies (TFs). We can construct an n � t document-term

matrix (DTM), where n is the number of documents, and t is the number of unique

terms. Each column in the DTM represents a unique term. For instance, the (i, j)th

cell represents how many of term j are present in document i.

The basic bag of words model is invariant to ordering of the words within a

document. Once we compute the DTM, we can use machine learning techniques to

interpret the derived signature information contained in the resulting matrices.

20.1.6 Document Term Matrix

Now that the doc_corpus object is quite clean, we can make a document-term

matrix to explore all the terms in the five initial documents. The document term

matrix includes dummy variables that tell us if a specific term appears in a specific

document.

doc_dtm<-TermDocumentMatrix(doc_corpus)
doc_dtm

<<TermDocumentMatrix (terms: 329, documents: 5)>>
Non-/sparse entries: 540/1105
Sparsity : 67%
Maximal term length: 27
Weighting : term frequency (tf)

The summary of document term matrix is informative. We have 329 different

terms in the five documents. There are 540 non-zero and 1,105 sparse entries. Thus,

the sparsity is 1105
540þ1105ð Þ � 67%, which measures the term sparsity across all docu-

ments. A high sparsity means that the terms are not repeated often among different

documents.

Recall that we applied PlainTextDocument function to your doc_corpus

object. This removed all document meta data. To relabel the documents in the

document term matrix, we can use the following commands:

doc_dtm$dimnames$Docs<-as.character(1:5)
inspect(doc_dtm)

<<TermDocumentMatrix (terms: 329, documents: 5)>>
Non-/sparse entries: 540/1105
Sparsity : 67%
Maximal term length: 27
Weighting : term frequency (tf)
Sample :
Docs
Terms 1 2 3 4 5
analyt 3 3 3 1 2
cours 4 2 3 3 2
data 7 5 2 3 6
infer 0 0 2 6 2
method 0 2 5 3 2
model 3 2 4 3 3
statist 2 1 1 5 4
student 2 2 1 2 4
use 2 2 1 3 2
will 6 8 3 4 3

20.1 A Simple NLP/TM Example 667

We might want to find and report the frequent terms using this document term

matrix.

findFreqTerms(doc_dtm, lowfreq = 2)

[1] "abil" "action" "address" "advanc"
[5] "afternoon" "aggreg" "analysi" "analyt"
[9] "analyz" "appli" "applic" "appropri"
[13] "associ" "assumpt" "attend" "bayesian"
[17] "big" "bigdata" "biomed" "bootcamp"
[21] "challeng" "clean" "collabor" "common"
[25] "communiti" "complet" "complex" "comput"
[29] "concept" "conduct" "context" "core"
[33] "cours" "cover" "credit" "data"
[37] "dataset" "deriv" "design" "develop"
[41] "drive" "emphas" "enorm" "epidemiolog"
[45] "equat" "estim" "exampl" "experi"
[49] "export" "expos" "extract" "focus"
[53] "forecast" "foundat" "fuse" "general"
[57] "graduat" "hand" "handl" "harmon"
[61] "health" "healthcar" "heterogen" "highthroughput"
[65] "hour" "hrs" "hs550" "implement"
[69] "import" "includ" "incomplet" "incongru"
[73] "infer" "inform" "innov" "intens"
[77] "interpret" "interrog" "knowledg" "labdiscuss"
[81] "larg" "learn" "lectur" "limit"
[85] "linear" "manag" "measur" "method"
[89] "misconcept" "model" "modern" "morn"
[93] "multipl" "multisourc" "observ" "open"
[97] "opportun" "overview" "power" "practic"
[101] "preprocess" "present" "principl" "probabl"
[105] "problem" "process" "program" "provid"
[109] "publish" "read" "real" "recent"
[113] "regress" "relat" "report" "research"
[117] "review" "sampl" "scienc" "scientif"
[121] "servic" "session" "share" "skill"
[125] "social" "softwar" "specif" "statist"
[129] "student" "studi" "synthes" "techniqu"
[133] "test" "theori" "throughout" "tool"
[137] "topic" "understand" "use" "valid"
[141] "variabl" "visual" "will" "work"
[145] "workflow"

This gives us the terms that appear in at least two documents. High-frequency

terms like comput, statist, model, healthcar, learn make perfect sense

to be included as these syllabi describe courses that cover modeling, statistical and

computational methods with applications to health sciences.

The tm package also provides the correlation between terms. Here is a mechanism

to determine the words that are highly correlated with statist, (ρ(statist, ?)� 0.8).

findAssocs(doc_dtm, "statist", corlimit = 0.8)

$statist
epidemiolog publish studi theori understand appli
0.95 0.95 0.95 0.95 0.95 0.83
test
0.80

668 20 Natural Language Processing/Text Mining

20.2 Case-Study: Job Ranking

Let’s explore some real datasets. First, we will import the 2011 USA Jobs Ranking

Dataset from SOCR data archive.

library(rvest)

wiki_url <- read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_2011_U
S_JobsRanking")
html_nodes(wiki_url, "#content")

{xml_nodeset (1)}
[1] <div id="content" class="mw-body-primary" role="main">\n\t<a id="top
...

job <- html_table(html_nodes(wiki_url, "table")[[1]])
head(job)

Index Job_Title Overall_Score Average_Income(USD)
1 1 Software_Engineer 60 87140
2 2 Mathematician 73 94178
3 3 Actuary 123 87204
4 4 Statistician 129 73208
5 5 Computer_Systems_Analyst 147 77153
6 6 Meteorologist 175 85210
Work_Environment Stress_Level Stress_Category Physical_Demand
1 150.00 10.40 1 5.00
2 89.72 12.78 1 3.97
3 179.44 16.04 1 3.97
4 89.52 14.08 1 3.95
5 90.78 16.53 1 5.08
6 179.64 15.10 1 6.98
Hiring_Potential
1 27.40
2 19.78
3 17.04
4 11.08
5 15.53
6 12.10
##
Description
1 Researches_designs_develops_and_maintains_software_systems_along_with_h
ardware_development_for_medical_scientific_and_industrial_purposes
2 Applies_mathematical_theories_and_formulas_to_teach_or_solve_problems_i
n_a_business_educational_or_industrial_climate
3 Interprets_statistics_to_determine_probabilities_of_accidents_sickness
_and_death_and_loss_of_property_from_theft_and_natural_disasters
4 Tabulates_analyzes_and_interprets_the_numeric_results_of_experiments_
and_surveys
5 Plans_and_develops_computer_systems_for_businesses_and_scientific_ins
titutions
6 Studies_the_physical_characteristics_motions_and_processes_of_the_ear
th's_atmosphere

Note that low indices represent jobs that in 2011 were highly desirable. Thus, in

2011, the most desirable job among the top 200 common jobs would be Software

20.2 Case-Study: Job Ranking 669

http://wiki.socr.umich.edu/index.php/SOCR_Data_2011_US_JobsRanking
http://wiki.socr.umich.edu/index.php/SOCR_Data_2011_US_JobsRanking

Engineer. The aim of our case study is to explore the difference between the top

30 desirable jobs and the last 100 jobs in the list.

We will go through the same procedure as we did for the simple course syllabi

example. The documents we will be using include the Description column

(a vector) in the dataset.

20.2.1 Step 1: Make a VCorpus Object

jobCorpus<-VCorpus(VectorSource(job[, 10]))

20.2.2 Step 2: Clean the VCorpus Object

jobCorpus<-tm_map(jobCorpus, tolower)
for(j in seq(jobCorpus)){
jobCorpus[[j]]<-gsub("_", " ", jobCorpus[[j]])

}

Here we used a loop to substitute "_" with blank space. This is because when we

use removePunctuation, all the underline characters will disappear and there

will be no separation between terms. In this situation, gsub will be the best choice

to use.

jobCorpus<-tm_map(jobCorpus, removeWords, stopwords("english"))
jobCorpus<-tm_map(jobCorpus, removePunctuation)
jobCorpus<-tm_map(jobCorpus, stripWhitespace)
jobCorpus<-tm_map(jobCorpus, PlainTextDocument)
jobCorpus<-tm_map(jobCorpus, stemDocument)

20.2.3 Step 3: Build the Document Term Matrix

The Document Term Matrix (DTM) objects (tm::DocumentTermMatrix) con-

tains a sparse term-document matrix, or document-term matrix, and attribute weights

of the matrix.

First, make sure that we got a clean VCorpus object.

jobCorpus[[1]]$content
[1] "research design develop maintain softwar system along hardwar develo
p medic scientif industri purpos"

670 20 Natural Language Processing/Text Mining

Then, we can start to build the DTM and reassign the labels to the Docs.

dtm<-DocumentTermMatrix(jobCorpus)
dtm

<<DocumentTermMatrix (documents: 200, terms: 846)>>
Non-/sparse entries: 1818/167382
Sparsity : 99%
Maximal term length: 15
Weighting : term frequency (tf)

dtm$dimnames$Docs<-as.character(1:200)
inspect(dtm[1:10, 1:10])

<<DocumentTermMatrix (documents: 10, terms: 10)>>
Non-/sparse entries: 2/98
Sparsity : 98%
Maximal term length: 7
Weighting : term frequency (tf)
Sample :
Terms
Docs 16wheel abnorm access accid accord account accur achiev act activ
1 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

Let’s subset the dtm into the top 30 jobs and the bottom 100 jobs.

dtm_top30<-dtm[1:30,]
dtm_bot100<-dtm[101:200,]
dtm_top30

<<DocumentTermMatrix (documents: 30, terms: 846)>>
Non-/sparse entries: 293/25087
Sparsity : 99%
Maximal term length: 15
Weighting : term frequency (tf)

dtm_bot100

<<DocumentTermMatrix (documents: 100, terms: 846)>>
Non-/sparse entries: 870/83730
Sparsity : 99%
Maximal term length: 15
Weighting : term frequency (tf)

In this case, since the sparsity is very high, we can try to remove some words that

rarely appear in the job descriptions.

20.2 Case-Study: Job Ranking 671

dtms_top30<-removeSparseTerms(dtm_top30, 0.90)
dtms_top30

<<DocumentTermMatrix (documents: 30, terms: 19)>>
Non-/sparse entries: 70/500
Sparsity : 88%
Maximal term length: 10
Weighting : term frequency (tf)

dtms_bot100<-removeSparseTerms(dtm_bot100, 0.94)
dtms_bot100

<<DocumentTermMatrix (documents: 100, terms: 14)>>
Non-/sparse entries: 122/1278
Sparsity : 91%
Maximal term length: 10
Weighting : term frequency (tf)

Now, instead of 846 terms, we only have 19 that appear in the top 30 job

descriptions (JDs) and 14 that appear in the bottom 100 JDs.

Similar to what we did in Chap. 8, visualization of the terms-world clouds may

be accomplished by combining the tm with wordcloud packages. First, we can

count the term frequencies in the two document term matrices (Fig. 20.2).

Fig. 20.2 Frequency plot of commonly occurring terms (bottom 100 jobs)

672 20 Natural Language Processing/Text Mining

Calculate the cumulative frequencies of words across documents and sort:

freq1<-sort(colSums(as.matrix(dtms_top30)), decreasing=T)
freq1

develop assist natur studi analyz concern
6 5 5 5 4 4
individu industri physic plan busi inform
4 4 4 4 3 3
institut problem research scientif theori treatment
3 3 3 3 3 3
understand
3

freq2<-sort(colSums(as.matrix(dtms_bot100)), decreasing=T)
freq2

oper repair perform instal build prepar
17 15 11 9 8 8
busi commerci construct industri machin manufactur
7 7 7 7 7 7
product transport
7 7
Plot

wf=data.frame(term=names(freq2), occurrences=freq2)
library(ggplot2)

Attaching package: 'ggplot2'

The following object is masked from 'package:NLP':

annotate

p <- ggplot(subset(wf, freq2>2), aes(term, occurrences))
p <- p + geom_bar(stat="identity")
p <- p + theme(axis.text.x=element_text(angle=45, hjust=1))
p

Then,we apply thewordcloud function to thefreq dataset (Figs. 20.3 and 20.4).

Fig. 20.3 Wordle plot of

the frequently occurring

terms in the top-30 jobs

20.2 Case-Study: Job Ranking 673

library(wordcloud)

set.seed(123)
wordcloud(names(freq1), freq1)

Color code the frequencies using an appropriate color map:

Sequential palettes names include:

Blues BuGn BuPu GnBu Greens Greys Oranges OrRd PuBu PuBuGn PuRd Purples Rd

Pu Reds YlGn YlGnBu YlOrBr YlOrRd

Diverging palettes include

BrBG PiYG PRGn PuOr RdBu RdGy RdYlBu RdYlGn Spectral

wordcloud(names(freq2), freq2, min.freq=5, colors=brewer.pal(6, "Spectral"))

It is apparent that the top 30 jobs focus more on research or discovery of new

things, and include frequent keywords like “study”, “nature”, and “analyze.” The

bottom 100 jobs more focused of operating on existing objects, with frequent

keywords like “operation”, “repair”, and “perform”.

20.2.4 Area Under the ROC Curve

In Chap. 14, we talked about the ROC curve. We can use document term matrices to

build classifiers and use the area under the ROC curve (AUC) to evaluate those

classifiers. Assume that we want to predict whether a job ranks in the top 30, i.e., the

most desired jobs. The first task would be to create an indicator of high rank jobs (top

30). We can use the ifelse() function that we are already familiar with.

job$highrank<-ifelse(job$Index<30, 1, 0)

Fig. 20.4 The appearance

of the wordle plot may be

customized as shown here

for theh bottom-100 jobs

674 20 Natural Language Processing/Text Mining

Next we load the glmnet package to help us build the model and draw the

corresponding graphs.

#install.packages("glmnet")

library(glmnet)

The function we will be using is the cv.glmnet, cv stands for cross-validation.

Since the highrank variable is binary, we specify the option family ¼ 'bino-

mial'. Also, we want to use 10-fold CV method for re-sampling (Fig. 20.5).

set.seed(25)
fit <- cv.glmnet(x = as.matrix(dtm), y = job[['highrank']],

family = 'binomial',
lasso penalty

alpha = 1,
interested in the area under ROC curve

type.measure = "auc",
10-fold cross-validation

nfolds = 10,
high value is less accurate, but has faster training

thresh = 1e-3,
again lower number of iterations for faster training

maxit = 1e3)
plot(fit)

Fig. 20.5 The area under the curve (AUC) measures the performance of the cross-validated

LASSO-regularized model of job-ranking against the magnitude of the regularization parameter

(bottom axis), and the efficacy of the model selection, i.e., number of non-trivial coefficients (top

axis). The vertical dash lines suggest an optimal range for the penalty term and the number of

coefficients, see Chap. 18

20.2 Case-Study: Job Ranking 675

print(paste("max AUC =", round(max(fit$cvm), 4)))

[1] "max AUC = 0.7276"

Here, x is a matrix and y is the response variable. The last line of code helps us

select the best AUC among all models. The resulting AUC � 0.73 represents a

relatively good prediction model for this small sample size.

20.3 TF-IDF

To enhance the performance of the DTM matrix, we introduce TF-IDF (term

frequency – inverse document frequency). Unlike pure frequency, TF-IDF mea-

sures the relative importance of a term. If a term appears in almost every document,

the term will be considered common with a small weight. Alternatively, the rare

terms would be considered more informational.

20.3.1 Term Frequency (TF)

TF is the ratio a term’s occurrences in a document
the number of occurrences of the most frequent word within the same document

.

Symbolically,

TF t; dð Þ ¼
f d tð Þ

max
w2d

f d wð Þ
:

20.3.2 Inverse Document Frequency (IDF)

The TF definition may allow high scores for irrelevant words that naturally show up

often in a long text, even after triaging common words in a prior preprocessing step.

The IDF attempts to rectify that. IDF represents the inverse of the share of the

documents in which the regarded term can be found. The lower the number of

documents containing the term, relative to the size of the corpus, the higher the term

factor.

IDF involves a logarithm function, to temper the effective scoring penalty of

showing up in two documents, which othersize may be too extreme. Typically, the

IDF for a term found in just one document is twice the IDF for another term found in

two docs. The ln() function rectifies this bias of ranking in favor of rare terms, even if

676 20 Natural Language Processing/Text Mining

the TF-factor may be high. It is rather unlikely that a term’s relevance is only high in

one doc and not all others.

IDF t;Dð Þ ¼ ln
j D j

j d2D : t2df g j

� �

:

20.3.3 TF-IDF

Both TF and IDF yield high scores for highly relevant terms. TF relies on local

information (search over d), whereas IDF incorporates a more global perspective

(search over D). The product TF � IDF, gives the classical TF-IDF formula.

However, alternative expressions may be formulated to get other univariate expres-

sions using alternative weights for TF and IDF.

TF IDF t; d;Dð Þ ¼ TF t; dð Þ � IDF t;Dð Þ:

An example of an alternative TF-IDF metric can be defined by:

TF IDF0 t; d;Dð Þ ¼
IDF t;Dð Þ

j D j
þ TF IDF t; d;Dð Þ:

Let’s make another DTMwith TF-IDF weights and compare the differences between

the unweighted and weighted DTM.

dtm.tfidf<-DocumentTermMatrix(jobCorpus, control = list(weighting=weightTfId
f))
dtm.tfidf

<<DocumentTermMatrix (documents: 200, terms: 846)>>
Non-/sparse entries: 1818/167382
Sparsity : 99%
Maximal term length: 15
Weighting : term frequency - inverse document frequency (normali
zed) (tf-idf)

dtm.tfidf$dimnames$Docs <- as.character(1:200)
inspect(dtm.tfidf[1:9, 1:10])

<<DocumentTermMatrix (documents: 9, terms: 10)>>
Non-/sparse entries: 2/88
Sparsity : 98%
Maximal term length: 7
Weighting : term frequency - inverse document frequency (normali
zed) (tf-idf)
Sample :
Terms
Docs 16wheel abnorm access accid accord account accur achiev act
1 0 0 0 0.0000000 0.0000000 0 0 0 0
2 0 0 0 0.0000000 0.0000000 0 0 0 0

20.3 TF-IDF 677

4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0.5536547 0.0000000 0 0 0 0
4 0 0 0 0.0000000 0.0000000 0 0 0 0
5 0 0 0 0.0000000 0.0000000 0 0 0 0
6 0 0 0 0.0000000 0.0000000 0 0 0 0
7 0 0 0 0.0000000 0.0000000 0 0 0 0
8 0 0 0 0.0000000 0.4321928 0 0 0 0
9 0 0 0 0.0000000 0.0000000 0 0 0 0
Terms
Docs activ
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

inspect(dtm[1:9, 1:10])

<<DocumentTermMatrix (documents: 9, terms: 10)>>
Non-/sparse entries: 2/88
Sparsity : 98%
Maximal term length: 7
Weighting : term frequency (tf)
Sample :
Terms
Docs 16wheel abnorm access accid accord account accur achiev act activ
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0

An inspections of the two different DTMs suggests that TF-IDF is not only

counting the frequency but also assigning different weights to each term according

to the importance of the term. Next, we are going to fit another model with this new

DTM (dtm.tfidf) (Fig. 20.6).

set.seed(2)
fit1 <- cv.glmnet(x = as.matrix(dtm.tfidf), y = job[['highrank']],

family = 'binomial',
lasso penalty

alpha = 1,
interested in the area under ROC curve

type.measure = "auc",
10-fold cross-validation

nfolds = 10,
high value is less accurate, but has faster training

thresh = 1e-3,
again lower number of iterations for faster training

maxit = 1e3)
plot(fit1)

678 20 Natural Language Processing/Text Mining

print(paste("max AUC =", round(max(fit1$cvm), 4)))

[1] "max AUC = 0.7125"

This output is about the same as the previous jobs ranking prediction classifier

(based on the unweighted DTM). Due to random sampling, each run of the protocols

may generate slightly different results. The idea behind using TF-IDF is that one

would expect to get more unbiased estimates of word importance. If the document

includes stopwords, like “the” or “one”, the DTMmay distort the results, but TF-IDF

may resolve some of these problems.

Next, we can report a more intuitive representation of the job ranking prediction

reflecting the agreement of the binary (top-30 or not) classification between the real

labels and the predicted labels. Notice that this applies only to the training data itself.

Binarize the LASSO probability prediction

preffit1 <- predict(fit1, newx=as.matrix(dtm.tfidf), s="lambda.min", type =
"class")
binPredfit1 <- ifelse(preffit1<0.5, 0, 1)
table(binPredfit1, job[['highrank']])

binPredfit1 0 1
0 171 0
1 0 29

Let’s try to predict the job ranking of several new (testing or validation) job

descriptions (JDs). There are many job descriptions provided online that we can

extract text from to predict the job ranking of the corresponding positions. Trying

Fig. 20.6 AUC-based performance of the cross-validated LASSO-regularized model of

job-ranking based on the new DTM (dtm.tfidf), see Fig. 20.5 and Chap. 18

20.3 TF-IDF 679

several alternative job categories, e.g., some high-tech or fin-tech, and some

manufacturing or construction jobs, may provide some intuition to the power of

the jobs-classifier we built. Below, we will compare the JDs for the positions of

accountant, attorney, and machinist.

install.packages("text2vec"); install.packages("data.table")

library(text2vec)
library(data.table)

Choose the JD for a PUBLIC ACCOUNTANTS 1430 (https://www.bls.gov/ocs/ocsjo

bde.htm)

xTestAccountant <- "Performs professional auditing work in a public accounting

xTestAttorney <- "Performs consultation, advisory and/or trail work and carries
out the legal processes necessary to effect the rights, privileges, and
obligations of the organization. The work performed requires completion of law
school with an L.L.B. degree or J.D. degree and admission to the bar. Responsi-
bilities or functions include one or more of the following or comparable duties:

1. Preparing and reviewing various legal instruments and documents, such as
contracts, leases, licenses, purchases, sales, real estate, etc.;
2. Acting as agent of the organization in its transactions;
3. Examining material (e.g., advertisements, publications, etc.) for legal
implications; advising officials of proposed legislation which might affect
the organization;
4. Applying for patents, copyrights, or registration of the organization's
products, processes, devices, and trademarks; advising whether to initiate or
defend law suits;
5. Conducting pretrial preparations; defending the organization in lawsuits;

firm. Work requires at least a bachelor's degree in accounting. Participates
in or conducts audits to ascertain the fairness of financial representations
made by client companies. May also assist the client in improving accounting
procedures and operations. Examines financial reports, accounting records, and
related documents and practices of clients. Determines whether all important
matters have been disclosed and whether procedures are consistent and conform
to acceptable practices. Samples and tests transactions, internal controls,
and other elements of the accounting system(s) as needed to render the
accounting firm's final written opinion. As an entry level public accountant,
serves as a junior member of an audit team. Receives classroom and on-the-job
training to provide practical experience in applying the principles, theories,
and concepts of accounting and auditing to specific situations. (Positions
held by trainee public accountants with advanced degrees, such as MBA's are
excluded at this level.) Complete instructions are furnished and work is
reviewed to verify its accuracy, conformance with required procedures and
instructions, and usefulness in facilitating the accountant's professional
growth. Any technical problems not covered by instructions are brought to the
attention of a superior. Carries out basic audit tests and procedures, such
as: verifying reports against source accounts and records; reconciling bank
and other accounts; and examining cash receipts and disbursements, payroll
records, requisitions, receiving reports, and other accounting documents in
detail to ascertain that transactions are properly supported and recorded.
Prepares selected portions of audit working papers"

680 20 Natural Language Processing/Text Mining

https://www.bls.gov/ocs/ocsjobde.htm
https://www.bls.gov/ocs/ocsjobde.htm

6. Prosecuting criminal cases for a local or state government or defending
the general public (for example, public defenders and attorneys rendering
legal services to students); or
7. Advising officials on tax matters, government regulations, and/or legal
rights.

Attorney jobs are matched at one of six levels according to two factors:
1. Difficulty level of legal work; and
2. Responsibility level of job.
Attorney jobs which meet the above definitions are to be classified and
coded in accordance with a chart available upon request.
Legal questions are characterized by: facts that are well-established;

a. legal investigation, negotiation, and research preparatory to defending
the organization in potential or actual lawsuits involving alleged
negligencewhere the facts can be firmly established and there are precedent
cases directly applicable to the situation;
b. searching case reports, legal documents, periodicals, textbooks, and other
legal references, and preparing draft opinions on employee compensation or
benefit questions where there is a substantial amount of clearly applicable
statutory, regulatory, and case material;
c. drawing up contracts and other legal documents in connection with real
property transactions requiring the development of detailed information but
not involving serious questions regarding titles to property or other major
factual or legal issues.
d. preparing routine criminal cases for trial when the legal or factual

issues are relatively straight forward and the impact of the case is limited;
and

e. advising public defendants in regard to routine criminal charges or compl-
aints and representing such defendants in court when legal alternatives and
facts are relatively clear and the impact of the outcome is limited primarily
to the defendant.

Legal work is regularly difficult by reason of one or more of the following:
the absence of clear and directly applicable legal precedents; the different
possible interpretations that can be placed on the facts, the laws, or the
precedents involved; the substantial importance of the legal matters to the
organization (e.g., sums as large as $100,000 are generally directly or indir-
ectly involved); or the matter is being strongly pressed or contested in
formal proceedings or in negotiations by the individuals, corporations, or
government agencies involved.
a. advising on the legal implications of advertising representations when the
facts supporting the representations and the applicable precedent cases are
subject to different interpretations;
b. reviewing and advising on the implications of new or revised laws
affecting the organization;
c. presenting the organization's defense in court in a negligence lawsuit
which is strongly pressed by counsel for an organized group;
d. providing legal counsel on tax questions complicated by the absence of
precedent decisions that are directly applicable to the organization's
situation;
e. preparing and prosecuting criminal cases when the facts of the cases are
complex or difficult to determine or the outcome will have a significant
impact within the jurisdiction; and

clearly applicable legal precedents; and matters not of substantial
importance to the organization. (Usually relatively limited sums of money,
e.g., a few thousand dollars, are involved.)

20.3 TF-IDF 681

f. advising and representing public defendants in all phases of criminal
proceedings when the facts of the case are complex or difficult to determine,
complex or unsettled legal issues are involved, or the prosecutorial
jurisdiction devotes substantial resources to obtaining a conviction."

xTestMachinist <- "Produces replacement parts and new parts in making repairs
of metal parts of mechanical equipment. Work involves most of the following:
interpreting written instructions and specifications; planning and laying
out of work; using a variety of machinist's handtools and precision measuring
instruments; setting up and operating standard machine tools; shaping of
metal parts to close tolerances; making standard shop computations relating
to dimensions of work, tooling, feeds, and speeds of machining; knowledge of
the working properties of the common metals; selecting standard materials,
parts, and equipment required for this work; and fitting and assembling parts
into mechanical equipment. In general, the machinist's work normally requires
a rounded training in machine-shop practice usually acquired through a formal
apprenticeship or equivalent training and experience. Industrial machinery
repairer. Repairs machinery or mechanical equipment. Work involves most of
the following: examining machines and mechanical equipment to diagnose source
of trouble; dismantling or partly dismantling machines and performing repairs
that mainly involve the use of handtools in scraping and fitting parts;
replacing broken or defective parts with items obtained from stock; ordering
the production of a replacement part by a machine shop or sending the machine
to a machine shop for major repairs; preparing written specifications for
major repairs or for the production of parts ordered from machine shops;
reassembling machines; and making all necessary adjustments for operation.
In general, the work of a machinery maintenance mechanic requires rounded
training and experience usually acquired through a formal apprenticeship or
equivalent training and experience. Excluded from this classification are
workers whose primary duties involve setting up or adjusting machines. Vehicle
and mobile equipment mechanics and repairers. Repairs, rebuilds, or overhauls
major assemblies of internal combustion automobiles, buses, trucks, or tract
tractors. Work involves most of the following: Diagnosing the source of trouble
and determining the extent of repairs required; replacing worn or broken parts
such as piston rings, bearings, or other engine parts; grinding and adjusting
valves; rebuilding carburetors; overhauling transmissions; and repairing
fuel injection, lighting, and ignition systems. In general, the work of the
motor vehicle mechanic requires rounded training and experience usually acqu-
ired through a formal apprenticeship or equivalent training and experience"

testJDs <- (xTestAccountant, xTestAttorney, xTestMachinist)

token_fun = text2vec::word_tokenizer

for(j in (job[,])){
job[j,] <- ("_", " ", job[j,])

}

iter_Jobs = (job[,],
preproc_fun,

token_fun,
)

c

define the preprocessing (tolower case) function

preproc_fun = tolower

define the tokenization function

loop to substitute "_" with blank space

seq 10
10 gsub 10

iterator for Job training and testing JDs

itoken 10
preprocessor =
tokenizer =
progressbar = TRUE

iter_testJDs = (testJDs,
preproc_fun,

token_fun,
)

itoken

preprocessor =
tokenizer =
progressbar = TRUE

682 20 Natural Language Processing/Text Mining

jobs_Vocab= create_vocabulary(iter_Jobs,stopwords=tm::stopwords("english"),
ngram = c(1L, 2L))

jobsVectorizer = vocab_vectorizer(jobs_Vocab)

dtm_jobsTrain = create_dtm(iter_Jobs, jobsVectorizer)

dtm_testJDs = create_dtm(iter_testJDs, jobsVectorizer)

dim(dtm_jobsTrain); dim(dtm_testJDs)
[1] 200 2675

[1] 3 2675

set.seed(2)
fit1 <- cv.glmnet(x = as.matrix(dtm_jobsTrain), y = job[['highrank']],

family = 'binomial',
lasso penalty

alpha = 1,
interested in the area under ROC curve

type.measure = "auc",
10-fold cross-validation

nfolds = 10,
high value is less accurate, but has faster training

thresh = 1e-3,
again lower number of iterations for faster training

maxit = 1e3)
print(paste("max AUC =", round(max(fit1$cvm), 4)))

[1] "max AUC = 0.7934"

Note that we somewhat improved the AUC � 0.79. Below, we will assess the JD

predictive model using the three out of bag job descriptions (Fig. 20.7).

Fig. 20.7 AUC-based performance of the cross-validated LASSO-regularized model of

job-ranking based on dtm_jobsTrain, see Figs. 20.5 and 20.6

20.3 TF-IDF 683

plot(fit1)
plot(fit1, xvar="lambda", label="TRUE")

mtext("CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

predTestJDs <- predict(fit1, s = fit1$lambda.1se,
newx = dtm_testJDs, type="response"); predTestJDs

1
1 0.2153011
2 0.2200925
3 0.1257575

predTrainJDs <- predict(fit1, s = fit1$lambda.1se, newx = dtm_jobsTrain, typ
e="response"); predTrainJDs

1
1 0.3050636
2 0.4118190
3 0.1288656
4 0.1493051
5 0.6432706
6 0.1257575
7 0.1257575
8 0.2561290
9 0.3866247
10 0.1262752
…
196 0.1257575
197 0.1257575
198 0.1257575
199 0.1257575
200 0.1257575

Type can be: "link", "response", "coefficients", "class", "nonzero"

The output of the predictions shows that:

• On the training data, the predicted probabilities rapidly decrease with the

indexing of the jobs, corresponding to the overall job ranking (highly ranked/

desired jobs are listed on the top).

• On the three testing job description data (accountant, attorney, and machinist),

there is a clear ranking difference between the machinist and the other two

professions.

Also see the discussion in Chap. 18 about the different types of predictions that

can be generated as outputs of cv.glmnet regularized forecasting methods.

684 20 Natural Language Processing/Text Mining

20.4 Cosine Similarity

As we mentioned above, text data are often transformed in terms of Term Frequency-

Inverse Document Frequency (TF-IDF), which offers a better input than the raw

frequencies for many text-mining methods. An alternative transformation can be

represented as a different distancemeasure such as the cosine distance, which is defined

by:

similarity ¼ cos θð Þ ¼
A � B

Ak k2 Bk k2
,

where θ represents the angle between the pair of vectors A and B in the Euclidean

space spanned by the DTM matrix (Fig. 20.8).

cos_dist = function(mat){
numer = tcrossprod(mat)
denom1 = sqrt(apply(mat, 1, crossprod))
denom2 = sqrt(apply(mat, 1, crossprod))
1 - numer / outer(denom1,denom2)

}

dist_cos = cos_dist(as.matrix(dtm))

set.seed(2000)
fit_cos <- cv.glmnet(x = dist_cos, y = job[['highrank']],

family = 'binomial',
lasso penalty

alpha = 1,

Fig. 20.8 AUC-based performance of the cross-validated LASSO-regularized model of

job-ranking based on cosine-similarity distance (dist_cos), see Figs. 20.5, 20.6, and 20.7

20.4 Cosine Similarity 685

interested in the area under ROC curve

type.measure = "auc",
10-fold cross-validation

nfolds = 10,
high value is less accurate, but has faster training

thresh = 1e-3,
again lower number of iterations for faster training

maxit = 1e3)
plot(fit_cos)

print(paste("max AUC =", round(max(fit_cos$cvm), 4)))

[1] "max AUC = 0.8065"

The AUC now is greater than 0.8, which is a pretty good result; even better than

what we obtained from DTM or TF-IDF. This suggests that our machine “under-

standing” of the textual content, i.e., the natural language processing, leads to a more

acceptable content classifier.

20.5 Sentiment Analysis

Let’s use the text2vec::movie_review dataset, which consists of 5,000

movie reviews dichotomized as positive or negative. In the subsequent

predictive analytics, this sentiment will represent our output feature:

Y ¼ Sentiment ¼
0, negative

1, positive

�

:

20.5.1 Data Preprocessing

The data.table package will also be used for some data manipulation. Let’s start

with splitting the data into training and testing sets.

install.packages("text2vec"); install.packages("data.table")

library(text2vec)
library(data.table)

Load the movie reviews data

data("movie_review")

coerce the movie reviews data to a data.table (DT) object

setDT(movie_review)

create a key for the movie-reviews data table

setkey(movie_review, id)

686 20 Natural Language Processing/Text Mining

review
1: Homelessness (or Houselessness as George Carlin stated) has been an is
sue for years but never a plan to help those on the street that were once co
nsidered human who did everything from going to school ... Maybe they should
give it to the homeless instead of using it like Monopoly money.

Or maybe this film will inspire you to help others.
2:
This film lacked something I couldn't put my finger on at first: charisma on
the part of the leading actress. This inevitably translated to lack of chemi
stry when she shared the screen with her leading man. Even the romantic scen
es came across as being merely the actors at play … I was disappointed in th
is movie. But, don't forget it was nominated for an Oscar, so judge for your
self.
3:
\\"It appears that many critics find the idea of a Woody Allen drama unpalat
able.\\" And for good reason: they are unbearably wooden and pretentious imi
tations of Bergman. And let's … \\"ripping off\\" Hitchcock in his suspense/
horror films? In Robin Wood's view, it's a strange form of cultural snobbery
. I would have to agree with that.
4:
This isn't the comedic Robin Williams, nor is it the quirky/insane Robin Wil
liams of recent thriller fame. This is a hybrid of the classic drama without
over-dramatization, mixed with Robin's new love of the thriller. But this is
n't a thriller, per se …

All in all, it's worth a watch, though
it's definitely not Friday/Saturday night fare.

It rates a 7.7/10
from...

the Fiend :.

View the data

View(movie_review)

head(movie_review); dim(movie_review); colnames(movie_review)

id sentiment
1: 10000_8 1
2: 10001_4 0
3: 10004_3 0
4: 10004_8 1
5: 10006_4 0
6: 10008_7 1

5:
I don't know who to blame, the timid writers or the clueless director. It se
emed to be one of those movies where so much was paid to the stars (Angie, C
harlie, Denise, Rosanna and Jon) … If they were only looking for laughs why
not cast Whoopi Goldberg and Judy Tenuta instead? This was so predictable I
was surprised to find that the director wasn't a five year old. What a waste
, not just for the viewers but for the actors as well.
6:
You know, Robin Williams, God bless him, is constantly shooting himself in t
he foot lately with all these dumb comedies he has done this decade (with pe
rhaps the exception of \\"Death To Smoochy … It's incredible that there is a
t least one woman in this world who is like this, and it's scary too.
<
br />This is a good, dark film that I highly recommend. Be prepared to be un
settled, though, because this movie leaves you with a strange feeling at the
end.

[1] 5000 3

[1] "id" "sentiment" "review"

20.5 Sentiment Analysis 687

Generate 80-20% training-testing split of the reviews

all_ids = movie_review$id
set.seed(1234)
train_ids = sample(all_ids, 5000*0.8)
test_ids = setdiff(all_ids, train_ids)
train = movie_review[train_ids,]
test = movie_review[test_ids,]

Next, we will vectorize the reviews by creating terms to termID mappings. Note

that terms may include arbitrary n-grams, not just single words. The set of reviews

will be represented as a sparse matrix, with rows and columns corresponding to

reviews/reviewers and terms, respectively. This vectorization may be accomplished

in several alternative ways, e.g., by using the corpus vocabulary, feature

hashing, etc.

The vocabulary-based DTM, created by the create_vocabulary() func-

tion, relies on all unique terms from all reviews, where each term has a unique

ID. In this example, we will create the review vocabulary using an iterator construct

abstracting the input details and enabling in memory processing of the (training) data

by chunks.

define the text preprocessing

either a simple (tolower case) function

preproc_fun = tolower

or a more elaborate "cleaning" function

preproc_fun = function(x) # text data

{ require("tm")
x = gsub("<.*?>", " ", x) # regex removing HTML tags
x = iconv(x, "latin1", "ASCII", sub="") # remove non-ASCII characters
x = gsub("[^[:alnum:]]", " ", x) # remove non-alpha-numeric values

x = tolower(x) # convert to lower case characters

x = removeNumbers(x) # removing numbers

x = stripWhitespace(x) # removing white space
x = gsub("^\\s+|\\s+$", "", x) # remove leading and trailing white space

return(x)
}

define the tokenization function

token_fun = word_tokenizer

iterator for both training and testing sets

iter_train = itoken(train$review,
preprocessor = preproc_fun,
tokenizer = token_fun,
ids = train$id,
progressbar = TRUE)

688 20 Natural Language Processing/Text Mining

0 stopwords: ...
ngram_min = 1; ngram_max = 1
Vocabulary:
terms terms_counts doc_counts
1: lowlife 1 1
2: sorin 1 1
3: ewell 1 1
4: negligence 1 1
5: stribor 1 1

35661: landscaping 1 1
35662: bikes 1 1
35663: primer 1 1
35664: loosely 26 25
35665: cycling 1 1

iter_test = itoken(test$review,
preprocessor = preproc_fun,
tokenizer = token_fun,
ids = test$id,
progressbar = TRUE)

reviewVocab = create_vocabulary(iter_train)

report the head and tail of the reviewVocab

reviewVocab

Number of docs: 4000

Next, we can compute the document term matrix (DTM).

reviewVectorizer = vocab_vectorizer(reviewVocab)
t0 = Sys.time()
dtm_train = create_dtm(iter_train, reviewVectorizer)

dtm_test = create_dtm(iter_test, reviewVectorizer)

t1 = Sys.time()
print(difftime(t1, t0, units = 'sec'))

Time difference of 3.844368 secs

check the DTM dimensions

dim(dtm_train); dim(dtm_test)

[1] 4000 35665

[1] 1000 35665

confirm that the training data review DTM dimensions are consistent

with training review IDs, i.e., #rows = number of documents, and

#columns = number of unique terms (n-grams), dim(dtm_train)[[2]]

identical(rownames(dtm_train), train$id)

[1] TRUE

20.5.2 NLP/TM Analytics

We can now fit statistical models or derive machine learning model-free predictions.

Let’s start by using glmnet() to fit a logit model with LASSO (L1) regularization

and 10-fold cross-validation, see Chap. 18 (Fig. 20.9).

20.5 Sentiment Analysis 689

library(glmnet)
nFolds = 10
t0 = Sys.time()
glmnet_classifier = cv.glmnet(x = dtm_train, y = train[['sentiment']],

family = "binomial",
LASSO L1 penalty

alpha = 1,
interested in the area under ROC curve or MSE

type.measure = "auc",
n-fold internal (training data) stats cross-validation

nfolds = nFolds,
threshold: high value is less accurate / faster training

thresh = 1e-2,
again lower number of iterations for faster training

maxit = 1e3
)

lambda.best <- glmnet_classifier$lambda.min
lambda.best

[1] 0.007344319
report execution time

t1 = Sys.time()
print(difftime(t1, t0, units = 'sec'))

Time difference of 5.923289 secs

some prediciton plots

plot(glmnet_classifier)
plot(glmnet_classifier, xvar="lambda", label="TRUE")

mtext("CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

Now let’s look at external validation, i.e., testing the model on the independent

20% of the reviews we kept aside. The performance of the binary prediction (binary

Fig. 20.9 AUC-based performance of the cross-validated LASSO-regularized model of movie

sentiment analysis training data (dtm_train), see Fig. 20.8

690 20 Natural Language Processing/Text Mining

sentiment analysis of these movie reviews) on the test data is roughly the same as we

had from the internal statistical 10-fold cross-validation.

report the mean internal cross-validated error

print(paste("max AUC =", round(max(glmnet_classifier$cvm), 4)))
[1] "max AUC = 0.9246"

report TESTING data prediction accuracy

xTest = dtm_test
yTest = test[['sentiment']]
predLASSO <- predict(glmnet_classifier,

s = glmnet_classifier$lambda.1se, newx = xTest)
testMSE_LASSO <- mean((predLASSO - yTest)^2); testMSE_LASSO

[1] 2.869523

Binarize the LASSO probabiliuty prediction

binPredLASSO <- ifelse(predLASSO<0.5, 0, 1)
table(binPredLASSO, yTest)

yTest
binPredLASSO 0 1
0 455 152
1 40 353

and testing data AUC

glmnet:::auc(yTest, predLASSO)

[1] 0.9175598

report the top 20 negative and positive predictive terms

summary(predLASSO)

1
Min. :-12.80392
1st Qu.: -0.94586
Median : 0.14755
Mean : -0.07101
3rd Qu.: 1.01894
Max. : 6.60888

sort(predict.cv.glmnet(glmnet_classifier, s = lambda.best, type = "coefficie
nts"))[1:20]

<sparse>[<logic>] : .M.sub.i.logical() maybe inefficient

[1] -4.752272 -2.199304 -1.987171 -1.966585 -1.902009 -1.866655 -1.84496
6
[8] -1.750693 -1.518148 -1.502966 -1.436081 -1.405963 -1.349566 -1.34285
6
[15] -1.320218 -1.283414 -1.270231 -1.257663 -1.242869 -1.209449

rev(sort(predict.cv.glmnet(glmnet_classifier, s = lambda.best, type = "coeff
icients")))[1:20]

<sparse>[<logic>] : .M.sub.i.logical() maybe inefficient

[1] 2.559487 2.416333 2.101371 1.913529 1.899846 1.684176 1.600367
[8] 1.530320 1.519663 1.435103 1.430446 1.376056 1.343108 1.309902
[15] 1.300156 1.287921 1.131859 1.078685 1.074059 1.015887

The (external) prediction performance, measured by AUC, on the testing

data is about the same as the internal 10-fold stats cross-validation we reported above.

20.5 Sentiment Analysis 691

20.5.3 Prediction Optimization

Earlier, we saw that we can also prune the vocabulary and perhaps improve

prediction performance, e.g., by removing non-salient terms like stopwords and by

using n-grams instead of single words (Fig. 20.10).

reviewVocab = create_vocabulary(iter_train,
stopwords=tm::stopwords("english"), ngram = c(1L, 2L))

prunedReviewVocab = prune_vocabulary(reviewVocab,
term_count_min = 10,
doc_proportion_max = 0.5,
doc_proportion_min = 0.001)

prunedVectorizer = vocab_vectorizer(prunedReviewVocab)

t0 = Sys.time()
dtm_train = create_dtm(iter_train, prunedVectorizer)

dtm_test = create_dtm(iter_test, prunedVectorizer)

t1 = Sys.time()
print(difftime(t1, t0, units = 'sec'))

Time difference of 3.778152 secs

Next, let’s refit the model and report its performance. Would there be an

improvement in the prediction accuracy?

Fig. 20.10 AUC-based performance of the pruned cross-validated LASSO-regularized model of

movie sentiment analysis (glmnet_prunedClassifier), see Fig. 20.9

692 20 Natural Language Processing/Text Mining

glmnet_prunedClassifier=cv.glmnet(x=dtm_train,
y=train[['sentiment']],
family = "binomial",
LASSO L1 penalty

alpha = 1,
interested in the area under ROC curve or MSE

type.measure = "auc",
n-fold internal (training data) stats cross-validation

nfolds = nFolds,

report the mean internal cross-validated error

print(paste("max AUC =", round(max(glmnet_prunedClassifier$cvm), 4)))

[1] "max AUC = 0.9295"

report TESTING data prediction accuracy

xTest = dtm_test
yTest = test[['sentiment']]
predLASSO = predict(glmnet_prunedClassifier,

dtm_test, type = 'response')[,1]

testMSE_LASSO <- mean((predLASSO - yTest)^2); testMSE_LASSO

[1] 0.1194583

Binarize the LASSO probabiliuty prediction

binPredLASSO <- ifelse(predLASSO<0.5, 0, 1)
table(binPredLASSO, yTest)
yTest
binPredLASSO 0 1
0 416 60
1 79 445

and testing data AUC

threshold: high value is less accurate / faster training

thresh = 1e-2,
again lower number of iterations for faster training

maxit = 1e3
)

lambda.best <- glmnet_prunedClassifier$lambda.min
lambda.best

[1] 0.005555708
report execution time

t1 = Sys.time()
print(difftime(t1, t0, units = 'sec'))

Time difference of 6.978195 secs

some prediction plots

plot(glmnet_prunedClassifier)
mtext("Pruned-Model CV LASSO: Number of Nonzero (Active) Coefficients",
side=3, line=2.5)

glmnet:::auc(yTest, predLASSO)

[1] 0.9252405

report the top 20 negative and positive predictive terms

summary(predLASSO)

20.5 Sentiment Analysis 693

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000014 0.2518000 0.5176000 0.5026000 0.7604000 0.9995000

sort(predict.cv.glmnet(glmnet_classifier, s = lambda.best, type = "coefficie
nts"))[1:20]

<sparse>[<logic>] : .M.sub.i.logical() maybe inefficient

[1] -5.695082 -2.774694 -2.756099 -2.540456 -2.508213 -2.474586 -2.432767
[8] -2.429874 -1.999731 -1.941299 -1.934803 -1.929788 -1.819220 -1.774936
##[15] -1.765978 -1.737596 -1.717957 -1.661592 -1.611752 -1.599558

rev(sort(predict.cv.glmnet(glmnet_classifier, s = lambda.best, type = "coeff
icients")))[1:20]

<sparse>[<logic>] : .M.sub.i.logical() maybe inefficient

[1] 3.276620 2.695083 2.575524 2.436630 2.366057 2.139067 2.087892
[8] 2.027113 1.980694 1.894909 1.839621 1.777573 1.743082 1.599660
[15] 1.579711 1.569817 1.533461 1.509555 1.453862 1.425065

Binarize the LASSO probability prediction

and construct an approximate confusion matrix

binPredLASSO <- ifelse(predLASSO<0.5, 0, 1)
table(binPredLASSO, yTest)

yTest
binPredLASSO 0 1
0 416 60
1 79 445

Using n-grams improved a bit the sentiment prediction model.

Try these NLP techniques to other data like:

• MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ,

Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and

Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from:

http://www.nature.com/articles/sdata201635

• Other data from the list of our Case-Studies.

• Your own free text.

20.6 Assignment: 20. Natural Language Processing/Text

Mining

20.6.1 Mining Twitter Data

Use these R Data Mining Twitter data to apply NLP/TMmethods and investigate the

Twitter corpus.

• Construct a VCorpus object

• Clean the VCorpus object

694 20 Natural Language Processing/Text Mining

http://www.nature.com/articles/sdata201635

• Build document term matrix (DTM)

• Compute the TF-IDF(term frequency - inverse document frequency

• Use the DTM to construct a wordcloud.

20.6.2 Mining Cancer Clinical Notes

Use Head and Neck Cancer Medication Data to apply NLP/TM methods and

investigate the corpus. You have already seen this data in Chap. 8; now we can go

a step further.

• Use MEDICATION_SUMMARY to construct a VCorpus object.

• Clean the VCorpus object.

• Build the document term matrix (DTM).

• Add a column to indicate early and later stage according to seer_stage (refer

to Chap. 8).

• Use the DTM to construct a word cloud for early stage, later stage and whole.

• Interpret according to the word cloud.

• Compute the TF-IDF (Term Frequency - Inverse Document Frequency).

• Apply LASSO on the unweighted and weighted DTM respectively and evaluate

the results according to AUC.

• Try cosine similarity transformation, apply LASSO and compare the result.

• Use other measures such as “class” for cv.glmnet().

• Does it appear that these classifiers understand well human language?

References

Kumar, E. (2011) Natural Language Processing, I. K. International Pvt Ltd, ISBN 9380578776,

9789380578774.

Kao, A, Poteet, SR (eds.) (2007) Natural Language Processing and Text Mining, Springer Science

& Business Media, ISBN 1846287545, 9781846287541.

https://github.com/kbenoit/spacyr

https://tartarus.org/martin/PorterStemmer/

References 695

https://github.com/kbenoit/spacyr
https://tartarus.org/martin/PorterStemmer/

Chapter 21

Prediction and Internal Statistical Cross

Validation

We should start by reviewing Chap. 14 (Model Performance Assessment). Cross-

validation is a statistical approach for validating predictive methods, classification

models, and clustering techniques. It assesses the reliability and stability of the

results of the corresponding statistical analyses (e.g., predictions, classifications,

forecasts) based on independent datasets. For prediction of trend, association,

clustering, and classification, a model is usually trained on one dataset (training

data) and subsequently tested on new data (testing or validation data). Statistical

internal cross-validation uses iterative bootstrapping to define test datasets, evaluates

the model predictive performance, and assesses its power to avoid overfitting.

Overfitting is the process of computing a predictive or classification model that

describes random error, i.e., fits to the noise components of the observations, instead

of the actual underlying relationships and salient features in the data.

In this Chapter, we will use the Google Flu Trends, Autism, and Parkinson’s

disease case-studies to (1) illustrate exhaustive and non-exhaustive internal statisti-

cal cross-validation; (2) explore alternative forecasting types using linear and non-

linear predictions; and (3) compare complementary predictor functions.

21.1 Forecasting Types and Assessment Approaches

In Chap. 7, we discussed the types of classification and prediction methods, includ-

ing supervised and unsupervised learning. The former are direct and pre-

dictive, as there are known outcome variables that can be predicted, and the

corresponding forecasts can be evaluated. The latter are indirect and descriptive, as

there are no a priori labels or specific outcomes.

There are alternative metrics used for evaluation of model performance, see

Chap. 14. For example, assessment of supervised prediction and classification

methods depends on the type of the labeled outcome responses: categorical
(binary or polytomous) vs. continuous.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_21

697

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_21&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_21

• Confusion matrices reporting accuracy, FP, FN, PPV, NPV, LOR and

other metrics may be used to assess predictions of dichotomous (binary) or

polytomous outcomes.
• R2, correlations (between predicted and observed outcomes), and RMSE mea-

sures may be used to quantify the performance of various supervised forecasting

methods on continuous features.

21.2 Overfitting

Before we go into the cross-validation of predictive analytics, we will present several

examples of overfitting that illustrate why a certain amount of skepticism and

mistrust may be appropriate when dealing with forecasting models that are based

on large and complex data.

21.2.1 Example (US Presidential Elections)

By 2017, there were only 57 US presidential elections and 45 presidents. That is a

small dataset, and learning from it may be challenging. For instance:

• If the predictor space expands to include things like having false teeth, it’s pretty

easy for the model to go from fitting the generalizable features of the data (the

signal, e.g., presidential actions) to matching noise patterns (e.g., irrelevant

characteristics like gender of the children of presidents, or types of dentures

they may wear).

• When overfitting noise patterns takes place, the quality of the model fit assessed

on the historical data may improve (e.g., better R2, more about the Coefficient of

Determination is available online). At the same time, however, the model perfor-

mance may be suboptimal when used to make inference about prospective data,

e.g., future presidential elections.

Figure 21.1 shows a cartoon that includes some of the (unique) noisy presidential

characteristics that are thought to be unimportant to electability, fitness for office, or

expectations of presidential performance.

21.2.2 Example (Google Flu Trends)

A March 14, 2014 article in Science (DOI: https://doi.org/10.1126/science.

1248506), identified problems in a Google Flu Trends (GFT) study, DOI https://

doi.org/10.1371/journal.pone.0023610, which may be attributed in part to

698 21 Prediction and Internal Statistical Cross Validation

https://doi.org/10.1126/science.1248506
https://doi.org/10.1126/science.1248506
https://doi.org/10.1371/journal.pone.0023610
https://doi.org/10.1371/journal.pone.0023610

Fig. 21.1 Example of an overfitting based on extreme stratification of traits of presidential

candidates

21.2 Overfitting 699

overfitting. The GFT model was built to predict the future Centers for Disease

Control and Prevention (CDC) reports of doctor office visits for influenza-like illness

(ILI). In February 2013, Nature reported that GFT was predicting more than double

the proportion of doctor visits compared to the CDC forecast for the same period.

The GFT model found the best matches among 50 million web search terms to fit

1,152 data points. It predicted quite high odds of finding search terms that match the

propensity of the flu, but which are structurally unrelated, and hence are not

prospectively predictive. In fact, the GFT investigators reported weeding out sea-

sonal search terms that were unrelated to the flu, which may have been strongly

correlated to the CDC data, e.g., high school basketball season. The big GFT data

may have overfitted the relatively small number of cases. This false-alarm result was

also paired with a false-negative finding. The GFT model also missed the

non-seasonal 2009 H1N1 influenza pandemic. This provides a cautionary tale

about prediction, overfitting, and prospective validation.

21.2.3 Example (Autism)

Autistic brains constantly overfit visual and cognitive stimuli. To an autistic

person, a general conversation of several adults may seem like a cacophony due

to super-sensitive detail-oriented hearing and perception tuned to literally pick up

all elements of the conversation and clues of the surrounding environment. At the

same time, autistic brains may downplay body language, sarcasm, and non-literal

cues. We can miss the forest for the trees when we start “overfitting”,

i.e., when we over interpret the noise on top of the actual salient information.

Ambient noise, trivial observations, and unrelated perceptions may obfuscate the

true communication details.

Human conversations and communications involve exchanges of both critical

information and random noise. Fitting a perfect model requires focus only on the

“relevant” information. Overfitting occurs when attention is (excessively) consumed

with peripheral noise, or worse, overwhelmed by inconsequential noise drowning

the salient aspects of the communication exchange.

Any dataset is a mix of signal and noise. The main task of our brains is to sort

these components and interpret the useful information while ignoring the noise.

However, we should be cognizant that

"One person's noise is another person's treasure map!"

Our predictions are most accurate if we can model as much of the signal and as

little of the noise as possible. Note that in these terms, R2 is a poor metric to identify

predictive power – it measures how much of the signal and the noise is explained by

our model. In practice, it’s hard to always identify what’s signal and what’s noise.

This is why practical applications tend to favor simpler models, since the more

complicated a model is, the easier it is to overfit the noise component of the observed

information.

700 21 Prediction and Internal Statistical Cross Validation

21.3 Internal Statistical Cross-Validation is an Iterative

Process

Internal statistical cross-validation assesses the expected performance of a prediction

method in cases (e.g., subjects, units, regions, etc.) drawn from a similar population

as the original training data sample. Internal validation is distinct from exter-
nal validation, as the latter potentially allows for the existence of differences

between the populations: training data, used to develop, or train, the technique,

and testing data, used to independently quantify the performance of the technique.

Each step in the internal statistical cross-validation protocol involves:

• Randomly partitioning a sample of data into 2 complementary subsets (training +

testing),

• Performing the analysis, fitting or estimating the model using the training set,

• Validating the analysis or evaluating the performance of the model using the

separate testing set,

• Increasing the iteration index and repeating the process. Various termination

criterial can be chosen like a fixed number of iterations, a desired mean variabil-

ity, or an upper bound on the error-rate.

One example of internal statistical cross-validation used for predictive diagnostic

modeling in Parkinson’s disease is available online.

To reduce the noise and variability at each iteration, the final validation results

may include the averaged performance results across iterations.

In cases when new observations are hard to obtain (due to costs, reliability, time,

or other constraints), cross-validation guards against testing hypotheses suggested

by the data themselves (also known as Type III error or False-Suggestion).

Cross-validation is different from conventional-validation (e.g. 80–20%

partitioning the data set into training and testing subsets) where the prediction

error (e.g., Root Mean Square Error, RMSE) evaluated on the training data is not a

useful estimator of model performance, as it does not generalize across multiple

samples.

In general, the errors of the conventional-valuation are based on the results of

a specific test dataset and may not accurately represent the model performance.

A more appropriate strategy to properly estimate model prediction performance is to

use cross-validation (CV), which combines (e.g., averages) multiple prediction

errors to measure the expected model performance. CV corrects for the expected

stochastic nature of partitioning the training and testing sets and generates a more

accurate and robust estimate of the expected model performance.

Relative to a simpler model, a more complex model may overfit-the-data if it

has a short foresight, i.e., it may generate accurate fitting results for known data but

less accurate results when predicting based on new data. Knowledge from past

experiences may include either relevant or irrelevant (noise) information. In chal-

lenging data-driven prediction models where the uncertainty (entropy) is high, more

noise is present in past information that needs to be accounted for in prospective

21.3 Internal Statistical Cross-Validation is an Iterative Process 701

forecasting. However, it is generally hard to discriminate patterns from noise in

complex systems, which makes it difficult to decide what part to model and what to

ignore. Models that reduce the chance of fitting noise are called robust.

21.4 Example (Linear Regression)

Let’s demonstrate a simple model assessment using linear regression. Suppose

we observe the response values {y1, � � �, yn}, and the corresponding

k predictors represented as a kD vector of covariates {x1, � � �, xn}, where subjects/

cases are indexed by 1 � i � n, and the data-elements (variables) are indexed by

1 � j � k.

x1,1 � � � x1,k

⋮ ⋱ ⋮

xn,1 � � � xn,k

0

B
@

1

C
A:

Using least squares to estimate the linear function parameters (effect-sizes), β1, � � �,
βk, allows us to compute a hyperplane y ¼ a + xβ that best fits the observed data

(xi, yi)1 � i � n. This is expressed as a matrix by:

y1

⋮

yn

0

B
@

1

C
A ¼

a1

⋮

an

0

B
@

1

C
Aþ

x1,1 � � � x1,k

⋮ ⋱ ⋮

xn,1 � � � xn,k

0

B
@

1

C
A

β1

⋮

βk

0

B
@

1

C
A:

Corresponding to the system of linear hyperplanes:

y1 ¼ a1 þ x1,1β1 þ x1,2β2 þ � � � þ x1,kβk

y2 ¼ a2 þ x2,1β1 þ x2,2β2 þ � � � þ x2,kβk

⋮

yn ¼ a1 þ xn,1β1 þ xn,2β2 þ � � � þ xn,kβk

8

>>>><

>>>>:

:

One measure to evaluate the model fit may be the mean squared error (MSE).

The MSE for a given value of the parameters α and β on the observed training

data (xi, yi)1 � i � n is expressed as:

MSE ¼
1

n

Xn

i¼1

yi �
�
a1 þ xi,1β1 þ xi,2β2 þ � � � þ xi,kβk

�

|ffl{zffl}

predicted value ŷ i : at xi,1, ���,xi,k

�

1

C
C
A

2

:

0

B
B
@

702 21 Prediction and Internal Statistical Cross Validation

And the corresponding root mean square error (RMSE) is:

RMSE ¼

ffi

1

n

Xn

i¼1

yi �
�
a1 þ xi,1β1 þ xi,2β2 þ � � � þ xi,kβk

�

|ffl{zffl}

predicted value ŷ i : at xi,1, ���, xi,k

�

1

C
C
A

2

:

0

B
B
@

v
u
u
u
u
u
t

In the linear model case, the expected value of the MSE (over the distribution of

training sets) for the training set is n�k�1
nþkþ1

E, where E is the expected value of the

MSE for the testing/validation data. Therefore, fitting a model and computing the

MSE on the training set, we may produce an over optimistic evaluation assessment

(smaller RMSE) of how well the model may fit another dataset. This bias represents

in-sample estimate of the fit, whereas we are interested in the cross-validation

estimate as an out-of-sample estimate.

In the linear regression model, cross validation may not be as useful, since we can

compute the exact correction factor n�k�1
nþkþ1

to obtain an estimate of the (unknown)

exact expected out-of-sample fit using the (known) in-sampleMSE (under)estimate.

However, even in this situation, cross-validation remains useful as it can be used to

select an optimal regularized cost function.

In most other modeling procedures (e.g. logistic regression), there are no simple

general closed-form expressions (formulas) to adjust the cross-validation error

estimate of the known in-sample fit to estimate the unknown out-of-sample error

rate. Cross-validation is general strategy to predict the performance of a model on a

validation set using stochastic computation instead of obtaining experimental, the-

oretical, mathematical, or closed-form analytic error estimates.

21.4.1 Cross-Validation Methods

There are two classes of cross-validation approaches, exhaustive and non-

exhaustive.

21.4.2 Exhaustive Cross-Validation

Exhaustive cross-validation methods are based on determining all possible ways to

divide the original sample into training and testing data. For instance, the Leave-m-

out cross-validation involves using m observations for testing and the remaining

(n�m) observations as training. The case whenm¼ 1, i.e., leave-one-out method, is

only applicable when n is small, due to its huge computational cost. This process is

repeated on all partitions of the original sample. This method requires model fitting

and validating C n
m times (n is the total number of observations in the original sample

andm is the number of observations left out for validation). This requires a very large

number of iterations.

21.4 Example (Linear Regression) 703

21.4.3 Non-Exhaustive Cross-Validation

Non-exhaustive cross validation methods use bootstrap approximation to avoid

computing estimates/errors using all possible partitionings of the original sample.

For example, in the k-fold cross-validation, the original sample is randomly

partitioned into k equal sized subsamples, or folds. Of all k subsamples, a single

subsample is kept as final testing data for validation of the model. The other k � 1

subsamples are used as training data. The cross-validation process is then repeated

k times, corresponding to the k folds. Each of the k subsamples is used once as the

validation data. In the end, the corresponding k results are averaged (or otherwise

aggregated) to generate a final pooled model-quality estimation. In k-fold validation,

all observations are used for both training and validation, and each observation is

used for validation exactly once. In general, k is a parameter that needs to be selected

by the investigator (common values may be 5 or 10).

A general case of the k-fold validation is k ¼ n (the total number of

observations), when it coincides with the leave-one-out cross-validation.

A variation of the k-fold validation is stratified k-fold cross-validation,

where each fold has (approximately) the same mean response value. For instance,

if the model represents a binary classification of cases (e.g., controls vs. patients),

this implies that each fold contains roughly the same proportion of the two class

labels.

Repeated random sub-sampling validation splits randomly the entire dataset

into a training set, where the model is fit, and a testing set, where the predictive

accuracy is assessed. Again, the results are averaged over all iterative splits. This

method has an advantage over k-fold cross validation, as the proportion of the

training/testing split is not dependent on the number of iterations (folds). However,

its drawback is that some observations may never be selected in the testing/valida-

tion subsample, whereas others may be selected multiple times. As validation sub-

sets may overlap, the results may vary each time we repeat the validation protocol,

unless we set a seed point in the algorithm.

Asymptotically, as the number of random splits increases, the repeated random

sub-sampling validation approaches the leave-k-out cross-validation.

21.5 Case-Studies

In the examples below, we have intentionally suppressed some of the R output

to save space. This is accomplished using this Rmarkdown command,

{r eval¼TRUE, results¼'hide'}, however, the reader is encouraged

to try hands-on all the protocols, to make modifications, to inspect, and finally to

interpret the outputs.

704 21 Prediction and Internal Statistical Cross Validation

21.5.1 Example 1: Prediction of Parkinson’s Disease Using

Adaptive Boosting (AdaBoost)

This Parkinson’s Diseases study, which involves heterogeneous neuroimaging,

genetics, clinical, and phenotypic data for over 600 volunteers including multivariate

data for three cohorts (HC¼Healthy Controls, PD¼Parkinson’s, SWEDD¼ subjects

without evidence for dopaminergic deficit).

update packages

update.packages()

Load the data: 06_PPMI_ClassificationValidationData_Short.csv.

ppmi_data <-

read.csv("https://umich.instructure.com/files/330400/download?download_frd=1",

header=TRUE)

Binarize the Dx (clinical diagnosis) classes.

binarize the Dx classes

ppmi_data$ResearchGroup <- ifelse(ppmi_data$ResearchGroup == "Control",

"Control", "Patient")

attach(ppmi_data)

head(ppmi_data)

View (ppmi_data)

Obtain a model-free predictive analytics, e.g., AdaBoost classification, and report

the results.

Model-free analysis, classification

install.packages("crossval")

install.packages("ada")

library("crossval")

require(crossval)

require(ada)

#set up adaboosting prediction function

Define a new AdaBoost classification result-reporting function

my.ada <- function (train.x, train.y, test.x, test.y, negative, formula){

ada.fit <- ada(train.x, train.y)

predict.y <- predict(ada.fit, test.x)

#count TP, FP, TN, FN, Accuracy, etc.

out <- confusionMatrix(test.y, predict.y, negative = negative)

negative is the label of a negative "null" sample (default: "control").

return (out)

}

When group sizes are imbalanced, we may need to rebalance them to avoid

potential biases of the dominant cohorts. In this case, we will re-balance the groups

using the package SMOTE Synthetic Minority Oversampling Technique. SMOTE

may be used to handle class imbalance in binary classification, see Chap. 3.

21.5 Case-Studies 705

https://umich.instructure.com/files/330400/download?download_frd=1

balance cases

SMOTE: Synthetic Minority Oversampling Technique to handle class misbalanc

e in binary classification.

set.seed(1000)

install.packages("unbalanced") to deal with unbalanced group data

require(unbalanced)

ppmi_data$PD <- ifelse(ppmi_data$ResearchGroup=="Control", 1, 0)

uniqueID <- unique(ppmi_data$FID_IID)

ppmi_data <- ppmi_data[ppmi_data$VisitID==1,]

ppmi_data$PD <- factor(ppmi_data$PD)

colnames(ppmi_data)

ppmi_data.1<-ppmi_data[, c(3:281, 284, 287, 336:340, 341)]

n <- ncol(ppmi_data)

output.1 <- ppmi_data$PD

ppmi_data$PD <- ifelse(ppmi_data$ResearchGroup=="Control", 1, 0)

remove Default Real Clinical subject classifications!

input <- ppmi_data[, -which(names(ppmi_data) %in% c("ResearchGroup", "PD",

"X", "FID_IID"))]

output <- as.matrix(ppmi_data[, which(names(ppmi_data) %in% {"PD"})])

output <- as.factor(ppmi_data$PD)

c(dim(input), dim(output))

#balance the dataset

set.seed(123)

data.1<-ubBalance(X= input, Y=output, type="ubSMOTE", percOver=300, percUnde

r=150, verbose=TRUE)

balancedData<-cbind(data.1$X, data.1$Y)

table(data.1$Y)

nrow(data.1$X); ncol(data.1$X)

nrow(balancedData); ncol(balancedData)

nrow(input); ncol(input)

colnames(balancedData) <- c(colnames(input), "PD")

Next, we’ll check the re-balanced cohort sizes (Fig. 21.2).

Fig. 21.2 Quantile-quantile plot of the original and rebalanced data distributions for one feature

706 21 Prediction and Internal Statistical Cross Validation

###Check balance

T test

alpha.0.05 <- 0.05

test.results.bin <- NULL # binarized/dichotomized p-values

test.results.raw <- NULL # raw p-values

get a better error-handling t.test function that gracefully handles NA's a

nd trivial variances

my.t.test.p.value <- function(input1, input2) {

obj <- try(t.test(input1, input2), silent=TRUE)

if (is(obj, "try-error"))

return(NA)

else

return(obj$p.value)

}

for (i in 1:ncol(balancedData))

{

test.results.raw[i] <- my.t.test.p.value(input[, i], balancedData [, i])

test.results.bin[i] <- ifelse(test.results.raw[i] > alpha.0.05, 1, 0)

binarize the p-value (0=significant, 1=otherwise)

print(c("i=",i,"var=", colnames(balancedData[i]), "t-test_raw_p_value=",

test.results.raw[i]))

}

we can also employ (e.g., FDR, Bonferonni) correction for multiple

testing!

test.results.corr <- stats::p.adjust(test.results.raw, method = "fdr",

n = length(test.results.raw))

where methods are "holm", "hochberg", "hommel", "bonferroni", "BH",

"BY", "fdr", "none")

plot(test.results.raw, test.results.corr)

sum(test.results.raw < alpha.0.05, na.rm=T)/length(test.results.raw)

#check proportion of inconsistencies

sum(test.results.corr < alpha.0.05, na.rm =T)/length(test.results.corr)

qqplot(input[, 5], balancedData [, 5]) # check visually for differences

between the distributions of the raw (input) and rebalanced data (for only

one variable, in this case)

Now, check visually for differences between the distributions of the raw

(input) and rebalanced data.

par(mar=c(1,1,1,1))

par(mfrow=c(10,10))

for(i in c(1:62,64:101)){ qqplot(balancedData [, i],input[, i]) } #except

VisitID

as the sample-size is changed:

length(input[, 5]); length(balancedData [, 5])

to plot raw vs. rebalanced pairs (e.g., var="L_insular_cortex_Volume"), we

need to equalize the lengths

#plot (input[, 5] +0*balancedData [, 5], balancedData [, 5]) # [, 5] ==

"L_insular_cortex_Volume"

print(c("T-test results: ", test.results))

zeros (0) are significant independent between-group T-test differences,

ones (1) are insignificant

for (i in 1:(ncol(balancedData)-1))

{

21.5 Case-Studies 707

test.results.raw [i] <- wilcox.test(input[, i], balancedData [,

i])$p.value

test.results.bin [i] <- ifelse(test.results.raw [i] > alpha.0.05, 1, 0)

print(c("i=", i, "Wilcoxon-test=", test.results.raw [i]))

}

print(c("Wilcoxon test results: ", test.results.bin))

test.results.corr <- stats::p.adjust(test.results.raw, method = "fdr", n =

length(test.results.raw))

where methods are "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",

"fdr", "none")

plot(test.results.raw, test.results.corr)

The next step will be the actual cross-validation.

using raw data:

X <- as.data.frame(input); Y <- output

neg <- "1" # "Control" == "1"

using Rebalanced data:

X <- as.data.frame(data.1$X); Y <- data.1$Y

balancedData<-cbind(data.1$X, data.1$Y); dim(balancedData)

Side note: There is a function name collision for "crossval", the same met

hod is present in the "mlr" (machine Learning in R) package and in the "cros

sval" package.

To specify a function call from a specific package do: packagename::funct

ionname()

set.seed(115)

cv.out <- crossval::crossval(my.ada, X, Y, K = 5, B = 1, negative = neg)

the label of a negative "null" sample (default: "control")

out <- diagnosticErrors(cv.out$stat)

print(cv.out$stat)

FP TP TN FN

0.6 109.6 97.0 0.2

print(out)

acc sens spec ppv npv lor

0.9961427 0.9981785 0.9938525 0.9945554 0.9979424 11.3918119

As we can see from the reported metrics, the overall averaged AdaBoost-based

diagnostic predictions are quite good.

21.5.2 Example 2: Sleep Dataset

These data contain the effect of two soporific drugs to increase hours of sleep

(treatment-compared design) on 10 patients. The data are available in R by default

(sleep {datasets}).
First, load the data and report some graphs and summaries (Fig. 21.3).

708 21 Prediction and Internal Statistical Cross Validation

data(sleep); str(sleep)

X = as.matrix(sleep[, 1, drop=FALSE]) # increase in hours of sleep,

drop is logical, if TRUE the result is coerced to the lowest possible

dimension.

The default is to drop if only one column is left, but not to drop if only

one row is left.

Y = sleep[, 2] # drug given

plot(X ~ Y)

levels(Y) # "1" "2"

dim(X) # 20 1

Next, we will define a new LDA (linear discriminant analysis) predicting function

and perform the cross-validation (CV) on the resulting predictor.

require("MASS") # for lda function

predfun.lda = function(train.x, train.y, test.x, test.y, negative)

{ lda.fit = lda(train.x, grouping=train.y)

ynew = predict(lda.fit, test.x)$class

count TP, FP etc.

out = confusionMatrix(test.y, ynew, negative=negative)

return(out)

}

install.packages("crossval")

library("crossval")

set.seed(123456)

cv.out <- crossval::crossval(predfun.lda, X, Y, K=5, B=20, negative="1",

verbose=FALSE)

cv.out$stat

diagnosticErrors(cv.out$stat)

Fig. 21.3 Box-and whisker plots of the hours of sleep for the two cohorts in the sleep dataset

21.5 Case-Studies 709

Execute the above code and interpret the diagnostic results measuring the per-

formance of the LDA prediction.

21.5.3 Example 3: Model-Based (Linear Regression)

Prediction Using the Attitude Dataset

These data represent a survey of clerical employees of an organization with

35 employees in 30 (randomly selected) departments. The data include the propor-

tion of favorable responses to 7 questions in each department.

Let’s load and summarize the data, which is available in the R {datasets} as
attitude.

?attitude, colnames(attitude)

Note: when using a data frame, a time-saver is to use "." to indicate "

include all covariates" in the DF.

E.g., fit <- lm(Y ~ ., data = D)

data("attitude")

y = attitude[, 1] # rating variable

x = attitude[, -1] # date frame with the remaining variables

is.factor(y)

summary(lm(y ~ . , data=x)) # R-squared: 0.7326

set up lm prediction function

We will demonstrate model-based analytics using lm and lda, and then will

validate the forecasting using CV.

predfun.lm = function(train.x, train.y, test.x, test.y)

{ lm.fit = lm(train.y ~ . , data=train.x)

ynew = predict(lm.fit, test.x)

compute squared error risk (MSE)

out = mean((ynew - test.y)^2)

note that, in general, when fitting linear model to continuous

outcome variable (Y),

we can't use the out<-confusionMatrix(test.y, ynew, negative=n

egative), as it requires a binary outcome

this is why we use the MSE as an estimate of the discrepancy b

etween observed & predicted values

return(out)

}

require("MASS")

#predfun.lda = function(train.x, train.y, test.x, test.y, negative)

#{ lda.fit = lda(train.x, grouping=train.y)

ynew = predict(lda.fit, test.x)$class

count TP, FP etc.

out = confusionMatrix(test.y, ynew, negative=negative)

#return(out)

#}

710 21 Prediction and Internal Statistical Cross Validation

prediction MSE using all variables

set.seed(123456)

cv.out.lm = crossval::crossval(predfun.lm, x, y, K=5, B=20, verbose=FALSE)

c(cv.out.lm$stat, cv.out.lm$stat.se) # 72.581198 3.736784

reducing to using only two variables

cv.out.lm = crossval::crossval(predfun.lm, x[, c(1, 3)], y, K=5, B=20, verbo

se=FALSE)

c(cv.out.lm$stat, cv.out.lm$stat.se)

52.563957 2.015109

21.5.4 Example 4: Parkinson’s Data (ppmi_data)

Let’s go back to the more elaborate PD data and start by loading and preprocessing

the derived-PPMI data.

ppmi_data <-read.csv("https://umich.instructure.com/files/330400/download?

download_frd=1", header=TRUE)

ppmi_data$ResearchGroup <- ifelse(ppmi_data$ResearchGroup == "Control", "C

ontrol", "Patient")

attach(ppmi_data); head(ppmi_data)

install.packages("crossval")

library("crossval")

ppmi_data$PD <- ifelse(ppmi_data$ResearchGroup=="Control", 1, 0)

input <- ppmi_data[, -which(names(ppmi_data) %in% c("ResearchGroup",

"PD", "X", "FID_IID"))]

output <- as.factor(ppmi_data$PD)

remove the irrelevant variables (e.g., visit ID)

output <- as.factor(ppmi_data$PD)

input <- ppmi_data[, -which(names(ppmi_data) %in% c("ResearchGroup", "PD", "

X", "FID_IID", "VisitID"))]

X = as.matrix(input) # Predictor variables

Y = as.matrix(output) # Actual PD clinical assessment

dim(X);

dim(Y)

layout(matrix(c(1, 2, 3, 4), 2, 2)) # optional 4 graphs/page

fit <- lm(Y~X);

plot(fit) # plot the fit

levels(as.factor(Y)) # "0" "1"

[1] "0" "1"

c(dim(X), dim(Y)) # 1043 103

[1] 422 100 422 1

Apply cross-validation to assess the performance of the linear model

(Fig. 21.4).

21.5 Case-Studies 711

https://umich.instructure.com/files/330400/download?download_frd=1
https://umich.instructure.com/files/330400/download?download_frd=1

set.seed(12345)

cv.out.lm = crossval::crossval(predfun.lm, as.data.frame(X), as.numeric(Y)

, K=5, B=20)

cv.out.lda = crossval::crossval(predfun.lda, X, Y, K=5, B=20, negative="1",

verbose=FALSE)

K=Number of folds; B=Number of repetitions.

Results

#cv.out.lda$stat;

#cv.out.lda;

diagnosticErrors(cv.out.lda$stat)

acc sens spec ppv npv lor

0.9617299 0.9513333 0.9872951 0.9945984 0.8918919 7.3258500

#cv.out.lm$stat;

#cv.out.lm;

#diagnosticErrors(cv.out.lm$stat)

21.6 Summary of CV output

The cross-validation (CV) output object includes the following three components:

• stat.cv: Vector of statistics returned by predfun for each cross validation run.

• stat: Mean statistic returned by predfun averaged over all cross validation runs.

• stat.se: Variability measuring the corresponding standard error.

21.7 Alternative Predictor Functions

We have already seen a number of predict() functions, e.g., Chap. 18. Below,

we will add to the collection of predictive analytics and forecasting functions.

Fig. 21.4 Residual plots provide exploratory analytics of the model quality

712 21 Prediction and Internal Statistical Cross Validation

21.7.1 Logistic Regression

We already saw the logit model in Chap. 18. Now, we will demonstrate a logit-

predictor function by applying it to the PD dataset.

ppmi_data <-read.csv("https://umich.instructure.com/files/330400/download?

download_frd=1", header=TRUE)

ppmi_data$ResearchGroup <- ifelse(ppmi_data$ResearchGroup == "Control",

"Control", "Patient")

install.packages("crossval"); library("crossval")

ppmi_data$PD <- ifelse(ppmi_data$ResearchGroup=="Control", 1, 0)

remove the irrelevant variables (e.g., visit ID)

output <- as.factor(ppmi_data$PD)

input <- ppmi_data[, -which(names(ppmi_data) %in% c("ResearchGroup", "PD",

"X", "FID_IID", "VisitID"))]

X = as.matrix(input) # Predictor variables

Y = as.matrix(output)

Note that the predicted values are in log terms, so they need to be exponentiated to

be correctly interpreted.

lm.logit <- glm(as.numeric(Y) ~ ., data = as.data.frame(X), family =

"binomial")

ynew <- predict(lm.logit, as.data.frame(X)); #plot(ynew)

ynew2 <- ifelse(exp(ynew)<0.5, 0, 1); # plot(ynew2)

predfun.logit = function(train.x, train.y, test.x, test.y, neg)

{ lm.logit <- glm(train.y ~ ., data = train.x, family = "binomial")

ynew = predict(lm.logit, test.x)

compute TP, FP, TN, FN

ynew2 <- ifelse(exp(ynew)<0.5, 0, 1)

out = confusionMatrix(test.y, ynew2, negative=neg) # Binary outcome,

we can use confusionMatrix

return(out)

}

Reduce the bag of explanatory variables, purely to simplify the

interpretation of the analytics in this example!

input.short <- input[, which(names(input) %in% c("R_fusiform_gyrus_Volume",

"R_fusiform_gyrus_ShapeIndex", "R_fusiform_gyrus_Curvedness",

"Sex", "Weight", "Age", "chr12_rs34637584_GT", "chr17_rs11868035_GT",

"UPDRS_Part_I_Summary_Score_Baseline",

"UPDRS_Part_I_Summary_Score_Month_03",

"UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline",

"UPDRS_Part_III_Summary_Score_Baseline",

"X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Baseline"

))]

X = as.matrix(input.short)

cv.out.logit = crossval::crossval(predfun.logit, as.data.frame(X),

as.numeric(Y), K=5, B=2, neg="1", verbose=FALSE)

cv.out.logit$stat.cv

21.7 Alternative Predictor Functions 713

https://umich.instructure.com/files/330400/download?download_frd=1
https://umich.instructure.com/files/330400/download?download_frd=1

FP TP TN FN

B1.F1 1 50 31 2

B1.F2 0 60 19 6

B1.F3 2 55 19 8

B1.F4 3 58 23 0

B1.F5 3 60 21 1

B2.F1 2 56 22 4

B2.F2 0 57 23 5

B2.F3 3 60 20 1

B2.F4 1 58 23 2

B2.F5 1 54 27 3

diagnosticErrors(cv.out.logit$stat)

acc sens spec ppv npv lor

0.9431280 0.9466667 0.9344262 0.9726027 0.8769231 5.5331424

Caution: Note that if you forget to exponentiate the values of the predicted logistic

model (see ynew2 in predict.logit), you will get nonsense results, e.g., all

cases may be predicted to be in one class, trivial sensitivity, or incorrect NPP.

21.7.2 Quadratic Discriminant Analysis (QDA)

In Chaps. 8 and 21, we discussed the linear and quadratic discriminant analysis

models. Let’s now introduce a predfun.qda() function.

predfun.qda = function(train.x, train.y, test.x, test.y, negative)

{

require("MASS") # for lda function

qda.fit = qda(train.x, grouping=train.y)

ynew = predict(qda.fit, test.x)$class

out.qda = confusionMatrix(test.y, ynew, negative=negative)

return(out.qda)

}

cv.out.qda = crossval::crossval(predfun.qda, as.data.frame(input.short),

as.factor(Y), K=5, B=20, neg="1")

Error in qda.default(x, grouping, ...): rank deficiency in group 1

diagnosticErrors(cv.out.lda$stat); diagnosticErrors(cv.out.qda$stat);

Error in diagnosticErrors(cv.out.qda$stat): object 'cv.out.qda' not found

This error message: "Error in qda.default(x, grouping, ...): rank deficiency in

group 1" indicates that there is a rank deficiency, i.e. some variables are collinear and

one or more covariance matrices cannot be inverted to obtain the estimates in group

1 (Controls).

If you remove the strongly correlated data elements

("R_fusiform_gyrus_Volume", "R_fusiform_gyrus_ShapeIndex", and

"R_fusiform_gyrus_Curvedness"), the rank-deficiency problem goes away.

714 21 Prediction and Internal Statistical Cross Validation

input.short2 <- input[, which(names(input) %in% c("R_fusiform_gyrus_Volume",

"Sex", "Weight", "Age" , "chr17_rs11868035_GT",

"UPDRS_Part_I_Summary_Score_Baseline",

"UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline",

"UPDRS_Part_III_Summary_Score_Baseline",

"X_Assessment_Non.Motor_Epworth_Sleepiness_Scale_Summary_Score_Baseline"

))]

X = as.matrix(input.short2)

cv.out.qda= crossval::crossval(predfun.qda, as.data.frame(X), as.numeric(Y),

K=5, B=2, neg="1")

It makes sense to contrast the QDA and GLM/Logit predictions.

diagnosticErrors(cv.out.qda$stat); diagnosticErrors(cv.out.logit$stat)

acc sens spec ppv npv lor

0.9407583 0.9533333 0.9098361 0.9629630 0.8880000 5.3285694

acc sens spec ppv npv lor

0.9431280 0.9466667 0.9344262 0.9726027 0.8769231 5.5331424

Clearly, both the QDA and Logit model predictions are quite similar and reliable.

21.7.3 Foundation of LDA and QDA for Prediction,

Dimensionality Reduction, and Forecasting

Previously, in Chap. 8 we saw some examples of LDA/QDA methods. Now, we’ll

provide more details. Both LDA (Linear Discriminant Analysis) and

QDA (Quadratic Discriminant Analysis) use probabilistic models of the class con-

ditional distribution of the data P(X j Y ¼ k) for each class k. Their predictions are

obtained by using the Bayesian theorem (http://wiki.socr.umich.edu/index.php/

SMHS_BayesianInference#Bayesian_Rule):

P Y ¼ k j Xð Þ ¼
P X j Y ¼ kð ÞP Y ¼ kð Þ

P Xð Þ
¼

P X j Y ¼ kð ÞP Y ¼ kð Þ
P1

l¼0 P X j Y ¼ lð ÞP Y ¼ lð Þ

Thus, we select the class k, whichmaximizes this conditional probability (maximum

likelihood estimation). In linear and quadratic discriminant analysis, P(X j Y) is
modelled as a multivariate Gaussian distribution with density:

P X j Y ¼ kð Þ ¼
1

2πð Þn Σkj j
1
2

� e �1
2
X�μkð ÞTΣ�1

k
X�μkð Þð Þ

:

This model can be used to classify data by using the training data to estimate:

(1) The class prior probabilities P(Y ¼ k) by counting the proportion of observed

instances of class k,

21.7 Alternative Predictor Functions 715

http://wiki.socr.umich.edu/index.php/SMHS_BayesianInference#Bayesian_Rule
http://wiki.socr.umich.edu/index.php/SMHS_BayesianInference#Bayesian_Rule

(2) The class means μk by computing the empirical sample class means, and

(3) The covariance matrices by computing either the empirical sample class covari-

ance matrices, or by using a regularized estimator, e.g., LASSO).

In the linear case (LDA), the Gaussians for each class are assumed to share the

same covariance matrix: Σk ¼ Σ for each class k. This leads to linear decision

surfaces separating different classes. This is clear from comparing the log-probabil-

ity ratios of a pair of 2 classes (k and l):

LOR ¼ log
P Y¼kjXð Þ
P Y¼ljXð Þ

� �

, (the LOR ¼ 0 , the two probabilities are identical, i.e.,

same class)

LOR ¼ log
P Y ¼ k j Xð Þ

P Y ¼ l j Xð Þ

� 	

¼ μk � μlð ÞTΣ�1 μk � μlð Þ ¼
1

2
μT
k Σ

�1μk�
�

μT
l Σ

�1μlÞ.

But, in the more general, quadratic case of QDA, there are no assumptions on the

covariance matrices Σk of the Gaussians, leading to more flecible quadratic decision

surfaces separating the classes.

LDA (Linear Discriminant Analysis)

LDA is similar to GLM (e.g., ANOVA and regression analyses), as it also attempts

to express one dependent variable as a linear combination of the other features or

data elements, However, ANOVA uses categorical independent variables and a

continuous dependent variable, whereas LDA has continuous independent variables

and a categorical dependent variable (i.e., Dx/class label). Logistic regression and

probit regression are more similar to LDA than ANOVA, as they also explain a

categorical variable by the values of continuous independent variables.

predfun.lda = function(train.x, train.y, test.x, test.y, neg)

{

require("MASS")

lda.fit = lda(train.x, grouping=train.y)

ynew = predict(lda.fit, test.x)$class

out.lda = confusionMatrix(test.y, ynew, negative=neg)

return(out.lda)

}

QDA (Quadratic Discriminant Analysis)

Similarly to LDA, the QDA prediction function can be defined by:

predfun.qda = function(train.x, train.y, test.x, test.y, neg)

{

require("MASS") # for lda function

qda.fit = qda(train.x, grouping=train.y)

ynew = predict(qda.fit, test.x)$class

out.qda = confusionMatrix(test.y, ynew, negative=neg)

return(out.qda)

}

716 21 Prediction and Internal Statistical Cross Validation

21.7.4 Neural Networks

We already saw Artificial Neural Networks (NNs) in Chap. 11. Applying NNs is not

straightforward. We have to create a design matrix with an indicator column for the

response feature. In addition, we need to write a predict function to translate the

output of neuralnet() into analytical forecasts.

predict nn

library("neuralnet")

pred = function(nn, dat) {

yhat = compute(nn, dat)$net.result

yhat = apply(yhat, 1, which.max)-1

return(yhat)

}

my.neural <- function (train.x, train.y, test.x,

test.y,method,layer=c(5,5)){

train.x <- as.data.frame(train.x)

train.y <- as.data.frame(train.y)

colnames(train.x) <- paste0('V', 1:ncol(X))

colnames(train.y) <- "V1"

train_y_ind = model.matrix(~factor(train.y$V1)-1)

colnames(train_y_ind) = paste0('out', 0:1)

train = cbind(train.x, train_y_ind)

y_names = paste0('out', 0:1)

x_names = paste0('V', 1:ncol(train.x))

nn = neuralnet(

paste(paste(y_names, collapse='+'),

'~',

paste(x_names, collapse='+')),

train,

hidden=layer,

linear.output=FALSE,

lifesign='full', lifesign.step=1000)

#predict

predict.y <- pred(nn, test.x)

out <- crossval::confusionMatrix(test.y, predict.y,negative = 0)

return (out)

}

set.seed(1234)

cv.out.nn <- crossval::crossval(my.neural, scale(X), Y, K = 5, B =

1,layer=c(20,20),verbose = F) # scale predictors is necessary.

hidden: 20, 20 thresh: 0.01 rep: 1/1 steps: 63 error: 1.02185

time: 0.08 secs

hidden: 20, 20 thresh: 0.01 rep: 1/1 steps:79 error: 1.01374

time: 0.2 secs

hidden: 20, 20 thresh: 0.01 rep: 1/1 steps: 73 error: 1.02399

time: 0.09 secs

hidden: 20, 20 thresh: 0.01 rep: 1/1 steps: 66 error: 1.03016

time: 0.09 secs

hidden: 20, 20 thresh: 0.01 rep: 1/1 steps: 72 error: 1.01491

time: 0.11 secs

21.7 Alternative Predictor Functions 717

crossval::diagnosticErrors(cv.out.nn$stat)

acc sens spec ppv npv

0.9454976303 0.9016393443 0.9633333333 0.9090909091 0.9601328904

lor

5.4841051313

Again the forecasting results on the PD dataset are quite good.

21.7.5 SVM

In Chap. 11, we also saw SVM classification. Let’s try cross-validation using Linear

and Gaussian (radial) kernel SVM. We may expect that linear SVM would achieve

a similar result to Gaussian, or even better than Gaussian SVM, since this dataset has

a large k (# features) compared with n (# cases), which we explored in detail in

Chap. 11.

library("e1071")

my.svm <- function (train.x, train.y, test.x,

test.y,method,cost=1,gamma=1/ncol(dx_norm),coef0=0,degree=3){

svm_l.fit <- svm(x = train.x, y=as.factor(train.y),kernel = method)

predict.y <- predict(svm_l.fit, test.x)

out <- crossval::confusionMatrix(test.y, predict.y,negative = 0)

return (out)

}

Linear kernel

set.seed(123)

cv.out.svml <- crossval::crossval(my.svm, as.data.frame(X), Y, K = 5, B = 1,

method = "linear",cost=tune_svm$best.parameters$cost,verbose = F)

diagnosticErrors(cv.out.svml$stat)

acc sens spec ppv npv

0.9502369668 0.9098360656 0.9666666667 0.9173553719 0.9634551495

lor

5.6789307585

Gaussian kernel

set.seed(123)

cv.out.svmg <- crossval::crossval(my.svm, as.data.frame(X), Y, K = 5, B = 1,

method = "radial",cost=tune_svmg$best.parameters$cost,gamma=tune_svmg$best.p

arameters$gamma,verbose = F)

diagnosticErrors(cv.out.svmg$stat)

acc sens spec ppv npv

0.9454976303 0.9262295082 0.9533333333 0.8897637795 0.9694915254

lor

5.5470977226

Indeed, both types of kernels yield good quality predictors according to the

assessment metrics reported by the diagnosticErrors() method.

718 21 Prediction and Internal Statistical Cross Validation

21.7.6 k-Nearest Neighbors Algorithm (k-NN)

As we saw in Chap. 7, k-NN is a non-parametric method for either classification or

regression, where the input consists of the k closest training examples in the feature

space, but the output depends on whether k-NN is used for classification or

regression:

• In k-NN classification, the output is a class membership (labels). Objects in the

testing data are classified by a majority vote of their neighbors. Each object is

assigned to a class that is most common among its k nearest neighbors (k is

always a small positive integer). When k ¼ 1, then an object is assigned to the

class of its single nearest neighbor.

• In k-NN regression, the output is the property value for the object representing the

average of the values of its k nearest neighbors.

Let’s now build the corresponding predfun.knn() method.

X = as.matrix(input) # Predictor variables X = as.matrix(input.short2)

Y = as.matrix(output) # Outcome

KNN (k-nearest neighbors)

library("class")

knn.fit.test <- knn(X, X, cl = Y, k=3, prob=F); predict(as.matrix(knn.fit.

test), X)$class

table(knn.fit.test, Y); confusionMatrix(Y, knn.fit.test, negative="1")

This can be used for polytomous variable (multiple classes)

predfun.knn = function(train.x, train.y, test.x, test.y, neg)

{

require("class")

knn.fit = knn(train.x, test.x, cl = train.y, prob=T) # knn is already

a prediction function!!!

ynew = predict(knn.fit, test.x)$class # no need of another

prediction, in this case

out.knn = confusionMatrix(test.y, knn.fit, negative=neg)

return(out.knn)

}

cv.out.knn = crossval::crossval(predfun.knn, X, Y, K=5, B=2, neg="1")

cv.out.knn = crossval::crossval(predfun.knn, X, Y, K=5, B=2, neg="1")

#Compare all 3 classifiers (lda, qda, knn, and logit)

diagnosticErrors(cv.out.lda$stat); diagnosticErrors(cv.out.qda$stat);

diagnosticErrors(cv.out.qda$stat); diagnosticErrors(cv.out.logit$stat);

We can also examine the performance of k-NN prediction on the PPMI

(Parkinson’s disease) data. Start by partitioning the data into training and

testing sets.

21.7 Alternative Predictor Functions 719

TRAINING: 75% of the sample size

sample_size <- floor(0.75 * nrow(input))

set the seed to make your partition reproducible

set.seed(1234)

input.train.ind <- sample(seq_len(nrow(input)), size = sample_size)

input.train <- input[input.train.ind,]

output.train <- as.matrix(output)[input.train.ind,]

TESTING DATA

input.test <- input[-input.train.ind,]

output.test <- as.matrix(output)[-input.train.ind,]

Then, we can fit the k-NN model and report the results.

library("class")

knn_model <- knn(train= input.train, input.test, cl=as.factor(output.train),

k=2)

#plot(knn_model)

summary(knn_model)

attributes(knn_model)

cross-validation

knn_model.cv <- knn.cv(train= input.train, cl=as.factor(output.train), k=2)

summary(knn_model.cv)

21.7.7 k-Means Clustering (k-MC)

In Chap. 13, we showed that k-MC aims to partition n observations into

k clusters, where each observation belongs to the cluster with the nearest mean,

which acts as a prototype of a cluster. The k-MC partitions the data space into

Voronoi cells. In general, there is no computationally tractable solution for this, i.e.,

the problem is NP-hard. However, there are efficient algorithms that converge

quickly to local optima, e.g., the expectation-maximization algorithm for mixtures

of Gaussian distributions via an iterative refinement approach (Figs. 21.5, 21.6

and 21.7).

kmeans_model <- kmeans(input.train, 2)

layout(matrix(1, 1))

tiff("C:/Users/User/Desktop/test.tiff", width = 10, height = 10, units = '

in', res = 300)

fpc::plotcluster(input.train, output.train, col = kmeans_model$cluster)

cluster::clusplot(input.train, kmeans_model$cluster, color=TRUE, shade=TRUE,
labels=2, lines=0)

720 21 Prediction and Internal Statistical Cross Validation

par(mfrow=c(10,10))

the next figure is very large and will not render in RStudio, you may need

to save it as PDF file!

pdf("C:/Users/User/Desktop/test.pdf", width = 50, height = 50)

with(ppmi_data[,1:10], pairs(input.train[,1:10], col=c(1:2)[kmeans_model$c

luster]))

dev.off()

with(ppmi_data[,1:10], pairs(input.train[,1:10],

col=c(1:2)[kmeans_model$cluster]))

Fig. 21.5 k-Means clustering plot () of the Parkinson’s disease data (PPMI)

Fig. 21.6 Clusterplot of the k-means clustering of the PPMI data

21.7 Alternative Predictor Functions 721

plot(input.train, col = kmeans_model$cluster)

points(kmeans_model$centers, col = 1:2, pch = 8, cex = 2)

cluster centers "fitted" to each obs.:

fitted.kmeans <- fitted(kmeans_model); head(fitted.kmeans)

L_insular_cortex_AvgMeanCurvature L_insular_cortex_ComputeArea

2 0.1071299082 2635.580514

2 0.1071299082 2635.580514

1 0.2221893533 1134.578902

2 0.1071299082 2635.580514

2 0.1071299082 2635.580514

2 0.1071299082 2635.580514

L_insular_cortex_Volume L_insular_cortex_ShapeIndex

2 7969.485443 0.3250065829

2 7969.485443 0.3250065829

1 2111.385018 0.2788562513

2 7969.485443 0.3250065829

2 7969.485443 0.3250065829

2 7969.485443 0.3250065829

…

resid.kmeans <- (input.train - fitted(kmeans_model))

define the sum of squares function

ss <- function(data) sum(scale(data, scale = FALSE)^2)

Fig. 21.7 Pair plots of the two clustering lables along the first 10 PPMI features

722 21 Prediction and Internal Statistical Cross Validation

Equalities

cbind(kmeans_model[c("betweenss", "tot.withinss", "totss")], # the same two

columns

c (ss(fitted.kmeans), ss(resid.kmeans), ss(input.train)))

[,1] [,2]

betweenss 15462062254 15462062254

tot.withinss 12249286905 12249286905

totss 27711349159 27711349159

validation

stopifnot(all.equal(kmeans_model$totss, ss(input.train)),

all.equal(kmeans_model$tot.withinss, ss(resid.kmeans)),

these three are the same:

all.equal(kmeans_model$betweenss, ss(fitted.kmeans)),

all.equal(kmeans_model$betweenss, kmeans_model$totss -

kmeans_model$tot.withinss),

and hence also

all.equal(ss(input.train), ss(fitted.kmeans) + ss(resid.kmeans))

)

kmeans(input.train, 1)$withinss

trivial one-cluster, (its W.SS == ss(input.train))

clust_kmeans2 = kmeans(scale(X), center=X[1:2,],iter.max=100,

algorithm='Lloyd')

We may get empty clusters, instead of two clusters, when we randomly select two

points as the initial centers. The way to solve this problem is using k-means++.

k++ initialize

kpp_init = function(dat, K) {

x = as.matrix(dat)

n = nrow(x)

Randomly choose a first center

centers = matrix(NA, nrow=K, ncol=ncol(x))

centers[1,] = as.matrix(x[sample(1:n, 1),])

for (k in 2:K) {

Calculate dist^2 to closest center for each point

dists = matrix(NA, nrow=n, ncol=k-1)

for (j in 1:(k-1)) {

temp = sweep(x, 2, centers[j,], '-')

dists[,j] = rowSums(temp^2)

}

dists = rowMeans(dists)

Draw next center with probability proportional to dist^2

cumdists = cumsum(dists)

prop = runif(1, min=0, max=cumdists[n])

centers[k,] = as.matrix(x[min(which(cumdists > prop)),])

}

return(centers)

}

clust_kmeans2_plus = kmeans(scale(X), kpp_init(scale(X), 2), iter.max=100, a

lgorithm='Lloyd')

Now let’s evaluate the model. The first step is to justify the selection of k¼2. We

use the method silhouette() in package cluster. Recall from Chap. 14 that

the silhouette value is between �1 and 1. Negative silhouette values represent “mis-

clustered” cases (Fig. 21.8).

21.7 Alternative Predictor Functions 723

clust_k2 = clust_kmeans2_plus$cluster

require(cluster)

Loading required package: cluster

X = as.matrix(input.short2)

as the data is too large for the silhouette plot, we'll just subsample and

plot 100 random cases

subset_int <- sample(nrow(X),100) #100 cases from 661 total cases

dis = dist(as.data.frame(scale(X[subset_int,])))

sil_k2 = silhouette(clust_k2[subset_int],dis) #best

plot(sil_k2)

summary(sil_k2)

Silhouette of 100 units in 2 clusters from silhouette.default(x = clust_k

2[subset_int], dist = dis) :

Cluster sizes and average silhouette widths:

48 52

0.1895633766 0.1018642857

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.06886907 0.06533312 0.14169240 0.14395980 0.22658680 0.33585520

mean(sil_k2<0)

[1] 0.01666666667

Fig. 21.8 Silhouette plot of the 2-class k-means clustering of the Parkonson’s disease data

724 21 Prediction and Internal Statistical Cross Validation

The result is pretty good. Only a very small number of samples are “mis-

clustered” (having negative silhouette values). Furthermore, you can observe that

when k¼3 or k¼4, the overall silhouette decreases, which indicates suboptimal

clustering.

dis = dist(as.data.frame(scale(X)))

clust_kmeans3_plus = kmeans(scale(X), kpp_init(scale(X), 3), iter.max=100, a

lgorithm='Lloyd')

summary(silhouette(clust_kmeans3_plus$cluster,dis))

Silhouette of 422 units in 3 clusters from silhouette.default(x =

clust_kmeans3_plus$cluster, dist = dis) :

Cluster sizes and average silhouette widths:

139 157 126

0.08356111542 0.19458813829 0.17237138090

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.06355399 0.08376430 0.16639550 0.15138420 0.21855670 0.33107050

clust_kmeans4_plus = kmeans(scale(X), kpp_init(scale(X), 4), iter.max=100, a

lgorithm='Lloyd')

summary(silhouette(clust_kmeans4_plus$cluster,dis))

Silhouette of 422 units in 4 clusters from silhouette.default(x =

clust_kmeans4_plus$cluster, dist = dis) :

Cluster sizes and average silhouette widths:

138 121 111 52

0.124165755516 0.170228092125 0.193359499726 0.008929262925

Individual silhouette widths:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.16300240 0.08751445 0.15091580 0.14137370 0.21035560 0.32293680

Then, let’s calculate the unsupervised classification error. Here, p represents the

percentage of class 0 cases, which provides the weighting factor for labelling each

cluster.

mat = matrix(1,nrow = length(Y))

p = sum(Y==0)/length(Y)

for (i in 1:2){

id = which(clust_k2==i)

if(sum(Y[id]==0)>length(id)*p){

mat[id] = 0

}

}

caret::confusionMatrix(Y,mat)

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 195 105

1 1 121

Accuracy : 0.7488152

95% CI : (0.7045933, 0.7895087)

No Information Rate : 0.535545

21.7 Alternative Predictor Functions 725

P-Value [Acc > NIR] : < 0.00000000000000022204

Kappa : 0.5122558

Mcnemar's Test P-Value : < 0.00000000000000022204

Sensitivity : 0.9948980

Specificity : 0.5353982

Pos Pred Value : 0.6500000

Neg Pred Value : 0.9918033

Prevalence : 0.4644550

Detection Rate : 0.4620853

Detection Prevalence : 0.7109005

Balanced Accuracy : 0.7651481

'Positive' Class : 0

It achieves 69% accuracy, which is reasonable for unsupervised classification.

Finally, let’s visualize the results by superimposing the data into the first two

multi-dimensional scaling (MDS) dimensions (Fig. 21.9).

library("ggplot2")

mds = as.data.frame(cmdscale(dis, k=2))

mds_temp = cbind(

mds, as.factor(clust_k2))

names(mds_temp) = c('V1', 'V2', 'cluster k=2')

gp_cluster = ggplot(mds_temp, aes(x=V2, y=V1, color=as.factor(clust_k2))) +

geom_point(aes(shape = as.factor(Y))) + theme()

gp_cluster

Fig. 21.9 Multi-dimensional scalling plot (2D projection) of the k-means clustering depicting the

agreement between testing data labels (glyph shapes) and the predicted class lables (glyph colors)

726 21 Prediction and Internal Statistical Cross Validation

21.7.8 Spectral Clustering

Suppose the multivariate dataset is represented as a set of data points A. We can

define a similarity matrix S¼ s(i, j), where s(i, j) represents a measure of the similarity

between points i, j 2 A. Spectral clustering uses the spectrum of the similarity matrix

of the high-dimensional data and performs dimensionality reduction for clustering

into fewer dimensions. The spectrum of a matrix is the set of its eigenvalues. In

general, ifM : Ω��������!
linear operator

Ωmaps a vector space Ω into itself, its spectrum is the

set of scalars λ¼ {λi} such that (T� λI)v¼ 0, where I is the identity matrix and v are

the eigen vectors (or eigen-functions) for the operator T. The determinant of the

matrix equals the product of its eigenvalues, i.e., det(T) ¼ Πiλi, the trace of the

matrix tr(T)¼ Σiλi, and the pseudo-determinant for a singular matrix is the product

of its nonzero eigenvalues, pseudodet Tð Þ ¼ Πλi 6¼0λi:

To partition the data into two sets (S1, S2), denote v to be the second-smallest

eigenvector of the Laplacian matrix:

L ¼ I � D�1
2SD

1
2

of the similarity matrix S, where D is the diagonal matrix Di,i ¼ ΣjSi, j.

This actual (S1, S2) partitioning of the cases in the data may be done in different

ways. For instance, S1 may use the median m of the components in v and group all

data points whose component in v is greater thanm. Then, the remaining cases can be

labeled as part of S2. This approach may be used iteratively for hierarchical

clustering by repeatedly partitioning the subsets.

The specc method in the kernlab package implements a spectral clustering

algorithm where the data-clustering is performed by embedding the data into the

subspace of the eigenvectors of an affinity matrix.

install.packages("kernlab")

library("kernlab")

review and choose a dataset (for example the Iris data

data()

#plot(iris)

Let’s look at a few simple cases of spectral clustering. We are suppressing some

of the outputs to save space (e.g., #plot(my_data, col¼ data_sc)).

Iris Petal Data

Let’s look at the iris dataset we saw in Chap. 3.

my_data <- iris; data(my_data)

num_clusters <- 3

data_sc <- specc(my_data, centers= num_clusters)

data_sc

centers(data_sc)

withinss(data_sc)

#plot(my_data, col= data_sc)

21.7 Alternative Predictor Functions 727

Spirals Data

Another simple dataset is `kernlab::spirals (Fig. 21.10).

library("kernlab")

data(spirals)

num_clusters <- 2

data_sc <- specc(spirals, centers= num_clusters)

data_sc

Spectral Clustering object of class "specc"

Cluster memberships:

1 1 2 2 1 2 2 2 1 2 2 1 1 2 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 1 2 2 1 2 1

2 1 1 2 2 2 2 1 1 1 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 2 2 1 2 1 1 1 2 2 1 2 2 2

1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 1 2 2 2 1 2 1

1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 1 1 2 2 2 1

2 2 2 2 2 2 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 2 1 1 1 2 2 1 1 1 2 2 2 1 1 2

2 2 2 2 2 2 2 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2 2 1 2 1 2 1 2 1 1 1 2 2 2 2 1 1

1 2 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 2 2 2

2 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 2 1 2 2 1 1 2 2 2 1

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 367.501471756465

Centers:

[,1] [,2]

[1,] 0.01997200551 -0.1761483316

[2,] -0.01770984369 0.1775136857

Cluster size:

[1] 150 150

Fig. 21.10 Spirals data spectal clustering results

728 21 Prediction and Internal Statistical Cross Validation

Within-cluster sum of squares:

[1] 117.3429096 118.1182272

centers(data_sc)

[,1] [,2]

[1,] 0.01997200551 -0.1761483316

[2,] -0.01770984369 0.1775136857

withinss(data_sc)

[1] 117.3429096 118.1182272

plot(spirals, col= data_sc)

Income Data

A customer income dataset representing a marketing survey is included in

kernlab::income (Fig. 21.11).

Fig. 21.11 Pair plots of the two-class spectral clustering of the income dataset

21.7 Alternative Predictor Functions 729

data(income)

num_clusters <- 2

data_sc <- specc(income, centers= num_clusters)

data_sc

Spectral Clustering object of class "specc"

Cluster memberships:

2 1 2 2 2 1 2 1 2 1 1 1 2 1

String kernel function. Type = spectrum

Hyperparameters : sub-sequence/string length = 4

Normalized

Cluster size:

[1] 7 7

centers(data_sc)

[,1]

[1,] NA

withinss(data_sc)

logical(0)

plot(income, col= data_sc)

21.8 Compare the Results

Now let’s compare all eight classifiers (AdaBoost, LDA, QDA, knn, logit,
Neural Network, linear SVM and Gaussian SVM) we presented above

(Table 21.1).

get AdaBoost CV results

set.seed(123)

cv.out.ada <- crossval::crossval(my.ada, as.data.frame(X), Y, K = 5, B = 1,

negative = neg)

Number of folds: 5

Total number of CV fits: 5

Round # 1 of 1

CV Fit # 1 of 5

CV Fit # 2 of 5

CV Fit # 3 of 5

CV Fit # 4 of 5

CV Fit # 5 of 5

get k-Means CV results

my.kmeans <- function (train.x, train.y, test.x, test.y, negative, formula){

kmeans.fit <- kmeans(scale(test.x), kpp_init(scale(test.x), 2),

iter.max=100, algorithm='Lloyd')

730 21 Prediction and Internal Statistical Cross Validation

T
a
b
le
2
1
.1

C
o
m
p
ar
is
o
n
o
f
al
te
rn
at
iv
e
p
re
d
ic
ti
v
e
an
al
y
ti
c
st
ra
te
g
ie
s
fo
r
th
e
P
P
M
I
d
at
as
et

ac
c

se
n
s

sp
ec

p
p
v

n
p
v

lo
r

A
d
a
B
o
o
st

0
.9
7
3
9
3
3
6
4
9
3

0
.9
9
3
3
3
3
3
3
3
3

0
.9
2
6
2
2
9
5
0
8
2

0
.9
7
0
6
8
4
0
3
9
1

0
.9
8
2
6
0
8
6
9
5
7

7
.5
3
4
1
0
9
5
4
7
3

L
D
A

0
.9
6
1
7
2
9
8
5
7
8

0
.9
5
1
3
3
3
3
3
3
3

0
.9
8
7
2
9
5
0
8
2
0

0
.9
9
4
5
9
8
3
6
2
1

0
.8
9
1
8
9
1
8
9
1
9

7
.3
2
5
8
4
9
9
7
4
5

Q
D
A

0
.9
4
0
7
5
8
2
9
3
8

0
.9
5
3
3
3
3
3
3
3
3

0
.9
0
9
8
3
6
0
6
5
6

0
.9
6
2
9
6
2
9
6
3
0

0
.8
8
8
0
0
0
0
0
0
0

5
.3
2
8
5
6
9
4
0
9
7

k
n
n

0
.6
1
1
3
7
4
4
0
7
6

0
.7
1
3
3
3
3
3
3
3
3

0
.3
6
0
6
5
5
7
3
7
7

0
.7
3
2
8
7
6
7
1
2
3

0
.3
3
8
4
6
1
5
3
8
5

0
.3
3
9
1
0
9
5
2
6
0

lo
g
it

0
.9
4
3
1
2
7
9
6
2
1

0
.9
4
6
6
6
6
6
6
6
7

0
.9
3
4
4
2
6
2
2
9
5

0
.9
7
2
6
0
2
7
3
9
7

0
.8
7
6
9
2
3
0
7
6
9

5
.5
3
3
1
4
2
4
2
2
6

N
eu
ra
l
N
et
w
o
rk

0
.9
4
5
4
9
7
6
3
0
3

0
.9
0
1
6
3
9
3
4
4
3

0
.9
6
3
3
3
3
3
3
3
3

0
.9
0
9
0
9
0
9
0
9
1

0
.9
6
0
1
3
2
8
9
0
4

5
.4
8
4
1
0
5
1
3
1
3

li
n
ea
r
S
V
M

0
.9
5
0
2
3
6
9
6
6
8

0
.9
0
9
8
3
6
0
6
5
6

0
.9
6
6
6
6
6
6
6
6
7

0
.9
1
7
3
5
5
3
7
1
9

0
.9
6
3
4
5
5
1
4
9
5

5
.6
7
8
9
3
0
7
5
8
5

G
a
u
ss
ia
n
S
V
M

0
.9
4
5
4
9
7
6
3
0
3

0
.9
2
6
2
2
9
5
0
8
2

0
.9
5
3
3
3
3
3
3
3
3

0
.8
8
9
7
6
3
7
7
9
5

0
.9
6
9
4
9
1
5
2
5
4

5
.5
4
7
0
9
7
7
2
2
6

k
-M

ea
n
s

0
.5
3
3
1
7
5
3
5
5
5

0
.5
4
0
0
0
0
0
0
0
0

0
.5
1
6
3
9
3
4
4
2
6

0
.7
3
3
0
3
1
6
7
4
2

0
.3
1
3
4
3
2
8
3
5
8

0
.2
2
5
9
3
9
9
3
2
6

S
p
ec
tr
a
l
C
lu
st
er
in
g

0
.5
5
9
2
4
1
7
0
6
2

0
.5
9
0
0
0
0
0
0
0
0

0
.4
8
3
6
0
6
5
5
7
4

0
.7
3
7
5
0
0
0
0
0
0

0
.3
2
4
1
7
5
8
2
4
2

0
.2
9
8
3
6
8
0
9
4
7

21.8 Compare the Results 731

set.seed(123)

cv.out.sc <- crossval::crossval(my.sc, as.data.frame(X), Y, K = 5, B = 2,

negative = neg)

Number of folds: 5

Total number of CV fits: 10

Round # 1 of 2
CV Fit # 1 of 10

CV Fit # 2 of 10

CV Fit # 3 of 10

CV Fit # 4 of 10

CV Fit # 5 of 10

Round # 2 of 2

CV Fit # 6 of 10

CV Fit # 7 of 10

CV Fit # 8 of 10

CV Fit # 9 of 10

CV Fit # 10 of 10

predict.y <- kmeans.fit$cluster

#count TP, FP, TN, FN, Accuracy, etc.

out <- confusionMatrix(test.y, predict.y, negative = negative)

negative is the label of a negative "null" sample (default: "control").

return (out)

}

set.seed(123)

cv.out.kmeans <- crossval::crossval(my.kmeans, as.data.frame(X), Y, K = 5,

B = 2, negative = neg)

Number of folds: 5

Total number of CV fits: 10

Round # 1 of 2

CV Fit # 1 of 10

CV Fit # 2 of 10

CV Fit # 3 of 10

CV Fit # 4 of 10

CV Fit # 5 of 10

Round # 2 of 2

CV Fit # 6 of 10

CV Fit # 7 of 10

CV Fit # 8 of 10

CV Fit # 9 of 10

CV Fit # 10 of 10

get spectral clustering CV results

my.sc <- function (train.x, train.y, test.x, test.y, negative, formula){

sc.fit <- specc(scale(test.x), centers= 2)

predict.y <- sc.fit@.Data

#count TP, FP, TN, FN, Accuracy, etc.

out <- confusionMatrix(test.y, predict.y, negative = negative)

negative is the label of a negative "null" sample (default: "control").

return (out)

}

732 21 Prediction and Internal Statistical Cross Validation

require(knitr)

Loading required package: knitr

res_tab=rbind(diagnosticErrors(cv.out.ada$stat),diagnosticErrors(

cv.out.lda$stat),diagnosticErrors(cv.out.qda$stat),diagnosticErrors(

cv.out.knn$stat),diagnosticErrors(cv.out.logit$stat),diagnosticErrors(

cv.out.nn$stat),diagnosticErrors(cv.out.svml$stat),diagnosticErrors(

cv.out.svmg$stat),diagnosticErrors(cv.out.kmeans$stat),diagnosticErrors(

cv.out.sc$stat))

rownames(res_tab) <- c("AdaBoost", "LDA", "QDA", "knn", "logit",

"Neural Network", "linear SVM", "Gaussian SVM", "k-Means",

"Spectral Clustering")

kable(res_tab,caption = "Compare Result")

Leaving knn, kmeans and specc aside, the other methods achieve pretty good

results. In the PD case study, the reason for suboptimal results in some clustering

methods may be rooted in lack of training (e.g., specc and kmeans) or the curse of
(high) dimensionality, which we saw in Chap. 7. As the data are rather sparse,

predicting from the nearest neighbors may not be too reliable.

21.9 Assignment: 21. Prediction and Internal Statistical

Cross-Validation

Demonstrate cross-validation on these two case-studies independently:

• Example 1: ALS (Amyotrophic Lateral Sclerosis)

• Example 2: Quality of Life in Chronic Illness

(Case06_QoL_Symptom_ChronicIllness.csv)

Go through the following protocol:

• Review the case-study.

• Choose appropriate dichotomous, polytomous or continuous outcome variables,

e.g., use ALSFRS_slope for ALS, CHRONICDISEASESCORE for case 06 and

cast them as dichotomous outcomes.

• Apply appropriate data preprocessing.

• Perform regression modeling (e.g., OLS, glmnet, Forward or Backward model

selection, etc.) for continuous outcomes.

• Perform classification and prediction using various methods (e.g., LDA, QDA,

AdaBoost, SVM, Neural Network, KNN) for discrete outcomes.

• Apply cross-validation on these regression and classification methods,

respectively.

• Report standard error for regression approaches.

• Report appropriate quality metrics that can be used to rank the forecasting

approaches based on the predictive power of their results.

• Compare the result of model-driven and data-driven (e.g., KNN).

21.9 Assignment: 21. Prediction and Internal Statistical Cross-Validation 733

• Compare the sensitivity and specificity.

• Use unsupervised classification methods (k-Means) and spectral clustering.

• Evaluate and justify a k-Means model and report the agreement of the derived

clusters and the real labels.

• Report the classification error of k-means and also compare with the result of

k-means++.

References

Elder, J, Nisbet, R, Miner, G (eds.) (2009) Handbook of Statistical Analysis and Data Mining

Applications, Academic Press, ISBN 0080912036, 9780080912035.

Hastie, T, Tibshirani, R, Friedman, J. (2013) The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, Springer Series in Statistics, New York, ISBN 1489905189,

9781489905185.

Hothorn, T, Everitt, BS. (2014) A Handbook of Statistical Analyses using R, CRC Press, ISBN

1482204592, 9781482204599.

https://en.wikipedia.org/wiki/Coefficient_of_determination

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157077

734 21 Prediction and Internal Statistical Cross Validation

https://en.wikipedia.org/wiki/Coefficient_of_determination
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157077

Chapter 22

Function Optimization

Most data-driven scientific inference, qualitative, quantitative, and visual analytics

involve formulating, understanding the behavior of, and optimizing objective (cost)

functions. Presenting the mathematical foundations of representation and interroga-

tion of diverse spectra of objective functions provides mechanisms for obtaining

effective solutions to complex big data problems. (Multivariate) function optimiza-

tion (minimization or maximization) is the process of searching for variables x1, x2,

x3, . . ., xn that either minimize or maximize the multivariate cost function f(x1, x2,

x3, . . ., xn). In this chapter, we will specifically discuss (1) constrained and

unconstrained optimization; (2) Lagrange multipliers; (3) linear, quadratic and

(general) non-linear programming; and (4) data denoising.

22.1 Free (Unconstrained) Optimization

We will start with function optimization without restrictions for the domain of the

cost function, Ω 3 {xi}. The extreme value theorem suggests that a solution to the

free optimization processes, minx1,x2,x3, ...,xn f x1; x2; x3; . . . ; xnð Þ or

maxx1,x2,x3, ...,xn f x1; x2; x3; . . . ; xnð Þ, may be obtained by a gradient vector descent

method. This means that we can minimize/maximize the objective function by finding

solutions to∇f ¼ df

dx1
;

df

dx2
; . . . ;

n
df

dx1
g ¼ 0; 0; . . . ; 0f g. Solutions to this equation, x1, . . .,

xn, will present candidate (local) minima and maxima.

In general, identifying critical points using the gradient or tangent plane, where

the partial derivatives are trivial, may not be sufficient to determine the extrema

(minima or maxima) of multivariate objective functions. Some critical points may

represent inflection points, or local extrema that are far from the global optimum of

the objective function. The eigenvalues of the Hessian matrix, which includes the

second order partial derivatives, at the critical points provide clues to pinpoint

extrema. For instance, invertible Hessian matrices that (i) are positive definite (i.e.,

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_22

735

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_22&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_22

all eigenvalues are positive), yield a local minimum at the critical point, (ii) are

negative definite (all eigenvalues are negative) at the critical point suggests that the

objective function has a local maximum, and (iii) have both positive and negative

eigenvalues yield a saddle point for the objective function at the critical point where

the gradient is trivial.

There are two complementary strategies to avoid being trapped in local extrema.

First, we can run many iterations with different initial vectors. At each iteration, the

objective function may achieve a (local) maximum/minimum/saddle point. Finally,

we select the overall minimal (or maximal) value from all iterations. Another

adaptive strategy involves either adjusting the step sizes or accepting solutions in

probability, e.g., simulated annealing is one example of an adaptive optimization.

22.1.1 Example 1: Minimizing a Univariate Function

(Inverse-CDF)

The cumulative distribution function (CDF) of a real-valued random process X, also

known as the distribution function of X, represents the probability that the random

variable X does not exceed a certain level. Mathematically speaking, the CDF of X is

FX(x) ¼ P(X � x). Recall the Chap. 2 discussions of Uniform, Normal, Cauchy,

Binomial, Poisson and other discrete and continuous distributions. Also explore the

dynamic representations of density and distribution functions included in the Prob-

ability Distributome Calculators (http://distributome.org).

For each p 2 [0, 1], the inverse distribution function, also called quantile function

(e.g., qnorm), yields the critical value (x) at which the probability of the random

variable is less than or equal to the given probability (p). When the CDF FX is

continuous and strictly increasing, the value of the inverse CDF at p, F�1(p) ¼ x, is

the unique real number x such that F(x) ¼ p.

Below, we will plot the probability density function (PDF) and the CDF for

Normal distribution in R (Fig. 22.1).

par(mfrow=c(1,2), mar=c(3,4,4,2))
z<-seq(-4, 4, 0.1) # points from -4 to 4 in 0.1 steps

q<-seq(0.001, 0.999, 0.001) # probaility quantile values from 0.1%

to 99.9% in 0.1% steps

dStandardNormal <- data.frame(Z=z, Density=dnorm(z, mean=0, sd=1),
Distribution=pnorm(z, mean=0, sd=1))

plot(z, dStandardNormal$Density, col="darkblue",xlab="z",

ylab="Density", type="l",lwd=2, cex=2, main="Standard Normal PDF",

cex.axis=0.8)

could also do

xseq<-seq(-4, 4, 0.01); density<-dnorm(xseq, 0, 1); plot (density,

main="Density")

Compute the CDF

xseq<-seq(-4, 4, 0.01); cumulative<-pnorm(xseq, 0, 1)

plot (cumulative, main="CDF")

plot(xseq, cumulative, col="darkred", xlab="", ylab="Cumulative

Probability", type="l",lwd=2, cex=2, main="CDF of (Simulated)

Standard Normal", cex.axis=.8)

736 22 Function Optimization

http://distributome.org

Suppose we are interested in computing, or estimating, the inverse-CDF from first

principles. Specifically, to invert the CDF, we need to be able to solve the following

equation (representing our objective function):

CDF xð Þ � p ¼ 0:

The uniroot and stats::nlm R functions do non-linear minimization of a

function f using a Newton-Raphson algorithm.

set.seed(1234)

x <- rnorm(1000, 100, 20)

pdf_x <- density(x)

Interpolate the density, the values returned when input x values are outsi
de [min(x): max(x)] should be trivial
f_x <- approxfun(pdf_xx, pdf_xy, yleft=0, yright=0)

Manual computation of the cdf by numeric integration
cdf_x <- function(x){

 v <- integrate(f_x, -Inf, x)$value

 if (v<0) v <- 0

 else if(v>1) v <- 1

 return(v)

}

Finding the roots of the inverse-CDF function by hand (CDF(x)-p=0)
invcdf <- function(p){

 uniroot(function(x){cdf_x(x) - p}, range(x))$root

 # alternatively, can use
 # nlm(function(x){cdf_x(x) - p}, 0)$estimate
 # minimum - the value of the estimated minimum of f.
 # estimate - the point at which the minimum value of f is obtained.
}

Fig. 22.1 Plots of the density and cumulative distribution functions of the simulated data

22.1 Free (Unconstrained) Optimization 737

invcdf(0.5)

[1] 99.16995

We can validate that the inverse-CDF is correctly computed: F^{-1}(F(x))==
x
cdf_x(invcdf(0.8))

[1] 0.8

The ability to compute exactly, or at least estimate, the inverse-CDF function is

important for many reasons. For instance, generating random observations from a

specified probability distribution (e.g., normal, exponential, or gamma distribution)

is an important task in many scientific studies. One approach for such random

number generation from a specified distribution evaluates the inverse CDF at

random uniform u � U(0, 1) values. Recall that in Chap. 16 we showed an example

of generating random uniform samples using atmospheric noise. The key step is

ability to quickly, efficiently and reliably estimate the inverse CDF function, of

which we just showed one example.

Let’s see why inverting the CDF using random uniform data works. Consider the

cumulative distribution function (CDF) of a probability distribution from which we

are interested in sampling. If the CDF has a closed form analytical expression and is

invertible, then we generate a random sample from that distribution by evaluating the

inverse CDF at u, where u�U(0, 1). This is possible since a continuous CDF, F, is a

one-to-one mapping of the domain of the CDF (range of X) into the interval [0, 1].

Therefore, if U is a uniform random variable on [0, 1], then X ¼ F�1(U) has the

distribution F. Suppose U � Uniform[0, 1], then P(F�1(U) � x) ¼ P(U � F(x)), by

applying F to both sides of this inequality, since F is monotonic. Thus, P(F�1

(U) � x) ¼ F(x), since P(U � u) ¼ u for uniform random variables.

22.1.2 Example 2: Minimizing a Bivariate Function

Let’s look at the function f(x1, x2)¼ (x1� 3)2 + (x2 + 4)2. We define the function in R

and utilize the optim() function to obtain the extrema points in the support of the

objective function and/or the extrema values at these critical points.

require("stats")

f <- function(x) { (x[1] - 3)^2 + (x[2] +4)^2 }

initial_x <- c(0, -1)

x_optimal <- optim(initial_x, f, method="CG") # performs minimization
x_min <- x_optimal$par

x_min contains the domain values where the (local) minimum is attained
x_min # critical point/vector

[1] 3 -4

x_optimal$value # extrema value of the objective function

[1] 8.450445e-15

738 22 Function Optimization

optim allows the use of six candidate optimization strategies:

• Nelder-Mead: robust but relatively slow, works reasonably well for

non-differentiable functions.

• BFGS: quasi-Newton method (also known as a variable metric algorithm), uses

function values and gradients to build up a picture of the surface to be optimized.

• CG: conjugate gradients method, fragile, but successful in larger optimization

problems because it’s unnecessary to save large matrix.

• L-BFGS-B: allows box constraints.

• SANN: a variant of simulated annealing, belonging to the class of stochastic

global optimization methods.

• Brent: for one-dimensional problems only, useful in cases where optim() is

used inside other functions where only method can be specified.

22.1.3 Example 3: Using Simulated Annealing to Find

the Maximum of an Oscillatory Function

Consider the function f(x) ¼ 10 sin (0.3x) � sin (1.3x2) � 0.00002x4 + 0.3x + 35.

Maximizing f() is equivalent to minimizing �f(). Let’s plot this oscillatory function,

then find and report its critical points and extremum values.

The function optim returns two important results:

• par: the best set of domain parameters found to optimize the function

• value: the extreme values of the function corresponding to par (Fig. 22.2).

Fig. 22.2 Example of minimizing and oscillatory function, f(x) ¼ 10 sin (0.3x) � sin (1.3x2) �
0.00002x4 + 0.3x + 35, using optim

22.1 Free (Unconstrained) Optimization 739

funct_osc <- function (x) { -(10*sin(0.3*x)*sin(1.3*x^2) - 0.00002*x^4 +

0.3*x+35) }

plot(funct_osc, -50, 50, n = 1000, main = "optim() minimizing an oscillatory

function")
abline(v=17, lty=3, lwd=4, col="red")

res <- optim(16, funct_osc, method = "SANN", control = list(maxit = 20000, t

emp = 20, parscale = 20))
res$par

[1] 15.66197

res$value

[1] -48.49313

22.2 Constrained Optimization

22.2.1 Equality Constraints

When there are support restrictions, dependencies, or other associations between the

domain variables x1, x2, . . ., xn, constrained optimization needs to be applied.

For example, we can have k equations specifying these restrictions, which may

specify certain model characteristics:

g1 x1; x2; . . . ; xnð Þ ¼ 0

. . .

gk x1; x2; . . . ; xnð Þ ¼ 0

8

><

>:

:

Note that the right hand sides of these equations may always be assumed to be

trivial (0), otherwise we can just move the non-trivial parts within the constraint

functions gi. Linear Programming, Quadratic Programming, and Lagrange multi-

pliers may be used to solve such equality-constrained optimization problems.

22.2.2 Lagrange Multipliers

We can merge the equality constraints within the objective function (f ! f∗).

Lagrange multipliers represent a typical solution strategy that turns the constrained

optimization problem (minxf(x) subject to gi(x1, x2, . . ., xn), 1 � i � k), into an

unconstrained optimization problem:

f∗ x1; x2; . . . ; xn; λ1; λ2; . . . ; λkð Þ ¼ f x1; x2; . . . ; xnð Þ þ
Xk

i¼1

λigi x1; x2; . . . ; xnð Þ:

740 22 Function Optimization

Then, we can apply traditional unconstrained optimization schemas, e.g., extreme

value theorem, to minimize the unconstraint problem:

f∗ x1; x2; . . . ; xn; λ1; λ2; . . . ; λkð Þ ¼ f x1; x2; . . . ; xnð Þ þ λ1g1 x1; x2; . . . ; xnð Þ þ � � �
þ λkgk x1; x2; . . . ; xnð Þ:

This represents an unconstrained optimization problem using Lagrange

multipliers.

The solution of the constrained problem is also a solution to:

∇f∗ ¼
df

dx1
;

df

dx2
; . . . ;

df

dxn
;
df

dλ1
;

df

dλ2
; . . . ;

df

dλk

� �

¼ 0; 0; . . . ; 0½ �:

22.2.3 Inequality Constrained Optimization

There are no general solutions for arbitrary inequality constraints; however, partial

solutions do exist when some restrictions on the form of constraints are present.

When both the constraints and the objective function are linear functions

of the domain variables, then the problem can be solved by Linear Programming.

Linear Programming (LP)

LP works when the objective function is a linear function. The constraint functions

are also linear combination of the same variables.

Consider the following elementary (minimization) example:

min
x1, x2, x3

�3x1 � 4x2 � 3x3ð Þ

subject to:

6x1 þ 2x2 þ 4x3 � 150

x1 þ x2 þ 6x3 � 0

4x1 þ 5x2 þ 4x3 ¼ 40

:

8

><

>:

The exact solution is x1 ¼ 0, x2 ¼ 8, x3 ¼ 0, and can be computed using the

package lpSolveAPI to set up the constraint problem and the generic solve()

method to find its solutions.

22.2 Constrained Optimization 741

install.packages("lpSolveAPI")

library(lpSolveAPI)

lps.model <- make.lp(0, 3) # define 3 variables
add the constraints as a matrix of the linear coefficients, relations and

RHS

add.constraint(lps.model, c(6, 2, 4), "<=", 150)
add.constraint(lps.model, c(1, 1, 6), ">=", 0)
add.constraint(lps.model, c(4, 5, 4), "=" , 40)
set objective function (default: find minimum)

set.objfn(lps.model, c(-3, -4, -3))
you can save the model to a file

write.lp(lps.model, 'c:/Users/LPmodel.lp', type='lp')

these commands define the constraint linear model

/* Objective function */

min: -3 x1 -4 x2 -3 x3;

/* Constraints */

+6 x1 +2 x2 +4 x3 <= 150;

+ x1 + x2 +6 x3 >= 0;

+4 x1 +5 x2 +4 x3 = 40;

#

writing it in the text file named 'LPmodel.lp'

solve(lps.model)

[1] 0

Retrieve the values of the variables from a solved linear program model

get.variables(lps.model) # check against the exact solution x_1 = 0,
x_2 = 8, x_3 = 0

[1] 0 8 0

get.objective(lps.model) # get optimal (min) value

[1] -32

In lower dimensional problems, we can also plot the constraints to graphically

demonstrate the corresponding support restriction. For instance, here is an example

of a simpler 2D constraint and its Venn diagrammatic representation (Fig. 22.3).

x1 �
150� 2x2

6

x1 � �x2

8

<

:
:

library(ggplot2)

ggplot(data.frame(x = c(-100, 0)), aes(x = x)) +

stat_function(fun=function(x) {(150-2*x)/6}, aes(color="Function 1")) +

stat_function(fun=function(x) { -x }, aes(color = "Function 2")) +

theme_bw() +

scale_color_discrete(name = "Function") +

geom_polygon(

742 22 Function Optimization

data = data.frame(x = c(-100, -100, 0, 0, Inf), y = c(0,350/6, 150/6,

0, 0)),

aes(x = x, y = y, fill = "Constraint 1"),

inherit.aes = FALSE, alpha = 0.5) +

geom_polygon(

data = data.frame(x = c(-100, -100, 0, Inf), y = c(0, 100, 0, 0)),

aes(x = x, y = y, fill = "Constraint 2"),

inherit.aes = FALSE, alpha = 0.3) +

scale_fill_discrete(name = "Constraint Set") +
scale_y_continuous(limits = c(0, 100))

Here is another example of maximization of a trivariate cost function,

f(x1, x2, x3) ¼ 3x1 + 4x2 � x3, subject to:

�x1 þ 2x2 þ 3x3 � 16

3x1 � x2 � 6x3 � 0

x1 � x2 � 2

8

><

>:

:

Fig. 22.3 A 2D graphical depiction of the function optimization support restriction constraints

22.2 Constrained Optimization 743

lps.model2 <- make.lp(0, 3)
add.constraint(lps.model2, c(-1, 2, 3), "<=", 16)
add.constraint(lps.model2, c(3, -1, -6), ">=", 0)
add.constraint(lps.model2, c(1, -1, 0), "<=", 2)
set.objfn(lps.model2, c(3, 4, -1), indices = c(1, 2, 3))
lp.control(lps.model2, sense='max') # changes to max: 3 x1 + 4 x2 - x3

$anti.degen
[1] "fixedvars" "stalling"

$basis.crash
[1] "none"

$bb.depthlimit
[1] -50

$bb.floorfirst
[1] "automatic"

$bb.rule
[1] "pseudononint" "greedy" "dynamic" "rcostfixing"

$break.at.first
[1] FALSE

$break.at.value
[1] 1e+30

$epsilon
epsb epsd epsel epsint epsperturb epspivot
1e-10 1e-09 1e-12 1e-07 1e-05 2e-07

$improve
[1] "dualfeas" "thetagap"

$infinite
[1] 1e+30

$maxpivot
[1] 250

$mip.gap
absolute relative
1e-11 1e-11

$negrange
[1] -1e+06

$obj.in.basis
[1] TRUE

$pivoting
[1] "devex" "adaptive"

$presolve
[1] "none"

744 22 Function Optimization

$scalelimit
[1] 5

$scaling
[1] "geometric" "equilibrate" "integers"

$sense
[1] "maximize"

$simplextype
[1] "dual" "primal"

$timeout
[1] 0

$verbose
[1] "neutral"

solve(lps.model2) # 0 suggests that this solution convergences

[1] 0

get.variables(lps.model2) # get point of maximum

[1] 20 18 0

get.objective(lps.model2) # get optimal (max) value

[1] 132

In 3D, we can utilize the rgl::surface3d() method to display the con-

straints. This output is suppressed, as it can only be interpreted via the pop-out 3D

rendering window.

library("rgl")

n <- 100

x <- y <- seq(-500, 500, length = n)

region <- expand.grid(x = x, y = y)

z1 <- matrix(((150 -2*region$x -4*region$y)/6), n, n)

z2 <- matrix(-region$x + 6*region$y, n, n)

z3 <- matrix(40 -5*region$x - 4*region$y, n, n)

surface3d(x, y, z1, back = 'line', front = 'line', col = 'red', lwd = 1.5,

alpha = 0.4)

surface3d(x, y, z2, back = 'line', front = 'line', col = 'orange', lwd =

1.5, alpha =0.4)

surface3d(x, y, z3, back = 'line', front = 'line', col = 'blue', lwd = 1.5,

alpha = 0.4)
axes3d()

It is possible to restrict the domain type to contain only solutions that are:

• integers, which makes it an Integer Linear Programming (ILP),

• binary/boolean values (BLP), or

• mixed types, Mixed Integer Liner Programming (MILP).

Some examples are included below.

22.2 Constrained Optimization 745

Mixed Integer Linear Programming (MILP)

Let’s demonstrate MILP with an example where the type of x1 is unrestricted, x2 is

dichotomous (binary), and x3 is restricted to be an integer.

lps.model <- make.lp(0, 3)

add.constraint(lps.model, c(6, 2, 4), "<=", 150)

add.constraint(lps.model, c(1, 1, 6), ">=", 0)

add.constraint(lps.model, c(4, 5, 4), "=", 40)

set.objfn(lps.model, c(-3, -4, -3))

set.type(lps.model, 2, "binary")

set.type(lps.model, 3, "integer")
get.type(lps.model) # This is Mixed Integer Linear Programming (MILP)

[1] "real" "integer" "integer"

set.bounds(lps.model, lower=-5, upper=5, columns=c(1))

give names to columns and restrictions
dimnames(lps.model) <- list(c("R1", "R2", "R3"), c("x1", "x2", "x3"))

print(lps.model)

Model name:

x1 x2 x3

Minimize -3 -4 -3

R1 6 2 4 <= 150

R2 1 1 6 >= 0

R3 4 5 4 = 40

Kind Std Std Std

Type Real Int Int

Upper 5 1 Inf
Lower -5 0 0

solve(lps.model)

[1] 0

get.objective(lps.model)

[1] -30.25

get.variables(lps.model)

[1] 4.75 1.00 4.00

get.constraints(lps.model)

[1] 46.50 29.75 40.00

746 22 Function Optimization

The next example limits all three variable to be dichotomous (binary).

lps.model <- make.lp(0, 3)

add.constraint(lps.model, c(1, 2, 4), "<=", 5)

add.constraint(lps.model, c(1, 1, 6), ">=", 2)

add.constraint(lps.model, c(1, 1, 1), "=", 2)

set.objfn(lps.model, c(2, 1, 2))

set.type(lps.model, 1, "binary")

set.type(lps.model, 2, "binary")

set.type(lps.model, 3, "binary")

print(lps.model)

Model name:

C1 C2 C3

Minimize 2 1 2

R1 1 2 4 <= 5

R2 1 1 6 >= 2

R3 1 1 1 = 2

Kind Std Std Std

Type Int Int Int

Upper 1 1 1
Lower 0 0 0

solve(lps.model)

[1] 0

get.variables(lps.model)

[1] 1 1 0

22.2.4 Quadratic Programming (QP)

QP can be used for second order (quadratic) objective functions, but the constraint

functions are still linear combinations of the domain variables.

A matrix formulation of the problem can be expressed as minimizing an objective

function:

f Xð Þ ¼
1

2
XTDX � dTX,

where X is a vector [x1, x2, . . ., xn]
T, D is the matrix of weights of each association

pair, xi, xj, and d are the weights for each individual feature, xi. The
1
2
coefficient

ensures that the weights matrix D is symmetric and each xi, xj pair is not double-

counted. This cost function is subject to the constraints:

ATX ¼ j �½ � b,

where the first k constrains may represent equalities (¼) and the remaining ones are

inequalities (�), and b is the constraints right hand size (RHS) constant vector.

22.2 Constrained Optimization 747

Here is an example of a QP objective function and its R optimization:

f x1; x2; x3ð Þ ¼ 2x21 � x1x2 � 2x22 þ x2x3 þ 2x23 � 5x2 þ 3x3:

Subject to the following constraints:

�4x1 þ�3x2 ¼ �8

2x1 þ x2 ¼ 2

� 2x2 þ x3 � 0

:

library(quadprog)

Dmat <- matrix(c(2, -1, 0,

-1, 2, -1,

0, -1, 2), 3, 3)

dvec <- c(0, -5, 3)

Amat <- matrix(c(-4, -3, 0,

2, 1, 0,

0, -2, 1), 3, 3)

bvec <- c(-8, 2, 0)

n.eqs <- 2 # the first two constraints are equalities
sol <- solve.QP(Dmat, dvec, Amat, bvec=bvec, meq=2)
sol$solution # get the (x1, x2, x3) point of minimum

[1] -1 4 8

sol$value # get the actual cost function minimum

[1] 49

The minimum value, 49, of the QP solution is attained at x1¼ � 1, x2¼ 4, x3¼ 8.

When D is a positive definitive matrix, i.e., XTDX > 0, for all non-zero X, the QP

problem may be solved in polynomial time. Otherwise, the QP problem is NP-hard.

In general, even if D has only one negative eigenvalue, the QP problem is still

NP-hard.

The QP function solve.QP() expects a positive definitive matrix D.

22.3 General Non-linear Optimization

The package Rsolnp provides a special function solnp(), which solves the

general non-linear programming problem:

min
x

f xð Þ

subject to:

g xð Þ ¼ 0

lh � h xð Þ � uh

lx � x � ux,

where f(x), g(x), h(x) are all smooth functions.

748 22 Function Optimization

22.3.1 Dual Problem Optimization

Duality in math really just means having two complementary ways to think about

an optimization problem. The primal problem represents an optimization chal-

lenge in terms of the original decision variable x. The dual problem, also called

Lagrange dual, searches for a lower bound of a minimization problem or an

upper bound for a maximization problem. In general, the primal problem may be

difficult to analyze, or solve directly, because it may include non-differentiable

penalty terms, e.g., l1 norms, recall LASSO/Ridge regularization in Chap. 18.

Hence, we turn to the corresponding Lagrange dual problem where the solutions

may be more amenable, especially for convex functions, that satisfy the following

inequality:

f λxþ 1� λð Þyð Þ � λf xð Þ þ 1� λð Þf yð Þ:

Motivation

Suppose we want to borrow money, x, from a bank, or lender, and f(x) represents the

borrowing cost to us. There are natural “design constraints” on money lending. For

instance, there may be a cap in the interest rate, h(x)� b, or we can have many other

constraints on the loan duration. There may be multiple lenders, including self-

funding, that may “charge” us f(x) for lending us x. Lenders goals are to maximize

profits. Yet, they can’t charge you more than the prime interest rate, plus some

premium based on your credit worthiness. Thus, for a given fixed λ, a lender may

make us an offer to lend us x aiming to minimize

f xð Þ þ λ� h xð Þ:

If this cost is not optimized, i.e., minimized, you may be able to get another loan

y at lower cost f(y) < f(x), and the funding agency loses your business. If the cost/

objective function is minimized, the lender may maximize their profit by varying λ

and still get us to sign on the loan.

The customer’s strategy represents a game theoretic interpretation of the primal

problem, whereas the dual problem corresponds to the strategy of the lender.

In solving complex optimization problems, duality is equivalent to existence of a

saddle point of the Lagrangian. For convex problems, the double-dual is equivalent

to the primal problem. In other words, applying the convex conjugate (Fenchel

transform) twice returns the convexification of the original objective function, which

in most situations is the same as the original function.

22.3 General Non-linear Optimization 749

The dual of a vector space is defined as the space of all continuous linear

functionals on that space. Let X ¼ Rn, Y ¼ Rm, f : X ! R, and h : X ! Y. Consider

the following optimization problem:

min
x

f xð Þ

subject to

x2X

h xð Þ � 0:

Then, this primal problem has a corresponding dual problem:

min
λ

inf
x2X

f xð Þ þ hλ; h xð Þið Þ

subject to

λi � 0, 80 � i � m:

The parameter λ 2 Rm is an element of the dual space of Y, i.e., Y∗, since the inner

product hλ, h(x)i is a continuous linear functional on Y. Here Y is finite dimensional

and by the Riesz representation theorem Y∗ is isomorphic to Y. Note that in general,

for infinite dimensional spaces, Y and Y
∗ are not guaranteed to be isomorphic.

Example 1: Linear Example

Minimize f(x, y) ¼ 5x � 3y, constrained by x2 + y2 ¼ 136, which has a minimum

value of �68 attained at (�10, 6). We will use the Rsolnp::solnp() method in

this example.

install.packages("Rsolnp")
library(Rsolnp)

fn1 <- function(x) { # f(x, y) = 5x-3y
5*x[1] - 3*x[2]

}

constraint z1: x^2+y^2=136
eqn1 <- function(x) {

z1=x[1]^2 + x[2]^2

return(c(z1))

}

constraints = c(136)

x0 <- c(1, 1) # setup initial values
sol1 <- solnp(x0, fun = fn1, eqfun = eqn1, eqB = constraints)

Iter: 1 fn: 37.4378 Pars: 30.55472 38.44528

Iter: 2 fn: -147.9181 Pars: -6.57051 38.35517

750 22 Function Optimization

Iter: 3 fn: -154.7345 Pars: -20.10545 18.06907

Iter: 4 fn: -96.4033 Pars: -14.71366 7.61165

Iter: 5 fn: -72.4915 Pars: -10.49919 6.66517

Iter: 6 fn: -68.1680 Pars: -10.04485 5.98124

Iter: 7 fn: -68.0006 Pars: -9.99999 6.00022

Iter: 8 fn: -68.0000 Pars: -10.00000 6.00000

Iter: 9 fn: -68.0000 Pars: -10.00000 6.00000
solnp--> Completed in 9 iterations

sol1$values[10] # sol1$values contains all steps of the iteration algorithm
and the last value is the min value

[1] -68

sol1$pars

[1] -10 6

Example 2: Quadratic Example

Minimize f(x, y)¼ 4x2 + 10y2 + 5 subject to the inequality constraint 0� x2 + y2� 4,

which has a minimum value of 5 attained at the origin (0, 0).

fn2 <- function(x) { # f(x, y) = 4x^2 + 10y^2 +5
4*x[1]^2 + 10*x[2]^2 +5

}

constraint z1: x^2+y^2 <= 4
ineq2 <- function(x) {

z1=x[1]^2 + x[2]^2

return(c(z1))

}

lh <- c(0)

uh <- c(4)

x0 = c(1, 1) # setup initial values
sol2 <- solnp(x0, fun = fn2, ineqfun = ineq2, ineqLB = lh, ineqUB=uh)

Iter: 1 fn: 7.8697 Pars: 0.68437 0.31563

Iter: 2 fn: 5.6456 Pars: 0.39701 0.03895

Iter: 3 fn: 5.1604 Pars: 0.200217 0.002001

Iter: 4 fn: 5.0401 Pars: 0.10011821 0.00005323

Iter: 5 fn: 5.0100 Pars: 0.0500592618 0.0000006781

Iter: 6 fn: 5.0025 Pars: 0.02502983706 -0.00000004425

Iter: 7 fn: 5.0006 Pars: 0.01251500215 -0.00000005034

Iter: 8 fn: 5.0002 Pars: 0.00625757145 -0.00000005045

Iter: 9 fn: 5.0000 Pars: 0.00312915970 -0.00000004968

Iter: 10 fn: 5.0000 Pars: 0.00156561388 -0.00000004983

Iter: 11 fn: 5.0000 Pars: 0.0007831473 -0.0000000508

Iter: 12 fn: 5.0000 Pars: 0.00039896484 -0.00000005045

Iter: 13 fn: 5.0000 Pars: 0.00021282342 -0.00000004897

Iter: 14 fn: 5.0000 Pars: 0.00014285437 -0.00000004926

Iter: 15 fn: 5.0000 Pars: 0.00011892066 -0.00000004976
solnp--> Completed in 15 iterations

22.3 General Non-linear Optimization 751

sol2$values

[1] 19.000000 7.869675 5.645626 5.160388 5.040095 5.010024

5.002506

[8] 5.000627 5.000157 5.000039 5.000010 5.000002 5.000001

5.000000

[15] 5.000000 5.000000

sol2$pars

[1] 1.189207e-04 -4.976052e-08

There are a number of parameters that control the solnp procedure. For

instance, TOL defines the tolerance for optimality (which impacts the convergence)

and trace¼0 turns off the printing of the results at each iteration.

ctrl <- list(TOL=1e-15, trace=0)
sol2 <- solnp(x0, fun = fn2, ineqfun = ineq2, ineqLB = lh, ineqUB=uh, contro
l=ctrl)
sol2$pars

[1] 1.402813e-08 -5.015532e-08

Example 3: More Complex Non-linear Optimization

Let’s try to minimize

f Xð Þ ¼ �x1x2x3
subject to

4x1x2 þ 2x2x3 þ 2x3x1 ¼ 100

1 � xi � 10, i ¼ 1, 2, 3
:

fn3 <- function(x, ...){

-x[1]*x[2]*x[3]

}

eqn3 <- function(x, ...){

4*x[1]*x[2]+2*x[2]*x[3]+2*x[3]*x[1]

}

constraints3 = c(100)

lx <- rep(1, 3)

ux <- rep(10, 3)

pars <- c(2, 1, 7) # setup: Try alternative starting-parameter vector (pars)
ctrl <- list(TOL=1e-6, trace=0)

sol3 <- solnp(pars, fun=fn3, eqfun=eqn3, eqB = constraints3, LB=lx, UB=ux, c

ontrol=ctrl)
sol2$values

[1] 19.000000 7.869675 5.645626 5.160388 5.040095 5.010024 5.002506

[8] 5.000626 5.000157 5.000039 5.000010 5.000002 5.000001 5.000000

##[15] 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000

##[22] 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
##[29] 5.000000

sol3$pars

[1] 2.886751 2.886751 5.773505

752 22 Function Optimization

The non-linear optimization is sensitive to the initial parameters (pars), especially

when the objective function is not smooth or if there are many local minima. The

function gosolnp() may be employed to generate initial (guesstimates of the)

parameters.

Example 4: Another Linear Example

Let’s try another minimization of a linear objective function f(x, y, z) ¼ 4y � 2z

subject to

2x� y� z ¼ 2

x2 þ y2 ¼ 1:

fn4 <- function(x) # f(x, y, z) = 4y-2z
{

4*x[2] - 2*x[3]

}

constraint z1: 2x-y-z = 2
constraint z2: x^2+y^2 = 1
eqn4 <- function(x){

z1=2*x[1] - x[2] - x[3]

z2=x[1]^2 + x[2]^2

return(c(z1, z2))

}

constraints4 <- c(2, 1)

x0 <- c(1, 1, 1)

ctrl <- list(trace=0)

sol4 <- solnp(x0, fun = fn4, eqfun = eqn4, eqB = constraints4, control=ctrl)
sol4$values

[1] 2.000000 -5.078795 -11.416448 -5.764047 -3.584894 -3.224531
[7] -3.211165 -3.211103 -3.211103

sol4$pars

[1] 0.55470019 -0.83205030 -0.05854932

The materials in the linear algebra and matrix computing, Chap. 5, and the

regularized parameter estimation, Chap. 18, provide additional examples of least

squares parameter estimation, regression, and regularization.

22.4 Manual Versus Automated Lagrange Multiplier

Optimization

Let’s manually implement the Lagrange Multipliers procedure and then compare the

results to some optimization examples obtained by automatic R function calls. The

latter strategies may be more reliable, efficient, flexible, and rigorously validated.

22.4 Manual Versus Automated Lagrange Multiplier Optimization 753

The manual implementation provides a more direct and explicit representation of the

actual optimization strategy.

We will test a simple example of an objective function:

f x; y; zð Þ ¼ 4y� 2zþ x2 þ y2,

subject to two constraints:

2x� y� z ¼ 2

x2 þ y2 þ z ¼ 1:

The R package numDeriv may be used to calculate numerical approximations

of partial derivatives.

define the main Lagrange Multipliers Optimization strategy from scratch
require(numDeriv)

lagrange_multipliers <- function(x, f, g) { # Objective/cost function,
f, and constrains, g

k <- length(x)

l <- length(g(x))

Compute the derivatives
grad_f <- function(x) { grad(f, x) }

g, representing multiple constrains, is a vector-valued function:
its first derivative is a matrix

grad_g <- function(x) { jacobian(g, x) }

The Lagrangian is a scalar-valued function:
L(x, lambda) = f(x) - lambda * g(x)
whose first derivative roots give the optimal solutions
h(x, lambda) = c(f'(x) - lambda * g'(x), - g(x)).
h <- function(y) {

c(grad_f(y[1:k]) - t(y[-(1:k)]) %*% grad_g(y[1:k]), -g(y[1:k]))

}

To find the roots of the first derivative, we can use Newton's method:
iterate y <- y - h'(y)^{-1} h(y) until certain convergence criterion

is met # e.g., (\delta <= 1e-6)
grad_h <- function(y) { jacobian(h, y) }

y <- c(x, rep(0, l))

previous <- y + 1

while(sum(abs(y-previous)) > 1e-6) {

previous <- y

y <- y - solve(grad_h(y), h(y))

}

y[1:k]

}

x <- c(0, 0, 0)

Define the objective cost function
fn4 <- function(x) # f(x, y, z) = 4y-2z + x^2+y^2

754 22 Function Optimization

{

4*x[2] - 2*x[3] + x[1]^2+ x[2]^2

#sum(x^2)
}

check the derivative of the objective function
grad(fn4, x)

[1] 0 4 -2

define the domain constraints of the problem
constraint z1: 2x-y-z = 2

constraint z2: x^2+y^2 +z = 1
eqn4 <- function(x){

z1=2*x[1] - x[2] - x[3] -2

z2=x[1]^2 + x[2]^2 + x[3] -1

}

Check the Jacobian of the constraints
jacobian(eqn4, x)

[,1] [,2] [,3]

[1,] 2 -1 -1

[2,] 0 0 1

Call the Lagrange-multipliers solver

check one step of the algorithm
k <- length(x)

l <- length(eqn4(x));

h <- function(x) {

c(grad(fn4, x[1:k]) - t(-x[(1:2)]) %*% jacobian(eqn4, x[1:k]),

-eqn4(x[1:k]))

}
jacobian(h, x)

[,1] [,2] [,3]

[1,] 4 0 0.000000e+00

[2,] -1 2 5.482583e-15

[3,] -1 1 0.000000e+00

[4,] -2 1 1.000000e+00
[5,] 0 0 -1.000000e+00

Lagrange-multipliers solver for f(x, y, z) subject to g(x, y, z)
lagrange_multipliers(x, fn4, eqn4)

[1] 0.3416408 -1.0652476 -0.2514708

return(c(z1, z2))

Now, let’s double-check the above manual optimization results against the

automatic solnp solution minimizing

f x; y; zð Þ ¼ 4y� 2zþ x2 þ y2

subject to:

2x� y� z ¼ 2

x2 þ y2 ¼ 1:

22.4 Manual Versus Automated Lagrange Multiplier Optimization 755

library(Rsolnp)

fn4 <- function(x) # f(x, y, z) = 4y-2z + x^2+y^2
{

 4*x[2] - 2*x[3] + x[1]^2+ x[2]^2

}

constraint z1: 2x-y-z = 2
constraint z2: x^2+y^2 +z = 1
eqn4 <- function(x){

 z1=2*x[1] - x[2] - x[3]

 z2=x[1]^2 + x[2]^2 + x[3]

 return(c(z1, z2))

}

constraints4 <- c(2, 1)

x0 <- c(1, 1, 1)

ctrl <- list(trace=0)

sol4 <- solnp(x0, fun = fn4, eqfun = eqn4, eqB = constraints4, control=ctrl)
sol4$values

[1] 4.0000000 -0.1146266 -5.9308852 -3.7035124 -2.5810141 -2.5069444
[7] -2.5065779 -2.5065778 -2.5065778

The results of both (manual and automated) experiments identifying the optimal

(x, y, z) coordinates minimizing the objective function f(x, y, z) ¼ 4y � 2z + x2 + y2

are in agreement.

• Manual optimization: lagrange_multipliers(x, fn4, eqn4):

0.3416408 �1.0652476 �0.2514708.

• Automated optimization: solnp(x0, fun ¼ fn4, eqfun ¼ eqn4,

eqB ¼ constraints4, control ¼ ctrl): 0.3416408 �1.0652476

�0.2514709.

22.5 Data Denoising

Suppose we are given xnoisy with n noise-corrupted data points. The noise may be

additive (xnoisy � x + E) or not additive. We may be interested in denoising the signal

and recovering a version of the original (unobserved) dataset x, potentially as a

smoothed representation of the original (uncorrupted) process. Smoother signals

suggest less (random) fluctuations between neighboring data points.

One objective function we can design to denoise the observed signal, xnoisy, may

include a fidelity term and a regularization term; see the regularized linear modeling

in Chap. 18.

756 22 Function Optimization

Total variation denoising assumes that for each time point t, the observed

noisy data

xnoisy tð Þ
|fflfflffl{zfflfflffl}

observed signal

� x tð Þ
|{z}

native signal

þ E tð Þ
|{z}

random noise

:

To recover the native signal, x(t), we can optimize (argminxf(x)) the following

objective cost function:

f xð Þ ¼
1

2

Xn�1

t¼1

k y tð Þ � xnoisy tð Þk2

|ffl{zffl}

fidelity term

þλ

Xn�1

t¼2

j x tð Þ � x t � 1ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regularization term

j ,

where λ is the regularization smoothness parameter, λ ! 0 ⟹ y ! xnoisy. Mini-

mizing f(x) provides a minimum total-variation solution to the data denoising

problem.

Below is an example illustrating total variation (TV) denoising using a simulated

noisy dataset. We start by generating an oscillatory noisy signal. Then, we compute

several smoothed versions of the noisy data, plot the initial and smoothed signals,

define and optimize the TV denoising objective function, which is a mixture of a

fidelity term and a regularization term (Fig. 22.4).

Fig. 22.4 Denoising by smoothing, raw noisy data and two smoothed models (loess)

22.5 Data Denoising 757

n <- 1000

x <- rep(0, n)

xs <- seq(0, 8, len=n) # seq(from = 1, to = 1, le ngth)

noise_level = 0.3 # sigma of the noise, try varying this noise -level

here is where we add the zero-mean noise

set.seed(1234)

x_noisy <- function (x) {

sin(x)^2/(1.5+cos(x)) + rnorm(length(x), 0, noise_level)

}

initialize the manual denoised signal

x_denoisedManu < - rep(0, n)

df <- as.data.frame (cbind(xs, x_noisy(xs)))

loess fit a polynomial surface determined by numerical predictors,

using local fitting

poly_model1 < - loess(x_noisy(xs) ~ xs, span=0.1, data=df) # tight model

poly_model2 < - loess(x_noisy(xs) ~ xs, span=0.9, data=df) # smoother model

To see some of numerical results of hte model -fitting:

View(as.data.frame(cbind(xs, x_noisy, predict (poly_model1))))

plot(xs, x_noisy(xs), type='l')

lines(xs, poly_model1$fitted, col="red", lwd=2)

lines(xs, poly_model2$fitted, col="blue", lwd=3)

Next, let’s initiate the parameters, define the objective function and optimize it,

i.e., estimate the parameters that minimize the cost function as a mixture of fidelity

and regularization terms (Fig. 22.5).

Fig. 22.5 Manual denoising signal recovery using non-linear constaint optimization (solnp)

758 22 Function Optimization

initialization of parameters
betas_0 <- c(0.3, 0.3, 0.5, 1)

betas <- betas_0

Denoised model
x_denoised <- function(x, betas) {

if (length(betas) != 4) {

print(paste0("Error!!! length(betas)=", length(betas), " != 4!!! Exiting

..."))

break();

}

print(paste0(" betas = ", betas, "...\n"))
original noise function definition: sin(x)^2/(1.5+cos(x))
return((betas[1]*sin(betas[2]*x)^2)/(betas[3]+cos(x)))

}

library(Rsolnp)

fidelity <- function(x, y) {

sqrt((1/length(x)) * sum((y - x)^2))

}

regularizer <- function(betas) {

reg <- 0

for (i in 1:(length(betas-1))) {

reg <- reg + abs(betas[i])

}

return(reg)

}

Objective Function
objective_func <- function(betas) {

f(x) = 1/2 * \sum_{t=1}^{n-1} {|y(t) - x_{noisy}(t)\|^2}} + \lambda *
\sum_{t=2}^{n-1} | x(t) - x(t-1)|

fid <- fidelity(x_noisy(xs), x_denoised(xs, betas))

reg <- abs(betas[4])*regularizer(betas)

error <- fid + reg

uncomment to track the iterative optimization state
print(paste0(".... Fidelity =", fid, " ... Regularizer = ", reg, " ...

TotalError=", error))
print(paste0("....betas=(",betas[1],",",betas[2],",",betas[3],",",betas

[4],")"))
return(error)

}

inequality constraint forcing regularization parameter lambda=beta[4]>0
inequalConstr <- function(betas){

betas[4]

}

inequalLowerBound <- 0; inequalUpperBound <- 100

should we list the value of the objective function and the parameters at
every iteration (default trace=1; trace=0 means no interim reports)
constraint problem
ctrl <- list(trace=0, tol=1e-5) ## could specify: outer.iter=5,
inner.iter=9)
set.seed(121)

22.5 Data Denoising 759

suppress the report of the the functional values (too many)
sol_lambda$values

reprot the optimal parameter estimates (betas)
sol_lambda$pars

[1] 2.5649689 0.9829681 1.7605481 0.9895268

Reconstruct the manually-denoised signal using the optimal betas
betas <- sol_lambda$pars

x_denoisedManu <- x_denoised(xs, betas)

print(paste0("Final Denoised Model:", betas[1], "*sin(", betas[2],

"*x)^2/(", betas[3], "+cos(x)))"))

[1] "Final Denoised Model:2.56496893433154*sin(0.982968123322892*x)^2/(1.

76054814253387+cos(x)))"

plot(x_denoisedManu)

sol_lambda <- solnp(betas_0, fun = objective_func, ineqfun = inequalConstr,

ineqLB = inequalLowerBound, ineqUB = inequalUpperBound, control=ctrl)

unconstraint optimization
ctrl <- list(trace=1, tol=1e-5) ## could specify: outer.iter=5,
inner.iter=9)
sol_lambda <- solnp(betas_0, fun = denoising_func, control=ctrl)

Finally, we can validate our manual denoising protocol against the automated TV

denoising using the R package tvd (Fig. 22.6).

Fig. 22.6 Plot of the observed noisy data and four alternative denoised reconstructions

760 22 Function Optimization

install.packages("tvd")

library("tvd")

lambda_0 <- 0.5

x_denoisedTVD <- tvd1d(x_noisy(xs), lambda_0, method = "Condat")

lambda_o is the total variation penalty coefficient

method is a string indicating the algorithm to use for denoising.

Default method is "Condat"

plot(xs, x_denoisedTVD, type='l')

plot(xs, x_noisy(xs), type='l')

lines(xs, poly_model1$fitted, col="red", lwd=2)

lines(xs, poly_model2$fitted, col="blue", lwd=3)

lines(xs, x_denoisedManu, col="pink", lwd=4)

lines(xs, x_denoisedTVD, col="green", lwd=5)

add a legend

legend("bottom", c("x_noisy", "poly_model1$fitted", "poly_model2$fitted",

"x_denoisedManu", "x_denoisedTVD"), col=c("black", "red", "blue", "pink",

"green"), lty=c(1,1, 1,1), cex=0.7, lwd= c(1,2,3,4,5), title="TV Denoising")

22.6 Assignment: 22. Function Optimization

22.6.1 Unconstrained Optimization

Apply optim() to solve the following unconstrained optimization problems:

1. minx f(x) ¼ x4.

2. maxx 2 sin x� x2

10

� �

:

3. maxx, y(2xy + 2x � x2 � 2y2).

22.6.2 Linear Programming (LP)

Solve the following LP problem:

max
x1, x2, x3, x4

x1 þ 2x2 þ 3x3 þ 4x4 þ 5ð Þ

subject to:

4x1 þ 3x2 þ 2x3 þ x4 � 10

x1 � x3 þ 2x4 ¼ 2

x1 þ x2 þ x3 þ x4 � 1

x1 � 0, x3 � 0, x4 � 0

8

>>><

>>>:

:

Apply lpSolveAPI and Rsolnp and compare the results.

22.6 Assignment: 22. Function Optimization 761

22.6.3 Mixed Integer Linear Programming (MILP)

Apply lpSolveAPI to solve the following MILP problem:

min
x1, x2

4x1 þ 6x2

subject to:

2x1 þ 2x2 � 5

x1 � x2 � 1

x1, x2 � 0

x1, x2 2 integers

:

8

>><

>>:

22.6.4 Quadratic Programming (QP)

Solve the following QP problem:

min
x1, x2

2x21 þ x22 þ x1x2 þ x1 þ x2

subject to:
x1 þ x2 ¼ 1

x1, x2 � 0

�

:

• Apply quadprog to solve the QP.

• Use Rsolnp to solve the QP.

• Write the Lagrange multiplier form.

• Apply numDeriv to solve this Lagrange multiplier optimization manually.

• Compare the three versions of the results above.

22.6.5 Complex Non-linear Optimization

Solve the following nonlinear problem:

min
x1, x2

100 x2 � x21
� 	2

þ 1� x1ð Þ2
� �

subject to x1, x2 � 0.

762 22 Function Optimization

22.6.6 Data Denoising

Based on the signal denoising example presented in this chapter, try to change the

noise level, replicate the denoising process, and report your findings.

References

Cortez, P. (2014) Modern Optimization with R, Springer, ISBN 3319082639, 9783319082639.

CRAN Optimization & Math Programming Site provides details about a broad range of R

optimization functions.

Vincent Zoonekynd’s Optimization Blog http://zoonek.free.fr/blosxom/R/2012-06-01_Optimiza

tion.html.

References 763

http://zoonek.free.fr/blosxom/R/2012-06-01_Optimization.html
http://zoonek.free.fr/blosxom/R/2012-06-01_Optimization.html

Chapter 23

Deep Learning, Neural Networks

Deep learning is a special branch of machine learning using a collage of algorithms

to model high-level data motifs. Deep learning resembles the biological communi-

cations of systems of brain neurons in the central nervous system (CNS), where

synthetic graphs represent the CNS network as nodes/states and connections/edges

between them. For instance, in a simple synthetic network consisting of a pair of

connected nodes, an output sent by one node is received by the other as an input

signal. When more nodes are present in the network, they may be arranged in

multiple levels (like a multiscale object) where the ith layer output serves as the

input of the next (i + 1)st layer. The signal is manipulated at each layer, sent as a

layer output downstream, interpreted as an input to the next, (i + 1)st layer, and so

forth. Deep learning relies on multipler layers of nodes and many edges linking the

nodes forming input/output (I/O) layered grids representing a multiscale processing

network. At each layer, linear and non-linear transformations are converting inputs

into outputs.

In this chapter, we explore the R deep learning package MXNet and demonstrate

state-of-the-art deep learning models utilizing CPU and GPU for fast training

(learning) and testing (validation). Other powerful deep learning frameworks include

TensorFlow, Theano, Caffe, Torch, CNTK and Keras.

Neural Networks vs. Deep Learning: Deep Learning is a machine learning

strategy that learns a deep multi-level hierarchical representation of the affinities

and motifs in the dataset. Machine learning Neural Nets tend to use shallower

network models. Although there are no formal restrictions on the depth of the layers

in a Neural Net, few layers are commonly utilized. Recent methodological, algo-

rithmic, computational, infrastructure, and service advances overcome previous

limitations. In addition, the rise of Big Data accelerated the evolution of classical

Neural Nets to Deep Neural Nets, which can now handle lots of layers and many

hidden nodes per layer. The former is a precursor to the latter; however, there are

also non-neural deep learning techniques, for example, syntactic pattern recognition

methods and grammar induction discover hierarchies.

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1_23

765

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72347-1_23&domain=pdf
https://doi.org/10.1007/978-3-319-72347-1_23

23.1 Deep Learning Training

Review Chap. 11 (Black Box Machine-Learning Methods: Neural Networks and

Support Vector Machines) prior to proceeding.

23.1.1 Perceptrons

A perceptron is an artificial analogue of a neuronal brain cell that calculates a

weighted sum of the input values and outputs a thresholded version of that result. For

a bivariate perceptron, P, having two inputs, (X,Y), we can denote the weights of the

inputs by A and B, respectively. Then, the weighted sum could be represented as:

W ¼ AX þ BY :

At each layer l, the weight matrix, W(l), has the following properties:

• The number of rows of W(l) equals the number of nodes/units in the previous

(l � 1)st layer, and

• The number of columns of W(l) equals the number of units in the next (l + 1)st

layer.

Neuronal cells fire depending on the presynaptic inputs to the cell, which causes

constant fluctuations of the neuronal membrane - depolarizing or hyperpolarizing,

i.e., the cell membrane potential rises or falls. Similarly, perceptrons rely on

thresholding of the weight-averaged input signal, which for biological cells corre-

sponds to voltage increases passing a critical threshold. Perceptrons output non-zero

values only when the weighted sum exceeds a certain threshold C. In terms of its

input vector, (X,Y), we can describe the output of each perceptron (P) by:

Output Pð Þ ¼
1, if AX þ BY > C

0, if AX þ BY � C

(

:

Feed-forward networks are constructed as layers of perceptrons where the first

layer ingests the inputs and the last layer generates the network outputs. The

intermediate (internal) layers are not directly connected to the external world, and

are called hidden layers. In fully connected networks, each perceptron in one layer is

connected to every perceptron on the next layer enabling information “fed forward”

from one layer to the next. There are no connections between perceptrons in the same

layer.

Multilayer perceptrons (fully-connected feed-forward neural network) consist of

several fully-connected layers representing an input matrix Xn�m and a gener-

ated output matrix Yn� k. The input Xn,m is a matrix encoding the n cases and

m features per case. The weight matrixW
lð Þ
m,k for layer l has rows (i) corresponding to

766 23 Deep Learning, Neural Networks

the weights leading from all the units i in the previous layer to all of the units j in the

current layer. The product matrix X � W has dimensions n � k.

The hidden size parameter k, the weight matrixWm � k, and the bias vector bn � 1

are used to compute the outputs at each layer:

Y
lð Þ
n�k ¼ f

lð Þ
k Xn�mWm�k þ bk�1ð Þ:

The role of the bias parameter is similar to the intercept term in linear regression

and helps improve the accuracy of prediction by shifting the decision boundary

along Y axis. The outputs are fully-connected layers that feed into an activation

layer to perform element-wise operations. Examples of activation functions that

transform real numbers to probability-like values include (Fig. 23.1):

• The sigmoid function, a special case of the logistic function, which converts real

numbers to probabilities,

• The rectifier (relu, Rectified Linear Unit) function, which outputs the max(0,

input),

• The tanh (hyperbolic tangent function).

The final fully-connected layer may be hidden of size equal to the number of

classes in the dataset and may be followed by a softmax layer mapping the input

into a probability score. For example, if a size n� m input is denoted by Xn � m, then

the probability scores may be obtained by the softmax transformation function,

which maps real valued vectors to vectors of probabilities:

exi,1
Pm

j¼1 e
xi, j
; . . . ;

exi,m
Pm

j¼1 e
xi, j

 !

:

Fig. 23.1 Graphical representation of three alternative activation functions

23.1 Deep Learning Training 767

Figure 23.2 shows is a schematic of fully-connected feed-forward neural network

of nodes:

aj¼node index, l¼layer index

� �nj,4

j¼1, l¼1
:

The plot above illustrates the key elements in the action potential, or activation

function, and the calculations of the corresponding training parameters:

anode¼k, layer¼l ¼ f
X

i

w l
k, i � al�1

i þ b l
k

 !

,

where:

• f is the activation function, e.g., logistic function f xð Þ ¼ 1
1þe�x. It converts the

aggregate weights at each node to probability values,

• w l
k, i is the weight carried from the ith element of the (l � 1)th layer to the kth

element of the current lth layer,

• b l
k is the (residual) bias present in the kth element in the lth layer. This is

effectively the information not explained by the training model.

These parameters may be estimated using different techniques (e.g., using least

squares, or stochastically using steepest decent methods) based on the training data.

23.2 Biological Relevance

There are parallels between biology (neuronal cells) and the mathematical models

(perceptrons) for neural network representation. The human brain contains about 1011

neuronal cells connected by approximately 1015 synapses forming the basis of our

Fig. 23.2 A schematic of a

fully-connected feed-

forward neural network with

two hidden layers

768 23 Deep Learning, Neural Networks

functional phenotypes. Figure 23.3 illustrates some of the parallels between brain

biology and the mathematical representation using synthetic neural nets. Every neu-

ronal cell receives multi-channel (afferent) input from its dendrites, generates output

signals, and disseminates the results via its (efferent) axonal connections and synaptic

connections to dendrites of other neurons.

The perceptron is a mathematical model of a neuronal cell that allows us to

explicitly determine algorithmic and computational protocols transforming input

signals into output actions. For instance, a signal arriving through an axon x0 is

modulated by some prior weight, e.g., synaptic strength, w0 � x0. Internally, within

the neuronal cell, this input is aggregated (summed, or weight-averaged) with inputs

from all other axons. Brain plasticity suggests that synaptic strengths

(weight coefficients w) are strengthened by training and prior experience. This

learning process controls the direction and strength of influence of neurons on

other neurons. Either excitatory (w > 0) or inhibitory (w� 0) influences are possible.

Dendrites and axons carry signals to and from neurons, where the aggregate

responses are computed and transmitted downstream. Neuronal cells only fire if

action potentials exceed a certain threshold. In this situation, a signal is transmitted

downstream through its axons. The neuron remains silent, if the summed signal is

below the critical threshold.

Timing of events is important in biological networks. In the computational

perceptron model, a first order approximation may ignore the timing of neuronal

firing (spike events) and only focus on the frequency of the firing. The firing rate of a

neuron with an activation function f represents the frequency of the spikes along the

axon. We saw some examples of activations functions earlier.

Figure 23.3 illustrates the parallels between the brain network-synaptic organi-

zation and an artificial synthetic neural network.

Fig. 23.3 A depiction of the parallels between a biological central nervous system network

organization (human bran) and a synthetic neural network employed in deep machine learning

23.2 Biological Relevance 769

23.3 Simple Neural Net Examples

Before we look at some examples of deep learning algorithms applied to model

observed natural phenomena. Specifically, we will develop a couple of simple

networks for computing fundamental Boolean operations.

23.3.1 Exclusive OR (XOR) Operator

The exclusive OR (XOR) operator works as a bivariate binary-outcome function,

mapping pairs of false (0) and true (1) values to dichotomous false (0) and true

(1) outcomes.

We can design a simple two-layer neural network that calculates XOR. The values

listed within each neuron represent its explicit threshold, which can be normal-

ized so that all neurons utilize the same threshold (typically 1). The value labels

associated with network connections (edges) represent the weights of the inputs.

When the threshold is not reached, the output is 0, and when the threshold is reached,

the output is correspondingly 1 (Fig. 23.4).

Let’s work out manually the four possibilities (Table 23.1):

We can validate that this network indeed represents an XOR operator by plugging

in all four possible input combinations and confirming the expected results at the end

(Fig. 23.5).

Fig. 23.4 A neural network

representation

corresponding to the XOR

binary function

770 23 Deep Learning, Neural Networks

23.3.2 NAND Operator

Another binary operator is NAND (negative AND, Sheffer stroke), which produces a

false (0) output if and only if both of its operands are true (1), and which generates

true (1), otherwise. Below is the NAND input-output table (Table 23.2).

Similarly to the XOR operator, we can design a one-layer neural network that

calculates NAND. Again, the values listed within each neuron represent its explicit

threshold, which can be normalized so that all neurons utilize the same threshold

(typically 1). The value labels associated with network connections (edges)

represent the weights of the inputs. When the threshold is not reached, the output

Table 23.1 Exact XOR

binary operator
InputX InputY XOR output(Z)

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 23.5 Validation of the explicit neural network calculation of the XOR operator

23.3 Simple Neural Net Examples 771

is trivial (0), and when the threshold is reached, the output is correspondingly 1. Here

is a shorthand analytic expression for the NAND calculation:

NAND X; Yð Þ ¼ 1:3� 1� X þ 1� Yð Þ:

Check that NAND(X,Y) ¼ 0 if and only if X ¼ 1 and Y ¼ 1, otherwise it

equals 1 (Fig. 23.6).

23.3.3 Complex Networks Designed Using Simple Building

Blocks

Observe that stringing together some of these primitive networks of Boolean oper-

ators, or/and increasing the number of hidden layers, allows us to model problems

with exponentially increasing complexity. For instance, constructing a 4-input NAND

function would simply require repeating several of our 2-input NAND operators. This

will increase the space of possible outcomes from 22 to 24. Of course, introducing

more depth in the hidden layers further expands the complexity of the problems that

can be modeled using neural nets.

Table 23.2 Exact NAND

binary operator
InputX InputY NAND output(Z)

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 23.6 A neural network

representation

corresponding to the NAND

binary function

772 23 Deep Learning, Neural Networks

You can interactively manipulate Google's TensorFlow Deep Neural Network

Webapp to gain additional intuition and experience with the various components of

deep learning networks.

The ConvnetJS demo provide another hands-on example using 2D classification

with 2-layer neural network (Fig. 23.7).

23.4 Classification

In MXNet, a Multilayer perceptron (MLP) may be defined by:

• Creating a place holder variable for the input data, data ¼ mx.sym.Vari-

able('data')

• Flattening the data from 4D shape space (width, height, batch_size,

num_channel) into 2D (num_channel*width*height, batch_size), 'data ¼ mx.

sym.Flatten(data¼data)'

• And iterating over the fully-connected layers:

http://playground.tensorflow.org

https://cs.stanford.edu/people/
karpathy/convnetjs/demo/
classify2d.html

Fig. 23.7 Live Demo: TensorFlow and ConvnetJS deep neural network webapps

23.4 Classification 773

http://playground.tensorflow.org
http://playground.tensorflow.org
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

– First layer, fc1 ¼ mx.sym.FullyConnected(data¼data,

name¼'fc1', num_hidden¼128)

– Apply relu function to the output of the first fully-connnected layer, act1¼
mx.sym.Activation(data¼fc1, name¼'relu1',

act_type¼"relu")

– Generate the second fully-connected layer and apply the activation function,

fc2 ¼ mx.sym.FullyConnected(data¼act1, name¼'fc2',

num_hidden ¼ 64); act2 ¼ mx.sym.Activation(data¼fc2,

name¼'relu2', act_type¼"relu")

– Generate the third/final fully-connected layer, with a hidden size k¼ 10, which

in digit recognition tasks corresponds to the number of unique digits 0 : 9, fc3

¼ mx.sym.FullyConnected(data¼act2, name¼'fc3',

num_hidden¼10)

• Finally, mapping the input into a probability score using the softmax and loss

layer, mlp ¼ mx.sym.SoftmaxOutput(data¼fc3,

name¼'softmax'). See the mlp R source code here.

23.4.1 Sonar Data Example

Let’s load the mlbench and mlbench packages and demonstrate the basic invo-

cation of mxnet. The Sonar data mlbench::Sonar includes sonar signals

bouncing off a metal cylinder or a roughly cylindrical rock. Each of 208 patterns

includes a set of 60 numbers (features) in the range 0.0–1.0, and a label M (metal) or

R (rock). Each feature represents the energy within a particular frequency band,

integrated over a certain period of time. The M and R labels associated with each

observation classify the record as rock or mine (metal) cylinder. The numbers in the

labels are in increasing order of aspect angle, but they do not encode the angle

directly.

Load the required packages: mlbench and mxnet

install.packages("mlbench"); install.packages("mxnet")

Note mxnet requires "visNetwork"

If it doesn't work, you may need the following lines:

install.packages("drat", repos="https://cran.rstudio.com")

drat:::addRepo("dmlc")

install.packages("mxnet")

require(mlbench)
require(mxnet)

Init Rcpp

data(Sonar, package="mlbench")

table(Sonar[,61])

774 23 Deep Learning, Neural Networks

https://cran.rstudio.com

M R
111 97

Sonar[,61] = as.numeric(Sonar[,61])-1 # R = "1", "M" = "0"
set.seed(123)
train.ind = sample(1:nrow(Sonar),0.7*nrow(Sonar))

train.x = data.matrix(Sonar[train.ind, 1:60])
train.y = Sonar[train.ind, 61]
test.x = data.matrix(Sonar[-train.ind, 1:60])
test.y = Sonar[-train.ind, 61]

Let’s start by using amulti-layer perceptron as a classifier. The mxnet function

mx.mlp builds a general multi-layer neural network that can be utilized to do

classification or regression graph modeling. It relies on the following parameters:

• Training data and labels

• Number of hidden nodes in each hidden layers

• Number of nodes in the output layer

• Type of activation

• Type of output loss

• The device to train (GPU or CPU)

• Additional optional parameters, see mx.model.FeedForward.create

Here is one example using the training and testing data we defined above:

mx.set.seed(1234)
model.mx <- mx.mlp(train.x, train.y, hidden_node=8, out_node=2,
out_activation="softmax",

num.round=200, array.batch.size=15, learning.rate=0.1, momentum=0.9,
eval.metric=mx.metric.accuracy,verbose=F)

#calculate Prediction sensitivity & specificity

preds = predict(model.mx, test.x) # these are probabilities

You can inspect the test labels vs. assigned probabilities by

View(data.frame(test.y, preds[2,]))

preds1 <- ifelse(preds[2,] <= 0.5, 0, 1) # dichotomize to labels
table(preds1)

preds1
0 1
35 28

pred.label = t(preds1)
table(pred.label, test.y)

test.y
pred.label 0 1
0 28 7
1 6 22

library("caret")

sensitivity(factor(preds1), factor(as.numeric(test.y)),positive = 1)

[1] 0.7586207

specificity(factor(preds1), factor(as.numeric(test.y)),negative = 0)

[1] 0.8235294

23.4 Classification 775

We can also use crossval::diagnosticErrors() and crossval::

confusionMatrix() to get more detailed evaluations. Similar to using the

sensitivity() and specificity() methods, we should specify the negative

and positive labels.

Note that you have to specify crossval::confusionMatrix() if you also

have the caret package loaded, as caret also has a function called

confusionMatrix().

library("crossval")

diagnosticErrors(crossval::confusionMatrix(preds1,test.y, negative = 0))

acc sens spec ppv npv lor
0.7936508 0.7857143 0.8000000 0.7586207 0.8235294 2.6855773
attr(,"negative")
[1] 0

Now, we compare the results of different number of rounds, or epochs,

representing the number of full (training-phase) passes through the data (cf. num.

round¼n).

mx.set.seed(1234)
get_pred = function(n){

model.mx <- mx.mlp(train.x, train.y, hidden_node=8, out_node=2, out_activa
tion="softmax",

num.round=n, array.batch.size=15, learning.rate=0.1, momentum=0.9,
eval.metric=mx.metric.accuracy,verbose=F)

preds = predict(model.mx, test.x)
}
preds100 = get_pred(100)
preds50 = get_pred(50)
preds10 = get_pred(10)

We can plot the ROC curve and calculate the AUC (Area under the curve)

(Fig. 23.8):

install.packages("pROC"); install.packages("plotROC"); install.packages("r

eshape2")

library(pROC); library(plotROC); library(reshape2);

compute AUC

get_roc = function(preds){
roc_obj <- roc(test.y, preds[2,])
auc(roc_obj)

}
get_roc(preds)

Area under the curve: 0.9249

get_roc(preds100)

776 23 Deep Learning, Neural Networks

Area under the curve: 0.9209

get_roc(preds50)

Area under the curve: 0.8824
get_roc(preds10)

Area under the curve: 0.8022

#plot roc

dt <- data.frame(test.y, preds[2,], preds100[2,], preds50[2,], preds10[2,])
colnames(dt) <- c("D","rounds=200","rounds=100","rounds=50","rounds=10")
dt <- melt(dt,id.vars = "D")

basicplot <- ggplot(dt, aes(d = D, m = value, colour=variable)) +
geom_roc(labels = FALSE, size = 0.5, alpha.line = 0.6, linejoin = "mitre") +

theme_bw() + coord_fixed(ratio = 1) + style_roc() + ggtitle("ROC CURVE")+
annotate("rect", xmin = 0.4, xmax = 1, ymin = 0.2, ymax = 0.75,

alpha = .2)+
annotate("text", x = 0.7, y = 0.5, size = 3,

label = "AUC: \n rounds=200: 0.9209\n rounds=100: 0.9128\n
rounds=50: 0.8824\n rounds=10: 0.8022\n ")
basicplot

Fig. 23.8 ROC curves of multi-layer perceptron predictions (mx.mlp), using out-of-bag test-data,

corresponding to different number of iterations, see Chap. 14

23.4 Classification 777

The plot suggests that the results stabilize after 100 training (epoch) iterations.

Let’s look at some visualizations of the real labels of the test data (test.y) and

their corresponding ML-derived classification labels (preds[2,]) using 200 iter-

ations (Figs. 23.9, 23.10, 23.11, 23.12, and 23.13).

graph.viz(model.mx$symbol)

hist(preds10[2,],main = "rounds=10")

hist(preds50[2,],main = "rounds=50")

hist(preds100[2,],main = "rounds=100")

hist(preds[2,],main = "rounds=200")

fu
lly
c
o
n
n
e
c
te
d
0

8

fu
lly
c
o
n
n
e
c
te
d
1

2

a
c
ti
v
a
ti
o
n
0

s
o
ft
m
a
x
o
u
tp
u
t0

Fig. 23.9 MLP model structure (the plot is rotated 90-degrees to save space)

Fig. 23.10 Frequency plot of the predicted probabilities using ten epochs corresponding to ten full

(training-phase) passes through the data (cf. num.round¼n)

778 23 Deep Learning, Neural Networks

We see a significant bimodal trend when the number of rounds increases. Another

plot shows more details about the agreement between the real labels and their

predicted class counterparts (Fig. 23.14):

Fig. 23.11 Frequency plot of the predicted probabilities using 50 epochs, compare to Fig. 23.10

Fig. 23.12 Frequency plot of the predicted probabilities using 100 epochs, compare to Fig. 23.11

23.4 Classification 779

Fig. 23.13 And finally, the plot of the predicted probabilities using 200 epochs; compare to

Fig. 23.12

Fig. 23.14 Summary plots illustrating the progression of the neural network learning from 10 ro

200 epochs, corresponding with improved binary classification results (testing data)

780 23 Deep Learning, Neural Networks

library(ggplot2)
get_gghist = function(preds){

ggplot(data.frame(test.y, preds),
aes(x=preds, group=test.y, fill=as.factor(test.y)))+

geom_histogram(position="dodge",binwidth=0.25)+theme_bw()
}
df = data.frame(preds[2,],preds100[2,],preds50[2,],preds10[2,])
p <- lapply(df,get_gghist)
require(gridExtra) # used for arrange ggplots

grid.arrange(p$preds10.2...,p$preds50.2...,p$preds100.2...,p$preds.2...)

23.4.2 MXNet Notes

• The mx.mlp() function is a proxy to the more complex and laborious process of

defining a neural network by using MXNet’s Symbol. For instance, this call

model.mx <- mx.mlp(train.x, train.y, hidden_node¼8,

out_node¼2, out_activation¼"softmax", num.round¼20,

array.batch.size¼15, learning.rate¼0.1, momentum¼0.9,

eval.metric¼mx.metric.accuracy) would be equivalent to a sym-

bolic network definition like: data <- mx.symbol.Variable

("data"); fc1 <- mx.symbol.FullyConnected(data,

num_hidden¼128) act1 <- mx.symbol.Activation(fc1,

name¼"relu1", act_type¼"relu"); fc2 <- mx.symbol.

FullyConnected(act1, name¼"fc2", num_hidden¼64); act2

<- mx.symbol.Activation(fc2, name¼"relu2",

act_type¼"relu"); fc3 <- mx.symbol.FullyConnected(act2,

name¼"fc3", num_hidden¼2); lro <- mx.symbol.

SoftmaxOutput(fc3, name¼"sm"); model2 <- mx.model.

FeedForward.create(lro, X¼train.x, y¼train.y, ctx¼mx.

cpu(), num.round¼100, array.batch.size¼15, learning.

rate¼0.07, momentum¼0.9) (see example with linear regression below).

• Layer-by-layer definitions translate inputs into outputs. At each level, the network

allows for a different number of neurons and alternative activation functions.

Other options can be specified by using mx.symbol:

• mx.symbol.Convolution applies convolution to the input and then adds a

bias. It can create convolutional neural networks.

• mx.symbol.Deconvolution does the opposite and can be used in segmen-

tation networks along with mx.symbol.UpSampling, e.g., to reconstruct the

pixel-wise classification of an image.

• mx.symbol.Pooling reduces the data by selecting signals with the highest

response.

• mx.symbol.Flatten links convolutional and pooling layers to form a fully

connected network.

• mx.symbol.Dropout attempts to cope with the overfitting problem.

23.4 Classification 781

The function mx.mlp() is a wrapper for quick design of standard multi-layer

perceptrons. For more extensive experiments, customized symbolic representation

can be explicitly specified using combinations of the above methods.

Example of **LeNet** network for recognizing handwritten digits:

data <- mx.symbol.Variable('data')
conv1 <- mx.symbol.Convolution(data=data, kernel=c(5,5), num_filter=20)
tanh1 <- mx.symbol.Activation(data=conv1, act_type="tanh")
pool1 <- mx.symbol.Pooling(data=tanh1, pool_type="max", kernel=c(2,2),
stride=c(2,2))
conv2 <- mx.symbol.Convolution(data=pool1, kernel=c(5,5), num_filter=50)
tanh2 <- mx.symbol.Activation(data=conv2, act_type="tanh")
pool2 <- mx.symbol.Pooling(data=tanh2, pool_type="max", kernel=c(2,2),
stride=c(2,2))
flatten <- mx.symbol.Flatten(data=pool2)
fc1 <- mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 <- mx.symbol.Activation(data=fc1, act_type="tanh")
fc2 <- mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
lenet <- mx.symbol.SoftmaxOutput(data=fc2)
model <- mx.model.FeedForward.create(lenet, X=train.x, y=train.y, ctx=device
.cpu, num.round=5, array.batch.size=100, learning.rate=0.05, momentum=0.9)

To allow smooth, fast, and consistent operation on CPU and GPU, in in mxnet,

the generic R function controlling the reproducibility of stochastic results is over-

written by mx.set.seed. So can use mx.set.seed() to control random

numbers in MXNet.

To examine the accuracy of the model.mx learner (trained on the training data),

we can make prediction (on testing data) and evaluate the results using the provided

testing labels (report the confusion matrix).

preds = predict(model.mx, test.x)
pred.label = max.col(t(preds))-1
table(pred.label, test.y)

test.y
pred.label 0 1
0 28 7
1 6 22

For multi-class predictions, mxnet outputs n (class) � m (examples) confusion

matrices where each row corresponds to probability of the corresponding (column-

defined) class.

23.5 Case-Studies

Let’s demonstrate regression and prediction deep learning examples using several

complementary datasets.

782 23 Deep Learning, Neural Networks

23.5.1 ALS Regression Example

Let’s first demonstrate a deep learning regression using the ALS data to predict

ALSFRS_slope, Figs. 23.15 and 23.16.

als <- read.csv("https://umich.instructure.com/files/1789624/download?downlo
ad_frd=1")
als <- scale(als[,-c(1,7)])
train.ind = sample(1:nrow(als),0.7*nrow(als))
train.x = data.matrix(als[train.ind,-c(1,7)])
train.y = als[train.ind,7]
test.x = data.matrix(scale(als[-train.ind,-c(1,7)]))
test.y = als[-train.ind,7]

Define the input data

data <- mx.symbol.Variable("data")
A fully connected hidden layer

data: input source

num_hidden: number of neurons in this hidden layer

fc1 <- mx.symbol.FullyConnected(data, num_hidden=1)
Use linear regression for the output layer

lro <- mx.symbol.LinearRegressionOutput(fc1)

mx.set.seed(1234)
Create a MXNet Feedforward neural net model with the specified training.

model <- mx.model.FeedForward.create(lro, X=train.x, y=train.y,
ctx=mx.cpu(), num.round=1000, array.batch.size=20,
learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse,verbose=F)

Fig. 23.15 The strong linear relation between the out-of-bag testing data continuous outcome

variable (y-axis) and the corresponding predicted regression values (x-axis) suggests a good

network prediction performance

23.5 Case-Studies 783

https://umich.instructure.com/files/1789624/download?download_frd=1
https://umich.instructure.com/files/1789624/download?download_frd=1

The option verbose ¼ F can suppress messages, including training accuracy

reports, in each iteration. You may rerun the code with verbose ¼ T to examine

the rate of decrease of train error against the number of iterations.

You must scale data before inputting it into MXnet, which expects that the

training and testing sets are normalized to the same scale. There are two strategies to

scale the data.

• Either scaling the complete data simultaneously and then splitting them into train

data and test data, or

• Alternatively, scaling only the training dataset to enable model-training, but

saving your protocol for data normalization, as new data (testing, validation)

will need to be (pre)processed the same way as the training data.

Have a look at the Google TensorFlow API. It shows the importance of learning

rate and the number of rounds. You should test different sets of parameters.

• Too small learning rate may lead to long computations.

• Too large learning rate may cause the algorithm to fail to converge, as large step

size (learning rate) may by-pass the optimal solution and then oscillate or even

diverge.

preds = predict(model, test.x)

sqrt(mean((preds-test.y)^2))

[1] 0.2171032

range(test.y)

[1] -3.181499 1.943890

plot the correlation between testdata.y and testdata.predicted.y

plot(preds, test.y)

We can see that the RMSE on the test set is pretty small. To get a visual

representation of the deep learning network we can also display this relatively simple

computation graph (Fig. 23.16):

graph.viz(model$symbol)

d
a
ta

lin
e
a
rr
e
s
s
io
n
o
u
tp
u
t0

fu
lly
c
o
n
n
e
c
te
d
1
0

1

Fig. 23.16 Computational

graph of the neural network

784 23 Deep Learning, Neural Networks

23.5.2 Spirals 2D Data

We can again use the mx.mlp wrapper to construct the learning network, but we

can also use a more flexible way to construct and configure the multi-layer

network in mxnet. This configuration is done by using the Symbol call,

which specifies the links among network nodes, the activation function, dropout

ratio, and so on:

Below we show the configuration of a perceptron with one hidden layer.

########### Network configuration
variables

act <- mx.symbol.Variable("data")
affine transformation

fc <- mx.symbol.FullyConnected(act, num.hidden = 10)
non-linear activation

act <- mx.symbol.Activation(data = fc, act_type = "relu")
affine transformation

fc <- mx.symbol.FullyConnected(act, num.hidden = 2)
softmax output and cross-

mlp <- mx.symbol.SoftmaxOutput(fc)

####Preparing data
set.seed(2235)

############ spirals dataset
s <- sample(x = c("train", "test"), size = 1000, prob = c(.8,.2), replace =
TRUE)
dta <- mlbench.spirals(n = 1000, cycles = 1.2, sd = .03)
dta <- cbind(dta[["x"]], as.integer(dta[["classes"]]) - 1)
colnames(dta) <- c("x","y","label")
######### train, validate, test
dta.train <- dta[s == "train",]
dta.test <- dta[s == "test",]

Let’s display the data and examine its structure (Fig. 23.17).

dt <- as.data.frame(dta);dt[,3] <- as.factor(dt[,3])
dt.train <- dt[s == "train",]
dt.test <- dt[s == "test",]
p1 <- ggplot(dt,aes(x = x,y = y,color=label))+geom_point()+ggtitle("Whole
data structure")
p2 <- ggplot(dt.train,aes(x = x,y =
y,color=label))+geom_point()+ggtitle("Train data structure")
p3 <- ggplot(dt.test,aes(x = x,y =
y,color=label))+geom_point()+ggtitle("Test data structure")
grid.arrange(p1,p2,p3,nrow=3)

23.5 Case-Studies 785

Network training

Feed-forward networks may be trained using iterative gradient descent algo

rithms. A **batch** is a subset of data that is used during single forward p

ass of the algorithm. An **epoch** represents one step of the iterative proc

ess that is repeated until all training examples are used.

############ basic spiral-data training
mx.set.seed(2235)
model <- mx.model.FeedForward.create(

symbol = mlp,
X = dta.train[, c("x", "y")],
y = dta.train[, c("label")],
num.round = 500,
array.layout = "rowmajor",
learning.rate = 1,
eval.metric = mx.metric.accuracy,verbose = F)

preds = predict(model, dta.test[,c(1:2)])

pred.label = max.col(t(preds))-1; table(pred.label, dta.test[,3])

pred.label 0 1
0 90 30
1 22 73

Fig. 23.17 Original spirals data structure (whole, traning and testing sets)

786 23 Deep Learning, Neural Networks

The prediction result is close to perfect, and we can inspect deeper the results

using crossval::confusionMatrix (Fig. 23.18).

library("crossval")
diagnosticErrors(crossval::confusionMatrix(pred.label,dta.test[,3],negative
= 0))

acc sens spec ppv npv lor
0.7581395 0.7684211 0.7500000 0.7087379 0.8035714 2.2980293
attr(,"negative")
[1] 0

ggplot(data.frame(dta.test[,3], preds[2,]),
aes(x=preds[2,], group=dta.test[,3], fill=as.factor(dta.test[,3])))+

geom_histogram(position="dodge",binwidth=0.25)+theme_bw()

Once we fit a model (like the binary label classification below), we can:

• Visually inspect the quality of the ML classification.

• Display the structure of the labeled test-data objects (Fig. 23.19).

Fig. 23.18 Frequency of feed-forward neural network prediction probabilities (x-axis) for the

spirals data relative to testing set labels (colors)

23.5 Case-Studies 787

define a custom call-back, which stops the process of training when the pr

ogress in accuracy is below certain level of tolerance. It call is made afte

r every epoch to check the status of convergence of the algorithm.

mx.callback.train.stop <- function(tol = 1e-3, mean.n = 1e2, period = 100, m
in.iter = 100) {

function(iteration, nbatch, env, verbose = TRUE) {
if (nbatch == 0 & !is.null(env$metric)) {

continue <- TRUE
acc.train <- env$metric$get(env$train.metric)$value
if (is.null(env$acc.log)) {

env$acc.log <- acc.train
} else {

if ((abs(acc.train - mean(tail(env$acc.log, mean.n))) < tol &
abs(acc.train - max(env$acc.log)) < tol &
iteration > min.iter) |
acc.train == 1) {

cat("Training finished with final accuracy: ",
round(acc.train * 100, 2), " %\n", sep = "")

continue <- FALSE
}
env$acc.log <- c(env$acc.log, acc.train)

}
}
if (iteration %% period == 0) {

cat("[", iteration,"]"," training accuracy: ",
round(acc.train * 100, 2), " %\n", sep = "")

}
return(continue)
}

}

Fig. 23.19 Testing-data validation of neural network model (spirals)

788 23 Deep Learning, Neural Networks

training with custom stopping
mx.set.seed(2235)
model <- mx.model.FeedForward.create(

symbol = mlp,
X = dta.train[, c("x", "y")],
y = dta.train[, c("label")],
num.round = 2000,
array.layout = "rowmajor",
learning.rate = 1,
epoch.end.callback = mx.callback.train.stop(),
eval.metric = mx.metric.accuracy,
verbose = FALSE
)

[100] training accuracy: 75.56 %
[200] training accuracy: 76 %
[300] training accuracy: 76 %
[400] training accuracy: 76.45 %
Training finished with final accuracy: 76.45 %

labeled_spiral_data <- as.data.frame(cbind(dta.test[, c("x", "y")],
as.factor(pred.label)))
colnames(labeled_spiral_data) <- c("x", "y", "label")
labeled_spiral_data$label <- as.factor(labeled_spiral_data$label)
p4 <- ggplot(labeled_spiral_data, aes(x = x,y = y,color=label))+
geom_point()+ggtitle("Structure of Predicted-Labels on Test Data")
p4

23.5.3 IBS Study

Let’s try another example using the IBS Neuroimaging study (Figs. 23.20 and

23.21).

IBS NI Data

UCLA Data

wiki_url <-

IBSData<- html_table(html_nodes(wiki_url, "table")[[2]]) # table 2
set.seed(1234)
test.ind = sample(1:354, 50, replace = F) # select 50/354 of cases for
testing, train on remaining (354-50)/354 cases

UMich Data (includes MISSING data): use `mice` to impute missing data

with mean: newData <- mice(data,m=5,maxit=50,meth='pmm',seed=500);

summary(newData)

wiki_url <-

read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_April2011_NI_IBS_Pain")

IBSData<- html_table(html_nodes(wiki_url, "table")[[1]]) # load Table 1

set.seed(1234)

test.ind = sample(1:337, 50, replace = F) # select 50/337 of cases for

testing, train on remaining (337-50)/337 cases

summary(IBSData); IBSData[IBSData=="."] <- NA; newData <- mice(IBSData,

m=5,maxit=50,meth='pmm',seed=500); summary(newData)

read_html("http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_April2011_NI_

IBS_Pain")

23.5 Case-Studies 789

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_April2011_NI_IBS_Pain
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_April2011_NI_IBS_Pain
http://wiki.socr.umich.edu/index.php/SOCR_Data_April2011_NI_IBS_Pain

html_nodes(wiki_url, "#content")
{xml_nodeset (1)}
[1] <div id="content">\n\t\t\n\t\t\t\t<h1
id= ...

View (IBSData); dim(IBSData): Select an outcome response "DX"(3),

"FS_IQ" (5)

scale/normalize all input variables

IBSData <- na.omit(IBSData)
IBSData[,4:66] <- scale(IBSData[,4:66]) # scale the entire dataset
train.x = data.matrix(IBSData[-test.ind, c(4:66)]) # exclude outcome
train.y = IBSData[-test.ind, 3]-1
test.x = data.matrix(IBSData[test.ind, c(4:66)])
test.y = IBSData[test.ind, 3]-1

View(data.frame(train.x, train.y))

View(data.frame(test.x, test.y))

table(test.y); table(train.y)

num.round - number of iterations to train the model

act <- mx.symbol.Variable("data")
fc <- mx.symbol.FullyConnected(act, num.hidden = 10)
act <- mx.symbol.Activation(data = fc, act_type = "sigmoid")
fc <- mx.symbol.FullyConnected(act, num.hidden = 2)
mlp <- mx.symbol.SoftmaxOutput(fc)

mx.set.seed(2235)
model <- mx.model.FeedForward.create(

symbol = mlp,
array.batch.size=20,
X = train.x, y=train.y,
num.round = 200,
array.layout = "rowmajor",
learning.rate = exp(-1),
eval.metric = mx.metric.accuracy, verbose=FALSE)

preds = predict(model, test.x)
pred.label = max.col(t(preds))-1; table(pred.label, test.y)

test.y
pred.label 0 1
0 23 10
1 10 7

library("crossval")
diagnosticErrors(crossval::confusionMatrix(pred.label,test.y,negative = 0))

acc sens spec ppv npv lor
0.6000000 0.4117647 0.6969697 0.4117647 0.6969697 0.4762342
attr(,"negative")
[1] 0

ggplot(data.frame(test.y, preds[2,]),
aes(x=preds[2,], group=test.y, fill=as.factor(test.y)))+

geom_histogram(position="dodge",binwidth=0.25)+theme_bw()

790 23 Deep Learning, Neural Networks

Fig. 23.21 Validation results of the binarized feed-forward neural network prediction probabilities

(y-axis) for the IBS testing data (x-axis) with label-coding for match(0)/mismatch(1)

Fig. 23.20 Frequency of the feed-forward neural network prediction probabilities (x-axis) for the

IBS data relative to testing set labels (colors)

23.5 Case-Studies 791

convert pred-probability to binary classes threshold=0.3?

bin_preds <- ifelse (preds[2,]<0.3, 0, 1)
get a factor variable comparing binary test-labels vs. predcted-labels

label_match <- as.factor(ifelse (test.y==bin_preds, 0, 1))
p5 <- ggplot(data.frame(test.y, preds[2,]), aes(x = test.y, y = preds[2,],
color=label_match))+geom_point()+ggtitle("Match between Test Data Labels and
Predicted Labels")
p5

This histogram plot suggests that the classification is not good (Fig. 23.20).

23.5.4 Country QoL Ranking Data

Another case study we have seen before is the country quality of life (QoL) dataset.

Let’s explore a new neural networkmodel and use it to predict the overall country QoL.

wiki_url <-
read_html("http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_
CountriesRankings")
html_nodes(wiki_url, "#content")

{xml_nodeset (1)}
[1] <div id="content">\n\t\t\n\t\t\t\t<h1
id= ...

CountryRankingData<- html_table(html_nodes(wiki_url, "table")[[2]])

View (CountryRankingData); dim(CountryRankingData): Select an appropriate

outcome "OA": Overall country ranking (13)

Dichotomize outcome, Top-countries OA<20, bottom countries OA>=20

set.seed(1234)
test.ind = sample(1:100, 30, replace = F) # select 15/100 of cases for

testing, train on remaining 85/100 cases

CountryRankingData[,c(8:12,14)] <- scale(CountryRankingData[,c(8:12,14)])
scale/normalize all input variables

train.x = data.matrix(CountryRankingData[-test.ind, c(8:12,14)]) # exclude
outcome

train.y = ifelse(CountryRankingData[-test.ind, 13] < 50, 1, 0)
test.x = data.matrix(CountryRankingData[test.ind, c(8:12,14)])
test.y = ifelse(CountryRankingData[test.ind, 13] < 50, 1, 0) # developed
(high OA rank) country

View(data.frame(train.x, train.y)); View(data.frame(test.x, test.y))

View(data.frame(CountryRankingData, ifelse(CountryRankingData[,13] < 20,

1, 0)))

act <- mx.symbol.Variable("data")
fc <- mx.symbol.FullyConnected(act, num.hidden = 10)
act <- mx.symbol.Activation(data = fc, act_type = "sigmoid")
fc <- mx.symbol.FullyConnected(act, num.hidden = 2)
mlp <- mx.symbol.SoftmaxOutput(fc)

mx.set.seed(2235)
model <- mx.model.FeedForward.create(

symbol = mlp,
array.batch.size=10,

792 23 Deep Learning, Neural Networks

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings

X = train.x, y=train.y,
num.round = 15,
array.layout = "rowmajor",
learning.rate = exp(-1),
eval.metric = mx.metric.accuracy)

Start training with 1 devices
[1] Train-accuracy=0.416666666666667
[2] Train-accuracy=0.442857142857143
[3] Train-accuracy=0.442857142857143
[4] Train-accuracy=0.442857142857143
[5] Train-accuracy=0.442857142857143
[6] Train-accuracy=0.442857142857143
[7] Train-accuracy=0.6
[8] Train-accuracy=0.8
[9] Train-accuracy=0.914285714285714
[10] Train-accuracy=0.928571428571429
[11] Train-accuracy=0.942857142857143
[12] Train-accuracy=0.942857142857143
[13] Train-accuracy=0.942857142857143
[14] Train-accuracy=0.971428571428572
[15] Train-accuracy=0.971428571428572

preds = predict(model, test.x); preds

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.5204602 0.8808465 0.007948651 0.009155557 0.8622462 0.8432776
[2,] 0.4795398 0.1191535 0.992051363 0.990844429 0.1377538 0.1567224
[,7] [,8] [,9] [,10] [,11] [,12]
[1,] 0.4493238 0.6563529 0.97970927 0.7055513 0.98414272 0.9647682
[2,] 0.5506761 0.3436471 0.02029071 0.2944487 0.01585729 0.0352319
[,13] [,14] [,15] [,16] [,17] [,18]

[1,] 0.6106228 0.91565907 0.8317797 0.0252018 0.7618818 0.01770884
[2,] 0.3893772 0.08434091 0.1682204 0.9747981 0.2381181 0.98229110
[,19] [,20] [,21] [,22] [,23] [,24]
[1,] 0.007323461 0.7766624 0.94527471 0.007209368 0.09066615 0.007661197
[2,] 0.992676497 0.2233376 0.05472526 0.992790580 0.90933383 0.992338777
[,25] [,26] [,27] [,28] [,29] [,30]
[1,] 0.0489373 0.009559323 0.91361207 0.1901348 0.90563852 0.97519016
[2,] 0.9510627 0.990440726 0.08638796 0.8098652 0.09436146 0.02480989

pred.label = max.col(t(preds))-1; table(pred.label, test.y)

test.y
pred.label 0 1
0 17 1
1 1 11

We only need 15 rounds to achieve 97% accuracy (Figs. 23.22 and 23.23).

ggplot(data.frame(test.y, preds[2,]),
aes(x=preds[2,], group=test.y, fill=as.factor(test.y)))+

geom_histogram(position="dodge",binwidth=0.25)+theme_bw()

23.5 Case-Studies 793

Fig. 23.23 Validation results of the binarized feed-forward neural network prediction probabilities

(y-axis) for the QoL testing data with label-coding for match(0)/mismatch(1)

Fig. 23.22 Frequency of the feed-forward neural network prediction probabilities (x-axis) for the

QoL data relative to testing set labels (colors)

794 23 Deep Learning, Neural Networks

#calculate sensitivity & specificity and more

library("crossval")
diagnosticErrors(crossval::confusionMatrix(pred.label,test.y,negative = 0))

acc sens spec ppv npv lor
0.9333333 0.9166667 0.9444444 0.9166667 0.9444444 5.2311086
attr(,"negative")
[1] 0

convert pred-probability to binary classes threshold=0.5?

bin_preds <- ifelse (preds[2,]<0.5, 0, 1)
get a factor variable comparing binary test-labels vs. predicted-labels

label_match <- as.factor(ifelse (test.y==bin_preds, 0, 1))
p6 <- ggplot(data.frame(test.y, preds[2,]), aes(x = test.y, y = preds[2,],
color=label_match))+geom_point()+ggtitle("Match between Test Data Labels
and Predicted Labels")
p6

23.5.5 Handwritten Digits Classification

In Chap. 11 (ML, NN, SVM Classification) we discussed Optical Character Recog-

nition (OCR). Specifically, we analyzed handwritten notes (unstructured text) and

converted it to printed text.

MNIST includes a large set of human annotated/labeled handwritten digits

imaging data set. Every digit is represented by a 28 � 28 thumbnail image. You

can download the training and testing data from Kaggle.

The train.csv and test.csv data files contain gray-scale images of hand-

drawn digits, 0, 1, 2, . . ., 9. Each 2D image is 28 � 28 in size and each of the

784 pixels has a single pixel-intensity representing the lightness or darkness of that

pixel (stored as a 1 byte integer [0,255]). Higher intensities correspond to darker

pixels.

The training data, train.csv, has 785 columns, where the first column, label,

codes the actual the digit drawn by the user. The remaining 784 columns contain the

28 � 28 ¼ 784 pixel-intensities of the associated 2D image. Columns in the training

set have pixelK names, where 0 � K � 783. To reconstruct a 2D image out of each

row in the training data we use this relation between pixel-index (K) and X, Y image

coordinates:

K ¼ Y � 28þ X,

where 0 � X, Y � 27. Thus, pixelK is located on row Y and column X of the

corresponding 2D Image of size 28 � 28. For instance,

pixel60 ¼ (2 � 28 + 4) $ (X ¼ 4, Y ¼ 2) represents the pixel on the third row and

fifth column in the image. Diagrammatically, omitting the “pixel” prefix, the pixels

may be ordered to reconstruct the 2D image as follows (Table 23.3).

Note that the point-to-pixelID transformation (K ¼ Y � 28 + X) may easily be

inverted as a pixelID-to-point mapping: X ¼ K mod 28 (remainder of the integer

division (K/28) and Y ¼ K (integer part of the division K/28)). For example:

23.5 Case-Studies 795

K <- 60
X <- K %% 28 # X= K mod 28, remainder of integer division 60/28

Y <- K%/%28 # integer part of the division

This validates that the application of both, the back and forth

transformations, leads to an identity

K; X; Y; Y * 28 + X

[1] 60

[1] 4

[1] 2

[1] 60

The test data (test.csv) has the same organization as the training data, except

that it does not contain the first label column. It includes 28,000 images and we can

predict image labels that can be stored as ImageId, Label pairs, which can be visually

compared to the 2D images for validation/inspection.

require(mxnet)

train.csv

pathToZip <- tempfile()
download.file("http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650
/data/DigitRecognizer_TrainingData.zip", pathToZip)
train <- read.csv(unzip(pathToZip))
dim(train)

[1] 42000 785
unlink(pathToZip)

test.csv

pathToZip <- tempfile()
download.file("http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650
/data/DigitRecognizer_TestingData.zip", pathToZip)
test <- read.csv(unzip(pathToZip))
dim(test)

[1] 28000 784

unlink(pathToZip)

train <- data.matrix(train)
test <- data.matrix(test)

Table 23.3 Schematic for reconstructing a 28 � 28 square image using a list of 784 intensities

corresponding to colors in the image reflecting the manual handwritten digits

Row Col0 COl1 Col2 Col3 Col5 . . . Col26 Co27

Row0 0 1 2 3 4 . . . 26 27

Row1 28 29 30 31 32 . . . 54 55

Row2 56 57 58 59 60 . . . 82 83

RowK .

Row26 728 729 730 731 732 . . . 754 755

Row27 756 757 758 759 760 . . . 782 783

796 23 Deep Learning, Neural Networks

http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/data/DigitRecognizer_TrainingData.zip
http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/data/DigitRecognizer_TrainingData.zip
http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/data/DigitRecognizer_TestingData.zip
http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/data/DigitRecognizer_TestingData.zip

train.x <- train[,-1]
train.y <- train[,1]

Scaling will be discussed below

train.x <- t(train.x/255)
test <- t(test/255)

Let’s look at some of these example images (Figs. 23.24, 23.25, 23.26 and 23.27):

library("imager")
first convert the CSV data (one row per image, 28,000 rows)

array_3D <- array(test, c(28, 28, 28000))
mat_2D <- matrix(array_3D[,,1], nrow = 28, ncol = 28)
plot(as.cimg(mat_2D))

Fig. 23.24 Image rendering

of the first handwritten digit,

stored as a 28 � 28 array of

intensities

Fig. 23.25 Rendering of

the fifth handwritten digit in

the list of 28,000

23.5 Case-Studies 797

extract all N=28,000 images

N <- 28000
img_3D <- as.cimg(array_3D[,,], 28, 28, N)

plot the k-th image (1<=k<=N)

k <- 5
plot(img_3D, k)

image_2D <- function(img,index){
img[,,index,,drop=FALSE]

}

plot(image_2D(img_3D, 1))

Fig. 23.26 Another

strategy for indexing and

plotting handwritten digits

as 2D images

Fig. 23.27 Sequential

image plot of the first four

handwritten digits

798 23 Deep Learning, Neural Networks

Plot a collage of the first 4 images

imappend(list(image_2D(img_3D, 1), image_2D(img_3D, 2), image_2D(img_3D, 3),
image_2D(img_3D, 4)),"y") %>% plot

img <- image_2D(img_3D, 1)

for (i in 10:20) { imappend(list(img, image_2D(img_3D, i)),"x") }

In these CSV data files, each 28 � 28 image is represented as a single row. The

intensities of these greyscale images are stored as 1 byte integers, in the range [0,255],

which we linearly transformed into [0, 1]. Note that we only scale the X input, not the

output (labels). Also, we don’t have manual gold-standard validation labels for the

testing data, i.e., test.y is not available for the handwritten digits data.

We already scaled earlier

train.x <- t(train.x/255)

test <- t(test/255)

Next, we can transpose the input matrix to n (pixels) � m (examples), as column

major format required by mxnet. The image labels are evenly distributed:

table(train.y); prop.table(table(train.y))

train.y
0 1 2 3 4 5 6 7 8 9
4132 4684 4177 4351 4072 3795 4137 4401 4063 4188

train.y
0 1 2 3 4 5
0.09838095 0.11152381 0.09945238 0.10359524 0.09695238 0.09035714
6 7 8 9
0.09850000 0.10478571 0.09673810 0.09971429

The majority class (1) in the training set includes 11.2% of the observations.

Configuring the Neural Network

data <- mx.symbol.Variable("data")
fc1 <- mx.symbol.FullyConnected(data, name="fc1", num_hidden=128)
act1 <- mx.symbol.Activation(fc1, name="relu1", act_type="relu")
fc2 <- mx.symbol.FullyConnected(act1, name="fc2", num_hidden=64)
act2 <- mx.symbol.Activation(fc2, name="relu2", act_type="relu")
fc3 <- mx.symbol.FullyConnected(act2, name="fc3", num_hidden=10)
softmax <- mx.symbol.SoftmaxOutput(fc3, name="sm")

data <- mx.symbol.Variable("data") represents the input layer. The first hidden

layer, set by fc1 <- mx.symbol.FullyConnected(data, name¼"fc1",

num_hidden¼128), takes the data as an input, its name, and the number of hidden

neurons to generate an output layer.

act1 <- mx.symbol.Activation(fc1, name¼"relu1", act_type¼"relu") sets the

activation function, which takes the output from the first hidden layer "fc1" and

23.5 Case-Studies 799

generates an output that is fed into the second hidden layer "fc2", which uses fewer

hidden neurons (64).

The process repeats with the second activation "act2", resembling "act1" but

using different input source and name. As there are only ten digits (0, 1, . . ., 9), in the

last layer "fc3", we set the number of neurons to 10. At the end, we set the activation

to softmax to obtain a probabilistic prediction.

Training

We are almost ready for the training process. Before we start the computation, let’s

decide what device we should use.

devices <- mx.cpu()

Here we assign CPU to mxnet. After all these preparation, you can run the

following command to train the neural network! Note that in mxnet, the correct

function to control the random process is mx.set.seed.

mx.set.seed(1234)
model <- mx.model.FeedForward.create(softmax, X=train.x, y=train.y,

ctx=devices, num.round=10, array.batch.size=100,
learning.rate=0.07, momentum=0.9, eval.metric=mx.metric.accuracy,
initializer=mx.init.uniform(0.07),
epoch.end.callback=mx.callback.log.train.metric(100)

)

Start training with 1 devices
[1] Train-accuracy=0.863031026252982
[2] Train-accuracy=0.958285714285716
[3] Train-accuracy=0.970785714285717
[4] Train-accuracy=0.977857142857146
[5] Train-accuracy=0.983238095238099
[6] Train-accuracy=0.98521428571429
[7] Train-accuracy=0.987095238095242
[8] Train-accuracy=0.989309523809528
[9] Train-accuracy=0.99214285714286
[10] Train-accuracy=0.991452380952384

For 10 rounds, the training accuracy exceeds 99%. It may not be worthwhile trying

100 rounds, as this would increase substantially the computational complexity.

Forecasting

Now, we will demonstrate how to generate a forecasting model based on testing

data, and how to evaluate its prediction performance. The preds matrix has 28,000

rows and 10 columns, containing the desired classification probabilities from the

output layer of the neural net. To extract the maximum label for each row, we

can use the max.col:

800 23 Deep Learning, Neural Networks

evaludate: "preds" is the matrix of the possibility of each of the 10

numbers

preds <- predict(model, test)

pred.label <- max.col(t(preds)) - 1
table(pred.label)

pred.label
0 1 2 3 4 5 6 7 8 9
2774 3228 2862 2728 2781 2401 2777 2868 2826 2755

preds1 <- ifelse(preds[2,] <= 0.5, 0, 1) # dichotomize to labels

pred.label = t(preds1)

table(pred.label, test.y)

calculate sensitivity & specificity

sensitivity(factor(preds1), factor(as.numeric(test.y)),positive = 1)

specificity(factor(preds1), factor(as.numeric(test.y)),negative = 0)

preds <- predict(model, test.x)

dim(preds)

preds1 <- ifelse(preds[2,] <= 0.5, 0, 1) # dichotomize to labels

pred.label = t(preds1)

table(pred.label, test.y)

For binary classification, mxnet outputs two prediction classes, whereas for

multi-class predictions, it outputs a matrix of size n (classes) � m (examples),

where the rows correspond to the probability of the class in the specific column, so

all column sums add up to 1.0.

The predictions are stored in a 28,000(rows) � 10(colums) matrix, including the

desired classification probabilities from the output layer. The R max.col function

extracts the maximum label for each row.

pred.label <- max.col(t(preds)) - 1
table(pred.label)

pred.label
0 1 2 3 4 5 6 7 8 9
2774 3228 2862 2728 2781 2401 2777 2868 2826 2755

We can save the predicted labels of the testing handwritten digits to CSV:

predicted_lables <- data.frame(ImageId=1:ncol(test), Label=pred.label)
write.csv(predicted_lables, file='predicted_lables.csv', row.names=FALSE,
quote=FALSE)

We can open the predicted_lables.csv file and inspect the ML-labels

(saved in the 2-column ImageID and Label format CSV) assigned to the 28,000

manually drawn digits. As the testing handwritten digits data do not have human-

provided labels, we can’t quantitatively assess the validity of the algorithm on the

testing data (Fig. 23.28). However, we can visually inspect random handwritten digit

instances (7 in the example below, image indices 4 : 10) against their predictions and

gain intuition of the accuracy rate of the ML classifier (Table 23.4, Fig. 23.29).

23.5 Case-Studies 801

Table 23.4 Predicted labels

for the set of the first

7 handwritten digits

ImageId Label

1 2

2 0

3 9

4 9

5 3

6 7

7 0

Fig. 23.28 Plot of the agreement between relative frequencies in the number of train.y labels

(in range 0–9) against the testing data predicted labels. These quantities are not directly related

(frequencies of digits in training.y and predicted.testing.data); we can’t exlicitely validate the

testing-data predicitons, as we don’t have gold-standard test.y labels! However, numbers closer

to the diagonal of the plot would indicate expected good classifications, whereas, off diagonal

points may suggest less effective labeling

Fig. 23.29 Visual

validation of the

handwritten digits (left) and

their neural network

prediction (right) for the set

of seven images. The

number and indices of these

testing data images can be

manually specified

802 23 Deep Learning, Neural Networks

table(train.y)

train.y
0 1 2 3 4 5 6 7 8 9
4132 4684 4177 4351 4072 3795 4137 4401 4063 4188

table(predicted_lables[,2])

0 1 2 3 4 5 6 7 8 9
2774 3228 2862 2728 2781 2401 2777 2868 2826 2755

Plot the relative frequencies between the number of train.y labels

(in range 0-9) against the testing data predicted labels.

These are not directly related (training.y vs. predicted.testing.data!

Remember - we don't have gold-standard test.y labels! Generally speaking,

numbers closer to the diagonal suggest expected good classifications.

Whereas, off diagonal points may suggest less effective labeling.

label.names <- c("0", "1", "2", "3", "4", "5", "6", "7", "8", "9")
plot(ftable(train.y)[c(1:10)], ftable(predicted_lables[,2])[c(1:10)])
text(ftable(train.y)[c(1:10)]+20, ftable(predicted_lables[,2])[c(1:10)],
labels=label.names, cex= 1.2)

For example, the ML-classification labels assigned to the first 7 images (

from the 28,000 testing data collection) are:

head(predicted_lables, n = 7L)

ImageId Label
1 1 2
2 2 0
3 3 9
4 4 9

ImageId Label
1 1 2
2 2 0
3 3 9
4 4 9
5 5 3
6 6 7
7 7 0

library(knitr)
kable(head(predicted_lables, n = 7L), format = "markdown")

#initialize a list of m=7 images from the N=28,000 available images

m_start <- 4
m_end <- 10
if (m_end <= m_start)

{ m_end = m_start+1 } # check that m_end > m_start

label_Ypositons <- vector() # initialize the array of label positions
on the plot

for (i in m_start:m_end) {
if (i==m_start) {
img1 <- image_2D(img_3D, m_start)

}
else img1 <- imappend(list(img1, image_2D(img_3D, i)),"y")
label.names[i+1-m_start] <- predicted_lables[i,2]
label_Ypositons[i+1-m_start] <- 15 + 28*(i-m_start)

}

plot(img1, axes=FALSE)
text(40, label_Ypositons, labels=label.names[1:(m_end-m_start)], cex= 1.2,
col="blue")
mtext(paste((m_end+1-m_start), " Random Images \n Indices (m_start=",
m_start, " : m_end=", m_end, ")"), side=2, line=-6, col="black")
mtext("ML Classification Labels", side=4, line=-5, col="blue")

23.5 Case-Studies 803

table(ftable(train.y)[c(1:10)], ftable(predicted_lables[,2])[c(1:10)])

2401 2728 2755 2774 2777 2781 2826 2862 2868 3228
3795 1 0 0 0 0 0 0 0 0 0
4063 0 0 0 0 0 0 1 0 0 0
4072 0 0 0 0 0 1 0 0 0 0
4132 0 0 0 1 0 0 0 0 0 0
4137 0 0 0 0 1 0 0 0 0 0
4177 0 0 0 0 0 0 0 1 0 0
4188 0 0 1 0 0 0 0 0 0 0
4351 0 1 0 0 0 0 0 0 0 0
4401 0 0 0 0 0 0 0 0 1 0
4684 0 0 0 0 0 0 0 0 0 1

Examining the Network Structure Using LeNet

We can use the mxnet package LeNet convolutional neural network (CNN)

protocol for learning the network.

Let’s first construct the network.

input

data <- mx.symbol.Variable('data')
first conv

conv1 <- mx.symbol.Convolution(data=data, kernel=c(5,5), num_filter=20)
tanh1 <- mx.symbol.Activation(data=conv1, act_type="tanh")
pool1 <- mx.symbol.Pooling(data=tanh1, pool_type="max",

kernel=c(2,2), stride=c(2,2))
second conv

conv2 <- mx.symbol.Convolution(data=pool1, kernel=c(5,5), num_filter=50)
tanh2 <- mx.symbol.Activation(data=conv2, act_type="tanh")
pool2 <- mx.symbol.Pooling(data=tanh2, pool_type="max",

kernel=c(2,2), stride=c(2,2))
first fullc

flatten <- mx.symbol.Flatten(data=pool2)
fc1 <- mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 <- mx.symbol.Activation(data=fc1, act_type="tanh")
second fullc

fc2 <- mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
loss

lenet <- mx.symbol.SoftmaxOutput(data=fc2)

Next, we will reshape the matrices into arrays.

train.array <- train.x
dim(train.array) <- c(28, 28, 1, ncol(train.x))
test.array <- test
dim(test.array) <- c(28, 28, 1, ncol(test))

Compare the training speed on different devices – CPU vs. GPU. Start by

defining the devices.

804 23 Deep Learning, Neural Networks

n.gpu <- 1
device.cpu <- mx.cpu()
device.gpu <- lapply(0:(n.gpu-1), function(i) {

mx.gpu(i)
})

Passing a list of devices is useful for high-end computational platforms (e.g.,

multi-GPU systems); mxnet can train on multiple GPUs or CPUs.

To train using the CPU, try fewer iterations as protocol is computationally very

intense.

mx.set.seed(1234)
tic <- proc.time()
model <- mx.model.FeedForward.create(lenet, X=train.array, y=train.y,

ctx=device.cpu, num.round=1, array.batch.size=100,
learning.rate=0.05, momentum=0.9, wd=0.00001,
eval.metric=mx.metric.accuracy,
epoch.end.callback=mx.callback.log.train.metric(100))

Start training with 1 devices
[1] Train-accuracy=0.522267303102625

print(proc.time() - tic)

user system elapsed
313.22 66.45 50.94

The corresponding training on GPU is similar, but it requires a separate

GPU-compilation of mxnet (/mxnet/src/storage/storage.cc:78) with USE_CUDA¼1

to enable GPU usage.

mx.set.seed(1234)
tic <- proc.time()
model <- mx.model.FeedForward.create(lenet, X=train.array, y=train.y,

ctx=device.gpu, num.round=5, array.batch.size=100,
learning.rate=0.05, momentum=0.9, wd=0.00001,
eval.metric=mx.metric.accuracy,
epoch.end.callback=mx.callback.log.train.metric(100))

print(proc.time() - tic)

GPU training is faster than CPU. Everyone can submit a new classification result

to Kaggle and see a ranking result for their classifier. Make sure you follow the

specific result-file submission format.

preds <- predict(model, test.array)
pred.label <- max.col(t(preds)) - 1
submission <- data.frame(ImageId=1:ncol(test), Label=pred.label)
write.csv(submission, file='submission.csv', row.names=FALSE, quote=FALSE)

23.5 Case-Studies 805

23.6 Classifying Real-World Images

A real-world example of deep learning is classification of 2D images (pictures) or

3D volumes (e.g., neuroimages).

The image classification examples below shows the use a pre-trained Inception-

BatchNorm Network to predict a class of real world image. The network architec-

ture is described the 2015 Ioffe and Szegedy paper. The pre-trained Inception-

BatchNorm network is available online. This advanced model gives a state-of-the-

art prediction accuracy on imaging data. We also need the R imager package to

load and preprocess the 2D images.

install.packages("imager")

require(mxnet)
require(imager)

23.6.1 Load the Pre-trained Model

Download and unzip the pre-trained model to a working folder, and load the model

and the mean image (used for preprocessing) using mx.nd.load into R. This

download can either be done manually, or automated, as shown below.

pathToZip <- tempfile()
download.file("http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650
/data/Inception.zip", pathToZip)
model_file <- unzip(pathToZip)

setwd(paste(getwd(),"results", sep='/'))

model = mx.model.load(paste(getwd(),"Inception_BN", sep='/'), iteration=39)

mean.img = as.array(mx.nd.load(
paste(getwd(),"mean_224.nd", sep='/')

)
[["mean_img"]]

)
dim(mean.img)
[1] 224 224 3

plot(mean.img)

23.6.2 Load, Preprocess and Classify New

Images – US Weather Pattern

To classify a new image, select the image and load it in. Below, we show the

classification of several alternative images (Fig. 23.30).

806 23 Deep Learning, Neural Networks

http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/data/Inception.zip
http://www.socr.umich.edu/people/dinov/2017/Spring/DSPA_HS650/data/Inception.zip

library("imager")
One should be able to load the image directly from the web (but sometimes

there may be problems, in which case, we need to first download the image

and then load it in R:

im <-

download file to local working directory, use "wb" mode to avoid problems

download.file("http://wiki.socr.umich.edu/images/6/69/DataManagementFig1.png
", paste(getwd(),"results/image.png", sep="/"), mode = 'wb')

report download image path

paste(getwd(),"results/image.png", sep="/")

img <- load.image(paste(getwd(),"results/image.png", sep="/"))
dim(img)

[1] 1875 1084 1 4

plot(img)

imager::load.image("http://wiki.socr.umich.edu/images/6/69/DataManagement

Fig1.png")

Before feeding the image to the deep learning network for classification, we need

to do some preprocessing to make it fit the deepnet input requirements. This image

preprocessing (cropping and subtraction of the mean) can be done directly in R.

preproc.image <-function(im, mean.image) {
crop the image

shape <- dim(im)
short.edge <- min(shape[1:2])
xx <- floor((shape[1] - short.edge) / 2)
yy <- floor((shape[2] - short.edge) / 2)
cropped <- crop.borders(im, xx, yy)
resize to 224 x 224, needed by input of the model.

Fig. 23.30 A U.S. weather pattern map as an example image for neural network image recognition

23.6 Classifying Real-World Images 807

http://wiki.socr.umich.edu/images/6/69/DataManagementFig1.png
http://wiki.socr.umich.edu/images/6/69/DataManagementFig1.png
http://wiki.socr.umich.edu/images/6/69/DataManagementFig1.png

resized <- resize(cropped, 224, 224)
plot(resized)
convert to array (x, y, channel)

arr <- as.array(resized[,,,c(1:3)]) * 255
plot(as.cimg(arr))
dim(arr) <- c(224, 224, 3)
subtract the mean

normed <- arr - mean.img
Reshape to format needed by mxnet (width, height, channel, num)

dim(normed) <- c(224, 224, 3, 1)
return(normed)

}

Call the preprocessing function with the normalized image (Fig. 23.31).

normed <- preproc.image(img, mean.img)

plot(normed)

The image classification uses a predict function to get the probability over all

(learned) classes.

Fig. 23.31 Normalized US weather pattern map image

808 23 Deep Learning, Neural Networks

prob <- predict(model, X=normed)
dim(prob)

[1] 1000 1

The prob prediction generates a 1,000 � 1 array representing the probability of

the input image to resemble (be classified as) the top 1,000 known image categories.

We can report the indices of the top-10 closest image classes to the input image:

max.idx <- order(prob[,1], decreasing = TRUE)[1:10]
max.idx

[1] 855 563 229 581 620 948 951 186 204 311

Alternatively, we can map these top-10 indices into named image-classes.

synsets <- readLines("synset.txt")

print(paste0("Top Predicted Image-Label Classes: Name=", synsets[max.idx], "
; Probability: ", prob[max.idx]))

[1] "Top Predicted Image-Label Classes: Name=n04418357 theater curtain,
theatre curtain; Probability: 0.0493971668183804"
[2] "Top Predicted Image-Label Classes: Name=n03388043 fountain;
Probability: 0.0431815795600414"
[3] "Top Predicted Image-Label Classes: Name=n02105505 komondor;
Probability: 0.0371582210063934"
[4] "Top Predicted Image-Label Classes: Name=n03457902 greenhouse,
nursery, glasshouse; Probability: 0.0368415862321854"
[5] "Top Predicted Image-Label Classes: Name=n03637318 lampshade,
lamp shade; Probability: 0.0317880213260651"
[6] "Top Predicted Image-Label Classes: Name=n07734744 mushroom;
Probability: 0.0292572267353535"
[7] "Top Predicted Image-Label Classes: Name=n07747607 orange;
Probability: 0.0284675862640142"
[8] "Top Predicted Image-Label Classes: Name=n02094114 Norfolk terrier;
Probability: 0.026896309107542"
[9] "Top Predicted Image-Label Classes: Name=n02098286 West Highland
white terrier; Probability: 0.0257413759827614"
[10] "Top Predicted Image-Label Classes: Name=n02219486 ant, emmet,
pismire; Probability: 0.0205500852316618"

Clearly, this U.S. weather pattern image is not well classified. The optimal

prediction suggests this may be a theater curtain; however, the confidence is very

low, Prob � 0.049. None of the other top-10 classes capture the type of the actual

image either.

The machine learning image classifications results won’t always be this poor.

Let’s try classifying several alternative images.

23.6 Classifying Real-World Images 809

23.6.3 Lake Mapourika, New Zealand

Let’s try the automated image classification of this lakeside panorama (Figs. 23.32

and 23.33).

download.file("https://upload.wikimedia.org/wikipedia/commons/2/23/Lake_mapo
urika_NZ.jpeg", paste(getwd(),"results/image.png", sep="/"), mode = 'wb')
im <- load.image(paste(getwd(),"results/image.png", sep="/"))

plot(im)

Fig. 23.32 A lakeside

panorama image for neural

network image recognition

Fig. 23.33 Normalized

lakeside panorama image

810 23 Deep Learning, Neural Networks

https://upload.wikimedia.org/wikipedia/commons/2/23/Lake_mapourika_NZ.jpeg
https://upload.wikimedia.org/wikipedia/commons/2/23/Lake_mapourika_NZ.jpeg

normed <- preproc.image(im, mean.img)

prob <- predict(model, X=normed)
max.idx <- order(prob[,1], decreasing = TRUE)[1:10]
print(paste0("Top Predicted Image-Label Classes: Name=", synsets[max.idx], "
; Probability: ", prob[max.idx]))

[1] "Top Predicted Image-Label Classes: Name=n02894605 breakwater,
groin, groyne, mole, bulwark, seawall, jetty; Probability:0.648901104927063"
[2] "Top Predicted Image-Label Classes: Name=n03216828 dock, dockage,
docking facility; Probability: 0.183006703853607"
[3] "Top Predicted Image-Label Classes: Name=n09332890 lakeside,
lakeshore; Probability: 0.127718329429626"
[4] "Top Predicted Image-Label Classes: Name=n03160309 dam, dike, dyke;
Probability: 0.0115784741938114"
[5] "Top Predicted Image-Label Classes: Name=n03095699 container ship,
containership, container vessel; Probability: 0.00913785584270954"
[6] "Top Predicted Image-Label Classes: Name=n09428293 seashore, coast,
seacoast, sea-coast; Probability: 0.0043862983584404"
[7] "Top Predicted Image-Label Classes: Name=n03933933 pier;
Probability: 0.00410780590027571"
[8] "Top Predicted Image-Label Classes: Name=n02859443 boathouse;
Probability: 0.00246214028447866"
[9] "Top Predicted Image-Label Classes: Name=n09399592 promontory,
headland, head, foreland; Probability: 0.00168424111325294"
[10] "Top Predicted Image-Label Classes: Name=n09421951 sandbar,
sand bar; Probability: 0.00106814480386674"

This photo does represent a lakeside, which is reflected by the top three class

labels:

• Breakwater, groin, groyne, mole, bulwark, seawall, jetty.

• Dock, dockage, docking facility.

• Lakeside, lakeshore.

23.6.4 Beach Image

Another costal boundary between water and land is represented in this beach image

(Fig. 23.34).

download.file("https://upload.wikimedia.org/wikipedia/commons/9/90/Holloways
_beach_1920x1080.jpg", paste(getwd(),"results/image.png", sep="/"), mode = '
wb')
im <- load.image(paste(getwd(),"results/image.png", sep="/"))

plot(im)

23.6 Classifying Real-World Images 811

https://upload.wikimedia.org/wikipedia/commons/9/90/Holloways_beach_1920x1080.jpg
https://upload.wikimedia.org/wikipedia/commons/9/90/Holloways_beach_1920x1080.jpg

[7] "Top Predicted Image-Label Classes: Name=n02951358 canoe;
Probability: 0.000664844119455665"
[8] "Top Predicted Image-Label Classes: Name=n09246464 cliff, drop,
drop-off; Probability: 0.000416322873206809"
[9] "Top Predicted Image-Label Classes: Name=n04357314 sunscreen,
sunblock, sun blocker; Probability: 0.000338666519382969"
[10] "Top Predicted Image-Label Classes: Name=n04606251 wreck;
Probability: 0.000292503653327003"

normed <- preproc.image(im, mean.img)

prob <- predict(model, X=normed)
max.idx <- order(prob[,1], decreasing = TRUE)[1:10]
print(paste0("Top Predicted Image-Label Classes: Name=", synsets[max.idx],
"; Probability: ", prob[max.idx]))

[1] "Top Predicted Image-Label Classes: Name=n09421951 sandbar,
sand bar; Probability: 0.69039398431778"
[2] "Top Predicted Image-Label Classes: Name=n09332890 lakeside,
lakeshore; Probability: 0.20282569527626"
[3] "Top Predicted Image-Label Classes: Name=n09428293 seashore, coast,
seacoast, sea-coast; Probability: 0.0899285301566124"
[4] "Top Predicted Image-Label Classes: Name=n02894605 breakwater,
groin, groyne, mole, bulwark, seawall, jetty; Probability: 0.006692836"
[5] "Top Predicted Image-Label Classes: Name=n09399592 promontory,
headland, head, foreland; Probability: 0.00204332848079503"
[6] "Top Predicted Image-Label Classes: Name=n02859443 boathouse;
Probability: 0.00106108584441245"

This photo was classified appropriately and with high-confidence as:

• Sandbar, sand bar.

• Lakeside, lakeshore.

• Seashore, coast, seacoast, sea-coast.

23.6.5 Volcano

Here is another natural image representing the Mount St. Helens Vocano

(Fig. 23.35).

Fig. 23.34 A beach image

for neural network image

recognition

812 23 Deep Learning, Neural Networks

download.file("https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/MSH
82_st_helens_plume_from_harrys_ridge_05-19-82.jpg/1200px-MSH82_st_helens_plu
me_from_harrys_ridge_05-19-82.jpg", paste(getwd(),"results/image.png", sep="
/"), mode = 'wb')
im <- load.image(paste(getwd(),"results/image.png", sep="/"))

plot(im)

prob <- predict(model, X=normed)
max.idx <- order(prob[,1], decreasing = TRUE)[1:10]
print(paste0("Top Predicted Image-Label Classes: Name=", synsets[max.idx],
"; Probability: ", prob[max.idx]))

[1] "Top Predicted Image-Label Classes: Name=n09472597 volcano;
Probability: 0.993182718753815"
[2] "Top Predicted Image-Label Classes: Name=n09288635 geyser;
Probability: 0.00681292032822967"
[3] "Top Predicted Image-Label Classes: Name=n09193705 alp;
Probability: 4.15803697251249e-06"
[4] "Top Predicted Image-Label Classes: Name=n03344393 fireboat;
Probability: 1.48333114680099e-07"
[5] "Top Predicted Image-Label Classes: Name=n04310018 steam locomotive;
Probability: 1.17537313215621e-08"
[6] "Top Predicted Image-Label Classes: Name=n03388043 fountain;
Probability: 7.4444117537098e-09"
[7] "Top Predicted Image-Label Classes: Name=n04228054 ski;
Probability: 2.90055357510255e-09"
[8] "Top Predicted Image-Label Classes: Name=n02950826 cannon;
Probability: 2.27150032117152e-09"
[9] "Top Predicted Image-Label Classes: Name=n03773504 missile;
Probability: 1.69992575571598e-09"
[10] "Top Predicted Image-Label Classes: Name=n04613696 yurt;
Probability: 1.25635490899612e-09"

The predicted top class labels for this image are perfect:

• Volcano.

• Geyser.

• Alp.

Fig. 23.35 A volcano

image for neural network

image recognition

23.6 Classifying Real-World Images 813

https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/MSH82_st_helens_plume_from_harrys_ridge_05-19-82.jpg/1200px-MSH82_st_helens_plume_from_harrys_ridge_05-19-82.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/MSH82_st_helens_plume_from_harrys_ridge_05-19-82.jpg/1200px-MSH82_st_helens_plume_from_harrys_ridge_05-19-82.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/MSH82_st_helens_plume_from_harrys_ridge_05-19-82.jpg/1200px-MSH82_st_helens_plume_from_harrys_ridge_05-19-82.jpg

23.6.6 Brain Surface

The next image represents a 2D snapshot of 3D shape reconstruction of a brain cortical

surface. This image is particularly difficult to automatically classify because (1) few

people have ever seen a real brain, (2) themathematical and computationalmodels used

to obtain the 2Dmanifold representing the brain surface do vary, and (3) the patterns of

sulcal folds and gyral crests are quite inconsistent between people (Fig. 23.36).

download.file("http://wiki.socr.umich.edu/images/e/ea/BrainCortex2.png", pas
te(getwd(),"results/image.png", sep="/"), mode = 'wb')
im <- load.image(paste(getwd(),"results/image.png", sep="/"))

plot(im)

normed <- preproc.image (im, mean.img)

prob <- predict(model, X=normed)
max.idx <- order(prob[,1], decreasing = TRUE)[1:10]
print(paste0("Top Predicted Image-Label Classes: Name=", synsets[max.idx],
"; Probability: ", prob[max.idx]))

[1] "Top Predicted Image-Label Classes: Name=n01917289 brain coral;
Probability: 0.4974305331707"
[2] "Top Predicted Image-Label Classes: Name=n07734744 mushroom;
Probability: 0.229991897940636"
[3] "Top Predicted Image-Label Classes: Name=n13052670 hen-of-the-woods,
hen of the woods, Polyporus frondosus, Grifola frondosa;
Probability: 0.0925175696611404"
[4] "Top Predicted Image-Label Classes: Name=n03598930 jigsaw puzzle;
Probability: 0.0433991812169552"
[5] "Top Predicted Image-Label Classes: Name=n07718747 artichoke,
globe artichoke; Probability: 0.0150045640766621"
[6] "Top Predicted Image-Label Classes: Name=n07860988 dough;
Probability: 0.0124379806220531"
[7] "Top Predicted Image-Label Classes: Name=n07715103 cauliflower;
Probability: 0.0115451859310269"
[8] "Top Predicted Image-Label Classes: Name=n12985857 coral fungus;
Probability: 0.0109992604702711"
[9] "Top Predicted Image-Label Classes: Name=n07714990 broccoli;
Probability: 0.00909161567687988"
[10] "Top Predicted Image-Label Classes: Name=n03637318 lampshade,
lamp shade; Probability: 0.00754355266690254"

Fig. 23.36 A cortical brain

surface image for neural

network image recognition

814 23 Deep Learning, Neural Networks

http://wiki.socr.umich.edu/images/e/ea/BrainCortex2.png

The top class labels for the brain image are:

• Brain coral.

• Mushroom.

• Hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa.

• Jigsaw puzzle.

Imagine if we can train a brain image classifier that labels individuals (volunteers

or patients) solely based on their brain scans into different classes reflecting their

development state, clinical phenotypes, disease traits, or aging profiles. This will

require a substantial amount of expert-labeled brain scans, intense model training

and extensive validation. However, any progress in this direction will lead to

effective computational clinical decision support systems that can assist physicians

with diagnosis, tracking, and prognostication of brain growth and aging in health and

disease.

23.6.7 Face Mask

The last example is a synthetic computer-generated image representing a cartoon

face or a mask (Fig. 23.37).

download.file("http://wiki.socr.umich.edu/images/f/fb/FaceMask1.png",
paste(getwd(),"results/image.png", sep="/"), mode = 'wb')
im <- load.image(paste(getwd(),"results/image.png", sep="/"))

plot(im)

Fig. 23.37 A facial mask

image for neural network

image recognition

23.6 Classifying Real-World Images 815

http://wiki.socr.umich.edu/images/f/fb/FaceMask1.png

prob <- predict(model, X=normed)
max.idx <- order(prob[,1], decreasing = TRUE)[1:10]
print(paste0("Top Predicted Image-Label Classes: Name=", synsets[max.idx],
"; Probability: ", prob[max.idx]))

[1] "Top Predicted Image-Label Classes: Name=n03724870 mask;
Probability: 0.376201003789902"
[2] "Top Predicted Image-Label Classes: Name=n04229816 ski mask;
Probability: 0.253164798021317"
[3] "Top Predicted Image-Label Classes: Name=n02708093 analog clock;
Probability: 0.0562068484723568"
[4] "Top Predicted Image-Label Classes: Name=n02865351 bolo tie, bolo,
bola tie, bola; Probability: 0.029578423127532"
[5] "Top Predicted Image-Label Classes: Name=n04192698 shield, buckler;
Probability: 0.0278499200940132"
[6] "Top Predicted Image-Label Classes: Name=n03590841 jack-o'-lantern;
Probability: 0.0175030305981636"
[7] "Top Predicted Image-Label Classes: Name=n02974003 car wheel;
Probability: 0.0172393135726452"
[8] "Top Predicted Image-Label Classes: Name=n07892512 red wine;
Probability: 0.0168519839644432"
[9] "Top Predicted Image-Label Classes: Name=n03249569 drum,
membranophone, tympan; Probability: 0.0141900414600968"
[10] "Top Predicted Image-Label Classes: Name=n04447861 toilet seat;
Probability: 0.013601747341454"

The top class labels for the face mask are:

• Mask.

• Ski mask.

• Analog clock.

You can easily test the same image classifier on your own images and identify

classes of pictures that are either well or poorly classified by the deep learning based

machine learning model.

23.7 Assignment: 23. Deep Learning, Neural Networks

23.7.1 Deep Learning Classification

• Download the Alzheimer’s data from the SOCR Archive.

• Properly preprocess the data and remove outliers.

• Build a multi-layer perceptron as a classifier and select proper parameters.

• Classify AD and NC and report the detailed classification accuracy metrics using

cross table, accuracy, sensitivity, specificity, LOR, AUC.

• Generate some data/results visualizations, at least include histograms and model

graph structures. See Chap. 23.

• Try to construct a deeper and more elaborate network model and report the

prediction results.

• Compare your results with alternative data-driven methods (e.g., KNN).

816 23 Deep Learning, Neural Networks

23.7.2 Deep Learning Regression

• Download the Allometric relationship data from SOCR data.

• Preprocess the data and set density as the response variable.

• Create an MXNet feedforward neural net model and properly specify the

parameters.

• Train a model, predict, and report RMSE on the test data, evaluate the result, and

justify your evaluation.

• Output the model’s structure.

23.7.3 Image Classification

Apply the deep learning neural network techniques to classify some images using the

pre-trained model as demonstrated in this chapter:

• Google images.

• SOCR Neuroimaging data.

• Your own images.

References

Carneiro, G, Mateus, D, Loïc, P, Bradley, A, Manuel, J, Tavares, RS, Belagiannis, V, Papa, JP,

Jacinto, C, Loog, M, Lu, Z, Cardoso, JS, Cornebise, J (eds). (2016) Deep Learning and Data

Labeling for Medical Applications: First International Workshop, LABELS 2016, Springer,

ISBN 3319469762, 9783319469768.

Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:150203167. 2015.

Wiley, JF. (2016) R Deep Learning Essentials, Packt Publishing, ISBN 1785284711,

9781785284717.

Zhou, K, Greenspan, H, Shen, D. (2017) Deep Learning for Medical Image Analysis, Academic

Press, ISBN 0128104090, 9780128104095.

MXNET R Tutorial.

Deep Learning with MXNetR.

Deep Neural Networks.

Google's TensorFlow API.

https://github.com/dmlc/mxnet/blob/master/R-package/vignettes/classifyRealImageWithPretrained

Model.Rmd

References 817

https://github.com/dmlc/mxnet/blob/master/R-package/vignettes/classifyRealImageWithPretrainedModel.Rmd
https://github.com/dmlc/mxnet/blob/master/R-package/vignettes/classifyRealImageWithPretrainedModel.Rmd

Summary

The amount, complexity, and speed of aggregation of biomedical and healthcare

data will rapidly increase over the next decade. It’s likely to double every 1–2 years.

This is fueled by enormous strides in digital and communication technologies, IoT

devices, and Cloud services, as well as rapid algorithmic, computational and hard-

ware advances. The proliferating public demand for (near) real-time detection,

precise interpretation, and reliable prognostication of human conditions in health

and disease also accelerates that trend.

The future does look promising despite the law of diminishing returns, which

dictates that sustaining the trajectory clinical gains and the speed of breakthrough

developments derived from this increased volume of information, paired with our

ability to interpret it, will demand increasingly more resources. Even incremental

advances, partial solutions, or lower rates of progress will likely lead to substantive

improvements in many human experiences and enhanced medical treatments.

Figure 1 below illustrates a common predictive analytics protocol for interrogating

big and complex biomedical and health datasets. The process starts by identifying a

challenge, followed by determining the sources of data and meta-data, cleaning,

harmonizing and wrangling the data components, preprocessing the aggregated

archive, model-based and model-free scientific inference, and ends with prediction,

validation, and dissemination of data, software, protocols, and research findings.

Our long-term success will require major headways on multiple fronts of data

science and predictive analytics. There are urgent demands to develop new algo-

rithms and optimize existing ones, introduce novel computational infrastructure, as

well as enhance the abilities of the workforce by overhauling education and training

activities. Data science and predictive analytics represents a new and transdisciplin-

ary field, where engagement of heterogeneous experts, multi-talented team-work,

and open-science collaborations will be of paramount importance.

The DSPA textbook attempts to lay the foundation for some of the techniques,

strategies, and approaches driving contemporary analytics involving Big Data (large

size, complex formats, incomplete observations, incongruent features, multiple

sources, and multiple scales). It includes some of the mathematical formalisms,

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1

819

https://doi.org/10.1007/978-3-319-72347-1

computational algorithms, machine learning procedures, and demonstrations for Big

Data visualization, simulation, mining, pattern identification, forecasting and

interpretation.

This textbook (1) contains a transdisciplinary treatise of predictive health analyt-

ics; (2) provides a complete and self-contained treatment of the theory, experimental

modeling, system development, and validation of predictive health analytics;

(3) includes unique case-studies, advanced scientific concepts, lightweight tools,

web demos, and end-to-end workflow protocols that can be used to learn, practice,

and apply to new challenges; and (4) includes unique interactive content supported

by the active community of over 100,000 R-developers. These techniques can be

translated to many other disciplines (e.g., social network and sentiment analysis,

environmental applications, operations research, and manufacturing engineering).

The following two examples may contextually explain the need for inventive

data-driven science, computational abilities, interdisciplinary expertise, and modern

technologies necessary to achieve desired outcomes, like improving human health,

or optimizing future returns on investment. These aims can only be accomplished by

experienced teams of researchers who can develop robust decision support systems

using modern techniques and protocols, like the ones described in this textbook.

• A geriatric neurologist is examining a patient complaining of gait imbalance and

postural instability. To determine if the patient may have Parkinson’s disease, the

physician acquires clinical, cognitive, phenotypic, imaging, and genetics data

(Big Healthcare Data). Currently, most clinics and healthcare centers are not

equipped with skilled data analysts that can wrangle, harmonize and interpret

such complex datasets, nor do they have access to normative population-wide

summaries. A reader that completes the DSPA course of study will have the basic

competency and ability to manage the data, generate a protocol for deriving

candidate biomarkers, and provide an actionable decision support system. This

protocol will help the physician understand holistically the patient’s health and

make a comprehensive evidence-based clinical diagnosis as well as provide a

data-driven prognosis.

• To improve the return on investment for their shareholders, a healthcare man-

ufacturer needs to forecast the demand for their new product based on observed

environmental, demographic, market conditions, and bio-social sentiment data.

This clearly represents another example of Big Biosocial Data. The organization’s

data-analytics team is tasked with building a workflow that identifies, aggregates,

harmonizes, models and analyzes all available data elements to generate a trend

forecast. This system needs to provide an automated, adaptive, scalable, and

Fig. 1 Major steps in a general predictive data analytics protocol

820 Summary

reliable prediction of the optimal investment and R&D allocation that maximizes

the company’s bottom line. Readers that complete the materials in the DSPA

textbook will be able to ingest the observed structured and unstructured data,

mathematically represent the data as a unified computable object, apply appro-

priate model-based and model-free prediction techniques to forecast the expected

relation between the company’s investment, product manufacturing costs, and

the general healthcare demand for this product by patients and healthcare

service providers. Applying this protocol to pilot data collected by the company

will result in valuable predictions quantifying the interrelations between costs and

benefits, supply and demand, as well as consumer sentiment and health outcomes.

The DSPA materials (book chapters, code and scripts, data, case studies, elec-

tronic materials, and web demos) may be used as a reference or as a retraining or

refresher guide. These resources may be useful for formal education and informal

training, as well as, for health informatics, biomedical data analytics, biosocial

computation courses, or MOOCs. Although the textbook is intended to be utilized

for one, or two, semester-long graduate-level courses, readers, trainees and instruc-

tors should review the early sections of the textbook for utilization strategies and

explore the suggested completion pathways.

As acknowledged in the front matter, this textbook relies on the enormous

contributions and efforts by a broad community, including researchers, developers,

students, clinicians, bioinformaticians, data scientists, open-science investigators,

and funding organizations. The author strongly encourages all DSPA readers,

educators, and practitioners to actively contribute to data science and predictive

analytics, share data, algorithms, code, protocols, services, successes, failures,

pipeline workflows, research findings, and learning modules. Corrections, sugges-

tions for improvements, enhancements, and expansions of the DSPA materials are

always welcome and may be incorporated in electronic updates, errata, and revised

editions with appropriate credits.

Summary 821

Glossary

Table 1 Glossary of terms and abbreviations use in the textbook

Notation Description

ADNI Alzheimer’s Disease Neuroimaging Initiative

AD Alzheimer’s Disease patients

Allometric

relationship

Relationship of body size to shape, anatomy, physiology and behavior

ALS Amyotrophic lateral sclerosis

API Application program interface

Apriori Apriori Association Rules Learning (Machine Learning) Algorithm

ARIMA Time-series autoregressive integrated moving average model

array Arrays are R data objects used to represent data in more than two dimensions

BD Big Data

cor correlation

CV Cross Validation (an internal staistical validation of a prediction, classifica-

tion or forecasting method)

DL Deep Learning

DSPA Data Science and Predictive Analytics

Eigen Referring to the general Eigen-spectra, eigen-value, eigen-vector, eigen-

function

FA Factor analysis

GPU or CPU Graphics or Central Processing Unit (computer chipset)

GUI graphical user interface

HHMI Howard Hughes Medical Institute

I/O Input/Output

IDF inverse document frequency

IoT Internet of Things

JSON JavaScript Object Notation

k-MC k-Means Clustering

(continued)

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1

823

https://doi.org/10.1007/978-3-319-72347-1

Table 1 (continued)

Notation Description

lm() linear model

lowess locally weighted scatterplot smoothing

LP or QP linear or quadratic programming

MCI mildly cognitively impared patients

MIDAS Michigan Institute for Data Science

ML Machine-Learning

MOOC massive open online course

MXNet Deep Learning technique using R package MXNet

NAND Negative-AND logical operator

NC or HC Normal (or Healthy) control subjects

NGS Next Generation Sequence (Analysis)

NLP Natural Language Processing

OCR optical character recognition

PCA Principal Component Analysis

PD Parkinson’s Disease patients

PPMI Parkinson’s Progression Markers Initiative

(R)AWS (Risk for) Alcohol Withdrawal Syndrome

RMSE root-mean-square error

SEM structural equation modeling

SOCR Statistics Online Computational Resource

SQL Structured Query Language (for database queries)

SVD Singular value decomposition

SVM Support Vector Machines

TM Text Mining

TS Time-series

w.r.t. With Respect To, e.g., “Take the derivative of this expression w.r.t. a1 and

set the derivative to 0, which yields (S � λIN)a1 ¼ 0.”

XLSX Microsoft Excel Open XML Format Spreadsheet file

XML eXtensible Markup Language

XOR Exclusive OR logical operator

824 Glossary

Index

A

Accuracy, 10, 211, 275, 276, 283, 301–303,

307, 323–325, 334, 335, 337, 339, 340,

342, 343, 377, 409, 424, 432, 463, 475,

479–482, 484, 485, 497, 500, 502, 504,

507, 508, 511, 561, 562, 573, 576, 583,

599, 605, 692, 698, 704, 726, 767, 781,

782, 784, 793, 800, 801, 806

Activation, 383–385, 403, 767–769, 774, 775,

781, 785, 799, 800

Activation functions, 384, 385, 767, 781

add, 16, 22, 24, 33, 41, 146, 155, 158, 159,

162, 225, 227, 230, 292, 332, 373,

386, 391, 402, 403, 418, 424, 454,

479, 530, 538, 595, 605, 633, 645,

712, 801

Alcohol withdrawal syndrome (RAWS), 3, 824

Allometric, 266, 817, 823

Allometric relationship, 817

ALSFRS, 4, 559, 733, 783

Alzheimer’s disease (AD), 4, 149–151,

569, 823

Alzheimer’s disease neuroimaging initiative

(ADNI), 4, 823

Amyotrophic lateral sclerosis (ALS), 4, 140,

141, 559–569, 733, 783–784, 823

Analog clock, 816

Appendix, 56–60, 138–139, 149,

183–197, 420

Application program interface (API), 525,

784, 823

Apriori, 267, 268, 423–427, 431, 441,

472, 823

ARIMA, 623, 626, 628, 630–638, 823

array, 20, 25, 31–33, 145

array (), 18

Assessment, 282–286, 510–511

Assessment: 22. deep learning, neural

networks, 816–817

assocplot, 40

assocplot(x) Cohen’s Friendly graph shows the

deviations from independence of rows

and columns in a two dimensional

contingency table, 40

attr, 27

Attributes, 26, 27, 144, 289, 311, 313, 315, 342,

530, 560, 561, 670

axes, 41, 46, 47, 131, 152, 154, 159, 171, 191,

219, 249, 258, 261, 368, 595, 648

axes¼TRUE, 41

B

Bar, 15, 140, 143, 147, 159, 161,

162, 164

barplot, 39, 161, 162, 164, 463

barplot(x) histogram of the values of x. Use

horiz¼FALSE for horizontal bars, 39

Beach, 811–812

Big Data, 1, 4, 8–10, 12, 642, 661, 765,

819, 823

Biomedical, 8–9

Bivariate, 39, 40, 46, 77, 140, 153–156, 173,

238, 240, 252, 738–739, 766, 770

Black box, 383, 766

boxplot, 39, 70, 161

boxplot(x) ‘box-and-whiskers’ plot, 39

Brain, 4, 178, 286, 511, 769, 814–815

© Ivo D. Dinov 2018

I. D. Dinov, Data Science and Predictive Analytics,

https://doi.org/10.1007/978-3-319-72347-1

825

https://doi.org/10.1007/978-3-319-72347-1

C

c(), 18–20, 552

c (), seq (), rep (), and data.frame (). Sometimes

we use list () and array () to create data

too, 18

C/C++, 13

Cancer, 293, 294, 296, 298, 302, 303,

424, 427, 432

Caret, 322, 477, 486, 487, 491, 492, 497–510,

554, 555, 564, 776

Chapter, 13, 63, 69, 139, 143, 149, 164, 183,

201, 222, 245, 268, 271, 274, 289, 295,

298, 300, 301, 308, 317, 322, 329, 334,

336, 337, 342, 345–348, 353, 358, 361,

370, 373, 380, 383, 390, 392, 394,

398, 401, 409, 414–416, 420, 427, 442,

447–449, 465, 475–480, 488, 491, 492,

494, 527, 546, 553, 554, 557, 563, 564,

570, 573, 574, 585, 592, 599, 601, 623,

657, 659, 672, 674, 684, 689, 695, 697,

712, 713, 715, 717, 719, 720, 723, 727,

733, 735, 736, 738, 749, 753, 756, 763,

766, 795, 817

Chapter 22, 415, 817

Chapter 23, 164

Chronic disease, 316, 330, 335, 383,

416, 476, 503

Classification, 144, 267, 268, 281, 286–287,

289, 304–305, 307, 323, 331–332,

396–403, 477, 478, 498, 510, 533,

773–782, 795–805, 816

Clinical, 258, 612, 614, 695

Coast, 812

Cognitive, 2, 4, 7, 149, 700, 820

Color, 45, 46, 87, 132, 151, 154, 165, 167, 172,

269, 444, 649, 660

confusionMatrix, 283, 322, 477, 480, 482, 485,

776, 787

Constrained, 244, 587, 735, 740–747, 750

Contingency table, 35, 40, 78, 500

contour, 40

contour(x, y, z) contour plot (data are

interpolated to draw the curves), x and y

must be vectors and z must be a matrix

so that dim(z)¼c(length(x), length(y))

(x and y may be omitted), 40

coplot, 40

coplot(x~y | z) bivariate plot of x and y for each

value or interval of values of z, 40

Coral, 815

Cosine, 659, 685, 695

Cosine similarity, 695

Cost function, 217, 503, 573, 586, 703, 735,

743, 747, 757, 758

CPU, 553, 765, 775, 782, 800, 804, 805, 823

Create, 19, 22, 76–78, 83, 132, 174, 202, 214,

222, 224, 273, 274, 299, 315, 318, 319,

370, 380, 383, 390, 450, 461, 489, 491,

504, 538, 607, 630, 638, 644, 645, 647,

661, 674, 688, 717, 775, 781

Crossval, 776, 787

Cross validation, 477, 599–601,

733–734, 823

D

Data frame, 19, 21, 22, 24, 28, 29, 31, 33–36,

39, 40, 47, 48, 66, 131, 132, 153,

164, 172, 174, 273, 274, 299, 300,

319, 438, 451, 490, 514, 526, 529,

537, 540, 547–549, 555, 561, 562,

565, 608

data.frame, 19, 25, 83, 103, 164, 273

Data science, 1, 9, 11, 661, 823, 824

Data Science and Predictive Analytics (DSPA),

1, 11–13, 198, 492, 623, 661,

819–821, 823

Decision tree, 307, 310–316, 498, 510, 533

Deep learning, 765–768, 816–817, 823, 824

classification, 816

regression, 817

Denoising, 735, 756, 757, 760, 763

Density, 46, 48, 49, 72, 98, 132, 133, 140, 141,

143–147, 173, 174, 198, 287, 289

Device, 775, 800

diagnosticErrors, 718, 776

Dichotomous, 40, 271, 318, 459, 460, 478, 655,

698, 733, 746, 747, 770

Dimensionality reduction, 233, 265–266

Divide-and-conquer, 307, 311, 373

Divide and conquer classification, 307

Divorce, 443, 448–455, 467, 470

dotchart, 39

dotchart(x) if x is a data frame, plots a

Cleveland dot plot (stacked plots line-

by-line and column-by-column), 39

Download, 15, 555, 806, 817

E

Earthquake, 132–135, 157, 159, 172

Ebola, 5

Eigen, 219, 823

Entropy, 311–313, 342

826 Index

Error, 28, 47, 57, 60, 162, 163, 217, 254, 258,

270, 280, 281, 287, 302, 305, 311, 313,

316, 321, 324–325, 328, 329, 331, 332,

350, 361, 378, 388, 391, 393, 412,

478–480, 487, 491, 500, 501, 504, 507,

509, 562, 565, 573, 576, 579, 582–584,

586, 587, 599, 618, 640, 645, 648, 697,

701–703, 712, 714, 725, 733, 734,

784, 824

Evaluation, 268, 282, 322, 335, 361, 443, 451,

475, 477, 491, 492, 501, 504, 507, 510,

543, 546, 554, 697, 703, 817

Exome, 6

Expectations, 11–12

Explanations, 41, 510

F

Face, 815–816

Factor, 21, 24, 46, 79, 210, 219, 233, 255, 256,

259, 265, 287, 292, 294, 299, 319, 333,

352, 359, 412, 417, 438, 561, 570, 575,

588, 600, 608, 630, 638–640, 644, 676,

677, 703, 725

Factor analysis (FA), 233, 242, 243, 254–256,

262, 265, 638, 639, 644, 823

False-negative, 700

False-positive, 325, 573, 574, 619

Feature selection, 557–559, 571–572

Feedforward neural net, 817

filled.contour(x, y, z) areas between the

contours are colored, and a legend of the

colors is drawn as well, 40

Flowers, 39, 63, 309, 383, 410, 411, 414, 510

Format, 13, 17–18, 22, 36, 38, 427, 513–515,

522, 524, 525, 529, 537, 553, 665, 799,

801, 805

Foundations, 13, 638–641

fourfoldplot(x) visualizes, with quarters of

circles, the association between two

dichotomous variables for different

populations (x must be an array with

dim¼c(2, 2, k), or a matrix with dim¼c

(2, 2) if k ¼ 1), 40

Frequencies, 29, 39, 46, 145, 193, 298, 429,

430, 439, 463, 484, 485, 667, 672, 685

Function, 2, 4, 16, 20, 22, 28, 30, 32–35, 37,

47–50, 57–60, 66, 68–70, 76–78, 83,

131–133, 143, 145, 148, 149, 151, 153,

155, 157, 161, 162, 167, 172–175, 187,

202, 207, 208, 213, 216–219, 222, 224,

225, 234, 243, 246, 247, 251, 254, 255,

257, 260, 267, 269, 272–274, 289, 295,

299, 300, 308, 313, 314, 317, 319, 322,

323, 332, 334, 337, 351, 352, 356, 358,

361, 370, 375, 376, 378, 383–385,

390–392, 394–397, 401–403, 411–413,

427, 428, 432, 434, 438, 449–451, 455,

470, 475, 479, 480, 483, 490, 494,

499–501, 504–506, 508, 509, 514, 524,

526, 530, 532, 542, 547–554, 560, 561,

563, 569, 575, 579, 582, 586, 595, 600,

602, 607, 616, 625, 631, 632, 634, 637,

640, 644, 645, 649, 655, 660, 664–667,

673–676, 688, 702, 709, 713, 714, 716,

717, 735–741, 748, 749, 753, 767–770,

772, 774–776, 781, 782, 785, 799–801,

808, 823

Functional magnetic resonance imaging

(fMRI), 178–181, 623, 657

Function optimization, 243, 735, 761–763

G

Gaussian mixture modeling, 443

Generalized estimating equations (GEE),

653–657

Geyser, 174, 175, 813

ggplot2, 14, 16, 131, 132, 157, 164, 172,

455, 648

Gini, 311, 313, 335, 336, 342

Glossary, 823

Google, 383, 388–394, 396–398, 416, 491,

492, 494, 658, 697–700, 773, 784, 817

GPU, 513, 553, 765, 775, 782, 804, 805, 823

Graph, 14, 40, 47, 70, 75, 77, 164, 166, 198,

244, 287, 297, 305, 356, 376, 386, 391,

393, 399, 430, 431, 443, 448, 489,

528–533, 555, 562, 563, 570, 613, 626,

628, 649, 650, 658, 676, 775, 784

Graphical user interfaces (GUIs), 15–16, 823

H

Handwritten digits, 795, 799, 801

HC, 135, 705, 824

Heatmap, 134, 150–152

Help, 16

Heterogeneity, 11, 311

Hidden, 135, 386, 391, 393, 394, 398,

416, 660, 765–767, 772, 774, 775,

781, 785, 799

Hierarchical clustering, 443, 467–469, 727

High-throughput big data analytics, 10

hist, 39, 83, 144

hist(x) histogram of the frequencies of x, 39

Index 827

Histogram, 39, 46, 51, 68, 71–74, 87, 140, 143,

144, 146, 174, 180, 198, 222, 249, 250,

353, 356, 634, 792

Horizontal, 39, 45, 46, 70, 151, 152, 159, 230,

356, 368

Hospital, 346, 347, 513, 655, 656

Howard Hughes Medical Institute (HHMI),

5, 823

I

IBS, 789–792

if TRUE superposes the plot on the previous

one (if it exists), 41

Image, 20, 24, 40, 83, 84, 176–178,

403, 404, 660, 781, 795, 796,

799, 801, 806–816

Image classification, 817

image(x, y, z) plotting actual data with

colors, 40

Independent component analysis (ICA), 233,

242, 243, 250–254, 265

Index, 187, 313, 316, 388, 389, 392, 416, 513,

625, 641

Inference, 1, 13, 201, 282, 289, 513, 573, 638,

655, 659, 735, 819

Input/output (I/O), 22–24, 64, 765, 823

interaction.plot (f1, f2, y) if f1 and f2 are

factors, plots the means of y (on the

y-axis) with respect to the values of f1

(on the x-axis) and of f2 (different

curves). The option fun allows to choose

the summary statistic of y (by default

fun¼mean), 40

Interpolate, 48

Intersect, 30

Inverse document frequency (IDF), 659,

676–686, 695, 823

Iris, 63, 64, 308–310, 409–411,

414, 727

J

Java, 10, 13, 20, 72, 332, 334, 349, 534

Jitter, 143, 157

JSON, 198, 513, 514, 522, 525–526,

531, 533, 823

K

k-Means Clustering (k-MC), 443

k-nearest neighbor (kNN), 268, 269, 447

Knockoff, 574, 621

L

Lagrange, 401, 402, 735, 740–741, 749,

753–756, 762

Lake Mapourika, 810–811

Lattice, 46, 47

Layer, 386, 388, 394, 765–768, 770, 771,

773–775, 781, 782, 785, 799–801

Lazy learning, 267, 286–287

Length, 5, 19, 21, 26, 28, 35, 37, 40, 46, 47, 63,

64, 132, 174, 230, 231, 235, 270, 273,

346, 374, 377, 409, 480

Letters, 148, 193, 195, 215, 404, 530, 664

Linear algebra, 201, 229–231, 345

Linear mixed models, 623

Linear model, 574–582, 621, 650

Linear programming, 735, 748

list (), 18–20

lm (), 16, 225, 358, 553, 824

log, 30, 31, 40, 313, 517, 587, 610, 611, 615,

616, 640, 716

Log-linear, 40

Long, 5, 13, 18, 36, 514, 547, 565, 676,

784, 819

Longitudinal data, 40, 657–658

Lowess, 824

M

Machine learning, 2, 10, 267, 268, 289, 322,

383, 423, 443–444, 476, 477, 481, 497,

536, 549, 562, 659, 660, 667, 689, 765,

809, 816, 820

Managing data, 63, 140–141

Mask, 815–816

matplot(x, y) bivariate plot of the first column of

x vs. the first one of y, the second one of

x vs. the second one of y, etc, 40

Matrices, 20, 21, 24, 31, 149, 167, 201–203,

206–209, 213–216, 219, 220, 222, 229,

230, 233, 258, 478–480, 490, 549, 574,

640, 641, 645, 650, 667, 672, 698, 714,

716, 735, 782, 804

Matrix, 13, 21, 26, 28, 31, 32, 40, 46, 47, 81,

132, 149–151, 153, 161–163, 166,

167, 174, 201–209, 211, 212, 214–217,

219–222, 224, 225, 227–231, 235, 236,

238–240, 242, 244, 245, 247, 251,

254–258, 260, 265, 295, 299, 300, 304,

305, 319, 322, 324–325, 350, 351, 356,

391, 427, 429–432, 450, 463, 478, 480,

483, 484, 501, 506, 507, 528–530, 537,

540, 552, 555, 574, 582, 607, 608, 620,

639–641, 648, 650, 654, 655, 660,

828 Index

667–668, 670–674, 676, 685, 688, 689,

695, 702, 716, 717, 727, 735, 739, 747,

748, 753, 766, 767, 782, 799–801

Matrix computing, 201, 229–231, 345

Michigan Institute for Data Science

(MIDAS), 824

Mild cognitive impairment (MCI), 4, 149,

151, 824

Misclassification, 311, 324–325, 411, 418

mlbench, 536, 774

mlp, 774, 775, 781, 782, 785

Model, 2, 10, 13, 47–48, 81, 93, 110, 120, 166,

201, 216, 217, 227, 230, 246, 252, 253,

260, 262, 267, 268, 274–276, 283,

286, 299–301, 345, 350, 356, 358–375,

377–381, 383, 385–387, 391–394, 397,

398, 405–409, 411–416, 418, 479,

488, 489, 510, 511, 571, 572, 658,

733, 734, 817

Model performance, 268, 274–276, 300–301,

322–323, 333, 359–373, 377–380, 386,

392–394, 406–409, 412–414, 433–438,

451–454, 462–465, 475, 479, 480, 487,

488, 491, 492, 494, 495, 497, 501–503,

507, 564–569, 572, 605, 697, 698, 701

Model-based, 2, 10, 345, 481, 566, 573, 660,

710, 819, 821

Model-free, 2, 10, 481, 660, 689, 705, 819, 821

Modeling, 1, 4, 9, 13, 48, 83, 201, 216–217,

233, 259, 307, 347, 349, 505, 513, 528,

582, 638, 640, 659, 668, 701, 703, 756,

775, 820, 824

MOOCs, 821

mosaicplot, 40

mosaicplot(x) “mosaic” graph of the residuals

from a log-linear regression of a

contingency table, 40

Multi-scale, 623

Multi-source, 9, 514, 559

MXNet, 774, 775, 782, 785, 799–801, 804,

805, 817

N

NA, 22, 24, 28, 30, 38, 67, 69, 155, 287, 380,

427, 429, 538, 625

na.omit, 28, 48

na.omit(x), 28

Naive Bayes, 289, 290, 299, 302–305, 476

Natural language processing (NLP), 442,

659–668, 689–691, 694–695, 824

Nearest neighbors, 267, 286–287, 719–720

Negative AND (NAND), 771–772, 824

Network, 383, 384, 386, 398, 533, 555, 730,

731, 773, 799–800, 804–806

Neural networks, 383–388, 498, 510, 717–718,

765, 766, 816–817

Neurodegeneration, 4–5

Neuroimaging, 4, 7, 588–590, 608–621, 789,

817, 823

New Zealand, 810–811

Next Generation Sequence (NGS), 6–7, 824

Next Generation Sequence (NGS) Analysis,

6–7

Nodes, 164, 293, 307, 311, 316, 321, 336, 374,

376, 379, 383, 386, 391, 393, 394,

416, 524, 528–530, 532, 765, 766,

768, 775, 785

Non-linear optimization, 752–753, 762

Normal controls (NC), 4, 149, 151, 152, 167,

169–171, 824

Numeric, 2, 19, 25, 46, 47, 66, 68, 71, 76, 77,

145, 149, 150, 212, 259, 273, 274, 299,

319, 370–371, 377, 396, 409, 503,

559, 570

O

Objective function, 242, 250, 251, 401, 558,

573, 574, 579, 587, 592, 640, 641,

735–738, 740, 741, 747–749, 753,

754, 756–758

Open-science, 1, 819, 821

Optical character recognition (OCR), 383,

403–408, 795, 824

Optimization, 13, 47, 243, 254, 401,

402, 513, 546, 573, 574, 579,

587, 592, 641, 735–753, 755,

756, 761, 762

Optimize, 47, 337, 401, 739, 757,

758, 819

P

Package, 30, 38, 46, 63, 78, 81, 131, 132, 138,

149, 157, 164, 167, 172, 174, 208, 247,

274, 294, 297, 299, 319, 322, 332, 356,

358, 375, 376, 378, 391, 410, 412, 413,

428, 434, 455, 467, 470, 483, 486–489,

491–493, 497, 501, 503, 505–507, 509,

514, 515, 517, 522–524, 526, 528, 531,

532, 534, 536, 547–555, 559–561, 588,

607, 608, 626, 627, 632, 641, 645, 648,

650, 661, 663, 666, 668, 672, 675, 686,

705, 723, 727, 741, 748, 754, 760, 765,

776, 804, 806, 824

Index 829

pairs, 5, 40, 45, 153–156, 164, 191, 234, 237,

239, 311, 356, 357, 371, 424–427, 529,

532, 770, 796

pairs(x) if x is a matrix or a data frame, draws all

possible bivariate plots between the

columns of x, 40

Parallel computing, 548–553, 555–556

Parkinson’s disease (PD), 51, 135, 261, 262,

265, 511, 571, 600, 608–621, 642–647,

650, 705, 711, 824

Parkinson’s Progression Markers Initiative

(PPMI), 245, 286, 511, 571–572, 588,

642, 656, 705, 711, 719, 824

Perceptron, 766, 769, 773, 775, 785

Perl, 13

persp(x, y, z) plotting actual data in perspective

view, 40

Petal, 39, 64, 727

Pie, 39, 143, 147, 149, 167, 170, 198

pie(x) circular pie-chart., 39

Pipeline environment, 10

Plot, 39–47, 66, 70, 71, 73, 74, 77, 84, 98,

131–133, 136, 140, 141, 143, 145–148,

150, 153–160, 162–164, 166–177, 180,

188, 191–194, 226, 230, 231, 233, 235,

239–241, 243, 247, 249, 250, 256, 262,

285, 286, 298, 323, 325, 326, 331, 346,

347, 353, 356, 357, 359, 361, 366, 368,

375–377, 414, 430, 431, 436, 439, 448,

452, 454, 456, 459, 467, 469, 471, 472,

532, 534, 535, 537, 539, 562, 563, 565,

570, 571, 590, 592, 597, 602, 618, 626,

629–631, 727, 736, 739, 742, 757, 768,

776, 778, 779, 792

plot(x) plot of the values of x (on the y-axis)

ordered on the x-axis, 39

plot(x, y) bivariate plot of x (on the x-axis) and

y (on the y-axis), 39

plot.ts(x) if x is an object of class “ts”, plot of x

with respect to time, x may be

multivariate but the series must have the

same frequency and dates. Detailed

examples are in Chap. 19

big longitudinal data analysis, 40

Predict, 3, 4, 9, 10, 48, 81, 267, 283, 300, 322,

334, 346, 377–380, 389, 391, 392, 411,

412, 475, 476, 478, 500, 504, 505, 555,

582, 584–586, 600, 602, 623, 674, 679,

700, 703, 712, 714, 717, 783, 792, 796,

806, 808, 817

Predictive analytics (PA), 1, 9–10, 661, 823

Principal component analysis (PCA), 233,

241–249, 254, 256–258, 260, 263, 265,

266, 533, 824

Probabilistic learning, 304–305

Probabilities, 31, 173, 300, 322, 476, 482, 500,

600, 684, 715, 716, 767, 800, 801

Pruning, 307, 315, 316, 328, 330

Python, 13

Python, Java, C/C++, Perl, and many others, 13

Q

QOL, 317

qqnorm, 40

qqnorm(x) quantiles of x with respect to the

values expected under a normal law, 40

qqplot, 40

qqplot(x, y) quantiles of y with respect to the

quantiles of x, 40

Quadratic programming, 824

Quality of life, 490, 792

R

R, 1, 12–17, 20, 24, 25, 30–32, 37–39, 41, 46,

48–50, 56–60, 63–65, 67–69, 75–78, 84,

130, 131, 138–141, 143, 144, 149, 153,

161, 173, 175, 176, 178, 206, 208, 209,

211, 212, 214, 216, 219, 220, 224–227,

229, 230, 236, 240, 245, 246, 251, 254,

257, 258, 274, 294, 297, 307, 319, 332,

334, 349, 355, 356, 361, 374, 375, 378,

389, 409, 410, 420, 427, 428, 436, 438,

450, 460, 467, 470, 477, 479, 486, 488,

491, 501, 514, 515, 517, 524, 526–529,

532–534, 538, 540, 546–548, 550, 553,

559, 588, 617, 619, 624, 629, 641, 642,

650, 652, 659, 661, 694, 704, 714,

736–738, 748, 753, 754, 760, 765, 774,

782, 801, 806, 807, 820, 821, 823, 824

Regularized, 574–582, 621

Regularized linear model, 621

Relationship, 77, 78, 155, 226, 245, 314, 345,

349, 350, 369, 383, 394, 448, 454, 532,

581, 584, 640, 817, 823

rep(), 18

Require, 12, 400, 409, 432, 527, 550, 555, 563,

772, 815, 819

reshape2, 14, 16

Risk for Alcohol Withdrawal Syndrome

(RAWS), 3

830 Index

Root mean square error (RMSE), 329, 477, 565,

698, 701, 703, 784, 817, 824

RStudio, 13, 15–16

RStudio GUI, 15–16

S

Scatter plot

scatter, 46, 153, 226, 230, 231

Sensitivity, 305, 485, 486, 714, 734, 776

seq (), 18, 38, 69

Sequencing, 6

set.seed, 37, 49, 287, 333, 492, 499, 782, 800

setdiff, 30

setequal, 30

Silhouette, 443, 446, 451, 452, 456–459, 463,

464, 469, 477, 723, 725

sin, cos, tan, asin, acos, atan, atan2, log, log10,

exp and “set” functions union(x, y),

intersect(x, y), setdiff(x, y), setequal

(x, y), is.element(el, set) are available

in R, 30

Singular value decomposition (SVD), 233, 241,

242, 256–258, 265, 824

Size, 16, 30, 46, 47, 49, 132, 135, 145, 154,

174, 192, 209, 210, 269, 315, 316, 323,

328, 336, 348, 390, 425, 426, 429, 450,

451, 495, 498, 500, 503, 510, 515,

534–536, 565, 566, 572, 592, 624,

676, 747, 767, 773, 774, 781, 784,

795, 819, 823

sMRI, 4, 178

softmax, 498, 767, 774, 781, 800

Sonar, 774–781

Sort, 28, 700

Specificity, 305, 485–486, 734, 776

Spectra, 231

Splitting, 268, 307, 311, 315, 373, 374, 536,

584, 686

SQL, 138–139, 513, 515–521, 537, 553, 824

Stacked, 39, 46, 196

stars(x) if x is a matrix or a data frame, draws a

graph with segments or a star where each

row of x is represented by a star

and the columns are the lengths

of the segments, 40

Statistics Online Computational Resource

(SOCR), 4, 10, 11, 50, 51, 56, 72, 79,

130, 140, 147, 171, 173, 178, 187, 193,

198, 230, 258, 305, 342, 349, 522, 524,

525, 531–533, 540–543, 555, 569, 584,

669, 817, 824

stripplot, 39, 46

stripplot(x) plot of the values of x on a line

(an alternative to boxplot() for small

sample sizes), 39

Structural equation modeling (SEM), 623,

638–648, 824

Summary statistic, 35, 40, 67, 76, 140, 187,

352, 549

sunflowerplot(x, y) id. than plot() but the points

with similar coordinates are drawn as

flowers which petal number represents

the number of points, 39

Support vector machines (SVM), 398–403

Surface, 132, 141, 174–176, 814–815

Symbol, 47, 404, 490, 781, 799

symbols(x, y, ...) draws, at the coordinates

given by x and y, symbols (circles,

squares, rectangles, stars, thermometers

or “boxplots”) which sizes, colors...

are specified by supplementary

arguments, 40

T

Table, 13, 22–24, 29, 30, 32, 35, 38, 40, 76, 78,

79, 140, 144, 148, 166, 208, 268, 274,

275, 282, 292, 300, 301, 311, 317, 322,

412, 426, 450, 463, 477–480, 482, 483,

486, 501, 504, 511, 529, 530, 548, 555,

614, 641, 686, 771

TensorFlow, 765, 773, 784

Term frequency (TF), 659, 676–686, 695

termplot(mod.obj) plot of the (partial) effects of

a regression model (mod.obj), 40

Testing, 7, 268, 274, 282, 287, 299, 303, 318,

324, 342, 396, 414, 491, 505, 579, 581,

584, 599, 600, 639, 648, 679, 684, 686,

690, 691, 697, 701, 703, 704, 719, 765,

775, 782, 784, 795, 799–801

Text mining (TM), 442, 659–668, 689–691,

694–695, 824

The following parameters are common to many

plotting functions, 40

Then, try to perform a multiple classes (i.e AD,

NC and MCI) classification and report

the results, 816

Training, 8, 141, 260, 267–270, 274, 281, 287,

289, 292, 295–297, 299–300, 303, 304,

311, 318–321, 332–333, 337, 358–359,

374, 375, 380, 390, 391, 395, 396, 398,

410–412, 416, 418, 432–433, 450–451,

461, 491, 493, 495, 501, 503–505, 507,

553, 554, 558–564, 579, 584, 599, 600,

679, 684, 686, 688, 697, 701–704, 715,

Index 831

719, 733, 765, 768, 769, 775, 776, 778,

782, 784, 795, 796, 799, 800, 804, 805,

815, 819, 821

Transdisciplinary, 9, 819, 820

Trauma, 163, 443, 459–467

ts, 1, 31, 40, 47, 77, 80, 533, 629, 631

ts.plot(x) id. but if x is multivariate the series

may have different dates and must have

the same frequency, 40

U

Unconstrained, 735–741, 761

Union, 30, 145, 424

Unique, 1, 7, 29, 144, 150, 210, 334, 429,

463, 495, 527, 639, 667, 688, 698, 736,

774, 820

Unstructured text, 289, 659, 660, 795

V

Validation, 9, 267, 280, 281, 283, 287, 329,

340, 396, 414, 446, 448, 475, 477,

491–495, 501, 562, 574, 581, 598–600,

675, 679, 689–691, 697, 698, 700–704,

708, 709, 711, 712, 718, 733, 765, 784,

796, 799, 815, 819, 820, 823

Visualization, 4, 143–145, 164, 198–199, 657

Visualize, 4, 70, 77, 132, 149, 173, 178, 201,

222, 226, 247, 249, 252, 256, 280, 297,

305, 323, 356, 429, 434, 453, 528, 565,

571, 590, 592, 626, 648, 726

Volcano, 175, 812–813

W

which.max, 27

Whole-genome, 6

Whole-genome and exome sequencing, 6

Wide, 13, 18, 36, 48, 381, 427, 514, 583,

656, 820

With, 1, 2, 4, 5, 8, 9, 12, 16–20, 22–26, 28–31,

33, 36, 37, 39–41, 45–50, 57, 67, 69–71,

77, 80, 81, 83, 84, 130, 132, 133, 135,

139, 140, 143, 147, 149, 150, 153,

155–159, 161–163, 166, 171, 173–175,

202, 210, 212–216, 219, 220, 222, 230,

231, 233, 237, 242–244, 254–256, 258,

267, 269–271, 273, 289, 295, 299,

302–305, 307, 310–319, 322, 324, 325,

327, 331–334, 336, 337, 339, 340, 342,

347, 371, 374, 377–380, 385–390, 394,

398–403, 408, 411, 412, 416, 420,

423–425, 427, 429, 430, 432, 435, 438,

439, 441, 442, 444–446, 448–451,

453–460, 463–466, 469, 472, 475, 476,

484, 495, 497, 500, 502–506, 508, 511,

513–536, 540, 543, 546–559, 563–570,

572–574, 576, 584, 586, 599, 605–608,

612–614, 616, 617, 620, 625, 626, 628,

630, 634, 637–639, 642, 643, 648, 653,

655, 656, 663, 665, 668, 670, 672, 674,

676–678, 684, 686, 688, 689, 698, 700,

704, 710, 711, 715, 717, 718, 720, 734,

736, 746, 756, 769–774, 781, 784, 785,

800, 805, 808, 812, 815, 817, 819, 820

X

XLSX, 526–527, 824

XML, 7, 24, 513, 522–524, 555, 824

Exclusive OR (XOR), 770, 771, 824

Y

Youth, 271, 443, 465–467, 498

832 Index

	Foreword
	Preface
	Genesis
	Purpose
	Limitations/Prerequisites
	Scope of the Book
	Acknowledgements

	DSPA Application and Use Disclaimer
	Biomedical, Biosocial, Environmental, and Health Disclaimer

	Notations
	Contents
	Chapter 1: Motivation
	1.1 DSPA Mission and Objectives
	1.2 Examples of Driving Motivational Problems and Challenges
	1.2.1 Alzheimer´s Disease
	1.2.2 Parkinson´s Disease
	1.2.3 Drug and Substance Use
	1.2.4 Amyotrophic Lateral Sclerosis
	1.2.5 Normal Brain Visualization
	1.2.6 Neurodegeneration
	1.2.7 Genetic Forensics: 2013-2016 Ebola Outbreak
	1.2.8 Next Generation Sequence (NGS) Analysis
	1.2.9 Neuroimaging-Genetics

	1.3 Common Characteristics of Big (Biomedical and Health) Data
	1.4 Data Science
	1.5 Predictive Analytics
	1.6 High-Throughput Big Data Analytics
	1.7 Examples of Data Repositories, Archives, and Services
	1.8 DSPA Expectations

	Chapter 2: Foundations of R
	2.1 Why Use R?
	2.2 Getting Started
	2.2.1 Install Basic Shell-Based R
	2.2.2 GUI Based R Invocation (RStudio)
	2.2.3 RStudio GUI Layout
	2.2.4 Some Notes

	2.3 Help
	2.4 Simple Wide-to-Long Data format Translation
	2.5 Data Generation
	2.6 Input/Output (I/O)
	2.7 Slicing and Extracting Data
	2.8 Variable Conversion
	2.9 Variable Information
	2.10 Data Selection and Manipulation
	2.11 Math Functions
	2.12 Matrix Operations
	2.13 Advanced Data Processing
	2.14 Strings
	2.15 Plotting
	2.16 QQ Normal Probability Plot
	2.17 Low-Level Plotting Commands
	2.18 Graphics Parameters
	2.19 Optimization and model Fitting
	2.20 Statistics
	2.21 Distributions
	2.21.1 Programming

	2.22 Data Simulation Primer
	2.23 Appendix
	2.23.1 HTML SOCR Data Import
	2.23.2 R Debugging
	Example

	2.24 Assignments: 2. R Foundations
	2.24.1 Confirm that You Have Installed R/RStudio
	2.24.2 Long-to-Wide Data Format Translation
	2.24.3 Data Frames
	2.24.4 Data Stratification
	2.24.5 Simulation
	2.24.6 Programming

	References

	Chapter 3: Managing Data in R
	3.1 Saving and Loading R Data Structures
	3.2 Importing and Saving Data from CSV Files
	3.3 Exploring the Structure of Data
	3.4 Exploring Numeric Variables
	3.5 Measuring the Central Tendency: Mean, Median, Mode
	3.6 Measuring Spread: Quartiles and the Five-Number Summary
	3.7 Visualizing Numeric Variables: Boxplots
	3.8 Visualizing Numeric Variables: Histograms
	3.9 Understanding Numeric Data: Uniform and Normal Distributions
	3.10 Measuring Spread: Variance and Standard Deviation
	3.11 Exploring Categorical Variables
	3.12 Exploring Relationships Between Variables
	3.13 Missing Data
	3.13.1 Simulate Some Real Multivariate Data
	3.13.2 TBI Data Example
	3.13.3 Imputation via Expectation-Maximization
	Types of Missing Data
	General Idea of EM Algorithm
	EM-Based Imputation
	A Simple Manual Implementation of EM-Based Imputation
	Plotting Complete and Imputed Data
	Validation of EM-Imputation Using the Amelia R Package
	Comparison
	Density Plots

	3.14 Parsing Webpages and Visualizing Tabular HTML Data
	3.15 Cohort-Rebalancing (for Imbalanced Groups)
	3.16 Appendix
	3.16.1 Importing Data from SQL Databases
	3.16.2 R Code Fragments

	3.17 Assignments: 3. Managing Data in R
	3.17.1 Import, Plot, Summarize and Save Data
	3.17.2 Explore some Bivariate Relations in the Data
	3.17.3 Missing Data
	3.17.4 Surface Plots
	3.17.5 Unbalanced Designs
	3.17.6 Aggregate Analysis

	References

	Chapter 4: Data Visualization
	4.1 Common Questions
	4.2 Classification of Visualization Methods
	4.3 Composition
	4.3.1 Histograms and Density Plots
	4.3.2 Pie Chart
	4.3.3 Heat Map

	4.4 Comparison
	4.4.1 Paired Scatter Plots
	4.4.2 Jitter Plot
	4.4.3 Bar Plots
	4.4.4 Trees and Graphs
	4.4.5 Correlation Plots

	4.5 Relationships
	4.5.1 Line Plots Using ggplot
	4.5.2 Density Plots
	4.5.3 Distributions
	4.5.4 2D Kernel Density and 3D Surface Plots
	4.5.5 Multiple 2D Image Surface Plots
	4.5.6 3D and 4D Visualizations

	4.6 Appendix
	4.6.1 Hands-on Activity (Health Behavior Risks)
	4.6.2 Additional ggplot Examples
	Housing Price Data
	Modeling the Home Price Index Data (Fig. 4.48)
	Map of the Neighborhoods of Los Angeles (LA)
	Latin Letter Frequency in Different Languages

	4.7 Assignments 4: Data Visualization
	4.7.1 Common Plots
	4.7.2 Trees and Graphs
	4.7.3 Exploratory Data Analytics (EDA)

	References

	Chapter 5: Linear Algebra and Matrix Computing
	5.1 Matrices (Second Order Tensors)
	5.1.1 Create Matrices
	5.1.2 Adding Columns and Rows

	5.2 Matrix Subscripts
	5.3 Matrix Operations
	5.3.1 Addition
	5.3.2 Subtraction
	5.3.3 Multiplication
	Elementwise Multiplication
	Matrix Multiplication

	5.3.4 Element-wise Division
	5.3.5 Transpose
	5.3.6 Multiplicative Inverse

	5.4 Matrix Algebra Notation
	5.4.1 Linear Models
	5.4.2 Solving Systems of Equations
	5.4.3 The Identity Matrix

	5.5 Scalars, Vectors and Matrices
	5.5.1 Sample Statistics (Mean, Variance)
	Mean
	Variance
	Applications of Matrix Algebra: Linear Modeling
	Finding Function Extrema (Min/Max) Using Calculus

	5.5.2 Least Square Estimation
	The R lm Function

	5.6 Eigenvalues and Eigenvectors
	5.7 Other Important Functions
	5.8 Matrix Notation (Another View)
	5.9 Multivariate Linear Regression
	5.10 Sample Covariance Matrix
	5.11 Assignments: 5. Linear Algebra and Matrix Computing
	5.11.1 How Is Matrix Multiplication Defined?
	5.11.2 Scalar Versus Matrix Multiplication
	5.11.3 Matrix Equations
	5.11.4 Least Square Estimation
	5.11.5 Matrix Manipulation
	5.11.6 Matrix Transpose
	5.11.7 Sample Statistics
	5.11.8 Least Square Estimation
	5.11.9 Eigenvalues and Eigenvectors

	References

	Chapter 6: Dimensionality Reduction
	6.1 Example: Reducing 2D to 1D
	6.2 Matrix Rotations
	6.3 Notation
	6.4 Summary (PCA vs. ICA vs. FA)
	6.5 Principal Component Analysis (PCA)
	6.5.1 Principal Components

	6.6 Independent Component Analysis (ICA)
	6.7 Factor Analysis (FA)
	6.8 Singular Value Decomposition (SVD)
	6.9 SVD Summary
	6.10 Case Study for Dimension Reduction (Parkinson´s Disease)
	6.11 Assignments: 6. Dimensionality Reduction
	6.11.1 Parkinson´s Disease Example
	6.11.2 Allometric Relations in Plants Example
	Load Data
	Dimensionality Reduction

	References

	Chapter 7: Lazy Learning: Classification Using Nearest Neighbors
	7.1 Motivation
	7.2 The kNN Algorithm Overview
	7.2.1 Distance Function and Dummy Coding
	7.2.2 Ways to Determine k
	7.2.3 Rescaling of the Features
	7.2.4 Rescaling Formulas

	7.3 Case Study
	7.3.1 Step 1: Collecting Data
	7.3.2 Step 2: Exploring and Preparing the Data
	7.3.3 Normalizing Data
	7.3.4 Data Preparation: Creating Training and Testing Datasets
	7.3.5 Step 3: Training a Model On the Data
	7.3.6 Step 4: Evaluating Model Performance
	7.3.7 Step 5: Improving Model Performance
	7.3.8 Testing Alternative Values of k
	7.3.9 Quantitative Assessment (Tables 7.2 and 7.3)

	7.4 Assignments: 7. Lazy Learning: Classification Using Nearest Neighbors
	7.4.1 Traumatic Brain Injury (TBI)
	7.4.2 Parkinson´s Disease
	7.4.3 KNN Classification in a High Dimensional Space
	7.4.4 KNN Classification in a Lower Dimensional Space

	References

	Chapter 8: Probabilistic Learning: Classification Using Naive Bayes
	8.1 Overview of the Naive Bayes Algorithm
	8.2 Assumptions
	8.3 Bayes Formula
	8.4 The Laplace Estimator
	8.5 Case Study: Head and Neck Cancer Medication
	8.5.1 Step 1: Collecting Data
	8.5.2 Step 2: Exploring and Preparing the Data
	Data Preparation: Processing Text Data for Analysis
	Data Preparation: Creating Training and Test Datasets
	Visualizing Text Data: Word Clouds
	Data Preparation: Creating Indicator Features for Frequent Words

	8.5.3 Step 3: Training a Model on the Data
	8.5.4 Step 4: Evaluating Model Performance
	8.5.5 Step 5: Improving Model Performance
	8.5.6 Step 6: Compare Naive Bayesian against LDA

	8.6 Practice Problem
	8.7 Assignments 8: Probabilistic Learning: Classification Using Naive Bayes
	8.7.1 Explain These Two Concepts
	8.7.2 Analyzing Textual Data

	References

	Chapter 9: Decision Tree Divide and Conquer Classification
	9.1 Motivation
	9.2 Hands-on Example: Iris Data
	9.3 Decision Tree Overview
	9.3.1 Divide and Conquer
	9.3.2 Entropy
	9.3.3 Misclassification Error and Gini Index
	9.3.4 C5.0 Decision Tree Algorithm
	9.3.5 Pruning the Decision Tree

	9.4 Case Study 1: Quality of Life and Chronic Disease
	9.4.1 Step 1: Collecting Data
	9.4.2 Step 2: Exploring and Preparing the Data
	Data Preparation: Creating Random Training and Test Datasets

	9.4.3 Step 3: Training a Model On the Data
	9.4.4 Step 4: Evaluating Model Performance
	9.4.5 Step 5: Trial Option
	9.4.6 Loading the Misclassification Error Matrix
	9.4.7 Parameter Tuning

	9.5 Compare Different Impurity Indices
	9.6 Classification Rules
	9.6.1 Separate and Conquer
	9.6.2 The One Rule Algorithm
	9.6.3 The RIPPER Algorithm

	9.7 Case Study 2: QoL in Chronic Disease (Take 2)
	9.7.1 Step 3: Training a Model on the Data
	9.7.2 Step 4: Evaluating Model Performance
	9.7.3 Step 5: Alternative Model1
	9.7.4 Step 5: Alternative Model2

	9.8 Practice Problem
	9.9 Assignments 9: Decision Tree Divide and Conquer Classification
	9.9.1 Explain These Concepts
	9.9.2 Decision Tree Partitioning

	References

	Chapter 10: Forecasting Numeric Data Using Regression Models
	10.1 Understanding Regression
	10.1.1 Simple Linear Regression

	10.2 Ordinary Least Squares Estimation
	10.2.1 Model Assumptions
	10.2.2 Correlations
	10.2.3 Multiple Linear Regression

	10.3 Case Study 1: Baseball Players
	10.3.1 Step 1: Collecting Data
	10.3.2 Step 2: Exploring and Preparing the Data
	10.3.3 Exploring Relationships Among Features: The Correlation Matrix
	10.3.4 Visualizing Relationships Among Features: The Scatterplot Matrix
	10.3.5 Step 3: Training a Model on the Data
	10.3.6 Step 4: Evaluating Model Performance

	10.4 Step 5: Improving Model Performance
	10.4.1 Model Specification: Adding Non-linear Relationships
	10.4.2 Transformation: Converting a Numeric Variable to a Binary Indicator
	10.4.3 Model Specification: Adding Interaction Effects

	10.5 Understanding Regression Trees and Model Trees
	10.5.1 Adding Regression to Trees

	10.6 Case Study 2: Baseball Players (Take 2)
	10.6.1 Step 2: Exploring and Preparing the Data
	10.6.2 Step 3: Training a Model On the Data
	10.6.3 Visualizing Decision Trees
	10.6.4 Step 4: Evaluating Model Performance
	10.6.5 Measuring Performance with Mean Absolute Error
	10.6.6 Step 5: Improving Model Performance

	10.7 Practice Problem: Heart Attack Data
	10.8 Assignments: 10. Forecasting Numeric Data Using Regression Models
	References

	Chapter 11: Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines
	11.1 Understanding Neural Networks
	11.1.1 From Biological to Artificial Neurons
	11.1.2 Activation Functions
	11.1.3 Network Topology
	11.1.4 The Direction of Information Travel
	11.1.5 The Number of Nodes in Each Layer
	11.1.6 Training Neural Networks with Backpropagation

	11.2 Case Study 1: Google Trends and the Stock Market: Regression
	11.2.1 Step 1: Collecting Data
	Variables

	11.2.2 Step 2: Exploring and Preparing the Data
	11.2.3 Step 3: Training a Model on the Data
	11.2.4 Step 4: Evaluating Model Performance
	11.2.5 Step 5: Improving Model Performance
	11.2.6 Step 6: Adding Additional Layers

	11.3 Simple NN Demo: Learning to Compute
	11.4 Case Study 2: Google Trends and the Stock Market - Classification
	11.5 Support Vector Machines (SVM)
	11.5.1 Classification with Hyperplanes
	Finding the Maximum Margin
	Linearly Separable Data
	Non-linearly Separable Data
	Using Kernels for Non-linear Spaces

	11.6 Case Study 3: Optical Character Recognition (OCR)
	11.6.1 Step 1: Prepare and Explore the Data
	11.6.2 Step 2: Training an SVM Model
	11.6.3 Step 3: Evaluating Model Performance
	11.6.4 Step 4: Improving Model Performance

	11.7 Case Study 4: Iris Flowers
	11.7.1 Step 1: Collecting Data
	11.7.2 Step 2: Exploring and Preparing the Data
	11.7.3 Step 3: Training a Model on the Data
	11.7.4 Step 4: Evaluating Model Performance
	11.7.5 Step 5: RBF Kernel Function
	11.7.6 Parameter Tuning
	11.7.7 Improving the Performance of Gaussian Kernels

	11.8 Practice
	11.8.1 Problem 1 Google Trends and the Stock Market
	11.8.2 Problem 2: Quality of Life and Chronic Disease

	11.9 Appendix
	11.10 Assignments: 11. Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines
	11.10.1 Learn and Predict a Power-Function
	11.10.2 Pediatric Schizophrenia Study

	References

	Chapter 12: Apriori Association Rules Learning
	12.1 Association Rules
	12.2 The Apriori Algorithm for Association Rule Learning
	12.3 Measuring Rule Importance by Using Support and Confidence
	12.4 Building a Set of Rules with the Apriori Principle
	12.5 A Toy Example
	12.6 Case Study 1: Head and Neck Cancer Medications
	12.6.1 Step 1: Collecting Data
	12.6.2 Step 2: Exploring and Preparing the Data
	Visualizing Item Support: Item Frequency Plots
	Visualizing Transaction Data: Plotting the Sparse Matrix

	12.6.3 Step 3: Training a Model on the Data
	12.6.4 Step 4: Evaluating Model Performance
	12.6.5 Step 5: Improving Model Performance
	Sorting the Set of Association Rules
	Taking Subsets of Association Rules
	Saving Association Rules to a File or Data Frame

	12.7 Practice Problems: Groceries
	12.8 Summary
	12.9 Assignments: 12. Apriori Association Rules Learning
	References

	Chapter 13: k-Means Clustering
	13.1 Clustering as a Machine Learning Task
	13.2 Silhouette Plots
	13.3 The k-Means Clustering Algorithm
	13.3.1 Using Distance to Assign and Update Clusters
	13.3.2 Choosing the Appropriate Number of Clusters

	13.4 Case Study 1: Divorce and Consequences on Young Adults
	13.4.1 Step 1: Collecting Data
	Variables

	13.4.2 Step 2: Exploring and Preparing the Data
	13.4.3 Step 3: Training a Model on the Data
	13.4.4 Step 4: Evaluating Model Performance
	13.4.5 Step 5: Usage of Cluster Information

	13.5 Model Improvement
	13.5.1 Tuning the Parameter k

	13.6 Case Study 2: Pediatric Trauma
	13.6.1 Step 1: Collecting Data
	13.6.2 Step 2: Exploring and Preparing the Data
	13.6.3 Step 3: Training a Model on the Data
	13.6.4 Step 4: Evaluating Model Performance
	13.6.5 Practice Problem: Youth Development

	13.7 Hierarchical Clustering
	13.8 Gaussian Mixture Models
	13.9 Summary
	13.10 Assignments: 13. k-Means Clustering
	References

	Chapter 14: Model Performance Assessment
	14.1 Measuring the Performance of Classification Methods
	14.2 Evaluation Strategies
	14.2.1 Binary Outcomes
	14.2.2 Confusion Matrices
	14.2.3 Other Measures of Performance Beyond Accuracy
	14.2.4 The Kappa (κ) Statistic
	Summary of the Kappa Score for Calculating Prediction Accuracy

	14.2.5 Computation of Observed Accuracy and Expected Accuracy
	14.2.6 Sensitivity and Specificity
	14.2.7 Precision and Recall
	14.2.8 The F-Measure

	14.3 Visualizing Performance Tradeoffs (ROC Curve)
	14.4 Estimating Future Performance (Internal Statistical Validation)
	14.4.1 The Holdout Method
	14.4.2 Cross-Validation
	14.4.3 Bootstrap Sampling

	14.5 Assignment: 14. Evaluation of Model Performance
	References

	Chapter 15: Improving Model Performance
	15.1 Improving Model Performance by Parameter Tuning
	15.2 Using caret for Automated Parameter Tuning
	15.2.1 Customizing the Tuning Process
	15.2.2 Improving Model Performance with Meta-learning
	15.2.3 Bagging
	15.2.4 Boosting
	15.2.5 Random Forests
	Training Random Forests
	Evaluating Random Forest Performance

	15.2.6 Adaptive Boosting

	15.3 Assignment: 15. Improving Model Performance
	15.3.1 Model Improvement Case Study

	References

	Chapter 16: Specialized Machine Learning Topics
	16.1 Working with Specialized Data and Databases
	16.1.1 Data Format Conversion
	16.1.2 Querying Data in SQL Databases
	16.1.3 Real Random Number Generation
	16.1.4 Downloading the Complete Text of Web Pages
	16.1.5 Reading and Writing XML with the XML Package
	16.1.6 Web-Page Data Scraping
	16.1.7 Parsing JSON from Web APIs
	16.1.8 Reading and Writing Microsoft Excel Spreadsheets Using XLSX

	16.2 Working with Domain-Specific Data
	16.2.1 Working with Bioinformatics Data
	16.2.2 Visualizing Network Data

	16.3 Data Streaming
	16.3.1 Definition
	16.3.2 The stream Package
	16.3.3 Synthetic Example: Random Gaussian Stream
	k-Means Clustering

	16.3.4 Sources of Data Streams
	Static Structure Streams
	Concept Drift Streams
	Real Data Streams

	16.3.5 Printing, Plotting and Saving Streams
	16.3.6 Stream Animation
	16.3.7 Case-Study: SOCR Knee Pain Data
	16.3.8 Data Stream Clustering and Classification (DSC)
	16.3.9 Evaluation of Data Stream Clustering

	16.4 Optimization and Improving the Computational Performance
	16.4.1 Generalizing Tabular Data Structures with dplyr
	16.4.2 Making Data Frames Faster with Data.Table
	16.4.3 Creating Disk-Based Data Frames with ff
	16.4.4 Using Massive Matrices with bigmemory

	16.5 Parallel Computing
	16.5.1 Measuring Execution Time
	16.5.2 Parallel Processing with Multiple Cores
	16.5.3 Parallelization Using foreach and doParallel
	16.5.4 GPU Computing

	16.6 Deploying Optimized Learning Algorithms
	16.6.1 Building Bigger Regression Models with biglm
	16.6.2 Growing Bigger and Faster Random Forests with bigrf
	16.6.3 Training and Evaluation Models in Parallel with caret

	16.7 Practice Problem
	16.8 Assignment: 16. Specialized Machine Learning Topics
	16.8.1 Working with Website Data
	16.8.2 Network Data and Visualization
	16.8.3 Data Conversion and Parallel Computing

	References

	Chapter 17: Variable/Feature Selection
	17.1 Feature Selection Methods
	17.1.1 Filtering Techniques
	17.1.2 Wrapper Methods
	17.1.3 Embedded Techniques

	17.2 Case Study: ALS
	17.2.1 Step 1: Collecting Data
	17.2.2 Step 2: Exploring and Preparing the Data
	17.2.3 Step 3: Training a Model on the Data
	17.2.4 Step 4: Evaluating Model Performance
	Comparing with RFE
	Comparing with Stepwise Feature Selection

	17.3 Practice Problem
	17.4 Assignment: 17. Variable/Feature Selection
	17.4.1 Wrapper Feature Selection
	17.4.2 Use the PPMI Dataset

	References

	Chapter 18: Regularized Linear Modeling and Controlled Variable Selection
	18.1 Questions
	18.2 Matrix Notation
	18.3 Regularized Linear Modeling
	18.3.1 Ridge Regression
	18.3.2 Least Absolute Shrinkage and Selection Operator (LASSO) Regression
	18.3.3 Predictor Standardization
	18.3.4 Estimation Goals

	18.4 Linear Regression
	18.4.1 Drawbacks of Linear Regression
	18.4.2 Assessing Prediction Accuracy
	18.4.3 Estimating the Prediction Error
	18.4.4 Improving the Prediction Accuracy
	18.4.5 Variable Selection

	18.5 Regularization Framework
	18.5.1 Role of the Penalty Term
	18.5.2 Role of the Regularization Parameter
	18.5.3 LASSO
	18.5.4 General Regularization Framework

	18.6 Implementation of Regularization
	18.6.1 Example: Neuroimaging-Genetics Study of Parkinson´s Disease Dataset
	18.6.2 Computational Complexity
	18.6.3 LASSO and Ridge Solution Paths
	18.6.4 Choice of the Regularization Parameter
	18.6.5 Cross Validation Motivation
	18.6.6 n-Fold Cross Validation
	18.6.7 LASSO 10-Fold Cross Validation
	18.6.8 Stepwise OLS (Ordinary Least Squares)
	18.6.9 Final Models
	18.6.10 Model Performance
	18.6.11 Comparing Selected Features
	18.6.12 Summary

	18.7 Knock-off Filtering: Simulated Example
	18.7.1 Notes

	18.8 PD Neuroimaging-Genetics Case-Study
	18.8.1 Fetching, Cleaning and Preparing the Data
	18.8.2 Preparing the Response Vector
	18.8.3 False Discovery Rate (FDR)
	Graphical Interpretation of the Benjamini-Hochberg (BH) Method
	FDR Adjusting the p-Values

	18.8.4 Running the Knockoff Filter

	18.9 Assignment: 18. Regularized Linear Modeling and Knockoff Filtering
	References

	Chapter 19: Big Longitudinal Data Analysis
	19.1 Time Series Analysis
	19.1.1 Step 1: Plot Time Series
	19.1.2 Step 2: Find Proper Parameter Values for ARIMA Model
	19.1.3 Check the Differencing Parameter
	19.1.4 Identifying the AR and MA Parameters
	19.1.5 Step 3: Build an ARIMA Model
	19.1.6 Step 4: Forecasting with ARIMA Model

	19.2 Structural Equation Modeling (SEM)-Latent Variables
	19.2.1 Foundations of SEM
	19.2.2 SEM Components
	19.2.3 Case Study - Parkinson´s Disease (PD)
	Step 1 - Collecting Data
	Step 2 - Exploring and Preparing the Data
	Step 3 - Fitting a Model on the Data

	19.2.4 Outputs of Lavaan SEM

	19.3 Longitudinal Data Analysis-Linear Mixed Models
	19.3.1 Mean Trend
	19.3.2 Modeling the Correlation

	19.4 GLMM/GEE Longitudinal Data Analysis
	19.4.1 GEE Versus GLMM

	19.5 Assignment: 19. Big Longitudinal Data Analysis
	19.5.1 Imaging Data
	19.5.2 Time Series Analysis
	19.5.3 Latent Variables Model

	References

	Chapter 20: Natural Language Processing/Text Mining
	20.1 A Simple NLP/TM Example
	20.1.1 Define and Load the Unstructured-Text Documents
	20.1.2 Create a New VCorpus Object
	20.1.3 To-Lower Case Transformation
	20.1.4 Text Pre-processing
	Remove Stopwords
	Remove Punctuation
	Stemming: Removal of Plurals and Action Suffixes

	20.1.5 Bags of Words
	20.1.6 Document Term Matrix

	20.2 Case-Study: Job Ranking
	20.2.1 Step 1: Make a VCorpus Object
	20.2.2 Step 2: Clean the VCorpus Object
	20.2.3 Step 3: Build the Document Term Matrix
	20.2.4 Area Under the ROC Curve

	20.3 TF-IDF
	20.3.1 Term Frequency (TF)
	20.3.2 Inverse Document Frequency (IDF)
	20.3.3 TF-IDF

	20.4 Cosine Similarity
	20.5 Sentiment Analysis
	20.5.1 Data Preprocessing
	20.5.2 NLP/TM Analytics
	20.5.3 Prediction Optimization

	20.6 Assignment: 20. Natural Language Processing/Text Mining
	20.6.1 Mining Twitter Data
	20.6.2 Mining Cancer Clinical Notes

	References

	Chapter 21: Prediction and Internal Statistical Cross Validation
	21.1 Forecasting Types and Assessment Approaches
	21.2 Overfitting
	21.2.1 Example (US Presidential Elections)
	21.2.2 Example (Google Flu Trends)
	21.2.3 Example (Autism)

	21.3 Internal Statistical Cross-Validation is an Iterative Process
	21.4 Example (Linear Regression)
	21.4.1 Cross-Validation Methods
	21.4.2 Exhaustive Cross-Validation
	21.4.3 Non-Exhaustive Cross-Validation

	21.5 Case-Studies
	21.5.1 Example 1: Prediction of Parkinson´s Disease Using Adaptive Boosting (AdaBoost)
	21.5.2 Example 2: Sleep Dataset
	21.5.3 Example 3: Model-Based (Linear Regression) Prediction Using the Attitude Dataset
	21.5.4 Example 4: Parkinson´s Data (ppmi_data)

	21.6 Summary of CV output
	21.7 Alternative Predictor Functions
	21.7.1 Logistic Regression
	21.7.2 Quadratic Discriminant Analysis (QDA)
	21.7.3 Foundation of LDA and QDA for Prediction, Dimensionality Reduction, and Forecasting
	LDA (Linear Discriminant Analysis)
	QDA (Quadratic Discriminant Analysis)

	21.7.4 Neural Networks
	21.7.5 SVM
	21.7.6 k-Nearest Neighbors Algorithm (k-NN)
	21.7.7 k-Means Clustering (k-MC)
	21.7.8 Spectral Clustering
	Iris Petal Data
	Spirals Data
	Income Data

	21.8 Compare the Results
	21.9 Assignment: 21. Prediction and Internal Statistical Cross-Validation
	References

	Chapter 22: Function Optimization
	22.1 Free (Unconstrained) Optimization
	22.1.1 Example 1: Minimizing a Univariate Function (Inverse-CDF)
	22.1.2 Example 2: Minimizing a Bivariate Function
	22.1.3 Example 3: Using Simulated Annealing to Find the Maximum of an Oscillatory Function

	22.2 Constrained Optimization
	22.2.1 Equality Constraints
	22.2.2 Lagrange Multipliers
	22.2.3 Inequality Constrained Optimization
	Linear Programming (LP)
	Mixed Integer Linear Programming (MILP)

	22.2.4 Quadratic Programming (QP)

	22.3 General Non-linear Optimization
	22.3.1 Dual Problem Optimization
	Motivation
	Example 1: Linear Example
	Example 2: Quadratic Example
	Example 3: More Complex Non-linear Optimization
	Example 4: Another Linear Example

	22.4 Manual Versus Automated Lagrange Multiplier Optimization
	22.5 Data Denoising
	22.6 Assignment: 22. Function Optimization
	22.6.1 Unconstrained Optimization
	22.6.2 Linear Programming (LP)
	22.6.3 Mixed Integer Linear Programming (MILP)
	22.6.4 Quadratic Programming (QP)
	22.6.5 Complex Non-linear Optimization
	22.6.6 Data Denoising

	References

	Chapter 23: Deep Learning, Neural Networks
	23.1 Deep Learning Training
	23.1.1 Perceptrons

	23.2 Biological Relevance
	23.3 Simple Neural Net Examples
	23.3.1 Exclusive OR (XOR) Operator
	23.3.2 NAND Operator
	23.3.3 Complex Networks Designed Using Simple Building Blocks

	23.4 Classification
	23.4.1 Sonar Data Example
	23.4.2 MXNet Notes

	23.5 Case-Studies
	23.5.1 ALS Regression Example
	23.5.2 Spirals 2D Data
	23.5.3 IBS Study
	23.5.4 Country QoL Ranking Data
	23.5.5 Handwritten Digits Classification
	Configuring the Neural Network
	Training
	Forecasting
	Examining the Network Structure Using LeNet

	23.6 Classifying Real-World Images
	23.6.1 Load the Pre-trained Model
	23.6.2 Load, Preprocess and Classify New Images - US Weather Pattern
	23.6.3 Lake Mapourika, New Zealand
	23.6.4 Beach Image
	23.6.5 Volcano
	23.6.6 Brain Surface
	23.6.7 Face Mask

	23.7 Assignment: 23. Deep Learning, Neural Networks
	23.7.1 Deep Learning Classification
	23.7.2 Deep Learning Regression
	23.7.3 Image Classification

	References

	Summary
	Glossary

