
Neural
Networks and
Deep Learning

Charu C. Aggarwal

A Textbook

Neural Networks and Deep Learning

Charu C. Aggarwal

Neural Networks and Deep
Learning

A Textbook

123

Charu C. Aggarwal
IBM T. J. Watson Research Center
International Business Machines
Yorktown Heights, NY, USA

ISBN 978-3-319-94462-3 ISBN 978-3-319-94463-0 (eBook)
https://doi.org/10.1007/978-3-319-94463-0

Library of Congress Control Number: 2018947636

c© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be
true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher
remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-94463-0

To my wife Lata, my daughter Sayani,
and my late parents Dr. Prem Sarup and Mrs. Pushplata Aggarwal.

Preface

“Any A.I. smart enough to pass a Turing test is smart enough to know to fail
it.”—Ian McDonald

Neural networks were developed to simulate the human nervous system for machine
learning tasks by treating the computational units in a learning model in a manner similar
to human neurons. The grand vision of neural networks is to create artificial intelligence
by building machines whose architecture simulates the computations in the human ner-
vous system. This is obviously not a simple task because the computational power of the
fastest computer today is a minuscule fraction of the computational power of a human
brain. Neural networks were developed soon after the advent of computers in the fifties and
sixties. Rosenblatt’s perceptron algorithm was seen as a fundamental cornerstone of neural
networks, which caused an initial excitement about the prospects of artificial intelligence.
However, after the initial euphoria, there was a period of disappointment in which the data
hungry and computationally intensive nature of neural networks was seen as an impediment
to their usability. Eventually, at the turn of the century, greater data availability and in-
creasing computational power lead to increased successes of neural networks, and this area
was reborn under the new label of “deep learning.” Although we are still far from the day
that artificial intelligence (AI) is close to human performance, there are specific domains
like image recognition, self-driving cars, and game playing, where AI has matched or ex-
ceeded human performance. It is also hard to predict what AI might be able to do in the
future. For example, few computer vision experts would have thought two decades ago that
any automated system could ever perform an intuitive task like categorizing an image more
accurately than a human.

Neural networks are theoretically capable of learning any mathematical function with
sufficient training data, and some variants like recurrent neural networks are known to be
Turing complete. Turing completeness refers to the fact that a neural network can simulate
any learning algorithm, given sufficient training data. The sticking point is that the amount
of data required to learn even simple tasks is often extraordinarily large, which causes a
corresponding increase in training time (if we assume that enough training data is available
in the first place). For example, the training time for image recognition, which is a simple
task for a human, can be on the order of weeks even on high-performance systems. Fur-
thermore, there are practical issues associated with the stability of neural network training,
which are being resolved even today. Nevertheless, given that the speed of computers is

VII

VIII PREFACE

expected to increase rapidly over time, and fundamentally more powerful paradigms like
quantum computing are on the horizon, the computational issue might not eventually turn
out to be quite as critical as imagined.

Although the biological analogy of neural networks is an exciting one and evokes com-
parisons with science fiction, the mathematical understanding of neural networks is a more
mundane one. The neural network abstraction can be viewed as a modular approach of
enabling learning algorithms that are based on continuous optimization on a computational
graph of dependencies between the input and output. To be fair, this is not very different
from traditional work in control theory; indeed, some of the methods used for optimization
in control theory are strikingly similar to (and historically preceded) the most fundamental
algorithms in neural networks. However, the large amounts of data available in recent years
together with increased computational power have enabled experimentation with deeper
architectures of these computational graphs than was previously possible. The resulting
success has changed the broader perception of the potential of deep learning.

The chapters of the book are organized as follows:

1. The basics of neural networks: Chapter 1 discusses the basics of neural network design.
Many traditional machine learning models can be understood as special cases of neural
learning. Understanding the relationship between traditional machine learning and
neural networks is the first step to understanding the latter. The simulation of various
machine learning models with neural networks is provided in Chapter 2. This will give
the analyst a feel of how neural networks push the envelope of traditional machine
learning algorithms.

2. Fundamentals of neural networks: Although Chapters 1 and 2 provide an overview
of the training methods for neural networks, a more detailed understanding of the
training challenges is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-
basis function (RBF) networks and restricted Boltzmann machines.

3. Advanced topics in neural networks: A lot of the recent success of deep learning is a
result of the specialized architectures for various domains, such as recurrent neural
networks and convolutional neural networks. Chapters 7 and 8 discuss recurrent and
convolutional neural networks. Several advanced topics like deep reinforcement learn-
ing, neural Turing mechanisms, and generative adversarial networks are discussed in
Chapters 9 and 10.

We have taken care to include some of the “forgotten” architectures like RBF networks
and Kohonen self-organizing maps because of their potential in many applications. The
book is written for graduate students, researchers, and practitioners. Numerous exercises
are available along with a solution manual to aid in classroom teaching. Where possible, an
application-centric view is highlighted in order to give the reader a feel for the technology.

Throughout this book, a vector or a multidimensional data point is annotated with a bar,
such as X or y. A vector or multidimensional point may be denoted by either small letters
or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots,
such as X · Y . A matrix is denoted in capital letters without a bar, such as R. Throughout
the book, the n × d matrix corresponding to the entire training data set is denoted by
D, with n documents and d dimensions. The individual data points in D are therefore
d-dimensional row vectors. On the other hand, vectors with one component for each data

PREFACE IX

point are usually n-dimensional column vectors. An example is the n-dimensional column
vector y of class variables of n data points. An observed value yi is distinguished from a
predicted value ŷi by a circumflex at the top of the variable.

Yorktown Heights, NY, USA Charu C. Aggarwal

Acknowledgments

I would like to thank my family for their love and support during the busy time spent
in writing this book. I would also like to thank my manager Nagui Halim for his support
during the writing of this book.

Several figures in this book have been provided by the courtesy of various individuals
and institutions. The Smithsonian Institution made the image of the Mark I perceptron
(cf. Figure 1.5) available at no cost. Saket Sathe provided the outputs in Chapter 7 for
the tiny Shakespeare data set, based on code available/described in [233, 580]. Andrew
Zisserman provided Figures 8.12 and 8.16 in the section on convolutional visualizations.
Another visualization of the feature maps in the convolution network (cf. Figure 8.15) was
provided by Matthew Zeiler. NVIDIA provided Figure 9.10 on the convolutional neural
network for self-driving cars in Chapter 9, and Sergey Levine provided the image on self-
learning robots (cf. Figure 9.9) in the same chapter. Alec Radford provided Figure 10.8,
which appears in Chapter 10. Alex Krizhevsky provided Figure 8.9(b) containing AlexNet.

This book has benefitted from significant feedback and several collaborations that I have
had with numerous colleagues over the years. I would like to thank Quoc Le, Saket Sathe,
Karthik Subbian, Jiliang Tang, and Suhang Wang for their feedback on various portions of
this book. Shuai Zheng provided feedbback on the section on regularized autoencoders in
Chapter 4. I received feedback on the sections on autoencoders from Lei Cai and Hao Yuan.
Feedback on the chapter on convolutional neural networks was provided by Hongyang Gao,
Shuiwang Ji, and Zhengyang Wang. Shuiwang Ji, Lei Cai, Zhengyang Wang and Hao Yuan
also reviewed the Chapters 3 and 7, and suggested several edits. They also suggested the
ideas of using Figures 8.6 and 8.7 for elucidating the convolution/deconvolution operations.

For their collaborations, I would like to thank Tarek F. Abdelzaher, Jinghui Chen, Jing
Gao, Quanquan Gu, Manish Gupta, Jiawei Han, Alexander Hinneburg, Thomas Huang,
Nan Li, Huan Liu, Ruoming Jin, Daniel Keim, Arijit Khan, Latifur Khan, Mohammad M.
Masud, Jian Pei, Magda Procopiuc, Guojun Qi, Chandan Reddy, Saket Sathe, Jaideep Sri-
vastava, Karthik Subbian, Yizhou Sun, Jiliang Tang, Min-Hsuan Tsai, Haixun Wang, Jiany-
ong Wang, Min Wang, Suhang Wang, Joel Wolf, Xifeng Yan, Mohammed Zaki, ChengXiang
Zhai, and Peixiang Zhao. I would also like to thank my advisor James B. Orlin for his guid-
ance during my early years as a researcher.

XI

XII ACKNOWLEDGMENTS

I would like to thank Lata Aggarwal for helping me with some of the figures created
using PowerPoint graphics in this book. My daughter, Sayani, was helpful in incorporating
special effects (e.g., image color, contrast, and blurring) in several JPEG images used at
various places in this book.

Contents

1 An Introduction to Neural Networks 1
1.1 Introduction . 1

1.1.1 Humans Versus Computers: Stretching the Limits
of Artificial Intelligence . 3

1.2 The Basic Architecture of Neural Networks 4
1.2.1 Single Computational Layer: The Perceptron 5

1.2.1.1 What Objective Function Is the Perceptron Optimizing? . 8
1.2.1.2 Relationship with Support Vector Machines 10
1.2.1.3 Choice of Activation and Loss Functions 11
1.2.1.4 Choice and Number of Output Nodes 14
1.2.1.5 Choice of Loss Function . 14
1.2.1.6 Some Useful Derivatives of Activation Functions 16

1.2.2 Multilayer Neural Networks . 17
1.2.3 The Multilayer Network as a Computational Graph 20

1.3 Training a Neural Network with Backpropagation 21
1.4 Practical Issues in Neural Network Training 24

1.4.1 The Problem of Overfitting . 25
1.4.1.1 Regularization . 26
1.4.1.2 Neural Architecture and Parameter Sharing 27
1.4.1.3 Early Stopping . 27
1.4.1.4 Trading Off Breadth for Depth 27
1.4.1.5 Ensemble Methods . 28

1.4.2 The Vanishing and Exploding Gradient Problems 28
1.4.3 Difficulties in Convergence . 29
1.4.4 Local and Spurious Optima . 29
1.4.5 Computational Challenges . 29

1.5 The Secrets to the Power of Function Composition 30
1.5.1 The Importance of Nonlinear Activation 32
1.5.2 Reducing Parameter Requirements with Depth 34
1.5.3 Unconventional Neural Architectures 35

1.5.3.1 Blurring the Distinctions Between Input, Hidden,
and Output Layers . 35

1.5.3.2 Unconventional Operations and Sum-Product Networks . . 36

XIII

XIV CONTENTS

1.6 Common Neural Architectures . 37
1.6.1 Simulating Basic Machine Learning with Shallow Models 37
1.6.2 Radial Basis Function Networks . 37
1.6.3 Restricted Boltzmann Machines . 38
1.6.4 Recurrent Neural Networks . 38
1.6.5 Convolutional Neural Networks . 40
1.6.6 Hierarchical Feature Engineering and Pretrained Models 42

1.7 Advanced Topics . 44
1.7.1 Reinforcement Learning . 44
1.7.2 Separating Data Storage and Computations 45
1.7.3 Generative Adversarial Networks . 45

1.8 Two Notable Benchmarks . 46
1.8.1 The MNIST Database of Handwritten Digits 46
1.8.2 The ImageNet Database . 47

1.9 Summary . 48
1.10 Bibliographic Notes . 48

1.10.1 Video Lectures . 50
1.10.2 Software Resources . 50

1.11 Exercises . 51

2 Machine Learning with Shallow Neural Networks 53
2.1 Introduction . 53
2.2 Neural Architectures for Binary Classification Models 55

2.2.1 Revisiting the Perceptron . 56
2.2.2 Least-Squares Regression . 58

2.2.2.1 Widrow-Hoff Learning . 59
2.2.2.2 Closed Form Solutions . 61

2.2.3 Logistic Regression . 61
2.2.3.1 Alternative Choices of Activation and Loss 63

2.2.4 Support Vector Machines . 63
2.3 Neural Architectures for Multiclass Models 65

2.3.1 Multiclass Perceptron . 65
2.3.2 Weston-Watkins SVM . 67
2.3.3 Multinomial Logistic Regression (Softmax Classifier) 68
2.3.4 Hierarchical Softmax for Many Classes 69

2.4 Backpropagated Saliency for Feature Selection 70
2.5 Matrix Factorization with Autoencoders . 70

2.5.1 Autoencoder: Basic Principles . 71
2.5.1.1 Autoencoder with a Single Hidden Layer 72
2.5.1.2 Connections with Singular Value Decomposition 74
2.5.1.3 Sharing Weights in Encoder and Decoder 74
2.5.1.4 Other Matrix Factorization Methods 76

2.5.2 Nonlinear Activations . 76
2.5.3 Deep Autoencoders . 78
2.5.4 Application to Outlier Detection . 80
2.5.5 When the Hidden Layer Is Broader than the Input Layer 81

2.5.5.1 Sparse Feature Learning . 81
2.5.6 Other Applications . 82

CONTENTS XV

2.5.7 Recommender Systems: Row Index to Row Value Prediction 83
2.5.8 Discussion . 86

2.6 Word2vec: An Application of Simple Neural Architectures 87
2.6.1 Neural Embedding with Continuous Bag of Words 87
2.6.2 Neural Embedding with Skip-Gram Model 90
2.6.3 Word2vec (SGNS) Is Logistic Matrix Factorization 95
2.6.4 Vanilla Skip-Gram Is Multinomial Matrix Factorization 98

2.7 Simple Neural Architectures for Graph Embeddings 98
2.7.1 Handling Arbitrary Edge Counts . 100
2.7.2 Multinomial Model . 100
2.7.3 Connections with DeepWalk and Node2vec 100

2.8 Summary . 101
2.9 Bibliographic Notes . 101

2.9.1 Software Resources . 102
2.10 Exercises . 103

3 Training Deep Neural Networks 105
3.1 Introduction . 105
3.2 Backpropagation: The Gory Details . 107

3.2.1 Backpropagation with the Computational Graph Abstraction 107
3.2.2 Dynamic Programming to the Rescue 111
3.2.3 Backpropagation with Post-Activation Variables 113
3.2.4 Backpropagation with Pre-activation Variables 115
3.2.5 Examples of Updates for Various Activations 117

3.2.5.1 The Special Case of Softmax 117
3.2.6 A Decoupled View of Vector-Centric Backpropagation 118
3.2.7 Loss Functions on Multiple Output Nodes and Hidden Nodes 121
3.2.8 Mini-Batch Stochastic Gradient Descent 121
3.2.9 Backpropagation Tricks for Handling Shared Weights 123
3.2.10 Checking the Correctness of Gradient Computation 124

3.3 Setup and Initialization Issues . 125
3.3.1 Tuning Hyperparameters . 125
3.3.2 Feature Preprocessing . 126
3.3.3 Initialization . 128

3.4 The Vanishing and Exploding Gradient Problems 129
3.4.1 Geometric Understanding of the Effect of Gradient Ratios 130
3.4.2 A Partial Fix with Activation Function Choice 133
3.4.3 Dying Neurons and “Brain Damage” 133

3.4.3.1 Leaky ReLU . 133
3.4.3.2 Maxout . 134

3.5 Gradient-Descent Strategies . 134
3.5.1 Learning Rate Decay . 135
3.5.2 Momentum-Based Learning . 136

3.5.2.1 Nesterov Momentum . 137
3.5.3 Parameter-Specific Learning Rates 137

3.5.3.1 AdaGrad . 138
3.5.3.2 RMSProp . 138
3.5.3.3 RMSProp with Nesterov Momentum 139

XVI CONTENTS

3.5.3.4 AdaDelta . 139
3.5.3.5 Adam . 140

3.5.4 Cliffs and Higher-Order Instability 141
3.5.5 Gradient Clipping . 142
3.5.6 Second-Order Derivatives . 143

3.5.6.1 Conjugate Gradients and Hessian-Free Optimization 145
3.5.6.2 Quasi-Newton Methods and BFGS 148
3.5.6.3 Problems with Second-Order Methods: Saddle Points . . . 149

3.5.7 Polyak Averaging . 151
3.5.8 Local and Spurious Minima . 151

3.6 Batch Normalization . 152
3.7 Practical Tricks for Acceleration and Compression 156

3.7.1 GPU Acceleration . 157
3.7.2 Parallel and Distributed Implementations 158
3.7.3 Algorithmic Tricks for Model Compression 160

3.8 Summary . 163
3.9 Bibliographic Notes . 163

3.9.1 Software Resources . 165
3.10 Exercises . 165

4 Teaching Deep Learners to Generalize 169
4.1 Introduction . 169
4.2 The Bias-Variance Trade-Off . 174

4.2.1 Formal View . 175
4.3 Generalization Issues in Model Tuning and Evaluation 178

4.3.1 Evaluating with Hold-Out and Cross-Validation 179
4.3.2 Issues with Training at Scale . 180
4.3.3 How to Detect Need to Collect More Data 181

4.4 Penalty-Based Regularization . 181
4.4.1 Connections with Noise Injection . 182
4.4.2 L1-Regularization . 183
4.4.3 L1- or L2-Regularization? . 184
4.4.4 Penalizing Hidden Units: Learning Sparse Representations 185

4.5 Ensemble Methods . 186
4.5.1 Bagging and Subsampling . 186
4.5.2 Parametric Model Selection and Averaging 187
4.5.3 Randomized Connection Dropping 188
4.5.4 Dropout . 188
4.5.5 Data Perturbation Ensembles . 191

4.6 Early Stopping . 192
4.6.1 Understanding Early Stopping from the Variance Perspective 192

4.7 Unsupervised Pretraining . 193
4.7.1 Variations of Unsupervised Pretraining 197
4.7.2 What About Supervised Pretraining? 197

4.8 Continuation and Curriculum Learning . 199
4.8.1 Continuation Learning . 199
4.8.2 Curriculum Learning . 200

4.9 Parameter Sharing . 200

CONTENTS XVII

4.10 Regularization in Unsupervised Applications 201
4.10.1 Value-Based Penalization: Sparse Autoencoders 202
4.10.2 Noise Injection: De-noising Autoencoders 202
4.10.3 Gradient-Based Penalization: Contractive Autoencoders 204
4.10.4 Hidden Probabilistic Structure: Variational Autoencoders 207

4.10.4.1 Reconstruction and Generative Sampling 210
4.10.4.2 Conditional Variational Autoencoders 212
4.10.4.3 Relationship with Generative Adversarial Networks 213

4.11 Summary . 213
4.12 Bibliographic Notes . 214

4.12.1 Software Resources . 215
4.13 Exercises . 215

5 Radial Basis Function Networks 217
5.1 Introduction . 217
5.2 Training an RBF Network . 220

5.2.1 Training the Hidden Layer . 221
5.2.2 Training the Output Layer . 222

5.2.2.1 Expression with Pseudo-Inverse 224
5.2.3 Orthogonal Least-Squares Algorithm 224
5.2.4 Fully Supervised Learning . 225

5.3 Variations and Special Cases of RBF Networks 226
5.3.1 Classification with Perceptron Criterion 226
5.3.2 Classification with Hinge Loss . 227
5.3.3 Example of Linear Separability Promoted by RBF 227
5.3.4 Application to Interpolation . 228

5.4 Relationship with Kernel Methods . 229
5.4.1 Kernel Regression as a Special Case of RBF Networks 229
5.4.2 Kernel SVM as a Special Case of RBF Networks 230
5.4.3 Observations . 231

5.5 Summary . 231
5.6 Bibliographic Notes . 232
5.7 Exercises . 232

6 Restricted Boltzmann Machines 235
6.1 Introduction . 235

6.1.1 Historical Perspective . 236
6.2 Hopfield Networks . 237

6.2.1 Optimal State Configurations of a Trained Network 238
6.2.2 Training a Hopfield Network . 240
6.2.3 Building a Toy Recommender and Its Limitations 241
6.2.4 Increasing the Expressive Power of the Hopfield Network 242

6.3 The Boltzmann Machine . 243
6.3.1 How a Boltzmann Machine Generates Data 244
6.3.2 Learning the Weights of a Boltzmann Machine 245

6.4 Restricted Boltzmann Machines . 247
6.4.1 Training the RBM . 249
6.4.2 Contrastive Divergence Algorithm 250
6.4.3 Practical Issues and Improvisations 251

XVIII CONTENTS

6.5 Applications of Restricted Boltzmann Machines 251

6.5.1 Dimensionality Reduction and Data Reconstruction 252

6.5.2 RBMs for Collaborative Filtering . 254

6.5.3 Using RBMs for Classification . 257

6.5.4 Topic Models with RBMs . 260

6.5.5 RBMs for Machine Learning with Multimodal Data 262

6.6 Using RBMs Beyond Binary Data Types . 263

6.7 Stacking Restricted Boltzmann Machines 264

6.7.1 Unsupervised Learning . 266

6.7.2 Supervised Learning . 267

6.7.3 Deep Boltzmann Machines and Deep Belief Networks 267

6.8 Summary . 268

6.9 Bibliographic Notes . 268

6.10 Exercises . 270

7 Recurrent Neural Networks 271

7.1 Introduction . 271

7.1.1 Expressiveness of Recurrent Networks 274

7.2 The Architecture of Recurrent Neural Networks 274

7.2.1 Language Modeling Example of RNN 277

7.2.1.1 Generating a Language Sample 278

7.2.2 Backpropagation Through Time . 280

7.2.3 Bidirectional Recurrent Networks . 283

7.2.4 Multilayer Recurrent Networks . 284

7.3 The Challenges of Training Recurrent Networks 286

7.3.1 Layer Normalization . 289

7.4 Echo-State Networks . 290

7.5 Long Short-Term Memory (LSTM) . 292

7.6 Gated Recurrent Units (GRUs) . 295

7.7 Applications of Recurrent Neural Networks 297

7.7.1 Application to Automatic Image Captioning 298

7.7.2 Sequence-to-Sequence Learning and Machine Translation 299

7.7.2.1 Question-Answering Systems 301

7.7.3 Application to Sentence-Level Classification 303

7.7.4 Token-Level Classification with Linguistic Features 304

7.7.5 Time-Series Forecasting and Prediction 305

7.7.6 Temporal Recommender Systems . 307

7.7.7 Secondary Protein Structure Prediction 309

7.7.8 End-to-End Speech Recognition . 309

7.7.9 Handwriting Recognition . 309

7.8 Summary . 310

7.9 Bibliographic Notes . 310

7.9.1 Software Resources . 311

7.10 Exercises . 312

CONTENTS XIX

8 Convolutional Neural Networks 315
8.1 Introduction . 315

8.1.1 Historical Perspective and Biological Inspiration 316
8.1.2 Broader Observations About Convolutional Neural Networks 317

8.2 The Basic Structure of a Convolutional Network 318
8.2.1 Padding . 322
8.2.2 Strides . 324
8.2.3 Typical Settings . 324
8.2.4 The ReLU Layer . 325
8.2.5 Pooling . 326
8.2.6 Fully Connected Layers . 327
8.2.7 The Interleaving Between Layers . 328
8.2.8 Local Response Normalization . 330
8.2.9 Hierarchical Feature Engineering . 331

8.3 Training a Convolutional Network . 332
8.3.1 Backpropagating Through Convolutions 333
8.3.2 Backpropagation as Convolution with Inverted/Transposed Filter . . 334
8.3.3 Convolution/Backpropagation as Matrix Multiplications 335
8.3.4 Data Augmentation . 337

8.4 Case Studies of Convolutional Architectures 338
8.4.1 AlexNet . 339
8.4.2 ZFNet . 341
8.4.3 VGG . 342
8.4.4 GoogLeNet . 345
8.4.5 ResNet . 347
8.4.6 The Effects of Depth . 350
8.4.7 Pretrained Models . 351

8.5 Visualization and Unsupervised Learning 352
8.5.1 Visualizing the Features of a Trained Network 353
8.5.2 Convolutional Autoencoders . 357

8.6 Applications of Convolutional Networks . 363
8.6.1 Content-Based Image Retrieval . 363
8.6.2 Object Localization . 364
8.6.3 Object Detection . 365
8.6.4 Natural Language and Sequence Learning 366
8.6.5 Video Classification . 367

8.7 Summary . 368
8.8 Bibliographic Notes . 368

8.8.1 Software Resources and Data Sets 370
8.9 Exercises . 371

9 Deep Reinforcement Learning 373
9.1 Introduction . 373
9.2 Stateless Algorithms: Multi-Armed Bandits 375

9.2.1 Näıve Algorithm . 376
9.2.2 ǫ-Greedy Algorithm . 376
9.2.3 Upper Bounding Methods . 376

9.3 The Basic Framework of Reinforcement Learning 377
9.3.1 Challenges of Reinforcement Learning 379

XX CONTENTS

9.3.2 Simple Reinforcement Learning for Tic-Tac-Toe 380
9.3.3 Role of Deep Learning and a Straw-Man Algorithm 380

9.4 Bootstrapping for Value Function Learning 383
9.4.1 Deep Learning Models as Function Approximators 384
9.4.2 Example: Neural Network for Atari Setting 386
9.4.3 On-Policy Versus Off-Policy Methods: SARSA 387
9.4.4 Modeling States Versus State-Action Pairs 389

9.5 Policy Gradient Methods . 391
9.5.1 Finite Difference Methods . 392
9.5.2 Likelihood Ratio Methods . 393
9.5.3 Combining Supervised Learning with Policy Gradients 395
9.5.4 Actor-Critic Methods . 395
9.5.5 Continuous Action Spaces . 397
9.5.6 Advantages and Disadvantages of Policy Gradients 397

9.6 Monte Carlo Tree Search . 398
9.7 Case Studies . 399

9.7.1 AlphaGo: Championship Level Play at Go 399
9.7.1.1 Alpha Zero: Enhancements to Zero Human Knowledge . . 402

9.7.2 Self-Learning Robots . 404
9.7.2.1 Deep Learning of Locomotion Skills 404
9.7.2.2 Deep Learning of Visuomotor Skills 406

9.7.3 Building Conversational Systems: Deep Learning for Chatbots . . . 407
9.7.4 Self-Driving Cars . 410
9.7.5 Inferring Neural Architectures with Reinforcement Learning 412

9.8 Practical Challenges Associated with Safety 413
9.9 Summary . 414
9.10 Bibliographic Notes . 414

9.10.1 Software Resources and Testbeds . 416
9.11 Exercises . 416

10 Advanced Topics in Deep Learning 419
10.1 Introduction . 419
10.2 Attention Mechanisms . 421

10.2.1 Recurrent Models of Visual Attention 422
10.2.1.1 Application to Image Captioning 424

10.2.2 Attention Mechanisms for Machine Translation 425
10.3 Neural Networks with External Memory . 429

10.3.1 A Fantasy Video Game: Sorting by Example 430
10.3.1.1 Implementing Swaps with Memory Operations 431

10.3.2 Neural Turing Machines . 432
10.3.3 Differentiable Neural Computer: A Brief Overview 437

10.4 Generative Adversarial Networks (GANs) 438
10.4.1 Training a Generative Adversarial Network 439
10.4.2 Comparison with Variational Autoencoder 442
10.4.3 Using GANs for Generating Image Data 442
10.4.4 Conditional Generative Adversarial Networks 444

10.5 Competitive Learning . 449
10.5.1 Vector Quantization . 450
10.5.2 Kohonen Self-Organizing Map . 450

CONTENTS XXI

10.6 Limitations of Neural Networks . 453
10.6.1 An Aspirational Goal: One-Shot Learning 453
10.6.2 An Aspirational Goal: Energy-Efficient Learning 455

10.7 Summary . 456
10.8 Bibliographic Notes . 457

10.8.1 Software Resources . 458
10.9 Exercises . 458

Bibliography 459

Index 493

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM
T. J. Watson Research Center in Yorktown Heights, New York. He completed his under-
graduate degree in Computer Science from the Indian Institute of Technology at Kan-
pur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.

He has worked extensively in the field of data mining. He has pub-
lished more than 350 papers in refereed conferences and journals
and authored over 80 patents. He is the author or editor of 18
books, including textbooks on data mining, recommender systems,
and outlier analysis. Because of the commercial value of his patents,
he has thrice been designated a Master Inventor at IBM. He is a
recipient of an IBM Corporate Award (2003) for his work on bio-
terrorist threat detection in data streams, a recipient of the IBM
Outstanding Innovation Award (2008) for his scientific contribu-
tions to privacy technology, and a recipient of two IBM Outstanding

Technical Achievement Awards (2009, 2015) for his work on data streams/high-dimensional
data. He received the EDBT 2014 Test of Time Award for his work on condensation-based
privacy-preserving data mining. He is also a recipient of the IEEE ICDM Research Con-
tributions Award (2015), which is one of the two highest awards for influential research
contributions in the field of data mining.

He has served as the general co-chair of the IEEE Big Data Conference (2014) and as
the program co-chair of the ACM CIKM Conference (2015), the IEEE ICDM Conference
(2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE
Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate
editor of the IEEE Transactions on Big Data, an action editor of the Data Mining and
Knowledge Discovery Journal, and an associate editor of the Knowledge and Information
Systems Journal. He serves as the editor-in-chief of the ACM Transactions on Knowledge
Discovery from Data as well as the ACM SIGKDD Explorations. He serves on the advisory
board of the Lecture Notes on Social Networks, a publication by Springer. He has served as
the vice-president of the SIAM Activity Group on Data Mining and is a member of the SIAM
industry committee. He is a fellow of the SIAM, ACM, and the IEEE, for “contributions to
knowledge discovery and data mining algorithms.”

XXIII

Chapter 1

An Introduction to Neural Networks

“Thou shalt not make a machine to counterfeit a human mind.”—Frank Herbert

1.1 Introduction

Artificial neural networks are popular machine learning techniques that simulate the mech-
anism of learning in biological organisms. The human nervous system contains cells, which
are referred to as neurons. The neurons are connected to one another with the use of ax-
ons and dendrites, and the connecting regions between axons and dendrites are referred to
as synapses. These connections are illustrated in Figure 1.1(a). The strengths of synaptic
connections often change in response to external stimuli. This change is how learning takes
place in living organisms.

This biological mechanism is simulated in artificial neural networks, which contain com-
putation units that are referred to as neurons. Throughout this book, we will use the term
“neural networks” to refer to artificial neural networks rather than biological ones. The
computational units are connected to one another through weights, which serve the same

NEURON

w1

w2

w3

w4

AXON

DENDRITES WITH

SYNAPTIC WEIGHTS

w5

(a) Biological neural network (b) Artificial neural network

Figure 1.1: The synaptic connections between neurons. The image in (a) is from “The Brain:
Understanding Neurobiology Through the Study of Addiction [598].” Copyright c©2000 by
BSCS & Videodiscovery. All rights reserved. Used with permission.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_1&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_1

2 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

role as the strengths of synaptic connections in biological organisms. Each input to a neuron
is scaled with a weight, which affects the function computed at that unit. This architecture
is illustrated in Figure 1.1(b). An artificial neural network computes a function of the inputs
by propagating the computed values from the input neurons to the output neuron(s) and
using the weights as intermediate parameters. Learning occurs by changing the weights con-
necting the neurons. Just as external stimuli are needed for learning in biological organisms,
the external stimulus in artificial neural networks is provided by the training data contain-
ing examples of input-output pairs of the function to be learned. For example, the training
data might contain pixel representations of images (input) and their annotated labels (e.g.,
carrot, banana) as the output. These training data pairs are fed into the neural network by
using the input representations to make predictions about the output labels. The training
data provides feedback to the correctness of the weights in the neural network depending
on how well the predicted output (e.g., probability of carrot) for a particular input matches
the annotated output label in the training data. One can view the errors made by the neural
network in the computation of a function as a kind of unpleasant feedback in a biological
organism, leading to an adjustment in the synaptic strengths. Similarly, the weights between
neurons are adjusted in a neural network in response to prediction errors. The goal of chang-
ing the weights is to modify the computed function to make the predictions more correct in
future iterations. Therefore, the weights are changed carefully in a mathematically justified
way so as to reduce the error in computation on that example. By successively adjusting
the weights between neurons over many input-output pairs, the function computed by the
neural network is refined over time so that it provides more accurate predictions. Therefore,
if the neural network is trained with many different images of bananas, it will eventually
be able to properly recognize a banana in an image it has not seen before. This ability to
accurately compute functions of unseen inputs by training over a finite set of input-output
pairs is referred to as model generalization. The primary usefulness of all machine learning
models is gained from their ability to generalize their learning from seen training data to
unseen examples.

The biological comparison is often criticized as a very poor caricature of the workings
of the human brain; nevertheless, the principles of neuroscience have often been useful in
designing neural network architectures. A different view is that neural networks are built
as higher-level abstractions of the classical models that are commonly used in machine
learning. In fact, the most basic units of computation in the neural network are inspired by
traditional machine learning algorithms like least-squares regression and logistic regression.
Neural networks gain their power by putting together many such basic units, and learning
the weights of the different units jointly in order to minimize the prediction error. From
this point of view, a neural network can be viewed as a computational graph of elementary
units in which greater power is gained by connecting them in particular ways. When a
neural network is used in its most basic form, without hooking together multiple units, the
learning algorithms often reduce to classical machine learning models (see Chapter 2). The
real power of a neural model over classical methods is unleashed when these elementary
computational units are combined, and the weights of the elementary models are trained
using their dependencies on one another. By combining multiple units, one is increasing the
power of the model to learn more complicated functions of the data than are inherent in the
elementary models of basic machine learning. The way in which these units are combined
also plays a role in the power of the architecture, and requires some understanding and
insight from the analyst. Furthermore, sufficient training data is also required in order to
learn the larger number of weights in these expanded computational graphs.

1.1. INTRODUCTION 3

A
C

C
U

R
A

C
Y

AMOUNT OF DATA

DEEP LEARNING

CONVENTIONAL

MACHINE LEARNING

Figure 1.2: An illustrative comparison of the accuracy of a typical machine learning al-
gorithm with that of a large neural network. Deep learners become more attractive than
conventional methods primarily when sufficient data/computational power is available. Re-
cent years have seen an increase in data availability and computational power, which has
led to a “Cambrian explosion” in deep learning technology.

1.1.1 Humans Versus Computers: Stretching the Limits
of Artificial Intelligence

Humans and computers are inherently suited to different types of tasks. For example, com-
puting the cube root of a large number is very easy for a computer, but it is extremely
difficult for humans. On the other hand, a task such as recognizing the objects in an image
is a simple matter for a human, but has traditionally been very difficult for an automated
learning algorithm. It is only in recent years that deep learning has shown an accuracy on
some of these tasks that exceeds that of a human. In fact, the recent results by deep learning
algorithms that surpass human performance [184] in (some narrow tasks on) image recog-
nition would not have been considered likely by most computer vision experts as recently
as 10 years ago.

Many deep learning architectures that have shown such extraordinary performance are
not created by indiscriminately connecting computational units. The superior performance
of deep neural networks mirrors the fact that biological neural networks gain much of their
power from depth as well. Furthermore, biological networks are connected in ways we do not
fully understand. In the few cases that the biological structure is understood at some level,
significant breakthroughs have been achieved by designing artificial neural networks along
those lines. A classical example of this type of architecture is the use of the convolutional
neural network for image recognition. This architecture was inspired by Hubel and Wiesel’s
experiments [212] in 1959 on the organization of the neurons in the cat’s visual cortex. The
precursor to the convolutional neural network was the neocognitron [127], which was directly
based on these results.

The human neuronal connection structure has evolved over millions of years to optimize
survival-driven performance; survival is closely related to our ability to merge sensation and
intuition in a way that is currently not possible with machines. Biological neuroscience [232]
is a field that is still very much in its infancy, and only a limited amount is known about how
the brain truly works. Therefore, it is fair to suggest that the biologically inspired success
of convolutional neural networks might be replicated in other settings, as we learn more
about how the human brain works [176]. A key advantage of neural networks over tradi-
tional machine learning is that the former provides a higher-level abstraction of expressing
semantic insights about data domains by architectural design choices in the computational
graph. The second advantage is that neural networks provide a simple way to adjust the

4 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

complexity of a model by adding or removing neurons from the architecture according to
the availability of training data or computational power. A large part of the recent suc-
cess of neural networks is explained by the fact that the increased data availability and
computational power of modern computers has outgrown the limits of traditional machine
learning algorithms, which fail to take full advantage of what is now possible. This situation
is illustrated in Figure 1.2. The performance of traditional machine learning remains better
at times for smaller data sets because of more choices, greater ease of model interpretation,
and the tendency to hand-craft interpretable features that incorporate domain-specific in-
sights. With limited data, the best of a very wide diversity of models in machine learning
will usually perform better than a single class of models (like neural networks). This is one
reason why the potential of neural networks was not realized in the early years.

The “big data” era has been enabled by the advances in data collection technology; vir-
tually everything we do today, including purchasing an item, using the phone, or clicking on
a site, is collected and stored somewhere. Furthermore, the development of powerful Graph-
ics Processor Units (GPUs) has enabled increasingly efficient processing on such large data
sets. These advances largely explain the recent success of deep learning using algorithms
that are only slightly adjusted from the versions that were available two decades back.
Furthermore, these recent adjustments to the algorithms have been enabled by increased
speed of computation, because reduced run-times enable efficient testing (and subsequent
algorithmic adjustment). If it requires a month to test an algorithm, at most twelve varia-
tions can be tested in an year on a single hardware platform. This situation has historically
constrained the intensive experimentation required for tweaking neural-network learning
algorithms. The rapid advances associated with the three pillars of improved data, compu-
tation, and experimentation have resulted in an increasingly optimistic outlook about the
future of deep learning. By the end of this century, it is expected that computers will have
the power to train neural networks with as many neurons as the human brain. Although
it is hard to predict what the true capabilities of artificial intelligence will be by then, our
experience with computer vision should prepare us to expect the unexpected.

Chapter Organization

This chapter is organized as follows. The next section introduces single-layer and multi-layer
networks. The different types of activation functions, output nodes, and loss functions are
discussed. The backpropagation algorithm is introduced in Section 1.3. Practical issues in
neural network training are discussed in Section 1.4. Some key points on how neural networks
gain their power with specific choices of activation functions are discussed in Section 1.5. The
common architectures used in neural network design are discussed in Section 1.6. Advanced
topics in deep learning are discussed in Section 1.7. Some notable benchmarks used by the
deep learning community are discussed in Section 1.8. A summary is provided in Section 1.9.

1.2 The Basic Architecture of Neural Networks

In this section, we will introduce single-layer and multi-layer neural networks. In the single-
layer network, a set of inputs is directly mapped to an output by using a generalized variation
of a linear function. This simple instantiation of a neural network is also referred to as the
perceptron. In multi-layer neural networks, the neurons are arranged in layered fashion, in
which the input and output layers are separated by a group of hidden layers. This layer-wise
architecture of the neural network is also referred to as a feed-forward network. This section
will discuss both single-layer and multi-layer networks.

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 5

INPUT NODES

∑

OUTPUT NODE

y

w1

w2

w3

 w4

x4

x3

x2

x1

x5

 w5

INPUT NODES

∑

OUTPUT NODE

w1

w2

w3

 w4

 w5

b

+1 BIAS NEURON

y

x4

x3

x2

x1

x5

(a) Perceptron without bias (b) Perceptron with bias

Figure 1.3: The basic architecture of the perceptron

1.2.1 Single Computational Layer: The Perceptron

The simplest neural network is referred to as the perceptron. This neural network contains
a single input layer and an output node. The basic architecture of the perceptron is shown
in Figure 1.3(a). Consider a situation where each training instance is of the form (X, y),
where each X = [x1, . . . xd] contains d feature variables, and y ∈ {−1,+1} contains the
observed value of the binary class variable. By “observed value” we refer to the fact that it
is given to us as a part of the training data, and our goal is to predict the class variable for
cases in which it is not observed. For example, in a credit-card fraud detection application,
the features might represent various properties of a set of credit card transactions (e.g.,
amount and frequency of transactions), and the class variable might represent whether or
not this set of transactions is fraudulent. Clearly, in this type of application, one would have
historical cases in which the class variable is observed, and other (current) cases in which
the class variable has not yet been observed but needs to be predicted.

The input layer contains d nodes that transmit the d features X = [x1 . . . xd] with
edges of weight W = [w1 . . . wd] to an output node. The input layer does not perform

any computation in its own right. The linear function W ·X =
∑d

i=1 wixi is computed at
the output node. Subsequently, the sign of this real value is used in order to predict the
dependent variable of X. Therefore, the prediction ŷ is computed as follows:

ŷ = sign{W ·X} = sign{
d∑

j=1

wjxj} (1.1)

The sign function maps a real value to either +1 or −1, which is appropriate for binary
classification. Note the circumflex on top of the variable y to indicate that it is a predicted
value rather than an observed value. The error of the prediction is therefore E(X) = y− ŷ,
which is one of the values drawn from the set {−2, 0,+2}. In cases where the error value
E(X) is nonzero, the weights in the neural network need to be updated in the (negative)
direction of the error gradient. As we will see later, this process is similar to that used in
various types of linear models in machine learning. In spite of the similarity of the perceptron
with respect to traditional machine learning models, its interpretation as a computational
unit is very useful because it allows us to put together multiple units in order to create far
more powerful models than are available in traditional machine learning.

6 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

The architecture of the perceptron is shown in Figure 1.3(a), in which a single input layer
transmits the features to the output node. The edges from the input to the output contain
the weights w1 . . . wd with which the features are multiplied and added at the output node.
Subsequently, the sign function is applied in order to convert the aggregated value into a
class label. The sign function serves the role of an activation function. Different choices
of activation functions can be used to simulate different types of models used in machine
learning, like least-squares regression with numeric targets, the support vector machine,
or a logistic regression classifier. Most of the basic machine learning models can be easily
represented as simple neural network architectures. It is a useful exercise to model traditional
machine learning techniques as neural architectures, because it provides a clearer picture of
how deep learning generalizes traditional machine learning. This point of view is explored
in detail in Chapter 2. It is noteworthy that the perceptron contains two layers, although
the input layer does not perform any computation and only transmits the feature values.
The input layer is not included in the count of the number of layers in a neural network.
Since the perceptron contains a single computational layer, it is considered a single-layer
network.

In many settings, there is an invariant part of the prediction, which is referred to as
the bias. For example, consider a setting in which the feature variables are mean centered,
but the mean of the binary class prediction from {−1,+1} is not 0. This will tend to occur
in situations in which the binary class distribution is highly imbalanced. In such a case,
the aforementioned approach is not sufficient for prediction. We need to incorporate an
additional bias variable b that captures this invariant part of the prediction:

ŷ = sign{W ·X + b} = sign{
d∑

j=1

wjxj + b} (1.2)

The bias can be incorporated as the weight of an edge by using a bias neuron. This is
achieved by adding a neuron that always transmits a value of 1 to the output node. The
weight of the edge connecting the bias neuron to the output node provides the bias variable.
An example of a bias neuron is shown in Figure 1.3(b). Another approach that works well
with single-layer architectures is to use a feature engineering trick in which an additional
feature is created with a constant value of 1. The coefficient of this feature provides the bias,
and one can then work with Equation 1.1. Throughout this book, biases will not be explicitly
used (for simplicity in architectural representations) because they can be incorporated with
bias neurons. The details of the training algorithms remain the same by simply treating the
bias neurons like any other neuron with a fixed activation value of 1. Therefore, the following
will work with the predictive assumption of Equation 1.1, which does not explicitly uses
biases.

At the time that the perceptron algorithm was proposed by Rosenblatt [405], these op-
timizations were performed in a heuristic way with actual hardware circuits, and it was not
presented in terms of a formal notion of optimization in machine learning (as is common
today). However, the goal was always to minimize the error in prediction, even if a for-
mal optimization formulation was not presented. The perceptron algorithm was, therefore,
heuristically designed to minimize the number of misclassifications, and convergence proofs
were available that provided correctness guarantees of the learning algorithm in simplified
settings. Therefore, we can still write the (heuristically motivated) goal of the perceptron
algorithm in least-squares form with respect to all training instances in a data set D con-

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 7

taining feature-label pairs:

MinimizeW L =
∑

(X,y)∈D

(y − ŷ)2 =
∑

(X,y)∈D

(
y − sign{W ·X}

)2

This type of minimization objective function is also referred to as a loss function. As we
will see later, almost all neural network learning algorithms are formulated with the use
of a loss function. As we will learn in Chapter 2, this loss function looks a lot like least-
squares regression. However, the latter is defined for continuous-valued target variables,
and the corresponding loss is a smooth and continuous function of the variables. On the
other hand, for the least-squares form of the objective function, the sign function is non-
differentiable, with step-like jumps at specific points. Furthermore, the sign function takes
on constant values over large portions of the domain, and therefore the exact gradient takes
on zero values at differentiable points. This results in a staircase-like loss surface, which
is not suitable for gradient-descent. The perceptron algorithm (implicitly) uses a smooth
approximation of the gradient of this objective function with respect to each example:

∇Lsmooth =
∑

(X,y)∈D

(y − ŷ)X (1.3)

Note that the above gradient is not a true gradient of the staircase-like surface of the (heuris-
tic) objective function, which does not provide useful gradients. Therefore, the staircase is
smoothed out into a sloping surface defined by the perceptron criterion. The properties of the
perceptron criterion will be described in Section 1.2.1.1. It is noteworthy that concepts like
the “perceptron criterion” were proposed later than the original paper by Rosenblatt [405]
in order to explain the heuristic gradient-descent steps. For now, we will assume that the
perceptron algorithm optimizes some unknown smooth function with the use of gradient
descent.

Although the above objective function is defined over the entire training data, the train-
ing algorithm of neural networks works by feeding each input data instance X into the
network one by one (or in small batches) to create the prediction ŷ. The weights are then
updated, based on the error value E(X) = (y − ŷ). Specifically, when the data point X is
fed into the network, the weight vector W is updated as follows:

W ⇐ W + α(y − ŷ)X (1.4)

The parameter α regulates the learning rate of the neural network. The perceptron algorithm
repeatedly cycles through all the training examples in random order and iteratively adjusts
the weights until convergence is reached. A single training data point may be cycled through
many times. Each such cycle is referred to as an epoch. One can also write the gradient-
descent update in terms of the error E(X) = (y − ŷ) as follows:

W ⇐ W + αE(X)X (1.5)

The basic perceptron algorithm can be considered a stochastic gradient-descent method,
which implicitly minimizes the squared error of prediction by performing gradient-descent
updates with respect to randomly chosen training points. The assumption is that the neural
network cycles through the points in random order during training and changes the weights
with the goal of reducing the prediction error on that point. It is easy to see from Equa-
tion 1.5 that non-zero updates are made to the weights only when y �= ŷ, which occurs only

8 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

when errors are made in prediction. In mini-batch stochastic gradient descent, the aforemen-
tioned updates of Equation 1.5 are implemented over a randomly chosen subset of training
points S:

W ⇐ W + α
∑

X∈S

E(X)X (1.6)

LINEARLY SEPARABLE NOT LINEARLY SEPARABLE

W X = 0

Figure 1.4: Examples of linearly separable and inseparable data in two classes

The advantages of using mini-batch stochastic gradient descent are discussed in Section 3.2.8
of Chapter 3. An interesting quirk of the perceptron is that it is possible to set the learning
rate α to 1, because the learning rate only scales the weights.

The type of model proposed in the perceptron is a linear model, in which the equation
W ·X = 0 defines a linear hyperplane. Here, W = (w1 . . . wd) is a d-dimensional vector that
is normal to the hyperplane. Furthermore, the value of W ·X is positive for values of X on
one side of the hyperplane, and it is negative for values of X on the other side. This type of
model performs particularly well when the data is linearly separable. Examples of linearly
separable and inseparable data are shown in Figure 1.4.

The perceptron algorithm is good at classifying data sets like the one shown on the
left-hand side of Figure 1.4, when the data is linearly separable. On the other hand, it tends
to perform poorly on data sets like the one shown on the right-hand side of Figure 1.4. This
example shows the inherent modeling limitation of a perceptron, which necessitates the use
of more complex neural architectures.

Since the original perceptron algorithm was proposed as a heuristic minimization of
classification errors, it was particularly important to show that the algorithm converges
to reasonable solutions in some special cases. In this context, it was shown [405] that the
perceptron algorithm always converges to provide zero error on the training data when
the data are linearly separable. However, the perceptron algorithm is not guaranteed to
converge in instances where the data are not linearly separable. For reasons discussed in
the next section, the perceptron might sometimes arrive at a very poor solution with data
that are not linearly separable (in comparison with many other learning algorithms).

1.2.1.1 What Objective Function Is the Perceptron Optimizing?

As discussed earlier in this chapter, the original perceptron paper by Rosenblatt [405] did
not formally propose a loss function. In those years, these implementations were achieved
using actual hardware circuits. The original Mark I perceptron was intended to be a machine
rather than an algorithm, and custom-built hardware was used to create it (cf. Figure 1.5).

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 9

The general goal was to minimize the number of classification errors with a heuristic update
process (in hardware) that changed weights in the “correct” direction whenever errors were
made. This heuristic update strongly resembled gradient descent but it was not derived
as a gradient-descent method. Gradient descent is defined only for smooth loss functions
in algorithmic settings, whereas the hardware-centric approach was designed in a more

Figure 1.5: The perceptron algorithm was originally implemented using hardware circuits.
The image depicts the Mark I perceptron machine built in 1958. (Courtesy: Smithsonian
Institute)

heuristic way with binary outputs. Many of the binary and circuit-centric principles were
inherited from the McCulloch-Pitts model [321] of the neuron. Unfortunately, binary signals
are not prone to continuous optimization.

Can we find a smooth loss function, whose gradient turns out to be the perceptron
update? The number of classification errors in a binary classification problem can be written
in the form of a 0/1 loss function for training data point (Xi, yi) as follows:

L
(0/1)
i =

1

2
(yi − sign{W ·Xi})2 = 1− yi · sign{W ·Xi} (1.7)

The simplification to the right-hand side of the above objective function is obtained by set-
ting both y2i and sign{W ·Xi}2 to 1, since they are obtained by squaring a value drawn from
{−1,+1}. However, this objective function is not differentiable, because it has a staircase-
like shape, especially when it is added over multiple points. Note that the 0/1 loss above
is dominated by the term −yisign{W · Xi}, in which the sign function causes most of
the problems associated with non-differentiability. Since neural networks are defined by
gradient-based optimization, we need to define a smooth objective function that is respon-
sible for the perceptron updates. It can be shown [41] that the updates of the perceptron
implicitly optimize the perceptron criterion. This objective function is defined by dropping
the sign function in the above 0/1 loss and setting negative values to 0 in order to treat all
correct predictions in a uniform and lossless way:

Li = max{−yi(W ·Xi), 0} (1.8)

The reader is encouraged to use calculus to verify that the gradient of this smoothed objec-
tive function leads to the perceptron update, and the update of the perceptron is essentially

10 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

W ⇐ W − α∇WLi. The modified loss function to enable gradient computation of a non-
differentiable function is also referred to as a smoothed surrogate loss function. Almost all
continuous optimization-based learning methods (such as neural networks) with discrete
outputs (such as class labels) use some type of smoothed surrogate loss function.

LO
S

S

PERCEPTRON CRITERION HINGE LOSS

10

VALUE OF W X FOR

POSITIVE CLASS INSTANCE

Figure 1.6: Perceptron criterion versus hinge loss

Although the aforementioned perceptron criterion was reverse engineered by working
backwards from the perceptron updates, the nature of this loss function exposes some of
the weaknesses of the updates in the original algorithm. An interesting observation about the
perceptron criterion is that one can set W to the zero vector irrespective of the training data
set in order to obtain the optimal loss value of 0. In spite of this fact, the perceptron updates
continue to converge to a clear separator between the two classes in linearly separable cases;
after all, a separator between the two classes provides a loss value of 0 as well. However,
the behavior for data that are not linearly separable is rather arbitrary, and the resulting
solution is sometimes not even a good approximate separator of the classes. The direct
sensitivity of the loss to the magnitude of the weight vector can dilute the goal of class
separation; it is possible for updates to worsen the number of misclassifications significantly
while improving the loss. This is an example of how surrogate loss functions might sometimes
not fully achieve their intended goals. Because of this fact, the approach is not stable and
can yield solutions of widely varying quality.

Several variations of the learning algorithm were therefore proposed for inseparable data,
and a natural approach is to always keep track of the best solution in terms of the number of
misclassifications [128]. This approach of always keeping the best solution in one’s “pocket”
is referred to as the pocket algorithm. Another highly performing variant incorporates the
notion of margin in the loss function, which creates an identical algorithm to the linear
support vector machine. For this reason, the linear support vector machine is also referred
to as the perceptron of optimal stability.

1.2.1.2 Relationship with Support Vector Machines

The perceptron criterion is a shifted version of the hinge-loss used in support vector ma-
chines (see Chapter 2). The hinge loss looks even more similar to the zero-one loss criterion
of Equation 1.7, and is defined as follows:

Lsvm
i = max{1− yi(W ·Xi), 0} (1.9)

Note that the perceptron does not keep the constant term of 1 on the right-hand side of
Equation 1.7, whereas the hinge loss keeps this constant within the maximization function.
This change does not affect the algebraic expression for the gradient, but it does change

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 11

which points are lossless and should not cause an update. The relationship between the
perceptron criterion and the hinge loss is shown in Figure 1.6. This similarity becomes
particularly evident when the perceptron updates of Equation 1.6 are rewritten as follows:

W ⇐ W + α
∑

(X,y)∈S+

yX (1.10)

Here, S+ is defined as the set of all misclassified training points X ∈ S that satisfy the
condition y(W ·X) < 0. This update seems to look somewhat different from the perceptron,
because the perceptron uses the error E(X) for the update, which is replaced with y in the
update above. A key point is that the (integer) error value E(X) = (y − sign{W · X}) ∈
{−2,+2} can never be 0 for misclassified points in S+. Therefore, we have E(X) = 2y
for misclassified points, and E(X) can be replaced with y in the updates after absorbing
the factor of 2 within the learning rate. This update is identical to that used by the primal
support vector machine (SVM) algorithm [448], except that the updates are performed only
for the misclassified points in the perceptron, whereas the SVM also uses the marginally
correct points near the decision boundary for updates. Note that the SVM uses the condition
y(W ·X) < 1 [instead of using the condition y(W ·X) < 0] to define S+, which is one of
the key differences between the two algorithms. This point shows that the perceptron is
fundamentally not very different from well-known machine learning algorithms like the
support vector machine in spite of its different origins. Freund and Schapire provide a
beautiful exposition of the role of margin in improving stability of the perceptron and also
its relationship with the support vector machine [123]. It turns out that many traditional
machine learning models can be viewed as minor variations of shallow neural architectures
like the perceptron. The relationships between classical machine learning models and shallow
neural networks are described in detail in Chapter 2.

1.2.1.3 Choice of Activation and Loss Functions

The choice of activation function is a critical part of neural network design. In the case of the
perceptron, the choice of the sign activation function is motivated by the fact that a binary
class label needs to be predicted. However, it is possible to have other types of situations
where different target variables may be predicted. For example, if the target variable to be
predicted is real, then it makes sense to use the identity activation function, and the resulting
algorithm is the same as least-squares regression. If it is desirable to predict a probability
of a binary class, it makes sense to use a sigmoid function for activating the output node, so
that the prediction ŷ indicates the probability that the observed value, y, of the dependent
variable is 1. The negative logarithm of |y/2−0.5+ ŷ| is used as the loss, assuming that y is
coded from {−1, 1}. If ŷ is the probability that y is 1, then |y/2− 0.5+ ŷ| is the probability
that the correct value is predicted. This assertion is easy to verify by examining the two
cases where y is 0 or 1. This loss function can be shown to be representative of the negative
log-likelihood of the training data (see Section 2.2.3 of Chapter 2).

The importance of nonlinear activation functions becomes significant when one moves
from the single-layered perceptron to the multi-layered architectures discussed later in this
chapter. Different types of nonlinear functions such as the sign, sigmoid, or hyperbolic tan-
gents may be used in various layers. We use the notation Φ to denote the activation function:

ŷ = Φ(W ·X) (1.11)

Therefore, a neuron really computes two functions within the node, which is why we have
incorporated the summation symbol Σ as well as the activation symbol Φ within a neuron.
The break-up of the neuron computations into two separate values is shown in Figure 1.7.

12 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

∑

BREAK UP

∑ ∑

h= (W X).

ah

POST-ACTIVATION

VALUE

PRE-ACTIVATION

VALUE

= W X.{X
W

h= (ah)

{X
W

Figure 1.7: Pre-activation and post-activation values within a neuron

The value computed before applying the activation function Φ(·) will be referred to as the
pre-activation value, whereas the value computed after applying the activation function is
referred to as the post-activation value. The output of a neuron is always the post-activation
value, although the pre-activation variables are often used in different types of analyses, such
as the computations of the backpropagation algorithm discussed later in this chapter. The
pre-activation and post-activation values of a neuron are shown in Figure 1.7.

The most basic activation function Φ(·) is the identity or linear activation, which provides
no nonlinearity:

Φ(v) = v

The linear activation function is often used in the output node, when the target is a real
value. It is even used for discrete outputs when a smoothed surrogate loss function needs
to be set up.

The classical activation functions that were used early in the development of neural
networks were the sign, sigmoid, and the hyperbolic tangent functions:

Φ(v) = sign(v) (sign function)

Φ(v) =
1

1 + e−v
(sigmoid function)

Φ(v) =
e2v − 1

e2v + 1
(tanh function)

While the sign activation can be used to map to binary outputs at prediction time, its
non-differentiability prevents its use for creating the loss function at training time. For
example, while the perceptron uses the sign function for prediction, the perceptron crite-
rion in training only requires linear activation. The sigmoid activation outputs a value in
(0, 1), which is helpful in performing computations that should be interpreted as probabil-
ities. Furthermore, it is also helpful in creating probabilistic outputs and constructing loss
functions derived from maximum-likelihood models. The tanh function has a shape simi-
lar to that of the sigmoid function, except that it is horizontally re-scaled and vertically
translated/re-scaled to [−1, 1]. The tanh and sigmoid functions are related as follows (see
Exercise 3):

tanh(v) = 2 · sigmoid(2v)− 1

The tanh function is preferable to the sigmoid when the outputs of the computations are de-
sired to be both positive and negative. Furthermore, its mean-centering and larger gradient

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 13

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.8: Various activation functions

(because of stretching) with respect to sigmoid makes it easier to train. The sigmoid and the
tanh functions have been the historical tools of choice for incorporating nonlinearity in the
neural network. In recent years, however, a number of piecewise linear activation functions
have become more popular:

Φ(v) = max{v, 0} (Rectified Linear Unit [ReLU])

Φ(v) = max {min [v, 1] ,−1} (hard tanh)

The ReLU and hard tanh activation functions have largely replaced the sigmoid and soft
tanh activation functions in modern neural networks because of the ease in training multi-
layered neural networks with these activation functions.

Pictorial representations of all the aforementioned activation functions are illustrated
in Figure 1.8. It is noteworthy that all activation functions shown here are monotonic.
Furthermore, other than the identity activation function, most1 of the other activation
functions saturate at large absolute values of the argument at which increasing further does
not change the activation much.

As we will see later, such nonlinear activation functions are also very useful in multilayer
networks, because they help in creating more powerful compositions of different types of
functions. Many of these functions are referred to as squashing functions, as they map the
outputs from an arbitrary range to bounded outputs. The use of a nonlinear activation plays
a fundamental role in increasing the modeling power of a network. If a network used only
linear activations, it would not provide better modeling power than a single-layer linear
network. This issue is discussed in Section 1.5.

1The ReLU shows asymmetric saturation.

14 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

x4

x3

x2

x1

INPUT LAYER

HIDDEN LAYER x5

P(y=green)

OUTPUTS

P(y=blue)

P(y=red)

v1

v2

v3

SOFTMAX LAYER

Figure 1.9: An example of multiple outputs for categorical classification with the use of a
softmax layer

1.2.1.4 Choice and Number of Output Nodes

The choice and number of output nodes is also tied to the activation function, which in
turn depends on the application at hand. For example, if k-way classification is intended,
k output values can be used, with a softmax activation function with respect to outputs
v = [v1, . . . , vk] at the nodes in a given layer. Specifically, the activation function for the ith
output is defined as follows:

Φ(v)i =
exp(vi)

∑k
j=1 exp(vj)

∀i ∈ {1, . . . , k} (1.12)

It is helpful to think of these k values as the values output by k nodes, in which the in-
puts are v1 . . . vk. An example of the softmax function with three outputs is illustrated in
Figure 1.9, and the values v1, v2, and v3 are also shown in the same figure. Note that the
three outputs correspond to the probabilities of the three classes, and they convert the three
outputs of the final hidden layer into probabilities with the softmax function. The final hid-
den layer often uses linear (identity) activations, when it is input into the softmax layer.
Furthermore, there are no weights associated with the softmax layer, since it is only con-
verting real-valued outputs into probabilities. The use of softmax with a single hidden layer
of linear activations exactly implements a model, which is referred to as multinomial logistic
regression [6]. Similarly, many variations like multi-class SVMs can be easily implemented
with neural networks. Another example of a case in which multiple output nodes are used is
the autoencoder, in which each input data point is fully reconstructed by the output layer.
The autoencoder can be used to implement matrix factorization methods like singular value
decomposition. This architecture will be discussed in detail in Chapter 2. The simplest neu-
ral networks that simulate basic machine learning algorithms are instructive because they
lie on the continuum between traditional machine learning and deep networks. By exploring
these architectures, one gets a better idea of the relationship between traditional machine
learning and neural networks, and also the advantages provided by the latter.

1.2.1.5 Choice of Loss Function

The choice of the loss function is critical in defining the outputs in a way that is sensitive
to the application at hand. For example, least-squares regression with numeric outputs

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 15

requires a simple squared loss of the form (y− ŷ)2 for a single training instance with target
y and prediction ŷ. One can also use other types of loss like hinge loss for y ∈ {−1,+1} and
real-valued prediction ŷ (with identity activation):

L = max{0, 1− y · ŷ} (1.13)

The hinge loss can be used to implement a learning method, which is referred to as a support
vector machine.

For multiway predictions (like predicting word identifiers or one of multiple classes),
the softmax output is particularly useful. However, a softmax output is probabilistic, and
therefore it requires a different type of loss function. In fact, for probabilistic predictions,
two different types of loss functions are used, depending on whether the prediction is binary
or whether it is multiway:

1. Binary targets (logistic regression): In this case, it is assumed that the observed
value y is drawn from {−1,+1}, and the prediction ŷ is a an arbitrary numerical value
on using the identity activation function. In such a case, the loss function for a single
instance with observed value y and real-valued prediction ŷ (with identity activation)
is defined as follows:

L = log(1 + exp(−y · ŷ)) (1.14)

This type of loss function implements a fundamental machine learning method, re-
ferred to as logistic regression. Alternatively, one can use a sigmoid activation function
to output ŷ ∈ (0, 1), which indicates the probability that the observed value y is 1.
Then, the negative logarithm of |y/2 − 0.5 + ŷ| provides the loss, assuming that y is
coded from {−1, 1}. This is because |y/2− 0.5 + ŷ| indicates the probability that the
prediction is correct. This observation illustrates that one can use various combina-
tions of activation and loss functions to achieve the same result.

2. Categorical targets: In this case, if ŷ1 . . . ŷk are the probabilities of the k classes
(using the softmax activation of Equation 1.9), and the rth class is the ground-truth
class, then the loss function for a single instance is defined as follows:

L = −log(ŷr) (1.15)

This type of loss function implements multinomial logistic regression, and it is re-
ferred to as the cross-entropy loss. Note that binary logistic regression is identical to
multinomial logistic regression, when the value of k is set to 2 in the latter.

The key point to remember is that the nature of the output nodes, the activation function,
and the loss function depend on the application at hand. Furthermore, these choices also
depend on one another. Even though the perceptron is often presented as the quintessential
representative of single-layer networks, it is only a single representative out of a very large
universe of possibilities. In practice, one rarely uses the perceptron criterion as the loss
function. For discrete-valued outputs, it is common to use softmax activation with cross-
entropy loss. For real-valued outputs, it is common to use linear activation with squared
loss. Generally, cross-entropy loss is easier to optimize than squared loss.

16 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.10: The derivatives of various activation functions

1.2.1.6 Some Useful Derivatives of Activation Functions

Most neural network learning is primarily related to gradient-descent with activation func-
tions. For this reason, the derivatives of these activation functions are used repeatedly in
this book, and gathering them in a single place for future reference is useful. This section
provides details on the derivatives of these loss functions. Later chapters will extensively
refer to these results.

1. Linear and sign activations: The derivative of the linear activation function is 1 at
all places. The derivative of sign(v) is 0 at all values of v other than at v = 0,
where it is discontinuous and non-differentiable. Because of the zero gradient and
non-differentiability of this activation function, it is rarely used in the loss function
even when it is used for prediction at testing time. The derivatives of the linear and
sign activations are illustrated in Figure 1.10(a) and (b), respectively.

2. Sigmoid activation: The derivative of sigmoid activation is particularly simple, when
it is expressed in terms of the output of the sigmoid, rather than the input. Let o be
the output of the sigmoid function with argument v:

o =
1

1 + exp(−v)
(1.16)

Then, one can write the derivative of the activation as follows:

∂o

∂v
=

exp(−v)

(1 + exp(−v))2
(1.17)

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 17

The key point is that this sigmoid can be written more conveniently in terms of the
outputs:

∂o

∂v
= o(1− o) (1.18)

The derivative of the sigmoid is often used as a function of the output rather than the
input. The derivative of the sigmoid activation function is illustrated in Figure 1.10(c).

3. Tanh activation: As in the case of the sigmoid activation, the tanh activation is often
used as a function of the output o rather than the input v:

o =
exp(2v)− 1

exp(2v) + 1
(1.19)

One can then compute the gradient as follows:

∂o

∂v
=

4 · exp(2v)
(exp(2v) + 1)2

(1.20)

One can also write this derivative in terms of the output o:

∂o

∂v
= 1− o2 (1.21)

The derivative of the tanh activation is illustrated in Figure 1.10(d).

4. ReLU and hard tanh activations: The ReLU takes on a partial derivative value of 1
for non-negative values of its argument, and 0, otherwise. The hard tanh function
takes on a partial derivative value of 1 for values of the argument in [−1,+1] and 0,
otherwise. The derivatives of the ReLU and hard tanh activations are illustrated in
Figure 1.10(e) and (f), respectively.

1.2.2 Multilayer Neural Networks

Multilayer neural networks contain more than one computational layer. The perceptron
contains an input and output layer, of which the output layer is the only computation-
performing layer. The input layer transmits the data to the output layer, and all com-
putations are completely visible to the user. Multilayer neural networks contain multiple
computational layers; the additional intermediate layers (between input and output) are
referred to as hidden layers because the computations performed are not visible to the user.
The specific architecture of multilayer neural networks is referred to as feed-forward net-
works, because successive layers feed into one another in the forward direction from input
to output. The default architecture of feed-forward networks assumes that all nodes in one
layer are connected to those of the next layer. Therefore, the architecture of the neural
network is almost fully defined, once the number of layers and the number/type of nodes in
each layer have been defined. The only remaining detail is the loss function that is optimized
in the output layer. Although the perceptron algorithm uses the perceptron criterion, this
is not the only choice. It is extremely common to use softmax outputs with cross-entropy
loss for discrete prediction and linear outputs with squared loss for real-valued prediction.

As in the case of single-layer networks, bias neurons can be used both in the hidden
layers and in the output layers. Examples of multilayer networks with or without the bias
neurons are shown in Figure 1.11(a) and (b), respectively. In each case, the neural network

18 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

contains three layers. Note that the input layer is often not counted, because it simply
transmits the data and no computation is performed in that layer. If a neural network
contains p1 . . . pk units in each of its k layers, then the (column) vector representations of
these outputs, denoted by h1 . . . hk have dimensionalities p1 . . . pk. Therefore, the number
of units in each layer is referred to as the dimensionality of that layer.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

y

x4

x3

x2

x1

x5

INPUT LAYER

HIDDEN LAYER

y

OUTPUT LAYER

+1 +1
BIAS

NEURONS

+1
BIAS

NEURON

x4

x3

x2

x1

x5

snoruensaibhtiW)b(snoruensaiboN)a(

y

x4

x3

x2

x1

x5

h11

h12

h13
h23

h22

h21

h1 h2

X SCALAR WEIGHTS ON CONNECTIONS

WEIGHT MATRICES ON CONNECTIONS

yX h1 h2X

5 X 3

MATRIX

3 X 3

MATRIX

3 X 1

MATRIX

Figure 1.11: The basic architecture of a feed-forward network with two hidden layers and
a single output layer. Even though each unit contains a single scalar variable, one often
represents all units within a single layer as a single vector unit. Vector units are often
represented as rectangles and have connection matrices between them.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI

4

xI

3

xI

2

xI

1

xI

5OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x
4

x
3

x
2

x
1

x
5

Figure 1.12: An example of an autoencoder with multiple outputs

1.2. THE BASIC ARCHITECTURE OF NEURAL NETWORKS 19

The weights of the connections between the input layer and the first hidden layer are
contained in a matrix W1 with size d × p1, whereas the weights between the rth hidden
layer and the (r + 1)th hidden layer are denoted by the pr × pr+1 matrix denoted by Wr.
If the output layer contains o nodes, then the final matrix Wk+1 is of size pk × o. The
d-dimensional input vector x is transformed into the outputs using the following recursive
equations:

h1 = Φ(WT
1 x) [Input to Hidden Layer]

hp+1 = Φ(WT
p+1hp) ∀p ∈ {1 . . . k − 1} [Hidden to Hidden Layer]

o = Φ(WT
k+1hk) [Hidden to Output Layer]

Here, the activation functions like the sigmoid function are applied in element-wise fashion
to their vector arguments. However, some activation functions such as the softmax (which
are typically used in the output layers) naturally have vector arguments. Even though each
unit of a neural network contains a single variable, many architectural diagrams combine
the units in a single layer to create a single vector unit, which is represented as a rectangle
rather than a circle. For example, the architectural diagram in Figure 1.11(c) (with scalar
units) has been transformed to a vector-based neural architecture in Figure 1.11(d). Note
that the connections between the vector units are now matrices. Furthermore, an implicit
assumption in the vector-based neural architecture is that all units in a layer use the same
activation function, which is applied in element-wise fashion to that layer. This constraint is
usually not a problem, because most neural architectures use the same activation function
throughout the computational pipeline, with the only deviation caused by the nature of
the output layer. Throughout this book, neural architectures in which units contain vector
variables will be depicted with rectangular units, whereas scalar variables will correspond
to circular units.

Note that the aforementioned recurrence equations and vector architectures are valid
only for layer-wise feed-forward networks, and cannot always be used for unconventional
architectural designs. It is possible to have all types of unconventional designs in which
inputs might be incorporated in intermediate layers, or the topology might allow connections
between non-consecutive layers. Furthermore, the functions computed at a node may not
always be in the form of a combination of a linear function and an activation. It is possible
to have all types of arbitrary computational functions at nodes.

Although a very classical type of architecture is shown in Figure 1.11, it is possible to
vary on it in many ways, such as allowing multiple output nodes. These choices are often
determined by the goals of the application at hand (e.g., classification or dimensionality
reduction). A classical example of the dimensionality reduction setting is the autoencoder,
which recreates the outputs from the inputs. Therefore, the number of outputs and inputs
is equal, as shown in Figure 1.12. The constricted hidden layer in the middle outputs the
reduced representation of each instance. As a result of this constriction, there is some loss in
the representation, which typically corresponds to the noise in the data. The outputs of the
hidden layers correspond to the reduced representation of the data. In fact, a shallow variant
of this scheme can be shown to be mathematically equivalent to a well-known dimensionality
reduction method known as singular value decomposition. As we will learn in Chapter 2,
increasing the depth of the network results in inherently more powerful reductions.

Although a fully connected architecture is able to perform well in many settings, better
performance is often achieved by pruning many of the connections or sharing them in an
insightful way. Typically, these insights are obtained by using a domain-specific understand-
ing of the data. A classical example of this type of weight pruning and sharing is that of

20 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

the convolutional neural network architecture (cf. Chapter 8), in which the architecture is
carefully designed in order to conform to the typical properties of image data. Such an ap-
proach minimizes the risk of overfitting by incorporating domain-specific insights (or bias).
As we will discuss later in this book (cf. Chapter 4), overfitting is a pervasive problem in
neural network design, so that the network often performs very well on the training data,
but it generalizes poorly to unseen test data. This problem occurs when the number of free
parameters, (which is typically equal to the number of weight connections), is too large
compared to the size of the training data. In such cases, the large number of parameters
memorize the specific nuances of the training data, but fail to recognize the statistically
significant patterns for classifying unseen test data. Clearly, increasing the number of nodes
in the neural network tends to encourage overfitting. Much recent work has been focused
both on the architecture of the neural network as well as on the computations performed
within each node in order to minimize overfitting. Furthermore, the way in which the neu-
ral network is trained also has an impact on the quality of the final solution. Many clever
methods, such as pretraining (cf. Chapter 4), have been proposed in recent years in order to
improve the quality of the learned solution. This book will explore these advanced training
methods in detail.

1.2.3 The Multilayer Network as a Computational Graph

It is helpful to view a neural network as a computational graph, which is constructed by
piecing together many basic parametric models. Neural networks are fundamentally more
powerful than their building blocks because the parameters of these models are learned
jointly to create a highly optimized composition function of these models. The common use
of the term “perceptron” to refer to the basic unit of a neural network is somewhat mis-
leading, because there are many variations of this basic unit that are leveraged in different
settings. In fact, it is far more common to use logistic units (with sigmoid activation) and
piecewise/fully linear units as building blocks of these models.

A multilayer network evaluates compositions of functions computed at individual nodes.
A path of length 2 in the neural network in which the function f(·) follows g(·) can be
considered a composition function f(g(·)). Furthermore, if g1(·), g2(·) . . . gk(·) are the func-
tions computed in layer m, and a particular layer-(m + 1) node computes f(·), then the
composition function computed by the layer-(m + 1) node in terms of the layer-m inputs
is f(g1(·), . . . gk(·)). The use of nonlinear activation functions is the key to increasing the
power of multiple layers. If all layers use an identity activation function, then a multilayer
network can be shown to simplify to linear regression. It has been shown [208] that a net-
work with a single hidden layer of nonlinear units (with a wide ranging choice of squashing
functions like the sigmoid unit) and a single (linear) output layer can compute almost
any “reasonable” function. As a result, neural networks are often referred to as universal
function approximators, although this theoretical claim is not always easy to translate into
practical usefulness. The main issue is that the number of hidden units required to do so
is rather large, which increases the number of parameters to be learned. This results in
practical problems in training the network with a limited amount of data. In fact, deeper
networks are often preferred because they reduce the number of hidden units in each layer
as well as the overall number of parameters.

The “building block” description is particularly appropriate for multilayer neural net-
works. Very often, off-the-shelf softwares for building neural networks2 provide analysts

2Examples include Torch [572], Theano [573], and TensorFlow [574].

1.3. TRAINING A NEURAL NETWORK WITH BACKPROPAGATION 21

with access to these building blocks. The analyst is able to specify the number and type of
units in each layer along with an off-the-shelf or customized loss function. A deep neural
network containing tens of layers can often be described in a few hundred lines of code.
All the learning of the weights is done automatically by the backpropagation algorithm that
uses dynamic programming to work out the complicated parameter update steps of the
underlying computational graph. The analyst does not have to spend the time and effort
to explicitly work out these steps. This makes the process of trying different types of ar-
chitectures relatively painless for the analyst. Building a neural network with many of the
off-the-shelf softwares is often compared to a child constructing a toy from building blocks
that appropriately fit with one another. Each block is like a unit (or a layer of units) with a
particular type of activation. Much of this ease in training neural networks is attributable
to the backpropagation algorithm, which shields the analyst from explicitly working out the
parameter update steps of what is actually an extremely complicated optimization problem.
Working out these steps is often the most difficult part of most machine learning algorithms,
and an important contribution of the neural network paradigm is to bring modular thinking
into machine learning. In other words, the modularity in neural network design translates
to modularity in learning its parameters; the specific name for the latter type of modularity
is “backpropagation.” This makes the design of neural networks more of an (experienced)
engineer’s task rather than a mathematical exercise.

1.3 Training a Neural Network with Backpropagation

In the single-layer neural network, the training process is relatively straightforward because
the error (or loss function) can be computed as a direct function of the weights, which
allows easy gradient computation. In the case of multi-layer networks, the problem is that
the loss is a complicated composition function of the weights in earlier layers. The gradient
of a composition function is computed using the backpropagation algorithm. The backprop-
agation algorithm leverages the chain rule of differential calculus, which computes the error
gradients in terms of summations of local-gradient products over the various paths from a
node to the output. Although this summation has an exponential number of components
(paths), one can compute it efficiently using dynamic programming. The backpropagation
algorithm is a direct application of dynamic programming. It contains two main phases,
referred to as the forward and backward phases, respectively. The forward phase is required
to compute the output values and the local derivatives at various nodes, and the backward
phase is required to accumulate the products of these local values over all paths from the
node to the output:

1. Forward phase: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared to that of the
training instance and the derivative of the loss function with respect to the output is
computed. The derivative of this loss now needs to be computed with respect to the
weights in all layers in the backwards phase.

2. Backward phase: The main goal of the backward phase is to learn the gradient of the
loss function with respect to the different weights by using the chain rule of differen-
tial calculus. These gradients are used to update the weights. Since these gradients
are learned in the backward direction, starting from the output node, this learning
process is referred to as the backward phase. Consider a sequence of hidden units

22 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

w
f(w)

g(y)

h(z)

K(p,q)

O = K(p,q) = K(g(f(w)),h(f(w)))

UGLY COMPOSITION FUNCTION

O

INPUT

WEIGHT

OUTPUT

∂o

∂w
=

∂o

∂p
·

∂p

∂w
+

∂o

∂q
·

∂q

∂w
[Multivariable Chain Rule]

=
∂o

∂p
·

∂p

∂y
·

∂y

∂w
+

∂o

∂q
·

∂q

∂z
·

∂z

∂w
[Univariate Chain Rule]

=
∂K(p, q)

∂p
· g (y) · f (w)

First path

+
∂K(p, q)

∂q
· h (z) · f (w)

Second path

Figure 1.13: Illustration of chain rule in computational graphs: The products of
node-specific partial derivatives along paths from weight w to output o are aggregated. The
resulting value yields the derivative of output o with respect to weight w. Only two paths
between input and output exist in this simplified example.

h1, h2, . . . , hk followed by output o, with respect to which the loss function L is com-
puted. Furthermore, assume that the weight of the connection from hidden unit hr to
hr+1 is w(hr,hr+1). Then, in the case that a single path exists from h1 to o, one can
derive the gradient of the loss function with respect to any of these edge weights using
the chain rule:

∂L

∂w(hr−1,hr)
=

∂L

∂o
·
[

∂o

∂hk

k−1∏

i=r

∂hi+1

∂hi

]

∂hr

∂w(hr−1,hr)
∀r ∈ 1 . . . k (1.22)

The aforementioned expression assumes that only a single path from h1 to o exists in
the network, whereas an exponential number of paths might exist in reality. A gener-
alized variant of the chain rule, referred to as the multivariable chain rule, computes
the gradient in a computational graph, where more than one path might exist. This is
achieved by adding the composition along each of the paths from h1 to o. An example
of the chain rule in a computational graph with two paths is shown in Figure 1.13.
Therefore, one generalizes the above expression to the case where a set P of paths
exist from hr to o:

∂L

∂w(hr−1,hr)
=

∂L

∂o
·

⎡

⎣
∑

[hr,hr+1,...hk,o]∈P

∂o

∂hk

k−1∏

i=r

∂hi+1

∂hi

⎤

⎦

︸ ︷︷ ︸

Backpropagation computes ∆(hr, o) =
∂L
∂hr

∂hr

∂w(hr−1,hr)
(1.23)

1.3. TRAINING A NEURAL NETWORK WITH BACKPROPAGATION 23

The computation of ∂hr

∂w(hr−1,hr)
on the right-hand side is straightforward and will

be discussed below (cf. Equation 1.27). However, the path-aggregated term above
[annotated by ∆(hr, o) =

∂L
∂hr

] is aggregated over an exponentially increasing number
of paths (with respect to path length), which seems to be intractable at first sight. A
key point is that the computational graph of a neural network does not have cycles,
and it is possible to compute such an aggregation in a principled way in the backwards
direction by first computing ∆(hk, o) for nodes hk closest to o, and then recursively
computing these values for nodes in earlier layers in terms of the nodes in later layers.
Furthermore, the value of ∆(o, o) for each output node is initialized as follows:

∆(o, o) =
∂L

∂o
(1.24)

This type of dynamic programming technique is used frequently to efficiently compute
all types of path-centric functions in directed acyclic graphs, which would otherwise
require an exponential number of operations. The recursion for ∆(hr, o) can be derived
using the multivariable chain rule:

∆(hr, o) =
∂L

∂hr
=
∑

h:hr⇒h

∂L

∂h

∂h

∂hr
=
∑

h:hr⇒h

∂h

∂hr
∆(h, o) (1.25)

Since each h is in a later layer than hr, ∆(h, o) has already been computed while
evaluating ∆(hr, o). However, we still need to evaluate ∂h

∂hr
in order to compute Equa-

tion 1.25. Consider a situation in which the edge joining hr to h has weight w(hr,h),
and let ah be the value computed in hidden unit h just before applying the activation
function Φ(·). In other words, we have h = Φ(ah), where ah is a linear combination of
its inputs from earlier-layer units incident on h. Then, by the univariate chain rule,
the following expression for ∂h

∂hr
can be derived:

∂h

∂hr
=

∂h

∂ah
· ∂ah
∂hr

=
∂Φ(ah)

∂ah
· w(hr,h) = Φ′(ah) · w(hr,h)

This value of ∂h
∂hr

is used in Equation 1.25, which is repeated recursively in the back-
wards direction, starting with the output node. The corresponding updates in the
backwards direction are as follows:

∆(hr, o) =
∑

h:hr⇒h

Φ′(ah) · w(hr,h) ·∆(h, o) (1.26)

Therefore, gradients are successively accumulated in the backwards direction, and
each node is processed exactly once in a backwards pass. Note that the computation
of Equation 1.25 (which requires proportional operations to the number of outgoing
edges) needs to be repeated for each incoming edge into the node to compute the gra-
dient with respect to all edge weights. Finally, Equation 1.23 requires the computation
of ∂hr

∂w(hr−1,hr)
, which is easily computed as follows:

∂hr

∂w(hr−1,hr)
= hr−1 · Φ′(ahr

) (1.27)

Here, the key gradient that is backpropagated is the derivative with respect to layer acti-
vations, and the gradient with respect to the weights is easy to compute for any incident
edge on the corresponding unit.

24 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

It is noteworthy that the dynamic programming recursion of Equation 1.26 can be
computed in multiple ways, depending on which variables one uses for intermediate chaining.
All these recursions are equivalent in terms of the final result of backpropagation. In the
following, we give an alternative version of the dynamic programming recursion, which is
more commonly seen in textbooks. Note that Equation 1.23 uses the variables in the hidden
layers as the “chain” variables for the dynamic programming recursion. One can also use
the pre-activation values of the variables for the chain rule. The pre-activation variables in a
neuron are obtained after applying the linear transform (but before applying the activation
variables) as the intermediate variables. The pre-activation value of the hidden variable
h = Φ(ah) is ah. The differences between the pre-activation and post-activation values
within a neuron are shown in Figure 1.7. Therefore, instead of Equation 1.23, one can use
the following chain rule:

∂L

∂w(hr−1,hr)
=

∂L

∂o
· Φ′(ao) ·

⎡

⎣
∑

[hr,hr+1,...hk,o]∈P

∂ao
∂ahk

k−1∏

i=r

∂ahi+1

∂ahi

⎤

⎦

︸ ︷︷ ︸

Backpropagation computes δ(hr, o) =
∂L

∂ahr

∂ahr

∂w(hr−1,hr)
︸ ︷︷ ︸

hr−1

(1.28)

Here, we have introduced the notation δ(hr, o) =
∂L

∂ahr
instead of ∆(hr, o) =

∂L
∂hr

for setting

up the recursive equation. The value of δ(o, o) = ∂L
∂ao

is initialized as follows:

δ(o, o) =
∂L

∂ao
= Φ′(ao) ·

∂L

∂o
(1.29)

Then, one can use the multivariable chain rule to set up a similar recursion:

δ(hr, o) =
∂L

∂ahr

=
∑

h:hr⇒h

δ(h,o)
︷︸︸︷

∂L

∂ah

∂ah
∂ahr
︸ ︷︷ ︸

Φ′(ahr)w(hr,h)

= Φ′(ahr
)
∑

h:hr⇒h

w(hr,h) · δ(h, o) (1.30)

This recursion condition is found more commonly in textbooks discussing backpropagation.
The partial derivative of the loss with respect to the weight is then computed using δ(hr, o)
as follows:

∂L

∂w(hr−1,hr)
= δ(hr, o) · hr−1 (1.31)

As with the single-layer network, the process of updating the nodes is repeated to conver-
gence by repeatedly cycling through the training data in epochs. A neural network may
sometimes require thousands of epochs through the training data to learn the weights at
the different nodes. A detailed description of the backpropagation algorithm and associated
issues is provided in Chapter 3. In this chapter, we provide a brief discussion of these issues.

1.4 Practical Issues in Neural Network Training

In spite of the formidable reputation of neural networks as universal function approximators,
considerable challenges remain with respect to actually training neural networks to provide
this level of performance. These challenges are primarily related to several practical problems
associated with training, the most important one of which is overfitting.

1.4. PRACTICAL ISSUES IN NEURAL NETWORK TRAINING 25

1.4.1 The Problem of Overfitting

The problem of overfitting refers to the fact that fitting a model to a particular training
data set does not guarantee that it will provide good prediction performance on unseen test
data, even if the model predicts the targets on the training data perfectly. In other words,
there is always a gap between the training and test data performance, which is particularly
large when the models are complex and the data set is small.

In order to understand this point, consider a simple single-layer neural network on a
data set with five attributes, where we use the identity activation to learn a real-valued
target variable. This architecture is almost identical to that of Figure 1.3, except that the
identity activation function is used in order to predict a real-valued target. Therefore, the
network tries to learn the following function:

ŷ =

5∑

i=1

wi · xi (1.32)

Consider a situation in which the observed target value is real and is always twice the
value of the first attribute, whereas other attributes are completely unrelated to the target.
However, we have only four training instances, which is one less than the number of features
(free parameters). For example, the training instances could be as follows:

x1 x2 x3 x4 x5 y

1 1 0 0 0 2
2 0 1 0 0 4
3 0 0 1 0 6
4 0 0 0 1 8

The correct parameter vector in this case is W = [2, 0, 0, 0, 0] based on the known rela-
tionship between the first feature and target. The training data also provides zero error
with this solution, although the relationship needs to be learned from the given instances
since it is not given to us a priori. However, the problem is that the number of training
points is fewer than the number of parameters and it is possible to find an infinite number
of solutions with zero error. For example, the parameter set [0, 2, 4, 6, 8] also provides zero
error on the training data. However, if we used this solution on unseen test data, it is likely
to provide very poor performance because the learned parameters are spuriously inferred
and are unlikely to generalize well to new points in which the target is twice the first at-
tribute (and other attributes are random). This type of spurious inference is caused by the
paucity of training data, where random nuances are encoded into the model. As a result,
the solution does not generalize well to unseen test data. This situation is almost similar to
learning by rote, which is highly predictive for training data but not predictive for unseen
test data. Increasing the number of training instances improves the generalization power
of the model, whereas increasing the complexity of the model reduces its generalization
power. At the same time, when a lot of training data is available, an overly simple model
is unlikely to capture complex relationships between the features and target. A good rule
of thumb is that the total number of training data points should be at least 2 to 3 times
larger than the number of parameters in the neural network, although the precise number
of data instances depends on the specific model at hand. In general, models with a larger
number of parameters are said to have high capacity, and they require a larger amount of
data in order to gain generalization power to unseen test data. The notion of overfitting is
often understood in the trade-off between bias and variance in machine learning. The key

26 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

take-away from the notion of bias-variance trade-off is that one does not always win with
more powerful (i.e., less biased) models when working with limited training data, because
of the higher variance of these models. For example, if we change the training data in the
table above to a different set of four points, we are likely to learn a completely different set
of parameters (from the random nuances of those points). This new model is likely to yield
a completely different prediction on the same test instance as compared to the predictions
using the first training data set. This type of variation in the prediction of the same test
instance using different training data sets is a manifestation of model variance, which also
adds to the error of the model; after all, both predictions of the same test instance could not
possibly be correct. More complex models have the drawback of seeing spurious patterns
in random nuances, especially when the training data are insufficient. One must be careful
to pick an optimum point when deciding the complexity of the model. These notions are
described in detail in Chapter 4.

Neural networks have always been known to theoretically be powerful enough to ap-
proximate any function [208]. However, the lack of data availability can result in poor
performance; this is one of the reasons that neural networks only recently achieved promi-
nence. The greater availability of data has revealed the advantages of neural networks over
traditional machine learning (cf. Figure 1.2). In general, neural networks require careful
design to minimize the harmful effects of overfitting, even when a large amount of data is
available. This section provides an overview of some of the design methods used to mitigate
the impact of overfitting.

1.4.1.1 Regularization

Since a larger number of parameters causes overfitting, a natural approach is to constrain
the model to use fewer non-zero parameters. In the previous example, if we constrain the
vector W to have only one non-zero component out of five components, it will correctly
obtain the solution [2, 0, 0, 0, 0]. Smaller absolute values of the parameters also tend to
overfit less. Since it is hard to constrain the values of the parameters, the softer approach
of adding the penalty λ||W ||p to the loss function is used. The value of p is typically set to
2, which leads to Tikhonov regularization. In general, the squared value of each parameter
(multiplied with the regularization parameter λ > 0) is added to the objective function.
The practical effect of this change is that a quantity proportional to λwi is subtracted from
the update of the parameter wi. An example of a regularized version of Equation 1.6 for
mini-batch S and update step-size α > 0 is as follows:

W ⇐ W (1− αλ) + α
∑

X∈S

E(X)X (1.33)

Here, E[X] represents the current error (y − ŷ) between observed and predicted values
of training instance X. One can view this type of penalization as a kind of weight decay
during the updates. Regularization is particularly important when the amount of available
data is limited. A neat biological interpretation of regularization is that it corresponds to
gradual forgetting, as a result of which “less important” (i.e., noisy) patterns are removed.
In general, it is often advisable to use more complex models with regularization rather than
simpler models without regularization.

As a side note, the general form of Equation 1.33 is used by many regularized machine
learning models like least-squares regression (cf. Chapter 2), where E(X) is replaced by the
error-function of that specific model. Interestingly, weight decay is only sparingly used in the

1.4. PRACTICAL ISSUES IN NEURAL NETWORK TRAINING 27

single-layer perceptron3 because it can sometimes cause overly rapid forgetting with a small
number of recently misclassified training points dominating the weight vector; the main
issue is that the perceptron criterion is already a degenerate loss function with a minimum
value of 0 at W = 0 (unlike its hinge-loss or least-squares cousins). This quirk is a legacy
of the fact that the single-layer perceptron was originally defined in terms of biologically
inspired updates rather than in terms of carefully thought-out loss functions. Convergence
to an optimal solution was never guaranteed other than in linearly separable cases. For the
single-layer perceptron, some other regularization techniques, which are discussed below,
are more commonly used.

1.4.1.2 Neural Architecture and Parameter Sharing

The most effective way of building a neural network is by constructing the architecture of the
neural network after giving some thought to the underlying data domain. For example, the
successive words in a sentence are often related to one another, whereas the nearby pixels
in an image are typically related. These types of insights are used to create specialized
architectures for text and image data with fewer parameters. Furthermore, many of the
parameters might be shared. For example, a convolutional neural network uses the same
set of parameters to learn the characteristics of a local block of the image. The recent
advancements in the use of neural networks like recurrent neural networks and convolutional
neural networks are examples of this phenomena.

1.4.1.3 Early Stopping

Another common form of regularization is early stopping, in which the gradient descent is
ended after only a few iterations. One way to decide the stopping point is by holding out a
part of the training data, and then testing the error of the model on the held-out set. The
gradient-descent approach is terminated when the error on the held-out set begins to rise.
Early stopping essentially reduces the size of the parameter space to a smaller neighborhood
within the initial values of the parameters. From this point of view, early stopping acts as
a regularizer because it effectively restricts the parameter space.

1.4.1.4 Trading Off Breadth for Depth

As discussed earlier, a two-layer neural network can be used as a universal function approx-
imator [208], if a large number of hidden units are used within the hidden layer. It turns out
that networks with more layers (i.e., greater depth) tend to require far fewer units per layer
because the composition functions created by successive layers make the neural network
more powerful. Increased depth is a form of regularization, as the features in later layers
are forced to obey a particular type of structure imposed by the earlier layers. Increased
constraints reduce the capacity of the network, which is helpful when there are limitations
on the amount of available data. A brief explanation of this type of behavior is given in
Section 1.5. The number of units in each layer can typically be reduced to such an extent
that a deep network often has far fewer parameters even when added up over the greater
number of layers. This observation has led to an explosion in research on the topic of deep
learning.

3Weight decay is generally used with other loss functions in single-layer models and in all multi-layer
models with a large number of parameters.

28 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

Even though deep networks have fewer problems with respect to overfitting, they come
with a different family of problems associated with ease of training. In particular, the loss
derivatives with respect to the weights in different layers of the network tend to have vastly
different magnitudes, which causes challenges in properly choosing step sizes. Different
manifestations of this undesirable behavior are referred to as the vanishing and exploding
gradient problems. Furthermore, deep networks often take unreasonably long to converge.
These issues and design choices will be discussed later in this section and at several places
throughout the book.

1.4.1.5 Ensemble Methods

A variety of ensemble methods like bagging are used in order to increase the generalization
power of the model. These methods are applicable not just to neural networks but to
any type of machine learning algorithm. However, in recent years, a number of ensemble
methods that are specifically focused on neural networks have also been proposed. Two
such methods include Dropout and Dropconnect. These methods can be combined with
many neural network architectures to obtain an additional accuracy improvement of about
2% in many real settings. However, the precise improvement depends to the type of data and
the nature of the underlying training. For example, normalizing the activations in hidden
layers can reduce the effectiveness of Dropout methods, although one can gain from the
normalization itself. Ensemble methods are discussed in Chapter 4.

1.4.2 The Vanishing and Exploding Gradient Problems

While increasing depth often reduces the number of parameters of the network, it leads to
different types of practical issues. Propagating backwards using the chain rule has its draw-
backs in networks with a large number of layers in terms of the stability of the updates. In
particular, the updates in earlier layers can either be negligibly small (vanishing gradient) or
they can be increasingly large (exploding gradient) in certain types of neural network archi-
tectures. This is primarily caused by the chain-like product computation in Equation 1.23,
which can either exponentially increase or decay over the length of the path. In order to
understand this point, consider a situation in which we have a multi-layer network with one
neuron in each layer. Each local derivative along a path can be shown to be the product of
the weight and the derivative of the activation function. The overall backpropagated deriva-
tive is the product of these values. If each such value is randomly distributed, and has an
expected value less than 1, the product of these derivatives in Equation 1.23 will drop off ex-
ponentially fast with path length. If the individual values on the path have expected values
greater than 1, it will typically cause the gradient to explode. Even if the local derivatives
are randomly distributed with an expected value of exactly 1, the overall derivative will
typically show instability depending on how the values are actually distributed. In other
words, the vanishing and exploding gradient problems are rather natural to deep networks,
which makes their training process unstable.

Many solutions have been proposed to address this issue. For example, a sigmoid activa-
tion often encourages the vanishing gradient problem, because its derivative is less than 0.25
at all values of its argument (see Exercise 7), and is extremely small at saturation. A ReLU
activation unit is known to be less likely to create a vanishing gradient problem because its
derivative is always 1 for positive values of the argument. More discussions on this issue are
provided in Chapter 3. Aside from the use of the ReLU, a whole host of gradient-descent
tricks are used to improve the convergence behavior of the problem. In particular, the use

1.4. PRACTICAL ISSUES IN NEURAL NETWORK TRAINING 29

of adaptive learning rates and conjugate gradient methods can help in many cases. Further-
more, a recent technique called batch normalization is helpful in addressing some of these
issues. These techniques are discussed in Chapter 3.

1.4.3 Difficulties in Convergence

Sufficiently fast convergence of the optimization process is difficult to achieve with very
deep networks, as depth leads to increased resistance to the training process in terms of
letting the gradients smoothly flow through the network. This problem is somewhat related
to the vanishing gradient problem, but has its own unique characteristics. Therefore, some
“tricks” have been proposed in the literature for these cases, including the use of gating
networks and residual networks [184]. These methods are discussed in Chapters 7 and 8,
respectively.

1.4.4 Local and Spurious Optima

The optimization function of a neural network is highly nonlinear, which has lots of local
optima. When the parameter space is large, and there are many local optima, it makes sense
to spend some effort in picking good initialization points. One such method for improving
neural network initialization is referred to as pretraining. The basic idea is to use either
supervised or unsupervised training on shallow sub-networks of the original network in
order to create the initial weights. This type of pretraining is done in a greedy and layerwise
fashion in which a single layer of the network is trained at one time in order to learn
the initialization points of that layer. This type of approach provides initialization points
that ignore drastically irrelevant parts of the parameter space to begin with. Furthermore,
unsupervised pretraining often tends to avoid problems associated with overfitting. The
basic idea here is that some of the minima in the loss function are spurious optima because
they are exhibited only in the training data and not in the test data. Using unsupervised
pretraining tends to move the initialization point closer to the basin of “good” optima in
the test data. This is an issue associated with model generalization. Methods for pretraining
are discussed in Section 4.7 of Chapter 4.

Interestingly, the notion of spurious optima is often viewed from the lens of model gen-
eralization in neural networks. This is a different perspective from traditional optimization.
In traditional optimization, one does not focus on the differences in the loss functions of
the training and test data, but on the shape of the loss function in only the training data.
Surprisingly, the problem of local optima (from a traditional perspective) is a smaller issue
in neural networks than one might normally expect from such a nonlinear function. Most
of the time, the nonlinearity causes problems during the training process itself (e.g., failure
to converge), rather than getting stuck in a local minimum.

1.4.5 Computational Challenges

A significant challenge in neural network design is the running time required to train the
network. It is not uncommon to require weeks to train neural networks in the text and image
domains. In recent years, advances in hardware technology such as Graphics Processor Units
(GPUs) have helped to a significant extent. GPUs are specialized hardware processors that
can significantly speed up the kinds of operations commonly used in neural networks. In
this sense, some algorithmic frameworks like Torch are particularly convenient because they
have GPU support tightly integrated into the platform.

30 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

Although algorithmic advancements have played a role in the recent excitement around
deep learning, a lot of the gains have come from the fact that the same algorithms can do
much more on modern hardware. Faster hardware also supports algorithmic development,
because one needs to repeatedly test computationally intensive algorithms to understand
what works and what does not. For example, a recent neural model such as the long short-
term memory has changed only modestly [150] since it was first proposed in 1997 [204]. Yet,
the potential of this model has been recognized only recently because of the advances in
computational power of modern machines and algorithmic tweaks associated with improved
experimentation.

One convenient property of the vast majority of neural network models is that most of
the computational heavy lifting is front loaded during the training phase, and the prediction
phase is often computationally efficient, because it requires a small number of operations
(depending on the number of layers). This is important because the prediction phase is
often far more time-critical compared to the training phase. For example, it is far more
important to classify an image in real time (with a pre-built model), although the actual
building of that model might have required a few weeks over millions of images. Methods
have also been designed to compress trained networks in order to enable their deployment
in mobile and space-constrained settings. These issues are discussed in Chapter 3.

1.5 The Secrets to the Power of Function Composition

Even though the biological metaphor sounds like an exciting way to intuitively justify the
computational power of a neural network, it does not provide a complete picture of the
settings in which neural networks perform well. At its most basic level, a neural network is
a computational graph that performs compositions of simpler functions to provide a more
complex function. Much of the power of deep learning arises from the fact that repeated
composition of multiple nonlinear functions has significant expressive power. Even though
the work in [208] shows that the single composition of a large number of squashing functions
can approximate almost any function, this approach will require an extremely large number
of units (i.e., parameters) of the network. This increases the capacity of the network, which
causes overfitting unless the data set is extremely large. Much of the power of deep learning
arises from the fact that the repeated composition of certain types of functions increases the
representation power of the network, and therefore reduces the parameter space required for
learning.

Not all base functions are equally good at achieving this goal. In fact, the nonlinear
squashing functions used in neural networks are not arbitrarily chosen, but are carefully
designed because of certain types of properties. For example, imagine a situation in which
the identity activation function is used in each layer, so that only linear functions are
computed. In such a case, the resulting neural network is no stronger than a single-layer,
linear network:

Theorem 1.5.1 A multi-layer network that uses only the identity activation function in
all its layers reduces to a single-layer network performing linear regression.

Proof: Consider a network containing k hidden layers, and therefore contains a total of
(k+1) computational layers (including the output layer). The corresponding (k+1) weight
matrices between successive layers are denoted by W1 . . .Wk+1. Let x be the d-dimensional
column vector corresponding to the input, h1 . . . hk be the column vectors corresponding to
the hidden layers, and o be the m-dimensional column vector corresponding to the output.

1.5. THE SECRETS TO THE POWER OF FUNCTION COMPOSITION 31

Then, we have the following recurrence condition for multi-layer networks:

h1 = Φ(WT
1 x) = WT

1 x

hp+1 = Φ(WT
p+1hp) = WT

p+1hp ∀p ∈ {1 . . . k − 1}
o = Φ(WT

k+1hk) = WT
k+1hk

In all the cases above, the activation function Φ(·) has been set to the identity function.
Then, by eliminating the hidden layer variables, it is easy to show the following:

o = WT
k+1W

T
k . . .WT

1 x

= (W1W2 . . .Wk+1)
T

︸ ︷︷ ︸

WT
xo

x

Note that one can replace the matrix W1W2 . . .Wk+1 with the new d×m matrix Wxo, and
learn the coefficients of Wxo instead of those of all the matrices W1, W2 . . .Wk+1, without
loss of expressivity. In other words, we have the following:

o = WT
xox

However, this condition is exactly identical to that of linear regression with multiple out-
puts [6]. In fact, it is a bad idea to learn the redundant matrices W1 . . .Wk+1 instead of
Wxo, because doing so increases the number of parameters to be learned without increasing
the power of the model in any way. Therefore, a multilayer neural network with identity
activations does not gain over a single-layer network in terms of expressivity.
The aforementioned result is for the case of regression modeling with numeric target vari-
ables. A similar result holds true for binary target variables. In the special case, where all
layers use identity activation and the final layer uses a single output with sign activation
for prediction, the multilayer neural network reduces to the perceptron.

Lemma 1.5.1 Consider a multilayer network in which all hidden layers use identity acti-
vation and the single output node uses the perceptron criterion as the loss function and the
sign activation for prediction. This neural network reduces to the single-layer perceptron.

The proof of this result is almost identical to that of the one discussed above. In fact, as
long as the hidden layers are linear, nothing is gained using the additional layers.

This result shows that deep networks largely make sense only when the activation func-
tions in intermediate layers are non-linear. Typically, the functions like sigmoid and tanh
are squashing functions in which the output is bounded within an interval, and the gradients
are largest near zero values. For large absolute values of their arguments, these functions
are said to reach saturation where increasing the absolute value of the argument further
does not change its value significantly. This type of function in which values do not vary
significantly at large absolute values of their arguments is shared by another family of func-
tions, referred to as Gaussian kernels, which are commonly used in non-parametric density
estimation:

Φ(v) = exp(−v2/2) (1.34)

The only difference is that Gaussian kernels saturate to 0 at large values of their argument,
whereas functions like sigmoid and tanh can also saturate to values of +1 and −1. It is well
known in the literature on density estimation [451] that the sum of many small Gaussian
kernels can be used to approximate any density function. Density functions have a special

32 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

nonnegative structure in which extremes of the data distribution always saturate to zero
density, and therefore the underlying kernels also show the same behavior. A similar prin-
ciple holds true (more generally) for squashing functions in which the linear combination
of many small activation functions can be used to approximate an arbitrary function; how-
ever, squashing functions do not saturate to zero in order to handle arbitrary behavior at
extreme values. The universal approximation result of neural networks [208] posits that a
linear combination of sigmoid units (and/or most other reasonable squashing functions) in
a single hidden layer can be used to approximate any function well. Note that the linear
combination can be performed by a single output node. Therefore, a two-layer network is
sufficient as long as the number of hidden units is large enough. However, some kind of
basic non-linearity in the activation function is always required in order to model the turns
and twists in an arbitrary function. To understand this point, note that all 1-dimensional
functions can be approximated as a sum of scaled/translated step functions and most of the
activation functions discussed in this chapter (e.g., sigmoid) look awfully like step functions
(see Figure 1.8). This basic idea is the essence of the universal approximation theorem of
neural networks. In fact, the proof of the ability of squashing functions to approximate any
function is conceptually similar to that of kernels at least at an intuitive level. However, the
number of base functions required to reach a high level of approximation can be extremely
large in both cases, potentially increasing the data-centric requirements to an unmanageable
level. For this reason, shallow networks face the persistent problem of overfitting. The uni-
versal approximation theorem asserts the ability to well-approximate the function implicit
in the training data, but makes no guarantee about whether the function can be generalized
to unseen test data.

1.5.1 The Importance of Nonlinear Activation

The previous section provides a concrete proof of the fact that a neural network with only
linear activations does not gain from increasing the number of layers in it. For example,
consider the two-class data set illustrated in Figure 1.14, which is represented in two di-
mensions denoted by x1 and x2. There are two instances, A and B, of the class denoted by
‘*’ with coordinates (1, 1) and (−1, 1), respectively. There is also a single instance B of the
class denoted by ‘+’ with coordinates (0, 1), A neural network with only linear activations
will never be able to classify the training data perfectly because the points are not linearly
separable.

On the other hand, consider a situation in which the hidden units have ReLU activation,
and they learn the two new features h1 and h2, which are as follows:

h1 = max{x1, 0}
h2 = max{−x1, 0}

Note that these goals can be achieved by using appropriate weights from the input
to hidden layer, and also applying a ReLU activation unit. The latter achieves the goal
of thresholding negative values to 0. We have indicated the corresponding weights in the
neural network shown in Figure 1.14. We have shown a plot of the data in terms of h1

and h2 in the same figure. The coordinates of the three points in the 2-dimensional hidden
layer are {(1, 0), (0, 1), (0, 0)}. It is immediately evident that the two classes become linearly
separable in terms of the new hidden representation. In a sense, the task of the first layer
was representation learning to enable the solution of the problem with a linear classifier.
Therefore, if we add a single linear output layer to the neural network, it will be able to

1.5. THE SECRETS TO THE POWER OF FUNCTION COMPOSITION 33

NOT LINEARLY SEPARABLE

 A B C

 X2

 X1

(-1,1) (0,1) (1,1)

FIRST LAYER

TRANSFORM

 h2

 h1

 A

 B C

 (0,1)

 (0,0) (1,0)

LINEARLY SEPARABLE

∑

∑

∑

 X1

 X2

 +1

 -1 0

 0

 h1

 h2

 +1

 +1

O

INPUT LAYER
HIDDEN LAYER

OUTPUT

Figure 1.14: The power of nonlinear activation functions in transforming a data set to linear
separability

classify these training instances perfectly. The key point is that the use of the nonlinear
ReLU function is crucial in ensuring this linear separability. Activation functions enable
nonlinear mappings of the data, so that the embedded points can become linearly separable.
In fact, if both the weights from hidden to output layer are set to 1 with a linear activation
function, the output O will be defined as follows:

O = h1 + h2 (1.35)

This simple linear function separates the two classes because it always takes on the value
of 1 for the two points labeled ‘*’ and takes on 0 for the point labeled ‘+’. Therefore,
much of the power of neural networks is hidden in the use of activation functions. The
weights shown in Figure 1.14 will need to be learned in a data-driven manner, although

x OUTPUT

LA
Y

E
R

 1

LA
Y

E
R

 k

LA
Y

E
R

 3

LA
Y

E
R

 2

SIMPLER

PATTERNS

MORE COMPLEX

PATTERNS

CONCATENATE PATTERNS

IN PREVIOUS LAYER

Figure 1.15: Deeper networks can learn more complex functions by composing the functions
learned in earlier layers.

34 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

there are many alternative choices of weights that can make the hidden representation
linearly separable. Therefore, the learned weights may be different than the ones shown in
Figure 1.14 if actual training is performed. Nevertheless, in the case of the perceptron, there
is no choice of weights at which one could hope to classify this training data set perfectly
because the data set is not linearly separable in the original space. In other words, the
activation functions enable nonlinear transformations of the data, that become increasingly
powerful with multiple layers. A sequence of nonlinear activations imposes a specific type
of structure on the learned model, whose power increases with the depth of the sequence
(i.e., number of layers in the neural network).

Another classical example is the XOR function in which the two points {(0, 0), (1, 1)}
belong to one class, and the other two points {(1, 0), (0, 1)} belong to the other class.
It is possible to use ReLU activation to separate these two classes as well, although bias
neurons will be needed in this case (see Exercise 1). The original backpropagation paper [409]
discusses the XOR function, because this function was one of the motivating factors for
designing multilayer networks and the ability to train them. The XOR function is considered
a litmus test to determine the basic feasibility of a particular family of neural networks to
properly predict nonlinearly separable classes. Although we have used the ReLU activation
function above for simplicity, it is possible to use most of the other nonlinear activation
functions to achieve the same goals.

1.5.2 Reducing Parameter Requirements with Depth

The basic idea of deep learning is that repeated composition of functions can often reduce
the requirements on the number of base functions (computational units) by a factor that
is exponentially related to the number of layers in the network. Therefore, even though the
number of layers in the network increases, the number of parameters required to approximate
the same function reduces drastically. This increases the generalization power of the network.

The idea behind deeper architectures is that they can better leverage repeated regularities
in the data patterns in order to reduce the number of computational units and therefore
generalize the learning even to areas of the data space where one does not have examples.
Often these repeated regularities are learned by the neural network within the weights as the
basis vectors of hierarchical features. Although a detailed proof [340] of this fact is beyond
the scope of this book, we provide a simple example to elucidate this point. Consider a
situation in which a 1-dimensional function is defined by 1024 repeated steps of the same
size and height. A shallow network with one hidden layer and step activation functions
would require at least 1024 units in order to model the function. However, a multilayer
network would model a pattern of 1 step in the first layer, 2 steps in the next, 4 steps in
the third, and 2r steps in the rth layer. This situation is illustrated in Figure 1.15. Note
that the pattern of 1 step is the simplest feature because it is repeated 1024 times, whereas
a pattern of 2 steps is more complex. Therefore, the features (and the functions learned)
in successive layers are hierarchically related. In this case, a total of 10 layers are required
and a small number of constant nodes are required in each layer to model the joining of the
two patterns from the previous layer.

Another way to understand this point is as follows. Consider a 1-dimensional function
which takes one the value of 1 and −1 in alternate intervals, and this value switches 1024
times at regular intervals of the argument. The only way to simulate this function with a
linear combination of step activation functions (containing only one switch in value) is to
use 1024 of them (or a small constant factor of this number). However, a neural network
with 10 hidden layers and only 2 units per layer has 210 = 1024 paths from the source

1.5. THE SECRETS TO THE POWER OF FUNCTION COMPOSITION 35

to the output. As long as the function to be learned is regular in some way, it is often
possible to learn parameters for the layers so that these 1024 paths are able to capture the
complexity of 1024 different value switches in the function. The earlier layers learn more
detailed patterns, whereas the later layers learn higher-level patterns. Therefore, the overall
number of nodes required is an order of magnitude less than that required in the single-
layer network. This means that the amount of data required for learning is also an order of
magnitude less. The reason for this is that the multilayer network implicitly looks for the
repeated regularities and learns them with less data, rather than trying to explicitly learn
every turn and twist of the target function. When using convolutional neural networks with
image data, this behavior becomes intuitively obvious in which earlier layers model simple
features like lines, a middle layer might model elementary shapes, and a later layer might
model a complex shape like a face. On the other hand, a single layer would have difficulty
in modeling every twist and turn of a face. This provides the deeper model with better
generalization power and also the ability to learn with less data.

However, increasing the depth of the network is not without its disadvantages. Deeper
networks are often harder to train, and they show all types of unstable behavior such as the
vanishing and exploding gradient problems. Deep networks are also notoriously unstable
to parameter choice. These issues are often addressed with careful design of the functions
computed within nodes, as well as the use of pretraining procedures to improve performance.

1.5.3 Unconventional Neural Architectures

The aforementioned discussion provides an overview of the most common ways in which the
operations and structures of typical neural networks are constructed. However, there are
many variations of this common theme. The following will discuss some of these variations.

1.5.3.1 Blurring the Distinctions Between Input, Hidden,
and Output Layers

In general, there is a heavy emphasis on layer-wise feed-forward networks in the neural net-
work domain with a sequential arrangement between input, hidden, and output layers. In
other words, all input nodes feed into the first hidden layer, the hidden layers successively
feed into one another, and the final hidden layer feeds into the output layer. The compu-

RANDOM

BAG OF

K FEATURES

RANDOM

BAG OF

K FEATURES

RANDOM

BAG OF

K FEATURES

FINAL

OUTPUT

F
IN

A
L

A
G

G
R

E
G

A
T

O
R

Figure 1.16: An example of an unconventional architecture in which inputs occur to layers
other than the first hidden layer. As long as the neural network is acyclic (or can be trans-
formed into an acyclic representation), the weights of the underlying computation graph
can be learned using dynamic programming (backpropagation).

36 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

tational units are often defined by squashing functions applied to linear combinations of
input. The hidden layer generally does not take inputs, and the loss is generally not com-
puted over the values in the hidden layers. Because of this focus, it is easy to forget that a
neural network can be defined as any type of parameterized computation graph, where these
restrictions are not necessary for the backpropagation algorithm to work. In general, it is
possible to have input and loss computation in intermediate layers, although this is less
common. For example, a neural network is proposed in [515] that is inspired by the notion
of a random forest [49], and it allows input in different layers of the network. An example
of this type of network is shown in Figure 1.16. In this case, it is clear that the distinction
between the input layers and the hidden layers has been blurred.

In other variations of the basic feed-forward architecture, loss functions are computed
not just at the output nodes, but also at the hidden nodes. The contributions at the hidden
nodes are often in the form of penalties that act as regularizers. For example, these types of
methods are used to perform sparse feature learning by imposing penalties on the hidden
nodes (cf. Chapters 2 and 4). In this case, the distinction between the hidden layers and
output layers is blurred.

Another recent example of a design choice is the use of skip connections [184] in which
the inputs from a particular layer are allowed to connect to layers beyond the immediate
next layer. This type of approach leads to truly deep models. For example, a 152-layer ar-
chitecture, referred to as ResNet [184], has reached human-level performance in the image
recognition task. Although this architecture does not blur the distinction between input,
hidden, and output layers, its structure differs from a traditional feed-forward network in
which connections are placed only between successive layers. These networks have an it-
erative view of feature engineering [161], in which the features in later layers are iterative
refinements of those in previous layers. In contrast, the traditional approach to feature
engineering is hierarchical, in which features in later layers are increasingly abstract repre-
sentations obtained from those in previous layers.

1.5.3.2 Unconventional Operations and Sum-Product Networks

Some neural networks like long short-term memory and convolutional neural networks define
various types of multiplicative “forgetting,” convolution, and pooling operations between
variables that are not strictly in any of the forms discussed in this chapter. In fact, these
architectures are now used so heavily in the text and image domains that they are no longer
considered unusual.

Another unique type of architecture is the sum-product network [383]. In this case, the
nodes are either summation nodes or product nodes. Summation nodes are similar to the
traditional linear transformation with a set of weighted edges. However, the weights are
constrained to be positive. The product nodes simply multiply its inputs without the need
for weights. It is noteworthy that there are many variations in terms of how products can
be computed. For example, if the inputs are two scalars, then one can simply compute their
product. If the inputs are two vectors of equal length, one can compute their element-wise
product. Several deep learning libraries do support these types of product operations. It is
natural for the summation layers and the product layers to alternate in order to maximize
expressivity.

Sum-product networks are quite expressive, and it is often possible to build deep varia-
tions with a high level of expressivity [30, 93]. A key point is that almost any mathematical
function can be approximately written as a polynomial function of its inputs. Therefore,
almost any function can be expressed using the sum-product architecture, although deeper

1.6. COMMON NEURAL ARCHITECTURES 37

architectures allow modeling with greater structure. Unlike traditional neural networks in
which nonlinearity is incorporated with activation functions, the product operation is the
key to nonlinearity in the sum-product network.

Training Issues

It is often helpful to be flexible in using different types of computational operations within
the nodes beyond the known transformations and activation functions. Furthermore, the
connections between nodes need not be structured in layer-wise fashion and nodes in the
hidden layer can be included in the loss computation. As long as the underlying computa-
tional graph is acyclic, it is easy to generalize the backpropagation algorithm to any type
of architecture and computational operation. After all, a dynamic programming algorithm
(like backpropagation) can be used on virtually any type of directed acyclic graph in which
multiple nodes can be used for initializing the dynamic programming recursion. It is im-
portant to keep in mind that architectures that are designed with a proper domain-specific
understanding can often provide superior results to black-box methods that use fully con-
nected feed-forward networks.

1.6 Common Neural Architectures

There are several types of neural architectures that are used commonly in various machine
learning applications. This section will provide a brief overview of some of these architec-
tures, which will be discussed in greater detail in later chapters.

1.6.1 Simulating Basic Machine Learning with Shallow Models

Most of the basic machine learning models like linear regression, classification, support
vector machines, logistic regression, singular value decomposition, and matrix factorization
can be simulated with shallow neural networks containing no more than one or two layers.
It is instructive to explore these basic architectures, because it indirectly showcases the
power of neural networks; most of what we know about machine learning can be simulated
with relatively simple models! Furthermore, many basic neural network models like the
Widrow-Hoff learning model are directly related to traditional machine learning models like
the Fisher’s discriminant, even though they were proposed independently. A noteworthy
observation is that deeper architectures are often created by stacking these simpler models
in a creative way. The neural architectures for basic machine learning models are discussed
in Chapter 2. A number of applications to text mining, graphs, and recommender systems
will also be discussed in this chapter.

1.6.2 Radial Basis Function Networks

Radial basis function (RBF) networks represent the forgotten architecture from the rich
history of neural networks. They are not commonly used in the modern era, although they
do have significant potential for specific types of problems. One limiting issue is that these
networks are not deep, and they typically use only two layers. The first layer is constructed
in an unsupervised way, whereas the second layer is trained using supervised methods. These
networks are fundamentally different from feed-forward networks, and gain their power from
the larger number of nodes in the unsupervised layer. The basic principles of using RBF
networks are fundamentally very different from those of feed-forward networks, in the sense

38 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

that the former gains its power from expanding the size of the feature space rather than
depth. This approach is based on Cover’s theorem on separability of patterns [84], which
states that pattern classification problems are more likely to be linearly separable when
cast into a high-dimensional space with a nonlinear transformation. The second layer of the
network contains a prototype in each node and the activation is defined by the similarity of
the input data to the prototype. These activations are then combined with trained weights
of the next layer to create a final prediction. This approach is very similar to that of nearest-
neighbor classifiers, except that the weights in the second layer provide an additional level
of supervision. In other words, the approach is a supervised nearest-neighbor method.

Notably, support vector machines are known to be supervised variants of nearest-
neighbor classifiers in which a kernel function is combined with supervised weights to weight
the neighboring points in the final prediction [6]. Radial basis function networks can be used
to simulate kernel methods like support vector machines. For specific types of problems like
classification, one can use these architectures more effectively than an off-the-shelf kernel
support vector machine. This is because these models are more general, providing more
opportunities for experimentation than a kernel support vector machine. Furthermore, it is
sometimes possible to gain some advantages from increased depth in the supervised layers.
The full potential of radial basis function networks remains unexplored in the literature,
because this architecture has largely been forgotten with the increased focus on vanilla feed-
forward methods. A discussion of radial basis function networks is provided in Chapter 5.

1.6.3 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) use the notion of energy minimization in order
to create neural network architectures for modeling data in an unsupervised way. These
methods are particularly useful for creating generative models of the data, and they are
closely related to probabilistic graphical models [251]. Restricted Boltzmann machines owe
their origins to the use of Hopfield networks [207], which can be used to store memories.
Stochastic variants of these networks were generalized to Boltzmann machines, in which
hidden layers modeled generative aspects of the data.

Restricted Boltzmann machines are often used for unsupervised modeling and dimen-
sionality reduction, although they can also be used for supervised modeling. However, since
they were not naturally suited to supervised modeling, the supervised training was often
preceded by an unsupervised phase. This naturally led to the discovery of the notion of
pretraining, which was found to be extremely beneficial for supervised learning. RBMs were
among the first models that were used for deep learning, especially in the unsupervised set-
ting. The pretraining approach was eventually adopted by other types of models. Therefore,
RBMs also have a historical significance in terms of motivating some training methodologies
for deep models.

The training process of a restricted Boltzmann machine is quite different from that of a
feed-forward network. In particular, these models cannot be trained using backpropagation,
and they require Monte Carlo sampling in order to perform the training. The particular al-
gorithm that is used commonly for training an RBM is the contrastive divergence algorithm.
A discussion of restricted Boltzmann machines is provided in Chapter 6.

1.6.4 Recurrent Neural Networks

Recurrent neural networks are designed for sequential data like text sentences, time-series,
and other discrete sequences like biological sequences. In these cases, the input is of the

1.6. COMMON NEURAL ARCHITECTURES 39

form x1 . . . xn, where xt is a d-dimensional point received at the time-stamp t. For example,
the vector xt might contain the d values at the tth tick of a multivariate time-series (with
d different series). In a text-setting, the vector xt will contain the one-hot encoded word at
the tth time-stamp. In one-hot encoding, we have a vector of length equal to the lexicon
size, and the component for the relevant word has a value of 1. All other components are 0.

An important point about sequences is that successive words are dependent on one
another. Therefore, it is helpful to receive a particular input xt only after the earlier inputs
have already been received and converted into a hidden state. The traditional type of feed-
forward network in which all inputs feed into the first layer does not achieve this goal.
Therefore, the recurrent neural network allows the input xt to interact directly with the
hidden state created from the inputs at previous time stamps. The basic architecture of
the recurrent neural network is illustrated in Figure 1.17(a). The key point is that there is
an input xt at each time-stamp, and a hidden state ht that changes at each time stamp
as new data points arrive. Each time-stamp also has an output value yt. For example, in
a time-series setting, the output yt might be the forecasted prediction of xt+1. When used
in the text-setting of predicting the next word, this approach is referred to as language
modeling. In some applications, we do not output yt at each time stamp, but only at the
end of the sequence. For example, if one is trying the classify the sentiment of a sentence
as “positive” or “negative,” the output will occur only at the final time stamp.

The hidden state at time t is given by a function of the input vector at time t and the
hidden vector at time (t− 1):

ht = f(ht−1, xt) (1.36)

A separate function yt = g(ht) is used to learn the output probabilities from the hidden
states. Note that the functions f(·) and g(·) are the same at each time stamp. The implicit
assumption is that the time-series exhibits a certain level of stationarity; the underlying
properties do not change with time. Although this property is not exactly true in real
settings, it is a good assumption to use for regularization.

A key point here is the presence of the self-loop in Figure 1.17(a), which will cause
the hidden state of the neural network to change after the input of each xt. In practice,
one only works with sequences of finite length, and it makes sense to unfurl the loop into
a “time-layered” network that looks more like a feed-forward network. This network is
shown in Figure 1.17(b). Note that in this case, we have a different node for the hidden

xt

ht

yt

Wxh

Whh

Why

ONE-HOT

ENCODED

WORD

PREDICTED

WORD

LIKELIHOODS

HIDDEN

REPRESENTATION

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

Why
Whh Whh

the cat the

cat chased the mouseTARGET

WORDS

INPUT

WORDS chased

Figure 1.17: A recurrent neural network and its time-layered representation

40 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

state at each time-stamp and the self-loop has been unfurled into a feed-forward network.
This representation is mathematically equivalent to Figure 1.17(a), but is much easier to
comprehend because of its similarity to a traditional network. Note that unlike traditional
feed-forward networks, the inputs also occur to intermediate layers in this unfurled network.
The weight matrices of the connections are shared by multiple connections in the time-
layered network to ensure that the same function is used at each time stamp. This sharing is
the key to the domain-specific insights that are learned by the network. The backpropagation
algorithm takes the sharing and temporal length into account when updating the weights
during the learning process. This special type of backpropagation algorithm is referred to as
backpropagation through time (BPTT). Because of the recursive nature of Equation 1.36,
the recurrent network has the ability to compute a function of variable-length inputs. In
other words, one can expand the recurrence of Equation 1.36 to define the function for ht

in terms of t inputs. For example, starting at h0, which is typically fixed to some constant
vector, we have h1 = f(h0, x1) and h2 = f(f(h0, x1), x2). Note that h1 is a function of only
x1, whereas h2 is a function of both x1 and x2. Since the output yt is a function of ht, these
properties are inherited by yt as well. In general, we can write the following:

yt = Ft(x1, x2, . . . xt) (1.37)

Note that the function Ft(·) varies with the value of t. Such an approach is particularly useful
for variable-length inputs like text sentences. More details of recurrent neural networks are
provided in Chapter 7; this chapter will also discuss the applications of recurrent neural
networks in various domains.

An interesting theoretical property of recurrent neural networks is that they are Turing
complete [444]. What this means is that given enough data and computational resources, a
recurrent neural network can simulate any algorithm. In practice, however, this theoretical
property is not useful because recurrent networks have significant practical problems with
generalization for long sequences. The amount of data and the size of the hidden states
required for longer sequences increases in a way that is not realistic. Furthermore, there are
practical issues in finding the optimum choices of parameters because of the vanishing and
exploding gradient problems. As a result, specialized variants of the recurrent neural network
architecture have been proposed, such as the use of long short-term memory. These advanced
architectures will also be discussed in Chapter 7. Furthermore, some advanced variants of
the recurrent architecture, such as neural Turing machines, have shown improvements over
the recurrent neural network in some applications.

1.6.5 Convolutional Neural Networks

Convolutional neural networks are biologically inspired networks that are used in computer
vision for image classification and object detection. The basic motivation for the convo-
lutional neural network was obtained from Hubel and Wiesel’s understanding [212] of the
workings of the cat’s visual cortex, in which specific portions of the visual field seemed to
excite particular neurons. This broader principle was used to design a sparse architecture
for convolutional neural networks. The first basic architecture based on this biological inspi-
ration was the neocognitron, which was then generalized to the LeNet-5 architecture [279].
In the convolutional neural network architecture, each layer of the network is 3-dimensional,
which has a spatial extent and a depth corresponding to the number of features. The notion
of depth of a single layer in a convolutional neural network is distinct4 from the notion of

4This is an overloading of the terminology used in convolutional neural networks. The meaning of the
word “depth” is inferred from the context in which it is used.

1.6. COMMON NEURAL ARCHITECTURES 41

depth in terms of the number of layers. In the input layer, these features correspond to the
color channels like RGB (i.e., red, green, blue), and in the hidden channels these features
represent hidden feature maps that encode various types of shapes in the image. If the input
is in grayscale (like LeNet-5), then the input layer will have a depth of 1, but later layers
will still be 3-dimensional. The architecture contains two types of layers, referred to as the
convolution and subsampling layers, respectively.

For the convolution layers, a convolution operation is defined, in which a filter is used to
map the activations from one layer to the next. A convolution operation uses a 3-dimensional
filter of weights with the same depth as the current layer but with a smaller spatial extent.
The dot product between all the weights in the filter and any choice of spatial region (of
the same size as the filter) in a layer defines the value of the hidden state in the next layer
(after applying an activation function like ReLU). The operation between the filter and the
spatial regions in a layer is performed at every possible position in order to define the next
layer (in which the activations retain their spatial relationships from the previous layer).

The connections in a convolutional neural network are very sparse, because any activa-
tion in a particular layer is a function of only a small spatial region in the previous layer.
All layers other than the final set of two of three layers maintain their spatial structure.
Therefore, it is possible to spatially visualize what parts of the image affect particular por-
tions of the activations in a layer. The features in lower-level layers capture lines or other
primitive shapes, whereas the features in higher-level layers capture more complex shapes
like loops (which commonly occur in many digits). Therefore, later layers can create digits
by composing the shapes in these intuitive features. This is a classical example of the way in
which semantic insights about specific data domains are used to design clever architectures.
In addition, a subsampling layer simply averages the values in the local regions of size 2× 2
in order to compress the spatial footprints of the layers by a factor of 2. An illustration of
the architecture of LeNet-5 is shown in Figure 1.18. In the early years, LeNet-5 was used
by several banks to recognize hand-written numbers on checks.

Convolutional neural networks have historically been the most successful of all types of
neural networks. They are used widely for image recognition, object detection/localization,
and even text processing. The performance of these networks has recently exceeded that of
humans in the problem of image classification [184]. Convolutional neural networks provide
a very good example of the fact that architectural design choices in a neural network should
be performed with semantic insight about the data domain at hand. In the particular case

32

32

5

5

28

28

2

6

2

6

14

14

5

5

10

2

2

16

10

16

5

5

INPUT: SINGLE GRAYSCALE

FEATURE MAP OF PIXELS

C1

S2 C3

120

84 10

C5
F6

O

SUBSAMPLING OPERATIONS

CONVOLUTION OPERATIONS

S4

Figure 1.18: LeNet-5: One of the earliest convolutional neural networks.

42 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

of the convolutional neural network, this insight was obtained by observing the biological
workings of a cat’s visual cortex, and heavily using the spatial relationships among pixels.
This fact also provides some evidence that a further understanding of neuroscience might
also be helpful for the development of methods in artificial intelligence.

Pretrained convolutional neural networks from publicly available resources like ImageNet
are often available for use in an off-the-shelf manner for other applications and data sets.
This is achieved by using most of the pretrained weights in the convolutional network with-
out any change except for the final classification layer. The weights of the final classification
layer are learned from the data set at hand. The training of the final layer is necessary
because the class labels in a particular setting may be different from those of ImageNet.
Nevertheless, the weights in the early layers are still useful because they learn various types
of shapes in the images that can be useful for virtually any type of classification application.
Furthermore, the feature activations in the penultimate layer can even be used for unsu-
pervised applications. For example, one can create a multidimensional representation of an
arbitrary image data set by passing each image through the convolutional neural network
and extracting the activations of the penultimate layer. Subsequently, any type of indexing
can be applied to this representation for retrieving images that are similar to a specific
target image. Such an approach often provides surprisingly good results in image retrieval
because of the semantic nature of the features learned by the network. It is noteworthy that
the use of pretrained convolutional networks is so popular that training is rarely started
from scratch. Convolutional neural networks are discussed in detail in Chapter 8.

1.6.6 Hierarchical Feature Engineering and Pretrained Models

Many deeper architectures with feed-forward architectures have multiple layers in which
successive transformations of the inputs from the previous layer lead to increasingly so-
phisticated representations of the data. The values of each hidden layer for a particular
input contain a transformed representation of the input point, which becomes increasingly
informative about the target value we are trying to learn, as the layer gets closer to the
output node. As shown in Section 1.5.1, appropriately transformed feature representations
are more amenable to simple types of predictions in the output layer. This sophistication is
a result of the nonlinear activations in intermediate layers. Traditionally, the sigmoid and
tanh activations were the most popular choices in the hidden layers, but the ReLU activa-
tion has become increasingly popular in recent years because of the desirable property that
it is better at avoiding the vanishing and exploding gradient problems (cf. Section 3.4.2 of
Chapter 3). For classification, the final layer can be viewed as a relatively simple prediction
layer which contains a single linear neuron in the case of regression, and is a sigmoid/sign
function in the case of binary classification. More complex outputs might require multiple
nodes. One way of viewing this division of labor between the hidden layers and final pre-
diction layer is that the early layers create a feature representation that is more amenable
to the task at hand. The final layer then leverages this learned feature representation. This
division of labor is shown in Figure 1.19. A key point is that the features learned in the
hidden layers are often (but not always) generalizable to other data sets and problem set-
tings in the same domain (e.g., text, images, and so on). This property can be leveraged in
various ways by simply replacing the output node(s) of a pretrained network with a different
application-specific output layer (e.g., linear regression layer instead of sigmoid classification
layer) for the data set and problem at hand. Subsequently, only the weights of the newly
replaced output layer may need to be learned for the new data set and application, whereas
the weights of other layers are fixed.

1.6. COMMON NEURAL ARCHITECTURES 43

IN
P

U
T

 L
A

Y
E

R

W X = 0

HIDDEN LAYERS LEARN FEATURES THAT

ARE FRIENDLY TO MACHINE LEARNING

ALGORITHMS LIKE CLASSIFICATION

INPUT DISTRIBUTION

(HARD TO CLASSIFY

WITH SINGLE LAYER)

OUTPUT NODE

(LINEAR CLASSIFIER)

y

TRANSFORMED DISTRIBUTION

(EASY TO CLASSIFY

WITH SINGLE LINEAR LAYER)

LINEAR CLASSIFICATION OF

TRANSFORMED DATA WITH

SINGLE OUTPUT NODE

HIDDEN LAYER (NONLINEAR TRANSFORMATIONS)

NONLINEAR

TRANSFORMATIONS

OF HIDDEN LAYER

OUTPUT LAYER LEVERAGES

SIMPLIFIED DISTRIBUTION

Figure 1.19: The feature engineering role of the hidden layers

The output of each hidden layer is a transformed feature representation of the data, in
which the dimensionality of the representation is defined by the number of units in that
layer. One can view this process as a kind of hierarchical feature engineering in which the
features in earlier layers represent primitive characteristics of the data, whereas those in
later layers represent complex characteristics with semantic significance to the class labels.
Data represented in the terms of the features of later layers are often more well behaved
(e.g., linearly separable) because of the semantic nature of the features learned by the
transformation. This type of behavior is particularly evident in a visually interpretable way
in some domains like convolutional neural networks for image data. In convolutional neural
networks, the features in earlier layers capture detailed but primitive shapes like lines or
edges from the data set of images. On the other hand, the features in later layers capture
shapes of greater complexity like hexagons, honeycombs, and so forth, depending on the
type of images provided as training data. Note that such semantically interpretable shapes
often have closer correlations with class labels in the image domain. For example, almost
any image will contain lines or edges, but images belonging to particular classes will be more
likely to have hexagons or honeycombs. This property tends to make the representations
of later layers easier to classify with simple models like linear classifiers. This process is
illustrated in Figure 1.19. The features in earlier layers are used repeatedly as building
blocks to create more complex features. This general principle of “putting together” simple
features to create more complex features lies at the core of the successes achieved with
neural networks. As it turns out, this property is also useful in leveraging pretrained models
in a carefully calibrated way. The practice of using pretrained models is also referred to as
transfer learning.

A particular type of transfer learning, which is used commonly in neural networks, is
that the data and structure available in a given data set are used to learn features for that
entire domain. A classical example of this setting is that of text or image data. In text data,
the representations of text words are created using standardized benchmark data sets like
Wikipedia [594] and models like word2vec. These can be used in almost any text application,
since the nature of text data does not change very much with the application. A similar

44 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

approach is often used for image data, in which the ImageNet data set (cf. Section 1.8.2)
is used to pretrain convolutional neural networks, and provide ready-to-use features. One
can download a pretrained convolutional neural network model and convert any image data
set into a multidimensional representation by passing the image through the pretrained
network. Furthermore, if additional application-specific data is available, one can regulate
the level of transfer learning depending on the amount of available data. This is achieved
by fine-tuning a subset of the layers in the pretrained neural network with this additional
data. If a small amount of application-specific data is available, one can fix the weights
of the early layers to their pretrained values and fine-tune only the last few layers of the
neural network. The early layers often contain primitive features, which are more easily
generalizable to arbitrary applications. For example, in a convolutional neural network,
the early layers learn primitive features like edges, which are useful across diverse images
like trucks or carrots. On the other hand, the later layers contain complex features which
might depend on the image collection at hand (e.g., truck wheel versus carrot top). Fine-
tuning only the weights of the later layers makes sense in such cases. If a large amount of
application-specific data is available, one can fine-tune a larger number of layers. Therefore,
deep networks provide significant flexibility in terms of how transfer learning is done with
pretrained neural network models.

1.7 Advanced Topics

Several topics in deep learning have increasingly gained attention, and have had significant
successes. Although some of these methods are limited by current computational consider-
ations, their potential is quite significant. This section will discuss some of these topics.

1.7.1 Reinforcement Learning

In general forms of artificial intelligence, the neural network must learn to take actions in
ever-changing and dynamic situations. Examples include learning robots and self-driving
cars. In these cases, a critical assumption is that the learning system has no knowledge of
the appropriate sequence of actions up front, and it learns through reward-based reinforce-
ment as it takes various actions. These types of learning correspond to dynamic sequences
of actions that are hard to model using traditional machine learning methods. The key
assumption here is that these systems are too complex to explicitly model, but they are
simple enough to evaluate, so that a reward value can be assigned for each action of the
learner.

Imagine a setting in which one wishes to train a learning system to play a video game
from scratch without any prior knowledge of the rules. Video games are excellent test beds
for reinforcement learning methods because they are microcosms of living the “game” of
life. As in real-world settings, the number of possible states (i.e., unique position in game)
might be too large to even enumerate, and the optimal choice of move depends critically on
the knowledge of what is truly important to model from a particular state. Furthermore,
since one does not start with any knowledge of the rules, the learning system would need to
collect the data through its actions much as a mouse explores a maze to learn its structure.
Therefore, the collected data is highly biased by the user actions, which provides a partic-
ularly challenging landscape for learning. The successful training of reinforcement learning
methods is a critical gateway for self-learning systems, which is the holy grail of artificial
intelligence. Although the field of reinforcement learning was developed independently of

1.7. ADVANCED TOPICS 45

the field of neural networks, the strong complementarity of the two fields has brought them
together. Deep learning methods can be useful in learning feature representations from
high-dimensional sensory inputs (e.g., the video screens of pixels in a video game or the
screen of pixels in a robot’s “vision”). Furthermore, reinforcement learning methods are of-
ten used to support various types of neural network algorithms like attention mechanisms.
Reinforcement learning methods are discussed in Chapter 9.

1.7.2 Separating Data Storage and Computations

An important aspect of neural networks is that the data storage and computations are
tightly integrated. For example, the states in a neural network can be considered a type of
transient memory, which behave much like the ever-changing registers in the central pro-
cessing unit of a computer. But what if we want to construct a neural network where one can
control where to read data from, and where to write the data to. This goal is achieved with
the notion of attention and external memory. Attention mechanisms can be used in various
applications like image processing where one focuses on small parts of the image to gain
successive insights. These techniques are also used for machine translation. Neural networks
that can tightly control access in reading and writing to an external memory are referred
to as neural Turing machines [158] or memory networks [528]. Although these methods are
advanced variants of recurrent neural networks, they show significantly improved potential
than their predecessors in terms of the types of problems they can handle. These methods
are discussed in Chapter 10.

1.7.3 Generative Adversarial Networks

Generative adversarial networks are a model of data generation that can create a generative
model of a base data set by using an adversarial game between two players. The two players
correspond to a generator and a discriminator. The generator takes Gaussian noise as input
and produces an output, which is a generated sample like the base data. The discriminator
is typically a probabilistic classifier like logistic regression whose job is to distinguish real
samples from the base data set and the generated sample. The generator tries to create
samples that are as realistic as possible; its job is to fool the discriminator, whereas the job
of the discriminator is to identify the fake samples irrespective of how well the generator tries
to fool it. The problem can be understood as an adversarial game between the generator
and discriminator, and the formal optimization model is a minimax learning problem. The
Nash equilibrium of this minimax game provides the final trained model. Typically, this
equilibrium point is one at which the discriminator is unable to distinguish between real
and fake samples.

Such methods can create realistic fantasy samples using a base data set, and are used
commonly in the image domain. For example, if the approach is trained using a data set
containing images of bedrooms, it will produce realistic looking bedrooms that are not
actually a part of the base data. Therefore, the approach can be used for artistic or creative
endeavors. These methods can also be conditioned on specific types of context, which could
be any type of object such as label, text caption, or an image with missing details. In these
cases, pairs of related training objects are used. A typical pair could be a caption (context)
and an image (base object). Similarly, one might have pairs corresponding to sketches of
objects and actual photographs. Therefore, starting with a captioned image data set of
various types of animals, it is possible to create a fantasy image that is not a part of the
base data by using a contextual caption such as “blue bird with sharp claws.” Similarly,
starting with an artist’s sketch of a purse, the approach can create a realistic and colored
image of a purse. Generative adversarial networks are discussed in Chapter 10.

46 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

1.8 Two Notable Benchmarks

The benchmarks used in the neural network literature are dominated by data from the
domain of computer vision. Although traditional machine learning data sets like the UCI
repository [601] can be used for testing neural networks, the general trend is towards using
data sets from perceptually oriented data domains that can be visualized well. Although
there are a variety of data sets drawn from the text and image domains, two of them stand
out because of their ubiquity in deep learning papers. Although both are data sets drawn
from computer vision, the first of them is simple enough that it can also be used for testing
generic applications beyond the field of vision. In the following, we provide a brief overview
of these two data sets.

1.8.1 The MNIST Database of Handwritten Digits

The MNIST database, which stands for Modified National Institute of Standards and Tech-
nology database, is a large database of handwritten digits [281]. As the name suggests, this
data set was created by modifying an original database of handwritten digits provided by
NIST. The data set contains 60,000 training images and 10,000 testing images. Each image
is a scan of a handwritten digit from 0 to 9, and the differences between different images
are a result of the differences in the handwriting of different individuals. These individuals
were American Census Bureau employees and American high school students. The original
black and white images from NIST were size normalized to fit in a 20× 20 pixel box while
preserving their aspect ratio and centered in a 28 × 28 image by computing the center of
mass of the pixels. The images were translated to position this point at the center of the
28×28 field. Each of these 28×28 pixel values takes on a value from 0 to 255, depending on
where it lies in the grayscale spectrum. The labels associated with the images correspond
to the ten digit values. Examples of the digits in the MNIST database are illustrated in
Figure 1.20. The size of the data set is rather small, and it contains only a simple object
corresponding to a digit. Therefore, one might argue that the MNIST database is a toy data

Figure 1.20: Examples of handwritten digits in the MNIST database

set. However, its small size and simplicity is also an advantage because it can be used as a
laboratory for quick testing of machine learning algorithms. Furthermore, the simplification
of the data set by virtue of the fact that the digits are (roughly) centered makes it easy
to use it to test algorithms beyond computer vision. Computer vision algorithms require
specialized assumptions such as translation invariance. The simplicity of this data set makes
these assumptions unnecessary. It has been remarked by Geoff Hinton [600] that the MNIST

1.8. TWO NOTABLE BENCHMARKS 47

database is used by neural network researchers in much the same way as biologists use fruit
flies for early and quick results (before serious testing on more complex organisms).

Although the matrix representation of each image is suited to a convolutional neural
network, one can also convert it into a multidimensional representation of 28 × 28 = 784
dimensions. This conversion loses some of the spatial information in the image, but this
loss is not debilitating (at least in the case of the MNIST data set) because of its relative
simplicity. In fact, the use of a simple support vector machine on the 784-dimensional rep-
resentation can provide an impressive error rate of about 0.56%. A straightforward 2-layer
neural network on the multidimensional representation (without using the spatial structure
in the image) generally does worse than the support vector machine across a broad range
of parameter choices! A deep neural network without any special convolutional architecture
can achieve an error rate of 0.35% [72]. Deeper neural networks and convolutional neural
networks (that do use spatial structure) can reduce the error rate to as low as 0.21% by
using an ensemble of five convolutional networks [402]. Therefore, even on this simple data
set, one can see that the relative performance of neural networks with respect to traditional
machine learning is sensitive to the specific architecture used in the former.

Finally, it should be noted that the 784-dimensional non-spatial representation of the
MNIST data is used for testing all types of neural network algorithms beyond the domain
of computer vision. Even though the use of the 784-dimensional (flattened) representation
is not appropriate for a vision task, it is still useful for testing the general effectiveness of
non-vision oriented (i.e., generic) neural network algorithms. For example, the MNIST data
is frequently used to test generic autoencoders and not just convolutional ones. Even when
the non-spatial representation of an image is used to reconstruct it with an autoencoder,
one can still visualize the results with the original spatial positions of the reconstructed
pixels to obtain a feel of what the algorithm is doing with the data. This visual exploration
often gives the researcher some insights that are not available with arbitrary data sets like
those obtained from the UCI Machine Learning Repository [601]. In this sense, the MNIST
data set tends to have broader usability than many other types of data sets.

1.8.2 The ImageNet Database

The ImageNet database [581] is a huge database of over 14 million images drawn from 1000
different categories. Its class coverage is exhaustive enough that it covers most types of
images that one would encounter in everyday life. This database is organized according to
a WordNet hierarchy of nouns [329]. The WordNet database is a data set containing the
relationships among English words using the notion of synsets. The WordNet hierarchy has
been successfully used for machine learning in the natural language domain, and therefore
it is natural to design an image data set around these relationships.

The ImageNet database is famous for the fact that an annual ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [582] is held using this dataset. This competition
has a very high profile in the vision community and receives entries from most major research
groups in computer vision. The entries to this competition have resulted in many of the
state-of-the-art image recognition architectures today, including the methods that have
surpassed human performance on some narrow tasks like image classification [184]. Because
of the wide availability of known results on these data sets, it is a popular alternative for
benchmarking. We will discuss some of the state-of-the-art algorithms submitted to the
ImageNet competition in Chapter 8 on convolutional neural networks.

Another important significance of the ImageNet data set is that it is large and diverse
enough to be representative of the key visual concepts within the image domain. As a result,

48 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

convolutional neural networks are often trained on this data set; the pretrained network can
be used to extract features from an arbitrary image. This image representation is defined
by the hidden activations in the penultimate layer of the neural network. Such an approach
creates new multidimensional representations of image data sets that are amenable for use
with traditional machine learning methods. One can view this approach as a kind of transfer
learning in which the visual concepts in the ImageNet data set are transferred to unseen
data objects for other applications.

1.9 Summary

Although a neural network can be viewed as a simulation of the learning process in living
organisms, a more direct understanding of neural networks is as computational graphs. Such
computational graphs perform recursive composition of simpler functions in order to learn
more complex functions. Since these computational graphs are parameterized, the problem
generally boils down to learning the parameters of the graph in order to optimize a loss
function. The simplest types of neural networks are often basic machine learning models
like least-squares regression. The real power of neural networks is unleashed by using more
complex combinations of the underlying functions. The parameters of such networks are
learned by using a dynamic programming method, referred to as backpropagation. There
are several challenges associated with learning neural network models, such as overfitting
and training instability. In recent years, numerous algorithmic advancements have reduced
these problems. The design of deep learning methods in specific domains such as text and
images requires carefully crafted architectures. Examples of such architectures include re-
current neural networks and convolutional neural networks. For dynamic settings in which
a sequence of decisions need to be learned by a system, methods like reinforcement learning
are useful.

1.10 Bibliographic Notes

A proper understanding of neural network design requires a solid understanding of machine
learning algorithms, and especially the linear models based on gradient descent. The reader
is recommended to refer to [2, 3, 40, 177] for basic knowledge on machine learning methods.
Numerous surveys and overviews of neural networks in different contexts may be found
in [27, 28, 198, 277, 345, 431]. Classical books on neural networks for pattern recognition
may be found in [41, 182], whereas more recent perspectives on deep learning may be found
in [147]. A recent text mining book [6] also discusses recent advances in deep learning for
text analytics. An overview of the relationships between deep learning and computational
neuroscience may be found in [176, 239].

The perceptron algorithm was proposed by Rosenblatt [405]. To address the issue of
stability, the pocket algorithm [128], the Maxover algorithm [523], and other margin-based
methods [123]. Other early algorithms of a similar nature included the Widrow-Hoff [531]
and the Winnow algorithms [245]. The Winnow algorithm uses multiplicative updates in-
stead of additive updates, and is particularly useful when many features are irrelevant. The
original idea of backpropagation was based on the idea of differentiation of composition of
functions as developed in control theory [54, 237]. The use of dynamic programming to per-
form gradient-based optimization of variables that are related via a directed acyclic graph
has been a standard practice since the sixties. However, the ability to use these methods for
neural network training had not yet been observed at the time. In 1969, Minsky and Papert

1.10. BIBLIOGRAPHIC NOTES 49

published a book on perceptrons [330], which was largely negative about the potential of
being able to properly train multilayer neural networks. The book showed that a single
perceptron had limited expressiveness, and no one knew how to train multiple layers of per-
ceptrons anyway. Minsky was an influential figure in artificial intelligence, and the negative
tone of his book contributed to the first winter in the field of neural networks. The adap-
tation of dynamic programming methods to backpropagation in neural networks was first
proposed by Paul Werbos in his PhD thesis in 1974 [524]. However, Werbos’s work could
not overcome the strong views against neural networks that had already become entrenched
at the time. The backpropagation algorithm was proposed again by Rumelhart et al. in
1986 [408, 409]. Rumelhart et al.’s work is significant for the beauty of its presentation, and
it was able to address at least some of the concerns raised earlier by Minsky and Papert.
This is one of the reasons that the Rumelhart et al. paper is considered very influential from
the perspective of backpropagation, even though it was certainly not the first to propose
the method. A discussion of the history of the backpropagation algorithm may be found in
the book by Paul Werbos [525].

At this point, the field of neural networks was only partially resurrected, as there were
still problems with training neural networks. Nevertheless, pockets of researchers continued
to work in the area, and had already set up most of the known neural architectures, such as
convolution neural networks, recurrent neural networks, and LSTMs, before the year 2000.
The accuracy of these methods was still quite modest because of data and computation
limitations. Furthermore, backpropagation turned out to be less effective at training deeper
networks because of the vanishing and exploding gradient problems. However, by this time,
it was already hypothesized by several prominent researchers that existing algorithms would
yield large performance improvements with increases in data, computational power, and
algorithmic experimentation. The coupling of big data frameworks with GPUs turned out
to be a boon for neural network research in the late 2000s. With reduced cycle times for
experimentation enabled by increased computational power, tricks like pretraining started
showing up in the late 2000s [198]. The publicly obvious resurrection of neural networks
occurred after the year 2011 with the resounding victories [255] of neural networks in deep
learning competitions for image classification. The consistent victories of deep learning
algorithms in these competitions laid the foundation for the explosion in popularity we
see today. Notably, the differences of these winning architectures from the ones that were
developed more than two decades earlier are modest (but essential).

Paul Werbos was a pioneer of recurrent neural networks, and proposed the original ver-
sion of backpropagation through time [526]. The basics of the convolutional neural network
were proposed in the context of the neocognitron in [127]. This idea was then generalized
to LeNet-5, which was one of the first convolutional neural networks. The ability of neural
networks to perform universal function approximation is discussed in [208]. The beneficial
effect of depth on reducing the number of parameters is discussed in [340].

The theoretical expressiveness of neural networks was recognized early in its develop-
ment. For example, early work recognized that a neural network with a single hidden layer
can be used to approximate any function [208]. A further result is that certain neural ar-
chitectures like recurrent networks are Turing complete [444]. The latter means that neural
networks can potentially simulate any algorithm. Of course, there are numerous practical
issues associated with neural network training, as to why these exciting theoretical results
do not always translate into real-world performance. The foremost problem among them is
the data-hungry nature of shallow architectures, which is ameliorated with increased depth.
Increased depth can be viewed as a form of regularization in which one is forcing the neural
network to identify and learn repeating patterns in data points. Increased depth, however,

50 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

makes the neural network harder to train from an optimization point of view. A discussion
on some of these issues may be found in [41, 140, 147]. An experimental evaluation showing
the advantages of deeper architectures is provided in [267].

1.10.1 Video Lectures

Deep learning has a significant number of free video lectures available on resources such
as YouTube and Coursera. Two of the most authoritative resources include Geoff Hinton’s
course at Coursera [600]. Coursera has multiple offerings on deep learning, and offers a group
of related courses in the area. During the writing of this book, an accessible course from
Andrew Ng was also added to the offerings. A course on convolutional neural networks from
Stanford University is freely available on YouTube [236]. The Stanford class by Karpathy,
Johnson, and Fei-Fei [236] is on convolutional neural networks, although it does an excellent
job in covering broader topics in neural networks. The initial parts of the course deal with
vanilla neural networks and training methods.

Numerous topics in machine learning [89] and deep learning [90] are covered by Nando
de Freitas in a lectures available on YouTube. Another interesting class on neural networks
is available from Hugo Larochelle at the Universite de Sherbrooke [262]. A deep learning
course by Ali Ghodsi at the University of Waterloo is available at [137]. Video lectures by
Christopher Manning on natural language processing methods for deep learning may be
found in [312]. David Silver’s course on reinforcement learning is available at [619].

1.10.2 Software Resources

Deep learning is supported by numerous software frameworks like Caffe [571], Torch [572],
Theano [573], and TensorFlow [574]. Extensions of Caffe to Python and MATLAB are
available. Caffe was developed at the University of California at Berkeley, and it is writ-
ten in C++. It provides a high-level interface in which one can specify the architecture
of the network, and it enables the construction of neural networks with very little code
writing and relatively simple scripting. The main drawback of Caffe is the relatively limited
documentation available. Theano [35] is Python-based, and it provides high-level packages
like Keras [575] and Lasagne [576] as interfaces. Theano is based on the notion of computa-
tional graphs, and most of the capabilities provided around it use this abstraction explicitly.
TensorFlow [574] is also strongly oriented towards computational graphs, and is the frame-
work proposed by Google. Torch [572] is written in a high-level language called Lua, and
it is relatively friendly to use. In recent years, Torch has gained some ground compared to
other frameworks. Support for GPUs is tightly integrated in Torch, which makes it rela-
tively easy to deploy Torch-based applications on GPUs. Many of these frameworks contain
pretrained models from computer vision and text mining, which can be used to extract
features. Many off-the-shelf tools for deep learning are available from the DeepLearning4j
repository [590]. IBM has a PowerAI platform that offers many machine learning and deep
learning frameworks on top of IBM Power Systems [599]. Notably, as of the writing of this
book, this platform also has a free edition available for certain uses.

1.11. EXERCISES 51

1.11 Exercises

1. Consider the case of the XOR function in which the two points {(0, 0), (1, 1)} belong
to one class, and the other two points {(1, 0), (0, 1)} belong to the other class. Show
how you can use the ReLU activation function to separate the two classes in a manner
similar to the example in Figure 1.14.

2. Show the following properties of the sigmoid and tanh activation functions (denoted
by Φ(·) in each case):

(a) Sigmoid activation: Φ(−v) = 1− Φ(v)

(b) Tanh activation: Φ(−v) = −Φ(v)

(c) Hard tanh activation: Φ(−v) = −Φ(v)

3. Show that the tanh function is a re-scaled sigmoid function with both horizontal and
vertical stretching, as well as vertical translation:

tanh(v) = 2sigmoid(2v)− 1

4. Consider a data set in which the two points {(−1,−1), (1, 1)} belong to one class, and
the other two points {(1,−1), (−1, 1)} belong to the other class. Start with perceptron
parameter values at (0, 0), and work out a few stochastic gradient-descent updates with
α = 1. While performing the stochastic gradient-descent updates, cycle through the
training points in any order.

(a) Does the algorithm converge in the sense that the change in objective function
becomes extremely small over time?

(b) Explain why the situation in (a) occurs.

5. For the data set in Exercise 4, where the two features are denoted by (x1, x2), define
a new 1-dimensional representation z denoted by the following:

z = x1 · x2

Is the data set linearly separable in terms of the 1-dimensional representation corre-
sponding to z? Explain the importance of nonlinear transformations in classification
problems.

6. Implement the perceptron in a programming language of your choice.

7. Show that the derivative of the sigmoid activation function is at most 0.25, irrespective
of the value of its argument. At what value of its argument does the sigmoid activation
function take on its maximum value?

8. Show that the derivative of the tanh activation function is at most 1, irrespective of
the value of its argument. At what value of its argument does the tanh activation take
on its maximum value?

9. Consider a network with two inputs x1 and x2. It has two hidden layers, each of which
contain two units. Assume that the weights in each layer are set so that top unit in
each layer applies sigmoid activation to the sum of its inputs and the bottom unit in
each layer applies tanh activation to the sum of its inputs. Finally, the single output

52 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

node applies ReLU activation to the sum of its two inputs. Write the output of this
neural network in closed form as a function of x1 and x2. This exercise should give
you an idea of the complexity of functions computed by neural networks.

10. Compute the partial derivative of the closed form computed in the previous exercise
with respect to x1. Is it practical to compute derivatives for gradient descent in neural
networks by using closed-form expressions (as in traditional machine learning)?

11. Consider a 2-dimensional data set in which all points with x1 > x2 belong to the
positive class, and all points with x1 ≤ x2 belong to the negative class. Therefore, the
true separator of the two classes is linear hyperplane (line) defined by x1 − x2 = 0.
Now create a training data set with 20 points randomly generated inside the unit
square in the positive quadrant. Label each point depending on whether or not the
first coordinate x1 is greater than its second coordinate x2.

(a) Implement the perceptron algorithm without regularization, train it on the 20
points above, and test its accuracy on 1000 randomly generated points inside the
unit square. Generate the test points using the same procedure as the training
points.

(b) Change the perceptron criterion to hinge-loss in your implementation for training,
and repeat the accuracy computation on the same test points above. Regulariza-
tion is not used.

(c) In which case do you obtain better accuracy and why?

(d) In which case do you think that the classification of the same 1000 test instances
will not change significantly by using a different set of 20 training points?

Chapter 2

Machine Learning with Shallow Neural

Networks

“Simplicity is the ultimate sophistication.”—Leonardo da Vinci

2.1 Introduction

Conventional machine learning often uses optimization and gradient-descent methods for
learning parameterized models. Examples of such models include linear regression, sup-
port vector machines, logistic regression, dimensionality reduction, and matrix factorization.
Neural networks are also parameterized models that are learned with continuous optimiza-
tion methods. This chapter will show that a wide variety of optimization-centric methods
in machine learning can be captured with very simple neural network architectures contain-
ing one or two layers. In fact, neural networks can be viewed as more powerful versions of
these simple models, with this power being achieved by combining the basic models into
a comprehensive neural architecture (i.e., computational graph). It is useful to show these
parallels early on, as this allows the understanding of the design of a deep network as a com-
position of the basic units that one often uses in machine learning. Furthermore, showing
this relationship provides an appreciation of the specific way in which traditional machine
learning is different from neural networks, and of the cases in which one can hope to do
better with neural networks. In many cases, minor variations of these simple neural net-
work architectures (corresponding to traditional machine learning methods) provide useful
variations of machine learning models that have not been studied elsewhere. In a sense, the
number of ways in which one can combine the different elements of a computational graph is
far greater than what is studied in traditional machine learning, even when shallow models
are used.

Complex or deep neural architectures are often an overkill in instances where only a
small amount of data are available. Additionally, it is easier to optimize traditional machine

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 2

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_2&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_2

54 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

learning models in data-lean settings as these models are more interpretable. On the other
hand, as the amount of data increases, neural networks have an advantage because they

A
C

C
U

R
A

C
Y

AMOUNT OF DATA

DEEP LEARNING

CONVENTIONAL

MACHINE LEARNING

Figure 2.1: Re-visiting Figure 1.2: The effect of increased data availability on accuracy.

retain the flexibility to model more complex functions with the addition of neurons to the
computational graph. Figure 2.1 illustrates this point.

One way of viewing deep learning models is as a stacking of simpler models like logistic
or linear regression. The coupling of a linear neuron with the sigmoid activation leads to
logistic regression, which will be discussed in detail in this chapter. The coupling of a linear
unit with sigmoid activation is also used1 extensively for building complex neural networks.
Therefore, it is natural to ask the following question [312]:

Is deep learning simply a stacking of simpler models like logistic or linear regres-
sion?

Although many neural networks can be viewed in this way, this point of view does not
fully capture the complexity and the style of thinking involved in deep learning models.
For example, several models (such as recurrent neural networks or convolutional neural
networks) perform this stacking in a particular way with a domain-specific understanding
of the input data. Furthermore, the parameters of different units are sometimes shared in
order to force the solution to obey specific types of properties. The ability to put together
the basic units in a clever way is a key architectural skill required by practitioners in deep
learning. Nevertheless, it is also important to learn the properties of the basic models in
machine learning, since they are used repeatedly in deep learning as elementary units of
computation. This chapter will, therefore, explore these basic models.

It is noteworthy that there are close relationships between some of the earliest neu-
ral networks (e.g., perceptron and Widrow-Hoff learning) and traditional machine learning
models (e.g., support vector machine and Fisher discriminant). In some cases, these relation-
ships remained unnoticed for several years, as these models were proposed independently
by different communities. As a specific example, the loss function of the L2-support vec-
tor machine was proposed by Hinton [190] in the context of a neural architecture in 1989.
When used with regularization, the resulting neural network would behave identically to
an L2-support vector machine. In comparison, Cortes and Vapnik’s paper on the support
vector machine [82] appeared several years later with an L1-loss function. These relation-
ships are not surprising because the best way to define a shallow neural network is often
closely related to a known machine learning algorithm. Therefore, it is important to explore
these basic neural models in order to develop an integrated view of neural networks and
traditional machine learning.

1In recent years, the sigmoid unit has fallen out of favor compared to the ReLU.

2.2. NEURAL ARCHITECTURES FOR BINARY CLASSIFICATION MODELS 55

This chapter will primarily discuss two classes of models for machine learning:

1. Supervised models: The supervised models discussed in this chapter primarily corre-
spond to linear models and their variants. These include methods like least-squares
regression, support vector machines, and logistic regression. Multiclass variants of
these models will also be studied.

2. Unsupervised models: The unsupervised models discussed in this chapter primarily
correspond to dimensionality reduction and matrix factorization. Traditional meth-
ods like principal component analysis can also be presented as simple neural network
architectures. Minor variations of these models can provide reductions of vastly differ-
ent properties, which will be discussed later. The neural network framework also pro-
vides a way of understanding the relationships between widely different unsupervised
methods like linear dimensionality reduction, nonlinear dimensionality reduction, and
sparse feature learning, thereby providing an integrated view of traditional machine
learning algorithms.

This chapter assumes that the reader has a basic familiarity with the classical machine
learning models. Nevertheless, a brief overview of each model will also be provided to the
uninitiated reader.

Chapter Organization

The next section will discuss some basic models for classification and regression, such as
least-squares regression, binary Fisher discriminant, support vector machine, and logistic
regression. The multiway variants of these models will be discussed in Section 2.3. Feature
selection methods for neural networks are discussed in Section 2.4. The use of autoencoders
for matrix factorization is discussed in Section 2.5. As a specific application of simple neural
architectures, the word2vec method is discussed in Section 2.6. Simple methods for creating
node embeddings in graphs are introduced in Section 2.7. A summary is given in Section 2.8.

2.2 Neural Architectures for Binary Classification
Models

In this section, we will discuss some basic architectures for machine learning models such
as least-squares regression and classification. As we will see, the corresponding neural ar-
chitectures are minor variations of the perceptron model in machine learning. The main
difference is in the choice of the activation function used in the final layer, and the loss
function used on these outputs. This will be a recurring theme throughout this chapter,
where we will see that small changes in neural architectures can result in distinct models
from traditional machine learning. Presenting traditional machine learning models in the
form of neural architectures also helps one appreciate the true closeness among various
machine learning models.

Throughout this section, we will work with a single-layer network with d input nodes
and a single output node. The coefficients of the connections from the d input nodes to the
output node are denoted by W = (w1 . . . wd). Furthermore, the bias will not be explicitly
shown because it can be seamlessly modeled as the coefficient of an additional dummy input
with a constant value of 1.

56 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

∑

CONTINUOUS

SCORE OUTPUT

y
LOSS = MAX(0,-y[W X])

LINEAR ACTIVATION

PERCEPTRON CRITERION

INPUT NODES
W

X

DISCRETE OUTPUT

SIGN ACTIVATION

Figure 2.2: An extended architecture of the perceptron with both discrete and continuous
predictions

2.2.1 Revisiting the Perceptron

Let (Xi, yi) be a training instance, in which the observed value yi is predicted from the
feature variables Xi using the following relationship:

ŷi = sign(W ·Xi) (2.1)

Here, W is the d-dimensional coefficient vector learned by the perceptron. Note the circum-
flex on top of ŷi to indicate that it is a predicted value rather than an observed value. In
general, the goal of training is to ensure that the prediction ŷi is as close as possible to the
observed value yi. The gradient-descent steps of the perceptron are focused on reducing the
number of misclassifications, and therefore the updates are proportional to the difference
(yi − ŷi) between the observed and predicted values based on Equation 1.33 of Chapter 1:

W ⇐ W (1− αλ) + α(yi − ŷi)Xi (2.2)

A gradient-descent update that is proportional to the difference between the observed and
predicted values is naturally caused by a squared loss function such as (yi− ŷi)

2. Therefore,
one possibility is to consider the squared loss between the predicted and observed values as
the loss function. This architecture is shown in Figure 2.3(a), and the output is a discrete
value. However, the problem is that this loss function is discrete because it takes on the
value of either 0 or 4. Such a loss function is not differentiable because of its staircase-like
jumps.

The perceptron is one of the few learning models in which the gradient-descent updates
were proposed historically before the loss function was proposed. What differentiable ob-
jective function does the perceptron really optimize? The answer to this question may be
found in Section 1.2.1.1 of Chapter 1 by observing that the updates are performed only
for misclassified training instances (i.e., yiŷi < 0), and may be written using the indicator
function I(·) ∈ {0, 1} that takes on 1 when the condition in its argument is satisfied:

W ⇐ W (1− αλ) + αyiXi [I(yiŷi < 0)] (2.3)

This rewrite from Equation 2.2 to Equation 2.3 uses the fact that yi = (yi − ŷi)/2 for
misclassified points, and one can absorb a constant factor of 2 within the learning rate.
This update can be shown to be consistent with the loss function Li (specific to the ith
training example) as follows:

Li = max{0,−yi(W ·Xi)} (2.4)

2.2. NEURAL ARCHITECTURES FOR BINARY CLASSIFICATION MODELS 57

∑

OUTPUT NODE

SIGN ACTIVATION

NON-DIFFERENTIABLE

LOSS

y
LOSS = (y-sign[W X])2

X

INPUT NODES
W

∑

OUTPUT NODE

y
LOSS = MAX(0,-y[W X])

LINEAR ACTIVATION

PERCEPTRON CRITERION

(SMOOTH SURROGATE)

X

INPUT NODES
W

nortpecrepehT)b(
)tuptuosuounitnoc(

nortpecrepehT)a(
)tuptuoetercsid(

∑

OUTPUT NODE

y

LINEAR ACTIVATION

SQUARED LOSS

LOSS = (y-[W X])2

X

INPUT NODES
W

∑ y
LOSS = -LOG(|y/2 - 0.5 + ŷ|)

SIGMOID ACTIVATION

LOG LIKELIHOOD

ŷ = PROBABILITY OF +1

y = OBSERVED VALUE

(+1 OR -1)

ŷ

OUTPUT NODE

X

INPUT NODES
W

noissergercitsigoL)d(noissergerraeniL)c(

∑

OUTPUT NODE

y
LOSS = LOG(1+exp[-y(W X)])

LINEAR ACTIVATION

LOG LIKELIHOOD

X

INPUT NODES
W

∑

OUTPUT NODE

y
LOSS = MAX(0,-y[W X]+1)

LINEAR ACTIVATION

HINGE LOSS

X

INPUT NODES
W

(e) Logistic regression (alternate) (f) Support vector machine

Figure 2.3: Different variants of the perceptron

This loss function is referred to as the perceptron criterion, which is correspondingly reflected
in Figure 2.3(b). Note that Figure 2.3(b) uses linear activations to compute the continuous
loss function, although it still uses sign activations to compute the discrete predictions for
a given test instance. In many discrete variable prediction settings, the output is often a
predicted score (e.g., probability of class or the value of W · Xi), which is then converted
into a discrete prediction. Nevertheless, the final prediction need not always be converted
into a discrete value, and one can simply output the relevant score for the class (which is
often used for computing the loss function anyway). The sign activation is rarely used in
most neural-network implementations, as most class-variable predictions of neural-network
implementations are continuous scores. One can, in fact, create an extended architecture
for the perceptron (cf. Figure 2.2), in which both discrete and continuous values are output.
However, since the discrete part is not relevant to the loss computation and most outputs are
reported as scores anyway, one rarely uses this type of extended representation. Therefore,
throughout the remainder of this book, the activation in the output node is based on the
score output (and how the loss function is computed), rather than on how a test instance
is predicted as a discrete value.

58 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

2.2.2 Least-Squares Regression

In least-squares regression, the training data contains n different training pairs
(X1, y1) . . . (Xn, yn), where each Xi is a d-dimensional representation of the data points,
and each yi is a real-valued target. The fact that the target is real-valued is important,
because the underlying problem is then referred to as regression rather than classification.
Least-squares regression is the oldest of all learning problems, and the gradient-descent
methods proposed by Tikhonov and Arsenin in the 1970s [499] are very closely related to
the gradient-descent updates of Rosenblatt [405] for the perceptron algorithm. In fact, as
we will see later, one can also use least-squares regression on binary targets by “pretending”
that these targets are real-valued. The resulting approach is equivalent to the Widrow-Hoff
learning algorithm, which is famous in the neural network literature as the second learning
algorithm proposed after the perceptron.

In least-squares regression, the target variable is related to the feature variables using
the following relationship:

ŷi = W ·Xi (2.5)

Note the presence of the circumflex on top of ŷi to indicate that it is a predicted value.
The bias is missing in the relationship of Equation 2.5. Throughout this section, it will
be assumed that one of the features in the training data has a constant value of 1, and
the coefficient of this dummy feature is the bias. This is a standard feature engineering
trick borrowed from conventional machine learning. In neural networks, the bias is often
represented with the use of a bias neuron (cf. Section 1.2.1 of Chapter 1) with a constant
output of 1. Although the bias neuron is almost always used in real settings, we avoid
showing it explicitly throughout this book in order to maintain simplicity in presentation.

The error of the prediction, ei, is given by ei = (yi − ŷi). Here, W = (w1 . . . wd) is a
d-dimensional coefficient vector that needs to be learned so as to minimize the total squared
error on the training data, which is

∑n
i=1 e

2
i . The portion of the loss that is specific to the

ith training instance is given by the following:

Li = e2i = (yi − ŷi)
2 (2.6)

This loss can be simulated with the use of an architecture similar to the perceptron except
that the squared loss is paired with the identity activation function. This architecture is
shown in Figure 2.3(c), whereas the perceptron architecture is shown in Figure 2.3(a). Both
the perceptron and least-squares regression have the same goal of minimizing the prediction
error. However, since the loss function in classification is inherently discrete, the perceptron
algorithm uses a smooth approximation of the desired goal. This results in the smoothed
perceptron criterion shown in Figure 2.3(b). As we will see below, the gradient-descent
update in least-squares regression is very similar to that in the perceptron, with the main
difference being that real-valued errors are used in regression rather than discrete errors
drawn from {−2,+2}.

As in the perceptron algorithm, the stochastic gradient-descent steps are determined by
computing the gradient of e2i with respect to W , when the training pair (Xi, yi) is presented
to the neural network. This gradient can be computed as follows:

∂e2i
∂W

= −eiXi (2.7)

Therefore, the gradient-descent updates for W are computed using the above gradient and
step-size α:

W ⇐ W + αeiX

2.2. NEURAL ARCHITECTURES FOR BINARY CLASSIFICATION MODELS 59

One can rewrite the above update as follows:

W ⇐ W + α(yi − ŷi)X (2.8)

It is possible to modify the gradient-descent updates of least-squares regression to incorpo-
rate forgetting factors. Adding regularization is equivalent to penalizing the loss function of
least-squares classification with the additional term proportional to λ · ||W ||2, where λ > 0
is the regularization parameter. With regularization, the update can be written as follows:

W ⇐ W (1− α · λ) + α(yi − ŷi)X (2.9)

Note that the update above looks identical to the perceptron update of Equation 2.2.
The updates are, however, not exactly identical because of how the predicted value ŷi is
computed in the two cases. In the case of the perceptron, the sign function is applied to
W ·Xi in order to compute the binary value ŷi and therefore the error (yi− ŷi) can only be
drawn from {−2,+2}. In least-squares regression, the prediction ŷi is a real value without
the application of the sign function.

This observation naturally leads to the following question; what if we applied least-
squares regression directly to minimize the squared distance of the real-valued prediction
ŷi from the observed binary targets yi ∈ {−1,+1}? The direct application of least-squares
regression to binary targets is referred to as least-squares classification. The gradient-descent
update is the same as the one shown in Equation 2.9, which looks identical to that of the
perceptron. However, the least-squares classification method does not yield the same result
as the perceptron algorithm, because the real-valued training errors (yi− ŷi) in least-squares
classification are computed differently from the integer error (yi−ŷi) in the perceptron. This
direct application of least-squares regression to binary targets is referred to as Widrow-Hoff
learning.

2.2.2.1 Widrow-Hoff Learning

Following the perceptron, the Widrow-Hoff learning rule was proposed in 1960. However, the
method was not a fundamentally new one, as it is a direct application of least-squares regres-
sion to binary targets. Although the sign function is applied to the real-valued prediction of
unseen test instances to convert them to binary predictions, the error of training instances
is computed directly using real-valued predictions (unlike the perceptron). Therefore, it is
also referred to as least-squares classification or linear least-squares method [6]. Remarkably,
a seemingly unrelated method proposed in 1936, known as the Fisher discriminant, also
reduces to Widrow-Hoff learning in the special case of binary targets.

The Fisher discriminant is formally defined as a direction W along which the ratio
of inter-class variance to the intra-class variance is maximized in the projected data. By
choosing a scalar b in order to define the hyperplane W · X = b, it is possible to model
the separation between the two classes. This hyperplane is used for classification. Although
the definition of the Fisher discriminant seems quite different from least-squares regres-
sion/classification at first sight, a remarkable result is that the Fisher discriminant for
binary targets is identical to the least-squares regression as applied to binary targets (i.e.,
least-squares classification). Both the data and the targets need to be mean-centered, which
allows the bias variable b to be set to 0. Several proofs of this result are available in the
literature [3, 6, 40, 41].

The neural architecture for classification with the Widrow-Hoff method is illustrated
in Figure 2.3(c). The gradient-descent steps in both the perceptron and the Widrow-Hoff

60 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

would be given by Equation 2.8, except for differences in how (yi − ŷi) is computed. In
the case of the perceptron, this value will always be drawn from {−2,+2}. In the case of
Widrow-Hoff, these errors can be arbitrary real values, since ŷi is set to W · Xi without
using the sign function. This difference is important because the perceptron algorithm never
penalizes a positive class point for W ·Xi being “too correct” (i.e., larger than 1), whereas
using real-valued predictions to compute the error has the unfortunate effect of penalizing
such points. The inappropriate penalization of over-performance is the Achilles heel of
Widrow-Hoff learning and the Fisher discriminant [6].

It is noteworthy that least-squares regression/classification, Widrow-Hoff learning, and
the Fisher discriminant were proposed independently in very different eras and by different
communities of researchers. Indeed, the Fisher discriminant, which is oldest of these methods
and dates back to 1936, is often viewed as a method for finding class-sensitive directions
rather than as a classifier. It can, however, also be used as a classifier by using the resulting
direction W to create a linear prediction. The completely different origins and seemingly
different motives of all these methods make the equivalence in their solutions all the more
noticeable. The Widrow-Hoff learning rule is also referred to as Adaline, which is short for
adaptive linear neuron. It is also referred to as the delta rule. To recap, the learning rule
of Equation 2.8, when applied to binary targets in {−1,+1}, can be alternatively referred
to as least-squares classification, least mean-squares algorithm (LMS), Fisher2 discriminant
classifier, the Widrow-Hoff learning rule, delta rule, or Adaline. Therefore, the family of
least-squares classification methods has been rediscovered several times in the literature
under different names and with different motivations.

The loss function of the Widrow-Hoff method can be rewritten slightly from least-squares
regression because of its binary responses:

Li = (yi − ŷi)
2 = y2i
︸︷︷︸

1

(yi − ŷi)
2

= (y2i
︸︷︷︸

1

−ŷiyi)
2 = (1− ŷiyi)

2

This type of encoding is possible when the target variable yi is drawn from {−1,+1} because
we can use y2i = 1. It is helpful to convert the Widrow-Hoff objective function to this form
because it can be more easily related to other objective functions like the perceptron and
the support vector machine. For example, the loss function of the support vector machine is
obtained by “repairing” the above loss so that over-performance is not penalized. One can
repair the loss function by changing the objective function to [max{(1−ŷiyi), 0}]2, which was
Hinton’s L2-loss support vector machine (SVM) [190]. Almost all the binary classification
models discussed in this chapter can be shown to be closely related to the Widrow-Hoff
loss function by using different ways of repairing the loss, so that over-performance is not
penalized.

The gradient-descent updates (cf. Equation 2.9) of least-squares regression can be rewrit-
ten slightly for Widrow-Hoff learning because of binary response variables:

W ⇐ W (1− α · λ) + α(yi − ŷi)X [For numeric as well as binary responses]

= W (1− α · λ) + αyi(1− yiŷi)X [Only for binary responses, since y2i = 1]

2In order to obtain exactly the same direction as the Fisher method with Equation 2.8, it is important
to mean-center both the feature variables and the binary targets. Therefore, each binary target will be one
of two real values with different signs. The real values will contain the fraction of instances belonging to the
other class. Alternatively, one can use a bias neuron to absorb the constant offsets.

2.2. NEURAL ARCHITECTURES FOR BINARY CLASSIFICATION MODELS 61

The second form of the update is helpful in relating it to perceptron and SVM updates, in
each of which (1−yiŷi) is replaced with an indicator variable that is a function of yiŷi. This
point will be discussed in a later section.

2.2.2.2 Closed Form Solutions

The special case of least-squares regression and classification is solvable in closed form
(without gradient-descent) by using the pseudo-inverse of the n × d training data matrix
D, whose rows are X1 . . . Xn. Let the n-dimensional column vector of dependent variables
be denoted by y = [y1 . . . yn]

T . The pseudo-inverse of matrix D is defined as follows:

D+ = (DTD)−1DT (2.10)

Then, the row-vector W is defined by the following relationship:

W
T
= D+y (2.11)

If regularization is incorporated, the coefficient vector W is given by the following:

W
T
= (DTD + λI)−1DT y (2.12)

Here, λ > 0 is the regularization parameter. However, inverting a matrix like (DTD + λI)
is typically done using numerical methods that require gradient descent anyway. One rarely
inverts large matrices like DTD. In fact, the Widrow-Hoff updates provide a very efficient
way of solving the problem without using the closed-form solution.

2.2.3 Logistic Regression

Logistic regression is a probabilistic model that classifies the instances in terms of prob-
abilities. Because the classification is probabilistic, a natural approach for optimizing the
parameters is to ensure that the predicted probability of the observed class for each training
instance is as large as possible. This goal is achieved by using the notion of maximum-
likelihood estimation in order to learn the parameters of the model. The likelihood of the
training data is defined as the product of the probabilities of the observed labels of each
training instance. Clearly, larger values of this objective function are better. By using the
negative logarithm of this value, one obtains an a loss function in minimization form. There-
fore, the output node uses the negative log-likelihood as a loss function. This loss function
replaces the squared error used in the Widrow-Hoff method. The output layer can be for-
mulated with the sigmoid activation function, which is very common in neural network
design.

Let (X1, y1), (X2, y2), . . . (Xn, yn) be a set of n training pairs in which Xi contains the
d-dimensional features and yi ∈ {−1,+1} is a binary class variable. As in the case of a
perceptron, a single-layer architecture with weights W = (w1 . . . wd) is used. Instead of
using the hard sign activation on W · Xi to predict yi, logistic regression applies the soft
sigmoid function to W ·Xi in order to estimate the probability that yi is 1:

ŷi = P (yi = 1) =
1

1 + exp(−W ·Xi)
(2.13)

For a test instance, it can be predicted to the class whose predicted probability is greater
than 0.5. Note that P (yi = 1) is 0.5 when W · Xi = 0, and Xi lies on the separating

62 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

hyperplane. Moving Xi in either direction from the hyperplane results in different signs of
W ·Xi and corresponding movements in the probability values. Therefore, the sign of W ·Xi

also yields the same prediction as picking the class with probability larger than 0.5.
We will now describe how the loss function corresponding to likelihood estimation is

set up. This methodology is important because it is used widely in many neural models.
For positive samples in the training data, we want to maximize P (yi = 1) and for negative
samples, we want to maximize P (yi = −1). For positive samples satisfying yi = 1, one
wants to maximize ŷi and for negative samples satisfying yi = −1, one wants to maximize
1− ŷi. One can write this casewise maximization in the form of a consolidated expression of
always maximizing |yi/2−0.5+ ŷi|. The products of these probabilities must be maximized
over all training instances to maximize the likelihood L:

L =
n∏

i=1

|yi/2− 0.5 + ŷi| (2.14)

Therefore, the loss function is set to Li = −log(|yi/2− 0.5+ ŷi|) for each training instance,
so that the product-wise maximization is converted to additive minimization over training
instances.

LL = −log(L) =
n∑

i=1

−log(|yi/2− 0.5 + ŷi|)
︸ ︷︷ ︸

Li

(2.15)

Additive forms of the objective function are particularly convenient for the types of stochas-
tic gradient updates that are common in neural networks. The overall architecture and loss
function is illustrated in Figure 2.3(d). For each training instance, the predicted probability
ŷi is computed by passing it through the neural network, and the loss is used to determine
the gradient for each training instance.

Let the loss for the ith training instance be denoted by Li, which is also annotated in
Equation 2.15. Then, the gradient of Li with respect to the weights in W can be computed
as follows:

∂Li

∂W
= − sign(yi/2− 0.5 + ŷi)

|yi/2− 0.5 + ŷi|
· ∂ŷi
∂W

= − sign(yi/2− 0.5 + ŷi)

|yi/2− 0.5 + ŷi|
· Xi

1 + exp(−W ·Xi)
· 1

1 + exp(W ·Xi)

=

⎧

⎨

⎩

− Xi

1+exp(W ·Xi)
if yi = 1

Xi

1+exp(−W ·Xi)
if yi = −1

Note that one can concisely write the above gradient as follows:

∂Li

∂W
= − yiXi

1 + exp(yiW ·Xi)
= −
[
Probability of mistake on (Xi, yi)

]
(yiXi) (2.16)

Therefore, the gradient-descent updates of logistic regression are given by the following
(including regularization):

W ⇐ W (1− αλ) + α
yiXi

1 + exp[yi(W ·Xi)]
(2.17)

2.2. NEURAL ARCHITECTURES FOR BINARY CLASSIFICATION MODELS 63

Just as the perceptron and the Widrow-Hoff algorithms use the magnitudes of the mistakes
to make updates, the logistic regression method uses the probabilities of the mistakes to
make updates. This is a natural extension of the probabilistic nature of the loss function to
the update.

2.2.3.1 Alternative Choices of Activation and Loss

It is possible to implement the same model by using different choices of activation and loss
in the output node as long as they combine to yield the same result. Instead of using sigmoid
activation to create the output ŷi ∈ (0, 1), it is also possible to use identity activation to
create the output ŷi ∈ (−∞,+∞), and then apply the following loss function:

Li = log(1 + exp(−yi · ŷi)) (2.18)

The alternative architecture for logistic regression is shown in Figure 2.3(e). For the final
prediction of the test instance, the sign function can be applied to ŷi, which is equivalent to
predicting it to the class for which its probability is greater than 0.5. This example shows
that it is possible to implement the same model using different combinations of activation
and loss functions, as long as they combine to yield the same result.

One desirable property of using the identity activation to define ŷi is that it is consistent
with how the loss functions of other models like the perceptron and Widrow-Hoff learning
are defined. Furthermore, the loss function of Equation 2.18 contains the product of yi and
ŷi as in other models. This makes it possible to directly compare the loss functions of various
models, which will be explored later in this chapter.

2.2.4 Support Vector Machines

The loss function in support vector machines is closely related to that in logistic regression.
However, instead of using a smooth loss function (like that in Equation 2.18), the hinge-loss
is used instead.

Consider the training data set of n instances denoted by (X1, y1), (X2, y2), . . . (Xn, yn).
The neural architecture of the support-vector machine is identical to that of least-squares
classification (Widrow-Hoff). The main difference is in the choice of loss function. As in the
case of least-squares classification, the prediction ŷi for the training point Xi is obtained
by applying the identity activation function on W ·Xi. Here, W = (w1, . . . wd) contains the
vector of d weights for the d different inputs into the single-layer network. Therefore, the
output of the neural network is ŷi = W ·Xi for computing the loss function, although a test
instance is predicted by applying the sign function to the output.

The loss function Li for the ith training instance in the support-vector machine is defined
as follows:

Li = max{0, 1− yiŷi} (2.19)

This loss is referred to as the hinge-loss, and the corresponding neural architecture is illus-
trated in Figure 2.3(f). The overall idea behind this loss function is that a positive training
instance is only penalized for being less than 1, and a negative training instance is only pe-
nalized for being greater than −1. In both cases, the penalty is linear, and abruptly flattens
out at the aforementioned thresholds. It is helpful to compare this loss function with the
Widrow-Hoff loss value of (1− yiŷi)

2, in which predictions are penalized for being different
from the target values. As we will see later, this difference is an important advantage for
the support vector machine over the Widrow-Hoff loss function.

64 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

In order to explain the difference in loss functions between the perceptron, Widrow-
Hoff, logistic regression, and the support vector machine, we have shown the loss for a
single positive training instance at different values of ŷi = W · Xi in Figure 2.4. In the
case of the perceptron, only the smoothed surrogate loss function (cf. Section 1.2.1.1 of
Chapter 1) is shown. Since the target value is +1, the loss function shows diminishing

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

PREDICTION= W.X FOR X IN POSITIVE CLASS

P
E

N
A

L
T

Y

PERCEPTRON (SURROGATE)

WIDROW−HOFF/FISHER

SVM HINGE

LOGISTIC

DECISION

BOUNDARY

INCORRECT

PREDICTIONS

CORRECT

PREDICTIONS

Figure 2.4: The loss functions of different variants of the perceptron. Key observations: (i)
The SVM loss is shifted from the perceptron (surrogate) loss by exactly one unit to the right;
(ii) the logistic loss is a smooth variant of the SVM loss; (iii) the Widrow-Hoff/Fisher loss is
the only case in which points are increasingly penalized for classifying points “too correctly”
(i.e., increasing W ·X beyond +1 for X in positive class). Repairing the Widrow-Hoff loss
function by setting it to 0 for W ·X > 1 yields the quadratic loss SVM [190].

improvement by increasing W ·Xi beyond +1 in the case of logistic regression. In the case
of the support-vector machine the hinge-loss function flattens out beyond this point. In
other words, only misclassified points or points that are too close to the decision boundary
W · X = 0 are penalized. The perceptron criterion is identical in shape to the hinge loss,
except that it is shifted by one unit to the left. The Widrow-Hoff method is the only case in
which a positive training point is penalized for having too large a positive value of W ·Xi.
In other words, the Widrow-Hoff method penalizes points for being properly classified in a
very strong way. This is a potential problem with the Widrow-Hoff objective function, in
which well-separated points cause problems in training.

The stochastic gradient-descent method computes the partial derivative of the point-wise
loss function Li with respect to the elements in W . The gradient is computed as follows:

∂Li

∂W
=

{

−yiXi if yiŷi < 1

0 otherwise
(2.20)

Therefore, the stochastic gradient method samples a point and checks whether yiŷi < 1. If
this is the case, an update is performed that is proportional to yiXi:

W ⇐ W (1− αλ) + αyiXi [I(yiŷi < 1)] (2.21)

Here, I(·) ∈ {0, 1} is the indicator function that takes on the value of 1 when the condition
in its argument is satisfied. This approach is the simplest version of the primal update for

2.3. NEURAL ARCHITECTURES FOR MULTICLASS MODELS 65

SVMs [448]. The reader should also convince herself is that this update is identical to that
of a (regularized) perceptron (cf. Equation 2.3), except that the condition for making this
update in the perceptron is yiŷi < 0. Therefore, a perceptron makes the update only when
a point is misclassified, whereas the support vector machine also makes updates for points
that are classified correctly, albeit not very confidently. This neat relationship is because the
loss function of the perceptron criterion shown in Figure 2.4 is shifted from the hinge-loss
in the SVM.

To emphasize the similarities and differences in the loss functions used by the different
methods, we tabulate the loss functions below:

Model Loss function Li for (Xi, yi)

Perceptron (Smoothed surrogate) max{0,−yi · (W ·Xi)}

Widrow-Hoff/Fisher (yi −W ·Xi)
2 = {1− yi · (W ·Xi)}

2

Logistic Regression log(1 + exp[−yi(W ·Xi)])

Support vector machine (Hinge) max{0, 1− yi · (W ·Xi)}

Support vector machine (Hinton’s L2-Loss) [190] [max{0, 1− yi · (W ·Xi)}]
2

It is noteworthy that all the derived updates in this section typically correspond to
stochastic gradient-descent updates that are encountered both in traditional machine learn-
ing and in neural networks. The updates are the same whether or not we use a neural
architecture to represent the models for these algorithms. Our main point in going through
this exercise is to show that rudimentary special cases of neural networks are instantiations
of well-known algorithms in the machine learning literature. The key point is that with
greater availability of data one can incorporate additional nodes and depth to increase the
model’s capacity, explaining the superior behavior of neural networks with larger data sets
(cf. Figure 2.1).

2.3 Neural Architectures for Multiclass Models

All the models discussed so far in this chapter are designed for binary classification. In this
section, we will discuss how one can design multiway classification models by changing the
architecture of the perceptron slightly, and allowing multiple output nodes.

2.3.1 Multiclass Perceptron

Consider a setting with k different classes. Each training instance (Xi, c(i)) contains a d-
dimensional feature vector Xi and the index c(i) ∈ {1 . . . k} of its observed class. In such
a case, we would like to find k different linear separators W1 . . .Wk simultaneously so that
the value of W c(i) ·Xi is larger than Wr ·Xi for each r �= c(i). This is because one always

predicts a data instance Xi to the class r with the largest value of Wr ·Xi. Therefore, the
loss function for the ith training instance in the case of the multiclass perceptron is defined
as follows:

Li = maxr:r �=c(i)max(Wr ·Xi −W c(i) ·Xi, 0) (2.22)

The multiclass perceptron is illustrated in Figure 2.5(a). As in all neural network models,
one can use gradient-descent in order to determine the updates. For a correctly classified
instance, the gradient is always 0, and there are no updates. For a misclassified instance,
the gradients are as follows:

66 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

∂Li

∂Wr

=

⎧

⎪⎨

⎪⎩

−Xi if r = c(i)

Xi if r �= c(i) is most misclassified prediction

0 otherwise

(2.23)

LOSS = MAX(MAX[0,ŷ1 -ŷ2], MAX[0,ŷ3-ŷ2])

X

ŷ1

∑

∑

∑

ŷ2

ŷ3

W3

W2

W1

TRUE CLASS

ŷi = =PREDICTION OF OUTPUT NODE i Wi X

LOSS = MAX[0,ŷ1 -ŷ2+1] + MAX[0,ŷ3-ŷ2+1]

X

ŷi = = PREDICTION OF OUTPUT NODE i

ŷ1

∑

∑

∑

ŷ2

ŷ3

W3

W2

W1

TRUE CLASS

Wi X

(a) Multiclass perceptron (b) Multiclass SVM

LOSS = -LOG(- ŷ2)

X

vi =

v1

∑

∑

∑

v2

v3W3

W2

W1

Wi X

TRUE CLASS

ŷ2 = exp(v2)/[∑exp(vi)]

ŷ1 = exp(v1)/[∑exp(vi)]

ŷ3 = exp(v3)/[∑exp(vi)]

SOFTMAX

LAYER

(c) Multinomial logistic regression

Figure 2.5: Multiclass models: In each case, class 2 is assumed to be the ground-truth class.

Therefore, the stochastic gradient-descent method is applied as follows. Each training
instance is fed into the network. If the correct class r = c(i) receives the largest of output
Wr ·Xi, then no update needs to be executed. Otherwise, the following update is made to
each separator Wr for learning rate α > 0:

Wr ⇐ Wr +

⎧

⎪⎨

⎪⎩

αXi if r = c(i)

−αXi if r �= c(i) is most misclassified prediction

0 otherwise

(2.24)

Only two of the separators are always updated at a given time. In the special case that
k = 2, these gradient updates reduce to the perceptron because both the separators W1 and
W2 will be related as W1 = −W2 if the descent is started at W1 = W2 = 0. Another quirk
that is specific to the unregularized perceptron is that it is possible to use a learning rate
of α = 1 without affecting the learning because the value of α only has the effect of scaling
the weight when starting with W j = 0 (see Exercise 2). This property is, however, not true
for other linear models in which the value of α does affect the learning.

2.3. NEURAL ARCHITECTURES FOR MULTICLASS MODELS 67

2.3.2 Weston-Watkins SVM

The Weston-Watkins SVM [529] varies on the multiclass perceptron in two ways:

1. The multiclass perceptron only updates the linear separator of a class that is predicted
most incorrectly along with the linear separator of the true class. On the other hand,
the Weston-Watkins SVM updates the separator of any class that is predicted more
favorably than the true class. In both cases, the separator of the observed class is
updated by the same aggregate amount as the incorrect classes (but in the opposite
direction).

2. Not only does the Weston-Watkins SVM update the separator in the case of misclas-
sification, it updates the separators in cases where an incorrect class gets a prediction
that is “uncomfortably close” to the true class. This is based on the notion of margin.

As in the case of the multiclass perceptron, it is assumed that the ith training instance
is denoted by (Xi, c(i)), where Xi contains the d-dimensional feature variables, and c(i)
contains the class index drawn from {1, . . . , k}. One wants to learn d-dimensional coefficients
W1 . . .Wk of the k linear separators so that the class index r with the largest value of Wr ·Xi

is predicted to be the correct class c(i). The loss function Li for the ith training instance
(Xi, c(i)) in the Weston-Watkins SVM is as follows:

Li =
∑

r:r �=c(i)

max(Wr ·Xi −W c(i) ·Xi + 1, 0) (2.25)

The neural architecture of the Weston-Watkins SVM is illustrated in Figure 2.5(b). It is
instructive to compare the objective function of the Weston-Watkins SVM (Equation 2.25)
with that of the multiclass perceptron (Equation 2.22). First, for each class r �= c(i), if the
prediction Wr · Xi lags behind that of the true class by less than a margin amount of 1,
then a loss is incurred for that class. Furthermore, the losses over all such classes r �= c(i)
are added, rather than taking the maximum of the losses. These two differences accomplish
the two intuitive goals discussed above.

In order to determine the gradient-descent updates, one can find the gradient of the loss
function with respect to each Wr. In the event that the loss function Li is 0, the gradient of
the loss function is 0 as well. Therefore, no update is required when the training instance is
classified correctly with sufficient margin with respect to the second-best class. However, if
the loss function is non-zero we have either a misclassified or a “barely correct” prediction
in which the second-best and best class prediction are not sufficiently separated. In such
cases, the gradient of the loss is non-zero. The loss function of Equation 2.25 is created by
adding up the contributions of the (k− 1) separators belonging to the incorrect classes. Let
δ(r,Xi) be a 0/1 indicator function, which is 1 when the rth class separator contributes
positively to the loss function in Equation 2.25. In such a case, the gradient of the loss
function is as follows:

∂Li

∂Wr

=

{

−Xi[
∑

j �=r δ(j,Xi)] if r = c(i)

Xi[δ(r,Xi)] if r �= c(i)
(2.26)

This results in the following stochastic gradient-descent step for the rth separator Wr at
learning rate α:

Wr ⇐ Wr(1− αλ) + α

{

Xi[
∑

j �=r δ(j,Xi)] if r = c(i)

−Xi[δ(r,Xi)] if r �= c(i)
(2.27)

68 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

For training instances Xi in which the loss Li is zero, the above update can be shown to
simplify to a regularization update of each hyperplane Wr:

Wr ⇐ Wr(1− αλ) (2.28)

The regularization uses the parameter λ > 0. Regularization is considered essential to the
proper functioning of a support vector machine.

2.3.3 Multinomial Logistic Regression (Softmax Classifier)

Multinomial logistic regression can be considered the multi-way generalization of logistic
regression, just as the Weston-Watkins SVM is the multiway generalization of the binary
SVM. Multinomial logistic regression uses negative log-likelihood loss, and is therefore a
probabilistic model. As in the case of the multiclass perceptron, it is assumed that the
input to the model is a training data set containing pairs of the form (Xi, c(i)), where
c(i) ∈ {1 . . . k} is the index of the class of d-dimensional data point Xi. As in the case of
the previous two models, the class r with the largest value of Wr · Xi is predicted to be
the label of the data point Xi. However, in this case, there is an additional probabilistic
interpretation of Wr ·Xi in terms of the posterior probability P (r|Xi) that the data point
Xi takes on the label r. This estimation can be naturally accomplished with the softmax
activation function:

P (r|Xi) =
exp(Wr ·Xi)

∑k
j=1 exp(Wj ·Xi)

(2.29)

In other words, the model predicts the class membership in terms of probabilities. The
loss function Li for the ith training instance is defined by the cross-entropy, which is the
negative logarithm of the probability of the true class. The neural architecture of the softmax
classifier is illustrated in Figure 2.5(c).

The cross-entropy loss may be expressed in terms of either the input features or in terms
of the softmax pre-activation values vr = Wr ·Xi as follows:

Li = −log[P (c(i)|Xi)] (2.30)

= −W c(i) ·Xi + log[

k∑

j=1

exp(Wj ·Xi)] (2.31)

= −vc(i) + log[

k∑

j=1

exp(vj)] (2.32)

Therefore, the partial derivative of Li with respect to vr can be computed as follows:

∂Li

∂vr
=

⎧

⎪⎪⎨

⎪⎪⎩

−
(

1− exp(vr)∑
k
j=1 exp(vj)

)

if r = c(i)
(

exp(vr)∑
k
j=1 exp(vj)

)

if r �= c(i)
(2.33)

=

{

−(1− P (r|Xi)) if r = c(i)

P (r|Xi) if r �= c(i)
(2.34)

The gradient of the loss of the ith training instance with respect to the separator of the rth
class is computed by using the chain rule of differential calculus in terms of its pre-activation
value vj = Wj ·Xi:

2.3. NEURAL ARCHITECTURES FOR MULTICLASS MODELS 69

∂Li

∂Wr

=
∑

j

(
∂Li

∂vj

)(
∂vj

∂Wr

)

=
∂Li

∂vr

∂vr

∂Wr
︸ ︷︷ ︸

Xi

(2.35)

In the above simplification, we used the fact that vj has a zero gradient with respect to
Wr for j �= r. The value of ∂Li

∂vr
in Equation 2.35 can be substituted from Equation 2.34 to

obtain the following result:

∂Li

∂Wr

=

{

−Xi(1− P (r|Xi)) if r = c(i)

Xi P (r|Xi) if r �= c(i)
(2.36)

Note that we have expressed the gradient indirectly using probabilities (based on Equa-
tion 2.29) both for brevity and for intuitive understanding of how the gradient is related to
the probability of making different types of mistakes. Each of the terms [1− P (r|Xi)] and
P (r|Xi) is the probability of making a mistake for an instance with label c(i) with respect
to the predictions for the rth class. After including similar regularization impact as other
models, the separator for the rth class is updated as follows:

Wr ⇐ Wr(1− αλ) + α

{

Xi · (1− P (r|Xi)) if r = c(i)

−Xi · P (r|Xi) if r �= c(i)
(2.37)

Here, α is the learning rate, and λ is the regularization parameter. The softmax classifier
updates all the k separators for each training instance, unlike the multiclass perceptron and
the Weston-Watkins SVM, each of which updates only a small subset of separators (or no
separator) for each training instance. This is a consequence of probabilistic modeling, in
which correctness is defined in a soft way.

2.3.4 Hierarchical Softmax for Many Classes

Consider a classification problem in which we have an extremely large number of classes.
In such a case, learning becomes too slow, because of the large number of separators that
need to be updated for each training instance. This situation can occur in applications like
text mining, where the prediction is a target word. Predicting target words is particularly
common in neural language models, which try to predict the next word given the immediate
history of previous words. The cardinality of the number of classes will typically be larger
than 105 in such cases. Hierarchical softmax is a way of improving learning efficiency by
decomposing the classification problem hierarchically. The idea is to group the classes hier-
archically into a binary tree-like structure, and then perform log2(k) binary classifications
from the root to the leaf for k-way classification. Although the hierarchical classification can
compromise the accuracy to some extent, the efficiency improvements can be significant.

How is the hierarchy of classes obtained? The näıve approach is to create a random
hierarchy. However, the specific grouping of classes has an effect on performance. Grouping
similar classes tends to improve performance. It is possible to use domain-specific insights
to improve the quality of the hierarchy. For example, if the prediction is a target word,
one can use the WordNet hierarchy [329] to guide the grouping. Further reorganization
may be needed [344] because the WordNet hierarchy is not exactly a binary tree. Another
option is to use Huffman encoding in order to create the binary tree [325, 327]. Refer to the
bibliographic notes for more pointers.

70 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

2.4 Backpropagated Saliency for Interpretability and
Feature Selection

One of the common refrains about neural networks has been their lack of interpretabil-
ity [97]. However, it turns out that one can use backpropagation in order to determine the
features that contribute the most to the classification of a particular test instance. This
provides the analyst with an understanding of the relevance of each feature to classification.
This approach also has the useful property that it can be used for feature selection [406].

Consider a test instance X = (x1, . . . xd), for which the multilabel output scores of
the neural network are o1 . . . ok. Furthermore, let the output of the winning class among
the k outputs be om, where m ∈ {1 . . . k}. Our goal is to identify the features that are
most relevant to the classification of this test instance. In general, for each attribute xi,
we would like to determine the sensitivity of the output om to xi. Features with large
absolute magnitudes of this sensitivity are obviously relevant to the classification of this test
instance. In order to achieve this goal, we would like to compute the absolute magnitude of
∂om
∂xi

. The features with the largest absolute value of the partial derivative have the greatest
influence on the classification to the winning class. The sign of this derivative also tells us
whether increasing xi slightly from its current value increases or decreases the score of the
winning class. For classes other than the winning class, the derivative also provides some
understanding of the sensitivity, but this is less important, particularly when the number of
classes is large. The value of ∂om

∂xi
can be computed by a straightforward application of the

backpropagation algorithm, in which one does not stop backpropagating at the first hidden
layer but applies the process all the way to the input layer.

One can also use this approach for feature selection by aggregating the absolute value
of the gradient over all classes and all correctly classified training instances. The features
with the largest aggregate sensitivity over the whole training data are the most relevant.
Strictly speaking, one does not need to aggregate this value over all classes, but one can
simply use only the winning class for correctly classified training instances. However, the
original work in [406] aggregates this value over all classes and all instances.

Similar methods for interpreting the effects of different portions of the input are also
used in computer vision with convolutional neural networks [466]. A discussion of some of
these methods is provided in Section 8.5.1 of Chapter 8. In the case of computer vision, the
visual effects of this type of saliency analysis are sometimes spectacular. For example, for
an image of a dog, the analysis will tell us which features (i.e., pixels) results in the image
being considered a dog. As a result, we can create a black-and-white saliency image in which
the portion corresponding to a dog is emphasized in light color against a dark background
(cf. Figure 8.12 of Chapter 8).

2.5 Matrix Factorization with Autoencoders

Autoencoders represent a fundamental architecture that is used for various types of unsu-
pervised learning, including matrix factorization, principal component analysis, and dimen-
sionality reduction. Natural architectural variations of the autoencoder can also be used
for matrix factorization of incomplete data to create recommender systems. Furthermore,
some recent feature engineering methods in the natural language domain like word2vec can
also be viewed as variations of autoencoders, which perform nonlinear matrix factorizations
of word-context matrices. The nonlinearity is achieved with the activation function in the
output layer, which is usually not available with traditional matrix factorization. Therefore,

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 71

one of our goals will be to demonstrate how small changes to the underlying building blocks
of the neural network can be used to implement sophisticated variations of a given family
of methods. This is particularly convenient for the analyst, who only has to experiment
with small variations of the architecture to test different types of models. Such variations
would require more effort to construct in traditional machine learning, because one does not
have the benefit of learning abstractions like backpropagation. First, we begin with a simple
simulation of a traditional matrix factorization method with a shallow neural architecture.
Then, we discuss how this basic setup provides the path to generalizations to nonlinear
dimensionality reduction methods by adding layers and/or nonlinear activation functions.
Therefore, the goal of this section is to show two things:

1. Classical dimensionality reduction methods like singular value decomposition and
principal component analysis are special cases of neural architectures.

2. By adding different types of complexities to the basic architecture, one can gener-
ate complex nonlinear embeddings of the data. While nonlinear embeddings are also
available in machine learning, neural architectures provide unprecedented flexibility in
controlling the properties of the embedding by making various types of architectural
changes (and allowing backpropagation to take care of the changes in the underlying
learning algorithms).

We will also discuss a number of applications such as recommender systems and outlier
detection.

2.5.1 Autoencoder: Basic Principles

The basic idea of an autoencoder is to have an output layer with the same dimensionality as
the inputs. The idea is to try to reconstruct each dimension exactly by passing it through
the network. An autoencoder replicates the data from the input to the output, and is
therefore sometimes referred to as a replicator neural network. Although reconstructing the
data might seem like a trivial matter by simply copying the data forward from one layer to
another, this is not possible when the number of units in the middle are constricted. In other
words, the number of units in each middle layer is typically fewer than that in the input (or
output). As a result, these units hold a reduced representation of the data, and the final
layer can no longer reconstruct the data exactly. Therefore, this type of reconstruction is
inherently lossy. The loss function of this neural network uses the sum-of-squared differences
between the input and the output in order to force the output to be as similar as possible to
the input. This general representation of the autoencoder is given in Figure 2.6(a), where an
architecture is shown with three constricted layers. It is noteworthy that the representation
of the innermost hidden layer will be hierarchically related to those in the two outer hidden
layers. Therefore, an autoencoder is capable of performing hierarchical data reduction.

It is common (but not necessary) for an M -layer autoencoder to have a symmetric
architecture between the input and output, where the number of units in the kth layer
is the same as that in the (M − k + 1)th layer. Furthermore, the value of M is often
odd, as a result of which the (M + 1)/2th layer is often the most constricted layer. Here,
we are counting the (non-computational) input layer as the first layer, and therefore the
minimum number of layers in an autoencoder would be three, corresponding to the input
layer, constricted layer, and the output layer. As we will see later, this simplest form of the
autoencoder is used in traditional machine learning for singular value decomposition. The
symmetry in the architecture often extends to the fact that the weights outgoing from the

72 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

kth layer are tied to those incoming to the (M − k)th layer in many architectures. For now,
we will not make this assumption for simplicity in presentation. Furthermore, the symmetry
is never absolute because of the effect of nonlinear activation functions. For example, if a
nonlinear activation function is used in the output layer, there is no way to symmetrically
mirror that fact in the (non-computational) input layer.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

O
R

IG
IN

A
L

D
A

TA

R
E

C
O

N
S

T
R

U
C

T
E

D
D

A
TA

C
O

D
E

ENCODER
(MULTILAYER NEURAL

NETWORK)

FUNCTION F(.)

DECODER
(MULTILAYER NEURAL

NETWORK)

FUNCTION G(.)

X XI = (G o F) (X)

F(X)

CONSTRICTED

LAYERS IN

MIDDLE

(a) Three hidden layers (b) General schematic

Figure 2.6: The basic schematic of the autoencoder

The reduced representation of the data is also sometimes referred to as the code, and
the number of units in this layer is the dimensionality of the reduction. The initial part
of the neural architecture before the bottleneck is referred to as the encoder (because it
creates a reduced code), and the final part of the architecture is referred to as the decoder
(because it reconstructs from the code). The general schematic of the autoencoder is shown
in Figure 2.6(b).

2.5.1.1 Autoencoder with a Single Hidden Layer

In the following, we describe the simplest version of an autoencoder, which is used for matrix
factorization. This autoencoder only has a single hidden layer of k ≪ d units between the
input and output layers of d units each. For the purpose of discussion, assume that we have
an n× d matrix denoted by D, which we would like to factorize into an n× k matrix U and
a d× k matrix V :

D ≈ UV T (2.38)

Here, k is the rank of the factorization. The matrix U contains the reduced representation
of the data, and the matrix V contains the basis vectors. Matrix factorization is one of
the most widely studied problems in supervised learning, and it is used for dimensionality
reduction, clustering, and predictive modeling in recommender systems.

In traditional machine learning, this problem is solved by minimizing the Frobenius norm
of the residual matrix denoted by (D − UV T). The squared Frobenius norm of a matrix is
the sum of the squares of the entries in the matrix. Therefore, one can write the objective
function of the optimization problem as follows:

Minimize J = ||D − UV T ||2F
Here, the notation || · ||F indicates the Frobenius norm. The parameter matrices U and V
need to be learned in order to optimize the aforementioned error. This objective function
has an infinite number of optima, one of which has mutually orthogonal basis vectors.
That particular solution is referred to as truncated singular value decomposition. Although
it is relatively easy to derive the gradient-descent steps [6] for this optimization problem

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 73

(without worrying about neural networks at all), our goal here is to capture this optimization
problem within a neural architecture. Going through this exercise helps us show that SVD
is a special case of an autoencoder architecture, which sets the stage for understanding the
gains obtained with more complex autoencoders.

INPUT LAYER

OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

WT

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5

VT

Figure 2.7: A basic autoencoder with a single layer

This neural architecture for SVD is illustrated in Figure 2.7, where the hidden layer
contains k units. The rows of D are input into the autoencoder, whereas the k-dimensional
rows of U are the activations of the hidden layer. The k×d matrix of weights in the decoder
is V T . As we discussed in the introduction to the multilayer neural network in Chapter 1,
the vector of values in a particular layer of the network can be obtained by multiplying the
vector of values in the previous layer with the matrix of weights connecting the two layers
(with linear activation). Since the activations of the hidden layer are U and the decoder
weights contain the matrix V T , it follows that the reconstructed output contains the rows
of UV T . The autoencoder minimizes the sum-of-squared differences between the input and
the output, which is equivalent to minimizing ||D − UV T ||2. Therefore, the same problem
is being solved as singular value decomposition.

Note that one can use this approach to provide the reduced representation of out-of-
sample instances that were not included in the original matrix D. One simply has to feed
these out-of-sample rows as the input, and the activations of the hidden layer will provide the
reduced representation. Reducing out-of-sample instances is particularly useful for nonlinear
dimensionality-reduction methods, as it is more difficult for traditional machine learning
methods to fold in new instances.

Encoder Weights

As shown in Figure 2.7, the encoder weights are contained in the k × d matrix denoted
by W . How is this matrix related to U and V ? Note that the autoencoder creates the
reconstructed representation DWTV T of the original data matrix. Therefore, it tries to
optimize the problem of minimizing ||DWTV T −D||2. The optimal solution to this problem
is obtained when the matrix W contains the pseudo-inverse of V , which is defined as follows:

W = (V TV)−1V T (2.39)

74 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

This result is easy to show at least for non-degenerate cases in which the rows of matrix
D span the full rank of d dimensions (see Exercise 14). Of course, the final solution found
by the training algorithm of the autoencoder might deviate from this condition because it
might not solve the problem precisely or because the matrix D might be of smaller rank.

By the definition of the pseudo-inverse, it follows that WV = I and V TWT = I, where I
is a k×k identity matrix. Post-multiplying Equation 2.38 with WT we obtain the following:

DWT ≈ U (V TWT)
︸ ︷︷ ︸

I

= U (2.40)

In other words, multiplying each row of the matrix D with the d× k matrix WT yields the
reduced representation of that instance, which is the corresponding row in U . Furthermore,
multiplying that row of U again with V T yields the reconstructed version of the original
data matrix D.

Note that there are many alternate optima for W and V , but in order for reconstruction
to occur (i.e., minimization of loss function), the learned matrix W will always be (ap-
proximately) related to V as its pseudo-inverse and the columns of V will always span3 a
particular k-dimensional subspace defined by the SVD optimization problem.

2.5.1.2 Connections with Singular Value Decomposition

The single-layer autoencoder architecture is closely connected with singular value decompo-
sition (SVD). Singular value decomposition finds a factorization UV T in which the columns
of V are orthonormal. The loss function of this neural network is identical to that of sin-
gular value decomposition, and a solution V in which the columns of V are orthonormal
will always be one of the possible optima obtained by training the neural network. However,
since this loss function allows alternative optima, it is possible to find an optimal solution
in which the columns of V are not necessarily mutually orthogonal or scaled to unit norm.
SVD is defined by an orthonormal basis system. Nevertheless, the subspace spanned by
the k columns of V will be the same as that spanned by the top-k basis vectors of SVD.
Principal component analysis is identical to singular value decomposition, except that it is
applied to a mean-centered matrix D. Therefore, the approach can also be used to find the
subspace spanned by the top-k principal components. However, each column of D needs to
be mean-centered up front by subtracting its mean. One can achieve an orthonormal basis
system, which is even closer to SVD and PCA by sharing some of the weights in the encoder
and decoder. This approach is discussed in the next section.

2.5.1.3 Sharing Weights in Encoder and Decoder

There are many possible alternate solutions for W and V in the above discussion, in which
W is the pseudo-inverse of V . One can, therefore, reduce the parameter footprint further
without significant4 loss in reconstruction accuracy. A common practice that is used in
the autoencoder construction is to share some of the weights between the encoder and the

3This subspace is defined by the top-k singular vectors of singular value decomposition. However, the
optimization problem does not impose orthogonality constraints, and therefore the columns of V might use
a different non-orthogonal basis system to represent this subspace.

4There is no loss in reconstruction accuracy in several special cases like the single-layer case discussed
here, even on the training data. In other cases, the loss of accuracy is only on the training data, but the
autoencoder tends to better reconstruct out-of-sample data because of the regularization effects of parameter
footprint reduction.

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 75

decoder. This is also referred to as tying the weights. In particular, the autoencoder has
an inherently symmetric structure, in which the weights of the encoder and decoder are
forced to be the same in symmetrically matching layers. In the shallow case, the encoder
and decoder weights are shared by using the following relationship:

W = V T (2.41)

INPUT LAYER

OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

V

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5

VT

Figure 2.8: Basic autoencoder with a single layer; note tied weights (unlike the autoencoder
shown in Figure 2.7).

This architecture is shown in Figure 2.8, and it is identical to the architecture of Figure 2.7
except for the presence of tied weights. In other words, the d × k matrix V of weights is
first used to transform the d-dimensional data point X into a k-dimensional representation.
Then, the matrix V T of weights is used to reconstruct the data to its original representation.

The tying of the weights effectively means that V T is the pseudo-inverse of V (see
Exercise 14). In other words, we have V TV = I, and therefore the columns of V are
mutually orthogonal. As a result, by tying the weights, it is now possible to exactly simulate
SVD, in which the different basis vectors need to be mutually orthogonal.

In this particular example of an architecture with a single hidden layer, the tying of
weights is done only for a pair of weight matrices. In general, one would have an odd
number of hidden layers and an even number of weight matrices. It is a common practice
to match up the weight matrices in a symmetric way about the middle. In such a case, the
symmetrically arranged hidden layers would need to have the same numbers of units. Even
though it is not necessary to share weights between the encoder and decoder portions of
the architecture, it reduces the number of parameters by a factor of 2. This is beneficial
from the point of view of reducing overfitting. In other words, the approach would better
reconstruct out-of-sample data. Another benefit of tying the weight matrices in the encoder
and the decoder is that it automatically normalizes the columns of V to similar values.
For example, if we do not tie the weight matrices in the encoder and the decoder, it is
possible for the different columns of V to have very different norms. At least in the case of
linear activations, tying the weight matrices forces all columns of V to have similar norms.
This is also useful from the perspective of providing better normalization of the embedded
representation. The normalization and orthogonality properties no longer hold exactly when
nonlinear activations are used in the computational layers. However, there are considerable
benefits in tying the weights even in these cases in terms of better conditioning of the
solution.

76 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

The sharing of weights does require some changes to the backpropagation algorithm
during training. However, these modifications are not very difficult. All that one has to do
is to perform normal backpropagation by pretending that the weights are not tied in order
to compute the gradients. Then, the gradients across different copies of the same weight are
added in order to compute the gradient-descent steps. The logic for handing shared weights
in this way is discussed in Section 3.2.9 of Chapter 3.

2.5.1.4 Other Matrix Factorization Methods

It is possible to modify the simple three-layer autoencoder to simulate other types of ma-
trix factorization methods such as non-negative matrix factorization, probabilistic latent
semantic analysis, and logistic matrix factorization methods. Different methods for logistic
matrix factorization will be discussed in the next section, in Section 2.6.3, and in Exercise 8.
Methods for non-negative matrix factorization and probabilistic latent semantic analysis are
discussed in Exercises 9 and 10. It is instructive to examine the relationships between these
different variations, because it shows how one can vary on simple neural architectures in
order to get results with vastly different properties.

2.5.2 Nonlinear Activations

So far, the discussion has focussed on simulating singular value decomposition using a neural
architecture. Clearly, this does not seem to achieve much because many off-the-shelf tools
exist for singular value decomposition. However, the real power of autoencoders is realized
when one starts using nonlinear activations and multiple layers. For example, consider a
situation in which the matrix D is binary. In such a case, one can use the same neural
architecture as shown in Figure 2.7, but one can also use a sigmoid function in the final
layer to predict the output. This sigmoid layer is combined with negative log loss. Therefore,
for a binary matrix B = [bij], the model assumes the following:

B ∼ sigmoid(UV T) (2.42)

Here, the sigmoid function is applied in element-wise fashion. Note the use of ∼ instead
of ≈ in the above expression, which indicates that the binary matrix B is an instantiation
of random draws from Bernoulli distributions with corresponding parameters contained in
sigmoid(UV T). The resulting factorization can be shown to be equivalent to logistic matrix
factorization. The basic idea is that the (i, j)th element of UV T is the parameter of a
Bernoulli distribution, and the binary entry bij is generated from a Bernoulli distribution
with these parameters. Therefore, U and V are learned using the log-likelihood loss of this
generative model. The log-likelihood loss implicitly tries to find parameter matrices U and V
so that the probability of the matrix B being generated by these parameters is maximized.

Logistic matrix factorization has only recently been proposed [224] as a sophisticated
matrix factorization method for binary data, which is useful for recommender systems with
implicit feedback ratings. Implicit feedback refers to the binary actions of users such as buy-
ing or not buying specific items. The solution methodology of this recent work on logistic
matrix factorization [224] seems to be vastly different from SVD, and it is not based on a
neural network approach. However, for a neural network practitioner, the change from the
SVD model to that of logistic matrix factorization is a relatively small one, where only the
final layer of the neural network needs to be changed. It is this modular nature of neural
networks that makes them so attractive to engineers and encourages all types of experi-
mentation. In fact, one of the variants of the popular word2vec neural approach [325, 327]

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 77

for text feature engineering is a logistic matrix factorization method, when one examines it
more closely. Interestingly, word2vec was proposed earlier than logistic matrix factorization
in traditional machine learning [224], although the equivalence of the two methods was not
shown in the original work. The equivalence was first shown in [6], and a proof of this result
is also provided later in this chapter. Indeed, for multilayer variants of the autoencoder,

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

POINT A

POINT C

POINT B

−5

0

5

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

POINT A

POINT B POINT C

(a) A nonlinear pattern in three dimensions (b) A reduced data set in two dimensions

Figure 2.9: The effect of nonlinear dimensionality reduction. This figure is drawn for illus-
trative purposes only.

an exact counterpart does not even exist in traditional machine learning. All this seems to
suggest that it is often more natural to discover sophisticated machine learning algorithms
when working with the modular approach of constructing multilayer neural networks. Note
that one can even use this approach to factorize real-valued matrix entries drawn from
[0, 1], as long as the log-loss is suitably modified to handle fractional values (see Exercise 8).
Logistic matrix factorization is a type of kernel matrix factorization.

One can also use non-linear activations in the hidden layer rather than (or in addition to)
the output layer. By using the non-linearity in the hidden layer to impose non-negativity,
one can simulate non-negative matrix factorization (cf. Exercises 9 and 10). Furthermore,
consider an autoencoder with a single hidden layer in which sigmoid units are used in
the hidden layer, and the output layer is linear. Furthermore, the input-to-hidden and
the hidden-to-output matrices are denoted by WT and V T , respectively. In this case, the
matrix W will no longer be the pseudo-inverse of V because of the non-linear activation in
the hidden layer.

If U is the output of the hidden layer in which the nonlinear activation Φ(·) is applied,
we have:

U = Φ(DWT) (2.43)

If the output layer is linear, the overall factorization is still of the following form:

D ≈ UV T (2.44)

Note, however, that we can write U ′ = DWT , which is a linear projection of the original
matrix D. Then, the factorization can be written as follows:

D ≈ Φ(U ′)V T (2.45)

Here, U ′ is a linear projection of D. This is a different type of nonlinear matrix factoriza-
tion [521, 558]. Although the specific form of the nonlinearity (e.g., sigmoid) might seem

78 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

simplistic compared to what is considered typical in kernel methods, in reality multiple
hidden layers are used to learn more complex forms of nonlinear dimensionality reduction.
Nonlinearity can also be combined in the hidden layers and in the output layer. Nonlinear
dimensionality reduction methods can map the data into much lower dimensional spaces

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

Figure 2.10: An example of an autoencoder with three hidden layers. Combining nonlinear
activations with multiple hidden layers increases the representation power of the network.

(with good reconstruction characteristics) than would be possible with methods like PCA.
An example of a data set, which is distributed on a nonlinear spiral, is shown in Fig-
ure 2.9(a). This data set cannot be reduced to lower dimensionality using PCA (without
causing significant reconstruction error). However, the use of nonlinear dimensionality re-
duction methods can flatten out the nonlinear spiral into a 2-dimensional representation.
This representation is shown in Figure 2.9(b).

Nonlinear dimensionality-reduction methods often require deeper networks due to the
more complex transformations possible with the combination of nonlinear units. The ben-
efits of depth will be discussed in the next section.

2.5.3 Deep Autoencoders

The real power of autoencoders in the neural network domain is realized when deeper vari-
ants are used. For example, an autoencoder with three hidden layers is shown in Figure 2.10.
One can increase the number of intermediate layers in order to further increase the repre-
sentation power of the neural network. It is noteworthy that it is essential for some of the
layers of the deep autoencoder to use a nonlinear activation function to increase its repre-
sentation power. As shown in Lemma 1.5.1 of Chapter 1, no additional power is gained by a
multilayer network when only linear activations are used. Although this result was shown in
Chapter 1 for the classification problem, it is broadly true for any type of multilayer neural
network (including an autoencoder).

Deep networks with multiple layers provide an extraordinary amount of representation
power. The multiple layers of this network provide hierarchically reduced representations
of the data. For some data domains like images, hierarchically reduced representations are
particularly natural. Note that there is no precise analog of this type of model in tradi-
tional machine learning, and the backpropagation approach rescues us from the challenges
associated in computing the complicated gradient-descent steps. A nonlinear dimensionality
reduction might map a manifold of arbitrary shape into a reduced representation. Although
several methods for nonlinear dimensionality reduction are known in machine learning,
neural networks have some advantages over these methods:

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 79

1. Many nonlinear dimensionality reduction methods have a very hard time mapping
out-of-sample data points to reduced representations, unless these points are included
in the training data up front. On the other hand, it is a relatively simple matter to

2-D VISUALIZATION WITH

NONLINEAR AUTOENCODER

2-D VISUALIZATION WITH

PCA

Figure 2.11: A depiction of the typical difference between the embeddings created by non-
linear autoencoders and principal component analysis (PCA). Nonlinear and deep autoen-
coders are often able to separate out the entangled class structures in the underlying data,
which is not possible within the constraints of linear transformations like PCA. This occurs
because individual classes are often populated on curved manifolds in the original space,
which would appear mixed when looking at a data in any 2-dimensional cross-section unless
one is willing to warp the space itself. The figure above is drawn for illustrative purposes
only and does not represent a specific data set.

compute the reduced representation of an out-of-sample point by passing it through
the network.

2. Neural networks allow more power and flexibility in the nonlinear data reduction by
varying on the number and type of layers used in intermediate stages. Furthermore,
by choosing specific types of activation functions in particular layers, one can engineer
the nature of the reduction to the properties of the data. For example, it makes sense
to use a logistic output layer with logarithmic loss for a binary data set.

It is possible to achieve extraordinarily compact reductions by using this approach. For
example, the work in [198] shows how one can convert a 784-dimensional representation of
the pixels of an image into a 6-dimensional reduction with the use of deep autoencoders.
Greater reduction is always achieved by using nonlinear units, which implicitly map warped
manifolds into linear hyperplanes. The superior reduction in these cases is because it is easier
to thread a warped surface (as opposed to a linear surface) through a larger number of points.
This property of nonlinear autoencoders is often used for 2-dimensional visualizations of the
data by creating a deep autoencoder in which the most compact hidden layer has only two
dimensions. These two dimensions can then be mapped on a plane to visualize the points.
In many cases, the class structure of the data is exposed in terms of well-separated clusters.

An illustrative example of the typical behavior of real data distributions is shown in
Figure 2.11, in which the 2-dimensional mapping created by a deep autoencoder seems
to clearly separate out the different classes. On the other hand, the mapping created by
PCA does not seem to separate the classes well. Figure 2.9, which provides a nonlinear

80 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

spiral mapped to a linear hyperplane, clarifies the reason for this behavior. In many cases,
the data may contain heavily entangled spirals (or other shapes) that belong to different
classes. Linear dimensionality reduction methods cannot attain clear separation because
nonlinearly entangled shapes are not linearly separable. On the other hand, deep autoen-
coders with nonlinearity are far more powerful and able to disentangle such shapes. Deep
autoencoders can sometimes be used as alternatives to other robust visualization methods
like t-distributed stochastic neighbor embedding (t-SNE) [305]. Although t-SNE can often
provide better performance5 for visualization (because it is specifically designed for visual-
ization rather than dimensionality reduction), the advantage of an autoencoder over t-SNE
is that it is easier to generalize to out-of-sample data. When new data points are received,
they can simply be passed through the encoder portion of the autoencoder in order to
add them to the current set of visualized points. A specific example of a visualization of a
high-dimensional document collection with an autoencoder is provided in [198].

It is, however, possible to go too far and create representations that are not useful. For
example, one can compress a very high-dimensional data point into a single dimension, which
reconstructs a point from the training data very well but gives high reconstruction error
for test data. In other words, the neural network has found a way to memorize the data set
without sufficient ability to create reduced representations of unseen points. Therefore, even
for unsupervised problems like dimensionality reduction, it is important to keep aside some
points as a validation set. The points in the validation set are not used during training. One
can then quantify the difference in reconstruction error between the training and validation
data. Large differences in reconstruction error between the training and validation data
are indicative of overfitting. Another issue is that deep networks are harder to train, and
therefore tricks like pretraining are important. These tricks will be discussed in Chapters 3
and 4.

2.5.4 Application to Outlier Detection

Dimensionality reduction is closely related to outlier detection, because outlier points are
hard to encode and decode without losing substantial information. It is a well-known fact
that if a matrix D is factorized as D ≈ D′ = UV T , then the low-rank matrix D′ is a
de-noised representative of the data. After all, the compressed representation U captures
only the regularities in the data, and is unable to capture the unusual variations in specific
points. As a result, reconstruction to D′ misses all these unusual variations.

The absolute values of the entries of (D−D′) represent the outlier scores of the matrix
entries. Therefore, one can use this approach to find outlier entries, or add the squared
scores of the entries in each row of D to find the outlier score of that row. Therefore, one
can identify outlier data points. Furthermore, by adding the squared scores in each column
of D, one can find outlier features. This is useful for applications like feature selection in
clustering, where a feature with a large outlier score can be removed because it adds noise
to the clustering. Although we have provided the description above with the use of matrix
factorization, any type of autoencoder can be used. In fact, the construction of de-noising
autoencoders is a vibrant field in its own right. Refer to the bibliographic notes.

5The t-SNE method works on the principle is that it is impossible to preserve all pairwise similarities
and dissimilarities with the same level of accuracy in a low-dimensional embedding. Therefore, unlike di-
mensionality reduction or autoencoders that try to faithfully reconstruct the data, it has an asymmetric
loss function in terms of how similarity is treated versus dissimilarity. This type of asymmetric loss function
is particularly helpful for separating out different manifolds during visualization. Therefore, t-SNE might
perform better than autoencoders at visualization.

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 81

2.5.5 When the Hidden Layer Is Broader than the Input Layer

So far, we have only discussed cases in which the hidden layer has fewer units than the
input layer. It makes sense for the hidden layer to have fewer units than the input layer
when one is looking for a compressed representation of the data. A constricted hidden layer
forces dimensionality reduction, and the loss function is designed to avoid information loss.
Such representations are referred to as undercomplete representations, and they correspond
to the traditional use-case of autoencoders.

What about the case when the number of hidden units is greater than the input dimen-
sionality? This situation corresponds to the case of over-complete representations. Increasing
the number of hidden units beyond the number of input units makes it possible for the hid-
den layer to simply learn the identity function (with zero loss). Simply copying the input
across the layers does not seem to be particularly useful. However, this does not occur in
practice (while learning weights), especially if certain types of regularization and sparsity
constraints are imposed on the hidden layer. Even if no sparsity constraints are imposed,
and stochastic gradient descent is used for learning, the probabilistic regularization caused
by stochastic gradient descent is sufficient to ensure that the hidden representation will
always scramble the input before reconstructing it at the output. This is because stochastic
gradient descent is a type of noise addition to the learning process, and therefore it will
not be possible to learn weights that simply copy input to output as identity functions
across layers. Furthermore, because of some peculiarities of the training process, a neural
network almost never uses its full modeling ability, which leads to dependencies among the
weights [94]. Rather, an over-complete representation may be created, although it may not
have the property of sparsity (which needs to be explicitly encouraged). The next section
will discuss ways of encouraging sparsity.

2.5.5.1 Sparse Feature Learning

When explicit sparsity constraints are imposed, the resulting autoencoder is referred to as a
sparse autoencoder. A sparse representation of a d-dimensional point is a k-dimensional point
in which k ≫ d and most of the values in the sparse representation are 0s. Sparse feature
learning has tremendous applicability to many settings like image data, where the learned
features are often intuitively more interpretable from an application-specific perspective.
Furthermore, points with a variable amount of information will be naturally represented by
having varying numbers of nonzero feature values. This type of property is naturally true
in some input representations like documents; documents with more information will have
more non-zero features (word frequencies) when represented in multidimensional format.
However, if the available input is not sparse to begin with, there are often benefits in
creating a sparse transformation where such a flexibility of representation exists. Sparse
representations also enable the effective use of particular types of efficient algorithms that
are highly dependent on sparsity. There are many ways in which constraints might be
enforced on the hidden layer to create sparsity. One approach is to add biases to the hidden
layer, so that many units are encouraged to be zeros. Some examples are as follows:

1. One can impose an L1-penalty on the activations in the hidden layer to force sparse
activations. The notion of L1-penalties for creating sparse solutions (in terms of either
weights or hidden units) is discussed in Sections 4.4.2 and 4.4.4 of Chapter 4. In
such a case, backpropagation must also propagate the gradient of this penalty in the
backwards direction. Surprisingly, this natural alternative is rarely used.

82 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

2. One can allow only the top-r activations in the hidden layer to be nonzero for r ≤ k. In
such a case, backpropagation only backpropagates through the activated units. This
approach is referred to as the r-sparse autoencoder [309].

3. Another approach is the winner-take-all autoencoder [310], in which only a fraction f
of the activations of each hidden unit are allowed over the whole training data. In this
case, the top activations are computed across training examples, whereas in the pre-
vious case the top activations are computed across a hidden layer for a single training
example. Therefore node-specific thresholds need to be estimated using the statistics
of a minibatch. The backpropagation algorithm needs to propagate the gradient only
through the activated units.

Note that the implementations of the competitive mechanisms are almost like ReLU ac-
tivations with adaptive thresholds. Refer to the bibliographic notes for pointers and more
details of these algorithms.

2.5.6 Other Applications

Autoencoders form the workhorse of unsupervised learning in the neural network domain.
They are used for a host of applications, which will be discussed later in the book. After
training an autoencoder, it is not necessary to use both the encoder and decoder portions.
For example, when using the approach for dimensionality reduction, one can use the encoder
portion in order to create the reduced representations of the data. The reconstructions of
the decoder might not be required at all.

Although an autoencoder naturally removes noise (like almost any dimensionality re-
duction method), one can enhance the ability of the autoencoder to remove specific types of
noise. To perform the training of a de-noising autoencoder, a special type of training is used.
First, some noise is added to the training data before passing it through the neural net-
work. The distribution of the added noise reflects the analyst’s understanding of the natural
types of noise in that particular data domain. However, the loss is computed with respect
to the original training data instances rather than their corrupted versions. The original
training data are relatively clean, although one expects the test instances to be corrupted.
Therefore, the autoencoder learns to recover clean representations from corrupted data. A
common approach to add noise is to randomly set a fraction f of the inputs to zeros [506].
This approach is especially effective when the inputs are binary. The value of f regulates the
level of corruption in the inputs. One can either fix f or even allow f to randomly vary over
different training instances. In some cases, when the input is real-valued, Gaussian noise
is also used. More details of the de-noising autoencoder are provided in Section 4.10.2 of
Chapter 4. A closely related autoencoder is the contractive autoencoder, which is discussed
in Section 4.10.3.

Another interesting application of the autoencoder is one in which we use only the
decoder portion of the network to create artistic renderings. This idea is based on the
notion of variational autoencoders [242, 399], in which the loss function is modified to
impose a specific structure on the hidden layer. For example, one might add a term to
the loss function to enforce the fact that the hidden variables are drawn from a Gaussian
distribution. Then, one might repeatedly draw samples from this Gaussian distribution and
use only the decoder portion of the network in order to generate samples of the original data.
The generated samples often represent realistic samples from the original data distribution.

A closely related model is that of generative adversarial networks, which have become
increasingly popular in recent years. These models pair the learning of a decoding network

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 83

with that of an adversarial discriminator in order to create generative samples of a data set.
Generative adversarial networks are used frequently with image, video, and text data, and
they generate artistic renderings of images and videos, which often have the flavor of an
AI that is “dreaming.” These methods can be used for image-to-image translation as well.
The variational autoencoder is discussed in detail in Section 4.10.4 of Chapter 4. Generative
adversarial networks are discussed in Section 10.4 of Chapter 10.

IM
A

G
E

 I
N

P
U

T
T

E
X

T
 I

N
P

U
T

IM
A

G
E

 O
U

T
P

U
T

T
E

X
T

 O
U

T
P

U
T

JO
IN

T
 S

P
A

C
E

TAGS: GIRL,

CARPET, SIT

TAGS: GIRL,

CARPET, SIT

Figure 2.12: Multimodal embedding with autoencoders

One can use an autoencoder for embedding multimodal data in a joint latent space.
Multimodal data is essentially data in which the input features are heterogeneous. For
example, an image with descriptive tags can be considered multimodal data. Multimodal
data pose challenges to mining applications because different features require different types
of processing and treatment. By embedding the heterogeneous attributes in a unified space,
one is removing this source of difficulty in the mining process. An autoencoder can be used
to embed the heterogeneous data into a joint space. An example of such a setting is shown
in Figure 2.12. This figure shows an autoencoder with only a single layer, although one
might have multiple layers in general [357, 468]. Such joint spaces can be very useful in a
variety of applications.

Finally, autoencoders are used to improve the learning process in neural networks. A
specific example is that of pretraining in which an autoencoder is used to initialize the
weights of a neural network. The basic idea is that learning the manifold structure of a
data set is also useful for supervised learning applications like classification. This is because
the features that define the manifold of a data set are often likely to be more informative
in terms of their relationships to different classes. Pretraining methods are discussed in
Section 4.7 of Chapter 4.

2.5.7 Recommender Systems: Row Index to Row Value Prediction

One of the most interesting applications of matrix factorization is the design of neural
architectures for recommender systems. Consider an n × d ratings matrix D with n users
and d items. The (i, j)th entry of the matrix is the rating of user i for item j. However,
most entries in the matrix are not specified, which creates difficulties in using a traditional
autoencoder architecture. This is because traditional autoencoders are designed for fully
specified matrices, in which a single row of the matrix is input at one time. On the other
hand, recommender systems are inherently suited to elementwise learning, in which a very

84 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

small subset of ratings from a row may be available. As a practical matter, one might
consider the input to a recommender system as a set of triplets of the following form:

〈RowId〉, 〈 ColumnId 〉, 〈 Rating 〉

As in traditional forms of matrix factorization, the ratings matrix D is given by UV T .
However, the difference is that one must learn U and V using triplet-centric input because

0

1

0

0

5

MISSING

4

ALICE

BOB

SAYANI

JOHN

ONE-HOT ENCODED INPUT

SHREK

E.T.

NIXON

GANDHI

NERO

MISSING

MISSING

U
VT

USERS ITEMS

Figure 2.13: Row-index-to-value encoder for matrix factorization with missing values.

all entries of D are not observed. Therefore, a natural approach is to create an architecture
in which the inputs are not affected by the missing entries and can be uniquely specified.
The input layer contains n input units, which is the same as the number of rows (users).
However, the input is a one-hot encoded index of the row identifier. Therefore, only one
entry of the input takes on the value of 1, with the remaining entries taking on values of
0. The hidden layer contains k units, where k is the rank of the factorization. Finally, the
output layer contains d units, where d is the number of columns (items). The output is a
vector containing the d ratings (even though only a small subset of them are observed). The
goal is to train the neural network with an incomplete data matrix D so that the network
outputs all the ratings corresponding to a one-hot encoded row index after it is input. The
approach is to be able to reconstruct the data by learning the ratings associated with each
row index.

Consider a setting in which the n×k input-to-hidden matrix is U , and the k×d hidden-
to-output matrix is V T . The entries of the matrix U are denoted by uiq, and those of the
matrix V are denoted by vjq. Assume that all activation functions are linear. Furthermore,
let the one-hot encoded input (row) vector for the rth user be er. This row vector contains
n dimensions in which only the rth value is 1, and the remaining values are zeros. The loss
function is the sum of the squares of the errors in the output layer. However, because of
the missing entries, not all output nodes have an observed output value, and the updates
are performed only with respect to entries that are known. The overall architecture of this
neural network is illustrated in Figure 2.13. For any particular row-wise input we are really
training on a neural network that is a subset of this base network, depending on which entries
are specified. However, it is possible to give predictions for all outputs in the network (even
though a loss function cannot be computed for missing entries). Since a neural network
with linear activations performs matrix multiplications, it is easy to see that the vector of d
outputs for the rth user is given by erUV T . In essence, pre-multiplication with er pulls out
the rth row in the matrix UV T . These values appear at the output layer and represent the

2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 85

item-wise ratings predictions for the rth user. Therefore, all feature values are reconstructed
in one shot.

How is training performed? The main attraction of this architecture is that one can
perform the training either in row-wise fashion or in element-wise fashion. When performing
the training in row-wise fashion, the one-hot encoded index for that row is input, and all
specified entries of that row are used to compute the loss. The backpropagation algorithm is

0

1

0

0

5

4
ALICE

BOB

SAYANI

JOHN

SHREK

E.T.

OBSERVED RATINGS (SAYANI): E.T., SHREK

0

0

1

0

5

ALICE

BOB

SAYANI

JOHN

E.T.

NIXON

GANDHI

NERO

4

3

2

OBSERVED RATINGS (BOB): E.T., NIXON, GANDHI, NERO

Figure 2.14: Dropping output nodes based on missing values. Output nodes are missing only
at training time. At prediction time, all output nodes are materialized. One can achieve
similar results with an RBM architecture as well (cf. Figure 6.5 of Chapter 6).

done only starting at output nodes where the values are specified. From a theoretical point
of view, each row is being trained on a slightly different neural network with a subset of
the base output nodes (depending on which entries are observed), although the weights for
the different neural networks are shared. This situation is shown in Figure 2.14, where the
neural networks for the movie ratings of two different users, Bob and Sayani, are shown. For
example, Bob is missing a rating for Shrek, as a result of which the corresponding output
node is missing. However, since both users have specified a rating for E.T., the k-dimensional
hidden factors for this movie in matrix V will be updated during backpropagation when
either Bob or Sayani is processed. This ability to train using only a subset of the output
nodes is sometimes used as an efficiency optimization to reduce training time even in cases
where all outputs are specified. Such situations occur often in binary recommendation data
sets (referred to as implicit feedback data sets), where the vast majority of outputs are
zeros. In such cases, only a subset of zeros is sampled for training in matrix factorization
methods [4]. This technique is referred to as negative sampling. A specific example is that
of neural models for natural language processing like word2vec.

It is also possible to perform the training in element-wise fashion, where a single triplet
is input. In such a case, the loss is computed only with respect to a single column index
specified in the triplet. Consider the case where the row index is i, and the column index is
j. In this specific case, and the single error computed at the output layer is y− ŷ = eij . the
backpropagation algorithm essentially updates the weights on all the k paths from node j
in the output layer to the node i in the input layer. These k paths pass through the k nodes
in the hidden layer. It is easy to show that the update along the qth such path is as follows:

uiq ⇐ uiq(1− αλ) + αeijvjq

vjq ⇐ vjq(1− αλ) + αeijuiq

86 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

Here, α is the step-size, and λ is the regularization parameter. These updates are identical to
those used in stochastic gradient descent for matrix factorization in recommender systems.
However, an important advantage of the use of the neural architecture (over traditional
matrix factorization) is that we can vary on it in so many different ways in order to enforce
different properties. For example, for matrices with binary data, we can use a logistic layer
in the output. This will result in logistic matrix factorization. We can incorporate multiple
hidden layers to create more powerful models. For matrices with categorical entries (and
count-centric weights attached to entries), one can use a softmax layer at the very end.
This will result in multinomial matrix factorization. To date, we are not aware of a formal
description of multinomial matrix factorization in traditional machine learning; yet, it is a
simple modification of the neural architecture (implicitly) used by recommender systems.
In general, it is often easy to stumble upon sophisticated models when working with neural
architectures because of their modular structure. One does not need to relate the neural
architecture to a conventional machine learning model, as long as empirical results establish
its robustness. For example, two variations of the (highly successful) skip-gram model of
word2vec [325, 327] correspond to logistic and multinomial matrix factorizations of word-
context matrices; yet, this fact does not seem to be pointed6 out by either by the original
authors of word2vec [325, 327] or the broader community. In conventional machine learning,
models like logistic matrix factorization are considered relatively esoteric techniques that
have only recently been proposed [224]; yet, these sophisticated models represent relatively
simple neural architectures. In general, the neural network abstraction brings practitioners
(without too much mathematical training) much closer to sophisticated methods in machine
learning, while being shielded from the details of optimization with the backpropagation
framework.

2.5.8 Discussion

The main goal of this section was to show the benefits of the modular nature of neural
networks in unsupervised learning. In our particular example, we started with a simple
simulation of SVD, and then showed how minor changes to the neural architecture can
achieve very different types of goals in intuitive settings. However, from an architectural
point of view, the amount of effort required by the analyst to change from one architecture
to the other is often a few lines of code. This is because modern softwares for building neural
networks often provide templates for describing the architecture of the neural network, where
each layer is specified independently. In a sense, the neural network is “built” with the well-
known types of machine-learning units much like a child puts together building blocks of a
toy. Backpropagation takes care of the details of optimization, while shielding the user from
the complexities of the steps. Consider the significant mathematical differences between the
specific details of SVD and logistic matrix factorization. Changing the output layer from
linear to sigmoid (along with a change of loss function) can literally be a matter of changing
a trivially small number of lines of code without affecting most of the remaining code (which
usually isn’t large anyway). This type of modularity is tremendously useful in application-
centric settings. Autoencoders are also related to another type of unsupervised learning
method, known as a Restricted Boltzmann Machines (RBM) (cf. Chapter 6). These methods
can also be used for recommender systems, as discussed in Section 6.5.2 of Chapter 6.

6The work in [287] does point out a number of implicit relationships with matrix factorization, but not
the more direct ones pointed out in this book. Some of these relationships are also pointed out in [6].

2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 87

2.6 Word2vec: An Application of Simple Neural Archi-
tectures

Neural network methods have been used to learn word embeddings of text data. In general,
one can create embeddings of both documents and words by using methods like SVD. In
SVD, an n×d matrix of document-word counts is created. This matrix is then factorized as
D ≈ UV . Here, U and V are n× k and k× d matrices, respectively. The rows of U contain
embeddings of documents and the columns of V contain embeddings of words. Note that
we have changed the notation slightly from the previous section (by using UV instead of
UV T for factorization), because it is more convenient for this section.

SVD is, however, a method that treats a document as a bag of words. Here, we are
interested in factorizations that use the sequential orderings among words to create embed-
dings. The focus here is to create word embeddings rather than document embeddings. The
family of word2vec methods is well suited to creating word embeddings. The two variants
of word2vec are as follows:

1. Predicting target words from contexts: This model tries to predict the ith word, wi,
in a sentence using a window of width t around the word. Therefore, the words
wi−twi−t+1 . . . wi−1wi+1 . . . wi+t−1wi+t are used to predict the target word wi. This
model is also referred to as the continuous bag-of-words (CBOW) model.

2. Predicting contexts from target words: This model tries to predict the context
wi−twi−t+1 . . . wi−1wi+1 . . . wi+t−1wi+t around word wi, given the ith word in the
sentence, denoted by wi. This model is referred to as the skip-gram model. There are,
however, two ways in which one can perform this prediction. The first technique is a
multinomial model which predicts one word out of d outcomes. The second model is a
Bernoulli model, which predicts whether or not each context is present for a particular
word. The second model uses negative sampling of contexts for better efficiency and
accuracy.

Each of these methods will be discussed in this section.

2.6.1 Neural Embedding with Continuous Bag of Words

In the continuous bag-of-words (CBOW) model, the training pairs are all context-word pairs
in which a window of context words is input, and a single target word is predicted. The
context contains 2 · t words, corresponding to t words both before and after the target word.
For notational ease, we will use the length m = 2 · t to define the length of the context.
Therefore, the input to the system is a set of m words. Without loss of generality, let the
subscripts of these words be numbered so that they are denoted by w1 . . . wm, and let the
target (output) word in the middle of the context window be denoted by w. Note that w
can be viewed as a categorical variable with d possible values, where d is the size of the
lexicon. The goal of the neural embedding is to compute the probability P (w|w1w2 . . . wm)
and maximize the product of these probabilities over all training samples.

The overall architecture of this model is illustrated in Figure 2.15. In the architecture,
we have a single input layer with m× d nodes, a hidden layer with p nodes, and an output
layer with d nodes. The nodes in the input layer are clustered into m different groups, each
of which has d units. Each group with d input units is the one-hot encoded input vector
of one of the m context words being modeled by CBOW. Only one of these d inputs will
be 1 and the remaining inputs will be 0. Therefore, one can represent an input xij with

88 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

two indices corresponding to contextual position and word identifier. Specifically, the input
xij ∈ {0, 1} contains two indices i and j in the subscript, where i ∈ {1 . . .m} is the position
of the context, and j ∈ {1 . . . d} is the identifier of the word.

The hidden layer contains p units, where p is the dimensionality of the hidden layer in
word2vec. Let h1, h2, . . . hp be the outputs of the hidden layer nodes. Note that each of the d
words in the lexicon has m different representatives in the input layer corresponding to the
m different context words, but the weight of each of these m connections is the same. Such

x11
x12
x13

x1d

x j1
x j2
x j3

x jd

xm1
xm2
xm3

xmd

h2

h1

hp

y1
y2
y3

yd

U=[ujq]

d X p matrix

d X p matrix

U=[ujq]

U=[ujq]

d X p matrix

V=[vqj]

p X d matrix

Figure 2.15: Word2vec: The CBOW model. Note the similarities and differences with Fig-
ure 2.13, which uses a single set of inputs with a linear output layer. One could also choose
to collapse the m sets of d input nodes into a single set of d inputs, and aggregate the m
one-hot encoded inputs in a single context window to achieve the same effect. In such a
case, the input is no longer one-hot encoded.

weights are referred to as shared. Sharing weights is a common trick used for regularization
in neural networks, when one has specific insight about the domain at hand. Let the shared
weight of each connection from the jth word in the lexicon to the qth hidden layer node be
denoted by ujq. Note that each of the m groups in the input layer has connections to the
hidden layer that are defined by the same d × p weight matrix U . This situation is shown
in Figure 2.15.

It is noteworthy that uj = (uj1, uj2, . . . ujp) can be viewed as the p-dimensional em-
bedding of the jth input word over the entire corpus, and h = (h1 . . . hp) provides the
embedding of a specific instantiation of an input context. Then, the output of the hidden
layer is obtained by averaging the embeddings of the words present in the context. In other

2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 89

words, we have the following:

hq =

m∑

i=1

⎡

⎣

d∑

j=1

ujqxij

⎤

⎦ ∀q ∈ {1 . . . p} (2.46)

Many expositions use an additional factor of m in the denominator on the right-hand side,
although this type of multiplicative scaling (with a constant) is inconsequential. One can
also write this relationship in vector form:

h =
m∑

i=1

d∑

j=1

ujxij (2.47)

In essence, the one-hot encodings of the input words are aggregated, which implies that
the ordering of the words within the window of size m does not affect the output of the
model. This is the reason that the model is referred to as the continuous bag-of-words
model. However, sequential information is still used by virtue of restricting the prediction
to a context window.

The embedding (h1 . . . hp) is used to predict the probability that the target word is one
of each of the d outputs with the use of the softmax function. The weights in the output
layer are parameterized with a p × d matrix V = [vqj]. The jth column of V is denoted
by vj . The output after applying softmax creates d output values ŷ1 . . . ŷd, which are real
values in (0, 1). These real values sum to 1 because they can be interpreted as probabilities.
The ground-truth value of only one of the outputs y1 . . . yd is 1 and the remaining values
are 0 for a given training instance. One can write this condition as follows:

yj =

{

1 if the target word w is the jth word

0 otherwise
(2.48)

The softmax function computes the probability P (w|w1 . . . wm) of the one-hot encoded
ground-truth outputs yj as follows:

ŷj = P (yj = 1|w1 . . . wm) =
exp(
∑p

q=1 hqvqj)
∑d

k=1 exp(
∑p

q=1 hqvqk)
(2.49)

Note that this probabilistic form of the prediction is based on the softmax layer (cf. Sec-
tion 1.2.1.4 of Chapter 1). For a particular target word w = r ∈ {1 . . . d}, the loss function
is given by L = −log[P (yr = 1|w1 . . . wm)] = −log(ŷr). The use of the negative logarithm
turns the multiplicative likelihoods over different training instances into an additive loss
function using log-likelihoods.

The updates are defined by using the backpropagation algorithm, as training instances
are passed through the neural network one by one. First, the derivative of the aforementioned
loss function can be used to update the gradients of the weight matrix V in the output layer.
Then, backpropagation can be used to update the weight matrix U between the input and
hidden layer. The update equations with learning rate α are as follows:

ui ⇐ ui − α
∂L

∂ui
∀i

vj ⇐ vj − α
∂L

∂vj
∀j

One can compute the partial derivatives of this expression easily [325, 327, 404].

90 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

The probability of making a mistake in prediction on the jth word in the lexicon is
defined by |yj − ŷj |. However, we use signed mistakes ǫj , in which only the correct word
with yj = 1 is given a positive mistake value, while all the other words in the lexicon receive
negative mistake values. This is achieved by dropping the modulus:

ǫj = yj − ŷj (2.50)

Note that ǫj can also be shown to be equal to the negative of the derivative of the cross-
entropy loss with respect to jth input into the softmax layer (which is h · vj). This result is
shown in Section 3.2.5.1 of the next chapter and is useful in deriving the backpropagation
updates. Then, the updates7 for a particular input context and output word are as follows:

ui ⇐ ui + α

d∑

j=1

ǫjvj [∀ words i present in context window]

vj ⇐ vj + αǫjh [∀j in lexicon]

Here, α > 0 is the learning rate. Repetitions of the same word i in the context window trigger
multiple updates of ui. It is noteworthy that the input embeddings of the context words
are aggregated in both updates, considering the fact that h aggregates input embeddings
according to Equation 2.47. This type of aggregation has a smoothing effect on the CBOW
model, which is particularly helpful with smaller data sets.

The training examples of context-target pairs are presented one by one, and the weights
are trained to convergence. It is noteworthy that the word2vec model provides not one but
two different embeddings corresponding to the p-dimensional rows of the matrix U and the
p-dimensional columns of the matrix V . The former type of embedding of words is referred
to as the input embedding, whereas the latter is referred to as the output embedding. In the
CBOW model, the input embedding represents context, and therefore it makes sense to use
the output embedding. However, the input embedding (or the sum/concatenation of input
and output embeddings) can also be helpful for many tasks.

2.6.2 Neural Embedding with Skip-Gram Model

In the skip-gram model, the target words are used to predict the m context words. There-
fore, we have one input word and m outputs. One issue with the CBOW model is that the
averaging effect of the input words in the context window (which creates the hidden repre-
sentation) has a (helpful) smoothing effect with less data, but fails to take full advantage
of a larger amount of data. The skip-gram model is the technique of choice when a large
amount of data is available.

The skip-gram model uses a single target word w as the input and outputs the m context
words denoted by w1 . . . wm. Therefore, the goal is to estimate P (w1, w2. . . . wm|w), which
is different from the quantity P (w|w1 . . . wm) estimated in the CBOW model. As in the
case of the continuous bag-of-words model, we can use one-hot encoding of the (categorical)
input and outputs in the skip-gram model. After such an encoding, the skip-gram model
will have d binary inputs denoted by x1 . . . xd corresponding to the d possible values of
the single input word. Similarly, the output of each training instance is encoded as m × d
values yij ∈ {0, 1}, where i ranges from 1 to m (size of context window), and j ranges

7There is a slight abuse of notation in the updates adding ui and vj . This is because ui is a row vector
and vj is a column vector. Throughout this section, we omit the explicit transposition of one of these two
vectors to avoid notational clutter, since the updates are intuitively clear.

2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 91

from 1 to d (lexicon size). Each yij ∈ {0, 1} indicates whether the ith contextual word
takes on the jth possible value for that training instance. However, the (i, j)th output node
only computes a soft probability value ŷij = P (yij = 1|w). Therefore, the probabilities ŷij
in the output layer for fixed i and varying j sum to 1, since the ith contextual position
takes on exactly one of the d words. The hidden layer contains p units, the outputs are
denoted by h1 . . . hp. Each input xj is connected to all the hidden nodes with a d×p matrix
U . Furthermore, the p hidden nodes are connected to each of the m groups of d output
nodes with the same set of shared weights. This set of shared weights between the p hidden
nodes and the d output nodes of each of the context words is defined by the p × d matrix
V . Note that the input-output structure of the skip-gram model is an inverted version of
the input-output structure of the CBOW model. The neural architecture of the skip-gram
model is illustrated in Figure 2.16(a). However, in the case of the skip-gram model, one can
collapse the m identical outputs into a single output, and achieve the same results simply
by using a particular type of mini-batching during stochastic gradient descent. In particular,
all elements of a single context window are always forced to belong to the same mini-batch.
This architecture is shown in Figure 2.16(b). Since the value of m is small, this specific type
of mini-batching has a very limited effect, and the simplified architecture of Figure 2.16(b)
is sufficient to describe the model whether or not any specific type of mini-batching is used.
For the purpose of further discussion, we will use the architecture of Figure 2.16(a).

The output of the hidden layer can be computed from the input layer using the d × p
matrix of weights U = [ujq] between the input and hidden layer as follows:

hq =

d∑

j=1

ujqxj ∀q ∈ {1 . . . p} (2.51)

The above equation has a simple interpretation because of the one-hot encoding of the input
word w in terms of x1 . . . xd. If the input word w is the rth word, then one simply copies
urq to the qth node of the hidden layer for each q ∈ {1 . . . p}. In other words, the rth row
ur of U is copied to the hidden layer. As discussed above, the hidden layer is connected to
m groups of d output nodes, each of which is connected to the hidden layer with a p × d
matrix V = [vqj]. Each of these m groups of d output nodes computes the probabilities of
the various words for a particular context word. The jth column of V is denoted by vj and
represents the output embedding of the jth word. The output ŷij is the probability that the
word in the ith context position takes on the jth word of the lexicon. However, since the
same matrix V is shared by all groups, the neural network predicts the same multinomial
distribution for each of the context words. Therefore, we have the following:

ŷij = P (yij = 1|w) =
exp(
∑p

q=1 hqvqj)
∑d

k=1 exp(
∑p

q=1 hqvqk)
︸ ︷︷ ︸

Independent of context position i

∀i ∈ {1 . . .m} (2.52)

Note that the probability ŷij is the same for varying i and fixed j, since the right-hand side
of the above equation does not depend on the exact location i in the context window.

The loss function for the backpropagation algorithm is the negative of the log-likelihood
values of the ground truth yij ∈ {0, 1} of a training instance. This loss function L is given
by the following:

L = −
m∑

i=1

d∑

j=1

yij log(ŷij) (2.53)

92 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

x1
x2x3

xd

h1
h2

hp

y11
y12
y13

y1d

yj1
yj2
yj3

yjd

ym1
ym2
ym3

ymd

U=[ujq]

V=[vqj]

V=[vqj]

V=[vqj]

d X p matrix

p X d matrix

p X d matrix

p X d matrix

(a) All elements in context window explicitly shown

x1
x2x3

xd

h1
h2

hp

yj1
yj2
yj3

yjd

U=[ujq] V=[vqj]

d X p matrix p X d matrix

MINIBATCH THE m d-DIMENSIONAL OUTPUT VECTORS IN EACH

CONTEXT WINDOW DURING STOCHASTIC GRADIENT DESCENT.

THE SHOWN OUTPUTS CORRESPOND TO THE jth OF m OUTPUTS.yjk

(b) All elements in context window not explicitly shown

Figure 2.16: Word2vec: The skip-gram model. Note the similarity with Figure 2.13, which
uses a single set of linear outputs. One could also choose to collapse the m sets of d output
nodes in (a) into a single set of d outputs, and mini-batch the m instances in a single
context window during stochastic gradient descent to achieve the same effect. All elements
in the mini-batch are explicitly shown in (a), whereas the elements of the mini-batch are not
explicitly shown in (b). However, both are equivalent as long as the nature of mini-batching
is respected.

2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 93

Note that the value outside the logarithm is a ground-truth binary value, whereas the value
inside the logarithm is a predicted (probability) value. Since yij is one-hot encoded for fixed i
and varying j, the objective function has only m non-zero terms. For each training instance,
this loss function is used in combination with backpropagation to update the weights of the
connections between the nodes. The update equations with learning rate α are as follows:

ui ⇐ ui − α
∂L

∂ui
∀i

vj ⇐ vj − α
∂L

∂vj
∀j

We state the details of the updates below after introducing some additional notations.
The probability of making a mistake in predicting the jth word in the lexicon for the

ith context is defined by |yij − ŷij |. However, we use signed mistakes ǫij in which only
the predicted words (positive examples) have a positive probability. This is achieved by
dropping the modulus:

ǫij = yij − ŷij (2.54)

Then, the updates for a particular input word r and its output context are as follows:

ur ⇐ ur + α

d∑

j=1

[
m∑

i=1

ǫij

]

vj [Only for input word r]

vj ⇐ vj + α

[
m∑

i=1

ǫij

]

h [For all words j in lexicon]

Here, α > 0 is the learning rate. The p-dimensional rows of the matrix U are used as the
embeddings of the words. In other words, the convention is to use the input embeddings in
the rows of U rather than the output embeddings in the columns of V . It is stated in [288]
that adding the input and output embeddings can help in some tasks (but hurt in others).
The concatenation of the two can also be useful.

Practical Issues

Several practical issues are associated with the accuracy and efficiency of the word2vec
framework. The embedding dimensionality, defined by the number of nodes in the hidden
layer, provides the trade-off between bias and variance. Increasing the embedding dimen-
sionality improves discrimination, but it requires a greater amount of data. In general, the
typical embedding dimensionality is of the order of several hundred, although it is possi-
ble to choose dimensionalities in the thousands for very large collections. The size of the
context window typically varies between 5 and 10, with larger window sizes being used for
the skip-gram model as compared to the CBOW model. Using a random window size is a
variant that has the implicit effect of giving greater weight to words that are placed close
together. The skip-gram model is slower but it works better for infrequent words and for
larger data sets.

Another issue is that the effect of frequent and less discriminative words (e.g., “the”)
can dominate the results. Therefore, a common approach is to downsample the frequent
words, which improves both accuracy and efficiency. Note that downsampling frequent words
has the implicit effect of increasing the context window size because dropping a word in
the middle of two words brings the latter pair closer. The words that are very rare are

94 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

misspellings, and it is hard to create a meaningful embedding for them without overfitting.
Therefore, such words are ignored.

From a computational point of view, the updates of output embeddings are expensive.
This is caused by applying the softmax over a lexicon of d words, which requires an update
of each vj . Therefore, the softmax function is implemented hierarchically with Huffman
encoding for better efficiency. We refer the reader to [325, 327, 404] for details.

Skip-Gram with Negative Sampling

An efficient alternative to the hierarchical softmax technique is a method known as skip-
gram with negative sampling (SGNS) [327], in which both presence or absence of word-
context pairs are used for training. As the name implies, the negative contexts are artificially
generated by sampling words in proportion to their frequencies in the corpus (i.e., unigram
distribution). This approach optimizes a different objective function from the skip-gram
model, which is related to ideas from noise contrastive estimation [166, 333, 334].

The basic idea is that instead of directly predicting each of the m words in the context
window, we try to predict whether or not each of the d words in the lexicon is present in
the window. In other words, the final layer of Figure 2.16 is not a softmax prediction, but
a Bernoulli layer of sigmoids. The output unit for each word at each context position in
Figure 2.16 is a sigmoid providing a probability value that the position takes on that word.
As the ground-truth values are also available, it is possible to use the logistic loss function
over all the words. Therefore, in this point of view, even the prediction problem is defined
differently. Of course, it is computationally inefficient to try to make binary predictions
for all d words. Therefore, the SGNS approach uses all the positive words in a context
window and a sample of negative words. The number of negative samples is k times the
number of positive samples. Here, k is a parameter controlling the sampling rate. Negative
sampling becomes essential in this modified prediction problem to avoid learning trivial
weights that predict all examples to 1. In other words, we cannot choose to avoid negative
samples entirely (i.e., we cannot set k = 0).

How does one generate the negative samples? The vanilla unigram distribution samples
words in proportion to their relative frequencies f1 . . . fd in the corpus. Better results are

obtained [327] by sampling words in proportion to f
3/4
j rather than fj . As in all word2vec

models, let U be a d× p matrix representing the input embedding, and V be a p× d matrix
representing the output embedding. Let ui be the p-dimensional row of U (input embedding
of ith word) and vj be the p-dimensional column of V (output embedding of jth word).
Let P be the set of positive target-context word pairs in a context window, and N be the
set of negative target-context word pairs which are created by sampling. Therefore, the size
of P is equal to the context window m, and that of N is m · k. Then, the (minimization)
objective function for each context window is obtained by summing up the logistic loss over
the m positive samples and m · k negative samples:

O = −
∑

(i,j)∈P

log(P [Predict (i, j) to 1])−
∑

(i,j)∈N

log(P [Predict (i, j) to 0]) (2.55)

= −
∑

(i,j)∈P

log

(
1

1 + exp(−ui · vj)

)

−
∑

(i,j)∈N

log

(
1

1 + exp(ui · vj)

)

(2.56)

This modified objective function is used in the skip-gram with negative sampling (SGNS)
model in order to update the weights of U and V . SGNS is mathematically different from

2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 95

the basic skip-gram model discussed earlier. SGNS is not only efficient, but it also provides
the best results among the different variants of skip-gram models.

What Is the Actual Neural Architecture of SGNS?

Even though the original word2vec paper seems to treat SGNS as an efficiency optimization
of the skip-gram model, it is using a fundamentally different architecture in terms of the
activation function used in the final layer. Unfortunately, the original word2vec paper does
not explicitly point this out (and only provides the changed objective function), which
causes confusion.

The modified neural architecture of SGNS is as follows. The softmax layer is no longer
used in the SGNS implementation. Rather, each observed value yij in Figure 2.16 is inde-
pendently treated as a binary outcome, rather than as a multinomial outcome in which the
probabilistic predictions of different outcomes at a contextual position depend on one an-
other. Instead of using softmax to create the prediction ŷij , it uses the sigmoid activation to
create probabilistic predictions ŷij , whether each yij is 0 or 1. Then, one can add up the log
loss of ŷij with respect to observed yij over all m ·d possible values of (i, j) to create the full
loss function of a context window. However, this is impractical because the number of zero
values of yij is too large and zero values are noisy anyway. Therefore, SGNS uses negative
sampling to approximate this modified objective function. This means that for each context
window, we are backpropagating from only a subset of the m ·d outputs in Figure 2.16. The
size of this subset is m+m · k. This is where efficiency is achieved. However, since the final
layer uses binary predictions (with sigmoids), it makes the SGNS architecture fundamen-
tally different from the vanilla skip-gram model even in terms of the basic neural network
it uses (i.e., logistic instead of softmax activation). The difference between the SGNS model
and the vanilla skip-gram model is analogous to the difference between the Bernoulli and
multinomial models in näıve Bayes classification (with negative sampling applied only to
the Bernoulli model). Obviously, one cannot be considered a direct efficiency optimization
of the other.

2.6.3 Word2vec (SGNS) Is Logistic Matrix Factorization

Even though the work in [287] shows an implicit relationship between word2vec and matrix
factorization, we provide a more direct relationship here. The architectures of the skip-
gram models look suspiciously similar to those used in row index to value prediction in
recommender systems (cf. Section 2.5.7). The use of a backpropagation from a subset of
observed outputs is similar to the negative sampling idea, except that the dropping of
outputs in negative sampling is performed for the purpose of efficiency. However, unlike
the linear outputs of Figure 2.13 in Section 2.5.7, the SGNS model uses logistic outputs
to model binary predictions. The SGNS model of word2vec can be simulated with logistic
matrix factorization. To understand the similarity with the problem setting of Section 2.5.7,
one can understand the predictions of a particular word-context window using the following
triplets:

〈WordId〉, 〈Context WordId〉, 〈0/1〉

Each context window produces m · d such triplets, although negative sampling only uses
m · k + m of them, and mini-batches them during training. This mini-batching is another
source of the difference between the architectures between Figures 2.13 and 2.16, wherein
the latter has m different groups of outputs to accommodate m positive samples. However,

96 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

these differences are relatively superficial, and one can still use logistic matrix factorization
to represent the underlying model.

Let B = [bij] be a binary matrix in which the (i, j)th value is 1 if word j occurs at
least once in the context of word i in the data set, and 0 otherwise. The weight cij for any
word (i, j) that occurs in the corpus is defined by the number of times word j occurs in
the context of word i. The weights of the zero entries in B are defined as follows. For each
row i in B we sample k

∑

j bij different entries from row i, among the entries for which

bij = 0, and the frequency with which the jth word is sampled is proportional to f
3/4
j .

These are the negative samples, and one sets the weights cij for the negative samples (i.e.,
those for which bij = 0) to the number of times that each entry is sampled. As in word2vec,
the p-dimensional embeddings of the ith word and jth context are denoted by ui and vj ,
respectively. The simplest way of factorizing is to use weighted matrix factorization of B
with the Frobenius norm:

MinimizeU,V

∑

i,j

cij(bij − ui · vj)2 (2.57)

Even though the matrix B is of size O(d2), this matrix factorization only has a limited
number of nonzero terms in the objective function, which have cij > 0. These weights
are dependent on co-occurrence counts, but some zero entries also have positive weight.
Therefore, the stochastic gradient-descent steps only have to focus on entries with cij > 0.
Each cycle of stochastic gradient-descent is linear in the number of non-zero entries, as in
the SGNS implementation of word2vec.

However, this objective function also looks somewhat different from word2vec, which has
a logistic form. Just as it is advisable to replace linear regression with logistic regression in
supervised learning of binary targets, one can use the same trick in matrix factorization of
binary matrices [224]. We can change the squared error term to the familiar likelihood term
Lij , which is used in logistic regression:

Lij =

∣
∣
∣
∣
bij −

1

1 + exp(ui · vj)

∣
∣
∣
∣

(2.58)

The value of Lij always lies in the range (0, 1), and higher values indicate greater likelihood
(which results in a maximization objective). The modulus in the above expression flips the
sign only for the negative samples in which bij = 0. Now, one can optimize the following
objective function in minimization form:

MinimizeU,V J = −
∑

i,j

cij log(Lij) (2.59)

The main difference from the objective function (cf. Equation 2.56) of word2vec is that
this is a global objective function over all matrix entries, rather than a local objective
function over a particular context window. Using mini-batch stochastic gradient-descent in
matrix factorization (with an appropriately chosen mini-batch) makes the approach almost
identical to word2vec’s backpropagation updates.

How can one interpret this type of factorization? Instead of B ≈ UV , we have B ≈
f(UV), where f(·) is the sigmoid function. More precisely, this is a probabilistic factorization
in which one computes the product of matrices U and V , and then applies the sigmoid
function to obtain the parameters of the Bernoulli distribution from which B is generated:

P (bij = 1) =
1

1 + exp(−ui · vj)
[Matrix factorization analog of logistic regression]

2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 97

It is also easy to verify from Equation 2.58 that Lij is P (bij = 1) for positive samples
and P (bij = 0) for negative samples. Therefore, the objective function of the factorization
is in the form of log-likelihood maximization. This type of logistic matrix factorization is
commonly used [224] in recommender systems with binary data (e.g., user click-streams).

Gradient Descent

It is also helpful to examine the gradient-descent steps of the factorization. One can compute
the derivative of J with respect to the input and output embeddings:

∂J

∂ui
= −

∑

j:bij=1

cijvj
1 + exp(ui · vj)

+
∑

j:bij=0

cijvj
1 + exp(−ui · vj)

= −
∑

j:bij=1

cijP (bij = 0)vj

︸ ︷︷ ︸

Positive Mistakes

+
∑

j:bij=0

cijP (bij = 1)vj

︸ ︷︷ ︸

Negative Mistakes

∂J

∂vj
= −

∑

i:bij=1

cijui

1 + exp(ui · vj)
+
∑

i:bij=0

cijui

1 + exp(−ui · vj)

= −
∑

i:bij=1

cijP (bij = 0)ui

︸ ︷︷ ︸

Positive Mistakes

+
∑

i:bij=0

cijP (bij = 1)ui

︸ ︷︷ ︸

Negative Mistakes

The optimization procedure uses gradient descent to convergence:

ui ⇐ ui − α
∂J

∂ui
∀i

vj ⇐ vj − α
∂J

∂vj
∀j

It is noteworthy that the derivatives can be expressed in terms of the probabilities of making
mistakes in predicting bij . This is common in gradient descent with log-likelihood optimiza-
tion. It is also noteworthy that the derivative of the SGNS objective in Equation 2.56 yields
a similar form of the gradient. The only difference is that the derivative of the SGNS ob-
jective is expressed over a smaller batch of instances, defined by a context window. We can
also solve the probabilistic matrix factorization with mini-batch stochastic gradient descent.
With an appropriate choice of the mini-batch, the stochastic gradient descent of matrix fac-
torization becomes identical to the backpropagation update of SGNS. The only difference
is that SGNS samples negative entries for each set of updates on the fly, whereas matrix
factorization fixes the negative samples up front. Of course, on-the-fly sampling can also be
used with matrix factorization updates. The similarity of SGNS to matrix factorization can
also be inferred by observing that the architecture of Figure 2.16(b) is almost identical to the
matrix factorization architecture for recommender systems in Figure 2.13. As in the case of
recommender systems, SGNS has missing (negative) entries. This is caused by the fact the
negative sampling uses only a subset of the zero values. The only difference between the two
cases is that the architecture of SGNS caps the output layer with sigmoid units, whereas a
linear layer is used for recommender systems. However, recommender systems with implicit
feedback use logistic matrix factorization [224], which is similar to the word2vec setting.

98 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

2.6.4 Vanilla Skip-Gram Is Multinomial Matrix Factorization

Since we have already shown that the SGNS enhancement of the skip-gram model is logistic
matrix factorization, a natural question arises as to whether we can also recast the original
skip-gram model as a matrix factorization method. It turns out that one can also recast the
vanilla skip-gram model as a multinomial matrix factorization model because of the use of
the softmax layer at the very end.

Let C = [cij] be a d× d word-context co-occurrence matrix in which the value of cij is
the number of times that word j occurs in the context of word i. Let U be a d× p matrix
containing the input embedding in its rows, and V be a p× d matrix containing the output
embedding in its columns. Then, the skip-gram model roughly creates a model in which the
frequency vector of the rth row of C is an empirical instantiation of the probabilities obtained
by applying the softmax to the rth row of UV .

Let ui be the p-dimensional vector corresponding to the ith row of U and vj be the
p-dimensional vector corresponding to the jth column of V . The loss function of the afore-
mentioned factorization is as follows:

O = −
d∑

i=1

d∑

j=1

cij log

(

exp(ui · vj)
∑d

q=1 exp(ui · vq)

)

︸ ︷︷ ︸

P (word j|word i)

(2.60)

This loss function is written in minimization form. Note that this loss function is identical
to the one used in the vanilla skip-gram model, except that the latter uses a mini-batch
stochastic gradient descent in which the m words in a given context are grouped together.
This type of specific mini-batch does not make a significant difference.

2.7 Simple Neural Architectures for Graph Embed-
dings

Large networks have become very common because of their ubiquity in many social- and
Web-centric applications. Graphs are structural entries containing nodes and edges connect-
ing them. For example, in a social network, each person is a node, and a friendship link
between two people is an edge. In this particular exposition, we consider the case of very
large networks like the Web, a social network, or a communication network. The goal is to
embed the nodes into feature vectors, so that the graph captures the relationships between
nodes. For simplicity we consider undirected graphs, although directed graphs with weights
on the edges can be easily handled with very few changes to the exposition below.

Consider an n×n adjacency matrix B = [bij] for a graph with n nodes. The entry bij is 1
if an undirected edge exists between nodes i and j. Furthermore, the matrix B is symmetric,
because we have bij = bji for an undirected graph. In order to determine the embedding, we
would like to determine two n× p factor matrices U and V , so that B can be derived as a
function of UV T . In the simplest case, one can set B to exactly UV T , which is no different
than a traditional matrix factorization method for factoring graphs [4]. However, for binary
matrices, one can do better and use logistic matrix factorization instead. In other words,
each entry of B is generated using the matrix of Bernoulli parameters in f(UV T), where
f(·) is the element-wise application of the sigmoid function to each entry of the matrix in
its argument:

f(x) =
1

1 + exp(−x)
(2.61)

2.7. SIMPLE NEURAL ARCHITECTURES FOR GRAPH EMBEDDINGS 99

NODE INDEX

0

1

0

0

0

U

NEIGHBOR INDICATOR

1

0

1

1

0

VT

1

ONE-HOT ENCODED INPUT SIGMOID ACTIVATION

2

3

2

4

5

1

3

4

5

1

2 3 4

5

BASE GRAPH NEURAL NETWORK FOR LEARNING NODE FEATURES

Figure 2.17: A graph of five nodes is shown together with a neural architecture for row
index to neighbor indicator mapping. The shown input and output represent node 3 and
its neighbors. Note the similarity to Figure 2.13. The main difference is that there are no
missing values above, and the number of inputs is the same as the number of outputs for
a square matrix. Both input and outputs are binary vectors. However, if negative sampling
is used with sigmoid activation, most output nodes with zero values may be dropped.

Therefore, if ui is the ith row of U and vj is the jth row of V , we have the following:

bij ∼ Bernoulli distribution with parameter f(ui · vj) (2.62)

This type of generative model is typically solved using a log-likelihood model. Furthermore,
the problem formulation is identical to the logistic matrix factorization equivalent of the
SGNS model in word2vec.

Note that all word2vec models are logistic/multinomial variants of the model in Fig-
ure 2.13 that maps row indexes to values with linear activation. In order to explain this
point, we show the neural architecture in Figure 2.17 for a toy graph containing 5 nodes.
The input is the one-hot encoded index of a row in B (i.e., node), and the output is the
list of all 0/1 values for all nodes in the network. In this particular case, we have shown
the input for node 3 and its corresponding output. Since the node 3 has three neighbors,
the output vector contains three 1s. Note that this architecture is not very different from
Figure 2.13 except that it uses a sigmoid activations at the output (rather than linear ac-
tivations). Furthermore, since the number of 0s is usually much greater8 than the number
of 1s in the output, it is possible to drop many of the 0s with the use of negative sampling.
This type of negative sampling will create a situation similar to that of Figure 2.14. With
this neural architecture, the gradient-descent steps will be identical to the SGNS model of
word2vec. The main difference is that a node appears at most once as a neighbor of an-
other node, whereas a word might appear more than once in the context of another word.
Allowing arbitrary counts on the edges takes away this distinction.

8This fact is not evident in the toy example of Figure 2.17. In practice, the degree of a node is a tiny
fraction of the total number of nodes. For example, a person might have 100 friends in a social network of
millions of nodes.

100 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

2.7.1 Handling Arbitrary Edge Counts

The aforementioned discussion assumes that the weight of each edge is binary. Consider
a setting in which an arbitrary count cij is associated with the edge (i, j). In such cases,
both positive and negative sampling are required. The first step is to sample an edge (i, j)
from the network with probability proportional to cij . The input is, therefore, a one-hot
encoded vector of the node at one end point (say, i) of this edge. The output is the one-
hot encoding of node j. By default, both the input and output are n-dimensional vectors.
However, if negative sampling is used, then one can reduce the output vector to a (k + 1)-
dimensional vector. Here, k ≪ n is a parameter that defines the sampling rate. A total of
k negative nodes are sampled with probabilities proportional to their (weighted) degrees9

and the outputs of these nodes are 0s. One can compute the log-likelihood loss by treating
each output as the outcome of a Bernoulli trial, where the parameter of the Bernoulli trial
is the output of the sigmoid activation function. The gradient descent is performed with
respect to this loss. This variant is an almost exact simulation of the SGNS variant of the
word2vec model.

2.7.2 Multinomial Model

The vanilla skip-gram model of word2vec is a multinomial model. It is also possible to use
a multinomial model to create the embedding. The only difference is that the final layer of
the neural network in Figure 2.17 needs to use softmax activation (instead of the sigmoid
activation function). Furthermore, negative sampling is not used in the multinomial model,
and both input and output layers contain exactly n nodes. As in the SGNS model, a single
edge (i, j) is sampled with probability proportional to cij to create each input-output pair.
The input is the one-hot encoding of i and the output is the one-hot encoding of j. One
can also use mini-batch sampling of edges to improve performance. The stochastic gradient-
descent steps of this model are virtually similar to those used in the vanilla skip-gram model
of word2vec.

2.7.3 Connections with DeepWalk and Node2vec

The recently proposed DeepWalk [372] and node2vec models [164] belong to the family
of multinomial models discussed above (with specialized preprocessing steps). The main
difference is that the DeepWalk and node2vec models use depth-first or breadth-first walks
to (indirectly) generate cij . DeepWalk is itself a precursor to (and special case of) node2vec
in terms of how the random walks are performed. In this case, cij can be interpreted as the
number of times that node j appears in the neighborhood of node i because it was included
in a breadth-first or depth-first walk starting at node i. One can view the value of cij in
the walk-based models as providing a more robust measure of the affinity between nodes
i and j, as compared to the raw weights in the original graph. Of course, there is nothing
sacrosanct about using a random walk to improve the robustness of cij . The number of
choices is almost unlimited in terms of how to generate this type of affinity value. All link
prediction methods [295] generate such affinity values. For example, the Katz measure [295],
which is closely related to the number of random walks between a pair of nodes, is a robust
measure of the affinity between nodes i and j.

9The weighted degree of node j is
∑

r crj .

2.9. BIBLIOGRAPHIC NOTES 101

2.8 Summary

This chapter discusses a number of neural models supervised and unsupervised learning.
One of the goals was to show that many of the traditional models used in machine learning
are instantiations of relatively simple neural models. Methods for binary/multiclass classifi-
cation and matrix factorization were discussed. In addition, the applications of the approach
to recommender systems and word embedding were introduced. When a traditional machine
learning technique like singular value decomposition is generalized to a neural representa-
tion, it is often inefficient compared to its counterpart in traditional machine learning.
However, the advantage of neural models is that they can usually be generalized to more
powerful nonlinear models. Furthermore, it is relatively easy to experiment with nonlinear
variants of traditional machine learning models with the use of neural networks. This chap-
ter also discusses several practical applications like recommender systems, text, and graph
embeddings.

2.9 Bibliographic Notes

The perceptron algorithm was proposed by Rosenblatt [405], and a detailed discussion may
be found in [405]. The Widrow-Hoff algorithm was proposed in [531] and is closely re-
lated to Tikhonov-Arsenin’s work [499]. The Fisher discriminant was proposed by Ronald
Fisher [120] in 1936, and is a specific case of the family of linear discriminant analysis meth-
ods [322]. Even though the Fisher discriminant uses an objective function that appears o to
be different from least-squares regression, it turns out to be a special case of least-squares
regression in which the binary response variable is used as the regressand [40]. A detailed
discussion of generalized linear models is provided in [320]. A variety of procedures such
as generalized iterative scaling, iteratively reweighted least-squares, and gradient descent for
multinomial logistic regression are discussed in [178]. The support-vector machine is gener-
ally credited to Cortes and Vapnik [82], although the primal method for L2-loss SVMs was
proposed several years earlier by Hinton [190]! This approach repairs the loss function in
least-squares classification by keeping only one-half of the quadratic loss curve and setting
the remaining to zero, so that it looks like a smooth version of hinge loss (try this on Fig-
ure 2.4). The specific significance of this contribution was lost within the broader literature
on neural networks. Hinton’s work also does not focus on the importance of regularization in
SVMs, although the general notion of adding shrinkage to gradient-descent steps in neural
networks was well known. The hinge-loss SVM [82] is heavily presented from the perspective
of duality and the maximum-margin interpretation, making its relationship to regularized
least-squares classification somewhat opaque. The relationship of SVMs to least-squares
classification is more evident from other related works [400, 442], where it becomes evident
that quadratic and hinge-loss SVMs are natural variations of regularized L2-loss (i.e., Fisher
discriminant) and L1-loss classification that use the binary class variables as the regression
responses [139]. The Weston-Watkins multiclass SVM was introduced in [529]. It was shown
in [401] that the one-against-all approach to generalizing multiple classes seems to be as
effective as the tightly integrated multiclass variants. Many hierarchical softmax methods
are discussed in [325, 327, 332, 344].

An excellent overview paper on methods for reducing the dimensionality of data with
neural networks is available in [198], although this work focuses on the use of a related
model known as the Restricted Boltzmann Machine (RBM). The earliest introduction of the
autoencoder (in a more general form) is given in the backpropagation paper [408]. This work

102 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

discusses the problem of recoding between input and output patterns. Both classification
and autoencoders can be considered special cases of this architecture by using an appropriate
choice of input and output patterns. The paper on backpropagation [408] also discusses the
special case in which the recoding of the input is the identity mapping, which is exactly the
scenario of the autoencoder. More detailed discussions of the autoencoder during its early
years were provided in [48, 275]. A discussion of single-layer unsupervised learning may be
found in [77]. The standard method for regularizing an autoencoder is to use weight decay,
which corresponds to L2-regularization. Sparse autoencoders are discussed in [67, 273, 274,
284, 354]. Another way of regularizing the autoencoder is to penalize the derivatives during
gradient descent. This ensures that the learned function does not change too much with
change in input. This method is referred to as the contractive autoencoder [397]. Variational
autoencoders can encode complex probabilistic distributions, and are discussed in [106,
242, 399]. The de-noising autoencoder is discussed in [506]. Many of these methods are
discussed in detail in Chapter 4. The use of autoencoders for outlier detection is explored
in [64, 181, 564], and a survey on the use in clustering is provided in [8].

The application of dimensionality reduction for recommender systems may be found
in [414], although this approach uses a restricted Boltzmann machine, which is different
from the matrix factorization method discussed in this chapter. An item-based autoencoder
is discussed in [436], and this approach is a neural generalization of item-based neighborhood
regression [253]. The main difference is that the regression weights are regularized with a
constricted hidden layer. Similar works with different types of item-to-item models with
the use of de-noising autoencoders are discussed in [472, 535]. A more direct generalization
of matrix factorization methods may be found in [186], although the approach in [186] is
slightly different from the simpler approach presented in this chapter. The incorporation of
content in building recommender systems for deep learning is discussed in [513]. A multiview
deep learning approach, which has also been extended to temporal recommender systems in
a later work [465], is proposed in [110]. A survey of deep learning methods for recommenders
may be found in [560].

The word2vec model is proposed in [325, 327], and a detailed exposition may be found
in [404]. The basic idea has been extended to sentence- and paragraph-level embeddings,
with a model, which is referred to as doc2vec [272]. An alternative of word2vec that uses
a different type of matrix factorization is GloVe [371]. Multi-lingual word embeddings are
presented in [9]. The extension of word2vec to graphs with node-level embeddings is provided
in the DeepWalk [372] and node2vec [164] models. Various types of network embeddings are
discussed in [62, 512, 547, 548].

2.9.1 Software Resources

Machine learning models like linear regression, SVMs, and logistic regression are available
from scikit-learn [587]. The DISSECT (Distributional Semantics Composition Toolkit) [588]
is a toolkit that uses word co-occurrence counts in order to create embeddings. The GloVe
method is available from Stanford NLP [589] and the gensim library [394]. The word2vec
tool is available under the Apache license [591], and as a TensorFlow version [592]. The
gensim library has Python implementations of word2vec and doc2vec [394]. Java versions
of doc2vec, word2vec, and GloVe may be found in the DeepLearning4j repository [590].
In several cases, one can simply download pre-trained versions of the representations (on a
large corpus that is considered generally representative of text) and use them directly, as a
convenient alternative to training for the specific corpus at hand. The node2vec software is
available from the original author at [593].

2.10. EXERCISES 103

2.10 Exercises

1. Consider the following loss function for training pair (X, y):

L = max{0, a− y(W ·X)}

The test instances are predicted as ŷ = sign{W · X}. A value of a = 0 corresponds
to the perceptron criterion and a value of a = 1 corresponds to the SVM. Show that
any value of a > 0 leads to the SVM with an unchanged optimal solution when no
regularization is used. What happens when regularization is used?

2. Based on Exercise 1, formulate a generalized objective for the Weston-Watkins SVM.

3. Consider the unregularized perceptron update for binary classes with learning rate
α. Show that using any value of α is inconsequential in the sense that it only scales
up the weight vector by a factor of α. Show that these results also hold true for the
multiclass case. Do the results hold true when regularization is used?

4. Show that if the Weston-Watkins SVM is applied to a data set with k = 2 classes, the
resulting updates are equivalent to the binary SVM updates discussed in this chapter.

5. Show that if multinomial logistic regression is applied to a data set with k = 2 classes,
the resulting updates are equivalent to logistic regression updates.

6. Implement the softmax classifier using a deep-learning library of your choice.

7. In linear-regression-based neighborhood models, the rating of an item is predicted
as a weighted combination of the ratings of other items of the same user, where the
item-specific weights are learned with linear regression. Show how you can construct
an autoencoder architecture to create this type of model. Discuss the relationship of
this architecture with the matrix factorization architecture.

8. Logistic matrix factorization: Consider an autoencoder which has an input layer,
a single hidden layer containing the reduced representation, and an output layer with
sigmoid units. The hidden layer has linear activation:

(a) Set up a negative log-likelihood loss function for the case when the input data
matrix is known to contain binary values from {0, 1}.

(b) Set up a negative log-likelihood loss function for the case when the input data
matrix contains real values from [0, 1].

9. Non-negative matrix factorization with autoencoders: Let D be an n × d
data matrix with non-negative entries. Show how you can approximately factorize
D ≈ UV T into two non-negative matrices U and V , respectively, by using an autoen-
coder architecture with d inputs and outputs. [Hint: Choose an appropriate activation
function in the hidden layer, and modify the gradient-descent updates.]

10. Probabilistic latent semantic analysis: Refer to [99, 206] for a definition of proba-
bilistic latent semantic analysis. Propose a modification of the approach in Exercise 9
for probabilistic latent semantic analysis. [Hint: What is the relationship between
non-negative matrix factorization and probabilistic latent semantic analysis?]

104 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

11. Simulating a model combination ensemble: In machine learning, a model com-
bination ensemble averages the scores of multiple models in order to create a more
robust classification score. Discuss how you can approximate the averaging of an Ada-
line and logistic regression with a two-layer neural network. Discuss the similarities
and differences of this architecture with an actual model combination ensemble when
backpropagation is used to train it. Show how to modify the training process so that
the final result is a fine-tuning of the model combination ensemble.

12. Simulating a stacking ensemble: In machine learning, a stacking ensemble creates
a higher-level classification model on top of features learned from first-level classifiers.
Discuss how you can modify the architecture of Exercise 11, so that the first level of
classifiers correspond to an Adaline and a logistic regression classifier and the higher-
level classifier corresponds to a support vector machine. Discuss the similarities and
differences of this architecture with an actual stacking ensemble when backpropagation
is used to train it. Show how you can modify the training process of the neural network
so that the final result is a fine-tuning of the stacking ensemble.

13. Show that the stochastic gradient-descent updates of the perceptron, Widrow-Hoff
learning, SVM, and logistic regression are all of the form W ⇐ W (1 − αλ) +
αy[δ(X, y)]X. Here, the mistake function δ(X, y) is 1 − y(W · X) for least-squares
classification, an indicator variable for perceptron/SVMs, and a probability value for
logistic regression. Assume that α is the learning rate, and y ∈ {−1,+1}. Write the
specific forms of δ(X, y) in each case.

14. The linear autoencoder discussed in the chapter is applied to each d-dimensional row
of the n×d data set D to create a k-dimensional representation. The encoder weights
contain the k× d weight matrix W and the decoder weights contain the d× k weight
matrix V . Therefore, the reconstructed representation is DWTV T , and the aggregate
loss value ||DWTV T −D||2 is minimized over the entire training data set.

(a) For a fixed value of V , show that the optimal matrix W must satisfy
DTD(WTV TV − V) = 0.

(b) Use (a) to show that if the n× d matrix D has rank d, we have WTV TV = V .

(c) Use (b) to show that W = (V TV)−1V T . Assume that V TV is invertible.

(d) Repeat exercise parts (a), (b), and (c), when the encoder-decoder weights are
tied as W = V T . Show that the columns of V must be orthonormal.

Chapter 3

Training Deep Neural Networks

“I hated every minute of training, but I said, ‘Don’t quit. Suffer now and live
the rest of your life as a champion.”—Muhammad Ali

3.1 Introduction

The procedure for training neural networks with backpropagation is briefly introduced in
Chapter 1. This chapter will expand on the description on Chapter 1 in several ways:

1. The backpropagation algorithm is presented in greater detail together with imple-
mentation details. Some details from Chapter 1 are repeated for completeness of the
presentation, and so that readers do not have to frequently refer back to the earlier
text.

2. Important issues related to feature preprocessing and initialization will be studied in
the chapter.

3. The computational procedures that are paired with gradient descent will be intro-
duced. The effect of network depth on training stability will be studied, and methods
will be presented for addressing these issues.

4. The efficiency issues associated with training will be discussed. Methods for compress-
ing trained models of neural networks will be presented. Such methods are useful for
deploying pretrained networks on mobile devices.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 3

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_3&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_3

106 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

In the early years, methods for training multilayer networks were not known. In their
influential book, Minsky and Papert [330] strongly argued against the prospects of neural
networks because of the inability to train multilayer networks. Therefore, neural networks
stayed out of favor as a general area of research till the eighties. The first significant break-
through in this respect was proposed1 by Rumelhart et al. [408, 409] in the form of the
backpropagation algorithm. The proposal of this algorithm rekindled an interest in neural
networks. However, several computational, stability, and overfitting challenges were found
in the use of this algorithm. As a result, research in the field of neural networks again fell
from favor.

At the turn of the century, several advances again brought popularity to neural networks.
Not all of these advances were algorithm-centric. For example, increased data availability
and computational power have played the primary role in this resurrection. However, some
changes to the basic backpropagation algorithm and clever methods for initialization, such
as pretraining, have also helped. It has also become easier in recent years to perform the
intensive experimentation required for making algorithmic adjustments due to the reduced
testing cycle times (caused by improved computational hardware). Therefore, increased
data, computational power, and reduced experimentation time (for algorithmic tweaking)
went hand-in-hand. These so-called “tweaks” are, nevertheless, very important; this chapter
and the next will discuss most of these important algorithmic advancements.

One key point is that the backpropagation algorithm is rather unstable to minor changes
in the algorithmic setting, such as the initialization point used by the approach. This in-
stability is particularly significant when one is working with very deep networks. A point
to note is that neural network optimization is a multivariable optimization problem. These
variables correspond to the weights of the connections in various layers. Multivariable opti-
mization problems often face stability challenges because one must perform the steps along
each direction in the “right” proportion. This turns out to be particularly hard in the neural
network domain, and the effect of a gradient-descent step might be somewhat unpredictable.
One issue is that a gradient only provides a rate of change over an infinitesimal horizon
in each direction, whereas an actual step has a finite length. One needs to choose steps of
reasonable size in order to make any real progress in optimization. The problem is that the
gradients do change over a step of finite length, and in some cases they change drastically.
The complex optimization surfaces presented by neural network optimization are particu-
larly treacherous in this respect, and the problem is exacerbated with poorly chosen settings
(such as the initialization point or the normalization of the input features). As a result, the
(easily computable) steepest-descent direction is often not the best direction to use for re-
taining the ability to use large steps. Small step sizes lead to slow progress, whereas the
optimization surface might change in unpredictable ways with the use of large step sizes. All
these issues make neural network optimization more difficult than would seem at first sight.
However, many of these problems can be avoided by carefully tailoring the gradient-descent
steps to be more robust to the nature of the optimization surface. This chapter will discuss
algorithms that leverage some of this understanding.

1Although the backpropagation algorithm was popularized by the Rumelhart et al. papers [408, 409], it
had been studied earlier in the context of control theory. Crucially, Paul Werbos’s forgotten (and eventually
rediscovered) thesis in 1974 discussed how these backpropagation methods could be used in neural networks.
This was well before Rumelhart et al.’s papers in 1986, which were nevertheless significant because the style
of presentation contributed to a better understanding of why backpropagation might work.

3.2. BACKPROPAGATION: THE GORY DETAILS 107

Chapter Organization

This chapter is organized as follows. The next section reviews the backpropagation algorithm
initially discussed in Chapter 1. The discussion in this chapter is more detailed, and several
variants of the algorithm are discussed. Some parts of the backpropagation algorithm that
were already discussed in Chapter 1 are repeated so that this chapter is self-contained. Fea-
ture preprocessing and initialization issues are discussed in Section 3.3. The vanishing and
exploding gradient problem, which is common in deep networks, is discussed in Section 3.4,
with common solutions for dealing with this issue presented. Gradient-descent strategies
for deep learning are discussed in Section 3.5. Batch normalization methods are introduced
in Section 3.6. A discussion of accelerated implementations of neural networks is found in
Section 3.7. The summary is presented in Section 3.8.

3.2 Backpropagation: The Gory Details

In this section, the backpropagation algorithm from Chapter 1 is reviewed again in consid-
erably more detail. The goal of this more-detailed review is to show that the chain rule can
be used in multiple ways. To this end, we first explore the standard backpropagation update
as it is commonly presented in most textbooks (and Chapter 1). Second, a simplified and
decoupled view of backpropagation is examined in which the linear matrix multiplications
are decoupled from the activation layers. This decoupled view of backpropagation is what
most off-the-shelf systems implement.

3.2.1 Backpropagation with the Computational Graph Abstrac-
tion

A neural network is a computational graph, in which a unit of computation is the neuron.
Neural networks are fundamentally more powerful than their building blocks because the
parameters of these models are learned jointly to create a highly optimized composition
function of these models. Furthermore, the nonlinear activations between the different layers
add to the expressive power of the network.

A multilayer network evaluates compositions of functions computed at individual nodes.
A path of length 2 in the neural network in which the function f(·) follows g(·) can be
considered a composition function f(g(·)). Just to provide an idea, let us look at a trivial
computational graph with two nodes, in which the sigmoid function is applied at each node
to the input weight w. In such a case, the computed function appears as follows:

f(g(w)) =
1

1 + exp
[

− 1
1+exp(−w)

] (3.1)

We can already see how awkward it would be to compute the derivative of this function with
respect to w. Furthermore, consider the case in which g1(·), g2(·) . . . gk(·) are the functions
computed in layer m, and they feed into a particular layer-(m+1) node that computes f(·).
In such a case, the composition function computed by the layer-(m+1) node in terms of the
layer-m inputs is f(g1(·), . . . gk(·)). As we can see, this is a multivariate composition function,
which looks rather ugly. Since the loss function uses the output(s) as its argument(s), it may
typically be expressed a recursively nested function in terms of the weights in earlier layers.
For a neural network with 10 layers and only 2 nodes in each layer, a recursively nested
function of depth 10 will result in a summation of 210 recursively nested terms, which appear

108 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

forbidding from the perspective of computing partial derivatives. Therefore, we need some
kind of iterative approach to compute these derivatives. The resulting iterative approach is
dynamic programming, and the corresponding update is really the chain rule of differential
calculus.

In order to understand how the chain rule works in a computational graph, we will
discuss the two basic variants of the rule that one needs to keep in mind. The simplest
version of the chain rule works for a straightforward composition of the functions:

∂f(g(w))

∂w
=

∂f(g(w))

∂g(w)
· ∂g(w)

∂w
(3.2)

w
g(w)=w2 f(y)=

cos(y)

O = f(g(w))=cos(w2)

INPUT

WEIGHT

OUTPUT

y=g(w)

Figure 3.1: A simple computational graph with two nodes

w
f(w)

g(y)

h(z)

K(p,q)

O = K(p,q) = K(g(f(w)),h(f(w)))

UGLY COMPOSITION FUNCTION

O

INPUT

WEIGHT

OUTPUT

∂o

∂w
=

∂o

∂p
·

∂p

∂w
+

∂o

∂q
·

∂q

∂w
[Multivariable Chain Rule]

=
∂o

∂p
·

∂p

∂y
·

∂y

∂w
+

∂o

∂q
·

∂q

∂z
·

∂z

∂w
[Univariate Chain Rule]

=
∂K(p, q)

∂p
· g (y) · f (w)

First path

+
∂K(p, q)

∂q
· h (z) · f (w)

Second path

Figure 3.2: Revisiting Figure 1.13 on chain rule in computational graphs: The
products of node-specific partial derivatives along paths from weight w to output o are
aggregated. The resulting value yields the derivative of output O with respect to weight w.
Only two paths between input and output exist in this simplified example.

This variant is referred to as the univariate chain rule. Note that each term on the right-
hand side is a local gradient because it computes the derivative of a function with respect
to its immediate argument rather than a recursively derived argument. The basic idea is
that a composition of functions is applied on the weight w to yield the final output, and the
gradient of the final output is given by the product of the local gradients along that path.

3.2. BACKPROPAGATION: THE GORY DETAILS 109

Each local gradient only needs to worry about its specific input and output, which simplifies
the computation. An example is shown in Figure 3.1 in which the function f(y) is cos(y)
and g(w) = w2. Therefore, the composition function is cos(w2). On using the univariate
chain rule, we obtain the following:

∂f(g(w))

∂w
=

∂f(g(w))

∂g(w)
︸ ︷︷ ︸

−sin(g(w))

· ∂g(w)
∂w
︸ ︷︷ ︸

2w

= −2w · sin(w2)

The computational graphs in neural networks are not paths, which is the main reason
that backpropagation is needed. A hidden layer often gets its input from multiple units,
which results in multiple paths from a variable w to an output. Consider the function

w
f(w)=w2

g(y)=

cos(y)

h(z)=

sin(z)

K(p,q)

=p+q

O = [cos(w2)] + [sin(w2)]

O

INPUT

WEIGHT

OUTPUT

∂o

∂w
=

∂K(p, q)

∂p

1

· g (y)

-sin(y)

· f (w)

2w

+
∂K(p, q)

∂q

1

· h (z)

cos(z)

· f (w)

2w

= −2w · sin(y) + 2w · cos(z)

= −2w · sin(w2) + 2w · cos(w2)

Figure 3.3: An example of the chain rule in action based on the computational graph of
Figure 3.2.

f(g1(w), . . . gk(w)), in which a unit computing the multivariate function f(·) gets its inputs
from k units computing g1(w) . . . gk(w). In such cases, the multivariable chain rule needs to
be used. The multivariable chain rule is defined as follows:

∂f(g1(w), . . . gk(w))

∂w
=

k∑

i=1

∂f(g1(w), . . . gk(w))

∂gi(w)
· ∂gi(w)

∂w
(3.3)

It is easy to see that the multivariable chain rule of Equation 3.3 is a simple generalization
of that in Equation 3.2. An important consequence of the multivariable chain rule is as
follows:

Lemma 3.2.1 (Pathwise Aggregation Lemma) Consider a directed acyclic computa-
tional graph in which the ith node contains variable y(i). The local derivative z(i, j) of the

directed edge (i, j) in the graph is defined as z(i, j) = ∂y(j)
∂y(i) . Let a non-null set of paths P

exist from variable w in the graph to output node containing variable o. Then, the value
of ∂o

∂w is given by computing the product of the local gradients along each path in P, and

110 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

summing these products over all paths.

∂o

∂w
=
∑

P∈P

∏

(i,j)∈P

z(i, j) (3.4)

This lemma can be easily shown by applying Equation 3.3 recursively. Although
Lemma 3.2.1 is not used anywhere in the backpropagation algorithm, it helps us develop
another exponential-time algorithm that computes the derivatives explicitly. This point of
view helps us interpret the multivariable chain rule as a dynamic programming recursion
to compute a quantity that would otherwise be computationally too expensive to evaluate.
Consider the example shown in Figure 3.2. There are two paths in this particular case. The
recursive application of the chain rule is also shown in this example. It is evident that the
final result is obtained by computing the product of the local gradients along each of the
two paths and then adding them. In Figure 3.3, we have shown a more concrete example of
a function that is evaluated by the same computational graph.

o = sin(w2) + cos(w2) (3.5)

We have also shown in Figure 3.3 that the application of the chain rule on the computational
graph correctly evaluates the derivative, which is −2w · sin(w2) + 2w · cos(w2).

An Exponential-Time Algorithm

The fact that we can compute the composite derivative as an aggregation of the prod-
ucts of local derivatives along all paths in the computational graph leads to the following
exponential-time algorithm:

1. Use computational graph to compute the value y(i) of each nodes i in a forward phase.

2. Compute the local partial derivatives z(i, j) = ∂y(j)
∂y(i) on each edge in the computational

graph.

3. Let P be the set of all paths from an input node with value w to the output. For each
path P ∈ P compute the product of each local derivative z(i, j) on that path.

4. Add up these values over all paths in P.

In general, a computational graph will have an exponentially increasing number of paths
with depth and one must add the product of the local derivatives over all paths. An example
is shown in Figure 3.4, in which we have five layers, each of which has only two units.
Therefore, the number of paths between the input and output is 25 = 32. The jth hidden
unit of the ith layer is denoted by h(i, j). Each hidden unit is defined as the product of its
inputs:

h(i, j) = h(i− 1, 1) · h(i− 1, 2) ∀j ∈ {1, 2} (3.6)

In this case, the output is w32, which is expressible in closed form, and can be differentiated
easily with respect to w. However, we will use the exponential time algorithm to elucidate
the workings of the exponential time algorithm. The derivative of each h(i, j) with respect
to each of its two inputs are the values of the complementary inputs:

∂h(i, j)

∂h(i− 1, 1)
= h(i− 1, 2),

∂h(i, j)

∂h(i− 1, 2)
= h(i− 1, 1)

3.2. BACKPROPAGATION: THE GORY DETAILS 111

The pathwise aggregation lemma implies that the value of ∂o
∂w is the product of the local

derivatives (which are the complementary input values in this particular case) along all 32
paths from the input to the output:

∂o

∂w
=

∑

j1,j2,j3,j4,j5∈{1,2}5

∏

h(1, j1)
︸ ︷︷ ︸

w

h(2, j2)
︸ ︷︷ ︸

w2

h(3, j3)
︸ ︷︷ ︸

w4

h(4, j4)
︸ ︷︷ ︸

w8

h(5, j5)
︸ ︷︷ ︸

w16

=
∑

All 32 paths

w31 = 32w31

O
w

INPUT

WEIGHT
OUTPUT

w

w2

w4w2

w4w

w8

w8

w16

w16

O=w32

EACH NODE COMPUTES THE PRODUCT OF ITS INPUTS

h(1,1)

h(1,2) h(2,2) h(3,2) h(4,2) h(5,2)

h(2,1) h(3,1) h(4,1) h(5,1)

Figure 3.4: The number of paths in a computational graph increases exponentially with
depth. In this case, the chain rule will aggregate the product of local derivatives along
25 = 32 paths.

This result is, of course, consistent with what one would obtain on differentiating w32 di-
rectly with respect to w. However, an important observation is that it requires 25 aggrega-
tions to compute the derivative in this way for a relatively simple graph. More importantly,
we repeatedly differentiate the same function computed in a node for aggregation.

Obviously, this is an inefficient approach to compute gradients. For a network with
100 nodes in each layer and three layers, we will have a million paths. Nevertheless, this
is exactly what we do in traditional machine learning when our prediction function is a
complex composition function. This also explains why most of traditional machine learning
is a shallow neural model (cf. Chapter 2). Manually working out the details of a complex
composition function is tedious and impractical beyond a certain level of complexity. It
is here that the beautiful dynamic programming idea of backpropagation brings order to
chaos, and enables models that would otherwise have been impossible.

3.2.2 Dynamic Programming to the Rescue

Although the summation discussed above has an exponential number of components (paths),
one can compute it efficiently using dynamic programming. In graph theory, computing
all types of path-aggregative values over directed acyclic graphs is done using dynamic
programming. Consider a directed acyclic graph in which the value z(i, j) (interpreted as
local partial derivative of variable in node j with respect to variable in node i) is associated
with edge (i, j). An example of such a computational graph is shown in Figure 3.5. We
would like to compute the product of z(i, j) over each path P ∈ P from source node w to
output o and then add them.

S(w, o) =
∑

P∈P

∏

(i,j)∈P

z(i, j) (3.7)

112 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

Let A(i) be the set of nodes at the end points of outgoing edges from node i. We can
compute the aggregated value S(i, o) for each intermediate node i (between w and o) using
the following well-known dynamic programming update:

S(i, o) ⇐
∑

j∈A(i)

S(j, o)z(i, j) (3.8)

This computation can be performed backwards starting from the nodes directly incident
on o, since S(o, o) is already known to be 1. The algorithm discussed above is among the
most widely used methods for computing all types of path-centric functions on directed
acyclic graphs, which would otherwise require exponential time. For example, one can even

11
w

INPUT

WEIGHT OUTPUT

1

4

53

62

7

8

9

10

EACH NODE i CONTAINS y(i) AND EACH EDGE BETWEEN i AND j CONTAINS z(i, j)

EXAMPLE: z(4, 6)= PARTIAL DERIVATIVE OF y(6) WITH RESPECT TO y(4)

y(4) y(6)z(4, 6)

O

Figure 3.5: Example of computational graph with edges corresponding to local partial
derivatives

use a variation of the above algorithm to find the longest path in a directed acyclic graph
(which is known to be NP-hard for general graphs with cycles) [7]. This generic dynamic
programming approach is used extensively in directed acyclic graphs.

In fact, the aforementioned dynamic programming update is exactly the multivariable
chain rule of Equation 3.3, which is repeated in the backwards direction starting at the output
node where the local gradient is known. This is because we derived the path-aggregative
form of the loss gradient (Lemma 3.2.1) using this chain rule in the first place. The main
difference is that we apply the rule in a particular order in order to minimize computations.
We summarize this point below:

Using dynamic programming to efficiently aggregate the product of local gradi-
ents along the exponentially many paths in a computational graph results in a
dynamic programming update that is identical to the multivariable chain rule
of differential calculus.

The above discussion is for the case of generic computational graphs. How do we apply
these ideas to neural networks? In the case of neural networks, one can easily compute
∂L
∂o in terms of the known value of o (by running the input through the network). This
derivative is propagated backwards using the local partial derivatives z(i, j), depending on
which variables in the neural network are used as intermediate variables. For example, when
the post-activation values inside nodes are treated as nodes of the computational graph,
the value of z(i, j) is the product of the weight of edge (i, j) and the local derivative of
the activation at node j. On the other hand, if we use the pre-activation variables as the
nodes of the computational graph, the value of z(i, j) is product of the local derivative of
the activation at node i and the weight of the edge (i, j). We will discuss more about the
notion of pre-activation variables and post-activation variables in a neural network with
the use of an example slightly later (Figure 3.6). We can even create computational graphs
containing both pre-activation and post-activation variables to decouple linear operations
from activation functions. All these methods are equivalent, and will be discussed in the
upcoming sections.

3.2. BACKPROPAGATION: THE GORY DETAILS 113

3.2.3 Backpropagation with Post-Activation Variables

In this section, we show how to instantiate the aforementioned approach by considering a
computational graph in which the nodes contain the post-activation variables in a neural
network. These are the same as the hidden variables of different layers.

The backpropagation algorithm first uses a forward phase in order to compute the
output and the loss. Therefore, the forward phase sets up the initialization for the dy-
namic programming recurrence, and also the intermediate variables that will be needed
in the backwards phase. As discussed in the previous section, the backwards phase uses
the dynamic programming recurrence based on the multivariable chain rule of differential
calculus. We describe the forward and backward phases as follows:

Forward phase: In the forward phase, a particular input vector is used to compute the
values of each hidden layer based on the current values of the weights; the name “forward
phase” is used because such computations naturally cascade forward across the layers. The
goal of the forward phase is to compute all the intermediate hidden and output variables
for a given input. These values will be required during the backward phase. At the point
at which the computation is completed, the value of the output o is computed, as is the
derivative of the loss function L with respect to this output. The loss is typically a function
of all the outputs in the presence of multiple nodes; therefore, the derivatives with respect
to all outputs are computed. For now, we will consider the case of a single output node o
for simplicity, and then discuss the straightforward generalization to multiple outputs.

Backward phase: The backward phase computes the gradient of the loss function with
respect to various weights. The first step is to compute the derivative ∂L

∂o . If the network has
multiple outputs, then this value is computed for each output. This sets up the initialization
of the gradient computation. Subsequently, the derivatives are propagated in the backwards
direction using the multivariable chain rule of Equation 3.3.

Consider a path is denoted by the sequence of hidden units h1, h2, . . . , hk followed by
output o. The weight of the connection from hidden unit hr to hr+1 is denoted by w(hr,hr+1).
If a single path exists in the network, it would be a simple matter to backpropagate the
derivative of the loss function L with respect to the weights along this path. In most cases,
an exponentially large number of paths will exist in the network from any node hr to
the output node o. As shown in Lemma 3.2.1, the partial derivative can be computed by
aggregating the products of partial derivatives over all paths from hr to o. When a set P
of paths exist from hr to o, one can write the loss derivative as follows:

∂L

∂w(hr−1,hr)
=

∂L

∂o
·

⎡

⎣
∑

[hr,hr+1,...hk,o]∈P

∂o

∂hk

k−1∏

i=r

∂hi+1

∂hi

⎤

⎦

︸ ︷︷ ︸

Backpropagation computes ∆(hr, o) =
∂L
∂hr

∂hr

∂w(hr−1,hr)
(3.9)

The computation of ∂hr

∂w(hr−1,hr)
on the right-hand side is useful in converting a recursively

computed partial derivative with respect to layer activations into a partial derivative with
respect to the weights. The path-aggregated term above [annotated by ∆(hr, o) =

∂L
∂hr

] is

very similar to the quantity S(i, o) = ∂o
∂yi

discussed in Section 3.2.2. As in that section, the

idea is to first compute ∆(hk, o) for nodes hk closest to o, and then recursively compute these
values for nodes in earlier layers in terms of nodes in later layers. The value of ∆(o, o) = ∂L

∂o is

114 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

computed as the initial point of the recursion. Subsequently, this computation is propagated
in the backwards direction with dynamic programming updates (similar to Equation 3.8).
The multivariable chain rule directly provides the recursion for ∆(hr, o):

∆(hr, o) =
∂L

∂hr
=
∑

h:hr⇒h

∂L

∂h

∂h

∂hr
=
∑

h:hr⇒h

∂h

∂hr
∆(h, o) (3.10)

Since each h is in a later layer than hr, ∆(h, o) has already been computed while evaluating
∆(hr, o). However, we still need to evaluate ∂h

∂hr
in order to compute Equation 3.10. Consider

a situation in which the edge joining hr to h has weight w(hr,h), and let ah be the value
computed in hidden unit h just before applying the activation function Φ(·). In other words,
we have h = Φ(ah), where ah is a linear combination of its inputs from earlier-layer units
incident on h. Then, by the univariate chain rule, the following expression for ∂h

∂hr
can be

derived:
∂h

∂hr
=

∂h

∂ah
· ∂ah
∂hr

=
∂Φ(ah)

∂ah
· w(hr,h) = Φ′(ah) · w(hr,h) (3.11)

This value of ∂h
∂hr

is used in Equation 3.10 to obtain the following:

∆(hr, o) =
∑

h:hr⇒h

Φ′(ah) · w(hr,h) ·∆(h, o) (3.12)

This recursion is repeated in the backwards direction, starting with the output node. The
entire process is linear in the number of edges in the network. Note that one could also have
derived Equation 3.12 by using the generic computational graph algorithm in Section 3.2.2
with respect to post-activation variables. One simply needs to set z(i, j) in Equation 3.8 to
the product of the weight between nodes i and j, and the activation derivative at node j.

Backpropagation can be summarized in the following steps:

1. Use a forward-pass to compute the values of all hidden units, output o, and loss L for
a particular input-output pattern (X, y).

2. Initialize ∆(o, o) to ∂L
∂o .

3. Use the recurrence of Equation 3.12 to compute each ∆(hr, o) in the backwards di-
rection. After each such computation, compute the gradients with respect to incident
weights as follows:

∂L

∂w(hr−1,hr)
= ∆(hr, o) · hr−1 · Φ′(ahr

) (3.13)

The partial derivatives with respect to incident biases can be computed by using the
fact that bias neurons are always activated at a value of +1. Therefore, to compute
the partial derivative of the loss with respect to the bias of node hr, we simply set
hr−1 to 1 in the right-hand side of Equation 3.13.

4. Use the computed partial derivatives of loss function with respect to weights in order
to perform stochastic gradient descent for input-output pattern (X, y).

This description of backpropagation is greatly simplified, and actual implementations have
to incorporate numerous changes for efficiency and stability. For example, the gradients
are computed with respect to multiple training instances at one time, and these multiple
instances are referred to as a mini-batch. These are all backpropagated simultaneously in

3.2. BACKPROPAGATION: THE GORY DETAILS 115

order to add up their local gradients and execute mini-batch stochastic gradient descent.
This enhancement will be discussed in Section 3.2.8. Another difference is that we have
assumed a single output. However, in many types of neural networks (e.g., multiclass per-
ceptrons), multiple outputs exist. The description of this section can easily be generalized
to multiple outputs by adding the contributions of different outputs to the loss derivatives
(see Section 3.2.7).

A few observations are noteworthy. Equation 3.13 shows that the partial derivative of
the loss with respect to an edge from hr−1 to hr always contains hr−1 as a multiplicative

BREAK UP

∑

h= (W X).

ah

POST-ACTIVATION

VALUE

PRE-ACTIVATION

VALUE

= W X.{X
W

h= (ah)

{X
W

Figure 3.6: Pre- and post-activation values within a neuron

term. The remaining portion of the multiplicative factor in Equation 3.13 is seen as a
backpropagated “error.” In a sense, the algorithm recursively backpropagates the errors
and multiplies them with the values in the hidden layer just before the weight matrix to be
updated. This is why backpropagation is sometimes understood as error propagation.

3.2.4 Backpropagation with Pre-activation Variables

In the aforementioned discussion, the values h1 . . . hk along a path are used to compute the
chain rule. However, one can also use the values before computing the activation function
Φ(·) in order to define the chain rule. In other words, the gradients are computed with
respect to the pre-activation values of the hidden variables, which are then propagated
backwards. This alternative approach to backpropagation is how it is presented in most
textbooks.

The pre-activation value of the hidden variable hr is denoted by ahr
, where:

hr = Φ(ahr
) (3.14)

Figure 3.6 shows the distinction between pre- and post-activation values. In such a case, we
can rewrite Equation 3.9 as follows:

∂L

∂w(hr−1,hr)
=

∂L

∂o
· Φ′(ao) ·

⎡

⎣
∑

[hr,hr+1,...hk,o]∈P

∂ao
∂ahk

k−1∏

i=r

∂ahi+1

∂ahi

⎤

⎦

︸ ︷︷ ︸

Backpropagation computes δ(hr, o) =
∂L

∂ahr

hr−1 (3.15)

We have introduced the notation δ() to enable recurrence in this case. Note that the
recurrence for ∆(hr, o) =

∂L
∂hr

uses the hidden values after each activation as intermediate

116 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

variables in the chain rule, whereas the recurrence for δ(hr, o) =
∂L

∂ahr
uses the hidden values

before activation. Like Equation 3.10, we can obtain the following recurrence equations:

δ(hr, o) =
∂L

∂ahr

=
∑

h:hr⇒h

∂L

∂ah

∂ah
∂ahr

=
∑

h:hr⇒h

∂ah
∂ahr

δ(h, o) (3.16)

One can use the chain rule to compute the expression for ∂ah

∂ahr
on the right-hand side of

Equation 3.16:

∂ah
∂ahr

=
∂ah
∂hr

· ∂hr

∂ahr

= w(hr,h) ·
∂Φ(ahr

)

∂ahr

= Φ′(ahr
) · w(hr,h) (3.17)

By substituting the computed expression for ∂ah

∂ahr
in the right-hand side of Equation 3.16,

we obtain the following:

δ(hr, o) = Φ′(ahr
)
∑

h:hr⇒h

w(hr,h) · δ(h, o) (3.18)

Equation 3.18 can also be derived by using pre-activation variables in the generic computa-
tional graph algorithm of Section 3.2.2. One simply needs to set z(i, j) in Equation 3.8 to
the product of the weight between nodes i and j, and the activation derivative at node i.

One advantage of this recurrence condition over the one obtained using post-activation
variables is that the activation gradient is outside the summation, and therefore we can eas-
ily compute the specific form of the recurrence for each type of activation function at node
hr. Furthermore, since the activation gradient is outside the summation, one can simplify
the backpropagation computation by decoupling the effect of the activation function and
that of the linear transformation in backpropagation updates. The simplified and decoupled
view will be discussed in more detail in Section 3.2.6, and it uses both pre-activation and
post-activation variables for the dynamic programming recursion. This simplified approach
represents how backpropagation is actually implemented in real systems. From an imple-
mentation point of view, decoupling the linear transformation from the activation function
is helpful, because the linear portion is a simple matrix multiplication and the activation
portion is an elementwise multiplication. Both can be implemented efficiently on all types
of matrix-friendly hardware (such as graphics processor units).

The backpropagation process can now be described as follows:

1. Use a forward-pass to compute the values of all hidden units, output o, and loss L for
a particular input-output pattern (X, y).

2. Initialize ∂L
∂ao

= δ(o, o) to ∂L
∂o · Φ′(ao).

3. Use the recurrence of Equation 3.18 to compute each δ(hr, o) in the backwards di-
rection. After each such computation, compute the gradients with respect to incident
weights as follows:

∂L

∂w(hr−1,hr)
= δ(hr, o) · hr−1 (3.19)

The partial derivatives with respect to incident biases can be computed by using the
fact that bias neurons are always activated at a value of +1. Therefore, to compute
the partial derivative of the loss with respect to the bias of node hr, we simply set
hr−1 to 1 in the right-hand side of Equation 3.19.

3.2. BACKPROPAGATION: THE GORY DETAILS 117

4. Use the computed partial derivatives of loss function with respect to weights in order
to perform stochastic gradient descent for input-output pattern (X, y).

The main difference of this (more common) variant of the backpropagation algorithm is
in terms of the way in which the recursion is written, because pre-activation variables
have been used for dynamic programming. Both the pre- and post-activation variants of
backpropagation are mathematically equivalent (see Exercise 9). We have chosen to show
both variations of backpropagation in order to emphasize the fact that one can use dynamic
programming in a variety of ways to derive equivalent equations. An even more simplified
view of backpropagation, in which both pre-activation and post-activation variables are used,
is provided in Section 3.2.6.

3.2.5 Examples of Updates for Various Activations

One advantage of Equation 3.18 is that we can compute the specific types of updates for
various nodes. In the following, we provide the instantiation of Equation 3.18 for different
types of nodes:

δ(hr, o) =
∑

h:hr⇒h

w(hr,h)δ(h, o) [Linear]

δ(hr, o) = hr(1− hr)
∑

h:hr⇒h

w(hr,h)δ(h, o) [Sigmoid]

δ(hr, o) = (1− h2
r)
∑

h:hr⇒h

w(hr,h)δ(h, o) [Tanh]

Note that the derivative of the sigmoid can be written in terms of its output value hr as
hr(1 − hr). Similarly, the tanh derivative can be expressed as (1 − h2

r). The derivatives of
different activation functions are discussed in Section 1.2.1.6 of Chapter 1. For the ReLU
function, the value of δ(hr, o) can be computed in case-wise fashion:

δ(hr, o) =

{∑

h:hr⇒h w(hr,h)δ(h, o) if 0 < ahr

0 otherwise

A similar recurrence can be shown for the hard tanh function except that the update
condition is slightly different:

δ(hr, o) =

{∑

h:hr⇒h w(hr,h)δ(h, o) if −1 < ahr
< 1

0 otherwise

It is noteworthy that the ReLU and tanh are non-differentiable at exactly the condition
boundaries. However, this is rarely a problem in practical settings, in which one works with
finite precision.

3.2.5.1 The Special Case of Softmax

Softmax activation is a special case because the function is not computed with respect
to one input, but with respect to multiple inputs. Therefore, one cannot use exactly the
same type of update, as with other activation functions. As discussed in Equation 1.12 of

118 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

Chapter 1, the softmax converts k real-valued predictions v1 . . . vk into output probabilities
o1 . . . ok using the following relationship:

oi =
exp(vi)

∑k
j=1 exp(vj)

∀i ∈ {1, . . . , k} (3.20)

Note that if we try to use the chain rule to backpropagate the derivative of the loss L with
respect to v1 . . . vk, then one has to compute each ∂L

∂oi
and also each ∂oi

∂vj
. This backpropa-

gation of the softmax is greatly simplified, when we take two facts into account:

1. The softmax is almost always used in the output layer.

2. The softmax is almost always paired with the cross-entropy loss. Let y1 . . . yk ∈ {0, 1}
be the one-hot encoded (observed) outputs for the k mutually exclusive classes. Then,
the cross-entropy loss is defined as follows:

L = −
k∑

i=1

yilog(oi) (3.21)

The key point is that the value of ∂L
∂vi

has a particularly simple form in the case of the
softmax:

∂L

∂vi
=

k∑

j=1

∂L

∂oj
· ∂oj
∂vi

= oi − yi (3.22)

The reader is encouraged to work out the detailed derivation of the result above; it is tedious,
but relatively straightforward algebra. The derivation is enabled by the fact that the value
of

∂oj
∂vi

in Equation 3.22 can be shown to be equal to oi(1 − oi) when i = j (which is the
same as sigmoid), and otherwise can be shown to be equal to −oioj(see Exercise 10).

Therefore, in the case of the softmax, one first backpropagates the gradient from the
output to the layer containing v1 . . . vk. Further backpropagation can proceed according
to the rules discussed earlier in this section. Note that in this case, we have decoupled
the backpropagation update of the softmax activation from the backpropagation in the
rest of the network, in which matrix multiplications are always included along with the
activation function in the backpropagation update. In general, it is helpful to create a view
of backpropagation in which the linear matrix multiplications and activation layers are
decoupled because it greatly simplifies the updates. This view will be discussed in the next
section.

3.2.6 A Decoupled View of Vector-Centric Backpropagation

In the previous discussion, two equivalent ways of computing the updates based on Equa-
tions 3.12 and 3.18 were provided. In each case, one is really backpropagating through a linear
matrix multiplication and an activation computation simultaneously. The way in which we
order these two coupled computations affects whether we obtain Equation 3.12 or 3.18.
Unfortunately, this unnecessarily complicated view of backpropagation has proliferated in
papers and textbooks since the beginning. This is, in part, because layers are traditionally
defined in a neural network by combining the two separate operations of linear transforma-
tion and activation function computation.

3.2. BACKPROPAGATION: THE GORY DETAILS 119

However, in many real implementations, the linear computations and the activation com-
putations are decoupled as separate “layers,” and one separately backpropagates through
the two layers. Furthermore, we use a vector-centric representation of the neural network, so
that operations on vector representations of layers are vector-to-vector operations such as
a matrix multiplication in a linear layer [cf. Figure 1.11(d) in Chapter 1]. This view greatly
simplifies the computations. Therefore, one can create a neural network in which activa-
tion layers are alternately arranged with linear layers, as shown in Figure 3.7. Note that
the activation layers can use identity activation if needed. Activation layers (usually) per-
form one-to-one, elementwise computations on the vector components with the activation
function Φ(·), whereas linear layers perform all-to-all computations by multiplying with the
coefficient matrix W . Then, for each pair of matrix multiplication and activation function
layers, the following forward and backward steps need to be performed:

MULTIPLY WITH WT

MULTIPLY WITH W ’

LINEAR

TRANSFORM ACTIVATION

(ELEMENTWISE)

(ELEMENTWISE)

APPLY

MULTIPLY

D
E

C
O

U
P

LE
D

 L
A

Y
E

R
 (

i-
1)

D
E

C
O

U
P

LE
D

 L
A

Y
E

R
 i

D
E

C
O

U
P

LE
D

 L
A

Y
E

R
 (

i+
1)

D
E

C
O

U
P

LE
D

 L
A

Y
E

R
 (

i+
2

)

D
E

C
O

U
P

LE
D

 L
A

Y
E

R
 (

i+
3

)

SOME

FUNCTION

SOME

FUNCTION

SOME

LOSS

Figure 3.7: A decoupled view of backpropagation

Table 3.1: Examples of different functions and their backpropagation updates between layers
i and (i+ 1). The hidden values and gradients in layer i are denoted by zi and gi. Some of
these computations use I(·) as the binary indicator function.

Function Type Forward Backward

Linear Many-Many zi+1 = WT zi gi = Wgi+1

Sigmoid One-One zi+1 =sigmoid(zi) gi = gi+1 ⊙ zi+1 ⊙ (1− zi+1)
Tanh One-One zi+1 =tanh(zi) gi = gi+1 ⊙ (1− zi+1 ⊙ zi+1)
ReLU One-One zi+1 = zi ⊙ I(zi > 0) gi = gi+1 ⊙ I(zi > 0)
Hard One-One Set to ±1 (�∈ [−1,+1]) Set to 0 (�∈ [−1,+1])
Tanh Copy (∈ [−1,+1]) Copy (∈ [−1,+1])
Max Many-One Maximum of inputs Set to 0 (non-maximal inputs)

Copy (maximal input)

Arbitrary Anything z
(k)
i+1 = fk(zi) gi = JT gi+1

function fk(·) J is Jacobian (Equation 3.23)

1. Let zi and zi+1 be the column vectors of activations in the forward direction when the
matrix of linear transformations from the ith to the (i+ 1)th layer is denoted by W .
Furthermore, let gi and gi+1 be the backpropagated vectors of gradients in the two
layers. Each element of gi is the partial derivative of the loss function with respect to

120 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

a hidden variable in the ith layer. Then, we have the following:

zi+1 = WT zi [Forward Propagation]

gi = Wgi+1 [Backward Propagation]

2. Now consider a situation where the activation function Φ(·) is applied to each node
in layer (i+1) to obtain the activations in layer (i+2). Then, we have the following:

zi+2 = Φ(zi+1) [Forward Propagation]

gi+1 = gi+2 ⊙ Φ′(zi+1) [Backward Propagation]

Here, Φ(·) and its derivative Φ′(·) are applied in element-wise fashion to vector argu-
ments. The symbol ⊙ indicates elementwise multiplication.

Note the extraordinary simplicity once the activation is decoupled from the matrix
multiplication in a layer. The forward and backward computations are shown in Figure 3.7.
Furthermore, the derivatives of Φ(zi+1) can often be computed in terms of the outputs of
the next layer. Based on Section 3.2.5, one can show the following for sigmoid activations:

Φ′(zi+1) = Φ(zi+1)⊙ (1− Φ(zi+1))

= zi+2 ⊙ (1− zi+2)

Examples of different types of backpropagation updates for various forward functions are
shown in Table 3.1. In this case, we have used layer indices of i and (i + 1) for both linear
transformations and activation functions (rather than using (i+2) for activation function).
Note that the second to last entry in the table corresponds to the maximization function.
This type of function is useful for max-pooling operations in convolutional neural networks.
Therefore, the backward propagation operation is just like forward propagation. Given the
vector of gradients in a layer, one only has to apply the operations shown in the final column
of Table 3.1 to obtain the gradients with respect to the previous layer.

Some neural operations are more complex many-to-many functions than simple matrix
multiplications. These cases can be handled by assuming that the kth activation in layer-
(i + 1) is obtained by applying an arbitrary function fk(·) on the vector of activations in
layer-i. Then, the elements of the Jacobian are defined as follows:

Jkr =
∂fk(zi)

∂z
(r)
i

(3.23)

Here, z
(r)
i is the rth element in zi. Let J be the matrix whose elements are Jkr. Then, it is

easy to see that the backpropagation update from layer to layer can be written as follows:

gi = JT gi+1 (3.24)

Writing backpropagation equations as matrix multiplications is often beneficial from
an implementation-centric point of view, such as acceleration with Graphics Processor
Units (cf. Section 3.7.1). Note that the elements in gi represent gradients of the loss with
respect to the activations in the ith layer, and therefore an additional step is needed to
compute gradients with respect to the weights. The gradient of the loss with respect to a
weight between the pth unit of the (i− 1)th layer and the qth unit of ith layer is obtained
by multiplying the pth element of zi−1 with the qth element of gi.

3.2. BACKPROPAGATION: THE GORY DETAILS 121

3.2.7 Loss Functions on Multiple Output Nodes and Hidden Nodes

For simplicity, the discussion above has used only a single output node at which the loss
function is computed. However, in most applications, the loss function is computed over
multiple output nodes O. The only difference in this case is that the value of each ∂L

∂ao
=

δ(o,O) for o ∈ O is initialized to ∂L
∂oΦ

′(o). Backpropagation is then executed in order to

compute ∂L
∂ah

= δ(h,O) for each hidden node h.
In some forms of sparse feature learning, even the outputs of the hidden nodes have

loss functions associated with them. This occurs frequently in order to encourage solutions
with specific properties, such as a hidden layer that is sparse (e.g., sparse autoencoder), or
a hidden layer with a specific type of regularization penalty (e.g., contractive autoencoder).
The case of sparsity penalties is discussed in Section 4.4.4 of Chapter 4, and the problem
of contractive autoencoders is discussed in Section 4.10.3 of Chapter 4. In such cases, the
backpropagation algorithm requires only minor modifications in which the gradient flow in
the backwards direction is based on all the nodes at which the loss is computed. This can
be achieved by simple aggregation of the gradient flows resulting from different losses. One
can view this as a special type of network in which the hidden nodes are also output nodes,
and the output nodes are not restricted to the final layer of the network. At a fundamental
level, the backpropagation methodology remains the same.

Consider the case in which the loss function Lhr
is associated with the hidden node hr,

whereas the overall loss over all nodes is L. Furthermore, let ∂L
∂ahr

= δ(hr, N(hr)) denote

the gradient flow from all nodes N(hr) reachable from node hr, with which some portion
of the loss is associated. In this case, the node set N(hr) might contain both nodes in the
output layer as well as nodes in the hidden layer (with which a loss is associated), as long as
these nodes are reachable from hr. Therefore, the set N(hr) uses hr as an argument. Note
that the set N(hr) includes the node hr. Then, the update of Equation 3.18 is first applied
as follows:

δ(hr, N(hr)) ⇐ Φ′(ahr
)
∑

h:hr⇒h

w(hr,h)δ(h,N(h)) (3.25)

This is similar to the standard backpropagation update. However, the current value of
δ(hr, N(hr)) does not yet include the contribution of hr. Therefore, an additional step is
executed to adjust δ(hr, N(hr)) based on the contribution of hr to the loss function:

δ(hr, N(hr)) ⇐ δ(hr, N(hr)) + Φ′(hr)
∂Lhr

∂hr
(3.26)

It is important to keep in mind that the overall loss L is different from Lhr
, which is the

loss specific to node hr. Furthermore, the addition to the gradient flow in Equation 3.26
has a similar algebraic form to the value of the initialization of the output nodes. In other
words, the gradient flows caused by the hidden nodes are similar to those of the output
nodes. The only difference is that the computed value is added to the existing gradient
flow at the hidden nodes. Therefore, the overall framework of backpropagation remains
almost identical, with the main difference being that the backpropagation algorithm picks
up additional contributions from the losses at the hidden nodes.

3.2.8 Mini-Batch Stochastic Gradient Descent

From the very first chapter of this book, all updates to the weights are performed in point-
specific fashion, which is referred to as stochastic gradient descent. Such an approach is

122 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

common in machine learning algorithms. In this section, we provide a justification for this
choice along with related variants like mini-batch stochastic gradient descent. We also pro-
vide an understanding of the advantages and disadvantages of various choices.

Most machine learning problems can be recast as optimization problems over specific
objective functions. For example, the objective function in neural networks can be defined
in terms optimizing a loss function L, which is often a linearly separable sum of the loss
functions on the individual training data points. For example, in a linear regression applica-
tion, one minimizes the sum of the squared prediction errors over the training data points.
In a dimensionality reduction application, one minimizes the sum of squared representation
errors in the reconstructed training data points. One can write the loss function of a neural
network in the following form:

L =

n∑

i=1

Li (3.27)

Here, Li is the loss contributed by the ith training point. For most of the algorithms in
Chapter 2, we have worked with training point-specific loss rather than the aggregate loss.

In gradient descent, one tries to minimize the loss function of the neural network by
moving the parameters along the negative direction of the gradient. For example, in the
case of the perceptron, the parameters correspond to W = (w1 . . . wd). Therefore, one would
try to compute the loss of the underlying objective function over all points simultaneously
and perform gradient descent. Therefore, in traditional gradient descent, one would try to
perform gradient-descent steps such as the following:

W ⇐ W − α

(
∂L

∂w1
,
∂L

∂w2
. . .

∂L

∂wd

)

(3.28)

This type of derivative can also be written succinctly in vector notation (i.e., matrix calculus
notation):

W ⇐ W − α
∂L

∂W
(3.29)

For single-layer networks like the perceptron, gradient-descent is done only with respect
to W , whereas for larger networks, all parameters in the network need to be updated
with backpropagation. The number of parameters can easily be on the order of millions
in large-scale applications, and one needs to simultaneously run all examples forwards and
backwards through the network in order to compute the backpropagation updates. It is,
however, impractical to simultaneously run all examples through the network to compute
the gradient with respect to the entire data set in one shot. Note that even the memory
requirements of all intermediate/final predictions for each training instance would need to
be maintained by gradient descent. This can be exceedingly large in most practical settings.
At the beginning of the learning process, the weights are often incorrect to such a degree that
even a small sample of points can be used to create an excellent estimate of the gradient’s
direction. The additive effect of the updates created from such samples can often provide
an accurate direction of movement. This observation provides a practical foundation for the
success of the stochastic gradient-descent method and its variants.

Since the loss function of most optimization problems can be expressed as a linear sum
of the losses with respect to individual points (cf. Equation 3.27), it is easy to show the
following:

∂L

∂W
=

n∑

i=1

∂Li

∂W
(3.30)

3.2. BACKPROPAGATION: THE GORY DETAILS 123

In this case, updating the full gradient with respect to all the points sums up the individual
point-specific effects. Machine learning problems inherently have a high level of redundancy
between the knowledge captured by different training points, and one can often more effi-
ciently undertake the learning process with the point-specific updates of stochastic gradient
descent:

W ⇐ W − α
∂Li

∂W
(3.31)

This type of gradient descent is referred to as stochastic because one cycles through the
points in some random order. Note that the long-term effect of repeated updates is ap-
proximately the same, although each update in stochastic gradient descent can only be
viewed as a probabilistic approximation. Each local gradient can be computed efficiently,
which makes stochastic gradient descent fast, albeit at the expense of accuracy in gradient
computation. However, one interesting property of stochastic gradient descent is that even
though it might not perform as well on the training data (compared to gradient descent),
it often performs comparably (and sometimes even better) on the test data [171]. As you
will learn in Chapter 4, stochastic gradient descent has the indirect effect of regularization.
However, it can occasionally provide very poor results with certain orderings of training
points.

In mini-batch stochastic descent, one uses a batch B = {j1 . . . jm} of training points for
the update:

W ⇐ W − α
∑

i∈B

∂Li

∂W
(3.32)

Mini-batch stochastic gradient descent often provides the best trade-off between stability,
speed, and memory requirements. When using mini-batch stochastic gradient descent, the
outputs of a layer are matrices instead of vectors, and forward propagation requires the mul-
tiplication of the weight matrix with the activation matrix. The same is true for backward
propagation in which matrices of gradients are maintained. Therefore, the implementation
of mini-batch stochastic gradient descent increases the memory requirements, which is a
key limiting factor on the size of the mini-batch.

The size of the mini-batch is therefore regulated by the amount of memory available on
the particular hardware architecture at hand. Keeping a batch size that is too small also
results in constant overheads, which is inefficient even from a computational point of view.
Beyond a certain batch size (which is typically of the order of a few hundred points), one
does not gain much in terms of the accuracy of gradient computation. It is common to
use powers of 2 as the size of the mini-batch, because this choice often provides the best
efficiency on most hardware architectures; commonly used values are 32, 64, 128, or 256.
Although the use of mini-batch stochastic gradient descent is ubiquitous in neural network
learning, most of this book will use a single point for the update (i.e., pure stochastic
gradient descent) for simplicity in presentation.

3.2.9 Backpropagation Tricks for Handling Shared Weights

A very common approach for regularizing neural networks is to use shared weights. The
basic idea is that if one has some semantic insight that a similar function will be computed
in different nodes of the network, then the weights associated with those nodes will be
constrained to be the same value. Some examples are as follows:

1. In an autoencoder simulating PCA (cf. Section 2.5.1.3 of Chapter 2), the weights in
the input layer and the output layer are shared.

124 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

2. In a recurrent neural network for text (cf. Chapter 7), the weights in different temporal
layers are shared, because it is assumed that the language model at each time-stamp
is the same.

3. In a convolutional neural network, the same grid of weights (corresponding to a visual
field) is used over the entire spatial extent of the neurons (cf. Chapter 8).

Sharing weights in a semantically insightful way is one of the key tricks to successful neural
network design. When one can identify the insight that the function computed at two nodes
ought to be similar, it makes sense to use the same set of weights in that pair of nodes.

At first sight, it might seem to be an onerous task to compute the gradient of the loss
with respect to the shared weights in these different regions of the network, because the
different uses of the weights would also influence one another in an unpredictable way in
the computational graph. However, backpropagation with respect to shared weights turns
out to be mathematically simple.

Let w be a weight, which is shared at T different nodes in the network, and the corre-
sponding copies of the weights at these nodes be denoted by w1 . . . wT . Let the loss function
be L. Then, it is easy to use the chain rule to show the following:

∂L

∂w
=

T∑

i=1

∂L

∂wi
· ∂wi

∂w
︸︷︷︸

=1

=

T∑

i=1

∂L

∂wi

In other words, all we have to do is to pretend that these weights are independent, compute
their derivatives, and add them! Therefore, we simply have to execute the backpropagation
algorithm without any change and then sum up the gradients of different copies of the
shared weight. This simple observation is used at many places in neural network learning.
It also forms the basis of the learning algorithm in recurrent neural networks.

3.2.10 Checking the Correctness of Gradient Computation

The backpropagation algorithm is quite complex, and one might occasionally check the
correctness of gradient computation. This can be performed easily with the use of numerical
methods. Consider a particular weight w of a randomly selected edge in the network. Let
L(w) be the current value of the loss. The weight of this edge is perturbed by adding a small
amount ǫ > 0 to it. Then, the forward algorithm is executed with this perturbed weight
and the loss L(w + ǫ) is computed. Then, the partial derivative of the loss with respect to
w can be shown to be the following:

∂L(w)

∂w
≈ L(w + ǫ)− L(w)

ǫ
(3.33)

When the partial derivatives do not match closely enough, it is easy to detect that an error
must have occurred in computation. One needs to perform the above estimation for only two
or three checkpoints in the training process, which is quite efficient. However, it might be
advisable to perform the checking over a large subset of the parameters at these checkpoints.
One problem is in determining when the gradients are “close enough,” especially when one
has no idea about the absolute magnitudes of these values. This is achieved by using relative
ratios.

3.3. SETUP AND INITIALIZATION ISSUES 125

Let the backpropagation-determined derivative be denoted by Ge, and the aforemen-
tioned estimation be denoted by Ga. Then, the relative ratio ρ is defined as follows:

ρ =
|Ge −Ga|
|Ge +Ga|

(3.34)

Typically, the ratio should be less than 10−6, although for some activation functions like
the ReLU in which sharp changes in derivatives occur at particular points, it is possible for
the numerical gradient to be different from the computed gradient. In such cases, the ratio
should still be less than 10−3. One can use this numerical approximation to test various
edges and check the correctness of their gradients. If there are millions of parameters, then
one can test a sample of the derivatives for a quick check of correctness. It is also advisable to
perform this check at two or three points in the training because the checks at initialization
might correspond to special cases that do not generalize to arbitrary points in the parameter
space.

3.3 Setup and Initialization Issues

There are several important issues associated with the setup of the neural network, pre-
processing, and initialization. First, the hyperparameters of the neural network (such as the
learning rates and regularization parameters) need to be selected. Feature preprocessing
and initialization can also be rather important. Neural networks tend to have larger pa-
rameter spaces compared to other machine learning algorithms, which magnifies the effect
of preprocessing and initialization in many ways. In the following, we will discuss the ba-
sic methods used for feature preprocessing and initialization. Strictly speaking, advanced
methods like pretraining can also be considered initialization techniques. However, these
techniques require a deeper understanding of the model generalization issues associated
with neural network training. For this reason, discussion on this topic will be deferred to
the next chapter.

3.3.1 Tuning Hyperparameters

Neural networks have a large number of hyperparameters such as the learning rate, the
weight of regularization, and so on. The term “hyperparameter” is used to specifically refer
to the parameters regulating the design of the model (like learning rate and regularization),
and they are different from the more fundamental parameters representing the weights of
connections in the neural network. In Bayesian statistics, the notion of hyperparameter is
used to control the prior distribution, although we use this definition in a somewhat loose
sense here. In a sense, there is a two-tiered organization of parameters in the neural network,
in which primary model parameters like weights are optimized with backpropagation only
after fixing the hyperparameters either manually or with the use of a tuning phase. As we
will discuss in Section 4.3 of Chapter 4, the hyperparameters should not be tuned using the
same data used for gradient descent. Rather, a portion of the data is held out as validation
data, and the performance of the model is tested on the validation set with various choices
of hyperparameters. This type of approach ensures that the tuning process does not overfit
to the training data set (while providing poor test data performance).

How should the candidate hyperparameters be selected for testing? The most well-known
technique is grid search, in which a set of values is selected for each hyperparameter. In the
most straightforward implementation of grid search, all combinations of selected values of

126 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

the hyperparameters are tested in order to determine the optimal choice. One issue with
this procedure is that the number of hyperparameters might be large, and the number of
points in the grid increases exponentially with the number of hyperparameters. For example,
if we have 5 hyperparameters, and we test 10 values for each hyperparameter, the training
procedure needs to be executed 105 = 100000 times to test its accuracy. Although one does
not run such testing procedures to completion, the number of runs is still too large to be
reasonably executed for most settings of even modest size. Therefore, a commonly used
trick is to first work with coarse grids. Later, when one narrows down to a particular range
of interest, finer grids are used. One must be careful when the optimal hyperparameter
selected is at the edge of a grid range, because one would need to test beyond the range to
see if better values exist.

The testing approach may at times be too expensive even with the coarse-to-fine-grained
process. It has been pointed out [37] that grid-based hyperparameter exploration is not
necessarily the best choice. In some cases, it makes sense to randomly sample the hyperpa-
rameters uniformly within the grid range. As in the case of grid ranges, one can perform
multi-resolution sampling, where one first samples in the full grid range. One then creates
a new set of grid ranges that are geometrically smaller than the previous grid ranges and
centered around the optimal parameters from the previously explored samples. Sampling is
repeated on this smaller box and the entire process is iteratively repeated multiple times to
refine the parameters.

Another key point about sampling many types of hyperparameters is that the logarithms
of the hyperparameters are sampled uniformly rather than the hyperparameters themselves.
Two examples of such parameters include the regularization rate and the learning rate. For
example, instead of sampling the learning rate α between 0.1 and 0.001, we first sample
log(α) uniformly between −1 and −3, and then exponentiate it to the power of 10. It is
more common to search for hyperparameters in the logarithmic space, although there are
some hyperparameters that should be searched for on a uniform scale.

Finally, a key point about large-scale settings is that it is sometimes impossible to run
these algorithms to completion because of the large training times involved. For example,
a single run of a convolutional neural network in image processing might take a couple of
weeks. Trying to run the algorithm over many different choices of parameter combinations is
impractical. However, one can often obtain a reasonable estimate of the broader behavior of
the algorithm in a short time. Therefore, the algorithms are often run for a certain number of
epochs to test the progress. Runs that are obviously poor or diverge from convergence can be
quickly killed. In many cases, multiple threads of the process with different hyperparameters
can be run, and one can successively terminate or add new sampled runs. In the end, only
one winner is allowed to train to completion. Sometimes a few winners may be allowed to
train to completion, and their predictions will be averaged as an ensemble.

A mathematically justified way of choosing for hyperparameters is the use of Bayesian
optimization [42, 306]. However, these methods are often too slow to practically use in large-
scale neural networks and remain an intellectual curiosity for researchers. For smaller net-
works, it is possible to use libraries such as Hyperopt [614], Spearmint [616], and SMAC [615].

3.3.2 Feature Preprocessing

The feature processing methods used for neural network training are not very different from
those in other machine learning algorithms. There are two forms of feature preprocessing
used in machine learning algorithms:

3.3. SETUP AND INITIALIZATION ISSUES 127

1. Additive preprocessing and mean-centering: It can be useful to mean-center the data
in order to remove certain types of bias effects. Many algorithms in traditional ma-
chine learning (such as principal component analysis) also work with the assumption
of mean-centered data. In such cases, a vector of column-wise means is subtracted
from each data point. Mean-centering is often paired with standardization, which is
discussed in the section of feature normalization.

A second type of pre-processing is used when it is desired for all feature values to be
non-negative. In such a case, the absolute value of the most negative entry of a feature
is added to the corresponding feature value of each data point. The latter is typically
combined with min-max normalization, which is discussed below.

2. Feature normalization: A common type of normalization is to divide each feature
value by its standard deviation. When this type of feature scaling is combined with
mean-centering, the data is said to have been standardized. The basic idea is that each
feature is presumed to have been drawn from a standard normal distribution with zero
mean and unit variance.

The other type of feature normalization is useful when the data needs to be scaled
in the range (0, 1). Let minj and maxj be the minimum and maximum values of the
jth attribute. Then, each feature value xij for the jth dimension of the ith point is
scaled by min-max normalization as follows:

xij ⇐
xij −minj

maxj −minj
(3.35)

Feature normalization often does ensure better performance, because it is common for the
relative values of features to vary by more than an order of magnitude. In such cases,
parameter learning faces the problem of ill-conditioning, in which the loss function has an
inherent tendency to be more sensitive to some parameters than others. As we will see later
in this chapter, this type of ill-conditioning affects the performance of gradient descent.
Therefore, it is advisable to perform the feature scaling up front.

Whitening

Another form of feature pre-processing is referred to as whitening, in which the axis-system
is rotated to create a new set of de-correlated features, each of which is scaled to unit
variance. Typically, principal component analysis is used to achieve this goal.

Principal component analysis can be viewed as the application of singular value decom-
position after mean-centering a data matrix (i.e., subtracting the mean from each column).
Let D be an n × d data matrix that has already been mean-centered. Let C be the d × d
co-variance matrix of D in which the (i, j)th entry is the co-variance between the dimensions
i and j. Because the matrix D is mean-centered, we have the following:

C =
DTD

n
∝ DTD (3.36)

The eigenvectors of the co-variance matrix provide the de-correlated directions in the data.
Furthermore, the eigenvalues provide the variance along each of the directions. Therefore, if
one uses the top-k eigenvectors (i.e., largest k eigenvalues) of the covariance matrix, most of
the variance in the data will be retained and the noise will be removed. One can also choose
k = d, but this will often result in the variances along the near-zero eigenvectors being

128 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

dominated by numerical errors in the computation. It is a bad idea to include dimensions
in which the variance is caused by computational errors, because such dimensions will
contain little useful information for learning application-specific knowledge. Furthermore,
the whitening process will scale each transformed feature to unit variance, which will blow
up the errors along these directions. At the very least, it is advisable to use some threshold
like 10−5 on the magnitude of the eigenvalues. Therefore, as a practical matter, k will rarely
be exactly equal to d. Alternatively, one can add 10−5 to each eigenvalue for regularization
before scaling each dimension.

Let P be a d × k matrix in which each column contains one of the top-k eigenvectors.
Then, the data matrix D can be transformed into the k-dimensional axis system by post-
multiplying with the matrix P . The resulting n × k matrix U , whose rows contain the
transformed k-dimensional data points, is given by the following:

U = DP (3.37)

Note that the variances of the columns of U are the corresponding eigenvalues, because
this is the property of the de-correlating transformation of principal component analysis.
In whitening, each column of U is scaled to unit variance by dividing it with its standard
deviation (i.e., the square root of the corresponding eigenvalue). The transformed features
are fed into the neural network. Since whitening might reduce the number of features, this
type of preprocessing might also affect the architecture of the network, because it reduces
the number of inputs.

One important aspect of whitening is that one might not want to make a pass through
a large data set to estimate its covariance matrix. In such cases, the covariance matrix
and columnwise means of the original data matrix can be estimated on a sample of the
data. The d× k eigenvector matrix P is computed in which the columns contain the top-k
eigenvectors. Subsequently, the following steps are used for each data point: (i) The mean
of each column is subtracted from the corresponding feature; (ii) Each d-dimensional row
vector representing a training data point (or test data point) is post-multiplied with P to
create a k-dimensional row vector; (iii) Each feature of this k-dimensional representation is
divided by the square-root of the corresponding eigenvalue.

The basic idea behind whitening is that data is assumed to be generated from an inde-
pendent Gaussian distribution along each principal component. By whitening, one assumes
that each such distribution is a standard normal distribution, and provides equal importance
to the different features. Note that after whitening, the scatter plot of the data will roughly
have a spherical shape, even if the original data is elliptically elongated with an arbitrary
orientation. The idea is that the uncorrelated concepts in the data have now been scaled to
equal importance (on an a priori basis), and the neural network can decide which of them to
emphasize in the learning process. Another issue is that when different features are scaled
very differently, the activations and gradients will be dominated by the “large” features
in the initial phase of learning (if the weights are initialized randomly to values of similar
magnitude). This might hurt the relative learning rate of some of the important weights in
the network. The practical advantages of using different types of feature preprocessing and
normalization are discussed in [278, 532].

3.3.3 Initialization

Initialization is particularly important in neural networks because of the stability issues
associated with neural network training. As you will learn in Section 3.4, neural networks
often exhibit stability problems in the sense that the activations of each layer either become

3.4. THE VANISHING AND EXPLODING GRADIENT PROBLEMS 129

successively weaker or successively stronger. The effect is exponentially related to the depth
of the network, and is therefore particularly severe in deep networks. One way of amelio-
rating this effect to some extent is to choose good initialization points in such a way that
the gradients are stable across the different layers.

One possible approach to initialize the weights is to generate random values from a Gaus-
sian distribution with zero mean and a small standard deviation, such as 10−2. Typically,
this will result in small random values that are both positive and negative. One problem
with this initialization is that it is not sensitive to the number of inputs to a specific neuron.
For example, if one neuron has only 2 inputs and another has 100 inputs, the output of
the former is far more sensitive to the average weight because of the additive effect of more
inputs (which will show up as a much larger gradient). In general, it can be shown that the

x w1 ∑ ∑
w2 wm-1w3 ∑

h1 h2 hm-1

wm ∑ o

Figure 3.8: The vanishing and exploding gradient problems

variance of the outputs linearly scales with the number of inputs, and therefore the standard
deviation scales with the square root of the number of inputs. To balance this fact, each
weight is initialized to a value drawn from a Gaussian distribution with standard deviation
√

1/r, where r is the number of inputs to that neuron. Bias neurons are always initial-
ized to zero weight. Alternatively, one can initialize the weight to a value that is uniformly
distributed in [−1/

√
r, 1/

√
r].

More sophisticated rules for initialization consider the fact that the nodes in different
layers interact with one another to contribute to output sensitivity. Let rin and rout respec-
tively be the fan-in and fan-out for a particular neuron. One suggested initialization rule,
referred to as Xavier initialization or Glorot initialization is to use a Gaussian distribution
with standard deviation of

√

2/(rin + rout).

An important consideration in using randomized methods is that symmetry breaking is
important. if all weights are initialized to the same value (such as 0), all updates will move
in lock-step in a layer. As a result, identical features will be created by the neurons in a
layer. It is important to have a source of asymmetry among the neurons to begin with.

3.4 The Vanishing and Exploding Gradient Problems

Deep neural networks have several stability issues associated with training. In particular,
networks with many layers may be hard to train because of the way in which the gradients
in earlier and later layers are related.

In order to understand this point, let us consider a very deep network that has a
single node in each layer. We assume that there are (m + 1) layers, including the non-
computational input layer. The weights of the edges between the various layers are denoted
by w1, w2, . . . wm. Furthermore, assume that the sigmoid activation function Φ(·) is applied
in each layer. Let x be the input, h1 . . . hm−1 be the hidden values in the various layers,
and o be the final output. Let Φ′(ht) be the derivative of the activation function in hidden
layer t. Let ∂L

∂ht
be the derivative of the loss function with respect to the hidden activa-

tion ht. The neural architecture is illustrated in Figure 3.8. It is relatively easy to use the

130 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

backpropagation update to show the following relationship:

∂L

∂ht
= Φ′(ht+1) · wt+1 ·

∂L

∂ht+1
(3.38)

Since the fan-in is 1 of each node, assume that the weights are initialized from a standard
normal distribution. Therefore, each wt has an expected average magnitude of 1.

Let us examine the specific behavior of this recurrence in the case where the sigmoid
activation is used. The derivative with a sigmoid with output f ∈ (0, 1) is given by f(1−f).
This value takes on its maximum at f = 0.5, and therefore the value of Φ′(ht) is no more
than 0.25 even at its maximum. Since the absolute value of wt+1 is expected to be 1, it
follows that each weight update will (typically) cause the value of ∂L

∂ht
to be less than 0.25

that of ∂L
∂ht+1

. Therefore, after moving by about r layers, this value will typically be less than

0.25r. Just to get an idea of the magnitude of this drop, if we set r = 10, then the gradient
update magnitudes drop to 10−6 of their original values! Therefore, when backpropagation
is used, the earlier layers will receive very small updates compared to the later layers. This
problem is referred to as the vanishing gradient problem. Note that we could try to solve
this problem by using an activation function with larger gradients and also initializing
the weights to be larger. However, if we go too far in doing this, it is easy to end up in
the opposite situation where the gradient explodes in the backward direction instead of
vanishing. In general, unless we initialize the weight of every edge so that the product of
the weight and the derivative of each activation is exactly 1, there will be considerable
instability in the magnitudes of the partial derivatives. In practice, this is impossible with
most activation functions because the derivative of an activation function will vary from
iteration to iteration.

Although we have used an oversimplified example here with only one node in each layer,
it is easy to generalize the argument to cases in which multiple nodes are available in
each layer. In general, it is possible to show that the layer-to-layer backpropagation update
includes a matrix multiplication (rather than a scalar multiplication). Just as repeated scalar
multiplication is inherently unstable, so is repeated matrix multiplication. In particular,
the loss derivatives in layer-(i + 1) are multiplied by a matrix referred to as the Jacobian
(cf. Equation 3.23). The Jacobian contains the derivatives of the activations in layer-(i+1)
with respect to those in layer i. In certain cases like recurrent neural networks, the Jacobian
is a square matrix and one can actually impose stability conditions with respect to the
largest eigenvalue of the Jacobian. These stability conditions are rarely satisfied exactly,
and therefore the model has an inherent tendency to exhibit the vanishing and exploding
gradient problems. Furthermore, the effect of activation functions like the sigmoid tends to
encourage the vanishing gradient problem. One can summarize this problem as follows:

Observation 3.4.1 The relative magnitudes of the partial derivatives with respect to the
parameters in different parts of the network tend to be very different, which creates problems
for gradient-descent methods.

In the next section, we will provide a geometric understanding of why it is natural for
unstable gradient ratios to cause problems in most multivariate optimization problems,
even when working in relatively simple settings.

3.4.1 Geometric Understanding of the Effect of Gradient Ratios

The vanishing and exploding gradient problems are inherent to multivariable optimization,
even in cases where there are no local optima. In fact, minor manifestations of this problem

3.4. THE VANISHING AND EXPLODING GRADIENT PROBLEMS 131

are encountered in almost any convex optimization problem. Therefore, in this section, we
will consider the simplest possible case of a convex, quadratic objective function with a bowl-
like shape and a single global minimum. In a single-variable problem, the path of steepest
descent (which is the only path of descent), will always pass through the minimum point
of the bowl (i.e., optimum objective function value). However, the moment we increase the
number of variables in the optimization problem from 1 to 2, this is no longer the case. The
key point to understand is that with very few exceptions, the path of steepest descent in most
loss functions is only an instantaneous direction of best movement, and is not the correct
direction of descent in the longer term. In other words, small steps with “course corrections”
are always needed. When an optimization problem exhibits the vanishing gradient problem,
it means that the only way to reach the optimum with steepest-descent updates is by using

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

L = x2 + y2 L = x2 + 4y2

Figure 3.9: The effect of the shape of the loss function on steepest-gradient descent.

an extremely large number of tiny updates and course corrections, which is obviously very
inefficient.

In order to understand this point, we look at two bivariate loss functions in Figure 3.9. In
this figure, the contour plots of the loss function are shown, in which each line corresponds
to points in the XY-plane where the loss function has the same value. The direction of
steepest descent is always perpendicular to this line. The first loss function is of the form
L = x2 + y2, which takes the shape of a perfectly circular bowl, if one were to view the
height as the objective function value. This loss function treats x and y in a symmetric way.
The second loss function is of the form L = x2 +4y2, which is an elliptical bowl. Note that
this loss function is more sensitive to changes in the value of y as compared to changes in
the value of x, although the specific sensitivity depends on the position of the data point.

In the case of the circular bowl of Figure 3.9(a), the gradient points directly at the
optimum solution, and one can reach the optimum in a single step, as long as the correct
step-size is used. This is not quite the case in the loss function of Figure 3.9(b), in which
the gradients are often more significant in the y-direction compared to the x-direction.
Furthermore, the gradient never points to the optimal solution, as a result of which many
course corrections are needed over the descent. A salient observation is that the steps along
the y-direction are large, but subsequent steps undo the effect of previous steps. On the other
hand, the progress along the x-direction is consistent but tiny. Although the situation of

132 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

Figure 3.9(b) occurs in almost any optimization problem using steepest descent, the case of
the vanishing gradient is an extreme manifestation2 of this behavior. The fact that a simple
quadratic bowl (which is trivial compared to the typical loss function of a deep network)
shows so much oscillation with the steepest-descent method is concerning. After all, the
repeated composition of functions (as implied by the underlying computational graph) is

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.10: The derivatives of different activation functions are shown. Piecewise linear
activation functions have local gradient values of 1.

highly unstable in terms of the sensitivity of the output to the parameters in different parts
of the network. The problem of differing relative derivatives is extraordinarily large in real
neural networks, in which we have millions of parameters and gradient ratios that vary by
orders of magnitude. Furthermore, many activation functions have small derivatives, which
tends to encourage the vanishing gradient problem during backpropagation. As a result,
the parameters in later layers with large descent components are often oscillating with large
updates, whereas those in earlier layers make tiny but consistent updates. Therefore, neither
the earlier nor the later layers make much progress in getting closer to the optimal solution.
As a result, it is possible to get into situations where very little progress is made even after
training for a long time.

2A different type of manifestation occurs in cases where the parameters in earlier and later layers are
shared. In such cases, the effect of an update can be highly unpredictable because of the combined effect of
different layers. Such scenarios occur in recurrent neural networks in which the parameters in later temporal
layers are tied to those of earlier temporal layers. In such cases, small changes in the parameters can cause
large changes in the loss function in very localized regions without any gradient-based indication in nearby
regions. Such topological characteristics of the loss function are referred to as cliffs (cf. Section 3.5.4),
and they make the problem harder to optimize because the gradient descent tends to either overshoot or
undershoot.

3.4. THE VANISHING AND EXPLODING GRADIENT PROBLEMS 133

3.4.2 A Partial Fix with Activation Function Choice

The specific choice of activation function often has a considerable effect on the severity of the
vanishing gradient problem. The derivatives of the sigmoid and the tanh activation functions
are illustrated in Figure 3.10(a) and (b), respectively. The sigmoid activation function never
has a gradient of more than 0.25, and therefore it is very prone to the vanishing gradient
problem. Furthermore, it saturates at large absolute values of the argument, which refers
to the fact that the gradient is almost 0. In such cases, the weights of the neuron change
very slowly. Therefore, a few such activations within the network can significantly affect the
gradient computations. The tanh function fares better than the sigmoid function because it
has a gradient of 1 near the origin, but the gradient saturates rapidly at increasingly large
absolute values of the argument. Therefore, the tanh function will also be susceptible to the
vanishing gradient problem.

In recent years, the use of the sigmoid and the tanh activation functions has been
increasingly replaced with the ReLU and the hard tanh functions. The ReLU is also faster
to train because its gradient is efficient to compute. The derivatives of the ReLU and the
hard tanh functions are shown in Figure 3.10(c) and (d), respectively. It is evident that
these functions take on the derivative of 1 in certain intervals, although they might have
zero gradient in others. As a result, the vanishing gradient problem tends to occur less
often, as long as most of these units operate within the intervals where the gradient is 1.
In recent years, these piecewise linear variants have become far more popular than their
smooth counterparts. Note that the replacement of the activation function is only a partial
fix because the matrix multiplication across layers still causes a certain level of instability.
Furthermore, the piecewise linear activations introduce the new problem of dead neurons.

3.4.3 Dying Neurons and “Brain Damage”

It is evident from Figure 3.10(c) and (d) that the gradient of the ReLU is zero for negative
values of its argument. This can occur for a variety of reasons. For example, consider the case
where the input into a neuron is always nonnegative, whereas all the weights have somehow
been initialized to negative values. Therefore, the output will be 0. Another example is the
case where a high learning rate is used. In such a case, the pre-activation values of the
ReLU can jump to a range where the gradient is 0 irrespective of the input. In other words,
high learning rates can “knock out” ReLU units. In such cases, the ReLU might not fire for
any data instance. Once a neuron reaches this point, the gradient of the loss with respect
to the weights just before the ReLU will always be zero. In other words, the weights of
this neuron will never be updated further during training. Furthermore, its output will not
vary across different choices of inputs and therefore will not play a role in discriminating
between different instances. Such a neuron can be considered dead, which is considered a
kind of permanent “brain damage” in biological parlance. The problem of dying neurons
can be partially ameliorated by using learning rates that are somewhat modest. Another fix
is to use the leaky ReLU, which allows the neurons outside the active interval to leak some
gradient backwards.

3.4.3.1 Leaky ReLU

The leaky ReLU is defined using an additional parameter α ∈ (0, 1):

Φ(v) =

{

α · v v ≤ 0

v otherwise
(3.39)

134 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

Although α is a hyperparameter chosen by the user, it is also possible to learn it. Therefore,
at negative values of v, the leaky ReLU can still propagate some gradient backwards, albeit
at a reduced rate defined by α < 1.

The gains with the leaky ReLU are not guaranteed, and therefore this fix is not com-
pletely reliable. A key point is that dead neurons are not always a problem, because they
represent a kind of pruning to control the precise structure of the neural network. Therefore,
a certain level of dropping of neurons can be viewed as a part of the learning process. After
all, there are limitations to our ability to tune the number of neurons in each layer. Dying
neurons do a part of this tuning for us. Indeed, the intentional pruning of connections is
sometimes used as a strategy for regularization [282]. Of course, if a very large fraction of
the neurons in the network are dead, that can be a problem as well because much of the
neural network will be inactive. Furthermore, it is undesirable for too many neurons to be
knocked out during the early training phases, when the model is very poor.

3.4.3.2 Maxout

A recently proposed solution is the use of maxout networks [148]. The idea in the maxout
unit is to have two coefficient vectors W1 and W2 instead of a single one. Subsequently, the
activation used is max{W1 ·X,W2 ·X}. In the event that bias neurons are used, the maxout
activation is max{W1 ·X + b1,W2 ·X + b2}. One can view the maxout as a generalization
of the ReLU, because the ReLU is obtained by setting one of the coefficient vectors to
0. Even the leaky ReLU can be shown to be a special case of maxout, in which we set
W2 = αW1 for α ∈ (0, 1). Like the ReLU, the maxout function is piecewise linear. However,
it does not saturate at all, and is linear almost everywhere. In spite of its linearity, it
has been shown [148] that maxout networks are universal function approximators. Maxout
has advantages over the ReLU, and it enhances the performance of ensemble methods like
Dropout (cf. Section 4.5.4 of Chapter 4). The only drawback with the use of maxout is that
it doubles the number of required parameters.

3.5 Gradient-Descent Strategies

The most common method for parameter learning in neural networks is the steepest-descent
method, in which the gradient of the loss function is used to make parameter updates. In
fact, all the discussions in previous chapters are based on this assumption. As discussed
in the earlier section, the steepest-gradient method can sometimes behave unexpectedly
because it does not always point in the best direction of improvement, when steps of finite
size are considered. The steepest-descent direction is the optimal direction only from the
perspective of infinitesimal steps. A steepest-descent direction can sometimes become an
ascent direction after a small update in parameters. As a result, many course corrections
are needed. A specific example of this phenomenon is discussed in Section 3.4.1 in which
minor differences in sensitivity to different features can cause a steepest-descent algorithm to
have oscillations. The problem of oscillation and zigzagging is quite ubiquitous whenever the
steepest-descent direction moves along a direction of high curvature in the loss function. The
most extreme manifestation of this problem occurs in the case of extreme ill-conditioning,
for which the partial derivatives of the loss are wildly different with respect to the different
optimization variables. In this section, we will discuss several clever learning strategies that
work well in these ill-conditioned settings.

3.5. GRADIENT-DESCENT STRATEGIES 135

3.5.1 Learning Rate Decay

A constant learning rate is not desirable because it poses a dilemma to the analyst. The
dilemma is as follows. A lower learning rate used early on will cause the algorithm to take
too long to come even close to an optimal solution. On the other hand, a large initial
learning rate will allow the algorithm to come reasonably close to a good solution at first;
however, the algorithm will then oscillate around the point for a very long time, or diverge
in an unstable way, if the high rate of learning is maintained. In either case, maintaining
a constant learning rate is not ideal. Allowing the learning rate to decay over time can
naturally achieve the desired learning-rate adjustment to avoid these challenges.

The two most common decay functions are exponential decay and inverse decay. The
learning rate αt can be expressed in terms of the initial decay rate α0 and epoch t as

STARTING

POINT

WITHOUT

MOMENTUM

WITH

MOMENTUM

STARTING

POINT

OPTIMUM

(b) WITHOUT MOMENTUM

STARTING

POINT

OPTIMUM

(c) WITH MOMENTUM(a) RELATIVE DIRECTIONS

Figure 3.11: Effect of momentum in smoothing zigzag updates

follows:

αt = α0 exp(−k · t) [Exponential Decay]

αt =
α0

1 + k · t [Inverse Decay]

The parameter k controls the rate of the decay. Another approach is to use step decay in
which the learning rate is reduced by a particular factor every few epochs. For example, the
learning rate might be multiplied by 0.5 every 5 epochs. A common approach is to track the
loss on a held-out portion of the training data set, and reduce the learning rate whenever
this loss stops improving. In some cases, the analyst might even babysit the learning process,
and use an implementation in which the learning rate can be changed manually depending
on the progress. This type of approach can be used with simple implementations of gradient
descent, although it does not address many of the other problematic issues.

136 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

3.5.2 Momentum-Based Learning

Momentum-based techniques recognize that zigzagging is a result of highly contradictory
steps that cancel out one another and reduce the effective size of the steps in the correct
(long-term) direction. An example of this scenario is illustrated in Figure 3.9(b). Simply
attempting to increase the size of the step in order to obtain greater movement in the correct
direction might actually move the current solution even further away from the optimum
solution. In this point of view, it makes a lot more sense to move in an “averaged” direction
of the last few steps, so that the zigzagging is smoothed out.

In order to understand this point, consider a setting in which one is performing gradient-
descent with respect to the parameter vector W . The normal updates for gradient-descent
with respect to loss function L (defined over a mini-batch of instances) are as follows:

V ⇐ −α
∂L

∂W
; W ⇐ W + V

Figure 3.12: Effect of momentum in navigating complex loss surfaces. The annotation “GD”
indicates pure gradient descent without momentum. Momentum helps the optimization
process retain speed in flat regions of the loss surface and avoid local optima.

Here, α is the learning rate. In momentum-based descent, the vector V is modified with
exponential smoothing, where β ∈ (0, 1) is a smoothing parameter:

V ⇐ βV − α
∂L

∂W
; W ⇐ W + V

Larger values of β help the approach pick up a consistent velocity V in the correct direction.
Setting β = 0 specializes to straightforward mini-batch gradient-descent. The parameter β is
also referred to as the momentum parameter or the friction parameter. The word “friction”
is derived from the fact that small values of β act as “brakes,” much like friction.

With momentum-based descent, the learning is accelerated, because one is generally
moving in a direction that often points closer to the optimal solution and the useless “side-
ways” oscillations are muted. The basic idea is to give greater preference to consistent
directions over multiple steps, which have greater importance in the descent. This allows
the use of larger steps in the correct direction without causing overflows or “explosions” in
the sideways direction. As a result, learning is accelerated. An example of the use of momen-
tum is illustrated in Figure 3.11. It is evident from Figure 3.11(a) that momentum increases
the relative component of the gradient in the correct direction. The corresponding effects
on the updates are illustrated in Figure 3.11(b) and (c). It is evident that momentum-based
updates can reach the optimal solution in fewer updates.

3.5. GRADIENT-DESCENT STRATEGIES 137

The use of momentum will often cause the solution to slightly overshoot in the direction
where velocity is picked up, just as a marble will overshoot when it is allowed to roll down a
bowl. However, with the appropriate choice of β, it will still perform better than a situation
in which momentum is not used. The momentum-based method will generally perform
better because the marble gains speed as it rolls down the bowl; the quicker arrival at the
optimal solution more than compensates for the overshooting of the target. Overshooting is
desirable to the extent that it helps avoid local optima. Figure 3.12, which shows a marble
rolling down a complex loss surface (picking up speed as it rolls down), illustrates this
concept. The marble’s gathering of speed helps it efficiently navigate flat regions of the loss
surface. The parameter β controls the amount of friction that the marble encounters while
rolling down the loss surface. While increased values of β help in avoiding local optima, it
might also increase oscillation at the end. In this sense, the momentum-based method has a
neat interpretation in terms of the physics of a marble rolling down a complex loss surface.

3.5.2.1 Nesterov Momentum

The Nesterov momentum [353] is a modification of the traditional momentum method in
which the gradients are computed at a point that would be reached after executing a β-
discounted version of the previous step again (i.e., the momentum portion of the current
step). This point is obtained by multiplying the previous update vector V with the friction
parameter β and then computing the gradient at W + βV . The idea is that this corrected
gradient uses a better understanding of how the gradients will change because of the mo-
mentum portion of the update, and incorporates this information into the gradient portion
of the update. Therefore, one is using a certain amount of lookahead in computing the
updates. Let us denote the loss function by L(W) at the current solution W . In this case,
it is important to explicitly denote the argument of the loss function because of the way in
which the gradient is computed. Therefore, the update may be computed as follows:

V ⇐ βV − α
∂L(W + βV)

∂W
; W ⇐ W + V

Note that the only difference from the standard momentum method is in terms of where
the gradient is computed. Using the value of the gradient a little further along the previous
update can lead to faster convergence. In the previous analogy of the rolling marble, such
an approach will start applying the “brakes” on the gradient-descent procedure when the
marble starts reaching near the bottom of the bowl, because the lookahead will “warn” it
about the reversal in gradient direction.

The Nesterov method works only in mini-batch gradient descent with modest batch sizes;
using very small batches is a bad idea. In such cases, it can be shown that the Nesterov
method reduces the error to O(1/t2) after t steps, as compared to an error of O(1/t) in the
momentum method.

3.5.3 Parameter-Specific Learning Rates

The basic idea in the momentum methods of the previous section is to leverage the consis-
tency in the gradient direction of certain parameters in order to speed up the updates. This
goal can also be achieved more explicitly by having different learning rates for different pa-
rameters. The idea is that parameters with large partial derivatives are often oscillating and
zigzagging, whereas parameters with small partial derivatives tend to be more consistent
but move in the same direction. An early method, which was proposed in this direction,

138 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

was the delta-bar-delta method [217]. This approach tracks whether the sign of each partial
derivative changes or stays the same. If the sign of a partial derivative stays consistent, then
it is indicative of the fact that the direction is correct. In such a case, the partial derivative
in that direction increases. On the other hand, if the sign of the partial derivative flips all
the time, then the partial derivative decreases. However, this kind of approach is designed
for gradient descent rather than stochastic gradient descent, because the errors in stochastic
gradient descent can get magnified. Therefore, a number of methods have been proposed
that can work well even when the mini-batch method is used.

3.5.3.1 AdaGrad

In the AdaGrad algorithm [108], one keeps track of the aggregated squared magnitude of
the partial derivative with respect to each parameter over the course of the algorithm. The
square-root of this value is proportional to the root-mean-square slope for that parameter
(although the absolute value will increase with the number of epochs because of successive
aggregation).

Let Ai be the aggregate value for the ith parameter. Therefore, in each iteration, the
following update is performed:

Ai ⇐ Ai +

(
∂L

∂wi

)2

∀i (3.40)

The update for the ith parameter wi is as follows:

wi ⇐ wi −
α√
Ai

(
∂L

∂wi

)

; ∀i

If desired, one can use
√
Ai + ǫ in the denominator instead of

√
Ai to avoid ill-conditioning.

Here, ǫ is a small positive value such as 10−8.
Scaling the derivative inversely with

√
Ai is a kind of “signal-to-noise” normalization

because Ai only measures the historical magnitude of the gradient rather than its sign; it
encourages faster relative movements along gently sloping directions with consistent sign
of the gradient. If the gradient component along the ith direction keeps wildly fluctuating
between +100 and −100, this type of magnitude-centric normalization will penalize that
component far more than another gradient component that consistently takes on the value in
the vicinity of 0.1 (but with a consistent sign). For example, in Figure 3.11, the movements
along the oscillating direction will be de-emphasized, and the movement along the consistent
direction will be emphasized. However, absolute movements along all components will tend
to slow down over time, which is the main problem with the approach. The slowing down is
caused by the fact that Ai is the aggregate value of the entire history of partial derivatives.
This will lead to diminishing values of the scaled derivative. As a result, the progress of
AdaGrad might prematurely become too slow, and it will eventually (almost) stop making
progress. Another problem is that the aggregate scaling factors depend on ancient history,
which can eventually become stale. The use of stale scaling factors can increase inaccuracy.
As we will see later, most of the other methods use exponential averaging, which solves
both problems.

3.5.3.2 RMSProp

The RMSProp algorithm [194] uses a similar motivation as AdaGrad for performing the
“signal-to-noise” normalization with the absolute magnitude

√
Ai of the gradients. However,

3.5. GRADIENT-DESCENT STRATEGIES 139

instead of simply adding the squared gradients to estimate Ai, it uses exponential averaging.
Since one uses averaging to normalize rather than aggregate values, the progress is not slowed
prematurely by a constantly increasing scaling factor Ai. The basic idea is to use a decay
factor ρ ∈ (0, 1), and weight the squared partial derivatives occurring t updates ago by
ρt. Note that this can be easily achieved by multiplying the current squared aggregate
(i.e., running estimate) by ρ and then adding (1 − ρ) times the current (squared) partial
derivative. The running estimate is initialized to 0. This causes some (undesirable) bias in
early iterations, which disappears over the longer term. Therefore, if Ai is the exponentially
averaged value of the ith parameter wi, we have the following way of updating Ai:

Ai ⇐ ρAi + (1− ρ)

(
∂L

∂wi

)2

∀i (3.41)

The square-root of this value for each parameter is used to normalize its gradient. Then,
the following update is used for (global) learning rate α:

wi ⇐ wi −
α√
Ai

(
∂L

∂wi

)

; ∀i

If desired, one can use
√
Ai + ǫ in the denominator instead of

√
Ai to avoid ill-conditioning.

Here, ǫ is a small positive value such as 10−8. Another advantage of RMSProp over AdaGrad
is that the importance of ancient (i.e., stale) gradients decays exponentially with time. Fur-
thermore, it can benefit by incorporating concepts of momentum within the computational
algorithm (cf. Sections 3.5.3.3 and 3.5.3.5). The drawback of RMSProp is that the running
estimate Ai of the second-order moment is biased in early iterations because it is initialized
to 0.

3.5.3.3 RMSProp with Nesterov Momentum

RMSProp can also be combined with Nesterov momentum. Let Ai be the squared aggregate
of the ith weight. In such cases, we introduce the additional parameter β ∈ (0, 1) and use
the following updates:

vi ⇐ βvi −
α√
Ai

(
∂L(W + βV)

∂wi

)

; wi ⇐ wi + vi ∀i

Note that the partial derivative of the loss function is computed at a shifted point, as is
common in the Nesterov method. The weight W is shifted with βV while computing the
partial derivative with respect to the loss function. The maintenance of Ai is done using
the shifted gradients as well:

Ai ⇐ ρAi + (1− ρ)

(
∂L(W + βV)

∂wi

)2

∀i (3.42)

Although this approach benefits from adding momentum to RMSProp, it does not correct
for the initialization bias.

3.5.3.4 AdaDelta

The AdaDelta algorithm [553] uses a similar update as RMSProp, except that it eliminates
the need for a global learning parameter by computing it as a function of incremental

140 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

updates in previous iterations. Consider the update of RMSProp, which is repeated below:

wi ⇐ wi −
α√
Ai

(
∂L

∂wi

)

︸ ︷︷ ︸

∆wi

; ∀i

We will show how α is replaced with a value that depends on the previous incremental
updates. In each update, the value of ∆wi is the increment in the value of wi. As with the
exponentially smoothed gradients Ai, we keep an exponentially smoothed value δi of the
values of ∆wi in previous iterations with the same decay parameter ρ:

δi ⇐ ρδi + (1− ρ)(∆wi)
2 ∀i (3.43)

For a given iteration, the value of δi can be computed using only the iterations before it
because the value of ∆wi is not yet available. On the other hand, Ai can be computed using
the partial derivative in the current iteration as well. This is a subtle difference between
how Ai and δi are computed. This results in the following AdaDelta update:

wi ⇐ wi −
√

δi
Ai

(
∂L

∂wi

)

︸ ︷︷ ︸

∆wi

; ∀i

It is noteworthy that a parameter α for the learning rate is completely missing from this
update. The AdaDelta method shares some similarities with second-order methods because

the ratio
√

δi
Ai

in the update is a heuristic surrogate for the inverse of the second derivative

of the loss with respect to wi [553]. As discussed in subsequent sections, many second-order
methods like the Newton method also do not use learning rates.

3.5.3.5 Adam

The Adam algorithm uses a similar “signal-to-noise” normalization as AdaGrad and RM-
SProp; however, it also exponentially smooths the first-order gradient in order to incorpo-
rate momentum into the update. It also directly addresses the bias inherent in exponential
smoothing when the running estimate of a smoothed value is unrealistically initialized to 0.

As in the case of RMSProp, let Ai be the exponentially averaged value of the ith pa-
rameter wi. This value is updated in the same way as RMSProp with the decay parameter
ρ ∈ (0, 1):

Ai ⇐ ρAi + (1− ρ)

(
∂L

∂wi

)2

∀i (3.44)

At the same time, an exponentially smoothed value of the gradient is maintained for which
the ith component is denoted by Fi. This smoothing is performed with a different decay
parameter ρf :

Fi ⇐ ρfFi + (1− ρf)

(
∂L

∂wi

)

∀i (3.45)

This type of exponentially smoothing of the gradient with ρf is a variation of the momentum
method discussed in Section 3.5.2 (which is parameterized by a friction parameter β instead
of ρf). Then, the following update is used at learning rate αt in the tth iteration:

wi ⇐ wi −
αt√
Ai

Fi; ∀i

3.5. GRADIENT-DESCENT STRATEGIES 141

There are two key differences from the RMSProp algorithm. First, the gradient is replaced
with its exponentially smoothed value in order to incorporate momentum. Second, the
learning rate αt now depends on the iteration index t, and is defined as follows:

αt = α

(√

1− ρt

1− ρtf

)

︸ ︷︷ ︸

Adjust Bias

(3.46)

Technically, the adjustment to the learning rate is actually a bias correction factor that is
applied to account for the unrealistic initialization of the two exponential smoothing mech-
anisms, and it is particularly important in early iterations. Both Fi and Ai are initialized

GENTLE GRADIENT BEFORE

CLIFF UNDERSHOOTS WITH

SMALL STEP-SIZE AND

OVERSHOOTS WITH LARGE

STEP-SIZE

X

Y

PARAMETER 1

X

Y

PARAMETER 1

Figure 3.13: An example of a cliff in the loss surface

to 0, which causes bias in early iterations. The two quantities are affected differently by the
bias, which accounts for the ratio in Equation 3.46. It is noteworthy that each of ρt and ρtf
converge to 0 for large t because ρ, ρf ∈ (0, 1). As a result, the initialization bias correction
factor of Equation 3.46 converges to 1, and αt converges to α. The default suggested values
of ρf and ρ are 0.9 and 0.999, respectively, according to the original Adam paper [241].
Refer to [241] for details of other criteria (such as parameter sparsity) used for selecting ρ
and ρf . Like other methods, Adam uses

√
Ai + ǫ (instead of

√
Ai) in the denominator of

the update for better conditioning. The Adam algorithm is extremely popular because it
incorporates most of the advantages of other algorithms, and often performs competitively
with respect to the best of the other methods [241].

3.5.4 Cliffs and Higher-Order Instability

So far, only the use of first-order derivatives has been discussed in this chapter. The progress
with first-order derivatives can be slow with some error surfaces. Part of the problem is that
the first-order derivatives provide a limited amount of information about the error surface,
which can cause the updates to overshoot. The complexity of the loss surfaces of many
neural networks can cause gradient-based updates to perform in an unanticipated way.

An example of a loss surface is shown in Figure 3.13. In this case, there is a gently sloping
surface that rapidly changes into a cliff. However, if one computed only the first-order partial
derivative with respect to the variable x shown in the figure, one would only see a gentle

142 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

slope. As a result, a small learning rate will lead to very slow learning, whereas increasing
the learning rate can suddenly cause overshooting to a point far from the optimal solution.
This problem is caused by the nature of the curvature (i.e., changing gradient), where
the first-order gradient does not contain the information needed to control the size of the
update. In many cases, the rate of change of gradient can be computed using the second-
order derivative, which provides useful (additional) information. In general, second-order
methods approximate the local loss surface with a quadratic bowl, which is more accurate
than the linear approximation. Some second-order methods like the Newton method require
exactly one iteration in order to find the local optimal solution for a quadratic surface.
Of course, the loss surface of neural models is typically not quadratic. Nevertheless, the
approximation is often good enough that gradient-descent methods are greatly accelerated
at least in cases where the change in the gradient is not too sudden or drastic.

Cliffs are not desirable because they manifest a certain level of instability in the loss
function. This implies that a small change in some of the weights can either change the
loss in a tiny way or suddenly change the loss by such a large amount that the resulting
solution is even further away from the true optimum. As you will learn in Chapter 7,
all temporal layers of a recurrent neural network share the same parameters. In such a
case, the vanishing and exploding gradient means that there is varying sensitivity of the
loss function with respect to the parameters in earlier and later layers (which are tied
anyway). Therefore, a small change in a well-chosen parameter can cascade in an unstable
way through the layers and either blow up or have negligible effect on the value of the loss
function. Furthermore, it is hard to control the step size in a way that prevents one of these
two events. This is the typical behavior one would encounter near a cliff. As a result, it is
easy to miss the optimum during a gradient-descent step. One way of understanding this
behavior is that sharing parameters across layers naturally leads to higher-order effects of
weight perturbations on the loss function. This is because the shared weights of different
layers are multiplied during neural network prediction, and a first-order gradient is now
insufficient to model the effect of the curvature in the loss function, which is a measure of
the change in gradient along a particular direction. Such settings are often addressed with
techniques that either clip the gradient, or explicitly use the curvature (i.e., second-order
derivative) of the loss function.

3.5.5 Gradient Clipping

Gradient clipping is a technique that is used to deal with settings in which the partial
derivatives along different directions have exceedingly different magnitudes. Some forms of
gradient clipping use a similar principle to that used in adaptive learning rates by trying the
make the different components of the partial derivatives more even. However, the clipping
is done only on the basis of the current values of the gradients rather than their historical
values. Two forms of gradient clipping are most common:

1. Value-based clipping: In value-based clipping, a minimum and maximum threshold
are set on the gradient values. All partial derivatives that are less than the minimum
are set to the minimum threshold. All partial derivatives that are greater than the
maximum are set to the maximum threshold.

2. Norm-based clipping: In this case, the entire gradient vector is normalized by the
L2-norm of the entire vector. Note that this type of clipping does not change the
relative magnitudes of the updates along different directions. However, for neural
networks that share parameters across different layers (like recurrent neural networks),

3.5. GRADIENT-DESCENT STRATEGIES 143

the effect of the two types of clipping is very similar. By clipping, one can achieve a
better conditioning of the values, so that the updates from mini-batch to mini-batch
are roughly similar. Therefore, it would prevent an anomalous gradient explosion in
a particular mini-batch from affecting the solution too much.

By and large, the effects of gradient clipping are quite limited compared to many other
methods. However, it is particularly effective in avoiding the exploding gradient problem in
recurrent neural networks. In recurrent neural networks (cf. Chapter 7), the parameters are
shared across different layers, and a derivative is computed with respect to each copy of the
shared parameter by treating it as a separate variable. These derivatives are the temporal
components of the overall gradient, and the values are clipped before adding them in order
to obtain the overall gradient. A geometric interpretation of the exploding gradient problem
is provided in [369], and a detailed exploration of why gradient clipping works is provided
in [368].

3.5.6 Second-Order Derivatives

A number of methods have been proposed in recent years for using second-order derivatives
for optimization. Such methods can partially alleviate some of the problems caused by
curvature of the loss function.

Consider the parameter vector W = (w1 . . . wd)
T , which is expressed3 as a column

vector. The second-order derivatives of the loss function L(W) are of the following form:

Hij =
∂2L(W)

∂wi∂wj

Note that the partial derivatives use all pairwise parameters in the denominator. Therefore,
for a neural network with d parameters, we have a d × d Hessian matrix H, for which the
(i, j)th entry is Hij . The second-order derivatives of the loss function can be computed with
backpropagation [315], although this is rarely done in practice. The Hessian can be viewed
as the Jacobian of the gradient.

One can write a quadratic approximation of the loss function in the vicinity of parameter
vector W 0 by using the following Taylor expansion:

L(W) ≈ L(W 0) + (W −W 0)
T [∇L(W 0)] +

1

2
(W −W 0)

TH(W −W 0) (3.47)

Note that the Hessian H is computed at W 0. Here, the parameter vectors W and W 0 are
d-dimensional column vectors, as is the gradient of the loss function. This is a quadratic
approximation, and one can simply set the gradient to 0, which results in the following
optimality condition for the quadratic approximation:

∇L(W) = 0 [Gradient of Loss Function]

∇L(W 0) +H(W −W 0) = 0 [Gradient of Taylor approximation]

One can rearrange the above optimality condition to obtain the following Newton update:

W
∗ ⇐ W 0 −H−1[∇L(W 0)] (3.48)

3In most of this book, we have worked with W as a row-vector. However, it is notationally convenient
here to work with W as a column-vector.

144 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

One interesting characteristic of this update is that it is directly obtained from an opti-
mality condition, and therefore there is no learning rate. In other words, this update is
approximating the loss function with a quadratic bowl and moving exactly to the bottom
of the bowl in a single step; the learning rate is already incorporated implicitly. Recall from
Figure 3.9 that first-order methods bounce along directions of high curvature. Of course,
the bottom of the quadratic approximation is not the bottom of the true loss function, and
therefore multiple Newton updates will be needed.

The main difference of Equation 3.48 from the update of steepest-gradient descent is pre-
multiplication of the steepest direction (which is [∇L(W 0)]) with the inverse of the Hessian.
This multiplication with the inverse Hessian plays a key role in changing the direction of
the steepest-gradient descent, so that one can take larger steps in that direction (resulting

Figure 3.14: The effect of pre-multiplication of steepest-descent direction with the inverse
Hessian

−2

−1

0

1

2

−1

−0.5

0

0.5

1

−1

0

1

2

3

4

5

xy

f(
x

,
y

)

LEAST

CURVATURE

DIRECTION

Figure 3.15: The curvature effect in valleys

in better improvement of the objective function) even if the instantaneous rate of change in
that direction is not as large as the steepest-descent direction. This is because the Hessian
encodes how fast the gradient is changing in each direction. Changing gradients are bad for
larger updates because one might inadvertently worsen the objective function, if the signs
of many components of the gradient change during the step. It is profitable to move in
directions where the ratio of the gradient to the rate of change of the gradient is large, so

3.5. GRADIENT-DESCENT STRATEGIES 145

that one can take larger steps without causing harm to the optimization. Pre-multiplication
with the inverse of the Hessian achieves this goal. The effect of the pre-multiplication of
the steepest-descent direction with the inverse Hessian is shown in Figure 3.14. It is helpful
to reconcile this figure with the example of the quadratic bowl in Figure 3.9. In a sense,
pre-multiplication with the inverse Hessian biases the learning steps towards low-curvature
directions. In one dimension, the Newton step is simply the ratio of the first derivative (rate
of change) to the second derivative (curvature). In multiple dimensions, the low-curvature
directions tend to win out because of multiplication by the inverse Hessian.

The specific effect of curvature is particularly evident when one encounters loss functions
in the shape of sloping or winding valleys. An example of a sloping valley is shown in
Figure 3.15. A valley is a dangerous topography for a gradient-descent method, particularly
if the bottom of the valley has a steep and rapidly changing surface (which creates a narrow
valley). This is, of course, not the case in Figure 3.15, which is a relatively easier case.
However, even in this case, the steepest-descent direction will often bounce along the sides of
the valley, and move down the slope relatively slowly if the step-sizes are chosen inaccurately.
In narrow valleys, the gradient-descent method will bounce along the steep sides of the
valley even more violently without making much progress in the gently sloping direction,
where the greatest long-term gains are present. In such cases, it is only by normalizing the
gradient information with the curvature, that will provide the correct directions of long-
term movement. This type of normalization tends to favor low-curvature directions like the
ones shown in Figure 3.15. Multiplication of the steepest-descent direction with the inverse
Hessian achieves precisely this goal.

In most large-scale neural network settings, the Hessian is too large to store or compute
explicitly. It is not uncommon to have neural networks with millions of parameters. Trying
to compute the inverse of a 106× 106 Hessian matrix is impractical with the computational
power available today. In fact, it is difficult to even compute the Hessian, let alone invert it!
Therefore, many approximations and variations of the Newton method have been developed.
Examples of such methods include Hessian-free optimization [41, 189, 313, 314] (or method
of conjugate gradients) and quasi-Newton methods that approximate the Hessian. The basic
goal of these methods to make second-order updates without exactly computing the Hessian.

3.5.6.1 Conjugate Gradients and Hessian-Free Optimization

The conjugate gradient method [189] requires d steps to reach the optimal solution of a
quadratic loss function (instead of a single Newton step). This approach is well known in
the classical literature on neural networks [41, 443], and a variant has recently been reborn
under the title of “Hessian-free optimization.” This name is motivated by the fact that the
search direction can be computed without the explicit computation of the Hessian.

A key problem in first-order methods is the zigzag movement of the optimization process,
which undoes much of the work done in previous iterations. In the conjugate gradient
method, the directions of movement are related to one another in such a way that the work
done in previous iterations is never undone (for a quadratic loss function). This is because
the change in gradient in a step, when projected along the vector of any other movement
direction, is always 0. Furthermore, one uses line search to determine the optimal step size
by searching over different step sizes. Since an optimal step is taken along each direction and
the work along that direction is never undone by subsequent steps, d linearly independent
steps are needed to reach the optimum of a d-dimensional function. Since it is possible to
find such directions only for quadratic loss functions, we will first discuss the conjugate
gradient method under the assumption that the loss function L(W) is quadratic.

146 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

A quadratic and convex loss function L(W) has an ellipsoidal contour plot of the type
shown in Figure 3.16. The orthonormal eigenvectors q0 . . . qd−1 of the symmetric Hessian
represent the axes directions of the ellipsoidal contour plot. One can rewrite the loss func-
tion in a new coordinate space corresponding to the eigenvectors. In the axis system cor-
responding the eigenvectors, the (transformed) variables do not have interactions with one
another because of the alignment of ellipsoidal loss contour with the axis system. This is
because the new Hessian Hq = QTHQ obtained by rewriting the loss function in terms of
the transformed variables is diagonal, where Q is a d × d matrix with columns containing
the eigenvectors. Therefore, each transformed variable can be optimized independently of

(a) Eigenvectors of Hessian (b) Arbitrary conjugate pair
Mutually Orthogonal: qT

i qj = 0 Non-orthogonal: qT
i Hqj = 0

Figure 3.16: The eigenvectors of the Hessian of a quadratic function represent the orthogonal
axes of the quadratic ellipsoid and are also mutually orthogonal. The eigenvectors of the
Hessian are orthogonal conjugate directions. The generalized definition of conjugacy may
result in non-orthogonal directions.

the others. Alternatively, one can work with the original variables by successively making
the best (projected) gradient-descent step along each eigenvector so as to minimize the loss
function. The best movement along a particular direction is done using line search to select
the step size. The nature of the movement is illustrated in Figure 3.16(a). Note that move-
ment along the jth eigenvector does not disturb the work done along earlier eigenvectors
and therefore d steps are sufficient to each the optimal solution.

Although it is impractical to compute the eigenvectors of the Hessian, there are other
efficiently computable directions satisfying similar properties; this key property is referred
to as mutual conjugacy of vectors. Note that two eigenvectors qi and qj of the Hessian satisfy

qTi qj = 0 because of orthogonality. Furthermore, since qj is an eigenvector of H, we have

Hqj = λjqj for some scalar eigenvalue λj . Multiplying both sides with qTi , we can easily show

that the eigenvectors of the Hessian satisfy qTi Hqj = 0 in pairwise fashion. This condition
is referred to as the mutual conjugacy condition, and it is equivalent to saying that the
Hessian Hq = QTHQ in the transformed axis-system of directions q0 . . . qd−1 is diagonal. In
fact, it turns out that if we select any set of (not necessarily orthogonal) vectors q0 . . . qd−1

satisfying the mutual conjugacy condition, then movement along any of these directions
does not disturb the projected gradient along other directions. Conjugate directions other
than Hessian eigenvectors, such as those shown in Figure 3.16(b), may not be mutually
orthogonal. If we re-write the quadratic loss function in terms of coordinates in a non-
orthogonal axis system of conjugate directions, we will get nicely separated variables with

3.5. GRADIENT-DESCENT STRATEGIES 147

a diagonal Hessian Hq = QTHQ. However, Hq is not a true diagonalization of H because
QTQ �= I. Nevertheless, such non-interacting directions are crucial to avoid zigzagging.

Let W t and W t+1 represent the respective parameter vectors before and after move-
ment along qt. The change in gradient ∇L(W t+1) − ∇L(W t) caused by movement along
the direction qt points in the same direction as Hqt. This is because the product of the
second-derivative (Hessian) matrix with a direction is proportional to the change in the
first-derivative (gradient) when moving along that direction. This relationship is a finite-
difference approximation for non-quadratic functions and it is exact for quadratic functions.
Therefore, the projection (or dot product) of this change vector with respect to any other
step vector (W i+1 −W i) ∝ qi is given by the following:

[W i+1 −W i]
T

︸ ︷︷ ︸

Earlier step

[∇L(W t+1)−∇L(W t)]
︸ ︷︷ ︸

Current gradient change

∝ qTi Hqt = 0

This means that the only change to the gradient along a particular direction qi (during the
entire learning) occurs during the step along that direction. Line search ensures that the final
gradient along that direction is 0. Convex loss functions have linearly independent conjugate
directions (see Exercise 7). By making the best step along each conjugate direction, the final
gradient will have zero dot product with d linearly independent directions; this is possible
only when the final gradient is the zero vector (see Exercise 8), which implies optimality
for a convex function. In fact, one can often reach a near-optimal solution in far fewer than
d updates.

How can one generate conjugate directions iteratively? The obvious approach requires
one needs to track O(d2) vector components of all previous O(d) conjugate directions in
order to enforce conjugacy of the next direction with respect to all these previous direc-
tions (see Exercise 11). Surprisingly, only the most recent conjugate direction is needed to
generate the next direction [359, 443], when steepest decent directions are used for iterative
generation. This is not an obvious result (see Exercise 12). The direction qt+1 is, therefore,
defined iteratively as a linear combination of only the previous conjugate direction qt and
the current steepest descent direction ∇L(W t+1) with combination parameter βt:

qt+1 = −∇L(W t+1) + βtqt (3.49)

Premultiplying both sides with qTt H and using the conjugacy condition to set the left-hand
side to 0, one can solve for βt:

βt =
qTt H[∇L(W t+1)]

qTt Hqt
(3.50)

This leads to an iterative update process, which initializes q0 = −∇L(W 0), and computes
qt+1 iteratively for t = 0, 1, 2, . . . T :

1. Update W t+1 ⇐ W t + αtqt. Here, the step size αt is computed using line search to
minimize the loss function.

2. Set qt+1 = −∇L(W t+1) +
(

qTt H[∇L(W t+1)]

qTt Hqt

)

qt. Increment t by 1.

It can be shown [359, 443] that qt+1 satisfies conjugacy with respect to all previous qi. A
systematic road-map of this proof is provided in Exercise 12.

The above updates do not seem to be Hessian-free, because the matrix H is included in
the above updates. However, the underlying computations only need the projection of the

148 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

Hessian along particular directions; we will see that these can be computed indirectly using
the method of finite differences without explicitly computing the individual elements of the
Hessian. Let v be the vector direction for which the projection Hv needs to be computed.
The method of finite differences computes the loss gradient at the current parameter vector
W and at W + δv for some small value of δ in order to perform the approximation:

Hv ≈ ∇L(W + δv)−∇L(W)

δ
∝ ∇L(W + δv)−∇L(W) (3.51)

The right-hand side is free of the Hessian. The condition is exact for quadratic functions.
Other alternatives for Hessian-free updates are discussed in [41].

So far, we have discussed the simplified case of quadratic loss functions, in which the
second-order derivative matrix (i.e., Hessian) is a constant matrix (i.e., independent of the
current parameter vector). However, neural loss functions are not quadratic and, therefore,
the Hessian matrix is dependent on the current value of W t. Do we first create a quadratic
approximation at a point and then solve it for a few iterations with the Hessian (quadratic
approximation) fixed at that point, or do we change the Hessian every iteration? The former
is referred to as the linear conjugate gradient method, whereas the latter is referred to as
the nonlinear conjugate gradient method. The two methods are equivalent for quadratic loss
functions, which almost never occur in neural networks.

Classical work in neural networks and machine learning has predominantly explored the
use of the nonlinear conjugate gradient method [41], whereas recent work [313, 314] ad-
vocates the use of linear conjugate methods. In the nonlinear conjugate gradient method,
the mutual conjugacy of the directions will deteriorate over time, which can have an un-
predictable effect on overall progress even after a large number of iterations. A part of the
problem is that the process of computing conjugate directions needs to be restarted every
few steps as the mutual conjugacy deteriorates. If the deterioration occurs too fast, one does
not gain much from conjugacy. On the other hand, each quadratic approximation in the lin-
ear conjugate gradient method can be solved exactly, and will typically be (almost) solved
in much fewer than d iterations. Although multiple such approximations will be needed,
there is guaranteed progress within each approximation, and the required number of ap-
proximations is often not too large. The work in [313] experimentally shows the superiority
of linear conjugate gradient methods.

3.5.6.2 Quasi-Newton Methods and BFGS

The acronym BFGS stands for the Broyden–Fletcher–Goldfarb–Shanno algorithm, and it
is derived as an approximation of the Newton method. Let us revisit the updates of the
Newton method. A typical update of the Newton method is as follows:

W
∗ ⇐ W 0 −H−1[∇L(W 0)] (3.52)

In quasi-Newton methods, a sequence of approximations of the inverse Hessian matrix are
used in various steps. Let the approximation of the inverse Hessian matrix in the tth step be
denoted by Gt. In the very first iteration, the value of Gt is initialized to the identity matrix,
which amounts to moving along the steepest-descent direction. This matrix is continuously
updated from Gt to Gt+1 with low-rank updates. A direct restatement of the Newton update
in terms of the inverse Hessian Gt ≈ H−1

t is as follows:

W t+1 ⇐ W t −Gt[∇L(W t)] (3.53)

3.5. GRADIENT-DESCENT STRATEGIES 149

The above update can be improved with an optimized learning rate αt for non-quadratic
loss functions working with (inverse) Hessian approximations like Gt:

W t+1 ⇐ W t − αtGt[∇L(W t)] (3.54)

The optimized learning rate αt is identified with line search. The line search does not
need to be performed exactly (like the conjugate gradient method), because maintenance
of conjugacy is no longer critical. Nevertheless, approximate conjugacy of the early set of
directions is maintained by the method when starting with the identity matrix. One can
(optionally) reset Gt to the identity matrix every d iterations (although this is rarely done).

It remains to be discussed how the matrix Gt+1 is approximated from Gt. For this
purpose, the quasi-Newton condition, also referred to as the secant condition, is needed:

W t+1 −W t
︸ ︷︷ ︸

Parameter Change

= Gt+1 [∇L(W t+1)−∇L(W t)]
︸ ︷︷ ︸

First derivative change

(3.55)

The above formula is simply a finite-difference approximation. Intuitively, multiplication
of the second-derivative matrix (i.e., Hessian) with the parameter change (vector) approx-
imately provides the gradient change. Therefore, multiplication of the inverse Hessian ap-
proximation Gt+1 with the gradient change provides the parameter change. The goal is
to find a symmetric matrix Gt+1 satisfying Equation 3.55, but it represents an under-
determined system of equations with an infinite number of solutions. Among these, BFGS
chooses the closest symmetric Gt+1 to the current Gt, and achieves this goal by posing a
minimization objective function ||Gt+1 −Gt||F in the form of a weighted Frobenius norm.
The solution is as follows:

Gt+1 ⇐ (I −∆tqtv
T
t)Gt(I −∆tvtq

T
t) + ∆tqtq

T
t (3.56)

Here, the (column) vectors qt and vt represent the parameter change and the gradient
change; the scalar ∆t = 1/(qTt vt) is the inverse of the dot product of these two vectors.

qt = W t+1 −W t; vt = ∇L(W t+1)−∇L(W t)

The update in Equation 3.56 can be made more space efficient by expanding it, so that fewer
temporary matrices need to be maintained. Interested readers are referred to [300, 359, 376]
for implementation details and derivation of these updates.

Even though BFGS benefits from approximating the inverse Hessian, it does need to
carry over a matrix Gt of size O(d2) from one iteration to the next. The limited memory
BFGS (L-BFGS) reduces the memory requirement drastically from O(d2) to O(d) by not
carrying over the matrix Gt from the previous iteration. In the most basic version of the L-
BFGS method, the matrix Gt is replaced with the identity matrix in Equation 3.56 in order
to derive Gt+1. A more refined choice is to store the m ≈ 30 most recent vectors qt and vt.
Then, L-BFGS is equivalent to initializing Gt−m+1 to the identity matrix and recursively
applying Equation 3.56m times to derive Gt+1. In practice, the implementation is optimized
to directly compute the direction of movement from the vectors without explicitly storing
large intermediate matrices from Gt−m+1 to Gt. The directions found by L-BFGS roughly
satisfy mutual conjugacy even with approximate line search.

3.5.6.3 Problems with Second-Order Methods: Saddle Points

Second-order methods are susceptible to the presence of saddle points. A saddle point is a
stationary point of a gradient-descent method because its gradient is zero, but it is not a

150 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

minimum (or maximum). A saddle point is an inflection point, which appears to be either a
minimum or a maximum depending on which direction we approach it from. Therefore, the
quadratic approximation of the Newton method will give vastly different shapes depending
on the direction that one approaches the saddle point from. A 1-dimensional function with
a saddle point is the following:

f(x) = x3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x

)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
y

g
(x

,
y
)

SADDLE

POINT

Figure 3.17: Illustrations of saddle points

This function is shown in Figure 3.17(a), and it has an inflection point at x = 0. Note
that a quadratic approximation at x > 0 will look like an upright bowl, whereas a quadratic
approximation at x < 0 will look like an inverted bowl. Furthermore, even if one reaches
x = 0 in the optimization process, both the second derivative and the first derivative will
be zero. Therefore, a Newton update will take the 0/0 form and become indefinite. Such a
point is a degenerate point from the perspective of numerical optimization. Not all saddle
points are degenerate points and vice versa. For multivariate problems, such degenerate
points are often wide and flat regions that are not minima of the objective function. They
do present a significant problem for numerical optimization. An example of such a function
is h(x, y) = x3 + y3, which is degenerate at (0, 0). Furthermore, the region near (0, 0) will
appear like a flat plateau. These types of plateaus create problems for learning algorithms,
because first-order algorithms slow down in these regions and second-order algorithms also
cannot recognize them as spurious regions. It is noteworthy that such saddle points arise
only in higher-order algebraic functions (i.e., higher than second order), which are common
in neural network optimization.

It is also instructive to examine the case of a saddle point that is not a degenerate point.
An example of a 2-dimensional function with a saddle point is as follows:

g(x, y) = x2 − y2

This function is shown in Figure 3.17(b). The saddle point is (0, 0). It is easy to see that
the shape of this function resembles a riding saddle. In this case, approaching from the
x direction or from the y direction will result in very different quadratic approximations.
In one case, the function will appear to be a minimum, and in another case the function
will appear to be a maximum. Furthermore, the saddle point (0, 0) will be a stationary

3.5. GRADIENT-DESCENT STRATEGIES 151

point from the perspective of a Newton update, even though it is not an extremum. Saddle
points occur frequently in regions between two hills of the loss function, and they present
a problematic topography for second-order methods. Interestingly, first-order methods are
often able to escape from saddle points [146], because the trajectory of first-order methods
is simply not attracted by such points. On the other hand, Newton’s method will jump
directly to the saddle point.

Unfortunately, some neural-network loss functions seem to contain a large number of
saddle points. Second-order methods therefore are not always preferable to first-order meth-
ods; the specific topography of a particular loss function may have an important role to
play. Second-order methods are advantageous in situations with complex curvatures of the
loss function or in the presence of cliffs. In other functions with saddle points, first-order
methods are advantageous. Note that the pairing of computational algorithms (like Adam)
with first-order gradient-descent methods already incorporates several advantages of second-
order methods in an implicit way. Therefore, real-world practitioners often prefer first-order
methods in combination with computational algorithms like Adam. Recently, some methods
have been proposed [88] to address saddle points in second-order methods.

3.5.7 Polyak Averaging

One of the motivations for second-order methods is to avoid the kind of bouncing behavior
caused by high-curvature regions. The example of the bouncing behavior caused in valleys
(cf. Figure 3.15) is another example of this setting. One way of achieving some stability with
any learning algorithm is to create an exponentially decaying average of the parameters
over time, so that the bouncing behavior is avoided. Let W 1 . . .WT , be the sequence of
parameters found by any learning method over the full sequence of T steps. In the simplest
version of Polyak averaging, one simply computes the average of all the parameters as the

final set W
f

T :

W
f

T =

∑T
i=1 W i

T
(3.57)

For simple averaging, we only need to compute W
f

T once at the end of the process, and we
do not need to compute the values at 1 . . . T − 1.

However, for exponential averaging with decay parameter β < 1, it is helpful to compute
these values iteratively and maintain a running average over the course of the algorithm:

W
f

t =

∑t
i=1 β

t−iW i
∑t

i=1 β
t−i

[Explicit Formula]

W
f

t = (1− β)W t + βW
f

t−1 [Recursive Formula]

The two formulas above are approximately equivalent at large values of t. The second
formula is convenient because it enables maintenance over the course of the algorithm, and
one does not need to maintain the entire history of parameters. Exponentially decaying
averages are more useful than simple averages to avoid the effect of stale points. In simple
averaging, the final result may be too heavily influenced by the early points, which are poor
approximations to the correct solution.

3.5.8 Local and Spurious Minima

The example of the quadratic bowl given in earlier sections is a relatively simple optimiza-
tion problem that has a single global optimum. Such problems are referred to as convex

152 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

optimization problems, and they represent the simplest case of optimization. In general,
however, the objective function of a neural network is not convex, and it is likely to have
many local minima. In such cases, it is possible for the learning to converge to a subopti-
mal solution. In spite of this fact, with reasonably good initialization, the problem of local
minima in neural networks causes fewer problems than might be expected.

Local minima are problematic only when their objective function values are significantly
larger than that of the global minimum. In practice, however, this does not seem to be the
case in neural networks. Many research results [88, 426] have shown that the local minima
of real-life networks have very similar objective function values to the global minimum. As
a result, their presence does not seem to cause as strong a problem as usually thought.

Local minima often cause problems in the context of model generalization with limited
data. An important point to keep in mind is that the loss function is always defined on a
limited sample of the training data, which is only a rough approximation of what the shape
of the loss function looks like on the true distribution of the unseen test data. When the
size of the training data is small, a number of spurious global or local minima are created
by the paucity of training data. These minima are not seen in the (infinitely large) unseen
distribution of test examples, but they appear as random artifacts of the particular choice of
the training data set. Such spurious minima are often more prominent and attractive when
the loss function is constructed on smaller training samples. In such cases, spurious minima
can indeed create a problem, because they do not generalize well to unseen test instances.
This problem is slightly different from the usual concept of local minima understood in
traditional optimization; the local minima on the training data do not generalize well to
the test data. In other words, the shape of the loss function is not even the same on the
training and on the test data, and therefore the minima in the two cases do not match. Here,
it is important to understand that there are fundamental differences between traditional
optimization and machine learning methods that attempt to generalize a loss function on a
limited data set to the universe of test examples. This is a notion referred to as empirical
risk minimization, in which one computes the (approximate) empirical risk for a learning
algorithm because the true distribution of the examples is unknown. When starting with
random initialization points, it is often possible to fall into one of these spurious minima,
unless one is careful to move the initialization point to a place closer to the basins of
true optima (from a model generalization point of view). One such approach is that of
unsupervised pretraining, which is discussed in Chapter 4.

The specific problem of spurious minima (caused by the inability to generalize the results
from a limited training data to unseen test data) is a much larger problem in neural network
learning than the problem of local minima (from the perspective of traditional optimization).
The nature of this problem is different enough from the normal understanding of local
minima, so that it discussed in a separate chapter on model generalization (cf. Chapter 4).

3.6 Batch Normalization

Batch normalization is a recent method to address the vanishing and exploding gradient
problems, which cause activation gradients in successive layers to either reduce or increase
in magnitude. Another important problem in training deep networks is that of internal
covariate shift. The problem is that the parameters change during training, and therefore
the hidden variable activations change as well. In other words, the hidden inputs from early
layers to later layers keep changing. Changing inputs from early layers to later layers causes
slower convergence during training because the training data for later layers is not stable.

3.6. BATCH NORMALIZATION 153

Batch normalization is able to reduce this effect.
In batch normalization, the idea is to add additional “normalization layers” between

hidden layers that resist this type of behavior by creating features with somewhat similar
variance. Furthermore, each unit in the normalization layers contains two additional pa-
rameters βi and γi that regulate the precise level of normalization in the ith unit; these

∑

ADD BATCH

NORMALIZATION

BN ∑

∑

BREAK UP

∑ ∑
ai

BN
vi

Figure 3.18: The different choices in batch normalization

parameters are learned in a data-driven manner. The basic idea is that the output of the
ith unit will have a mean of βi and a standard deviation of γi over each mini-batch of
training instances. One might wonder whether it might make sense to simply set each βi

to 0 and each γi to 1, but doing so reduces the representation power of the network. For
example, if we make this transformation, then the sigmoid units will be operating within
their linear regions, especially if the normalization is performed just before activation (see
below for discussion of Figure 3.18). Recall from the discussion in Chapter 1 that multilayer
networks do not gain power from depth without nonlinear activations. Therefore, allowing
some “wiggle” with these parameters and learning them in a data-driven manner makes
sense. Furthermore, the parameter βi plays the role of a learned bias variable, and therefore
we do not need additional bias units in these layers.

We assume that the ith unit is connected to a special type of node BNi, where BN
stands for batch normalization. This unit contains two parameters βi and γi that need to
be learned. Note that BNi has only one input, and its job is to perform the normalization
and scaling. This node is then connected to the next layer of the network in the standard
way in which a neural network is connected to future layers. Here, we mention that there
are two choices for where the normalization layer can be connected:

1. The normalization can be performed just after applying the activation function to the
linearly transformed inputs. This solution is shown in Figure 3.18(a). Therefore, the
normalization is performed on post-activation values.

2. The normalization can be performed after the linear transformation of the inputs,
but before applying the activation function. This situation is shown in Figure 3.18(b).
Therefore, the normalization is performed on pre-activation values.

It is argued in [214] that the second choice has more advantages. Therefore, we focus on this
choice in this exposition. The BN node shown in Figure 3.18(b) is just like any other compu-
tational node (albeit with some special properties), and one can perform backpropagation
through this node just like any other computational node.

What transformations does BNi apply? Consider the case in which its input is v
(r)
i ,

corresponding to the rth element of the batch feeding into the ith unit. Each v
(r)
i is obtained

154 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

by using the linear transformation defined by the coefficient vector W i (and biases if any).
For a particular batch of m instances, let the values of the m activations be denoted by

v
(1)
i , v

(2)
i , . . . v

(m)
i . The first step is to compute the mean μi and standard deviation σi for

the ith hidden unit. These are then scaled using the parameters βi and γi to create the
outputs for the next layer:

μi =

∑m
r=1 v

(r)
i

m
∀i (3.58)

σ2
i =

∑m
r=1(v

(r)
i − μi)

2

m
+ ǫ ∀i (3.59)

v̂
(r)
i =

v
(r)
i − μi

σi
∀i, r (3.60)

a
(r)
i = γi · v̂(r)i + βi ∀i, r (3.61)

A small value of ǫ is added to σ2
i to regularize cases in which all activations are the same,

which results in zero variance. Note that a
(r)
i is the pre-activation output of the ith node,

when the rth batch instance passes through it. This value would otherwise have been set

to v
(r)
i , if we had not applied batch normalization. We conceptually represent this node

with a special node BNi that performs this additional processing. This node is shown in
Figure 3.18(b). Therefore, the backpropagation algorithm has to account for this additional
node and ensure that the loss derivative of layers earlier than the batch normalization layer
accounts for the transformation implied by these new nodes. It is important to note that the
function applied at each of these special BN nodes is specific to the batch at hand. This type
of computation is unusual for a neural network in which the gradients are linearly separable
sums of the gradients with respect to individual training examples. This is not quite true in
this case because the batch normalization layer computes nonlinear metrics from the batch
(such as its standard deviation). Therefore, the activations depend on how the examples
in a batch are related to one another, which is not common in most neural computations.
However, this special property of the BN node does not prevent us from backpropagating
through the computations performed in it.

The following will describe the changes in the backpropagation algorithm caused by
the normalization layer. The main point of this change is to show how to backpropagate
through the newly added layer of normalization nodes. Another point to be aware of is that
we want to optimize the parameters βi and γi. For the gradient-descent steps with respect
to each βi and γi, we need the gradients with respect to these parameters. Assume that we
have already backpropagated up to the output of the BN node, and therefore we have each
∂L

∂a
(r)
i

available. Then, the derivatives with respect to the two parameters can be computed

as follows:

∂L

∂βi
=

m∑

r=1

∂L

∂a
(r)
i

· ∂a
(r)
i

∂βi
=

m∑

r=1

∂L

∂a
(r)
i

∂L

∂γi
=

m∑

r=1

∂L

∂a
(r)
i

· ∂a
(r)
i

∂γi
=

m∑

r=1

∂L

∂a
(r)
i

· v̂(r)i

We also need a way to compute ∂L
∂vr

i

. Once this value is computed, the backpropagation

to the pre-activation values ∂L
∂ar

j

for all nodes j in the previous layer uses the straightfor-

ward backpropagation update introduced earlier in this chapter. Therefore, the dynamic

3.6. BATCH NORMALIZATION 155

programming recursion will be complete because one can then use these values of ∂L
∂ar

j

. One

can compute the value of ∂L
∂vr

i

in terms of v̂
(r)
i , μi, and σi, by observing that v

(r)
i can be

written as a (normalization) function of only v̂
(r)
i , mean μi, and variance σ2

i . Observe that
μi and σi are not treated as constants, but as variables because they depend on the batch
at hand. Therefore, we have the following:

∂L

∂v
(r)
i

=
∂L

∂v̂
(r)
i

∂v̂
(r)
i

∂v
(r)
i

+
∂L

∂μi

∂μi

∂v
(r)
i

+
∂L

∂σ2
i

∂σ2
i

∂v
(r)
i

(3.62)

=
∂L

∂v̂
(r)
i

(
1

σi

)

+
∂L

∂μi

(
1

m

)

+
∂L

∂σ2
i

(

2(v
(r)
i − μi)

m

)

(3.63)

We need to evaluate each of the three partial derivatives on the right-hand side of the
above equation in terms of the quantities that have been computed using the already-
executed dynamic programming updates of backpropagation. This allows the creation of the
recurrence equation for the batch normalization layer. Among these, the first expression,
which is ∂L

∂v̂
(r)
i

, can be substituted in terms of the loss derivatives of the next layer by

observing that a
(r)
i is related to v̂

(r)
i by a constant of proportionality γi:

∂L

∂v̂
(r)
i

= γi
∂L

∂a
(r)
i

[Since a
(r)
i = γi · v̂(r)i + βi] (3.64)

Therefore, by substituting this value of ∂L

∂v̂
(r)
i

in Equation 3.63, we have the following:

∂L

∂v
(r)
i

=
∂L

∂a
(r)
i

(
γi
σi

)

+
∂L

∂μi

(
1

m

)

+
∂L

∂σ2
i

(

2(v
(r)
i − μi)

m

)

(3.65)

It now remains to compute the partial derivative of the loss with respect to the mean and
the variance. The partial derivative of the loss with respect to the variance is computed as
follows:

∂L

∂σ2
i

=
m∑

q=1

∂L

∂v̂
(q)
i

· ∂v̂
(q)
i

∂σ2
i

︸ ︷︷ ︸

Chain rule

= − 1

2σ3
i

m∑

q=1

∂L

∂v̂
(q)
i

(v
(q)
i − μi)

︸ ︷︷ ︸

Use Equation 3.60

= − 1

2σ3
i

m∑

q=1

∂L

∂a
(q)
i

γi · (v(q)i − μi)

︸ ︷︷ ︸

Substitution from Equation 3.64

The partial derivatives of the loss with respect to the mean can be computed as follows:

∂L

∂μi
=

m∑

q=1

∂L

∂v̂
(q)
i

· ∂v̂
(q)
i

∂μi
+

∂L

∂σ2
i

· ∂σ
2
i

∂μi

︸ ︷︷ ︸

Chain rule

= − 1

σi

m∑

q=1

∂L

∂v̂
(q)
i

− 2
∂L

∂σ2
i

·
∑m

q=1(v
(q)
i − μi)

m
︸ ︷︷ ︸

Use Equations 3.59 and 3.60

= −γi
σi

m∑

q=1

∂L

∂a
(q)
i

︸ ︷︷ ︸

Eq. 3.64

+

(
1

σ3
i

)

·
(

m∑

q=1

∂L

∂a
(q)
i

γi · (v(q)i − μi)

)

·
(∑m

q=1(v
(q)
i − μi)

m

)

︸ ︷︷ ︸

Substitution for ∂L
∂σ2

i

156 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

By plugging in the partial derivatives of the loss with respect to the mean and variance in
Equation 3.65, we get a full recursion for ∂L

∂v
(r)
i

(value before batch-normalization layer) in

terms of ∂L

∂a
(r)
i

(value after the batch normalization layer). This provides a full view of the

backpropagation of the loss through the batch-normalization layer corresponding to the BN
node. The other aspects of backpropagation remain similar to the traditional case. Batch
normalization enables faster inference because it prevents problems such as the exploding
and vanishing gradient (which cause slow learning).

A natural question about batch normalization arises during inference (prediction) time.
Since the transformation parameters μi and σi depend on the batch, how should one com-
pute them during testing when a single test instance is available? In this case, the values of μi

are σi are computed up front using the entire population (of training data), and then treated
as constants during testing time. One can also keep an exponentially weighted average of
these values during training. Therefore, the normalization is a simple linear transformation
during inference.

An interesting property of batch normalization is that it also acts as a regularizer. Note
that the same data point can cause somewhat different updates depending on which batch
it is included in. One can view this effect as a kind of noise added to the update process.
Regularization is often achieved by adding a small amount of noise to the training data. It
has been experimentally observed that regularization methods like Dropout (cf. Section 4.5.4
of Chapter 4) do not seem to improve performance when batch normalization is used [184],
although there is not a complete agreement on this point. A variant of batch normalization,
known as layer normalization, is known to work well with recurrent networks. This approach
is discussed in Section 7.3.1 of Chapter 7.

3.7 Practical Tricks for Acceleration and Compression

Neural network learning algorithms can be extremely expensive, both in terms of the number
of parameters in the model and the amount of data that needs to be processed. There are
several strategies that are used to accelerate and compress the underlying implementations.
Some of the common strategies are as follows:

1. GPU-acceleration: Graphics Processor Units (GPUs) have historically been used for
rendering video games with intensive graphics because of their efficiency in settings
where repeated matrix operations (e.g., on graphics pixels) are required. It was even-
tually realized by the machine learning community (and GPU hardware companies)
that such repetitive operations are also used in settings like neural networks, in which
matrix operations are extensively used. Even the use of a single GPU can significantly
speed up implementation because of its high memory bandwidth and multithreading
within its multicore architecture.

2. Parallel implementations: One can parallelize the implementations of neural networks
by using multiple GPUs or CPUs. Either the neural network model or the data can
be partitioned across different processors. These implementations are referred to as
model-parallel and data-parallel implementations.

3. Algorithmic tricks for model compression during deployment: A key point about the
practical use of neural networks is that they have different computational requirements
during training and deployment. While it is acceptable to train a model for a week
with a large amount of memory, the final deployment might be performed on a mobile

3.7. PRACTICAL TRICKS FOR ACCELERATION AND COMPRESSION 157

phone, which is highly constrained both in terms of memory and computational power.
Therefore, numerous tricks are used for model compression during testing time. This
type of compression often results in better cache performance and efficiency as well.

In the following, we will discuss some of these acceleration and compression techniques.

3.7.1 GPU Acceleration

GPUs were originally developed for rendering graphics on screens with the use of lists of
3-dimensional coordinates. Therefore, graphics cards were inherently designed to perform
many matrix multiplications in parallel to render the graphics rapidly. GPU processors have
evolved significantly, moving well beyond their original functionality of graphics rendering.
Like graphics applications, neural-network implementations require large matrix multipli-
cations, which is inherently suited to the GPU setting. In a traditional neural network,
each forward propagation is a multiplication of a matrix and vector, whereas in a convolu-
tional neural network, two matrices are multiplied. When a mini-batch approach is used,
activations become matrices (instead of vectors) in a traditional neural network. Therefore,
forward propagations require matrix multiplications. A similar result is true for backprop-
agation, during which two matrices are multiplied frequently to propagate the derivatives
backwards. In other words, most of the intensive computations involve vector, matrix, and
tensor operations. Even a single GPU is good at parallelizing these operations in its dif-
ferent cores with multithreading [203], in which some groups of threads sharing the same
code are executed concurrently. This principle is referred to as Single Instruction Multiple
Threads (SIMT). Although CPUs also support short-vector data parallelization via Single
Instruction Multiple Data (SIMD) instructions, the degree of parallelism is much lower as
compared to the GPU. There are different trade-offs when using GPUs as compared to
traditional CPUs. GPUs are very good at repetitive operations, but they have difficulty at
performing branching operations like if-then statements. Most of the intensive operations
in neural network learning are repetitive matrix multiplications across different training
instances, and therefore this setting is suited to the GPU. Although the clock speed of a
single instruction in the GPU is slower than the traditional CPU, the parallelization is so
much greater in the GPU that huge advantages are gained.

GPU threads are grouped into small units called warps. Each thread in the warp shares
the same code in each cycle, and this restriction enables a concurrent execution of the
threads. The implementation needs to be carefully tailored to reduce the use of memory
bandwidth. This is done by coalescing the memory reads and writes from different threads,
so that a single memory transaction can be used to read and write values from different
threads. Consider a common operation like matrix multiplication in neural network settings.
The matrices are multiplied by making each thread responsible for computing a single entry
in the product matrix. For example, consider a situation in which a 100 × 50 matrix is
multiplied with a 50 × 200 matrix. In such a case, a total of 100 × 200 = 20000 threads
would be launched in order to compute the entries of the matrix. These threads will typically
be partitioned into multiple warps, each of which is highly parallelized. Therefore, speedups
are achieved. A discussion of matrix multiplication on GPUs is provided in [203].

With high amounts of parallelization, memory bandwidth is often the primary limiting
factor. Memory bandwidth refers to the speed at which the processor can access the relevant
parameters from their stored locations in memory. GPUs have a high degree of parallelism
and high memory bandwidth as compared to traditional CPUs. Note that if one cannot
access the relevant parameters from memory fast enough, then faster execution does not

158 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

help the speed of computation. In such cases, the memory transfer cannot keep up with the
speed of the processor whether working with the CPU or the GPU, and the CPU/GPU cores
will idle. GPUs have different trade-offs between cache access, computation, and memory
access. CPUs have much larger caches than GPUs and they rely on the caches to store an
intermediate result, such as the result of multiplying two numbers. Accessing a computed
value from a cache is much faster than multiplying them again, which is where the CPU
has an advantage over the GPU. However, this advantage is neutralized in neural network
settings, where the sizes of the parameter matrices and activations are often too large to fit
in the CPU cache. Even though the CPU cache is larger than that of the GPU, it is not large
enough to handle the scale at which neural-network operations are performed. In such cases,
one has to rely on high memory bandwidth, which is where the GPU has an advantage over
the CPU. Furthermore, it is often faster to perform the same computation again rather
than accessing it from memory, when working with the GPU (assuming that the result
is unavailable in a cache). Therefore, GPU implementations are done somewhat differently
from traditional CPU implementations. Furthermore, the advantage gained can be sensitive
to the choice of neural network architecture, as the memory bandwidth requirements and
multi-threading gains of different architectures can be different.

At first sight, it might seem from the above example that the use of a GPU requires a
lot of low-level programming, and it would indeed be a challenge to create custom GPU
code for each neural architecture. With this problem in mind, companies like NVIDIA have
modularized the interface between the programmer and the GPU implementation. The key
point is that the speeding of primitives like matrix multiplication and convolution can be
hidden from the user by providing a library of neural network operations that perform
these faster operations behind the scenes. The GPU library is tightly integrated with deep
learning frameworks like Caffe or Torch to take advantage of the accelerated operations on
the GPU. A specific example of such a library is the NVIDIA CUDA Deep Neural Network
Library [643], which is referred to in short as cuDNN. CUDA is a parallel computing plat-
form and programming model that works with CUDA-enabled GPU processors. However,
it provides an abstraction and a programming interface that is easy to use with relatively
limited rewriting of code. The cuDNN library can be integrated with multiple deep learning
frameworks such as Caffe, TensorFlow, Theano, and Torch. The changes required to convert
the training code of a particular neural network from its CPU version to a GPU version
are often small. For example, in Torch, the CUDA Torch package is incorporated at the
beginning of the code, and various data structures (like tensors) are initialized as CUDA
tensors (instead of regular tensors). With these types of modest modifications, virtually the
same code can run on a GPU instead of a CPU in Torch. A similar situation holds true
in other deep learning frameworks. This type of approach shields the developers from the
low-level performance tuning required in GPU frameworks, because the primitives in the
library already have the code that takes care of all the low-level details of parallelization on
the GPU.

3.7.2 Parallel and Distributed Implementations

It is possible to make training even faster by using multiple CPUs or GPUs. Since it is more
common to use multiple GPUs, we focus on this setting. Parallelism is not a simple matter
when working with GPUs because there are overheads associated with the communication
between different processors. The delay caused by these overheads has recently been re-
duced with specialized network cards for GPU-to-GPU transfer. Furthermore, algorithmic
tricks like using 8-bit approximations of the gradients [98] can help in speeding up the

3.7. PRACTICAL TRICKS FOR ACCELERATION AND COMPRESSION 159

communication. There are several ways in which one can partition the work across different
processors, namely hyperparameter parallelism, model parallelism, and data parallelism.
These methods are discussed below.

Hyperparameter Parallelism

The simplest possible way to achieve parallelism in the training process without much
overhead is to train neural networks with different parameter settings on different processors.
No communication is required across different executions, and therefore wasteful overhead
is avoided. As discussed earlier in this chapter, runs with suboptimal hyperparameters are
often terminated long before running them to completion. Nevertheless, a small number of
different runs with optimized parameters are often used in order to create an ensemble of
models. The training of different ensemble components can be performed independently on
different processors.

Model Parallelism

Model parallelism is particularly useful when a single model is too large to fit on a GPU. In
such a case, the hidden layer is divided across the different GPUs. The different GPUs work
on exactly the same batch of training points, although different GPUs compute different
parts of the activations and the gradients. Each GPU only contains the portion of the weight
matrix that are multiplied with the hidden activations present in the GPU. However, it
would still need to communicate the results of its activations to the other GPUs. Similarly,
it would need to receive the derivatives with respect to the hidden units in other GPUs in
order to compute the gradients of the weights between its hidden units and those of other
GPUs. This is achieved with the use of inter-connections across GPUs, and the computations
across these interconnections add to the overhead. In some cases, these interconnections are
dropped in a subset of the layers in order to reduce the communication overhead (although
the resulting model would not quite be the same as the sequential version). Model parallelism
is not helpful in cases where the number of parameters in the neural network is small, and
should only be used for large networks. A good practical example of model parallelism is the
design of AlexNet, which is a convolutional neural network (cf. Section 8.4.1 of Chapter 8).
A sequential version of AlexNet and a GPU-partitioned version of AlexNet are both shown
in Figure 8.9 of Chapter 8. Note that the sequential version in Figure 8.9 is not exactly
equivalent to the GPU-partitioned version because the interconnections between GPUs have
been dropped in some of the layers. A discussion of model parallelism may be found in [74].

Data Parallelism

Data parallelism works best when the model is small enough to fit on each GPU, but the
amount of training data is large. In these cases, the parameters are shared across the different
GPUs and the goal of the updates is to use the different processors with different training
points for faster updates. The problem is that perfect synchronization of the updates can
slow down the process, because locking mechanisms would need to be used to synchronize
the updates. The key point is that each processor would have to wait for the others to
make their updates. As a result, the slowest processor creates a bottleneck. A method that
uses asynchronous stochastic gradient descent was proposed in [91]. The basic idea is to
use a parameter server in order to share the parameters across different GPU processors.
The updates are performed without using any locking mechanism. In other words, each
GPU can read the shared parameters at any time, perform the computation, and write the

160 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

parameters to the parameter server without worrying about locks. In this case, inefficiency
would still be caused by one GPU processor overwriting the progress made by another, but
there would be no waiting times for writes. As a result, the overall progress would still be
faster than with a synchronized mechanism. Distributed asynchronous gradient descent is
quite popular as a strategy for parallelism in large-scale industrial settings.

Exploiting the Trade-Offs for Hybrid Parallelism

It is evident from the above discussion that model parallelism is well suited to models with a
large parameter footprint, whereas data parallelism is well suited to smaller models. It turns
out that one can combine the two types of parallelism over different parts of the network.
In certain types of convolutional neural networks that have fully connected layers, the vast
majority of parameters occur in the fully connected layers, whereas more computations are
performed in the earlier layers. In these cases, it makes sense to use data parallelism for
the early part of the network, and model parallelism for the later part of the network. This
type of approach is referred to as hybrid parallelism. A discussion of this type of approach
may be found in [254].

3.7.3 Algorithmic Tricks for Model Compression

Training a neural network and deploying it typically have different requirements in terms of
memory and efficiency requirements. While it may be acceptable to require a week to train
a neural network to recognize faces in images, the end user might wish to use the trained
neural network to recognize a face within a matter of a few seconds. Furthermore, the model
might be deployed on a mobile device with little memory and computational availability. In
such cases, it is crucial to be able to use the trained model efficiently, and also use it with a
limited amount of storage. Efficiency is generally not a problem at deployment time, because
the prediction of a test instance often requires straightforward matrix multiplications over
a few layers. On the other hand, storage requirements are often a problem because of the
large number of parameters in multilayer networks. There are several tricks that are used
for model compression in such cases. In most of the cases, a larger trained neural network
is modified so that it requires less space by approximating some parts of the model. In
addition, some efficiency improvements can also be realized at prediction time by model
compression because of better cache performance and fewer operations, although this is not
the primary goal. Interestingly, this approximation might occasionally improve accuracy on
out-of-sample predictions because of regularization effects, especially if the original model
is unnecessarily large compared to the training data size.

Sparsifying Weights in Training

The links in a neural network are associated with weights. If the absolute value of a par-
ticular weight is small, then the model is not strongly influenced by that weight. Such
weights can be dropped, and the neural network can be fine-tuned starting with the current
weights on links that have not yet been dropped. The level of sparsification will depend on
the weight threshold at which links are dropped. By choosing a larger threshold at which
weights are dropped, the size of the model will reduce significantly. In such cases, it is par-
ticularly important to fine-tune the values of the retained weights with further epochs of
training. One can also encourage the dropping of links by using L1-regularization, which
will be discussed in Chapter 4. When L1-regularization is used during training, many of

3.7. PRACTICAL TRICKS FOR ACCELERATION AND COMPRESSION 161

the weights will have zero values anyway because of the natural mathematical properties of
this form of regularization. However, it has been shown in [169] that L2-regularization has
the advantage of higher accuracy. Therefore, the work in [169] uses L2-regularization and
prunes the weights that are below a particular threshold.

Further enhancements were reported in [168], where the approach was combined with
Huffman coding and quantization for compression. The goal of quantization is to reduce the
number of bits representing each connection. This approach reduced the storage required
by AlexNet [255] by a factor of 35, or from about 240MB to 6.9MB, with no loss of accuracy.
It is now possible as a result of this reduction to fit the model into an on-chip SRAM cache
rather than off-chip DRAM memory; this also provide a beneficial effect on prediction times.

Leveraging Redundancies in Weights

It was shown in [94] that the vast majority of the weights in a neural network are redundant.
In other words, for anym×n weight matrixW between a pair of layers withm1 andm2 units
respectively, one can express this weight matrix as W ≈ UV T , where U and V are of sizes
m1 × k and m2 × k, respectively. Furthermore, it is assumed that k ≪ min{m1,m2}. This
phenomenon occurs because of several peculiarities in the training process. For example, the
features and weights in a neural network tend to co-adapt because of different parts of the
network training at different rates. Therefore, the faster parts of the network often adapt
to the slower parts. As a result, there is a lot of redundancy in the network both in terms
of the features and the weights, and the full expressivity of the network is never utilized.
In such a case, one can replace the pair of layers (containing weight matrix W) with three
layers of size m1, k, and m2. The weight matrices between the first pair of layers is U and
the weight matrix between the second pair of layers is V T . Even though the new matrix
is deeper, it is better regularized as long as W − UV T only contains noise. Furthermore,
the matrices U and V require (m1 +m2) · k parameters, which is less than the number of
parameters in W as long as k is less than half the harmonic mean of m1 and m2:

Parameters in W

Parameters in U , V
=

m1 ·m2

k(m1 +m2)
=

HARMONIC-MEAN(m1,m2)

2k

As shown in [94], more than 95% of the parameters in the neural network are redundant,
and therefore a low value of the rank k suffices for approximation.

An important point is that the replacement of W with U and V must be done after
completion of the learning of W . For example, if we replaced the pair of layers corresponding
to W with the three layers containing the two weight matrices U and V T and trained from
scratch, good results may not be obtained. This is because co-adaptation will occur again
during training, and the resulting matrices U and V will have a rank even lower than k. As
a result, under-fitting might occur.

Finally, one can compress even further by realizing that both U and V need not be
learned because they are redundant with respect to each other. For any rank-k matrix U ,
one can learn V so that the product UV T is the same value. Therefore, the work in [94]
provides methods to fix U , and then learn V instead.

Hash-Based Compression

One can reduce the number of parameters to be stored by forcing randomly chosen entries
of the weight matrix to take on shared values of the parameters. The random choice is
achieved with the application of a hash function on the entry position (i, j) in the matrix.

162 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

For example, imagine a situation where we have a weight matrix of size 100× 100 with 104

entries. In such a case, one can hash each weight to a value in the range {1, . . . 1000} to
create 1000 groups. Each of these groups will contain an average of 10 connections that will
share weights. Backpropagation can handle shared weights using the approach discussed
in Section 3.2.9. This approach requires a space requirement of only 1000 for the matrix,
which is 10% of the original space requirement. Note that one could instead use a matrix
of size 100 × 10 to achieve the same compression, but the key point is that using shared
weights does not hurt the expressivity of the model as much as would reducing the size of
the weight matrix a priori. More details of this approach are discussed in [66].

Leveraging Mimic Models

Some interesting results in [13, 55] show that it is possible to significantly compress a model
by creating a new training data set from a trained model, which is easier to model. This
“easier” training data can be used to train a much smaller network without significant loss
of accuracy. This smaller model is referred to as a mimic model. The following steps are
used to create the mimic model:

1. A model is created on the original training data. This model might be very large,
and potentially even created out of an ensemble of different models, further increasing
the number of parameters; it would not be appropriate to use in space-constrained
settings. It is assumed that the model outputs softmax probabilities of the different
classes. This model is also referred to as the teacher model.

2. New training data is created by passing unlabeled examples through the trained net-
work. The targets in the newly created training data are set to the softmax probability
outputs of the trained model on the unlabeled examples. Since unlabeled data is often
copious, it is possible to create a lot of training data in this way. It is noteworthy that
the new training data contains soft (probabilistic) targets rather than the discrete
targets in the original training data, which significantly contributes to the creation of
the compressed model.

3. A much smaller and shallower network is trained using the new training data (with
artificially generated labels). The original training data is not used at all. This much
smaller and shallower network, which is referred to as the mimic or student model,
is what is deployed in space-constrained settings. It can be shown that the accuracy
of the mimic model does not substantially degrade from the model trained over the
original neural network, even though it is much smaller in size.

A natural question arises as to why the mimic model should perform as well as the original
model, even though it is much smaller in size both in terms of the depth as well as the
number of parameters. Trying to construct a shallow model on the original data cannot
match the accuracy of either the shallow model or the mimic model. A number of possible
reasons have been hypothesized for the superior performance of the mimic model [13]:

1. If there are errors in the original training data because of mislabeling, it causes un-
necessary complexity in the trained model. These types of errors are largely removed
in the new training data.

2. If there are complex regions of the decision space, the teacher model simplifies them
by providing softer labels in terms of probabilities. Complexity is washed away by
filtering targets through the teacher model.

3.9. BIBLIOGRAPHIC NOTES 163

3. The original training data contains targets with 0/1 values, whereas the newly created
training contains soft targets, which are more informative. This is particularly useful in
one-hot encoded multilabel targets, where there are clear correlations across different
classes.

4. The original targets might depend on inputs that are not available in the training data.
On the other hand, the teacher-created labels depend on only the available inputs.
This makes the model simpler to learn and washes away unexplained complexity.
Unexplained complexity often leads to unnecessary parameters and depth.

One can view some of the above benefits as a kind of regularization effect. The results
in [13] are stimulating, because they show that deep networks are not theoretically necessary,
although the regularization effect of depth is practically necessary when working with the
original training data. The mimic model enjoys the benefits of this regularization effect by
using the artificially created targets instead of depth.

3.8 Summary

This chapter discusses the problem of training deep neural networks. We revisit the back-
propagation algorithm in detail along with its challenges. The vanishing and the exploding
gradient problems are introduced along with the challenges associated with varying sensi-
tivity of the loss function to different optimization variables. Certain types of activation
functions like ReLU are less sensitive to this problem. However, the use of the ReLU can
sometimes lead to dead neurons, if one is not careful about the learning rate. The type of
gradient descent used to accelerate learning is also important for more efficient executions.
Modified stochastic gradient-descent methods include the use of Nesterov momentum, Ada-
Grad, AdaDelta, RMSProp, and Adam. All these methods encourage gradient-steps that
accelerate the learning process.

Numerous methods have been introduced for addressing the problem of cliffs with the
use of second-order optimization methods. In particular, Hessian-free optimization is seen
as an effective approach for handling many of the underlying optimization issues. An ex-
citing method that has been used recently to improve learning rates is the use of batch
normalization. Batch normalization transforms the data layer by layer in order to ensure
that the scaling of different variables is done in an optimum way. The use of batch nor-
malization has become extremely common in different types of deep networks. Numerous
methods have been proposed for accelerating and compressing neural network algorithms.
Acceleration is often achieved via hardware improvements, whereas compression is achieved
with algorithmic tricks.

3.9 Bibliographic Notes

The original idea of backpropagation was based on idea of differentiation of composition of
functions as developed in control theory [54, 237] under the ambit of automatic differenti-
ation. The adaptation of these methods to neural networks was proposed by Paul Werbos
in his PhD thesis in 1974 [524], although a more modern form of the algorithm was pro-
posed by Rumelhart et al. in 1986 [408]. A discussion of the history of the backpropagation
algorithm may be found in the book by Paul Werbos [525].

A discussion of algorithms for hyperparameter optimization in neural networks and other
machine learning algorithms may be found in [36, 38, 490]. The random search method for

164 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

hyperparameter optimization is discussed in [37]. The use of Bayesian optimization for
hyperparameter tuning is discussed in [42, 306, 458]. Numerous libraries are available for
Bayesian tuning such as Hyperopt [614], Spearmint [616], and SMAC [615].

The rule that the initial weights should depend on both the fan-in and fan-out of a node
in proportion to

√

2/(rin + rout) is based on [140]. The analysis of initialization methods
for rectifier neural networks is provided in [183]. Evaluations and analysis of the effect of
feature preprocessing on neural network learning may be found in [278, 532]. The use of
rectifier linear units for addressing some of the training challenges is discussed in [141].

Nesterov’s algorithm for gradient descent may be found in [353]. The delta-bar-delta
method was proposed by [217]. The AdaGrad algorithm was proposed in [108]. The RM-
SProp algorithm is discussed in [194]. Another adaptive algorithm using stochastic gradient
descent, which is AdaDelta, is discussed in [553]. This algorithms shares some similarities
with second-order methods, and in particular to the method in [429]. The Adam algo-
rithm, which is a further enhancement along this line of ideas, is discussed in [241]. The
practical importance of initialization and momentum in deep learning is discussed in [478].
Beyond the use of the stochastic gradient method, the use of coordinate descent has been
proposed [273]. The strategy of Polyak averaging is discussed in [380].

Several of the challenges associated with the vanishing and exploding gradient problems
are discussed in [140, 205, 368]. Ideas for parameter initialization that avoid some of these
problems are discussed in [140]. The gradient clipping rule was discussed by Mikolov in his
PhD thesis [324]. A discussion of the gradient clipping method in the context of recurrent
neural networks is provided in [368]. The ReLU activation function was introduced in [167],
and several of its interesting properties are explored in [141, 221].

A description of several second-order gradient optimization methods (such as the New-
ton method) is provided in [41, 545, 300]. The basic principles of the conjugate gradient
method have been described in several classical books and papers [41, 189, 443], and the
work in [313, 314] discusses applications to neural networks. The work in [316] leverages
a Kronecker-factored curvature matrix for fast gradient descent. Another way of approx-
imating the Newton method is the quasi-Newton method [273, 300], with the simplest
approximation being a diagonal Hessian [24]. The acronym BFGS stands for the Broyden-
Fletcher-Goldfarb-Shanno algorithm. A variant known as limited memory BFGS or L-
BFGS [273, 300] does not require as much memory. Another popular second-order method
is the Levenberg–Marquardt algorithm. This approach is, however, defined for squared loss
functions and cannot be used with many forms of cross-entropy or log-losses that are com-
mon in neural networks. Overviews of the approach may be found in [133, 300]. General
discussions of different types of nonlinear programming methods are provided in [23, 39].

The stability of neural networks to local minima is discussed in [88, 426]. Batch nor-
malization methods were introduced recently in [214]. A method that uses whitening for
batch normalization is discussed in [96], although the approach seems not to be practical.
Batch normalization requires some minor adjustments for recurrent networks [81], although
a more effective approach for recurrent networks is that of layer normalization [14]. In this
method (cf. Section 7.3.1), a single training case is used for normalizing all units in a layer,
rather than using mini-batch normalization of a single unit. The approach is useful for
recurrent networks. An analogous notion to batch normalization is that of weight normal-
ization [419], in which the magnitudes and directions of the weight vectors are decoupled
during the learning process. Related training tricks are discussed in [362].

A broader discussion of accelerating machine learning algorithms with GPUs may be
found in [644]. Various types of parallelization tricks for GPUs are discussed in [74, 91,
254], and specific discussions on convolutional neural networks are provided in [541]. Model

3.10. EXERCISES 165

compression with regularization is discussed in [168, 169]. A related model compression
method is proposed in [213]. The use of mimic models for compression is discussed in [55,
13]. A related approach is discussed in [202]. The leveraging of parameter redundancy for
compressing neural networks is discussed in [94]. The compression of neural networks with
the hashing trick is discussed in [66].

3.9.1 Software Resources

All the training algorithms discussed in this chapter are supported by numerous deep learn-
ing frameworks like Caffe [571], Torch [572], Theano [573], and TensorFlow [574]. Extensions
of Caffe to Python and MATLAB are available. All these frameworks provide a variety of
training algorithms that are discussed in this chapter. Options for batch normalization
are available as separate layers in these frameworks. Several software libraries are avail-
able for Bayesian optimization of hyperparameters. These libraries include Hyperopt [614],
Spearmint [616], and SMAC [615]. Although these are designed for smaller machine learn-
ing problems, they can still be used in some cases. Pointers to the NVIDIA cuDNN may be
found in [643]. The different frameworks supported by cuDNN are discussed in [645].

3.10 Exercises

1. Consider the following recurrence:

(xt+1, yt+1) = (f(xt, yt), g(xt, yt)) (3.66)

Here, f() and g() are multivariate functions.

(a) Derive an expression for ∂xt+2

∂xt
in terms of only xt and yt.

(b) Can you draw an architecture of a neural network corresponding to the above
recursion for t varying from 1 to 5? Assume that the neurons can compute any
function you want.

2. Consider a two-input neuron that multiplies its two inputs x1 and x2 to obtain the
output o. Let L be the loss function that is computed at o. Suppose that you know
that ∂L

∂o = 5, x1 = 2, and x2 = 3. Compute the values of ∂L
∂x1

and ∂L
∂x2

.

3. Consider a neural network with three layers including an input layer. The first (input)
layer has four inputs x1, x2, x3, and x4. The second layer has six hidden units cor-
responding to all pairwise multiplications. The output node o simply adds the values
in the six hidden units. Let L be the loss at the output node. Suppose that you know
that ∂L

∂o = 2, and x1 = 1, x2 = 2, x3 = 3, and x4 = 4. Compute ∂L
∂xi

for each i.

4. How does your answer to the previous question change when the output o is computed
as a maximum of its six inputs rather than its sum?

5. The chapter discusses (cf. Table 3.1) how one can perform a backpropagation of an
arbitrary function by using the multiplication with the Jacobian matrix. Discuss why
one must be careful in using this matrix-centric approach.[Hint: Compute the Jacobian
with respect to sigmoid function]

166 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

6. Consider the loss function L = x2+y10. Implement a simple steepest-descent algorithm
to plot the coordinates as they vary from the initialization point to the optimal value
of 0. Consider two different initialization points of (0.5, 0.5) and (2, 2) and plot the
trajectories in the two cases at a constant learning rate. What do you observe about
the behavior of the algorithm in the two cases?

7. The Hessian H of a strongly convex quadratic function always satisfies xTHx > 0
for any nonzero vector x. For such problems, show that all conjugate directions are
linearly independent.

8. Show that if the dot product of a d-dimensional vector v with d linearly independent
vectors is 0, then v must be the zero vector.

9. This chapter discusses two variants of backpropagation, which use the pre-activation
and the postactivation variables, respectively, for the dynamic programming recursion.
Show that these two variants of backpropagation are mathematically equivalent.

10. Consider the softmax activation function in the output layer, in which real-valued out-
puts v1 . . . vk are converted into probabilities as follows (according to Equation 3.20):

oi =
exp(vi)

∑k
j=1 exp(vj)

∀i ∈ {1, . . . , k}

(a) Show that the value of ∂oi
∂vj

is oi(1− oi) when i = j. In the case that i �= j, show

that this value is −oioj .

(b) Use the above result to show the correctness of Equation 3.22:

∂L

∂vi
= oi − yi

Assume that we are using the cross-entropy loss L = −∑k
i=1 yilog(oi), where

yi ∈ {0, 1} is the one-hot encoded class label over different values of i ∈ {1 . . . k}.
11. The chapter uses steepest descent directions to iteratively generate conjugate direc-

tions. Suppose we pick d arbitrary directions v0 . . . vd−1 that are linearly independent.
Show that (with appropriate choice of βti) we can start with q0 = v0 and generate
successive conjugate directions in the following form:

qt+1 = vt+1 +

t∑

i=0

βtiqi

Discuss why this approach is more expensive than the one discussed in the chapter.

12. The definition of βt in Section 3.5.6.1 ensures that qt is conjugate to qt+1. This exercise
systematically shows that any direction qi for i ≤ t satisfies qTi Hqt+1 = 0.
[Hint: Prove (b), (c), and (d) jointly with induction on t while staring at (a).]

(a) Recall from Equation 3.51 that Hqi = [∇L(W i+1) − ∇L(W i)]/δi for quadratic
loss functions, where δi depends on ith step-size. Combine this condition with
Equation 3.49 to show the following for all i ≤ t:

δi[q
T
i Hqt+1] = −[∇L(W i+1)−∇L(W i)]

T [∇L(W t+1)] + δiβt(q
T
i Hqt)

Also show that [∇L(W t+1)−∇L(W t)] · qi = δtq
T
i Hqt.

3.10. EXERCISES 167

(b) Show that ∇L(W t+1) is orthogonal to each qi for i ≤ t. [The proof for the case
when i = t is trivial because the gradient at line-search termination is always
orthogonal to the search direction.]

(c) Show that the loss gradients at W 0 . . .W t+1 are mutually orthogonal.

(d) Show that qTi Hqt+1 = 0 for i ≤ t. [The case for i = t is trivial.]

Chapter 4

Teaching Deep Learners to Generalize

“All generalizations are dangerous, even this one.”—Alexandre Dumas

4.1 Introduction

Neural networks are powerful learners that have repeatedly proven to be capable of learning
complex functions in many domains. However, the great power of neural networks is also
their greatest weakness; neural networks often simply overfit the training data if care is not
taken to design the learning process carefully. In practical terms, what overfitting means
is that a neural network will provide excellent prediction performance on the training data
that it is built on, but will perform poorly on unseen test instances. This is caused by the fact
that the learning process often remembers random artifacts of the training data that do not
generalize well to the test data. Extreme forms of overfitting are referred to as memorization.
A helpful analogy is to think of a child who can solve all the analytical problems for which
he or she has seen the solutions, but is unable to provide useful solutions to a new problem.
However, if the child is exposed to the solutions of more and more different types of problems,
he or she will be more likely to solve a new problem by abstracting out the essence of the
patterns that are repeated across different problems and their solutions. Machine learning
proceeds in a similar way by identifying patterns that are useful for prediction. For example,
in a spam detection application, if the pattern “Free Money!!” occurs thousands of times
in spam emails, the machine learner generalizes this rule to identify spam email instances
it has not seen before. On the other hand, a prediction that is based on the patterns seen
in a tiny training data set of two emails will lead to good performance on those emails but
not on new emails. The ability of a learner to provide useful predictions for instances it has
not seen before is referred to as generalization.

Generalization is a useful practical property, and is therefore the holy grail in all machine
learning applications. After all, if the training examples are already labeled, there is no prac-
tical use of predicting such examples again. For example, in an image-captioning application,

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 4

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_4&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_4

170 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

one is always looking to use the labeled images in order to learn captions for images that
the learner has not seen before.

LINEAR SIMPLIFICATION

TRUE MODEL

x=2

Y

X

Figure 4.1: An example of a nonlinear distribution in which one would expect a model with
d = 3 to work better than a linear model with d = 1.

The level of overfitting depends both on the complexity of the model and on the amount
of data available. The complexity of the model defined by a neural network depends on the
number of underlying parameters. Parameters provide additional degrees of freedom, which
can be used to explain specific training data points without generalizing well to unseen
points. For example, imagine a situation in which we attempt to predict the variable y from
x using the following formula for polynomial regression:

ŷ =

d∑

i=0

wix
i (4.1)

This is a model that uses (d + 1) parameters w0 . . . wd in order to explain pairs (x, y)
available to us. One could implement this model by using a neural network with d inputs
corresponding to x, x2 . . . xd, and a single bias neuron whose coefficient is w0. The loss
function uses the squared difference between the observed value y and predicted value ŷ.
In general, larger values of d can capture better nonlinearity. For example, in the case of
Figure 4.1, a nonlinear model with d = 4 should be able to fit the data better than a linear
model with d = 1, given an infinite amount (or a lot) of data. However, when working with
a small, finite data set, this does not always turn out to be the case.

If we have (d+1) or less training pairs (x, y), it is possible to fit the data exactly with zero
error irrespective of how well these training pairs reflect the true distribution. For example,
consider a situation in which we have five training points available. One can show that it is
possible to fit the training points exactly with zero error using a polynomial of degree 4. This
does not, however, mean that zero error will be achieved on unseen test data. An example
of this situation is illustrated in Figure 4.2, where both the linear and polynomial models on
three sets of five randomly chosen data points are shown. It is clear that the linear model is
stable, although it is unable to exactly model the curved nature of the true data distribution.
On the other hand, even though the polynomial model is capable of modeling the true data
distribution more closely, it varies wildly over the different training data sets. Therefore, the
same test instance at x = 2 (shown in Figure 4.2) would receive similar predictions from the
linear model, but would receive very different predictions from the polynomial model over
different choices of training data sets. The behavior of the polynomial model is, of course,
undesirable from a practitioner’s point of view, who would expect similar predictions for
a particular test instance, even when different samples of the training data set are used.
Since all the different predictions of the polynomial model cannot be correct, it is evident
that the increased power of the polynomial model over the linear model actually increases

4.1. INTRODUCTION 171

LINEAR SIMPLIFICATION

TRUE MODEL

x=2
x=2

x=2
POLYNOMIAL PREDICTION AT x=2

LINEAR PREDICTION AT x=2

x=2

Figure 4.2: Overfitting with increased model complexity: The linear model does not
change much with the training data, whereas the polynomial model changes drastically.
As a result, the inconsistent predictions of the polynomial model at x = 2 are often more
inaccurate than those of the linear model. The polynomial model does have the ability to
outperform the linear model if enough training data is provided.

the error rather than reducing it. This difference in predictions for the same test instance
(but different training data sets) is manifested as the variance of a model. As evident from
Figure 4.2, models with high variance tend to memorize random artifacts of the training
data, causing inconsistency and inaccuracy in the prediction of unseen test instances. It is
noteworthy that a polynomial model with higher degree is inherently more powerful than
a linear model because the higher-order coefficients could always be set to 0; however, it is
unable to achieve its full potential when the amount of data is limited. Simply speaking,
the variance inherent in the finiteness of the data set causes increased complexity to be
counterproductive. This trade-off between the power of a model and its performance on
limited data is captured with the bias-variance trade-off.

There are several tell-tale signs of overfitting:

1. When a model is trained on different data sets, the same test instance might obtain
very different predictions. This is a sign that the training process is memorizing the
nuances of the specific training data set, rather than learning patterns that generalize
to unseen test instances. Note that the three predictions at x = 2 in Figure 4.2 are
quite different for the polynomial model. This is not quite the case for the linear
model.

2. The gap between the error of predicting training instances and unseen test instances
is rather large. Note that in Figure 4.2, the predictions at the unseen test point x = 2
are often more inaccurate in the polynomial model than in the linear model. On the
other hand, the training error is always zero for the polynomial model, whereas the
training error is always nonzero for the linear model.

172 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

Because of the large gaps between training and test error, models are often tested on unseen
portions of the training data. These unseen portions of the test data are often held out early
on, and then used in order to make different types of algorithmic decisions such as parameter
tuning. This set of points is referred to as the validation set. The final accuracy is tested on a
fully out-of-sample set of points that was not used for either model building or for parameter
tuning. The error on out-of-sample test data is also referred to as the generalization error.

Neural networks are large, and they might have millions of parameters in complex appli-
cations. In spite of these challenges, there are a number of tricks that one can use in order
to ensure that overfitting is not a problem. The choice of method depends on the specific
setting, and the type of neural network used. The key methods for avoiding overfitting in a
neural network are as follows:

1. Penalty-based regularization: Penalty-based regularization is the most common tech-
nique used by neural networks in order to avoid overfitting. The idea in regularization
is to create a penalty or other types of constraints on the parameters in order to
favor simpler models. For example, in the case of polynomial regression, a possible
constraint on the parameters would be to ensure that at most k different values of wi

are non-zero. This will ensure simpler models. However, since it is hard to impose such
constraints explicitly, a simpler approach is to impose a softer penalty like λ

∑d
i=0 w

2
i

and add it to the loss function. Such an approach roughly amounts to multiplying
each parameter wi with a multiplicative decay factor of (1− αλ) before each update
at learning rate α. Aside from penalizing parameters of the network, one can also
choose to penalize the activations of hidden units. This approach often leads to sparse
hidden representations.

2. Generic and tailored ensemble methods: Many ensemble methods are not specific to
neural networks, but can be used for other machine learning problems. We will discuss
bagging and subsampling, which are two of the simplest ensemble methods that can be
implemented for virtually any model or learning problem. These methods are inherited
from traditional machine learning.

There are several ensemble methods that are specifically designed for neural net-
works. A straightforward approach is to average the predictions of different neural
architectures obtained by quick and dirty hyper-parameter optimization. Dropout is
another ensemble technique that is designed for neural networks. This technique uses
the selective dropping of nodes to create different neural networks. The predictions of
different networks are combined to create the final result. Dropout reduces overfitting
by indirectly acting as a regularizer.

3. Early stopping: In early stopping, the iterative optimization method is terminated
early without converging to the optimal solution on the training data. The stopping
point is determined using a portion of the training data that is not used for model
building. One terminates when the error on the held-out data begins to rise. Even
though this approach is not optimal for the training data, it seems to perform well on
the test data because the stopping point is determined on the basis of the held-out
data.

4. Pretraining: Pretraining is a form of learning in which a greedy algorithm is used
to find a good initialization. The weights in different layers of the neural network
are trained sequentially in greedy fashion. These trained weights are used as a good
starting point for the overall process of learning. Pretraining can be shown to be an
indirect form of regularization.

4.1. INTRODUCTION 173

5. Continuation and curriculum methods: These methods perform more effectively by
first training simple models, and then making them more complex. The idea is that
it is easy to train simpler models without overfitting. Furthermore, starting with the
optimum point of the simpler model provides a good initialization for a complex
model that is closely related to the simpler model. It is noteworthy that some of these
methods can be considered similar to pretraining. Pretraining also finds solutions from
the simple to the complex by decomposing the training of a deep neural network into
a set of shallow layers.

6. Sharing parameters with domain-specific insights: In some data-domains like text and
images, one often has some insight about the structure of the parameter space. In
such cases, some of the parameters in different parts of the network can be set to the
same value. This reduces the number of degrees of freedom of the model. Such an
approach is used in recurrent neural networks (for sequence data) and convolutional
neural networks (for image data). Sharing parameters does come with its own set of
challenges because the backpropagation algorithm needs to be appropriately modified
to account for the sharing.

This chapter will first discuss the issue of model generalization in a generic way by intro-
ducing some theoretical results associated with the bias-variance trade-off. Subsequently,
the different ways of reducing overfitting will be discussed.

An interesting observation is that several forms of regularization can be shown to be
roughly equivalent to the injection of noise in either the input data or the hidden variables.
For example, it can be shown that many penalty-based regularizers are equivalent to the
addition of noise [44]. Furthermore, even the use of stochastic gradient descent instead of
gradient descent can be viewed as a kind of noise addition to the steps of the algorithm. As
a result, stochastic gradient descent often shows excellent accuracy on the test data, even
though its performance on the training data might not be as good as that of gradient descent.
Furthermore, some ensemble techniques like Dropout and data perturbation are equivalent
to injecting noise. Throughout this chapter, the similarities between noise injection and
regularization will be discussed where needed.

Even though a natural way of avoiding overfitting is to simply build smaller networks
(with fewer units and parameters), it has often been observed that it is better to build
large networks and then regularize them in order to avoid overfitting. This is because large
networks retain the option of building a more complex model if it is truly warranted. At
the same time, the regularization process can smooth out the random artifacts that are not
supported by sufficient data. By using this approach, we are giving the model the choice to
decide what complexity it needs, rather than making a rigid decision for the model up front
(which might even underfit the data).

Supervised settings tend to be more prone to overfitting than unsupervised settings,
and supervised problems are therefore the main focus of the literature on generalization. To
understand this point, consider that a supervised application tries to learn a single target
variable and might have hundreds of input (explanatory) variables. It is easy to overfit the
process of learning a very focused goal because a limited degree of supervision (e.g., binary
label) is available for each training example. On the other hand, an unsupervised application
has the same number of target variables as the explanatory variables. After all, we are trying
to model the entire data from itself. In the latter case, overfitting is less likely (albeit still
possible) because a single training example has a larger number of bits of information.
Nevertheless, regularization is still used in unsupervised applications, especially when the
intent is to impose a desired structure on the learned representations.

174 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

Chapter Organization

This chapter is organized as follows. The next section introduces the bias-variance trade-off.
The practical implications of the bias-variance trade-off for model training are discussed in
Section 4.3. The use of penalty-based regularization to reduce overfitting is presented in Sec-
tion 4.4. Ensemble methods are explained in Section 4.5. Some methods, such as bagging,
are generic techniques, whereas others (like Dropout) are specifically designed for neural
networks. Early stopping methods are discussed in Section 4.6. Methods for unsupervised
pretraining are discussed in Section 4.7. Continuation and curriculum learning methods
are presented in Section 4.8. Parameter sharing methods are discussed in Section 4.9. Un-
supervised forms of regularization are discussed in Section 4.10. A summary is given in
Section 4.11.

4.2 The Bias-Variance Trade-Off

The introduction section provides an example of how a polynomial model fits a smaller
training data set, leading to the predictions on unseen test data being more erroneous than
are the predictions of a (simpler) linear model. This is because a polynomial model requires
more data in order to not be misled by random artifacts of the training data set. The fact
that more powerful models do not always win in terms of prediction accuracy with a finite
data set is the key take-away from the bias-variance trade-off.

The bias-variance trade-off states that the squared error of a learning algorithm can be
partitioned into three components:

1. Bias: The bias is the error caused by the simplifying assumptions in the model, which
causes certain test instances to have consistent errors across different choices of train-
ing data sets. Even if the model has access to an infinite source of training data, the
bias cannot be removed. For example, in the case of Figure 4.2, the linear model has
a higher model bias than the polynomial model, because it can never fit the (slightly
curved) data distribution exactly, no matter how much data is available. The predic-
tion of a particular out-of-sample test instance at x = 2 will always have an error in a
particular direction when using a linear model for any choice of training sample. If we
assume that the linear and curved lines in the top left of Figure 4.2 were estimated
using an infinite amount of data, then the difference between the two at any particular
values of x is the bias. An example of the bias at x = 2 is shown in Figure 4.2.

2. Variance: Variance is caused by the inability to learn all the parameters of the model
in a statistically robust way, especially when the data is limited and the model tends
to have a larger number of parameters. The presence of higher variance is manifested
by overfitting to the specific training data set at hand. Therefore, if different choices
of training data sets are used, different predictions will be provided for the same
test instance. Note that the linear prediction provides similar predictions at x = 2 in
Figure 4.2, whereas the predictions of the polynomial model vary widely over different
choices of training instances. In many cases, the widely inconsistent predictions at
x = 2 are wildly incorrect predictions, which is a manifestation of model variance.
Therefore, the polynomial predictor has a higher variance than the linear predictor in
Figure 4.2.

3. Noise: The noise is caused by the inherent error in the data. For example, all data
points in the scatter plot vary from the true model in the upper-left corner of Fig-

4.2. THE BIAS-VARIANCE TRADE-OFF 175

ure 4.2. If there had been no noise, all points in the scatter plot would overlap with
the curved line representing the true model.

The above description provides a qualitative view of the bias-variance trade-off. In the
following, we will provide a more formal and mathematical view.

4.2.1 Formal View

We assume that the base distribution from which the training data set is generated is
denoted by B. One can generate a data set D from this base distribution:

D ∼ B (4.2)

One could draw the training data in many different ways, such as selecting only data sets
of a particular size. For now, assume that we have some well-defined generative process
according to which training data sets are drawn from B. The analysis below does not rely
on the specific mechanism with which training data sets are drawn from B.

Access to the base distribution B is equivalent to having access to an infinite resource
of training data, because one can use the base distribution an unlimited number of times
to generate training data sets. In practice, such base distributions (i.e., infinite resources of
data) are not available. As a practical matter, an analyst uses some data collection mech-
anism to collect only one finite instance of D. However, the conceptual existence of a base
distribution from which other training data sets can be generated is useful in theoretically
quantifying the sources of error in training on this finite data set.

Now imagine that the analyst had a set of t test instances in d dimensions, denoted by
Z1 . . . Zt. The dependent variables of these test instances are denoted by y1 . . . yt. For clarity
in discussion, let us assume that the test instances and their dependent variables were also
generated from the same base distribution B by a third party, but the analyst was provided
access only to the feature representations Z1 . . . Zt, and no access to the dependent variables
y1 . . . yt. Therefore, the analyst is tasked with job of using the single finite instance of the
training data set D in order to predict the dependent variables of Z1 . . . Zt.

Now assume that the relationship between the dependent variable yi and its feature
representation Zi is defined by the unknown function f(·) as follows:

yi = f(Zi) + ǫi (4.3)

Here, the notation ǫi denotes the intrinsic noise, which is independent of the model being
used. The value of ǫi might be positive or negative, although it is assumed that E[ǫi] = 0. If
the analyst knew what the function f(·) corresponding to this relationship was, then they
could simply apply the function to each test point Zi in order to approximate the dependent
variable yi, with the only remaining uncertainty being caused by the intrinsic noise.

The problem is that the analyst does not know what the function f(·) is in practice.
Note that this function is used within the generative process of the base distribution B, and
the entire generating process is like an oracle that is unavailable to the analyst. The analyst
only has examples of the input and output of this function. Clearly, the analyst would need
to develop some type of model g(Zi,D) using the training data in order to approximate this
function in a data-driven way.

ŷi = g(Zi,D) (4.4)

Note the use of the circumflex (i.e., the symbol ‘̂ ’) on the variable ŷi to indicate that it is
a predicted value by a specific algorithm rather than the observed (true) value of yi.

176 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

All prediction functions of learning models (including neural networks) are examples of
the estimated function g(·, ·). Some algorithms (such as linear regression and perceptrons)
can even be expressed in a concise and understandable way:

g(Zi,D) = W · Zi
︸ ︷︷ ︸

Learn W with D
[Linear Regression]

g(Zi,D) = sign{W · Zi}
︸ ︷︷ ︸

Learn W with D

[Perceptron]

Most neural networks are expressed algorithmically as compositions of multiple functions
computed at different nodes. The choice of computational function includes the effect of its
specific parameter setting, such as the coefficient vector W in a perceptron. Neural networks
with a larger number of units will require more parameters to fully learn the function. This
is where the variance in predictions arises on the same test instance; a model with a large
parameter set W will learn very different values of these parameters, when a different choice
of the training data set is used. Consequently, the prediction of the same test instance will
also be very different for different training data sets. These inconsistencies add to the error,
as illustrated in Figure 4.2.

The goal of the bias-variance trade-off is to quantify the expected error of the learning
algorithm in terms of its bias, variance, and the (data-specific) noise. For generality in
discussion, we assume a numeric form of the target variable, so that the error can be
intuitively quantified by the mean-squared error between the predicted values ŷi and the
observed values yi. This is a natural form of error quantification in regression, although one
can also use it in classification in terms of probabilistic predictions of test instances. The
mean squared error, MSE, of the learning algorithm g(·,D) is defined over the set of test
instances Z1 . . . Zt as follows:

MSE =
1

t

t∑

i=1

(ŷi − yi)
2 =

1

t

t∑

i=1

(g(Zi,D)− f(Zi)− ǫi)
2

The best way to estimate the error in a way that is independent of the specific choice of
training data set is to compute the expected error over different choices of training data sets:

E[MSE] =
1

t

t∑

i=1

E[(g(Zi,D)− f(Zi)− ǫi)
2]

=
1

t

t∑

i=1

E[(g(Zi,D)− f(Zi))]
2 +

∑t
i=1 E[ǫ2i]

t

The second relationship is obtained by expanding the quadratic expression on the right-
hand side of the first equation, and then using the fact that the average value of ǫi over a
large number of test instances is 0.

The right-hand side of the above expression can be further decomposed by adding and
subtracting E[g(Zi,D)] within the squared term on the right-hand side:

E[MSE] =
1

t

t∑

i=1

E[{(f(Zi)− E[g(Zi,D)]) + (E[g(Zi,D)]− g(Zi,D))}2] +
∑t

i=1 E[ǫ2i]

t

4.2. THE BIAS-VARIANCE TRADE-OFF 177

S
Q

U
A

R
E

D
 E

R
R

O
R

MODEL COMPLEXITY

OVERALL ERROR

OPTIMAL

COMPLEXITY

Figure 4.3: The trade-off between bias and variance usually causes a point of optimal model
complexity.

One can expand the quadratic polynomial on the right-hand side to obtain the following:

E[MSE] =
1

t

t∑

i=1

E[{f(Zi)− E[g(Zi,D)]}2]

+
2

t

t∑

i=1

{f(Zi)− E[g(Zi,D)]}{E[g(Zi,D)]− E[g(Zi,D)]}

+
1

t

t∑

i=1

E[{E[g(Zi,D)]− g(Zi,D)}2] +
∑t

i=1 E[ǫ2i]

t

The second term on the right-hand side of the aforementioned expression evaluates to 0
because one of the multiplicative factors is E[g(Zi,D)]−E[g(Zi,D)]. On simplification, we
obtain the following:

E[MSE] =
1

t

t∑

i=1

{f(Zi)− E[g(Zi,D)]}2

︸ ︷︷ ︸

Bias2

+
1

t

t∑

i=1

E[{g(Zi,D)− E[g(Zi,D)]}2]
︸ ︷︷ ︸

Variance

+

∑t
i=1 E[ǫ2i]

t
︸ ︷︷ ︸

Noise

In other words, the squared error can be decomposed into the (squared) bias, variance,
and noise. The variance is the key term that prevents neural networks from generalizing.
In general, the variance will be higher for neural networks that have a large number of
parameters. On the other hand, too few model parameters can cause bias because there
are not sufficient degrees of freedom to model the complexities of the data distribution.
This trade-off between bias and variance with increasing model complexity is illustrated
in Figure 4.3. Clearly, there is a point of optimal model complexity where the perfor-
mance is optimized. Furthermore, paucity of training data will increase variance. How-
ever, careful choice of design can reduce overfitting. This chapter will discuss several such
choices.

178 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

4.3 Generalization Issues in Model Tuning and
Evaluation

There are several practical issues in the training of neural network models that one must be
careful of because of the bias-variance trade-off. The first of these issues is associated with
model tuning and hyperparameter choice. For example, if one tuned the neural network with
the same data that were used to train it, one would not obtain very good results because of
overfitting. Therefore, the hyperparameters (e.g., regularization parameter) are tuned on a
separate held-out set than the one on which the weight parameters on the neural network
are learned.

Given a labeled data set, one needs to use this resource for training, tuning, and testing
the accuracy of the model. Clearly, one cannot use the entire resource of labeled data for
model building (i.e., learning the weight parameters). For example, using the same data set
for both model building and testing grossly overestimates the accuracy. This is because the
main goal of classification is to generalize a model of labeled data to unseen test instances.
Furthermore, the portion of the data set used for model selection and parameter tuning also
needs to be different from that used for model building. A common mistake is to use the
same data set for both parameter tuning and final evaluation (testing). Such an approach
partially mixes the training and test data, and the resulting accuracy is overly optimistic.
A given data set should always be divided into three parts defined according to the way in
which the data are used:

1. Training data: This part of the data is used to build the training model (i.e., during
the process of learning the weights of the neural network). Several design choices may
be available during the building of the model. The neural network might use different
hyperparameters for the learning rate or for regularization. The same training data
set may be tried multiple times over different choices for the hyperparameters or
completely different algorithms to build the models in multiple ways. This process
allows estimation of the relative accuracy of different algorithm settings. This process
sets the stage for model selection, in which the best algorithm is selected out of these
different models. However, the actual evaluation of these algorithms for selecting the
best model is not done on the training data, but on a separate validation data set to
avoid favoring overfitted models.

2. Validation data: This part of the data is used for model selection and parameter
tuning. For example, the choice of the learning rate may be tuned by constructing
the model multiple times on the first part of the data set (i.e., training data), and
then using the validation set to estimate the accuracy of these different models. As
discussed in Section 3.3.1 of Chapter 3, different combinations of parameters are sam-
pled within a range and tested for accuracy on the validation set. The best choice
of each combination of parameters is determined by using this accuracy. In a sense,
validation data should be viewed as a kind of test data set to tune the parameters of
the algorithm (e.g., learning rate, number of layers or units in each layer), or to select
the best design choice (e.g., sigmoid versus tanh activation).

3. Testing data: This part of the data is used to test the accuracy of the final (tuned)
model. It is important that the testing data are not even looked at during the process
of parameter tuning and model selection to prevent overfitting. The testing data are
used only once at the very end of the process. Furthermore, if the analyst uses the
results on the test data to adjust the model in some way, then the results will be

4.3. GENERALIZATION ISSUES IN MODEL TUNING AND EVALUATION 179

contaminated with knowledge from the testing data. The idea that one is allowed
to look at a test data set only once is an extraordinarily strict requirement (and an
important one). Yet, it is frequently violated in real-life benchmarks. The temptation
to use what one has learned from the final accuracy evaluation is simply too high.

VALIDATION

50% 25% 25%

VALIDATION

(TUNING,

MODEL

SELECTION)

TESTING

DATA
MODEL BUILDING

USED FOR BUILDING

TUNED MODEL

Figure 4.4: Partitioning a labeled
data set for evaluation design

LABELED

DATA

TEST

DATA
TRAINING

DATA

TRAINING

WITHOUT

VALIDATION SET

VALIDATION

SET

DIVIDE USING

HOLD-OUT OR

CROSS-VALIDATION

DIVIDE USING

HOLD-OUT OR

CROSS-VALIDATION

Figure 4.5: Hierarchical division into training, vali-
dation, and testing portions

The division of the labeled data set into training data, validation data, and test data is
shown in Figure 4.4. Strictly speaking, the validation data is also a part of the training
data, because it influences the final model (although only the model building portion is
often referred to as the training data). The division in the ratio of 2:1:1 is a conventional
rule of thumb that has been followed since the nineties. However, it should not be viewed as
a strict rule. For very large labeled data sets, one needs only a modest number of examples
to estimate accuracy. When a very large data set is available, it makes sense to use as much
of it for model building as possible, because the variance induced by the validation and
evaluation stage is often quite low. A constant number of examples (e.g., less than a few
thousand) in the validation and test data sets are sufficient to provide accurate estimates.
Therefore, the 2:1:1 division is a rule of thumb inherited from an era in which data sets
were small. In the modern era, where data sets are large, almost all of the points are used
for training, and a modest (constant) number are used for testing. It is not uncommon to
have divisions such as 98:1:1.

4.3.1 Evaluating with Hold-Out and Cross-Validation

The aforementioned description of partitioning the labeled data into three segments is an
implicit description of a method referred to as hold-out for segmenting the labeled data into
various portions. However, the division into three parts is not done in one shot. Rather, the
training data is first divided into two parts for training and testing. The testing part is then
carefully hidden away from any further analysis until the very end where it can be used only
once. The remainder of the data set is then divided again into the training and validation
portions. This type of recursive division is shown in Figure 4.5.

A key point is that the types of division at both levels of the hierarchy are conceptually
identical. In the following, we will consistently use the terminology of the first level of
division in Figure 4.5 into “training” and “testing” data, even though the same approach

180 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

can also be used for the second-level division into model building and validation portions.
This allows us to provide a common description of evaluation processes at both levels of the
division.

Hold-Out

In the hold-out method, a fraction of the instances are used to build the training model.
The remaining instances, which are also referred to as the held-out instances, are used for
testing. The accuracy of predicting the labels of the held-out instances is then reported as
the overall accuracy. Such an approach ensures that the reported accuracy is not a result
of overfitting to the specific data set, because different instances are used for training and
testing. The approach, however, underestimates the true accuracy. Consider the case where
the held-out examples have a higher presence of a particular class than the labeled data
set. This means that the held-in examples have a lower average presence of the same class,
which will cause a mismatch between the training and test data. Furthermore, the class-wise
frequency of the held-in examples will always be inversely related to that of the held-out
examples. This will lead to a consistent pessimistic bias in the evaluation. In spite of these
weaknesses, the hold-out method has the advantage of being simple and efficient, which
makes it a popular choice in large-scale settings. From a deep-learning perspective, this is
an important observation because large data sets are common.

Cross-Validation

In the cross-validation method, the labeled data is divided into q equal segments. One of
the q segments is used for testing, and the remaining (q−1) segments are used for training.
This process is repeated q times by using each of the q segments as the test set. The average
accuracy over the q different test sets is reported. Note that this approach can closely
estimate the true accuracy when the value of q is large. A special case is one where q is
chosen to be equal to the number of labeled data points and therefore a single point is used
for testing. Since this single point is left out from the training data, this approach is referred
to as leave-one-out cross-validation. Although such an approach can closely approximate
the accuracy, it is usually too expensive to train the model a large number of times. In fact,
cross-validation is sparingly used in neural networks because of efficiency issues.

4.3.2 Issues with Training at Scale

One practical issue that arises in the specific case of neural networks is when the sizes of
the training data sets are large. Therefore, while methods like cross-validation are well es-
tablished to be superior choices to hold-out in traditional machine learning, their technical
soundness is often sacrificed in favor of efficiency. In general, training time is such an im-
portant consideration in neural network modeling that many compromises have to be made
to enable practical implementation.

A computational problem often arises in the context of grid search of hyperparameters
(cf. Section 3.3.1 of Chapter 3). Even a single hyperparameter choice can sometimes require a
few days to evaluate, and a grid search requires the testing of a large number of possibilities.
Therefore, a common strategy is to run the training process of each setting for a fixed number
of epochs. Multiple runs are executed over different choices of hyperparameters in different
threads of execution. Those choices of hyperparameters in which good progress is not made
after a fixed number of epochs are terminated. In the end, only a few ensemble members are

4.4. PENALTY-BASED REGULARIZATION 181

allowed to run to completion. One reason that such an approach works well is because the
vast majority of the progress is often made in the early phases of the training. This process
is also described in Section 3.3.1 of Chapter 3.

4.3.3 How to Detect Need to Collect More Data

The high generalization error in a neural network may be caused by several reasons. First,
the data itself might have a lot of noise, in which case there is little one can do in order to
improve accuracy. Second, neural networks are hard to train, and the large error might be
caused by the poor convergence behavior of the algorithm. The error might also be caused
by high bias, which is referred to as underfitting. Finally, overfitting (i.e., high variance)
may cause a large part of the generalization error. In most cases, the error is a combination
of more than one of these different factors. However, one can detect overfitting in a specific
training data set by examining the gap between the training and test accuracy. Overfitting
is manifested by a large gap between training and test accuracy. It is not uncommon to have
close to 100% training accuracy on a small training set, even when the test error is quite low.
The first solution to this problem is to collect more data. With increased training data, the
training accuracy will reduce, whereas the test/validation accuracy will increase. However,
if more data is not available, one would need to use other techniques such as regularization
in order to improve generalization performance.

4.4 Penalty-Based Regularization

Penalty-based regularization is the most common approach for reducing overfitting. In order
to understand this point, let us revisit the example of the polynomial with degree d. In this
case, the prediction ŷ for a given value of x is as follows:

ŷ =

d∑

i=0

wix
i (4.5)

It is possible to use a single-layer network with d inputs and a single bias neuron with
weight w0 in order to model this prediction. The ith input is xi. This neural network uses
linear activations, and the squared loss function for a set of training instances (x, y) from
data set D can be defined as follows:

L =
∑

(x,y)∈D

(y − ŷ)2

As discussed in the example of Figure 4.2, a large value of d tends to increase overfitting.
One possible solution to this problem is to reduce the value of d. In other words, using a
model with economy in parameters leads to a simpler model. For example, reducing d to
1 creates a linear model that has fewer degrees of freedom and tends to fit the data in a
similar way over different training samples. However, doing so does lose some expressivity
when the data patterns are indeed complex. In other words, oversimplification reduces the
expressive power of a neural network, so that it is unable to adjust sufficiently to the needs
of different types of data sets.

How can one retain some of this expressiveness without causing too much overfitting?
Instead of reducing the number of parameters in a hard way, one can use a soft penalty on
the use of parameters. Furthermore, large (absolute) values of the parameters are penalized

182 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

more than small values, because small values do not affect the prediction significantly. What
kind of penalty can one use? The most common choice is L2-regularization, which is also
referred to as Tikhonov regularization. In such a case, the additional penalty is defined by
the sum of squares of the values of the parameters. Then, for the regularization parameter
λ > 0, one can define the objective function as follows:

L =
∑

(x,y)∈D

(y − ŷ)2 + λ ·
d∑

i=0

w2
i

Increasing or decreasing the value of λ reduces the softness of the penalty. One advantage of
this type of parameterized penalty is that one can tune this parameter for optimum perfor-
mance on a portion of the training data set that is not used for learning the parameters. This
type of approach is referred to as model validation. Using this type of approach provides
greater flexibility than fixing the economy of the model up front. Consider the case of poly-
nomial regression discussed above. Restricting the number of parameters up front severely
constrains the learned polynomial to a specific shape (e.g., a linear model), whereas a soft
penalty is able to control the shape of the learned polynomial in a more data-driven man-
ner. In general, it has been experimentally observed that it is more desirable to use complex
models (e.g., larger neural networks) with regularization rather than simple models without
regularization. The former also provides greater flexibility by providing a tunable knob (i.e.,
regularization parameter), which can be chosen in a data-driven manner. The value of the
tunable knob is learned on a held-out portion of the data set.

How does regularization affect the updates in a neural network? For any given weight wi

in the neural network, the updates are defined by gradient descent (or the batched version
of it):

wi ⇐ wi − α
∂L

∂wi

Here, α is the learning rate. The use of L2-regularization is roughly equivalent to the use
of decay imposition after each parameter update:

wi ⇐ wi(1− αλ)− α
∂L

∂wi

Note that the update above first multiplies the weight with the decay factor (1− αλ), and
then uses the gradient-based update. The decay of the weights can also be understood in
terms of a biological interpretation, if we assume that the initial values of the weights are
close to 0. One can view weight decay as a kind of forgetting mechanism, which brings the
weights closer to their initial values. This ensures that only the repeated updates have a
significant effect on the absolute magnitude of the weights. A forgetting mechanism prevents
a model from memorizing the training data, because only significant and repeated updates
will be reflected in the weights.

4.4.1 Connections with Noise Injection

The addition of noise to the input has connections with penalty-based regularization. It
can be shown that the addition of an equal amount of Gaussian noise to each input is
equivalent to Tikhonov regularization of a single-layer neural network with an identity
activation function (for linear regression).

One way of showing this result is by examining a single training case (X, y), which
becomes (X +

√
λǫ, y) after noise with variance λ is added to each feature. Here, ǫ is a

4.4. PENALTY-BASED REGULARIZATION 183

random vector, in which each entry ǫi is independently drawn from the standard normal
distribution with zero mean and unit variance. Then, the noisy prediction ŷ, which is based
on X +

√
λǫ, is as follows:

ŷ = W · (X +
√
λǫ) = W ·X +

√
λW · ǫ (4.6)

Now, let us examine the squared loss function L = (y− ŷ)2 contributed by a single training
case. We will compute the expected value of the loss function. It is easy to show the following
in expectation:

E[L] = E[(y − ŷ)2]

= E[(y −W ·X −
√
λW · ǫ)2]

One can then expand the expression on the right-hand side as follows:

E[L] = (y −W ·X)2 − 2
√
λ(y −W ·X)E[W · ǫ]

︸ ︷︷ ︸

0

+λE[(W · ǫ)2]

= (y −W ·X)2 + λE[(W · ǫ)2]

The second expression can be expanded using ǫ = (ǫ1 . . . ǫd) and W = (w1 . . . wd). Further-
more, one can set any term of the form E[ǫiǫj] to E[ǫi] ·E[ǫj] = 0 because of independence
of the random variables ǫi and ǫj . Any term of the form E[ǫ2i] is set to 1, because each ǫi
is drawn from a standard normal distribution. On expanding E[(W · ǫ)2] and making the
above substitutions, one finds the following:

E[L] = (y −W ·X)2 + λ(
d∑

i=1

w2
i) (4.7)

It is noteworthy that this loss function is exactly the same as L2-regularization of a single
instance.

Although the equivalence between weight decay and noise addition is exactly true for
the case of linear regression, the analysis does not hold in the case of neural networks with
nonlinear activations. Nevertheless, penalty-based regularization continues to be intuitively
similar to noise addition even in these cases, although the results might be qualitatively
different. Because of these similarities one sometimes tries to perform regularization by
direct noise addition. One such approach is referred to as data perturbation, in which noise
is added to the training input, and the test data points are predicted with the added noise.
The approach is repeated multiple times with different training data sets created by adding
noise repeatedly in Monte Carlo fashion. The prediction of the same test instance across
different additions of noise is averaged in order to yield the improved results. In this case,
the noise is added only to the training data, and it does not need to be added to the test
data. When explicitly adding noise, it is important to average the prediction of the same test
instance over multiple ensemble components in order to ensure that the solution properly
represents the expected value of the loss (without added variance caused by the noise). This
approach is described in Section 4.5.5.

4.4.2 L1-Regularization

The use of the squared norm penalty, which is also referred to as L2-regularization, is the
most common approach for regularization. However, it is possible to use other types of

184 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

penalties on the parameters. A common approach is L1-regularization in which the squared
penalty is replaced with a penalty on the sum of the absolute magnitudes of the coefficients.
Therefore, the new objective function is as follows:

L =
∑

(x,y)∈D

(y − ŷ)2 + λ ·
d∑

i=0

|wi|1

The main problem with this objective function is that it contains the term |wi|, which is
not differentiable when wi is exactly equal to 0. This requires some modifications to the
gradient-descent method when wi is 0. For the case when wi is non-zero, one can use the
straightforward update obtained by computing the partial derivative. By differentiating the
above objective function, we can define the update equation at least for the case when wi

is different than 0:

wi ⇐ wi − αλsi − α
∂L

∂wi

The value of si, which is the partial derivative of |wi| (with respect to wi), is as follows:

si =

{

−1 wi < 0

+1 wi > 0

However, we also need to set the partial derivative of |wi| for cases in which the value of wi

is exactly 0. One possibility is to use the subgradient method in which the value of wi is set
stochastically to a value in {−1,+1}. However, this is not necessary in practice. Computers
are of finite-precision, and the computational errors will rarely cause wi to be exactly 0.
Therefore, the computational errors will often perform the task that would otherwise be
achieved by stochastic sampling. Furthermore, for the rare cases in which the value wi is
exactly 0, one can omit the regularization and simply set si to 0. This type of approximation
to the subgradient method works reasonably well in many settings.

One difference between the update equations for L1-regularization and those in L2-
regularization is that L2-regularization uses multiplicative decay as a forgetting mechanism,
whereas L1-regularization uses additive updates as a forgetting mechanism. In both cases,
the regularization portions of the updates tend to move the coefficients closer to 0. However,
there are some differences in the types of solutions found in the two cases, which are discussed
in the next section.

4.4.3 L1- or L2-Regularization?

A question arises as to whether L1- or L2-regularization is desirable. From an accuracy point
of view, L2-regularization usually outperforms L1-regularization. This is the reason that L2-
regularization is almost always preferred over L1-regularization is most implementations.
The performance gap is small when the number of inputs and units is large.

However, L1-regularization does have specific applications from an interpretability point
of view. An interesting property of L1-regularization is that it creates sparse solutions in
which the vast majority of the values of wi are 0s (after ignoring1 computational errors).
If the value of wi is zero for a connection incident on the input layer, then that particular
input has no effect on the final prediction. In other words, such an input can be dropped,

1Computational errors can be ignored by requiring that |wi| should be at least 10−6 in order for wi to
be considered truly non-zero.

4.4. PENALTY-BASED REGULARIZATION 185

and the L1-regularizer acts as a feature selector. Therefore, one can use L1-regularization
to estimate which features are predictive to the application at hand.

What about the connections in the hidden layers whose weights are set to 0? These
connections can be dropped, which results in a sparse neural network. Such sparse neural
networks can be useful in cases where one repeatedly performs training on the same type
of data set, but the nature and broader characteristics of the data set do not change sig-
nificantly with time. Since the sparse neural network will contain only a small fraction of
the connections in the original neural network, it can be retrained much more efficiently
whenever more training data is received.

4.4.4 Penalizing Hidden Units: Learning Sparse Representations

The penalty-based methods, which have been discussed so far, penalize the parameters of
the neural network. A different approach is to penalize the activations of the neural network,
so that only a small subset of the neurons are activated for any given data instance. In other
words, even though the neural network might be large and complex only a small part of it
is used for predicting any given data instance.

The simplest way to achieve sparsity is to impose an L1-penalty on the hidden units.
Therefore, the original loss function L is modified to the regularized loss function L′ as
follows:

L′ = L+ λ

M∑

i=1

|hi| (4.8)

Here, M is the total number of units in the network, and hi is the value of the ith hidden
unit. Furthermore, the regularization parameter is denoted by λ. In many cases, a single
layer of the network is regularized, so that a sparse feature representation can be extracted
from the activations of that particular layer.

How does this change to the objective function affect the backpropagation algorithm?
The main difference is that the loss function is aggregated not only over nodes in the output
layer, but also over nodes in the hidden layer. At a fundamental level, this change does not
affect the overall dynamics and principles of backpropagation. This situation is discussed
in Section 3.2.7 of Chapter 3.

The backpropagation algorithm needs to be modified so that the regularization penalty
contributed by a hidden unit is incorporated into the backwards gradient flow of all connec-
tions incoming into that node. Let N(h) be the set of nodes reachable from any particular
node h in the computational graph (including itself). Then, the gradient ∂L

∂ah
of the loss

L also depends on the penalty contributions of the nodes in N(h). Specifically, for any
node hr with pre-activation value ahr

, its gradient flow ∂L
∂ahr

= δ(hr, N(hr)) to the output

node is increased by λΦ′(ahr
) sign(hr). Here, the gradient flow ∂L

∂ahr
= δ(hr, N(hr))) is de-

fined according to the discussion in Section 3.2.7 of Chapter 3. Consider Equation 3.25 of
Chapter 3, which computes the backwards gradient flow as follows:

δ(hr, N(hr)) = Φ′(ahr
)
∑

h:hr⇒h

w(hr,h)δ(h,N(h)) (4.9)

Here, w(hr,h) is the weight of the edge from hr to h. Immediately after making this update,
the value of δ(hr, N(hr)) is adjusted to account for the regularization term at that node as
follows:

δ(hr, N(hr)) ⇐ δ(hr, N(hr)) + λΦ′(ahr
) · sign(hr)

186 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

Note that the above update is based on Equation 3.26 of Chapter 3. Once the value of
δ(hr, N(hr)) is modified at a given node hr, the changes will automatically be backpropa-
gated to all nodes that reach hr. This is the only change that is required in order to enforce
L1-regularization of the hidden units. In a sense, incorporating penalties on nodes in in-
termediate layers does not change the backpropagation algorithm in a fundamental way,
except that hidden nodes are now also treated as output nodes in terms of contributing to
the gradient flow.

4.5 Ensemble Methods

Ensemble methods derive their inspiration from the bias-variance trade-off. One way of
reducing the error of a classifier is to find a way to reduce either its bias or the variance
without affecting the other component. Ensemble methods are used commonly in machine
learning, and two examples of such methods are bagging and boosting. The former is a
method for variance reduction, whereas the latter is a method for bias reduction.

Most ensemble methods in neural networks are focused on variance reduction. This is
because neural networks are valued for their ability to build arbitrarily complex models
in which the bias is relatively low. However, operating at the complex end of the bias-
variance trade-off almost always leads to higher variance, which is manifested as overfitting.
Therefore, the goal of most ensemble methods in the neural network setting is variance
reduction (i.e., better generalization). This section will focus on such methods.

4.5.1 Bagging and Subsampling

Imagine that you had an infinite resource of training data available to you, where you could
generate as many training points as you wanted from a base distribution. How can one
use this unusually generous resource of data to get rid of variance? If a sufficient number
of samples is available, after all, the variance of most types of statistical estimates can by
asymptotically reduced to 0.

A natural approach for reducing the variance in this case would be to repeatedly create
different training data sets and predict the same test instance using these data sets. The
prediction across different data sets can then be averaged to yield the final prediction. If a
sufficient number of training data sets is used, the variance of the prediction will be reduced
to 0, although the bias will still remain depending on the choice of model.

The approach described above can be used only when an infinite resource of data is
available. However, in practice, we only have a single finite instance of the data available
to us. In such cases, one obviously cannot implement the above methodology. However, it
turns out that an imperfect simulation of the above methodology still has better variance
characteristics than a single execution of the model on the entire training data set. The
basic idea is to generate new training data sets from the single instance of the base data by
sampling. The sampling can be performed with or without replacement. The predictions on
a particular test instance, which are obtained from the models built with different training
sets, are then averaged to create the final prediction. One can average either the real-valued
predictions (e.g., probability estimates of class labels) or the discrete predictions. In the
case of real-valued predictions, better results are sometimes obtained by using the median
of the values.

It is common to use the softmax to yield probabilistic predictions of discrete outputs.
If probabilistic predictions are averaged, it is common to average the logarithms of these

4.5. ENSEMBLE METHODS 187

values. This is the equivalent of using the geometric means of the probabilities. For discrete
predictions, arithmetically averaged voting is used. This distinction between the handling
of discrete and probabilistic predictions is carried over to other types of ensemble methods
that require averaging of the predictions. This is because the logarithms of the probabilities
have a log-likelihood interpretation, and log-likelihoods are inherently additive.

The main difference between bagging and subsampling is in terms of whether or not
replacement is used in the creation of the sampled training data sets. We summarize these
methods as follows:

1. Bagging: In bagging, the training data is sampled with replacement. The sample size
s may be different from the size of the training data size n, although it is common to
set s to n. In the latter case, the resampled data will contain duplicates, and about a
fraction (1− 1/n)n ≈ 1/e of the original data set will not be included at all. Here, the
notation e denotes the base of the natural logarithm. A model is constructed on the
resampled training data set, and each test instance is predicted with the resampled
data. The entire process of resampling and model building is repeated m times. For a
given test instance, each of these m models is applied to the test data. The predictions
from different models are then averaged to yield a single robust prediction. Although
it is customary to choose s = n in bagging, the best results are often obtained by
choosing values of s much less than n.

2. Subsampling is similar to bagging, except that the different models are constructed
on the samples of the data created without replacement. The predictions from the
different models are averaged. In this case, it is essential to choose s < n, because
choosing s = n yields the same training data set and identical results across different
ensemble components.

When a sufficient training data are available, subsampling is often preferable to bagging.
However, using bagging makes sense when the amount of available data is limited.

It is noteworthy that all the variance cannot be removed by using bagging or sub-
sampling, because the different training samples will have overlaps in the included points.
Therefore, the predictions of test instances from different samples will be positively corre-
lated. The average of a set of random variables that are positively correlated will always
have a variance that is proportional to the level of correlation. As a result, there will al-
ways be a residual variance in the predictions. This residual variance is a consequence of
the fact that bagging and subsampling are imperfect simulations of drawing the training
data from a base distribution. Nevertheless, the variance of this approach is still lower than
that of constructing a single model on the entire training data set. The main challenge
in directly using bagging for neural networks is that one must construct multiple training
models, which is highly inefficient. However, the construction of different models can be
fully parallelized, and therefore this type of setting is a perfect candidate for training on
multiple GPU processors.

4.5.2 Parametric Model Selection and Averaging

One challenge in the case of neural network construction is the selection of a large number
of hyperparameters like the depth of the network and the number of neurons in each layer.
Furthermore, the choice of the activation function also has an effect on performance, de-
pending on the application at hand. The presence of a large number of parameters creates
problems in model construction, because the performance might be sensitive to the partic-
ular configuration used. One possibility is to hold out a portion of the training data and

188 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

try different combinations of parameters and model choices. The selection that provides the
highest accuracy on the held-out portion of the training data is then used for prediction.
This is, of course, the standard approach used for parameter tuning in all machine learning
models, and is also referred to as model selection. In a sense, model selection is inherently
an ensemble-centric approach, where the best out of bucket of models is selected. Therefore,
the approach is also sometimes referred to as the bucket-of-models technique.

The main problem in deep learning settings is that the number of possible configurations
is rather large. For example, one might need to select the number of layers, the number of
units in each layer, and the activation function. The combination of these possibilities is
rather large. Therefore, one is often forced to try only a limited number of possibilities to
choose the configuration. An additional approach that can be used to reduce the variance, is
to select the k best configurations and then average the predictions of these configurations.
Such an approach leads to more robust predictions, especially if the configurations are very
different from one another. Even though each individual configuration might be suboptimal,
the overall prediction will still be quite robust. However, such an approach cannot be used
in very large-scale settings because each execution might require on the order of a few
weeks. Therefore, one is often reduced to leveraging the single best configuration based on
the approach in Section 3.3.1 of Chapter 3. As in the case of bagging, the use of multiple
configurations is often feasible only when multiple GPUs are available for training.

4.5.3 Randomized Connection Dropping

The random dropping of connections between different layers in a multilayer neural network
often leads to diverse models in which different combinations of features are used to con-
struct the hidden variables. The dropping of connections between layers does tend to create
less powerful models because of the addition of constraints to the model-building process.
However, since different random connections are dropped from different models, the predic-
tions from different models are very diverse. The averaged prediction from these different
models is often highly accurate. It is noteworthy that the weights of different models are
not shared in this approach, which is different from another technique called Dropout.

Randomized connection dropping can be used for any type of predictive problem and
not just classification. For example, the approach has been used for outlier detection with
autoencoder ensembles [64]. As discussed in Section 2.5.4 of Chapter 2, autoencoders can
be used for outlier detection by estimating the reconstruction error of each data point. The
work in [64] uses multiple autoencoders with randomized connections, and then aggregates
the outlier scores from these different components in order to create the score of a single
data point. However, the use of the median is preferred to the mean in [64]. It has been
shown in [64] that such an approach improves the overall accuracy of outlier detection. It is
noteworthy that this approach might seem superficially similar toDropout andDropConnect,
although it is quite different. This is because methods like Dropout and DropConnect share
weights between different ensemble components, whereas this approach does not share any
weights between ensemble components.

4.5.4 Dropout

Dropout is a method that uses node sampling instead of edge sampling in order to create a
neural network ensemble. If a node is dropped, then all incoming and outgoing connections
from that node need to be dropped as well. The nodes are sampled only from the input
and hidden layers of the network. Note that sampling the output node(s) would make it

4.5. ENSEMBLE METHODS 189

impossible to provide a prediction and compute the loss function. In some cases, the input
nodes are sampled with a different probability than the hidden nodes. Therefore, if the full
neural network contains M nodes, then the total number of possible sampled networks is
2M .

A key point that is different from the connection sampling approach discussed in the
previous section is that weights of the different sampled networks are shared. Therefore,
Dropout combines node sampling with weight sharing. The training process then uses a
single sampled example in order to update the weights of the sampled network using back-
propagation. The training process proceeds using the following steps, which are repeated
again and again in order to cycle through all of the training points in the network:

1. Sample a neural network from the base network. The input nodes are each sampled
with probability pi, and the hidden nodes are each sampled with probability ph.
Furthermore, all samples are independent of one another. When a node is removed
from the network, all its incident edges are removed as well.

2. Sample a single training instance or a mini-batch of training instances.

3. Update the weights of the retained edges in the network using backpropagation on
the sampled training instance or the mini-batch of training instances.

It is common to exclude nodes with probability between 20% and 50%. Large learning rates
are often used with momentum, which are tempered with a max-norm constraint on the
weights. In other words, the L2-norm of the weights entering each node is constrained to
be no larger than a small constant such as 3 or 4.

It is noteworthy that a different neural network is used for every small mini-batch of
training examples. Therefore, the number of neural networks sampled is rather large, and
depends on the size of the training data set. This is different from most other ensemble
methods like bagging in which the number of ensemble components is rarely larger than
25. In the Dropout method, thousands of neural networks are sampled with shared weights,
and a tiny training data set is used to update the weights in each case. Even though a large
number of neural networks is sampled, the fraction of neural networks sampled out of the
base number of possibilities is still minuscule. Another assumption that is used in this class
of neural networks is that the output is in the form of a probability. This assumption has a
bearing on the way in which the predictions of the different neural networks are combined.

How can one use the ensemble of neural networks to create a prediction for an unseen
test instance? One possibility is to predict the test instance using all the neural networks
that were sampled, and then use the geometric mean of the probabilities that are predicted
by the different networks. The geometric mean is used rather than the arithmetic mean,
because the assumption is that the output of the network is a probability and the geometric
mean is equivalent to averaging log-likelihoods. For example, if the neural network has k
probabilistic outputs corresponding to the k classes, and the jth ensemble yields an output

of p
(j)
i for the ith class, then the ensemble estimate for the ith class is computed as follows:

pEns
i =

⎡

⎣

m∏

j=1

p
(j)
i

⎤

⎦

1/m

(4.10)

Here, m is the total number of ensemble components, which can be rather large in the
case of the Dropout method. One problem with this estimation is that the use of geometric

190 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

means results in a situation where the probabilities over the different classes do not sum to
1. Therefore, the values of the probabilities are re-normalized so that they sum to 1:

pEns
i ⇐ pEns

i
∑k

i=1 p
Ens
i

(4.11)

The main problem with this approach is that the number of ensemble components is too
large, which makes the approach inefficient.

A key insight of the Dropout method is that it is not necessary to evaluate the prediction
on all ensemble components. Rather, one can perform forward propagation on only the base
network (with no dropping) after re-scaling the weights. The basic idea is to multiply the
weights going out of each unit with the probability of sampling that unit. By using this
approach, the expected output of that unit from a sampled network is captured. This rule
is referred to as the weight scaling inference rule. Using this rule also ensures that the input
going into a unit is also the same as the expected input that would occur in a sampled
network.

The weight scaling inference rule is exact for many types of networks with linear acti-
vations, although the rule is not exactly true for networks with nonlinearities. In practice,
the rule tends to work well across a broad variety of networks. Since most practical neural
networks have nonlinear activations, the weight scaling inference rule of Dropout should
be viewed as a heuristic rather than a theoretically justified result. Dropout has been used
with a wide variety of models that use a distributed representation; it has been used with
feed-forward networks, Restricted Boltzmann machines, and recurrent neural networks.

The main effect of Dropout is to incorporate regularization into the learning procedure.
By dropping both input units and hidden units, Dropout effectively incorporates noise into
both the input data and the hidden representations. The nature of this noise can be viewed
as a kind of masking noise in which some inputs and hidden units are set to 0. Noise addition
is a form of regularization. It has been shown in the original paper [467] on Dropout that
this approach works better than other regularizers such as weight decay. Dropout prevents
a phenomenon referred to as feature co-adaptation from occurring between hidden units.
Since the effect of Dropout is a masking noise that removes some of the hidden units, this
approach forces a certain level of redundancy between the features learned at the different
hidden units. This type of redundancy leads to increased robustness.

Dropout is efficient because each of the sampled subnetworks is trained with a small
set of sampled instances. Therefore, only the work of sampling the hidden units needs to
be done additionally. However, since Dropout is a regularization method, it reduces the
expressive power of the network. Therefore, one needs to use larger models and more units
in order to gain the full advantages of Dropout. This results in a hidden computational
overhead. Furthermore, if the original training data set is already large enough to reduce
the likelihood of overfitting, the additional computational advantages of Dropout may be
small but still perceptible. For example, many of the convolutional neural networks trained
on large data repositories like ImageNet [255] report consistently improved results of about
2% with Dropout. A variation of Dropout is DropConnect, which applies a similar approach
to the weights rather than to the neural network nodes [511].

A Note on Feature Co-adaptation

In order to understand why Dropout works, it is useful to understand the notion of feature co-
adaptation. Ideally, it is useful for the hidden layers of the neural network to create features
that reflect important classification characteristics of the input without having complex

4.5. ENSEMBLE METHODS 191

dependencies on other features, unless these other features are truly useful. To understand
this point, consider a situation in which all edges incident on 50% of the nodes in each layer
are fixed at their initial random values, and are not updated during backpropagation (even
though all gradients are computed in the normal fashion). Interestingly, even in this case, it
will often be possible for the neural network to provide reasonably good results by adapting
the other weights and features to the effect of these randomly fixed subsets of weights (and
corresponding activations). Of course, this is not a desirable situation because the goal of
features working together is to combine the powers held by each essential feature rather than
merely having some features adjust to the detrimental effects of others. Even in the normal
training of a neural network (where all weights are updated), this type of co-adaptation can
occur. For example, if the updates in some parts of the neural network are not fast enough,
some of the features will not be useful and other features will adapt to these less-than-
useful features. This situation is very likely in neural network training, because different
parts of the neural network do tend to learn at different rates. An even more troubling
scenario arises when the co-adapted features work well in predicting training points by
picking up on complex dependencies in the training points, which do not generalize well to
out-of-sample test points. Dropout prevents this type of co-adaptation by forcing the neural
network to make predictions using only a subset of the inputs and activations. This forces
the network to be able to make predictions with a certain level of redundancy while also
encouraging smaller subsets of learned features to have predictive power. In other words,
co-adaptation occurs only when it is truly essential for modeling instead of learning random
nuances of the training data. This is, of course, a form of regularization. Furthermore, by
learning redundant features, Dropout averages over the predictions of redundant features,
which is similar to what is done in bagging.

4.5.5 Data Perturbation Ensembles

Most of the ensemble techniques discussed so far are either sampling-based ensembles or
model-centric ensembles. Dropout can be considered an ensemble that adds noise to the
data in an indirect way. It is also possible to use explicit data perturbation methods.

In the simplest case, a small amount of noise can be added to the input data, and the
weights can be learned on the perturbed data. This process can be repeated with multiple
such additions, and the predictions of the test point from different ensemble components
can be averaged. This type of approach is a generic ensemble method, which is not specific
to neural networks. As discussed in Section 4.10, this approach is used commonly in the
unsupervised setting with de-noising autoencoders.

It is also possible to add noise to the hidden layer. However, in this case, the noise has
to be carefully calibrated [382]. It is noteworthy that the Dropout method indirectly adds
noise to the hidden layer by dropping nodes randomly. A dropped node is similar to masking
noise in which the activation of that node is set to 0.

One can also perform other types of data set augmentation. For example, an image
instance can be rotated or translated in order to add to the data set. Carefully designed
data augmentation schemes can often greatly improve the accuracy of a learner by increas-
ing its generalization power. However, strictly speaking such schemes are not perturbation
schemes because the augmented examples are created with a calibrated procedure and an
understanding of the domain at hand. Such methods are used commonly in convolutional
neural networks (cf. Section 8.3.4 of Chapter 8).

192 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

4.6 Early Stopping

Neural networks are trained using variations of gradient-descent methods. In most optimiza-
tion models, gradient-descent methods are executed to convergence. However, executing
gradient descent to convergence optimizes the loss on the training data, but not necessarily
on the out-of-sample test data. This is because the final few steps often overfit to the specific
nuances of the training data, which might not generalize well to the test data.

A natural solution to this dilemma is to use early stopping. In this method, a portion of
the training data is held out as a validation set. The backpropagation-based training is only
applied to the portion of the training data that does not include the validation set. At the
same time, the error of the model on the validation set is continuously monitored. At some
point, this error begins to rise on the validation set, even though it continues to reduce on
the training set. This is the point at which further training causes overfitting. Therefore,
this point can be chosen for termination. It is important to keep track of the best solution
achieved so far in the learning process (as computed on the validation data). This is because
one does not perform early stopping after tiny increases in the out-of-sample error (which
might be caused by noisy variations), but it is advisable to continue to train to check if the
error continues to rise. In other words, the termination point is chosen in hindsight after
the error on the validation set continues to rise, and all hope is lost of improving the error
performance on the validation set.

Even though the removal of the validation set does lose some training points, the effect of
data loss is often quite small. This is because neural networks are often trained on extremely
large data sets of the order of tens of millions of points. A validation set does not need a large
number of points. For example, the use of a sample of 10,000 points for validation might be
tiny compared to the full data size. Although one can often include the validation set within
the training data to retrain the network for the same number of steps (as was obtained at
the early stopping point), the effect of this approach can sometimes be unpredictable. It
can also lead to a doubling of computational costs, because the neural network needs to be
trained all over again.

One advantage of early stopping is that it can be easily added to neural network training
without significantly changing the training procedure. Furthermore, methods like weight
decay require us to try different values of the regularization parameter, λ, which can be
expensive. Because of the ease in combining it with existing algorithms, early stopping can
be used in combination with other regularizers in a relatively straightforward way. Therefore,
early stopping is almost always used, because one does not lose much by adding it to the
learning procedure.

One can view early stopping as a kind of constraint on the optimization process. By
restricting the number of steps in the gradient descent, one is effectively restricting the
distance of the final solution from the initialization point. Adding constraints to the model
of a machine learning problem is often a form of regularization.

4.6.1 Understanding Early Stopping from the Variance Perspec-
tive

One way of understanding the bias-variance trade-off is that the true loss function of an
optimization problem can only be constructed if we have infinite data. If we have a finite
amount of data, the loss function constructed from the training data does not reflect the
true loss function. Illustrative examples of the contours of the true loss function and its
shifted counterpart on the training data are illustrated in Figure 4.6. This shifting is an

4.7. UNSUPERVISED PRETRAINING 193

indirect manifestation of the variance in prediction created by a particular training data
set. Different training data sets will shift the loss function in different and unpredictable
ways.

−15 −10 −5 0 5 10
−10

−5

0

5

10

15

VALUE OF x

V
A

L
U

E
 O

F
 y

TRUE LOSS

(CONTOUR PLOT)

TRAIN LOSS

(CONTOUR PLOT)

STOP
HERE

Figure 4.6: Shift in loss function caused by variance effects and the effect of early stopping.
Because of the differences in the true loss function and that on the training data, the error
will begin to rise if gradient descent is continued beyond a certain point. Here, we have
shown a similar shape of the true and training loss functions for simplicity, although this
might not be the case in practice.

Unfortunately, the learning procedure can perform the gradient-descent only on the loss
function defined on the training data set, because the true loss function is unknown. How-
ever, if the training data is representative of the true loss function, the optimum solutions
in the two cases will be reasonably close as shown in Figure 4.6. As discussed in Chapter 3,
most gradient-descent procedures take a circuitous and oscillatory route to the optimal solu-
tion. During the final stage of convergence to the optimal solution (on the training data), the
gradient descent will often encounter better solutions with respect to the true loss function
before it converges to the best solution with respect to the training data. These solutions
will be detected by the improved accuracy on the validation set, and therefore provide good
termination points. An example of a good early stopping point is shown in Figure 4.6.

4.7 Unsupervised Pretraining

Deep networks are inherently hard to train because of a number of different characteristics
discussed in the previous chapter. One issue is the exploding and vanishing gradient problem,
because of which the different layers of the neural network do not get trained at the same
rate. The multiple layers of the neural network cause distortions in the gradient, which
make them hard to train.

Although the depth of the neural network causes challenges, the problems associated
with depth are also heavily dependent on how the network is initialized. A good initialization
point can often solve many of the problems associated with reaching good solutions. A
ground-breaking break-through in this context was the use of unsupervised pretraining

194 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

in order to provide robust initializations [196]. This initialization is achieved by training
the network greedily in layer-wise fashion. The approach was originally proposed in the
context of deep belief networks, but it was later extended to other types of models such as
autoencoders [386, 506]. In this chapter, we will study the autoencoder approach because
of its simplicity. First, we will start with the dimensionality reduction application, because
the application is unsupervised and it is easy to show how to use unsupervised pretraining
in this case. However, unsupervised pretraining can also be used for supervised applications
like classification with minor modifications.

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5OUTPUT OF THIS LAYER PROVIDES

REDUCED REPRESENTATION

x4

x3

x2

x1

x5

INPUT LAYER

HIDDEN LAYER

OUTPUT OF THESE LAYERS PROVIDE

REDUCED REPRESENTATION

(SUPERVISED)

x4

x3

x2

x1

x5

OUTPUT

(a) Multilayer autoencoder (b) Multilayer classifier

Figure 4.7: Both the multilayer classifier and the multilayer autoencoder use a similar pre-
training procedure.

INPUT LAYER

X4

X3

X2

X1

X5

OUTPUT LAYER

XI
4

XI
3

XI
2

XI
1

XI
5

Y1

Y2

Y3

FIRST-LEVEL REDUCTION

HIDDEN LAYER

Y3

Y2

Y1

SECOND-LEVEL

REDUCTION

YI
1

YI
2

YI
3

FIRST-LEVEL

REDUCTION

Z1

Z2

(a) Pretraining first-level reduction (b) Pretraining second-level reduction
and outer weights and inner weights

Figure 4.8: Pretraining a neural network

In pretraining, a greedy approach is used to train the network one layer at a time by
learning the weights of the outer hidden layers first and then learning the weights of the
inner hidden layers. The resulting weights are used as starting points for a final phase of
traditional neural network backpropagation in order to fine-tune them.

4.7. UNSUPERVISED PRETRAINING 195

Consider the autoencoder and classifier architectures shown in Figure 4.7. Since these
architectures have multiple layers, randomized initialization can sometimes cause challenges.
However, it is possible to create a good initialization by setting the initial weights layer by
layer in a greedy fashion. First, we describe the process in the context of the autoencoder
shown in Figure 4.7(a), although an almost identical procedure is relevant to the classifier
of Figure 4.7(b). We have intentionally chosen neural architectures in the two cases so that
the hidden layers have similar numbers of nodes.

The pretraining process is shown in Figure 4.8. The basic idea is to assume that the
two (symmetric) outer hidden layers contain a first-level reduced representation of larger
dimensionality, and the inner hidden layer contains a second-level reduced representation
of smaller dimensionality. Therefore, the first step is to learn the first-level reduced repre-
sentation and the corresponding weights associated with the outer hidden layers using the
simplified network of Figure 4.8(a). In this network, the middle hidden layer is missing and
the two outer hidden layers are collapsed into a single hidden layer. The assumption is that
the two outer hidden layers are related to one another in a symmetric way like a smaller
autoencoder. In the second step, the reduced representation in the first step is used to learn
the second-level reduced representation (and weights) of the inner hidden layers. Therefore,
the inner portion of the neural network is treated as a smaller autoencoder in its own right.
Since each of these pretrained subnetworks is much smaller, the weights can be learned
more easily. This initial set of weights is then used to train the entire neural network with
backpropagation. Note that this process can be performed in layerwise fashion for a deep
neural network containing any number of hidden layers.

So far, we have only discussed how we can use unsupervised pretraining for unsupervised
applications. A natural question arises as to how one can use pretraining for supervised
applications. Consider a multilayer classification architecture with a single output layer
and k hidden layers. During the pretraining stage, the output layer is removed, and the
representation of the final hidden layer is learned in an unsupervised way. This is achieved
by creating an autoencoder with 2 · k − 1 hidden layers, where the middle layer is the
final hidden layer of the supervised setting. For example, the relevant autoencoder for
Figure 4.7(b) is shown in Figure 4.7(a). Therefore, an additional (k − 1) hidden layers are
added, each of which has a symmetric counterpart in the original network. This network
is trained in exactly the same layer-wise fashion as discussed above for the autoencoder
architecture. The weights of only the encoder portion of this autoencoder are used for
initialization of the weights entering into all hidden layers. The weights between the final
hidden layer and the output layer can also be initialized by treating the final hidden layer
and output nodes as a single-layer network. This single-layer network is fed with the reduced
representations of the final hidden layer (based on the autoencoder learned in pretraining).
After the weights of all the layers have been learned, the output nodes are re-attached to
the final hidden layer. The backpropagation algorithm is applied to this initialized network
in order to fine-tune the weights from the pretrained stage. Note that this approach learns
all the initial hidden representations in an unsupervised way, and only the weights entering
into the output layer are initialized using the labels. Therefore, the pretraining can still be
considered to be largely unsupervised.

196 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

During the early years, pretraining was often seen as a more stable way to train a
deep network in which the different layers have a better chance of being initialized in an
equally effective way. Although this issue does play a role in explaining the improvements
of pretraining, the problem is often manifested as overfitting. As discussed in Chapter 3,
the (finally converged) weights in the early layers may not change much from their random
initializations, when the network exhibits the vanishing gradient problem. Even when the
connection weights in the first few layers are random (as a result of poor training), it is
possible for the later layers to adapt their weights sufficiently so as to give zero error on the
training data. In this case, the random connections in the early layers provide near-random
transformations to the later layers, but the later layers are still able to overfit to these
features in order to provide very low training error. In other words, the features in later
layers adapt to those in early layers as a result of training inefficiencies. Any kind of feature
co-adaptation caused by training inefficiencies almost always leads to overfitting. Therefore,
when the approach is applied to unseen test data, the overfitting becomes apparent because
the various layers are not specifically adapted to these unseen test instances. In this sense,
pretraining is an unusual form of regularization.

Incidentally, unsupervised pretraining helps even in cases where the amount of training
data is very large. It is likely that this behavior is caused by the fact that pretraining helps
in issues beyond model generalization. One evidence of this fact is that in larger data sets,
even the error on the training data seems to be high, when methods like pretraining are
not used. In these cases, the weights of the early layers often do not change much from
their initializations, and one is using only a small number of later layers on a random
transformation of the data (defined by the random initialization of the early layers). As
a result, the trained portion of the network is rather shallow, with some additional loss
caused by the random transformation. In such cases, pretraining also helps a model realize
the full benefits of depth, thereby facilitating the improvement of prediction accuracy on
larger data sets.

INPUT LAYER

X4

X3

X2

X1

X5

Y1

Y2

Y3

FIRST-LEVEL REDUCTION

(ENCODER)

OUTPUT LAYER

XI
4

XI
3

XI
2

XI
1

XI
5

Y’1

Y’2

Y’3

FIRST-LEVEL REDUCTION

(DECODER)

DISCARD THESE WEIGHTS AFTER PRE-TRAINING

PRESERVE AND USE THESE WEIGHTS

AFTER PRE-TRAINING

Figure 4.9: This architecture allows the first-level representations in the encoder and de-
coder to be significantly different. It is helpful to compare this architecture with that in
Figure 4.8(a).

Another way of understanding pretraining is that it provides insights into the repeated
patterns in the data, which are the features learned from the training data points. For
example, an autoencoder might learn that many digits have loops in them, and certain

4.7. UNSUPERVISED PRETRAINING 197

digits have strokes that are curved in a particular way. The decoder reconstructs the digits
by putting together these frequent shapes. However, these shapes also have discriminative
power with respect to recognizing digits. Expressing the data in terms of a few features
then helps in recognizing how these features are related to the class labels. This principle
is summarized by Geoff Hinton [192] in the context of image classification as follows: “To
recognize shapes, first learn to generate images.” This type of regularization preconditions
the training process in a semantically relevant region of the parameter space, where sev-
eral important features have already been learned, and further training can fine-tune and
combine them for prediction.

4.7.1 Variations of Unsupervised Pretraining

There are many different ways in which one can introduce variations to the procedure of
unsupervised pretraining. For example, multiple layers can be trained at one time instead of
performing pretraining only one layer at a time. A particular case in point is VGG (cf. Sec-
tion 8.4.3 of Chapter 8) in which as many as eleven layers of an even deeper architecture
were trained together. Indeed, there are some advantages in grouping as many layers as
possible within the pretraining because a (successful) training procedure with larger pieces
of the neural network leads to more powerful initializations. On the other hand, grouping
too many layers together within each pretraining component can lead to problems (such as
the vanishing and exploding gradient problems) within each component.

A second point is that the pretraining procedure of Figure 4.8 assumes that the autoen-
coder works in a completely symmetric way in which the reduction in the kth layer of the
encoder is approximately similar to the reduction in its mirror layer in the decoder. This
might be a restrictive assumption in practice, if different types of activation functions are
used in different layers. For example, a sigmoid activation function in a particular layer of
the encoder will create only nonnegative values, whereas a tanh activation in the matching
layer of the decoder might create both positive and negative values. Another approach is
to use a relaxed pretraining architecture in which we learn separate reductions for the kth
level reduction in the encoder and its mirror image in the decoder. This allows the cor-
responding reductions in the encoder and the decoder to be different. An additional layer
of weights must be added between the two layers to allow for the differences between the
two reductions. This additional layer of weights is discarded after the reduction, and only
the encoder-decoder weights are preserved. The only location at which an additional set
of weights is not used for pretraining is in the innermost reduction, which proceeds in a
similar manner to that discussed in the earlier section (cf. Figure 4.8(b)). An example of
such an architecture for the first-level reduction of Figure 4.8(a) is shown in Figure 4.9.
Note that the first-level representations for the encoder and decoder layers can be quite
different in this case, which provides some flexibility during the pretraining process. When
the approach is used for classification, only the weights in the encoder can be used, and the
final reduced code can be capped with a classification layer for learning.

4.7.2 What About Supervised Pretraining?

So far, we have only discussed unsupervised pretraining, whether the base application is
supervised or unsupervised. Even in the case where the base application is supervised,
the initialization was done using an unsupervised autoencoder architecture. Although it is
possible to perform supervised pretraining as well, an interesting and surprising result is that
supervised pretraining does not seem to give as good results as unsupervised pretraining

198 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

in at least some settings [113, 31]. This does not mean that supervised pretraining is never
helpful. Indeed, there are cases of networks in which it is hard to train the network itself
because of its depth. For example, networks with hundreds of layers are extremely hard
to train because of issues associated with convergence and other problems. In such cases,
even the error on the training data is high, which means that one is unable to make the
training algorithm work. This is a different problem from that of model generalization.
Aside from supervised pretraining, many techniques such as the construction of highway
networks [161, 470], gating networks [204], and residual networks [184], can address many
of these problems. However, these solutions do not specifically address overfitting, whereas
unsupervised pretraining seems to hedge its bets in addressing both issues in at least some
types of networks.

In supervised pretraining [31], the autoencoder architecture is not used for learning the
weights of connections incident on the hidden layer. In the first iteration, the constructed
network contains only the first hidden layer, which is connected to all nodes in the output
layer. This step learns the weights of the connections from the input to hidden layer, al-
though the weights of the output layer are discarded. Subsequently, the outputs of the first
hidden layer are used as the new representations of the training points. Then, we create
another neural network containing the first and second hidden layers and the output layer.
The first hidden layer is now treated as an input layer with its inputs as the transformed
representations of the training points learned in the previous iteration. These are then used
to learn the next layer of weights and their hidden representations. This approach is re-
peated all the way to the final layer. Although this approach does provide improvements
over an approach that does not use pretraining, it does not seem to work as well as un-
supervised pretraining in at least some settings. The main difference in performance is on
the generalization error on unseen test data, whereas the errors on the training data are
often similar [31]. This is a near-certain sign of differential levels of overfitting of different
methods.

Why does supervised pretraining not help as much as unsupervised pretraining in many
settings? A key problem of supervised pretraining is that it is a bit too greedy and the early
layers are initialized to representations that are very directly related to the outputs. As a
result, the full advantages of depth are not exploited. This is a different type of overfitting.
An important explanation for the success of unsupervised pretraining is that the learned
representations are often related to the class labels in a gentle way; as a result, further learn-
ing is able to isolate and fine-tune the important characteristics of these representations.
Therefore, one can view pretraining as an unusual form of semi-supervised learning as well,
which forces the initial representations of the hidden layers to lie on the low-dimensional
manifolds of data instances. The secret to the success of pretraining is that more features
on these manifolds are predictive of classification accuracy than the features corresponding
to random regions of the data space. After all, class distributions vary smoothly over the
underlying data manifolds. The locations of data points on these manifolds are therefore
good features in predicting class distributions. Therefore, the final phase of learning only
has to fine-tune and enhance these features.

Are there cases in which unsupervised pretraining does not help? The work in [31] pro-
vides examples in which the manifold corresponding to the data distribution does not seem
to exhibit too much relationship with the target. This tends to occur more often in regres-
sion as compared to classification. In such cases, it was shown that adding some supervision
to pretraining can indeed help. The first layer of weights (between input and first hidden
layer) is trained using a combination of gradient updates from autoencoder-like reconstruc-
tion as well as greedy supervised pretraining. Thus, the learning of the weights of the first

4.8. CONTINUATION AND CURRICULUM LEARNING 199

layer is partially supervised. Subsequent layers are trained using the autoencoder approach
only. The inclusion of supervision in the first level of weights automatically incorporates
some level of supervision into the inner layers as well. This approach is used for initializing
the weights of the neural network. These weights are then fine tuned using fully supervised
backpropagation over the entire network.

4.8 Continuation and Curriculum Learning

The discussions in the previous and current chapter show that the learning of neural network
parameters is inherently a complex optimization problem, in which the loss function has
a complex topological shape. Furthermore, the loss function on the training data is not
exactly the same as the true loss function, which leads to spurious minima. These minima
are spurious because they might be near optimal minima on the training data, but they
might not be minima at all on unseen test instances. In many cases, optimizing a complex
loss function tends to lead to such solutions with little generalization power.

The experience with pretraining shows that simplifying the optimization problem (or
providing simple greedy solutions without too much optimization) can often precondition
the solution towards the basins of better optima on the test data. In other words, instead of
trying to solve a complex problem in one shot, one should first try to solve simplifications,
and gradually work one’s way towards complex solutions. Two such notions are those of
continuation and curriculum learning:

1. Continuation learning: In continuation learning, one starts with a simplified version
of the optimization problem and solves it. Starting with this solution, one continues
to a more complex refinement of the optimization problem and updates the solution.
This process is repeated until the complex optimization problem is solved. Thus, con-
tinuation learning leverages a model-centric view of working from simpler to complex
problems. For example, if one has a loss function with many local optima, one can
smooth it to a loss function with a single global optimum and find the optimal so-
lution. Then, one can gradually work with better and better approximations (with
increased complexity) until the exact loss function is used.

2. Curriculum learning: In curriculum learning, one starts by training the model on
simpler data instances, and then gradually adds more difficult instances to the training
data. Therefore, curriculum learning leverages a data-centric view of working from the
simple to the complex, whereas continuation methods leverage a model-centric view.

A different view of curriculum and continuation learning may be obtained by examining
how humans naturally learn tasks. Humans often learn simple concepts first and then move
to the complex. The training of a child is often created using such a curriculum in order
to accelerate learning. This principle also seems to work well in machine learning. In the
following, we will examine both continuation and curriculum learning.

4.8.1 Continuation Learning

In continuation learning, one designs a series of loss functions L1 . . . Lr, in which the diffi-
culty in optimizing this sequence of loss functions grows from the easy to the difficult. In
other words, each Li+1 is more difficult to optimize than Li. All the optimization problems
are defined on the same set of parameters, because they are defined on the same neural
network. The smoothing of a loss function is a form of regularization. One can view each

200 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

Li as a smoothed version of Li+1. Solving each Li brings the solution closer to the basin of
optimal solutions from the point of view of generalization error.

Continuation loss functions are often constructed by using blurring. The idea is to com-
pute the loss function at sampled points in the vicinity of a given point, and then average
these values in order to create the new loss function. For example, one could use a normal
distribution with standard deviation σi for computing the ith loss function Li. One can
view this approach as a type of noise addition to the loss function, which is also a form of
regularization. The amount of blurring depends on the size of the locality used for blur-
ring, which is defined by σi. If the value of σi is set to be too large, then the cost will be
very similar at all points, and the loss function will not retain sufficient details about the
objective. However, it will often be very simple to optimize. On the other hand, setting
σi to 0 will retain all the details in the loss function. Therefore, the natural solution is to
start with large values of σi and then reduce the value over successive loss functions. One
can view this approach as that of using an increased amount of noise for regularization in
the early iterations, and then reducing the level of regularization as the algorithm nears an
attractive solution. Such tricks of adding a varying amount of calibrated noise to enable
the avoidance of local optima is a recurring theme in many optimization techniques such
as simulated annealing [244]. The main problem with continuation methods is that they are
expensive due to the need to optimize a series of loss functions.

4.8.2 Curriculum Learning

Curriculum learning methods take a data-centric view of the goals that are achieved by the
model-centric continuation learning methods. The main hypothesis is that different training
data sets present different levels of difficulty to a learner. In curriculum methods, easy
examples are first presented to the learner. One possible way of defining a difficult example
is as one that falls on the wrong side of a decision boundary with a perceptron or an SVM.
There are other possibilities, such as the use of a Bayes classifier. The basic idea is that the
difficult examples are often noisy or they represent exceptional patterns that confuse the
learner. Therefore, it is inadvisable to start training with such examples.

In other words, the initial iterations of stochastic gradient descent use only the easy
examples to “pretrain” the learner towards a reasonable parameter setting. Subsequently,
difficult examples are included with the easy examples in later iterations. It is important to
include both easy and difficult examples in the later phases, or else the learner will overfit
to only the difficult examples. In many cases, the difficult examples might be exceptional
patterns in particular regions of the space, or they might even be noise. If only the difficult
examples are presented to the learner in later phases, the overall accuracy will not be good.
The best results are often obtained by using a random mixture of simple and difficult
examples in later phases. The proportion of difficult examples are increased over the course
of the curriculum until the input represents the true data distribution. This type of stochastic
curriculum has been shown to be an effective approach.

4.9 Parameter Sharing

A natural form of regularization that reduces the parameter footprint of the model is the
sharing of parameters across different connections. Often, this type of parameter sharing is
enabled by domain-specific insights. The main insight required to share parameters is that
the function computed at two nodes should be related in some way. This type of insight

4.10. REGULARIZATION IN UNSUPERVISED APPLICATIONS 201

can be obtained when one has a good idea of how a particular computational node relates
to the input data. Examples of such parameter-sharing methods are as follows:

1. Sharing weights in autoencoders: The symmetric weights in the encoder and decoder
portion of the autoencoder are often shared. Although an autoencoder will work
whether or not the weights are shared, doing so improves the regularization prop-
erties of the algorithm. In a single-layer autoencoder with linear activation, weight
sharing forces orthogonality among the different hidden components of the weight
matrix. This provides the same reduction as singular value decomposition.

2. Recurrent neural networks: These networks are often used for modeling sequential
data, such as time-series, biological sequences, and text. The last of these is the most
commonly used application of recurrent neural networks. In recurrent neural networks,
a time-layered representation of the network is created in which the neural network is
replicated across layers associated with time stamps. Since each time stamp is assumed
to use the same model, the parameters are shared between different layers. Recurrent
neural networks are discussed in detail in Chapter 7.

3. Convolutional neural networks: Convolutional neural networks are used for image
recognition and prediction. Correspondingly, the inputs of the network are arranged
into a rectangular grid pattern, along with all the layers of the network. Furthermore,
the weights across contiguous patches of the network are typically shared. The basic
idea is that a rectangular patch of the image corresponds to a portion of the visual
field, and it should be interpreted in the same way no matter where it is located. In
other words, a carrot means the same thing whether it is at the left or the right of
the image. In essence, these methods use semantic insights about the data to reduce
the parameter footprint, share weights, and sparsify the connections. Convolutional
neural networks are discussed in Chapter 8.

In many of these cases, it is evident that parameter sharing is enabled by the use of domain-
specific insights about the training data as well as a good understanding of how the com-
puted function at a node relates to the training data. The modifications to the backprop-
agation algorithm required for enabling weight sharing are discussed in Section 3.2.9 of
Chapter 3.

An additional type of weight sharing is soft weight sharing [360]. In soft weight sharing,
the parameters are not completely tied, but a penalty is associated with them being different.
For example, if one expects the weights wi and wj to be similar, the penalty λ(wi −wj)

2/2
might be added to the loss function. In such a case, the quantity αλ(wj − wi) might be
added to the update of wi, and the quantity αλ(wi − wj) might be added to the update
of wj . Here, α is the learning rate. These types of changes to the updates tend to pull the
weights towards each other.

4.10 Regularization in Unsupervised Applications

Although overfitting does occur in unsupervised applications, it is often less of a problem. In
classification, one is trying to learn a single bit of information associated with each example,
and therefore using more parameters than the number of examples can cause overfitting.
This is not quite the case in unsupervised applications in which a single training example
may contain many more bits of information corresponding to the different dimensions. In
general, the number of bits of information will depend on the intrinsic dimensionality of the

202 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

data set. Therefore, one tends to hear fewer complaints about overfitting in unsupervised
applications.

Nevertheless, there are many unsupervised settings in which it is beneficial to use regular-
ization. A common case is one in which we have an overcomplete autoencoder, in which the
number of hidden units is greater than the number of input units. An important goal of reg-
ularization in unsupervised applications is to impose some kind of structure on the learned
representations. This approach to regularization can have different application-specific ben-
efits like creating sparse representations or in providing the ability to clean corrupted data.
As in the case of supervised models, one can use semantic insights about a problem do-
main in order to force a solution to have specific types of desired properties. This section
will show how different types of penalties and constraints on the hidden units can create
hidden/reconstructed representations with useful properties.

4.10.1 Value-Based Penalization: Sparse Autoencoders

The penalizing of sparse hidden units has unsupervised applications such as sparse autoen-
coders. Sparse autoencoders contain a much larger number of hidden units in each layer
as compared to the number of input units. However, the values of the hidden units are
encouraged to be 0s by either explicit penalization or by constraints. As a result, most of
the values in the hidden units will be 0s at convergence. One possible approach is to impose
an L1-penalty on the hidden units in order to create sparse representations. The gradient-
descent approach with L1-penalties on the hidden units is discussed in Section 4.4.4. It is
also noteworthy that the use of L1-regularization seems to be somewhat unusual in the
autoencoder literature (although there is no reason not to use it). Other constraint-based
methods exist, such as allowing only the top-k hidden units to be activated. In most of
these cases, the constraints are chosen in such a way that the backpropagation approach
can be modified in a reasonable way. For example, if only the top-k units are selected for
activation, then the gradient flows are allowed to backpropagate only through these cho-
sen units. Constraint-based techniques are simply hard variations of penalty-based meth-
ods. More details are provided on some of these learning methods in Section 2.5.5.1 of
Chapter 2.

4.10.2 Noise Injection: De-noising Autoencoders

As discussed in Section 4.4.1, noise injection is a form of penalty-based regularization of
the weights. The use of Gaussian noise in the input is roughly equal to L2-regularization in
single-layer networks with linear activation. The de-noising autoencoder is based on noise
injection rather than penalization of the weights or hidden units. However, the goal of
the de-noising autoencoder is to reconstruct good examples from corrupted training data.
Therefore, the type of noise should be calibrated to the nature of the input. Several different
types of noise can be added:

1. Gaussian noise: This type of noise is appropriate for real-valued inputs. The added
noise has zero mean and variance λ > 0 for each input. Here, λ is the regularization
parameter.

2. Masking noise: The basic idea is to set a fraction f of the inputs to zeros in order to
corrupt the inputs. This type of approach is particularly useful when working with
binary inputs.

4.10. REGULARIZATION IN UNSUPERVISED APPLICATIONS 203

3. Salt-and-pepper noise: In this case, a fraction f of the inputs are set to either their
minimum or maximum possible values according to a fair coin flip. The approach is
typically used for binary inputs, for which the minimum and maximum values are 0
and 1, respectively.

De-noising autoencoders are useful when dealing with data that is corrupted. Therefore,
the main application of such autoencoders is to reconstruct corrupted data. The inputs
to the autoencoder are corrupted training records, and the outputs are the uncorrupted
data records. As a result, the autoencoder learns to recognize the fact that the input is
corrupted, and the true representation of the input needs to be reconstructed. Therefore,
even if there is corruption in the test data (as a result of application-specific reasons),
the approach is able to reconstruct clean versions of the test data. Note that the noise in
the training data is explicitly added, whereas that in the test data is already present as
a result of various application-specific reasons. For example, as shown in the top portion
of Figure 4.10, one can use the approach to removing blurring or other noise from images.
The nature of the noise added to the input training data should be based on insights about
the type of corruption present in the test data. Therefore, one does require uncorrupted
examples of the training data for best performance. In most domains, this is not very
difficult to achieve. For example, if the goal is to remove noise from images, the training
data might contain high-quality images as the output and artificially blurred images as the
input. It is common for the de-noising autoencoder to be overcomplete, when it is used
for reconstruction from corrupted data. However, this choice also depends on the nature
of the input and the amount of noise added. Aside from its use for reconstructing inputs,
the addition of noise is also an excellent regularizer that tends to make the approach work
better for out-of-sample inputs even when the autoencoder is undercomplete.

TRUE MANIFOLD
NOISY POINTS PROJECTED

ON TRUE MANIFOLD
TRUE MANIFOLD

NOISY POINTS

DENOISING

DENOISING

BLURRY IMAGE SHARP IMAGE

Figure 4.10: The de-noising autoencoder

The way in which the de-noising autoencoder works is that it uses the noise in the input
data to learn the true manifold on which the data is embedded. Each corrupted point is
projected to its “closest” matching point on the true manifold of the data distribution.
The closest matching point is the expected position on the manifold from which the model
predicts that the noisy point has originated. This projection is shown in the bottom portion

204 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

of Figure 4.10. The true manifold is a more concise representation of the data as compared
to the noisy data, and this conciseness is a result of the regularization inherent in the
addition of noise to the input. All forms of regularization tend to increase the conciseness
of the underlying model.

4.10.3 Gradient-Based Penalization: Contractive Autoencoders

As in the case of the de-noising autoencoder, the hidden representation of the contractive
autoencoder is often overcomplete, because the number of hidden units is greater than the
number of input units. A contractive autoencoder is a heavily regularized encoder in which
we do not want the hidden representation to change very significantly with small changes in
input values. Obviously, this will also result in an output that is less sensitive to the input.
Trying to create an autoencoder in which the output is less sensitive to changes in the input
seems like an odd goal at first sight. After all, an autoencoder is supposed to reconstruct
the data exactly. Therefore, the goals of regularization seem to be completely at odds with
those of the contractive regularization portion of the loss function.

A key point is that contractive encoders are designed to be robust only to small changes
in the input data. Furthermore, they tend to be insensitive to those changes that are incon-
sistent with the manifold structure of the data. In other words, if one makes a small change
to the input that does not lie on the manifold structure of the input data, the contractive
autoencoder will tend to damp the change in the reconstructed representation. Here, it is
important to understand that the vast majority of (randomly chosen) directions in high-
dimensional input data (with a much lower-dimensional manifold) tend to be approximately
orthogonal to the manifold structure, which has the effect of changing the components of
the change on the manifold structure. The damping of the changes in the reconstructive
representation based on the local manifold structure is also referred to as the contractive
property of the autoencoder. As a result, contractive autoencoders tend to remove noise
from the input data (like de-noising autoencoders), although the mechanism for doing this
is different from that of de-noising autoencoders. As we will see later, contractive autoen-
coders penalize the gradients of the hidden values with respect to the inputs. When the
hidden values have low gradients with respect to the inputs, it means that they are not
very sensitive to small changes in the inputs (although larger changes or changes parallel
to manifold structure will tend to change the gradients).

For ease in discussion, we will discuss the case where the contractive autoencoder has
a single hidden layer. The generalization to multiple hidden layers is straightforward. Let
h1 . . . hk be the values of the k hidden units for the input variables x1 . . . xd. Let the re-
constructed values in the output layer be given by x̂1 . . . x̂d. Then, the objective function is
given by the weighted sum of the reconstruction loss and the regularization term. The loss
L for a single training instance is given by the following:

L =

d∑

i=1

(xi − x̂i)
2 (4.12)

The regularization term is constructed by using the sum of the squares of the partial deriva-
tives of all hidden variables with respect to all input dimensions. For a problem with k hidden
units denoted by h1 . . . hk, the regularization term R can be written as follows:

R =
1

2

d∑

i=1

k∑

j=1

(
∂hj

∂xi

)2

(4.13)

4.10. REGULARIZATION IN UNSUPERVISED APPLICATIONS 205

In the original paper [397], the sigmoid nonlinearity is used in the hidden layer, in which
case the following can be shown (cf. Section 3.2.5 of Chapter 3):

∂hj

∂xi
= wijhj(1− hj) ∀i, j (4.14)

Here, wij is the weight of the input unit i to the hidden unit j.
The overall objective function for a single training instance is given by a weighted sum

of the loss and the regularization terms.

J = L+ λ ·R

=

d∑

i=1

(xi − x̂i)
2 +

λ

2

k∑

j=1

h2
j (1− hj)

2
d∑

i=1

w2
ij

This objective function contains a combination of weight and hidden unit regularization.
Penalties on hidden units can be handled in the same way as discussed in Section 3.2.7
of Chapter 3. Let ahj

be the pre-activation value for the node hj . The backpropagation
updates are traditionally defined in terms of the preactivation values, where the value of
∂J

∂ahj

is propagated backwards. After ∂J
∂ahj

is computed using the dynamic programming

update of backpropagation from the output layer, one can further update it to incorporate
the effect of hidden-layer regularization of hj :

∂J

∂ahj

⇐ ∂J

∂ahj

+
λ

2

∂[h2
j (1− hj)

2]

∂ahj

d∑

i=1

w2
ij

=
∂J

∂ahj

+ λhj(1− hj)(1− 2hj)
∂hj

∂ahj
︸ ︷︷ ︸

hj(1−hj)

d∑

i=1

w2
ij

=
∂J

∂ahj

+ λh2
j (1− hj)

2(1− 2hj)

d∑

i=1

w2
ij

The value of
∂hj

∂ahj

is set to hj(1− hj) because the sigmoid activation is assumed, although

it would be different for other activations. According to the chain rule, the value of ∂J
∂ahj

should be multiplied with the value of
∂ahj

∂wij
= xi to obtain the gradient of the loss with

respect to wij . However, according to the multivariable chain rule, we also need to directly
add the derivative of the regularizer with respect to wij in order to obtain the full gradient.
Therefore, the partial derivative of the hidden-layer regularizer R with respect to the weight
is added as follows:

∂J

∂wij
⇐ ∂J

∂ahj

∂ahj

∂wij
+ λ

∂R

∂wij

= xi
∂J

∂ahj

+ λwijh
2
j (1− hj)

2

Interestingly, if a linear hidden unit is used instead of the sigmoid, it is easy to see that the
objective function will become identical to that of an L2-regularized autoencoder. Therefore,
it makes sense to use this approach only with a nonlinear hidden layer, because a linear
hidden layer can be handled in a much simpler way. The weights in the encoder and decoder
can be either tied or independent. If the weights are tied then the gradients over both copies
of a weight need to be added. The above discussion assumes a single hidden layer, although it
is easy to generalize to more hidden layers. The work in [397] showed that better compression
can be achieved with the use of deeper variants of the approach.

206 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

Some interesting relationships exist between the de-noising autoencoder and the contrac-
tive autoencoder. The de-noising autoencoder achieves its goals of robustness stochastically
by explicitly adding noise, whereas a contractive autoencoder achieves its goals analytically
by adding a regularization term. Adding a small amount of Gaussian noise in a de-noising
autoencoder achieves roughly similar goals as a contractive autoencoder, when the hid-
den layer uses linear activation. When the hidden layer uses linear activation, the partial
derivative of the hidden unit with respect to an input is simply the connecting weight, and
therefore the objective function of the contractive autoencoder becomes the following:

Jlinear =

d∑

i=1

(xi − x̂i)
2 +

λ

2

d∑

i=1

k∑

j=1

w2
ij (4.15)

In that case, both the contractive and the de-noising autoencoders become similar to reg-
ularized singular value decomposition with L2-regularization. The difference between the
de-noising autoencoder and the contractive autoencoder is visually illustrated in Figure 4.11.
In the case of the de-noising autoencoder on the left, the autoencoder learns the directions
along the true manifold of uncorrupted data by using the relationship between the corrupted
data in the output and the true data in the input. This goal is achieved analytically in the
contractive autoencoder, because the vast majority of random perturbations are roughly or-
thogonal to the manifold when the dimensionality of the manifold is much smaller than the
input data dimensionality. In such a case, perturbing the data point slightly does not change
the hidden representation along the manifold very much. Penalizing the partial derivative
of the hidden layer equally along all directions ensures that the partial derivative is signif-
icant only along the small number of directions along the true manifold, and the partial
derivatives along the vast majority of orthogonal directions are close to 0. In other words,
the variations that are not meaningful to the distribution of the specific training data set
at hand are damped, and only the meaningful variations are kept.

DENOISING AUTOENCODER LEARNS TO

DISCRIMINATE BETWEEN NOISE

DIRECTIONS AND MANIFOLD DIRECTIONS

HIDDEN REPRESENTATION ON MANIFOLD

DOES NOT CHANGE MUCH BY PERTURBING

POINT A TO POINT B

A

B

DLOFINAMEURTDLOFINAMEURT

REDOCNEOTUAEVITCARTNOCREDOCNEOTUAGNISIONED

Figure 4.11: The difference between the de-noising and the contractive autoencoder

Another difference between the two methods is that the de-noising autoencoder
shares the responsibility for regularization between the encoder and decoder, whereas the
contractive autoencoder places this responsibility only on the encoder. Only the encoder
portion is used in feature extraction; therefore, contractive autoencoders are more useful
for feature engineering.

4.10. REGULARIZATION IN UNSUPERVISED APPLICATIONS 207

In a contractive autoencoder, the gradients are deterministic, and therefore it is also
easier to use second-order learning methods as compared to the de-noising autoencoder. On
the other hand, the de-noising autoencoder is easier to construct (with small changes to the
code of an unregularized autoencoder), if first-order learning methods are used.

4.10.4 Hidden Probabilistic Structure: Variational Autoencoders

Just as sparse encoders impose a sparsity constraint on the hidden units, variational en-
coders impose a specific probabilistic structure on the hidden units. The simplest constraint
is that the activations in the hidden units over the whole data should be drawn from the
standard Gaussian distribution (i.e., zero mean and unit variance in each direction). By
imposing this type of constraint, one advantage is that we can throw away the encoder after
training, and simply feed samples from the standard normal distribution to the decoder in
order to generate samples of the training data. However, if every object is generated from
an identical distribution, then it would be impossible to either differentiate the various ob-
jects or to reconstruct them from a given input. Therefore, the conditional distribution of
the activations in the hidden layer (with respect to a specific input object) would have a
different distribution from the standard normal distribution. Even though a regularization
term would try to pull even the conditional distribution towards the standard normal dis-
tribution, this goal would only be achieved over the distribution of hidden samples from the
whole data rather than the hidden samples from a single object.

Imposing a constraint on the probabilistic distribution of hidden variables is more
complicated than the other regularizers discussed so far. However, the key is to use a
re-parametrization approach in which the encoder creates the k-dimensional mean and
standard deviations vector of the conditional Gaussian distribution, and the hidden vector
is sampled from this distribution as shown in Figure 4.12(a). Unfortunately, this network
still has a sampling component. The weights of such a network cannot be learned by back-
propagation because the stochastic portions of the computations are not differentiable, and
therefore backpropagation cannot be not used. Therefore, the stochastic part of it can be ad-
dressed by the user explicitly generating k-dimensional samples in which each component is
drawn from the standard normal distribution. The mean and standard deviation output by
the encoder are used to scale and translate the input sample from the Gaussian distribution.
This architecture is shown in Figure 4.12(b). By generating the stochastic potion explicitly
as a part of the input, the resulting architecture is now fully deterministic, and its weights
can be learned by backpropagation. Furthermore, the values of the generated samples from
the standard normal distribution will need to be used in the backpropagation updates.

For each object X, separate hidden activations for the mean and standard deviation are
created by the encoder. The k-dimensional activations for the mean and standard deviation
are denoted by μ(X) and σ(X), respectively. In addition, a k-dimensional sample z is
generated from N (0, I), where I is the identity matrix, and treated as an input into the
hidden layer by the user. The hidden representation h(X) is created by scaling this random
input vector z with the mean and standard deviation as follows:

h(X) = z ⊙ σ(X) + μ(X) (4.16)

Here, ⊙ indicates element-wise multiplication. These operations are shown in Figure 4.12(b)
with the little circles containing the multiplication and addition operators. The elements
of the vector h(X) for a particular object will obviously diverge from the standard normal
distribution unless the vectors μ(X) and σ(X) contain only 0s and 1s, respectively. This will
not be the case because of the reconstruction component of the loss, which forces the condi-
tional distributions of the hidden representations of particular points to have different means

208 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

and lower standard deviations than that of the standard normal distribution (which is like
a prior distribution). The distribution of the hidden representation of a particular point is a
posterior distribution (conditional on the specific training data point), and therefore it will
differ from the Gaussian prior. The overall loss function is expressed as a weighted sum of the
reconstruction loss and the regularization loss. One can use a variety of choices for the recon-
struction error, and for simplicity we will use the squared loss, which is defined as follows:

L = ||X −X
′||2 (4.17)

Here, X
′
is the reconstruction of the input point X from the decoder. The regularization

loss R is simply the Kullback-Leibler (KL)-divergence measure of the conditional hidden
distribution with parameters (μ(X)), σ(X)) with respect to the k-dimensional Gaussian
distribution with parameters (0, I). This value is defined as follows:

R =
1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

||μ(X)||2
︸ ︷︷ ︸

μ(X)i⇒0

+ ||σ(X)||2 − 2

k∑

i=1

ln(σ(X)i)

︸ ︷︷ ︸

σ(X)i⇒1

−k

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.18)

Below some of the terms, we have annotated the specific effects of these terms in pushing
parameters in particular directions. The constant term does not really do anything but it is
a part of the KL-divergence function. Including the constant term does have the cosmeti-
cally satisfying effect that the regularization portion of the objective function reduces to 0,
if the parameters (μ(X)), σ(X)) are the same as those of the isotropic Gaussian distribution
with zero mean and unit variance in all directions. However, this will not be the case for
any specific data point because of the effect of the reconstruction portion of the objective
function. Over all training data points, the distribution of the hidden representation will,
however, move closer to the standardized Gaussian because of the regularization term. The
overall objective function J for the data point X is defined as the weighted sum of the
reconstruction loss and the regularization loss:

J = L+ λR (4.19)

Here, λ > 0 is the regularization parameter. Small values of λ will favor exact reconstruc-
tion, and the approach will behave like a traditional autoencoder. The regularization term
forces the hidden representations to be stochastic, so that multiple hidden representations
generate almost the same point. This increases generalization power because it is easier to
model a new image that is like (but not an exact likeness of) an image in the training data
within the stochastic range of hidden values. However, since there will be overlaps among
the distributions of the hidden representations of similar points, it has some undesirable
side effects. For example, the reconstructions tend to be blurry, when using the approach to
reconstruct images. This is caused by an averaging effect over somewhat similar points. In
the extreme case, if the value of λ is chosen to be exceedingly large, then all points will have
the same hidden distribution (which is an isotropic Gaussian distribution with zero mean
and unit variance). The reconstruction might provide a gross averaging over large numbers
of training points, which will not be meaningful. The blurriness of the reconstructions of
the variational autoencoder is an undesirable property of this class of models in comparison
with several other related models for generative modeling.

Training the Variational Autoencoder

The training of a variational autoencoder is relatively straightforward because the stochas-
ticity has been pulled out as an additional input. One can backpropagate as in any

4.10. REGULARIZATION IN UNSUPERVISED APPLICATIONS 209

traditional neural network. The only difference is that one needs to backpropagate across
the unusual form of Equation 4.16. Furthermore, one needs to account for the penalties of
the hidden layer during backpropagation.

First, one can backpropagate the loss L up to the hidden state h(X) = (h1 . . . hk) using
traditional methods. Let z = (z1 . . . zk) be the k random samples from N (0, 1), which are
used in the current iteration. In order to backpropagate from h(X) to μ(X) = (μ1 . . . μk)
and σ(X) = (σ1 . . . σk), one can use the following relationship:

ENCODER

NETWORK

DECODER

NETWORK

S
T

D
D

E
V

 V
E

C
T

O
R

H
ID

D
E

N
 V

E
C

T
O

R

M
E

A
N

 V
E

C
T

O
R

SAMPLED

INPUT RECONSTRUCTION

(a) Point-specific Gaussian distribution (stochastic and non-differentiable loss)

ENCODER

NETWORK

S
T

D
D

E
V

 V
E

C
T

O
R

M
E

A
N

 V
E

C
T

O
R

DECODER

NETWORK

H
ID

D
E

N
 V

E
C

T
O

R

GAUSSIAN

SAMPLES

N(0, I)

*

+

USER GENERATED INPUT SAMPLES

INPUT RECONSTRUCTION

KL-LOSS w.r.t. N(0, I) RECONSTRUCTION LOSS

+

TOTAL LOSS

(b) Point-specific Gaussian distribution (deterministic and differentiable loss)

Figure 4.12: Re-parameterizing a variational autoencoder

210 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

DECODER

NETWORK

GAUSSIAN

SAMPLES

N(0, I)

GENERATED IMAGE

Figure 4.13: Generating samples from the variational autoencoder. The images are illustra-
tive only.

J = L+ λR (4.20)

∂J

∂μi
=

∂L

∂hi

∂hi

∂μi
︸︷︷︸

=1

+λ
∂R

∂μi
(4.21)

∂J

∂σi
=

∂L

∂hi

∂hi

∂σi
︸︷︷︸

=zi

+λ
∂R

∂σi
(4.22)

The values below the under-braces show the evaluations of partial derivatives of hi with
respect to μi and σi, respectively. Note that the values of ∂hi

∂μi
= 1 and ∂hi

∂σi
= zi are

obtained by differentiating Equation 4.16 with respect to μi and σi, respectively. The value
of ∂L

∂hi
on the right-hand side is available from backpropagation. The values of ∂R

∂μi
and ∂R

∂σi

are straightforward derivatives of the KL-divergence in Equation 4.18. Subsequent error
propagation from the activations for μ(X) and σ(X) can proceed in a similar way to the
normal workings of the backpropagation algorithm.

The architecture of the variational autoencoder is considered fundamentally different
from other types of autoencoders because it models the hidden variables in a stochastic
way. However, there are still some interesting connections. In the de-noising autoencoder,
one adds noise to the input; however, there is no constraint on the shape of the hidden
distribution. In the variational autoencoder, one works with a stochastic hidden represen-
tation, although the stochasticity is pulled out by using it as an additional input during
training. In other words, noise is added to the hidden representation rather than the input
data. The variational approach improves generalization, because it encourages each input
to map to its own stochastic region in the hidden space rather than mapping it to a single
point. Small changes in the hidden representation, therefore, do not change the reconstruc-
tion too much. This assertion would also be true with a contractive autoencoder. However,
constraining the shape of the hidden distribution to be Gaussian is a more fundamental
difference of the variational autoencoder from other types of transformations.

4.10.4.1 Reconstruction and Generative Sampling

The approach can be used for creating the reduced representations as well as generating sam-
ples. In the case of data reduction, a Gaussian distribution with mean μ(X) and standard
deviation σ(X) is obtained, which represents the distribution of the hidden representation.

However, a particularly interesting application of the variational autoencoder is to gen-
erate samples from the underlying data distribution. Just as feature engineering methods

4.10. REGULARIZATION IN UNSUPERVISED APPLICATIONS 211

* *

*
*

**
*

*
*

o

oo

o

o

o
o

o

o

o
o

o

o

o
o

*

*
*

*

+

+

+

+

+
+

+
++

++

+
+

..
. ..

.. ..
+

+

+++

+
+ . .

..
.
..

2-D LATENT EMBEDDING

(NO REGULARIZATION)

2-D LATENT EMBEDDING

(VAE)

*
*

*

*
*

*
*

*

*
*

o
o

o

o
o

o

o

o

o

o

o

o

o
o

o

*

*

*
* +

+

+
+

+ +

+

++
+

+

+
+

.
. .

.

.

.

.
.

..

..
o

+

. .

Figure 4.14: Illustrations of the embeddings created by a variational autoencoder in relation
to the unregularized version. The unregularized version has large discontinuities in the latent
space, which might not correspond to meaningful points. The Gaussian embedding of the
points in the variational autoencoder makes sampling possible.

use only the encoder portion of the autoencoder (once training is done), variational au-
toencoders use only the decoder portion. The basic idea is to repeatedly draw a point from
the Gaussian distribution and feed it to the hidden units in the decoder. The resulting “re-
construction” output of the decoder will be a point satisfying a similar distribution as the
original data. As a result, the generated point will be a realistic sample from the original
data. The architecture for sample generation is shown in Figure 4.13. The shown image is
illustrative only, and does not reflect the actual output of a variational autoencoder (which
is generally of somewhat lower quality). To understand why a variational autoencoder can
generate images in this way, it is helpful to view the typical types of embeddings an un-
regularized autoencoder would create versus a method like the variational autoencoder. In
the left side of Figure 4.14, we have shown an example of the 2-dimensional embeddings of
the training data created by an unregularized autoencoder of a four-class distribution (e.g.,
four digits of MNIST). It is evident that there are large discontinuities in particular regions
of the latent space, and that these sparse regions may not correspond to meaningful points.
On the other hand, the regularization term in the variational autoencoder encourages the
training points to be (roughly) distributed in a Gaussian distribution, and there are far
fewer discontinuities in the embedding on the right-hand side of Figure 4.14. Consequently,
sampling from any point in the latent space will yield meaningful reconstructions of one of
the four classes (i.e., one of the digits of MNIST). Furthermore, “walking” from one point
in the latent space to another along a straight line in the second case will result in a smooth
transformation across classes. For example, walking from a region containing instances of
‘4’ to a region containing instances of ‘7’ in the latent space of the MNIST data set would
result in a slow change in the style of the digit ‘4’ until a transition point, where the hand-
written digit could be interpreted either as a ‘4’ or a ‘7’. This situation does occur in real
settings as well because such types of confusing handwritten digits do occur in the MNIST
data set. Furthermore, the placement of different digits within the embedding would be
such that digit pairs with smooth transitions at confusion points (e.g., [4, 7] or [5, 6]) are
placed adjacent to one another in the latent space.

212 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

It is important to understand that the generated objects are often similar to but not
exactly the same as those drawn from the training data. Because of its stochastic nature, the
variational autoencoder has the ability to explore different modes of the generation process,
which leads to a certain level of creativity in the face of ambiguity. This property can be
put to good use by conditioning the approach on another object.

ENCODER

NETWORK

S
T

D
D

E
V

 V
E

C
T

O
R

M
E

A
N

 V
E

C
T

O
R

DECODER

NETWORK

H
ID

D
E

N
 V

E
C

T
O

R

GAUSSIAN

SAMPLES

N(0, I)

*

+

INPUT RECONSTRUCTION

KL-LOSS w.r.t. N(0, I) RECONSTRUCTION LOSS

+

TOTAL LOSS

CONDITIONING:

DAMAGED IMAGE

WITH MISSING

PARTS

CONDITIONING:

DAMAGED IMAGE

WITH MISSING

PARTS

TRAINING APPROACH

DECODER

NETWORK

GAUSSIAN

SAMPLES

N(0, I)

DAMAGED

IMAGE

RECONSTRUCTION

RECONSTRUCTION APPROACH

Figure 4.15: Reconstructing damaged images with the conditional variational autoencoder.
The images are illustrative only.

4.10.4.2 Conditional Variational Autoencoders

One can apply conditioning to variational autoencoders in order to obtain some interest-
ing results [510, 463]. The basic idea in conditional variational autoencoders is to add an
additional conditional input, which typically provides a related context. For example, the
context might be a damaged image with missing holes, and the job of the autoencoder is
to reconstruct it. Predictive models will generally perform poorly in this type of setting
because the level of ambiguity may be too large, and an averaged reconstruction across
all images might not be useful. During the training phase, pairs of damaged and original

4.11. SUMMARY 213

images are needed, and therefore the encoder and decoder are able to learn how the con-
text relates to the images being generated from the training data. The architecture of the
training phase is illustrated in the upper part of Figure 4.15. The training is otherwise
similar to the unconditional variational autoencoder. During the testing phase, the context
is provided as an additional input, and the autoencoder reconstructs the missing portions
in a reasonable way based on the model learned in the training phase. The architecture of
the reconstruction phase is illustrated in the lower part of Figure 4.15. The simplicity of
this architecture is particularly notable. The shown images are only illustrative; in actual
executions on image data, the generated images are often blurry, especially in the missing
portions. This is a type of image-to-image translation approach, which will be revisited in
Chapter 10 under the context of a discussion on generative adversarial networks.

4.10.4.3 Relationship with Generative Adversarial Networks

Variational autoencoders are closely related to another class of models, referred to as gener-
ative adversarial networks. However, there are some key differences as well. Like variational
autoencoders, generative adversarial networks can be used to create images that are similar
to a base training data set. Furthermore, conditional variants of both models are useful for
completing missing data, especially in cases where the ambiguity is large enough to require
a certain level of creativity from the generative process. However, the results of generative
adversarial networks are often more realistic because the decoders are explicitly trained to
create good counterfeits. This is achieved by having a discriminator as a judge of the quality
of the generated objects. Furthermore, the objects are also generated in a more creative way
because the generator is never shown the original objects in the training data set, but is
only given guidance to fool the discriminator. As a result, generative adversarial networks
learn to create creative counterfeits. In certain domains such as image and video data, this
approach can have remarkable results; unlike variational autoencoders, the quality of the
images is not blurry. One can create vivid images and videos with an artistic flavor, that
give the impression of dreaming. These techniques can also be used in numerous applica-
tions like text-to-image or image-to-image translation. For example, one can specify a text
description, and then obtain a fantasy image that matches the description [392]. Generative
adversarial networks are discussed in Section 10.4 of Chapter 10.

4.11 Summary

Neural networks often contain a large number of parameters, which causes overfitting. One
solution is to restrict the size of the networks up front. However, such an approach often
provides suboptimal solutions when the model is complex and sufficient data are available.
A more flexible approach is to use tunable regularization, in which a large number of param-
eters are allowed. In such cases, the regularization restricts the size of the parameter space
in a soft way. The most common form of regularization is penalty-based regularization. It
is common to use penalties on the parameters, although it is also possible to use penalties
on the activations of the hidden units. The latter approach leads to sparse representations
in the hidden units. Ensemble learning is a common approach to reduce variance, and some
ensemble methods like Dropout are specifically designed for neural networks. Other com-
mon regularization methods include early stopping and pretraining. Pretraining acts as a
regularizer by acting as a form of semi-supervised learning, which works from the simple to
the complex by initializing with a simple heuristic and using backpropagation to discover

214 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

refined solutions. Other related techniques include curriculum and continuation methods,
which also work from the simple to the complex in order to provide solutions with low gener-
alization error. Although overfitting is often a less serious problem in unsupervised settings,
different types of regularization are used to impose structure on the learned models.

4.12 Bibliographic Notes

A detailed discussion of the bias-variance trade-off may be found in [177]. The bias-variance
trade-off originated in the field of statistics, where it was proposed in the context of the re-
gression problem. The generalization to the case of binary loss functions in classification was
proposed in [247, 252]. Early methods for reducing overfitting were proposed in [175, 282] in
which unimportant weights were removed from a network to reduce its parameter footprint.
It was shown that this type of pruning had significant benefits in terms of generalization.
The early work also showed [450] that deep and narrow networks tended to generalize better
than broad and shallow networks. This is primarily because the depth imposes a structure
on the data, and can represent the data in a fewer number of parameters. A recent study
of model generalization in neural networks is provided in [557].

The use of L2-regularization in regression dates back to Tikhonov-Arsenin’s seminal
work [499]. The equivalence of Tikhonov regularization and training with noise was shown by
Bishop [44]. The use of L1-regularization is studied in detail in [179]. Several regularization
methods have also been proposed that are specifically designed for neural architectures.
For example, the work in [201] proposes a regularization technique that constrains the
norm of each layer in a neural network. Sparse representations of the data are explored
in [67, 273, 274, 284, 354].

Detailed discussions of ensemble methods for classification may be found in [438, 566].
The bagging and subsampling methods are discussed in [50, 56]. The work in [515] proposes
an ensemble architecture that is inspired by a random forest. This architecture is illustrated
in Figure 1.16 of Chapter 1. This type of ensemble is particularly well suited for problems
with small data sets, where a random forest is known to work well. The approach for random
edge dropping was introduced in the context of outlier detection [64], whereas the Dropout
approach was presented in [467]. The work in [567] discusses the notion that it is better
to combine the results of the top-performing ensemble components rather than combining
all of them. Most ensemble methods are designed for variance reduction, although a few
techniques like boosting [122] are also designed for bias reduction. Boosting has also been
used in the context of neural network learning [435]. However, the use of boosting in neural
networks is generally restricted to the incremental addition of hidden units based on error
characteristics. A key point about boosting is that it tends to overfit the data, and is
therefore suitable for high-bias learners but not high-variance learners. Neural networks are
inherently high-variance learners. The relationship between boosting and certain types of
neural architectures is pointed out in [32]. Data perturbation methods for classification are
discussed in [63], although this method primarily seems to be about increasing the amount
of available data of a minority class, and does not discuss variance reduction methods.
A later book [5] discusses how this approach can be combined with a variance reduction
method. Ensemble methods for neural networks are proposed in [170].

Different types of pretraining have been explored in the context of neural net-
works [31, 113, 196, 386, 506]. The earliest methods for unsupervised pretraining were
proposed in [196]. The original work of pretraining [196] was based on probabilistic graphi-
cal models (cf. Section 6.7) and was later extended to conventional autoencoders [386, 506].

4.13. EXERCISES 215

Compared to unsupervised pretraining, the effect of supervised pretraining is limited [31]. A
detailed discussion of why unsupervised pretraining helps deep learning is provided in [113].
This work posits that unsupervised pretraining implicitly acts as a regularizer, and therefore
it improves the generalization power to unseen test instances. This fact is also evidenced
by the experimental results in [31], which show that supervised variations of pretraining do
not help as much as unsupervised variations of pretraining. In this sense, unsupervised pre-
training can be viewed as a type of semi-supervised learning, which restricts the parameter
search to specific regions of the parameter space, which depend on the base data distribution
at hand. Pretraining also does not seem to help with certain types of tasks [303]. Another
form of semi-supervised learning can be performed with ladder networks [388, 502], in which
skip-connections are used in conjunction with an autoencoder-like architecture.

Curriculum and continuation learning are applications of the principle of moving from
simple to complex models. Continuation learning methods are discussed in [339, 536]. A
number of methods were proposed in the early years [112, 422, 464] that showed the ad-
vantages of curriculum learning. The basic principles of curriculum learning are discussed
in [238]. The relationship between curriculum and continuation learning is explored in [33].

Numerous unsupervised methods have been proposed for regularization. A discussion of
sparse autoencoders may be found in [354]. De-noising autoencoders are discussed in [506].
The contractive autoencoder is discussed in [397]. The use of de-noising autoencoders in
recommender systems is discussed in [472, 535]. The ideas in the contractive autoencoder
are reminiscent of double backpropagation [107] in which small changes in the input are not
allowed to change the output. Related ideas are also discussed in the tangent classifier [398].

The variational autoencoder is introduced in [242, 399]. The use of importance weight-
ing to improve over the representations learned by the variational autoencoder is discussed
in [58]. Conditional variational autoencoders are discussed in [463, 510]. A tutorial on vari-
ational autoencoders is found in [106]. Generative variants of de-noising autoencoders are
discussed in [34]. Variational autoencoders are closely related to generative adversarial net-
works, which are discussed in Chapter 10. Closely related methods for designing adversarial
autoencoders are discussed in [311].

4.12.1 Software Resources

Numerous ensemble methods are available from machine learning libraries like scikit-
learn [587]. Most of the weight-decay and penalty-based methods are available as standard-
ized options in the deep learning libraries. However, techniques like Dropout are application-
specific and need to be implemented from scratch. Implementations of several different types
of autoencoders may be found in [595]. Several implementations of the variational autoen-
coder may be found in [596, 597, 640].

4.13 Exercises

1. Consider two neural networks used for regression modeling with identical structure of
an input layer and 10 hidden layers containing 100 units each. In both cases, the output
node is a single unit with linear activation. The only difference is that one of them
uses linear activations in the hidden layers and the other uses sigmoid activations.
Which model will have higher variance in prediction?

216 CHAPTER 4. TEACHING DEEP LEARNERS TO GENERALIZE

2. Consider a situation in which you have four attributes x1 . . . x4, and the dependent
variable y is such that y = 2x1. Create a tiny training data set of 5 distinct examples
in which a linear regression model without regularization will have an infinite number
of coefficient solutions with w1 = 0. Discuss the performance of such a model on
out-of-sample data. Why will regularization help?

3. Implement a perceptron with and without regularization. Test the accuracy of both
variations of the perceptron on both the training data and the out-of-sample data on
the Ionosphere data set of the UCI Machine Learning Repository [601]. What do you
observe about the effect of regularization in the two cases? Repeat the experiment
with smaller samples of the Ionosphere training data, and report your observations.

4. Implement an autoencoder with a single hidden layer. Reconstruct inputs for the
Ionosphere data set of the previous exercise with (a) no added noise and weight reg-
ularization, (b) added Gaussian noise and no weight regularization.

5. The discussion in the chapter uses an example of sigmoid activation for the contractive
autoencoder. Consider a contractive autoencoder with a single hidden layer and ReLU
activation. Discuss how the updates change when ReLU activation is used.

6. Suppose that you have a model that provides around 80% accuracy on the training as
well as on the out-of-sample test data. Would you recommend increasing the amount
of data or adjusting the model to improve accuracy?

7. In the chapter, we showed that adding Gaussian noise to the input features in linear
regression is equivalent to L2-regularization of linear regression. Discuss why adding
of Gaussian noise to the input data in a de-noising single-hidden layer autoencoder
with linear units is roughly equivalent to L2-regularized singular value decomposition.

8. Consider a network with a single input layer, two hidden layers, and a single output
predicting a binary label. All hidden layers use the sigmoid activation function and
no regularization is used. The input layer contains d units, and each hidden layer
contains p units. Suppose that you add an additional hidden layer between the two
current hidden layers, and this additional hidden layer contains q linear units.

(a) Even though the number of parameters have increased by adding the hidden
layer, discuss why the capacity of this model will decrease when q < p.

(b) Does the capacity of the model increase when q > p?

9. Bob divided the labeled classification data into a portion used for model construction
and another portion for validation. Bob then tested 1000 neural architectures by
learning parameters (backpropagating) on the model-construction portion and testing
its accuracy on the validation portion. Discuss why the resulting model is likely to
yield poorer accuracy on the out-of-sample test data as compared to the validation
data, even though the validation data was not used for learning parameters. Do you
have any recommendations for Bob on using the results of his 1000 validations?

10. Does the classification accuracy on the training data generally improve with increasing
training data size? How about the point-wise average of the loss on training instances?
At what point do training and testing accuracy become similar? Explain your answer.

11. What is the effect of increasing the regularization parameter on the training and
testing accuracy? At what point do training and testing accuracy become similar?

Chapter 5

Radial Basis Function Networks

“Two birds disputed about a kernel, when a third swooped down and carried it
off.”—African Proverb

5.1 Introduction

Radial basis function (RBF) networks represent a fundamentally different architecture from
what we have seen in the previous chapters. All the previous chapters use a feed-forward
network in which the inputs are transmitted forward from layer to layer in a similar fashion
in order to create the final outputs. A feed-forward network might have many layers, and
the nonlinearity is typically created by the repeated composition of activation functions.
On the other hand, an RBF network typically uses only an input layer, a single hidden
layer (with a special type of behavior defined by RBF functions), and an output layer.
Although it is possible to replace the output layer with multiple feed-forward layers (like
a conventional network), the resulting network is still quite shallow, and its behavior is
strongly influenced by the nature of the special hidden layer. For simplicity in discussion,
we will work with only a single output layer. As in feed-forward networks, the input layer
is not really a computational layer, and it only carries the inputs forward. The nature of
the computations in the hidden layer are very different from what we have seen so far
in feed-forward networks. In particular, the hidden layer performs a computation based
on a comparison with a prototype vector, which has no exact counterpart in feed-forward
networks. The structure and the computations performed by the special hidden layer is the
key to the power of the RBF network.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 5

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_5&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_5

218 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

One can characterize the difference in the functionality of the hidden and output layers
as follows:

1. The hidden layer takes the input points, in which the class structure might not be
linearly separable, and transforms them into a new space that is (often) linearly sepa-
rable. The hidden layer often has higher dimensionality than the input layer, because
transformation to a higher-dimensional space is often required in order to ensure
linear separability. This principle is based on Cover’s theorem on separability of pat-
terns [84], which states that pattern classification problems are more likely to be
linearly separable when cast into a high-dimensional space with a nonlinear trans-
formation. Furthermore, certain types of transformations in which features represent
small localities in the space are more likely to lead to linear separability. Although the
dimensionality of the hidden layer is typically greater than the input dimensionality,
it is always less than or equal to the number of training points. An extreme case in
which the dimensionality of the hidden layer is equal to the number of training points
can be shown to be roughly equivalent to kernel learners. Examples of such models
include kernel regression and kernel support vector machines.

2. The output layer uses linear classification or regression modeling with respect to the
inputs from the hidden layer. The connections from the hidden to the output layer
have weights attached to them. The computations in the output layer are performed
in the same way as in a standard feed-forward network. Although it is also possible to
replace the output layer with multiple feed-forward layers, we will consider only the
case of a single feed-forward layer for simplicity.

Just as the perceptron is a variant of the linear support vector machine, the RBF network
is a generalization of kernel classification and regression. Special cases of the RBF network
can be used to implement kernel regression, least-squares kernel classification, and the ker-
nel support-vector machine. The differences among these special cases is in terms of how
the output layer and the loss function is structured. In feed-forward networks, increasing
nonlinearity is obtained by increasing depth. However, in an RBF network, a single hidden
layer is usually sufficient to achieve the required level of nonlinearity because of its special
structure. Like feed-forward networks, RBF networks are universal function approximators.

The layers of the RBF network are designed as follows:

1. The input layer simply transmits from the input features to the hidden layers. There-
fore, the number of input units is exactly equal to the dimensionality d of the data. As
in the case of feed-forward networks, no computation is performed in the input layers.
As in all feed-forward networks, the input units are fully connected to the hidden
units and carry their input forward.

2. The computations in the hidden layers are based on comparisons with prototype vec-
tors. Each hidden unit contains a d-dimensional prototype vector. Let the prototype
vector of the ith hidden unit be denoted by μi. In addition, the ith hidden unit con-
tains a bandwidth denoted by σi. Although the prototype vectors are always specific
to particular units, the bandwidths of different units σi are often set to the same
value σ. The prototype vectors and bandwidth(s) are usually learned either in an
unsupervised way, or with the use of mild supervision.

5.1. INTRODUCTION 219

Then, for any input training point X, the activation Φi(X) of the ith hidden unit is
defined as follows:

hi = Φi(X) = exp

(

−||X − μi||2
2 · σ2

i

)

∀i ∈ {1, . . . ,m} (5.1)

The total number of hidden units is denoted by m. Each of these m units is designed
to have a high level of influence on the particular cluster of points that is closest to
its prototype vector. Therefore, one can view m as the number of clusters used for
modeling, and it represents an important hyper-parameter available to the algorithm.
For low-dimensional inputs, it is typical for the value of m to be larger than the input
dimensionality d, but smaller than the number of training points n.

INPUT LAYER

HIDDEN LAYER

(RBF ACTIVATION)

OUTPUT LAYER

y

x3

x2

x1

+1
BIAS NEURON

(HIDDEN LAYER)

Figure 5.1: An RBF network: Note that the hidden layer is broader than the input layer,
which is typical (but not mandatory).

3. For any particular training point X, let hi be the output of the ith hidden unit, as
defined by Equation 5.1. The weights of the connections from the hidden to the output
nodes are set to wi. Then, the prediction ŷ of the RBF network in the output layer is
defined as follows:

ŷ =

m∑

i=1

wihi =

m∑

i=1

wiΦi(X) =

m∑

i=1

wiexp

(

−||X − μi||2
2 · σ2

i

)

The variable ŷ has a circumflex on top to indicate the fact that it is a predicted value
rather than observed value. If the observed target is real-valued, then one can set up
a least-squares loss function, which is much like that in a feed-forward network. The
values of the weights w1 . . . wm need to be learned in a supervised way.

An additional detail is that the hidden layer of the neural network contains bias neurons.
Note that the bias neuron can be implemented by a single hidden unit in the output layer,
which is always on. One can also implement this type of neuron by creating a hidden unit in
which the value of σi is ∞. In either case, it will be assumed throughout the discussions in
this chapter that this special hidden unit is absorbed among them hidden units. Therefore, it
is not treated in any special way. An example of an RBF network is illustrated in Figure 5.1.

In the RBF network, there are two sets of computations corresponding to the hidden
layer and the output layer. The parameters μi and σi of the hidden layer are learned in

220 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

an unsupervised way, whereas those of the output layer are learned in a supervised way
with gradient descent. The latter is similar to the case of the feed-forward network. The
prototypes μi may either be sampled from the data, or be set to be the m centroids of an
m-way clustering algorithm. The latter solution is used frequently. The different ways of
training the neural network are discussed in Section 5.2.

RBF networks can be shown to be direct generalizations of the class of kernel methods.
This is primarily because the prediction in the output node can be shown to be equivalent to
a weighted nearest neighbor estimator, where the weights are products of the coefficients wi

and Gaussian RBF similarities to prototypes. The prediction function in almost all kernel
methods can also be shown to be equivalent to a weighted nearest neighbor estimator,
where the weights are learned in a supervised way. Therefore, kernel methods represent a
special case of RBF methods in which the number of hidden nodes is equal to the number
of training points, the prototypes are set to the training points, and each σi has the same
value. This suggests that RBF networks have greater power and flexibility than do kernel
methods; this relationship will be discussed in detail in Section 5.4.

When to Use RBF Networks

A key point is that the hidden layer of the RBF network is created in an unsupervised way,
tending to make it robust to all types of noise (including adversarial noise). Indeed, this
property of RBF networks is shared by support vector machines. At the same time, there
are limitations with respect to how much structure in the data an RBF network can learn.
Deep feed-forward networks are effective at learning from data with a rich structure because
the multiple layers of nonlinear activations force the data to follow specific types of patterns.
Furthermore, by adjusting the structure of connections, one can incorporate domain-specific
insights in feed-forward networks. Examples of such settings include recurrent and convolu-
tional neural networks. The single layer of an RBF network limits the amount of structure
that one can learn. Although both RBF networks and deep feed-forward networks are known
to be universal function approximators, there are differences in terms of their generalization
performance on different types of data sets.

Chapter Organization

This chapter is organized as follows. The next section discusses the various training methods
for RBF networks. The use of RBF networks in classification and interpolation is discussed
in Section 5.3. The relationship of the RBF method to kernel regression and classification
is discussed in Section 5.4. A summary is provided in Section 5.5.

5.2 Training an RBF Network

The training of an RBF network is very different from that of a feed-forward network, which
is fully integrated across different layers. In an RBF network, the training of the hidden layer
is typically done in an unsupervised manner. While it is possible, in principle, to train the
prototype vectors and the bandwidths using backpropagation, the problem is that there are
more local minima on the loss surface of RBF networks compared to feed-forward networks.
Therefore, the supervision in the hidden layer (when used) is often relatively gentle, or
it is restricted only to fine-tuning weights that have already been learned. Nevertheless,
since overfitting seems to be a pervasive problem with the supervised training of the hidden

5.2. TRAINING AN RBF NETWORK 221

layer, our discussion will be restricted to unsupervised methods. In the following, we will
first discuss the training of the hidden layer of an RBF network, and then discuss the
training of the output layer.

5.2.1 Training the Hidden Layer

The hidden layer of the RBF network contains several parameters, including the prototype
vectors μ1 . . . μm, and the bandwidths σ1 . . . σm. The hyperparameterm controls the number
of hidden units. In practice, a separate value of σi is not set for each unit, and all units
have the same bandwidth σ. However, the mean values μi for the various hidden units are
different because they define the all-important prototype vectors. The complexity of the
model is regulated by the number of hidden units and the bandwidth. The combination
of a small bandwidth and a large number of hidden units increases the model complexity,
and is a useful setting when the amount of data is large. Smaller data sets require fewer
units and larger bandwidths to avoid overfitting. The value of m is typically larger than the
input data dimensionality, but it is never larger than the number of training points. Setting
the value of m equal to the number of training points, and using each training point as a
prototype in a hidden node, makes the approach equivalent to traditional kernel methods.

The bandwidth also depends on the chosen prototype vectors μ1 . . . μm. Ideally, the
bandwidths should be set in a way that each point should be (significantly) influenced by
only a small number of prototype vectors, which correspond to its closest clusters. Setting
the bandwidth too large or too small compared to the inter-prototype distance will lead to
under-fitting and over-fitting, respectively. Let dmax be maximum distance between pairs
of prototype centers, and dave be the average distance between them. Then, two heuristic
ways of setting the bandwidth are as follows:

σ =
dmax√

m

σ = 2 · dave

One problem with this choice of σ is that the optimal value of the bandwidth might vary in
different parts of the input space. For example, the bandwidth in a dense region in the data
space should be smaller than the bandwidth in a sparse region of the space. The bandwidth
should also depend on how the prototype vectors are distributed in the space. Therefore,
one possible solution is to choose the bandwidth σi of the ith prototype vector to be equal
to its distance to its rth nearest neighbor among the prototypes. Here, r is a small value
like 5 or 10.

However, these are only heuristic rules. It is possible to fine-tune these values by using
a held-out portion of data set. In other words, candidate values of σ are generated in the
neighborhood of the above recommended values of σ (as an initial reference point). Then,
multiple models are constructed using these candidate values of σ (including the training of
the output layer). The choice of σ that provides the least error on the held-out portion of
the training data set is used. This type of approach does use a certain level of supervision
in the selection of the bandwidth, without getting stuck in local minima. However, the
nature of the supervision is quite gentle, which is particularly important when dealing with
the parameters of the first layer in an RBF network. It is noteworthy that this type of
tuning of the bandwidth is also performed when using the Gaussian kernel with a kernel
support-vector machine. This similarity is not a coincidence because the kernel support-
vector machine is a special case of RBF networks (cf. Section 5.4).

222 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

The selection of the prototype vectors is somewhat more complex. In particular, the
following choices are often made:

1. The prototype vectors can be randomly sampled from the n training points. A total
of m < n training points are sampled in order to create the prototype vectors. The
main problem with this approach is that it will over-represent prototypes from dense
regions of the data, whereas sparse regions might get few or no prototypes. As a result,
the prediction accuracy in such regions will suffer.

2. A k-means clustering algorithm can be used in order to create m clusters. The centroid
of each of these m clusters can be used as a prototype. The use of the k-means
algorithm is the most common choice for learning the prototype vectors.

3. Variants of clustering algorithms that partition the data space (rather than the points)
are also used. A specific example is the use of decision trees to create the prototypes.

4. An alternative method for training the hidden layer is by using the orthogonal least-
squares algorithm. This approach uses a certain level of supervision. In this approach,
the prototype vectors are selected one by one from the training data in order to
minimize the residual error of prediction on an out-of-sample test set. Since this
approach requires understanding of the training of the output layer, its discussion
will be deferred to a later section.

In the following, we briefly describe the k-means algorithm for creating the prototypes be-
cause it is the most common choice in real implementations. The k-means algorithm is a
classical technique in the clustering literature. It uses the cluster prototypes as the proto-
types for the hidden layer in the RBF method. Broadly speaking, the k-means algorithm
proceeds as follows. At initialization, the m cluster prototypes are set to m random training
points. Subsequently, each of the n data points is assigned to the prototype to which it
has the smallest Euclidean distance. The assigned points of each prototype are averaged in
order to create a new cluster center. In other words, the centroid of the created clusters
is used to replace its old prototype with a new prototype. This process is repeated itera-
tively to convergence. Convergence is reached when the cluster assignments do not change
significantly from one iteration to the next.

5.2.2 Training the Output Layer

The output layer is trained after the hidden layer has been trained. The training of the
output layer is quite straightforward, because it uses only a single layer with linear acti-
vation. For ease in discussion, we will first consider the case in which the target of the
output layer is real-valued. Later, we will discuss other settings. The output layer contains
an m-dimensional vector of weights W = [w1 . . . wm] that needs to be learned. Assume that
the vector W is a row vector.

Consider a situation in which the training data set contains n points X1 . . . Xn, which
create the representations H1 . . . Hn in the hidden layer. Therefore, each Hi is an m-
dimensional row vector. One could stack these n row vectors on top of one another to create
an n×m matrix H. Furthermore, the observed targets of the n training points are denoted
by y1, y2, . . . yn, which can be written as the n-dimensional column vector y = [y1 . . . yn]

T .

5.2. TRAINING AN RBF NETWORK 223

The predictions of the n training points are given by the elements of the n-dimensional

column vector HW
T
. Ideally, we would like these predictions to be as close to the observed

vector y as possible. Therefore, the loss function L for learning the output-layer weights is
as follows:

L =
1

2
||HW

T − y||2

In order to reduce overfitting, one can add Tikhonov regularization to the objective function:

L =
1

2
||HW

T − y||2 + λ

2
||W ||2 (5.2)

Here, λ > 0 is the regularization parameter. By computing the partial derivative of L with
respect to the elements of the weight vector, we obtain the following:

∂L

∂W
= HT (HW

T − y) + λW
T
= 0

The above derivative is written in matrix calculus notation where ∂L
∂W

refers to the following:

∂L

∂W
=

(
∂L

∂w1
. . .

∂L

∂wd

)T

(5.3)

By re-adjusting the above condition, we obtain the following:

(HTH + λI)W
T
= HT y

When λ > 0, the matrix HTH + λI is positive-definite and is therefore invertible. In other
words, one obtains a simple solution for the weight vector in closed form:

W
T
= (HTH + λI)−1HT y (5.4)

Therefore, a simple matrix inversion is sufficient to find the weight vector, and backpropa-
gation is completely unnecessary.

However, the reality is that the use of a closed-form solution is not viable in practice
because the size of the matrix HTH is m×m, which can be large. For example, in kernel
methods, we set m = n, in which the matrix is too large to even materialize, let alone invert.
Therefore, one uses stochastic gradient descent to update the weight vector in practice. In
such a case, the gradient-descent updates (with all training points) are as follows:

W
T ⇐ W

T − α
∂L

∂W

= W
T
(1− αλ)− αHT (HW

T − y)
︸ ︷︷ ︸

Current Errors

224 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

One can also choose to use mini-batch gradient descent in which the matrix H in the above
update can be replaced with a random subset of rows Hr from H, corresponding to the
mini-batch. This approach is equivalent to what would normally be used in a traditional
neural network with mini-batch stochastic gradient descent. However, it is applied only to
the weights of the connections incident on the output layer in this case.

5.2.2.1 Expression with Pseudo-Inverse

In the case in which the regularization parameter λ is set to 0, the weight vector W is
defined as follows:

W
T
= (HTH)−1HT y (5.5)

The matrix (HTH)−1HT is said to be the pseudo-inverse of the matrix H. The pseudo-

inverse of the matrix H is denoted by H+. Therefore, one can write the weight vector W
T

as follows:
W

T
= H+y (5.6)

The pseudo-inverse is a generalization of the notion of an inverse for non-singular or rect-
angular matrices. In this particular case, HTH is assumed to be invertible, although the
pseudo-inverse of H can be computed even in cases where HTH is not invertible. In the
case where H is square and invertible, the pseudo-inverse is the same as its inverse.

5.2.3 Orthogonal Least-Squares Algorithm

We revisit the training phase of the hidden layer. The training approach discussed in this
section will use the predictions of the output layer in choosing the prototypes. Therefore, the
training process of the hidden layer is supervised, although the supervision is restricted to
iterative selections from the original training points. The orthogonal least-squares algorithm
chooses the prototype vector one by one from the training points in order to minimize the
error of prediction.

The algorithm starts by building an RBF network with a single hidden node and trying
each possible training point as a prototype in order to compute the prediction error. One
then selects the prototype from the training points that minimizes the error of prediction. In
the next iteration, one more prototype is added to the selected prototype in order to build an
RBF network with two prototypes. As in the previous iteration, all (n−1) remaining training
points are tried as possible prototypes in order to add to the current bag of prototypes, and
the criterion for adding to the bag is the minimization of prediction error. In the (r + 1)th
iteration, one tries all the (n − r) remaining training points, and adds one of them to the
bag of prototypes so that the prediction error is minimized. Some of the training points
in the data are held out, and are not used in the computations of the predictions or as
candidates for prototypes. These out-of-sample points are used in order to test the effect of
adding a prototype to the error. At some point, the error on this held-out set begins to rise
as more prototypes as added. An increase in error on the held-out test set is a sign of the
fact that further increase in prototypes will increase overfitting. This is the point at which
one terminates the algorithm.

The main problem with this approach is that it is extremely inefficient. In each iter-
ation, one must run n training procedures, which is computationally prohibitive for large
training data sets. An interesting procedure in this respect is the orthogonal least-squares
algorithm [65], which is known to be efficient. This algorithm is similar to the one described
above in the sense that the prototype vectors are added iteratively from the original training

5.2. TRAINING AN RBF NETWORK 225

data set. However, the procedure with which the prototype is added is far more efficient. A
set of orthogonal vectors are constructed in the space spanned by the hidden unit activa-
tions from the training data set. These orthogonal vectors can be used to directly compute
which prototype should be selected from the training data set.

5.2.4 Fully Supervised Learning

The orthogonal least-squares algorithm represents a type of mild supervision in which the
prototype vector is selected from one of the training points based on the effect to the overall
prediction error. It is also possible to perform stronger types of supervision in which one
can backpropagate in order to update the prototype vectors and the bandwidth. Consider
the loss function L over the various training points:

L =
1

2

n∑

i=1

(Hi ·W − yi)
2 (5.7)

Here, Hi represents the m-dimensional vector of activations in the hidden layer for the ith
training point Xi.

The partial derivative with respect to each bandwidth σj can be computed as follows:

∂L

∂σj
=

n∑

i=1

(Hi ·W − yi)wj
∂Φj(Xi)

∂σj

=

n∑

i=1

(Hi ·W − yi)wjΦj(Xi)
||Xi − μj ||2

σ3
j

If all bandwidths σj are fixed to the same value σ, as is common in RBF networks, then
the derivative can be computed using the same trick commonly used for handling shared
weights:

∂L

∂σ
=

m∑

j=1

∂L

∂σj
· ∂σj

∂σ
︸︷︷︸

=1

=

m∑

j=1

∂L

∂σj

=
m∑

j=1

n∑

i=1

(Hi ·W − yi)wjΦj(Xi)
||Xi − μj ||2

σ3

One can also compute a partial derivative with respect to each element of the prototype
vector. Let μjk represent the kth element of μj . Similarly, let xik represent the kth element

of the ith training point Xi. The partial derivative with respect to μjk is computed as
follows:

∂L

∂μjk
=

n∑

i=1

(Hi ·W − yi)wjΦj(Xi)
(xik − μjk)

σ2
j

(5.8)

Using these partial derivatives, one can update the bandwidth and the prototype vectors
together with the weights. Unfortunately, this type of strong approach to supervision does
not seem to work very well. There are two main drawbacks with this approach:

226 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

1. An attractive characteristic of RBFs is that they are efficient to train, if unsuper-
vised methods are used. Even the orthogonal least-squares method can be run in a
reasonably amount of time. However, this advantage is lost, if one resorts to full back-
propagation. In general, the two-stage training of RBF is an efficiency feature of RBF
networks.

2. The loss surface of RBFs has many local minima. This type of approach tends to get
stuck in local minima from the point of view of generalization error.

Because of these characteristics of RBF networks, supervised training is rarely used. In
fact, it has been shown in [342] that supervised training tends to increase the bandwidths
and encourage generalized responses. When supervision is used, it should be used in a very
controlled way by repeatedly testing performance on out-of-sample data in order to reduce
the risk of overfitting.

5.3 Variations and Special Cases of RBF Networks

The above discussion only considers the case in which the supervised training is designed
for numeric target variables. In practice, it is possible for the target variables to be binary.
One possibility is to treat binary class labels in {−1,+1} as numeric responses, and use the
same approach of setting the weight vector according to Equation 5.4:

W
T
= (HTH + λI)−1HT y

As discussed in Section 2.2.2.1 of Chapter 2, this solution is also equivalent to the Fisher
discriminant and the Widrow-Hoff method. The main difference is that these methods are
being applied on a hidden layer of increased dimensionality, which promotes better results
in more complex distributions. It is also helpful to examine other loss functions that are
commonly used in feed-forward neural networks for classification.

5.3.1 Classification with Perceptron Criterion

Using the notations introduced in the previous section, the prediction of the ith training
instance is given by W ·Hi. Here, Hi represents the m-dimensional vector of activations in
the hidden layer for the ith training instance Xi. Then, as discussed in Section 1.2.1.1 of
Chapter 1, the perceptron criterion corresponds to the following loss function:

L = max{−yi(W ·Hi), 0} (5.9)

In addition, a Tikhonov regularization term with parameter λ > 0 is often added to the
loss function.

Then, for each mini-batch S of training instances, let S+ represent the misclassified
instances. The misclassified instances are defined as those for which the loss L is non-zero.
For such instances, applying the sign function to Hi ·W will yield a prediction with opposite
sign to the observed label yi.

5.3. VARIATIONS AND SPECIAL CASES OF RBF NETWORKS 227

Then, for each mini-batch S of training instances, the following updates are used for the
misclassified instances in S+:

W ⇐ W (1− αλ) + α
∑

(Hi,yi)∈S+

yiHi (5.10)

Here, α > 0 is the learning rate.

5.3.2 Classification with Hinge Loss

The hinge loss is used frequently in the support vector machine. Indeed, the use of hinge
loss in the Gaussian RBF network can be viewed as a generalization of the support-vector
machine. The hinge loss is a shifted version of the perceptron criterion:

L = max{1− yi(W ·Hi), 0} (5.11)

Because of the similarity in loss functions between the hinge loss and the perceptron cri-
terion, the updates are also very similar. The main difference is that S+ includes only
misclassified points in the case of the perceptron criterion, whereas S+ includes both mis-
classified points and marginally classified points in the case of hinge loss. This is because
S+ is defined by the set of points for which the loss function is non-zero, but (unlike
the perceptron criterion) the hinge loss function is non-zero even for marginally clas-
sified points. Therefore, with this modified definition of S+, the following updates are
used:

W ⇐ W (1− αλ) + α
∑

(Hi,yi)∈S+

yiHi (5.12)

Here, α > 0 is the learning rate, and λ > 0 is the regularization parameter. Note
that one can easily define similar updates for the logistic loss function (cf. Exer-
cise 2).

5.3.3 Example of Linear Separability Promoted by RBF

The main goal of the hidden layer is to perform a transformation that promotes linear
separability, so that even linear classifiers work well on the transformed data. Both the
perceptron and the linear support vector machine with hinge loss are known to perform
poorly when the classes are not linearly separable. The Gaussian RBF classifier is able to
separate out classes that are not linearly separable in the input space when loss functions
such as the perceptron criterion and hinge loss are used. The key to this separability is the
local transformation created by the hidden layer. An important point is that a Gaussian
kernel with a small bandwidth often results in a situation where only a small number of
hidden units in particular local regions get activated to significant non-zero values, whereas
the other values are almost zeros. This is because of the exponentially decaying nature of
the Gaussian function, which takes on near-zero values outside a particular locality. The
identification of prototypes with cluster centers often divides the space into local regions,
in which significant non-zero activation is achieved only in small portions of the space. As
a practical matter, each local region of the space is assigned its own feature, corresponding
to the hidden unit that is activated most strongly by it.

228 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

LINEARLY SEPARABLE IN

INPUT SPACE

NOT LINEARLY SEPARABLE IN INPUT SPACE BUT

SEPARABLE IN 4-DIMENSIONAL HIDDEN SPACE

W X = 0

(0, 0, 0, d)

(0, b, 0, 0)

(0, 0, c, 0)

(a, 0, 0, 0)

ONE HIDDEN UNIT FOR EACH CLUSTER

Figure 5.2: Revisiting Figure 1.4: The Gaussian RBF promotes separability because of the
transformation to the hidden layer.

Examples of two data sets are illustrated in Figure 5.2. These data sets were introduced
in Chapter 1 to illustrate cases that the (traditional) perceptron can or cannot solve. The
traditional perceptron of Chapter 1 is able to find a solution for the data set on the left, but
does not work well for the data set on the right. However, the transformation used by the
Gaussian RBF method is able to address this issue of separability for the clustered data set
on the right. Consider a case in which each of the centroids of the four clusters in Figure 5.2
is used as a prototype. This will result in a 4-dimensional hidden representation of the
data. Note that the hidden dimensionality is higher than the input dimensionality, which is
common in these settings. With appropriate choice of bandwidth, only one hidden unit will
be activated strongly corresponding to the cluster identifier to which the point belongs. The
other hidden units will be activated quite weakly, and will be close to 0. This will result
in a rather sparse representation, as shown in Figure 5.2. We have shown the approximate
4-dimensional representations for the points in each cluster. The values of a, b, c, and d in
Figure 5.2 will vary over the different points in the corresponding cluster, although they
will always be strongly non-zero compared to the other coordinates. Note that one of the
classes is defined by strongly non-zero values in the first and third dimensions, whereas the
second class is defined by strongly non-zero values in the second and fourth dimensions. As
a result, the weight vector W = [1,−1, 1,−1] will provide excellent non-linear separation
between the two classes. The key point to understand is that the Gaussian RBF creates local
features that result in separable distributions of the classes. This is exactly how a kernel
support-vector machine achieves linear separability.

5.3.4 Application to Interpolation

One of the earliest applications of the Gaussian RBF was its use in interpolation of the
value of a function over a set of points. The goal here is to perform exact interpolation
of the provided points, so that the resulting function passes through all the input points.
One can view interpolation as a special case of regression in which each training point is
a prototype, and therefore the number of weights m in W is exactly equal to the number
of training examples n. In such cases, it is possible to find a n-dimensional weight vector

5.4. RELATIONSHIP WITH KERNEL METHODS 229

W with zero error. In such a case, the activations H1 . . . Hn represent n-dimensional row
vectors. Therefore, the matrix H obtained by stacking these row vectors on top of each
other has a size of n × n. Let y = [y1, y2, . . . yn]

T be the n-dimensional column vector of
observed variables.

In linear regression, one attempts to minimize the loss function ||HW
T − y||2 in order

to determine W . This is because the matrix H is not square, and the system of equations

HW
T
= y is over-complete. However, in the case of linear interpolation, the matrix H is

square, and the system of equations is no longer over-complete. Therefore, it is possible to
find an exact solution (with zero loss) satisfying the following system of equations:

HW
T
= y (5.13)

It can be shown that this system of equations has a unique solution when the training

points are distinct from one another [323]. The value of the weight vector W
T
can then be

computed as follows:

W
T
= H−1y (5.14)

It is noteworthy that this equation is a special case of Equation 5.6 because the pseudo-
inverse of a square and non-singular matrix is the same as its inverse. In the case where the
matrix H is non-singular, one can simplify the pseudo-inverse as follows:

H+ = (HTH)−1HT

= H−1 (HT)−1HT

︸ ︷︷ ︸

I

= H−1

Therefore, the case of linear interpolation is a special case of least-squares regression. Stated
in another way, least-squares regression is a form of noisy interpolation, where it is impos-
sible to fit the function through all the training points because of the limited degrees of
freedom in the hidden layer. Relaxing the size of the hidden layer to the training data size
allows exact interpolation. Exact interpolation is not necessarily better for computing the
function value of out-of-sample points, because it might be the result of overfitting.

5.4 Relationship with Kernel Methods

The RBF network gains its power by mapping the input points into a high-dimensional
hidden space in which linear models are sufficient to model nonlinearities. This is the same
principle used by kernel methods like kernel regression and kernel SVMs. In fact, it can be
shown that certain special cases of the RBF network reduce to kernel regression and kernel
SVMs.

5.4.1 Kernel Regression as a Special Case of RBF Networks

The weight vector W in RBF networks is trained to minimize the squared loss of the
following prediction function:

ŷi = Hi W
T
=

m∑

j=1

wjΦj(Xi) (5.15)

230 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

Now consider the case in which the prototypes are the same as the training points, and
therefore we set μj = Xj for each j ∈ {1 . . . n}. Note that this approach is the same as that
used in function interpolation, in which the prototypes are set to all the training points.
Furthermore, each bandwidth σ is set to the same value. In such a case, one can write the
above prediction function as follows:

ŷi =

n∑

j=1

wjexp

(

−||Xi −Xj ||2
2σ2

)

(5.16)

The exponentiated term on the right-hand side of Equation 5.16 can be written as the Gaus-
sian kernel similarity between points Xi and Xj . This similarity is denoted by K(Xi, Xj).
Therefore, the prediction function becomes the following:

ŷi =

n∑

j=1

wjK(Xi, Xj) (5.17)

This prediction function is exactly the same as that used in kernel regression with bandwidth
σ, where the prediction function ŷkerneli is defined1 in terms of the Lagrange multipliers λj

instead of weight wj (see, for example, [6]):

ŷkerneli =
n∑

j=1

λjyjK(Xi, Xj) (5.18)

Furthermore, the (squared) loss function is the same in the two cases. Therefore, a one-to-
one correspondence will exist between the Gaussian RBF solutions and the kernel regression
solutions, so that setting wj = λjyj leads to the same value of the loss function. Therefore,
their optimal values will be the same as well. In other words, the Gaussian RBF network
provides the same results as kernel regression in the special case where the prototype vectors
are set to the training points. However, the RBF network is more powerful and general
because it can choose different prototype vectors; therefore, the RBF network can model
cases that are not possible with kernel regression. In this sense, it is helpful to view the
RBF network as a flexible neural variant of kernel methods.

5.4.2 Kernel SVM as a Special Case of RBF Networks

Like kernel regression, the kernel support vector machine (SVM) is also a special case of RBF
networks. As in the case of kernel regression, the prototype vectors are set to the training
points, and the bandwidths of all hidden units are set to the same value of σ. Furthermore,
the weights wj are learned in order to minimize the hinge loss of the prediction.

In such a case, it can be shown that the prediction function of the RBF network is as
follows:

ŷi = sign

⎧

⎨

⎩

n∑

j=1

wjexp

(

−||Xi −Xj ||2
2σ2

)
⎫

⎬

⎭
(5.19)

ŷi = sign

⎧

⎨

⎩

n∑

j=1

wjK(Xi, Xj)

⎫

⎬

⎭
(5.20)

1A full explanation of the kernel regression prediction of Equation 5.18 is beyond the scope of this book.
Readers are referred to [6].

5.5. SUMMARY 231

It is instructive to compare this prediction function with that used in kernel SVMs (see, for
example, [6]) with the Lagrange multipliers λj :

ŷkerneli = sign

⎧

⎨

⎩

n∑

j=1

λjyjK(Xi, Xj)

⎫

⎬

⎭
(5.21)

This prediction function is of a similar form as that used in kernel SVMs, with the exception
of a slight difference in the variables used. The hinge-loss is used as the objective function
in both cases. By setting wj = λjyj one obtains the same result in both cases in terms of
the value of the loss function. Therefore, the optimal solutions in the kernel SVM and the
RBF network will also be related according to the condition wj = λjyj . In other words, the
kernel SVM is also a special case of RBF networks. Note that the weight wj can also be
considered the coefficient of each data point, when the representer theorem is used in kernel
methods [6].

5.4.3 Observations

One can extend the arguments above to other linear models, such as the kernel Fisher
discriminant and kernel logistic regression, by changing the loss function. In fact, the kernel
Fisher discriminant can be obtained by simply using the binary variables as the targets and
then applying kernel regression technique. However, since the Fisher discriminant works
under the assumption of centered data, a bias needs to be added to the output layer to
absorb any offsets from uncentered data. Therefore, the RBF network can simulate virtually
any kernel method by choosing an appropriate loss function. A key point is that the RBF
network provides more flexibility than kernel regression or classification. For example, one
has much more flexibility in choosing the number of nodes in the hidden layer, as well as
the number of prototypes. Choosing the prototypes wisely in a more economical way helps
in both accuracy and efficiency. There are a number of key trade-offs associated with these
choices:

1. Increasing the number of hidden units increases the complexity of the modeled func-
tion. It can be useful for modeling difficult functions, but it can cause overfitting, if
the modeled function is not truly complex.

2. Increasing the number of hidden units increases the complexity of training.

One way of choosing the number of hidden units is to hold out a portion of the data, and
estimate the accuracy of the model on the held-out set with different numbers of hidden
units. The number of hidden units is then set to a value that optimizes this accuracy.

5.5 Summary

This chapter introduces radial basis function (RBF) networks, which represent a fundamen-
tally different way of using the neural network architecture. Unlike feed-forward networks,
the hidden layer and output layer are trained in a somewhat different way. The training
of the hidden layer is unsupervised, whereas that of the output layer is supervised. The
hidden layer usually has a larger number of nodes than the input layer. The key idea is
to transform the data points into high-dimensional space with the use of locality-sensitive
transformations, so that the transformed points become linearly separable. The approach

232 CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS

can be used for classification, regression, and linear interpolation by changing the nature of
the loss function. In classification, one can use different types of loss functions such as the
Widrow-Hoff loss, the hinge loss, and the logistic loss. Special cases of different loss func-
tions specialize to well-known kernel methods such as kernel SVMs and kernel regression.
The RBF network has rarely been used in recent years, and it has become a forgotten cate-
gory of neural architectures. However, it has significant potential to be used in any scenario
where kernel methods are used. Furthermore, it is possible to combine this approach with
feed-forward architectures by using multi-layered representations following the first hidden
layer.

5.6 Bibliographic Notes

RBF networks were proposed by Broomhead and Lowe [51] in the context of function
interpolation. The separability of high-dimensional transformations is shown in Cover’s
work [84]. A review of RBF networks may be found in [363]. The books by Bishop [41] and
Haykin [182] also provide good treatments of the topic. An overview of radial basis functions
is provided in [57]. The proof of universal function approximation with RBF networks is
provided in [173, 365]. An analysis of the approximation properties of RBF networks is
provided in [366].

Efficient training algorithms for RBF networks are described in [347, 423]. An algorithm
for learning the center locations in RBF networks is proposed in [530]. The use of decision
trees to initialize RBF networks is discussed in [256]. The orthogonal least-squares algorithm
was proposed in [65]. Early comparisons of supervised and unsupervised training of RBF
networks are provided in [342]. According to this analysis, full supervision seems to increase
the likelihood of the network getting trapped in local minima. Some ideas on improving
the generalization power of RBF networks are provided in [43]. Incremental RBF networks
are discussed in [125]. A detailed discussion of the relationship between RBF networks and
kernel methods is provided in [430].

5.7 Exercises

Some exercises require additional knowledge about machine learning that is not discussed
in this book. Exercises 5, 7, and 8 require additional knowledge of kernel methods, spectral
clustering, and outlier detection.

1. Consider the following variant of radial basis function networks in which the hidden
units take on either 0 or 1 values. The hidden unit takes on the value of 1, if the
distance to a prototype vector is less than σ. Otherwise it takes on the value of 0.
Discuss the relationship of this method to RBF networks, and its relative advan-
tages/disadvantages.

2. Suppose that you use the sigmoid activation in the final layer to predict a binary
class label as a probability in the output node of an RBF network. Set up a negative
log-likelihood loss for this setting. Derive the gradient-descent updates for the weights
in the final layer. How does this approach relate to the logistic regression methods
discussed in Chapter 2? In which case will this approach perform better than logistic
regression?

3. Discuss why an RBF network is a supervised variant of a nearest-neighbor classifier.

5.7. EXERCISES 233

4. Discuss how you can extend the three multi-class models discussed in Chapter 2 to
RBF networks. In particular discuss the extension of the (a) multi-class perceptron,
(b) Weston-Watkins SVM, and (c) softmax classifier with RBF networks. Discuss how
these models are more powerful than the ones discussed in Chapter 2.

5. Propose a method to extend RBF networks to unsupervised learning with autoen-
coders. What will you reconstruct in the output layer? A special case of your approach
should be able to roughly simulate kernel singular value decomposition.

6. Suppose that you change your RBF network so that you keep only the top-k activations
in the hidden layer, and set the remaining activations to 0. Discuss why such an
approach will provide improved classification accuracy with limited data.

7. Combine the top-k method of constructing the RBF layer in Exercise 6 with the RBF
autoencoder in Exercise 5 for unsupervised learning. Discuss why this approach will
create representations that are better suited to clustering. Discuss the relationship of
this method with spectral clustering.

8. The manifold view of outliers is to define them as points that do not naturally fit into
the nonlinear manifolds of the training data. Discuss how you can use RBF networks
for unsupervised outlier detection.

9. Suppose that instead of using the RBF function in the hidden layer, you use dot
products between prototypes and data points for activation. Show that a special case
of this setting reduces to a linear perceptron.

10. Discuss how you can modify the RBF autoencoder in Exercise 5 to perform semi-
supervised classification, when you have a lot of unlabeled data, and a limited amount
of labeled data.

Chapter 6

Restricted Boltzmann Machines

“Available energy is the main object at stake in the struggle for existence and
the evolution of the world.”—Ludwig Boltzmann

6.1 Introduction

The restricted Boltzmann machine (RBM) is a fundamentally different model from the
feed-forward network. Conventional neural networks are input-output mapping networks
where a set of inputs is mapped to a set of outputs. On the other hand, RBMs are net-
works in which the probabilistic states of a network are learned for a set of inputs, which
is useful for unsupervised modeling. While a feed-forward network minimizes a loss func-
tion of a prediction (computed from observed inputs) with respect to an observed output,
a restricted Boltzmann machine models the joint probability distribution of the observed
attributes together with some hidden attributes. Whereas traditional feed-forward networks
have directed edges corresponding to the flow of computation from input to output, RBMs
are undirected networks because they are designed to learn probabilistic relationships rather
than input-output mappings. Restricted Boltzmann machines are probabilistic models that
create latent representations of the underlying data points. Although an autoencoder can
also be used to construct latent representations, a Boltzmann machine creates a stochastic
hidden representation of each point. Most autoencoders (except for the variational autoen-
coder) create deterministic hidden representations of the data points. As a result, the RBM
requires a fundamentally different way of training and using it.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 6

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_6&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_6

236 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

At their core, RBMs are unsupervised models that generate latent feature representa-
tions of the data points; however, the learned representations can be combined with tradi-
tional backpropagation in a closely related feed-forward network (to the specific RBM at
hand) for supervised applications. This type of combination of unsupervised and supervised
learning is similar to the pretraining that is performed with a traditional autoencoder ar-
chitecture (cf. Section 4.7 of Chapter 4). In fact, RBMs are credited for the popularization
of pretraining in the early years. The idea was soon adapted to autoencoders, which are
simpler to train because of their deterministic hidden states.

6.1.1 Historical Perspective

Restricted Boltzmann machines have evolved from a classical model in the neural networks
literature, which is referred to as the Hopfield network. This network contains nodes contain-
ing binary states, which represent binary attribute values in the training data. The Hopfield
network creates a deterministic model of the relationships among the different attributes
by using weighted edges between nodes. Eventually, the Hopfield network evolved into the
notion of a Boltzmann machine, which uses probabilistic states to represent the Bernoulli
distributions of the binary attributes. The Boltzmann machine contains both visible states
and hidden states. The visible states model the distributions of the observed data points,
whereas the hidden states model the distribution of the latent (hidden) variables. The pa-
rameters of the connections among the various states regulate their joint distribution. The
goal is to learn the model parameters so that the likelihood of the model is maximized.
The Boltzmann machine is a member of the family of (undirected) probabilistic graphical
models. Eventually, the Boltzmann machine evolved into the restricted Boltzmann Machine
(RBM). The main difference between the Boltzmann machine and the restricted Boltzmann
machine is that the latter only allows connections between hidden units and visible units.
This simplification is very useful from a practical point of view, because it allows the design
of more efficient training algorithms. The RBM is a special case of the class of probabilistic
graphical models known as Markov random fields.

In the initial years, RBMs were considered too slow to train and were therefore not very
popular. However, at the turn of the century, faster algorithms were proposed for this class
of models. Furthermore, they received some prominence as one of the ensemble components
of the entry [414] winning the Netflix prize contest [577]. RBMs are generally used for
unsupervised applications like matrix factorization, latent modeling, and dimensionality
reduction, although there are many ways of extending them to the supervised case. It is
noteworthy that RBMs usually work with binary states in their most natural form, although
it is possible to work with other data types. Most of the discussion in this chapter will be
restricted to units with binary states. The successful training of deep networks with RBMs
preceded successful training experiences with conventional neural networks. In other words,
it was shown how multiple RBMs could be stacked to create deep networks and train them
effectively, before similar ideas were generalized to conventional networks.

Chapter Organization

This chapter is organized as follows. The next section will introduce Hopfield networks,
which was the precursor to the Boltzmann family of models. The Boltzmann machine is
introduced in Section 6.3. Restricted Boltzmann machines are introduced in Section 6.4.
Applications of restricted Boltzmann machines are discussed in Section 6.5. The use of
RBMs for generalized data types beyond binary representations is discussed in Section 6.6.

6.2. HOPFIELD NETWORKS 237

The process of stacking multiple restricted Boltzmann machines in order to create deep
networks is discussed in Section 6.7. A summary is given in Section 6.8.

6.2 Hopfield Networks

Hopfield networks were proposed in 1982 [207] as a model to store memory. A Hopfield
network is an undirected network, in which the d units (or neurons) are indexed by values
drawn from {1 . . . d}. Each connection is of the form (i, j), where each i and j is a neuron
drawn from {1 . . . d}. Each connection (i, j) is undirected, and is associated with a weight
wij = wji. Although all pairs of nodes are assumed to have connections between them,
setting wij to 0 has the effect of dropping the connection (i, j). The weight wii is set
to 0, and therefore there are no self-loops. Each neuron i is associated with state si. An
important assumption in the Hopfield network is that each si is a binary value drawn from
{0, 1}, although one can use other conventions such as {−1,+1}. The ith node also has a
bias bi associated with it; large values of bi encourage the ith state to be 1. The Hopfield
network is an undirected model of symmetric relationships between attributes, and therefore
the weights always satisfy wij = wji.

Each binary state in the Hopfield network corresponds to a dimension in the (binary)
training data set. Therefore, if a d-dimensional training data set needs to be memorized, we
need a Hopfield network with d units. The ith state in the network corresponds to the ith
bit in a particular training example. The values of the states represent the binary attribute
values from a training example. The weights in the Hopfield network are its parameters; large
positive weights between pairs of states are indicative of high degree of positive correlation
in state values, whereas large negative weights are indicative of high negative correlation. An
example of a Hopfield network with an associated training data set is shown in Figure 6.1.
In this case, the Hopfield network is fully connected, and the six visible states correspond
to the six binary attributes in the training data.

The Hopfield network uses an optimization model to learn the weight parameters so
that the weights can capture that positive and negative relationships among the attributes
of the training data set. The objective function of a Hopfield network is also referred to
as its energy function, which is analogous to the loss function of a traditional feed-forward
neural network. The energy function of a Hopfield network is set up in such a way that
minimizing this function encourages nodes pairs connected with large positive weights to
have similar states, and pairs connected with large negative weights to have different states.
The training phase of a Hopfield network, therefore, learns the weights of edges in order
to minimize the energy when the states in the Hopfield network are fixed to the binary
attribute values in the individual training points. Therefore, learning the weights of the
Hopfield network implicitly builds an unsupervised model of the training data set. The
energy E of a particular combination of states s = (s1, . . . sd) of the Hopfield network can
be defined as follows:

E = −
∑

i

bisi −
∑

i,j:i<j

wijsisj (6.1)

The term −bisi encourages units with large biases to be on. Similarly, the term −wijsisj
encourages si and sj to be similar when wij > 0. In other words, positive weights will cause
state “attraction” and negative weights will cause state “repulsion.” For a small training
data set, this type of modeling results in memorization, which enables one to retrieve training
data points from similar, incomplete, or corrupted query points by exploring local minima
of the energy function near these query points. In other words, by learning the weights of

238 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

a Hopfield network, one is implicitly memorizing the training examples, although there is
a relatively conservative limit of the number of examples that can be memorized from a
Hopfield network containing d units. This limit is also referred to as the capacity of the
model.

6.2.1 Optimal State Configurations of a Trained Network

A trained Hopfield contains many local optima, each of which corresponds to either a
memorized point from the training data, or a representative point in a dense region of the
training data. Before discussing the training of the weights of the Hopfield network, we will
discuss the methodology for finding the local energy minimum of a Hopfield network when
the trained weights are already given. A local minimum is defined as a combination of states
in which flipping any particular bit of the network does not reduce the energy further. The
training process sets the weights in such a way that the instances in the training data tend
to be local minima in the Hopfield network.

s5

TRAINING DATA:

101000

110000

000101

000011

s1

s2

s3 s4

s6

2

-2

0

-2

2

-2

-4

2

0

0

2

-2

0

0
-2

Figure 6.1: A Hopfield network with 6 visible states corresponding to 6-dimensional training
data.

Finding the optimal state configuration helps the Hopfield network in recalling memories.
The Hopfield network inherently learns associative memories because, given an input set of
states (i.e., input pattern of bits), it repeatedly flips bits to improve the objective function
until it finds a pattern where one cannot improve the objective function further. This local
minimum (final combination of states) is often only a few bits away from the starting
pattern (initial set of states), and therefore one recalls a closely related pattern at which a
local minimum is found. Furthermore, this final pattern is often a member of the training
data set (because the weights were learned using that data). In a sense, Hopfield networks
provide a route towards content-addressable memory.

Given a starting combination of states, how can one learn the closest local minimum
once the weights have already been fixed? One can use a threshold update rule to update
each state in the network in order to move it towards the global energy minimum. In order
to understand this point, let us compare the energy of the network between the cases when
the state si is set to 1, and the one in which si is set to 0. Therefore, one can substitute
two different values of si into Equation 6.1 to obtain the following value of the energy
gap:

∆Ei = Esi=0 − Esi=1 = bi +
∑

j:j �=i

wijsj (6.2)

6.2. HOPFIELD NETWORKS 239

This value must be larger than 0 in order for a flip of state si from 0 to 1 to be attractive.
Therefore, one obtains the following update rule for each state si:

si =

{

1 if
∑

j:j �=i wijsj + bi ≥ 0

0 otherwise
(6.3)

The above rule is iteratively used to test each state si and then flip the state if needed
to satisfy the condition. If one is given the weights and the biases in the network at any
particular time, it is possible to find a local energy minimum in terms of the states by
repeatedly using the update rule above.

The local minima of a Hopfield network depend on its trained weights. Therefore, in
order to “recall” a memory, one only has to provide a d-dimensional vector similar to the
stored memory, and the Hopfield network will find the local minimum that is similar to
this point by using it as a starting state. This type of associative memory recall is also
common in humans, who often retrieve memories through a similar process of association.
One can also provide a partial vector of initial states and use it to recover other states.
Consider the Hopfield network shown in Figure 6.1. Note that the weights are set in such
a way that each of the four training vectors in the figure will have low energy. However,
there are some spurious minima such as 111000 as well. Therefore, it is not guaranteed that
the local minima will always correspond to the points in the training data. However, the
local minima do correspond to some key characteristics of the training data. For example,
consider the spurious minimum corresponding to 111000. It is noteworthy that the first three
bits are positively correlated, whereas the last three bits are also positively correlated. As
a result, this minimum value of 111000 does reflect a broad pattern in the underlying data
even though it is not explicitly present in the training data. It is also noteworthy that the
weights of this network are closely related to the patterns in the training data. For example,
the elements within the first three bits and last three bits are each positively correlated
within that particular group of three bits. Furthermore, there are negative correlations
across the two sets of elements. Consequently, the edges within each of the sets {s1, s2, s3}
and {s4, s5, s6} tend to be positive, and those across these two sets are negative. Setting
the weights in this data-specific way is the task of the training phase (cf. Section 6.2.2).

The iterative state update rule will arrive at one of the many local minima of the Hopfield
network, depending on the initial state vector. Each of these local minima can be one of the
learned “memories” from the training data set, and the closest memory to the initial state
vector will be reached. These memories are implicitly stored in the weights learned during
the training phase. However, it is possible for the Hopfield network to make mistakes,
where closely related training patterns are merged into a single (deeper) minimum. For
example, if the training data contains 1110111101 and 1110111110, the Hopfield network
might learn 1110111111 as a local minimum. Therefore, in some queries, one might recover
a pattern that is a small number of bits away from a pattern actually present in the training
data. However, this is only a form of model generalization in which the Hopfield network is
storing representative “cluster” centers instead of individual training points. In other words,
the model starts generalizing instead of memorizing when the amount of data exceeds the
capacity of the model; after all, Hopfield networks build unsupervised models from training
data.

The Hopfield network can be used for recalling associative memories, correcting cor-
rupted data, or for attribute completion. The tasks of recalling associative memories and
cleaning corrupted data are similar. In both cases, one uses the corrupted input (or target
input for associative recall) as the starting state, and uses the final state as the cleaned

240 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

output (or recalled output). In attribute completion, the state vector is initialized by set-
ting observed states to their known values and unobserved states randomly. At this point,
only the unobserved states are updated to convergence. The bit values of these states at
convergence provide the completed representation.

6.2.2 Training a Hopfield Network

For a given training data set, one needs to learn the weights, so that the local minima of this
network lie near instances (or dense regions) of the training data set. Hopfield networks are
trained with the Hebbian learning rule. According to the biological motivation of Hebbian
learning, a synapse between two neurons is strengthened when the neurons on either side of
the synapse have highly correlated outputs. Let xij ∈ {0, 1} represent the jth bit of the ith
training point. The number of training instances is assumed to be n. The Hebbian learning
rule sets the weights of the network as follows:

wij = 4

∑n
k=1(xki − 0.5) · (xkj − 0.5)

n
(6.4)

One way of understanding this rule is that if two bits, i and j, in the training data are
positively correlated, then the value (xki − 0.5) · (xkj − 0.5) will usually be positive. As a
result, the weights between the corresponding units will also be set to positive values. On
the other hand, if two bits generally disagree, then the weights will be set to negative values.
One can also use this rule without normalizing the denominator:

wij = 4

n∑

k=1

(xki − 0.5) · (xkj − 0.5) (6.5)

In practice, one often wants to develop incremental learning algorithms for point-specific
updates. One can update wij with only the kth training data point as follows:

wij ⇐ wij + 4(xki − 0.5) · (xkj − 0.5) ∀i, j

The bias bi can be updated by assuming that a single dummy state is always on, and the
bias represents the weight between the dummy and the ith state:

bi ⇐ bi + 2(xki − 0.5) ∀i

In cases where the convention is to draw the state vectors from {−1,+1}, the above rule
simplifies to the following:

wij ⇐ wij + xkixkj ∀i, j
bi ⇐ bi + xki ∀i

There are other learning rules, such as the Storkey learning rule, that are commonly used.
Refer to the bibliographic notes.

Capacity of a Hopfield Network

What is the size of the training data that a Hopfield network with d visible units can store
without causing errors in associative recall? It can be shown that the storage capacity of a
Hopfield network with d units is only about 0.15 · d training examples. Since each training

6.2. HOPFIELD NETWORKS 241

example contains d bits, it follows that the Hopfield network can store only about 0.15 d2

bits. This is not an efficient form of storage because the number of weights in the network
is given by d(d − 1)/2 = O(d2). Furthermore, the weights are not binary and they can be
shown to require O(log(d)) bits. When the number of training examples is large, many errors
will be made (in associative recall). These errors represent the generalized predictions from
more data. Although it might seem that this type of generalization is useful for machine
learning, there are limitations in using Hopfield networks for such applications.

6.2.3 Building a Toy Recommender and Its Limitations

Hopfield networks are often used for memorization-centric applications rather than the typi-
cal machine-learning applications requiring generalization. In order to understand the limits
of a Hopfield network, we will consider an application associated with binary collaborative
filtering. Since Hopfield networks work with binary data, we will assume the case of implicit
feedback data in which user is associated with a set of binary attributes corresponding to
whether or not they have watched the corresponding movies. Consider a situation in which
the user Bob has watched movies Shrek and Aladdin, whereas the user Alice has watched
Gandhi, Nero, and Terminator. It is easy to construct a fully connected Hopfield network
on the universe of all movies and set the watched states to 1 and all other states to 0.
This configuration can be used for each training point in order to update the weights. Of
course, this approach can be extremely expensive if the base number of states (movies) is
very large. For a database containing 106 movies, we would have 1012 edges, most of which
will connect states containing zero values. This is because such type of implicit feedback
data is often sparse, and most states will take on zero values.

One way of addressing this problem is to use negative sampling. In this approach, each
user has their own Hopfield network containing their watched movies and a small sample
of the movies that were not watched by them. For example, one might randomly sample 20
unwatched movies (of Alice) and create a Hopfield network containing 20 + 3 = 23 states
(including the watched movies). Bob’s Hopfield network will containing 20 + 2 = 22 states,
and the unwatched samples might also be quite different. However, for pairs of movies that
are common between the two networks, the weights will be shared. During training, all edge
weights are initialized to 0. One can use repeated iterations of training over the different
Hopfield networks to learn their shared weights (with the same algorithm discussed earlier).
The main difference is that iterating over the different training points will lead to iterating
over different Hopfield networks, each of which contains a small subset of the base network.
Typically, only a small subset of the 1012 edges will be present in each of these networks,
and most edges will never be encountered in any network. Such edges will implicitly be
assumed to have weights of zero.

Now imagine a user Mary, who has watched E.T. and Shrek. We would like to recommend
movies to this user. We use the full Hopfield network with only the non-zero edges present.
We initialize the states for E.T. and Shrek to 1, and all other states to 0. Subsequently,
we allow the updates of all states (other than E.T. and Shrek) in order to identify the
minimum energy configuration of the Hopfield network. All states that are set to 1 during
the updates can be recommended to the user. However, we would ideally like to have an
ordering of the top recommended movies. One way of providing an ordering of all movies is
to use the energy gap between the two states of each movie in order to rank the movies. The
energy gap is computed only after the minimum energy configuration has been found. This
approach is, however, quite naive because the final configuration of the Hopfield network
is a deterministic one containing binary values, whereas the extrapolated values can only
be estimated in terms of probabilities. For example, it would be much more natural to use

242 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

some function of the energy gap (e.g., sigmoid) in order to create probabilistic estimations.
Furthermore, it would be helpful to be able to capture correlated sets of movies with some
notion of latent (or hidden) states. Clearly, we need techniques in order to increase the
expressive power of the Hopfield network.

6.2.4 Increasing the Expressive Power of the Hopfield Network

Although it is not standard practice, one can add hidden units to a Hopfield network to
increase its expressive power. The hidden states serve the purpose of capturing the latent
structure of the data. The weights of connections between hidden and visible units will
capture the relationship between the latent structure and the training data. In some cases,
it is possible to approximately represent the data only in terms of a small number of hidden
states. For example, if the data contains two tightly knit clusters, one can capture this
setting in two hidden states. Consider the case in which we enhance the Hopfield network
of Figure 6.1 and add two hidden units. The resulting network is shown in Figure 6.2. The
edges with near-zero weights have been dropped from the figure for clarity. Even though
the original data is defined in terms of six bits, the two hidden units provide a hidden
representation of the data in terms of two bits. This hidden representation is a compressed
version of the data, which tells us something about the pattern at hand. In essence, all
patterns are compressed to the pattern 10 or 01, depending on whether the first three bits or
the last three bits dominate the training pattern. If one fixes the hidden states of the Hopfield
network to 10 and randomly initializes the visible states, then one would often obtain the
pattern 111000 on repeatedly using the state-wise update rule of Equation 6.3. One also
obtains the pattern 0001111 as the final resting point when one starts with the hidden state
01. Notably, the patterns 000111 and 111000 are close approximations of the two types of
patterns in the data, which is what one would expect from a compression technique. If we
provide an incomplete version of the visible units, and then iteratively update the other
states with the update rule of Equation 6.3, one would often arrive at either 000111 and
111000 depending on how the bits in the incomplete representation are distributed. If we
add hidden units to a Hopfield network and allow the states to be probabilistic (rather
than deterministic), we obtain a Boltzmann machine. This is the reason that Boltzmann
machines can be viewed as stochastic Hopfield networks with hidden units.

HIDDEN LAYER

s1 TRAINING HIDDEN

101000 10

110000 10

000101 01

000011 01

h1 h2
-9

9

99 9

9

9

s2

s3 s4

s6

2

-2

-2

2

-2

-4

22

-2-2

s5

Figure 6.2: The Hopfield network with two hidden nodes

6.3. THE BOLTZMANN MACHINE 243

6.3 The Boltzmann Machine

Throughout this section, we assume that the Boltzmann machine contains a total of q =
(m+d) states, where d is the number of visible states and m is the number of hidden states.
A particular state configuration is defined by the value of the state vector s = (s1 . . . sq). If
one explicitly wants to demarcate the visible and hidden states in s, then the state vector s
can be written as the pair (v, h), where v denotes the set of visible units and h denotes the
set of hidden units. The states in (v, h) represent exactly the same set as s = {s1 . . . sq},
except that the visible and hidden units are explicitly demarcated in the former.

The Boltzmann machine is a probabilistic generalization of a Hopfield network. A Hop-
field network deterministically sets each state si to either 1 or 0, depending on whether the
energy gap ∆Ei of the state si is positive or negative. Recall that the energy gap of the ith
unit is defined as the difference in energy between its two configurations (with other states
being fixed to pre-defined values):

∆Ei = Esi=0 − Esi=1 = bi +
∑

j:j �=i

wijsj (6.6)

The Hopfield network deterministically sets the value of si to 1, when the energy gap is
positive. On the other hand, a Boltzmann machine assigns a probability to si depending on
the energy gap. Positive energy gaps are assigned probabilities that are larger than 0.5. The
probability of state si is defined by applying the sigmoid function to the energy gap:

P (si = 1|s1, . . . si−1, si+1, sq) =
1

1 + exp(−∆Ei)
(6.7)

Note that the state si is now a Bernoulli random variable and a zero energy gap leads to a
probability of 0.5 for each binary outcome of the state.

For a particular set of parameters wij and bi, the Boltzmann machine defines a probabil-
ity distribution over various state configurations. The energy of a particular configuration
s = (v, h) is denoted by E(s) = E([v, h]), and is defined in a similar way to the Hopfield
network as follows:

E(s) = −
∑

i

bisi −
∑

i,j:i<j

wijsisj (6.8)

However, these configurations are only probabilistically known in the case of the Boltzmann
machine (according to Equation 6.7). The conditional distribution of Equation 6.7 follows
from a more fundamental definition of the unconditional probability P (s) of a particular
configuration s:

P (s) ∝ exp(−E(s)) =
1

Z
exp(−E(s)) (6.9)

The normalization factor Z is defined so that the probabilities over all possible configura-
tions sum to 1:

Z =
∑

s

exp(−E(s)) (6.10)

The normalization factor Z is also referred to as the partition function. In general, the
explicit computation of the partition function is hard, because it contains an exponential
number of terms corresponding to all possible configurations of states. Because of the in-
tractability of the partition function, exact computation of P (s) = P (v, h) is not possible.
Nevertheless, the computation of many types of conditional probabilities (e.g., P (v|h)) is
possible, because such conditional probabilities are ratios and the intractable normalization

244 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

factor gets canceled out from the computation. For example, the conditional probability of
Equation 6.7 follows from the more fundamental definition of the probability of a configu-
ration (cf. Equation 6.9) as follows:

P (si = 1|s1, . . . si−1, si+1, sq) =
P (s1, . . . si−1,

si
︷︸︸︷

1 , si+1, sq)

P (s1, . . . si−1, 1
︸︷︷︸

si

, si+1, sq) + P (s1, . . . si−1, 0
︸︷︷︸

si

, si+1, sq)

=
exp(−Esi=1)

exp(−Esi=1) + exp(−Esi=0)
=

1

1 + exp(Esi=1 − Esi=0)

=
1

1 + exp(−∆Ei)
= Sigmoid(∆Ei)

This is the same condition as Equation 6.9. One can also see that the logistic sigmoid
function finds its roots in notions of energy from statistical physics.

One way of thinking about the benefit of setting these states probabilistically is that we
can now sample from these states to create new data points that look like the original data.
This makes Boltzmann machines probabilistic models rather than deterministic ones. Many
generative models in machine learning (e.g., Gaussian mixture models for clustering) use a
sequential process of first sampling the hidden state(s) from a prior, and then generating
visible observations conditionally on the hidden state(s). This is not the case in the Boltz-
mann machine, in which the dependence between all pairs of states is undirected; the visible
states depend as much on the hidden states as the hidden states depend on visible states.
As a result, the generation of data with a Boltzmann machine can be more challenging than
in many other generative models.

6.3.1 How a Boltzmann Machine Generates Data

In a Boltzmann machine, the dynamics of the data generation is complicated by the circu-
lar dependencies among the states based on Equation 6.7. Therefore, we need an iterative
process to generate sample data points from the Boltzmann machine so that Equation 6.7
is satisfied for all states. A Boltzmann machine iteratively samples the states using a con-
ditional distribution generated from the state values in the previous iteration until thermal
equilibrium is reached. The notion of thermal equilibrium means that we start at a random
set of states, use Equation 6.7 to compute their conditional probabilities, and then sample
the values of the states again using these probabilities. Note that we can iteratively gener-
ate si by using P (si|s1 . . . si−1, si+1, . . . sq) in Equation 6.7. After running this process for
a long time, the sampled values of the visible states provide us with random samples of
generated data points. The time required to reach thermal equilibrium is referred to as the
burn-in time of the procedure. This approach is referred to as Gibbs sampling or Markov
Chain Monte Carlo (MCMC) sampling.

At thermal equilibrium, the generated points will represent the model captured by the
Boltzmann machine. Note that the dimensions in the generated data points will be correlated
with one another depending on the weights between various states. States with large weights
between them will tend to be heavily correlated. For example, in a text-mining application
in which the states correspond to the presence of words, there will be correlations among
words belonging to a topic. Therefore, if a Boltzmann machine has been trained properly
on a text data set, it will generate vectors containing these types of word correlations at
thermal equilibrium, even when the states are randomly initialized. It is noticeable that

6.3. THE BOLTZMANN MACHINE 245

even generating a set of data points with the Boltzmann machine is a more complicated
process compared to many other probabilistic models. For example, generating data points
from a Gaussian mixture model only requires to sample points directly from the probability
distribution of a sampled mixture component. On the other hand, the undirected nature of
the Boltzmann machine forces us to run the process to thermal equilibrium just to generate
samples. It is, therefore, an even more difficult to task to learn the weights between states
for a given training data set.

6.3.2 Learning the Weights of a Boltzmann Machine

In a Boltzmann machine, we want to learn the weights in such a way so as to maximize
the log-likelihood of the specific training data set at hand. The log-likelihoods of individual
states are computed by using the logarithm of the probabilities in Equation 6.9. Therefore,
by taking the logarithm of Equation 6.9, we obtain the following:

log[P (s)] = −E(s)− log(Z) (6.11)

Therefore, computing
∂log[P (s)]

∂wij
requires the computation of the negative derivative of the

energy, although we have an additional term involving the partition function. The energy
function of Equation 6.8 is linear in the weight wij with coefficient of −sisj . Therefore, the
partial derivative of the energy with respect to the weight wij is −sisj . As a result, one can
show the following:

∂log[P (s)]

∂wij
= 〈si, sj〉data − 〈si, sj〉model (6.12)

Here, 〈si, sj〉data represents the averaged value of sisj obtained by running the generative
process of Section 6.3.1, when the visible states are clamped to attribute values in a training
point. The averaging is done over a mini-batch of training points. Similarly, 〈si, sj〉model

represents the averaged value of sisj at thermal equilibrium without fixing visible states
to training points and simply running the generative process of Section 6.3.1. In this case,
the averaging is done over multiple instances of running the process to thermal equilibrium.
Intuitively, we want to strengthen the weights of edges between states, which tend to be
differentially turned on together (compared to the unrestricted model), when the visible
states are fixed to the training data points. This is precisely what is achieved by the update
above, which uses the data- and model-centric difference in the value of 〈si, sj〉. From the
above discussion, it is clear that two types of samples need to be generated in order to
perform the updates:

1. Data-centric samples: The first type of sample fixes the visible states to a randomly
chosen vector from the training data set. The hidden states are initialized to random
values drawn from Bernoulli distribution with probability 0.5. Then the probability
of each hidden state is recomputed according to Equation 6.7. Samples of the hidden
states are regenerated from these probabilities. This process is repeated for a while,
so that thermal equilibrium is reached. The values of the hidden variables at this
point provide the required samples. Note that the visible states are clamped to the
corresponding attributes of the relevant training data vector, and therefore they do
not need to be sampled.

246 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

2. Model samples: The second type of sample does not put any constraints on states,
and one simply wants samples from the unrestricted model. The approach is the same
as discussed above, except that both the visible and hidden states are initialized to
random values, and updates are continuously performed until thermal equilibrium is
reached.

HIDDEN STATES

v1 v2 v3 v4

h1
h2 h3

VISIBLE STATES

PARENTS SEE

HIDDEN STATES

[TRUCKS]

CONES SUNDAE POPSICLE CUP

BEN’S TRUCK JERRY’S TRUCK TOM’S TRUCK

CHILD ONLY SEES VISIBLE

STATES [ICECREAMS] FROM

DAILY TRAINING DATA AND

MODELS THE WEIGHTS

PARENTS LIKELY TO

BUY DIFFERENT ITEMS

FROM DIFFERENT TRUCKS

[ENCODED IN WEIGHTS]

Figure 6.3: A Restricted Boltzmann machine. Note the restriction of there being no inter-
actions among either visible or hidden units.

These samples help us create an update rule for the weights. From the first type of sample,
one can compute 〈si, sj〉data, which represents the correlations between the states of nodes
i and j, when the visible vectors are fixed to a vector in the training data D and the hidden
states are allowed to vary. Since a mini-batch of training vectors is used, one obtains multiple
samples of the state vectors. The value of 〈si, sj〉 is computed as the average product over all
such state vectors that are obtained from Gibbs sampling. Similarly, one can estimate the
value of 〈si, sj〉model using the average product of si and sj from the model-centric samples
obtained from Gibbs sampling. Once these values have been computed, the following update
is used:

wij ⇐ wij + α (〈si, sj〉data − 〈si, sj〉model)
︸ ︷︷ ︸

Partial derivative of log probability

(6.13)

The update rule for the bias is similar, except that the state sj is set to 1. One can achieve
this by using a dummy bias unit that is visible and is connected to all states:

bi ⇐ bi + α (〈si, 1〉data − 〈si, 1〉model) (6.14)

Note that the value of 〈si, 1〉 is simply the average of the sampled values of si for a mini-batch
of training examples from either the data-centric samples or the model-centric samples.

This approach is similar to the Hebbian update rule of a Hopfield net, except that we
are also removing the effect of model-centric correlations in the update. The removal of
model-centric correlations is required to account for the effect of the partition function
within the expression of the log probability in Equation 6.11. The main problem with the
aforementioned update rule is that it is slow in practice. This is because of the Monte Carlo
sampling procedure, which requires a large number of samples in order to reach thermal
equilibrium. There are faster approximations to this tedious process. In the next section, we
will discuss this approach in the context of a simplified version of the Boltzmann machine,
which is referred to as the restricted Boltzmann machine.

6.4. RESTRICTED BOLTZMANN MACHINES 247

6.4 Restricted Boltzmann Machines

In the Boltzmann machine, the connections among hidden and visible units can be arbi-
trary. For example, two hidden states might contain edges between them, and so might
two visible states. This type of generalized assumption creates unnecessary complexity. A
natural special case of the Boltzmann machine is the restricted Boltzmann machine (RBM),
which is bipartite, and the connections are allowed only between hidden and visible units.
An example of a restricted Boltzmann machine is shown in Figure 6.3(a). In this partic-
ular example, there are three hidden nodes and four visible nodes. Each hidden state is
connected to one or more visible states, although there are no connections between pairs
of hidden states, and between pairs of visible states. The restricted Boltzmann machine is
also referred to as a harmonium [457].

We assume that the hidden units are h1 . . . hm and the visible units are v1 . . . vd. The
bias associated with the visible node vi be denoted by b

(v)
i , and the bias associated with

hidden node hj is denoted by b
(h)
j . Note the superscripts in order to distinguish between

the biases of visible and hidden nodes. The weight of the edge between visible node vi and
hidden node hj is denoted by wij . The notations for the weights are also slightly different
for the restricted Boltzmann machine (compared to the Boltzmann machine) because the
hidden and visible units are indexed separately. For example, we no longer have wij = wji

because the first index i always belongs to a visible node and the second index j belongs to a
hidden node. It is important to keep these notational differences in mind while extrapolating
the equations from the previous section.

In order to provide better interpretability, we will use a running example throughout
this section, which we refer to as the example of “Alice’s ice-cream trucks” based on the
Boltzmann machine in Figure 6.3(b). Imagine a situation in which the training data corre-
sponds to four bits representing the ice-creams received by Alice from her parents each day.
These represent the visible states in our example. Therefore, Alice can collect 4-dimensional
training points, as she receives (between 0 and 4) ice-creams of different types each day.
However, the ice-creams are bought for Alice by her parents from one1 or more of three
trucks shown as the hidden states in the same figure. The identity of these trucks is hid-
den from Alice, although she knows that there are three trucks from which her parents
procure the ice-creams (and more than one truck can be used to construct a single day’s
ice-cream set). Alice’s parents are indecisive people, and their decision-making process is
unusual because they change their mind about the selected ice-creams after selecting the
trucks and vice versa. The likelihood of a particular ice-cream being picked depends on the
trucks selected as well as the weights to these trucks. Similarly, the likelihood of a truck
being selected depends on the ice-creams that one intends to buy and the same weights.
Therefore, Alice’s parents can keep changing their mind about selecting ice-creams after
selecting trucks and about selecting trucks after selecting ice-creams (for a while) until they
reach a final decision each day. As we will see, this circular relationship is the characteristic
of undirected models, and process used by Alice’s parents is similar to Gibb’s sampling.

The use of the bipartite restriction greatly simplifies inference algorithms in RBMs,
while retaining the application-centric power of the approach. If we know all the values of
the visible units (as is common when a training data point is provided), the probabilities of
the hidden units can be computed in one step without having to go through the laborious
process of Gibbs sampling. For example, the probability of each hidden unit taking on the

1This example is tricky in terms of semantic interpretability for the case in which no trucks are selected.
Even in that case, the probabilities of various ice-creams turn out to be non-zero depending on the bias.
One can explain such cases by adding a dummy truck that is always selected.

248 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

value of 1 can be written directly as a logistic function of the values of visible units. In
other words, we can apply Equation 6.7 to the restricted Boltzmann machine to obtain the
following:

P (hj = 1|v) = 1

1 + exp(−b
(h)
j −∑d

i=1 viwij)
(6.15)

This result follows directly from Equation 6.7, which relates the state probabilities to the
energy gap ∆Ej between hj = 0 and hj = 1. The value of ∆Ej is bj +

∑

i viwij when the
visible states are observed. The main difference from an unrestricted Boltzmann machine
is that the right-hand side of the above equation does not contain any (unknown) hidden
variables and only the hidden variables. This relationship is also useful in creating a reduced
representation of each training vector, once the weights have been learned. Specifically, for
a Boltzmann machine with m hidden units, one can set the value of the jth hidden value
to the probability computed in Equation 6.15. Note that such an approach provides a real-
valued reduced representation of the binary data. One can also write the above equation
using a sigmoid function:

P (hj = 1|v) = Sigmoid

(

b
(h)
j +

d∑

i=1

viwij

)

(6.16)

One can also use a sample of the hidden states to generate the data points in one step. This
is because the relationship between the visible units and the hidden units is similar in the
undirected and bipartite architecture of the RBM. In other words, we can use Equation 6.7
to obtain the following:

P (vi = 1|h) = 1

1 + exp(−b
(v)
i −∑m

j=1 hjwij)
(6.17)

One can also express this probability in terms of the sigmoid function:

P (vi = 1|h) = Sigmoid

⎛

⎝b
(v)
i +

m∑

j=1

hjwij

⎞

⎠ (6.18)

One nice consequence of using the sigmoid is that it is often possible to create a closely
related feed-forward network with sigmoid activation units in which the weights learned by
the Boltzmann machine are leveraged in a directed computation with input-output map-
pings. The weights of this network are then fine-tuned with backpropagation. We will give
examples of this approach in the application section.

Note that the weights encode the affinities between the visible and hidden states. A
large positive weight implies that the two states are likely to be on together. For example,
in Figure 6.3(b), it might be possible that the parents are more likely to buy cones and
sundae from Ben’s truck, whereas they are more likely to buy popsicles and cups from
Tom’s truck. These propensities are encoded in the weights, which regulate both visible
state selection and hidden state selection in a circular way. The circular nature of the
relationship creates challenges, because the relationship between ice-cream choice and truck
choice runs both ways; it is the raison d’etre for Gibb’s sampling. Although Alice might not
know which trucks the ice-creams are coming from, she will notice the resulting correlations
among the bits in the training data. In fact, if the weights of the RBM are known by Alice,
she can use Gibb’s sampling to generate 4-bit points representing “typical” examples of

6.4. RESTRICTED BOLTZMANN MACHINES 249

ice-creams she will receive on future days. Even the weights of the model can be learned by
Alice from examples, which is the essence of an unsupervised generative model. Given the
fact that there are 3 hidden states (trucks) and enough examples of 4-dimensional training
data points, Alice can learn the relevant weights and biases between the visible ice-creams
and hidden trucks. An algorithm for doing this is discussed in the next section.

6.4.1 Training the RBM

Computation of the weights of the RBM is achieved using a similar type of learning rule
as that used for Boltzmann machines. In particular, it is possible to create an efficient
algorithm based on mini-batches. The weights wij are initialized to small values. For the
current set of weights wij , they are updated as follows:

• Positive phase: The algorithm uses a mini-batch of training instances, and computes
the probability of the state of each hidden unit in exactly one step using Equation 6.15.
Then a single sample of the state of each hidden unit is generated from this probability.
This process is repeated for each element in a mini-batch of training instances. The
correlation between these different training instances of vi and generated instances of
hj is computed; it is denoted by 〈vi, hj〉pos. This correlation is essentially the average
product between each such pair of visible and hidden units.

• Negative phase: In the negative phase, the algorithm starts with a mini-batch of train-
ing instances. Then, for each training instance, it goes through a phase of Gibbs sam-
pling after starting with randomly initialized states. This is achieved by repeatedly
using Equations 6.15 and 6.17 to compute the probabilities of the visible and hid-
den units, and using these probabilities to draw samples. The values of vi and hj at
thermal equilibrium are used to compute 〈vi, hj〉neg in the same way as the positive
phase.

• One can then use the same type of update as is used in Boltzmann machines:

wij ⇐ wij + α (〈vi, hj〉pos − 〈vi, hj〉neg)
b
(v)
i ⇐ b

(v)
i + α (〈vi, 1〉pos − 〈vi, 1〉neg)

b
(h)
j ⇐ b

(h)
j + α (〈1, hj〉pos − 〈1, hj〉neg)

Here, α > 0 denotes the learning rate. Each 〈vi, hj〉 is estimated by averaging the
product of vi and hj over the mini-batch, although the values of vi and hj are computed
in different ways in the positive and negative phases, respectively. Furthermore, 〈vi, 1〉
represents the average value of vi in the mini-batch, and 〈1, hj〉 represents the average
value of hj in the mini-batch.

It is helpful to interpret the updates above in terms of Alice’s trucks in Figure 6.3(b). When
the weights of certain visible bits (e.g., cones and sundae) are highly correlated, the above
updates will tend to push the weights in directions that these correlations can be explained
by the weights between the trucks and the ice-creams. For example, if the cones and sundae
are highly correlated but all other correlations are very weak, it can be explained by high
weights between each of these two types of ice-creams and a single truck. In practice, the
correlations will be far more complex, as will the patterns of the underlying weights.

An issue with the above approach is that one would need to run the Monte Carlo
sampling for a while in order to obtain thermal equilibrium and generate the negative

250 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

samples. However, it turns out that it is possible to run the Monte Carlo sampling for only
a short time starting by fixing the visible states to a training data point from the mini-batch
and still obtain a good approximation of the gradient.

6.4.2 Contrastive Divergence Algorithm

The fastest variant of the contrastive divergence approach uses a single additional iteration
of Monte Carlo sampling (over what is done in the positive phase) in order to generate
the samples of the hidden and visible states. First, the hidden states are generated by
fixing the visible units to a training point (which is already accomplished in the positive
phase), and then the visible units are generated again (exactly once) from these hidden
states using Monte Carlo sampling. The values of the visible units are used as the sampled
states in lieu of the ones obtained at thermal equilibrium. The hidden units are generated
again using these visible units. Thus, the main difference between the positive and negative
phase is only of the number of iterations that one runs the approach starting with the
same initialization of visible states to training points. In the positive phase, we use only
half an iteration of simply computing the hidden states. In the negative phase, we use
at least one additional iteration (so that visible states are recomputed from hidden states
and hidden states generated again). This difference in the number of iterations is what
causes the contrastive divergence between the state distributions in the two cases. The
intuition is that an increased number of iterations causes the distribution to move away
(i.e., diverge) from the data-conditioned states to what is proposed by the current weight
vector. Therefore, the value of (〈vi, hj〉pos − 〈vi, hj〉neg) in the update quantifies the amount
of contrastive divergence. This fastest variant of the contrastive divergence algorithm is
referred to as CD1 because it uses a single (additional) iteration in order to generate the
negative samples. Of course, using such an approach is only an approximation to the true
gradient. One can improve the accuracy of contrastive divergence by increasing the number
of additional iterations to k, in which the data is reconstructed k times. This approach is
referred to as CDk. Increased values of k lead to better gradients at the expense of speed.

In the early iterations, using CD1 is good enough, although it might not be helpful in
later phases. Therefore, a natural approach is to progressively increase the value of k, while
applying CDk in training. One can summarize this process as follows:

1. In the early phase of gradient-descent, the weights are initialized to small values. In
each iteration, only one additional step of contrastive divergence is used. One step
is sufficient at this point because the difference between the weights are very inexact
in early iterations and only a rough direction of descent is needed. Therefore, even if
CD1 is executed, one will be able to obtain a good direction in most cases.

2. As the gradient descent nears a better solution, higher accuracy is needed. Therefore,
two or three steps of contrastive divergence are used (i.e., CD2 or CD3). In general,
one can double the number of Markov chain steps after a fixed number of gradient
descent steps. Another approach advocated in [469] is to create the value of k in CDk

by 1 after every 10,000 steps. The maximum value of k used in [469] was 20.

The contrastive divergence algorithm can be extended to many other variations of the
RBM. An excellent practical guide for training restricted Boltzmann machines may be
found in [193]. This guide discusses several practical issues such as initialization, tuning,
and updates. In the following, we provide a brief overview of some of these practical issues.

6.5. APPLICATIONS OF RESTRICTED BOLTZMANN MACHINES 251

6.4.3 Practical Issues and Improvisations

There are several practical issues in training the RBM with contrastive divergence. Although
we have always assumed that the Monte Carlo sampling procedure generates binary samples,
this is not quite the case. Some of the iterations of the Monte Carlo sampling directly use
computed probabilities (cf. Equations 6.15 and 6.17), rather than sampled binary values.
This is done in order to reduce the noise in training, because probability values retain more
information than binary samples. However, there are some differences between how hidden
states and visible states are treated:

• Improvisations in sampling hidden states: The final iteration of CDk computes hid-
den states as probability values according to Equation 6.15 for positive and negative
samples. Therefore, the value of hj used for computing 〈vi, hj〉pos − 〈vi, hj〉neg would
always be a real value for both positive and negative samples. This real value is a
fraction because of the use of the sigmoid function in Equation 6.15.

• Improvisations in sampling visible states: Therefore, the improvisations for Monte
Carlo sampling of visible states are always associated with the computation of
〈vi, hj〉neg rather than 〈vi, hj〉pos because visible states are always fixed to the training
data. For the negative samples, the Monte Carlo procedure always computes proba-
bility values of visible states according to Equation 6.17 over all iterations rather than
using 0-1 values. This is not the case for the hidden states, which are always binary
until the very last iteration.

Using probability values iteratively rather than sampled binary values is technically incor-
rect, and does not reach correct thermal equilibrium. However, the contrastive divergence
algorithm is an approximation anyway, and this type of approach reduces significant noise
at the expense of some theoretical incorrectness. Noise reduction is a result of the fact that
the probabilistic outputs are closer to expected values.

The weights can be initialized from a Gaussian distribution with zero mean and a stan-
dard deviation of 0.01. Large values of the initial weights can speed up the learning, but
might lead to a model that is slightly worse in the end. The visible biases are initialized to
log(pi/(1− pi)), where pi is the fraction of data points in which the ith dimension takes on
the value of 1. The values of the hidden biases are initialized to 0.

The size of the mini-batch should be somewhere between 10 and 100. The order of
the examples should be randomized. For cases in which class labels are associated with
examples, the mini-batch should be selected in such a way that the proportion of labels in
the batch is approximately the same as the whole data.

6.5 Applications of Restricted Boltzmann Machines

In this section, we will study several applications of restricted Boltzmann machines. These
methods have been very successful for a variety of unsupervised applications, although they
are also used for supervised applications. When using an RBM in a real-world application, a
mapping from input to output is often required, whereas a vanilla RBM is only designed to
learn probability distributions. The input-to-output mapping is often achieved by construct-
ing a feed-forward network with weights derived from the learned RBM. In other words,
one can often derive a traditional neural network that is associated with the original RBM.

Here, we will like to discuss the differences between the notions of the state of a node in
the RBM, and the activation of that node in the associated neural network. The state of a

252 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

node is a binary value sampled from the Bernoulli probabilities defined by Equations 6.15
and 6.17. On the other hand, the activation of a node in the associated neural network
is the probability value derived from the use of the sigmoid function in Equations 6.15
and 6.17. Many applications use the activations in the nodes of the associated neural net-
work, rather than the states in the original RBM after the training. Note that the final step
in the contrastive divergence algorithm also leverages the activations of the nodes rather
than the states while updating the weights. In practical settings, the activations are more
information-rich and are therefore useful. The use of activations is consistent with tradi-
tional neural network architectures, in which backpropagation can be used. The use of a
final phase of backpropagation is crucial in being able to apply the approach to supervised
applications. In most cases, the critical role of the RBM is to perform unsupervised feature
learning. Therefore, the role of the RBM is often only one of pretraining in the case of
supervised learning. In fact, pretraining is one of the important historical contributions of
the RBM.

6.5.1 Dimensionality Reduction and Data Reconstruction

The most basic function of the RBM is that of dimensionality reduction and unsupervised
feature engineering. The hidden units of an RBM contain a reduced representation of the
data. However, we have not yet discussed how one can reconstruct the original representation
of the data with the use of an RBM (much like an autoencoder). In order to understand
the reconstruction process, we first need to understand the equivalence of the undirected
RBM with directed graphical models [251], in which the computation occurs in a particular
direction. Materializing a directed probabilistic graph is the first step towards materializing
a traditional neural network (derived from the RBM) in which the discrete probabilistic
sampling from the sigmoid can be replaced with real-valued sigmoid activations.

Although an RBM is an undirected graphical model, one can “unfold” an RBM in order
to create a directed model in which the inference occurs in a particular direction. In general,
an undirected RBM can be shown to be equivalent to a directed graphical model with an
infinite number of layers. The unfolding is particularly useful when the visible units are
fixed to specific values because the number of layers in the unfolding collapses to exactly
twice the number of layers in the original RBM. Furthermore, by replacing the discrete
probabilistic sampling with continuous sigmoid units, this directed model functions as a
virtual autoencoder, which has both an encoder portion and a decoder portion. Although
the weights of an RBM have been trained using discrete probabilistic sampling, they can also
be used in this related neural network with some fine tuning. This is a heuristic approach
to convert what has been learned from a Boltzmann machine (i.e., the weights) into the
initialized weights of a traditional neural network with sigmoid units.

An RBM can be viewed as an undirected graphical model that uses the same weight
matrix to learn h from v as it does from v to h. If one carefully examines Equations 6.15
and 6.17, one can see that they are very similar. The main difference is that these equations
uses different biases, and they use the transposes of each other’s weight matrices. In other
words, one can rewrite Equations 6.15 and 6.17 in the following form for some function f(·):

h ∼ f(v, b
(h)

,W)

v ∼ f(h, b
(v)

,WT)

The function f(·) is typically defined by the sigmoid function in binary RBMs, which con-
stitute the predominant variant of this class of models. Ignoring the biases, one can replace

6.5. APPLICATIONS OF RESTRICTED BOLTZMANN MACHINES 253

HIDDEN STATES

VISIBLE STATES

HIDDEN STATES

VISIBLE STATES

EQUIVALENCE

W W WT

(a) Equivalence of directed and undirected relationships

HIDDEN STATES

VISIBLE STATES

W WT HIDDEN STATES

(REDUCED FEATURES)

VISIBLE STATES (FIXED)

W

WT

VISIBLE STATES

(RECONSTRUCTED)
FIX VISIBLE STATES

IN A LAYER TO

INPUT DATA POINT

REPLACE DISCRETE

SAMPLING WITH

REAL-VALUED

PROBABILITIES

(b) Discrete graphical model to approximate real-valued neural network

Figure 6.4: Using trained RBM to approximate trained autoencoder

the undirected graph of the RBM with two directed links, as shown in Figure 6.4(a). Note
that the weight matrices in the two directions are W and WT , respectively. However, if
we fix the visible states to the training points, we can perform just two iterations of these
operations to reconstruct the visible states with real-valued approximations. In other words,
we approximate this trained RBM with a traditional neural network by replacing discrete
sampling with continuous-valued sigmoid activations (as a heuristic). This conversion is
shown in Figure 6.4(b). In other words, instead of using the sampling operation of “∼,” we
replace the samples with the probability values:

h = f(v, b
(h)

,W)

v′ = f(h, b
(v)

,WT)

Note that v′ is the reconstructed version of v and it will contain real values (unlike the binary
states in v). In this case, we are working with real-valued activations rather than discrete
samples. Because sampling is no longer used and all computations are performed in terms
of expectations, we need to perform only one iteration of Equation 6.15 in order to learn
the reduced representation. Furthermore, only one iteration of Equation 6.17 is required to
learn the reconstructed data. The prediction phase works only in a single direction from the
input point to the reconstructed data, and is shown on the right-hand side of Figure 6.4(b).
We modify Equations 6.15 and 6.17 to define the states of this traditional neural network
as real values:

ĥj =
1

1 + exp(−b
(h)
j −∑d

i=1 viwij)
(6.19)

For a setting with a total of m ≪ d hidden states, the real-valued reduced representation
is given by (ĥ1 . . . ĥm). This first step of creating the hidden states is equivalent to the
encoder portion of an autoencoder, and these values are the expected values of the binary
states. One can then apply Equation 6.17 to these probabilistic values (without creating
Monte-Carlo instantiations) in order to reconstruct the visible states as follows:

v̂i =
1

1 + exp(−b
(v)
i −∑j ĥjwij)

(6.20)

254 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

Although ĥj does represent the expected value of the jth hidden unit, applying the sig-

moid function again to this real-valued version of ĥj only provides a rough approximation
to the expected value of vi. Nevertheless, the real-valued prediction v̂i is an approximate
reconstruction of vi. Note that in order to perform this reconstruction we have used sim-
ilar operations as traditional neural networks with sigmoid units rather than the trouble-
some discrete samples of probabilistic graphical models. Therefore, we can now use this
related neural network as a good starting point for fine-tuning the weights with traditional
backpropagation. This type of reconstruction is similar to the reconstruction used in the
autoencoder architecture discussed in Chapter 2.

On first impression, it makes little sense to train an RBM when similar goals can be
achieved with a traditional autoencoder. However, this broad approach of deriving a tradi-
tional neural network with a trained RBM is particularly useful when working with stacked
RBMs (cf. Section 6.7). The training of a stacked RBM does not face the same challenges as
those associated with deep neural networks, especially the ones related with the vanishing
and exploding gradient problems. Just as the simple RBM provides an excellent initializa-
tion point for the shallow autoencoder, the stacked RBM also provides an excellent starting
point for a deep autoencoder [198]. This principle led to the development of the idea of pre-
training with RBMs before conventional pretraining methods were developed without the
use of RBMs. As discussed in this section, one can also use RBMs for other reduction-centric
applications such as collaborative filtering and topic modeling.

6.5.2 RBMs for Collaborative Filtering

The previous section shows how restricted Boltzmann machines are used as alternatives
to the autoencoder for unsupervised modeling and dimensionality reduction. However, as
discussed in Section 2.5.7 of Chapter 2, dimensionality reduction methods are also used for
a variety of related applications like collaborative filtering. In the following, we will provide
an RBM-centric alternative to the recommendation technique described in Section 2.5.7 of
Chapter 2. This approach is based on the technique proposed in [414], and it was one of the
ensemble components of the winning entry in the Netflix prize contest.

One of the challenges in working with ratings matrices is that they are incompletely
specified. This tends to make the design of a neural architecture for collaborative filtering
more difficult than traditional dimensionality reduction. Recall from the discussion in Sec-
tion 2.5.7 that modeling such incomplete matrices with a traditional neural network also
faces the same challenge. In that section, it was shown how one could create a different
training instance and a different neural network for each user, depending on which ratings
are observed by that user. All these different neural networks share weights. An exactly sim-
ilar approach is used with the restricted Boltzmann machine, in which one training case and
one RBM is defined for each user. However, in the case of the RBM, one additional problem
is that the units are binary, whereas ratings can take on values from 1 to 5. Therefore, we
need some way of working with the additional constraint.

In order to address this issue, the hidden units in the RBM are allowed to be 5-way
softmax units in order to correspond to rating values from 1 to 5. In other words, the
hidden units are defined in the form of a one-hot encoding of the rating. One-hot encodings
are naturally modeled with softmax, which defines the probabilities of each possible position.
The ith softmax unit corresponds to the ith movie and the probability of a particular rating
being given to that movie is defined by the distribution of softmax probabilities. Therefore,
if there are d movies, we have a total of d such one-hot encoded ratings. The values of the

corresponding binary values of the one-hot encoded visible units are denoted by v
(1)
i , . . . v

(5)
i .

6.5. APPLICATIONS OF RESTRICTED BOLTZMANN MACHINES 255

0 0 0 1 0

E.T. (RATING=4)

0 0 0 0 1

SHREK (RATING=5)

H
ID

D
E

N
 U

N
IT

S

h1

h2

(a) RBM architecture for user Sayani (Observed Ratings: E.T. and Shrek)

0 1 0 0 0

E.T. (RATING=2)

0 0 0 0 1

NIXON (RATING=5)

0 0 0 1 0

GANDHI (RATING=4)

0 0 1 0 0

NERO (RATING=3)

h1

h2
H

ID
D

E
N

 U
N

IT
S

(b) RBM architecture for user Bob (Observed Ratings: E.T., Nixon, Gandhi, and Nero)

Figure 6.5: The RBM architectures of two users are shown based on their observed ratings.
It is instructive to compare this figure with the conventional neural architecture shown in
Figure 2.14 in Chapter 2. In both cases, weights are shared by user-specific networks.

Note that only one of the values of v
(k)
i can be 1 over fixed i and varying k. The hidden

layer is assumed to contain m units. The weight matrix has a separate parameter for each
of the multinomial outcomes of the softmax unit. Therefore, the weight between visible unit

i and hidden unit j for the outcome k is denoted by w
(k)
ij . In addition, we have 5 biases for

the visible unit i, which are denoted by b
(k)
i for k ∈ {1, . . . , 5}. The hidden units only have a

single bias, and the bias of the jth hidden unit is denoted by bj (without a superscript). The
architecture of the RBM for collaborative filtering is illustrated in Figure 6.5. This example
contains d = 5 movies and m = 2 hidden units. In this case, the RBM architectures of
two users, Sayani and Bob, are shown in the figure. In the case of Sayani, she has specified
ratings for only two movies. Therefore, a total of 2× 2× 5 = 20 connections will be present
in her case, even though we have shown only a subset of them to avoid clutter in the figure.
In the case of Bob, he has four observed ratings, and therefore his network will contain a
total of 4 × 2 × 5 = 40 connections. Note that both Sayani and Bob have rated the movie
E.T., and therefore the connections from this movie to the hidden units will share weights
between the corresponding RBMs.

256 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

The states of the hidden units, which are binary, are defined with the use of the sigmoid
function:

P (hj = 1|v(1) . . . v(5)) = 1

1 + exp(−bj −
∑

i,k v
(k)
i wk

ij)
(6.21)

The main difference from Equation 6.15 is that the visible units also contain a superscript to
correspond to the different rating outcomes. Otherwise, the condition is virtually identical.
However, the probabilities of the visible units are defined differently from the traditional
RBM model. In this case, the visible units are defined using the softmax function:

P (v
(k)
i = 1|h) =

exp(b
(k)
i +

∑

j hjw
(k)
ij)

∑5
r=1 exp(b

(r)
i +

∑

j hjw
(r)
ij)

(6.22)

The training is done in a similar way as the unrestricted Boltzmann machine with Monte
Carlo sampling. The main difference is that the visible states are generated from a multino-
mial model. Therefore, the MCMC sampling should also generate the negative samples from

the multinomial model of Equation 6.22 to create each v
(k)
i . The corresponding updates for

training the weights are as follows:

w
(k)
ij ⇐ w

(k)
ij + α

(

〈v(k)i , hj〉pos − 〈v(k)i , hj〉neg
)

∀k (6.23)

Note that only the weights of the observed visible units to all hidden units are updated
for a single training example (i.e., user). In other words, the Boltzmann machine that is
used is different for each user in the data, although the weights are shared across the
different users. Examples of the Boltzmann machines for two different training examples
are illustrated in Figure 6.5, and the architectures for Bob and Sayani are different. However,
the weights for the units representing E.T. are shared. This type of approach is also used in
the traditional neural architecture of Section 2.5.7 in which the neural network used for each
training example is different. As discussed in that section, the traditional neural architecture
is equivalent to a matrix factorization technique. The Boltzmann machine tends to give
somewhat different ratings predictions from matrix factorization techniques, although the
accuracy is similar.

Making Predictions

Once the weights have been learned, they can be used for making predictions. However,
the predictive phase works with real-valued activations rather than binary states, much
like a traditional neural network with sigmoid and softmax units. First, one can use Equa-
tion 6.21 in order to learn the probabilities of the hidden units. Let the probability that the
jth hidden unit is 1 be denoted by p̂j . Then, the probabilities of unobserved visible units
are computed using Equation 6.22. The main problem in computing Equation 6.22 is that
it is defined in terms of the values of the hidden units, which are only known in the form of
probabilities according to Equation 6.21. However, one can simply replace each hj with p̂j
in Equation 6.22 in order to compute the probabilities of the visible units. Note that these
predictions provide the probabilities of each possible rating value of each item. These prob-
abilities can also be used to compute the expected value of the rating if needed. Although
this approach is approximate from a theoretical point of view, it works well in practice and
is extremely fast. By using these real-valued computations, one is effectively converting the
RBM into a traditional neural network architecture with logistic units for hidden layers and

6.5. APPLICATIONS OF RESTRICTED BOLTZMANN MACHINES 257

softmax units for the input and output layers. Although the original paper [414] does not
mention it, it is even possible to tune the weights of this network with backpropagation
(cf. Exercise 1).

The RBM approach works as well as the traditional matrix factorization approach,
although it tends to give different types of predictions. This type of diversity is an advantage
from the perspective of using an ensemble-centric approach. Therefore, the results can be
combined with the matrix factorization approach in order to yield the improvements that
are naturally associated with an ensemble method. Ensemble methods generally show better
improvements when diverse methods of similar accuracy are combined.

Conditional Factoring: A Neat Regularization Trick

A neat regularization trick is buried inside the RBM-based collaborative filtering work
of [414]. This trick is not specific to the collaborative filtering application, but can be used
in any application of an RBM. This approach is not necessary in traditional neural networks,
where it can be simulated by incorporating an additional hidden layer, but it is particularly
useful for RBMs. Here, we describe this trick in a more general way, without its specific
modifications for the collaborative filtering application. In some applications with a large
number of hidden units and visible units, the size of the parameter matrix W = [wij] might
be large. For example, in a matrix with d = 105 visible units, and m = 100 hidden units,
we will have ten million parameters. Therefore, more than ten million training points will
be required to avoid overfitting. A natural approach is to assume a low-rank parameter
structure of the weight matrix, which is a form of regularization. The idea is to assume that
the matrix W can be expressed as the product of two low-rank factors U and V , which are
of sizes d× k and m× k, respectively. Therefore, we have the following:

W = UV T (6.24)

Here, k is the rank of the factorization, which is typically much less than both d and m.
Then, instead of learning the parameters of the matrixW , one can learn the parameters of U
and V , respectively. This type of trick is used often in various machine learning applications,
where parameters are represented as a matrix. A specific example is that of factorization
machines, which are also used for collaborative filtering [396]. This type of approach is not
required in traditional neural networks, because one can simulate it by incorporating an
additional linear layer with k units between two layers with a weight matrix of W between
them. The weight matrices of the two layers will be U and V T , respectively.

6.5.3 Using RBMs for Classification

The most common way to use RBMs for classification is as a pretraining procedure. In other
words, a Boltzmann machine is first used to perform unsupervised feature engineering.
The RBM is then unrolled into a related encoder-decoder architecture according to the
approach described in Section 6.5.1. This is a traditional neural network with sigmoid units,
whose weights are derived from the unsupervised RBM rather than backpropagation. The
encoder portion of this neural network is topped with an output layer for class prediction.
The weights of this neural network are then fine-tuned with backpropagation. Such an
approach can even be used with stacked RBMs (cf. Section 6.7) to yield a deep classifier.
This methodology of initializing a (conventional) deep neural network with an RBM was
one of the first approaches for pretraining deep networks.

258 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

There is, however, another alternative approach to perform classification with the RBM,
which integrates RBM training and inference more tightly with the classification process.
This approach is somewhat similar to the collaborative filtering methodology discussed
in the previous section. The collaborative-filtering problem is also referred to as matrix
completion because the missing entries of an incompletely specified matrix are predicted.
The use of RBMs for recommender systems provides some useful hints about their use in
classification. This is because classification can be viewed as a simplified version of the
matrix completion problem in which we create a single matrix out of both the training and
test rows, and the missing values belong to a particular column of the matrix. This column
corresponds to the class variable. Furthermore, all the missing values are present in the
test rows in the case of classification, whereas the missing values could be present anywhere
in the matrix in the case of recommender systems. This relationship between classification
and the generic matrix completion problem is illustrated in Figure 6.6. In classification,
all features are observed for the rows corresponding to training points, which simplifies the
modeling (compared to collaborative filtering in which a complete set of features is typically
not observed for any row).

TRAINING

ROWS

TEST

ROWS

INDEPENDENT

VARIABLES

DEPENDENT

VARIABLE

NO

DEMARCATION

BETWEEN

TRAINING AND

TEST ROWS

NO DEMARCATION BETWEEN DEPENDENT

AND INDEPENDENT VARIABLES

(a) Classification (b) Matrix completion

Figure 6.6: The classification problem is a special case of matrix completion. Shaded entries
are missing and need to be predicted.

We assume that the input data contains d binary features. The class label has k discrete
values, which corresponds to the multiway classification problem. The classification problem
can be modeled by the RBM by defining the hidden and visible features as follows:

1. The visible layer contains two types of nodes corresponding to the features and the
class label, respectively. There are d binary units corresponding to features, and there
are k binary units corresponding to the class label. However, only one of these k binary
units can take on the value of 1, which corresponds to a one-hot encoding of the class
labels. This encoding of the class label is similar to the approach used for encoding
the ratings in the collaborative-filtering application. The visible units for the features

are denoted by v
(f)
1 . . . v

(f)
d , whereas the visible units for the class labels are denoted

by v
(c)
1 . . . v

(c)
k . Note that the symbolic superscripts denote whether the visible units

corresponds to a feature or a class label.

6.5. APPLICATIONS OF RESTRICTED BOLTZMANN MACHINES 259

2. The hidden layer contains m binary units. The hidden units are denoted by h1 . . . hm.

MULTINOMIAL VISIBLE STATES

(CLASSES)

BINARY HIDDEN STATES

BINARY VISIBLE STATES

(FEATURES)

W U

Figure 6.7: The RBM architecture for classification

The weight of the connection between the ith feature-specific visible unit v
(f)
i and the jth

hidden unit hj is given by wij . This results in a d ×m connection matrix W = [wij]. The

weight of the connection between the ith class-specific visible unit v
(c)
i and the jth hidden

unit hj is given by uij . This results in a k×m connection matrix U = [uij]. The relationships
between different types of nodes and matrices for d = 6 features, k = 3 classes, and m = 5
hidden features is shown in Figure 6.7. The bias for the ith feature-specific visible node is

denoted by b
(f)
i , and the bias for the ith class-specific visible node is denoted by b

(c)
i . The

bias for the jth hidden node is denoted by bj (with no superscript). The states of the hidden
nodes are defined in terms of all visible nodes using the sigmoid function:

P (hj = 1|v(f), v(c)) = 1

1 + exp(−bj −
∑d

i=1 v
(f)
i wij −

∑k
i=1 v

(c)
i uij)

(6.25)

Note that this is the standard way in which the probabilities of hidden units are defined in a
Boltzmann machine. There are, however, some differences between how the probabilities of
the feature-specific visible units and the class-specific visible units are defined. In the case
of the feature-specific visible units, the relationship is not very different from a standard
Boltzmann machine:

P (v
(f)
i = 1|h) = 1

1 + exp(−b
(f)
i −∑m

j=1 hjwij)
(6.26)

The case of the class units is, however, slightly different because we must use the soft-
max function instead of the sigmoid. This is because of the one-hot encoding of the class.
Therefore, we have the following:

P (v
(c)
i = 1|h) =

exp(b
(c)
i +

∑

j hjuij)
∑k

l=1 exp(b
(c)
l +

∑

j hjulj)
(6.27)

A naive approach to training the Boltzmann machine would use a similar generative model

to previous sections. The multinomial model is used to generate the visible states v
(c)
i for the

classes. The corresponding updates of the contrastive divergence algorithm are as follows:

wij ⇐ wij + α
(

〈v(f)i , hj〉pos − 〈v(f)i , hj〉neg
)

if i is feature unit

uij ⇐ uij + α
(

〈v(c)i , hj〉pos − 〈v(c)i , hj〉neg
)

if i is class unit

260 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

This approach is a direct extension from collaborative filtering. However, the main problem
is that this generative approach does not fully optimize for classification accuracy. To provide
an analogy with autoencoders, one would not necessarily perform significantly better dimen-
sionality reduction (in a supervised sense) by simply including the class variable among the
inputs. The reduction would often be dominated by the unsupervised relationships among
the features. Rather, the entire focus of the learning should be on optimizing the accuracy
of classification. Therefore, a discriminative approach to training the RBM is often used
in which the weights are learned to maximize the conditional class likelihood of the true
class. Note that it is easy to set up the conditional probability of the class variable, given
the visible states by using the probabilistic dependencies between the hidden features and
classes/features. For example, in the traditional form of a restrictive Boltzmann machine,

we are maximizing the joint probability of the feature variables v
(f)
i and the class variables

vci . However, in the discriminative variant, the objective function is set up to maximize the

conditional probability of the class variable y ∈ {1 . . . k} P (v
(c)
y = 1|v(f)). Such an approach

has a more focused effect of maximizing classification accuracy. Although it is possible to
train a discriminative restricted Boltzmann machine using contrastive divergence, the prob-

lem is simplified because one can estimate P (v
(c)
y = 1|v(f)) in closed form without having

to use an iterative approach. This form can be shown to be the following [263, 414]:

P (v(c)y = 1|v(f)) =
exp(b

(c)
y)
∏m

j=1[1 + exp(b
(h)
j + uyj +

∑

i wijv
(f)
i)]

∑k
l=1 exp(b

(c)
l)
∏m

j=1[1 + exp(b
(h)
j + ulj +

∑

i wijv
(f)
i)]

(6.28)

With this differentiable closed form, it is a simple matter to differentiate the negative loga-
rithm of the above expression for stochastic gradient descent. If L is the negative logarithm
of the above expression and θ is any particular parameter (e.g., weight or bias) of the
Boltzmann machine, one can show the following:

∂L
∂θ

=

m∑

j=1

Sigmoid(oyj)
∂oyj
∂θ

−
k∑

l=1

m∑

j=1

Sigmoid(olj)
∂olj
∂θ

(6.29)

Here, we have oyj = b
(h)
j + uyj +

∑

i wijv
(f)
i . The above expression can be easily computed

for each training point and for each parameter in order to perform the stochastic gradient
descent process. It is a relatively simple matter to make probabilistic predictions for unseen
test instances using Equation 6.28. More details and extensions are discussed in [263].

6.5.4 Topic Models with RBMs

Topic modeling is a form of dimensionality reduction that is specific to text data. The
earliest topic models, which correspond to Probabilistic Latent Semantic Analysis (PLSA),
were proposed in [206]. In PLSA, the basis vectors are not orthogonal to one another, as
is the case with SVD. On the other hand, both the basis vectors and the transformed
representations are constrained to be nonnegative values. The nonnegativity in the value
of each transformed feature is semantically useful, because it represents the strength of a
topic in a particular document. In the context of the RBM, this strength corresponds to the
probability that a particular hidden unit takes on the value of 1, given that the words in a
particular document have been observed. Therefore, one can use the vector of conditional
probabilities of the hidden states (when visible states are fixed to document words) in order
to create a reduced representation of each document. It is assumed that the lexicon size is
d, whereas the number of hidden units is m ≪ d.

6.5. APPLICATIONS OF RESTRICTED BOLTZMANN MACHINES 261

BINARY HIDDEN

STATES

MULTINOMIAL

VISIBLE STATES

LEXICON

SIZE d IS

TYPICALLY

LARGER

THAN

DOCUMENT

SIZE

NUMBER OF SOFTMAX UNITS EQUALS

DOCUMENT SIZE FOR EACH RBM

h3 h4h2h1

VISIBLE UNITS SHARE SAME

SET OF PARAMETERS BUT

NOT HIDDEN UNITS

Figure 6.8: The RBM for each document is illustrated. The number of visible units is equal
to the number of words in each document

This approach shares some similarities with the technique used for collaborative filtering
in which a single RBM is created for each user (row of the matrix). In this case, a single
RBM is created for each document. A group of visible units is created for each word, and
therefore the number of groups of visible units is equal to the number of words in the
document. In the following, we will concretely define how the visible and hidden states of
the RBM are fixed in order to describe the concrete workings of the model:

1. For the tth document containing nt words, a total of nt softmax groups are retained.
Each softmax group contains d nodes corresponding to the d words in the lexicon.
Therefore, the RBM for each document is different, because the number of units
depends on the length of the document. However, all the softmax groups within a
document and across multiple documents share weights of their connections to the
hidden units. The ith position in the document corresponds to the ith group of visible

softmax units. The ith group of visible units is denoted by v
(1)
i . . . v

(d)
i . The bias

associated with v
(k)
i is b(k). Note that the bias of the ith visible node depends only on

k (word identity) and not on i (position of word in document). This is because the
model uses a bag-of-words approach in which the positions of the words are irrelevant.

2. There are m hidden units denoted by h1 . . . hm. The bias of the jth hidden unit is bj .

3. Each hidden unit is connected to each of the nt × d visible units. All softmax groups
within a single RBM as well as across different RBMs (corresponding to different
documents) share the same set of d weights. The kth hidden unit is connected to a

group of d softmax units with a vector of d weights denoted by W
(k)

= (w
(k)
1 . . . w

(k)
d).

In other words, the kth hidden unit is connected to each of the nt groups of d softmax

units with the same set of weights W
(k)

.

262 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

The architecture of the RBM is illustrated in Figure 6.8. Based on the architecture of the
RBM, one can express the probabilities associated with the states of the hidden units with
the use of the sigmoid function:

P (hj = 1|v(1), . . . v(d)) = 1

1 + exp(−bj −
∑nt

i=1

∑d
k=1 v

(k)
i w

(k)
j)

(6.30)

One can also express the visible states with the use of the multinomial model:

P (v
(k)
i = 1|h) =

exp(b(k) +
∑m

j=1 w
(k)
j hj)

∑d
l=1 exp(b

(l) +
∑m

j=1 w
(l)
j hj)

(6.31)

The normalization factor in the denominator ensures that the sum of the probabilities of
visible units over all the words always sums to 1. Furthermore, the right-hand side of the
above equation is independent of the index i of the visible unit. This is because this model
does not depend on the position of words in the document, and the modeling treats a
document as a bag of words.

With these relationships, one can apply MCMC sampling to generate samples of the
hidden and visible states for the contrastive divergence algorithm. Note that the RBMs are
different for different documents, although these RBMs share weights. As in the case of
the collaborative filtering application, each RBM is associated with only a single training
example corresponding to the relevant document. The weight update used for gradient
descent is the same as used for the traditional RBM. The only difference is that the weights
across different visible units are shared. This approach is similar to what is performed in
collaborative filtering. We leave the derivation of the weight updates as an exercise for the
reader (see Exercise 5).

After the training has been performed, the reduced representation of each document is
computed by applying Equation 6.30 to the words of a document. The real-valued value
of the probabilities of the hidden units provides the m-dimensional reduced representation
of the document. The approach described in this section is a simplification of a multilayer
approach described in the original work [469].

6.5.5 RBMs for Machine Learning with Multimodal Data

Boltzmann machines can also be used for machine learning with multimodal data. Multi-
modal data refers to a setting in which one is trying to extract information from data points
with multiple modalities. For example, an image with a text description can be considered
multimodal data. This is because this data object has both image and text modalities.

The main challenge in processing multimodal data is that it is often difficult to use
machine learning algorithms on such heterogeneous features. Multimodal data is often pro-
cessed by using a shared representation in which the two modes are mapped into a joint
space. A common approach for this goal is shared matrix factorization. Numerous meth-
ods for using shared matrix factorization with text and image data are discussed in [6].
Since RBMs provide alternative representations to matrix factorization methods in many
settings, it is natural to explore whether one can use this architecture to create a shared
latent representation of the data.

An example [468] of an architecture for multimodal modeling is shown in Figure 6.9(a).
In this example, it is assumed that the two modes correspond to text and image data. The
image and the text data are used to create hidden states that are specific to images and

6.6. USING RBMS BEYOND BINARY DATA TYPES 263

VISIBLE STATES (TEXT) VISIBLE STATES (IMAGE)

HIDDEN STATES

(SHARED)

WTS WIS

(a) A simple RBM for multimodal data

HIDDEN STATES (TEXT)

VISIBLE STATES (TEXT)

HIDDEN STATES

(IMAGE)

VISIBLE STATES (IMAGE)

WT WI

HIDDEN STATES

(SHARED)

WTS WIS

(b) A multimodal RBM with an added hidden layer

Figure 6.9: RBM architecture for multimodal data processing

text, respectively. These hidden states then feed into a single shared representation. The
similarity of this architecture with the classification architecture of Figure 6.7 is striking.
This is because both architectures try to map two types of features into a set of shared
hidden states. These hidden states can then be used for different types of inference, such
as using the shared representation for classification. As shown in Section 6.7, one can even
enhance such unsupervised representations with backpropagation to fine-tune the approach.
Missing data modalities can also be generated using this model.

One can optionally improve the expressive power of this model by using depth. An addi-
tional hidden layer has been added between the visible states and the shared representation
in Figure 6.9(b). Note that one can add multiple hidden layers in order to create a deep
network. However, we have not yet described how one can actually train a multilayer RBM.
This issue is discussed in Section 6.7.

An additional challenge with the use of multimodal data is that the features are often
not binary. There are several solutions to this issue. In the case of text (or data modalities
with small cardinalities of discrete attributes), one can use a similar approach as used in
the RBM for topic modeling where the count c of a discrete attribute is used to create c
instances of the one-hot encoded attribute. The issue becomes more challenging when the
data contains arbitrary real values. One solution is to discretize the data, although such an
approach can lose useful information about the data. Another solution is to make changes
to the energy function of the Boltzmann machine. A discussion of some of these issues is
provided in the next section.

6.6 Using RBMs Beyond Binary Data Types

The entire discussion so far in this chapter has focussed on the use of RBMs for binary
data types. Indeed the vast majority of RBMs are designed for binary data types. For
some types of data, such as categorical data or ordinal data (e.g., ratings), one can use
the softmax approach described in Section 6.5.2. For example, the use of softmax units for
word-count data is discussed in Section 6.5.4. One can make the softmax approach work

264 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

with an ordered attribute, when the number of discrete values of that attribute is small.
However, these methods are not quite as effective for real-valued data. One possibility is
to use discretization in order to convert real-valued data into discrete data, which can be
handled with softmax units. Using such an approach does have the disadvantage of losing
a certain amount of representational accuracy.

The approach described in Section 6.5.2 does provide some hints about how different
data types can be addressed. For example, categorical or ordinal data is handled by changing
the probability distribution of visible units to be more appropriate to the problem at hand.
In general, one might need to change the distribution of not only the visible units, but also
the hidden units. This is because the nature of the hidden units is dependent on the visible
units.

For real-valued data, a natural solution is to use Gaussian visible units. Furthermore,
the hidden units are real-valued as well, and are assumed to contain a ReLU activation
function. The energy for a particular combination (v, h) of visible and hidden units is given
by the following:

E(v, h) =
∑

i

(vi − bi)
2

2σ2
i

︸ ︷︷ ︸

Containment function

−
∑

j

bjhj −
∑

i,j

vi
σi

hjwij (6.32)

Note that the energy contribution of the bias of visible units is given by a parabolic contain-
ment function. The effect of using this containment function is to keep the value of the ith
visible unit close to bi. As is the case for other types of Boltzmann machines, the derivatives
of the energy function with respect to the different variables also provide the derivatives of
the log-likelihoods. This is because the probabilities are always defined by exponentiating
the energy function.

There are several challenges associated with the use of this approach. An important issue
is that the approach is rather unstable with respect to the choice of the variance parameter
σ. In particular, updates to the visible layer tend to be too small, whereas updates to the
hidden layer tend to be too large. One natural solution to this dilemma is to use more hidden
units than visible units. It is also common to normalize the input data to unit variance so
that the standard deviation σ of the visible units can be set to 1. The ReLU units are
modified to create a noisy version. Specifically, Gaussian noise with zero mean and variance
log(1+exp(v)) is added to the value of the unit before thresholding it to nonnegative values.
The motivation behind using such an unusual activation function is that it can be shown
to be equivalent to a binomial unit [348, 495], which encodes more information than the
binary unit that is normally used. It is important to enable this ability when working with
real-valued data. The Gibbs sampling of the real-valued RBM is similar to a binary RBM,
as are the updates to the weights once the MCMC samples are generated. It is important
to keep the learning rates low to prevent instability.

6.7 Stacking Restricted Boltzmann Machines

Most of the power of conventional neural architectures arises from having multiple layers
of units. Deeper networks are known to be more powerful, and can model more complex
functions at the expense of fewer parameters. A natural question arises concerning whether
similar goals can be achieved by putting together multiple RBMs. It turns out that the
RBM is well suited to creating deep networks, and was used earlier than conventional neu-
ral networks for creating deep models with pretraining. In other words, the RBM is trained

6.7. STACKING RESTRICTED BOLTZMANN MACHINES 265

RBM 3

RBM 2

RBM 1

COPY

COPY

STACKED

REPRESENTATION

W1

W2

W3

THE PARAMETER MATRICES W1, W2, and W3

ARE LEARNED BY SUCCESSIVELY TRAINING

RBM1, RBM2, AND RBM3 INDIVIDUALLY

(PRE-TRAINING PHASE)

(a) The stacked RBMs are trained sequentially in pretraining

W1

W2

W3

W1
T

W2
T

W3
T

FIX TO INPUT

RECONSTRUCTION (TARGET=INPUT)

CODE

ENCODER

DECODER

FINE-TUNE

(BACKPROP)

W1+E6

W2+E5

W3+E4

W1
T +E1

W2
T+E2

W3
T+E3

FIX TO INPUT

RECONSTRUCTION (TARGET=INPUT)

CODE

ENCODER

DECODER

(b) Pretraining is followed by fine-tuning with backpropagation

Figure 6.10: Training a multi-layer RBM

with Gibbs sampling, and the resulting weights are grandfathered into a conventional neural
network with continuous sigmoid activations (instead of sigmoid-based discrete sampling).
Why should one go through the trouble to train an RBM in order to train a conventional
network at all? This is because of the fact that Boltzmann machines are trained in a funda-
mentally different way from the backpropagation approach in conventional neural networks.
The contrastive divergence approach tends to train all layers jointly, which does not cause
the same problems with the vanishing and exploding gradient problems, as is the case in
conventional neural networks.

At first glance, the goal of creating deep networks from RBMs seems rather difficult.
First, RBMs are not quite like feed-forward units that perform the computation in a par-
ticular direction. RBMs are symmetric models in which the visible units and hidden units
are connected in the form of an undirected graphical model. Therefore, one needs to define
a concrete way in which multiple RBMs interact with one another. In this context, a use-
ful observation is that even though RBMs are symmetric and discrete models, the learned

266 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

weights can be used to define a related neural network that performs directed computation
in the continuous space of activations. These weights are already quite close to the final
solution because of how they have been learned with discrete sampling. Therefore, these
weights can be fine-tuned with a relatively modest effort of traditional backpropagation.
In order to understand this point, consider the single-layer RBM illustrated in Figure 6.4,
which shows that even the single-layer RBM is equivalent to a directed graphical model of
infinite length. However, once the visible states have been fixed, it suffices to keep only three
layers of this computational graph, and perform the computations with the continuous val-
ues derived from sigmoid activations. This approach already provides a good approximate
solution. The resulting network is a traditional autoencoder, although its weights have been
(approximately) learned in a rather unconventional way. This section will show how this
type of approach can also be applied to stacked RBMs.

What is a stacked set of RBMs? Consider a data set with d dimensions, for which the
goal is to create a reduced representation with m1 dimensions. One can achieve this goal
with an RBM containing d visible units and m1 hidden units. By training this RBM, one
will obtain an m1-dimensional representation of the data set. Now consider a second RBM
that has m1 visible units and m2 hidden units. We can simply copy the m1 outputs of the
first RBM as the inputs to the second RBM, which has m1 ×m2 weights. As a result, one
can train this new RBM to create an m2-dimensional representation by using the outputs
from the first RBM as its inputs. Note that we can repeat this process for k times, so that
the last RBM is of size mk−1 ×mk. Therefore, we sequentially train each of these RBMs by
copying the output of one RBM into the input of another.

An example of a stacked RBM is shown on the left-hand side of Figure 6.10(a). This type
of RBM is often shown with the concise diagram on the right-hand side of Figure 6.10(a).
Note that the copying between two RBMs is a simple one-to-one copying between corre-
sponding nodes, because the output layer of the rth RBM has exactly the same number of
nodes as the input layer of the (r + 1)th RBM. The resulting representations are unsuper-
vised because they do not depend on a specific target. Another point is that the Boltzmann
machine is an undirected model. However, by stacking the Boltzmann machine, we no longer
have an undirected model because the upper layers receive feedback from the lower layers,
but not vice versa. In fact, one can treat each Boltzmann machine as a single computa-
tional unit with many inputs and outputs, and the copying from one machine to another
as the data transmission between two computational units. From this particular view of
the stack of Boltzmann machines as a computational graph, it is even possible to perform
backpropagation if one reverts to using the sigmoid units to create real-valued activations
rather than to create the parameters needed for drawing binary samples. Although the use
of real-valued activations is only an approximation, it already provides an excellent approx-
imation because of the way in which the Boltzmann machine has been trained. This initial
set of weights can be fine-tuned with backpropagation. After all, backpropagation can be
performed on any computational graph, irrespective of the nature of the function computed
inside the graph as long as a continuous function is computed. The fine tuning of backprop-
agation approach is particularly essential in the case of supervised learning, because the
weights learned from a Boltzmann machine are always unsupervised.

6.7.1 Unsupervised Learning

Even in the case of unsupervised learning, the stacked RBM will generally provide reductions
of better quality than a single RBM. However, the training of this RBM has to be performed
carefully because results of high quality are not obtained by simply training all the layers

6.7. STACKING RESTRICTED BOLTZMANN MACHINES 267

together. Better results are obtained by using a pretraining approach. Each of the three
RBMs in Figure 6.10(a) are trained sequentially. First, RBM1 is trained using the provided
training data as the values of the visible units. Then, the outputs of the first RBM are
used to train RBM2. This approach is repeated to train RBM3. Note that one can greedily
train as many layers as desired using this approach. Assume that the weight matrices for
the three learned RBMs are W1, W2, and W3, respectively. Once these weight matrices
have been learned, one can put together an encoder-decoder pair with these three weight
matrices as shown in Figure 6.10(b). The three decoders have weight matrices WT

1 , WT
2 ,

and WT
3 , because they perform the inverse operations of encoders. As a result, one now

has a directed encoder-decoder network that can be trained with backpropagation like
any conventional neural network. The states in this network are computed using directed
probabilistic operations, rather than sampled with the use of Monte-Carlo methods. One
can perform backpropagation through the layers in order to fine-tune the learning. Note
that the weight matrices on the right-hand side of Figure 6.10(b) have been adjusted as a
result of this fine tuning. Furthermore, the weight matrices of the encoder and the decoder
are no longer related in a symmetric way as a result of the fine tuning. Such stacked RBMs
provide reductions of higher quality compared to those with shallower RBMs [414], which
is analogous to the behavior of conventional neural networks.

6.7.2 Supervised Learning

How can one learn the weights in such a way that the Boltzmann machine is encouraged to
produce a particular type of output such a class labels? Imagine that one wants to perform
a k-way classification with a stack of RBMs. The use of a single-layer RBM for classification
has already been discussed in Section 6.5.3, and the corresponding architecture is illustrated
in Figure 6.7. This architecture can be modified by replacing the single hidden layer with a
stack of hidden layers. The final layer of hidden features are then connected to the visible
softmax layer that outputs the k probabilities corresponding to the different classes. As
in the case of dimensionality reduction, pretraining is helpful Therefore, the first phase is
completely unsupervised in which the class labels are not used. In other words, we train the
weights of each hidden layer separately. This is achieved by training the weights of the lower
layers first and then the higher layers, as in any stacked RBM. After the initial weights have
been set in an unsupervised way, one can perform the initial training of weights between
the final hidden layer and visible layer of softmax units. One can then create a directed
computational graph with these initial weights, as in the case of the unsupervised setting.
Backpropagation is performed on this computational graph in order to perform fine tuning
of the learned weights.

6.7.3 Deep Boltzmann Machines and Deep Belief Networks

One can stack the different layers of the RBM in various ways to achieve different types
of goals. In some forms of stacking, the interactions between different Boltzmann machines
are bi-directional. This variation is referred to as a deep Boltzmann machine. In other forms
of stacking, some of the layers are uni-directional, whereas others are bi-directional. An
example is a deep belief network in which only the upper RBM is bi-directional, whereas
the lower layers are uni-directional. Some of these methods can be shown to be equivalent
to various types of probabilistic graphical models like sigmoid belief nets [350].

A deep Boltzmann machine is particularly noteworthy because of the bi-directional
connections between each pair of units. The fact that the copying occurs both ways means

268 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

that we can merge the nodes in adjacent nodes of two RBMs into a single layer of nodes.
Furthermore, observe that one could rearrange the RBM into a bipartite graph by putting
all the odd layers in one set and the even layers in another set. In other words, the deep
RBM is equivalent to a single RBM. The difference from a single RBM is that the visible
units form only a small subset of the units in one layer, and all pairs of nodes are not
connected. Because of the fact that all pairs of nodes are not connected, the nodes in the
upper layers tend to receive smaller weights than the nodes in the lower layers. As a result,
pretraining again becomes necessary in which the lower layers are trained first, and then
followed up with the higher layers in a greedy way. Subsequently, all layers are trained
together in order to fine-tune the method. Refer to the bibliographic notes for details of
these advanced models.

6.8 Summary

The earliest variant of the Boltzmann machine was the Hopfield network. The Hopfield net-
work is an energy-based model, which stores the training data instances in its local minima.
The Hopfield network can be trained with the Hebbian learning rule. A stochastic variant
of the Hopfield network is the Boltzmann machine, which uses a probabilistic model to
achieve greater generalization. Furthermore, the hidden states of the Boltzmann machine
hold a reduced representation of the data. The Boltzmann machine can be trained with
a stochastic variant of the Hebbian learning rule. The main challenge in the case of the
Boltzmann machine is that it requires Gibbs sampling, which can be slow in practice. The
restricted Boltzmann machine allows connections only between hidden nodes and visible
nodes, which eases the training process. More efficient training algorithms are available for
the restricted Boltzmann machine. The restricted Boltzmann machine can be used as a di-
mensionality reduction method; it can also be used in recommender systems with incomplete
data. The restricted Boltzmann machine has also been generalized to count data, ordinal
data, and real-valued data. However, the vast majority of RBMs are still constructed under
the assumption of binary units. In recent years, several deep variants of the restricted Boltz-
mann machine have been proposed, which can be used for conventional machine learning
applications like classification.

6.9 Bibliographic Notes

The earliest variant of the Boltzmann family of models was the Hopfield network [207]. The
Storkey learning rule is proposed in [471]. The earliest algorithms for learning Boltzmann
machines with the use of Monte Carlo sampling were proposed in [1, 197]. Discussions
of Markov Chain Monte Carlo methods are provided in [138, 351], and many of these
methods are useful for Boltzmann machines as well. RBMs were originally invented by
Smolensky, and referred to as the harmonium. A tutorial on energy-based models is provided
in [280]. Boltzmann machines are hard to train because of the interdependent stochastic
nature of the units. The intractability of the partition function also makes the learning
of the Boltzmann machine hard. However, one can estimate the partition function with
annealed importance sampling [352]. A variant of the Boltzmann machine is the mean-field
Boltzmann machine [373], which uses deterministic real units rather than stochastic units.
However, the approach is a heuristic and hard to justify. Nevertheless, the use of real-valued
approximations is popular at inference time. In other words, a traditional neural network

6.9. BIBLIOGRAPHIC NOTES 269

with real-valued activations and derived weights from the trained Boltzmann machine is
often used for prediction. Other variations of the RBM, such as the neural autoregressive
distribution estimator [265], can be viewed as autoencoders.

The efficient mini-batch algorithm for Boltzmann machines is described in [491]. The
contrastive divergence algorithm, which is useful for RBMs, is described in [61, 191]. A
variation referred to as persistent contrastive divergence is proposed in [491]. The idea of
gradually increasing the value of k in CDk over the progress of training was proposed
in [61]. The work in [61] showed that even a single iteration of the Gibbs sampling approach
(which greatly reduces burn-in time) produces only a small bias in the final result, which
can be reduced by gradually increasing the value of k in CDk over the course of training.
This insight was key to the efficient implementation of the RBM. An analysis of the bias
in the contrastive divergence algorithm may be found in [29]. The work in [479] analyzes
the convergence properties of the RBM. It is also shows that the contrastive divergence
algorithm is a heuristic, which does not really optimize any objective function. A discussion
and practical suggestions for training Boltzmann machines may be found in [119, 193]. The
universal approximation property of RBMs is discussed in [341].

RBMs have been used for a variety of applications like dimensionality reduction, col-
laborative filtering, topic modeling and classification. The use of the RBM for collaborative
filtering is discussed in [414]. This approach is instructive because it also shows how one
can use an RBM for categorical data containing a small number of values. The application
of discriminative restricted Boltzmann machines to classification is discussed in [263, 264].
The topic modeling of documents with Boltzmann machines with softmax units (as dis-
cussed in the chapter) is based on [469]. Advanced RBMs for topic modeling with a Poisson
distribution are discussed in [134, 538]. The main problem with these methods is that they
are unable to work well with documents of varying lengths. The use of replicated softmax is
discussed in [199]. This approach is closely connected to ideas from semantic hashing [415].

Most of the RBMs are proposed for binary data. However, in recent years, RBMs have
also been generalized to other data types. The modeling of count data with softmax units
is discussed in the context of topic modeling in [469]. The challenges associated with this
type of modeling are discussed in [86]. The use of the RBM for the exponential distribution
family is discussed in [522], and discussion for real-valued data is provided in [348]. The
introduction of binomial units to encode more information than binary units was proposed
in [495]. This approach was shown to be a noisy version of the ReLU [348]. The replacement
of binary units with linear units containing Gaussian noise was first proposed in [124]. The
modeling of documents with deep Boltzmann machines is discussed in [469]. Boltzmann
machines have also been used for multimodal learning with images and text [357, 468].

Training of deep variations of Boltzmann machines provided the first deep learning algo-
rithms that worked well [196]. These algorithms were the first pretraining methods, which
were later generalized to other types of neural networks. A detailed discussion of pretraining
may be found in Section 4.7 of Chapter 4. Deep Boltzmann machines are discussed in [417],
and efficient algorithms are discussed in [200, 418].

Several architectures that are related to the Boltzmann machine provide different types
of modeling capabilities. The Helmholtz machine and a wake-sleep algorithm are proposed
in [195]. RBMs and their multilayer variants can be shown to be equivalent to different types
of probabilistic graphical models such as sigmoid belief nets [350]. A detailed discussion of
probabilistic graphical models may be found in [251]. In higher-order Boltzmann machines,
the energy function is defined by groups of k nodes for k > 2. For example, an order-3
Boltzmann machine will contain terms of the form wijksisjsk. Such higher-order machines

270 CHAPTER 6. RESTRICTED BOLTZMANN MACHINES

are discussed in [437]. Although these methods are potentially more powerful that traditional
Boltzmann machines, they have not found much popularity because of the large amount of
data they require to train.

6.10 Exercises

1. This chapter discusses how Boltzmann machines can be used for collaborative filtering.
Even though discrete sampling of the contrastive divergence algorithm is used for
learning the model, the final phase of inference is done using real-valued sigmoid and
softmax activations. Discuss how you can use this fact to your advantage in order to
fine-tune the learned model with backpropagation.

2. Implement the contrastive divergence algorithm of a restricted Boltzmann machine.
Also implement the inference algorithm for deriving the probability distribution of
the hidden units for a given test example. Use Python or any other programming
language of your choice.

3. Consider a Boltzmann machine without a bipartite restriction (of the RBM), but
with the restriction that all units are visible. Discuss how this restriction simplifies
the training process of the Boltzmann machine.

4. Propose an approach for using RBMs for outlier detection.

5. Derive the weight updates for the RBM-based topic modeling approach discussed in
the chapter. Use the same notations.

6. Show how you can extend the RBM for collaborative filtering (discussed in Sec-
tion 6.5.2 of the chapter) with additional layers to make it more powerful.

7. A discriminative Boltzmann machine is introduced for classification towards the end
of Section 6.5.3. However, this approach is designed for binary classification. Show
how you can extend the approach to multi-way classification.

8. Show how you can modify the topic modeling RBM discussed in the chapter in order
to create a hidden representation of each node drawn from a large, sparse graph (like
a social network).

9. Discuss how you can enhance the model of Exercise 8 to include data about an un-
ordered list of keywords associated with each node. (For example, social network nodes
are associated with wall-post and messaging content.)

10. Discuss how you can enhance the topic modeling RBM discussed in the chapter with
multiple layers.

Chapter 7

Recurrent Neural Networks

“Democracy is the recurrent suspicion that more than half the people are right
more than half the time.”—The New Yorker, July 3, 1944.

7.1 Introduction

All the neural architectures discussed in earlier chapters are inherently designed for multi-
dimensional data in which the attributes are largely independent of one another. However,
certain data types such as time-series, text, and biological data contain sequential depen-
dencies among the attributes. Examples of such dependencies are as follows:

1. In a time-series data set, the values on successive time-stamps are closely related to
one another. If one uses the values of these time-stamps as independent features, then
key information about the relationships among the values of these time-stamps is
lost. For example, the value of a time-series at time t is closely related to its values in
the previous window. However, this information is lost when the values at individual
time-stamps are treated independently of one another.

2. Although text is often processed as a bag of words, one can obtain better semantic
insights when the ordering of the words is used. In such cases, it is important to
construct models that take the sequencing information into account. Text data is the
most common use case of recurrent neural networks.

3. Biological data often contains sequences, in which the symbols might correspond to
amino acids or one of the nucleobases that form the building blocks of DNA.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 7

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_7&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_7

272 CHAPTER 7. RECURRENT NEURAL NETWORKS

The individual values in a sequence can be either real-valued or symbolic. Real-valued
sequences are also referred to as time-series. Recurrent neural networks can be used for
either type of data. In practical applications, the use of symbolic values is more common.
Therefore, this chapter will primarily focus on symbolic data in general, and on text data
in particular. Throughout this chapter, the default assumption will be that the input to the
recurrent network will be a text segment in which the corresponding symbols of the sequence
are the word identifiers of the lexicon. However, we will also examine other settings, such
as cases in which the individual elements are characters or in which they are real values.

ONE-HOT ENCODED INPUTS

HIDDEN LAYER

OUTPUT LAYER

y

x4

x3

x2

x1

x5

ANALYTICS

IS

HARDLY

FUN

ANY

ONE-HOT ENCODED INPUTS

HIDDEN LAYER

OUTPUT LAYER

y

x4

x3

x2

x1

x5

ANALYTICS

MUST

BE

????

FUN

MISSING

ecnetnesdrow-4)b(ecnetnesdrow-5)a(
“Analytics is hardly any fun. Analytics must be fun.”

Figure 7.1: An attempt to use a conventional neural network for sentiment analysis faces
the challenge of variable-length inputs. The network architecture also does not contain any
helpful information about sequential dependencies among successive words.

Many sequence-centric applications like text are often processed as bags of words. Such
an approach ignores the ordering of words in the document, and works well for documents of
reasonable size. However, in applications where the semantic interpretation of the sentence
is important, or in which the size of the text segment is relatively small (e.g., a single
sentence), such an approach is simply inadequate. In order to understand this point, consider
the following pair of sentences:

The cat chased the mouse.
The mouse chased the cat.

The two sentences are clearly very different (and the second one is unusual). However, the
bag-of-words representation would deem them identical. Hence, this type of representation
works well for simpler applications (such as classification), but a greater degree of linguis-
tic intelligence is required for more sophisticated applications in difficult settings such as
sentiment analysis, machine translation, or information extraction.

One possible solution is to avoid the bag-of-words approach and create one input for
each position in the sequence. Consider a situation in which one tried to use a conventional
neural network in order to perform sentiment analysis on sentences with one input for each
position in the sentence. The sentiment can be a binary label depending on whether it is
positive or negative. The first problem that one would face is that the length of different
sentences is different. Therefore, if we used a neural network with 5 sets of one-hot encoded
word inputs (cf. Figure 7.1(a)), it would be impossible to enter a sentence with more than
five words. Furthermore, any sentence with less than five words would have missing inputs
(cf. Figure 7.1(b)). In some cases, such as Web log sequences, the length of the input
sequence might run into the hundreds of thousands. More importantly, small changes in word
ordering can lead to semantically different connotations, and it is important to somehow
encode information about the word ordering more directly within the architecture of the

7.1. INTRODUCTION 273

network. The goal of such an approach would be to reduce the parameter requirements
with increasing sequence length; recurrent neural networks provide an excellent example
of (parameter-wise) frugal architectural design with the help of domain-specific insights.
Therefore, the two main desiderata for the processing of sequences include (i) the ability
to receive and process inputs in the same order as they are present in the sequence, and
(ii) the treatment of inputs at each time-stamp in a similar manner in relation to previous
history of inputs. A key challenge is that we somehow need to construct a neural network
with a fixed number of parameters, but with the ability to process a variable number of
inputs.

These desiderata are naturally satisfied with the use of recurrent neural networks
(RNNs). In a recurrent neural network, there is a one-to-one correspondence between the
layers in the network and the specific positions in the sequence. The position in the sequence
is also referred to as its time-stamp. Therefore, instead of a variable number of inputs in a
single input layer, the network contains a variable number of layers, and each layer has a
single input corresponding to that time-stamp. Therefore, the inputs are allowed to directly
interact with down-stream hidden layers depending on their positions in the sequence. Each
layer uses the same set of parameters to ensure similar modeling at each time stamp, and
therefore the number of parameters is fixed as well. In other words, the same layer-wise
architecture is repeated in time, and therefore the network is referred to as recurrent. Re-
current neural networks are also feed-forward networks with a specific structure based on the
notion of time layering, so that they can take a sequence of inputs and produce a sequence
of outputs. Each temporal layer can take in an input data point (either single attribute or
multiple attributes), and optionally produce a multidimensional output. Such models are
particularly useful for sequence-to-sequence learning applications like machine translation
or for predicting the next element in a sequence. Some examples of applications include the
following:

1. The input might be a sequence of words, and the output might be the same sequence
shifted by 1, so that we are predicting the next word at any given point. This is a
classical language model in which we are trying the predict the next word based on
the sequential history of words. Language models have a wide variety of applications
in text mining and information retrieval [6].

2. In a real-valued time-series, the problem of learning the next element is equivalent
to autoregressive analysis. However, a recurrent neural network can learn far more
complex models than those obtained with traditional time-series modeling.

3. The input might be a sentence in one language, and the output might be a sentence in
another language. In this case, one can hook up two recurrent neural networks to learn
the translation models between the two languages. One can even hook up a recurrent
network with a different type of network (e.g., convolutional neural network) to learn
captions of images.

4. The input might be a sequence (e.g., sentence), and the output might be a vector
of class probabilities, which is triggered by the end of the sentence. This approach is
useful for sentence-centric classification applications like sentiment analysis.

From these four examples, it can be observed that a wide variety of basic architectures have
been employed or studied within the broader framework of recurrent neural networks.

There are significant challenges in learning the parameters of a recurrent neural network.
One of the key problems in this context is that of the vanishing and the exploding gradient

274 CHAPTER 7. RECURRENT NEURAL NETWORKS

problem. This problem is particularly prevalent in the context of deep networks like recurrent
neural networks. As a result, a number of variants of the recurrent neural network, such
as long short-term memory (LSTM) and gated recurrent unit (GRU), have been proposed.
Recurrent neural networks and their variants have been used in the context of a variety of
applications like sequence-to-sequence learning, image captioning, machine translation, and
sentiment analysis. This chapter will also study the use of recurrent neural networks in the
context of these different applications.

7.1.1 Expressiveness of Recurrent Networks

Recurrent neural networks are known to be Turing complete [444]. Turing completeness
means that a recurrent neural network can simulate any algorithm, given enough data and
computational resources [444]. This property is, however, not very useful in practice because
the amount of data and computational resources required to achieve this goal in arbitrary
settings can be unrealistic. Furthermore, there are practical issues in training a recurrent
neural network, such as the vanishing and exploding gradient problems. These problems
increase with the length of the sequence, and more stable variations such as long short-
term memory can address this issue only in a limited way. The neural Turing machine is
discussed in Chapter 10, which uses external memory to improve the stability of neural
network learning. A neural Turing machine can be shown to be equivalent to a recurrent
neural network, and it often uses a more traditional recurrent network, referred to as the
controller, as an important action-deciding component. Refer to Section 10.3 of Chapter 10
for a detailed discussion.

Chapter Organization

This chapter is organized as follows. The next section will introduce the basic architecture of
the recurrent neural network along with the associated training algorithm. The challenges of
training recurrent networks are discussed in Section 7.3. Because of these challenges, several
variations of the recurrent neural network architecture have been proposed. This chapter will
study several such variations. Echo-state networks are introduced in Section 7.4. Long short-
term memory networks are discussed in Section 7.5. The gated recurrent unit is discussed
in Section 7.6. Applications of recurrent neural networks are discussed in Section 7.7. A
summary is given in Section 7.8.

7.2 The Architecture of Recurrent Neural Networks

In the following, the basic architecture of a recurrent network will be described. Although
the recurrent neural network can be used in almost any sequential domain, its use in the
text domain is both widespread and natural. We will assume the use of the text domain
throughout this section in order to enable intuitively simple explanations of various concepts.
Therefore, the focus of this chapter will be mostly on discrete RNNs, since that is the most
popular use case. Note that exactly the same neural network can be used both for building
a word-level RNN and a character-level RNN. The only difference between the two is the set
of base symbols used to define the sequence. For consistency, we will stick to the word-level
RNN while introducing the notations and definitions. However, variations of this setting are
also discussed in this chapter.

The simplest recurrent neural network is shown in Figure 7.2(a). A key point here is the
presence of the self-loop in Figure 7.2(a), which will cause the hidden state of the neural

7.2. THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 275

network to change after the input of each word in the sequence. In practice, one only works
with sequences of finite length, and it makes sense to unfold the loop into a “time-layered”
network that looks more like a feed-forward network. This network is shown in Figure 7.2(b).
Note that in this case, we have a different node for the hidden state at each time-stamp
and the self-loop has been unfurled into a feed-forward network. This representation is
mathematically equivalent to Figure 7.2(a), but is much easier to comprehend because of
its similarity to a traditional network. The weight matrices in different temporal layers are
shared to ensure that the same function is used at each time-stamp. The annotations Wxh,
Whh, and Why of the weight matrices in Figure 7.2(b) make the sharing evident.

xt

ht

yt

Wxh

Whh

Why

ONE-HOT

ENCODED

WORD

PREDICTED

WORD

LIKELIHOODS

HIDDEN

REPRESENTATION

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

Why
Whh Whh

the cat chased the

cat chased the mouseTARGET

WORDS

INPUT

WORDS

(a) RNN (b) Time-layered representation of (a)

Figure 7.2: A recurrent neural network and its time-layered representation

It is noteworthy that Figure 7.2 shows a case in which each time-stamp has an input,
output, and hidden unit. In practice, it is possible for either the input or the output units
to be missing at any particular time-stamp. Examples of cases with missing inputs and
outputs are shown in Figure 7.3. The choice of missing inputs and outputs would depend
on the specific application at hand. For example, in a time-series forecasting application,
we might need outputs at each time-stamp in order to predict the next value in the time-
series. On the other hand, in a sequence-classification application, we might only need a
single output label at the end of the sequence corresponding to its class. In general, it
is possible for any subset of inputs or outputs to be missing in a particular application.
The following discussion will assume that all inputs and outputs are present, although it is
easy to generalize it to the case where some of them are missing by simply removing the
corresponding terms or equations.

The particular architecture shown in Figure 7.2 is suited to language modeling. A lan-
guage model is a well-known concept in natural language processing that predicts the next
word, given the previous history of words. Given a sequence of words, their one-hot en-
coding is fed one at a time to the neural network in Figure 7.2(a). This temporal process
is equivalent to feeding the individual words to the inputs at the relevant time-stamps in
Figure 7.2(b). A time-stamp corresponds to the position in the sequence, which starts at 0
(or 1), and increases by 1 by moving forward in the sequence by one unit. In the setting
of language modeling, the output is a vector of probabilities predicted for the next word in
the sequence. For example, consider the sentence:

The cat chased the mouse.

When the word “The” is input, the output will be a vector of probabilities of the entire
lexicon that includes the word “cat,” and when the word “cat” is input, we will again get a

276 CHAPTER 7. RECURRENT NEURAL NETWORKS

NO MISSING

INPUTS OR

OUTPUTS

[EXAMPLE:

FORECASTING,

LANGUAGE

MODELING]

MISSING INPUTS

[EXAMPLE: IMAGE CAPTIONING]

MISSING OUTPUTS

[EXAMPLE: SENTIMENT

ANALYSIS]
MISSING OUTPUTS

MISSING INPUTS

[EXAMPLE:

TRANSLATION]

Figure 7.3: The different variations of recurrent networks with missing inputs and outputs

vector of probabilities predicting the next word. This is, of course, the classical definition of
a language model in which the probability of a word is estimated based on the immediate
history of previous words. In general, the input vector at time t (e.g., one-hot encoded vector
of the tth word) is xt, the hidden state at time t is ht, and the output vector at time t (e.g.,
predicted probabilities of the (t+ 1)th word) is yt. Both xt and yt are d-dimensional for a
lexicon of size d. The hidden vector ht is p-dimensional, where p regulates the complexity
of the embedding. For the purpose of discussion, we will assume that all these vectors are
column vectors. In many applications like classification, the output is not produced at each
time unit but is only triggered at the last time-stamp in the end of the sentence. Although
output and input units may be present only at a subset of the time-stamps, we examine the
simple case in which they are present in all time-stamps. Then, the hidden state at time t
is given by a function of the input vector at time t and the hidden vector at time (t− 1):

ht = f(ht−1, xt) (7.1)

This function is defined with the use of weight matrices and activation functions (as used
by all neural networks for learning), and the same weights are used at each time-stamp.
Therefore, even though the hidden state evolves over time, the weights and the underlying
function f(·, ·) remain fixed over all time-stamps (i.e., sequential elements) after the neural
network has been trained. A separate function yt = g(ht) is used to learn the output
probabilities from the hidden states.

Next, we describe the functions f(·, ·) and g(·) more concretely. We define a p×d input-
hidden matrix Wxh, a p× p hidden-hidden matrix Whh, and a d× p hidden-output matrix
Why. Then, one can expand Equation 7.1 and also write the condition for the outputs as
follows:

ht = tanh(Wxhxt +Whhht−1)

yt = Whyht

7.2. THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 277

Here, the “tanh” notation is used in a relaxed way, in the sense that the function is applied
to the p-dimensional column vector in an element-wise fashion to create a p-dimensional
vector with each element in [−1, 1]. Throughout this section, this relaxed notation will be
used for several activation functions such as tanh and sigmoid. In the very first time-stamp,
ht−1 is assumed to be some default constant vector (such as 0), because there is no input
from the hidden layer at the beginning of a sentence. One can also learn this vector, if
desired. Although the hidden states change at each time-stamp, the weight matrices stay
fixed over the various time-stamps. Note that the output vector yt is a set of continuous
values with the same dimensionality as the lexicon. A softmax layer is applied on top of
yt so that the results can be interpreted as probabilities. The p-dimensional output ht of
the hidden layer at the end of a text segment of t words yields its embedding, and the p-
dimensional columns of Wxh yield the embeddings of individual words. The latter provides
an alternative to word2vec embeddings (cf. Chapter 2).

Because of the recursive nature of Equation 7.1, the recurrent network has the ability to
compute a function of variable-length inputs. In other words, one can expand the recurrence
of Equation 7.1 to define the function for ht in terms of t inputs. For example, starting
at h0, which is typically fixed to some constant vector (such as the zero vector), we have
h1 = f(h0, x1) and h2 = f(f(h0, x1), x2). Note that h1 is a function of only x1, whereas h2

is a function of both x1 and x2. In general, ht is a function of x1 . . . xt. Since the output yt
is a function of ht, these properties are inherited by yt as well. In general, we can write the
following:

yt = Ft(x1, x2, . . . xt) (7.2)

Note that the function Ft(·) varies with the value of t although its relationship to its
immediately previous state is always the same (based on Equation 7.1). Such an approach
is particularly useful for variable-length inputs. This setting occurs often in many domains
like text in which the sentences are of variable length. For example, in a language modeling
application, the function Ft(·) indicates the probability of the next word, taking into account
all the previous words in the sentence.

7.2.1 Language Modeling Example of RNN

In order to illustrate the workings of the RNN, we will use a toy example of a single sequence
defined on a vocabulary of four words. Consider the sentence:

The cat chased the mouse.

In this case, we have a lexicon of four words, which are {“the,”“cat,”“chased,”“mouse”}. In
Figure 7.4, we have shown the probabilistic prediction of the next word at each of time-
stamps from 1 to 4. Ideally, we would like the probability of the next word to be predicted
correctly from the probabilities of the previous words. Each one-hot encoded input vector
xt has length four, in which only one bit is 1 and the remaining bits are 0s. The main
flexibility here is in the dimensionality p of the hidden representation, which we set to 2 in
this case. As a result, the matrix Wxh will be a 2 × 4 matrix, so that it maps a one-hot
encoded input vector into a hidden vector ht vector of size 2. As a practical matter, each
column of Wxh corresponds to one of the four words, and one of these columns is copied by
the expression Wxhxt. Note that this expression is added to Whhht and then transformed
with the tanh function to produce the final expression. The final output yt is defined by
Whyht. Note that the matrices Whh and Why are of sizes 2× 2 and 4× 2, respectively.

In this case, the outputs are continuous values (not probabilities) in which larger values
indicate greater likelihood of presence. These continuous values are eventually converted

278 CHAPTER 7. RECURRENT NEURAL NETWORKS

Whh

Wxh

Why

Wxh

Why

Wxh

Why

Wxh

Why
Whh Whh

the cat chased the

cat chased the mouse

1

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

-1.2

1.3

-0.8

1.7

SCORE OF ‘CAT’
SCORE OF ‘CHASED’

SCORE OF ‘THE’

SCORE OF ‘MOUSE’

-0.4

-1.7

1.9

-1.6

1.7

0.4

-1.9

1.1

-1.8

0.8

-1.3

1.8

0.8

0.7

0.6

0.8

0.6

-0.9

-0.8

0.4

Figure 7.4: Example of language modeling with a recurrent neural network

to probabilities with the softmax function, and therefore one can treat them as substitutes
to log probabilities. The word “cat” is predicted in the first time-stamp with a value of
1.3, although this value seems to be (incorrectly) outstripped by “mouse” for which the
corresponding value is 1.7. However, the word “chased” seems to be predicted correctly
at the next time-stamp. As in all learning algorithms, one cannot hope to predict every
value exactly, and such errors are more likely to be made in the early iterations of the
backpropagation algorithm. However, as the network is repeatedly trained over multiple
iterations, it makes fewer errors over the training data.

7.2.1.1 Generating a Language Sample

Such an approach can also be used to generate an arbitrary sample of a language, once the
training has been completed. How does one use such a language model at testing time, since
each state requires an input word, and none is available during language generation? The
likelihoods of the tokens at the first time-stamp can be generated using the <START> token
as input. Since the <START> token is also available in the training data, the model will
typically select a word that often starts text segments. Subsequently, the idea is to sample
one of the tokens generated at each time-stamp (based on the predicted likelihood), and
then use it as an input to the next time-stamp. To improve the accuracy of the sequentially
predicted token, one might use beam search to expand on the most likely possibilities by
always keeping track of the b best sequence prefixes of any particular length. The value of
b is a user-driven parameter. By recursively applying this operation, one can generate an
arbitrary sequence of text that reflects the particular training data at hand. If the <END>
token is predicted, it indicates the end of that particular segment of text. Although such an
approach often results in syntactically correct text, it might be nonsensical in meaning. For
example, a character-level RNN1 authored by Karpathy, Johnson, and Fei Fei [233, 580] was
trained on William Shakespeare’s plays. A character-level RNN requires the neural network
to learn both syntax and spelling. After only five iterations of learning across the full data
set, the following was a sample of the output:

1A long-short term memory network (LSTM) was used, which is a variation on the vanilla RNN discussed
here.

7.2. THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 279

KING RICHARD II:
Do cantant,-’for neight here be with hand her,-
Eptar the home that Valy is thee.

NORONCES:
Most ma-wrow, let himself my hispeasures;
An exmorbackion, gault, do we to do you comforr,
Laughter’s leave: mire sucintracce shall have theref-Helt.

Note that there are a large number of misspellings in this case, and a lot of the words are
gibberish. However, when the training was continued to 50 iterations, the following was
generated as a part of the sample:

KING RICHARD II:
Though they good extremit if you damed;
Made it all their fripts and look of love;
Prince of forces to uncertained in conserve
To thou his power kindless. A brives my knees
In penitence and till away with redoom.

GLOUCESTER:
Between I must abide.

This generated piece of text is largely consistent with the syntax and spelling of the archaic
English in William Shakespeare’s plays, although there are still some obvious errors. Fur-
thermore, the approach also indents and formats the text in a manner similar to the plays
by placing new lines at reasonable locations. Continuing to train for more iterations makes
the output almost error-free, and some impressive samples are also available at [235].

Of course, the semantic meaning of the text is limited, and one might wonder about
the usefulness of generating such nonsensical pieces of text from the perspective of machine
learning applications. The key point here is that by providing an additional contextual
input, such as the neural representation of an image, the neural network can be made to
give intelligent outputs such as a grammatically correct description (i.e., caption) of the
image. In other words, language models are best used by generating conditional outputs.

The primary goal of the language-modeling RNN is not to create arbitrary sequences
of the language, but to provide an architectural base that can be modified in various ways
to incorporate the effect of the specific context. For example, applications like machine
translation and image captioning learn a language model that is conditioned on another
input such as a sentence in the source language or an image to be captioned. Therefore,
the precise design of the application-dependent RNN will use the same principles as the
language-modeling RNN, but will make small changes to this basic architecture in order
to incorporate the specific context. In all these cases, the key is in choosing the input and
output values of the recurrent units in a judicious way, so that one can backpropagate
the output errors and learn the weights of the neural network in an application-dependent
way.

280 CHAPTER 7. RECURRENT NEURAL NETWORKS

7.2.2 Backpropagation Through Time

The negative logarithms of the softmax probability of the correct words at the various
time-stamps are aggregated to create the loss function. The softmax function is described
in Section 3.2.5.1 of Chapter 3, and we directly use those results here. If the output vector
yt can be written as [ŷ1t . . . ŷ

d
t], it is first converted into a vector of d probabilities using the

softmax function:

[p̂1t . . . p̂
d
t] = Softmax([ŷ1t . . . ŷ

d
t])

The softmax function above can be found in Equation 3.20 of Chapter 3. If jt is the index
of the ground-truth word at time t in the training data, then the loss function L for all T
time-stamps is computed as follows:

L = −
T∑

t=1

log(p̂jtt) (7.3)

This loss function is a direct consequence of Equation 3.21 of Chapter 3. The derivative of the
loss function with respect to the raw outputs may be computed as follows (cf. Equation 3.22
of Chapter 3):

∂L

∂ŷkt
= p̂kt − I(k, jt) (7.4)

Here, I(k, jt) is an indicator function that is 1 when k and jt are the same, and 0, otherwise.
Starting with this partial derivative, one can use the straightforward backpropagation up-
date of Chapter 3 (on the unfurled temporal network) to compute the gradients with respect
to the weights in different layers. The main problem is that the weight sharing across dif-
ferent temporal layers will have an effect on the update process. An important assumption
in correctly using the chain rule for backpropagation (cf. Chapter 3) is that the weights
in different layers are distinct from one another, which allows a relatively straightforward
update process. However, as discussed in Section 3.2.9 of Chapter 3, it is not difficult to
modify the backpropagation algorithm to handle shared weights.

The main trick for handling shared weights is to first “pretend” that the parameters in
the different temporal layers are independent of one another. For this purpose, we introduce

the temporal variablesW
(t)
xh ,W

(t)
hh andW

(t)
hy for time-stamp t. Conventional backpropagation

is first performed by working under the pretense that these variables are distinct from one
another. Then, the contributions of the different temporal avatars of the weight parameters
to the gradient are added to create a unified update for each weight parameter. This special
type of backpropagation algorithm is referred to as backpropagation through time (BPTT).
We summarize the BPTT algorithm as follows:

(i) We run the input sequentially in the forward direction through time and compute the
errors (and the negative-log loss of softmax layer) at each time-stamp.

(ii) We compute the gradients of the edge weights in the backwards direction on the un-
furled network without any regard for the fact that weights in different time layers

are shared. In other words, it is assumed that the weights W
(t)
xh , W

(t)
hh and W

(t)
hy in

time-stamp t are distinct from other time-stamps. As a result, one can use conven-
tional backpropagation to compute ∂L

∂W
(t)
xh

, ∂L

∂W
(t)
hh

, and ∂L

∂W
(t)
hy

. Note that we have used

matrix calculus notations where the derivative with respect to a matrix is defined by
a corresponding matrix of element-wise derivatives.

7.2. THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 281

(iii) We add all the (shared) weights corresponding to different instantiations of an edge
in time. In other words, we have the following:

∂L

∂Wxh
=

T∑

t=1

∂L

∂W
(t)
xh

∂L

∂Whh
=

T∑

t=1

∂L

∂W
(t)
hh

∂L

∂Why
=

T∑

t=1

∂L

∂W
(t)
hy

The above derivations follow from a straightforward application of the multivariate chain
rule. As in all backpropagation methods with shared weights (cf. Section 3.2.9 of Chapter 3),
we are using the fact that the partial derivative of a temporal copy of each parameter

(such as an element of W
(t)
xh) with respect to the original copy of the parameter (such

as the corresponding element of Wxh) can be set to 1. Here, it is noteworthy that the
computation of the partial derivatives with respect to the temporal copies of the weights
is not different from traditional backpropagation at all. Therefore, one only needs to wrap
the temporal aggregation around conventional backpropagation in order to compute the
update equations. The original algorithm for backpropagation through time can be credited
to Werbos’s seminal work in 1990 [526], long before the use of recurrent neural networks
became more popular.

Truncated Backpropagation Through Time

One of the computational problems in training recurrent networks is that the underlying
sequences may be very long, as a result of which the number of layers in the network may also
be very large. This can result in computational, convergence, and memory-usage problems.
This problem is solved by using truncated backpropagation through time. This technique
may be viewed as the analog of stochastic gradient descent for recurrent neural networks.
In the approach, the state values are computed correctly during forward propagation, but
the backpropagation updates are done only over segments of the sequence of modest length
(such as 100). In other words, only the portion of the loss over the relevant segment is used to
compute the gradients and update the weights. The segments are processed in the same order
as they occur in the input sequence. The forward propagation does not need to be performed
in a single shot, but it can also be done over the relevant segment of the sequence as long as
the values in the final time-layer of the segment are used for computing the state values in
the next segment of layers. The values in the final layer in the current segment are used to
compute the values in the first layer of the next segment. Therefore, forward propagation is
always able to accurately maintain state values, although the backpropagation uses only a
small portion of the loss. Here, we have described truncated BPTT using non-overlapping
segments for simplicity. In practice, one can update using overlapping segments of inputs.

Practical Issues

The entries of each weight matrix are initialized to small values in [−1/
√
r, 1/

√
r], where

r is the number of columns in that matrix. One can also initialize each of the d columns
of the input weight matrix Wxh to the word2vec embedding of the corresponding word

282 CHAPTER 7. RECURRENT NEURAL NETWORKS

(cf. Chapter 2). This approach is a form of pretraining. The specific advantage of using
this type of pretraining depends on the amount of training data. It can be helpful to use
this type of initialization when the amount of available training data is small. After all,
pretraining is a form of regularization (see Chapter 4).

Another detail is that the training data often contains a special <START> and an
<END> token at the beginning and end of each training segment. These types of tokens help
the model to recognize specific text units such as sentences, paragraphs, or the beginning
of a particular module of text. The distribution of the words at the beginning of a segment
of text is often very different than how it is distributed over the whole training data.
Therefore, after the occurrence of <START>, the model is more likely to pick words that
begin a particular segment of text.

Figure 7.5: Showing three time-layers of a bidirectional recurrent network

There are other approaches that are used for deciding whether to end a segment at a
particular point. A specific example is the use of a binary output that decides whether or
not the sequence should continue at a particular point. Note that the binary output is in
addition to other application-specific outputs. Typically, the sigmoid activation is used to
model the prediction of this output, and the cross-entropy loss is used on this output. Such
an approach is useful with real-valued sequences. This is because the use of <START> and
<END> tokens is inherently designed for symbolic sequences. However, one disadvantage
of this approach is that it changes the loss function from its application-specific formulation
to one that provides a balance between end-of-sequence prediction and application-specific
needs. Therefore, the weights of different components of the loss function would be yet
another hyper-parameter that one would have to work with.

There are also several practical challenges in training an RNN, which make the design
of various architectural enhancements of the RNN necessary. It is also noteworthy that
multiple hidden layers (with long short-term memory enhancements) are used in all practi-
cal applications, which will be discussed in Section 7.2.4. However, the application-centric
exposition will use the simpler single-layer model for clarity. The generalization of each of
these applications to enhanced architectures is straightforward.

7.2. THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 283

7.2.3 Bidirectional Recurrent Networks

One disadvantage of recurrent networks is that the state at a particular time unit only
has knowledge about the past inputs up to a certain point in a sentence, but it has no
knowledge about future states. In certain applications like language modeling, the results
are vastly improved with knowledge about both past and future states. A specific example is
handwriting recognition in which there is a clear advantage in using knowledge about both
the past and future symbols, because it provides a better idea of the underlying context.

In the bidirectional recurrent network, we have separate hidden states h
(f)

t and h
(b)

t for
the forward and backward directions. The forward hidden states interact only with each
other and the same is true for the backward hidden states. The main difference is that
the forward states interact in the forwards direction, while the backwards states interact in

the backwards direction. Both h
(f)

t and h
(b)

t , however, receive input from the same vector
xt (e.g., one-hot encoding of word) and they interact with the same output vector ŷt. An
example of three time-layers of the bidirectional RNN is shown in Figure 7.5.

There are several applications in which one tries to predict the properties of the current
tokens, such as the recognition of the characters in a handwriting sample, a the parts of
speech in a sentence, or the classification of each token of the natural language. In general,
any property of the current word can be predicted more effectively using this approach,
because it uses the context on both sides. For example, the ordering of words in several
languages is somewhat different depending on grammatical structure. Therefore, a bidirec-
tional recurrent network often models the hidden representations of any specific point in the
sentence in a more robust way with the use of backwards and forwards states, irrespective of
the specific nuances of language structure. In fact, it has increasingly become more common
to use bidirectional recurrent networks in various language-centric applications like speech
recognition.

In the case of the bidirectional network, we have separate forward and backward parame-
ter matrices. The forward matrices for the input-hidden, hidden-hidden, and hidden-output

interactions are denoted by W
(f)
xh , W

(f)
hh , and W

(f)
hy , respectively. The backward matrices

for the input-hidden, hidden-hidden, and hidden-output interactions are denoted by W
(b)
xh ,

W
(b)
hh , and W

(b)
hy , respectively.

The recurrence conditions can be written as follows:

h
(f)

t = tanh(W
(f)
xh xt +W

(f)
hh h

(f)

t−1)

h
(b)

t = tanh(W
(b)
xh xt +W

(b)
hh h

(b)

t+1)

yt = W
(f)
hy h

(f)

t +W
(b)
hy h

(b)

t

It is easy to see that the bidirectional equations are simple generalizations of the conditions
used in a single direction. It is assumed that there are a total of T time-stamps in the
neural network shown above, where T is the length of the sequence. One question is about
the forward input at the boundary conditions corresponding to t = 1 and the backward
input at t = T , which are not defined. In such cases, one can use a default constant value
of 0.5 in each case, although one can also make the determination of these values as a part
of the learning process.

An immediate observation about the hidden states in the forward and backwards direc-
tion is that they do not interact with one another at all. Therefore, one could first run the
sequence in the forward direction to compute the hidden states in the forward direction,
and then run the sequence in the backwards direction to compute the hidden states in the

284 CHAPTER 7. RECURRENT NEURAL NETWORKS

backwards direction. At this point, the output states are computed from the hidden states
in the two directions.

After the outputs have been computed, the backpropagation algorithm is applied to com-
pute the partial derivatives with respect to various parameters. First, the partial derivatives
are computed with respect to the output states because both forward and backwards states
point to the output nodes. Then, the backpropagation pass is computed only for the forward
hidden states starting from t = T down to t = 1. The backpropagation pass is finally com-
puted for the backwards hidden states from t = 1 to t = T . Finally, the partial derivatives
with respect to the shared parameters are aggregated. Therefore, the BPTT algorithm can
be modified easily to the case of bidirectional networks. One can summarize the steps as
follows:

1. Compute forward and backwards hidden states in independent and separate passes.

2. Compute output states from backwards and forward hidden states.

3. Compute partial derivatives of loss with respect to output states and each copy of the
output parameters.

4. Compute partial derivatives of loss with respect to forward states and backwards
states independently using backpropagation. Use these computations to evaluate par-
tial derivatives with respect to each copy of the forwards and backwards parameters.

5. Aggregate partial derivatives over shared parameters.

Bidirectional recurrent neural networks are appropriate for applications in which the pre-
dictions are not causal based on a historical window. A classical example of a causal setting
is a stream of symbols in which an event is predicted on the basis of the history of previous
symbols. Even though language-modeling applications are formally considered causal appli-
cations (i.e., based on immediate history of previous words), the reality is that a given word
can be predicted with much greater accuracy through the use of the contextual words on
each side of it. In general, bidirectional RNNs work well in applications where the predic-
tions are based on bidirectional context. Examples of such applications include handwriting
recognition and speech recognition, in which the properties of individual elements in the
sequence depend on those on either side of it. For example, if a handwriting is expressed
in terms of the strokes, the strokes on either side of a particular position are helpful in
recognizing the particular character being synthesized. Furthermore, certain characters are
more likely to be adjacent than others.

A bidirectional neural network achieves almost the same quality of results as using
an ensemble of two separate recurrent networks, one in which the input is presented in
original form and the other in which the input is reversed. The main difference is that the
parameters of the forwards and backwards states are trained jointly in this case. However,
this integration is quite weak because the two types of states do not interact directly with
one another.

7.2.4 Multilayer Recurrent Networks

In all the aforementioned applications, a single-layer RNN architecture is used for ease in
understanding. However, in practical applications, a multilayer architecture is used in order
to build models of greater complexity. Furthermore, this multilayer architecture can be used
in combination with advanced variations of the RNN, such as the LSTM architecture or the
gated recurrent unit. These advanced architectures are introduced in later sections.

7.2. THE ARCHITECTURE OF RECURRENT NEURAL NETWORKS 285

An example of a deep network containing three layers is shown in Figure 7.6. Note that
nodes in higher-level layers receive input from those in lower-level layers. The relationships
among the hidden states can be generalized directly from the single-layer network. First,
we rewrite the recurrence equation of the hidden layers (for single-layer networks) in a form
that can be adapted easily to multilayer networks:

ht = tanh(Wxhxt +Whhht−1)

= tanh W

[
xt

ht−1

]

y1 y2
y3 y4

x1 x2
x3 x4

the cat the

cat chased the mouse

INPUT

WORDS

TARGET

WORDS

chased

Figure 7.6: Multi-layer recurrent neural networks

Here, we have put together a larger matrix W = [Wxh,Whh] that includes the columns of
Wxh and Whh. Similarly, we have created a larger column vector that stacks up the state
vector in the first hidden layer at time t − 1 and the input vector at time t. In order to
distinguish between the hidden nodes for the upper-level layers, let us add an additional
superscript to the hidden state and denote the vector for the hidden states at time-stamp t

and layer k by h
(k)

t . Similarly, let the weight matrix for the kth hidden layer be denoted by
W (k). It is noteworthy that the weights are shared across different time-stamps (as in the
single-layer recurrent network), but they are not shared across different layers. Therefore,
the weights are superscripted by the layer index k in W (k). The first hidden layer is special
because it receives inputs both from the input layer at the current time-stamp and the
adjacent hidden state at the previous time-stamp. Therefore, the matrices W (k) will have a
size of p× (d+ p) only for the first layer (i.e., k = 1), where d is the size of the input vector
xt and p is the size of the hidden vector ht. Note that d will typically not be the same as p.
The recurrence condition for the first layer is already shown above by setting W (1) = W .
Therefore, let us focus on all the hidden layers k for k ≥ 2. It turns out that the recurrence
condition for the layers with k ≥ 2 is also in a very similar form as the equation shown
above:

h
(k)

t = tanh W (k)

[

h
(k−1)

t

h
(k)

t−1

]

286 CHAPTER 7. RECURRENT NEURAL NETWORKS

In this case, the size of the matrix W (k) is p × (p + p) = p × 2p. The transformation from
hidden to output layer remains the same as in single-layer networks. It is easy to see that this
approach is a straightforward multilayer generalization of the case of single-layer networks.
It is common to use two or three layers in practical applications. In order to use a larger
number of layers, it is important to have access to more training data in order to avoid
overfitting.

7.3 The Challenges of Training Recurrent Networks

Recurrent neural networks are very hard to train because of the fact that the time-layered
network is a very deep network, especially if the input sequence is long. In other words,
the depth of the temporal layering is input-dependent. As in all deep networks, the loss
function has highly varying sensitivities of the loss function (i.e., loss gradients) to different
temporal layers. Furthermore, even though the loss function has highly varying gradients
to the variables in different layers, the same parameter matrices are shared by different
temporal layers. This combination of varying sensitivity and shared parameters in different
layers can lead to some unusually unstable effects.

w1 ∑ ∑
w2 wm-1w3 ∑

h1 h2 hm-1

wm ∑

Figure 7.7: The vanishing and exploding gradient problems

The primary challenge associated with a recurrent neural network is that of the vanishing
and exploding gradient problems. This point is explained in detail in Section 3.4 of Chapter 3.
In this section, we will revisit this issue in the context of recurrent neural networks. It is
easiest to understand the challenges associated with recurrent networks by examining the
case of a recurrent network with a single unit in each layer.

Consider a set of T consecutive layers, in which the tanh activation function, Φ(·), is
applied between each pair of layers. The shared weight between a pair of hidden nodes is
denoted by w. Let h1 . . . hT be the hidden values in the various layers. Let Φ′(ht) be the
derivative of the activation function in hidden layer t. Let the copy of the shared weight
w in the tth layer be denoted by wt so that it is possible to examine the effect of the
backpropagation update. Let ∂L

∂ht
be the derivative of the loss function with respect to the

hidden activation ht. The neural architecture is illustrated in Figure 7.7. Then, one derives
the following update equations using backpropagation:

∂L

∂ht
= Φ′(ht+1) · wt+1 ·

∂L

∂ht+1
(7.5)

Since the shared weights in different temporal layers are the same, the gradient is multiplied
with the same quantity wt = w for each layer. Such a multiplication will have a consistent
bias towards vanishing when w < 1, and it will have a consistent bias towards exploding
when w > 1. However, the choice of the activation function will also play a role because
the derivative Φ′(ht+1) is included in the product. For example, the presence of the tanh

7.3. THE CHALLENGES OF TRAINING RECURRENT NETWORKS 287

activation function, for which the derivative Φ′(·) is almost always less than 1, tends to
increase the chances of the vanishing gradient problem.

Although the above discussion only studies the simple case of a hidden layer with one
unit, one can generalize the argument to a hidden layer with multiple units [220]. In such a
case, it can be shown that the update to the gradient boils down to a repeated multiplication
with the same matrix A. One can show the following result:

Lemma 7.3.1 Let A be a square matrix, the magnitude of whose largest eigenvalue is λ.
Then, the entries of At tend to 0 with increasing values of t, when we have λ < 1. On the
other hand, the entries of At diverge to large values, when we have λ > 1.

The proof of the above result is easy to show by diagonalizing A = P∆P−1. Then, it can
be shown that At = P∆tP−1, where ∆ is a diagonal matrix. The magnitude of the largest
diagonal entry of ∆t either vanishes with increasing t or it grows to an increasingly large
value (in absolute magnitude) depending on whether than eigenvalue is less than 1 or larger
than 1. In the former case, the matrix At tends to 0, and therefore the gradient vanishes. In
the latter case, the gradient explodes. Of course, this does not yet include the effect of the
activation function, and one can change the threshold on the largest eigenvalue to set up the
conditions for the vanishing or exploding gradients. For example, the largest possible value
of the sigmoid activation derivative is 0.25, and therefore the vanishing gradient problem
will definitely occur when the largest eigenvalue is less that 1/0.25 = 4. One can, of course,
combine the effect of the matrix multiplication and activation function into a single Jacobian
matrix (cf. Table 3.1 of Chapter 3), whose eigenvalues can be tested.

GENTLE GRADIENT BEFORE

CLIFF UNDERSHOOTS WITH

SMALL STEP-SIZE AND

OVERSHOOTS WITH LARGE

STEP-SIZE

PARAMETER 1

X

Y

Figure 7.8: Revisiting Figure 3.13 of Chapter 3: An example of a cliff in the loss surface

In the particular case of recurrent neural networks, the combination of the vanish-
ing/exploding gradient and the parameter tying across different layers causes the recurrent
neural network to behave in an unstable way with gradient-descent step size. In other words,
if we choose a step size that is too small, then the effect of some of the layers will cause
little progress. On the other hand, if we choose a step size that is too large, then the effect
of some of the layers will cause the step to overshoot the optimal point in an unstable way.
An important issue here is that the gradient only tells us the best direction of movement for
infinitesimally small steps; for finite steps, the behavior of the update could be substantially
different from what is predicted by the gradient. The optimal points in recurrent networks

288 CHAPTER 7. RECURRENT NEURAL NETWORKS

are often hidden near cliffs or other regions of unpredictable change in the topography of the
loss function, which causes the best directions of instantaneous movement to be extremely
poor predictors of the best directions of finite movement. Since any practical learning al-
gorithm is required to make finite steps of reasonable sizes to make good progress towards
the optimal solution, this makes training rather hard. An example of a cliff is illustrated in
Figure 7.8. The challenges associated with cliffs are discussed in Section 3.5.4 of Chapter 3.
A detailed discussion of the exploding gradient problem and its geometric interpretation
may be found in [369].

There are several solutions to the vanishing and exploding gradient problems, not all of
which are equally effective. For example, the simplest solution is to use strong regularization
on the parameters, which tends to reduce some of the problematic instability caused by the
vanishing and exploding gradient problems. However, very strong levels of regularization
can lead to models that do not achieve the full potential of a particular architecture of the
neural network. A second solution that is discussed in Section 3.5.5 of Chapter 3 is gradient
clipping. Gradient clipping is well suited to solving the exploding gradient problem. There
are two types of clipping that are commonly used. The first is value-based clipping, and the
second is norm-based clipping. In value-based clipping, the largest temporal components of
the gradient are clipped before adding them. This was the original form of clipping that was
proposed by Mikolov in his Ph.D. thesis [324]. The second type of clipping is norm-based
clipping. The idea is that when the entire gradient vector has a norm that increases beyond
a particular threshold, it is re-scaled back to the threshold. Both types of clipping perform
in a similar way, and an analysis is provided in [368].

One observation about suddenly changing curvatures (like cliffs) is that first-order gra-
dients are generally inadequate to fully model local error surfaces. Therefore, a natural
solution is to use higher-order gradients. The main challenge with higher-order gradients
is that they are computationally expensive. For example, the use of second-order methods
(cf. Section 3.5.6 of Chapter 3) requires the inversion of a Hessian matrix. For a network
with 106 parameters, this would require the inversion of a 106 × 106 matrix. As a practical
matter, this is impossible to do with the computational power available today. However,
some clever tricks for implementing second-order methods with Hessian-free methods have
been proposed recently [313, 314]. The basic idea is to never compute the Hessian matrix
exactly, but always work with rough approximations. A brief overview of many of these
methods is provided in Section 3.5.6 of Chapter 3. These methods have also met with some
success in training recurrent neural networks.

The type of instability faced by the optimization process is sensitive to the specific
point on the loss surface at which the current solution resides. Therefore, choosing good
initialization points is crucial. The work in [140] discusses several types of initialization that
can avoid instability in the gradient updates. Using momentum methods (cf. Chapter 3) can
also help in addressing some of the instability. A discussion of the power of initialization
and momentum in addressing some of these issues is provided in [478]. Often simplified
variants of recurrent neural networks, like echo-state networks, are used for creating a robust
initialization of recurrent neural networks.

Another useful trick that is often used to address the vanishing and exploding gradi-
ent problems is that of batch normalization, although the basic approach requires some
modifications for recurrent networks [81]. Batch normalization methods are discussed in
Section 3.6 of Chapter 3. However, a variant known as layer normalization is more effective
in recurrent networks. Layer normalization methods have been so successful that they have
become a standard option while using a recurrent neural network or its variants.

7.3. THE CHALLENGES OF TRAINING RECURRENT NETWORKS 289

Finally, a number of variants of recurrent neural networks are used to address the van-
ishing and exploding gradient problems. The first simplification is the use of echo-state
networks in which the hidden-to-hidden matrices are randomly chosen, but only the output
layers are trained. In the early years, echo-state networks were used as viable alternatives
to recurrent neural networks, when it was considered too hard to train recurrent neural
networks. However, these methods are too simplified to used in very complex settings.
Nevertheless, these methods can still be used for robust initialization in recurrent neural
networks [478]. A more effective approach for dealing with the vanishing and exploding
gradient problems is to arm the recurrent network with internal memory, which lends more
stability to the states of the network. The use of long short-term memory (LSTM) has
become an effective way of handing the vanishing and exploding gradient problems. This
approach introduces some additional states, which can be interpreted as a kind of long-
term memory. The long-term memory provides states that are more stable over time, and
also provide a greater level of stability to the gradient-descent process. This approach is
discussed in Section 7.5.

7.3.1 Layer Normalization

The batch normalization technique discussed in Section 3.6 of Chapter 3 is designed to
address the vanishing and exploding gradient problems in deep neural networks. In spite
of its usefulness in most types of neural networks, the approach faces some challenges in
recurrent neural networks. First, the batch statistics vary with the time-layer of the neural
network, and therefore different statistics need to be maintained for different time-stamps.
Furthermore, the number of layers in a recurrent network is input-dependent, depending
on the length of the input sequence. Therefore, if a test sequence is longer than any of
the training sequences encountered in the data, mini-batch statistics may not be available
for some of the time-stamps. In general, the computation of the mini-batch statistics is
not equally reliable for different time-layers (irrespective of mini-batch size). Finally, batch
normalization cannot be applied to online learning tasks. One of the problematic issues is
that batch normalization is a relatively unconventional neural network operation (compared
to traditional neural networks) because the activations of the units depend on other training
instances in the batch, and not just the current instance. Although batch-normalization can
be adapted to recurrent networks [81], a more effective approach is layer normalization.

In layer normalization, the normalization is performed only over a single training in-
stance, although the normalization factor is obtained by using all the current activations
in that layer of only the current instance. This approach is closer to a conventional neural
network operation, and we no longer have the problem of maintaining mini-batch statistics.
All the information needed to compute the activations for an instance can be obtained from
that instance only!

In order to understand how layer-wise normalization works, we repeat the hidden-to-
hidden recursion of page 276:

ht = tanh(Wxhxt +Whhht−1)

This recursion is prone to unstable behavior because of the multiplicative effect across time-
layers. We will show how to modify this recurrence with layer-wise normalization. As in the
case of conventional batch normalization of Chapter 3, the normalization is applied to pre-
activation values before applying the tanh activation function. Therefore, the pre-activation
value at the tth time-stamp is computed as follows:

at = Wxhxt +Whhht−1

290 CHAPTER 7. RECURRENT NEURAL NETWORKS

Note that at is a vector with as many components as the number of units in the hidden
layer (which we have consistently denoted as p in this chapter). We compute the mean μt

and standard σt of the pre-activation values in at:

μt =

∑p
i=1 ati
p

, σt =

√
∑p

i=1 a
2
ti

p
− μ2

t

Here, ati denotes the ith component of the vector at.
As in batch normalization, we have additional learning parameters, associated with

each unit. Specifically, for the p units in the tth layer, we have a p-dimensional vector
of gain parameters γt, and a p-dimensional vector of bias parameters denoted by βt. These
parameters are analogous to the parameters γi and βi in Section 3.6 on batch normalization.
The purpose of these parameters is to re-scale the normalized values and add bias in a
learnable way. The hidden activations ht of the next layer are therefore computed as follows:

ht = tanh

(
γt

σt
⊙ (at − μt) + βt

)

(7.6)

Here, the notation ⊙ indicates elementwise multiplication, and the notation μt refers to a
vector containing p copies of the scalar μt. The effect of layer normalization is to ensure that
the magnitudes of the activations do not continuously increase or decrease with time-stamp
(causing vanishing and exploding gradients), although the learnable parameters allow some
flexibility. It has been shown in [14] that layer normalization provides better performance
than batch normalization in recurrent neural networks. Some related normalizations can
also be used for streaming and online learning [294].

7.4 Echo-State Networks

Echo-state networks represent a simplification of recurrent neural networks. They work well
when the dimensionality of the input is small; this is because echo-state networks scale well
with the number of temporal units but not with the dimensionality of the input. There-
fore, these networks would be a solid option for regression-based modeling of a single or
small number of real-valued time series over a relatively long time horizon. However, they
would be a poor choice for modeling text in which the input dimensionality (based on one-
hot encoding) would be the size of the lexicon in which the documents are represented.
Nevertheless, even in this case, echo-state networks are practically useful in the initializa-
tion of weights within the network. Echo-state networks are also referred to as liquid-state
machines [304], except that the latter uses spiking neurons with binary outputs, whereas
echo-state networks use conventional activations like the sigmoid and the tanh functions.

Echo-state networks use random weights in the hidden-to-hidden layer and even the
input-to-hidden layer, although the dimensionality of the hidden states is almost always
much larger than the dimensionality of input states. For a single input series, it is not
uncommon to use hidden states of dimensionality about 200. Therefore, only the output
layer is trained, which is typically done with a linear layer for real-valued outputs. Note
that the training of the output layer simply aggregates the errors at different output nodes,
although the weights at different output nodes are still shared. Nevertheless, the objective
function would still evaluate to a case of linear regression, which can be trained very simply
without the need for backpropagation. Therefore, the training of the echo-state network is
very fast.

7.4. ECHO-STATE NETWORKS 291

As in traditional recurrent networks, the hidden-to-hidden layers have nonlinear activa-
tions such as the logistic sigmoid function, although tanh activations are also possible. A
very important caveat in the initialization of the hidden-to-hidden units is that the largest
eigenvector of the weight matrix Whh should be set to 1. This can be easily achieved by first
sampling the weights of the matrix Whh randomly from a standard normal distribution, and
then dividing each entry by the largest absolute eigenvalue |λmax| of this matrix.

Whh ⇐ Whh/|λmax| (7.7)

After this normalization, the largest eigenvalue of this matrix will be 1, which corresponds to
its spectral radius. However, using a spectral radius of 1 can be too conservative because the
nonlinear activations will have a dampening effect on the values of the states. For example,
when using the sigmoid activation, the largest possible partial derivative of the sigmoid is
always 0.25, and therefore using a spectral radius much larger than 4 (say, 10) is okay. When
using the tanh activation function it would make sense to have a spectral radius of about 2
or 3. These choices would often still lead to a certain level of dampening over time, which
is actually a useful regularization because very long-term relationships are generally much
weaker than short-term relationships in time-series. One can also tune the spectral radius
based on performance by trying different values of the scaling factor γ on held-out data to
set Whh = γW0. Here, W0 is a randomly initialized matrix.

It is recommended to use sparse connectivity in the hidden-to-hidden connections, which
is not uncommon in settings involving transformations with random projections. In order to
achieve this goal, a number of connections in Whh can be sampled to be non-zero and others
are set to 0. This number of connections is typically linear in the number of hidden units.
Another key trick is to divide the hidden units into groups indexed 1 . . .K and only allow
connectivity between hidden states belonging to with the same index. Such an approach can
be shown to be equivalent to training an ensemble of echo-state networks (see. Exercise 2).

Another issue is about setting the input-to-hidden matricesWxh. One needs to be careful
about the scaling of this matrix as well, or else the effect of the inputs in each time-stamp
can seriously damage the information carried in the hidden states from the previous time-
stamp. Therefore, the matrix Wxh is first chosen randomly to W1, and then it is scaled with
different values of the hyper-parameter β in order to determine the final matrix Wxh = βW1

that gives the best accuracy on held-out data.
The core of the echo-state network is based on a very old idea that expanding the number

of features of a data set with a nonlinear transformation can often increase the expressive
power of the input representation. For example, the RBF network (cf. Chapter 5) and the
kernel support-vector machine both gain their power from expansion of the underlying fea-
ture space according to Cover’s theorem on separability of patterns [84]. The only difference
is that the echo-state network performs the feature expansion with random projection; such
an approach is not without precedent because various types of random transformations are
also used in machine learning as fast alternatives to kernel methods [385, 516]. It is note-
worthy that feature expansion is primarily effective through nonlinear transformations, and
these are provided through the activations in the hidden layers. In a sense, the echo-state
method works using a similar principle to the RBF network in the temporal domain, just as
the recurrent neural network is the replacement of feed-forward networks in the temporal
domain. Just as the RBF network uses very little training for extracting the hidden features,
the echo-state network uses little training for extracting the hidden features and instead
relies on the randomized expansion of the feature space.

When used on time-series data, the approach provides excellent results on predicting
values far out in the future. The key trick is to choose target output values at a time-stamp

292 CHAPTER 7. RECURRENT NEURAL NETWORKS

t that correspond to the time-series input values at t+k, where k is the lookahead required for
forecasting. In other words, an echo-state network is an excellent nonlinear autoregressive
technique for modeling time-series data. One can even use this approach for forecasting
multivariate time-series, although it is inadvisable to use the approach when the number
of time series is very large. This is because the dimensionality of hidden states required
for modeling would be simply too large. A detailed discussion on the application of the
echo-state network for time-series modeling is provided in Section 7.7.5. A comparison with
respect to traditional time-series forecasting models is also provided in the same section.

Although the approach cannot be realistically used for very high-dimensional inputs (like
text), it is still very useful for initialization [478]. The basic idea is to initialize the recurrent
network by using its echo-state variant to train the output layer. Furthermore, a proper
scaling of the initialized values Whh and Wxh can be set by trying different values of the
scaling factors β and γ (as discussed above). Subsequently, traditional backpropagation is
used to train the recurrent network. This approach can be viewed as a lightweight pretraining
for recurrent networks.

A final issue is about the sparsity of the weight connections. Should the matrix Whh

be sparse? This is generally a matter of some controversy and disagreement; while sparse
connectivity of echo-state networks has been recommended since the early years [219], the
reasons for doing so are not very clear. The original work [219] states that sparse connectiv-
ity leads to a decoupling of the individual subnetworks, which encourages the development
of individual dynamics. This seems to be an argument for increased diversity of the fea-
tures learned by the echo-state network. If decoupling is indeed the goal, it would make a
lot more sense to do so explicitly, and divide the hidden states into disconnected groups.
Such an approach has an ensemble-centric interpretation. It is also often recommended to
increase sparsity in methods involving random projections for improved efficiency of the
computations. Having dense connections can cause the activations of different states to be
embedded in the multiplicative noise of a large number of Gaussian random variables, and
therefore more difficult to extract.

7.5 Long Short-Term Memory (LSTM)

As discussed in Section 7.3, recurrent neural networks have problems associated with van-
ishing and exploding gradients [205, 368, 369]. This is a common problem in neural network
updates where successive multiplication by the matrix W (k) is inherently unstable; it either
results in the gradient disappearing during backpropagation, or in it blowing up to large
values in an unstable way. This type of instability is the direct result of successive multi-
plication with the (recurrent) weight matrix at various time-stamps. One way of viewing
this problem is that a neural network that uses only multiplicative updates is good only
at learning over short sequences, and is therefore inherently endowed with good short-term
memory but poor long-term memory [205]. To address this problem, a solution is to change
the recurrence equation for the hidden vector with the use of the LSTM with the use of
long-term memory. The operations of the LSTM are designed to have fine-grained control
over the data written into this long-term memory.

As in the previous sections, the notation h
(k)

t represents the hidden states of the kth
layer of a multi-layer LSTM. For notational convenience, we also assume that the input

layer xt can be denoted by h
(0)

t (although this layer is obviously not hidden). As in the case
of the recurrent network, the input vector xt is d-dimensional, whereas the hidden states are
p-dimensional. The LSTM is an enhancement of the recurrent neural network architecture

7.5. LONG SHORT-TERM MEMORY (LSTM) 293

of Figure 7.6 in which we change the recurrence conditions of how the hidden states h
(k)

t

are propagated. In order to achieve this goal, we have an additional hidden vector of p

dimensions, which is denoted by c
(k)
t and referred to as the cell state. One can view the

cell state as a kind of long-term memory that retains at least a part of the information
in earlier states by using a combination of partial “forgetting” and “increment” operations
on the previous cell states. It has been shown in [233] that the nature of the memory in

c
(k)
t is occasionally interpretable when it is applied to text data such as literary pieces. For

example, one of the p values in c
(k)
t might change in sign after an opening quotation and

then revert back only when that quotation is closed. The upshot of this phenomenon is
that the resulting neural network is able to model long-range dependencies in the language
or even a specific pattern (like a quotation) extended over a large number of tokens. This
is achieved by using a gentle approach to update these cell states over time, so that there
is greater persistence in information storage. Persistence in state values avoids the kind of
instability that occurs in the case of the vanishing and exploding gradient problems. One
way of understanding this intuitively is that if the states in different temporal layers share
a greater level of similarity (through long-term memory), it is harder for the gradients with
respect to the incoming weights to be drastically different.

As with the multilayer recurrent network, the update matrix is denoted by W (k) and

is used to premultiply the column vector [h
(k−1)

t , h
(k)

t−1]
T . However, this matrix is of size2

4p × 2p, and therefore pre-multiplying a vector of size 2p with W (k) results in a vector
of size 4p. In this case, the updates use four intermediate, p-dimensional vector variables
i, f , o, and c that correspond to the 4p-dimensional vector. The intermediate variables
i, f , and o are respectively referred to as input, forget, and output variables, because of
the roles they play in updating the cell states and hidden states. The determination of

the hidden state vector h
(k)

t and the cell state vector c
(k)
t uses a multi-step process of first

computing these intermediate variables and then computing the hidden variables from
these intermediate variables. Note the difference between intermediate variable vector c
and primary cell state c

(k)
t , which have completely different roles. The updates are as follows:

Input Gate:
Forget Gate:
Output Gate:
New C.-State:

⎡

⎢
⎢
⎣

i

f
o
c

⎤

⎥
⎥
⎦
=

⎛

⎜
⎜
⎝

sigm
sigm
sigm
tanh

⎞

⎟
⎟
⎠

W (k)

[

h
(k−1)

t

h
(k)

t−1

]

[Setting up intermediates]

c
(k)
t = f ⊙ c

(k)
t−1 + i⊙ c [Selectively forget and add to long-term memory]

h
(k)

t = o⊙ tanh(c
(k)
t) [Selectively leak long-term memory to hidden state]

2In the first layer, the matrix W (1) is of size 4p× (p+ d) because it is multiplied with a vector of size
(p+ d).

294 CHAPTER 7. RECURRENT NEURAL NETWORKS

Here, the element-wise product of vectors is denoted by “⊙,” and the notation “sigm”

denotes a sigmoid operation. For the very first layer (i.e., k = 1), the notation h
(k−1)

t in the
above equation should be replaced with xt and the matrix W (1) is of size 4p × (p + d). In
practical implementations, biases are also used3 in the above updates, although they are
omitted here for simplicity. The aforementioned update seems rather cryptic, and therefore
it requires further explanation.

The first step in the above sequence of equations is to set up the intermediate variable
vectors i, f , o, and c, of which the first three should conceptually be considered binary
values, although they are continuous values in (0, 1). Multiplying a pair of binary values
is like using an AND gate on a pair of boolean values. We will henceforth refer to this
operation as gating. The vectors i, f , and o are referred to as input, forget, and output
gates. In particular, these vectors are conceptually used as boolean gates for deciding (i)
whether to add to a cell-state, (ii) whether to forget a cell state, and (iii) whether to allow
leakage into a hidden state from a cell state. The use of the binary abstraction for the input,
forget, and output variables helps in understanding the types of decisions being made by
the updates. In practice, a continuous value in (0, 1) is contained in these variables, which
can enforce the effect of the binary gate in a probabilistic way if the output is seen as a
probability. In the neural network setting, it is essential to work with continuous functions
in order to ensure the differentiability required for gradient updates. The vector c contains
the newly proposed contents of the cell state, although the input and forget gates regulate
how much it is allowed to change the previous cell state (to retain long-term memory).

The four intermediate variables i, f , o, and c, are set up using the weight matrices W (k)

for the kth layer in the first equation above. Let us now examine the second equation that
updates the cell state with the use of some of these intermediate variables:

c
(k)
t = f ⊙ c

(k)
t−1

︸ ︷︷ ︸

Reset?

+ i⊙ c
︸︷︷︸

Increment?

This equation has two parts. The first part uses the p forget bits in f to decide which of
the p cell states from the previous time-stamp to reset4 to 0, and it uses the p input bits in
i to decide whether to add the corresponding components from c to each of the cell states.
Note that such updates of the cell states are in additive form, which is helpful in avoiding
the vanishing gradient problem caused by multiplicative updates. One can view the cell-
state vector as a continuously updated long-term memory, where the forget and input bits
respectively decide (i) whether to reset the cell states from the previous time-stamp and
forget the past, and (ii) whether to increment the cell states from the previous time-stamp
to incorporate new information into long-term memory from the current word. The vector
c contains the p amounts with which to increment the cell states, and these are values in
[−1,+1] because they are all outputs of the tanh function.

3The bias associated with the forget gates is particularly important. The bias of the forget gate is
generally initialized to values greater than 1 [228] because it seems to avoid the vanishing gradient problem
at initialization.

4Here, we are treating the forget bits as a vector of binary bits, although it contains continuous values in
(0, 1), which can be viewed as probabilities. As discussed earlier, the binary abstraction helps us understand
the conceptual nature of the operations.

7.6. GATED RECURRENT UNITS (GRUS) 295

Finally, the hidden states h
(k)

t are updated using leakages from the cell state. The hidden
state is updated as follows:

h
(k)

t = o⊙ tanh(c
(k)
t)

︸ ︷︷ ︸

Leak c
(k)
t to h

(k)

t

Here, we are copying a functional form of each of the p cell states into each of the p hidden
states, depending on whether the output gate (defined by o) is 0 or 1. Of course, in the
continuous setting of neural networks, partial gating occurs and only a fraction of the signal
is copied from each cell state to the corresponding hidden state. It is noteworthy that the
final equation does not always use the tanh activation function. The following alternative
update may be used:

h
(k)

t = o⊙ c
(k)
t

As in the case of all neural networks, the backpropagation algorithm is used for training
purposes.

In order to understand why LSTMs provide better gradient flows than vanilla RNNs,
let us examine the update for a simple LSTM with a single layer and p = 1. In such a case,
the cell update can be simplified to the following:

ct = ct−1 ∗ f + i ∗ c (7.8)

Therefore, the partial derivative ct with respect to ct−1 is f , which means that the backward
gradient flows for ct are multiplied with the value of the forget gate f . Because of elementwise
operations, this result generalizes to arbitrary values of the state dimensionality p. The
biases of the forget gates are often set to high values initially, so that the gradient flows
decay relatively slowly. The forget gate f can also be different at different time-stamps,
which reduces the propensity of the vanishing gradient problem. The hidden states can be
expressed in terms of the cell states as ht = o∗tanh(ct), so that one can compute the partial
derivative with respect to ht with the use of a single tanh derivative. In other words, the
long-term cell states function as gradient super-highways, which leak into hidden states.

7.6 Gated Recurrent Units (GRUs)

The Gated Recurrent Unit (GRU) can be viewed as a simplification of the LSTM, which
does not use explicit cell states. Another difference is that the LSTM directly controls the
amount of information changed in the hidden state using separate forget and output gates.
On the other hand, a GRU uses a single reset gate to achieve the same goal. However, the
basic idea in the GRU is quite similar to that of an LSTM, in terms of how it partially

resets the hidden states. As in the previous sections, the notation h
(k)

t represents the hidden
states of the kth layer for k ≥ 1. For notational convenience, we also assume that the input

layer xt can be denoted by h
(0)

t (although this layer is obviously not hidden). As in the case
of LSTM, we assume that the input vector xt is d-dimensional, whereas the hidden states
are p-dimensional. The sizes of the transformation matrices in the first layer are accordingly
adjusted to account for this fact.

296 CHAPTER 7. RECURRENT NEURAL NETWORKS

In the case of the GRU, we use two matrices W (k) and V (k) of sizes5 2p × 2p and
p × 2p, respectively. Pre-multiplying a vector of size 2p with W (k) results in a vector of
size 2p, which will be passed through the sigmoid activation to create two intermediate,
p-dimensional vector variables zt and rt, respectively. The intermediate variables zt and
rt are respectively referred to as update and reset gates. The determination of the hidden

state vector h
(k)

t uses a two-step process of first computing these gates, then using them to
decide how much to change the hidden vector with the weight matrix V (k):

Update Gate:
Reset Gate:

[
z
r

]

=

(
sigm
sigm

)

W (k)

[

h
(k−1)

t

h
(k)

t−1

]

[Set up gates]

h
(k)

t = z ⊙ h
(k)

t−1 + (1− z)⊙ tanh V (k)

[

h
(k−1)

t

r ⊙ h
(k)

t−1

]

[Update hidden state]

Here, the element-wise product of vectors is denoted by “⊙,” and the notation “sigm”

denotes a sigmoid operation. For the very first layer (i.e., k = 1), the notation h
(k−1)

t in
the above equation should be replaced with xt. Furthermore, the matrices W (1) and V (1)

are of sizes 2p× (p+ d) and p× (p+ d), respectively. We have also omitted the mention of
biases here, but they are usually included in practical implementations. In the following, we
provide a further explanation of these updates and contrast them with those of the LSTM.

Just as the LSTM uses input, output, and forget gates to decide how much of the
information from the previous time-stamp to carry over to the next step, the GRU uses the
update and the reset gates. The GRU does not have a separate internal memory and also
requires fewer gates to perform the update from one hidden state to another. Therefore,
a natural question arises about the precise role of the update and reset gates. The reset
gate r decides how much of the hidden state to carry over from the previous time-stamp
for a matrix-based update (like a recurrent neural network). The update gate z decides
the relative strength of the contributions of this matrix-based update and a more direct

contribution from the hidden vector h
(k)

t−1 at the previous time-stamp. By allowing a direct
(partial) copy of the hidden states from the previous layer, the gradient flow becomes more
stable during backpropagation. The update gate of the GRU simultaneously performs the
role of the input and forget gates in the LSTM in the form of z and 1 − z, respectively.
However, the mapping between the GRU and the LSTM is not precise, because it performs
these updates directly on the hidden state (and there is no cell state). Like the input, output,
and forget gates in the LSTM, the update and reset gates are intermediate “scratch-pad”
variables.

In order to understand why GRUs provide better performance than vanilla RNNs, let
us examine a GRU with a single layer and single state dimensionality p = 1. In such a case,
the update equation of the GRU can be written as follows:

ht = z · ht−1 + (1− z) · tanh[v1 · xt + v2 · r · ht−1] (7.9)

Note that layer superscripts are missing in this single-layer case. Here, v1 and v2 are the
two elements of the 2× 1 matrix V . Then, it is easy to see the following:

∂ht

∂ht−1
= z + (Additive Terms) (7.10)

5In the first layer (k = 1), these matrices are of sizes 2p× (p+ d) and p× (p+ d).

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 297

Backward gradient flow is multiplied with this factor. Here, the term z ∈ (0, 1) helps in
passing unimpeded gradient flow and makes computations more stable. Furthermore, since
the additive terms heavily depend on (1−z), the overall multiplicative factor that tends to be
closer to 1 even when z is small. Another point is that the value of z and the multiplicative
factor ∂ht

∂ht−1
is different for each time stamp, which tends to reduce the propensity for

vanishing or exploding gradients.
Although the GRU is a closely related simplification of the LSTM, it should not be

seen as a special case of the LSTM. A comparison of the LSTM and the GRU is provided
in [71, 228]. The two models are shown to be roughly similar in performance, and the
relative performance seems to depend on the task at hand. The GRU is simpler and enjoys
the advantage of greater ease of implementation and efficiency. It might generalize slightly
better with less data because of a smaller parameter footprint [71], although the LSTM
would be preferable with an increased amount of data. The work in [228] also discusses
several practical implementation issues associated with the LSTM. The LSTM has been
more extensively tested than the GRU, simply because it is an older architecture and enjoys
widespread popularity. As a result, it is generally seen as a safer option, particularly when
working with longer sequences and larger data sets. The work in [160] also showed that none
of the variants of the LSTM can reliably outperform it in a consistent way. This is because
of the explicit internal memory and the greater gate-centric control in updating the LSTM.

7.7 Applications of Recurrent Neural Networks

Recurrent neural networks have numerous applications in machine learning applications,
which are associated with information retrieval, speech recognition, and handwriting recog-
nition. Text data forms the predominant setting for applications of RNNs, although there
are several applications to computational biology as well. Most of the applications of RNNs
fall into one of two categories:

1. Conditional language modeling: When the output of a recurrent network is a language
model, one can enhance it with context in order to provide a relevant output to the
context. In most of these cases, the context is the neural output of another neural
network. To provide one example, in image captioning the context is the neural rep-
resentation of an image provided by a convolutional network, and the language model
provides a caption for the image. In machine translation, the context is the repre-
sentation of a sentence in a source language (produced by another RNN), and the
language model in the target language provides a translation.

2. Leveraging token-specific outputs: The outputs at the different tokens can be used
to learn other properties than a language model. For example, the labels output
at different time-stamps might correspond to the properties of the tokens (such as
their parts of speech). In handwriting recognition, the labels might correspond to the
characters. In some cases, all the time-stamps might not have an output, but the
end-of-sentence marker might output a label for the entire sentence. This approach
is referred to as sentence-level classification, and is often used in sentiment analysis.
In some of these applications, bidirectional recurrent networks are used because the
context on both sides of a word is helpful.

298 CHAPTER 7. RECURRENT NEURAL NETWORKS

The following material will provide an overview of the numerous applications of recurrent
neural networks. In most of these cases, we will use a single-layer recurrent network for
ease in explanation and pictorial illustration. However, in most cases, a multi-layer LSTM
is used. In other cases, a bidirectional LSTM is used, because it provides better perfor-
mance. Replacing a single-layer RNN with a multi-layer/bidirectional LSTM in any of the
following applications is straightforward. Out broader goal is to illustrate how this family
of architectures can be used in these settings.

7.7.1 Application to Automatic Image Captioning

In image captioning, the training data consists of image-caption pairs. For example, the
image6 in the left-hand side of Figure 7.9 is obtained from the National Aeronautics and
Space Administration Web site. This image is captioned “cosmic winter wonderland.” One
might have hundreds of thousands of such image-caption pairs. These pairs are used to train
the weights in the neural network. Once the training has been completed, the captions are
predicted for unknown test instances. Therefore, one can view this approach as an instance
of image-to-sequence learning.

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

Why
Whh Whh

<START> cosmic winter wonderland

cosmic winter wonderland <END>

CONVOLUTIONAL

NEURAL

NETWORK

V

Figure 7.9: Example of image captioning with a recurrent neural network. An additional
convolutional neural network is required for representational learning of the images. The
image is represented by the vector v, which is the output of the convolutional neural network.
The inset image is by courtesy of the National Aeronautics and Space Administration
(NASA).

One issue in the automatic captioning of images is that a separate neural network is
required to learn the representation of the images. A common architecture to learn the
representation of images is the convolutional neural network. A detailed discussion of con-
volutional neural networks is provide in Chapter 8. Consider a setting in which the convo-
lutional neural network produces the q-dimensional vector v as the output representation.
This vector is then used as an input to the neural network, but only7 at the first time-stamp.
To account for this additional input, we need another p × q matrix Wih, which maps the
image representation to the hidden layer. Therefore, the update equations for the various
layers now need to be modified as follows:

h1 = tanh(Wxhx1 +Wihv)

6https://www.nasa.gov/mission pages/chandra/cosmic-winter-wonderland.html
7In principle, one can also allow it to be input at all time-stamps, but it only seems to worsen perfor-

mance.

https://www.nasa.gov/mission_pages/chandra/cosmic-winter-wonderland.html

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 299

ht = tanh(Wxhxt +Whhht−1) ∀t ≥ 2

yt = Whyht

An important point here is that the convolutional neural network and the recurrent neural
network are not trained in isolation. Although one might train them in isolation in order to
create an initialization, the final weights are always trained jointly by running each image
through the network and matching up the predicted caption with the true caption. In other
words, for each image-caption pair, the weights in both networks are updated when errors
are made in predicting any particular token of the caption. In practice, the errors are soft
because the tokens at each point are predicted probabilistically. Such an approach ensures
that the learned representation v of the images is sensitive to the specific application of
predicting captions.

After all the weights have been trained, a test image is input to the entire system and
passed through both the convolutional and recurrent neural network. For the recurrent
network, the input at the first time-stamp is the <START> token and the representation
of the image. At later time-stamps, the input is the most likely token predicted at the
previous time-stamp. One can also use beam search to keep track of the b most likely
sequence prefixes to expand on at each point. This approach is not very different from the
language generation approach discussed in Section 7.2.1.1, except that it is conditioned on
the image representation that is input to the model in the first time-stamp of the recurrent
network. This results in the prediction of a relevant caption for the image.

I don’t understand Spanish

y1 y2
y3 y4

<EOS> No en�endo español

No <EOS>en�endo español

RNN1 RNN2

RNN1 LEARNS REPRESENTATION

OF ENGLISH SENTENCE FOR

MACHINE TRANSLATION

(CONDITIONED SPANISH LANGUAGE MODELING)

Wes

Figure 7.10: Machine translation with recurrent neural networks. Note that there are two

separate recurrent networks with their own sets of shared weights. The output of h
(1)

4 is a
fixed length encoding of the 4-word English sentence.

7.7.2 Sequence-to-Sequence Learning and Machine Translation

Just as one can put together a convolutional neural network and a recurrent neural network
to perform image captioning, one can put together two recurrent networks to translate one
language into another. Such methods are also referred to as sequence-to-sequence learn-
ing because a sequence in one language is mapped to a sequence in another language. In
principle, sequence-to-sequence learning can have applications beyond machine translation.
For example, even question-answering (QA) systems can be viewed as sequence-to-sequence
learning applications.

300 CHAPTER 7. RECURRENT NEURAL NETWORKS

In the following, we provide a simple solution to machine translation with recurrent
neural networks, although such applications are rarely addressed directly with the simple
forms of recurrent neural networks. Rather, a variation of the recurrent neural network,
referred to as the long short-term memory (LSTM) model is used. Such a model is much
better in learning long-term dependencies, and can therefore work well with longer sentences.
Since the general approach of using an RNN applies to an LSTM as well, we will provide
the discussion of machine translation with the (simple) RNN. A discussion of the LSTM
is provided in Section 7.5, and the generalization of the machine translation application to
the LSTM is straightforward.

In the machine translation application, two different RNNs are hooked end-to-end, just
as a convolutional neural network and a recurrent neural network are hooked together for
image captioning. The first recurrent network uses the words from the source language
as input. No outputs are produced at these time-stamps and the successive time-stamps
accumulate knowledge about the source sentence in the hidden state. Subsequently, the end-
of-sentence symbol is encountered, and the second recurrent network starts by outputting
the first word of the target language. The next set of states in the second recurrent network
output the words of the sentence in the target language one by one. These states also use the
words of the target language as input, which is available for the case of the training instances
but not for test instances (where predicted values are used instead). This architecture is
shown in Figure 7.10.

The architecture of Figure 7.10 is similar to that of an autoencoder, and can even be used
with pairs of identical sentences in the same language to create fixed-length representations
of sentences. The two recurrent networks are denoted by RNN1 and RNN2, and their
weights are not the same. For example, the weight matrix between two hidden nodes at

successive time-stamps in RNN1 is denoted by W
(1)
hh , whereas the corresponding weight

matrix in RNN2 is denoted by W
(2)
hh . The weight matrix Wes of the link joining the two

neural networks is special, and can be independent of either of the two networks. This
is necessary if the sizes of the hidden vectors in the two RNNs are different because the

dimensions of the matrix Wes will be different from those of both W
(1)
hh and W

(2)
hh . As a

simplification, one can use8 the same size of the hidden vector in both networks, and set

Wes = W
(1)
hh . The weights in RNN1 are devoted to learning an encoding of the input in the

source language, and the weights in RNN2 are devoted to using this encoding in order to
create an output sentence in the target language. One can view this architecture in a similar
way to the image captioning application, except that we are using two recurrent networks
instead of a convolutional-recurrent pair. The output of the final hidden node of RNN1 is
a fixed-length encoding of the source sentence. Therefore, irrespective of the length of the
sentence, the encoding of the source sentence depends on the dimensionality of the hidden
representation.

The grammar and length of the sentence in the source and target languages may not be
the same. In order to provide a grammatically correct output in the target language, RNN2
needs to learn its language model. It is noteworthy that the units in RNN2 associated with
the target language have both inputs and outputs arranged in the same way as a language-
modeling RNN. At the same time, the output of RNN2 is conditioned on the input it
receives from RNN1, which effectively causes language translation. In order to achieve this
goal, training pairs in the source and target languages are used. The approach passes the
source-target pairs through the architecture of Figure 7.10 and learns the model parameters

8The original work in [478] seems to use this option. In the Google Neural Machine Translation sys-
tem [579], this weight is removed. This system is now used in Google Translate.

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 301

with the use of the backpropagation algorithm. Since only the nodes in RNN2 have outputs,
only the errors made in predicting the target language words are backpropagated to train
the weights in both neural networks. The two networks are jointly trained, and therefore the
weights in both networks are optimized to the errors in the translated outputs of RNN2. As a
practical matter, this means that the internal representation of the source language learned
by RNN1 is highly optimized to the machine translation application, and is very different
from one that would be learned if one had used RNN1 to perform language modeling of the
source sentence. After the parameters have been learned, a sentence in the source language
is translated by first running it through RNN1 to provide the necessary input to RNN2.
Aside from this contextual input, another input to the first unit of RNN2 is the <EOS> tag,
which causes RNN2 to output the likelihoods of the first token in the target language. The
most likely token using beam search (cf. Section 7.2.1.1) is selected and used as the input
to the recurrent network unit in the next time-stamp. This process is recursively applied
until the output of a unit in RNN2 is also <EOS>. As in Section 7.2.1.1, we are generating
a sentence from the target language using a language-modeling approach, except that the
specific output is conditioned on the internal representation of the source sentence.

The use of neural networks for machine translation is relatively recent. Recurrent neu-
ral network models have a sophistication that greatly exceeds that of traditional machine
translation models. The latter class of methods uses phrase-centric machine learning, which
is often not sophisticated enough to learn the subtle differences between the grammars of
the two languages. In practice, deep models with multiple layers are used to improve the
performance.

One weakness of such translation models is that they tend to work poorly when the
sentences are long. Numerous solutions have been proposed to solve the problem. A recent
solution is that the sentence in the source language is input in the opposite order [478]. This
approach brings the first few words of the sentences in the two languages closer in terms
of their time-stamps within the recurrent neural network architecture. As a result, the first
few words in the target language are more likely to be predicted correctly. The correctness
in predicting the first few words is also helpful in predicting the subsequent words, which
are also dependent on a neural language model in the target language.

7.7.2.1 Question-Answering Systems

A natural application of sequence-to-sequence learning is that of question answering (QA).
Question-answering systems are designed with different types of training data. In particular,
two types of question-answering systems are common:

1. In the first type, the answers are directly inferred based on the phrases and clue words
in the question.

2. In the second type, the question is first transformed into a database query, and is used
to query a structured knowledge base of facts.

Sequence-to-sequence learning can be helpful in both settings. Consider the first setting, in
which we have training data containing question-answer pairs like the following:

What is the capital of China? <EOQ> The capital is Beijing. <EOA>

These types of training pairs are not very different from those available in the case of
machine translation, and the same techniques can be used in these cases. However, note
that one key difference between machine translation and question-answering systems is that

302 CHAPTER 7. RECURRENT NEURAL NETWORKS

there is a greater level of reasoning in the latter, which typically requires an understanding
of the relationships between various entities (e.g., people, places, and organizations). This
problem is related to the quintessential problem of information extraction. Since questions
are often crafted around various types of named entities and relationships among them,
information extraction methods are used in various ways. The utility of entities and infor-
mation extraction is well known in answering “what/who/where/when” types of questions
(e.g., entity-oriented search), because named entities are used to represent persons, loca-
tions, organizations, dates, and events, and relationship extraction provides information
about the interactions among them. One can incorporate the meta-attributes about tokens,
such as entity types, as additional inputs to the learning process. Specific examples of such
input units are shown in Figure 7.12 of Section 7.7.4, although the figure is designed for the
different application of token-level classification.

An important difference between question-answering and machine translation systems
is that the latter is seeded with a large corpus of documents (e.g., a large knowledge base
like Wikipedia). The query resolution process can be viewed as a kind of entity-oriented
search. From the perspective of deep learning, an important challenge of QA systems is
that a much larger capacity to store the knowledge is required than is typically available in
recurrent neural networks. A deep learning architecture that works well in these settings is
that of memory networks [528]. Question-answering systems pose many different settings in
which the training data may be presented, and the ways in which various types of questions
may be answered and evaluated. In this context, the work in [527] discusses a number of
template tasks that can be useful for evaluating question-answering systems.

A somewhat different approach is to convert natural language questions into queries that
are properly posed in terms of entity-oriented search. Unlike machine translation systems,
question answering is often considered a multi-stage process in which understanding what
is being asked (in terms of a properly represented query) is sometimes more difficult than
answering the query itself. In such cases, the training pairs will correspond to the informal
and formal representations of questions. For example, one might have a pair as follows:

What is the capital of China? <EOQ1>
︸ ︷︷ ︸

Natural language question

CapitalOf(China, ?) <EOQ2>
︸ ︷︷ ︸

Formal Representation

The expression on the right-hand side is a structured question, which queries for entities of
different types such as persons, places, and organizations. The first step would be to convert
the question into an internal representation like the one above, which is more prone to query
answering. This conversion can be done using training pairs of questions and their internal
representations in conjunction with an recurrent network. Once the question is understood
as an entity-oriented search query, it can be posed to the indexed corpus, from which relevant
relationships might already have been extracted up front. Therefore, the knowledge base is
also preprocessed in such cases, and the question resolution boils down to matching the query
with the extracted relations. It is noteworthy that this approach is limited by the complexity
of the syntax in which questions are expressed, and the answers might also be simple one-
word responses. Therefore, this type of approach is often used for more restricted domains.
In some cases, one learns how to paraphrase questions by rewording a more complex question
as a simpler question before creating the query representation [115, 118]:

How can you tell if you have the flu? <EOQ1>
︸ ︷︷ ︸

Complex question

What are the signs of the flu? <EOQ2>
︸ ︷︷ ︸

Paraphrased

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 303

The paraphrased question can be learned with sequence-to-sequence learning, although the
work in [118] does not seem to use this approach. Subsequently, it is easier to convert the
paraphrased question into a structured query. Another option is to provide the question
in structured form to begin with. An example of a recurrent neural network that supports
factoid question answering from QA training pairs is provided in [216]. However, unlike pure
sequence-to-sequence learning, it uses the dependency parse trees of questions as the input
representation. Therefore, a part of the formal understanding of the question is already
encoded into the input.

7.7.3 Application to Sentence-Level Classification

In this problem, each sentence is treated as a training (or test) instance for classification
purposes. Sentence-level classification is generally a more difficult problem than document-
level classification because sentences are short, and there is often not enough evidence in the
vector space representation to perform the classification accurately. However, the sequence-
centric view is more powerful and can often be used to perform more accurate classification.
The RNN architecture for sentence-level classification is shown in Figure 7.11. Note that the
only difference from Figure 7.11(b) is that we no longer care about the outputs at each node
but defer the class output to the end of the sentence. In other words, a single class label is
predicted at the very last time-stamp of the sentence, and it is used to backpropagate the
class prediction errors.

Whh

x1

h1

Wxh

x2

h2

Wxh

x3

h3

Wxh

Whh Whh

I love this

x4

h4

Wxh

ipod

x5

h5

y

Wxh

Why

<EOS>

Whh

CLASS

LABEL

Posi�ve Sen�ment

Figure 7.11: Example of sentence-level classification in a sentiment analysis application with
the two classes “positive sentiment” and “negative sentiment.”

Sentence-level classification is often leveraged in sentiment analysis. This problem at-
tempts to discover how positive or negative users are about specific topics by analyzing the
content of a sentence [6]. For example, one can use sentence-level classification to determine
whether or not a sentence expresses a positive sentiment by treating the sentiment polarity
as the class label. In the example shown in Figure 7.11, the sentence clearly indicates a
positive sentiment. Note, however, that one cannot simply use a vector space representation
containing the word “love” to infer the positive sentiment. For example, if words such as
“don’t” or “hardly” occur before “love”, the sentiment would change from positive to nega-
tive. Such words are referred to as contextual valence shifters [377], and their effect can be
modeled only in a sequence-centric setting. Recurrent neural networks can handle such set-
tings because they use the accumulated evidence over the specific sequence of words in order
to predict the class label. One can also combine this approach with linguistic features. In
the next section, we show how to use linguistic features for token-level classification; similar
ideas also apply to the case of sentence-level classification.

304 CHAPTER 7. RECURRENT NEURAL NETWORKS

7.7.4 Token-Level Classification with Linguistic Features

The numerous applications of token-level classification include information extraction and
text segmentation. In information extraction, specific words or combinations of words are
identified that correspond to persons, places, or organizations. The linguistic features of the
word (capitalization, part-of-speech, orthography) are more important in these applications
than in typical language modeling or machine translation applications. Nevertheless, the
methods discussed in this section for incorporating linguistic features can be used for any
of the applications discussed in earlier sections. For the purpose of discussion, consider
a named-entity recognition application in which every entity is to be classified as one of
the categories corresponding to person (P), location (L), and other (O). In such cases, each
token in the training data has one of these labels. An example of a possible training sentence
is as follows:

William
︸ ︷︷ ︸

P

Jefferson
︸ ︷︷ ︸

P

Clinton
︸ ︷︷ ︸

P

lives
︸ ︷︷ ︸

O

in
︸︷︷︸

O

New
︸ ︷︷ ︸

L

York
︸ ︷︷ ︸

L

.

In practice, the tagging scheme is often more complex because it encodes information about
the beginning and end of a set of contiguous tokens with the same label. For test instances,
the tagging information about the tokens is not available.

Whh

x1

h1

Wxh

x2

h2

W�

x3

h3

W�

x4

h4

Wxh

Whh Whh

William Jefferson Clinton lives

Whh

x5

h5

W�

x6

h6

W�

x7

h7

W�

Whh
Whh

y5

Why

y6

Why

y7

Why

OTHER LOCATION

y1

Why

y2

Why

y3

Why

y4

Why

PERSON OTHERPERSON PERSON

f1

W�

f2

Wxh

f3

Wxh

f4

W�

f5

Wxh Wxh

f6

Wxh

f7

in New York

LOCATION

ONE-HOT

ENCODED

WORD

LINGUISTIC

FEATURES

Figure 7.12: Token-wise classification with linguistic features

The recurrent neural network can be defined in a similar way as in the case of language
modeling applications, except that the outputs are defined by the tags rather than the
next set of words. The input at each time-stamp t is the one-hot encoding xt of the token,
and the output yt is the tag. Furthermore, we have an additional set of q-dimensional
linguistic features f t associated with the tokens at time-stamp t. These linguistic features
might encode information about the capitalization, orthography, capitalization, and so on.
The hidden layer, therefore, receives two separate inputs from the tokens and from the
linguistic features. The corresponding architecture is illustrated in Figure 7.12. We have
an additional p × q matrix Wfh that maps the features f t to the hidden layer. Then, the
recurrence condition at each time-stamp t is as follows:

ht = tanh(Wxhxt +Wfhf t +Whhht−1)

yt = Whyht

The main innovation here is in the use of an additional weight matrix for the linguistic
features. The change in the type of output tag does not affect the overall model significantly.

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 305

In some variations, it might also be helpful to concatenate the linguistic and token-wise
features into as separate embedding layer, rather than adding them. The work in [565]
provides an example in the case of recommender systems, although the principle can also
be applied here. The overall learning process is also not significantly different. In token-level
classification applications, it is sometimes helpful to use bidirectional recurrent networks in
which recurrence occurs in both temporal directions [434].

7.7.5 Time-Series Forecasting and Prediction

Recurrent neural networks present a natural choice for time-series forecasting and predic-
tion. The main difference from text is that the input units are real-valued vectors rather
than (discrete) one-hot encoded vectors. For real-valued prediction, the output layer always
uses linear activations, rather than the softmax function. In the event that the output is
a discrete value (e.g., identifier of a specific event), it is also possible to use discrete out-
puts with softmax activation. Although any of the variants of the recurrent neural network
(e.g., LSTM or GRU) can be used, one of the common problems in time-series analysis
is that such sequences can be extremely long. Even though the LSTM and the GRU pro-
vide a certain level of protection with increased time-series length, there are limitations to
the performance. This is because LSTMs and GRUs do degrade for series beyond certain
lengths. Many time-series can have a very large number of time-stamps with various types of
short- and long-term dependencies. The prediction and forecasting problems present unique
challenges in these cases.

However, a number of useful solutions exist, at least in cases where the number of
time-series to be forecasted is not too large. The most effective method is the use of the
echo-state network (cf. Section 7.4), in which it is possible to effectively forecast and predict
both real-valued and discrete observations with a small number of time-series. The caveat
that the number of inputs is small is an important one, because echo-state networks rely
on randomized expansion of the feature space via the hidden units (see Section 7.4). If the
number of original time series is too large, then it may not turn out to be practical to
expand the dimensionality of the hidden space sufficiently to capture this type of feature
engineering. It is noteworthy that the vast majority of forecasting models in the time-series
literature are, in fact, univariate models. A classical example is the autoregressive model
(AR), which uses the immediate window of history in order to perform forecasting.

The use of an echo-state network in order to perform time-series regression and forecast-
ing is straightforward. At each time-stamp, the input is a vector of d values corresponding
to the d different time series that are being modeled. It is assumed that the d time series
are synchronized, and this is often accomplished by preprocessing and interpolation. The
output at each time-stamp is the predicted value. In forecasting, the predicted value is sim-
ply the value(s) of the different time-series at k units ahead. One can view this approach
as the time-series analog of language models with discrete sequences. It is also possible to
choose an output corresponding to a time-series not present in the data (e.g., predicting one
stock price from another) or to choose an output corresponding to a discrete event (e.g.,
equipment failure). The main differences among all these cases lie in the specific choice of
the loss function for the output at hand. In the specific case of time-series forecasting, a
neat relationship can be shown between autoregressive models and echo-state networks.

306 CHAPTER 7. RECURRENT NEURAL NETWORKS

Relationship with Autoregressive Models

An autoregressive model models the values of a time-series as a linear function of its im-
mediate history of length p. The p coefficients of this model are learned with linear re-
gression. Echo-state networks can be shown to be closely related to autoregressive mod-
els, in which the connections of the hidden-to-hidden matrix are sampled in a partic-
ular way. The additional power of the echo-state network over an autoregressive model
arises from the nonlinearity used in the hidden-to-hidden layer. In order to understand
this point, we will consider the special case of an echo-state network in which its input
corresponds to a single time series and the hidden-to-hidden layers have linear activations.
Now imagine that we could somehow choose the hidden-to-hidden connections in such a
way that the values of the hidden state in each time-stamp is exactly equal to the values
of the time-series in the last p ticks. What kind of sampled weight matrix would achieve
this goal?

First, the hidden state needs to have p units, and therefore the size of Whh is p× p. It is
easy to show that a weight matrix Whh that shifts the hidden state by one unit and copies
the input value to the vacated state caused by the shifting will result in a hidden state,
which is exactly the same as the last window of p points. In other words, the matrix Whh

will have exactly (p − 1) non-zero entries of the form (i, i + 1) for each i ∈ {1 . . . p − 1}.
As a result, pre-multiplying any p-dimensional column vector ht with Whh will shift the
entries of ht by one unit. For a 1-dimensional time-series, the element xt is a 1-dimensional
input into the tth hidden state of the echo state network, and Wxh is therefore of size p×1.
Setting only the entry (p, 0) of Wxh to 1 and all other entries to 0 will result in copying
xt into the first element of ht. The matrix Why is a 1 × p matrix of learned weights, so
that Whyht yields the prediction ŷt of the observed value yt. In autoregressive modeling,
the value of yt is simply set to xt+k for some lookahead k, and the value of k is often set
to 1. It is noteworthy that the matrices Whh and Wxh are fixed, and only Why needs to
learned. This process leads to the development of a model that is identical to the time-series
autoregressive model [3].

The main difference of the time-series autoregressive model from the echo-state net-
work is that the latter fixes Whh and Wxh randomly, and uses much larger dimensionalities
of the hidden states. Furthermore, nonlinear activations are used in the hidden units. As
long as the spectral radius of Whh is (slightly) less than 1, a random choice of the ma-
trices Whh and Wxh with linear activations can be viewed as a decay-based variant of
the autoregressive model. This is because the matrix Whh only performs a random (but
slightly decaying) transformation of the previous hidden state. Using a decaying random
projection of the previous hidden state intuitively achieves similar goals as a sliding window-
shifted copy of the previous state. The precise spectral radius of Whh governs the rate of
decay. With a sufficient number of hidden states, the matrix Why provides enough de-
grees of freedom to model any decay-based function of recent history. Furthermore, the
proper scaling of the Wxh ensures that the most recent entry is not given too much or
too little weight. Note that echo-state networks do test different scalings of the matrix
Wxh to ensure that the effect of this input does not wipe out the contributions from the
hidden states. The nonlinear activations in the echo-state network give greater power to
this approach over a time-series autoregressive model. In a sense, echo-state networks can
model complex nonlinear dynamics of the time-series, unlike an off-the-shelf autoregressive
model.

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 307

7.7.6 Temporal Recommender Systems

Several solutions [465, 534, 565] have been proposed in recent years for temporal modeling of
recommender systems. Some of these methods use temporal aspects of users, whereas others
use temporal aspects of users and items. One observation is that the properties of items
tend to be more strongly fixed in time than the properties of users. Therefore, solutions
that use the temporal modeling only at the user level are often sufficient. However, some
methods [534] perform the temporal modeling both at the user level and at the item level.

In the following, we discuss a simplification of the model discussed in [465]. In temporal
recommender systems, the time-stamps associated with user ratings are leveraged for the
recommendation process. Consider a case in which the observed rating of user i for item j
at time-stamp t is denoted by rijt. For simplicity, we assume that the time-stamp t is simply
the index of the rating in the sequential order it was received (although many models use
the wall-clock time). Therefore, the sequence being modeled by the RNN is a sequence of
rating values associated with the content-centric representations of the users and items to
which the rating belongs. Therefore, we want to model the value of the rating as a function
of content-centric inputs at each time-stamp.

FEEDFORWARD

NETWORK

(STATIC ITEM

EMBEDDING)

FEEDFORWARD

NETWORK

(STATIC USER

EMBEDDING)

RECURRENT

NETWORK

(DYNAMIC USER

EMBEDDING AT t)

FUSED USER

EMBEDDING AT t

STATIC ITEM FEATURES

(e.g., item descrip�on)

STATIC USER FEATURES

(e.g., user profile/all accessed items)

DYNAMIC USER FEATURES at t

(e.g., short window of accesses)

RATING VALUE AT TIME STAMP t

Figure 7.13: Recommendations with recurrent neural networks. At each time-stamp, the
static/dynamic user features and static item features are input, and a rating value is output
for that user-item combination.

We describe these content-centric representations below. The prediction of the rating rijt
is assumed to be depend on (i) static features associated with the item, (ii) static features
associated with the user, and (iii) the dynamic features associated with the user. The static
features associated with the item might be item titles or descriptions, and one can create a
bag-of-words representation of the item. The static features associated with the user might
be a user-specific profile or a fixed history of accesses of this user, which does not change over
the data set. The static features associated with the users are also typically represented as
a bag of words, and one can even consider item-rating pairs as pseudo-keywords in order to
combine user-specified keywords with ratings activity. In the case where ratings activity is
used, a fixed history of accesses of the user is always leveraged for designing static features.
The dynamic user features are more interesting because they are based on the dynamically
changing user access history. In this case, a short history of item-rating pairs can be used
as pseudo-keywords, and a bag-of-words representation can be created at time-stamp t.

308 CHAPTER 7. RECURRENT NEURAL NETWORKS

In several cases, explicit ratings are not available, but implicit feedback data is available
corresponding to a user clicking on an item. In the event that implicit feedback is used,
negative sampling becomes necessary in which user-item pairs for which activity has not
occurred are included in the sequence at random. This approach can be viewed as a hy-
brid between a content-based and collaborative recommendation approach. While it does
use the user-item-rating triplets like a traditional recommender model, the content-centric
representations of the users and items are input at each time-stamp. However, the inputs at
different time-stamps correspond to different user-item pairs, and therefore the collaborative
power of the patterns of ratings among different users and items is used as well.

The overall architecture of this recommender system is illustrated in Figure 7.13. It is
evident that this architecture contains three different subnetworks to create feature embed-
dings out of static item features, static user features, and dynamic user features. The first
two of these three are feed-forward networks, whereas the last of them is a recurrent neural
network. First, the embeddings from the two user-centric networks are fused using either
concatenation or element-wise multiplication. In the latter case, it is necessary to create
embeddings of the same dimensionality for static and dynamic user features. Then, this
fused user embedding at time-stamp t and the static item embedding is used to predict the
rating at time-stamp t. For implicit feedback data, one can predict probabilities of positive
activity for a particular user-item pair. The chosen loss function depends on the nature of
the rating being predicted. The training algorithm needs to work with a consecutive se-
quence of training triplets (of some fixed mini-batch size) and backpropagate to the static
and dynamic portions of the network simultaneously.

The aforementioned presentation has simplified several aspects of the training procedure
presented in [465]. For example, it is assumed that a single rating is received at each time-
stamp t, and that a fixed time-horizon is sufficient for temporal modeling. In reality, different
settings might required different levels of granularity at which temporal aspects are handled.
Therefore, the work in [465] proposes methods to address varying levels of granularity in
the modeling process. It is also possible to perform the recommendation under a pure
collaborative filtering regime without using content-centric features in any way. For example,
it is possible9 to adapt the recommender system discussed in Section 2.5.7 of Chapter 2 by
using a recurrent neural network (cf. Exercise 3).

Another recent work [565] treats the problem as that of working with product-action-
time triplets at an e-commerce site. The idea is that a site logs sequential actions performed
by each user to various products, such as visiting a product page from a homepage, category
page, or sales page, and that of actually buying the product. Each action has a dwell time,
which indicates the amount of time that the user spends in performing that action. The dwell
time is discretized into a set of intervals, which would be uniform or geometric, depending on
the application at hand. It makes sense to discretize the time into geometrically increasing
intervals.

One sequence is collected for each user, corresponding to the actions performed by the
user. One can represent the rth element of the sequence as (pr, ar, tr), where pr is the
one-hot encoded product, ar is the one-hot encoded action, and tr is the one-hot encoded
discretized value of the time interval. Each of pr, ar, and tr is a one-hot encoded vector. An
embedding layer with weight matrices Wp, Wa, and Wt is used to create the representation
er = (Wppr,Waar,Wttr). These matrices were pretrained with word2vec training applied
to sequences extracted from the e-commerce site. Subsequently, the input to the recurrent

9Even though the adaptation from Section 2.5.7 is the most natural and obvious one, we have not seen
it elsewhere in the literature. Therefore, it might be an interesting exercise for the reader to implement the
adaptation of Exercise 3.

7.7. APPLICATIONS OF RECURRENT NEURAL NETWORKS 309

neural network is e1 . . . eT , which was used to predict the outputs o1 . . . oT . The output at
the time-stamp t corresponds to the next action of the user at that time-stamp. Note that
the embedding layer is also attached to the recurrent network, and it is fine-tuned during
backpropagation (beyond its word2vec initialization). The original work [565] also adds an
attention layer, although good results can be obtained even without this layer.

7.7.7 Secondary Protein Structure Prediction

In protein structure prediction, the elements of the sequence are the symbols representing
one of the 20 amino acids. The 20 possible amino acids are akin to the vocabulary used in
the text setting. Therefore, a one-hot encoding of the input is effective in these cases. Each
position is associated with a class label corresponding to the secondary protein structure.
This secondary structure can be either the alpha-helix, beta-sheet, or coil. Therefore, this
problem can be reduced to token-level classification. A three-way softmax is used in the
output layer. The work in [20] used a bidirectional recurrent neural network for prediction.
This is because protein structure prediction is a problem that benefits from the context on
both sides of a particular position. In general, the choice between using a uni-directional
network and a bidirectional network is highly regulated by whether or not the prediction is
causal to a historical segment or whether it depends on the context on both sides.

7.7.8 End-to-End Speech Recognition

In end-to-end speech recognition, one attempts to transcribe the raw audio files into char-
acter sequences while going through as few intermediate steps as possible. A small amount
of preprocessing is still needed in order to make the data presentable as an input sequence.
For example, the work in [157] presents the data as spectrograms derived from raw audio
files using the specgram function of the matplotlib python toolkit. The width used was 254
Fourier windows with an overlap of 127 frames and 128 inputs per frame. The output is
a character in the transcription sequence, which could include a character, a punctuation
mark, a space, or even a null character. The label could be different depending on the ap-
plication at hand. For example, the labels could be characters, phonemes, or musical notes.
A bidirectional recurrent neural network is most appropriate to this setting, because the
context on both sides of a character helps in improving accuracy.

One challenge associated with this type of setting is that we need the alignment between
the frame representation of the audios and the transcription sequence. This type of align-
ment is not available a priori, and is in fact one of the outputs of the system. This leads
to the problem of circular dependency between segmentation and recognition, which is also
referred to as Sayre’s paradox. This problem is solved with the use of connectionist tem-
poral classification. In this approach, a dynamic programming algorithm [153] is combined
with the (softmax) probabilistic outputs of the recurrent network in order to determine
the alignment that maximizes the overall probability of generation. The reader is referred
to [153, 157] for details.

7.7.9 Handwriting Recognition

A closely related application to speech recognition is that of handwriting recognition [154,
156]. In handwriting recognition, the input consists of a sequence of (x, y) coordinates, which
represents the position of the tip of the pen at each time-stamp. The output corresponds
to a sequence of characters written by the pen. These coordinates are then used to extract

310 CHAPTER 7. RECURRENT NEURAL NETWORKS

further features such as a feature indicating whether the pen is touching the writing surface,
the angles between nearby line segments, the velocity of the writing, and normalized values
of the coordinates. The work in [154] extracts a total of 25 features. It is evident that
multiple coordinates will create a character. However, it is hard to know exactly how many
coordinates will create each character because it may vary significantly over the handwriting
and style of different writers. Much like speech recognition, the issue of proper segmentation
creates numerous challenges. This is the same Sayre’s paradox that is encountered in speech
recognition.

In unconstrained handwriting recognition, the handwriting contains a set of strokes,
and by putting them together one can obtain characters. One possibility is to identify the
strokes up front, and then use them to build characters. However, such an approach leads
to inaccurate results, because the identification of stroke boundaries is an error-prone task.
Since the errors tend to be additive over different phases, breaking up the task into separate
stages is generally not a good idea. At a basic level, the task of handwriting recognition
is no different from speech recognition. The only difference is in terms of the specific way
in which the inputs and outputs are represented. As in the case of speech recognition,
connectionist temporal classification is used in which a dynamic programming approach is
combined with the softmax outputs of a recurrent neural network. Therefore, the alignment
and the label-wise classification is performed simultaneously with dynamic programming
in order to maximize the probability that a particular output sequence is generated for a
particular input sequence. Readers are referred to [154, 156].

7.8 Summary

Recurrent neural networks are a class of neural networks that are used for sequence mod-
eling. They can be expressed as time-layered networks in which the weights are shared
between different layers. Recurrent neural networks can be hard to train, because they are
prone to the vanishing and the exploding gradient problems. Some of these problems can be
addressed with the use of enhanced training methods as discussed in Chapter 3. However,
there are other ways of training more robust recurrent networks. A particular example that
has found favor is the use of long short-term memory network. This network uses a gentler
update process of the hidden states in order to avoid the vanishing and exploding gradient
problems. Recurrent neural networks and their variants have found use in many applica-
tions such as image captioning, token-level classification, sentence classification, sentiment
analysis, speech recognition, machine translation, and computational biology.

7.9 Bibliographic Notes

One of the earliest forms of the recurrent network was the Elman network [111]. This
network was a precursor to modern recurrent networks. Werbos proposed the original version
of backpropagation through time [526]. Another early algorithm for backpropagation in
recurrent neural networks is provided in [375]. The vast majority of work on recurrent
networks has been on symbolic data, although there is also some work on real-valued time
series [80, 101, 559]. The regularization of recurrent neural networks is discussed in [552].

The effect of the spectral radius of the hidden-hidden matrix on the vanishing/exploding
gradient problem is discussed in [220]. A detailed discussion of the exploding gradient
problem and other problems associated with recurrent neural networks may be found

7.9. BIBLIOGRAPHIC NOTES 311

in [368, 369]. Recurrent neural networks (and their advanced variations) began to become
more attractive after about 2010, when hardware advancements, increased data, and algo-
rithmic tweaks made these methodologies far more attractive. The vanishing and exploding
gradient problems in different types of deep networks, including recurrent networks, are dis-
cussed in [140, 205, 368]. The gradient clipping rule was discussed by Mikolov in his Ph.D.
thesis [324]. The initialization of recurrent networks containing ReLUs is discussed in [271].

Early variants of the recurrent neural network included the echo-state network [219],
which is also referred to as the liquid-state machine [304]. This paradigm is also referred to
as reservoir computing. An overview of echo-state networks in the context of reservoir com-
puting principles is provided in [301]. The use of batch normalization is discussed in [214].
Teacher forcing methods are discussed in [105]. Initialization strategies that reduce the effect
of the vanishing and exploding gradient problems are discussed in [140].

The LSTM was first proposed in [204], and its use for language modeling is discussed
in [476]. The challenges associated with training recurrent neural networks are discussed
in [205, 368, 369]. It has been shown [326] that it is also possible to address some of the
problems associated with the vanishing and exploding gradient problems by imposing con-
straints on the hidden-to-hidden matrix. Specifically, a block of the matrix is constrained
to be close to the identity matrix, so that the corresponding hidden variables are updated
slowly in much the same way as the memory of the LSTM is updated slowly. Several
variations of recurrent neural networks and LSTMs for language modeling are discussed
in [69, 71, 151, 152, 314, 328]. Bidirectional recurrent neural networks are proposed in [434].
The particular discussion of LSTMs in this chapter is based on [151], and an alternative
gated recurrent unit (GRU) is presented in [69, 71]. A guide to understanding recurrent
neural networks is available in [233]. Further discussions on the sequence-centric and nat-
ural language applications of recurrent neural networks are available in [143, 298]. LSTM
networks are also used for sequence labeling [150], which is useful in sentiment analysis [578].
The use of a combination of convolutional neural networks and recurrent neural networks
for image captioning is discussed in [225, 509]. Sequence-to-sequence learning methods for
machine translation are discussed in [69, 231, 480]. Bidirectional recurrent networks and
LSTMs for protein structure prediction, handwriting recognition, translation, and speech
recognition are discussed in [20, 154, 155, 157, 378, 477]. In recent years, neural networks
have also been used in temporal collaborative filtering, which was first introduced in [258].
Numerous methods for temporal collaborative filtering are discussed in [465, 534, 560]. A
generative model for dialogues with recurrent networks is discussed in [439, 440]. The use
of recurrent neural networks for action recognition is discussed in [504].

Recurrent neural networks have also been generalized to recursive neural networks for
modeling arbitrary structural relationships in the data [379]. These methods generalize
the use of the recurrent neural networks to trees (rather than sequences) by considering
a tree-like computational graph. Their use for discovering task-dependent representations
is discussed in [144]. These methods can be applied to cases in which data structures are
considered as inputs to the neural network [121]. Recurrent neural networks are a special
case of recursive neural network in which the structure corresponds to a linear chain of
dependencies. The use of recursive neural networks for various types of natural-language
and scene-processing applications is discussed in [459, 460, 461].

7.9.1 Software Resources

Recurrent neural networks and their variants are supported by numerous software frame-
works like Caffe [571], Torch [572], Theano [573], and TensorFlow [574]. Several other frame-

312 CHAPTER 7. RECURRENT NEURAL NETWORKS

works like DeepLearning4j provide implementations of LSTMs [617]. Implementations of
sentiment analysis with LSTM networks are available at [578]. This approach is based
on the sequence labeling technique presented in [152]. A notable piece of code [580] is a
character-level RNN, and it is particularly instructive for learning purposes. The concep-
tual description of this code is provided in [233, 618].

7.10 Exercises

1. Download the character-level RNN in [580], and train it on the “tiny Shakespeare” data
set available at the same location. Create outputs of the language model after training
for (i) 5 epochs, (ii) 50 epochs, and (iii) 500 epochs. What significant differences do
you see between the three outputs?

2. Consider an echo-state network in which the hidden states are partitioned into K
groups with p/K units each. The hidden states of a particular group are only allowed
to have connections within their own group in the next time-stamp. Discuss how
this approach is related to an ensemble method in which K independent echo-state
networks are constructed and the predictions of the K networks are averaged.

3. Show how you can modify the feed-forward architecture discussed in Section 2.5.7 of
Chapter 2 in order to create a recurrent neural network that can handle temporal
recommender systems. Implement this adaptation and compare its performance to
the feed-forward architecture on the Netflix prize data set.

4. Consider a recurrent network in which the hidden states have a dimensionality of 2.
Every entry of the 2× 2 matrix Whh of transformations between hidden states is 3.5.
Furthermore, sigmoid activation is used between hidden states of different temporal
layers. Would such a network be more prone to the vanishing or the exploding gradient
problem?

5. Suppose that you have a large database of biological strings containing sequences of
nucleobases drawn from {A,C, T,G}. Some of these strings contain unusual mutations
representing changes in the nucleobases. Propose an unsupervised method (i.e., neural
architecture) using RNNs in order to detect these mutations.

6. How would your architecture for the previous question change if you were given a
training database in which the mutation positions in each sequence were tagged, and
the test database was untagged?

7. Recommend possible methods for pre-training the input and output layers in the
machine translation approach with sequence-to-sequence learning.

8. Consider a social network with a large volume of messages sent between sender-receiver
pairs, and we are interested only in the messages containing an identifying keyword,
referred to as a hashtag. Create a real-time model using an RNN, which has the
capability to recommend hashtags of interest to each user, together with potential
followers of that user who might be interested in messages related to that hashtag.
Assume that you have enough computational resources to incrementally train an RNN.

9. If the training data set is re-scaled by a particular factor, do the learned weights of
either batch normalization or layer normalization change? What would be your answer

7.10. EXERCISES 313

if only a small subset of points in the training data set are re-scaled? Would the learned
weights in either normalization method be affected if the data set is re-centered?

10. Consider a setting in which you have a large database of pairs of sentences in different
languages. Although you have sufficient representation of each language, some pairs
might not be well represented in the database. Show how you can use this training data
to (i) create the same universal code for a particular sentence across all languages, and
(ii) have the ability to translate even between pairs of languages not well represented
in the database.

Chapter 8

Convolutional Neural Networks

“The soul never thinks without a picture.”—Aristotle

8.1 Introduction

Convolutional neural networks are designed to work with grid-structured inputs, which
have strong spatial dependencies in local regions of the grid. The most obvious example of
grid-structured data is a 2-dimensional image. This type of data also exhibits spatial de-
pendencies, because adjacent spatial locations in an image often have similar color values of
the individual pixels. An additional dimension captures the different colors, which creates a
3-dimensional input volume. Therefore, the features in a convolutional neural network have
dependencies among one another based on spatial distances. Other forms of sequential data
like text, time-series, and sequences can also be considered special cases of grid-structured
data with various types of relationships among adjacent items. The vast majority of appli-
cations of convolutional neural networks focus on image data, although one can also use
these networks for all types of temporal, spatial, and spatiotemporal data.

An important property of image data is that it exhibits a certain level of translation
invariance, which is not the case in many other types of grid-structured data. For example,
a banana has the same interpretation, whether it is at the top or the bottom of an image.
Convolutional neural networks tend to create similar feature values from local regions with
similar patterns. One advantage of image data is that the effects of specific inputs on the
feature representations can often be described in an intuitive way. Therefore, this chapter
will primarily work with the image data setting. A brief discussion will also be devoted to
the applications of convolutional neural networks to other settings.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 8

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_8&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_8

316 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

An important defining characteristic of convolutional neural networks is an operation,
which is referred to as convolution. A convolution operation is a dot-product operation
between a grid-structured set of weights and similar grid-structured inputs drawn from
different spatial localities in the input volume. This type of operation is useful for data with
a high level of spatial or other locality, such as image data. Therefore, convolutional neural
networks are defined as networks that use the convolutional operation in at least one layer,
although most convolutional neural networks use this operation in multiple layers.

8.1.1 Historical Perspective and Biological Inspiration

Convolutional neural networks were one of the first success stories of deep learning, well be-
fore recent advancements in training techniques led to improved performance in other types
of architectures. In fact, the eye-catching successes of some convolutional neural network
architectures in image-classification contests after 2011 led to broader attention to the field
of deep learning. Long-standing benchmarks like ImageNet [581] with a top-5 classification
error-rate of more than 25% were brought down to less than 4% in the years between 2011
and 2015. Convolutional neural networks are well suited to the process of hierarchical fea-
ture engineering with depth; this is reflected in the fact that the deepest neural networks
in all domains are drawn from the field of convolutional networks. Furthermore, these net-
works also represent excellent examples of how biologically inspired neural networks can
sometimes provide ground-breaking results. The best convolutional neural networks today
reach or exceed human-level performance, a feat considered impossible by most experts in
computer vision only a couple of decades back.

The early motivation for convolutional neural networks was derived from experiments
by Hubel and Wiesel on a cat’s visual cortex [212]. The visual cortex has small regions
of cells that are sensitive to specific regions in the visual field. In other words, if specific
areas of the visual field are excited, then those cells in the visual cortex will be activated as
well. Furthermore, the excited cells also depend on the shape and orientation of the objects
in the visual field. For example, vertical edges cause some neuronal cells to be excited,
whereas horizontal edges cause other neuronal cells to be excited. The cells are connected
using a layered architecture, and this discovery led to the conjecture that mammals use
these different layers to construct portions of images at different levels of abstraction. From
a machine learning point of view, this principle is similar to that of hierarchical feature
extraction. As we will see later, convolutional neural networks achieve something similar by
encoding primitive shapes in earlier layers, and more complex shapes in later layers.

Based on these biological inspirations, the earliest neural model was the neocogni-
tron [127]. However, there were several differences between this model and the modern
convolutional neural network. The most prominent of these differences was that the notion
of weight sharing was not used. Based on this architecture, one of the first fully convolu-
tional architectures, referred to as LeNet-5 [279], was developed. This network was used
by banks to identify hand-written numbers on checks. Since then, the convolutional neural
network has not evolved much; the main difference is in terms of using more layers and sta-
ble activation functions like the ReLU. Furthermore, numerous training tricks and powerful
hardware options are available to achieve better success in training when working with deep
networks and large data sets.

A factor that has played an important role in increasing the prominence of convolutional
neural networks has been the annual ImageNet competition [582] (also referred to as “Ima-
geNet Large Scale Visual Recognition Challenge [ILSVRC]”). The ILSVRC competition uses
the ImageNet data set [581], which is discussed in Section 1.8.2 of Chapter 1. Convolutional

8.1. INTRODUCTION 317

neural networks have been consistent winners of this contest since 2012. In fact, the domi-
nance of convolutional neural networks for image classification is so well recognized today
that almost all entries in recent editions of this contest have been convolutional neural net-
works. One of the earliest methods that achieved success in the 2012 ImageNet competition
by a large margin was AlexNet [255]. Furthermore, the improvements in accuracy have been
so extraordinarily large in the last few years that it has changed the landscape of research
in the area. In spite of the fact that the vast majority of eye-catching performance gains
have occurred from 2012 to 2015, the architectural differences between recent winners and
some of the earliest convolutional neural networks are rather small at least at a conceptual
level. Nevertheless, small details seem to matter a lot when working with almost all types
of neural networks.

8.1.2 Broader Observations About Convolutional Neural Networks

The secret to the success of any neural architecture lies in tailoring the structure of the net-
work with a semantic understanding of the domain at hand. Convolutional neural networks
are heavily based on this principle, because they use sparse connections with a high-level of
parameter-sharing in a domain-sensitive way. In other words, not all states in a particular
layer are connected to those in the previous layer in an indiscriminate way. Rather, the
value of a feature in a particular layer is connected only to a local spatial region in the
previous layer with a consistent set of shared parameters across the full spatial footprint of
the image. This type of architecture can be viewed as a domain-aware regularization, which
was derived from the biological insights in Hubel and Wiesel’s early work. In general, the
success of the convolutional neural network has important lessons for other data domains.
A carefully designed architecture, in which the relationships and dependencies among the
data items are used in order to reduce the parameter footprint, provides the key to results
of high accuracy.

A significant level of domain-aware regularization is also available in recurrent neural
networks, which share the parameters from different temporal periods. This sharing is based
on the assumption that temporal dependencies remain invariant with time. Recurrent neural
networks are based on intuitive understanding of temporal relationships, whereas convolu-
tional neural networks are based on an intuitive understanding of spatial relationships. The
latter intuition was directly extracted from the organization of biological neurons in a cat’s
visual cortex. This outstanding success provides a motivation to explore how neuroscience
may be leveraged to design neural networks in clever ways. Even though artificial neural
networks are only caricatures of the true complexity of the biological brain, one should
not underestimate the intuition that one can obtain by studying the basic principles of
neuroscience [176].

Chapter Organization

This chapter is organized as follows. The next section will introduce the basics of a convo-
lutional neural network, the various operations, and the way in which they are organized.
The training process for convolutional networks is discussed in Section 8.3. Case studies
with some typical convolutional neural networks that have won recent competitions are dis-
cussed in Section 8.4. The convolutional autoencoder is discussed in Section 8.5. A variety
of applications of convolutional networks are discussed in Section 8.6. A summary is given
in Section 8.7.

318 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

8.2 The Basic Structure of a Convolutional Network

In convolutional neural networks, the states in each layer are arranged according to a spatial
grid structure. These spatial relationships are inherited from one layer to the next because
each feature value is based on a small local spatial region in the previous layer. It is impor-
tant to maintain these spatial relationships among the grid cells, because the convolution
operation and the transformation to the next layer is critically dependent on these relation-
ships. Each layer in the convolutional network is a 3-dimensional grid structure, which has
a height, width, and depth. The depth of a layer in a convolutional neural network should
not be confused with the depth of the network itself. The word “depth” (when used in the
context of a single layer) refers to the number of channels in each layer, such as the number
of primary color channels (e.g., blue, green, and red) in the input image or the number of
feature maps in the hidden layers. The use of the word “depth” to refer to both the number
of feature maps in each layer as well as the number of layers is an unfortunate overloading
of terminology used in convolutional networks, but we will be careful while using this term,
so that it is clear from its context.

The convolutional neural network functions much like a traditional feed-forward neural
network, except that the operations in its layers are spatially organized with sparse (and
carefully designed) connections between layers. The three types of layers that are commonly
present in a convolutional neural network are convolution, pooling, and ReLU. The ReLU
activation is no different from a traditional neural network. In addition, a final set of layers
is often fully connected and maps in an application-specific way to a set of output nodes.
In the following, we will describe each of the different types of operations and layers, and
the typical way in which these layers are interleaved in a convolutional neural network.

Why do we need depth in each layer of a convolutional neural network? To understand
this point, let us examine how the input to the convolutional neural network is organized.
The input data to the convolutional neural network is organized into a 2-dimensional grid
structure, and the values of the individual grid points are referred to as pixels. Each pixel,
therefore, corresponds to a spatial location within the image. However, in order to encode the
precise color of the pixel, we need a multidimensional array of values at each grid location.
In the RGB color scheme, we have an intensity of the three primary colors, corresponding
to red, green, and blue, respectively. Therefore, if the spatial dimensions of an image are
32×32 pixels and the depth is 3 (corresponding to the RGB color channels), then the overall
number of pixels in the image is 32 × 32 × 3. This particular image size is quite common,
and also occurs in a popularly used data set for benchmarking, known as CIFAR-10 [583].
An example of this organization is shown in Figure 8.1(a). It is natural to represent the
input layer in this 3-dimensional structure because two dimensions are devoted to spatial
relationships and a third dimension is devoted to the independent properties along these
channels. For example, the intensities of the primary colors are the independent properties
in the first layer. In the hidden layers, these independent properties correspond to various
types of shapes extracted from local regions of the image. For the purpose of discussion,
assume that the input in the qth layer is of size Lq×Bq×dq. Here, Lq refers to the height (or
length), Bq refers to the width (or breadth), and dq is the depth. In almost all image-centric
applications, the values of Lq and Bq are the same. However, we will work with separate
notations for height and width in order to retain generality in presentation.

For the first (input) layer, these values are decided by the nature of the input data and
its preprocessing. In the above example, the values are L1 = 32, B1 = 32, and d1 = 3.
Later layers have exactly the same 3-dimensional organization, except that each of the dq
2-dimensional grid of values for a particular input can no longer be considered a grid of

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 319

raw pixels. Furthermore, the value of dq is much larger than three for the hidden layers
because the number of independent properties of a given local region that are relevant to
classification can be quite significant. For q > 1, these grids of values are referred to as
feature maps or activation maps. These values are analogous to the values in the hidden
layers in a feed-forward network.

In the convolutional neural network, the parameters are organized into sets of
3-dimensional structural units, known as filters or kernels. The filter is usually square
in terms of its spatial dimensions, which are typically much smaller than those of the layer
the filter is applied to. On the other hand, the depth of a filter is always same is the same
as that of the layer to which it is applied. Assume that the dimensions of the filter in the
qth layer are Fq × Fq × dq. An example of a filter with F1 = 5 and d1 = 3 is shown in
Figure 8.1(a). It is common for the value of Fq to be small and odd. Examples of com-
monly used values of Fq are 3 and 5, although there are some interesting cases in which it
is possible to use Fq = 1.

The convolution operation places the filter at each possible position in the image (or
hidden layer) so that the filter fully overlaps with the image, and performs a dot product
between the Fq × Fq × dq parameters in the filter and the matching grid in the input
volume (with same size Fq ×Fq × dq). The dot product is performed by treating the entries
in the relevant 3-dimensional region of the input volume and the filter as vectors of size
Fq ×Fq × dq, so that the elements in both vectors are ordered based on their corresponding
positions in the grid-structured volume. How many possible positions are there for placing
the filter? This question is important, because each such position therefore defines a spatial
“pixel” (or, more accurately, a feature) in the next layer. In other words, the number of
alignments between the filter and image defines the spatial height and width of the next
hidden layer. The relative spatial positions of the features in the next layer are defined based
on the relative positions of the upper left corners of the corresponding spatial grids in the
previous layer. When performing convolutions in the qth layer, one can align the filter at
Lq+1 = (Lq −Fq +1) positions along the height and Bq+1 = (Bq −Fq +1) along the width
of the image (without having a portion of the filter “sticking out” from the borders of the
image). This results in a total of Lq+1 ×Bq+1 possible dot products, which defines the size
of the next hidden layer. In the previous example, the values of L2 and B2 are therefore
defined as follows:

L2 = 32− 5 + 1 = 28

B2 = 32− 5 + 1 = 28

The next hidden layer of size 28× 28 is shown in Figure 8.1(a). However, this hidden layer
also has a depth of size d2 = 5. Where does this depth come from? This is achieved by
using 5 different filters with their own independent sets of parameters. Each of these 5 sets
of spatially arranged features obtained from the output of a single filter is referred to as a
feature map. Clearly, an increased number of feature maps is a result of a larger number of
filters (i.e., parameter footprint), which is F 2

q ·dq ·dq+1 for the qth layer. The number of filters
used in each layer controls the capacity of the model because it directly controls the number
of parameters. Furthermore, increasing the number of filters in a particular layer increases
the number of feature maps (i.e., depth) of the next layer. It is possible for different layers
to have very different numbers of feature maps, depending on the number of filters we use
for the convolution operation in the previous layer. For example, the input layer typically
only has three color channels, but it is possible for the each of the later hidden layers to
have depths (i.e., number of feature maps) of more than 500. The idea here is that each

320 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

filter tries to identify a particular type of spatial pattern in a small rectangular region of
the image, and therefore a large number of filters is required to capture a broad variety
of the possible shapes that are combined to create the final image (unlike the case of the
input layer, in which three RGB channels are sufficient). Typically, the later layers tend
to have a smaller spatial footprint, but greater depth in terms of the number of feature
maps. For example, the filter shown in Figure 8.1(b) represents a horizontal edge detector
on a grayscale image with one channel. As shown in Figure 8.1(b), the resulting feature will
have high activation at each position where a horizontal edge is seen. A perfectly vertical
edge will give zero activation, whereas a slanted edge might give intermediate activation.
Therefore, sliding the filter everywhere in the image will already detect several key outlines
of the image in a single feature map of the output volume. Multiple filters are used to create
an output volume with more than one feature map. For example, a different filter might
create a spatial feature map of vertical edge activations.

DEPTH DEFINED BY NUMBER

OF DIFFERENT FILTERS (5)

5

3

3

32

32

28

28

5

5

INPUT

FILTER

OUTPUT

DEPTH OF INPUT AND

FILTER MUST MATCH
IMAGE

1

0

1 1

0 0

-1 -1 -1

HORIZONTAL EDGE

DETECTING FILTER

ZERO ACTIVATION

HIGH ACTIVATION

)b()a(

Figure 8.1: (a) The convolution between an input layer of size 32 × 32 × 3 and a filter of
size 5× 5× 3 produces an output layer with spatial dimensions 28× 28. The depth of the
resulting output depends on the number of distinct filters and not on the dimensions of
the input layer or filter. (b) Sliding a filter around the image tries to look for a particular
feature in various windows of the image.

We are now ready to formally define the convolution operation. The pth filter in the qth

layer has parameters denoted by the 3-dimensional tensor W (p,q) = [w
(p,q)
ijk]. The indices

i, j, k indicate the positions along the height, width, and depth of the filter. The feature

maps in the qth layer are represented by the 3-dimensional tensor H(q) = [h
(q)
ijk]. When the

value of q is 1, the special case corresponding to the notation H(1) simply represents the
input layer (which is not hidden). Then, the convolutional operations from the qth layer to
the (q + 1)th layer are defined as follows:

h
(q+1)
ijp =

Fq∑

r=1

Fq∑

s=1

dq∑

k=1

w
(p,q)
rsk h

(q)
i+r−1,j+s−1,k ∀i ∈ {1 . . . , Lq − Fq + 1}

∀j ∈ {1 . . . Bq − Fq + 1}
∀p ∈ {1 . . . dq+1}

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 321

The expression above seems notationally complex, although the underlying convolutional
operation is really a simple dot product over the entire volume of the filter, which is repeated
over all valid spatial positions (i, j) and filters (indexed by p). It is intuitively helpful to
understand a convolution operation by placing the filter at each of the 28×28 possible spatial
positions in the first layer of Figure 8.1(a) and performing a dot product between the vector
of 5× 5× 3 = 75 values in the filter and the corresponding 75 values in H(1). Even though
the size of the input layer in Figure 8.1(a) is 32×32, there are only (32−5+1)×(32−5+1)
possible spatial alignments between an input volume of size 32 × 32 and a filter of size
5× 5.

CONVOLVE

1

0

1 0

1 0

0 0 2

6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3

16 16

26

FILTER

INPUT

18

OUTPUT

25

14

15

16

20

7

14

15

16

21

16

21

21

7

14

3

16

2

16

16

26

13

15

23

Figure 8.2: An example of a convolution between a 7 × 7 × 1 input and a 3 × 3 × 1 filter
with stride of 1. A depth of 1 has been chosen for the filter/input for simplicity. For depths
larger than 1, the contributions of each input feature map will be added to create a single
value in the feature map. A single filter will always create a single feature map irrespective
of its depth.

The convolution operation brings to mind Hubel and Wiesel’s experiments that use the
activations in small regions of the visual field to activate particular neurons. In the case of
convolutional neural networks, this visual field is defined by the filter, which is applied to
all locations of the image in order to detect the presence of a shape at each spatial location.
Furthermore, the filters in earlier layers tend to detect more primitive shapes, whereas the
filters in later layers create more complex compositions of these primitive shapes. This is not
particularly surprising because most deep neural networks are good at hierarchical feature
engineering.

One property of convolution is that it shows equivariance to translation. In other words,
if we shifted the pixel values in the input in any direction by one unit and then applied
convolution, the corresponding feature values will shift with the input values. This is because
of the shared parameters of the filter across the entire convolution. The reason for sharing

322 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

parameters across the entire convolution is that the presence of a particular shape in any
part of the image should be processed in the same way irrespective of its specific spatial
location.

In the following, we provide an example of the convolution operation. In Figure 8.2, we
have shown an example of an input layer and a filter with depth 1 for simplicity (which does
occur in the case of grayscale images with a single color channel). Note that the depth of a
layer must exactly match that of its filter/kernel, and the contributions of the dot products
over all the feature maps in the corresponding grid region of a particular layer will need
to be added (in the general case) to create a single output feature value in the next layer.
Figure 8.2 depicts two specific examples of the convolution operations with a layer of size
7×7×1 and a 3×3×1 filter in the bottom row. Furthermore, the entire feature map of the
next layer is shown on the upper right-hand side of Figure 8.2. Examples of two convolution
operations are shown in which the outputs are 16 and 26, respectively. These values are
arrived at by using the following multiplication and aggregation operations:

5× 1 + 8× 1 + 1× 1 + 1× 2 = 16

4× 1 + 4× 1 + 4× 1 + 7× 2 = 26

The multiplications with zeros have been omitted in the above aggregation. In the event that
the depths of the layer and its corresponding filter are greater than 1, the above operations
are performed for each spatial map and then aggregated across the entire depth of the filter.

A convolution in the qth layer increases the receptive field of a feature from the qth layer
to the (q+1)th layer. In other words, each feature in the next layer captures a larger spatial
region in the input layer. For example, when using a 3 × 3 filter convolution successively
in three layers, the activations in the first, second, and third hidden layers capture pixel
regions of size 3×3, 5×5, and 7×7, respectively, in the original input image. As we will see
later, other types of operations increase the receptive fields further, as they reduce the size
of the spatial footprint of the layers. This is a natural consequence of the fact that features
in later layers capture complex characteristics of the image over larger spatial regions, and
then combine the simpler features in earlier layers.

When performing the operations from the qth layer to the (q + 1)th layer, the depth
dq+1 of the computed layer depends on the number of filters in the qth layer, and it is
independent of the depth of the qth layer or any of its other dimensions. In other words,
the depth dq+1 in the (q + 1)th layer is always equal to the number of filters in the qth
layer. For example, the depth of the second layer in Figure 8.1(a) is 5, because a total of
five filters are used in the first layer for the transformation. However, in order to perform
the convolutions in the second layer (to create the third layer), one must now use filters of
depth 5 in order to match the new depth of this layer, even though filters of depth 3 were
used in the convolutions of the first layer (to create the second layer).

8.2.1 Padding

One observation is that the convolution operation reduces the size of the (q + 1)th layer
in comparison with the size of the qth layer. This type of reduction in size is not desirable
in general, because it tends to lose some information along the borders of the image (or
of the feature map, in the case of hidden layers). This problem can be resolved by using
padding. In padding, one adds (Fq−1)/2 “pixels” all around the borders of the feature map
in order to maintain the spatial footprint. Note that these pixels are really feature values
in the case of padding hidden layers. The value of each of these padded feature values is set

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 323

6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3 6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

PAD

Figure 8.3: An example of padding. Each of the dq activation maps in the entire depth of
the qth layer are padded in this way.

to 0, irrespective of whether the input or the hidden layers are being padded. As a result,
the spatial height and width of the input volume will both increase by (Fq − 1), which is
exactly what they reduce by (in the output volume) after the convolution is performed. The
padded portions do not contribute to the final dot product because their values are set to
0. In a sense, what padding does is to allow the convolution operation with a portion of the
filter “sticking out” from the borders of the layer and then performing the dot product only
over the portion of the layer where the values are defined. This type of padding is referred
to as half-padding because (almost) half the filter is sticking out from all sides of the spatial
input in the case where the filter is placed in its extreme spatial position along the edges.
Half-padding is designed to maintain the spatial footprint exactly.

When padding is not used, the resulting “padding” is also referred to as a valid padding.
Valid padding generally does not work well from an experimental point of view. Using
half-padding ensures that some of the critical information at the borders of the layer is
represented in a standalone way. In the case of valid padding, the contributions of the
pixels on the borders of the layer will be under-represented compared to the central pixels
in the next hidden layer, which is undesirable. Furthermore, this under-representation will
be compounded over multiple layers. Therefore, padding is typically performed in all layers,
and not just in the first layer where the spatial locations correspond to input values. Consider
a situation in which the layer has size 32×32×3 and the filter is of size 5×5×3. Therefore,
(5 − 1)/2 = 2 zeros are padded on all sides of the image. As a result, the 32 × 32 spatial
footprint first increases to 36× 36 because of padding, and then it reduces back to 32× 32
after performing the convolution. An example of the padding of a single feature map is
shown in Figure 8.3, where two zeros are padded on all sides of the image (or feature map).
This is a similar situation as discussed above (in terms of addition of two zeros), except
that the spatial dimensions of the image are much smaller than 32× 32 in order to enable
illustration in a reasonable amount of space.

Another useful form of padding is full-padding. In full-padding, we allow (almost) the
full filter to stick out from various sides of the input. In other words, a portion of the filter
of size Fq − 1 is allowed to stick out from any side of the input with an overlap of only one
spatial feature. For example, the kernel and the input image might overlap at a single pixel
at an extreme corner. Therefore, the input is padded with (Fq − 1) zeros on each side. In
other words, each spatial dimension of the input increases by 2(Fq − 1). Therefore, if the

324 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

input dimensions in the original image are Lq and Bq, the padded spatial dimensions in the
input volume become Lq +2(Fq − 1) and Bq +2(Fq − 1). After performing the convolution,
the feature-map dimensions in layer (q+1) become Lq+Fq−1 and Bq+Fq−1, respectively.
While convolution normally reduces the spatial footprint, full padding increases the spatial
footprint. Interestingly, full-padding increases each dimension of the spatial footprint by
the same value (Fq − 1) that no-padding decreases it. This relationship is not a coincidence
because a “reverse” convolution operation can be implemented by applying another convolu-
tion on the fully padded output (of the original convolution) with an appropriately defined
kernel of the same size. This type of “reverse” convolution occurs frequently in the back-
propagation and autoencoder algorithms for convolutional neural networks. Fully padded
inputs are useful because they increase the spatial footprint, which is required in several
types of convolutional autoencoders.

8.2.2 Strides

There are other ways in which convolution can reduce the spatial footprint of the image (or
hidden layer). The above approach performs the convolution at every position in the spatial
location of the feature map. However, it is not necessary to perform the convolution at every
spatial position in the layer. One can reduce the level of granularity of the convolution by
using the notion of strides. The description above corresponds to the case when a stride
of 1 is used. When a stride of Sq is used in the qth layer, the convolution is performed at
the locations 1, Sq + 1, 2Sq + 1, and so on along both spatial dimensions of the layer. The
spatial size of the output on performing this convolution1 has height of (Lq − Fq)/Sq + 1
and a width of (Bq − Fq)/Sq + 1. As a result, the use of strides will result in a reduction
of each spatial dimension of the layer by a factor of approximately Sq and the area by S2

q ,
although the actual factor may vary because of edge effects. It is most common to use a
stride of 1, although a stride of 2 is occasionally used as well. It is rare to use strides more
than 2 in normal circumstances. Even though a stride of 4 was used in the input layer of
the winning architecture [255] of the ILSVRC competition of 2012, the winning entry in
the subsequent year reduced the stride to 2 [556] to improve accuracy. Larger strides can
be helpful in memory-constrained settings or to reduce overfitting if the spatial resolution
is unnecessarily high. Strides have the effect of rapidly increasing the receptive field of each
feature in the hidden layer, while reducing the spatial footprint of the entire layer. An
increased receptive field is useful in order to capture a complex feature in a larger spatial
region of the image. As we will see later, the hierarchical feature engineering process of
a convolutional neural network captures more complex shapes in later layers. Historically,
the receptive fields have been increased with another operation, known as the max-pooling
operation. In recent years, larger strides have been used in lieu [184, 466] of max-pooling
operations, which will be discussed later.

8.2.3 Typical Settings

It is common to use stride sizes of 1 in most settings. Even when strides are used, small
strides of size 2 are used. Furthermore, it is common to have Lq = Bq. In other words, it
is desirable to work with square images. In cases where the input images are not square,
preprocessing is used to enforce this property. For example, one can extract square patches

1Here, it is assumed that (Lq − Fq) is exactly divisible by Sq in order to obtain a clean fit of the
convolution filter with the original image. Otherwise, some ad hoc modifications are needed to handle edge
effects. In general, this is not a desirable solution.

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 325

of the image to create the training data. The number of filters in each layer is often a power
of 2, because this often results in more efficient processing. Such an approach also leads to
hidden layer depths that are powers of 2. Typical values of the spatial extent of the filter
size (denoted by Fq) are 3 or 5. In general, small filter sizes often provide the best results,
although some practical challenges exist in using filter sizes that are too small. Small filter
sizes typically lead to deeper networks (for the same parameter footprint) and therefore
tend to be more powerful. In fact, one of the top entries in an ILSVRC contest, referred to
as VGG [454], was the first to experiment with a spatial filter dimension of only Fq = 3 for
all layers, and the approach was found to work very well in comparison with larger filter
sizes.

Use of Bias

As in all neural networks, it is also possible to add biases to the forward operations. Each
unique filter in a layer is associated with its own bias. Therefore, the pth filter in the qth
layer has bias b(p,q). When any convolution is performed with the pth filter in the qth layer,
the value of b(p,q) is added to the dot product. The use of the bias simply increases the
number of parameters in each filter by 1, and therefore it is not a significant overhead. Like
all other parameters, the bias is learned during backpropagation. One can treat the bias
as a weight of a connection whose input is always set to +1. This special input is used in
all convolutions, irrespective of the spatial location of the convolution. Therefore, one can
assume that a special pixel appears in the input whose value is always set to 1. Therefore,
the number of input features in the qth layer is 1 + Lq × Bq × dq. This is a standard
feature-engineering trick that is used for handling bias in all forms of machine learning.

8.2.4 The ReLU Layer

The convolution operation is interleaved with the pooling and ReLU operations. The ReLU
activation is not very different from how it is applied in a traditional neural network. For each
of the Lq ×Bq × dq values in a layer, the ReLU activation function is applied to it to create
Lq×Bq×dq thresholded values. These values are then passed on to the next layer. Therefore,
applying the ReLU does not change the dimensions of a layer because it is a simple one-to-
one mapping of activation values. In traditional neural networks, the activation function is
combined with a linear transformation with a matrix of weights to create the next layer of
activations. Similarly, a ReLU typically follows a convolution operation (which is the rough
equivalent of the linear transformation in traditional neural networks), and the ReLU layer
is often not explicitly shown in pictorial illustrations of the convolution neural network
architectures.

It is noteworthy that the use of the ReLU activation function is a recent evolution in
neural network design. In the earlier years, saturating activation functions like sigmoid and
tanh were used. However, it was shown in [255] that the use of the ReLU has tremendous
advantages over these activation functions both in terms of speed and accuracy. Increased
speed is also connected to accuracy because it allows one to use deeper models and train
them for a longer time. In recent years, the use of the ReLU activation function has replaced
the other activation functions in convolutional neural network design to an extent that
this chapter will simply use the ReLU as the default activation function (unless otherwise
mentioned).

326 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

8.2.5 Pooling

The pooling operation is, however, quite different. The pooling operation works on small
grid regions of size Pq × Pq in each layer, and produces another layer with the same depth
(unlike filters). For each square region of size Pq ×Pq in each of the dq activation maps, the
maximum of these values is returned. This approach is referred to as max-pooling. If a stride
of 1 is used, then this will produce a new layer of size (Lq − Pq + 1)× (Bq − Pq + 1)× dq.
However, it is more common to use a stride Sq > 1 in pooling. In such cases, the length of
the new layer will be (Lq −Pq)/Sq +1 and the breadth will be (Bq −Pq)/Sq +1. Therefore,
pooling drastically reduces the spatial dimensions of each activation map.

Unlike with convolution operations, pooling is done at the level of each activation map.
Whereas a convolution operation simultaneously uses all dq feature maps in combination
with a filter to produce a single feature value, pooling independently operates on each
feature map to produce another feature map. Therefore, the operation of pooling does not
change the number of feature maps. In other words, the depth of the layer created using
pooling is the same as that of the layer on which the pooling operation was performed.
Examples of pooling with strides of 1 and 2 are shown in Figure 8.4. Here, we use pooling
over 3×3 regions. The typical size Pq of the region over which one performs pooling is 2×2.
At a stride of 2, there would be no overlap among the different regions being pooled, and it
is quite common to use this type of setting. However, it has sometimes been suggested that
it is desirable to have at least some overlap among the spatial units at which the pooling is
performed, because it makes the approach less likely to overfit.

6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3

8 8

7

INPUT

7

OUTPUT

7

8

8

8

7

7

8

8

8

5

5

5

6

6

5

5

5

6

6

5

7

7

7

6

5

7

7 5

8 5

8 6 6

3X3 POOLING

STRIDE=1

3X3 POOLING

STRIDE=1

3X3 POOLING

STRIDE=1

OUTPUT

Figure 8.4: An example of a max-pooling of one activation map of size 7 × 7 with strides
of 1 and 2. A stride of 1 creates a 5 × 5 activation map with heavily repeating elements
because of maximization in overlapping regions. A stride of 2 creates a 3×3 activation map
with less overlap. Unlike convolution, each activation map is independently processed and
therefore the number of output activation maps is exactly equal to the number of input
activation maps.

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 327

Other types of pooling (like average-pooling) are possible but rarely used. In the ear-
liest convolutional network, referred to as LeNet-5, a variant of average pooling was used
and was referred2 to as subsampling. In general, max-pooling remains more popular than
average pooling. The max-pooling layers are interleaved with the convolutional/ReLU lay-
ers, although the former typically occurs much less frequently in deep architectures. This
is because pooling drastically reduces the spatial size of the feature map, and only a few
pooling operations are required to reduce the spatial map to a small constant size.

It is common to use pooling with 2 × 2 filters and a stride of 2, when it is desired to
reduce the spatial footprint of the activation maps. Pooling results in (some) invariance
to translation because shifting the image slightly does not change the activation map sig-
nificantly. This property is referred to as translation invariance. The idea is that similar
images often have very different relative locations of the distinctive shapes within them,
and translation invariance helps in being able to classify such images in a similar way. For
example, one should be able to classify a bird as a bird, irrespective of where it occurs in
the image.

Another important purpose of pooling is that it increases the size of the receptive field
while reducing the spatial footprint of the layer because of the use of strides larger than 1.
Increased sizes of receptive fields are needed to be able to capture larger regions of the image
within a complex feature in later layers. Most of the rapid reductions in spatial footprints
of the layers (and corresponding increases in receptive fields of the features) are caused
by the pooling operations. Convolutions increase the receptive field only gently unless the
stride is larger than 1. In recent years, it has been suggested that pooling is not always
necessary. One can design a network with only convolutional and ReLU operations, and
obtain the expansion of the receptive field by using larger strides within the convolutional
operations [184, 466]. Therefore, there is an emerging trend in recent years to get rid of
the max-pooling layers altogether. However, this trend has not been fully established and
validated, as of the writing of this book. There seem to be at least some arguments in favor
of max-pooling. Max-pooling introduces nonlinearity and a greater amount of translation
invariance, as compared to strided convolutions. Although nonlinearity can be achieved with
the ReLU activation function, the key point is that the effects of max-pooling cannot be
exactly replicated by strided convolutions either. At the very least, the two operations are
not fully interchangeable.

8.2.6 Fully Connected Layers

Each feature in the final spatial layer is connected to each hidden state in the first fully
connected layer. This layer functions in exactly the same way as a traditional feed-forward
network. In most cases, one might use more than one fully connected layer to increase
the power of the computations towards the end. The connections among these layers are
exactly structured like a traditional feed-forward network. Since the fully connected layers
are densely connected, the vast majority of parameters lie in the fully connected layers. For
example, if each of two fully connected layers has 4096 hidden units, then the connections
between them have more than 16 million weights. Similarly, the connections from the last
spatial layer to the first fully connected layer will have a large number of parameters.
Even though the convolutional layers have a larger number of activations (and a larger
memory footprint), the fully connected layers often have a larger number of connections
(and parameter footprint). The reason that activations contribute to the memory footprint

2In recent years, subsampling also refers to other operations that reduce the spatial footprint. Therefore,
there is some difference between the classical usage of this term and modern usage.

328 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

more significantly is that the number of activations are multiplied by mini-batch size while
tracking variables in the forward and backward passes of backpropagation. These trade-offs
are useful to keep in mind while choosing neural-network design based on specific types
of resource constraints (e.g., data versus memory availability). It is noteworthy that the
nature of the fully-connected layer can be sensitive to the application at hand. For example,
the nature of the fully-connected layer for a classification application would be somewhat
different from the case of a segmentation application. The aforementioned discussion is for
the most common use-case of a classification application.

The output layer of a convolutional neural network is designed in an application-specific
way. In the following, we will consider the representative application of classification. In
such a case, the output layer is fully connected to every neuron in the penultimate layer,
and has a weight associated with it. One might use the logistic, softmax, or linear activation
depending on the nature of the application (e.g., classification or regression).

One alternative to using fully connected layers is to use average pooling across the
whole spatial area of the final set of activation maps to create a single value. Therefore, the
number of features created in the final spatial layer will be exactly equal to the number
of filters. In this scenario, if the final activation maps are of size 7 × 7 × 256, then 256
features will be created. Each feature will be the result of aggregating 49 values. This type
of approach greatly reduces the parameter footprint of the fully connected layers, and it has
some advantages in terms of generalizability. This approach was used in GoogLeNet [485]. In
some applications like image segmentation, each pixel is associated with a class label, and
one does not use fully connected layers. Fully convolutional networks with 1×1 convolutions
are used in order to create an output spatial map.

8.2.7 The Interleaving Between Layers

The convolution, pooling, and ReLU layers are typically interleaved in a neural network in
order to increase the expressive power of the network. The ReLU layers often follow the
convolutional layers, just as a nonlinear activation function typically follows the linear dot
product in traditional neural networks. Therefore, the convolutional and ReLU layers are
typically stuck together one after the other. Some pictorial illustrations of neural architec-
tures like AlexNet [255] do not explicitly show the ReLU layers because they are assumed
to be always stuck to the end of the linear convolutional layers. After two or three sets of
convolutional-ReLU combinations, one might have a max-pooling layer. Examples of this
basic pattern are as follows:

CRCRP

CRCRCRP

Here, the convolutional layer is denoted by C, the ReLU layer is denoted by R, and the
max-pooling layer is denoted by P. This entire pattern (including the max-pooling layer)
might be repeated a few times in order to create a deep neural network. For example, if the
first pattern above is repeated three times and followed by a fully connected layer (denoted
by F), then we have the following neural network:

CRCRPCRCRPCRCRPF

The description above is not complete because one needs to specify the number/size/padding
of filters/pooling layers. The pooling layer is the key step that tends to reduce the spatial

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 329

footprint of the activation maps because it uses strides that are larger than 1. It is also possi-
ble to reduce the spatial footprints with strided convolutions instead of max-pooling. These
networks are often quite deep, and it is not uncommon to have convolutional networks with
more than 15 layers. Recent architectures also use skip connections between layers, which
become increasingly important as the depth of the network increases (cf. Section 8.4.5).

LeNet-5

Early networks were quite shallow. An example of one of the earliest neural networks is
LeNet-5 [279]. The input data is in grayscale, and there is only one color channel. The input
is assumed to be the ASCII representation of a character. For the purpose of discussion, we
will assume that there are ten types of characters (and therefore 10 outputs), although the
approach can be used for any number of classes.

The network contained two convolution layers, two pooling layers, and three fully con-
nected layers at the end. However, later layers contain multiple feature maps because of the
use of multiple filters in each layer. The architecture of this network is shown in Figure 8.5.
The first fully connected layer was also referred to as a convolution layer (labeled as C5)
in the original work because the ability existed to generalize it to spatial features for larger
input maps. However, the specific implementation of LeNet-5 really used C5 as a fully con-
nected layer, because the filter spatial size was the same as the input spatial size. This is why
we are counting C5 as a fully connected layer in this exposition. It is noteworthy that two
versions of LeNet-5 are shown in Figure 8.5(a) and (b). The upper diagram of Figure 8.5(a)
explicitly shows the subsampling layers, which is how the architecture was presented in
the original work. However, deeper architectural diagrams like AlexNet [255] often do not
show the subsampling or max-pooling layers explicitly in order to accommodate the large
number of layers. Such a concise architecture for LeNet-5 is illustrated in Figure 8.5(b).
The activation function layers are also not explicitly shown in either figure. In the original
work in LeNet-5, the sigmoid activation function occurs immediately after the subsampling
operations, although this ordering is relatively unusual in recent architectures. In most
modern architectures, subsampling is replaced by max-pooling, and the max-pooling layers
occur less frequently than the convolution layers. Furthermore, the activations are typically
performed immediately after each convolution (rather than after each max-pooling).

The number of layers in the architecture is often counted in terms of the number of lay-
ers with weighted spatial filters and the number of fully connected layers. In other words,
subsampling/max-pooling and activation function layers are often not counted separately.
The subsampling in LeNet-5 used 2 × 2 spatial regions with stride 2. Furthermore, un-
like max-pooling, the values were averaged, scaled with a trainable weight and then a bias
was added. In modern architectures, the linear scaling and bias addition operations have
been dispensed with. The concise architectural representation of Figure 8.5(b) is some-
times confusing to beginners because it is missing details such as the size of the max-
pooling/subsampling filters. In fact, there is no unique way of representing these architec-
tural details, and many variations are used by different authors. This chapter will show
several such examples in the case studies.

This network is extremely shallow by modern standards; yet the basic principles have
not changed since then. The main difference is that the ReLU activation had not appeared
at that point, and sigmoid activation was often used in the earlier architectures. Further-
more, the use of average pooling is extremely uncommon today compared to max-pooling.
Recent years have seen a move away from both max-pooling and subsampling, with strided
convolutions as the preferred choice. LeNet-5 also used ten radial basis function (RBF)

330 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

units in the final layer (cf. Chapter 5), in which the prototype of each unit was compared to
its input vector and the squared Euclidean distance between them was output. This is the
same as using the negative log-likelihood of the Gaussian distribution represented by that
RBF unit. The parameter vectors of the RBF units were chosen by hand, and correspond
to a stylized 7×12 bitmap image of the corresponding character class, which were flattened
into a 7×12 = 84-dimensional representation. Note that the size of the penultimate layer is
exactly 84 in order to enable the computation of the Euclidean distance between the vector
corresponding to that layer and the parameter vector of the RBF unit. The ten outputs
in the final layer provide the scores of the classes, and the smallest score among the ten
units provides the prediction. This type of use of RBF units is now anachronistic in modern
convolutional network design, and one generally tends to work with softmax units with
log-likelihood loss on multinomial label outputs. LeNet-5 was used extensively for character
recognition, and was used by many banks to read checks.

INPUT: GRAYSCALE

FEATURE MAP

OF PIXELS

32

32

5

5

28

28

2

6

2

6

14

14

5

5

10

2

2

16

10

16

5

5

C1

S2 C3 S4

120
84 10

C5 F6
O

SUBSAMPLING OPERATIONS

CONVOLUTION OPERATIONS

(a) Detailed architectural representation

INPUT: GRAYSCALE

FEATURE MAP

OF PIXELS

32

32

5

5

28

28

5

6

5

C1

10

16

10

C3

120
84 10

C5 F6
O

SS

SS

SUBSAMPLING/MAX-POOLING SHOWN IMPLICITLY AS “SS” OR “MP”

(b) Concise architectural representation

Figure 8.5: LeNet-5: One of the earliest convolutional neural networks.

8.2.8 Local Response Normalization

A trick that is introduced in [255] is that of local response normalization, which is always
used immediately after the ReLU layer. The use of this trick aids generalization. The basic
idea of this normalization approach is inspired from biological principles, and it is intended
to create competition among different filters. First, we describe the normalization formula
using all filters, and then we describe how it is actually computed using only a subset of
filters. Consider a situation in which a layer contains N filters, and the activation values of

8.2. THE BASIC STRUCTURE OF A CONVOLUTIONAL NETWORK 331

these N filters at a particular spatial position (x, y) are given by a1 . . . aN . Then, each ai is
converted into a normalized value bi using the following formula:

bi =
ai

(k + α
∑

j a
2
i)

β
(8.1)

The values of the underlying parameters used in [255] are k = 2, α = 10−4, and β =
0.75. However, in practice, one does not normalize over all N filters. Rather the filters are
ordered arbitrarily up front to define “adjacency” among filters. Then, the normalization is
performed over each set of n “adjacent” filters for some parameter n. The value of n used
in [255] is 5. Therefore, we have the following formula:

bi =
ai

(k + α
∑i+⌊n/2⌋

j=i−⌊n/2⌋ a
2
i)

β
(8.2)

In the above formula, any value of i − n/2 that is less than 0 is set to 0, and any value
of i + n/2 that is greater than N is set to N . The use of this type of normalization is no
obsolete, and its discussion has been included here for historical reasons.

IMAGE

HORIZONTAL

EDGES DETECTED1

0

1 1

0 0

-1 -1 -1

FILTER

-1

-1

1 0

1 0

1 0 -1

FILTER

VERTICAL EDGES

DETECTED

NEXT LAYER FILTER

(VISUALIZATION

UNINTERPRETABLE)

RECTANGLE

DETECTED

Figure 8.6: Filters detect edges and combine them to create rectangle.

8.2.9 Hierarchical Feature Engineering

It is instructive to examine the activations of the filters created by real-world images in
different layers. In Section 8.5, we will discuss a concrete way in which the features extracted
in various layers can be visualized. For now, we provide a subjective interpretation. The
activations of the filters in the early layers are low-level features like edges, whereas those in
later layers put together these low-level features. For example, a mid-level feature might put
together edges to create a hexagon, whereas a higher-level feature might put together the
mid-level hexagons to create a honeycomb. It is fairly easy to see why a low-level filter might
detect edges. Consider a situation in which the color of the image changes along an edge.
As a result, the difference between neighboring pixel values will be non-zero only across
the edge. This can be achieved by choosing the appropriate weights in the corresponding
low-level filter. Note that the filter to detect a horizontal edge will not be the same as that
to detect a vertical edge. This brings us back to Hubel and Weisel’s experiments in which
different neurons in the cat’s visual cortex were activated by different edges. Examples of
filters detecting horizontal and vertical edges are illustrated in Figure 8.6. The next layer
filter works on the hidden features and therefore it is harder to interpret. Nevertheless, the
next layer filter is able to detect a rectangle by combining the horizontal and vertical edges.

332 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

In a later section, we will show visualizations of how smaller portions of real-world image
activate different hidden features, much like the biological model of Hubel and Wiesel in
which different shapes seem to activate different neurons. Therefore, the power of convolu-
tional neural networks rests in the ability to put together these primitive shapes into more
complex shapes layer by layer. Note that it is impossible for the first convolution layer to
learn any feature that is larger than F1×F1 pixels, where the value of F1 is typically a small
number like 3 or 5. However, the next convolution layer will be able to put together many
of these patches together to create a feature from an area of the image that is larger. The
primitive features learned in earlier layers are put together in a semantically coherent way to
learn increasingly complex and interpretable visual features. The choice of learned features
is affected by how backpropagation adapts the features to the needs of the loss function
at hand. For example, if an application is training to classify images as cars, the approach
might learn to put together arcs to create a circle, and then it might put together circles
with other shapes to create a car wheel. All this is enabled by the hierarchical features of a
deep network.

Recent ImageNet competitions have demonstrated that much of the power in image
recognition lies in increased depth of the network. Not having enough layers effectively pre-
vents the network from learning the hierarchical regularities in the image that are combined
to create its semantically relevant components. Another important observation is that the
nature of the features learned will be sensitive to the specific data set at hand. For example,
the features learned to recognize trucks will be different from those learned to recognize car-
rots. However, some data sets (like ImageNet) are diverse enough that the features learned
by training on these data sets have general-purpose significance across many applications.

8.3 Training a Convolutional Network

The process of training a convolutional neural network uses the backpropagation algorithm.
There are primarily three types of layers, corresponding to the convolution, ReLU, and max-
pooling layers. We will separately describe the backpropagation algorithm through each of
these layers. The ReLU is relatively straightforward to backpropagate through because it
is no different than a traditional neural network. For max-pooling with no overlap between
pools, one only needs to identify which unit is the maximum value in a pool (with ties
broken arbitrarily or divided proportionally). The partial derivative of the loss with respect
to the pooled state flows back to the unit with maximum value. All entries other than the
maximum entry in the grid will be assigned a value of 0. Note that the backpropagation
through a maximization operation is also described in Table 3.1 of Chapter 3. For cases in
which the pools are overlapping, let P1 . . . Pr be the pools in which the unit h is involved,
with corresponding activations h1 . . . hr in the next layer. If h is the maximum value in
pool Pi (and therefore hi = h), then the gradient of the loss with respect to hi flows
back to h (with ties broken arbitrarily or divided proportionally). The contributions of
the different overlapping pools (from h1 . . . hr in the next layer) are added in order to
compute the gradient with respect to the unit h. Therefore, the backpropagation through
the maximization and the ReLU operations are not very different from those in traditional
neural networks.

8.3. TRAINING A CONVOLUTIONAL NETWORK 333

8.3.1 Backpropagating Through Convolutions

The backpropagation through convolutions is also not very different from the backpropa-
gation with linear transformations (i.e., matrix multiplications) in a feed-forward network.
This point of view will become particularly clear when we present convolutions as a form of
matrix multiplication. Just as backpropagation in feed-forward networks from layer (i+ 1)
to layer i is achieved by multiplying the error derivatives with respect to layer (i+ 1) with
the transpose of the forward propagation matrix between layers i and (i+ 1) (cf. Table 3.1
of Chapter 3), backpropagation in convolutional networks can also be seen as a form of
transposed convolution.

First, we describe a simple element-wise approach to backpropagation. Assume that the
loss gradients of the cells in layer (i + 1) have already been computed. The loss derivative
with respect to a cell in layer (i+ 1) is defined as the partial derivative of the loss function
with respect to the hidden variable in that cell. Convolutions multiply the activations in
layer i with filter elements to create elements in the next layer. Therefore, a cell in layer
(i + 1) receives aggregated contributions from a 3-dimensional volume of elements in the
previous layer of filter size Fi × Fi × di. At the same time, a cell c in layer i contributes to
multiple elements (denoted by set Sc) in layer (i+ 1), although the number of elements to
which it contributes depends on the depth of the next layer and the stride. Identifying this
“forward set” is the key to the backpropagation. A key point is that the cell c contributes
to each element in Sc in an additive way after multiplying the activation of cell c with
a filter element. Therefore, backpropagation simply needs to multiply the loss derivative
of each element in Sc with respect to the corresponding filter element and aggregate
in the backwards direction at c. For any particular cell c in layer i, the following pseudo-
code can be used to backpropagate the existing derivatives in layer-(i+1) to cell c in layer-i:

Identify all cells Sc in layer (i+ 1) to which cell c in layer i contributes;
For each cell r ∈ Sc, let δr be its (already backpropagated) loss-derivative with respect to cell r;
For each cell r ∈ Sc, let wr be weight of filter element used for contributing from cell c to r;
δc =

∑
r∈Sc

δr · wr;

After the loss gradients have been computed, the values are multiplied with those of
the hidden units of the (i − 1)th layer to obtain the gradients with respect to the weights
between the (i − 1)th and ith layer. In other words, the hidden value at one end point of
a weight is multiplied with the loss gradient at the other end in order to obtain the partial
derivative with respect to the weight. However, this computation assumes that all weights
are distinct, whereas the weights in the filter are shared across the entire spatial extent of
the layer. Therefore, one has to be careful to account for shared weights, and sum up the
partial derivatives of all copies of a shared weight. In other words, we first pretend that
the filter used in each position is distinct in order to compute the partial derivative with
respect to each copy of the shared weight, and then add up the partial derivatives of the
loss with respect to all copies of a particular weight.

334 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Note that the approach above uses simple linear accumulation of gradients like tradi-
tional backpropagation. However, one has to be slightly careful in terms of keeping track of
the cells that influence other cells in the next layer. One can implement backpropagation
with the help of tensor multiplication operations, which can further be simplified into simple
matrix multiplications of derived matrices from these tensors. This point of view will be
discussed in the next two sections because it provides many insights on how many aspects
of feedforward networks can be generalized to convolutional neural networks.

8.3.2 Backpropagation as Convolution with Inverted/Transposed
Filter

In conventional neural networks, a backpropagation operation is performed by multiplying
a vector of gradients at layer (q+1) with the transposed weight matrix between the layers q
and (q+1) in order to obtain the vector of gradients at layer q (cf. Table 3.1). In convolution
neural networks, the backpropagated derivatives are also associated with spatial positions
in the layers. Is there an analogous convolution we can apply to the spatial footprint of
backpropagated derivatives in a layer to obtain those of the previous layer? It turns out
that this is indeed possible.

c

f

a b

d e

g h i

FILTER DURING

CONVOLUTION

g

d

i h

f e

c b a

FILTER DURING

BACKPROPAGATION

Figure 8.7: The inverse of a kernel for backpropagation

Let us consider the case in which the activations in layer q are convolved with a filter to
create those in layer (q+1). For simplicity, consider the case in which depth dq of the input
layer and the depth dq+1 of the output layer are both 1; furthermore, we use convolutions
with stride 1. In such a case, the convolution filter is inverted both horizontally and vertically
for backpropagation. An example of such an inverted filter is illustrated in Figure 8.7. The
intuitive reason for this inversion is that the filter is “moved around” the spatial area of
the input volume to perform the dot product, whereas the backpropagated derivatives are
with respect to the input volume, whose relative movement with respect to the filter is the
opposite of the filter movement during convolutions. Note that the entry in the extreme
upper-left of the convolution filter might not even contribute to the extreme upper-left
entry in the output volume (because of padding), but it will almost always contribute to
the extreme lower-right entry of the output volume. This is consistent with the inversion of
the filter. The backpropagated derivative set of the (q + 1)th layer is convolved with this
inverted filter to obtain the backpropagated derivative set of the qth layer. How are the
paddings of the forward convolution and backward convolution related? For a stride of 1,
the sum of the paddings during forward propagation and backward propagation is Fq − 1,
where Fq is the side length of the filter for qth layer.

Now consider the case in which the depths dq and dq+1 are no longer 1, but are arbitrary
values. In this case, an additional tensor transposition needs to occur. The weight of the

(i, j, k)th position of the pth filter in the qth layer is W = [w
(p,q)
ijk]. Note that i and j refer

to spatial positions, whereas k refers to the depth-centric position of the weight. In such a

8.3. TRAINING A CONVOLUTIONAL NETWORK 335

case, let the 5-dimensional tensor corresponding to the backpropagation filters from layer

q+1 to layer q be denoted by U = [u
(p,q+1)
ijk]. Then, the entries of this tensor are as follows:

u(k,q+1)
rsp = w

(p,q)
ijk (8.3)

Here, we have r = Fq − i+1 and s = Fq − j+1. Note that the index p of the filter identifier
and depth k within a filter have been interchanged between W and U in Equation 8.3. This
is a tensor-centric transposition.

In order to understand the transposition above, consider a situation in which we use
20 filters on the 3-channel RGB volume in order to create an output volume of depth 20.
While backpropagating, we will need to take a gradient volume of depth 20 and transform
to a gradient volume of depth 3. Therefore, we need to create 3 filters for backpropagation,
each of which is for the red, green, and blue colors. We pull out the 20 spatial slices from
the 20 filters that are applied to the red color, invert them using the approach of Figure 8.7,
and then create a single 20-depth filter for backpropagating gradients with respect to the
red slice. Similar approaches are used for the green and blue slices. The transposition and
inversion in Equation 8.3 correspond to these operations.

8.3.3 Convolution/Backpropagation as Matrix Multiplications

It is helpful to view convolution as a matrix multiplication because it helps us define various
related notions such as transposed convolution, deconvolution, and fractional convolution.
These concepts are helpful not just in understanding backpropagation, but also in devel-
oping the machinery necessary for convolutional autoencoders. In traditional feed-forward
networks, matrices that are used to transform hidden states in the forward phase are trans-
posed in the backwards phase (cf. Table 3.1) in order to backpropagate partial derivatives
across layers. Similarly, the matrices used in encoders are often transposed in the decoders
when working with autoencoders in traditional settings. Although the spatial structure of
the convolutional neural network does mask the nature of the underlying matrix multipli-
cation, one can “flatten” this spatial structure to perform the multiplication and reshape
back to a spatial structure using the known spatial positions of the elements of the flat-
tened matrix. This somewhat indirect approach is helpful in understanding the fact that
the convolution operation is similar to the matrix multiplication in feed-forward networks
at a very fundamental level. Furthermore, real-world implementations of convolution are
often accomplished with matrix multiplication.

For simplicity, let us first consider the case in which the qth layer and the corresponding
filter used for convolution both have unit depth. Furthermore, assume that we are using
a stride of 1 with zero padding. Therefore, the input dimensions are Lq × Bq × 1, and
the output dimensions are (Lq − Fq + 1) × (Bq − Fq + 1) × 1. In the common setting in
which the spatial dimensions are square (i.e., Lq = Bq), one can assume that the spatial
dimensions of the input AI = Lq × Lq and the spatial dimensions of the output are AO =
(Lq − Fq + 1) × (Lq − Fq + 1). Here, AI and AO are the spatial areas of the input and
output matrices, respectively. The input can be representing by flatting the area AI into an
AI -dimensional column vector in which the rows of the spatial area are concatenated from
top to bottom. This vector is denoted by f . An example of a case in which we use a 2× 2
filter on a 3× 3 input is shown in Figure 8.8. Therefore, the output is of size 2× 2, and we
have AI = 3× 3 = 9, and AO = 2× 2 = 4. The 9-dimensional column vector for the 3× 3
input is shown in Figure 8.8. A sparse matrix C is defined in lieu of the filter, which is the

336 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

key in representing the convolution as a matrix multiplication. A matrix of size AO × AI

is defined in which each row corresponds to the convolution at one of the AO convolution
locations. These rows are associated with the spatial location of the top-left corner of the
convolution region in the input matrix from which they were derived. The value of each
entry in the row corresponds to one of the AI positions in the input matrix, but this value is
0, if that input position is not involved in the convolution for that row. Otherwise, the value
is set to the corresponding value of the filter, which is used for multiplication. The ordering
of the entries in a row is based on the same spatially sensitive ordering of the input matrix
locations as was used to flatten the input matrix into an AI -dimensional vector. Since the
filter size is usually much smaller than the input size, most of the entries in the matrix C
are 0s, and each entry of the filter occurs in every row of C. Therefore, every entry in the
filter is repeated AO times in C, because it is used for AO multiplications.

An example of a 4 × 9 matrix C is shown in Figure 8.8. Subsequent multiplication
of C with f yields an AO-dimensional vector. The corresponding 4-dimensional vector is
shown in Figure 8.8. Since each of the AO rows of C is associated with a spatial location,
these locations are inherited by Cf . These spatial locations are used to reshape Cf to a
spatial matrix. The reshaping of the 4-dimensional vector to a 2 × 2 matrix is also shown
in Figure 8.8.

This particular exposition uses the simplified case with a depth of 1. In the event that
the depth is larger than 1, the same approach is applied for each 2-dimensional slice, and
the results are added. In other words, we aggregate

∑

p Cpfp over the various slice indices p
and then the results are re-shaped into a 2-dimensional matrix. This approach amounts to a
tensor multiplication, which is a straightforward generalization of a matrix multiplication.
The tensor multiplication approach is how convolution is actually implemented in practice.
In general, one will have multiple filters, which correspond to multiple output maps. In such
a case, the kth filter will be converted into the sparsified matrix Cp,k, and the kth feature
map of the output volume will be

∑

p Cp,kfp.

FLATTEN TO

9-DIMENSIONAL

VECTOR
4

7

1 3

9 6

5 0 2

FILTER

INPUT

a

c d

b

CONVERT TO 4X9

SPARSE MATRIX C

a b 0 c d 0 0 0 0

0 a b 0 c d 0 0 0

0 0 0 a b 0 c d 0

0 0 0 0 a b 0 c d

[a+3b+9c+6d, 3a+4b+6c+7d, 9a+6b+5c, 6a+7b+2d]T

RESHAPE TO

SPATIAL OUTPUT

a+3b+9c+6d 3a+4b+6c+7d

9a+6b+5c 6a+7b+2d

OUTPUT

f= [1, 3, 4, 9, 6, 7, 5, 0, 2]T

MULTIPLY

C * f

Figure 8.8: Convolution as matrix multiplication

8.3. TRAINING A CONVOLUTIONAL NETWORK 337

The matrix-centric approach is very useful for performing backpropagation because one
can also propagate gradients backwards by using the same approach in the backwards di-
rection, except that the transposed matrix CT is used for multiplication with the flattened
vector version of a 2-dimensional slice of the output gradient. Note that the flattening of
a gradient with respect to a spatial map can be done in a similar way as the flattened
vector f is created in the forward phase. Consider the simple case in which both the in-
put and output volumes have a depth of 1. If g is the flattened vector gradient of the loss
with respect to the output spatial map, then the flattened gradient with respect to the
input spatial map is obtained as CT g. This approach is consistent with the approach used
in feed-forward networks, in which the transpose of the forward matrix is used in back-
propagation. The above result is for the simple case when both input and output volumes
have depth of 1. What happens in the general case? When the depth of the output vol-
ume is d > 1, the gradients with respect to the output maps are denoted by g1 . . . gd. The
corresponding gradient with respect to the features in the pth spatial slice of the input
volume is given by

∑d
k=1 C

T
p,kgk. Here, the matrix Cp,k is obtained by converting the pth

spatial slice of the kth filter into the sparsified matrix as discussed above. This approach
is a consequence of Equation 8.3. This type of transposed convolution is also useful for the
deconvolution operation in convolution autoencoders, which will be discussed later in this
chapter (cf. Section 8.5).

8.3.4 Data Augmentation

A common trick to reduce overfitting in convolutional neural networks is the idea of data
augmentation. In data augmentation, new training examples are generated by using trans-
formations on the original examples. This idea was briefly discussed in Chapter 4, although
it works better in some domains than others. Image processing is one domain to which data
augmentation is very well suited. This is because many transformations such as translation,
rotation, patch extraction, and reflection do not fundamentally change the properties of
the object in an image. However, they do increase the generalization power of the data
set when trained with the augmented data set. For example, if a data set is trained with
mirror images and reflected versions of all the bananas in it, then the model is able to better
recognize bananas in different orientations.

Many of these forms of data augmentation require very little computation, and therefore
the augmented images do not need to be explicitly generated up front. Rather, they can be
created at training time, when an image is being processed. For example, while processing an
image of a banana, it can be reflected into a modified banana at training time. Similarly, the
same banana might be represented in somewhat different color intensities in different images,
and therefore it might be helpful to create representations of the same image in different
color intensities. In many cases, creating the training data set using image patches can be
helpful. An important neural network that rekindled interest in deep learning by winning
the ILSVRC challenge was AlexNet. This network was trained by extracting 224× 224× 3
patches from the images, which also defined the input sizes for the networks. The neural
networks, which were entered into the ILSVRC contest in subsequent years, used a similar
methodology of extracting patches.

338 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Although most data augmentation methods are quite efficient, some forms of transfor-
mation that use principal component analysis (PCA) can be more expensive. PCA is used
in order to change the color intensity of an image. If the computational costs are high, it
becomes important to extract the images up front and store them. The basic idea here is to
use the 3× 3 covariance matrix of each pixel value and compute the principal components.
Then, Gaussian noise is added to each principal component with zero mean and variance of
0.01. This noise is fixed over all the pixels of a particular image. The approach is dependent
on the fact that object identity is invariant to color intensity and illumination. It is reported
in [255] that data set augmentation reduces error rate by 1%.

One must be careful not to apply data augmentation blindly without regard to the data
set and application at hand. For example, applying rotations and reflections on the MNIST
data set [281] of handwritten digits is a bad idea because the digits in the data set are all
presented in a similar orientation. Furthermore, the mirror image of an asymmetric digit is
not a valid digit, and a rotation of a ‘6’ is a ‘9.’ The key point in deciding what types of
data augmentation are reasonable is to account for the natural distribution of images in the
full data set, as well as the effect of a specific type of data set augmentation on the class
labels.

8.4 Case Studies of Convolutional Architectures

In the following, we provide some case studies of convolutional architectures. These case
studies were derived from successful entries to the ILSVRC competition in recent years.
These are instructive because they provide an understanding of the important factors in
neural network design that can make these networks work well. Even though recent years
have seen some changes in architectural design (like ReLU activation), it is striking how
similar the modern architectures are to the basic design of LeNet-5. The main changes
from LeNet-5 to modern architectures are in terms of the explosion of depth, the use of
ReLU activation, and the training efficiency enabled by modern hardware/optimization en-
hancements. Modern architectures are deeper, and they use a variety of computational,
architectural, and hardware tricks to efficiently train these networks with large amounts
of data. Hardware advancements should not be underestimated; modern GPU-based plat-
forms are 10,000 times faster than the (similarly priced) systems available at the time
LeNet-5 was proposed. Even on these modern platforms, it often takes a week to train a
convolutional neural network that is accurate enough to be competitive at ILSVRC. The
hardware, data-centric, and algorithmic enhancements are connected to some extent. It is
difficult to try new algorithmic tricks if enough data and computational power is not avail-
able to experiment with complex/deeper models in a reasonable amount of time. Therefore,
the recent revolution in deep convolutional networks could not have been possible, had
it not been for the large amounts of data and increased computational power available
today.

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 339

224

224

3

11

11

55

55

5

5

96

256

27

27

3

3

13

3

3

384

13

3

3

384

13

13

256

13

13

4096 4096

1000

INPUT

C1

C2 C3 C4 C5

FC6 FC7
FC8

MP

MP
MP

(a) Without GPU partitioning

(b) With GPU partitioning (original architecture)

Figure 8.9: The AlexNet architecture. The ReLU activations follow each convolution layer,
and are not explicitly shown. Note that the max-pooling layers are labeled as MP, and
they follow only a subset of the convolution-ReLU combination layers. The architectural
diagram in (b) is from [A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. NIPS Conference, pp. 1097–1105. 2012.] c©2012
A. Krizhevsky, I. Sutskever, and G. Hinton.

In the following sections, we provide an overview of some of the well-known models
that are often used for designing training algorithms for image classification. It is worth
mentioning that some of these models are available as pretrained models over ImageNet, and
the resulting features can be used for applications beyond classification. Such an approach
is a form of transfer learning, which is discussed later in this section.

8.4.1 AlexNet

AlexNet was the winner of the 2012 ILSVRC competition. The architecture of AlexNet is
shown in Figure 8.9(a). It is worth mentioning that there were two parallel pipelines of
processing in the original architecture, which are not shown in Figure 8.9(a). These two
pipelines are caused by two GPUs working together to build the training model with a
faster speed and memory sharing. The network was originally trained on a GTX 580 GPU
with 3 GB of memory, and it was impossible to fit the intermediate computations in this
amount of space. Therefore, the network was partitioned across two GPUs. The original
architecture is shown in Figure 8.9(b), in which the work is partitioned into two GPUs.
We also show the architecture without the changes caused by the GPUs, so that it can be
more easily compared with other convolutional neural network architectures discussed in
this chapter. It is noteworthy that the GPUs are inter-connected in only a subset of the

340 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

layers in Figure 8.9(b), which leads to some differences between Figure 8.9(a) and (b) in
terms of the actual model constructed. Specifically, the GPU-partitioned architecture has
fewer weights because not all layers have interconnections. Dropping some of the intercon-
nections reduces the communication time between the processors and therefore helps in
efficiency.

AlexNet starts with 224 × 224 × 3 images and uses 96 filters of size 11 × 11 × 3 in the
first layer. A stride of 4 is used. This results in a first layer of size 55 × 55 × 96. After
the first layer has been computed, a max-pooling layer is used. This layer is denoted by
‘MP’ in Figure 8.9(a). Note that the architecture of Figure 8.9(a) is a simplified version of
the architecture shown in Figure 8.9(b), which explicitly shows the two parallel pipelines.
For example, Figure 8.9(b) shows a depth of the first convolution layer of only 48, because
the 96 feature maps are divided among the GPUs for parallelization. On the other hand,
Figure 8.9(a) does not assume the use of GPUs, and therefore the width is explicitly shown
as 96. The ReLU activation function was applied after each convolutional layer, which
was followed by response normalization and max-pooling. Although max-pooling has been
annotated in the figure, it has not been assigned a block in the architecture. Furthermore,
the ReLU and response normalization layers are not explicitly shown in the figure. These
types of concise representations are common in pictorial depictions of neural architectures.

The second convolutional layer uses the response-normalized and pooled output of the
first convolutional layer and filters it with 256 filters of size 5 × 5 × 96. No intervening
pooling or normalization layers are present in the third, fourth, or fifth convolutional layers.
The sizes of the filters of the third, fourth, and fifth convolutional layers are 3 × 3 × 256
(with 384 filters), 3 × 3 × 384 (with 384 filters), and 3 × 3 × 384 (with 256 filters). All
max-pooling layers used 3× 3 filters at stride 2. Therefore, there was some overlap among
the pools. The fully connected layers have 4096 neurons. The final set of 4096 activations
can be treated as a 4096-dimensional representation of the image. The final layer of AlexNet
uses a 1000-way softmax in order to perform the classification. It is noteworthy that the
final layer of 4096 activations (labeled by FC7 in Figure 8.9(b)) is often used to create a
flat 4096 dimensional representation of an image for applications beyond classification. One
can extract these features for any out-of-sample image by simply passing it through the
trained neural network. These features often generalize well to other data sets and other
tasks. Such features are referred to as FC7 features. In fact, the use of the extracted features
from the penultimate layer as FC7 was popularized after AlexNet, even though the approach
was known much earlier. As a result, such extracted features from the penultimate layer
of a convolutional neural network are often referred to as FC7 features, irrespective of the
number of layers in that network. It is noteworthy that the number of feature maps in
middle layers is far larger than the initial depth of the volume in the input layer (which is
only 3 corresponding to RGB colors) although their spatial dimensions are smaller. This is
because the initial depth only contains the RGB color components, whereas the later layers
capture different types of semantic features in the features maps.

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 341

Many design choices used in the architecture became standard in later architectures. A
specific example is the use of ReLU activation in the architecture (instead of sigmoid or tanh
units). The choice of the activation function in most convolutional neural networks today
is almost exclusively focused on the ReLU, although this was not the case before AlexNet.
Some other training tricks were known at the time, but their use in AlexNet popularized
them. One example was the use of data augmentation, which turned out to be very useful in
improving accuracy. AlexNet also underlined the importance of using specialized hardware
like GPUs for training on such large data sets. Dropout was used with L2-weight decay
in order to improve generalization. The use of Dropout is common in virtually all types of
architectures today because it provides an additional booster in most cases. The use of local
response normalization was eventually discarded by later architectures.

We also briefly mention the parameter choices used in AlexNet. The interested reader
can find the full code and parameter files of AlexNet at [584]. L2-regularization was used
with a parameter of 5× 10−4. Dropout was used by sampling units at a probability of 0.5.
Momentum-based (mini-batch) stochastic gradient descent was used for training AlexNet
with parameter value of 0.8. The batch-size was 128. The learning rate was 0.01, although
it was eventually reduced a couple of times as the method began to converge. Even with
the use of the GPU, the training time of AlexNet was of the order of a week.

The final top-5 error rate, which was defined as the fraction of cases in which the correct
image was not included in the top-5 images, was about 15.4%. This error rate3 was in com-
parison with the previous winners with an error rate of more than 25%. The gap with respect
to the second-best performer in the contest was also similar. The use of single convolutional
network provided a top-5 error rate of 18.2%, although using an ensemble of seven models
provided the winning error-rate of 15.4%. Note that these types of ensemble-based tricks
provide a consistent improvement of between 2% and 3% with most architectures. Further-
more, since the executions of most ensemble methods are embarrassingly parallelizable, it
is relatively easy to perform them, as long as sufficient hardware resources are available.
AlexNet is considered a fundamental advancement within the field of computer vision be-
cause of the large margin with which it won the ILSVRC contest. This success rekindled
interest in deep learning in general, and convolutional neural networks in particular.

8.4.2 ZFNet

A variant of ZFNet [556] was the winner of the ILSVRC competition in 2013. Its architecture
was heavily based on AlexNet, although some changes were made to further improve the
accuracy. Most of these changes were associated with differences in hyperparameter choices,
and therefore ZFNet is not very different from AlexNet at a fundamental level. One change
from AlexNet to ZFNet was that the initial filters of size 11×11×3 were changed to 7×7×3.
Instead of strides of 4, strides of 2 were used. The second layer used 5×5 filters at stride 2 as
well. As in AlexNet, there are three max-pooling layers, and the same sizes of max-pooling
filters were used. However, the first pair of max-pooling layers were performed after the first
and second convolutions (rather than the second and third convolutions). As a result, the
spatial footprint of the third layer changed to 13×13 rather than 27×27, although all other
spatial footprints remained unchanged from AlexNet. The sizes of various layers in AlexNet
and ZFNet are listed in Table 8.1.

The third, fourth, and fifth convolutional layers use a larger number of filters in ZFNet as
compared to AlexNet. The number of filters in these layers were changed from (384, 384, 256)

3The top-5 error rate makes more sense in image data where a single image might contain objects of
multiple classes. Throughout this chapter, we use the term “error rate” to refer to the top-5 error rate.

342 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Table 8.1: Comparison of AlexNet and ZFNet

AlexNet ZFNet

Volume: 224× 224× 3 224× 224× 3
Operations: Conv 11× 11 (stride 4) Conv 7× 7 (stride 2), MP
Volume: 55× 55× 96 55× 55× 96
Operations: Conv 5× 5, MP Conv 5× 5 (stride 2), MP
Volume: 27× 27× 256 13× 13× 256
Operations: Conv 3× 3, MP Conv 3× 3
Volume: 13× 13× 384 13× 13× 512
Operations: Conv 3× 3 Conv 3× 3
Volume: 13× 13× 384 13× 13× 1024
Operations: Conv 3× 3 Conv 3× 3
Volume: 13× 13× 256 13× 13× 512
Operations: MP, Fully connect MP, Fully connect
FC6: 4096 4096
Operations: Fully connect Fully connect
FC7: 4096 4096
Operations: Fully connect Fully connect
FC8: 1000 1000
Operations: Softmax Softmax

to (512, 1024, 512). As a result, the spatial footprints of AlexNet and ZFNet are the same
in most layers, although the depths are different in the final three convolutional layers
with similar spatial footprints. From an overall perspective, ZFNet used similar principles
to AlexNet, and the main gains were obtained by changing the architectural parameters
of AlexNet. This architecture reduced the top-5 error rate to 14.8% from 15.4%, and fur-
ther increases in width/depth from the same author(s) reduced the error to 11.1%. Since
most of the differences between AlexNet and ZFNet were those of minor design choices, this
emphasizes the fact that small details are important when working with deep learning algo-
rithms. Thus, extensive experimentation with neural architectures are sometimes important
in order to obtain the best performance. The architecture of ZfNet was made wider and
deeper, and the results were submitted to ILSVRC in 2013 under the name Clarifai, which
was a company4 founded by the first author of [556]. The difference5 between Clarifai and
ZFNet was one of width/depth of the network, although exact details of these differences
are not available. This entry was the winning entry of the ILSVRC competition in 2013.
Refer to [556] for details and a pictorial illustration of the architecture.

8.4.3 VGG

VGG [454] further emphasized the developing trend in terms of increased depth of networks.
The tested networks were designed with various configurations with sizes between 11 and
19 layers, although the best-performing versions had 16 or more layers. VGG was a top-
performing entry on ISLVRC in 2014, but it was not the winner. The winner was GoogLeNet,
which had a top-5 error rate of 6.7% in comparison with the top-5 error rate of 7.3% for
VGG. Nevertheless, VGG was important because it illustrated several important design
principles that eventually became standard in future architectures.

4http://www.clarifai.com
5Personal communication from Matthew Zeiler.

http://www.clarifai.com

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 343

An important innovation of VGG is that it reduced filter sizes but increased depth.
It is important to understand that reduced filter size necessitates increased depth. This is
because a small filter can capture only a small region of the image unless the network is
deep. For example, a single feature that is a result of three sequential convolutions of size
3 × 3 will capture a region in the input of size 7 × 7. Note that using a single 7 × 7 filter
directly on the input data will also capture the visual properties of a 7× 7 input region. In
the first case, we are using 3× 3× 3 = 27 parameters, whereas we are using 7× 7× 1 = 49
parameters in the second case. Therefore, the parameter footprint is smaller in the case when
three sequential convolutions are used. However, three successive convolutions can often
capture more interesting and complex features than a single convolution, and the resulting
activations with a single convolution will look like primitive edge features. Therefore, the
network with 7× 7 filters will be unable to capture sophisticated shapes in smaller regions.

In general, greater depth forces more nonlinearity and greater regularization. A deeper
network will have more nonlinearity because of the presence of more ReLU layers, and
more regularization because the increased depth forces a structure on the layers through
the use of repeated composition of convolutions. As discussed above, architectures with
greater depth and reduced filter size require fewer parameters. This occurs in part because
the number of parameters in each layer is given by the square of the filter size, whereas
the number of parameters depend linearly on the depth. Therefore, one can drastically
reduce the number of parameters by using smaller filter sizes, and instead “spend” these
parameters by using increased depth. Increased depth also allows the use of a greater number
of nonlinear activations, which increases the discriminative power of the model. Therefore
VGG always uses filters with spatial footprint 3×3 and pooling of size 2×2. The convolution
was done with stride 1, and a padding of 1 was used. The pooling was done at stride 2.
Using a 3 × 3 filter with a padding of 1 maintains the spatial footprint of the output
volume, although pooling always compresses the spatial footprint. Therefore, the pooling
was done on non-overlapping spatial regions (unlike the previous two architectures), and
always reduced the spatial footprint (i.e., both height and width) by a factor of 2. Another
interesting design choice of VGG was that the number of filters was often increased by a
factor of 2 after each max-pooling. The idea was to always increase the depth by a factor
of 2 whenever the spatial footprint reduced by a factor of 2. This design choice results in
some level of balance in the computational effort across layers, and was inherited by some
of the later architectures like ResNet.

One issue with using deep configurations was that increased depth led to greater sen-
sitivity with initialization, which is known to cause instability. This problem was solved
by using pretraining, in which a shallower architecture was first trained, and then further
layers were added. However, the pretraining was not done on a layer-by-layer basis. Rather,
an 11-layer subset of the architecture was first trained. These trained layers were used to
initialize a subset of the layers in the deeper architecture. VGG achieved a top-5 error of
only 7.3% in the ISLVRC contest, which was one of the top performers but not the winner.
The different configurations of VGG are shown in Table 8.2. Among these, the architecture
denoted by column D was the winning architecture. Note that the number of filters increase
by a factor of 2 after each max-pooling. Therefore, max-pooling causes the spatial height
and width to reduce by a factor of 2, but this is compensated by increasing depth by a
factor of 2. Performing convolutions with 3 × 3 filters and padding of 1 does not change
the spatial footprint. Therefore, the sizes of each spatial dimension (i.e., height and width)
in the regions between different max-pooling layers in column D of Table 8.2 are 224, 112,
56, 28, and 14, respectively. A final max-pooling is performed just before creating the fully
connected layer, which reduces the spatial footprint further to 7. Therefore, the first fully

344 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Table 8.2: Configurations used in VGG. The term C3D64 refers to the case in which convo-
lutions are performed with 64 filters of spatial size 3×3 (and occasionally 1×1). The depth
of the filter matches the corresponding layer. The padding of each filter is chosen in order
to maintain the spatial footprint of the layer. All convolutions are followed by ReLU. The
max-pool layer is referred to as M, and local response normalization as LRN. The softmax
layer is denoted by S, and FC4096 refers to a fully connected layer with 4096 units. Other
than the final set of layers, the number of filters always increases after each max-pooling.
Therefore, reduced spatial footprint is often accompanied with increased depth.

Name: A A-LRN B C D E

Layers 11 11 13 16 16 19

C3D64 C3D64 C3D64 C3D64 C3D64 C3D64
LRN C3D64 C3D64 C3D64 C3D64

M M M M M M

C3D128 C3D128 C3D128 C3D128 C3D128 C3D128
C3D128 C3D128 C3D128 C3D128

M M M M M M

C3D256 C3D256 C3D256 C3D256 C3D256 C3D256
C3D256 C3D256 C3D256 C3D256 C3D256 C3D256

C1D256 C3D256 C3D256
C3D256

M M M M M M

C3D512 C3D512 C3D512 C3D512 C3D512 C3D512
C3D512 C3D512 C3D512 C3D512 C3D512 C3D512

C1D512 C3D512 C3D512
C3D512

M M M M M M

C3D512 C3D512 C3D512 C3D512 C3D512 C3D512
C3D512 C3D512 C3D512 C3D512 C3D512 C3D512

C1D512 C3D512 C3D512
C3D512

M M M M M M

FC4096 FC4096 FC4096 FC4096 FC4096 FC4096

FC4096 FC4096 FC4096 FC4096 FC4096 FC4096

FC1000 FC1000 FC1000 FC1000 FC1000 FC1000

S S S S S S

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 345

connected layer has dense connections between 4096 neurons and a 7×7×512 volume. As we
will see later, most of the parameters of the neural network are hidden in these connections.

An interesting exercise has been shown in [236] about where most of the parameters and
the memory of the activations is located. In particular, the vast majority of the memory
required for storing the activations and gradients in the forward and backward phases are
required by the early part of the convolutional neural network with the largest spatial foot-
print. This point is significant because the memory required by a mini-batch is scaled by the
size of the mini-batch. For example, it is has been shown in [236] that about 93MB are re-
quired for each image. Therefore, for a mini-batch size of 128, the total memory requirement
would be about 12GB. Although the early layers require the most memory because of their
large spatial footprints, they do not have a large parameter footprint because of the sparse
connectivity and weight sharing. In fact, most of the parameters are required by the fully
connected layers at the end. The connection of the final 7×7×512 spatial layer (cf. column
D in Table 8.2) to the 4096 neurons required 7× 7× 512× 4096 = 102, 760, 448 parameters.
The total number of parameters in all layers was about 138, 000, 000. Therefore, nearly 75%
of the parameters are in a single layer of connections. Furthermore, the majority of the
remaining parameters are in the final two fully connected layers. In all, dense connectivity
accounts for 90% of the parameter footprint in the neural network. This point is significant,
as GoogLeNet uses some innovations to reduce the parameter footprint in the final layers.

It is notable that some of the architectures allow 1× 1 convolutions. Although a 1 × 1
convolution does not combine the activations of spatially adjacent features, it does combine
the feature values of different channels when the depth of a volume is greater than 1. Using
a 1×1 convolution is also a way to incorporate additional nonlinearity into the architecture
without making fundamental changes at the spatial level. This additional nonlinearity is
incorporated via the ReLU activations attached to each layer. Refer to [454] for more details.

8.4.4 GoogLeNet

GoogLeNet proposed a novel concept referred to as an inception architecture. An inception
architecture is a network within a network. The initial part of the architecture is much like a
traditional convolutional network, and is referred to as the stem. The key part of the network
is an intermediate layer, referred to as an inception module. An example of an inception
module is illustrated in Figure 8.10(a). The basic idea of the inception module is that key
information in the images is available at different levels of detail. If we use a large filter, we
can capture information in a bigger area containing limited variation; if we use a smaller
filter, we can capture detailed information in a smaller area. While one solution would be
to pipe together many small filters, this would be wasteful of parameters and depth when
it would suffice to use the broader patterns in a larger area. The problem is that we do not
know up front which level of detail is appropriate for each region of the image. Why not
give the neural network the flexibility to model the image at different levels of granularities?
This is achieved with an inception module, which convolves with three different filter sizes
in parallel. These filter sizes are 1 × 1, 3 × 3, and 5 × 5. A purely sequential piping of
filters of the same size is inefficient when one is faced with objects of different scales in
different images. Since all filters on the inception layer are learnable, the neural network
can decide which ones will influence the output the most. By choosing filters of different
sizes along different paths, different regions are represented at a different level of granularity.
GoogLeNet is made up of nine inception modules that are arranged sequentially. Therefore,
one can choose many alternative paths through the architecture, and the resulting features
will represent very different spatial regions. For example, passing through four 3× 3 filters

346 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

FILTER

CONCATENATION

1 X 1

CONVOLUTIONS

PREVIOUS

LAYER

3 X 3

CONVOLUTIONS

5 X 5

CONVOLUTIONS

3 X 3

MAX-POOLING

3 X 3

CONVOLUTIONS

FILTER

CONCATENATION

5 X 5

CONVOLUTIONS

1 X 1

CONVOLUTIONS

3 X 3

MAX-POOLING

1 X 1

CONVOLUTIONS

1 X 1

CONVOLUTIONS

1 X 1

CONVOLUTIONS

PREVIOUS

LAYER

(a) Basic inception module (b) Implementation with 1 × 1 bottlenecks

Figure 8.10: The inception module of GoogLeNet

followed by only 1× 1 filters will capture a relatively small spatial area. On the other hand,
passing through many 5 × 5 filters will result in a much larger spatial footprint. In other
words, the differences in the scales of the shapes captured in different hidden features will be
magnified in later layers. In recent years, batch normalization has been used in conjunction
with the inception architecture, which simplifies6 the network structure from its original
form.

One observation is that the inception module results in some computational inefficiency
because of the large number of convolutions of different sizes. Therefore, an efficient imple-
mentation is shown in Figure 8.10(b), in which 1×1 convolutions are used to first reduce the
depth of the feature map. This is because the number of 1×1 convolution filters is a modest
factor less than the depth of the input volume. For example, one might first reduce an input
depth of 256 to 64 by using 64 different 1×1 filters. These additional 1×1 convolutions are
referred to as the bottleneck operations of the inception module. Initially reducing the depth
of the feature map (with cheap 1× 1 convolutions) saves computational efficiency with the
larger convolutions because of the reduced depth of the layers after applying the bottleneck
convolutions. One can view the 1×1 convolutions as a kind of supervised dimensionality re-
duction before applying the larger spatial filters. The dimensionality reduction is supervised
because the parameters in the bottleneck filters are learned during backpropagation. The
bottleneck also helps in reducing the depth after the pooling layer. The trick of bottleneck
layers is also used in some other architectures, where it is helpful for improving efficiency
and output depth.

The output layer of GoogLeNet also illustrates some interesting design principles. It is
common to use fully connected layers near the output. However, GoogLeNet uses average
pooling across the whole spatial area of the final set of activation maps to create a single
value. Therefore, the number of features created in the final layer will be exactly equal to
the number of filters. An important observation is that the vast majority of parameters are
spent in connecting the final convolution layer to the first fully connected layer. This type
of detailed connectivity is not required for applications in which only a class label needs to
be predicted. Therefore, the average pooling approach is used. However, the average pooled
representation completely loses all spatial information, and one must be careful of the types
of applications it is used for. An important property of GoogLeNet was that it is extremely
compact in terms of the number of parameters in comparison with VGG, and the number of

6The original architecture also contained auxiliary classifiers, which have been ignored in recent years.

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 347

parameters in the former is less by an order of magnitude. This is primarily because of the
use of average pooling, which eventually became standard in many later architectures. On
the other hand, the overall architecture of GoogLeNet is computationally more expensive.

The flexibility of GoogLeNet is inherent in the 22-layered inception architecture, in which
objects of different scales are handled with the appropriate filter sizes. This flexibility of
multigranular decomposition, which is enabled by the inception modules, was one of the
keys to its performance. In addition, the replacement of the fully connected layer with av-
erage pooling greatly reduced the parameter footprint. This architecture was the winner
of the ILSVRC contest in 2014, and VGG placed a close second. Even though GoogLeNet
outperformed VGG, the latter does have the advantage of simplicity, which is sometimes
appreciated by practitioners. Both architectures illustrated important design principles for
convolution neural networks. The inception architecture has been the focus of significant
research since then [486, 487], and numerous changes have been suggested to improve per-
formance. In later years, a version of this architecture, referred to as Inception-v4 [487],
was combined with some of the ideas in ResNet (see next section) to create a 75-layer
architecture with only 3.08% error.

8.4.5 ResNet

ResNet [184] used 152 layers, which was almost an order of magnitude greater than previ-
ously used by other architectures. This architecture was the winner of the ILSVRC com-
petition in 2015, and it achieved a top-5 error of 3.6%, which resulted in the first classifier
with human-level performance. This accuracy is achieved by an ensemble of ResNet net-
works; even a single model achieves 4.5% accuracy. Training an architecture with 152 layers
is generally not possible unless some important innovations are incorporated.

The main issue in training such deep networks is that the gradient flow between layers
is impeded by the large number of operations in deep layers that can increase or decrease
the size of the gradients. As discussed in Chapter 3, problems such as the vanishing and
exploding gradients are caused by increased depth. However, the work in [184] suggests
that the main training problem in such deep networks might not necessarily be caused by
these problems, especially if batch normalization is used. The main problem is caused by
the difficulty in getting the learning process to converge properly in a reasonable amount
of time. Such convergence problems are common in networks with complex loss surfaces.
Although some deep networks show large gaps between training and test error, the error
on both the training ad test data is high in many deep networks. This implies that the
optimization process has not made sufficient progress.

Although hierarchical feature engineering is the holy grail of learning with neural net-
works, its layer-wise implementations force all concepts in the image to require the same
level of abstraction. Some concepts can be learned by using shallow networks, whereas oth-
ers require fine-grained connections. For example, consider a circus elephant standing on a
square frame. Some of the intricate features of the elephant might require a large number of
layers to engineer, whereas the features of the square frame might require very few layers.
Convergence will be unnecessarily slow when one is using a very deep network with a fixed
depth across all paths to learn concepts, many of which can also be learned using shallow
architectures. Why not let the neural network decide how many layers to use to learn each
feature?

ResNet uses skip connections between layers in order to enable copying between layers
and introduces an iterative view of feature engineering (as opposed to a hierarchical view).
Long short-term memory networks and gated recurrent units leverage similar principles
in sequence data by allowing portions of the states to be copied from one layer to the

348 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

WEIGHT LAYER

WEIGHT LAYER

ReLU

+

F(x)

x

ReLU

F(x)+x

IDENTITY

x

7X7 CONV, 64, /2

3X3 CONV, 64

POOL, /2

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 128, 1/2

3X3 CONV, 128

3X3 CONV, 128

3X3 CONV, 128

(a) Skip-connections in residual module (b) Partial architecture of ResNet

Figure 8.11: The residual module and the first few layers of ResNet

next with the use of adjustable gates. In the case of ResNet, the non-existent “gates” are
assumed to be always fully open. Most feed-forward networks only contain connections
between layers i and (i + 1), whereas ResNet contains connections between layers i and
(i+ r) for r > 1. Examples of such skip connections, which form the basic unit of ResNet,
are shown in Figure 8.11(a) with r = 2. This skip connection simply copies the input of
layer i and adds it to the output of layer (i+r). Such an approach enables effective gradient
flow because the backpropagation algorithm now has a super-highway for propagating the
gradients backwards using the skip connections. This basic unit is referred to as a residual
module, and the entire network is created by putting together many of these basic modules.
In most layers, an appropriately padded filter7 is used with a stride of 1, so that the spatial
size and depth of the input does not change from layer to layer. In such cases, it is easy to
simply add the input of the ith layer to that of (i+ r). However, some layers do use strided
convolutions to reduce each spatial dimension by a factor of 2. At the same time, depth is
increased by a factor of 2 by using a larger number of filters. In such a case, one cannot
use the identity function over the skip connection. Therefore, a linear projection matrix
might need to be applied over the skip connection in order to adjust the dimensionality.
This projection matrix defines a set of 1×1 convolution operations with stride of 2 in order
to reduce spatial extent by factor of 2. The parameters of the projection matrix need to be
learned during backpropagation.

In the original idea of ResNet, one only adds connections between layers i and (i+r). For
example, if we use r = 2, only skip connections only between successive odd layers are used.
Later enhancements like DenseNet showed improved performance by adding connections
between all pairs of layers. The basic unit of Figure 8.11(a) is repeated in ResNet, and
therefore one can traverse the skip connections repeatedly in order to propagate input to
the output after performing very few forward computations. An example of the first few

7Typically, a 3×3 filter is used at a stride/padding of 1. This trend started with the principles in VGG,
and was adopted by ResNet.

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 349

layers of the architecture is shown in Figure 8.11(b). This particular snapshot is based on
the first few layers of the 34-layer architecture. Most of the skip connections are shown in
solid lines in Figure 8.11(b), which corresponds to the use of the identity function with an
unchanged filter volume. However, in some layers, a stride of 2 is used, which causes the
spatial and depth footprint to change. In these layers, a projection matrix needs to be used,
which is denoted by a dashed skip connection. Four different architectures were tested in the
original work [184], which contained 34, 50, 101, and 152 layers, respectively. The 152-layer
architecture had the best performance, but even the 34-layer architecture performed better
than did the best-performing ILSVRC entry from the previous year.

The use of skip connections provides paths of unimpeded gradient flow and therefore
has important consequences for the behavior of the backpropagation algorithm. The skip
connections take on the function of super-highways in enabling gradient flow, creating a
situation where multiple paths of variable lengths exist from the input to the output. In
such cases, the shortest paths enable the most learning, and the longer paths can be viewed
as residual contributions. This gives the learning algorithm the flexibility of choosing the
appropriate level of nonlinearity for a particular input. Inputs that can be classified with a
small amount of nonlinearity will skip many connections. Other inputs with a more com-
plex structure might traverse a larger number of connections in order to extract the relevant
features. Therefore, the approach is also referred to as residual learning, in which learning
along longer paths is a kind of fine tuning of the easier learning along shorter paths. In
other words, the approach is well suited to cases in which different aspects of the image
have different levels of complexity. The work in [184] shows that the residual responses
from deeper layers are often relatively small, which validates the intuition that fixed depth
is an impediment to proper learning. In such cases, the convergence is often not a prob-
lem, because the shorter paths enable a significant portion of the learning with unimpeded
gradient flows. An interesting insight in [505] is that ResNet behaves like an ensemble of
shallow networks because many alternative paths of shorter length are enabled by this type
of architecture. Only a small amount of learning is enabled by the deeper paths, and only
when it is absolutely necessary. The work in [505] in fact provides a pictorial depiction of
an unraveled architecture of ResNet in which the different paths are explicitly shown in a
parallel pipeline. This unraveled view provides a clear understanding of why ResNet has
some similarities with ensemble-centric design principles. A consequence of this point of
view is that dropping some of the layers from a trained ResNet at prediction time does not
degrade accuracy as significantly as other networks like VGG.

More insights can be obtained by reading the work on wide residual networks [549]. This
work suggests that increased depth of the residual network does not always help because
most of the extremely deep paths are not used anyway. The skip connections do result
in alternative paths and effectively increase the width of the network. The work in [549]
suggests that better results can be obtained by limiting the total number of layers to some
extent (say, 50 instead of 150), and using an increased number of filters in each layer. Note
that a depth of 50 is still quite large from pre-ResNet standards, but is low compared to
the depth used in recent experiments with residual networks. This approach also helps in
parallelizing operations.

Variations of Skip Architectures

Since the architecture of ResNet was proposed, several variations were suggested to further
improve performance. For example, the independently proposed highway networks [161]

350 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Table 8.3: The number of layers in various top-performing ILSVRC contest entries

Name Year Number of Layers Top-5 Error

– Before 2012 ≤ 5 > 25%
AlexNet 2012 8 15.4%
ZfNet/Clarifai 2013 8/> 8 14.8% / 11.1%
VGG 2014 19 7.3%
GoogLeNet 2014 22 6.7%
ResNet 2015 152 3.6%

introduced the notion of gated skip connections, and can be considered a more general ar-
chitecture. In highway networks, gates are used in lieu of the identity mapping, although
a closed gate does not pass a lot of information through. In such cases, gating networks
do not behave like residual networks. However, residual networks can be considered spe-
cial cases of gating networks in which the gates are always fully open. Highway networks
are closely related to both LSTMs and ResNets, although ResNets still seem to perform
better in the image recognition task because of their focus on enabling gradient flow with
multiple paths. The original ResNet architecture uses a simple block of layers between skip
connections. However, the ResNext architecture varies on this principle by using inception
modules between skip connections [537].

Instead of using skip connections, one can use convolution transformations between every
pair of layers [211]. Therefore, instead of the L transformations in a feed-forward network
with L layers, one is using L(L−1)/2 transformations. In other words, the concatenation of
all the feature maps of the previous (l− 1) layers is used by the lth layer. This architecture
is referred to as DenseNet. Note that the goal of such an architecture is similar to that of
skip connections by allowing each layer to learn from whatever level of abstraction is useful.

An interesting variant that seems to work well is the use of stochastic depth [210] in
which some of the blocks between skip connections are randomly dropped during training
time, but the full network is used during testing time. Note that this approach seems
similar to Dropout, which makes the network thinner rather than shallower by dropping
nodes. However, Dropout has somewhat different motivations from layer-wise node dropping,
because the latter is more focused on improving gradient flow rather than preventing feature
co-adaptation.

8.4.6 The Effects of Depth

The significant advancements in performance in recent years in the ILSVRC contest are
mostly a result of improved computational power, greater data availability, and changes
in architectural design that have enabled the effective training of neural networks with
increased depth. These three aspects also support each other, because experimentation
with better architectures is only possible with sufficient data and improved computational
efficiency. This is also one of the reasons why the fine-tuning and tweaks of relatively old
architectures (like recurrent neural networks) with known problems were not performed
until recently.

The number of layers and the error rates of various networks are shown in Table 8.3.
The rapid increase in accuracy in the short period from 2012 to 2015 is quite remarkable,
and is unusual for most machine learning applications that are as well studied as image
recognition. Another important observation is that increased depth of the neural network is

8.4. CASE STUDIES OF CONVOLUTIONAL ARCHITECTURES 351

closely correlated with improved error rates. Therefore, an important focus of the research
in recent years has been to enable algorithmic modifications that support increased depth of
the neural architecture. It is noteworthy that convolutional neural networks are among the
deepest of all classes of neural networks. Interestingly, traditional feed-forward networks
in other domains do not need to be very deep for most applications like classification.
Indeed, the coining of the term “deep learning” owes a lot of its origins to the impressive
performances of convolutional neural networks and specific improvements observed with
increased depth.

8.4.7 Pretrained Models

One of the challenges faced by analysts in the image domain is that labeled training data
may not even be available for a particular application. Consider the case in which one has
a set of images that need to be used for image retrieval. In retrieval applications, labels are
not available but it is important for the features to be semantically coherent. In some other
cases, one might wish to perform classification on a data set with a particular set of labels,
which might be limited in availability and different from large resources like ImageNet.
These settings cause problems because neural networks require a lot of training data to
build from scratch.

However, a key point about image data is that the extracted features from a particular
data set are highly reusable across data sources. For example, the way in which a cat is
represented will not vary a lot if the same number of pixels and color channels are used in
different data sources. In such cases, generic data sources, which are representative of a wide
spectrum of images, are useful. For example, the ImageNet data set [581] contains more than
a million images drawn from 1000 categories encountered in everyday life. The chosen 1000
categories and the large diversity of images in the data set are representative and exhaustive
enough that one can use them to extract features of images for general-purpose settings.
For example, the features extracted from the ImageNet data can be used to represent
a completely different image data set by passing it through a pretrained convolutional
neural network (like AlexNet) and extracting the multidimensional features from the fully
connected layers. This new representation can be used for a completely different application
like clustering or retrieval. This type of approach is so common, that one rarely trains
convolutional neural networks from scratch. The extracted features from the penultimate
layer are often referred to as FC7 features, which is an inheritance from the name of the
layer in AlexNet. Of course, an arbitrary convolutional network might not have the same
number of layers as AlexNet; however, the name FC7 has stuck.

This type of off-the-shelf feature extraction approach [390] can be viewed as a kind of
transfer learning, because we are using a public resource like ImageNet to extract features
to solve different problems in settings where enough training data is not available. Such
an approach has become standard practice in many image recognition tasks, and many
software frameworks like Caffe provide ready access to these features [585, 586]. In fact,
Caffe provides a “zoo” of such pretrained models, which can be downloaded and used [586].
If some additional training data is available, one can use it to fine-tune only the deeper
layers (i.e., layers closer to the output layer). The weights of the early layers (closer to the
input) are fixed. The reason for training only the deeper layers, while keeping the early
layers fixed, is that the earlier layers capture only primitive features like edges, whereas
the deeper layers capture more complex features. The primitive features do not change
too much with the application at hand, whereas the deeper features might be sensitive to
the application at hand. For example, all types of images will require edges of different

352 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

orientation to represent them (captured in early layers), but a feature corresponding to the
wheel of a truck will be relevant to a data set containing images of trucks. In other words,
early layers tend to capture highly generalizable features (across different computer vision
data sets), whereas later layers tend to capture data-specific features. A discussion of the
transferability of features derived from convolutional neural networks across data sets and
tasks is provided in [361].

8.5 Visualization and Unsupervised Learning

An interesting property of convolutional neural networks is that they are highly interpretable
in terms of the types of features they can learn. However, it takes some effort to actually
interpret these features. The first approach that comes to mind is to simply visualize the
2-dimensional (spatial) components of the filters. Although this type of visualization can
provide some interesting visualizations of the primitive edges and lines learned in the first
layer of the neural network, it is not very useful for later layers. In the first layer, it is
possible to visualize these filters because they operate directly on the input image, and
often tend to look like primitive parts of the image (such as edges). However, it is not quite
as simple a matter to visualize these filters in later layers because they operate on input
volumes that have already been scrambled with convolution operations. In order to obtain
any kind of interpretability one must find a way to map the impacts of all operations all
the way back to the input layer. Therefore, the goal of visualization is often to identify and
highlight the portions of the input image to which a particular hidden feature is responding.
For example, the value of one hidden feature might be sensitive to changes in the portion
of the image corresponding to the wheel of a truck, and a different hidden feature might be
sensitive to its hood. This is naturally achieved by computing the sensitivity (i.e., gradient)
of a hidden feature with respect to each pixel of the input image. As we will see, these types
of visualizations are closely related to backpropagation, unsupervised learning, and trans-
posed convolutional operations (used for creating the decoder portions of autoencoders).
Therefore, this chapter will discuss these closely related topics in an integrated way.

There are two primary settings in which one can encode and decode an image. In the
first setting, the compressed feature maps are learned by using any of the supervised models
discussed in earlier sections. Once the network has been trained in a supervised way, one
can attempt to reconstruct the portions of the image that most activate a given feature.
Furthermore, the portions of an image that are most likely to activate a particular hidden
feature or a class are identified. As we will see later, this goal can be achieved with various
types of backpropagation and optimization formulations. The second setting is purely un-
supervised, in which a convolutional network (encoder) is hooked up to a deconvolutional
network (decoder). As we will see later, the latter is also a form of transposed convolu-
tion, which is similar to backpropagation. However, in this case, the weights of the encoder
and decoder are learned jointly to minimize the reconstruction error. The first setting is
obviously simpler because the encoder is trained in a supervised way, and one only has to
learn the effect of different portions of the input field on various hidden features. In the
second setting, the entire training and learning of weights of the network has to be done
from scratch.

8.5. VISUALIZATION AND UNSUPERVISED LEARNING 353

8.5.1 Visualizing the Features of a Trained Network

Consider a neural network that has already been trained using a large data set like ImageNet.
The goal is to visualize and understand the impact of the different portions of the input
image (i.e., receptive field) on various features in the hidden layers and the output layer
(e.g., the 1000 softmax outputs in AlexNet). We would like to answer the following questions:

1. Given an activation of a feature anywhere in the neural network for a particular input
image, visualize the portions of the input to which that feature is responding the most.
Note that the feature might be one of the hidden features in the spatially arranged
layers, in the fully connected hidden layers (e.g., FC7), or even one of the softmax
outputs. In the last of these cases, one obtains some insight of the specific relationship
of a particular input image to a class. For example, if an input image is activating
the label for “banana,” we hope to see the parts of the specific input image that look
most like a banana.

2. Given a particular feature anywhere in the neural network, find a fantasy image that
is likely to activate that feature the most. As in the previous case, the feature might
be one of the hidden features or even one of the features from the softmax outputs.
For example, one might want to know what type of fantasy image is most likely to
classify to a “banana” in the trained network at hand.

In both these cases, the easiest approach to visualize the impact of specific features is to
use gradient-based methods. The second of the above goals is rather hard, and one often
does not obtain satisfactory visualizations without careful regularization.

Gradient-Based Visualization of Activated Features

The backpropagation algorithm that is used to train the neural network is also helpful for
gradient-based visualization. It is noteworthy that backpropagation-based gradient compu-
tation is a form of transposed convolution. In traditional autoencoders, transposed weight
matrices (of those used in the encoder layer) are often used in the decoder. Therefore, the
connections between backpropagation and feature reconstruction are deep and are applica-
ble across all types of neural networks. The main difference from the traditional backprop-
agation setting is that our end-goal is to determine the sensitivity of the hidden/output
features with respect to different pixels of the input image rather than with respect to the
weights. However, even traditional backpropagation does compute the sensitivity of the out-
puts with respect to various layers as an intermediate step, and therefore almost exactly
the same approach can be used in both cases.

When the sensitivity of an output o is computed with respect to the input pixels, the
visualization of this sensitivity over the corresponding pixels is referred to as a saliency
map [456]. For example, the output o might be the softmax probability (or unnormalized
score before applying softmax) of the class “banana.” Then, for each pixel xi in the image,
we would like to determine the value of ∂o

∂xi
. This value can be computed by straightforward

backpropagation all the way8 to the input layer. The softmax probability of “banana” will
be relatively insensitive to small changes in those portions of the image that are irrelevant
to the recognition of a banana. Therefore, the values of ∂o

∂xi
will be close to 0 for such

8Under normal circumstances, one only backpropagates to hidden layers as an intermediate step to
compute gradients with respect to incoming weights in that hidden layer. Therefore, backpropagation to
input layer is never really needed in traditional training. However, backpropagation to the input layer is
identical to that with respect to the hidden layers.

354 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Figure 8.12: Examples of portions of specific images activated by particular class labels.
These images appear in the work by Simonyan, Vedaldi, and Zisserman [456]. Reproduced
with permission. (c©2014 Simonyan, Vedaldi, and Zisserman)

irrelevant regions, whereas the portions of the image that define a banana will have large
magnitudes. For example, in the case of AlexNet, the entire 224×224×3 volume defined by
∂o
∂xi

of backpropagated gradients will have portions with large magnitudes corresponding to
the banana in the image. To visualize this volume, we first convert it to grayscale by taking
the maximum of the absolute magnitude of the gradient over the three RGB channels to cre-
ate a 224×224×1 map with only non-negative values. The bright portions of this grayscale
visualization will tell us which portion of the input image are relevant to the banana. Exam-
ples of grayscale visualizations of the portions of the image that excite relevant classes are
shown in Figure 8.12. For example, the bright portion of the image in Figure 8.12(a) excites
the animal in the image, which also represents its class label. As discussed in Section 2.4 of
Chapter 2, this type of approach can also be used for interpretability and feature selection
in traditional neural networks (and not just convolutional methods).

This general approach has also been used for visualizing the activations of specific hidden
features. Consider the value h of a hidden variable for a particular input image. How is this
variable responding to the input image at its current activation level? The idea is that if
we slightly increase or decrease the color intensity of some pixels, the value of h will be
affected more than if we increase or decrease other pixels. First, the hidden variable h will
be affected by a small rectangular portion of the image (i.e., receptive field), which is very
small when h is present in early layers but much larger in later layers. For example, the
receptive field of h might only be of size 3 × 3 when it is selected from the first hidden
layer in the case of VGG. Examples of the image crops corresponding to specific images in
which a particular neuron in a hidden layer is highly activated are shown in each row on
the right-hand side of Figure 8.13. Note that each row contains a somewhat similar image.
This is not a coincidence because that row corresponds to a particular hidden feature, and
the variations in that row are caused by the different choices of image. Note that the choices
of the image for a row is also not random, because we are selecting the images that most
activate that feature. Therefore, all the images will contain the same visual characteristic

8.5. VISUALIZATION AND UNSUPERVISED LEARNING 355

that cause this hidden feature to be activated. The grayscale portion of the visualization
corresponds to the sensitivity of the feature to the pixel-specific values in the corresponding
image crop.

Figure 8.13: Examples of activation visualizations in different layers in Springenberg et al.’s
work [466]. Reprinted from [466] with permission (c©2015 Springenberg, Dosovitskiy, Brox,
Riedmiller).

At a high level of activation level of h, some of the pixels in that receptive field will be
more sensitive to h than others. By isolating the pixels to which the hidden variable h has
the greatest sensitivity and visualizing the corresponding rectangular regions, one can get an
idea of what part of the input map most affects a particular hidden feature. Therefore, any
particular pixel xi, we want to compute ∂h

∂xi
, and then visualize those pixels with large values

of this gradient. However, instead of backpropagation, the notions of “deconvnet” [556] and
guided backpropagation [466] are sometimes used. The notion of “deconvent” is also used in
convolutional autoencoders. The main difference is in terms of how the gradient of the ReLU
nonlinearity is propagated backwards. As discussed in Table 3.1 of Chapter 3, the partial
derivative of a ReLU unit is copied backwards during backpropagation if the input to the
ReLU is positive, and is otherwise set to 0. However, in “deconvnet,” the partial derivative
of a ReLU unit is copied backwards, if this partial derivative is itself larger than 0. This
is like using a ReLU on the propagated gradient in the backward pass. In other words, we
replace gi = gi+1⊙I(zi > 0) in Table 3.1 with gi = gi+1⊙I(gi+1 > 0). Here zi represents the
forward activations, and gi represents the backpropagated gradients with respect to the ith
layer containing only ReLU units. The function I(·) is an element-wise indicator function,
which takes on the value of 1 for each element in the vector argument when the condition
is true for that element. In guided backpropagation, we combine the conditions used in
traditional backpropagation and ReLU by using gi = gi+1 ⊙ I(zi > 0) ⊙ I(gi+1 > 0). A
pictorial illustration of the three variations of backpropagation is shown in Figure 8.14. It is
suggested in [466] that guided backpropagation gives better visualizations than “deconvnet,”
which in turn gives better results than traditional backpropagation.

356 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

2

4

1 -1

-2 3

-2 1 3

TRADITIONAL

BACKPROPAGATION

FORWARD

PASS

ReLU

2

4

1 0

0 3

0 1 3

-1

2

-3 2

-1 2

1 2 -4

BACKWARD

PASS

ACTIVATION

(LAYER i)

ACTIVATION

(LAYER i+1)

-1

2

-3 0

0 2

0 2 -4

0

2

0 2

0 2

1 2 0

0

2

0 0

0 2

0 2 0

“GRADIENTS”

(LAYER i+1)

“GRADIENTS”

(LAYER i)

“DECONVNET”

(APPLY ReLU)

GUIDED

BACKPROPAGATION

Figure 8.14: The different variations of backpropagation of ReLU for visualization

One way of interpreting the difference between traditional backpropagation and “decon-
vnet” is by interpreting backwards propagation of gradients as the operations of a decoder
with transposed convolutions with respect to the encoder [456]. However, in this decoder,
we are again using the ReLU function rather than the gradient-based transformation im-
plied by the ReLU. After all, all forms of decoders use the same activation functions as the
encoder. Another feature of the visualization approach in [466] is that it omits the use of
pooling layers in the convolutional neural network altogether, and instead relies on strided
convolutions. The work in [466] identified several highly activated neurons in specific lay-
ers corresponding to specific input images and provided visualizations of the rectangular
regions of those images corresponding to the receptive fields of those hidden neurons. We
have already discussed earlier that the right-hand side of Figure 8.13 contains the input
regions corresponding to specific neurons in hidden layers. The left-hand side of Figure 8.13
also shows the specific characteristics of each image that excite that particular neuron. The
visualization on the left-hand side is obtained with guided backpropagation. Note that the
upper set of images correspond to the sixth layer, whereas the lower set of images corre-
sponds to the ninth layer of the convolutional network. As a result, the images in the lower
set typically corresponds to larger regions of the input image containing more complex
shapes.

Another excellent set of visualizations from [556] is shown in Figure 8.15. The main
difference is that the work in [556] also uses max-pooling layers, and is based on deconvo-
lutions rather than guided backpropagation. The specific hidden variables chosen are the
top-9 largest activations in each feature map. In each case, the relevant square region of the
image is shown together with the corresponding visualization. It is evident that the hid-
den features in early layers correspond to primitive lines, which become increasingly more
complex in later layers. This is one of the reasons that convolutional neural networks are
viewed as methods that create hierarchical features. The features in early layers tend to be
more generic, and they can be used across a wider variety of data sets. The features in later
layers tend to be more specific to individual data sets. This is a key property exploited in
transfer learning applications, in which pretrained networks are broadly used, and only the
later layers are fine-tuned in a manner that’s specific to data set and application.

8.5. VISUALIZATION AND UNSUPERVISED LEARNING 357

Synthesized Images that Activate a Feature

The above examples tell us the portions of a particular image that most affect a particular
neuron. A more general question is to ask what kind of image patch would maximally
activate a particular neuron. For ease in discussion, we will discuss the case in which the
neuron is an output value o of a particular class (i.e., unnormalized output before applying
softmax). For example, the value of o might be the unnormalized score for “banana.” Note
that one can also apply a similar approach to intermediate neurons rather than the class
score. We would like to learn the input image x that maximizes the output o, while applying
regularization to x:

Maximizex J(x) = (o− λ||x||2)
Here, λ is the regularization parameter, and is important in order to extract semantically
interpretable images. One can use gradient ascent in conjunction with backpropagation in
order to learn the input image x that maximizes the above objective function. Therefore,
we start with a zero image x and update x using gradient ascent in conjunction with
backpropagation with respect to the above objective function. In other words, the following
update is used:

x ⇐ x+ α∇xJ(x) (8.4)

Here, α is the learning rate. The key point is that backpropagation is being leveraged in an
unusual way to update the image pixels while keeping the (already learned) weights fixed.
Examples of synthesized images for three classes are shown in Figure 8.16. Other advanced
methods for generating more realistic images on the basis of class labels are discussed
in [358].

8.5.2 Convolutional Autoencoders

The use of the autoencoder in traditional neural networks is discussed in Chapters 2 and 4.
Recall that the autoencoder reconstructs data points after passing them through a com-
pression phase. In some cases, the data is not compressed although the representations are
sparse. The portion before the most compressed layer of the architecture is referred to as
the encoder, and the portion after the compressed portion is referred to as the decoder.
We repeat the pictorial view of the encoder-decoder architecture for the traditional case in
Figure 8.17(a). The convolutional autoencoder has a similar principle, which reconstructs
images after passing them through a compression phase. The main difference between a tra-
ditional autoencoder and a convolutional autoencoder is that the latter is focused on using
spatial relationships between points in order to extract features that have a visual interpre-
tation. The spatial convolution operations in the intermediate layers achieve precisely this
goal. An illustration of the convolutional autoencoder is shown in Figure 8.17(b) in com-
parison with the traditional autoencoder in Figure 8.17(a). Note the 3-dimensional spatial
shape of the encoder and decoder in the second case. However, it is possible to conceive of
several variations to this basic architecture. For example, the codes in the middle can either
be spatial or they can be flattened with the use of fully connected layers, depending on the
application at hand. The fully connected layers would be necessary to create a multidimen-
sional code that can be used with arbitrary applications (without worrying about spatial
constraints among features). In the following, we will simplify the discussion by assuming
that the compressed code in the middle is spatial in nature.

Just as the compression portion of the encoder uses a convolution operation, the decom-
pression operation uses a deconvolution operation. Similarly, pooling is matched with an

358 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Figure 8.15: Examples of activation visualizations in different layers based on Zeiler and Fer-
gus’s work [556]. Reprinted from [556] with permission. c©Springer International Publishing
Switzerland, 2014.

8.5. VISUALIZATION AND UNSUPERVISED LEARNING 359

Figure 8.16: Examples of synthesized images with respect to particular class labels. These
examples appear in the work by Simonyan, Vedaldi, and Zisserman [456]. Reproduced with
permission (c©2014 Simonyan, Vedaldi, and Zisserman)

O
R

IG
IN

A
L

D
A

TA

R
E

C
O

N
S

T
R

U
C

T
E

D
D

A
TA

C
O

D
E

ENCODER
(MULTILAYER NEURAL

NETWORK)

FUNCTION F(.)

DECODER
(MULTILAYER NEURAL

NETWORK)

FUNCTION G(.)

X XI = (G o F) (X)

F(X)

CONSTRICTED

LAYERS IN

MIDDLE

O
R

IG
IN

A
L

IM
A

G
E

R
E

C
O

N
S

T
R

U
C

T
E

D
 I

M
A

G
E

C
O

D
E

ENCODER
(CONVOLUTIONAL

NETWORK)

FUNCTION F(.)

DECODER
(DE-CONVOLUTIONAL

NETWORK)

FUNCTION G(.)

X XI = (G o F) (X)

F(X)

CONSTRICTED OR SPARSE

SPATIAL LAYERS IN MIDDLE

(a) A traditional autoencoder architecture (b) Convolutional autoencoder

Figure 8.17: A traditional autoencoder and a convolutional autoencoder.

unpooling operation. Deconvolution is also referred to as transposed convolution. Interest-
ingly, the transposed convolution operation is the same as that used for backpropagation.
The term “deconvolution” is perhaps a bit misleading because every deconvolution is in
actuality a convolution with a filter that is derived by transposing and inverting the tensor
representing the original convolution filter (cf. Figure 8.7 and Equation 8.3). We can already
see that deconvolution uses similar principles to that of backpropagation. The main differ-
ence is in terms of how the ReLU function is handled, which makes deconvolution more
similar to “deconvnet” or guided backpropagation. In fact, the decoder in a convolutional
autoencoder performs similar operations to the backpropagation phase of gradient-based
visualization. Some architectures do away with the pooling and unpooling operations, and
work with only convolution operations (together with activation functions). A notable ex-
ample is the design of fully convolutional networks [449, 466].

The fact that the deconvolution operation is really not much different from a convolution
operation is not surprising. Even in traditional feed-forward networks, the decoder part of
the network performs the same types of matrix multiplications as the encoder part of the
network, except that the transposed weight matrices are used. One can summarize the
analogy between traditional autoencoders and convolutional autoencoders in Table 8.4.
Note that the relationship between forward backpropagation and backward propagation is

360 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Table 8.4: The relationship between backpropagation and decoders

Linear Operation Traditional neural networks Convolutional neural networks

Forward Propagation Matrix multiplication Convolution
Backpropagation Transposed matrix multiplication Transposed convolution
Decoder layer Transposed matrix multiplication Transposed convolution

(Identical to backpropagation) (Identical to backpropagation)

similar in traditional and convolutional neural networks in terms of how the corresponding
matrix operations are performed. A similar observation is true about the nature of the
relationship between encoders and decoders.

There are three operations corresponding to the convolution, max-pooling, and the ReLU
nonlinearity. The goal is to perform the inversion of the operations in the decoder layer that
have been performed in the encoder layer. There is no easy way to exactly invert some of the
operations (such as max-pooling and ReLU). However, excellent image reconstruction can
still be achieved with the proper design choices. First, we describe the case of an autoencoder
with a single layer with convolution, ReLU, and max-pooling. Then, we discuss how to
generalize it to multiple layers.

Although one typically wants to use the inverse of the encoder operations in the decoder,
the ReLU is not an invertible function because a value of 0 has many possible inversions.
Therefore, a ReLU is replaced by another ReLU in the decoder layer (although other options
are possible). Therefore, the architecture of this simple autoencoder is as follows:

Convolve ⇒ ReLU ⇒ Max-Pool
︸ ︷︷ ︸

Encoder

⇒ Code ⇒ Unpool ⇒ ReLU ⇒ De-Convolve
︸ ︷︷ ︸

Decoder

Note that the layers are symmetrically arranged in terms of how a matching layer in the
decoder undoes the effect of a corresponding layer in the encoder. However, there are many
variations to this basic theme. For example, the ReLU might be placed after the deconvolu-
tion. Furthermore, in some variations [310], it is recommended to use deeper encoders than
the decoders with an asymmetric architecture. However, with a stacked variation of the
symmetric architecture above, it is possible to train just the encoder with a classification
output layer (and a supervised data set like ImageNet) and then use its symmetric decoder
(with transposed/inverted filters) to perform “deconvnet” visualization [556]. Although one
can always use this approach to initialize the autoencoder, we will discuss enhancements of
this concept where the encoder and decoder are jointly trained in an unsupervised way.

We will count each layer like convolution and ReLU as a separate layer here, and therefore
we have a total of seven layers including the input. This architecture is simplistic because
it uses a single convolution layer in each of the encoders and decoders. In more generalized
architectures, these layers are stacked to create more powerful architectures. However, it is
helpful to illustrate the relationship of the basic operations like unpooling and deconvolution
to their encoding counterparts (like pooling and convolution). Another simplification is that
the code is contained in a spatial layer, whereas one could also insert fully connected layers
in the middle. Although this example (and Figure 8.17(b)) uses a spatial code, the use of
fully connected layers in the middle is more useful for practical applications. On the other
hand, the spatial layers in the middle can be used for visualization.

Consider a situation in which the encoder uses d2 square filters of size F1×F1×d1 in the
first layer. Also assume that the first layer is a (spatially) square volume of size L1×L1×d1.

8.5. VISUALIZATION AND UNSUPERVISED LEARNING 361

The (i, j, k)th entry of the pth filter in the first layer has weight w
(p,1)
ijk . This notations are

consistent with those used in Section 8.2, where the convolution operation is defined. It is
common to use the precise level of padding required in the convolution layer, so that the
feature maps in the second layer are also of size L1. This level of padding is F1−1, which is
referred to as half-padding. However, it is also possible to use no padding in the convolution
layer, if one uses full padding in the corresponding deconvolution layer. In general, the sum
of the paddings between the convolution and its corresponding deconvolution layer must
sum to F1−1 in order to maintain the spatial size of the layer in a convolution-deconvolution
pair.

Here, it is important to understand that although each W (p,1) = [w
(p,1)
ijk] is a

3-dimensional tensor, one can create a 4-dimensional tensor by including the index p
in the tensor. The deconvolution operation uses a transposition of this tensor, which is
similar to the approach used in backpropagation (cf. Section 8.3.3). The counter-part
deconvolution operation occurs from the sixth to the seventh layer (by counting the
ReLU/pooling/unpooling layers in the middle). Therefore, we will define the (deconvo-

lution) tensor U (s,6) = [u
(s,6)
ijk] in relation to W (p,1). Layer 5 contains d2 feature maps,

which were inherited from the convolution operation in the first layer (and unchanged by
pooling/unpooling/ReLU operations). These d2 feature maps need to be mapped into d1
layers, where the value of d1 is 3 for RGB color channels. Therefore, the number of filters
in the deconvolution layer is equal to the depth of the filters in the convolution layer and
vice vera. One can view this change in shape as a result of the transposition and spatial
inversion of the 4-dimensional tensor created by the filters. Furthermore, the entries of the
two 4-dimensional tensors are related as follows:

u
(s,6)
ijk = w(k,1)

rms ∀s ∈ {1 . . . d1}, ∀k ∈ {1 . . . d2} (8.5)

Here, r = n− i+1 and m = n− j+1, where the spatial footprint in the first layer is n×n.
Note the transposition of the indices s and k in the above relationship. This relationship is
identical to Equation 8.3. It is not necessary to tie the weights in the encoder and decoder,
or even use a symmetric architecture between encoder and decoder [310].

The filters U (s,6) in the sixth layer are used just like any other convolution to reconstruct
the RGB color channels of the images from the activations in layer 6. Therefore, a deconvo-
lution operation is really a convolution operation, except that it is done with a transposed
and spatially inverted filter. As discussed in Section 8.3.2, this type of deconvolution oper-
ation is also used in backpropagation. Both the convolution/deconvolution operations can
also be executed with the use of matrix multiplications, as described in that section.

The pooling operations, however, irreversibly lose some information and are therefore
impossible to invert exactly. This is because the non-maximal values in the layer are per-
manently lost by pooling. The max-unpooling operation is implemented with the help of
switches. When pooling is performed, the precise positions of the maximal values are stored.
For example, consider the common situation in which 2× 2 pooling is performed at stride
2. In such a case, pooling reduces both spatial dimensions by a factor of 2, and it picks
the maximum out of 2 × 2 = 4 values in each (non-overlapping) pooled region. The exact
coordinate of the (maximal) value is stored, and is referred to as the switch. When unpool-
ing, the dimensions are increased by a factor of 2, and the values at the switch positions
are copied from the previous layer. The other values are set to 0. Therefore, after max-
unpooling, exactly 75% of the entries in the layer will have uncopied values of 0 in the case
of non-overlapping 2× 2 pooling.

362 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Like traditional autoencoders, the loss function is defined by the reconstruction error

over all L1 ×L1 × d1 pixels. Therefore, if h
(1)
ijk represents the values of the pixels in the first

(input) layer, and h
(7)
ijk represents the values of the pixels in the seventh (output) layer, the

reconstruction loss E is defined as follows:

E =

L1∑

i=1

L1∑

j=1

d1∑

k=1

(h
(1)
ijk − h

(7)
ijk)

2 (8.6)

Other types of error functions (such as L1-loss and negative log-likelihood) are also used.
One can use traditional backpropagation with the autoencoder. Backpropagating

through deconvolutions or the ReLU is no different than in the case of convolutions. In
the case of max-unpooling, the gradient flows only through the switches in an unchanged
way. Since the parameters of the encoder and the decoder are tied, one needs to sum up
the gradients of the matching parameters in the two layers during gradient descent. An-
other interesting point is that backpropagating through deconvolutions uses almost identical
operations to forward propagation through convolutions. This is because both backpropa-
gation and deconvolution cause successive transpositions of the 4-dimensional tensor used
for transformation.

This basic autoencoder can easily be extended to the case where multiple convolutions,
poolings, and ReLUs are used. The work in [554] discusses the difficulty with multilayer
autoencoders, and proposes several tricks to improve performance. There are several other
architectural design choices that are often used to improve performance. One key point
is that strided convolutions are often used (in lieu of max-pooling) to reduce the spatial
footprint in the encoder, which must be balanced in the decoder with fractionally strided
convolutions. Consider a situation in which the encoder uses a stride of S with some padding
to reduce the size of the spatial footprint. In the decoder, one can increase the size of the
spatial footprint by the same factor by using the following trick. While performing the con-
volution, we stretch the input volume by placing S − 1 rows of zeros9 between every pair
of rows, and S − 1 columns of zeros between every pair of columns before applying the
filter. As a result, the input volume already stretches by a factor of approximately S in each
spatial dimension. Additional padding along the borders can be applied before performing
the convolution with the transposed filter. Such an approach has the effect of providing
a fractional stride and expanding the output size in the decoder. An alternative approach
for stretching the input volume of a convolution is to insert interpolated values (instead of
zeros) between the original entries of the input volume. The interpolation is done using a
convex combination of the nearest four values, and a decreasing function of the distance
to each of these values is used as the proportionality factor of the interpolation [449]. The
approach of stretching the inputs is sometimes combined with that of stretching the filters
as well by inserting zeros within the filter [449]. Stretching the filter results in an approach,
referred to as dilated convolution, although its use is not universal for fractionally strided
convolutions. A detailed discussion of convolution arithmetic (included fractionally strided
convolution) is provided in [109]. Compared to the traditional autoencoder, the convolu-
tional autoencoder is somewhat more tricky to implement, with many different variations
for better performance. Refer to the bibliographic nodes.

Unsupervised methods also have applications to improving supervised learning. The
most obvious method among them is pretraining, which was discussed in Section 4.7 of
Chapter 4. In convolutional neural networks, the methodology for pretraining is not very
different in principle from what is used in traditional neural networks. Pretraining can also

9Example available at http://deeplearning.net/software/theano/tutorial/conv arithmetic.html.

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

8.6. APPLICATIONS OF CONVOLUTIONAL NETWORKS 363

Figure 8.18: Example of image classification/localization in which the class “fish” is identi-
fied together with its bounding box. The image is illustrative only.

be performed by deriving the weights from a trained deep-belief convolutional network [285].
This is analogous to the approach in traditional neural networks, where stacked Boltzmann
machines were among the earliest models used for pretraining.

8.6 Applications of Convolutional Networks

Convolutional neural networks have several applications in object detection, localization,
video, and text processing. Many of these applications work on the basic principle of using
convolutional neural networks to provide engineered features, on top of which multidimen-
sional applications can be constructed. The success of convolutional neural networks remains
unmatched by almost any class of neural networks. In recent years, competitive methods
have even been proposed for sequence-to-sequence learning, which has traditionally been
the domain of recurrent networks.

8.6.1 Content-Based Image Retrieval

In content-based image retrieval, each image is first engineered into a set of multidimensional
features by using a pretrained classifier like AlexNet. The pretraining is typically done
up front using a large data set like ImageNet. A huge number of choices of such pretrained
classifiers is available at [586]. The features from the fully connected layers of the classifier
can be used to create a multidimensional representation of the images. The multidimensional
representations of the images can be used in conjunction with any multidimensional retrieval
system to provide results of high quality. The use of neural codes for image retrieval is
discussed in [16]. The reason that this approach works is because the features extracted
from AlexNet have semantic significance to the different types of shapes present in the data.
As a result, the quality of the retrieval is generally quite high when working with these
features.

364 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTION LAYERS

(WEIGHTS FIXED FOR

BOTH CLASSIFICATION

AND REGRESSION)

S
O

F
T

M
A

X

FULLY

CONNECTED

CLASSIFICATION HEAD

CLASS

PROBABILITIES

LI
N

E
A

R
 L

A
Y

E
R

FULLY

CONNECTED

REGRESSION HEAD

BOUNDING

BOX (FOUR

NUMBERS)

TRAIN FOR REGRESSION

TRAIN FOR CLASSIFICATION

FULLY

CONNECTED

FULLY

CONNECTED

Figure 8.19: The broad framework of classification and localization

8.6.2 Object Localization

In object localization, we have a fixed set of objects in an image, and we would like to
identify the rectangular regions in the image in which the object occurs. The basic idea is
to take an image with a fixed number of objects and encase each of them in a bounding
box. In the following, we will consider the simple case in which a single object exists in
the image. Image localization is usually integrated with the classification problem, in which
we first wish to classify the object in the image and draw a bounding box around it. For
simplicity, we consider the case in which there is a single object in the image. We have shown
an example of image classification and localization in Figure 8.18, in which the class “fish”
is identified, and a bounding box is drawn around the portion of the image that delineates
that class.

The bounding box of an image can be uniquely identified with four numbers. A common
choice is to identify the top-left corner of the bounding box, and the two dimensions of
the box. Therefore, one can identify a box with four unique numbers. This is a regression
problem with multiple targets. Here, the key is to understand that one can train almost
the same model for both classification and regression, which vary only in terms of the final
two fully connected layers. This is because the semantic nature of the features extracted
from the convolution network are often highly generalizable across a wide variety of tasks.
Therefore, one can use the following approach:

1. First, we train a neural network classifier like AlexNet or use a pretrained version of
this classifier. In the first phase, it suffices to train the classifier only with image-class
pairs. One can even use an off-the-shelf pretrained version of the classifier, which was
trained on ImageNet.

2. The last two fully connected layers and softmax layers are removed. This removed
set of layers is referred to as the classification head. A new set of two fully connected

8.6. APPLICATIONS OF CONVOLUTIONAL NETWORKS 365

Figure 8.20: Example of object detection. Here, four objects are identified together with
their bounding boxes. The four objects are “fish,” “girl,” “bucket,” and “seat.” The image
is illustrative only.

layers and a linear regression layer is attached. Only these layers are then trained with
training data containing images and their bounding boxes. This new set of layers is
referred to as the regression head. Note that the weights of the convolution layers are
fixed, and are not changed. Both the classification and regression heads are shown
in Figure 8.19. Since the classification and regression heads are not connected to one
another in any way, these two layers can be trained independently. The convolution
layers play the role of creating visual features for both classification and regression.

3. One can optionally fine-tune the convolution layers to be sensitive to both classification
and regression (since they were originally trained only for classification). In such a
case, both classification and regression heads are attached, and the training data for
images, their classes, and bounding boxes are shown to the network. Backpropagation
is used to fine-tune all layers. This full architecture is shown in Figure 8.19.

4. The entire network (with both classification and regression heads attached) is then
used on the test images. The outputs of the classification head provide the class
probabilities, whereas the outputs of the regression head provide the bounding boxes.

One can obtain results of superior quality by using a sliding-window approach. The basic
idea in the sliding-window approach is to perform the localization at multiple locations in
the image with the use of a sliding window, and then integrate the results of the different
runs. An example of this approach is the Overfeat method [441]. Refer to the bibliographic
notes for pointers to other localization methods.

8.6.3 Object Detection

Object detection is very similar to object localization, except that there is a variable number
of objects of different classes in the image. In this case, one wishes to identify all the objects
in the image together with their classes. We have shown an example of object detection
in Figure 8.20, in which there are four objects corresponding to the classes “fish,” “girl,”
“bucket,” and “seat.” The bounding boxes of these classes are also shown in the figure.

366 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Object detection is generally a more difficult problem than that of localization because of
the variable number of outputs. In fact, one does not even know a priori how many objects
there are in the image. For example, one cannot use the architecture of the previous section,
where it is not clear how many classification or regression heads one might attach to the
convolutional layers.

The simplest approach to this problem is to use a sliding window approach. In the sliding
window approach, one tries all possible bounding boxes in the image, on which the object
localization approach is applied to detect a single object. As a result, one might detect
different objects in different bounding boxes, or the same object in overlapping bounding
boxes. The detections from the different bounding boxes can then be integrated in order
to provide the final result. Unfortunately, the approach can be rather expensive. For an
image of size L×L, the number of possible bounding boxes is L4. Note that one would have
to perform the classification/regression for each of these L4 possibilities for each image at
test time. This is a problem, because one generally expects the testing times to be modest
enough to provide real-time responses.

In order to address this issue region proposal methods were advanced. The basic idea
of a region proposal method is that it can serve as a general-purpose object detector that
merges regions with similar pixels together to create larger regions. Therefore, the region
proposal methods are used to first create a set of candidate bounding boxes, and then the
object classification/localization method is run in each of them. Note that some candidate
regions might not have valid objects, and others might have overlapping objects. These are
then used to integrate and identify all the objects in the image. This broader approach has
been used in various techniques like MCG [172], EdgeBoxes [568], and SelectiveSearch [501].

8.6.4 Natural Language and Sequence Learning

While the preferred way of machine learning with text sequences is that of recurrent neural
networks, the use of convolutional neural networks has become increasingly popular in
recent years. At first sight, convolutional neural networks do not seem like a natural fit for
text-mining tasks. First, image shapes are interpreted in the same way, irrespective of where
they are in the image. This is not quite the case for text, where the position of a word in a
sentence seems to matter quite a bit. Second, issues such as position translation and shift
cannot be treated in the same way in text data. Neighboring pixels in an image are usually
very similar, whereas neighboring words in text are almost never the same. In spite of these
differences, the systems based on convolutional networks have shown improved performance
in recent years.

Just as an image is represented as a 2-dimensional object with an additional depth
dimension defined by the number of color channels, a text sequence is represented as 1-
dimensional object with depth defined by its dimensionality of representation. The dimen-
sionality of representation of a text sentence is equal to the lexicon size for the case of
one-hot encoding. Therefore, instead of 3-dimensional boxes with a spatial extent and a
depth (color channels/feature maps), the filters for text data are 2-dimensional boxes with
a window (sequence) length for sliding along the sentence and a depth defined by the lex-
icon. In later layers of the convolutional network, the depth is defined by the number of
feature maps rather than the lexicon size. Furthermore, the number of filters in a given layer
defines the number of feature maps in the next layer (as in image data). In image data,
one performs convolutions at all 2-dimensional locations, whereas in text data one performs
convolutions at all 1-dimensional points in the sentence with the same filter. One challenge

8.6. APPLICATIONS OF CONVOLUTIONAL NETWORKS 367

with this approach is that the use of one-hot encoding increases the number of channels,
and therefore blows up the number of parameters in the filters in the first layer. The lex-
icon size of a typical corpus may often be of the order of 106. Therefore, various types of
pretrained embeddings of words, such as word2vec or GLoVe [371] are used (cf. Chapter 2)
in lieu of the one-hot encodings of the individual words. Such word encodings are semanti-
cally rich, and the dimensionality of the representation can be reduced to a few thousand
(from a hundred-thousand). This approach can provide an order of magnitude reduction
in the number of parameters in the first layer, in addition to providing a semantically rich
representation. All other operations (like max-pooling or convolutions) in the case of text
data are similar to those of image data.

8.6.5 Video Classification

Videos can be considered generalizations of image data in which a temporal component
is inherent to a sequence of images. This type of data can be considered spatio-temporal
data, which requires us to generalize the 2-dimensional spatial convolutions to 3-dimensional
spatio-temporal convolutions. Each frame in a video can be considered an image, and one
therefore receives a sequence of images in time. Consider a situation in which each image
is of size 224 × 224 × 3, and a total of 10 frames are received. Therefore, the size of the
video segment is 224 × 224 × 10 × 3. Instead of performing spatial convolutions with a 2-
dimensional spatial filter (with an additional depth dimension capturing 3 color channels),
we perform spatiotemporal convolutions with a 3-dimensional spatiotemporal filter (and
a depth dimension capturing the color channels). Here, it is interesting to note that the
nature of the filter depends on the data set at hand. A purely sequential data set (e.g., text)
requires 1-dimensional convolutions with windows, an image data set requires 2-dimensional
convolutions, and a video data set requires 3-dimensional convolutions. We refer to the
bibliographic notes for pointers to several papers that use 3-dimensional convolutions for
video classification.

An interesting observation is that 3-dimensional convolutions add only a limited amount
to what one can achieve by averaging the classifications of individual frames by image clas-
sifiers. A part of the problem is that motion adds only a limited amount to the information
that is available in the individual frames for classification purposes. Furthermore, suffi-
ciently large video data sets are hard to come by. For example, even a data set containing a
million videos is often not sufficient because the amount of data required for 3-dimensional
convolutions is much larger than that required for 2-dimensional convolutions. Finally, 3-
dimensional convolutional neural networks are good for relatively short segments of video
(e.g., half a second), but they might not be so good for longer videos.

For the case of longer videos, it makes sense to combine recurrent neural networks
(or LSTMs) with convolutional neural networks. For example, we can use 2-dimensional
convolutions over individual frames, but a recurrent network is used to carry over states
from one frame to the next. One can also use 3-dimensional convolutional neural networks
over short segments of video, and then hook them up with recurrent units. Such an approach
helps in identifying actions over longer time horizons. Refer to the bibliographic notes for
pointers to methods that combine convolutional and recurrent neural networks.

368 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

8.7 Summary

This chapter discusses the use of convolutional neural networks with a primary focus on
image processing. These networks are biologically inspired and are among the earliest suc-
cess stories of the power of neural networks. An important focus of this chapter is the
classification problem, although these methods can be used for additional applications such
as unsupervised feature learning, object detection, and localization. Convolutional neural
networks typically learn hierarchical features in different layers, where the earlier layers
learn primitive shapes, whereas the later layers learn more complex shapes. The backprop-
agation methods for convolutional neural networks are closely related to the problems of
deconvolution and visualization. Recently, convolutional neural networks have also been
used for text processing, where they have shown competitive performance with recurrent
neural networks.

8.8 Bibliographic Notes

The earliest inspiration for convolutional neural networks came from Hubel and Wiesel’s
experiments with the cat’s visual cortex [212]. Based on many of these principles, the notion
of the neocognitron was proposed in early work. These ideas were then generalized to the
first convolutional network, which was referred to as LeNet-5 [279]. An early discussion on
the best practices and principles of convolutional neural networks may be found in [452].
An excellent overview of convolutional neural networks may be found in [236]. A tutorial on
convolution arithmetic is available in [109]. A brief discussion of applications may be found
in [283].

The earliest data set that was used popularly for training convolutional neural net-
works was the MNIST database of handwritten digits [281]. Later, larger datasets like
ImageNet [581] became more popular. Competitions such as the ImageNet challenge
(ILSVRC) [582] have served as sources of some of the best algorithms over the last five
years. Examples of neural networks that have done well at various competitions include
AlexNet [255], ZFNet [556], VGG [454], GoogLeNet [485], and ResNet [184]. The ResNet
is closely related to highway networks [505], and it provides an iterative view of feature
engineering. A useful precursor to GoogLeNet was the Network-in-Network (NiN) architec-
ture [297], which illustrated some useful design principles of the inception module (such
as the use of bottleneck operations). Several explanations of why ResNet works well are
provided in [185, 505]. The use of inception modules between skip connections is proposed
in [537]. The use of stochastic depth in combination with residual networks is discussed
in [210]. Wide residual networks are proposed in [549]. A related architecture, referred to
as FractalNet [268], uses both short and long paths in the network, but does not use skip
connections. Training is done by dropping subpaths in the network, although prediction is
done on the full network.

Off-the-shelf feature extraction methods with pretrained models are discussed in [223,
390, 585]. In cases where the nature of the application is very different from ImageNet data,
it might make sense to extract features only from the lower layers of the pretrained model.
This is because lower layers often encode more generic/primitive features like edges and basic
shapes, which tend to work across an array of settings. The local-response normalization
approach is closely related to the contrast normalization discussed in [221].

The work in [466] proposes that it makes sense to replace the max-pooling layer with
a convolutional layer with increased stride. Not using a max-pooling layer is an advantage

8.8. BIBLIOGRAPHIC NOTES 369

in the construction of an autoencoder because one can use a convolutional layer with a
fractional stride within the decoder [384]. Fractional strides place zeros within the rows and
columns of the input volume, when it is desired to increase the spatial footprint from the
convolution operation. The notion of dilated convolutions [544] in which zeros are placed
within the rows/columns of the filter (instead of input volume) is also sometimes used. The
connections between deconvolution networks and gradient-based visualization are discussed
in [456, 466]. Simple methods for inverting the features created by a convolutional neural
network are discussed in [104]. The work in [308] discuss how to reconstruct an image op-
timally from a given feature representation. The earliest use the convolutional autoencoder
is discussed in [387]. Several variants of the basic autoencoder architecture were proposed
in [318, 554, 555]. One can also borrow ideas from restricted Boltzmann machines to per-
form unsupervised feature learning. One of the earliest such ideas that uses Deep Belief Nets
(DBNs) is discussed in [285]. The use of different types of deconvolution, visualization, and
reconstruction is discussed in [130, 554, 555, 556]. A very large-scale study for unsupervised
feature extraction from images is reported in [270].

There are some ways of learning feature representations in an unsupervised way, which
seem to work quite well. The work in [76] clusters on small image patches with a k-means
algorithm in order to generate features. The centroids of the clusters can be used to extract
features. Another option is use random weights as filters in order to extract features [85,
221, 425]. Some insight on this issue is provided in [425], which shows that a combination of
convolution and pooling becomes frequency selective and translation invariant, even with
random weights.

A discussion of neural feature engineering for image retrieval is provided in [16]. Nu-
merous methods have been proposed in recent years for image localization. A particularly
prominent system in this regard was Overfeat [441], which was the winner of the 2013
ImageNet competition. This method used a sliding-window approach in order to obtain
results of superior quality. Variations of AlexNet, VGG, and ResNet have also done well
in the ImageNet competition. Some of the earliest methods for object detection were pro-
posed in [87, 117]. The latter is also referred to as the deformable parts model [117]. These
methods did not use neural networks or deep learning, although some connections have
been drawn [163] between deformable parts models and convolutional neural networks. In
the deep learning era, numerous methods like MCG [172], EdgeBoxes [568], and Selec-
tiveSearch [501] have been proposed. The main problem with these methods is that they
are somewhat slow. Recently, the Yolo method, which is a fast object detection method,
was proposed in [391]. However, some of the speed gains are at the expense of accuracy.
Nevertheless, the overall effectiveness of the method is still quite high. The use of convolu-
tional neural networks for image segmentation is discussed in [180]. Texture synthesis and
style transfer methods with convolutional neural networks are proposed in [131, 132, 226].
Tremendous advances have been made in recent years in facial recognition with neural net-
works. The early work [269, 407] showed how convolutional networks can be used for face
recognition. Deep variants are discussed in [367, 474, 475].

Convolutional neural networks for natural language processing are discussed in [78, 79,
102, 227, 240, 517]. These methods often leverage on word2vec or GloVe methods to start
with a richer set of features [325, 371]. The notion of recurrent and convolutional neural
networks has also been combined for text classification [260]. The use of character-level
convolutional networks for text classification is discussed in [561]. Methods for image cap-
tioning by combining convolutional and recurrent neural networks are discussed in [225, 509].
The use of convolutional neural networks for processing graph-structured data is discussed
in [92, 188, 243]. A discussion of the use of convolutional neural networks in time-series and
speech is provided [276].

370 CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS

Video data can be considered the spatiotemporal generalization of image data from
the perspective of convolutional networks [488]. The use of 3-dimensional convolutional
neural networks for large-scale video classification is discussed in [17, 222, 234, 500], and
the works in [17, 222] proposed the earliest methods for 3-dimensional convolutional neu-
ral networks in video classification. All the neural networks for image classification have
natural 3-dimensional counterparts. For example, a generalization of VGG to the video
domain with 3-dimensional convolutional networks is discussed in [500]. Surprisingly, the
results from 3-dimensional convolutional networks are only slightly better than single-frame
methods, which perform classifications from individual frames of the video. An important
observation is that individual frames already contain a lot of information for classification
purposes, and the addition of motion often does not help for classification, unless the motion
characteristics are essential for distinguishing classes. Another issue is that the data sets for
video classification are often limited in scale compared to what is really required for building
large-scale systems. Even though the work in [234] collected a relatively large-scale data set
of over a million YouTube videos, this scale seems to be insufficient in the context of video
processing. After all, video processing requires 3-dimensional convolutions that are far more
complex than the 2-dimensional convolutions in image processing. As a result, it is often
beneficial to combine hand-crafted features with the convolutional neural network [514].
Another useful feature that has found applicability in recent years is the notion of optical
flow [53]. The use of 3-dimensional convolutional neural networks is helpful for classifica-
tion of videos over shorter time scales. Another common idea for video classification is to
combine convolutional neural networks with recurrent neural networks [17, 100, 356, 455].
The work in [17] was the earliest method for combining recurrent and convolutional neural
networks. The use of recurrent neural networks is helpful when one has to perform the
classification over longer time scales. A recent method [21] combines recurrent and convo-
lutional neural networks in a homogeneous way. The basic idea is to make every neuron in
the convolution neural network to be recurrent. One can view this approach to be a direct
recurrent extension of convolutional neural networks.

8.8.1 Software Resources and Data Sets

A variety of packages are available for deep learning with convolutional neural networks like
Caffe [571], Torch [572], Theano [573], and TensorFlow [574]. Extensions of Caffe to Python
and MATLAB are available. A discussion of feature extraction from Caffe may be found
in [585]. A “model zoo” of pretrained models from Caffe may be found in [586]. Theano
is Python-based, and it provides high-level packages like Keras [575] and Lasagne [576] as
interfaces. An open-source implementation of convolutional neural networks in MATLAB,
referred to as MatConvNet, may be found in [503]. The code and parameter files for AlexNet
are available at [584].

The two most popular data sets for testing convolutional neural networks are MNIST
and ImageNet. Both these data sets are described in detail in Chapter 1. The MNIST
data set is quite well behaved because its images have been centered and normalized. As a
result, the images in MNIST can be classified accurately even with conventional machine
learning methods, and therefore convolutional neural networks are not necessary. On the
other hand, the images in ImageNet contain images from different perspectives, and do
require convolutional neural networks. Nevertheless, the 1000-category setting of ImageNet,
together with its large size, makes it a difficult candidate for testing in a computationally
efficient way. A more modestly sized data set is CIFAR-10 [583]. This data set contains only
60,000 instances divided into ten categories, and contains 6,000 color images. Each image

8.9. EXERCISES 371

in the data set has size 32× 32× 3. It is noteworthy that the CIFAR-10 data set is a small
subset of the tiny images data set [642], which originally contains 80 million images. The
CIFAR-10 data set is often used for smaller scale testing, before a more large-scale training
is done with ImageNet. The CIFAR-100 data set is just like the CIFAR-10 data set, except
that it has 100 classes, and each class contains 600 instances. The 100 classes are grouped
into 10 super-classes.

8.9 Exercises

1. Consider a 1-dimensional time-series with values 2, 1, 3, 4, 7. Perform a convolution
with a 1-dimensional filter 1, 0, 1 and zero padding.

2. For a one-dimensional time series of length L and a filter of size F , what is the length of
the output? How much padding would you need to keep the output size to a constant
value?

3. Consider an activation volume of size 13×13×64 and a filter of size 3×3×64. Discuss
whether it is possible to perform convolutions with strides 2, 3, 4, and 5. Justify your
answer in each case.

4. Work out the sizes of the spatial convolution layers for each of the columns of Table 8.2.
In each case, we start with an input image volume of 224× 224× 3.

5. Work out the number of parameters in each spatial layer for column D of Table 8.2.

6. Download an implementation of the AlexNet architecture from a neural network li-
brary of your choice. Train the network on subsets of varying size from the ImageNet
data, and plot the top-5 error with data size.

7. Compute the convolution of the input volume in the upper-left corner of Figure 8.2
with the horizontal edge detection filter of Figure 8.1(b). Use a stride of 1 without
padding.

8. Perform a 4 × 4 pooling at stride 1 of the input volume in the upper-left corner of
Figure 8.4.

9. Discuss the various type of pretraining that one can use in the image captioning
application discussed in Section 7.7.1 of Chapter 7.

10. You have a lot of data containing ratings of users for different images. Show how
you can combine a convolutional neural network with the collaborative filtering ideas
discussed in Chapter 2 to create a hybrid between a collaborative and content-centric
recommender system.

Chapter 9

Deep Reinforcement Learning

“The reward of suffering is experience.”—Harry S. Truman

9.1 Introduction

Human beings do not learn from a concrete notion of training data. Learning in hu-
mans is a continuous experience-driven process in which decisions are made, and the re-
ward/punishment received from the environment are used to guide the learning process for
future decisions. In other words, learning in intelligent beings is by reward-guided trial and
error. Furthermore, much of human intelligence and instinct is encoded in genetics, which
has evolved over millions of years with another environment-driven process, referred to as
evolution. Therefore, almost all of biological intelligence, as we know it, originates in one
form or other through an interactive process of trial and error with the environment. In his
interesting book on artificial intelligence [453], Herbert Simon proposed the ant hypothesis:

“Human beings, viewed as behaving systems, are quite simple. The apparent
complexity of our behavior over time is largely a reflection of the complexity of
the environment in which we find ourselves.”

Human beings are considered simple because they are one-dimensional, selfish, and reward-
driven entities (when viewed as a whole), and all of biological intelligence is therefore at-
tributable to this simple fact. Since the goal of artificial intelligence is to simulate biological
intelligence, it is therefore natural to draw inspirations from the successes of biological greed
in simplifying the design of highly complex learning algorithms.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 9

373

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_9&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_9

374 CHAPTER 9. DEEP REINFORCEMENT LEARNING

A reward-driven trial-and-error process, in which a system learns to interact with a
complex environment to achieve rewarding outcomes, is referred to in machine learning
parlance as reinforcement learning. In reinforcement learning, the process of trial and error
is driven by the need to maximize the expected rewards over time. Reinforcement learning
can be a gateway to the quest for creating truly intelligent agents such as game-playing
algorithms, self-driving cars, and even intelligent robots that interact with the environment.
Simply speaking, it is a gateway to general forms of artificial intelligence. We are not quite
there yet. However, we have made huge strides in recent years with exciting results:

1. Deep learners have been trained to play video games by using only the raw pixels of
the video console as feedback. A classical example of this setting is the Atari 2600
console, which is a platform supporting multiple games. The input to the deep learner
from the Atari platform is the display of pixels from the current state of the game.
The reinforcement learning algorithm predicts the actions based on the display and
inputs them into the Atari console. Initially, the computer algorithm makes many
mistakes, which are reflected in the virtual rewards given by the console. As the
learner gains experience from its mistakes, it makes better decisions. This is exactly
how humans learn to play video games. The performance of a recent algorithm on the
Atari platform has been shown to surpass human-level performance for a large number
of games [165, 335, 336, 432]. Video games are excellent test beds for reinforcement
learning algorithms, because they can be viewed as highly simplified representations
of the choices one has to make in various decision-centric settings. Simply speaking,
video games represent toy microcosms of real life.

2. DeepMind has trained a deep learning algorithm AlphaGo [445] to play the game of
Go by using the reward-outcomes in the moves of games drawn from both human and
computer self-play. Go is a complex game that requires significant human intuition,
and the large tree of possibilities (compared to other games like chess) makes it an
incredibly difficult candidate for building a game-playing algorithm. AlphaGo has not
only convincingly defeated all top-ranked Go players it has played against [602, 603],
but has contributed to innovations in the style of human play by using unconven-
tional strategies in defeating these players. These innovations were a result of the
reward-driven experience gained by AlphaGo by playing itself over time. Recently, the
approach has also been generalized to chess, and it has convincingly defeated one of
the top conventional engines [447].

3. In recent years, deep reinforcement learning has been harnessed in self-driving cars by
using the feedback from various sensors around the car to make decisions. Although
it is more common to use supervised learning (or imitation learning) in self-driving
cars, the option of using reinforcement learning has always been recognized as a viable
possibility [604]. During the course of driving, these cars now consistently make fewer
errors than do human beings.

4. The quest for creating self-learning robots is a task in reinforcement learning [286, 296,
432]. For example, robot locomotion turns out to be surprisingly difficult in nimble
configurations. Teaching a robot to walk can be couched as a reinforcement learning
task, if we do not show a robot what walking looks like. In the reinforcement learning
paradigm, we only incentivize the robot to get from point A to point B as efficiently
as possible using its available limbs and motors [432]. Through reward-guided trial
and error, robots learn to roll, crawl, and eventually walk.

9.2. STATELESS ALGORITHMS: MULTI-ARMED BANDITS 375

Reinforcement learning is appropriate for tasks that are simple to evaluate but hard to
specify. For example, it is easy to evaluate a player’s performance at the end of a complex
game like chess, but it is hard to specify the precise action in every situation. As in biological
organisms, reinforcement learning provides a path to the simplification of learning complex
behaviors by only defining the reward and letting the algorithm learn reward-maximizing
behaviors. The complexity of these behaviors is automatically inherited from that of the
environment. This is the essence of Herbert Simon’s ant hypothesis [453] at the beginning
of this chapter. Reinforcement learning systems are inherently end-to-end systems in which
a complex task is not broken up into smaller components, but viewed through the lens of a
simple reward.

The simplest example of a reinforcement learning setting is the multi-armed bandit prob-
lem, which addresses the problem of a gambler choosing one of many slot machines in order
to maximize his payoff. The gambler suspects that the (expected) rewards from the various
slot machines are not the same, and therefore it makes sense to play the machine with the
largest expected reward. Since the expected payoffs of the slot machines are not known in
advance, the gambler has to explore different slot machines by playing them and also exploit
the learned knowledge to maximize the reward. Although exploration of a particular slot
machine might gain some additional knowledge about its payoff, it incurs the risk of the
(potentially fruitless) cost of playing it. Multi-armed bandit algorithms provide carefully
crafted strategies to optimize the trade-off between exploration and exploitation. However,
in this simplified setting, each decision of choosing a slot machine is identical to the previous
one. This is not quite the case in settings such as video games and self-driving cars with
raw sensory inputs (e.g., video game screen or traffic conditions), which define the state of
the system. Deep learners are excellent at distilling these sensory inputs into state-sensitive
actions by wrapping their learning process within the exploration/exploitation framework.

Chapter Organization

This chapter is organized as follows. The next section introduces multi-armed bandits, which
constitutes one of the simplest stateless settings in reinforcement learning. The notion of
states is introduced in Section 9.3. The Q-learning method is introduced in Section 9.4.
Policy gradient methods are discussed in Section 9.5. The use of Monte Carlo tree search
strategies is discussed in Section 9.6. A number of case studies are discussed in Section 9.7.
The safety issues associated with deep reinforcement learning methods are discussed in
Section 9.8. A summary is given in Section 9.9.

9.2 Stateless Algorithms: Multi-Armed Bandits

We revisit the problem of a gambler who repeatedly plays slot machines based on previous
experience. The gambler suspects that one of the slot machines has a better expected
reward than others and attempts to both explore and exploit his experience with the slot
machines. Trying the slot machines randomly is wasteful but helps in gaining experience.
Trying the slot machines for a very small number of times and then always picking the best
machine might lead to solutions that are poor in the long-term. How should one navigate
this trade-off between exploration and exploitation? Note that every trial provides the same
probabilistically distributed reward as previous trials for a given action, and therefore there
is no notion of state in such a system. This is a simplified case of traditional reinforcement
learning in which the notion of state is important. In a computer video game, moving the

376 CHAPTER 9. DEEP REINFORCEMENT LEARNING

cursor in a particular direction has a reward that heavily depends on the state of the video
game.

There are a number of strategies that the gambler can use to regulate the trade-off
between exploration and exploitation of the search space. In the following, we will briefly
describe some of the common strategies used in multi-armed bandit systems. All these
methods are instructive because they provide the basic ideas and framework, which are used
in generalized settings of reinforcement learning. In fact, some of these stateless algorithms
are also used as subroutines in general forms of reinforcement learning. Therefore, it is
important to explore this simplified setting.

9.2.1 Näıve Algorithm

In this approach, the gambler plays each machine for a fixed number of trials in the ex-
ploration phase. Subsequently, the machine with the highest payoff is used forever in the
exploitation phase. Although this approach might seem reasonable at first sight, it has a
number of drawbacks. The first problem is that it is hard to determine the number of trials at
which one can confidently predict whether a particular slot machine is better than another
machine. The process of estimation of payoffs might take a long time, especially in cases
where the payoff events are rare compared to non-payoff events. Using many exploratory
trials will waste a significant amount of effort on suboptimal strategies. Furthermore, if the
wrong strategy is selected in the end, the gambler will use the wrong slot machine forever.
Therefore, the approach of fixing a particular strategy forever is unrealistic in real-world
problems.

9.2.2 ǫ-Greedy Algorithm

The ǫ-greedy algorithm is designed to use the best strategy as soon as possible, without
wasting a significant number of trials. The basic idea is to choose a random slot machine
for a fraction ǫ of the trials. These exploratory trials are also chosen at random (with
probability ǫ) from all trials, and are therefore fully interleaved with the exploitation trials.
In the remaining (1− ǫ) fraction of the trials, the slot machine with the best average payoff
so far is used. An important advantage of this approach is that one is guaranteed to not
be trapped in the wrong strategy forever. Furthermore, since the exploitation stage starts
early, one is often likely to use the best strategy a large fraction of the time.

The value of ǫ is an algorithm parameter. For example, in practical settings, one might
set ǫ = 0.1, although the best choice of ǫ will vary with the application at hand. It is often
difficult to know the best value of ǫ to use in a particular setting. Nevertheless, the value of
ǫ needs to be reasonably small in order to gain significant advantages from the exploitation
portion of the approach. However, at small values of ǫ it might take a long time to identify
the correct slot machine. A common approach is to use annealing, in which large values of
ǫ are initially used, with the values declining with time.

9.2.3 Upper Bounding Methods

Even though the ǫ-greedy strategy is better than the näıve strategy in dynamic settings,
it is still quite inefficient at learning the payoffs of new slot machines. In upper bounding
strategies, the gambler does not use the mean payoff of a slot machine. Rather, the gambler
takes a more optimistic view of slot machines that have not been tried sufficiently, and
therefore uses a slot machine with the best statistical upper bound on the payoff. Therefore,

9.3. THE BASIC FRAMEWORK OF REINFORCEMENT LEARNING 377

one can consider the upper bound Ui of testing a slot machine i as the sum of expected
reward Qi and one-sided confidence interval length Ci:

Ui = Qi + Ci (9.1)

The value of Ci is like a bonus for increased uncertainty about that slot machine in the
mind of the gambler. The value Ci is proportional to the standard deviation of the mean
reward of the tries so far. According to the central limit theorem, this standard deviation
is inversely proportional to the square-root of the number of times the slot machine i is
tried (under the i.i.d. assumption). One can estimate the mean μi and standard deviation
σi of the ith slot machine and then set Ci to be K · σi/

√
ni, where ni is the number of

times the ith slot machine has been tried. Here, K decides the level of confidence interval.
Therefore, rarely tested slot machines will tend to have larger upper bounds (because of
larger confidence intervals Ci) and will therefore be tried more frequently.

Unlike ǫ-greedy, the trials are no longer divided into two categories of exploration and
exploitation; the process of selecting the slot machine with the largest upper bound has the
dual effect of encoding both the exploration and exploitation aspects within each trial. One
can regulate the trade-off between exploration and exploitation by using a specific level
of statistical confidence. The choice of K = 3 leads to a 99.99% confidence interval for
the upper bound under the Gaussian assumption. In general, increasing K will give large
bonuses Ci for uncertainty, thereby causing exploration to comprise a larger proportion of
the plays compared to an algorithm with smaller values of K.

9.3 The Basic Framework of Reinforcement Learning

The bandit algorithms of the previous section are stateless. In other words, the decision
made at each time stamp has an identical environment, and the actions in the past only
affect the knowledge of the agent (not the environment itself). This is not the case in generic
reinforcement learning settings like video games or self-driving cars, which have a notion of
state.

In generic reinforcement learning settings, each action is associated with a reward in
isolation. While playing a video game, you do not get a reward only because you made a
particular move. The reward of a move depends on all the other moves you made in the past,
which are incorporated in the state of the environment. In a video game or self-driving car,
we would need a different way of performing the credit assignment in a particular system
state. For example, in a self-driving car, the reward for violently swerving a car in a normal
state would be different from that of performing the same action in a state that indicates
the danger of a collision. In other words, we need a way to quantify the reward of each
action in a way that is specific to a particular system state.

In reinforcement learning, we have an agent that interacts with the environment with
the use of actions. For example, the player is the agent in a video game, and moving the
joystick in a certain direction in a video game is an action. The environment is the entire
set up of the video game itself. These actions change the environment and lead to a new
state. In a video game, the state represents all the variables describing the current position
of the player at a particular point. The environment gives the agent rewards, depending on
how well the goals of the learning application are being met. For example, scoring points in
a video game is a reward. Note that the rewards may sometimes not be directly associated
with a particular action, but with a combination of actions taken some time back. For
example, the player might have cleverly positioned a cursor at a particularly convenient

378 CHAPTER 9. DEEP REINFORCEMENT LEARNING

point a few movies back, and actions since then might have had no bearing on the reward.
Furthermore, the reward for an action might itself not be deterministic in a particular state
(e.g., pulling the lever of a slot machine). One of the primary goals of reinforcement learning
is to identify the inherent values of actions in different states, irrespective of the timing and
stochasticity of the reward.

AGENT ENVIRONMENT

STATE TRANSITION, REWARD

ACTION

at

rt
st to st+1

1. AGENT (MOUSE) TAKES AN ACTION at (LEFT TURN IN MAZE) FROM STATE (POSITION) st

2. ENVIRONMENT GIVES MOUSE REWARD rt (CHEESE/NO CHEESE)

3. THE STATE OF AGENT IS CHANGED TO st+1

4. MOUSE’S NEURONS UPDATE SYNAPTIC WEIGHTS BASED ON WHETHER ACTION EARNED CHEESE

OVERALL: AGENT LEARNS OVER TIME TO TAKE STATE-SENSITIVE ACTIONS THAT EARN REWARDS

Figure 9.1: The broad framework of reinforcement learning

The learning process helps the agent choose actions based on the inherent values of
the actions in different states. This general principle applies to all forms of reinforcement
learning in biological organisms, such as a mouse learning a path through a maze to earn a
reward. The rewards earned by the mouse depend on an entire sequence of actions, rather
than on only the latest action. When a reward is earned, the synaptic weights in the mouse’s
brain adjust to reflect how sensory inputs should be used to decide future actions in the
maze. This is exactly the approach used in deep reinforcement learning, where a neural
network is used to predict actions from sensory inputs (e.g., pixels of video game). This
relationship between the agent and the environment is shown in Figure 9.1.

The entire set of states and actions and rules for transitioning from one state to another
is referred to as a Markov decision process. The main property of a Markov decision process
is that the state at any particular time stamp encodes all the information needed by the
environment to make state transitions and assign rewards based on agent actions. Finite
Markov decision processes (e.g., tic-tac-toe) terminate in a finite number of steps, which is
referred to as an episode. A particular episode of this process is a finite sequence of actions,
states, and rewards. An example of length (n+ 1) is the following:

s0a0r0s1a1r1 . . . statrt . . . snanrn

Note that st is the state before performing action at, and performing the action at causes a
reward of rt and transition to state st+1. This is the time-stamp convention used throughout
this chapter (and several other sources), although the convention in Sutton and Barto’s
book [483] outputs rt+1 in response to action at in state st (which slightly changes the
subscripts in all the results). Infinite Markov decision processes (e.g., continuously working
robots) do not have finite length episodes and are referred to as non-episodic.

9.3. THE BASIC FRAMEWORK OF REINFORCEMENT LEARNING 379

Examples

Although a system state refers to a complete description of the environment, many practical
approximations are often made. For example, in an Atari video game, the system state might
be defined by a fixed-length window of game snapshots. Some examples are as follows:

1. Game of tic-tac-toe, chess, or Go: The state is the position of the board at any point,
and the actions correspond to the moves made by the agent. The reward is +1, 0, or
−1 (depending on win, draw, or loss), which is received at the end of the game. Note
that rewards are often not received immediately after strategically astute actions.

2. Robot locomotion: The state corresponds to the current configuration of robot joints
and its position. The actions correspond to the torques applied to robot joints. The
reward at each time stamp is a function of whether the robot stays upright and the
amount of forward movement from point A to point B.

3. Self-driving car: The states correspond to the sensor inputs from the car, and the
actions correspond to the steering, acceleration, and braking choices. The reward is a
hand-crafted function of car progress and safety.

Some effort usually needs to be invested in defining the state representations and corre-
sponding rewards. However, once these choices have been made, reinforcement learning
frameworks are end-to-end systems.

9.3.1 Challenges of Reinforcement Learning

Reinforcement learning is more difficult than traditional forms of supervised learning for
the following reasons:

1. When a reward is received (e.g., winning a game of chess), it is not exactly known how
much each action has contributed to that reward. This problem lies at the heart of
reinforcement learning, and is referred to as the credit-assignment problem. Further-
more, rewards may be probabilistic (e.g., pulling the lever of a slot machine), which
can only be estimated approximately in a data-driven manner.

2. The reinforcement learning system might have a very large number of states (such as
the number of possible positions in a board game), and must be able to make sensible
decisions in states it has not seen before. This task of model generalization is the
primary function of deep learning.

3. A specific choice of action affects the collected data in regard to future actions. As in
multi-armed bandits, there is a natural trade-off between exploration and exploitation.
If actions are taken only to learn their reward, then it incurs a cost to the player. On
the other hand, sticking to known actions might result in suboptimal decisions.

4. Reinforcement learning merges the notion of data collection with learning. Realistic
simulations of large physical systems such as robots and self-driving cars are limited
by the need to physically perform these tasks and gather responses to actions in
the presence of the practical dangers of failures. In many cases, the early portion of
learning in a task may have few successes and many failures. The inability to gather
sufficient data in real settings beyond simulated and game-centric environments is
arguably the single largest challenge to reinforcement learning.

380 CHAPTER 9. DEEP REINFORCEMENT LEARNING

In the following sections, we will introduce a simple reinforcement learning algorithm and
discuss the role of deep learning methods.

9.3.2 Simple Reinforcement Learning for Tic-Tac-Toe

One can generalize the stateless ǫ-greedy algorithm in the previous section to learn to
play the game of tic-tac-toe. In this case, each board position is a state, and the action
corresponds to placing ‘X’ or ‘O’ at a valid position. The number of valid states of the 3×3
board is bounded above by 39 = 19683, which corresponds to three possibilities (‘X’, ‘O’,
and blank) for each of 9 positions. Instead of estimating the value of each (stateless) action
in multi-armed bandits, we now estimate the value of each state-action pair (s, a) based
on the historical performance of action a in state s against a fixed opponent. Shorter wins
are preferred at discount factor γ < 1, and therefore the unnormalized value of action a
in state s is increased with γr−1 in case of wins and −γr−1 in case of losses after r moves
(including the current move). Draws are credited with 0. The discount also reflects the
fact that the significance of an action decays with time in real-world settings. In this case,
the table is updated only after all moves are made for a game (although later methods in
this chapter allow online updates after each move). The normalized values of the actions
in the table are obtained by dividing the unnormalized values with the number of times
the state-action pair was updated (which is maintained separately). The table starts with
small random values, and the action a in state s is chosen greedily to be the action with
the highest normalized value with probability 1 − ǫ, and is chosen to be a random action
otherwise. All moves in a game are credited after the termination of each game. Over time,
the values of all state-action pairs will be learned and the resulting moves will also adapt
to the play of the fixed opponent. Furthermore, one can even use self-play to generate these
tables optimally. When self-play is used, the table is updated from a value in {−γr, 0, γr}
depending on win/draw/loss from the perspective of the player for whom moves are made.
At inference time, the move with the highest normalized value from the perspective of the
player are made.

9.3.3 Role of Deep Learning and a Straw-Man Algorithm

The aforementioned algorithm for tic-tac-toe did not use neural networks or deep learning,
and this is also the case in many traditional algorithms for reinforcement learning [483].
The overarching goal of the ǫ-greedy algorithm for tic-tac-toe was to learn the inherent
long-term value of each state-action pair, since the rewards are received long after valuable
actions are performed. The goal of the training process is to perform the value discovery
task of identifying which actions are truly beneficial in the long-term at a particular state.
For example, making a clever move in tic-tac-toe might set a trap, which eventually results
in assured victory. Examples of two such scenarios are shown in Figure 9.2(a) (although the
trap on the right is somewhat less obvious). Therefore, one needs to credit a strategically
good move favorably in the table of state-action pairs and not just the final winning move.
The trial-and-error technique based on the ǫ-greedy method of Section 9.3.2 will indeed
assign high values to clever traps. Examples of typical values from such a table are shown
in Figure 9.2(b). Note that the less obvious trap of Figure 9.2(a) has a slightly lower value
because moves assuring wins after longer periods are discounted by γ, and ǫ-greedy trial-
and-error might have a harder time finding the win after setting the trap.

The main problem with this approach is that the number of states in many reinforcement
learning settings is too large to tabulate explicitly. For example, the number of possible
states in a game of chess is so large that the set of all known positions by humanity is

9.3. THE BASIC FRAMEWORK OF REINFORCEMENT LEARNING 381

XO

O

X

PLAYING X

HERE ASSURES

VICTORY WITH

OPTIMAL PLAY

X

O

PLAYING X

HERE ASSURES

VICTORY WITH

OPTIMAL PLAY

(a) Two examples from tic-tac-toe assuring victory down the road.

XO

O

X
PLAY X

X

O PLAY X

XO

O

X

PLAY X

X

O

PLAY X
VALUE= +0.9 VALUE= +0.8 VALUE= +0.1 VALUE= -0.1

(b) Four entries from the table of state-action values in tic-tac-toe. Trial-and-error learns
that moves assuring victory have high value.

(c) Positions from two different games between Alpha Zero (white) and Stockfish

(black) [447]: On the left, white sacrifices a pawn and concedes a passed pawn in order to
trap black’s light-square bishop behind black’s own pawns. This strategy eventually

resulted in a victory for white after many more moves than the horizon of a conventional
chess-playing program like Stockfish. In the second game on the right, white has sacrificed
material to incrementally cramp black to a position where all moves worsen the position.

Incrementally improving positional advantage is the hallmark of the very best human
players rather than chess-playing software like Stockfish, whose hand-crafted evaluations

sometimes fail to accurately capture subtle differences in positions. The neural network in
reinforcement learning, which uses the board state as input, evaluates positions in an
integrated way without any prior assumptions. The data generated by trial-and-error
provides the only experience for training a very complex evaluation function that is

indirectly encoded within the parameters of the neural network. The trained network can
therefore generalize these learned experiences to new positions. This is similar to how

humans learn from previous games to better evaluate board positions.

Figure 9.2: Deep learners are needed for large state spaces like (c).

382 CHAPTER 9. DEEP REINFORCEMENT LEARNING

a minuscule fraction of the valid positions. In fact, the algorithm of Section 9.3.2 is a
refined form of rote learning in which Monte Carlo simulations are used to refine and
remember the long-term values of seen states. One learns about the value of a trap in
tic-tac-toe only because previous Monte Carlo simulations have experienced victory many
times from that exact board position. In most challenging settings like chess, one must
generalize knowledge learned from prior experiences to a state that the learner has not
seen before. All forms of learning (including reinforcement learning) are most useful when
they are used to generalize known experiences to unknown situations. In such cases, the
table-centric forms of reinforcement learning are woefully inadequate. Deep learning models
serve the role of function approximators. Instead of learning and tabulating the values of
all moves in all positions (using reward-driven trial and error), one learns the value of each
move as a function of the input state, based on a trained model using the outcomes of
prior positions. Without this approach, reinforcement learning cannot be used beyond toy
settings like tic-tac-toe.

For example, a straw-man (but not very good) algorithm for chess might use the same
ǫ-greedy algorithm of Section 9.3.2, but the values of actions are computed by using the
board state as input to a convolutional neural network. The output is the evaluation of
the board position. The ǫ-greedy algorithm is simulated to termination with the output
values, and the discounted ground-truth value of each move in the simulation is selected
from the set {γr−1, 0,−γr−1} depending on win/draw/loss and number of moves r to game
completion (including the current move). Instead of updating a table of state-action pairs,
the parameters of the neural network are updated by treating each move as a training point.
The board position is input, and the output of the neural network is compared with the
ground-truth value from {γr−1, 0,−γr−1} to update the parameters. At inference time, the
move with the best output score (with some minimax lookahead) can be used.

Although the aforementioned approach is too naive, a sophisticated system with Monte
Carlo tree search, known as Alpha Zero, has recently been trained [447] to play chess.
Two examples of positions [447] from different games in the match between Alpha Zero
and a conventional chess program, Stockfish-8.0, are provided in Figure 9.2(c). In the chess
position on the left, the reinforcement learning system makes a strategically astute move
of cramping the opponent’s bishop at the expense of immediate material loss, which most
hand-crafted computer evaluations would not prefer. In the position on the right, Alpha Zero
has sacrificed two pawns and a piece exchange in order to incrementally constrict black to
a point where all its pieces are completely paralyzed. Even though Alpha Zero (probably)
never encountered these specific positions during training, its deep learner has the ability
to extract relevant features and patterns from previous trial-and-error experience in other
board positions. In this particular case, the neural network seems to recognize the primacy of
spatial patterns representing subtle positional factors over tangible material factors (much
like a human’s neural network).

In real-life settings, states are often described using sensory inputs. The deep learner uses
this input representation of the state to learn the values of specific actions (e.g., making a
move in a game) in lieu of the table of state-action pairs. Even when the input representation
of the state (e.g., pixels) is quite primitive, neural networks are masters at squeezing out
the relevant insights. This is similar to the approach used by humans to process primitive
sensory inputs to define the state of the world and make decisions about actions using
our biological neural network. We do not have a table of pre-memorized state-action pairs
for every possible real-life situation. The deep-learning paradigm converts the forbiddingly
large table of state-action values into a parameterized model mapping states-action pairs
to values, which can be trained easily with backpropagation.

9.4. BOOTSTRAPPING FOR VALUE FUNCTION LEARNING 383

9.4 Bootstrapping for Value Function Learning

The simple generalization of the ǫ-greedy algorithm to tic-tac-toe (cf. Section 9.3.2) is a
rather naive approach that does not work for non-episodic settings. In episodic settings like
tic-tac-toe, a fixed-length sequence of at most nine moves can be used to characterize the
full and final reward. In non-episodic settings like robots, the Markov decision process may
not be finite or might be very long. Creating a sample of the ground-truth reward by Monte
Carlo sampling becomes difficult and online updating might be desirable. This is achieved
with the methodology of bootstrapping.

Intuition 9.4.1 (Bootstrapping) Consider a Markov decision process in which we are
predicting values (e.g., long-term rewards) at each time-stamp. We do not need the ground-
truth at each time-stamp, as long as we can use a partial simulation of the future to improve
the prediction at the current time-stamp. This improved prediction can be used as the ground-
truth at the current time stamp for a model without knowledge of the future.

For example, Samuel’s checkers program [421] used the difference in evaluation at the current
position and the minimax evaluation obtained by looking several moves ahead with the same
function as a “prediction error” in order to update the evaluation function. The idea is that
the minimax evaluation from looking ahead is stronger than the one without lookahead and
can therefore be used as a “ground truth” to compute the error.

Consider a Markov decision process with the following sequence of states, actions, and
rewards:

s0a0r0s1a1r1 . . . statrt . . .

For example, in a video game, each state st might represent a historical window of pixels [335]
with a feature representation Xt. In order to account for the (possibly) delayed rewards of
actions, the cumulative reward Rt at time t is given by the discounted sum of the immediate
rewards rt, rt+1, rt+2, . . . r∞ at all future time stamps:

Rt = rt + γ · rt+1 + γ2 · rt+2 + γ3 · rt+3 . . . =
∞∑

i=0

γirt+i (9.2)

The discount factor γ ∈ (0, 1) regulates how myopic we want to be in allocating rewards.
The value of γ is less than 1 because future rewards are worth less than immediate rewards.
Choosing γ = 0 will result in myopically setting the full reward Rt to rt and nothing else.
Therefore, it will be impossible to learn a long-term trap in tic-tac-toe. Values of γ that are
too close to 1 will result in modeling instability for very long Markov decision processes.

The Q-function or Q-value for the state-action pair (st, at) is denoted by Q(st, at), and is
a measure of the inherent (i.e., long-term) value of performing the action at in state st. The
Q-function Q(st, at) represents the best possible reward obtained till the end of the game on
performing the action at in state st. In other words, Q(st, at) is equal to max{E[Rt+1|at]}.
Therefore, if A is the set of all possible actions, then the chosen action at time t is given by
the action a∗t that maximizes Q(st, at). In other words, we have:

a∗t = argmaxat∈AQ(st, at) (9.3)

This predicted action is a good choice for the next move, although it is often combined with
an exploratory component (e.g., ǫ-greedy policy) to improve long-term training outcomes.

384 CHAPTER 9. DEEP REINFORCEMENT LEARNING

9.4.1 Deep Learning Models as Function Approximators

For ease in discussion, we will work with the Atari setting [335] in which a fixed window of
the last few snapshots of pixels provides the state st. Assume that the feature representation
of st is denoted by Xt. The neural network uses Xt as the input and outputs Q(st, a) for
each possible legal action a from the universe of actions denoted by the set A.

CONVOLUTIONAL

NEURAL

NETWORK

Q(st , a) for a= “UP”
OBSERVED STATE

(PREVIOUS FOUR

SCREENS OF PIXELS)

Q(st , a) for a= “DOWN”

Q(st , a) for a= “LEFT”

Q(st , a) for a= “RIGHT”

Figure 9.3: The Q-Network for the Atari video game setting

Assume that the neural network is parameterized by the vector of weights W , and
it has |A| outputs containing the Q-values corresponding to the various actions in A. In
other words, for each action a ∈ A, the neural network is able to compute the function
F (Xt,W , a), which is defined to be the learned estimate of Q(st, a):

F (Xt,W , a) = Q̂(st, a) (9.4)

Note the circumflex on top of the Q-function in order to indicate that it is a predicted value
using the learned parameters W . Learning W is the key to using the model for deciding
which action to use at a particular time-stamp. For example, consider a video game in which
the possible moves are up, down, left, and right. In such a case, the neural network will
have four outputs as shown in Figure 9.3. In the specific case of the Atari 2600 games, the
input contains m = 4 spatial pixel maps in grayscale, representing the window of the last
m moves [335, 336]. A convolutional neural network is used to convert pixels into Q-values.
This network is referred to as a Q-network. We will provide more details of the specifics of
the architecture later.

The Q-Learning Algorithm

The weights W of the neural network need to be learned via training. Here, we encounter an
interesting problem. We can learn the vector of weights only if we have observed values of the
Q-function. With observed values of the Q-function, we could easily set up a loss in terms
of Q(st, a)− Q̂(st, a) in order to perform the learning after each action. The problem is that
the Q-function represents the maximum discounted reward over all future combinations of
actions, and there is no way of observing it at the current time.

Here, there is an interesting trick for setting up the neural network loss function. Ac-
cording to Intuition 9.4.1, we do not really need the observed Q-values in order to set up
a loss function as long as we know an improved estimate of the Q-values by using partial
knowledge from the future. Then, we can use this improved estimate to create a surrogate
“observed” value. This “observed” value is defined by the Bellman equation [26], which is a
dynamic programming relationship satisfied by the Q-function, and the partial knowledge
is the reward observed at the current time-stamp for each action. According to the Bellman
equation, we set the “ground-truth” by looking ahead one step and predicting at st+1:

Q(st, at) = rt + γmaxaQ̂(st+1, a) (9.5)

The correctness of this relationship follows from the fact that the Q-function is designed
to maximize the discounted future payoff. We are essentially looking at all actions one step

9.4. BOOTSTRAPPING FOR VALUE FUNCTION LEARNING 385

ahead in order to create an improved estimate of Q(st, at). It is important to set Q̂(st+1, a)
to 0 in case the process terminates after performing at for episodic sequences. We can write
this relationship in terms of our neural network predictions as well:

F (Xt,W , at) = rt + γmaxaF (Xt+1,W , a) (9.6)

Note that one must first wait to observe the state Xt+1 and reward rt by performing the
action at, before we can compute the “observed” value at time-stamp t on the right-hand
side of the above equation. This provides a natural way to express the loss Lt of the neural
network at time stamp t by comparing the (surrogate) observed value to the predicted value
at time stamp t:

Lt =

⎧

⎪⎪⎨

⎪⎪⎩

[rt + γmaxaF (Xt+1,W , a)]
︸ ︷︷ ︸

Treat as constant ground-truth

−F (Xt,W , at)

⎫

⎪⎪⎬

⎪⎪⎭

2

(9.7)

Therefore, we can now update the vector of weights W using backpropagation on this loss
function. Here, it is important to note that the target values estimated using the inputs at
(t+1) are treated as constant ground-truths by the backpropagation algorithm. Therefore,
the derivative of the loss function will treat these estimated values as constants, even though
they were obtained from the parameterized neural network with input Xt+1. Not treating
F (Xt+1,W , a) as a constant will lead to poor results. This is because we are treating the
prediction at (t + 1) as an improved estimate of the ground-truth (based on the boot-
strapping principle). Therefore, the backpropagation algorithm will compute the following:

W ⇐ W + α

⎧

⎪⎪⎨

⎪⎪⎩

[rt + γmaxaF (Xt+1,W , a)]
︸ ︷︷ ︸

Treat as constant ground-truth

−F (Xt,W , at)

⎫

⎪⎪⎬

⎪⎪⎭

∂F (Xt,W , at)

∂W
(9.8)

In matrix-calculus notation, the partial derivative of a function F () with respect to the
vector W is essentially the gradient ∇W F . At the beginning of the process, the Q-values
estimated by the neural network are random because the vector of weights W is initialized
randomly. However, the estimation gradually becomes more accurate with time, as the
weights are constantly changed to maximize rewards.

Therefore, at any given time-stamp t at which action at and reward rt has been observed,
the following training process is used for updating the weights W :

1. Perform a forward pass through the network with input Xt+1 to compute Q̂t+1 =
maxaF (Xt+1,W , a). The value is 0 in case of termination after performing at. Treating
the terminal state specially is important. According to the Bellman equations, the Q-
value at previous time-stamp t should be rt + γQ̂t+1 for observed action at at time t.
Therefore, instead of using observed values of the target, we have created a surrogate
for the target value at time t, and we pretend that this surrogate is an observed value
given to us.

2. Perform a forward pass through the network with input Xt to compute F (Xt,W , at).

3. Set up a loss function in Lt = (rt+γQt+1−F (Xt,W , at))
2, and backpropagate in the

network with input Xt. Note that this loss is associated with neural network output
node corresponding to action at, and the loss for all other actions is 0.

386 CHAPTER 9. DEEP REINFORCEMENT LEARNING

4. One can now use backpropagation on this loss function in order to update the weight
vector W . Even though the term rt + γQt+1 in the loss function is also obtained
as a prediction from input Xt+1 to the neural network, it is treated as a (constant)
observed value during gradient computation by the backpropagation algorithm.

Both the training and the prediction are performed simultaneously, as the values of actions
are used to update the weights and select the next action. It is tempting to select the
action with the largest Q-value as the relevant prediction. However, such an approach might
perform inadequate exploration of the search space. Therefore, one couples the optimality
prediction with a policy such as the ǫ-greedy algorithm in order to select the next action.
The action with the largest predicted payoff is selected with probability (1− ǫ). Otherwise,
a random action is selected. The value of ǫ can be annealed by starting with large values
and reducing them over time. Therefore, the target prediction value for the neural network
is computed using the best possible action in the Bellman equation (which might eventually
be different from observed action at+1 based on the ǫ-greedy policy). This is the reason that
Q-learning is referred to as an off-policy algorithm in which the target prediction values
for the neural network update are computed using actions that might be different from the
actually observed actions in the future.

There are several modifications to this basic approach in order to make the learning more
stable. Many of these are presented in the context of the Atari video game setting [335]. First,
presenting the training examples exactly in the sequence they occur can lead to local minima
because of the strong similarity among training examples. Therefore, a fixed-length history
of actions/rewards is used as a pool. One can view this as a history of experiences. Multiple
experiences are sampled from this pool to perform mini-batch gradient descent. In general,
it is possible to sample the same action multiple times, which leads to greater efficiency in
leveraging the learning data. Note that the pool is updated over time as old actions drop
out of the pool and newer ones are added. Therefore, the training is still temporal in an
approximate sense, but not strictly so. This approach is referred to as experience replay,
as experiences are replayed multiple times in a somewhat different order than the original
actions.

Another modification is that the network used for estimating the target Q-values with
Bellman equations (step 1 above) is not the same as the network used for predicting Q-values
(step 2 above). The network used for estimating the target Q-values is updated more slowly
in order to encourage stability. Finally, one problem with these systems is the sparsity of
the rewards, especially at the initial stage of the learning when the moves are random. For
such cases, a variety of tricks such as prioritized experience replay [428] can be used. The
basic idea is to make more efficient use of the training data collected during reinforcement
learning by prioritizing actions from which more can be learned.

9.4.2 Example: Neural Network for Atari Setting

For the convolutional neural network [335, 336], the screen sizes were set to 84× 84 pixels,
which also defined the spatial footprints of the first layer in the convolutional network.
The input was in grayscale, and therefore each screen required only a single spatial feature
map, although a depth of 4 was required in the input layer to represent the previous four
windows of pixels. Three convolutional layers were used with filters of size 8× 8, 4× 4, and
3 × 3, respectively. A total of 32 filters were used in the first convolutional layer, and 64
filters were used in each of the other two, with the strides used for convolution being 4, 2,

9.4. BOOTSTRAPPING FOR VALUE FUNCTION LEARNING 387

and 1, respectively. The convolutional layers were followed by two fully connected layers.
The number of neurons in the penultimate layer was equal to 512, and that in the final layer
was equal to the number of outputs (possible actions). The number of output layers varied
between 4 and 18, and was game-specific. The overall architecture of the convolutional
network is illustrated in Figure 9.4.

84

84

4

8

8

INPUT

32

22

22

4

4

12

3

3

64

12

64

12

12

C1 C2 C3

512

4 TO 18

(GAME

SPECIFIC)

FC

O

Figure 9.4: The convolutional neural network for the Atari setting

All hidden layers used the ReLU activation, and the output used linear activation in
order to predict the real-valued Q-value. No pooling was used, and the strides in the con-
volution provided spatial compression. The Atari platform supports many games, and the
same broader architecture was used across different games in order to showcase its general-
izability. There was some variation in performance across different games, although human
performance was exceeded in many cases. The algorithm faced the greatest challenges in
games in which longer-term strategies were required. Nevertheless, the robust performance
of a relatively homogeneous framework across many games was encouraging.

9.4.3 On-Policy Versus Off-Policy Methods: SARSA

The Q-Learning methodology belongs to the class of methods, referred to as temporal differ-
ence learning. In Q-learning, the actions are chosen according to an ǫ-greedy policy. However,
the parameters of the neural network are updated based on the best possible action at each
step with the Bellman equation. The best possible action at each step is not quite the same
as the ǫ-greedy policy used to perform the simulation. Therefore, Q-learning is an off-policy
reinforcement learning method. Choosing a different policy for executing actions from those
for performing updates does not worsen the ability to find the optimum solutions that are
goals of the updates. In fact, since more exploration is performed with a randomized policy,
local optima are avoided.

In on-policy methods, the actions are consistent with the updates, and therefore the
updates can be viewed as policy evaluation rather than optimization. In order to understand
this point, we will describe the updates for the SARSA (State-Action-Reward-State-Action)
algorithm, in which the optimal reward in the next step is not used for computing updates.
Rather, the next step is updated using the same ǫ-greedy policy to obtain the action at+1 for
computing the target values. Then, the loss function for the next step is defined as follows:

Lt =
{
rt + γF (Xt+1,W , at+1)− F (Xt,W , at)

}2
(9.9)

388 CHAPTER 9. DEEP REINFORCEMENT LEARNING

The function F (·, ·, ·) is defined in the same way as the previous section. The weight vector
is updated based on this loss, and then the action at+1 is executed:

W ⇐ W + α

⎧

⎪⎪⎨

⎪⎪⎩

[rt + γF (Xt+1,W , at+1)]
︸ ︷︷ ︸

Treat as constant ground-truth

−F (Xt,W , at)

⎫

⎪⎪⎬

⎪⎪⎭

∂F (Xt,W , at)

∂W
(9.10)

Here, it is instructive to compare this update with those used in Q-learning according to
Equation 9.8. In Q-learning, one is using the best possible action at each state in order
to update the parameters, even though the policy that is actually executed might be ǫ-
greedy (which encourages exploration). In SARSA, we are using the action that was actually
selected by the ǫ-greedy method in order to perform the update. Therefore, the approach
is an on-policy method. Off-policy methods like Q-learning are able to decouple exploration
from exploitation, whereas on-policy methods are not. Note that if we set the value of ǫ
in the ǫ-greedy policy to 0 (i.e., vanilla greedy), then both Q-Learning and SARSA would
specialize to the same algorithm. However, such an approach would not work very well
because there is no exploration. SARSA is useful when learning cannot be done separately
from prediction. Q-learning is useful when the learning can to be done offline, which is
followed by exploitation of the learned policy with a vanilla-greedy method at ǫ = 0 (and
no need for further model updates). Using ǫ-greedy at inference time would be dangerous in
Q-learning, because the policy never pays for its exploratory component and therefore does
not learn how to keep exploration safe. For example, a Q-learning based robot will take the
shortest path to get from point A to point B even if it is along the edge of the cliff, whereas
a SARSA-trained robot will not.

Learning Without Function Approximators

It is possible to also learn Q-values without using function approximators in cases where
the state-space is very small. For example, in a toy game like tic-tac-toe, one can learn
Q(st, at) explicitly by using trial-and-error play against a strong opponent. In this case, the
Bellman equations (cf. Equation 9.5) are used at each move to update an array containing
the explicit value of Q(st, at). Using Equation 9.5 directly is too aggressive. More generally,
gentle updates are performed for learning rate α < 1:

Q(st, at) ⇐ Q(st, at)(1− α) + α(rt + γmaxaQ(st+1, a)) (9.11)

Using α = 1 will result in Equation 9.5. Updating the array continually will result in a
table containing the correct strategic value of each move; see, for example, Figure 9.2(a) for
an understanding of the notion of strategic value. Figure 9.2(b) contains examples of four
entries from such a table.

One can also use the SARSA algorithm without function approximators by using the
action at+1 based on the ǫ-greedy policy. We use a superscript p in Qp(·, ·) to indicate that
it is a policy evaluation operator of the policy p (which is ǫ-greedy in this case):

Qp(st, at) ⇐ Qp(st, at)(1− α) + α(rt + γQ(st+1, at+1)) (9.12)

This approach is a more sophisticated alternative to the ǫ-greedy method discussed in
Section 9.3.2. Note that if action at at state st leads to termination (for episodic processes),
then Qp(st, at) is simply set to rt.

9.4. BOOTSTRAPPING FOR VALUE FUNCTION LEARNING 389

9.4.4 Modeling States Versus State-Action Pairs

A minor variation of the theme in the previous sections is to learn the value of a particular
state (rather than state-action pair). One can implement all the methods discussed earlier
by maintaining values of states rather than state-action pairs. For example, SARSA can be
implemented by evaluating all the values of states resulting from each possible action and
selecting a good one based on a pre-defined policy like ǫ-greedy. In fact, the earliest methods
for temporal difference learning (or TD-learning) maintained values on states rather than
state-action pairs. From an efficiency perspective, it is more convenient to output the values
of all actions in one shot (rather than repeatedly evaluate each forward state) for value-
based decision making. Working with state values rather that state-action pairs becomes
useful only when the policy cannot be expressed neatly in terms of state-action pairs. For
example, we might evaluate a forward-looking tree of promising moves in chess, and report
some averaged value for bootstrapping. In such cases, it is desirable to evaluate states rather
than state-action pairs. This section will therefore discuss a variation of temporal difference
learning in which states are directly evaluated.

CONVOLUTIONAL

NEURAL

NETWORK

OBSERVED STATE

(PREVIOUS FOUR

SCREENS OF PIXELS)

V(st)

Figure 9.5: Estimating the value of a state with temporal difference learning

Let the value of the state st be denoted by V (st). Now assume that you have a pa-
rameterized neural network that uses the observed attributes Xt (e.g., pixels of last four
screens in Atari game) of state st to estimate V (st). An example of this neural network is
shown in Figure 9.5. Then, if the function computed by the neural network is G(Xt,W)
with parameter vector W , we have the following:

G(Xt,W) = V̂ (st) (9.13)

Note that the policy being followed to decide the actions might use some arbitrary evaluation
of forward-looking states to decide actions. For now, we will assume that we have some
reasonable heuristic policy for choosing the actions that uses the forward-looking state
values in some way. For example, if we evaluate each forward state resulting from an action
and select one of them based on a pre-defined policy (e.g., ǫ-greedy), the approach discussed
below is the same as SARSA.

If the action at is performed with reward rt, the resulting state is st+1 with value V (st+1).
Therefore, the bootstrapped ground-truth estimate for V (st) can be obtained with the help
of this lookahead:

V (st) = rt + γV (st+1) (9.14)

This estimate can also be stated in terms of the neural network parameters:

G(Xt,W) = rt + γG(Xt+1,W) (9.15)

390 CHAPTER 9. DEEP REINFORCEMENT LEARNING

During the training phase, one needs to shift the weights so as to push G(Xt,W) towards
the improved “ground truth” value of rt + γG(Xt+1,W). As in the case of Q-learning, we
work with the boot-strapping pretension that the value rt + γG(Xt+1,W) is an observed
value given to us. Therefore, we want to minimize the TD-error defined by the following:

δt = rt + γG(Xt+1,W)
︸ ︷︷ ︸

“Observed” value

−G(Xt,W) (9.16)

Therefore, the loss function Lt is defined as follows:

Lt = δ2t =

⎧

⎪⎨

⎪⎩

rt + γG(Xt+1,W)
︸ ︷︷ ︸

“Observed” value

−G(Xt,W)

⎫

⎪⎬

⎪⎭

2

(9.17)

As in Q-learning, one would first compute the “observed” value of the state at time stamp t
using the input Xt+1 into the neural network to compute rt+γG(Xt+1,W). Therefore, one
would have to wait till the action at has been observed, and therefore the observed features
Xt+1 of state st+1 are available. This “observed” value (defined by rt + γG(Xt+1,W)) of
state st is then used as the (constant) target to update the weights of the neural network,
when the input Xt is used to predict the value of the state st. Therefore, one would need to
move the weights of the neural network based on the gradient of the following loss function:

W ⇐ W − α
∂Lt

∂W

= W + α

⎧

⎪⎨

⎪⎩

[rt + γG(Xt+1,W)]
︸ ︷︷ ︸

“Observed” value

−G(Xt,W)

⎫

⎪⎬

⎪⎭

∂G(Xt,W)

∂W

= W + αδt(∇G(Xt,W))

This algorithm is a special case of the TD(λ) algorithm with λ set to 0. This special case
only updates the neural network by creating a bootstrapped “ground-truth” for the current
time-stamp based on the evaluations of the next time-stamp. This type of ground-truth
is an inherently myopic approximation. For example, in a chess game, the reinforcement
learning system might have inadvertently made some mistake many steps ago, and it is
suddenly showing high errors in the bootstrapped predictions without having shown up
earlier. The errors in the bootstrapped predictions are indicative of the fact that we have
received new information about each past state Xk, which we can use to alter its prediction.
One possibility is to bootstrap by looking ahead for multiple steps (see Exercise 7). Another
solution is the use of TD(λ), which explores the continuum between perfect Monte Carlo
ground truth and single-step approximation with smooth decay. The adjustments to older
predictions are increasingly discounted at the rate λ < 1. In such a case, the update can be
shown to be the following [482]:

W ⇐ W + αδt

t∑

k=0

(λγ)t−k(∇G(Xk,W))
︸ ︷︷ ︸

Alter prediction of Xk

(9.18)

At λ = 1, the approach can be shown to be equivalent to a method in which Monte-Carlo
evaluations (i.e., rolling out an episodic process to the end) are used to compute the ground-
truth [482]. This is because we are always using new information about errors to fully correct

9.5. POLICY GRADIENT METHODS 391

CONVOLUTIONAL

NEURAL

NETWORK

OBSERVED STATE

(PREVIOUS FOUR

SCREENS OF PIXELS)

PROBABILITY OF “UP”

S
O

F
T

M
A

X

PROBABILITY OF “DOWN”

PROBABILITY OF “LEFT”

PROBABILITY OF “RIGHT”

Figure 9.6: The policy network for the Atari video game setting. It is instructive to compare
this configuration with the Q-network of Figure 9.3.

our past mistakes without discount at λ = 1, thereby creating an unbiased estimate. Note
that λ is only used for discounting the steps, whereas γ is also used in computing the
TD-error δt according to Equation 9.16. The parameter λ is algorithm-specific, whereas
γ is environment-specific. Using λ = 1 or Monte Carlo sampling leads to lower bias and
higher variance. For example, consider a chess game in which agents Alice and Bob each
make three errors in a single game but Alice wins in the end. This single Monte Carlo
roll out will not be able to distinguish the impact of each specific error and will assign
the discounted credit for final game outcome to each board position. On the other hand,
an n-step temporal difference method (i.e., n-ply board evaluation) might see a temporal
difference error for each board position in which the agent made a mistake and was detected
by the n-step lookahead. It is only with sufficient data (i.e., more games) that the Monte
Carlo method will distinguish between different types of errors. However, choosing very
small values of λ will have difficulty in learning openings (i.e., greater bias) because errors
with long-term consequences will not be detected. Such problems with openings are well
documented [22, 496].

Temporal difference learning was used in Samuel’s celebrated checkers program [421],
and also motivated the development of TD-Gammon for Backgammon by Tesauro [492]. A
neural network was used for state value estimation, and its parameters were updated using
temporal-difference bootstrapping over successive moves. The final inference was performed
with minimax evaluation of the improved evaluation function over a shallow depth such as 2
or 3. TD-Gammon was able to defeat several expert players. It also exhibited some unusual
strategies of game play that were eventually adopted by top-level players.

9.5 Policy Gradient Methods

The value-based methods like Q-learning attempt to predict the value of an action with
the neural network and couple it with a generic policy (like ǫ-greedy). On the other hand,
policy gradient methods estimate the probability of each action at each step with the goal
of maximizing the overall reward. Therefore, the policy is itself parameterized, rather than
using the value estimation as an intermediate step for choosing actions.

The neural network for estimating the policy is referred to as a policy network in which
the input is the current state of the system, and the output is a set of probabilities associated
with the various actions in the video game (e.g., moving up, down, left, or right). As in the
case of the Q-network, the input can be an observed representation of the agent state. For
example, in the Atari video game setting, the observed state can be the last four screens
of pixels. An example of a policy network is shown in Figure 9.6, which is relevant for
the Atari setting. It is instructive to compare this policy network with the Q-network of
Figure 9.3. Given an output of probabilities for various actions, we throw a biased die with
the faces associated with these probabilities, and select one of these actions. Therefore,

392 CHAPTER 9. DEEP REINFORCEMENT LEARNING

for each action a, observed state representation Xt, and current parameter W , the neural
network is able to compute the function P (Xt,W , a), which is the probability that the
action a should be performed. One of the actions is sampled, and a reward is observed for
that action. If the policy is poor, the action will more likely to be a mistake and the reward
will be poor as well. Based on the reward obtained from executing the action, the weight
vector W is updated for the next iteration. The update of the weight vector is based on the
notion of policy gradient with respect to the weight vector W . One challenge in estimating
the policy gradient is that the reward of an action is often not observed immediately, but is
tightly integrated into the future sequence of rewards. Often Monte Carlo policy roll-outs
must be used in which the neural network is used to follow a particular policy to estimate
the discounted rewards over a longer horizon.

We want to update the weight vector of the neural network along the gradient of increas-
ing the reward. As in Q-Learning, the expected discounted rewards over a given horizon H
are computed as follows:

J = E[r0 + γ · r1 + γ2 · r2 + . . .+ γH · rH] =
H∑

i=0

E[γiri] (9.19)

Therefore, the goal is to update the weight vector as follows:

W ⇐ W + α∇J (9.20)

The main problem in estimating the gradient ∇J is that the neural network only outputs
probabilities. The observed rewards are only Monte Carlo samples of these outputs, whereas
we want to compute the gradients of expected rewards (cf. Equation 9.19). Common policy
gradients methods include finite difference methods, likelihood ratio methods, and natural
policy gradients. In the following, we will only discuss the first two methods.

9.5.1 Finite Difference Methods

The method of finite differences side-steps the problem of stochasticity with empirical sim-
ulations that provide estimates of the gradient. Finite difference methods use weight per-
turbations in order to estimate gradients of the reward. The idea is to use s different
perturbations of the neural network weights, and examine the expected change ∆J in the
reward. Note that this will require us to run the perturbed policy for the horizon of H moves
in order to estimate the change in reward. Such a sequence of H moves is referred to as a
roll-out. For example, in the case of the Atari game, we will need to play it for a trajectory
of H moves for each of these s different sets of perturbed weights in order to estimate the
changed reward. In games where an opponent of sufficient strength is not available to train
against, it is possible to play a game against a version of the opponent based on parameters
learned a few iterations back.

In general, the value of H might be large enough that we might reach the end of the
game, and therefore the score used will be the one at the end of the game. In some games
like Go, the score is available only at the end of the game, with a +1 for a win and −1
for a loss. In such cases, it becomes more important to choose H large enough so as to
play till the end of the game. As a result, we will have s different weight (change) vectors
∆W 1 . . .∆W s, together with corresponding changes ∆J1 . . .∆Js in the total reward. Each
of these pairs roughly satisfies the following relationship:

(∆W r)∇JT ≈ ∆Jr ∀r ∈ {1 . . . s} (9.21)

9.5. POLICY GRADIENT METHODS 393

We can create an s-dimensional column vector y = [∆J1 . . .∆Js]
T of the changes in the

objective function and an N × s matrix D by stacking the rows ∆W r on top of each
other, where N is the number of parameters in the neural network. Therefore, we have the
following:

D[∇J]T ≈ y (9.22)

Then, the policy gradient is obtained by performing a straightforward linear regression of
the change in objective functions with respect to the change in weight vectors. By using the
formula for linear regression (cf. Section 2.2.2.2 of Chapter 2), we obtain the following:

∇JT = (DTD)−1DT y (9.23)

This gradient is used for the update in Equation 9.20. It is required to run the policy for a
sequence of H moves for each of the s samples to estimate the gradients. This process can
sometimes be slow.

9.5.2 Likelihood Ratio Methods

Likelihood-ratio methods were proposed by Williams [533] in the context of the REIN-
FORCE algorithm. Consider the case in which we are following the policy with probability
vector p and we want to maximize E[Qp(s, a)], which is the long-term expected value of
state s and each sampled action a from the neural network. Consider the case in which
the probability of action a is p(a) (which is output by the neural network). In such a case,
we want to find the gradient of E[Qp(s, a)] with respect to the weight vector W of the
neural network for stochastic gradient ascent. Finding the gradient of an expectation from
sampled events is non-obvious. However, the log-probability trick allows us to convert it
into the expectation of a gradient, which is additive over the samples of state-action pairs:

∇E[Qp(s, a)] = E[Qp(s, a)∇log(p(a))] (9.24)

We show the proof of the above result in terms of the partial derivative with respect to a
single neural network weight w under the assumption that a is a discrete variable:

∂E[Qp(s, a)]

∂w
=

∂ [
∑

a Q
p(s, a)p(a)]

∂w
=
∑

a

Qp(s, a)
∂p(a)

∂w
=
∑

a

Qp(s, a)

[
1

p(a)

∂p(a)

∂w

]

p(a)

=
∑

a

Qp(s, a)

[
∂log(p(a))

∂w

]

p(a) = E

[

Qp(s, a)
∂log(p(a))

∂w

]

The above result can also be shown for the case in which a is a continuous variable (cf. Ex-
ercise 1). Continuous actions occur frequently in robotics (e.g., distance to move arm).

It is easy to use this trick for neural network parameter estimation. Each action a sam-
pled by the simulation is associated with the long-term reward Qp(s, a), which is obtained
by Monte Carlo simulation. Based on the relationship above, the gradient of the expected
advantage is obtained by multiplying the gradient of the log-probability log(p(a)) of that
action (computable from the neural network in Figure 9.6 using backpropagation) with the
long-term reward Qp(s, a) (obtained by Monte Carlo simulation).

Consider a simple game of chess with a win/loss/draw at the end and discount factor
γ In this case, the long-term reward of each move is simply obtained as a value from
{+γr−1, 0,−γr−1}, when r moves remain to termination. The value of the reward depends
on the final outcome of the game, and number of remaining moves (because of reward

394 CHAPTER 9. DEEP REINFORCEMENT LEARNING

discount). Consider a game containing at most H moves. Since multiple roll-outs are used,
we get a whole bunch of training samples for the various input states and corresponding
outputs in the neural network. For example, if we ran the simulation for 100 roll-outs, we
would get at most 100×H different samples. Each of these would have a long-term reward
drawn from {+γr−1, 0,−γr−1}. For each of these samples, the reward serves as a weight
during a gradient-ascent update of the log-probability of the sampled action.

W ⇐ W +Qp(s, a)∇log(p(a)) (9.25)

Here, p(a) is the neural network’s output probability of the sampled action. The gradi-
ents are computed using backpropagation, and these updates are similar to those in Equa-
tion 9.20. This process of sampling and updating is carried through to convergence.

Note that the gradient of the log-probability of the ground-truth class is often used to
update softmax classifiers with cross-entropy loss in order to increase the probability of the
correct class (which is intuitively similar to the update here). The difference here is that we
are weighting the update with the Q-values because we want to push the parameters more
aggressively in the direction of highly rewarding actions. One could also use mini-batch
gradient ascent over the actions in the sampled roll-outs. Randomly sampling from different
roll-outs can be helpful in avoiding the local minima arising from correlations because the
successive samples from each roll-out are closely related to one another.
Reducing Variance with Baselines: Although we have used the long-term reward
Qp(s, a) as the quantity to be optimized, it is more common to subtract a baseline value
from this quantity in order to obtain its advantage (i.e, differential impact of the action
over expectation). The baseline is ideally state-specific, but can be a constant as well. In
the original work of REINFORCE, a constant baseline was used (which is typically some
measure of average long-term reward over all states). Even this type of simple measure
can help in speeding up learning because it reduces the probabilities of less-than-average
performers and increases the probabilities of more-than-average performers (rather than
increasing both at differential rates). A constant choice of baseline does not affect the bias
of the procedure, but it reduces the variance. A state-specific option for the baseline is the
value V p(s) of the state s immediately before sampling action a. Such a choice results in
the advantage (Qp(s, a)− V p(s)) becoming identical to the temporal difference error. This
choice makes intuitive sense, because the temporal difference error contains additional in-
formation about the differential reward of an action beyond what we would know before
choosing the action. Discussions on baseline choice may be found in [374, 433].

Consider an example of an Atari game-playing agent, in which a roll-out samples the
move UP and output probability of UP was 0.2. Assume that the (constant) baseline is
0.17, and the long-term reward of the action is +1, since the game results in win (and there
is no reward discount). Therefore, the score of every action in that roll-out is 0.83 (after
subtracting the baseline). Then, the gain associated with all actions (output nodes of the
neural network) other than UP at that time-step would be 0, and the gain associated with
the output node corresponding to UP would be 0.83× log(0.2). One can then backpropagate
this gain in order to update the parameters of the neural network.

Adjustment with a state-specific baseline is easy to explain intuitively. Consider the
example of a chess game between agents Alice and Bob. If we use a baseline of 0, then
each move will only be credited with a reward corresponding to the final result, and the
difference between good moves and bad moves will not be evident. In other words, we need
to simulate a lot more games to differentiate positions. On the other hand, if we use the
value of the state (before performing the action) as the baseline, then the (more refined)
temporal difference error is used as the advantage of the action. In such a case, moves

9.5. POLICY GRADIENT METHODS 395

that have greater state-specific impact will be recognized with a higher advantage (within
a single game). As a result, fewer games will be required for learning.

9.5.3 Combining Supervised Learning with Policy Gradients

Supervised learning is useful for initializing the weights of the policy network before applying
reinforcement learning. For example, in a game of chess, one might have prior examples
of expert moves that are already known to be good. In such a case, we simply perform
gradient ascent with the same policy network, except that each expert move is assigned
the fixed credit of 1 for evaluating the gradient according to Equation 9.24. This problem
becomes identical to that of softmax classification, where the goal of the policy network is to
predict the same move as the expert. One can sharpen the quality of the training data with
some examples of bad moves with a negative credit obtained from computer evaluations.
This approach would be considered supervised learning rather than reinforcement learning
because we are simply using prior data, and not generating/simulating the data that we learn
from (as is common in reinforcement learning). This general idea can be extended to any
reinforcement learning setting, where some prior examples of actions and associated rewards
are available. Supervised learning is extremely common in these settings for initialization
because of the difficultly in obtaining high-quality data in the early stages of the process.
Many published works also interleave supervised learning and reinforcement learning in
order to achieve greater data efficiency [286].

9.5.4 Actor-Critic Methods

So far, we have discussed methods that are either dominated by critics or by actors in the
following way:

1. The Q-learning and TD(λ) methods work with the notion of a value function that is
optimized. This value function is a critic, and the policy (e.g., ǫ-greedy) of the actor is
directly derived from this critic. Therefore, the actor is subservient to the critic, and
such methods are considered critic-only methods.

2. The policy-gradient methods do not use a value function at all, and they directly
learn the probabilities of the policy actions. The values are often estimated using
Monte Carlo sampling. Therefore, these methods are considered actor-only methods.

Note that the policy-gradient methods do need to evaluate the advantage of intermediate
actions, and this estimation has so far been done with the use of Monte Carlo simulations.
The main problem with Monte Carlo simulations is its high complexity and inability to use
in an online setting.

However, it turns out that one can learn the advantage of intermediate actions using
value function methods. As in the previous section, we use the notation Qp(st, a) to denote
the value of action a, when the policy p followed by the policy network is used. Therefore,
we would now have two coupled neural networks– a policy network and a Q-network. The
policy network learns the probabilities of actions, and the Q-network learns the values
Qp(st, a) of various actions in order to provide an estimation of the advantage to the policy
network. Therefore, the policy network uses Qp(st, a) (with baseline adjustments) to weight
its gradient ascent updates. The Q-network is updated using an on-policy update as in
SARSA, where the policy is controlled by the policy network (rather than ǫ-greedy). The
Q-network, however, does not directly decide the actions as in Q-learning, because the policy

396 CHAPTER 9. DEEP REINFORCEMENT LEARNING

decisions are outside its control (beyond its role as a critic). Therefore, the policy network
is the actor and the value network is the critic. To distinguish between the policy network
and the Q-network, we will denote the parameter vector of the policy network by Θ, and
that of the Q-network by W .

We assume that the state at time stamp t is denoted by st, and the observable features
of the state input to the neural network are denoted by Xt. Therefore, we will use st and
Xt interchangeably below. Consider a situation at the tth time-stamp, where the action at
has been observed after state st with reward rt. Then, the following sequence of steps is
applied for the (t+ 1)th step:

1. Sample the action at+1 using the current state of the parameters in the policy network.
Note that the current state is st+1 because the action at is already observed.

2. Let F (Xt,W , at) = Q̂p(st, at) represent the estimated value of Qp(st, at) by the Q-
network using the observed representation Xt of the states and parameters W . Esti-
mate Qp(st, at) and Qp(st+1, at+1) using the Q-network. Compute the TD-error δt as
follows:

δt = rt + γQ̂p(st+1, at+1)− Q̂p(st, at)

= rt + γF (Xt+1,W , at+1)− F (Xt,W , at)

3. [Update policy network parameters]: Let P (Xt,Θ, at) be the probability of the
action at predicted by policy network. Update the parameters of the policy network
as follows:

Θ ← Θ+ αQ̂p(st, at)∇Θ log(P (Xt,Θ, at))

Here, α is the learning rate for the policy network and the value of Q̂p(st, at) =
F (Xt,W , at) is obtained from the Q-network.

4. [Update Q-Network parameters]: Update the Q-network parameters as follows:

W ⇐ W + βδt∇W F (Xt,W , at)

Here, β is the learning rate for the Q-network. A caveat is that the learning rate of
the Q-network is generally higher than that of the policy network.

The action at+1 is then executed in order to observe state st+2, and the value of t is
incremented. The next iteration of the approach is executed (by repeating the above steps)
at this incremented value of t. The iterations are repeated, so that the approach is executed
to convergence. The value of Q̂p(st, at) is the same as the value V̂ p(st+1).

If we use V̂ p(st) as the baseline, the advantage Âp(st, at) is defined by the following:

Âp(st, at) = Q̂p(st, at)− V̂ p(st)

This changes the updates as follows:

Θ ← Θ+ αÂp(st, at)∇Θ log(P (Xt,Θ, at))

Note the replacement of Q̂(st, at) in the original algorithm description with Â(st, at). In
order to estimate the value V̂ p(st), one possibility is to maintain another set of parameters
representing the value network (which is different from the Q-network). The TD-algorithm
can be used to update the parameters of the value network. However, it turns out that a

9.5. POLICY GRADIENT METHODS 397

single value-network is enough. This is because we can use rt+γV̂ p(st+1) in lieu of Q̂(st, at).
This results in an advantage function, which is the same as the TD-error:

Âp(st, at) = rt + γV̂ p(st+1)− V̂ p(st)

In other words, we need the single value-network (cf. Figure 9.5), which serves as the critic.
The above approach can also be generalized to use the TD(λ) algorithm at any value of λ.

9.5.5 Continuous Action Spaces

The methods discussed to this point were all associated with discrete action spaces. For
example, in a video game, one might have a discrete set of choices such as whether to move
the cursor up, down, left, and right. However, in a robotics application, one might have
continuous action spaces, in which we wish to move the robot’s arm a certain distance.
One possibility is to discretize the action into a set of fine-grained intervals, and use the
midpoint of the interval as the representative value. One can then treat the problem as
one of discrete choice. However, this is not a particularly satisfying design choice. First, the
ordering among the different choices will be lost by treating inherently ordered (numerical)
values as categorical values. Second, it blows up the space of possible actions, especially
if the action space is multidimensional (e.g., separate dimensions for distances moved by
the robot’s arm and leg). Such an approach can cause overfitting, and greatly increase the
amount of data required for learning.

A commonly used approach is to allow the neural network to output the parameters of a
continuous distribution (e.g., mean and standard deviation of Gaussian), and then sample
from the parameters of that distribution in order to compute the value of the action in the
next step. Therefore, the neural network will output the mean μ and standard deviation σ
for the distance moved by the robotic arm, and the actual action a will be sampled from
the Gaussian N (μ, σ) with this parameter:

a ∼ N (μ, σ) (9.26)

In this case, the action a represents the distance moved by the robot arm. The values of
μ and σ can be learned using backpropagation. In some variations, σ is fixed up front as
a hyper-parameter, with only the mean μ needing to be learned. The likelihood ratio trick
also applies to this case, except that we use the logarithm of the density at a, rather than
the discrete probability of the action a.

9.5.6 Advantages and Disadvantages of Policy Gradients

Policy gradient methods represent the most natural choice in applications like robotics that
have continuous sequences of states and actions. For cases in which there are multidimen-
sional and continuous action spaces, the number of possible combinations of actions can
be very large. Since Q-learning methods require the computation of the maximum Q-value
over all such actions, this step can turn out to be computationally intractable. Furthermore,
policy gradient methods tend to be stable and have good convergence properties. However,
policy gradient methods are susceptible to local minima. While Q-learning methods are less
stable in terms of convergence behavior than are policy-gradient methods, and can some-
times oscillate around particular solutions, they have better capacity to reach near global
optima.

Policy-gradient methods do possess one additional advantage in that they can learn
stochastic policies, leading to better performance in settings where deterministic policies

398 CHAPTER 9. DEEP REINFORCEMENT LEARNING

are known to be suboptimal (such as guessing games) due to being able to be exploited
by the opponent. Q-learning provides deterministic policies, and so policy gradients are
preferable in these settings because they provide a probability distribution on the possible
actions from which the action is sampled.

9.6 Monte Carlo Tree Search

Monte Carlo tree search is a way of improving the strengths of learned policies and values
at inference time by combining them with lookahead-based exploration. This improvement
also provides a basis for lookahead-based bootstrapping like temporal difference learning. It
is also leveraged as a probabilistic alternative to the deterministic minimax trees that are
used by conventional game-playing software (although the applicability is not restricted to
games). Each node in the tree corresponds to a state, and each branch corresponds to a
possible action. The tree grows over time during the search as new states are encountered.
The goal of the tree search is to select the best branch to recommend the predicted action
of the agent. Each branch is associated with a value based on previous outcomes in tree
search from that branch as well as an upper bound “bonus” that reduces with increased
exploration. This value is used to set the priority of the branches during exploration. The
learned goodness of a branch is adjusted after each exploration, so that branches leading to
positive outcomes are favored in later explorations.

In the following, we will describe the Monte Carlo tree search used in AlphaGo as a
case study for exposition. Assume that the probability P (s, a) of each action (move) a at
state (board position) s can be estimated using a policy network. At the same time, for
each move we have a quantity Q(s, a), which is the quality of the move a at state s. For
example, the value of Q(s, a) increases with increasing number of wins by following action
a from state s in simulations. The AlphaGo system uses a more sophisticated algorithm
that also incorporates some neural evaluations of the board position after a few moves
(cf. Section 9.7.1). Then, in each iteration, the “upper bound” u(s, a) of the quality of the
move a at state s is given by the following:

u(s, a) = Q(s, a) +K · P (s, a)
√∑

b N(s, b)

N(s, a) + 1
(9.27)

Here, N(s, a) is the number of times that the action a was followed from state s over the
course of the Monte Carlo tree search. In other words, the upper bound is obtained by
starting with the quality Q(s, a), and adding a “bonus” to it that depends on P (s, a) and
the number of times that branch is followed. The idea of scaling P (s, a) by the number of
visits is to discourage frequently visited branches and encourage greater exploration. The
Monte Carlo approach is based on the strategy of selecting the branch with the largest
upper bound, as in multi-armed bandit methods (cf. Section 9.2.3). Here, the second term
on the right-hand side of Equation 9.27 plays the role of providing the confidence interval
for computing the upper bound. As the branch is played more and more, the exploration
“bonus” for that branch is reduced, because the width of its confidence interval drops. The
hyperparameter K controls the degree of exploration.

At any given state, the action a with the largest value of u(s, a) is followed. This ap-
proach is applied recursively until following the optimal action does not lead to an existing
node. This new state s′ is now added to the tree as a leaf node with initialized values of
each N(s′, a) and Q(s′, a) set to 0. Note that the simulation up to a leaf node is fully deter-
ministic, and no randomization is involved because P (s, a) and Q(s, a) are deterministically

9.7. CASE STUDIES 399

computable. Monte Carlo simulations are used to estimate the value of the newly added leaf
node s′. Specifically, Monte Carlo rollouts from the policy network (e.g., using P (s, a) to
sample actions) return either +1 or −1, depending on win or loss. In Section 9.7.1, we will
discuss some alternatives for leaf-node evaluation that use a value network as well. After
evaluating the leaf node, the values of Q(s′′, a′′) and N(s′′, a′′) on all edges (s′′, a′′) on the
path from the current state s to the leaf s′ are updated. The value of Q(s′′, a′′) is maintained
as the average value of all the evaluations at leaf nodes reached from that branch during
the Monte Carlo tree search. After multiple searches have been performed from s, the most
visited edge is selected as the relevant one, and is reported as the desired action.

Use in Bootstrapping

Traditionally, Monte Carlo tree search has been used during inference rather than during
training. However, since Monte Carlo tree search provides an improved estimate Q(s, a) of
the value of a state-action pair (as a result of lookaheads), it can also be used for boot-
strapping (Intuition 9.4.1). Monte Carlo tree search provides an excellent alternative to
n-step temporal-difference methods. One point about on-policy n-step temporal-difference
methods is that they explore a single sequence of n-moves with the ǫ-greedy policy, and
therefore tend to be too weak (with increased depth but not width of exploration). One
way to strengthen them is to examine all possible n-sequences and use the optimal one with
an off-policy technique (i.e., generalizing Bellman’s 1-step approach). In fact, this was the
approach used in Samuel’s checkers program [421], which used the best option in the mini-
max tree for bootstrapping (and later referred to as TD-Leaf [22]). This results in increased
complexity of exploring all possible n-sequences. Monte Carlo tree search can provide a
robust alternative for bootstrapping, because it can explore multiple branches from a node
to generate averaged target values. For example, the lookahead-based ground truth can use
the averaged performance over all the explorations starting at a given node.

AlphaGo Zero [447] bootstraps policies rather than state values, which is extremely rare.
AlphaGo Zero uses the relative visit probabilities of the branches at each node as posterior
probabilities of the actions at that state. These posterior probabilities are improved over the
probabilistic outputs of the policy network by virtue of the fact that the visit decisions use
knowledge about the future (i.e., evaluations at deeper nodes of the Monte Carlo tree). The
posterior probabilities are therefore bootstrapped as ground-truth values with respect to the
policy network probabilities and used to update the weight parameters (cf. Section 9.7.1.1).

9.7 Case Studies

In the following, we present case studies from real domains to showcase different reinforce-
ment learning settings. We will present examples of reinforcement learning in Go, robotics,
conversational systems, self-driving cars, and neural-network hyperparameter learning.

9.7.1 AlphaGo: Championship Level Play at Go

Go is a two-person board game like chess. The complexity of a two-person board game
largely depends on the size of the board and the number of valid moves at each position.
The simplest example of a board game is tic-tac-toe with a 3× 3 board, and most humans
can solve it optimally without the need for a computer. Chess is a significantly more complex
game with an 8×8 board, although clever variations of the brute-force approach of selectively

400 CHAPTER 9. DEEP REINFORCEMENT LEARNING

exploring the minimax tree of moves up to a certain depth can perform significantly better
than the best human today. Go occurs at the extreme end of complexity because of its
19× 19 board.

Players play with white or black stones, which are kept in bowls next to the Go board.
An example of a Go board is shown in Figure 9.7. The game starts with an empty board,
and it fills up as players put stones on the board. Black makes the first move and starts
with 181 stones in her bowl, whereas white starts with 180 stones. The total number of
junctions is equal to the total number of stones in the bowls of the two players. A player
places a stone of her color in each move at a particular position (from the bowl), and does
not move it once it is placed. A stone of the opponent can be captured by encircling it.
The objective of the game is for the player to control a larger part of the board than her
opponent by encircling it with her stones.

Figure 9.7: Example of a Go board with stones.

Whereas one can make about 35 possible moves (i.e., tree branch factor) in a particular
position in chess, the average number of possible moves at a particular position in Go is
250, which is almost an order of magnitude larger. Furthermore, the average number of
sequential moves (i.e., tree depth) of a game of Go is about 150, which is around twice as
large as chess. All these aspects make Go a much harder candidate from the perspective of
automated game-playing. The typical strategy of chess-playing software is to construct a
minimax tree with all combinations of moves the players can make up to a certain depth, and
then evaluate the final board positions with chess-specific heuristics (such as the amount of
remaining material and the safety of various pieces). Suboptimal parts of the tree are pruned
in a heuristic manner. This approach is simply a improved version of a brute-force strategy
in which all possible positions are explored up to a given depth. The number of nodes in
the minimax tree of Go is larger than the number of atoms in the observable universe, even
at modest depths of analysis (20 moves for each player). As a result of the importance of
spatial intuition in these settings, humans always perform better than brute force strategies
at Go. The use of reinforcement learning in Go is much closer to what humans attempt to
do. We rarely try to explore all possible combinations of moves; rather, we visually learn
patterns on the board that are predictive of advantageous positions, and try to make moves
in directions that are expected to improve our advantage.

The automated learning of spatial patterns that are predictive of good performance is
achieved with a convolutional neural network. The state of the system is encoded in the
board position at a particular point, although the board representation in AlphaGo includes

9.7. CASE STUDIES 401

some additional features about the status of junctions or the number of moves since a stone
was played. Multiple such spatial maps are required in order to provide full knowledge of
the state. For example, one feature map would represent the status of each intersection,
another would encode the number of turns since a stone was played, and so on. Integer
feature maps were encoded into multiple one-hot planes. Altogether, the game board could
be represented using 48 binary planes of 19× 19 pixels.

AlphaGo uses its win-loss experience with repeated game playing (both using the moves
of expert players and with games played against itself) to learn good policies for moves in
various positions with a policy network. Furthermore, the evaluation of each position on
the Go board is achieved with a value network. Subsequently, Monte Carlo tree search is
used for final inference. Therefore, AlphaGo is a multi-stage model, whose components are
discussed in the following sections.

Policy Networks

The policy network takes as its input the aforementioned visual representation of the board,
and outputs the probability of action a in state s. This output probability is denoted by
p(s, a). Note that the actions in the game of Go correspond to the probability of placing
a stone at each legal position on the board. Therefore, the output layer uses the softmax
activation. Two separate policy networks are trained using different approaches. The two
networks were identical in structure, containing convolutional layers with ReLU nonlineari-
ties. Each network contained 13 layers. Most of the convolutional layers convolve with 3×3
filters, except for the first and final convolutions. The first and final filters convolve with
5× 5 and 1× 1 filters, respectively. The convolutional layers were zero padded to maintain
their size, and 192 filters were used. The ReLU nonlinearity was used, and no maxpooling
was used in order to maintain the spatial footprint.

The networks were trained in the following two ways:

• Supervised learning: Randomly chosen samples from expert players were used as train-
ing data. The input was the state of the network, while the output was the action
performed by the expert player. The score (advantage) of such a move was always
+1, because the goal was to train the network to imitate expert moves, which is also
referred to as imitation learning. Therefore, the neural network was backpropagated
with the log-likelihood of the probability of the chosen move as its gain. This network
is referred to as the SL-policy network. It is noteworthy that these supervised forms
of imitation learning are often quite common in reinforcement learning for avoiding
cold-start problems. However, subsequent work [446] showed that dispensing with this
part of the learning was a better option.

• Reinforcement learning: In this case, reinforcement learning was used to train the
network. One issue is that Go needs two opponents, and therefore the network was
played against itself in order to generate the moves. The current network was always
played against a randomly chosen network from a few iterations back, so that the
reinforcement learning could have a pool of randomized opponents. The game was
played until the very end, and then an advantage of +1 or −1 was associated with
each move depending on win or loss. This data was then used to train the policy
network. This network was referred to as the RL-policy network.

Note that these networks were already quite formidable Go players compared to state-
of-the-art software, and they were combined with Monte Carlo tree search to strengthen
them.

402 CHAPTER 9. DEEP REINFORCEMENT LEARNING

Value Networks

This network was also a convolutional neural network, which uses the state of the network
as the input and the predicted score in [−1,+1] as output, where +1 indicates a perfect
probability of 1. The output is the predicted score of the next player, whether it is white
or black, and therefore the input also encodes the “color” of the pieces in terms of “player”
or “opponent” rather than white or black. The architecture of the value network was very
similar to the policy network, except that there were some differences in terms of the input
and output. The input contained an additional feature corresponding to whether the next
player to play was white or black. The score was computed using a single tanh unit at
the end, and therefore the value lies in the range [−1,+1]. The early convolutional layers
of the value network are the same as those in the policy network, although an additional
convolutional layer is added in layer 12. A fully connected layer with 256 units and ReLU
activation follows the final convolutional layer. In order to train the network, one possibility
is to use positions from a data set [606] of Go games. However, the preferred choice was
to generate the data set using self-play with the SL-policy and RL-policy networks all
the way to the end, so that the final outcomes were generated. The state-outcome pairs
were used to train the convolutional neural network. Since the positions in a single game
are correlated, using them sequentially in training causes overfitting. It was important to
sample positions from different games in order to prevent overfitting caused by closely
related training examples. Therefore, each training example was obtained from a distinct
game of self-play.

Monte Carlo Tree Search

A simplified variant of Equation 9.27 was used for exploration, which is equivalent to setting
K = 1/

√∑

b N(s, b) at each node s. Section 9.6 described a version of the Monte Carlo tree
search method in which only the RL-policy network is used for evaluating leaf nodes. In the
case of AlphaGo, two approaches are combined. First, fast Monte Carlo rollouts were used
from the leaf node to create evaluation e1. While it is possible to use the policy network for
rollout, AlphaGo trained a simplified softmax classifier with a database of human games and
some hand-crafted features for faster speed of rollouts. Second, the value network created a
separate evaluation e2 of the leaf nodes. The final evaluation e is a convex combination of the
two evaluations as e = βe1+(1−β)e2. The value of β = 0.5 provided the best performance,
although using only the value network also provided closely matching performance (and a
viable alternative). The most visited branch in Monte Carlo tree search was reported as the
predicted move.

9.7.1.1 Alpha Zero: Enhancements to Zero Human Knowledge

A later enhancement of the idea, referred to as AlphaGo Zero [446], removed the need for
human expert moves (or an SL-network). Instead of separate policy and value networks, a
single network outputs both the policy (i.e., action probabilities) p(s, a) and the value v(s)
of the position. The cross-entropy loss on the output policy probabilities and the squared
loss on the value output were added to create a single loss. Whereas the original version of
AlphaGo used Monte Carlo tree search only for inference from trained networks, the zero-
knowledge versions also use the visit counts in Monte Carlo tree search for training. One
can view the visit count of each branch in tree search as a policy improvement operator over
p(s, a) by virtue of its lookahead-based exploration. This provides a basis for creating boot-
strapped ground-truth values (Intuition 9.4.1) for neural network learning. While temporal

9.7. CASE STUDIES 403

difference learning bootstraps state values, this approach bootstraps visit counts for learning
policies. The predicted probability of Monte Carlo tree search for action a in board state
s is π(s, a) ∝ N(s, a)1/τ , where τ is a temperature parameter. The value of N(s, a) is
computed using a similar Monte Carlo search algorithm as used for AlphaGo, where the prior
probabilities p(s, a) output by the neural network are used for computing Equation 9.27.
The value of Q(s, a) in Equation 9.27 is set to the average value output v(s′) from the neural
network of the newly created leaf nodes s′ reached from state s.

AlphaGo Zero updates the neural network by bootstrapping π(s, a) as a ground-truth,
whereas ground-truth state values are generated with Monte Carlo simulations. At each state
s, the probabilities π(s, a), values Q(s, a) and visit counts N(s, a) are updated by running
the Monte Carlo tree search procedure (repeatedly) starting at state s. The neural network
from the previous iteration is used for selecting branches according to Equation 9.27 until a
state is reached that does not exist in the tree or a terminal state is reached. For each non-
existing state, a new leaf is added to the tree with its Q-values and visit values initialized
to zero. The Q-values and visit counts of all edges on the path from s to the leaf node
are updated based on leaf evaluation by the neural network (or by game rules for terminal
states). After multiple searches starting from node s, the posterior probability π(s, a) is
used to sample an action for self-play and reach the next node s′. The entire procedure
discussed in this paragraph is repeated at node s′ to recursively obtain the next position s′′.
The game is recursively played to completion and the final value from {−1,+1} is returned
as the ground-truth value z(s) of uniformly sampled states s on the game path. Note that
z(s) is defined from the perspective of the player at state s. The ground-truth values of the
probabilities are already available in π(s, a) for various values of a. Therefore, one can create
a training instance for the neural network containing the input representation of state s, the
bootstrapped ground-truth probabilities in π(s, a), and the Monte Carlo ground-truth value
z(s). This training instance is used to update the neural network parameters. Therefore, if
the probability and value outputs for the neural network are p(s, a) and v(s), respectively,
the loss for a neural network with weight vector W is as follows:

L = [v(s)− z(s)]2 −
∑

a

π(s, a)log[p(s, a)] + λ||W ||2 (9.28)

Here, λ > 0 is the regularization parameter.
Further advancements were proposed in the form of Alpha Zero [447], which could play

multiple games such as Go, shogi, and chess. Alpha Zero has handily defeated the best chess-
playing software, Stockfish, and has also defeated the best shogi software (Elmo). The victory
in chess was particularly unexpected by most top players, because it was always assumed
that chess required too much domain knowledge for a reinforcement learning system to win
over a system with hand-crafted evaluations.

Comments on Performance

AlphaGo has shown extraordinary performance against a variety of computer and human
opponents. Against a variety of computer opponents, it won 494 out of 495 games [445]. Even
when AlphaGo was handicapped by providing four free stones to the opponent, it won 77%,
86%, and 99% of the games played against (the software programs named) Crazy Stone, Zen,
and Pachi, respectively. It also defeated notable human opponents, such as the European
champion, the World champion, and the top-ranked player.

A more notable aspect of its performance was the way in which it achieved its victories. In
several of its games, AlphaGo made many unconventional and brilliantly unorthodox moves,

404 CHAPTER 9. DEEP REINFORCEMENT LEARNING

which would sometimes make sense only in hindsight after the victory of the program [607,
608]. There were cases in which the moves made by AlphaGo were contrary to conventional
wisdom, but eventually revealed innovative insights acquired by AlphaGo during self-play.
After this match, some top Go players reconsidered their approach to the entire game.

The performance of Alpha Zero in chess was similar, where it often made material
sacrifices in order to incrementally improve its position and constrict its opponent. This
type of behavior is a hallmark of human play and is very different from conventional chess
software (which is already much better than humans). Unlike hand-crafted evaluations, it
seemed to have no pre-conceived notions on the material values of pieces, or on when a
king was safe in the center of the board. Furthermore, it discovered most well-known chess
openings on its own using self-play, and seemed to have its own opinions on which ones
were “better.” In other words, it had the ability to discover knowledge on its own. A key
difference of reinforcement learning from supervised learning is that it has the ability to
innovate beyond known knowledge through learning by reward-guided trial and error. This
behavior represents some promise in other applications.

9.7.2 Self-Learning Robots

Self-learning robots represent an important frontier in artificial intelligence, in which robots
can be trained to perform various tasks such as locomotion, mechanical repairs, or object
retrieval by using a reward-driven approach. For example, consider the case in which one
has constructed a robot that is physically capable of locomotion (in terms of how it is
constructed and the movement choices available to it), but it has to learn the precise choice
of movements in order to keep itself balanced and move from point A to point B. As bipedal
humans, we are able to walk and keep our balance naturally without even thinking about
it, but this is not a simple matter for a bipedal robot in which an incorrect choice of joint
movement could easily cause it to topple over. The problem becomes even more difficult
when uncertain terrain and obstacles are placed in the way of a robot.

This type of problem is naturally suited to reinforcement learning, because it is easy
to judge whether a robot is walking correctly, but it is hard to specify precise rules about
what the robot should do in every possible situation. In the reward-driven approach of
reinforcement learning, the robot is given (virtual) rewards every time it makes progress in
locomotion from point A to point B. Otherwise, the robot is free to take any actions, and it
is not pre-trained with knowledge about the specific choice of actions that would help keep
it balanced and walk. In other words, the robot is not seeded with any knowledge of what
walking looks like (beyond the fact that it will be rewarded for using its available actions
for making progress from point A to point B). This is a classical example of reinforcement
learning, because the robot now needs to learn the specific sequence of actions to take in
order to earn the goal-driven rewards. Although we use locomotion as a specific example
in this case, this general principle applies to any type of learning in robots. For example, a
second problem is that of teaching a robot manipulation tasks such as grasping an object
or screwing the cap on a bottle. In the following, we will provide a brief discussion of both
cases.

9.7.2.1 Deep Learning of Locomotion Skills

In this case, locomotion skills were taught to virtual robots [433], in which the robot was
simulated with the MuJoCo physics engine [609], which stands for Multi-Joint Dynamics
with Contact. It is a physics engine aiming to facilitate research and development in robotics,

9.7. CASE STUDIES 405

biomechanics, graphics, and animation, where fast and accurate simulation is needed with-
out having to construct an actual robot. Both a humanoid and a quadruped robot were
used. An example of the biped model is shown in Figure 9.8. The advantage of this type
of simulation is that it is inexpensive to work with a virtual simulation, and one avoids the
natural safety and expense issues that arise with the physical damages in an experimenta-
tion framework that is likely to be marred by high levels of mistakes/accidents. On the flip
side, a physical model provides more realistic results. In general, a simulation can often be
used for smaller scale testing before building a physical model.

Figure 9.8: Example of the virtual humanoid robot. Original image is available at [609].

The humanoid model has 33 state dimensions and 10 actuated degrees of freedom, while
the quadruped model has 29 state dimensions and 8 actuated degrees of freedom. Models
were rewarded for forward progress, although episodes were terminated when the center of
mass of the robot fell below a certain point. The actions of the robot were controlled by
joint torques. A number of features were available to the robot, such as sensors providing
the positions of obstacles, the joint positions, angles, and so on. These features were fed into
the neural networks. Two neural networks were used; one was used for value estimation,
and the other was used for policy estimation. Therefore, a policy gradient method was used
in which the value network played the role of estimating the advantage. Such an approach
is an instantiation of an actor-critic method.

A feed-forward neural network was used with three hidden layers, with 100, 50, and
25 tanh units, respectively. The approach in [433] requires the estimation of both a policy
function and a value function, and the same architecture was used in both cases for the
hidden layers. However, the value estimator required only one output, whereas the policy
estimator required as many outputs as the number of actions. Therefore, the main dif-
ference between the two architectures was in terms of how the output layer and the loss
function was designed. The generalized advantage estimator (GAE) was used in combina-
tion with trust-based policy optimization (TRPO). The bibliographic notes contain pointers
to specific details of these methods. On training the neural network for 1000 iterations with
reinforcement learning, the robot learned to walk with a visually pleasing gait. A video of
the final results of the robot walking is available at [610]. Similar results were also later
released by Google DeepMind with more extensive abilities of avoiding obstacles or other
challenges [187].

406 CHAPTER 9. DEEP REINFORCEMENT LEARNING

9.7.2.2 Deep Learning of Visuomotor Skills

A second and interesting case of reinforcement learning is provided in [286], in which a robot
was trained for several household tasks such as placing a coat hanger on a rack, inserting
a block into a shape-sorting cube, fitting the claw of a toy hammer under a nail with
various grasps, and screwing a cap onto a bottle. Examples of these tasks are illustrated in
Figure 9.9(a) along with an image of the robot. The actions were 7-dimensional joint motor
torque commands, and each action required a sequence of commands in order to optimally
perform the task. In this case, an actual physical model of a robot was used for training. A
camera image was used by the robot in order to locate the objects and manipulate them.
This camera image can be considered the robot’s eyes, and the convolutional neural network
used by the robot works on the same conceptual principle as the visual cortex (based on
Hubel and Wiesel’s experiments). Even though this setting seems very different from that of
the Atari video games at first sight, there are significant similarities in terms of how image
frames can help in mapping to policy actions. For example, the Atari setting also works
with a convolutional neural network on the raw pixels. However, there were some additional
inputs here, corresponding to the robot and object positions. These tasks require a high
level of learning in visual perception, coordination, and contact dynamics, all of which need
to learned automatically.

HANGER CUBE HAMMER BOTTLE ROBOT

(a) Visuomotor tasks learned by robot

3 channels 64 filters

5x5 conv
ReLU

conv1 conv2

5x5 conv
ReLU

32 filters

conv3

32 distributions

spatial softmax

expected
 2D position

feature

points

64

robot

configuration

fully

connected

ReLU

40 40

fully

connected

ReLU linear

motor

torques

RGB image

7x7 conv

ReLU

32 filters

109

109

39

7

stride 2
fully

connected

109

109

113

113

117

117
240

240

(b) Architecture of the convolutional neural network

Figure 9.9: Deep learning of visuomotor skills. These figures appear in [286]. (c©2016 Sergey
Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel)

A natural approach is to use a convolutional neural network for mapping image frames
to actions. As in the case of Atari games, spatial features need to be learned in the layers of
the convolutional neural network that are suitable for earning the relevant rewards in a task-
sensitive manner. The convolutional neural network had 7 layers and 92,000 parameters.
The first three layers were convolutional layers, the fourth layer was a spatial softmax, and
the fifth layer was a fixed transformation from spatial feature maps to a concise set of two
coordinates. The idea was to apply a softmax function to the responses across the spatial
feature map. This provides a probability of each position in the feature map. The expected
position using this probability distribution provides the 2-dimensional coordinate, which is

9.7. CASE STUDIES 407

referred to as a feature point. Note that each spatial feature map in the convolution layer
creates a feature point. The feature point can be viewed as a kind of soft argmax over the
spatial probability distribution. The fifth layer was quite different from what one normally
sees in a convolutional neural network, and was designed to create a precise representation
of the visual scene that was suitable for feedback control. The spatial feature points are
concatenated with the robot’s configuration, which is an additional input occurring only
after the convolution layers. This concatenated feature set is fed into two fully connected
layers, each with 40 rectified units, followed by linear connections to the torques. Note
that only the observations corresponding to the camera were fed to the first layer of the
convolutional neural network, and the observations corresponding to the robot state were
fed to the first fully connected layer. This is because the convolutional layers cannot make
much use of the robot states, and it makes sense to concatenate the state-centric inputs
after the visual inputs have been processed by the convolutional layers. The entire network
contained about 92,000 parameters, of which 86,000 were in the convolutional layers. The
architecture of the convolutional neural network is shown in Figure 9.9(b). The observations
consist of the RGB camera image, joint encoder readings, velocities, and end-effector pose.

The full robot states contained between 14 and 32 dimensions, such as the joint angles,
end-effector pose, object positions, and their velocities. This provided a practical notion of a
state. As in all policy-based methods, the outputs correspond to the various actions (motor
torques). One interesting aspect of the approach discussed in [286] is that it transforms
the reinforcement learning problem into supervised learning. A guided policy search method
was used, which is not discussed in this chapter. This approach converts portions of the
reinforcement learning problem into supervised learning. Interested readers are referred
to [286], where a video of the performance of the robot (trained using this system) may also
be found.

9.7.3 Building Conversational Systems: Deep Learning for Chat-
bots

Chatbots are also referred to as conversational systems or dialog systems. The ultimate goal
of a chatbot is to build an agent that can freely converse with a human about a variety
of topics in a natural way. We are very far from achieving this goal. However, significant
progress has been made in building chatbots for specific domains and particular applications
(e.g., negotiation or shopping assistant). An example of a relatively general-purpose system
is Apple’s Siri, which is a digital personal assistant. One can view Siri as an open-domain
system, because it is possible to have conversations with it about a wide variety of topics.
It is reasonably clear to anyone using Siri that the assistant is sometimes either unable to
provide satisfactory responses to difficult questions, and in some cases hilarious responses to
common questions are hard-coded. This is, of course, natural because the system is relatively
general-purpose, and we are nowhere close to building a human-level conversational system.
In contrast, closed-domain systems have a specific task in mind, and can therefore be more
easily trained in a reliable way.

408 CHAPTER 9. DEEP REINFORCEMENT LEARNING

In the following, we will describe a system built by Facebook for end-to-end learning
of negotiation skills [290]. This is a closed-domain system because it is designed for the
particular purpose of negotiation. As a test-bed, the following negotiation task was used.
Two agents are shown a collection of items of different types (e.g., two books, one hat, three
balls). The agents are instructed to divide these items among themselves by negotiating a
split of the items. A key point is that the value of each of the types of items is different
for the two agents, but they are not aware of the value of the items for each other. This is
often the case in real-life negotiations, where users attempt to reach a mutually satisfactory
outcome by negotiating for items of value to them.

The values of the items are always assumed to be non-negative and generated randomly
in the test-bed under some constraints. First, the total value of all items for a user is 10.
Second, each item has non-zero value to at least one user so that it makes little sense
to ignore an item. Last, some items have nonzero values to both users. Because of these
constraints, it is impossible for both users to achieve the maximum score of 10, which
ensures a competitive negotiation process. After 10 turns, the agents are allowed the option
to complete the negotiation with no agreement, which has a value of 0 points for both
users. The three item types of books, hats, and balls were used, and a total of between
5 and 7 items existed in the pool. The fact that the values of the items are different for
the two users (without knowledge about each other’s assigned values) is significant; if both
negotiators are capable, they will be able to achieve a total value of larger than 10 for the
items between them. Nevertheless, the better negotiator will be able to capture the larger
value by optimally negotiating for items with a high value for them.

The reward function for this reinforcement learning setting is the final value of the
items attained by the user. One can use supervised learning on previous dialogs in order
to maximize the likelihood of utterances. A straightforward use of recurrent networks to
maximize the likelihood of utterances resulted in agents that were too eager to compromise.
Therefore, the approach combined supervised learning with reinforcement learning. The
incorporation of supervised learning within the reinforcement learning helps in ensuring
that the models do not diverge from human language. A form of planning for dialogs called
dialog roll-out was introduced. The approach uses an encoder-decoder recurrent architecture,
in which the decoder maximizes the reward function rather than the likelihood of utterances.
This encoder-decoder architecture is based on sequence-to-sequence learning, as discussed
in Section 7.7.2 of Chapter 7.

To facilitate supervised learning, dialogs were collected from Amazon Mechanical Turk.
A total of 5808 dialogs were collected in 2236 unique scenarios, where a scenario is defined
by assignment of a particular set of values to the items. Of these cases, 252 scenarios
corresponding to 526 dialogs were held out. Each scenario results in two training examples,
which are derived from the perspective of each agent. A concrete training example could be
one in which the items to be divided among the two agents correspond to 3 books, 2 hats,
and 1 ball. These are part of the input to each agent. The second input could be the value
of each item to the agent, which are (i) Agent A: book:1, hat:3, ball:1, and (ii) Agent B:
book:2, hat:1, ball:2. Note that this means that agent A should secretly try to get as many
hats as possible in the negotiation, whereas agent B should focus on books and balls. An
example of a dialog in the training data is given below [290]:

9.7. CASE STUDIES 409

Agent A: I want the books and the hats, you get the ball.
Agent B: Give me a book too and we have a deal.
Agent A: Ok, deal.
Agent B: 〈choose〉

The final output for agent A is 2 books and 2 hats, whereas the final output for agent B
is 1 book and 1 ball. Therefore, each agent has her own set of inputs and outputs, and the
dialogs for each agent are also viewed from their own perspective in terms of the portions
that are reads and the portions that are writes. Therefore, each scenario generates two
training examples and the same recurrent network is shared for generating the writes and
the final output of each agent. The dialog x is a list of tokens x0 . . . xT , containing the turns
of each agent interleaved with symbols marking whether the turn was written by an agent
or their partner. A special token at the end indicates that one agent has marked that an
agreement has been reached.

The supervised learning procedure uses four different gated recurrent units (GRUs). The
first gated recurrent unit GRUg encodes the input goals, the second gated recurrent unit
GRUq generates the terms in the dialog, a forward-output gated recurrent unit GRU�o, and
a backward-output gated recurrent unit GRU �o. The output is essentially produced by a
bi-directional GRU. These GRUs are hooked up in end-to-end fashion. In the supervised
learning approach, the parameters are trained using the inputs, dialogs, and outputs avail-
able from the training data. The loss for the supervised model for a weighted sum of the
token-prediction loss of the dialog and the output choice prediction loss of the items.

However, for reinforcement learning, dialog roll-outs are used. Note that the group of
GRUs in the supervised model is, in essence, providing probabilistic outputs. Therefore, one
can adapt the same model to work for reinforcement learning by simply changing the loss
function. In other words, the GRU combination can be considered a type of policy network.
One can use this policy network to generate Monte Carlo roll-outs of various dialogs and
their final rewards. Each of the sampled actions becomes a part of the training data, and
the action is associated with the final reward of the roll-out. In other words, the approach
uses self-play in which the agent negotiates with itself to learn better strategies. The final
reward achieved by a roll-out is used to update the policy network parameters. This reward
is computed based on the value of the items negotiated at the end of the dialog. This
approach can be viewed as an instance of the REINFORCE algorithm [533]. One issue with
self-play is that the agents tend to learn their own language, which deviates from natural
human language when both sides use reinforcement learning. Therefore, one of the agents
is constrained to be a supervised model.

For the final prediction, one possibility is to directly sample from the probabilities output
by the GRU. However, such an approach is often not optimal when working with recurrent
networks. Therefore, a two-stage approach is used. First, c candidate utterances are created
by using sampling. The expected reward of each candidate utterance is computed and the
one with the largest expected value is selected. In order to compute the expected reward,
the output was scaled by the probability of the dialog because low-probability dialogs were
unlikely to be selected by either agent.

410 CHAPTER 9. DEEP REINFORCEMENT LEARNING

A number of interesting observations were made in [290] about the performance of the
approach. First, the supervised learning methods often tended to give up easily, whereas
the reinforcement learning methods were more persistent in attempting to obtain a good
deal. Second, the reinforcement learning method would often exhibit human-like negotiation
tactics. In some cases, it feigned interest in an item that was not really of much value in
order to obtain a better deal for another item.

9.7.4 Self-Driving Cars

As in the case of the robot locomotion task, the car is rewarded for progressing from point
A to point B without causing accidents or other undesirable road incidents. The car is
equipped with various types of video, audio, proximity, and motion sensors in order to
record observations. The objective of the reinforcement learning system is for the car to go
from point A to point B safely irrespective of road conditions.

Driving is a task for which it is hard to specify the proper rules of action in every
situation; on the other hand, it is relatively easy to judge when one is driving correctly.
This is precisely the setting that is well suited to reinforcement learning. Although a fully
self-driving car would have a vast array of components corresponding to inputs and sensors
of various types, we focus on a simplified setting in which a single camera is used [46, 47].
This system is instructive because it shows that even a single front-facing camera is sufficient
to accomplish quite a lot when paired with reinforcement learning. Interestingly, this work
was inspired by the 1989 work of Pomerleau [381], who built the Autonomous Land Vehicle
in a Neural Network (ALVINN) system, and the main difference from the work done over
25 years back was one of increased data and computational power. In addition, the work
uses some advances in convolutional neural networks for modeling. Therefore, this work
showcases the great importance of increased data and computational power in building
reinforcement learning systems.

The training data was collected by driving in a wide variety of roads and conditions. The
data was collected primarily from central New Jersey, although highway data was also col-
lected from Illinois, Michigan, Pennsylvania, and New York. Although a single front-facing
camera in the driver position was used as the primary data source for making decisions,
the training phase used two additional cameras at other positions in the front to collect
rotated and shifted images. These auxiliary cameras, which were not used for final decision
making, were however useful for collecting additional data. The placement of the additional
cameras ensured that their images were shifted and rotated, and therefore they could be
used to train the network to recognize cases where the car position had been compromised.
In short, these cameras were useful for data augmentation. The neural network was trained
to minimize the error between the steering command output by the network and the com-
mand output by the human driver. Note that this approach tends to make the approach
closer to supervised learning rather than reinforcement learning. These types of learning
methods are also referred to as imitation learning [427]. Imitation learning is often used as
a first step to buffer the cold-start inherent in reinforcement learning systems.

9.7. CASE STUDIES 411

Figure 9.10: The neural network architecture of the control system in the self-driving car
discussed in [46] (Courtesy NVIDIA).

Scenarios involving imitation learning are often similar to those involving reinforcement
learning. It is relatively easy to use reinforcement setting in this scenario by giving a reward
when the car makes progress without human intervention. On the other hand, if the car
either does not make progress or requires human intervention, it is penalized. However, this
does not seem to be the way in which the self-driving system of [46, 47] is trained. One issue
with settings like self-driving cars is that one always has to account for safety issues during
training. Although published details on most of the available self-driving cars are limited,
it seems that supervised learning has been the method of choice compared to reinforcement
learning in this setting. Nevertheless, the differences between using supervised learning and
reinforcement learning are not significant in terms of the broader architecture of the neural
network that would be useful. A general discussion of reinforcement learning in the context
of self-driving cars may be found in [612].

The convolutional neural network architecture is shown in Figure 9.10. The network
consists of 9 layers, including a normalization layer, 5 convolutional layers, and 3 fully con-
nected layers. The first convolutional layer used a 5 × 5 filter with a stride of 2. The next
two convolutional layers each used non-strided convolution with a 3× 3 filter. These convo-

412 CHAPTER 9. DEEP REINFORCEMENT LEARNING

lutional layers were followed with three fully connected layers. The final output value was a
control value, corresponding to the inverse turning radius. The network had 27 million con-
nections and 250, 000 parameters. Specific details of how the deep neural network performs
the steering are provided in [47].

The resulting car was tested both in simulation and in actual road conditions. A human
driver was always present in the road tests to perform interventions when necessary. On
this basis, a measure was computed on the percentage of time that human intervention
was required. It was found that the vehicle was autonomous 98% of the time. A video
demonstration of this type of autonomous driving is available in [611]. Some interesting
observations were obtained by visualizing the activation maps of the trained convolutional
neural network (based on the methodology discussed in Chapter 8). In particular, it was
observed that the features were heavily biased towards learning aspects of the image that
were important to driving. In the case of unpaved roads, the feature activation maps were
able to detect the outlines of the roads. On the other hand, if the car was located in a
forest, the feature activation maps were full of noise. Note that this does not happen in
a convolutional neural network that is trained on ImageNet because the feature activation
maps would typically contain useful characteristics of trees, leaves, and so on. This difference
in the two cases is because the convolutional network of the self-driving setting is trained
in a goal-driven matter, and it learns to detect features that are relevant to driving. The
specific characteristics of the trees in a forest are not relevant to driving.

9.7.5 Inferring Neural Architectures with Reinforcement Learning

An interesting application of reinforcement learning is to learn the neural network archi-
tecture for performing a specific task. For discussion purposes, let us consider a setting in
which we wish to determine the structure of a convolutional neural architecture for classify
a data set like CIFAR-10 [583]. Clearly, the structure of the neural network depends on a
number of hyper-parameters, such as the number of filters, filter height, filter width, stride
height, and stride width. These parameters depend on one another, and the parameters of
later layers depend on those from earlier layers.

NUMBER

OF FILTERS

FILTER

HEIGHT
FILTER

WIDTH

STRIDE

HEIGHT

STRIDE

WIDTH

NUMBER

OF FILTERS

FILTER

HEIGHT

1+NREYALNREYAL1-NREYAL

Figure 9.11: The controller network for learning the convolutional architecture of the child
network [569]. The controller network is trained with the REINFORCE algorithm.

The reinforcement learning method uses a recurrent network as the controller to decide
the parameters of the convolutional network, which is also referred to as the child net-
work [569]. The overall architecture of the recurrent network is illustrated in Figure 9.11.

9.8. PRACTICAL CHALLENGES ASSOCIATED WITH SAFETY 413

The choice of a recurrent network is motivated by the sequential dependence between dif-
ferent architectural parameters. The softmax classifier is used to predict each output as a
token rather than a numerical value. This token is then used as an input into the next layer,
which is shown by the dashed lines in Figure 9.11. The generation of the parameter as a
token results in a discrete action space, which is generally more common in reinforcement
learning as compared to a continuous action space.

The performance of the child network on a validation set drawn from CIFAR-10 is
used to generate the reward signal. Note that the child network needs to be trained on
the CIFAR-10 data set in order to test its accuracy. Therefore, this process requires a full
training procedure of the child network, which is quite expensive. This reward signal is used
in conjunction with the REINFORCE algorithm in order to train the parameters of the
controller network. Therefore, the controller network is really the policy network in this
case, which generates a sequence of inter-dependent parameters.

A key point is about the number of layers of the child network (which also decides the
number of layers in the recurrent network). This value is not held constant but it follows
a certain schedule as training progresses. In the early iterations, the number of layers is
fewer, and therefore the learned architecture of the convolutional network is shallow. As
training progresses, the number of layers slowly increases over time. The policy gradient
method is not very different from what is discussed earlier in this chapter, except that a
recurrent network is trained with the reward signal rather than a feed-forward network.
Various types of optimizations are also discussed in [569], such as efficient implementations
with parallelism and the learning of advanced architectural designs like skip connections.

9.8 Practical Challenges Associated with Safety

Simplifying the design of highly complex learning algorithms with reinforcement learning
can sometimes have unexpected effects. By virtue of the fact that reinforcement learning
systems have larger levels of freedom than other learning systems, it naturally leads to some
safety related concerns. While biological greed is a powerful factor in human intelligence, it
is also a source of many undesirable aspects of human behavior. The simplicity that is the
greatest strength of reward-driven learning is also its greatest pitfall in biological systems.
Simulating such systems therefore results in similar pitfalls from the perspective of artificial
intelligence. For example, poorly designed rewards can lead to unforeseen consequences, be-
cause of the exploratory way in which the system learns its actions. Reinforcement learning
systems can frequently learn unknown “cheats” and “hacks” in imperfectly designed video
games, which tells us a cautionary tale of what might happen in a less-than-perfect real
world. Robots learn that simply pretending to screw caps on bottles can earn faster rewards,
as long as the human or automated evaluator is fooled by the action. In other words, the
design of the reward function is sometimes not a simple matter.

Furthermore, a system might try to earn virtual rewards in an “unethical” way. For
example, a cleaning robot might try to earn rewards by first creating messes and then
cleaning them [10]. One can imagine even darker scenarios for robot nurses. Interestingly,
these types of behaviors are sometimes also exhibited by humans. These undesirable simi-
larities are a direct result of simplifying the learning process in machines by leveraging the
simple greed-centric principles with which biological organisms learn. Striving for simplicity
results in ceding more control to the machine, which can have unexpected effects. In some
cases, there are ethical dilemmas in even designing the reward function. For example, if
it becomes inevitable that an accident is going to occur, should a self-driving car save its

414 CHAPTER 9. DEEP REINFORCEMENT LEARNING

driver or two pedestrians? Most humans would save themselves in this setting as a matter
of reflexive biological instinct; however, it is an entirely different matter to incentivize a
learning system to do so. At the same time, it would be hard to convince a human operator
to trust a vehicle where her safety is not the first priority for the learning system. Rein-
forcement learning systems are also susceptible to the ways in which their human operators
interact with them and manipulate the effects of their underlying reward function; there
have been occasions where a chatbot was taught to make offensive or racist remarks.

Learning systems have a harder time in generalizing their experiences to new situations.
This problem is referred to as distributional shift. For example, a self-driving car trained
in one country might perform poorly in another. Similarly, the exploratory actions in re-
inforcement learning can sometimes be dangerous. Imagine a robot trying to solder wires
in an electronic device, where the wires are surrounded with fragile electronic components.
Trying exploratory actions in this setting is fraught with perils. These issues tell us that
we cannot build AI systems with no regard to safety. Indeed, some organizations like Ope-
nAI [613] have taken the lead in these matters of ensuring safety. Some of these issues are
also discussed in [10] with broader frameworks of possible solutions. In many cases, it seems
that the human would have to be involved in the loop to some extent in order to ensure
safety [424].

9.9 Summary

This chapter studies the problem of reinforcement learning in which agents interact with
the environment in a reward-driven manner in order to learn the optimal actions. There
are several classes of reinforcement learning methods, of which the Q-learning methods
and the policy-driven methods are the most common. Policy-driven methods have become
increasingly popular in recent years. Many of these methods are end-to-end systems that
integrate deep neural networks to take in sensory inputs and learn policies that optimize
rewards. Reinforcement learning algorithms are used in many settings like playing video
or other types of games, robotics, and self-driving cars. The ability of these algorithms to
learn via experimentation often leads to innovative solutions that are not possible with other
forms of learning. Reinforcement learning algorithms also pose unique challenges associated
with safety because of the oversimplification of the learning process with reward functions.

9.10 Bibliographic Notes

An excellent overview on reinforcement learning may be found in the book by Sutton and
Barto [483]. A number of surveys on reinforcement learning are available at [293]. David Sil-
ver’s lectures on reinforcement learning are freely available on YouTube [619]. The method of
temporal differences was proposed by Samuel in the context of a checkers program [421] and
formalized by Sutton [482]. Q-learning was proposed by Watkins in [519], and a convergence
proof is provided in [520]. The SARSA algorithm was introduced in [412]. Early methods for
using neural networks in reinforcement learning were proposed in [296, 349, 492, 493, 494].
The work in [492] developed TD-Gammon, which was a backgammon playing program.

A system that used a convolutional neural network to create a deep Q-learning algorithm
with raw pixels was pioneered in [335, 336]. It has been suggested in [335] that the approach
presented in the paper can be improved with other well-known ideas such as prioritized
sweeping [343]. Asynchronous methods that use multiple agents in order to perform the
learning are discussed in [337]. The use of multiple asynchronous threads avoids the problem

9.10. BIBLIOGRAPHIC NOTES 415

of correlation within a thread, which improves convergence to higher-quality solutions. This
type of asynchronous approach is often used in lieu of the experience replay technique.
Furthermore, an n-step technique, which uses a lookahead of n steps (instead of 1 step) to
predict the Q-values, was proposed in the same work.

One drawback of Q-learning is that it is known to overestimate the values of ac-
tions under certain circumstances. An improvement over Q-learning, referred to as double
Q-learning, was proposed in [174]. In the original form of Q-learning, the same values are
used to both select and evaluate an action. In the case of double Q-learning, these values are
decoupled, and therefore one is now learning two separate values for selection and evaluation.
This change tends to make the approach less sensitive to the overestimation problem. The
use of prioritized experience replay to improve the performance of reinforcement learning
algorithms under sparse data is discussed in [428]. Such an approach significantly improves
the performance of the system on Atari games.

In recent years, policy gradients have become more popular than Q-learning methods. An
interesting and simplified description of this approach for the Atari game of Pong is provided
in [605]. Early methods for using finite difference methods for policy gradients are discussed
in [142, 355]. Likelihood methods for policy gradients were pioneered by the REINFORCE
algorithm [533]. A number of analytical results on this class of algorithms are provided
in [484]. Policy gradients have been used in for learning in the game of Go [445], although
the overall approach combines a number of different elements. Natural policy gradients were
proposed in [230]. One such method [432] has been shown to perform well at learning lo-
comotion in robots. The use of generalized advantage estimation (GAE) with continuous
rewards is discussed in [433]. The approach in [432, 433] uses natural policy gradients for op-
timization, and the approach is referred to as trust region policy optimization (TRPO). The
basic idea is that bad steps in learning are penalized more severely in reinforcement learning
(than supervised learning) because the quality of the collected data worsens. Therefore, the
TRPO method prefers second-order methods with conjugate gradients (see Chapter 3), in
which the updates tend to stay within good regions of trust. Surveys are also available on
specific types of reinforcement learning methods like actor-critic methods [162].

Monte Carlo tree search was proposed in [246]. Subsequently, it was used in the game
of Go [135, 346, 445, 446]. A survey on these methods may be found in [52]. Later ver-
sions of AlphaGo dispensed with the supervised portions of learning, adapted to chess and
shogi, and performed better with zero initial knowledge [446, 447]. The AlphaGo approach
combines several ideas, including the use of policy networks, Monte Carlo tree search, and
convolutional neural networks. The use of convolutional neural networks for playing the
game of Go has been explored in [73, 307, 481]. Many of these methods use supervised
learning in order to mimic human experts at Go. Some TD-learning methods for chess,
such as NeuroChess [496], KnightCap [22], and Giraffe [259] have been explored, but were
not as successful as conventional engines. The pairing of convolutional neural networks and
reinforcement learning for spatial games seems to be a new (and successful) recipe that dis-
tinguishes Alpha Zero from these methods. Several methods for training self-learning robots
are presented in [286, 432, 433]. An overview of deep reinforcement learning methods for
dialog generation is provided in [291]. Conversation models that use only supervised learn-
ing with recurrent networks are discussed in [440, 508]. The negotiation chatbot discussed
in this chapter is described in [290]. The description of self-driving cars is based on [46, 47].
An MIT course on self-driving cars is available at [612]. Reinforcement learning has also
been used to generate structured queries from natural language [563], or for learning neural
architectures in various tasks [19, 569].

416 CHAPTER 9. DEEP REINFORCEMENT LEARNING

Reinforcement learning can also improve deep learning models. This is achieved with the
notion of attention [338, 540], in which reinforcement learning is used to focus on selective
parts of the data. The idea is that large parts of the data are often irrelevant for learning, and
learning how to focus on selective portions of the data can significantly improve results. The
selection of relevant portions of the data is achieved with reinforcement learning. Attention
mechanisms are discussed in Section 10.2 of Chapter 10. In this sense, reinforcement learning
is one of the topics in machine learning that is more tightly integrated with deep learning
than seems at first sight.

9.10.1 Software Resources and Testbeds

Although significant progress has been made in designing reinforcement learning algorithms
in recent years, commercial software using these methods is still relatively limited. Never-
theless, numerous software testbeds are available that can be used in order to test various
algorithms. Perhaps the best source for high-quality reinforcement learning baselines is avail-
able from OpenAI [623]. TensorFlow [624] and Keras [625] implementations of reinforcement
learning algorithms are also available.

Most frameworks for testing and development of reinforcement learning algorithms
are specialized to specific types of reinforcement learning scenarios. Some frameworks are
lightweight, and can be used for quick testing. For example, the ELF framework [498],
created by Facebook, is designed for real-time strategy games, and is an open-source and
light-weight reinforcement learning framework. The OpenAI Gym [620] provides environ-
ments for development of reinforcement learning algorithms for Atari games and simulated
robots. The OpenAI Universe [621] can be used to turn reinforcement learning programs
into Gym environments. For example, self-driving car simulations have been added to this
environment. An Arcade learning environment for developing agents in the context of Atari
games is described in [25]. The MuJoCo simulator [609], which stands for Multi-Joint dy-
namics with Contact, is a physics engine, and is designed for robotics simulations. An
application with the use of MuJoCo is described in this chapter. ParlAI [622] is an open-
source framework for dialog research by Facebook, and is implemented in Python. Baidu has
created an open-source platform of its self-driving car project, referred to as Apollo [626].

9.11 Exercises

1. The chapter gives a proof of the likelihood ratio trick (cf. Equation 9.24) for the case
in which the action a is discrete. Generalize this result to continuous-valued actions.

2. Throughout this chapter, a neural network, referred to as the policy network, has been
used in order to implement the policy gradient. Discuss the importance of the choice
of network architecture in different settings.

3. You have two slot machines, each of which has an array of 100 lights. The probability
distribution of the reward from playing each machine is an unknown (and possibly
machine-specific) function of the pattern of lights that are currently lit up. Playing a
slot machine changes its light pattern in some well-defined but unknown way. Discuss
why this problem is more difficult than the multi-armed bandit problem. Design a
deep learning solution to optimally choose machines in each trial that will maximize
the average reward per trial at steady-state.

9.11. EXERCISES 417

4. Consider the well-known game of rock-paper-scissors. Human players often try to use
the history of previous moves to guess the next move. Would you use a Q-learning or
a policy-based method to learn to play this game? Why? Now consider a situation in
which a human player samples one of the three moves with a probability that is an
unknown function of the history of 10 previous moves of each side. Propose a deep
learning method that is designed to play with such an opponent. Would a well-designed
deep learning method have an advantage over this human player? What policy should
a human player use to ensure probabilistic parity with a deep learning opponent?

5. Consider the game of tic-tac-toe in which a reward drawn from {−1, 0,+1} is given
at the end of the game. Suppose you learn the values of all states (assuming optimal
play from both sides). Discuss why states in non-terminal positions will have non-zero
value. What does this tell you about credit-assignment of intermediate moves to the
reward value received at the end?

6. Write a Q-learning implementation that learns the value of each state-action pair for
a game of tic-tac-toe by repeatedly playing against human opponents. No function
approximators are used and therefore the entire table of state-action pairs is learned
using Equation 9.5. Assume that you can initialize each Q-value to 0 in the table.

7. The two-step TD-error is defined as follows:

δ
(2)
t = rt + γrt+1 + γ2V (st+2)− V (st)

(a) Propose a TD-learning algorithm for the 2-step case.

(b) Propose an on-policy n-step learning algorithm like SARSA. Show that the up-
date is truncated variant of Equation 9.16 after setting λ = 1. What happens for
the case when n = ∞?

(c) Propose an off-policy n-step learning algorithm like Q-learning and discuss its
advantages/disadvantages with respect to (b).

Chapter 10

Advanced Topics in Deep Learning

“Instead of trying to produce a program to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then subjected
to an appropriate course of education one would obtain the adult brain.”—Alan
Turing in Computing Machinery and Intelligence

10.1 Introduction

This book will cover several advanced topics in deep learning, which either do not naturally
fit within the focus of the previous chapters, or because their level of complexity requires
separate treatment. The topics discussed in this chapter include the following:

1. Attention models: Humans do not actively use all the information available to them
from the environment at any given time. Rather, they focus on specific portions of
the data that are relevant to the task at hand. This biological notion is referred to as
attention. A similar principle can also be applied to artificial intelligence applications.
Models with attention use reinforcement learning (or other methods) to focus on
smaller portions of the data that are relevant to the task at hand. Such methods have
recently been leveraged for improved performance.

2. Models with selective access to internal memory: These models are closely related to
attention models, although the difference is that the attention is focused primarily
on specific parts of the stored data. A helpful analogy is to think of how memory is
accessed by humans to perform specific tasks. Humans have a huge repository of data
within the memory cells of their brains. However, at any given point, only a small part
of it is accessed, which is relevant to the task at hand. Similarly, modern computers
have significant amounts of memory, but computer programs are designed to access it
in a selective and controlled way with the use of variables, which are indirect addressing
mechanisms. All neural networks have memory in the form of hidden states. However,

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0 10

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94463-0_10&domain=pdf
https://doi.org/10.1007/978-3-319-94463-0_10

420 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

it is so tightly integrated with the computations that it is hard to separate data
access from computations. By controlling reads and writes to the internal memory of
the neural network more selectively and explicitly introducing the notion of addressing
mechanisms, the resulting network performs computations that reflect the human style
of programming more closely. Often such networks have better generalization power
than more traditional neural networks when performing predictions on out-of-sample
data. One can also view selective memory access as applying a form of attention
internally to the memory of a neural network. The resulting architecture is referred
to as a memory network or neural Turing machine.

3. Generative adversarial networks: Generative adversarial networks are designed to cre-
ate generative models of data from samples. These networks can create realistic looking
samples from data by using two adversarial networks. One network generates synthetic
samples (generator), and the other (which is a discriminator) classifies a mixture of
original instances and generated samples as either real or synthetic. An adversarial
game results in an improved generator over time, until the discriminator is no longer
able to distinguish between real and fake samples. Furthermore, by conditioning on a
specific type of context (e.g., image caption), it is also possible to guide the creation
of specific types of desired samples.

Attention mechanisms often have to make hard decisions about specific parts of the data
to attend to. One can view this choice in a similar way to the choices faced by a reinforce-
ment learning algorithm. Some of the methods used for building attention-based models are
heavily based on reinforcement learning, although others are not. Therefore, it is strongly
recommended to study the materials in Chapter 9 before reading this chapter.

Neural Turing machines are related to a closely related class of architectures referred
to as memory networks. Recently, they have shown promise in building question-answering
systems, although the results are still quite primitive. The construction of a neural Turing
machine can be considered a gateway to many capabilities in artificial intelligence that have
not yet been fully realized. As is common in the historical experience with neural networks,
more data and computational power will play the prominent role in bringing these promises
to reality.

Most of this book discusses different types of feed-forward networks, which are based
on the notion of changing weights based on errors. A completely different way of learning
is that of competitive learning, in which the neurons compete for the right to respond to a
subset of the input data. The weights are modified based on the winner of this competition.
This approach is a variant of Hebbian learning discussed in Chapter 6, and is useful for un-
supervised learning applications like clustering, dimensionality reduction and compression.
This paradigm will also be discussed in this chapter.

Chapter Organization

This chapter is organized as follows. The next section discusses attention mechanisms in
deep learning. Some of these methods are closely related to deep learning models. The aug-
mentation of neural networks with external memory is discussed in Section 10.3. Generative
adversarial networks are discussed in Section 10.4. Competitive learning methods are dis-
cussed in Section 10.5. The limitations of neural networks are presented in Section 10.6. A
summary is presented in Section 10.7.

10.2. ATTENTION MECHANISMS 421

FOVEA

MACULA

RETINA (NOT DRAWN TO SCALE)

MAXIMUM DENSITY

OF RECEPTORS

LEAST DENSITY

OF RECEPTORS

Figure 10.1: Resolutions in different regions of the eye. Most of what we focus on is captured
by the macula.

10.2 Attention Mechanisms

Human beings rarely use all the available sensory inputs in order to accomplish specific
tasks. Consider the problem of finding an address defined by a specific house number on
a street. Therefore, an important component of the task is to identify the number written
either on the door or the mailbox of a house. In this process, the retina often has an
image of a broader scene, although one rarely focuses on the full image. The retina has a
small portion, referred to as the macula with a central fovea, which has an extremely high
resolution compared to the remainder of the eye. This region has a high concentration of
color-sensitive cones, whereas most of the non-central portions of the eye have relatively low
resolution with a predominance of color-insensitive rods. The different regions of the eye are
shown in Figure 10.1. When reading a street number, the fovea fixates on the number, and
its image falls on a portion of the retina that corresponds to the macula (and especially the
fovea). Although one is aware of the other objects outside this central field of vision, it is
virtually impossible to use images in the peripheral region to perform detail-oriented tasks.
For example, it is very difficult to read letters projected on peripheral portions of the retina.
The foveal region is a tiny fraction of the full retina, and it has a diameter of only 1.5mm.
The eye effectively transmits a high-resolution version of less than 0.5% of the surface area
of the image that falls on the full retina. This approach is biologically advantageous, because
only a carefully selected part of the image is transmitted in high resolution, and it reduces
the internal processing required for the specific task at hand. Although the structure of the
eye makes it particularly easy to understand the notion of selective attention towards visual
inputs, this selectivity is not restricted only to visual aspects. Most of the other senses of
the human, such as hearing or smells, are often highly focussed depending on the situation
at hand. Correspondingly, we will first discuss the notion of attention in the context of
computer vision, and then discuss other domains like text.

An interesting application of attention comes from the images captured by Google
Streetview, which is a system created by Google to enable Web-based retrieval of images of
various streets in many countries. This kind of retrieval requires a way to connect houses
with their street numbers. Although one might record the street number during image cap-
ture, this information needs to be distilled from the image. Given a large image of the frontal

422 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

part of a house, is there a way of systematically identifying the numbers corresponding to
the street address? The key here is to be able to systematically focus on small parts of the
image to find what one is looking for. The main challenge here is that there is no way of
identifying the relevant portion of the image with the information available up front. There-
fore, an iterative approach is required in searching specific parts of the image with the use
of knowledge gained from previous iterations. Here, it is useful to draw inspirations from
how biological organisms work. Biological organisms draw quick visual cues from whatever
they are focusing on in order to identify where to next look to get what they want. For
example, if we first focus on the door knob by chance, then we know from experience (i.e.,
our trained neurons tell us) to look to its upper left or right to find the street number. This
type of iterative process sounds a lot like the reinforcement learning methods discussed in
the previous chapter, where one iteratively obtains cues from previous steps in order to
learn what to do to earn rewards (i.e., accomplish a task like finding the street number). As
we will see later, many applications of attention are paired with reinforcement learning.

The notion of attention is also well suited to natural language processing in which the
information that we are looking for is hidden in a long segment of text. This problem
arises frequently in applications like machine translation and question-answering systems
where the entire sentence needs to be coded up as a fixed length vector by the recurrent
neural network (cf. Section 7.7.2 of Chapter 7). As a result, the recurrent neural network
is often unable to focus on the appropriate portions of the source sentence for translation
to the target sentence. In such cases, it is advantageous to align the target sentence with
appropriate portions of the source sentence during translation. In such cases, attention
mechanisms are useful in isolating the relevant parts of the source sentence while creating
a specific part of the target sentence. It is noteworthy that attention mechanisms need
not always be couched in the framework of reinforcement learning. Indeed, most of the
attention mechanisms in natural language models do not use reinforcement learning, but
they use attention to weight specific parts of the input in a soft way.

10.2.1 Recurrent Models of Visual Attention

The work on recurrent models of visual attention [338] uses reinforcement learning to focus
on important parts of an image. The idea is to use a (relatively simple) neural network in
which only the resolution of specific portions of the image centered at a particular location
is high. This location can change with time, as one learns more about the relevant portions
of the image to explore over the course of time. Selecting a particular location in a given
time-stamp is referred to as a glimpse. A recurrent neural network is used as the controller
to identify the precise location in each time-stamp; this choice is based on the feedback from
the glimpse in the previous time-stamp. The work in [338] shows that using a simple neural
network (called a “glimpse network”) to process the image together with the reinforcement-
based training can outperform a convolutional neural network for classification.

We consider a dynamic setting in which the image may be partially observable, and the
portions that are observable might vary with time-stamp t. Therefore, this setting is quite
general, although we can obviously use it for more specialized settings in which the image
Xt is fixed in time. The overall architecture can be described in a modular way by treating
specific parts of the neural network as black-boxes. These modular portions are described
below:

1. Glimpse sensor: Given an image with representation Xt, a glimpse sensor creates a
retina-like representation of the image. The glimpse sensor is conceptually assumed

10.2. ATTENTION MECHANISMS 423

GLIMPSE

SENSOR

GLIMPSE NETWORK

lt-1

lt-1

gt

ρ(Xt, lt-1)

ρ(Xt, lt-1)

ht-1

lt-1

lt
at

gt

ht

GLIMPSE

NETWORK

HIDDEN

LAYER

OUTPUT

LAYER
OUTPUT

LAYER

lt

lt+1at+1

gt+1

ht+1

GLIMPSE

NETWORK

HIDDEN

LAYER

OUTPUT

LAYER

OUTPUT

LAYER

GLIMPSE SENSOR

Figure 10.2: The recurrent architecture for leveraging visual attention

to not have full access to the image (because of bandwidth constraints), and is able
to access only a small portion of the image in high-resolution, which is centered at
lt−1. This is similar to how the eye accesses an image in real life. The resolution of
a particular location in the image reduces with distance from the location lt−1. The
reduced representation of the image is denoted by ρ(Xt, lt−1). The glimpse sensor,
which is shown in the upper left corner of Figure 10.2, is a part of a larger glimpse
network. This network is discussed below.

2. Glimpse network: The glimpse network contains the glimpse sensor and encodes both
the glimpse location lt−1 and the glimpse representation ρ(Xt, lt−1) into hidden spaces
using linear layers. Subsequently, the two are combined into a single hidden represen-
tation using another linear layer. The resulting output gt is the input into the tth
time-stamp of the hidden layer in the recurrent neural network. The glimpse network
is shown in the lower-right corner of Figure 10.2.

3. Recurrent neural network: The recurrent neural network is the main network that
is creating the action-driven outputs in each time-stamp (for earning rewards). The
recurrent neural network includes the glimpse network, and therefore it includes the
glimpse sensor as well (since the glimpse sensor is a part of the glimpse network).
This output action of the network at time-stamp t is denoted by at, and rewards
are associated with the action. In the simplest case, the reward might be the class
label of the object or a numerical digit in the Google Streetview example. It also
outputs a location lt in the image for the next time-stamp, on which the glimpse
network should focus. The output π(at) is implemented as a probability of action at.
This probability is implemented with the softmax function, as is common in policy
networks (cf. Figure 9.6 of Chapter 9). The training of the recurrent network is done
using the objective function of the REINFORCE framework to maximize the expected
reward over time. The gain for each action is obtained by multiplying log(π(at)) with
the advantage of that action (cf. Section 9.5.2 of Chapter 9). Therefore, the overall
approach is a reinforcement learning method in which the attention locations and
actionable outputs are learned simultaneously. It is noteworthy that the history of
actions of this recurrent network is encoded within the hidden states ht. The overall

424 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

architecture of the neural network is illustrated on the right-hand side of Figure 10.2.
Note that the glimpse network is included as a part of this overall architecture, because
the recurrent network utilizes a glimpse of the image (or current state of scene) in
order to perform the computations in each time-stamp.

Note that the use of a recurrent neural network architecture is useful but not necessary in
these contexts.

Reinforcement Learning

This approach is couched within the framework of reinforcement learning, which allows it
to be used for any type of visual reinforcement learning task (e.g., robot selecting actions
to achieve a particular goal) instead of image recognition or classification. Nevertheless,
supervised learning is a simple special case of this approach.

The actions at correspond to choosing the choosing the class label with the use of a
softmax prediction. The reward rt in the tth time-stamp might be 1 if the classification is
correct after t time-stamps of that roll out, and 0, otherwise. The overall reward Rt at the tth
time-stamp is given by the sum of all discounted rewards over future time stamps. However,
this action can vary with the application at hand. For example, in an image captioning
application, the action might correspond to choosing the next word of the caption.

The training of this setting proceeds in a similar manner to the approach discussed in
Section 9.5.2 of Chapter 9. The gradient of the expected reward at time-stamp t is given
by the following:

∇E[Rt] = Rt∇log(π(at)) (10.1)

Backpropagation is performed in the neural network using this gradient and policy roll-
outs. In practice, one will have multiple rollouts, each of which contains multiple actions.
Therefore, one will have to add the gradients with respect to all these actions (or a mini-
batch of these actions) in order to obtain the final direction of ascent. As is common in policy
gradient methods, a baseline is subtracted from the rewards to reduce variance. Since a class
label is output at each time-stamp, the accuracy will improve as more glimpses are used.
The approach performs quite well using between six and eight glimpses on various types of
data.

10.2.1.1 Application to Image Captioning

In this section, we will discuss the application of the visual attention approach (discussed in
the previous section) to the problem of image captioning. The problem of image captioning
is discussed in Section 7.7.1 of Chapter 7. In this approach, a single feature representation
v of the entire image is input to the first time-stamp of a recurrent neural network. When
a feature representation of the entire image is input, it is only provided as input at the
first time-stamp when the caption begins to be generated. However, when attention is used,
we want to focus on the portion of image that corresponds to the word being generated.
Therefore, it makes sense to provide different attention-centric inputs at different time-
stamps. For example, consider an image with the following caption:

“Bird flying during sunset.”

The attention should be on the location in the image corresponding to the wings of the
bird while generating the word “flying,” and the attention should be on the setting sun,
while generating the word “sunset.” In such a case, each time-stamp of the recurrent neural

10.2. ATTENTION MECHANISMS 425

network should receive a representation of the image in which the attention is on a specific
location. Furthermore, as discussed in the previous section, the values of these locations are
also generated by the recurrent network in the previous time-stamp.

LSTM

STAIRCASE

AND

WALL

ON

A

HILL

1. INPUT

IMAGE

2. CONVOLUTIONAL

FEATURE EXTRACTION 3. RNN WITH ATTENTION 4. CAPTION

14X14 FEATURE MAP

Figure 10.3: Visual attention in image captioning

Note that this approach can already be implemented with the architecture shown in
Figure 10.2 by predicting one word of the caption in each time-stamp (as the action) together
with a location lt in the image, which will be the focus of attention in the next time-
stamp. The work in [540] is an adaptation of this idea, but it uses several modifications to
handle the higher complexity of the problem. First, the glimpse network does use a more
sophisticated convolutional architecture to create a 14×14 feature map. This architecture is
illustrated in Figure 10.3. Instead of using a glimpse sensor to produce the modified version
of the image in each time-stamp, the work in [540] starts with L different preprocessed
variants on the image. These preprocessed variants are centered at different locations in the
image, and therefore the attention mechanism is restricted to selecting from one of these
locations. Then, instead of producing a location lt in the (t− 1)th time-stamp, it produces
a probability vector αt of length L indicating the relevance of each of the L locations
for which representations were preprocessed in the convolutional neural network. In hard
attention models, one of the L locations is sampled by using the probability vector αt, and
the preprocessed representation of that location is provided as input into the hidden state
ht of the recurrent network at the next time-stamp. In other words, the glimpse network
in the classification application is replaced with this sampling mechanism. In soft attention
models, the representation models of all L locations are averaged by using the probability
vector αt as weighting. This averaged representation is provided as input to the hidden state
at time-stamp t. For soft attention models, straightforward backpropagation is used for
training, whereas for hard attention models, the REINFORCE algorithm (cf. Section 9.5.2
of Chapter 9) is used. The reader is referred to [540] for details, where both these types of
methods are discussed.

10.2.2 Attention Mechanisms for Machine Translation

As discussed in Section 7.7.2 of Chapter 7, recurrent neural networks (and specifically
their long short-term memory (LSTM) implementations) are used frequently for machine
translation. In the following, we use generalized notations corresponding to any type of
recurrent neural network, although the LSTM is almost always the method of choice in
these settings. For simplicity, we use a single-layer network in our exposition (as well as all
the illustrative figures of the neural architectures). In practice, multiple layers are used, and
it is relatively easy to generalize the simplified discussion to the multi-layer case. There are
several ways in which attention can be incorporated in neural machine translation. Here,

426 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

we focus on a method proposed in Luong et al. [302], which is an improvement over the
original mechanism proposed in Bahdanau et al. [18].

We start with the architecture discussed in Section 7.7.2 of Chapter 7. For ease in
discussion, we replicate the neural architecture of that section in Figure 10.4(a). Note that
there are two recurrent neural networks, of which one is tasked with the encoding of the
source sentence into a fixed length representation, and the other is tasked with decoding this
representation into a target sentence. This is, therefore, a straightforward case of sequence-
to-sequence learning, which is used for neural machine translation. The hidden states of the

source and target networks are denoted by h
(1)
t and h

(2)
t , respectively, where h

(1)
t corresponds

to the hidden state of the tth word in the source sentence, and h
(2)
t corresponds to the hidden

state of the tth word in the target sentence. These notations are borrowed from Section 7.7.2
of Chapter 7.

In attention-based methods, the hidden states h
(2)
t are transformed to enhanced states

H
(2)
t with some additional processing from an attention layer. The goal of the attention

layer is to incorporate context from the source hidden states into the target hidden states
to create a new and enhanced set of target hidden states.

In order to perform attention-based processing, the goal is to find a source representation

that is close to the current target hidden state h
(2)
t being processed. This is achieved by

using the similarity-weighted average of the source vectors to create a context vector ct:

ct =

∑Ts

j=1 exp(h
(1)

j · h(2)

t)h
(1)

j

∑Ts

j=1 exp(h
(1)

j · h(2)

t)
(10.2)

Here, Ts is the length of the source sentence. This particular way of creating the context
vector is the most simplified one among all the different versions discussed in [18, 302];
however, there are several other alternatives, some of which are parameterized. One way of
viewing this weighting is with the notion of an attention variable a(t, s), which indicates
the importance of source word s to target word t:

a(t, s) =
exp(h

(1)

s · h(2)

t)
∑Ts

j=1 exp(h
(1)

j · h(2)

t)
(10.3)

We refer to the vector [a(t, 1), a(t, 2), . . . a(t, Ts)] as the attention vector at, and it is specific
to the target word t. This vector can be viewed as a set of probabilistic weights summing
to 1, and its length depends on the source sentence length Ts. It is not difficult to see
that Equation 10.2 is created as an attention-weighted sum of the source hidden vectors,
where the attention weight of target word t towards source word s is a(t, s). In other words,
Equation 10.2 can be rewritten as follows:

ct =

Ts∑

j=1

a(t, j)h
(1)

j (10.4)

In essence, this approach identifies a contextual representation of the source hidden states,
which is most relevant to the current target hidden state being considered. Relevance is
defined by using the dot product similarity between source and target hidden states, and is

captured in the attention vector. Therefore, we create a new target hidden state H
(2)
t that

combines the information in the context and the original target hidden state as follows:

H
(2)

t = tanh

(

Wc

[
ct

h
2

t

])

(10.5)

10.2. ATTENTION MECHANISMS 427

Once this new hidden representation H
(2)

t is created, it is used in lieu of the original hidden

representation h
(2)

t for the final prediction. The overall architecture of the attention-sensitive
system is given in Figure 10.4(b). Note the enhancements from Figure 10.4(a) with the
addition of an attention mechanism. This model is referred to as the global attention model
in [302]. This model is a soft attention model, because one is weighting all the source words
with a probabilistic weight, and hard judgements are not made about which word is the
most relevant one to a target word. The original work in [302] discusses another local model,
which makes hard judgements about the relevance of target words. The reader is referred
to [302] for details of this model.

Refinements

Several refinements can improve the basic attention model. First, the attention vector at

is computed by exponentiating the raw dot products between h
(1)

t and h
(2)

s , as shown in
Equation 10.3. These dot products are also referred to as scores. In reality, there is no
reason that similar positions in the source and target sentences should have similar hidden
states. In fact, the source and target recurrent networks do not even need to use hidden
representations of the same dimensionality (even though this is often done in practice).
Nevertheless, it was shown in [302] that dot-product based similarity scoring tends to do
very well in global attention models, and was the best option compared to parameterized
alternatives. It is possible that the good performance of this simple approach might be a
result of its regularizing effect on the model. The parameterized alternatives for computing
the similarity performed better in local models (i.e., hard attention), which are not discussed
in detail here.

Most of these alternative models for computing the similarity use parameters to regulate
the computation, which provides some additional flexibility in relating the source and target
positions. The different options for computing the score are as follows:

Score(t, s) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h
(1)

s · h(2)

t Dot product

(h
(2)

t)TWah
(1)

s General: Parameter matrix Wa

vTa tanh

(

Wa

[

h
(1)

s

h
2

t

])

Concat: Parameter matrix Wa and vector va

(10.6)
The first of these options is identical to the one discussed in the previous section according
to Equation 10.3. The other two models are referred to as general and concat, respectively,
as annotated above. Both these options are parameterized with the use of weight vectors,
and the corresponding parameters are also annotated above. After the similarity scores have
been computed, the attention values can be computed in an analogous way to the case of
the dot-product similarity:

a(t, s) =
exp(Score(t, s))

∑Ts

j=1 exp(Score(t, j))
(10.7)

428 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

These attention values are used in the same way as in the case of dot product similarity.
The parameter matrices Wa and va need to be learned during training. The concat model
was proposed in earlier work [18], whereas the general model seemed to do well in the case
of hard attention.

I don’t understand Spanish

y1 y2
y3 y4

<EOS> No en�endo español

No <EOS>en�endo español

RNN1 RNN2

RNN1 LEARNS REPRESENTATION

OF ENGLISH SENTENCE FOR

MACHINE TRANSLATION

(CONDITIONED SPANISH LANGUAGE MODELING)

Wes

(a) Machine translation without attention

I don’t understand Spanish <EOS> No en�endo español

y1 y2
y3 y4

No <EOS>en�endo español

Wes

c2

a2

ATTENTION LAYER

(b) Machine translation with attention

Figure 10.4: The neural architecture in (a) is the same as the one illustrated in Figure 7.10
of Chapter 7. An extra attention layer has been added to (b).

There are several differences of this model [302] from an earlier model presented in
Bahdanau et al. [18]. We have chosen this model because it is simpler and it illustrates
the basic concepts in a straightforward way. Furthermore, it also seems to provide better
performance according to the experimental results presented in [302]. There are also some
differences in the choice of neural network architecture. The work in Luong et al. used a

10.3. NEURAL NETWORKS WITH EXTERNAL MEMORY 429

uni-directional recurrent neural network, whereas that in Bahdanau et al. emphasizes the
use of a bidirectional recurrent neural network.

Unlike the image captioning application of the previous section, the machine translation
approach is a soft attention model. The hard attention setting seems to be inherently
designed for reinforcement learning, whereas the soft attention setting is differentiable,
and can be used with backpropagation. The work in [302] also proposes a local attention
mechanism, which focuses on a small window of context. Such an approach shares some
similarities with a hard mechanism for attention (like focusing on a small region of an image
as discussed in the previous section). However, it is not completely a hard approach either
because one focuses on a smaller portion of the sentence using the importance weighting
generated by the attention mechanism. Such an approach is able to implement the local
mechanism without incurring the training challenges of reinforcement learning.

10.3 Neural Networks with External Memory

In recent years, several related architectures have been proposed that augment neural net-
works with persistent memory in which the notion of memory is clearly separated from
the computations, and one can control the ways in which computations selectively access
and modify particular memory locations. The LSTM can be considered to have persistent
memory, although it does not clearly separate the memory from the computations. This is
because the computations in a neural network are tightly integrated with the values in the
hidden states, which serve the role of storing the intermediate results of the computations.

Neural Turing machines are neural networks with external memory. The base neural
network can read or write to the external memory and therefore plays the role of a controller
in guiding the computation. With the exception of LSTMs, most neural networks do not have
the concept of persistent memory over long time scales. In fact, the notions of computation
and memory are not clearly separated in traditional neural networks (including LSTMs).
The ability to manipulate persistent memory, when combined with a clear separation of
memory from computations, leads to a programmable computer that can simulate algorithms
from examples of the input and output. This principle has led to a number of related
architectures such as neural Turing machines [158], differentiable neural computers [159],
and memory networks [528].

Why is it useful to learn from examples of the input and output? Almost all general-
purpose AI is based on the assumption of being able to simulate biological behaviors in
which we only have examples of the input (e.g., sensory inputs) and outputs (e.g., actions),
without a crisp definition of the algorithm/function that was actually computed by that set
of behaviors. In order to understand the difficulty in learning from example, we will first
begin with an example of a sorting application. Although the definitions and algorithms for
sorting are both well-known and crisply defined, we explore a fantasy setting in which we
do not have access to these definitions and algorithms. In other words, the algorithm starts
with a setting in which it has no idea of what sorting looks like. It only has examples of
inputs and their sorted outputs.

430 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

3 2 1 4

1 2 3 4

LOCATION ID

VALUE AT LOCATION ID 1

(a) Output screen

NEURAL

NETWORK

OBSERVED STATE

(CURRENT STATE

OF SEQUENCE)

PROBABILITY OF SWAP(1, 3)

S
O

F
T

M
A

X

PROBABILITY OF SWAP(1, 4)

PROBABILITY OF SWAP(2, 3)

PROBABILITY OF SWAP(2, 4)

PROBABILITY OF SWAP(3, 4)

PROBABILILTY OF SWAP((1,2)

PERFORM SAMPLED SWAP

(b) Policy network

Figure 10.5: The output screen and policy network for learning the fantasy game of sorting

10.3.1 A Fantasy Video Game: Sorting by Example

Although it is a simple matter to sort a set of numbers using any known sorting algorithm
(e.g., quicksort), the problem becomes more difficult if we are not told that the function
of the algorithm is to sort the numbers. Rather, we are only given examples of pairs of
scrambled inputs and sorted outputs, and we have to automatically learn sequences of
actions for any given input, so that the output reflects what we have learned from the
examples. The goal is, therefore, to learn to sort by example using a specific set of pre-
defined actions. This is a generalized view of machine learning where our inputs and outputs
can be in almost any format (e.g., pixels, sounds), and goal is to learn to transform from
input to output by a sequence of actions. These actions are the elementary steps that we are
allowed to perform in our algorithm. We can already see that this action-driven approach
is closely related to the reinforcement learning methodologies discussed in Chapter 9.

For simplicity, consider the case in which we want to sort only sequences of four numbers,
and therefore we have four positions on our “video game screen” containing the current
status of the original sequence of numbers. The screen of the fantasy video game is shown
in Figure 10.5(a). There are 6 possible actions that the video game player can perform,
and each action is of the form SWAP(i, j), which swaps the content of locations i and j.
Since there are four possible values of each of i and j, the total number of possible actions
is given by

(
4
2

)
= 6. The objective of the video game is to sort the numbers by using as

few swaps as possible. We want to construct an algorithm that plays this video game by
choosing swaps judiciously. Furthermore, the machine learning algorithm is not seeded with
the knowledge that the outputs are supposed to be sorted, and it only has examples of inputs
and outputs in order to build a model that (ideally) learns a policy to convert inputs into
their sorted versions. Further, the video game player is not shown the input-output pairs
but only incentivised with rewards when they make “good swaps” that progress towards a
proper sort.

10.3. NEURAL NETWORKS WITH EXTERNAL MEMORY 431

This setting is almost identical to the Atari video game setting discussed in Chapter 9.
For example, we can use a policy network in which the current sequence of four numbers
as the input to the neural network and the output is a probability of each of the 6 possible
actions. This architecture is shown in Figure 10.5(b). It is instructive to compare this
architecture with the policy network in Figure 9.6 of Chapter 9. The advantage for each
action can be modeled in a variety of heuristic ways. For example, a naive approach would
be to roll out the policy for T swapping moves and set the reward to +1, if we are able to
obtain the correct output by then, and to −1, otherwise. Using smaller values of T would
tend to favor speed over accuracy. One can also define more refined reward functions in
which the reward for a sequence of moves is defined by how much closer one gets to the
known output.

Consider a situation in which the probability of action a = SWAP(i, j) is π(a) (as output
by the softmax function of the neural network) and the advantage is F (a). Then, in policy
gradient methods, we set up an objective function Ja, which is the expected advantage
of action a. As discussed in Section 9.5 of Chapter 9, the gradient of this advantage with
respect to the parameters of the policy network is given by the following:

∇Ja = F (a) · ∇log(π(a)) (10.8)

This gradient is added up over a minibatch of actions from the various rollouts, and used to
update the weights of the neural network. Here, it is interesting to note that reinforcement
learning helps us in implementing a policy for an algorithm that learns from examples.

10.3.1.1 Implementing Swaps with Memory Operations

The above video game can also be implemented by a neural network in which the allowed
operations are memory read/writes and we want to sort the sequence in as few memory
read/writes as possible. For example, a candidate solution to this problem would be one in
which the state of the sequence is maintained in an external memory with additional space
to store temporary variables for swaps. As discussed below, swaps can be implemented easily
with memory read/writes. A recurrent neural network can be used to copy the states from
one time-stamp to the next. The operation SWAP(i, j) can be implemented by first reading
locations i and j from memory and storing them in temporary registers. The register for i can
then be written to the location of j in memory, and that for j can be written to location for
i. Therefore, a sequence of memory read-writes can be used to implement swaps. In other
words, we could also implement a policy for sorting by training a “controller” recurrent
network that decides which locations of memory to read from and write to. However, if we
create a generalized architecture with memory-based operations, the controller might learn
a more efficient policy than simply implementing swaps. Here, it is important to understand
that it is useful to have some form of persistent memory that stores the current state of
the sorted sequence. The states of a neural network, including a (vanilla) recurrent neural
network, are simply too transient to store this type of information.

Greater memory availability increases the power and sophistication of the architecture.
With smaller memory availability, the policy network might learn only a simple O(n2)
algorithm using swaps. On the other hand, with larger memory availability, the policy
network would be able to use memory reads and writes to synthesize a wider range of
operations, and it might be able to learn a much faster sorting algorithm. After all, a
reward function that credits a policy for getting the correct sort in T moves would tend to
favor polices with fewer moves.

432 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

EXTERNAL INPUT EXTERNAL OUTPUT

CONTROLLER

READ HEADS WRITE HEADS

MEMORY

Figure 10.6: The neural Turing machine

10.3.2 Neural Turing Machines

A long-recognized weakness of neural networks is that they are unable to clearly separate
the internal variables (i.e., hidden states) from the computations occurring inside the net-
work, which causes the states to become transient (unlike biological or computer memory).
A neural network in which we have an external memory and the ability to read and write to
various locations in a controlled manner is very powerful, and provides a path to simulat-
ing general classes of algorithms that can be implemented on modern computers. Such an
architecture is referred to as a neural Turing machine or a differentiable neural computer. It
is referred to as a differentiable neural computer, because it learns to simulate algorithms
(which make discrete sequences of steps) with the use of continuous optimization. Con-
tinuous optimization has the advantage of being differentiable, and therefore one can use
backpropagation to learn optimized algorithmic steps on the input.

It is noteworthy that traditional neural networks also have memory in terms of their
hidden states, and in the specific case of an LSTM, some of these hidden states are designed
to be persistent. However, neural Turing machines clearly distinguish between the external
memory and the hidden states within the neural network. The hidden states within the
neural network can be viewed in a similar way to CPU registers that are used for transitory
computation, whereas the external memory is used for persistent computation. The external
memory provides the neural Turing machine to perform computations in a more similar
way to how human programmers manipulate data on modern computers. This property
often gives neural Turing machines much better generalizability in the learning process, as
compared to somewhat similar models like LSTMs. This approach also provides a path to
defining persistent data structures that are well separated from neural computations. The
inability to clearly separate the program variables from computational operations has long
been recognized as one of the key weaknesses of traditional neural networks.

The broad architecture of a neural Turing machine is shown in Figure 10.6. At the
heart of the neural Turing machine is a controller, which is implemented using some form
of a recurrent neural network (although other alternatives are possible). The recurrent
architecture is useful in order to carry over the state from one time-step to the next, as the
neural Turing machine implements any particular algorithm or policy. For example, in our
sorting game, the current state of the sequence of numbers is carried over from one step to
the next. In each time-step, it receives inputs from the environment, and writes outputs to

10.3. NEURAL NETWORKS WITH EXTERNAL MEMORY 433

the environment. Furthermore, it has an external memory to which it can read and write
with the use of reading and writing heads. The memory is structured as an N ×m matrix
in which there are N memory cells, each of which is of length m. At the tth time-stamp,
the m-dimensional vector in the ith row of the memory is denoted by M t(i).

The heads output a special weight wt(i) ∈ (0, 1) associated with each location i at
time-stamp t that controls the degree to which it reads and writes to each output location.
In other words, if the read head outputs a weight of 0.1, then it interprets anything read
from the ith memory location after scaling it with 0.1 and adds up the weighted reads over
different values of i. The weight of the write head is also defined in an analogous way for
writing, and more details are given later. Note that the weight uses the time-stamp t as a
subscript; therefore a separate set of weights is emitted at each time-stamp t. In our earlier
example of swaps, this weight is like the softmax probability of a swap in the sorting video
game, so that a discrete action is converted to a soft and differentiable value. However, one
difference is that the neural Turing machine is not defined stochastically like the policy
network of the previous section. In other words, we do not use the weight wt(i) to sample a
memory cell stochastically; rather, it defines how much we read from or erase the contents
of that cell. It is sometimes helpful to view each update as the expected amount by which a
stochastic policy would have read or updated it. In the following, we provide a more formal
description.

If the weights wt(i) have been defined, then the m-dimensional vector at location i can
be read as a weighted combination of the vectors in different memory locations:

rt =
N∑

i=1

wt(i)M t(i) (10.9)

The weights wt(i) are defined in such a way that they sum to 1 over all N memory vectors
(like probabilities):

N∑

i=1

wt(i) = 1 (10.10)

The writing is based on the principle of making changes by first erasing a portion of the
memory and then adding to it. Therefore, in the ith time-stamp, the write head emits a
weighting vector wt(i) together with length-m erase- and add-vectors et and at, respectively.
Then, the update to a cell is given by a combination of an erase and an addition. First the
erase operation is performed:

M
′
t(i) ⇐ M t−1(i)⊙ (1− wt(i)et(i))

︸ ︷︷ ︸

Partial Erase

(10.11)

Here, the ⊙ symbol indicates elementwise multiplication across the m dimensions of the ith
row of the memory matrix. Each element in the erase vector et is drawn from (0, 1). The
m-dimensional erase vector gives fine-grained control to the choice of the elements from the
m-dimensional row that can be erased. It is also possible to have multiple write heads, and
the order in which multiplication is performed using the different heads does not matter
because multiplication is both commutative and associative. Subsequently, additions can be
performed:

M t(i) = M
′
t(i) + wt(i)at

︸ ︷︷ ︸

Partial Add

(10.12)

434 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

If multiple write heads are present, then the order of the addition operations does not
matter. However, all erases must be done before all additions to ensure a consistent result
irrespective of the order of additions.

Note that the changes to the cell are extremely gentle by virtue of the fact that the
weights sum to 1. One can view the above update as having an intuitively similar effect as
stochastically picking one of the N rows of the memory (with probability wt(i)) and then
sampling individual elements (with probabilities et) to change them. However, such updates
are not differentiable (unless one chooses to parameterize them using policy-gradient tricks
from reinforcement learning). Here, we settle for a soft update, where all cells are changed
slightly, so that the differentiability of the updates is retained. Furthermore, if there are
multiple write heads, it will lead to more aggressive updates. One can also view these weights
in an analogous way to how information is selectively exchanged between the hidden states
and the memory states in an LSTM with the use of sigmoid functions to regulate the amount
read or written into each long-term memory location (cf. Chapter 7).

Weightings as Addressing Mechanisms

The weightings can be viewed in a similar way to how addressing mechanisms work. For
example, one might have chosen to sample the ith row of the memory matrix with probability
wt(i) to read or write it, which is a hard mechanism. The soft addressing mechanism of the
neural Turing machine is somewhat different in that we are reading from and writing to all
cells, but changing them by tiny amounts. So far, we have not discussed how this addressing
mechanism of setting wt(i) works. The addressing can be done either by content or by
location.

In the case of addressing by content, a vector vt of length-m, which is the key vector, is
used to weight locations based on their dot-product similarity to vt. An exponential mech-
anism is used for regulating the importance of the dot-product similarity in the weighting:

wc
t (i) =

exp(cosine(vt,M t(i)))
∑N

j=1 exp(cosine(vt ·M t(j)))
(10.13)

Note that we have added a superscript ro wc
t (i) to indicate that it is a purely content-centric

weighting mechanism. Further flexibility is obtained by using a temperature parameter
within the exponents to adjust the level of sharpness of the addressing. For example, if we
use the temperature parameter βt, the weights can be computed as follows:

wc
t (i) =

exp(βtcosine(vt,M t(i)))
∑N

j=1 exp(βtcosine(vt ·M t(j)))
(10.14)

Increasing βt makes the approach more like hard addressing, while reducing βt is like soft
addressing. If one wants to use only content-based addressing, then one can use wt(i) = wc

t (i)
for the addressing. Note that pure content-based addressing is almost like random access.
For example, if the content of a memory location M t(i) includes its location, then a key-
based retrieval is like soft random access of memory.

A second method of addressing is by using sequential addressing with respect to the
location in the previous time-stamp. This approach is referred to as location-based ad-
dressing. In location-based addressing, the value of the content weight wc

t (i) in the current
iteration, and the final weights wt−1(i) in the previous iteration are used as starting points.
First, interpolation mixes a partial level of random access into the location accessed in the
previous iteration (via the content weight), and then a shifting operation adds an element of

10.3. NEURAL NETWORKS WITH EXTERNAL MEMORY 435

sequential access. Finally, the softness of the addressing is sharpened with a temperature-like
parameter. The entire process of location-based addressing uses the following steps:

Content Weights(vt, βt) ⇒ Interpolation(gt) ⇒ Shift(st) ⇒ Sharpen(γt)

Each of these operations uses some outputs from the controller as input parameters, which
are shown above with the corresponding operation. Since the creation of the content weights
wc

t (i) has already been discussed, we explain the other three steps:

1. Interpolation: In this case, the vector from the previous iteration is combined with
the content weights wc

t (i) created in the current iteration using a single interpolation
weight gt ∈ (0, 1) that are output by the controller. Therefore, we have:

w
g
t (i) = gt · w

c
t (i) + (1− gt) · wt−1(i) (10.15)

Note that if gt is 0, then the content is not used at all.

2. Shift: In this case, a rotational shift is performed in which a normalized vector over
integer shifts is used. For example, consider a situation where st[−1] = 0.2, st[0] = 0.5
and st[1] = 0.3. This means that the weights should shift by −1 with gating weight
0.2, and by 1 with gating weight 0.3. Therefore, we define the shifted vector ws

t (i) as
follows:

ws
t (i) =

N∑

i=1

w
g
t (i) · st[i− j] (10.16)

Here, the index of st[i − j] is applied in combination with the modulus function to
adjust it back to between −1 and +1 (or other integer range in which st[i − j] is
defined).

3. Sharpening: The process of sharpening simply takes the current set of weights, and
makes them more biased towards 0 or 1, values without changing their ordering. A
parameter γt ≥ 1 is used for the sharpening, where larger values of γt create shaper
values:

wt(i) =
[ws

t (i)]
γt

∑N

j=1
[ws

t (j)]
γt

(10.17)

The parameter γt plays a similar role as the temperature parameter βt in the case of
content-based weight sharpening. This type of sharpening is important because the
shifting mechanism introduces a certain level of blurriness to the weights.

The purpose of these steps is as follows. First, one can use a purely content-based mechanism
by using a gating weight gt of 1. One can view a content-based mechanism as a kind of
random access to memory with the key vector. Using the weight vector wt−1(i) in the
previous iteration within the interpolation has the purpose of enabling sequential access
from the reference point of the previous step. The shift vector defines how much we are
willing to move from the reference point provided by the interpolation vector. Finally,
sharpening helps us control the level of softness of addressing.

Architecture of Controller

An important design choice is that of the choice of the neural architecture in the controller.
A natural choice is to use a recurrent neural network in which there is already a notion of
temporal states. Furthermore, using an LSTM provides additional internal memory to the

436 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

external memory in the neural Turing machine. The states within the neural network are like
CPU registers that are used for internal computation, but they are not persistent (unlike the
external memory). It is noteworthy that once we have a concept of external memory, it is not
absolutely essential to use a recurrent network. This is because the memory can capture
the notion of states; reading and writing from the same set of locations over successive
time-stamps achieves temporal statefulness, as in a recurrent neural network. Therefore, it
is also possible to use a feed-forward neural network for the controller, which offers better
transparency compared to the hidden states in the controller. The main constraint in the
feed-forward architecture is that the number of read and write heads constrain the number
of operations in each time-stamp.

Comparisons with Recurrent Neural Networks and LSTMs

All recurrent neural networks are known to be Turing complete [444], which means that
they can be used to simulate any algorithm. Therefore, neural Turing machines do not
theoretically add to the inherent capabilities of any recurrent neural network (including an
LSTM). However, despite the Turing completeness of recurrent networks, there are severe
limitations to their practical performance as well as generalization power on data sets con-
taining longer sequences. For example, if we train a recurrent network on sequences of a
certain size, and then apply on test data with a different size distribution, the performance
will be poor.

The controlled form of the external memory access in a neural Turing machine pro-
vides it with practical advantages over a recurrent neural network in which the values in
the transient hidden states are tightly integrated with computations. Although an LSTM
is augmented with its own internal memory, which is somewhat resistant to updates, the
processes of computation and memory access are still not clearly separated (like a modern
computer). In fact, the amount of computation (i.e., number of activations) and the amount
of memory (i.e., number of hidden units) are also tightly integrated in all recurrent neu-
ral networks. Clean separation between memory and computations allows control on the
memory operations in a more interpretable way, which is at least somewhat similar to how
a human programmer accesses and writes to internal data structures. For example, in a
question-answering system, we want to be able to able to read a passage and then answer
questions about it; this requires much better control in terms of being able to read the story
into memory in some form.

An experimental comparison in [158] showed that the neural Turing machine works
better with much longer sequences of inputs as compared to the LSTM. One of these exper-
iments provided both the LSTM and the neural Turing machine with pairs of input/output
sequences that were identical. The goal was to copy the input to the output. In this case,
the neural Turing machine generally performed better as compared to the LSTM, especially
when the inputs were long. Unlike the un-interpretable LSTM, the operations in the mem-
ory network were far more interpretable, and the copying algorithm implicitly learned by
the neural Turing machine performed steps that were similar to how a human programmer
would perform the task. As a result, the copying algorithm could generalize even to longer
sequences than were seen during training time in the case of the neural Turing machine
(but not so much in the case of the LSTM). In a sense, the intuitive way in which a neural
Turing machine handles memory updates from one time-stamp to the next provides it a
helpful regularization. For example, if the copying algorithm of the neural Turing machine
mimics a human coder’s style of implementing a copying algorithm, it will do a better job
with longer sequences at test time.

10.3. NEURAL NETWORKS WITH EXTERNAL MEMORY 437

In addition, the neural Turing machine was experimentally shown to be good at the task
of associative recall, in which the input is a sequence of items together with a randomly
chosen item from this sequence. The output is the next item in the sequence. The neural
Turing machine was again able to learn this task better than an LSTM. In addition, a sorting
application was also implemented in [158]. Although most of these applications are relatively
simple, this work is notable for its potential in using more carefully tuned architectures to
perform complex tasks. One such enhancement was the differentiable neural computer [159],
which has been used for complex tasks of reasoning in graphs and natural languages. Such
tasks are difficult to accomplish with a traditional recurrent network.

10.3.3 Differentiable Neural Computer: A Brief Overview

The differentiable neural computer is an enhancement over the neural Turing machines
with the use of additional structures to manage memory allocation and keeping track of
temporal sequences of writes. These enhancements address two main weaknesses of neural
Turing machines:

1. Even though the neural Turing machine is able to perform both content- and location-
based addressing, there is no way of avoiding the fact that it writes on overlapping
blocks when it uses shift-based mechanisms to address contiguous blocks of locations.
In modern computers, this issue is resolved by proper memory allocation during run-
ning time. The differentiable neural computer incorporates memory allocation mech-
anisms within the architecture.

2. The neural Turing machine does not keep track of the order in which memory locations
are written. Keeping track of the order in which memory locations are written is useful
in many cases such as keeping track of a sequence of instructions.

In the following, we will discuss only a brief overview of how these two additional mechanisms
are implemented. For more detailed discussions of these mechanisms, we refer the reader
to [159].

The memory allocation mechanism in a differentiable neural computer is based on the
concepts that (i) locations that have just been written but not read yet are probably use-
ful, and that (ii) the reading of a location reduces its usefulness. The memory allocation
mechanism keeps track of a quantity referred to as the usage of a location. The usage of a
location is automatically increased after each write, and it is potentially decreased after a
read. Before writing to memory, the controller emits a set of free gates from each read head
that determine whether the most recently read locations should be freed. These are then
used to update the usage vector from the previous time-stamp. The work in [159] discusses
a number of algorithms for how these usage values are used to identify locations for writing.

The second issue addressed by the differentiable neural computer is in terms of how
it keeps track of the sequential ordering of the memory locations at which the writes are
performed. Here, it is important to understand that the writes to the memory locations
are soft, and therefore one cannot define a strict ordering. Rather, a soft ordering exists
between all pairs of locations. Therefore, an N×N temporal link matrix with entries Lt[i, j]
is maintained. The value of Lt[i, j] always lie in the range (0, 1) and it indicates the degree
to which row i of the N × m memory matrix was written to just after row j. In order to
update the temporal link matrix, a precedence weighting is defined over the locations in
the memory rows. Specifically, pt(i) defines the degree to which location i was the last one

438 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

written to at the tth time-stamp. This precedence relation is used to update the temporal
link matrix in each time-stamp. Although the temporal link matrix potentially requires
O(N2) space, it is very sparse and can therefore be stored in O(N · log(N)) space. The
reader is referred to [159] for additional details of the maintenance of the temporal link
matrix.

It is noteworthy that many of the ideas of neural Turing machines, memory networks, and
attention mechanisms are closely related. The first two ideas were independently proposed
at about the same time. The initial papers on these topics tested them on different tasks.
For example, the neural Turing machine was tested on simple tasks like copying or sorting,
whereas the memory network was tested on tasks like question-answering. However, this
difference was also blurred at a later stage, when the differentiable neural computer was
tested on the question-answering tasks. Broadly speaking, these applications are still in their
infancy, and a lot needs to be done to bring them to a level where they can be commercially
used.

10.4 Generative Adversarial Networks (GANs)

Before introducing generative adversarial networks, we will first discuss the notions of the
generative and discriminativemodels, because they are both used for creating such networks.
These two types of learning models are as follows:

1. Discriminative models: Discriminative models directly estimate the conditional prob-
ability P (y|X) of the label y, given the feature values in X. An example of a discrim-
inative model is logistic regression.

2. Generative models: Generative models estimate the joint probability P (X, y), which
is a generative probability of a data instance. Note that the joint probability can be
used to estimate the conditional probability of y given X by using the Bayes rule as
follows:

P (y|X) =
P (X, y)

P (X)
=

P (X, y)
∑

z P (X, z)
(10.18)

An example of a generative model is the näıve Bayes classifier.

Discriminative models can only be used in supervised settings, whereas generative models
are used in both supervised and unsupervised settings. For example, in a multiclass setting,
one can create a generative model of only one of the classes by defining an appropriate
prior distribution on that class and then sampling from the prior distribution to generate
examples of the class. Similarly, one can generate each point in the entire data set from
a particular distribution by using a probabilistic model with a particular prior. Such an
approach is used in the variational autoencoder (cf. Section 4.10.4 of Chapter 4) in order
to sample points from a Gaussian distribution (as a prior) and then use these samples as
input to the decoder in order to generate samples like the data.

Generative adversarial networks work with two neural network models simultaneously.
The first is a generative model that produces synthetic examples of objects that are similar to
a real repository of examples. Furthermore, the goal is to create synthetic objects that are so
realistic that it is impossible for a trained observer to distinguish whether a particular object
belongs to the original data set, or whether it was generated synthetically. For example, if
we have a repository of car images, the generative network will use the generative model
to create synthetic examples of car images. As a result, we will now end up with both

10.4. GENERATIVE ADVERSARIAL NETWORKS (GANS) 439

real and fake examples of car images. The second network is a discriminative network that
has been trained on a data set which is labeled with the fact of whether the images are
synthetic or fake. The discriminative model takes in inputs of either real examples from
the base data or synthetic objects created by the generator network, and tries to discern
as to whether the objects are real or fake. In a sense, one can view the generative network
as a “counterfeiter” trying to produce fake notes, and the discriminative network as the
“police” who is trying to catch the counterfeiter producing fake notes. Therefore, the two
networks are adversaries, and training makes both adversaries better, until an equilibrium
is reached between them. As we will see later, this adversarial approach to training boils
down to formulating a minimax problem.

When the discriminative network is correctly able to flag a synthetic object as fake,
the fact is used by the generative network to modify its weights, so that the discriminative
network will have a harder time classifying samples generated from it. After modifying the
weights of the generator network, new samples are generated from it, and the process is
repeated. Over time, the generative network gets better and better at producing counterfeits.
Eventually, it becomes impossible for the discriminator to distinguish between real and
synthetically generated objects. In fact, it can be formally shown that the Nash equilibrium
of this minimax game is a (generator) parameter setting in which the distribution of points
created by the generator is the same as that of the data samples. For the approach to work
well, it is important for the discriminator to be a high-capacity model, and also have access
to a lot of data.

The generated objects are often useful for creating large amounts of synthetic data for
machine learning algorithms, and may play a useful role in data augmentation. Further-
more, by adding context, it is possible to use this approach for generating objects with
different properties. For example, the input might be a text caption, such as “spotted cat
with collar,” and the output will be a fantasy image matching the description [331, 392]. The
generated objects are sometimes also used for artistic endeavors. Recently, these methods
have also found application in image-to-image translation. In image-to-image translation,
the missing characteristics of an image are completed in a realistic way. Before discussing the
applications, we will first discuss the details of training a generative adversarial network.

10.4.1 Training a Generative Adversarial Network

The training process of a generative adversarial network proceeds by alternately updating
the parameters of the generator and the discriminator. Both the generator and discriminator
are neural networks. The discriminator is a neural network with d-dimensional inputs and
a single output in (0, 1), which indicates the probability whether or not the d-dimensional
input example is real. A value of 1 indicates that the example is real, and a value of 0
indicates that the example is synthetic. Let the output of the discriminator for input X be
denoted by D(X).

The generator takes as input noise samples from a p-dimensional probability distri-
bution, and uses it to generate d-dimensional examples of the data. One can view the
generator in an analogous way to the decoder portion of a variational autoencoder (cf. Sec-
tion 4.10.4 of Chapter 4), in which the input distribution is a p-dimensional point drawn
from a Gaussian distribution (which is the prior distribution), and the output of the decoder
is a d-dimensional data point with a similar distribution as the real examples. The train-
ing process here is, however, very different from that in a variational autoencoder. Instead
of using the reconstruction error for training, the discriminator error is used to train the
generator to create other samples like the input data distribution.

440 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

The goal for the discriminator is to correctly classify the real examples to a label of 1,
and the synthetically generated examples to a label of 0. On the other hand, the goal for
the generator is generate examples so that they fool the discriminator (i.e., encourage the
discriminator to label such examples as 1). Let Rm be m randomly sampled examples from
the real data set, and Sm be m synthetic samples that are generated by using the generator.
Note that the synthetic samples are generated by first creating a set Nm of p-dimensional
noise samples {Zm . . . Zm}, and then applying the generator to these noise samples as the
input to create the data samples Sm = {G(Z1) . . . G(Zm)}. Therefore, the maximization
objective function JD for the discriminator is as follows:

MaximizeD JD =
∑

X∈Rm

log
[
D(X)

]

︸ ︷︷ ︸

m samples of real examples

+
∑

X∈Sm

log
[
1−D(X)

]

︸ ︷︷ ︸

m samples of synthetic examples

It is easy to verify that this objective function will be maximized when real examples are
correctly classified to 1 and synthetic examples are correctly classified to 0.

Next we define the objective function of the generator, whose goal is to fool the discrim-
inator. For the generator, we do not care about the real examples, because the generator
only cares about the sample it generates. The generator creates m synthetic samples, Sm,
and the goal is to ensure that the discriminator recognizes these examples as genuine ones.
Therefore, the generator objective function, JG, minimizes the likelihood that these samples
are flagged as synthetic, which results in the following optimization problem:

MinimizeG JG =
∑

X∈Sm

log
[
1−D(X)

]

︸ ︷︷ ︸

m samples of synthetic examples

=
∑

Z∈Nm

log
[
1−D(G(Z))

]

This objective function is minimized when the synthetic examples are incorrectly classified
to 1. By minimizing the objective function, we are effectively trying to learn parameters of
the generator that fool the discriminator into incorrectly classifying the synthetic examples
to be true samples from the data set. An alternative objective function for the generator
is to maximize log

[
D(X)

]
for each X ∈ Sm instead of minimizing log

[
1−D(X)

]
, and

this alternative objective function sometimes works better during the early iterations of
optimization.

The overall optimization problem is therefore formulated as a minimax game over JD.
Note that maximizing JG over different choices of the parameters in the generator G is the
same as maximizing JD because JD − JG does not include any of the parameters of the
generator G. Therefore, one can write the overall optimization problem (over both generator
and discriminator) as follows:

MinimizeGMaximizeD JD (10.19)

The result of such an optimization is a saddle point of the optimization problem. Examples
of what saddle points look like with respect to the topology of the loss function are shown1

in Figure 3.17 of Chapter 3.

1The examples in Chapter 3 are given in a different context. Nevertheless, if we pretend that the loss
function in Figure 3.17(b) represents JD, then the annotated saddle point in the figure is visually instructive.

10.4. GENERATIVE ADVERSARIAL NETWORKS (GANS) 441

SAMPLE NOISE FROM PRIOR DISTRIBUTION (e.g., GAUSSIAN) TO CREATE m SAMPLES

SY
N

T
H

E
T

IC
 S

A
M

P
LE

S

C
O

D
E DECODER AS

GENERATOR

NEURAL NETWORK

WITH SINGLE

PROBABILISTIC

OUTPUT

(e.g., SIGMOID)

NOISE
SYNTHETIC

SAMPLE
PROBABILITY THAT

SAMPLE IS REAL

DISCRIMINATORGENERATOR

LOSS FUNCTION PUSHES

COUNTERFEIT TO BE

PREDICTED AS REAL

(COUNTERFEIT)

BACKPROPAGATE ALL THE WAY FROM OUTPUT TO GENERATOR TO COMPUTE GRADIENTS (BUT UPDATE ONLY GENERATOR)

Figure 10.7: Hooked up configuration of generator and discriminator for performing
gradient-descent updates on generator

Stochastic gradient ascent is used for learning the parameters of the discriminator and
stochastic gradient descent is used for learning the parameters of the generator. The gradi-
ent update steps are alternated between the generator and the discriminator. In practice,
however, k steps of the discriminator are used for each step of the generator. Therefore, one
can describe the gradient update steps as follows:

1. (Repeat k times): A mini-batch of size 2 ·m is constructed with an equal number
of real and synthetic examples. The synthetic examples are created by inputting noise
samples to the generator from the prior distribution, whereas the real samples are
selected from the base data set. Stochastic gradient ascent is performed on the pa-
rameters of the discriminator so as the maximize the likelihood that the discriminator
correctly classifies both the real and synthetic examples. For each update step, this is
achieved by performing backpropagation on the discriminator network with respect
to the mini-batch of 2 ·m real/synthetic examples.

2. (Perform once): Hook up the discriminator at the end of the generator as shown in
Figure 10.7. Provide the generator with m noise inputs so as to create m synthetic
examples (which is the current mini-batch). Perform stochastic gradient descent on
the parameters of the generator so as to minimize the likelihood that the discriminator
correctly classifies the synthetic examples. The minimization of log

[
1−D(X)

]
in the

loss function explicitly encourages these counterfeits to be predicted as real.

Even though the discriminator is hooked up to the generator, the gradient updates
(during backpropagation) are performed with respect to the parameters of only the
generator network. Backpropagation will automatically compute the gradients with
respect to both the generator and discriminator networks for this hooked up configu-
ration, but only the parameters of the generator network are updated.

The value of k is typically small (less than 5), although it is also possible to use k = 1. This
iterative process is repeated to convergence until Nash equilibrium is reached. At this point,
the discriminator will be unable to distinguish between the real and synthetic examples.

There are a few factors that one needs to be careful of during the training. First, if the
generator is trained too much without updating the discriminator, it can lead to a situation
in which the generator repeatedly produces very similar samples. In other words, there
will be very little diversity between the samples produced by the generator. This is the

442 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

reason that the training of the generator and discriminator are done simultaneously with
interleaving.

Second, the generator will produce poor samples in early iterations and therefore D(X)
will be close to 0. As a result, the loss function will be close to 0, and its gradient will be
quite modest. This type is saturation causes slow training of the generator parameters. In
such cases, it makes sense to maximize log

[
D(X)

]
instead of minimizing log

[
1−D(X)

]

during the early stages of training of the generator parameters. Although this approach
is heuristically motivated, and one can no longer write a minimax formulation like Equa-
tion 10.19, it tends to work well in practice (especially in the early stages of the training
when the discriminator rejects all samples).

10.4.2 Comparison with Variational Autoencoder

The variational autoencoder and the generative adversarial network were developed inde-
pendently at around the same time. There are some interesting similarities and differences
between these two models. This section will discusses a comparison of these two models.

Unlike a variational autoencoder, only a decoder (i.e., generator) is learned, and an en-
coder is not learned in the training process of the generative adversarial network. Therefore,
a generative adversarial network is not designed to reconstruct specific input samples like
a variational autoencoder. However, both models can generate images like the base data,
because the hidden space has a known structure (typically Gaussian) from which points
can be sampled. In general, the generative adversarial network produces samples of bet-
ter quality (e.g., less blurry images) than a variational autoencoder. This is because the
adversarial approach is specifically designed to produce realistic images, whereas the regu-
larization of the variational autoencoder actually hurts the quality of the generated objects.
Furthermore, when reconstruction error is used to create an output for a specific image
in the variational autoencoder, it forces the model to average over all plausible outputs.
Averaging over plausible outputs, which are often slightly shifted from one another, is a
direct cause of blurriness. On the other hand, a method that is specifically designed to
produce objects of a quality that fool the discriminator will create a single object in which
the different portions are in harmony with one another (and therefore more realistic).

The variational autoencoder is methodologically quite different from the generative ad-
versarial network. The re-parametrization approach used by the variational autoencoder is
very useful for training networks with a stochastic nature. Such an approach has the po-
tential to be used in other types of neural network settings with a generative hidden layer.
In recent years, some of the ideas in the variational autoencoder have been combined with
the ideas in generative adversarial networks.

10.4.3 Using GANs for Generating Image Data

GAN is commonly used is for generating image objects with varying types of context.
Indeed, the image setting is, by far, the most common use case of GANs. The generator for
the image setting is referred to as a deconvolutional network. The most popular way to design
a deconvolutional network for the GAN is discussed in [384]. Therefore, the corresponding
GAN is also referred to as a DCGAN. It is noteworthy that the term “deconvolution” has
generally been replaced by transposed convolution in recent years, because the former term
is somewhat misleading.

10.4. GENERATIVE ADVERSARIAL NETWORKS (GANS) 443

(a) Convolution architecture of DCGAN

(b) Smooth image transitions caused by changing input noise are shown in each row

(c) Arithmetic operations on input noise have semantic significance

Figure 10.8: The convolutional architecture of DCGAN and generated images. These figures
appeared in [A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015]. c©2015 Alec Radford. Used with permission.

444 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

The work in [384] starts with 100-dimensional Gaussian noise, which is the starting
point of the decoder. This 100-dimensional Gaussian noise is reshaped into 1024 feature
maps of size 4 × 4. This is achieved with a fully connected matrix multiplication with the
100-dimensional input, and the result is reshaped into a tensor. Subsequently, the depth of
each layer reduces by a factor of 2, while increasing the lengths and widths by a factor of 2.
For example, the second layer contains 512 feature maps, whereas the third layer contains
256 feature maps.

However, increasing length and width with convolution seems odd, because a convolution
with even a stride of 1 tends to reduce spatial map size (unless one uses additional zero
padding). So how can one use convolutions to increase lengths and widths by a factor of
2? This is achieved by using fractionally strided convolutions or transposed convolutions
at a fractional value of 0.5. These types of transposed convolutions are described at the
end of Section 8.5.2 of Chapter 8. The case of fractional strides is not very different from
unit strides, and it can be conceptually viewed as a convolution performed after stretching
the input volume spatially by either inserting zeros between rows/columns or by inserted
interpolated values. Since the input volume is already stretched by a particular factor,
applying convolution with stride 1 on this input is equivalent to using fractional strides on
the original input. An alternative to the approach of fractionally strided convolutions is to
use pooling and unpooling in order to manipulate the spatial footprints. When fractionally
strided convolutions are used, no pooling or unpooling needs to be used. An overview of the
architecture of the generator in DCGAN is given in Figure 10.8. A detailed discussion of the
convolution arithmetic required for fractionally strided convolutions is available in [109].

The generated images are sensitive to the noise samples. Figure 10.8(b) shows examples
of the images are generated using the different noise samples. An interesting example is
shown in the sixth row in which a room without a window is gradually transformed into
one with a large window [384]. Such smooth transitions are also observed in the case of the
variational autoencoder. The noise samples are also amenable to vector arithmetic, which
is semantically interpretable. For example, one would subtract a noise sample of a neutral
woman from that of a smiling woman and add the noise sample of a smiling man. This noise
sample is input to the generator in order to obtain an image sample of a smiling man. This
example [384] is shown in Figure 10.8(c).

The discriminator also uses a convolutional neural network architecture, except that the
leaky ReLU was used instead of the ReLU. The final convolutional layer of the discriminator
is flattened and fed into a single sigmoid output. Fully connected layers were not used in
either the generator or the discriminator. As is common in convolutional neural networks,
the ReLU activation is used. Batch normalization was used in order to reduce any problems
with the vanishing and exploding gradient problems [214].

10.4.4 Conditional Generative Adversarial Networks

In conditional adversarial generative networks (CGANs), both the generator and the dis-
criminator are conditioned on an additional input object, which might be a label, a caption,
or even another object of the same type. In this case, the input typically correspond to as-
sociated pairs of target objects and contexts. The contexts are typically related to the target
objects in some domain-specific way, which is learned by the model. For example, a context
such as “smiling girl” might provide an image of a smiling girl. Here, it is important to note
that there are many possible choices of images that the CGAN can create for smiling girls,
and the specific choice depends on the value of the noise input. Therefore, the CGAN can
create a universe of target objects, based on its creativity and imagination. In general, if

10.4. GENERATIVE ADVERSARIAL NETWORKS (GANS) 445

ARTIST SKETCH

S
Y

N
T

H
E

T
IC

 S
A

M
P

LE
S

F
U

S
IO

N

DECODER AS

GENERATOR

NOISE

GENERATOR

CONDITIONAL

INPUT

E
N

C
O

D
E

GENERATOR EXTRAPOLATION

FROM SKETCH

(SYNTHETIC SAMPLE)

S
Y

N
T

H
E

T
IC

 S
A

M
P

LE
S

F
U

S
IO

N

DECODER AS

GENERATOR

NOISE

GENERATOR

CONDITIONAL

INPUT

E
N

C
O

D
E

GENERATOR OUTPUT

(SYNTHETIC SAMPLE)

S
Y

N
T

H
E

T
IC

 S
A

M
P

LE
S

F
U

S
IO

N

DECODER AS

GENERATOR

NOISE

GENERATOR

CONDITIONAL

INPUT

E
N

C
O

D
E

GENERATOR OUTPUT

(SYNTHETIC SAMPLE)

CONDITIONAL GANs FOR IMAGE-TO-IMAGE TRANSLATION

CONDITIONAL GANs FOR TEXT-TO-IMAGE TRANSLATION

CONDITIONAL GANs FOR IMAGE-TO-TEXT TRANSLATION

SMILING

GIRL

SMILING

GIRL

Figure 10.9: Different types of conditional generators for adversarial network. The examples
are only illustrative in nature, and they do not reflect actual CGAN output.

446 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

the context is more complex than the target output, this universe of target objects tends to
shrink, and it is even possible for the generator to output fixed objects irrespective of the
noise input to the generator. Therefore, it is more common for the contextual inputs to be
simpler than the objects being modeled. For example, it is more common for the context to
be a caption and the object to be an image, rather than the converse. Nevertheless, both
situations are technically possible.

Examples of different types of conditioning in conditional GANs are shown in Fig-
ure 10.9. The context provides the additional input needed for the conditioning. In general,
the context may be of any object data type, and the generated output may be of any other
data type. The more interesting cases of CGAN use are those in which the context contains
much less complexity (e.g., a caption) as compared to the generated output (e.g., image).
In such cases, CGANs show a certain level of creativity in filling in missing details. These
details can change depending on the noise input to the generator. Some examples of the
object-context pairs may be as follows:

1. Each object may be associated with a label. The label provides the conditioning for
generating images. For example, in the MNIST data set (cf. Chapter 1), the condi-
tioning might be a label value from 0 to 9, and the generator is expected to create
an image of that digit, when provided that conditioning. Similarly, for an image data
set, the conditioning might be a label like “carrot” and the output would be an image
of a carrot. The experiments in the original work on conditional adversarial nets [331]
generated a 784-dimensional representation of a digit based on a label from 0 to 9. The
base examples of the digits were obtained from the MNIST data set (cf. Section 1.8.1
of Chapter 1).

2. The target object and its context might be of the same type, although the context
might be missing the rich level of detail in the target object. For example, the context
might be a human artist’s sketch of a purse, and the target object might be an actual
photograph of the same purse with all details filled in. Another example could be
an artist’s sketch of a criminal suspect (which is the context), and the target object
(output of generator) could be an extrapolation of the actual photograph of the person.
The goal is to use a given sketch to generate various realistic samples with details filled
in. Such an example is illustrated in the top part of Figure 10.9. When the contextual
objects have complex representations such as images or text sentences, they may need
to be converted to a multidimensional representation with an encoder, so that they can
be fused with multidimensional Gaussian noise. This encoder might be a convolutional
network in the case of image context or a recurrent neural network or word2vec model
in the case of text context.

3. Each object might be associated with a textual description (e.g., image with caption),
and the latter provides the context. The caption provides the conditioning for the
object. The idea is that by providing a context like “blue bird with sharp claws,” the
generator should provide a fantasy image that reflects this description. An example
of an illustrative image generated using the context “smiling girl” is illustrated in
Figure 10.9. Note that it is also possible to use an image context, and generate a
caption for it using a GAN, as shown in the bottom of the figure. However, it is
more common to generate complex objects (e.g., images) from simpler contexts (e.g.,
captions) rather than the reverse. This is because a variety of more accurate supervised
learning methods are available when one is trying to generate simple objects (e.g.,
labels or captions) from complex objects (e.g., images).

10.4. GENERATIVE ADVERSARIAL NETWORKS (GANS) 447

4. The base object might be a photograph or video in black and white (e.g., classic
movie), and the output object might be the color version of the object. In essence,
the GAN learns from examples of such pairs what is the most realistic way of coloring
a black-and-white scene. For example, it will use the colors of trees in the training
data to give corresponding colors in the generated object without changing its basic
outline.

In all these cases, it is evident that GANs are very good at filling in missing information. The
unconditional GAN is a special case of this setting in which all forms of context are missing,
and therefore the GAN is forced to create an image without any information. The conditional
case is potentially more interesting from an application-centric point of view because one
often has setting where a small amount of partial information is available, and one must
extrapolate in a realistic way. When the amount of available context is very small, missing
data analysis methods will not work because they require significantly more context to
provide reconstructions. On other hand, GANs do not promise faithful reconstructions (like
autoencoders or matrix factorization methods), but they provide realistic extrapolations
in which missing details are filled into the object in a realistic and harmonious way. As
a result, the GAN uses this freedom to generate samples of high quality, rather than a
blurred estimation of the average reconstruction. Although a given generation may not
perfectly reflect a given context, one can always generate multiple samples in order to
explore different types of extrapolations of the same context. For example, given the sketch
of a criminal suspect, one might generate different photographs with varying details that
are not present in the sketch. In this sense, generative adversarial networks exhibit a certain
level of artistry/creativity that is not present in conventional data reconstruction methods.
This type of creativity is essential when one is working with only a small amount of context
to begin with, and therefore the model needs to be have sufficient freedom to fill in missing
details in a reasonable way.

It is noteworthy that a wide variety of machine learning problems (including classifica-
tion) can be viewed as missing data imputation problems. Technically, the CGAN can be
used for these problems as well. However, the CGAN is more useful for specific types of
missing data, where the missing portion is too large to be faithfully reconstructed by the
model. Although one can even use a CGAN for classification or image captioning, this is
obviously not the best use2 of the generator model, which is tailored towards generative
creativity. When the conditioning object is more complex as compared to the output object,
it is possible to get into situations where the CGAN generates a fixed output irrespective
of input noise.

In the case of the generator, the inputs correspond to a point generated from the noise
distribution and the conditional object, which are combined to create a single hidden code.
This input is fed into the generator (decoder), which creates a conditioned sample for the
data. For the discriminator, the input is a sample from the base data and its context. The
base object and its conditional input are first fused into a hidden representation, and the
discriminator then provides a classification of whether the same is real or generated. The
overall architecture for the training of the generator portion is shown in Figure 10.10. It is
instructive to compare this architecture with that of the unconditional GAN in Figure 10.7.
The main difference is that an additional conditional input is provided in the second case.
The loss function and the overall arrangement of the hidden layers is very similar in both

2It turns out that by modifying the discriminator to output classes (including the fake class), one can
obtain state-of-the-art semi-supervised classification with very few labels [420]. However, using the generator
to output the labels is not a good choice.

448 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

SY
N

T
H

E
T

IC
 S

A
M

P
LE

S

F
U

S
IO

N

DECODER AS

GENERATOR

NEURAL NETWORK

WITH SINGLE

PROBABILISTIC

OUTPUT

(e.g., SIGMOID)

NOISE
PROBABILITY THAT

SAMPLE IS REAL

DISCRIMINATORGENERATOR

F
U

S
IO

N

CONDITIONAL

INPUT

CONDITIONAL

INPUT

E
N

C
O

D
E

E
N

C
O

D
E

ARTIST SKETCH

GENERATOR EXTRAPOLATION FROM

SKETCH (SYNTHETIC SAMPLE)

Figure 10.10: Conditional generative adversarial network for hooked up discriminator: It is
instructive to compare this architecture with that of the unconditional generative adversarial
network in Figure 10.7.

cases. Therefore, the change from an unconditional GAN to a conditional GAN requires
only minor changes to the overall architecture. The backpropagation approach remains
largely unaffected, except that there are some additional weights in the portion of the
neural network associated with the conditioning inputs that one might need to update.

An important point about using GANs with various data types is that they might require
some modifications in order to perform the encoding and decoding in a data-sensitive way.
While we have given several examples from the image and text domain in our discussion
above, most of the description of the algorithm is focussed on vanilla multidimensional data
(rather than image or text data). Even when the label is used as the context, it needs
to be encoded into a multidimensional representation (e.g., one-hot encoding). Therefore,
both Figures 10.9 and 10.10 contain a specifically denoted component for encoding the
context. In the earliest work on conditional GANs [331], the pre-trained AlexNet convolution
network [255] is used as the encoder for image context (without the final label prediction
layer). AlexNet was pre-trained on the ImageNet database. The work in [331] even uses a
multimodal setting in which an image is input together with some text annotations. The
output is another set of text tags further describing the image. For text annotations, a
pre-trained word2vec (skip-gram) model is used as the encoder. It is noteworthy that it is
even possible to fine-tune the weights of these pre-trained encoder networks while updating
the weights of the generator (by backpropagating beyond the generator into the encoder).
This is particularly useful if the nature of the data set for object generation in the GAN
is very different from the data sets on which the encoders were pretrained. However, the
original work in [331] fixed these encoders to their pre-trained configurations, and was still
able to generate reasonably high-quality results.

Although the word2vec model is used in the specific example above for encoding text,
several other options can be used. One option is to use a recurrent neural network, when the
input is a full sentence rather than a word. For words, a character-level recurrent network
can also be used. In all cases, it is possible to start with an appropriately pre-trained
encoder, and then fine-tune it during CGAN training.

10.5. COMPETITIVE LEARNING 449

10.5 Competitive Learning

Most of the learning methods discussed in this book are based on updating the weights in
the neural network in order to correct for errors. Competitive learning is a fundamentally
different paradigm in which the goal is not to map inputs to outputs in order to correct
errors. Rather, the neurons compete for the right to respond to a subset of similar input
data and push their weights closer to one or more input data points. Therefore, the learning
process is also very different from the backpropagation algorithm used in neural networks.

The broad idea in training is as follows. The activation of an output neuron increases
with greater similarity between the weight vector of the neuron and the input. It is assumed
that the weight vector of the neuron has the same dimensionality as the input. A common
approach is to use the Euclidian distance between the input and the weight vector in order
to compute the activation. Smaller distances lead to larger activations. The output unit
that has the highest activation to a given input is declared the winner and moved closer to
the input.

In the winner-take-all strategy, only the winning neuron (i.e., neurons with largest ac-
tivation) is updated and the remaining neurons remain unchanged. Other variants of the
competitive learning paradigm allow other neurons to participate in the update based on
pre-defined neighborhood relationships. Furthermore, some mechanisms are also available
that allow neurons to inhibit one another. These mechanisms are forms of regularization
that can be used to learn representations with a specific type of pre-defined structure, which
is useful in applications like 2-dimensional visualization. First, we discuss a simple version
of the competitive learning algorithm in which the winner-take-all approach is used.

Let X be an input vector in d dimensions, and W i be the weight vector associated with
the ith neuron in the same number of dimensions. Assume that a total of m neurons is used,
where m is typically much less than the size of the data set n. The following steps are used
by repeatedly sampling X from the input data and making the following computations:

1. The Euclidean distance ||W i −X|| is computed for each i. If the pth neuron has the
smallest value of the Euclidean distance, then it is declared as the winner. Note that
the value of ||W i −X|| is treated as the activation value of the ith neuron.

2. The pth neuron is updated using the following rule:

W p ⇐ W p + α(X −W p) (10.20)

Here, α > 0 is the learning rate. Typically, the value of α is much less than 1. In some
cases, the learning rate α reduces with progression of the algorithm.

The basic idea in competitive learning is to view the weight vectors as prototypes (like the
centroids in k-means clustering), and then move the (winning) prototype a small distance
towards the training instance. The value of α regulates the fraction of the distance between
the point and the weight vector, by which the movement of W p occurs. Note that k-means
clustering also achieves similar goals, albeit in a different way. After all, when a point
is assigned to the winning centroid, it moves that centroid by a small distance towards
the training instance at the end of the iteration. Competitive learning allows some natural
variations of this framework, which can be used for unsupervised applications like clustering
and dimensionality reduction.

450 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

10.5.1 Vector Quantization

Vector quantization is the simplest application of competitive learning. Some changes are
made to the basic competitive learning paradigm with the notion of sensitivity. Each node
has a sensitivity si ≥ 0 associated with it. The sensitivity value helps in balancing the
points among different clusters. The basic steps of vector quantization are similar to those
in the competitive learning algorithm except for differences caused by how si is updated
and used in the computations. The value of si is initialized to 0 for each point. In each
iteration, the value of si is increased by γ > 0 for non-winners and set to 0 for the winner.
Furthermore, to choose the winner, the smallest value of ||W i −X|| − si is used. Such an
approach tends to make the clusters more balanced, even if the different regions have widely
varying density. This approach ensures that points in dense regions are typically very close
to one of the weight vectors and the points in sparse regions are approximated very poorly.
Such a property is common in applications like dimensionality reduction and compression.
The value of γ regulates the effect of sensitivity. Setting γ to 0 reverts to pure competitive
learning as discussed above.

The most common application of vector quantization is compression. In compression,
each point is represented by its closest weight vector W i, where i ranges from 1 to m. Note
that the value of m is much less than the number of points n in the data set. The first step is
to construct a code book containing the vectors W 1 . . .Wm, which requires a space of m · d
for a data set of dimensionality d. Each point is stored as an index value from 1 through
m, depending on its closest weight vector. However, only log2(m) bits are required in order
to store each data point. Therefore, the overall space requirement is m · d+ log2(m), which
is typically much less than the original space required n · d of the data set. For example,
a data set containing 10 billion points in 100 dimensions requires space in the order of 4
Terabytes, if 4 bytes are required for each dimension. On the other hand, by quantizing
with m = 106, the space required for the code-book is less than half a Gigabyte, and 20
bits are required for each point. Therefore, the space required for the points (without the
code-book) is less than 3 Gigabytes. Therefore, the overall space requirement is less than
3.5 Gigabytes including the code-book. Note that this type of compression is lossy, and
the error of the approximation of the point X is ||X − W i||. Points in dense regions are
approximated very well, whereas outliers in sparse regions are approximated poorly.

10.5.2 Kohonen Self-Organizing Map

The Kohonen self-organizing map is a variation on the competitive learning paradigm
in which a 1-dimensional string-like or 2-dimensional lattice-like structure is imposed on
the neurons. For greater generality in discussion, we will consider the case in which a 2-
dimensional lattice-like structure is imposed on the neurons. As we will see, this type of
lattice structure enables the mapping of all points to 2-dimensional space for visualization.
An example of a 2-dimensional lattice structure of 25 neurons arranged in a 5×5 rectangular
grid is shown in Figure 10.11(a). A hexagonal lattice containing the same number of neurons
is shown in Figure 10.11(b). The shape of the lattice affects the shape of the 2-dimensional
regions in which the clusters will be mapped. The case of 1-dimensional string-like structure
is similar. The idea of using the lattice structure is that the values of W i in adjacent lattice
neurons tend to be similar. Here, it is important to define separate notations to distinguish
between the distance ||W i − W j || and the distance on the lattice. The distance between
adjacent pairs of neurons on the lattice is exactly one unit. For example, the distance be-
tween the neurons i and j based on the lattice structure in Figure 10.11(a) is 1 unit, and the

10.5. COMPETITIVE LEARNING 451

Wk

Wi Wj

k

i j

Wk

k

i j
Wj

Wi

(a) Rectangular (b) Hexagonal

Figure 10.11: An example of a 5 × 5 lattice structure for the self-organizing map. Since
neurons i and j are close in the lattice, the learning process will bias the values of W i and
W j to be more similar. The rectangular lattice will lead to rectangular clustered regions
in the resulting 2-dimensional representation, whereas the hexagonal lattice will lead to
hexagonal clustered regions in the resulting 2-dimensional representation.

distance between neurons i and k is
√
22 + 32 =

√
13. The vector-distance in the original

input space (e.g., ||X−W i|| or ||W i−W j ||) is denoted by a notation like Dist(W i,W j). On
the other hand, the distance between neurons i and j along the lattice structure is denoted
by LDist(i, j). Note that the value of LDist(i, j) is dependent only on the indices (i, j),
and is independent of the values of the vectors W i and W j .

The learning process in the self-organizing map is regulated in such a way that the
closeness of neurons i and j (based on lattice distance) will also bias their weight vectors to
be more similar. In other words, the lattice structure of the self-organizing maps acts as a
regularizer in the learning process. As we will see later, imposing this type of 2-dimensional
structure on the learned weights is helpful for visualizing the original data points with a
2-dimensional embedding.

The overall self-organizing map training algorithm proceeds in a similar way to compet-
itive learning by sampling X from the training data, and finding the winner neuron based
on the Euclidean distance. The weights in the winner neuron are updated in a manner
similar to the vanilla competitive learning algorithm. However, the main difference is that a
damped version of this update is also applied to the lattice-neighbors of the winner neuron.
In fact, in soft variations of this method, one can apply this update to all neurons, and the
level of damping depends on the lattice distance of that neuron to the winning neuron. The
damping function, which always lies in [0, 1], is typically defined by a Gaussian kernel:

Damp(i, j) = exp

(

−LDist(i, j)2

2σ2

)

(10.21)

Here, σ is the bandwidth of the Gaussian kernel. Using extremely small values of σ reverts to
pure winner-take-all learning, whereas using larger values of σ leads to greater regularization
in which lattice-adjacent units have more similar weights. For small values of σ, the damping
function will be 1 only for the winner neuron, and it will be 0 for all other neurons. Therefore,
the value of σ is one of the parameters available to the user for tuning. Note that many other
kernel functions are possible for controlling the regularization and damping. For example,

452 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

instead of the smooth Gaussian damping function, one can use a thresholded step kernel,
which takes on a value of 1 when LDist(i, j) < σ, and 0, otherwise.

The training algorithm repeatedly samples X from the training data, and computes the
distances of X to each weight W i. The index p of the winning neuron is computed. Rather
than applying the update only to W p (as in winner-take-all), the following update is applied
to each W i:

W i ⇐ W i + α ·Damp(i, p) · (X −W i) ∀i (10.22)

Here, α > 0 is the learning rate. It is common to allow the learning rate α to reduce with
time. These iterations are continued until convergence is reached. Note that weights that are
lattice-adjacent will receive similar updates, and will therefore tend to become more similar
over time. Therefore, the training process forces lattice-adjacent clusters to have similar
points, which is useful for visualization.

Using the Learned Map for 2D Embeddings

The self-organizing map can be used in order to induce a 2-dimensional embedding of the
points. For a k × k grid, all 2-dimensional lattice coordinates will be located in a square
in the positive quadrant with vertices (0, 0), (0, k − 1), (k − 1, 0), and (k − 1, k − 1). Note
that each grid point in the lattice is a vertex with integer coordinates. The simplest 2-
dimensional embedding is simply by representing each point X with its closest grid point
(i.e., winner neuron). However, such an approach will lead to overlapping representations
of points. Furthermore, a 2-dimensional representation of the data can be constructed and
each coordinate is one of k×k values from {0 . . . k−1}×{0 . . . k−1}. This is the reason that
the self-organizing map is also referred to as a discretized dimensionality reduction method.
It is possible to use various heuristics to disambiguate these overlapping points. When ap-
plied to high-dimensional document data, a visual inspection often shows documents of a
particular topic being mapped to a particular local regions. Furthermore, documents of re-
lated topics (e.g., politics and elections) tend to get mapped to adjacent regions. Illustrative
examples of how a self-organizing map arranges documents of four topics with rectangu-
lar and hexagonal lattices are shown in Figure 10.12(a) and (b), respectively. The regions
are colored differently, depending on the majority topic of the documents belonging to the
corresponding region.

Self-organizing maps have a strong neurobiological basis in terms of their relationship
with how the mammalian brain is structured. In the mammalian brain, various types of
sensory inputs (e.g., touch) are mapped onto a number of folded planes of cells, which are
referred to as sheets [129]. When parts of the body that are close together receive an input
(e.g., tactile input), then groups of cells that are physically close together in the brain
will also fire together. Therefore, proximity in (sensory) inputs is mapped to proximity in
neurons, as in the case of the self-organizing map. As with the neurobiological inspiration of
convolutional neural networks, such insights are always used for some form of regularization.

Although Kohonen networks are used less often in the modern era of deep learning,
they have significant potential in the unsupervised setting. Furthermore, the basic idea of
competition can even be incorporated in multi-layer feed-forward networks. Many com-
petitive principles are often combined with more traditional feed-forward networks. For
example, the r-sparse and winner-take-all autoencoders (cf. Section 2.5.5.1 of Chapter 2)
are both based on competitive principles. Similarly, the notion of local response normal-
ization (cf. Section 8.2.8 of Chapter 8) is based on competition between neurons. Even the
notions of attention discussed in this chapter use competitive principles in terms of focusing
on a subset of the activations. Therefore, even though the self-organizing map has become

10.6. LIMITATIONS OF NEURAL NETWORKS 453

MUSIC

ARTSLITERATURE

DRAMA

ARTS MUSIC

DRAMA

LITERATURE

(a) Rectangular lattice (b) Hexagonal lattice

Figure 10.12: Examples of 2-dimensional visualization of documents belonging to four topics

less popular in recent years, the basic principles of competition can also be integrated with
traditional feed-forward networks.

10.6 Limitations of Neural Networks

Deep learning has made significant progress in recent years, and has even outperformed
humans on many tasks like image classification. Similarly, the success of reinforcement
learning to show super-human performance in some games that require sequential planning
has been quite extraordinary. Therefore, it is tempting to posit that artificial intelligence
might eventually come close to or even exceed the abilities of humans in a more generic
way. However, there are several fundamental technical hurdles that need to be crossed
before we can build machines that learn and think like people [261]. In particular, neural
networks require large amounts of training data to provide high-quality results, which is
significantly inferior to human abilities. Furthermore, the amount of energy required by
neural networks for various tasks far exceeds that consumed by the human for similar tasks.
These observations put fundamental constraints on the abilities of neural networks to exceed
certain parameters of human performance. In the following, we discuss these issues along
with some recent research directions.

10.6.1 An Aspirational Goal: One-Shot Learning

Although deep learning has received increasing attention in recent years because of its
success on large-scale learning tasks (compared to the mediocre performance in early years
on smaller data sets), this also exposes an important weakness in current deep learning
technology. For tasks like image classification, where deep learning has exceeded human
performance, it has done so in a sample-inefficient fashion. For example, the ImageNet
database contains more than a million images, and a neural network will often require
thousands of samples of a class in order to properly classify it. Humans do not require tens
of thousands of images of a truck, to learn that it is a truck. If a child is shown a truck once,
she will often be able to recognize another truck even when it is of a somewhat different
model, shape, and color. This suggests that humans have much better ability to generalize

454 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

to new settings as compared to artificial neural networks. The general principle of being
able to learn from just one or very few examples is referred to as one-shot learning.

The ability of humans to generalize with fewer examples is not surprising because the
connectivity of the neurons in the human brain is relatively sparse and has been carefully
designed by nature. This architecture has evolved over millions of years, and has been passed
down from generation to generation. In an indirect sense, the human neural connection
structure already encodes a kind of “knowledge” gained from the “evolution experience”
over millions of years. Furthermore, humans also gain knowledge over their lifetime over a
variety of tasks, which helps them learn specific tasks faster. Subsequently, learning to do
specific tasks (like recognizing a truck) is simply a fine-tuning of the encoding a person is
both born with and which one gains over the course of a lifetime. In other words, humans
are masters of transfer learning both within and across generations.

Developing generalized forms of transfer learning, so that the training time spent on
particular tasks is not thrown away but is reused is a key area of future research. To a
limited extent, the benefits of transfer learning have already been demonstrated in deep
learning. As discussed in Chapter 8, convolutional neural networks like AlexNet [255] are
often pre-trained on large image repositories like ImageNet. Subsequently, when the neural
network needs to be applied to a new data set, the weights can be fine-tuned with the new
data set. Often far fewer number of examples are required for this fine-tuning, because most
of the basic features learned in earlier layers do not change with the data set at hand. In
many cases, the learned features can also be generalized across tasks by removing the later
layers or the network and adding additional task-specific layers. This general principle is
also used in text mining. For example, many text feature learning models like word2vec
are reused across many text mining tasks, even when they were pre-trained on different
corpora. In general, the knowledge transfer can be in terms of the extracted features, the
model parameters, or other contextual information.

There is another form of transfer learning, which is based on the notion of learning
across tasks. The basic idea is to always reuse the training work that has already been done
either fully or partially in one task in order to improve its ability to learn another task.
This principle is referred to as learning-to-learn. Thrun and Platt defined [497] learning-to-
learn as follows. Given a family of tasks, a training experience for each task, and a family
of performance measures (one for each task), an algorithm is said to learn-to-learn if its
performance at each task improves both with experience and the number of tasks. Central
to the difficulty of learning-to-learn is the fact that the tasks are all somewhat different
and it is therefore challenging to perform experience transfer across tasks. Therefore, the
rapid learning occurs within a task, whereas the learning is guided by knowledge gained
more gradually across tasks, which captures the way in which task structure varies across
target domains [416]. In other words, there is a two-tiered organization of how tasks are
learned. This notion is also referred to as meta-learning, although this term is overloaded
and is used in several other concepts in machine learning. The ability of learning-to-learn
is a uniquely biological quality, where living organisms tend to show improved performance
even at weakly related tasks, as they gain experience over other tasks. At a weak level,
even the pre-training of networks is an example of learning-to-learn, because we can use the
weights of the network trained on a particular data set and task to another setting, so that
learning in the new setting occurs rapidly. For example, in a convolutional neural network,
the features in many of the early layers are primitive shapes (e.g., edges), and they retain
their usability irrespective of the kind of task and data set that they are applied on. On the
other hand, the final layer might be highly task specific. However, training a single layer
requires much less data than the entire network.

10.6. LIMITATIONS OF NEURAL NETWORKS 455

Early work on one-shot learning [116] used Bayesian frameworks in order to transfer
the learned knowledge from one category to the next. Some successes have been shown at
meta-learning with the use of structured architectures that leverage the notions of attention,
recursion, and memory. In particular, good results have been shown on the task of learning
across categories with neural Turing machines [416]. The ability of memory-augmented net-
works to learn from limited data has been known for a long time. For example, even networks
with internal memory like the LSTM have been shown to exhibit impressive performance
for learning never-before seen quadratic functions with a small number of examples. The
neural Turning machine is an even better architecture in this respect, and the work in [416]
shows how it can be leveraged for meta-learning. Neural Turing machines have also been
used to build matching networks for one-shot learning [507]. Even though these works do
represent advances in the abilities to perform one-shot learning, the capabilities of these
methods are still quite rudimentary compared to humans. Therefore, this topic remains an
open area for future research.

10.6.2 An Aspirational Goal: Energy-Efficient Learning

Closely related to the notion of sample efficiency is that of energy efficiency. Deep learning
systems that work on high-performance hardware are energy inefficient, and require large
amounts of power to function. For example, if one uses multiple GPU units in parallel in
order to accomplish a compute-intensive task, one might easily use more than a kilowatt of
power. On the other hand, a human brain barely requires twenty watts to function, which
is much less than the power required by a light bulb. Another point is that the human
brain often does not perform detailed computations exactly, but simply makes estimates.
In many learning settings, this is sufficient and can sometimes even add to generalization
power. This suggests that energy-efficiency may sometimes be found in architectures that
emphasize generalization over accuracy.

Several algorithms have recently been developed that trade-off accuracy in computations
for improved power-efficiency of computations. Some of these methods also show improved
generalization because of the noise effects of the low-precision computations. The work
in [83] proposes methods for using binary weights in order to perform efficient computations.
An analysis of the effect of using different representational codes on energy efficiency is
provided in [289]. Certain types of neural networks, which contain spiking neurons, are
known to be more energy-efficient [60]. The notion of spiking neurons is directly based on
the biological model of the mammalian brain. The basic idea is that the neurons do not
fire at each propagation cycle, but they fire only when the membrane potential reaches a
specific value. The membrane potential is an intrinsic quality of a neuron associated with
its electrical charge.

Energy efficiency is often achieved when the size of the neural network is small, and
redundant connections are pruned. Removing redundant connections also helps in regular-
ization. The work in [169] proposes to learn weights and connections in neural networks
simultaneously by pruning redundant connections. In particular, weights that are close
to zero can be removed. As discussed in Chapter 4, training a network to give near-zero
weights can be achieved with L1-regularization. However, the work in [169] shows that L2-
regularization gives higher accuracy. Therefore, the work in [169] uses L2-regularization and
prunes the weights that are below a particular threshold. The pruning is done in an itera-
tive fashion, where the weights are retrained after pruning them, and then the low-weight
edges are pruned again. In each iteration, the trained weights from the previous phase are
used for the next phase. As a result, the dense network can be sparsified into a network

456 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

with far fewer connections. Furthermore, the dead neurons that have zero input connections
and output connections are pruned. Further enhancements were reported in [168], where
the approach was combined with Huffman coding and quantization for compression. The
goal of quantization is to reduce the number of bits representing each connection. This ap-
proach reduced the storage required by AlexNet [255] by a factor of 35, from about 240MB
to 6.9MB with no loss of accuracy. As a result, it becomes possible to fit the model into
on-chip SRAM cache rather than off-chip DRAM memory. This has advantages from the
perspective of speed, energy efficiency, as well as the ability to perform mobile computation
in embedded devices. In particular, a hardware accelerator has been used in [168] in order
to achieve these goals, and this acceleration is enabled by the ability to fit the model on the
SRAM cache.

Another direction is to develop hardware that is tailored directly to neural networks.
It is noteworthy that there is no distinction between software and hardware in humans;
while this distinction is helpful from the perspective of computer maintenance, it is also a
source of inefficiency that is not shared by the human brain. Simply speaking, the hardware
and software are tightly integrated in the brain-inspired model of computing. In recent
years, progress has been made in the area of neuromorphic computing [114]. This notion
is based on a new chip architecture containing spiking neurons, low-precision synapses,
and a scalable communication network. Readers are referred to [114] for the description
of a convolutional neural network architecture (based on neuromorphic computing) that
provides state-of-the-art image-recognition performance.

10.7 Summary

In this chapter, several advanced topics in deep learning have been discussed. The chap-
ter starts with a discussion of attention mechanisms. These mechanisms have been used
for both image and text data. In all cases, the incorporation of attention has improved
the generalization power of the underlying neural network. Attention mechanisms can also
be used to augment computers with external memory. A memory-augmented network has
similar theoretical properties as a recurrent neural network in terms of being Turing com-
plete. However, it tends to perform computations in a more interpretable way, and therefore
generalizes well to test data sets that are somewhat different from the training data. For
example, one can accurately work with longer sequences than the training data set contains
in order to perform classification. The simplest example of a memory-augmented network
is a neural Turing machine, which has subsequently been generalized to the notion of a
differentiable neural computer.

Generative adversarial networks are recent techniques that use an adversarial interaction
process between a generative network and a discriminative network in order to generate
synthetic samples that are similar to a database of real samples. Such networks can be used
as generative models that create input samples for testing machine learning algorithms.
In addition, by imposing a conditional on the generative process, it is possible to create
samples with different types of contexts. These ideas have been used in various types of
applications such as text-to-image and image-to-image translation.

Numerous advanced topics have also been explored in recent years such as one-shot
learning and energy-efficient learning. These represent areas in which neural network tech-
nology greatly lags the abilities of humans. Although significant advances have been made
in recent years, there is significant scope of future research in these areas.

10.8. BIBLIOGRAPHIC NOTES 457

10.8 Bibliographic Notes

Early techniques for using attention in neural network training were proposed in [59, 266].
The recurrent models of visual attention discussed in this chapter are based on the work
in [338]. The recognition of multiple objects in an image with visual attention is discussed
in [15]. The two most well known models are neural machine translation with attention are
discussed in [18, 302]. The ideas of attention have also been extended to image captioning.
For example, the work in [540] presents methods for image captioning based on both soft
and hard attention models. The use of attention models for text summarization is discussed
in [413]. The notion of attention is also useful for focusing on specific parts of the image to
enable visual question-answering [395, 539, 542]. A useful mechanism for attention is the
use of spatial transformer networks, which can selectively crop out or focus on portions of
an image. The use of attention models for visual question answering is discussed in [299].

Neural Turing machines [158] and memory networks [473, 528] were proposed around the
same time. Subsequently, the neural Turing machine was generalized to a differential neu-
ral computer with the use of better memory allocation mechanisms and those for tracking
the sequence of writes. The neural Turing machine and differentiable neural computer have
been applied to various tasks such as copying, associative recall, sorting, graph querying and
language querying. On the other hand, the primary focus of memory networks [473, 528] has
been on language understanding and question answering. However, the two architectures
are quite similar. The main difference is that the model in [473] focusses on content-based
addressing mechanisms rather than location-based mechanisms; doing so reduces the need
for sharpening. A more focussed study on the problem of question-answering is provided
in [257]. The work in [393] proposes the notion of a neural program interpreter, which is a
recurrent and compositional neural network that learns to represent and execute programs.
An interesting version of the Turing machine has also been designed with the use of re-
inforcement learning [550, 551], and it can be used for learning wider classes of complex
tasks. The work in [551] shows how simple algorithms can be learned from examples. The
parallelization of these methods with GPUs is discussed in [229].

Generative adversarial networks (GANs) have been proposed in [149], and an excellent
tutorial on the topic may be found in [145]. An early method proposed a similar architecture
for generating chairs with convolutional networks [103]. Improved training algorithms are
discussed in [420]. The main challenges in training adversarial networks have to do with
instability and saturation. A theoretical understanding of some of these issues, together with
some principled methods for addressing them are discussed in [11, 12]. Energy-based GANs
are proposed in [562], it is claimed that they have better stability. Adversarial ideas have
also been generalized to autoencoder architectures [311]. Generative adversarial networks are
used frequently in the image domain to generate realistic images with various properties [95,
384]. In these cases, a deconvolution network is used in the generator, and therefore the
resulting GAN is referred to as a DCGAN. The idea of conditional generative networks and
their use in generating objects with context is discussed in [331, 392]. The approach has
also been used recently for image to image translation [215, 370, 518]. Although generative
adversarial networks are often used in the image domain, they have also been extended
recently to sequences [546]. The use of CGANs for predicting the next frame in a video is
discussed in [319].

The earliest works on competitive learning may be found in [410, 411]. Gersho and
Gray [136] provide an excellent overview of vector quantization methods. Vector quantiza-
tion methods are alternatives to sparse coding techniques [75]. Kohonen’s self-organizing
feature map was introduced in [248], and more detailed discussions from the same author

458 CHAPTER 10. ADVANCED TOPICS IN DEEP LEARNING

may be found in [249, 250]. Many variants of this basic architecture, such as neural gas, are
used for incremental learning [126, 317].

A discussion of learning-to-learn methods may be found in [497]. The earliest methods
in this area used Bayesian models [116]. Later methods focused on various types of neural
Turing machines [416, 507]. Zero-shot learning methods are proposed in [364, 403, 462].
Evolutionary methods can also be used to perform long-term learning [543]. Numerous
methods have also been proposed to make deep learning more energy-efficient, such as the
use of binary weights [83, 389], specially designed chips [114], and compression mecha-
nisms [213, 168, 169]. Specialized methods have also been developed [68] for convolutional
neural networks.

10.8.1 Software Resources

The recurrent model for visual attention is available at [627]. The MATLAB code for the
attention mechanism for neural machine translation discussed in this chapter (from the
original authors) may be found in [628]. Implementations of the Neural Turing Machine
in TensorFlow may be found in [629, 630]. The two implementations are related because
the approach in [630] adopts some of the portions of [629]. An LSTM controller is used in
the original implementation. Implementations in Keras, Lasagne, and Torch may be found
in [631, 632, 633]. Several implementations from Facebook on memory networks are available
at [634]. An implementation of memory networks in TensorFlow nay be found in [635]. An
implementation of dynamic memory networks in Theano and Lasagne is available at [636].

An implementation of DCGAN in TensorFlow may be found in [637]. In fact, several
variants of the GAN (and other topics discussed in this chapter) are available from this con-
tributor [638]. A Keras implementation of the GAN may be found in [639]. Implementations
of various types of GANs, including the Wasserstein GAN and the variational autoencoder
may be found in [640]. These implementations are executed in PyTorch and TensorFlow.
An implementation of the text-to-image GAN in TensorFlow is provided in [641], and this
implementation is built on top of the aforementioned DCGAN implementation [637].

10.9 Exercises

1. What are the main differences in the approaches used for training hard-attention and
soft-attention models?

2. Show how you can use attention models to improve the token-wise classification ap-
plication of Chapter 7.

3. Discuss how the k-means algorithm is related to competitive learning.

4. Implement a Kohonen self-organizing map with (i) a rectangular lattice, and (ii) a
hexagonal lattice.

5. Consider a two-player game like GANs with objective function f(x, y), and we want
to compute minxmaxyf(x, y). Discuss the relationship between minxmaxyf(x, y) and
maxyminxf(x, y). When are they equal?

6. Consider the function f(x, y) = sin(x + y), where we are trying to minimize f(x, y)
with respect to x and maximize with respect to y. Implement the alternating process of
gradient descent and ascent discussed in the book for GANs to optimize this function.
Do you always get the same solution over different starting points?

Bibliography

[1] D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann machines.
Cognitive Science, 9(1), pp. 147–169, 1985.

[2] C. Aggarwal. Data classification: Algorithms and applications, CRC Press, 2014.

[3] C. Aggarwal. Data mining: The textbook. Springer, 2015.

[4] C. Aggarwal. Recommender systems: The textbook. Springer, 2016.

[5] C. Aggarwal. Outlier analysis. Springer, 2017.

[6] C. Aggarwal. Machine learning for text. Springer, 2018.

[7] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: Theory, algorithms, and applications.
Prentice Hall, 1993.

[8] E. Aljalbout, V. Golkov, Y. Siddiqui, and D. Cremers. Clustering with deep learning: Tax-
onomy and new methods. arXiv:1801.07648, 2018.
https://arxiv.org/abs/1801.07648

[9] R. Al-Rfou, B. Perozzi, and S. Skiena. Polyglot: Distributed word representations for multi-
lingual nlp. arXiv:1307.1662, 2013.
https://arxiv.org/abs/1307.1662

[10] D. Amodei at al. Concrete problems in AI safety. arXiv:1606.06565, 2016.
https://arxiv.org/abs/1606.06565

[11] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial
networks. arXiv:1701.04862, 2017.
https://arxiv.org/abs/1701.04862

[12] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv:1701.07875, 2017.
https://arxiv.org/abs/1701.07875

[13] J. Ba and R. Caruana. Do deep nets really need to be deep? NIPS Conference, pp. 2654–2662,
2014.

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0

459

https://arxiv.org/abs/1801.07648
https://arxiv.org/abs/1307.1662
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.07875
https://doi.org/10.1007/978-3-319-94463-0

460 BIBLIOGRAPHY

[14] J. Ba, J. Kiros, and G. Hinton. Layer normalization. arXiv:1607.06450, 2016.
https://arxiv.org/abs/1607.06450

[15] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention.
arXiv: 1412.7755, 2014.
https://arxiv.org/abs/1412.7755

[16] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image retrieval.
arXiv:1404.1777, 2014.
https://arxiv.org/abs/1404.1777

[17] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. Sequential deep learning
for human action recognition. International Workshop on Human Behavior Understanding,
pp. 29–39, 2011.

[18] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. ICLR, 2015. Also arXiv:1409.0473, 2014.
https://arxiv.org/abs/1409.0473

[19] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using
reinforcement learning. arXiv:1611.02167, 2016.
https://arxiv.org/abs/1611.02167

[20] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. Exploiting the past and the future
in protein secondary structure prediction. Bioinformatics, 15(11), pp. 937–946, 1999.

[21] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper into convolutional networks for
learning video representations. arXiv:1511.06432, 2015.
https://arxiv.org/abs/1511.06432

[22] J. Baxter, A. Tridgell, and L. Weaver. Knightcap: a chess program that learns by combining
td (lambda) with game-tree search. arXiv cs/9901002, 1999.

[23] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear programming: theory and algorithms. John
Wiley and Sons, 2013.

[24] S. Becker, and Y. LeCun. Improving the convergence of back-propagation learning with sec-
ond order methods. Proceedings of the 1988 connectionist models summer school, pp. 29–37,
1988.

[25] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47,
pp. 253–279, 2013.

[26] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[27] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning,
2(1), pp. 1–127, 2009.

[28] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspec-
tives. IEEE TPAMI, 35(8), pp. 1798–1828, 2013.

[29] Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural Com-
putation, 21(6), pp. 1601–1621, 2009.

[30] Y. Bengio and O. Delalleau. On the expressive power of deep architectures. Algorithmic
Learning Theory, pp. 18–36, 2011.

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1412.7755
https://arxiv.org/abs/1404.1777
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1611.02167
https://arxiv.org/abs/1511.06432

BIBLIOGRAPHY 461

[31] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep
networks. NIPS Conference, 19, 153, 2007.

[32] Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks.
NIPS Conference, pp. 123–130, 2005.

[33] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. ICML Confer-
ence, 2009.

[34] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as gener-
ative models. NIPS Conference, pp. 899–907, 2013.

[35] J. Bergstra et al. Theano: A CPU and GPU math compiler in Python. Python in Science
Conference, 2010.

[36] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for hyper-parameter optimiza-
tion. NIPS Conference, pp. 2546–2554, 2011.

[37] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13, pp. 281–305, 2012.

[38] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. ICML Confererence, pp. 115–
123, 2013.

[39] D. Bertsekas. Nonlinear programming Athena Scientific, 1999.

[40] C. M. Bishop. Pattern recognition and machine learning. Springer, 2007.

[41] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[42] C. M. Bishop. Bayesian Techniques. Chapter 10 in “Neural Networks for Pattern Recogni-
tion,” pp. 385–439, 1995.

[43] C. M Bishop. Improving the generalization properties of radial basis function neural networks.
Neural Computation, 3(4), pp. 579–588, 1991.

[44] C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural computa-
tion, 7(1),pp. 108–116, 1995.

[45] C. M. Bishop, M. Svensen, and C. K. Williams. GTM: A principled alternative to the self-
organizing map. NIPS Conference, pp. 354–360, 1997.

[46] M. Bojarski et al. End to end learning for self-driving cars. arXiv:1604.07316, 2016.
https://arxiv.org/abs/1604.07316

[47] M. Bojarski et al. Explaining How a Deep Neural Network Trained with End-to-End Learning
Steers a Car. arXiv:1704.07911, 2017.
https://arxiv.org/abs/1704.07911

[48] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological Cybernetics, 59(4), pp. 291–294, 1988.

[49] L. Breiman. Random forests. Journal Machine Learning archive, 45(1), pp. 5–32, 2001.

[50] L. Breiman. Bagging predictors. Machine Learning, 24(2), pp. 123–140, 1996.

[51] D. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks.
Complex Systems, 2, pp. 321–355, 1988.

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1704.07911

462 BIBLIOGRAPHY

[52] C. Browne et al. A survey of monte carlo tree search methods. IEEE Transactions on Com-
putational Intelligence and AI in Games, 4(1), pp. 1–43, 2012.

[53] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational
motion estimation. IEEE TPAMI, 33(3), pp. 500–513, 2011.

[54] A. Bryson. A gradient method for optimizing multi-stage allocation processes. Harvard Uni-
versity Symposium on Digital Computers and their Applications, 1961.

[55] C. Bucilu, R. Caruana, and A. Niculescu-Mizil. Model compression. ACM KDD Conference,
pp. 535–541, 2006.

[56] P. Bühlmann and B. Yu. Analyzing bagging. Annals of Statistics, pp. 927–961, 2002.

[57] M. Buhmann. Radial Basis Functions: Theory and implementations. Cambridge University
Press, 2003.

[58] Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders.
arXiv:1509.00519, 2015.
https://arxiv.org/abs/1509.00519

[59] N. Butko and J. Movellan. I-POMDP: An infomax model of eye movement. IEEE Interna-
tional Conference on Development and Learning, pp. 139–144, 2008.

[60] Y. Cao, Y. Chen, and D. Khosla. Spiking deep convolutional neural networks for energy-
efficient object recognition. International Journal of Computer Vision, 113(1), 54–66, 2015.

[61] M. Carreira-Perpinan and G. Hinton. On Contrastive Divergence Learning. AISTATS, 10,
pp. 33–40, 2005.

[62] S. Chang, W. Han, J. Tang, G. Qi, C. Aggarwal, and T. Huang. Heterogeneous network
embedding via deep architectures. ACM KDD Conference, pp. 119–128, 2015.

[63] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16, pp. 321–357, 2002.

[64] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga. Outlier detection with autoencoder ensembles.
SIAM Conference on Data Mining, 2017.

[65] S. Chen, C. Cowan, and P. Grant. Orthogonal least-squares learning algorithm for radial
basis function networks. IEEE Transactions on Neural Networks, 2(2), pp. 302–309, 1991.

[66] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. Compressing neural networks
with the hashing trick. ICML Confererence, pp. 2285–2294, 2015.

[67] Y. Chen and M. Zaki. KATE: K-Competitive Autoencoder for Text. ACM KDD Conference,
2017.

[68] Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accel-
erator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1),
pp. 127–138, 2017.

[69] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical machine translation.
EMNLP, 2014.
https://arxiv.org/pdf/1406.1078.pdf

[70] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-based models for
speech recognition. NIPS Conference, pp. 577–585, 2015.

https://arxiv.org/abs/1509.00519
https://arxiv.org/pdf/1406.1078.pdf

BIBLIOGRAPHY 463

[71] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv:1412.3555, 2014.
https://arxiv.org/abs/1412.3555

[72] D. Ciresan, U. Meier, L. Gambardella, and J. Schmidhuber. Deep, big, simple neural nets for
handwritten digit recognition. Neural Computation, 22(12), pp. 3207–3220, 2010.

[73] C. Clark and A. Storkey. Training deep convolutional neural networks to play go. ICML
Confererence, pp. 1766–1774, 2015.

[74] A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, and B. Catanzaro. Deep learning with COTS
HPC systems. ICML Confererence, pp. 1337–1345, 2013.

[75] A. Coates and A. Ng. The importance of encoding versus training with sparse coding and
vector quantization. ICML Confererence, pp. 921–928, 2011.

[76] A. Coates and A. Ng. Learning feature representations with k-means. Neural networks: Tricks
of the Trade, Springer, pp. 561–580, 2012.

[77] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature
learning. AAAI Conference, pp. 215–223, 2011.

[78] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural lan-
guage processing (almost) from scratch. Journal of Machine Learning Research, 12, pp. 2493–
2537, 2011.

[79] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. ICML Conference, pp. 160–167, 2008.

[80] J. Connor, R. Martin, and L. Atlas. Recurrent neural networks and robust time series pre-
diction. IEEE Transactions on Neural Networks, 5(2), pp. 240–254, 1994.

[81] T. Cooijmans, N. Ballas, C. Laurent, C. Gulcehre, and A. Courville. Recurrent batch nor-
malization. arXiv:1603.09025, 2016.
https://arxiv.org/abs/1603.09025

[82] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3), pp. 273–297,
1995.

[83] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural networks
with binary weights during propagations. arXiv:1511.00363, 2015.
https://arxiv.org/pdf/1511.00363.pdf

[84] T. Cover. Geometrical and statistical properties of systems of linear inequalities with appli-
cations to pattern recognition. IEEE Transactions on Electronic Computers, pp. 326–334,
1965.

[85] D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach to un-
constrained face recognition. IEEE International Conference on Automatic Face and Gesture
Recognition and Workshops, pp. 8–15, 2011.

[86] G. Dahl, R. Adams, and H. Larochelle. Training restricted Boltzmann machines on word
observations. arXiv:1202.5695, 2012.
https://arxiv.org/abs/1202.5695

[87] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. Computer
Vision and Pattern Recognition, pp. 886–893, 2005.

https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1603.09025
https://arxiv.org/pdf/1511.00363.pdf
https://arxiv.org/abs/1202.5695

464 BIBLIOGRAPHY

[88] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. NIPS Con-
ference, pp. 2933–2941, 2014.

[89] N. de Freitas. Machine Learning, University of Oxford (Course Video), 2013.
https://www.youtube.com/watch?v=w2OtwL5T1ow&list=PLE6Wd9FREdyJ5lbFl8Uu–
GjecvVw66F6

[90] N. de Freitas. Deep Learning, University of Oxford (Course Video), 2015.
https://www.youtube.com/watch?v=PlhFWT7vAEw&list=PLjK8ddCbDMphIMSXn-
1IjyYpHU3DaUYw

[91] J. Dean et al. Large scale distributed deep networks. NIPS Conference, 2012.

[92] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. NIPS Conference, pp. 3844–3852, 2016.

[93] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. NIPS Conference,
pp. 666–674, 2011.

[94] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Freitas. Predicting parameters in
deep learning. NIPS Conference, pp. 2148–2156, 2013.

[95] E. Denton, S. Chintala, and R. Fergus. Deep Generative Image Models using a Laplacian
Pyramid of Adversarial Networks. NIPS Conference, pp. 1466–1494, 2015.

[96] G. Desjardins, K. Simonyan, and R. Pascanu. Natural neural networks. NIPS Congference,
pp. 2071–2079, 2015.

[97] F. Despagne and D. Massart. Neural networks in multivariate calibration. Analyst, 123(11),
pp. 157R–178R, 1998.

[98] T. Dettmers. 8-bit approximations for parallelism in deep learning. arXiv:1511.04561, 2015.
https://arxiv.org/abs/1511.04561

[99] C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix factorization
and probabilistic latent semantic indexing. Computational Statistics and Data Analysis, 52(8),
pp. 3913–3927, 2008.

[100] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko,
and T. Darrell. Long-term recurrent convolutional networks for visual recognition and de-
scription. IEEE conference on computer vision and pattern recognition, pp. 2625–2634, 2015.

[101] G. Dorffner. Neural networks for time series processing. Neural Network World, 1996.

[102] C. Dos Santos and M. Gatti. Deep Convolutional Neural Networks for Sentiment Analysis of
Short Texts. COLING, pp. 69–78, 2014.

[103] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning to generate chairs with con-
volutional neural networks. CVPR Conference, pp. 1538–1546, 2015.

[104] A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks.
CVPR Conference, pp. 4829–4837, 2016.

[105] K. Doya. Bifurcations of recurrent neural networks in gradient descent learning. IEEE Trans-
actions on Neural Networks, 1, pp. 75–80, 1993.

[106] C. Doersch. Tutorial on variational autoencoders. arXiv:1606.05908, 2016.
https://arxiv.org/abs/1606.05908

https://www.youtube.com/watch?v=w2OtwL5T1ow&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
https://www.youtube.com/watch?v=PlhFWT7vAEw&list=PLjK8ddCbDMphIMSXn-w1IjyYpHU3DaUYw
https://arxiv.org/abs/1511.04561
https://arxiv.org/abs/1606.05908

BIBLIOGRAPHY 465

[107] H. Drucker and Y. LeCun. Improving generalization performance using double backpropaga-
tion. IEEE Transactions on Neural Networks, 3(6), pp. 991–997, 1992.

[108] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12, pp. 2121–2159, 2011.

[109] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning.
arXiv:1603.07285, 2016.
https://arxiv.org/abs/1603.07285

[110] A. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross domain user
modeling in recommendation systems. WWW Conference, pp. 278–288, 2015.

[111] J. Elman. Finding structure in time. Cognitive Science, 14(2), pp. 179–211, 1990.

[112] J. Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48, pp. 781–799, 1993.

[113] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio. Why does
unsupervised pre-training help deep learning?. Journal of Machine Learning Research, 11,
pp. 625–660, 2010.

[114] S. Essar et al. Convolutional neural networks for fast, energy-efficient neuromorphic comput-
ing. Proceedings of the National Academy of Science of the United States of America, 113(41),
pp. 11441–11446, 2016.

[115] A. Fader, L. Zettlemoyer, and O. Etzioni. Paraphrase-Driven Learning for Open Question
Answering. ACL, pp. 1608–1618, 2013.

[116] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE TPAMI,
28(4), pp. 594–611, 2006.

[117] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with dis-
criminatively trained part-based models. IEEE TPAMI, 32(9), pp. 1627–1645, 2010.

[118] A. Fader, L. Zettlemoyer, and O. Etzioni. Open question answering over curated and extracted
knowledge bases. ACM KDD Conference, 2014.

[119] A. Fischer and C. Igel. An introduction to restricted Boltzmann machines. Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, pp. 14–36, 2012.

[120] R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:
pp. 179–188, 1936.

[121] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive processing of data
structures. IEEE Transactions on Neural Networks, 9(5), pp. 768–786, 1998.

[122] Y. Freund and R. Schapire. A decision-theoretic generalization of online learning and appli-
cation to boosting. Computational Learning Theory, pp. 23–37, 1995.

[123] Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm. Ma-
chine Learning, 37(3), pp. 277–296, 1999.

[124] Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors using
two layer networks. Technical report, Santa Cruz, CA, USA, 1994

[125] B. Fritzke. Fast learning with incremental RBF networks. Neural Processing Letters, 1(1),
pp. 2–5, 1994.

https://arxiv.org/abs/1603.07285

466 BIBLIOGRAPHY

[126] B. Fritzke. A growing neural gas network learns topologies. NIPS Conference, pp. 625–632,
1995.

[127] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), pp. 193–
202, 1980.

[128] S. Gallant. Perceptron-based learning algorithms. IEEE Transactions on Neural Networks,
1(2), pp. 179–191, 1990.

[129] S. Gallant. Neural network learning and expert systems. MIT Press, 1993.

[130] H. Gao, H. Yuan, Z. Wang, and S. Ji. Pixel Deconvolutional Networks. arXiv:1705.06820,
2017.
https://arxiv.org/abs/1705.06820

[131] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional neural networks.
NIPS Conference, pp. 262–270, 2015.

[132] L. Gatys, A. Ecker, and M. Bethge. Image style transfer using convolutional neural networks.
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423, 2015.

[133] H. Gavin. The Levenberg-Marquardt method for nonlinear least squares curve-fitting prob-
lems, 2011.
http://people.duke.edu/∼hpgavin/ce281/lm.pdf

[134] P. Gehler, A. Holub, and M. Welling. The Rate Adapting Poisson (RAP) model for informa-
tion retrieval and object recognition. ICML Confererence, 2006.

[135] S. Gelly et al. The grand challenge of computer Go: Monte Carlo tree search and extensions.
Communcations of the ACM, 55, pp. 106–113, 2012.

[136] A. Gersho and R. M. Gray. Vector quantization and signal compression. Springer Science
and Business Media, 2012.

[137] A. Ghodsi. STAT 946: Topics in Probability and Statistics: Deep Learning, University of
Waterloo, Fall 2015.
https://www.youtube.com/watch?v=fyAZszlPphs&list=PLehuLRPyt1Hyi78UOkMP–
WCGRxGcA9NVOE

[138] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice.CRC
Press, 1995.

[139] F. Girosi and T. Poggio. Networks and the best approximation property. Biological Cyber-
netics, 63(3), pp. 169–176, 1990.

[140] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. AISTATS, pp. 249–256, 2010.

[141] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural Networks. AISTATS,
15(106), 2011.

[142] P. Glynn. Likelihood ratio gradient estimation: an overview, Proceedings of the 1987 Winter
Simulation Conference, pp. 366–375, 1987.

[143] Y. Goldberg. A primer on neural network models for natural language processing. Journal
of Artificial Intelligence Research (JAIR), 57, pp. 345–420, 2016.

https://arxiv.org/abs/1705.06820
http://people.duke.edu/~hpgavin/ce281/lm.pdf
https://www.youtube.com/watch?v=fyAZszlPphs&list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE

BIBLIOGRAPHY 467

[144] C. Goller and A. Küchler. Learning task-dependent distributed representations by backprop-
agation through structure. Neural Networks, 1, pp. 347–352, 1996.

[145] I. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160, 2016.
https://arxiv.org/abs/1701.00160

[146] I. Goodfellow, O. Vinyals, and A. Saxe. Qualitatively characterizing neural network optimiza-
tion problems. arXiv:1412.6544, 2014. [Also appears in International Conference in Learning
Representations, 2015]
https://arxiv.org/abs/1412.6544

[147] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.

[148] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
arXiv:1302.4389, 2013.

[149] I. Goodfellow et al. Generative adversarial nets. NIPS Conference, 2014.

[150] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649, 2013.

[151] A. Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850, 2013.
https://arxiv.org/abs/1308.0850

[152] A. Graves. Supervised sequence labelling with recurrent neural networks Springer, 2012.
http://rd.springer.com/book/10.1007%2F978-3-642-24797-2

[153] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. Connectionist temporal classifica-
tion: labelling unsegmented sequence data with recurrent neural networks. ICML Conferer-
ence, pp. 369–376, 2006.

[154] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. A
novel connectionist system for unconstrained handwriting recognition. IEEE TPAMI, 31(5),
pp. 855–868, 2009.

[155] A. Graves and J. Schmidhuber. Framewise Phoneme Classification with Bidirectional LSTM
and Other Neural Network Architectures. Neural Networks, 18(5–6), pp. 602–610, 2005.

[156] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recur-
rent neural networks. NIPS Conference, pp. 545–552, 2009.

[157] A. Graves and N. Jaitly. Towards End-To-End Speech Recognition with Recurrent Neural
Networks. ICML Conference, pp. 1764–1772, 2014.

[158] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv:1410.5401, 2014.
https://arxiv.org/abs/1410.5401

[159] A. Graves et al. Hybrid computing using a neural network with dynamic external memory.
Nature, 538.7626, pp. 471–476, 2016.

[160] K. Greff, R. K. Srivastava, J. Koutnik, B. Steunebrink, and J. Schmidhuber. LSTM: A search
space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 2016.
http://ieeexplore.ieee.org/abstract/document/7508408/

[161] K. Greff, R. K. Srivastava, and J. Schmidhuber. Highway and residual networks learn unrolled
iterative estimation. arXiv:1612.07771, 2016.
https://arxiv.org/abs/1612.07771

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1412.6544
https://arxiv.org/abs/1308.0850
http://rd.springer.com/book/10.1007%2F978-3-642-24797-2
https://arxiv.org/abs/1410.5401
http://ieeexplore.ieee.org/abstract/document/7508408/
https://arxiv.org/abs/1612.07771

468 BIBLIOGRAPHY

[162] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska. A survey of actor-critic reinforcement
learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and
Cybernetics, 42(6), pp. 1291–1307, 2012.

[163] R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional
neural networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 437–
446, 2015.

[164] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. ACM KDD
Conference, pp. 855–864, 2016.

[165] X. Guo, S. Singh, H. Lee, R. Lewis, and X. Wang. Deep learning for real-time Atari game play
using offline Monte-Carlo tree search planning. Advances in NIPS Conference, pp. 3338–3346,
2014.

[166] M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. AISTATS, 1(2), pp. 6, 2010.

[167] R. Hahnloser and H. S. Seung. Permitted and forbidden sets in symmetric threshold-linear
networks. NIPS Conference, pp. 217–223, 2001.

[168] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. Dally. EIE: Efficient
Inference Engine for Compressed Neural Network. ACM SIGARCH Computer Architecture
News, 44(3), pp. 243–254, 2016.

[169] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural networks. NIPS Conference, pp. 1135–1143, 2015.

[170] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE TPAMI, 12(10), pp. 993–
1001, 1990.

[171] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic
gradient descent. ICML Confererence, pp. 1225–1234, 2006.

[172] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Simultaneous detection and segmenta-
tion. arXiv:1407.1808, 2014.
https://arxiv.org/abs/1407.1808

[173] E. Hartman, J. Keeler, and J. Kowalski. Layered neural networks with Gaussian hidden units
as universal approximations. Neural Computation, 2(2), pp. 210–215, 1990.

[174] H. van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-
Learning. AAAI Conference, 2016.

[175] B. Hassibi and D. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
NIPS Conference, 1993.

[176] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick. Neuroscience-inspired artificial
intelligence. Neuron, 95(2), pp. 245–258, 2017.

[177] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer,
2009.

[178] T. Hastie and R. Tibshirani. Generalized additive models. CRC Press, 1990.

[179] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the lasso and
generalizations. CRC Press, 2015.

https://arxiv.org/abs/1407.1808

BIBLIOGRAPHY 469

[180] M. Havaei et al. Brain tumor segmentation with deep neural networks. Medical Image Anal-
ysis, 35, pp. 18–31, 2017.

[181] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replicator neural
networks. International Conference on Data Warehousing and Knowledge Discovery, pp. 170–
180, 2002.

[182] S. Haykin. Neural networks and learning machines. Pearson, 2008.

[183] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. IEEE International Conference on Computer Vision,
pp. 1026–1034, 2015.

[184] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE
Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[185] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. European
Conference on Computer Vision, pp. 630–645, 2016.

[186] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua. Neural collaborative filtering.
WWW Conference, pp. 173–182, 2017.

[187] N. Heess et al. Emergence of Locomotion Behaviours in Rich Environments.
arXiv:1707.02286, 2017.
https://arxiv.org/abs/1707.02286
Video 1 at: https://www.youtube.com/watch?v=hx bgoTF7bs
Video 2 at: https://www.youtube.com/watch?v=gn4nRCC9TwQ&feature=youtu.be

[188] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured data.
arXiv:1506.05163, 2015.
https://arxiv.org/abs/1506.05163

[189] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, 49(6), 1952.

[190] G. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1–3), pp. 185–234,
1989.

[191] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Com-
putation, 14(8), pp. 1771–1800, 2002.

[192] G. Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research,
165, pp. 535–547, 2007.

[193] G. Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 9(1),
926, 2010.

[194] G. Hinton. Neural networks for machine learning, Coursera Video, 2012.

[195] G. Hinton, P. Dayan, B. Frey, and R. Neal. The wake–sleep algorithm for unsupervised neural
networks. Science, 268(5214), pp. 1158–1162, 1995.

[196] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7), pp. 1527–1554, 2006.

[197] G. Hinton and T. Sejnowski. Learning and relearning in Boltzmann machines. Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, MIT Press, 1986.

 https://arxiv.org/abs/1707.02286
https://www.youtube.com/watch?v=hx_bgoTF7bs
https://www.youtube.com/watch?v=gn4nRCC9TwQ&feature=youtu.be
https://arxiv.org/abs/1506.05163

470 BIBLIOGRAPHY

[198] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313, (5766), pp. 504–507, 2006.

[199] G. Hinton and R. Salakhutdinov. Replicated softmax: an undirected topic model. NIPS Con-
ference, pp. 1607–1614, 2009.

[200] G. Hinton and R. Salakhutdinov. A better way to pretrain deep Boltzmann machines. NIPS
Conference, pp. 2447–2455, 2012.

[201] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.
https://arxiv.org/abs/1207.0580

[202] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. NIPS
Workshop, 2014.

[203] R. Hochberg. Matrix Multiplication with CUDA: A basic introduction to the CUDA
programming model. Unpublished manuscript, 2012.
http://www.shodor.org/media/content/petascale/materials/UPModules/
matrixMultiplication/moduleDocument.pdf

[204] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8),
pp. 1735–1785, 1997.

[205] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies, A Field Guide to Dynamical Recurrent
Neural Networks, IEEE Press, 2001.

[206] T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR Conference, pp. 50–57,
1999.

[207] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. National Academy of Sciences of the USA, 79(8), pp. 2554–2558, 1982.

[208] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), pp. 359–366, 1989.

[209] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. IEEE
International Conference on Data Mining, pp. 263–272, 2008.

[210] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic
depth. European Conference on Computer Vision, pp. 646–661, 2016.

[211] G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. arXiv:1608.06993, 2016.
https://arxiv.org/abs/1608.06993

[212] D. Hubel and T. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The
Journal of Physiology, 124(3), pp. 574–591, 1959.

[213] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size.
arXiv:1602.07360, 2016.
https://arxiv.org/abs/1602.07360

[214] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv:1502.03167, 2015.

https://arxiv.org/abs/1207.0580
http://www.shodor.org/media/content/petascale/materials/UPModules/matrixMultiplication/moduleDocument.pdf
http://www.shodor.org/media/content/petascale/materials/UPModules/matrixMultiplication/moduleDocument.pdf
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07360

BIBLIOGRAPHY 471

[215] P. Isola, J. Zhu, T. Zhou, and A. Efros. Image-to-image translation with conditional adver-
sarial networks. arXiv:1611.07004, 2016.
https://arxiv.org/abs/1611.07004

[216] M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and H. Daume III. A Neural Network for
Factoid Question Answering over Paragraphs. EMNLP, 2014.

[217] R. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks,
1(4), pp. 295–307, 1988.

[218] M. Jaderberg, K. Simonyan, and A. Zisserman. Spatial transformer networks. NIPS Confer-
ence, pp. 2017–2025, 2015.

[219] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks –
with an erratum note. German National Research Center for Information Technology GMD
Technical Report, 148(34), 13, 2001.

[220] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy
in wireless communication. Science, 304, pp. 78–80, 2004.

[221] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage ar-
chitecture for object recognition? International Conference on Computer Vision (ICCV),
2009.

[222] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human action
recognition. IEEE TPAMI, 35(1), pp. 221–231, 2013.

[223] Y. Jia et al. Caffe: Convolutional architecture for fast feature embedding. ACM International
Conference on Multimedia, 2014.

[224] C. Johnson. Logistic matrix factorization for implicit feedback data. NIPS Conference, 2014.

[225] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization net-
works for dense captioning. IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4565–4574, 2015.

[226] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. European Conference on Computer Vision, pp. 694–711, 2015.

[227] R. Johnson and T. Zhang. Effective use of word order for text categorization with convolu-
tional neural networks. arXiv:1412.1058, 2014.
https://arxiv.org/abs/1412.1058

[228] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network
architectures. ICML Confererence, pp. 2342–2350, 2015.

[229] L. Kaiser and I. Sutskever. Neural GPUs learn algorithms. arXiv:1511.08228, 2015.
https://arxiv.org/abs/1511.08228

[230] S. Kakade. A natural policy gradient. NIPS Conference, pp. 1057–1063, 2002.

[231] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. EMNLP, 3, 39,
pp. 413, 2013.

[232] H. Kandel, J. Schwartz, T. Jessell, S. Siegelbaum, and A. Hudspeth. Principles of neural
science. McGraw Hill, 2012.

https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1412.1058
https://arxiv.org/abs/1511.08228

472 BIBLIOGRAPHY

[233] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent networks.
arXiv:1506.02078, 2015.
https://arxiv.org/abs/1506.02078

[234] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale
video classification with convolutional neural networks. IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 725–1732, 2014.

[235] A. Karpathy. The unreasonable effectiveness of recurrent neural networks, Blog post, 2015.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

[236] A. Karpathy, J. Johnson, and L. Fei-Fei. Stanford University Class CS321n: Convolutional
neural networks for visual recognition, 2016.
http://cs231n.github.io/

[237] H. J. Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10), pp. 947–954, 1960.

[238] F. Khan, B. Mutlu, and X. Zhu. How do humans teach: On curriculum learning and teaching
dimension. NIPS Conference, pp. 1449–1457, 2011.

[239] T. Kietzmann, P. McClure, and N. Kriegeskorte. Deep Neural Networks In Computational
Neuroscience. bioRxiv, 133504, 2017.
https://www.biorxiv.org/content/early/2017/05/04/133504

[240] Y. Kim. Convolutional neural networks for sentence classification. arXiv:1408.5882, 2014.

[241] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
https://arxiv.org/abs/1412.6980

[242] D. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013.
https://arxiv.org/abs/1312.6114

[243] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv:1609.02907, 2016.
https://arxiv.org/pdf/1609.02907.pdf

[244] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220,
pp. 671–680, 1983.

[245] J. Kivinen and M. Warmuth. The perceptron algorithm vs. winnow: linear vs. logarith-
mic mistake bounds when few input variables are relevant. Computational Learning Theory,
pp. 289–296, 1995.

[246] L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. ECML Conference, pp. 282–
293, 2006.

[247] R. Kohavi and D. Wolpert. Bias plus variance decomposition for zero-one loss functions.
ICML Conference, 1996.

[248] T. Kohonen. The self-organizing map. Neurocomputing, 21(1), pp. 1–6, 1998.

[249] T. Kohonen. Self-organization and associative memory. Springer, 2012.

[250] T. Kohonen. Self-organizing maps, Springer, 2001.

[251] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
Press, 2009.

https://arxiv.org/abs/1506.02078
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://cs231n.github.io/
https://www.biorxiv.org/content/early/2017/05/04/133504
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/pdf/1609.02907.pdf

BIBLIOGRAPHY 473

[252] E. Kong and T. Dietterich. Error-correcting output coding corrects bias and variance. ICML
Conference, pp. 313–321, 1995.

[253] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 4(1), 1, 2010.

[254] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks.
arXiv:1404.5997, 2014.
https://arxiv.org/abs/1404.5997

[255] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. NIPS Conference, pp. 1097–1105. 2012.

[256] M. Kubat. Decision trees can initialize radial-basis function networks. IEEE Transactions on
Neural Networks, 9(5), pp. 813–821, 1998.

[257] A. Kumar et al. Ask me anything: Dynamic memory networks for natural language processing.
ICML Confererence, 2016.

[258] Y. Koren. Collaborative filtering with temporal dynamics. ACM KDD Conference, pp. 447–
455, 2009.

[259] M. Lai. Giraffe: Using deep reinforcement learning to play chess. arXiv:1509.01549, 2015.

[260] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent Convolutional Neural Networks for Text
Classification. AAAI, pp. 2267–2273, 2015.

[261] B. Lake, T. Ullman, J. Tenenbaum, and S. Gershman. Building machines that learn and
think like people. Behavioral and Brain Sciences, pp. 1–101, 2016.

[262] H. Larochelle. Neural Networks (Course). Universite de Sherbrooke, 2013.
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7–
TqghAJ6NAPrNmUBH

[263] H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann ma-
chines. ICML Conference, pp. 536–543, 2008.

[264] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. Learning algorithms for the classifica-
tion restricted Boltzmann machine. Journal of Machine Learning Research, 13, pp. 643–669,
2012.

[265] H. Larochelle and I. Murray. The neural autoregressive distribution estimator. International
Conference on Artificial Intelligence and Statistics, pp. 29–37, 2011.

[266] H. Larochelle and G. E. Hinton. Learning to combine foveal glimpses with a third-order
Boltzmann machine. NIPS Conference, 2010.

[267] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of
deep architectures on problems with many factors of variation. ICML Confererence, pp. 473–
480, 2007.

[268] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks without
residuals. arXiv:1605.07648, 2016.
https://arxiv.org/abs/1605.07648

[269] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: A convolutional
neural-network approach. IEEE Transactions on Neural Networks, 8(1), pp. 98–113, 1997.

https://arxiv.org/abs/1404.5997
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://arxiv.org/abs/1605.07648

474 BIBLIOGRAPHY

[270] Q. Le et al. Building high-level features using large scale unsupervised learning. ICASSP,
2013.

[271] Q. Le, N. Jaitly, and G. Hinton. A simple way to initialize recurrent networks of rectified
linear units. arXiv:1504.00941, 2015.
https://arxiv.org/abs/1504.00941

[272] Q. Le and T. Mikolov. Distributed representations of sentences and documents. ICML Con-
ference, pp. 1188–196, 2014.

[273] Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng, On optimization methods
for deep learning. ICML Conference, pp. 265–272, 2011.

[274] Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical spatio-temporal features for action
recognition with independent subspace analysis. CVPR Conference, 2011.

[275] Y. LeCun. Modeles connexionnistes de l’apprentissage. Doctoral Dissertation, Universite
Paris, 1987.

[276] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. The
Handbook of Brain Theory and Neural Networks, 3361(10), 1995.

[277] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553), pp. 436–444, 2015.

[278] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. in G. Orr and K. Muller
(eds.) Neural Networks: Tricks of the Trade, Springer, 1998.

[279] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), pp. 2278–2324, 1998.

[280] Y. LeCun, S. Chopra, R. M. Hadsell, M. A. Ranzato, and F.-J. Huang. A tutorial on energy-
based learning. Predicting Structured Data, MIT Press, pp. 191–246,, 2006.

[281] Y. LeCun, C. Cortes, and C. Burges. The MNIST database of handwritten digits, 1998.
http://yann.lecun.com/exdb/mnist/

[282] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. NIPS Conference, pp. 598–605,
1990.

[283] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in
vision. IEEE International Symposium on Circuits and Systems, pp. 253–256, 2010.

[284] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area V2. NIPS
Conference, 2008.

[285] H. Lee, R. Grosse, B. Ranganath, and A. Y. Ng. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. ICML Conference, pp. 609–
616, 2009.

[286] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39), pp. 1–40, 2016.
Video at: https://sites.google.com/site/visuomotorpolicy/

[287] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. NIPS
Conference, pp. 2177–2185, 2014.

[288] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons learned
from word embeddings. Transactions of the Association for Computational Linguistics, 3,
pp. 211–225, 2015.

https://arxiv.org/abs/1504.00941
http://yann.lecun.com/exdb/mnist/
https://sites.google.com/site/visuomotorpolicy/

BIBLIOGRAPHY 475

[289] W. Levy and R. Baxter. Energy efficient neural codes. Neural Computation, 8(3), pp. 531–543,
1996.

[290] M. Lewis, D. Yarats, Y. Dauphin, D. Parikh, and D. Batra. Deal or No Deal? End-to-End
Learning for Negotiation Dialogues. arXiv:1706.05125, 2017.
https://arxiv.org/abs/1706.05125

[291] J. Li, W. Monroe, A. Ritter, M. Galley,, J. Gao, and D. Jurafsky. Deep reinforcement learning
for dialogue generation. arXiv:1606.01541, 2016.
https://arxiv.org/abs/1606.01541

[292] L. Li, W. Chu, J. Langford, and R. Schapire. A contextual-bandit approach to personalized
news article recommendation. WWW Conference, pp. 661–670, 2010.

[293] Y. Li. Deep reinforcement learning: An overview. arXiv:1701.07274, 2017.
https://arxiv.org/abs/1701.07274

[294] Q. Liao, K. Kawaguchi, and T. Poggio. Streaming normalization: Towards simpler and more
biologically-plausible normalizations for online and recurrent learning. arXiv:1610.06160,
2016.
https://arxiv.org/abs/1610.06160

[295] D. Liben-Nowell, and J. Kleinberg. The link-prediction problem for social networks. Journal
of the American Society for Information Science and Technology, 58(7), pp. 1019–1031, 2007.

[296] L.-J. Lin. Reinforcement learning for robots using neural networks. Technical Report, DTIC
Document, 1993.

[297] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400, 2013.
https://arxiv.org/abs/1312.4400

[298] Z. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks for
sequence learning. arXiv:1506.00019, 2015.
https://arxiv.org/abs/1506.00019

[299] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image co-attention for visual
question answering. NIPS Conference, pp. 289–297, 2016.

[300] D. Luenberger and Y. Ye. Linear and nonlinear programming, Addison-Wesley, 1984.

[301] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3), pp. 127–149, 2009.

[302] M. Luong, H. Pham, and C. Manning. Effective approaches to attention-based neural machine
translation. arXiv:1508.04025, 2015.
https://arxiv.org/abs/1508.04025

[303] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik. Deep neural nets as a method for
quantitative structure-activity relationships. Journal of Chemical Information and Modeling,
55(2), pp. 263–274, 2015.

[304] W. Maass, T. Natschlager, and H. Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation, 14(11),
pp. 2351–2560, 2002.

[305] L. Maaten and G. E. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9, pp. 2579–2605, 2008.

 https://arxiv.org/abs/1706.05125
https://arxiv.org/abs/1606.01541
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1610.06160
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1508.04025

476 BIBLIOGRAPHY

[306] D. J. MacKay. A practical Bayesian framework for backpropagation networks. Neural Com-
putation, 4(3), pp. 448–472, 1992.

[307] C. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go using deep
convolutional neural networks. International Conference on Learning Representations, 2015.

[308] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them.
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196, 2015.

[309] A. Makhzani and B. Frey. K-sparse autoencoders. arXiv:1312.5663, 2013.
https://arxiv.org/abs/1312.5663

[310] A. Makhzani and B. Frey. Winner-take-all autoencoders. NIPS Conference, pp. 2791–2799,
2015.

[311] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders.
arXiv:1511.05644, 2015.
https://arxiv.org/abs/1511.05644

[312] C. Manning and R. Socher. CS224N: Natural language processing with deep learning. Stanford
University School of Engineering, 2017.
https://www.youtube.com/watch?v=OQQ-W 63UgQ

[313] J. Martens. Deep learning via Hessian-free optimization. ICML Conference, pp. 735–742,
2010.

[314] J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimiza-
tion. ICML Conference, pp. 1033–1040, 2011.

[315] J. Martens, I. Sutskever, and K. Swersky. Estimating the hessian by back-propagating cur-
vature. arXiv:1206.6464, 2016.
https://arxiv.org/abs/1206.6464

[316] J. Martens and R. Grosse. Optimizing Neural Networks with Kronecker-factored Approxi-
mate Curvature. ICML Conference, 2015.

[317] T. Martinetz, S. Berkovich, and K. Schulten. ‘Neural-gas’ network for vector quantization
and its application to time-series prediction. IEEE Transactions on Neural Network, 4(4),
pp. 558–569, 1993.

[318] J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber. Stacked convolutional auto-encoders for
hierarchical feature extraction. Artificial Neural Networks and Machine Learning, pp. 52–59,
2011.

[319] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean
square error. arXiv:1511.054, 2015.
https://arxiv.org/abs/1511.05440

[320] P. McCullagh and J. Nelder. Generalized linear models CRC Press, 1989.

[321] W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4), pp. 115–133, 1943.

[322] G. McLachlan. Discriminant analysis and statistical pattern recognition John Wiley & Sons,
2004.

[323] C. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
definite functions. Constructive Approximations, 2, pp. 11–22, 1986.

https://arxiv.org/abs/1312.5663
https://arxiv.org/abs/1511.05644
https://www.youtube.com/watch?v=OQQ-W_63UgQ
https://arxiv.org/abs/1206.6464
https://arxiv.org/abs/1511.05440

BIBLIOGRAPHY 477

[324] T. Mikolov. Statistical language models based on neural networks. Ph.D. thesis, Brno Uni-
versity of Technology, 2012.

[325] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. arXiv:1301.3781, 2013.
https://arxiv.org/abs/1301.3781

[326] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato. Learning longer memory in
recurrent neural networks. arXiv:1412.7753, 2014.
https://arxiv.org/abs/1412.7753

[327] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. NIPS Conference, pp. 3111–3119, 2013.

[328] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent neural network
based language model. Interspeech, Vol 2, 2010.

[329] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction to WordNet:
An on-line lexical database. International Journal of Lexicography, 3(4), pp. 235–312, 1990.
https://wordnet.princeton.edu/

[330] M. Minsky and S. Papert. Perceptrons. An Introduction to Computational Geometry, MIT
Press, 1969.

[331] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv:1411.1784, 2014.
https://arxiv.org/abs/1411.1784

[332] A. Mnih and G. Hinton. A scalable hierarchical distributed language model. NIPS Conference,
pp. 1081–1088, 2009.

[333] A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive
estimation. NIPS Conference, pp. 2265–2273, 2013.

[334] A. Mnih and Y. Teh. A fast and simple algorithm for training neural probabilistic language
models. arXiv:1206.6426, 2012.
https://arxiv.org/abs/1206.6426

[335] V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518 (7540),
pp. 529–533, 2015.

[336] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning. arXiv:1312.5602., 2013.
https://arxiv.org/abs/1312.5602

[337] V. Mnih et al. Asynchronous methods for deep reinforcement learning. ICML Confererence,
pp. 1928–1937, 2016.

[338] V. Mnih, N. Heess, and A. Graves. Recurrent models of visual attention. NIPS Conference,
pp. 2204–2212, 2014.

[339] H. Mobahi and J. Fisher. A theoretical analysis of optimization by Gaussian continuation.
AAAI Conference, 2015.

[340] G. Montufar. Universal approximation depth and errors of narrow belief networks with dis-
crete units. Neural Computation, 26(7), pp. 1386–1407, 2014.

[341] G. Montufar and N. Ay. Refinements of universal approximation results for deep belief net-
works and restricted Boltzmann machines. Neural Computation, 23(5), pp. 1306–1319, 2011.

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1412.7753
https://wordnet.princeton.edu/
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1206.6426
https://arxiv.org/abs/1312.5602

478 BIBLIOGRAPHY

[342] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Neural
Computation, 1(2), pp. 281–294, 1989.

[343] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning with less data and
less time. Machine Learning, 13(1), pp. 103–130, 1993.

[344] F. Morin and Y. Bengio. Hierarchical Probabilistic Neural Network Language Model. AIS-
TATS, pp. 246–252, 2005.

[345] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley. Deep learning for healthcare:
review, opportunities and challenges. Briefings in Bioinformatics, pp. 1–11, 2017.

[346] M. Müller, M. Enzenberger, B. Arneson, and R. Segal. Fuego - an open-source framework
for board games and Go engine based on Monte-Carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games, 2, pp. 259–270, 2010.

[347] M. Musavi, W. Ahmed, K. Chan, K. Faris, and D. Hummels. On the training of radial basis
function classifiers. Neural Networks, 5(4), pp. 595–603, 1992.

[348] V. Nair and G. Hinton. Rectified linear units improve restricted Boltzmann machines. ICML
Conference, pp. 807–814, 2010.

[349] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using
neural networks. IEEE Transactions on Neural Networks, 1(1), pp. 4–27, 1990.

[350] R. M. Neal. Connectionist learning of belief networks. Artificial intelligence, 1992.

[351] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report CRG-TR-93-1, 1993.

[352] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2), pp. 125–139,
2001.

[353] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27, pp. 372–376, 1983.

[354] A. Ng. Sparse autoencoder. CS294A Lecture notes, 2011.
https://nlp.stanford.edu/∼socherr/sparseAutoencoder 2011new.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder 2011new.pdf

[355] A. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs.
Uncertainity in Artificial Intelligence, pp. 406–415, 2000.

[356] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici.
Beyond short snippets: Deep networks for video classification. IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4694–4702, 2015.

[357] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng. Multimodal deep learning. ICML
Conference, pp. 689–696, 2011.

[358] A. Nguyen, A. Dosovitskiy, J. Yosinski, T., Brox, and J. Clune. Synthesizing the preferred in-
puts for neurons in neural networks via deep generator networks. NIPS Conference, pp. 3387–
3395, 2016.

[359] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.

[360] S. Nowlan and G. Hinton. Simplifying neural networks by soft weight-sharing. Neural Com-
putation, 4(4), pp. 473–493, 1992.

https://nlp.stanford.edu/~socherr/sparseAutoencoder_2011new.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf

BIBLIOGRAPHY 479

[361] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image
representations using convolutional neural networks. IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1717–1724, 2014.

[362] G. Orr and K.-R. Müller (editors). Neural Networks: Tricks of the Trade, Springer, 1998.

[363] M. J. L. Orr. Introduction to radial basis function networks, University of Edinburgh Technical
Report, Centre of Cognitive Science, 1996.
ftp://ftp.cogsci.ed.ac.uk/pub/mjo/intro.ps.Z

[364] M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell. Zero-shot learning with semantic
output codes. NIPS Conference, pp. 1410–1418, 2009.

[365] J. Park and I. Sandberg. Universal approximation using radial-basis-function networks. Neu-
ral Computation, 3(1), pp. 246–257, 1991.

[366] J. Park and I. Sandberg. Approximation and radial-basis-function networks. Neural Compu-
tation, 5(2), pp. 305–316, 1993.

[367] O. Parkhi, A. Vedaldi, and A. Zisserman. Deep Face Recognition. BMVC, 1(3), pp. 6, 2015.

[368] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural net-
works. ICML Conference, 28, pp. 1310–1318, 2013.

[369] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem.
CoRR, abs/1211.5063, 2012.

[370] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature
learning by inpainting. CVPR Conference, 2016.

[371] J. Pennington, R. Socher, and C. Manning. Glove: Global Vectors for Word Representation.
EMNLP, pp. 1532–1543, 2014.

[372] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations.
ACM KDD Conference, pp. 701–710.

[373] C. Peterson and J. Anderson. A mean field theory learning algorithm for neural networks.
Complex Systems, 1(5), pp. 995–1019, 1987.

[374] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4), pp. 682–697, 2008.

[375] F. Pineda. Generalization of back-propagation to recurrent neural networks. Physical Review
Letters, 59(19), 2229, 1987.

[376] E. Polak. Computational methods in optimization: a unified approach. Academic Press, 1971.

[377] L. Polanyi and A. Zaenen. Contextual valence shifters. Computing Attitude and Affect in
Text: Theory and Applications, pp. 1–10, Springer, 2006.

[378] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein sec-
ondary structure in three and eight classes using recurrent neural networks and profiles.
Proteins: Structure, Function, and Bioinformatics, 47(2), pp. 228–235, 2002.

[379] J. Pollack. Recursive distributed representations. Artificial Intelligence, 46(1), pp. 77–105,
1990.

[380] B. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4), pp. 838–855, 1992.

ftp://ftp.cogsci.ed.ac.uk/pub/mjo/intro.ps.Z

480 BIBLIOGRAPHY

[381] D. Pomerleau. ALVINN, an autonomous land vehicle in a neural network. Technical Report,
Carnegie Mellon University, 1989.

[382] B. Poole, J. Sohl-Dickstein, and S. Ganguli. Analyzing noise in autoencoders and deep net-
works. arXiv:1406.1831, 2014.
https://arxiv.org/abs/1406.1831

[383] H. Poon and P. Domingos. Sum-product networks: A new deep architecture. Computer Vision
Workshops (ICCV Workshops), pp. 689–690, 2011.

[384] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep con-
volutional generative adversarial networks. arXiv:1511.06434, 2015.
https://arxiv.org/abs/1511.06434

[385] A. Rahimi and B. Recht. Random features for large-scale kernel machines. NIPS Conference,
pp. 1177–1184, 2008.

[386] M.’ A. Ranzato, Y-L. Boureau, and Y. LeCun. Sparse feature learning for deep belief net-
works. NIPS Conference, pp. 1185–1192, 2008.

[387] M.’ A. Ranzato, F. J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. Computer Vision and Pattern
Recognition, pp. 1–8, 2007.

[388] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning
with ladder networks. NIPS Conference, pp. 3546–3554, 2015.

[389] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification us-
ing binary convolutional neural networks. European Conference on Computer Vision, pp. 525–
542, 2016.

[390] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: an as-
tounding baseline for recognition. IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 806–813, 2014.

[391] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–
788, 2016.

[392] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial
text to image synthesis. ICML Conference, pp. 1060–1069, 2016.

[393] S. Reed and N. de Freitas. Neural programmer-interpreters. arXiv:1511.06279, 2015.

[394] R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora. LREC
2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50, 2010.
https://radimrehurek.com/gensim/index.html

[395] M. Ren, R. Kiros, and R. Zemel. Exploring models and data for image question answering.
NIPS Conference, pp. 2953–2961, 2015.

[396] S. Rendle. Factorization machines. IEEE ICDM Conference, pp. 995–100, 2010.

[397] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. ICML Conference, pp. 833–840, 2011.

[398] S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller. The manifold tangent classifier.
NIPS Conference, pp. 2294–2302, 2011.

https://arxiv.org/abs/1406.1831
https://arxiv.org/abs/1511.06434
https://radimrehurek.com/gensim/index.html

BIBLIOGRAPHY 481

[399] D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv:1401.4082, 2014.
https://arxiv.org/abs/1401.4082

[400] R. Rifkin. Everything old is new again: a fresh look at historical approaches in machine
learning. Ph.D. Thesis, Massachusetts Institute of Technology, 2002.

[401] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning
Research, 5, pp. 101–141, 2004.

[402] V. Romanuke. Parallel Computing Center (Khmelnitskiy, Ukraine) represents an ensemble
of 5 convolutional neural networks which performs on MNIST at 0.21 percent error rate.
Retrieved 24 November 2016.

[403] B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning.
ICML Confererence, pp. 2152–2161, 2015.

[404] X. Rong. word2vec parameter learning explained. arXiv:1411.2738, 2014.
https://arxiv.org/abs/1411.2738

[405] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 65(6), 386, 1958.

[406] D. Ruck, S. Rogers, and M. Kabrisky. Feature selection using a multilayer perceptron. Journal
of Neural Network Computing, 2(2), pp. 40–88, 1990.

[407] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE TPAMI,
20(1), pp. 23–38, 1998.

[408] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating
errors. Nature, 323 (6088), pp. 533–536, 1986.

[409] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by back-
propagating errors. In Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, pp. 318–362, 1986.

[410] D. Rumelhart, D. Zipser, and J. McClelland. Parallel Distributed Processing, MIT Press,
pp. 151–193, 1986.

[411] D. Rumelhart and D. Zipser. Feature discovery by competitive learning. Cognitive science,
9(1), pp. 75–112, 1985.

[412] G. Rummery and M. Niranjan. Online Q-learning using connectionist systems (Vol. 37).
University of Cambridge, Department of Engineering, 1994.

[413] A. M. Rush, S. Chopra, and J. Weston. A Neural Attention Model for Abstractive Sentence
Summarization. arXiv:1509.00685, 2015.
https://arxiv.org/abs/1509.00685

[414] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative
filtering. ICML Confererence, pp. 791–798, 2007.

[415] R. Salakhutdinov and G. Hinton. Semantic Hashing. SIGIR workshop on Information Re-
trieval and applications of Graphical Models, 2007.

[416] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One shot learning with
memory-augmented neural networks. arXiv: 1605:06065, 2016.
https://www.arxiv.org/pdf/1605.06065.pdf

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1411.2738
https://arxiv.org/abs/1509.00685
https://www.arxiv.org/pdf/1605.06065.pdf

482 BIBLIOGRAPHY

[417] R. Salakhutdinov and G. Hinton. Deep Boltzmann machines. Artificial Intelligence and Statis-
tics, pp. 448–455, 2009.

[418] R. Salakhutdinov and H. Larochelle. Efficient Learning of Deep Boltzmann Machines. AIS-
TATs, pp. 693–700, 2010.

[419] T. Salimans and D. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. NIPS Conference, pp. 901–909, 2016.

[420] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. NIPS Conference, pp. 2234–2242, 2016.

[421] A. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3, pp. 210–229, 1959.

[422] T Sanger. Neural network learning control of robot manipulators using gradually increasing
task difficulty. IEEE Transactions on Robotics and Automation, 10(3), 1994.

[423] H. Sarimveis, A. Alexandridis, and G. Bafas. A fast training algorithm for RBF networks
based on subtractive clustering. Neurocomputing, 51, pp. 501–505, 2003.

[424] W. Saunders, G. Sastry, A. Stuhlmueller, and O. Evans. Trial without Error: Towards Safe
Reinforcement Learning via Human Intervention. arXiv:1707.05173, 2017.
https://arxiv.org/abs/1707.05173

[425] A. Saxe, P. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsu-
pervised feature learning. ICML Confererence, pp. 1089–1096, 2011.

[426] A. Saxe, J. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. arXiv:1312.6120, 2013.

[427] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences,
3(6), pp. 233–242, 1999.

[428] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.
arXiv:1511.05952, 2015.
https://arxiv.org/abs/1511.05952

[429] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. ICML Confererence, pp.
343–351, 2013.

[430] B. Schölkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik. Comparing
support vector machines with Gaussian kernels to radial basis function classifiers. IEEE
Transactions on Signal Processing, 45(11), pp. 2758–2765, 1997.

[431] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61, pp. 85–
117, 2015.

[432] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
ICML Conference, 2015.

[433] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. ICLR Conference, 2016.

[434] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11), pp. 2673–2681, 1997.

[435] H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation, 12(8), pp. 1869–
1887, 2000.

 https://arxiv.org/abs/1707.05173
https://arxiv.org/abs/1511.05952

BIBLIOGRAPHY 483

[436] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet collaborative
filtering. WWW Conference, pp. 111–112, 2015.

[437] T. J. Sejnowski. Higher-order Boltzmann machines. AIP Conference Proceedings, 15(1),
pp. 298–403, 1986.

[438] G. Seni and J. Elder. Ensemble methods in data mining: Improving accuracy through com-
bining predictions. Morgan and Claypool, 2010.

[439] I. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio. A hierar-
chical latent variable encoder-decoder model for generating dialogues. AAAI, pp. 3295–3301,
2017.

[440] I. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Building end-to-end dialogue
systems using generative hierarchical neural network models. AAAI Conference, pp. 3776–
3784, 2016.

[441] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.
https://arxiv.org/abs/1312.6229

[442] A. Shashua. On the equivalence between the support vector machine for classification and
sparsified Fisher’s linear discriminant. Neural Processing Letters, 9(2), pp. 129–139, 1999.

[443] J. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical Report, CMU-CS-94-125, Carnegie-Mellon University, 1994.

[444] H. Siegelmann and E. Sontag. On the computational power of neural nets. Journal of Com-
puter and System Sciences, 50(1), pp. 132–150, 1995.

[445] D. Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature,
529.7587, pp. 484–489, 2016.

[446] D. Silver et al. Mastering the game of go without human knowledge. Nature, 550.7676,
pp. 354–359, 2017.

[447] D. Silver et al. Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv, 2017.
https://arxiv.org/abs/1712.01815

[448] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-
gradient solver for SVM. Mathematical Programming, 127(1), pp. 3–30, 2011.

[449] E. Shelhamer, J., Long, and T. Darrell. Fully convolutional networks for semantic segmenta-
tion. IEEE TPAMI, 39(4), pp. 640–651, 2017.

[450] J. Sietsma and R. Dow. Creating artificial neural networks that generalize. Neural Networks,
4(1), pp. 67–79, 1991.

[451] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
1986.

[452] P. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks
applied to visual document analysis. ICDAR, pp. 958–962, 2003.

[453] H. Simon. The Sciences of the Artificial. MIT Press, 1996.

https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1712.01815

484 BIBLIOGRAPHY

[454] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv:1409.1556, 2014.
https://arxiv.org/abs/1409.1556

[455] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in
videos. NIPS Conference, pp. 568–584, 2014.

[456] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv:1312.6034, 2013.

[457] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations. pp. 194–281, 1986.

[458] J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimization of machine learning
algorithms. NIPS Conference, pp. 2951–2959, 2013.

[459] R. Socher, C. Lin, C. Manning, and A. Ng. Parsing natural scenes and natural language with
recursive neural networks. ICML Confererence, pp. 129–136, 2011.

[460] R. Socher, J. Pennington, E. Huang, A. Ng, and C. Manning. Semi-supervised recursive
autoencoders for predicting sentiment distributions. Empirical Methods in Natural Language
Processing (EMNLP), pp. 151–161, 2011.

[461] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. Empirical Methods in
Natural Language Processing (EMNLP), p. 1642, 2013.

[462] Socher, Richard, Milind Ganjoo, Christopher D. Manning, and Andrew Ng. Zero-shot learning
through cross-modal transfer. NIPS Conference, pp. 935–943, 2013.

[463] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep condi-
tional generative models. NIPS Conference, 2015.

[464] R. Solomonoff. A system for incremental learning based on algorithmic probability. Sixth
Israeli Conference on Artificial Intelligence, Computer Vision and Pattern Recognition,
pp. 515–527, 1994.

[465] Y. Song, A. Elkahky, and X. He. Multi-rate deep learning for temporal recommendation.
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 909–
912, 2016.

[466] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. arXiv:1412.6806, 2014.
https://arxiv.org/abs/1412.6806

[467] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1), pp. 1929–1958, 2014.

[468] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines.
NIPS Conference, pp. 2222–2230, 2012.

[469] N. Srivastava, R. Salakhutdinov, and G. Hinton. Modeling documents with deep Boltzmann
machines. Uncertainty in Artificial Intelligence, 2013.

[470] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv:1505.00387, 2015.
https://arxiv.org/abs/1505.00387

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1505.00387

BIBLIOGRAPHY 485

[471] A. Storkey. Increasing the capacity of a Hopfield network without sacrificing functionality.
Artificial Neural Networks, pp. 451–456, 1997.

[472] F. Strub and J. Mary. Collaborative filtering with stacked denoising autoencoders and sparse
inputs. NIPS Workshop on Machine Learning for eCommerce, 2015.

[473] S. Sukhbaatar, J. Weston, and R. Fergus. End-to-end memory networks. NIPS Conference,
pp. 2440–2448, 2015.

[474] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face recognition with very deep neural
networks. arXiv:1502.00873, 2013.
https://arxiv.org/abs/1502.00873

[475] Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000
classes. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898, 2014.

[476] M. Sundermeyer, R. Schluter, and H. Ney. LSTM neural networks for language modeling.
Interspeech, 2010.

[477] M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney. Translation modeling with bidirec-
tional recurrent neural networks. EMNLP, pp. 14–25, 2014.

[478] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. ICML Confererence, pp. 1139–1147, 2013.

[479] I. Sutskever and T. Tieleman. On the convergence properties of contrastive divergence. In-
ternational Conference on Artificial Intelligence and Statistics, pp. 789–795, 2010.

[480] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
NIPS Conference, pp. 3104–3112, 2014.

[481] I. Sutskever and V. Nair. Mimicking Go experts with convolutional neural networks. Inter-
national Conference on Artificial Neural Networks, pp. 101–110, 2008.

[482] R. Sutton. Learning to Predict by the Method of Temporal Differences, Machine Learning,
3, pp. 9–44, 1988.

[483] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[484] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. NIPS Conference, pp. 1057–1063, 2000.

[485] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–9, 2015.

[486] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception archi-
tecture for computer vision. IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2818–2826, 2016.

[487] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning. AAAI Conference, pp. 4278–4284, 2017.

[488] G. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal
features. European Conference on Computer Vision, pp. 140–153, 2010.

[489] G. Taylor, G. Hinton, and S. Roweis. Modeling human motion using binary latent variables.
NIPS Conference, 2006.

https://arxiv.org/abs/1502.00873

486 BIBLIOGRAPHY

[490] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selec-
tion and hyperparameter optimization of classification algorithms. ACM KDD Conference,
pp. 847–855, 2013.

[491] T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood
gradient. ICML Conference, pp. 1064–1071, 2008.

[492] G. Tesauro. Practical issues in temporal difference learning. Advances in NIPS Conference,
pp. 259–266, 1992.

[493] G. Tesauro. Td-gammon: A self-teaching backgammon program. Applications of Neural Net-
works, Springer, pp. 267–285, 1992.

[494] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM,
38(3), pp. 58–68, 1995.

[495] Y. Teh and G. Hinton. Rate-coded restricted Boltzmann machines for face recognition. NIPS
Conference, 2001.

[496] S. Thrun. Learning to play the game of chess NIPS Conference, pp. 1069–1076, 1995.

[497] S. Thrun and L. Platt. Learning to learn. Springer, 2012.

[498] Y. Tian, Q. Gong, W. Shang, Y. Wu, and L. Zitnick. ELF: An extensive, lightweight and
flexible research platform for real-time strategy games. arXiv:1707.01067, 2017.
https://arxiv.org/abs/1707.01067

[499] A. Tikhonov and V. Arsenin. Solution of ill-posed problems. Winston and Sons, 1977.

[500] D. Tran et al. Learning spatiotemporal features with 3d convolutional networks. IEEE In-
ternational Conference on Computer Vision, 2015.

[501] R. Uijlings, A. van de Sande, T. Gevers, and M. Smeulders. Selective search for object
recognition. International Journal of Computer Vision, 104(2), 2013.

[502] H. Valpola. From neural PCA to deep unsupervised learning. Advances in Independent Com-
ponent Analysis and Learning Machines, pp. 143–171, Elsevier, 2015.

[503] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for matlab. ACM In-
ternational Conference on Multimedia, pp. 689–692, 2005.
http://www.vlfeat.org/matconvnet/

[504] V. Veeriah, N. Zhuang, and G. Qi. Differential recurrent neural networks for action recogni-
tion. IEEE International Conference on Computer Vision, pp. 4041–4049, 2015.

[505] A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively
shallow networks. NIPS Conference, pp. 550–558, 2016.

[506] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust
features with denoising autoencoders. ICML Confererence, pp. 1096–1103, 2008.

[507] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra. Matching networks for one-shot learn-
ing. NIPS Conference, pp. 3530–3638, 2016.

[508] O. Vinyals and Q. Le. A Neural Conversational Model. arXiv:1506.05869, 2015.
https://arxiv.org/abs/1506.05869

[509] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption
generator. CVPR Conference, pp. 3156–3164, 2015.

https://arxiv.org/abs/1707.01067
http://www.vlfeat.org/matconvnet/
https://arxiv.org/abs/1506.05869

BIBLIOGRAPHY 487

[510] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static
images using variational autoencoders. European Conference on Computer Vision, pp. 835–
851, 2016.

[511] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural networks
using dropconnect. ICML Conference, pp. 1058–1066, 2013.

[512] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. ACM KDD Conference,
pp. 1225–1234, 2016.

[513] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recommender systems.
ACM KDD Conference, pp. 1235–1244, 2015.

[514] L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional
descriptors. IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314,
2015.

[515] S. Wang, C. Aggarwal, and H. Liu. Using a random forest to inspire a neural network and
improving on it. SIAM Conference on Data Mining, 2017.

[516] S. Wang, C. Aggarwal, and H. Liu. Randomized feature engineering as a fast and accurate
alternative to kernel methods. ACM KDD Conference, 2017.

[517] T. Wang, D. Wu, A. Coates, and A. Ng. End-to-end text recognition with convolutional
neural networks. International Conference on Pattern Recognition, pp. 3304–3308, 2012.

[518] X. Wang and A. Gupta. Generative image modeling using style and structure adversarial
networks. ECCV, 2016.

[519] C. J. H. Watkins. Learning from delayed rewards. PhD Thesis, King’s College, Cambridge,
1989.

[520] C. J. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3–4), pp. 279–292, 1992.

[521] K. Weinberger, B. Packer, and L. Saul. Nonlinear Dimensionality Reduction by Semidefinite
Programming and Kernel Matrix Factorization. AISTATS, 2005.

[522] M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an applica-
tion to information retrieval. NIPS Conference, pp. 1481–1488, 2005.

[523] A. Wendemuth. Learning the unlearnable. Journal of Physics A: Math. Gen., 28, pp. 5423–
5436, 1995.

[524] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University, 1974.

[525] P. Werbos. The roots of backpropagation: from ordered derivatives to neural networks and
political forecasting (Vol. 1). John Wiley and Sons, 1994.

[526] P. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10), pp. 1550–1560, 1990.

[527] J. Weston, A. Bordes, S. Chopra, A. Rush, B. van Merrienboer, A. Joulin, and T. Mikolov.
Towards ai-complete question answering: A set of pre-requisite toy tasks. arXiv:1502.05698,
2015.
https://arxiv.org/abs/1502.05698

[528] J. Weston, S. Chopra, and A. Bordes. Memory networks. ICLR, 2015.

https://arxiv.org/abs/1502.05698

488 BIBLIOGRAPHY

[529] J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-
98-04, Department of Computer Science, Royal Holloway, University of London, May, 1998.

[530] D. Wettschereck and T. Dietterich. Improving the performance of radial basis function net-
works by learning center locations. NIPS Conference, pp. 1133–1140, 1992.

[531] B. Widrow and M. Hoff. Adaptive switching circuits. IRE WESCON Convention Record,
4(1), pp. 96–104, 1960.

[532] S. Wieseler and H. Ney. A convergence analysis of log-linear training. NIPS Conference,
pp. 657–665, 2011.

[533] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3–4), pp. 229–256, 1992.

[534] C. Wu, A. Ahmed, A. Beutel, A. Smola, and H. Jing. Recurrent recommender networks.
ACM International Conference on Web Search and Data Mining, pp. 495–503, 2017.

[535] Y. Wu, C. DuBois, A. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n
recommender systems. Web Search and Data Mining, pp. 153–162, 2016.

[536] Z. Wu. Global continuation for distance geometry problems. SIAM Journal of Optimization,
7, pp. 814–836, 1997.

[537] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for
deep neural networks. arXiv:1611.05431, 2016.
https://arxiv.org/abs/1611.05431

[538] E. Xing, R. Yan, and A. Hauptmann. Mining associated text and images with dual-wing
harmoniums. Uncertainty in Artificial Intelligence, 2005.

[539] C. Xiong, S. Merity, and R. Socher. Dynamic memory networks for visual and textual question
answering. ICML Confererence, pp. 2397–2406, 2016.

[540] K. Xu et al. Show, attend, and tell: Neural image caption generation with visual attention.
ICML Confererence, 2015.

[541] O. Yadan, K. Adams, Y. Taigman, and M. Ranzato. Multi-gpu training of convnets.
arXiv:1312.5853, 2013.
https://arxiv.org/abs/1312.5853

[542] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question
answering. IEEE Conference on Computer Vision and Pattern Recognition, pp. 21–29, 2016.

[543] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9), pp. 1423–1447,
1999.

[544] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv:1511.07122, 2015.
https://arxiv.org/abs/1511.07122

[545] H. Yu and B. Wilamowski. Levenberg–Marquardt training. Industrial Electronics Handbook,
5(12), 1, 2011.

[546] L. Yu, W. Zhang, J. Wang, and Y. Yu. SeqGAN: Sequence Generative Adversarial Nets with
Policy Gradient. AAAI Conference, pp. 2852–2858, 2017.

https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1312.5853
https://arxiv.org/abs/1511.07122

BIBLIOGRAPHY 489

[547] W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H. Chen, and Wei Wang. NetWalk: A flexible deep
embedding approach for anomaly Detection in dynamic networks, ACM KDD Conference,
2018.

[548] W. Yu, C. Zheng, W. Cheng, C. Aggarwal, D. Song, B. Zong, H. Chen, and W. Wang.
Learning deep network representations with adversarially regularized autoencoders. ACM
KDD Conference, 2018.

[549] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv:1605.07146, 2016.
https://arxiv.org/abs/1605.07146

[550] W. Zaremba and I. Sutskever. Reinforcement learning neural turing machines.
arXiv:1505.00521, 2015.

[551] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus. Learning simple algorithms from exam-
ples. ICML Confererence, pp. 421–429, 2016.

[552] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization.
arXiv:1409.2329, 2014.

[553] M. Zeiler. ADADELTA: an adaptive learning rate method. arXiv:1212.5701, 2012.
https://arxiv.org/abs/1212.5701

[554] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional networks. Computer Vision
and Pattern Recognition (CVPR), pp. 2528–2535, 2010.

[555] M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level
feature learning. IEEE International Conference on Computer Vision (ICCV)—, pp. 2018–
2025, 2011.

[556] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. European
Conference on Computer Vision, Springer, pp. 818–833, 2013.

[557] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. arXiv:1611.03530.
https://arxiv.org/abs/1611.03530

[558] D. Zhang, Z.-H. Zhou, and S. Chen. Non-negative matrix factorization on kernels. Trends in
Artificial Intelligence, pp. 404–412, 2006.

[559] L. Zhang, C. Aggarwal, and G.-J. Qi. Stock Price Prediction via Discovering Multi-Frequency
Trading Patterns. ACM KDD Conference, 2017.

[560] S. Zhang, L. Yao, and A. Sun. Deep learning based recommender system: A survey and new
perspectives. arXiv:1707.07435, 2017.
https://arxiv.org/abs/1707.07435

[561] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classifica-
tion. NIPS Conference, pp. 649–657, 2015.

[562] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network.
arXiv:1609.03126, 2016.
https://arxiv.org/abs/1609.03126

[563] V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating structured queries from natural
language using reinforcement learning. arXiv:1709.00103, 2017.
https://arxiv.org/abs/1709.00103

https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1709.00103

490 BIBLIOGRAPHY

[564] C. Zhou and R. Paffenroth. Anomaly detection with robust deep autoencoders. ACM KDD
Conference, pp. 665–674, 2017.

[565] M. Zhou, Z. Ding, J. Tang, and D. Yin. Micro Behaviors: A new perspective in e-commerce
recommender systems. WSDM Conference, 2018.

[566] Z.-H. Zhou. Ensemble methods: Foundations and algorithms. CRC Press, 2012.

[567] Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be better than
all. Artificial Intelligence, 137(1–2), pp. 239–263, 2002.

[568] C. Zitnick and P. Dollar. Edge Boxes: Locating object proposals from edges. ECCV, pp. 391–
405, 2014.

[569] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv:1611.01578, 2016.
https://arxiv.org/abs/1611.01578

[570] https://deeplearning4j.org/

[571] http://caffe.berkeleyvision.org/

[572] http://torch.ch/

[573] http://deeplearning.net/software/theano/

[574] https://www.tensorflow.org/

[575] https://keras.io/

[576] https://lasagne.readthedocs.io/en/latest/

[577] http://www.netflixprize.com/community/topic 1537.html

[578] http://deeplearning.net/tutorial/lstm.html

[579] https://arxiv.org/abs/1609.08144

[580] https://github.com/karpathy/char-rnn

[581] http://www.image-net.org/

[582] http://www.image-net.org/challenges/LSVRC/

[583] https://www.cs.toronto.edu/∼kriz/cifar.html

[584] http://code.google.com/p/cuda-convnet/

[585] http://caffe.berkeleyvision.org/gathered/examples/feature extraction.html

[586] https://github.com/caffe2/caffe2/wiki/Model-Zoo

[587] http://scikit-learn.org/

[588] http://clic.cimec.unitn.it/composes/toolkit/

[589] https://github.com/stanfordnlp/GloVe

[590] https://deeplearning4j.org/

[591] https://code.google.com/archive/p/word2vec/

https://arxiv.org/abs/1611.01578
https://deeplearning4j.org/
http://caffe.berkeleyvision.org/
http://torch.ch/
 http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://keras.io/
https://lasagne.readthedocs.io/en/latest/
http://www.netflixprize.com/community/topic_1537.html
http://deeplearning.net/tutorial/lstm.html
https://arxiv.org/abs/1609.08144
https://github.com/karpathy/char-rnn
http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/
https://www.cs.toronto.edu/~kriz/cifar.html
http://code.google.com/p/cuda-convnet/
http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html
https://github.com/caffe2/caffe2/wiki/Model-Zoo
http://scikit-learn.org/
http://clic.cimec.unitn.it/composes/toolkit/
https://github.com/stanfordnlp/GloVe
https://deeplearning4j.org/
https://code.google.com/archive/p/word2vec/

BIBLIOGRAPHY 491

[592] https://www.tensorflow.org/tutorials/word2vec/

[593] https://github.com/aditya-grover/node2vec

[594] https://www.wikipedia.org/

[595] https://github.com/caglar/autoencoders

[596] https://github.com/y0ast

[597] https://github.com/fastforwardlabs/vae-tf/tree/master

[598] https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/
lesson2-1.html

[599] https://www.ibm.com/us-en/marketplace/deep-learning-platform

[600] https://www.coursera.org/learn/neural-networks

[601] https://archive.ics.uci.edu/ml/datasets.html

[602] http://www.bbc.com/news/technology-35785875

[603] https://deepmind.com/blog/exploring-mysteries-alphago/

[604] http://selfdrivingcars.mit.edu/

[605] http://karpathy.github.io/2016/05/31/rl/

[606] https://github.com/hughperkins/kgsgo-dataset-preprocessor

[607] https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/

[608] https://qz.com/639952/
googles-ai-won-the-game-go-by-defying-millennia-of-basic-human-instinct/

[609] http://www.mujoco.org/

[610] https://sites.google.com/site/gaepapersupp/home

[611] https://drive.google.com/file/d/0B9raQzOpizn1TkRIa241ZnBEcjQ/view

[612] https://www.youtube.com/watch?v=1L0TKZQcUtA&list=PLrAXtmErZgOeiKm4sgNOkn–
GvNjby9efdf

[613] https://openai.com/

[614] http://jaberg.github.io/hyperopt/

[615] http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

[616] https://github.com/JasperSnoek/spearmint

[617] https://deeplearning4j.org/lstm

[618] http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[619] https://www.youtube.com/watch?v=2pWv7GOvuf0

[620] https://gym.openai.com

[621] https://universe.openai.com

https://www.tensorflow.org/tutorials/word2vec/
https://github.com/aditya-grover/node2vec
https://www.wikipedia.org/
https://github.com/caglar/autoencoders
https://github.com/y0ast
https://github.com/fastforwardlabs/vae-tf/tree/master
https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html
https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html
https://www.ibm.com/us-en/marketplace/deep-learning-platform
https://www.coursera.org/learn/neural-networks
https://archive.ics.uci.edu/ml/datasets.html
http://www.bbc.com/news/technology-35785875
https://deepmind.com/blog/exploring-mysteries-alphago/
http://selfdrivingcars.mit.edu/
http://karpathy.github.io/2016/05/31/rl/
https://github.com/hughperkins/kgsgo-dataset-preprocessor
https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/
https://qz.com/639952/
googles-ai-won-the-game-go-by-defying-millennia-of-basic-human-instinct/
http://www.mujoco.org/
https://sites.google.com/site/gaepapersupp/home
https://drive.google.com/file/d/0B9raQzOpizn1TkRIa241ZnBEcjQ/view
https://www.youtube.com/watch?v=1L0TKZQcUtA&list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf
https://openai.com/
http://jaberg.github.io/hyperopt/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/JasperSnoek/spearmint
https://deeplearning4j.org/lstm
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://gym.openai.com
https://universe.openai.com

492 BIBLIOGRAPHY

[622] https://github.com/facebookresearch/ParlAI

[623] https://github.com/openai/baselines

[624] https://github.com/carpedm20/deep-rl-tensorflow

[625] https://github.com/matthiasplappert/keras-rl

[626] http://apollo.auto/

[627] https://github.com/Element-Research/rnn/blob/master/examples/

[628] https://github.com/lmthang/nmt.matlab

[629] https://github.com/carpedm20/NTM-tensorflow

[630] https://github.com/camigord/Neural-Turing-Machine

[631] https://github.com/SigmaQuan/NTM-Keras

[632] https://github.com/snipsco/ntm-lasagne

[633] https://github.com/kaishengtai/torch-ntm

[634] https://github.com/facebook/MemNN

[635] https://github.com/carpedm20/MemN2N-tensorflow

[636] https://github.com/YerevaNN/Dynamic-memory-networks-in-Theano

[637] https://github.com/carpedm20/DCGAN-tensorflow

[638] https://github.com/carpedm20

[639] https://github.com/jacobgil/keras-dcgan

[640] https://github.com/wiseodd/generative-models

[641] https://github.com/paarthneekhara/text-to-image

[642] http://horatio.cs.nyu.edu/mit/tiny/data/

[643] https://developer.nvidia.com/cudnn

[644] http://www.nvidia.com/object/machine-learning.html

[645] https://developer.nvidia.com/deep-learning-frameworks

https://github.com/facebookresearch/ParlAI
https://github.com/openai/baselines
https://github.com/carpedm20/deep-rl-tensorflow
https://github.com/matthiasplappert/keras-rl
http://apollo.auto/
https://github.com/Element-Research/rnn/blob/master/examples/
https://github.com/lmthang/nmt.matlab
https://github.com/carpedm20/NTM-tensorflow
https://github.com/camigord/Neural-Turing-Machine
https://github.com/SigmaQuan/NTM-Keras
https://github.com/snipsco/ntm-lasagne
https://github.com/kaishengtai/torch-ntm
https://github.com/facebook/MemNN
https://github.com/carpedm20/MemN2N-tensorflow
https://github.com/YerevaNN/Dynamic-memory-networks-in-Theano
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20
https://github.com/jacobgil/keras-dcgan
https://github.com/wiseodd/generative-models
https://github.com/paarthneekhara/text-to-image
http://horatio.cs.nyu.edu/mit/tiny/data/
https://developer.nvidia.com/cudnn
http://www.nvidia.com/object/machine-learning.html
https://developer.nvidia.com/deep-learning-frameworks

Index

L1-Regularization, 183
L2-Regularization, 182
ǫ-Greedy Algorithm, 376
t-SNE, 80

AdaDelta Algorithm, 139
AdaGrad, 138
Adaline, 60
Adam Algorithm, 140
Adaptive Linear Neuron, 60
AlexNet, 317, 339
Alpha Zero, 403
AlphaGo, 374, 399
AlphaGo Zero, 402
ALVINN Self-Driving System, 410
Annealed Importance Sampling, 268
Ant Hypothesis, 373
Apollo Self-Driving, 416
Associative Memory, 238, 437
Associative Recall, 238, 437
Atari, 374
Attention Layer, 426
Attention Mechanisms, 45, 416, 421
Autoencoder: Convolutional, 357
Autoencoders, 70, 71
Automatic Differentiation, 163
Autoregressive Model, 306
Average-Pooling, 327

Backpropagation, 21, 111
Backpropagation through Time, 40, 280
Bagging, 186
Batch Normalization, 152

BFGS, 148, 164
Bidirectional Recurrent Networks, 283, 305
Boosting, 186
BPTT, 40, 280, 281
Bucket-of-Models, 188

Caffe, 50, 165, 311
CBOW Model, 87
CGAN, 444
Chatbots, 407
CIFAR-10, 318, 370
Competitive Learning, 449
Computational Graph, 20
Conditional Generative Adversarial Net-

work, 444
Conditional Variational Autoencoders, 212
Conjugate Gradient Method, 145
Connectionist Temporal Classification, 309
Content-Addressable Memory, 238, 434
Continuation Learning, 199
Continuous Action Spaces, 397
Continuous Bag-of-Words Model, 87
Contractive Autoencoder, 82, 102, 204
Contrastive Divergence, 250
Conversational Systems, 407
Convolution Operation, 318
Convolutional Autoencoder, 357
Convolutional Filters, 319
Convolutional Neural Networks, 40, 298, 315
Covariate Shift, 152
Credit-Assignment Problem, 379
Cross-Entropy Loss, 15
Cross-Validation, 180

© Springer International Publishing AG, part of Springer Nature 2018
C. C. Aggarwal, Neural Networks and Deep Learning,
https://doi.org/10.1007/978-3-319-94463-0

493

494 INDEX

cuDNN, 158
Curriculum Learning, 199

Data Augmentation, 337
Data Parallelism, 159
DCGAN, 442
De-noising Autoencoder, 82, 202
Deconvolution, 357
Deep Belief Network, 267
Deep Boltzmann Machine, 267
DeepLearning4j, 102
DeepWalk, 100
Deformable Parts Model, 369
Delta Rule, 60
DenseNet, 350
Dialog Systems, 407
Differentiable Neural Computer, 429
Dilated Convolution, 362, 369
Distributional Shift, 414
Doc2vec, 102
Double Backpropagation, 215
DropConnect, 188, 190
Dropout, 188

Early Stopping, 27, 192
Echo-State Networks, 290, 305, 311
EdgeBoxes, 366
Elman Network, 310
Empirical Risk Minimization, 152
Energy-Efficient Computing, 455
Ensembles, 28, 186
Experience Replay, 386
Exploding Gradient Problem, 28, 129
External Memory, 45, 429

Face Recognition, 369
FC7 Features, 340, 351
Feature Co-Adaptation, 190
Feature Preprocessing, 125
Feed-forward Networks, 4
Filters for Convolution, 319
Finite Difference Methods, 392
Fisher’s Linear Discriminant, 59
FractalNet, 368
Fractional Convolution, 335
Fractionally Strided Convolution, 362
Full-Padding, 323
Fully Convolutional Networks, 359

GAN, 438
Gated Recurrent Unit, 295
Generalization Error, 172
Generative Adversarial Networks, 45, 82,

213, 438
Gibbs Sampling, 244
Glorot Initialization, 129
GloVe, 102
GoogLeNet, 345, 368
GPUs, 157
Gradient Clipping, 142, 288
Gradient-Based Visualization, 353
Graphics Processor Units, 157
GRU, 295
Guided Backpropagation, 355

Half-Padding, 323
Handwriting Recognition, 309
Hard Attention, 429
Hard Tanh Activation, 13
Harmonium, 247
Hash-Based Compression, 161
Hebbian Learning Rule, 240
Helmholtz Machine, 269
Hessian, 143
Hessian-free Optimization, 145, 288
Hierarchical Feature Engineering, 331
Hierarchical Softmax, 69
Hinge Loss, 10, 15
Hold-Out, 180
Hopfield Networks, 236, 237
Hubel and Wiesel, 316
Hybrid Parallelism, 160
Hyperbolic Tangent Activation, 12
Hyperopt, 126, 165
Hyperparameter Parallelism, 159

Identity Activation, 12
ILSVRC, 47, 368
Image Captioning, 298
Image Retrieval, 363
ImageNet, 47, 316
ImageNet Competition, 47, 316
Imitation Learning, 410
Inception Architecture, 345
Information Extraction, 272
Interpolation, 228

INDEX 495

Keras, 50
Kernel Matrix Factorization, 77
Kernels for Convolution, 319
Kohonen Self-Organizing Map, 450

L-BFGS, 148, 149, 164
Ladder Networks, 215
Lasagne, 50
Layer Normalization, 156, 288, 289
Leaky ReLU, 133
Learning Rate Decay, 135
Learning-to-Learn, 454
Least Squares Regression, 58
Leave-One-Out Cross-Validation, 180
LeNet-5, 40, 49, 316
Levenberg–Marquardt Algorithm, 164
Linear Activation, 12
Linear Conjugate Gradient Method, 148
Liquid-State Machines, 290, 311
Local Response Normalization, 330
Logistic Regression, 61
Logistic Loss, 15
Logistic Matrix Factorization, 76
Logistic Regression, 15
Loss Function, 7

Machine Translation, 299, 425
Mark I Perceptron, 9
Markov Chain Monte Carlo, 244
Markov Decision Process, 378
MatConvNet, 370
Matrix Factorization, 70
Max-Pooling, 326
Maximum-Likelihood Estimation, 61
Maxout Networks, 134
McCulloch-Pitts Model, 9
MCG, 366
MCMC, 244
Mean-Field Boltzmann Machine, 268
Memory Networks, 302, 429
Meta-Learning, 454
Mimic Models, 162
MNIST Database, 46
Model Compression, 160, 455
Model Parallelism, 159
Momentum-based Learning, 136
Monte Carlo Tree Search, 398

Multi-Armed Bandits, 375
Multiclass Models, 65
Multiclass Perceptron, 65
Multiclass SVM, 67
Multilayer Neural Networks, 17
Multimodal Learning, 83, 262
Multinomial Logistic Regression, 14, 15, 68

Nash Equilibrium, 439
Neocognitron, 3, 40, 49, 316
Nesterov Momentum, 137
Neural Gas, 458
Neural Turing Machines, 429
Neuromorphic Computing, 456
Newton Update, 143
Node2vec, 100
Noise Contrastive Estimation, 94
Nonlinear Conjugate Gradient Method, 148
NVIDIA CUDA Deep Neural Network Li-

brary, 158

Object Localization, 364
Off-Policy Reinforcement Learning, 387
On-Policy Reinforcement Learning, 387
One-hot Encoding, 39
One-Shot Learning, 454
OpenAI, 414
Orthogonal Least-Squares Algorithm, 222
Overfeat, 365, 369
Overfitting, 25

Parameter Sharing, 27, 200
ParlAI, 416
Partition Function, 243
Perceptron, 5
Persistent Contrastive Divergence, 269
PLSA, 260
Pocket Algorithm, 10
Policy Gradient Methods, 391
Policy Network, 391
Polyak Averaging, 151
Pooling, 318, 326
PowerAI, 50
Pretraining, 193, 268
Prioritized Experience Replay, 386
Probabilistic Latent Semantic Analysis, 260
Protein Structure Prediction, 309

496 INDEX

Q-Network, 384
Quasi-Newton Methods, 148
Question Answering, 301

Radial Basis Function Network, 37, 217
RBF Network, 37, 217
RBM, 247
Receptive Field, 322
Recommender Systems, 83, 254, 307
Recurrent Models of Visual Attention, 422
Recurrent Neural Networks, 38, 271
Region Proposal Method, 366
Regularization, 26, 181
REINFORCE, 415
Reinforcement Learning, 44, 373
ReLU Activation, 13
Replicator Neural Network, 71
Reservoir Computing, 311
ResNet, 36, 347, 368
ResNext, 350
Restricted Boltzmann Machines, 38, 235, 247
RMSProp, 138
RMSProp with Nesterov Momentum, 139

Saddle Points, 149
Safety Issues in AI, 413
Saliency Map, 353
SARSA, 387
Sayre’s Paradox, 309
Scikit-Learn, 102
SelectiveSearch, 366
Self-Driving Cars, 374, 410
Self-Learning Robots, 404
Self-Organizing Map, 450
Semantic Hashing, 269
Sentiment Analysis, 272
Sequence-to-Sequence Learning, 299
SGNS, 94
Sigmoid Activation, 12
Sigmoid Belief Nets, 267
Sign Activation, 12
Simulated Annealing, 200
Singular Value Decomposition, 74
SMAC, 126, 165
Soft Attention, 427
Soft Weight Sharing, 201
Softmax Activation Function, 14
Softmax Classifier, 68

Sparse Autoencoders, 81, 202
Spatial Transformer Networks, 457
Spearmint, 126, 165
Speech Recognition, 309
Spiking Neurons, 455
Stochastic Curriculum, 200
Stochastic Depth in ResNets, 350
Storkey Learning Rule, 240
Strides, 324
Subsampling, 186
Sum-Product Networks, 36
Support Vector Machines, 15, 63
Surrogate Loss Functions, 10

Tangent Classifier, 215
Taylor Expansion, 143
TD(λ) Algorithm, 390
TD-Gammon, 414
TD-Leaf, 399
Teacher Forcing Methods, 311
Temporal Difference Learning, 387
Temporal Link Matrix, 437
Temporal Recommender Systems, 307
TensorFlow, 50, 165, 311
Theano, 50, 165, 311
Tikhonov Regularization, 182
Time-Series Data, 271
Time-Series Forecasting, 305
Topic Models, 260
Torch, 50, 165, 311
Transfer Learning, 351
Transposed Convolution, 335, 359
Tuning Hyperparameters, 125
Turing Complete, 40, 274, 436

Universal Function Approximators, 20, 32
Unpooling, 359
Unsupervised Pretraining, 193
Upper Bounding for Bandit Algorithms, 376

Valid Padding, 323
Value Function Models, 383
Value Networks, 402
Vanishing Gradient Problem, 28, 129
Variational Autoencoder, 82, 102, 207, 442
Vector Quantization, 450
VGG, 342, 368
Video Classification, 367

INDEX 497

Visual Attention, 422
Visualization, 80

Weight Scaling Inference Rule, 190
Weston-Watkins SVM, 67
Whitening, 127
Widrow-Hoff Learning, 59

Winnow Algorithm, 48
WordNet, 47

Xavier Initialization, 129

Yolo, 369

ZFNet, 341, 368

	Preface

	Acknowledgments

	Contents

	Author Biogra
phy
	1 An Introduction to Neural Networks
	1.1 Introduction
	1.1.1 Humans Versus Computers: Stretching the Limitsof Artificial Intelligence

	1.2 The Basic Architecture of Neural Networks
	1.2.1 Single Computational Layer: The Perceptron
	1.2.1.1 What Objective Function Is the Perceptron Optimizing?
	1.2.1.2 Relationship with Support Vector Machines
	1.2.1.3 Choice of Activation and Loss Functions
	1.2.1.4 Choice and Number of Output Nodes
	1.2.1.5 Choice of Loss Function
	1.2.1.6 Some Useful Derivatives of Activation Functions

	1.2.2 Multilayer Neural Networks
	1.2.3 The Multilayer Network as a Computational Graph

	1.3 Training a Neural Network with Backpropagation
	1.4 Practical Issues in Neural Network Training
	1.4.1 The Problem of Overfitting
	1.4.1.1 Regularization
	1.4.1.2 Neural Architecture and Parameter Sharing
	1.4.1.3 Early Stopping
	1.4.1.4 Trading Off Breadth for Depth
	1.4.1.5 Ensemble Methods

	1.4.2 The Vanishing and Exploding Gradient Problems
	1.4.3 Difficulties in Convergence
	1.4.4 Local and Spurious Optima
	1.4.5 Computational Challenges

	1.5 The Secrets to the Power of Function Composition
	1.5.1 The Importance of Nonlinear Activation
	1.5.2 Reducing Parameter Requirements with Depth
	1.5.3 Unconventional Neural Architectures
	1.5.3.1 Blurring the Distinctions Between Input, Hidden,and Output Layers
	1.5.3.2 Unconventional Operations and Sum-Product Networks

	1.6 Common Neural Architectures
	1.6.1 Simulating Basic Machine Learning with Shallow Models
	1.6.2 Radial Basis Function Networks
	1.6.3 Restricted Boltzmann Machines
	1.6.4 Recurrent Neural Networks
	1.6.5 Convolutional Neural Networks
	1.6.6 Hierarchical Feature Engineering and Pretrained Models

	1.7 Advanced Topics
	1.7.1 Reinforcement Learning
	1.7.2 Separating Data Storage and Computations
	1.7.3 Generative Adversarial Networks

	1.8 Two Notable Benchmarks
	1.8.1 The MNIST Database of Handwritten Digits
	1.8.2 The ImageNet Database

	1.9 Summary
	1.10 Bibliographic Notes
	1.10.1 Video Lectures
	1.10.2 Software Resources

	1.11 Exercises

	2 Machine Learning with Shallow Neural Networks
	2.1 Introduction
	2.2 Neural Architectures for Binary Classification Models
	2.2.1 Revisiting the Perceptron
	2.2.2 Least-Squares Regression
	2.2.2.1 Widrow-Hoff Learning
	2.2.2.2 Closed Form Solutions

	2.2.3 Logistic Regression
	2.2.3.1 Alternative Choices of Activation and Loss

	2.2.4 Support Vector Machines

	2.3 Neural Architectures for Multiclass Models
	2.3.1 Multiclass Perceptron
	2.3.2 Weston-Watkins SVM
	2.3.3 Multinomial Logistic Regression (Softmax Classifier)
	2.3.4 Hierarchical Softmax for Many Classes

	2.4 Backpropagated Saliency for Feature Selection
	2.5 Matrix Factorization with Autoencoders
	2.5.1 Autoencoder: Basic Principles
	2.5.1.1 Autoencoder with a Single Hidden Layer
	2.5.1.2 Connections with Singular Value Decomposition
	2.5.1.3 Sharing Weights in Encoder and Decoder
	2.5.1.4 Other Matrix Factorization Methods

	2.5.2 Nonlinear Activations
	2.5.3 Deep Autoencoders
	2.5.4 Application to Outlier Detection
	2.5.5 When the Hidden Layer Is Broader than the Input Layer
	2.5.5.1 Sparse Feature Learning

	2.5.6 Other Applications
	2.5.7 Recommender Systems: Row Index to Row Value Prediction
	2.5.8 Discussion

	2.6 Word2vec: An Application of Simple Neural Architectures
	2.6.1 Neural Embedding with Continuous Bag of Words
	2.6.2 Neural Embedding with Skip-Gram Model
	2.6.3 Word2vec (SGNS) Is Logistic Matrix Factorization
	2.6.4 Vanilla Skip-Gram Is Multinomial Matrix Factorization

	2.7 Simple Neural Architectures for Graph Embeddings
	2.7.1 Handling Arbitrary Edge Counts
	2.7.2 Multinomial Model
	2.7.3 Connections with DeepWalk and Node2vec

	2.8 Summary
	2.9 Bibliographic Notes
	2.9.1 Software Resources

	2.10 Exercises

	3 Training Deep Neural Networks
	3.1 Introduction
	3.2 Backpropagation: The Gory Details
	3.2.1 Backpropagation with the Computational Graph Abstraction
	3.2.2 Dynamic Programming to the Rescue
	3.2.3 Backpropagation with Post-Activation Variables
	3.2.4 Backpropagation with Pre-activation Variables
	3.2.5 Examples of Updates for Various Activations
	3.2.5.1 The Special Case of Softmax

	3.2.6 A Decoupled View of Vector-Centric Backpropagation
	3.2.7 Loss Functions on Multiple Output Nodes and Hidden Nodes
	3.2.8 Mini-Batch Stochastic Gradient Descent
	3.2.9 Backpropagation Tricks for Handling Shared Weights
	3.2.10 Checking the Correctness of Gradient Computation

	3.3 Setup and Initialization Issues
	3.3.1 Tuning Hyperparameters
	3.3.2 Feature Preprocessing
	3.3.3 Initialization

	3.4 The Vanishing and Exploding Gradient Problems
	3.4.1 Geometric Understanding of the Effect of Gradient Ratios
	3.4.2 A Partial Fix with Activation Function Choice
	3.4.3 Dying Neurons and ``Brain Damage''
	3.4.3.1 Leaky ReLU
	3.4.3.2 Maxout

	3.5 Gradient-Descent Strategies
	3.5.1 Learning Rate Decay
	3.5.2 Momentum-Based Learning
	3.5.2.1 Nesterov Momentum

	3.5.3 Parameter-Specific Learning Rates
	3.5.3.1 AdaGrad
	3.5.3.2 RMSProp
	3.5.3.3 RMSProp with Nesterov Momentum
	3.5.3.4 AdaDelta
	3.5.3.5 Adam

	3.5.4 Cliffs and Higher-Order Instability
	3.5.5 Gradient Clipping
	3.5.6 Second-Order Derivatives
	3.5.6.1 Conjugate Gradients and Hessian-Free Optimization
	3.5.6.2 Quasi-Newton Methods and BFGS
	3.5.6.3 Problems with Second-Order Methods: Saddle Points

	3.5.7 Polyak Averaging
	3.5.8 Local and Spurious Minima

	3.6 Batch Normalization
	3.7 Practical Tricks for Acceleration and Compression
	3.7.1 GPU Acceleration
	3.7.2 Parallel and Distributed Implementations
	3.7.3 Algorithmic Tricks for Model Compression

	3.8 Summary
	3.9 Bibliographic Notes
	3.9.1 Software Resources

	3.10 Exercises

	4 Teaching Deep Learners to Generalize
	4.1 Introduction
	4.2 The Bias-Variance Trade-Off
	4.2.1 Formal View

	4.3 Generalization Issues in Model Tuning and Evaluation
	4.3.1 Evaluating with Hold-Out and Cross-Validation
	4.3.2 Issues with Training at Scale
	4.3.3 How to Detect Need to Collect More Data

	4.4 Penalty-Based Regularization
	4.4.1 Connections with Noise Injection
	4.4.2 L1-Regularization
	4.4.3 L1- or L2-Regularization?
	4.4.4 Penalizing Hidden Units: Learning Sparse Representations

	4.5 Ensemble Methods
	4.5.1 Bagging and Subsampling
	4.5.2 Parametric Model Selection and Averaging
	4.5.3 Randomized Connection Dropping
	4.5.4 Dropout
	4.5.5 Data Perturbation Ensembles

	4.6 Early Stopping
	4.6.1 Understanding Early Stopping from the Variance Perspective

	4.7 Unsupervised Pretraining
	4.7.1 Variations of Unsupervised Pretraining
	4.7.2 What About Supervised Pretraining?

	4.8 Continuation and Curriculum Learning
	4.8.1 Continuation Learning
	4.8.2 Curriculum Learning

	4.9 Parameter Sharing
	4.10 Regularization in Unsupervised Applications
	4.10.1 Value-Based Penalization: Sparse Autoencoders
	4.10.2 Noise Injection: De-noising Autoencoders
	4.10.3 Gradient-Based Penalization: Contractive Autoencoders
	4.10.4 Hidden Probabilistic Structure: Variational Autoencoders
	4.10.4.1 Reconstruction and Generative Sampling
	4.10.4.2 Conditional Variational Autoencoders
	4.10.4.3 Relationship with Generative Adversarial Networks

	4.11 Summary
	4.12 Bibliographic Notes
	4.12.1 Software Resources

	4.13 Exercises

	5 Radial Basis Function Networks
	5.1 Introduction
	5.2 Training an RBF Network
	5.2.1 Training the Hidden Layer
	5.2.2 Training the Output Layer
	5.2.2.1 Expression with Pseudo-Inverse

	5.2.3 Orthogonal Least-Squares Algorithm
	5.2.4 Fully Supervised Learning

	5.3 Variations and Special Cases of RBF Networks
	5.3.1 Classification with Perceptron Criterion
	5.3.2 Classification with Hinge Loss
	5.3.3 Example of Linear Separability Promoted by RBF
	5.3.4 Application to Interpolation

	5.4 Relationship with Kernel Methods
	5.4.1 Kernel Regression as a Special Case of RBF Networks
	5.4.2 Kernel SVM as a Special Case of RBF Networks
	5.4.3 Observations

	5.5 Summary
	5.6 Bibliographic Notes
	5.7 Exercises

	6 Restricted Boltzmann Machines
	6.1 Introduction
	6.1.1 Historical Perspective

	6.2 Hopfield Networks
	6.2.1 Optimal State Configurations of a Trained Network
	6.2.2 Training a Hopfield Network
	6.2.3 Building a Toy Recommender and Its Limitations
	6.2.4 Increasing the Expressive Power of the Hopfield Network

	6.3 The Boltzmann Machine
	6.3.1 How a Boltzmann Machine Generates Data
	6.3.2 Learning the Weights of a Boltzmann Machine

	6.4 Restricted Boltzmann Machines
	6.4.1 Training the RBM
	6.4.2 Contrastive Divergence Algorithm
	6.4.3 Practical Issues and Improvisations

	6.5 Applications of Restricted Boltzmann Machines
	6.5.1 Dimensionality Reduction and Data Reconstruction
	6.5.2 RBMs for Collaborative Filtering
	6.5.3 Using RBMs for Classification
	6.5.4 Topic Models with RBMs
	6.5.5 RBMs for Machine Learning with Multimodal Data

	6.6 Using RBMs Beyond Binary Data Types
	6.7 Stacking Restricted Boltzmann Machines
	6.7.1 Unsupervised Learning
	6.7.2 Supervised Learning
	6.7.3 Deep Boltzmann Machines and Deep Belief Networks

	6.8 Summary
	6.9 Bibliographic Notes
	6.10 Exercises

	7 Recurrent Neural Networks
	7.1 Introduction
	7.1.1 Expressiveness of Recurrent Networks

	7.2 The Architecture of Recurrent Neural Networks
	7.2.1 Language Modeling Example of RNN
	7.2.1.1 Generating a Language Sample

	7.2.2 Backpropagation Through Time
	7.2.3 Bidirectional Recurrent Networks
	7.2.4 Multilayer Recurrent Networks

	7.3 The Challenges of Training Recurrent Networks
	7.3.1 Layer Normalization

	7.4 Echo-State Networks
	7.5 Long Short-Term Memory (LSTM)
	7.6 Gated Recurrent Units (GRUs)
	7.7 Applications of Recurrent Neural Networks
	7.7.1 Application to Automatic Image Captioning
	7.7.2 Sequence-to-Sequence Learning and Machine Translation
	7.7.2.1 Question-Answering Systems

	7.7.3 Application to Sentence-Level Classification
	7.7.4 Token-Level Classification with Linguistic Features
	7.7.5 Time-Series Forecasting and Prediction
	7.7.6 Temporal Recommender Systems
	7.7.7 Secondary Protein Structure Prediction
	7.7.8 End-to-End Speech Recognition
	7.7.9 Handwriting Recognition

	7.8 Summary
	7.9 Bibliographic Notes
	7.9.1 Software Resources

	7.10 Exercises

	8 Convolutional Neural Networks
	8.1 Introduction
	8.1.1 Historical Perspective and Biological Inspiration
	8.1.2 Broader Observations About Convolutional Neural Networks

	8.2 The Basic Structure of a Convolutional Network
	8.2.1 Padding
	8.2.2 Strides
	8.2.3 Typical Settings
	8.2.4 The ReLU Layer
	8.2.5 Pooling
	8.2.6 Fully Connected Layers
	8.2.7 The Interleaving Between Layers
	8.2.8 Local Response Normalization
	8.2.9 Hierarchical Feature Engineering

	8.3 Training a Convolutional Network
	8.3.1 Backpropagating Through Convolutions
	8.3.2 Backpropagation as Convolution with Inverted/Transposed Filter
	8.3.3 Convolution/Backpropagation as Matrix Multiplications
	8.3.4 Data Augmentation

	8.4 Case Studies of Convolutional Architectures
	8.4.1 AlexNet
	8.4.2 ZFNet
	8.4.3 VGG
	8.4.4 GoogLeNet
	8.4.5 ResNet
	8.4.6 The Effects of Depth
	8.4.7 Pretrained Models

	8.5 Visualization and Unsupervised Learning
	8.5.1 Visualizing the Features of a Trained Network
	8.5.2 Convolutional Autoencoders

	8.6 Applications of Convolutional Networks
	8.6.1 Content-Based Image Retrieval
	8.6.2 Object Localization
	8.6.3 Object Detection
	8.6.4 Natural Language and Sequence Learning
	8.6.5 Video Classification

	8.7 Summary
	8.8 Bibliographic Notes
	8.8.1 Software Resources and Data Sets

	8.9 Exercises

	9 Deep Reinforcement Learning
	9.1 Introduction
	9.2 Stateless Algorithms: Multi-Armed Bandits
	9.2.1 Naïve Algorithm
	9.2.2 ε-Greedy Algorithm
	9.2.3 Upper Bounding Methods

	9.3 The Basic Framework of Reinforcement Learning
	9.3.1 Challenges of Reinforcement Learning
	9.3.2 Simple Reinforcement Learning for Tic-Tac-Toe
	9.3.3 Role of Deep Learning and a Straw-Man Algorithm

	9.4 Bootstrapping for Value Function Learning
	9.4.1 Deep Learning Models as Function Approximators
	9.4.2 Example: Neural Network for Atari Setting
	9.4.3 On-Policy Versus Off-Policy Methods: SARSA
	9.4.4 Modeling States Versus State-Action Pairs

	9.5 Policy Gradient Methods
	9.5.1 Finite Difference Methods
	9.5.2 Likelihood Ratio Methods
	9.5.3 Combining Supervised Learning with Policy Gradients
	9.5.4 Actor-Critic Methods
	9.5.5 Continuous Action Spaces
	9.5.6 Advantages and Disadvantages of Policy Gradients

	9.6 Monte Carlo Tree Search
	9.7 Case Studies
	9.7.1 AlphaGo: Championship Level Play at Go
	9.7.1.1 Alpha Zero: Enhancements to Zero Human Knowledge

	9.7.2 Self-Learning Robots
	9.7.2.1 Deep Learning of Locomotion Skills
	9.7.2.2 Deep Learning of Visuomotor Skills

	9.7.3 Building Conversational Systems: Deep Learning for Chatbots
	9.7.4 Self-Driving Cars
	9.7.5 Inferring Neural Architectures with Reinforcement Learning

	9.8 Practical Challenges Associated with Safety
	9.9 Summary
	9.10 Bibliographic Notes
	9.10.1 Software Resources and Testbeds

	9.11 Exercises

	10 Advanced Topics in Deep Learning
	10.1 Introduction
	10.2 Attention Mechanisms
	10.2.1 Recurrent Models of Visual Attention
	10.2.1.1 Application to Image Captioning

	10.2.2 Attention Mechanisms for Machine Translation

	10.3 Neural Networks with External Memory
	10.3.1 A Fantasy Video Game: Sorting by Example
	10.3.1.1 Implementing Swaps with Memory Operations

	10.3.2 Neural Turing Machines
	10.3.3 Differentiable Neural Computer: A Brief Overview

	10.4 Generative Adversarial Networks (GANs)
	10.4.1 Training a Generative Adversarial Network
	10.4.2 Comparison with Variational Autoencoder
	10.4.3 Using GANs for Generating Image Data
	10.4.4 Conditional Generative Adversarial Networks

	10.5 Competitive Learning
	10.5.1 Vector Quantization
	10.5.2 Kohonen Self-Organizing Map

	10.6 Limitations of Neural Networks
	10.6.1 An Aspirational Goal: One-Shot Learning
	10.6.2 An Aspirational Goal: Energy-Efficient Learning

	10.7 Summary
	10.8 Bibliographic Notes
	10.8.1 Software Resources

	10.9 Exercises

	Bibliography
	Index

