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Preface

“Any A.L. smart enough to pass a Turing test is smart enough to know to fail
it.”—Tan McDonald

Neural networks were developed to simulate the human nervous system for machine
learning tasks by treating the computational units in a learning model in a manner similar
to human neurons. The grand vision of neural networks is to create artificial intelligence
by building machines whose architecture simulates the computations in the human ner-
vous system. This is obviously not a simple task because the computational power of the
fastest computer today is a minuscule fraction of the computational power of a human
brain. Neural networks were developed soon after the advent of computers in the fifties and
sixties. Rosenblatt’s perceptron algorithm was seen as a fundamental cornerstone of neural
networks, which caused an initial excitement about the prospects of artificial intelligence.
However, after the initial euphoria, there was a period of disappointment in which the data
hungry and computationally intensive nature of neural networks was seen as an impediment
to their usability. Eventually, at the turn of the century, greater data availability and in-
creasing computational power lead to increased successes of neural networks, and this area
was reborn under the new label of “deep learning.” Although we are still far from the day
that artificial intelligence (AI) is close to human performance, there are specific domains
like image recognition, self-driving cars, and game playing, where AI has matched or ex-
ceeded human performance. It is also hard to predict what AI might be able to do in the
future. For example, few computer vision experts would have thought two decades ago that
any automated system could ever perform an intuitive task like categorizing an image more
accurately than a human.

Neural networks are theoretically capable of learning any mathematical function with
sufficient training data, and some variants like recurrent neural networks are known to be
Turing complete. Turing completeness refers to the fact that a neural network can simulate
any learning algorithm, given sufficient training data. The sticking point is that the amount
of data required to learn even simple tasks is often extraordinarily large, which causes a
corresponding increase in training time (if we assume that enough training data is available
in the first place). For example, the training time for image recognition, which is a simple
task for a human, can be on the order of weeks even on high-performance systems. Fur-
thermore, there are practical issues associated with the stability of neural network training,
which are being resolved even today. Nevertheless, given that the speed of computers is
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expected to increase rapidly over time, and fundamentally more powerful paradigms like
quantum computing are on the horizon, the computational issue might not eventually turn
out to be quite as critical as imagined.

Although the biological analogy of neural networks is an exciting one and evokes com-
parisons with science fiction, the mathematical understanding of neural networks is a more
mundane one. The neural network abstraction can be viewed as a modular approach of
enabling learning algorithms that are based on continuous optimization on a computational
graph of dependencies between the input and output. To be fair, this is not very different
from traditional work in control theory; indeed, some of the methods used for optimization
in control theory are strikingly similar to (and historically preceded) the most fundamental
algorithms in neural networks. However, the large amounts of data available in recent years
together with increased computational power have enabled experimentation with deeper
architectures of these computational graphs than was previously possible. The resulting
success has changed the broader perception of the potential of deep learning.

The chapters of the book are organized as follows:

1. The basics of neural networks: Chapter 1 discusses the basics of neural network design.
Many traditional machine learning models can be understood as special cases of neural
learning. Understanding the relationship between traditional machine learning and
neural networks is the first step to understanding the latter. The simulation of various
machine learning models with neural networks is provided in Chapter 2. This will give
the analyst a feel of how neural networks push the envelope of traditional machine
learning algorithms.

2. Fundamentals of neural networks: Although Chapters 1 and 2 provide an overview
of the training methods for neural networks, a more detailed understanding of the
training challenges is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-
basis function (RBF) networks and restricted Boltzmann machines.

3. Advanced topics in neural networks: A lot of the recent success of deep learning is a
result of the specialized architectures for various domains, such as recurrent neural
networks and convolutional neural networks. Chapters 7 and 8 discuss recurrent and
convolutional neural networks. Several advanced topics like deep reinforcement learn-
ing, neural Turing mechanisms, and generative adversarial networks are discussed in
Chapters 9 and 10.

We have taken care to include some of the “forgotten” architectures like RBF networks
and Kohonen self-organizing maps because of their potential in many applications. The
book is written for graduate students, researchers, and practitioners. Numerous exercises
are available along with a solution manual to aid in classroom teaching. Where possible, an
application-centric view is highlighted in order to give the reader a feel for the technology.

Throughout this book, a vector or a multidimensional data point is annotated with a bar,
such as X or 7. A vector or multidimensional point may be denoted by either small letters
or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots,
such as X - Y. A matrix is denoted in capital letters without a bar, such as R. Throughout
the book, the n x d matrix corresponding to the entire training data set is denoted by
D, with n documents and d dimensions. The individual data points in D are therefore
d-dimensional row vectors. On the other hand, vectors with one component for each data
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point are usually n-dimensional column vectors. An example is the n-dimensional column
vector 7 of class variables of n data points. An observed value y; is distinguished from a
predicted value g; by a circumflex at the top of the variable.

Yorktown Heights, NY, USA Charu C. Aggarwal
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Chapter 1

An Introduction to Neural Networks

“Thou shalt not make a machine to counterfeit a human mind.”—Frank Herbert

1.1 Introduction

Artificial neural networks are popular machine learning techniques that simulate the mech-
anism of learning in biological organisms. The human nervous system contains cells, which
are referred to as neurons. The neurons are connected to one another with the use of az-
ons and dendrites, and the connecting regions between axons and dendrites are referred to
as synapses. These connections are illustrated in Figure 1.1(a). The strengths of synaptic
connections often change in response to external stimuli. This change is how learning takes
place in living organisms.

This biological mechanism is simulated in artificial neural networks, which contain com-
putation units that are referred to as neurons. Throughout this book, we will use the term
“neural networks” to refer to artificial neural networks rather than biological ones. The
computational units are connected to one another through weights, which serve the same
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Newron

DENDRITES WITH
SYNAPTIC WEIGHTS

(a) Biological neural network (b) Artificial neural network

Figure 1.1: The synaptic connections between neurons. The image in (a) is from “The Brain:
Understanding Neurobiology Through the Study of Addiction [598].” Copyright (©2000 by
BSCS & Videodiscovery. All rights reserved. Used with permission.
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role as the strengths of synaptic connections in biological organisms. Each input to a neuron
is scaled with a weight, which affects the function computed at that unit. This architecture
is illustrated in Figure 1.1(b). An artificial neural network computes a function of the inputs
by propagating the computed values from the input neurons to the output neuron(s) and
using the weights as intermediate parameters. Learning occurs by changing the weights con-
necting the neurons. Just as external stimuli are needed for learning in biological organisms,
the external stimulus in artificial neural networks is provided by the training data contain-
ing examples of input-output pairs of the function to be learned. For example, the training
data might contain pixel representations of images (input) and their annotated labels (e.g.,
carrot, banana) as the output. These training data pairs are fed into the neural network by
using the input representations to make predictions about the output labels. The training
data provides feedback to the correctness of the weights in the neural network depending
on how well the predicted output (e.g., probability of carrot) for a particular input matches
the annotated output label in the training data. One can view the errors made by the neural
network in the computation of a function as a kind of unpleasant feedback in a biological
organism, leading to an adjustment in the synaptic strengths. Similarly, the weights between
neurons are adjusted in a neural network in response to prediction errors. The goal of chang-
ing the weights is to modify the computed function to make the predictions more correct in
future iterations. Therefore, the weights are changed carefully in a mathematically justified
way so as to reduce the error in computation on that example. By successively adjusting
the weights between neurons over many input-output pairs, the function computed by the
neural network is refined over time so that it provides more accurate predictions. Therefore,
if the neural network is trained with many different images of bananas, it will eventually
be able to properly recognize a banana in an image it has not seen before. This ability to
accurately compute functions of unseen inputs by training over a finite set of input-output
pairs is referred to as model generalization. The primary usefulness of all machine learning
models is gained from their ability to generalize their learning from seen training data to
unseen examples.

The biological comparison is often criticized as a very poor caricature of the workings
of the human brain; nevertheless, the principles of neuroscience have often been useful in
designing neural network architectures. A different view is that neural networks are built
as higher-level abstractions of the classical models that are commonly used in machine
learning. In fact, the most basic units of computation in the neural network are inspired by
traditional machine learning algorithms like least-squares regression and logistic regression.
Neural networks gain their power by putting together many such basic units, and learning
the weights of the different units jointly in order to minimize the prediction error. From
this point of view, a neural network can be viewed as a computational graph of elementary
units in which greater power is gained by connecting them in particular ways. When a
neural network is used in its most basic form, without hooking together multiple units, the
learning algorithms often reduce to classical machine learning models (see Chapter 2). The
real power of a neural model over classical methods is unleashed when these elementary
computational units are combined, and the weights of the elementary models are trained
using their dependencies on one another. By combining multiple units, one is increasing the
power of the model to learn more complicated functions of the data than are inherent in the
elementary models of basic machine learning. The way in which these units are combined
also plays a role in the power of the architecture, and requires some understanding and
insight from the analyst. Furthermore, sufficient training data is also required in order to
learn the larger number of weights in these expanded computational graphs.
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Figure 1.2: An illustrative comparison of the accuracy of a typical machine learning al-
gorithm with that of a large neural network. Deep learners become more attractive than
conventional methods primarily when sufficient data/computational power is available. Re-
cent years have seen an increase in data availability and computational power, which has
led to a “Cambrian explosion” in deep learning technology.

1.1.1 Humans Versus Computers: Stretching the Limits
of Artificial Intelligence

Humans and computers are inherently suited to different types of tasks. For example, com-
puting the cube root of a large number is very easy for a computer, but it is extremely
difficult for humans. On the other hand, a task such as recognizing the objects in an image
is a simple matter for a human, but has traditionally been very difficult for an automated
learning algorithm. It is only in recent years that deep learning has shown an accuracy on
some of these tasks that exceeds that of a human. In fact, the recent results by deep learning
algorithms that surpass human performance [184] in (some narrow tasks on) image recog-
nition would not have been considered likely by most computer vision experts as recently
as 10 years ago.

Many deep learning architectures that have shown such extraordinary performance are
not created by indiscriminately connecting computational units. The superior performance
of deep neural networks mirrors the fact that biological neural networks gain much of their
power from depth as well. Furthermore, biological networks are connected in ways we do not
fully understand. In the few cases that the biological structure is understood at some level,
significant breakthroughs have been achieved by designing artificial neural networks along
those lines. A classical example of this type of architecture is the use of the convolutional
neural network for image recognition. This architecture was inspired by Hubel and Wiesel’s
experiments [212] in 1959 on the organization of the neurons in the cat’s visual cortex. The
precursor to the convolutional neural network was the neocognitron [127], which was directly
based on these results.

The human neuronal connection structure has evolved over millions of years to optimize
survival-driven performance; survival is closely related to our ability to merge sensation and
intuition in a way that is currently not possible with machines. Biological neuroscience [232]
is a field that is still very much in its infancy, and only a limited amount is known about how
the brain truly works. Therefore, it is fair to suggest that the biologically inspired success
of convolutional neural networks might be replicated in other settings, as we learn more
about how the human brain works [176]. A key advantage of neural networks over tradi-
tional machine learning is that the former provides a higher-level abstraction of expressing
semantic insights about data domains by architectural design choices in the computational
graph. The second advantage is that neural networks provide a simple way to adjust the
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complexity of a model by adding or removing neurons from the architecture according to
the availability of training data or computational power. A large part of the recent suc-
cess of neural networks is explained by the fact that the increased data availability and
computational power of modern computers has outgrown the limits of traditional machine
learning algorithms, which fail to take full advantage of what is now possible. This situation
is illustrated in Figure 1.2. The performance of traditional machine learning remains better
at times for smaller data sets because of more choices, greater ease of model interpretation,
and the tendency to hand-craft interpretable features that incorporate domain-specific in-
sights. With limited data, the best of a very wide diversity of models in machine learning
will usually perform better than a single class of models (like neural networks). This is one
reason why the potential of neural networks was not realized in the early years.

The “big data” era has been enabled by the advances in data collection technology; vir-
tually everything we do today, including purchasing an item, using the phone, or clicking on
a site, is collected and stored somewhere. Furthermore, the development of powerful Graph-
ics Processor Units (GPUs) has enabled increasingly efficient processing on such large data
sets. These advances largely explain the recent success of deep learning using algorithms
that are only slightly adjusted from the versions that were available two decades back.
Furthermore, these recent adjustments to the algorithms have been enabled by increased
speed of computation, because reduced run-times enable efficient testing (and subsequent
algorithmic adjustment). If it requires a month to test an algorithm, at most twelve varia-
tions can be tested in an year on a single hardware platform. This situation has historically
constrained the intensive experimentation required for tweaking neural-network learning
algorithms. The rapid advances associated with the three pillars of improved data, compu-
tation, and experimentation have resulted in an increasingly optimistic outlook about the
future of deep learning. By the end of this century, it is expected that computers will have
the power to train neural networks with as many neurons as the human brain. Although
it is hard to predict what the true capabilities of artificial intelligence will be by then, our
experience with computer vision should prepare us to expect the unexpected.

Chapter Organization

This chapter is organized as follows. The next section introduces single-layer and multi-layer
networks. The different types of activation functions, output nodes, and loss functions are
discussed. The backpropagation algorithm is introduced in Section 1.3. Practical issues in
neural network training are discussed in Section 1.4. Some key points on how neural networks
gain their power with specific choices of activation functions are discussed in Section 1.5. The
common architectures used in neural network design are discussed in Section 1.6. Advanced
topics in deep learning are discussed in Section 1.7. Some notable benchmarks used by the
deep learning community are discussed in Section 1.8. A summary is provided in Section 1.9.

1.2 The Basic Architecture of Neural Networks

In this section, we will introduce single-layer and multi-layer neural networks. In the single-
layer network, a set of inputs is directly mapped to an output by using a generalized variation
of a linear function. This simple instantiation of a neural network is also referred to as the
perceptron. In multi-layer neural networks, the neurons are arranged in layered fashion, in
which the input and output layers are separated by a group of hidden layers. This layer-wise
architecture of the neural network is also referred to as a feed-forward network. This section
will discuss both single-layer and multi-layer networks.
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INPUT NODES INPUT NODES

OUTPUT NODE

(a) Perceptron without bias (b) Perceptron with bias

Figure 1.3: The basic architecture of the perceptron

1.2.1 Single Computational Layer: The Perceptron

The simplest neural network is referred to as the perceptron. This neural network contains
a single input layer and an output node. The basic architecture of the perceptron is shown
in Figure 1.3(a). Consider a situation where each training instance is of the form (X,y),
where each X = [z1,...74] contains d feature variables, and y € {—1,+1} contains the
observed value of the binary class variable. By “observed value” we refer to the fact that it
is given to us as a part of the training data, and our goal is to predict the class variable for
cases in which it is not observed. For example, in a credit-card fraud detection application,
the features might represent various properties of a set of credit card transactions (e.g.,
amount and frequency of transactions), and the class variable might represent whether or
not this set of transactions is fraudulent. Clearly, in this type of application, one would have
historical cases in which the class variable is observed, and other (current) cases in which
the class variable has not yet been observed but needs to be predicted.

The input layer contains d nodes that transmit the d features X = [z;...x4] with
edges of weight W = [w;...wy] to an output node. The input layer does not perform
any computation in its own right. The linear function W - X = ijl w;x; is computed at
the output node. Subsequently, the sign of this real value is used in order to predict the
dependent variable of X. Therefore, the prediction ¢ is computed as follows:

d
§ = sign{W - X} =sign{> _w;z;} (1.1)

j=1

The sign function maps a real value to either +1 or —1, which is appropriate for binary
classification. Note the circumflex on top of the variable y to indicate that it is a predicted
value rather than an observed value. The error of the prediction is therefore E(X) = y — 4,
which is one of the values drawn from the set {—2,0,+2}. In cases where the error value
E(X) is nonzero, the weights in the neural network need to be updated in the (negative)
direction of the error gradient. As we will see later, this process is similar to that used in
various types of linear models in machine learning. In spite of the similarity of the perceptron
with respect to traditional machine learning models, its interpretation as a computational
unit is very useful because it allows us to put together multiple units in order to create far

more powerful models than are available in traditional machine learning.
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The architecture of the perceptron is shown in Figure 1.3(a), in which a single input layer
transmits the features to the output node. The edges from the input to the output contain
the weights w ... wg with which the features are multiplied and added at the output node.
Subsequently, the sign function is applied in order to convert the aggregated value into a
class label. The sign function serves the role of an activation function. Different choices
of activation functions can be used to simulate different types of models used in machine
learning, like least-squares regression with numeric targets, the support vector machine,
or a logistic regression classifier. Most of the basic machine learning models can be easily
represented as simple neural network architectures. It is a useful exercise to model traditional
machine learning techniques as neural architectures, because it provides a clearer picture of
how deep learning generalizes traditional machine learning. This point of view is explored
in detail in Chapter 2. It is noteworthy that the perceptron contains two layers, although
the input layer does not perform any computation and only transmits the feature values.
The input layer is not included in the count of the number of layers in a neural network.
Since the perceptron contains a single computational layer, it is considered a single-layer
network.

In many settings, there is an invariant part of the prediction, which is referred to as
the bias. For example, consider a setting in which the feature variables are mean centered,
but the mean of the binary class prediction from {—1,+1} is not 0. This will tend to occur
in situations in which the binary class distribution is highly imbalanced. In such a case,
the aforementioned approach is not sufficient for prediction. We need to incorporate an
additional bias variable b that captures this invariant part of the prediction:

d
§ = sign{W - X + b} = sign{z w;x; + b} (1.2)

Jj=1

The bias can be incorporated as the weight of an edge by using a bias meuron. This is
achieved by adding a neuron that always transmits a value of 1 to the output node. The
weight of the edge connecting the bias neuron to the output node provides the bias variable.
An example of a bias neuron is shown in Figure 1.3(b). Another approach that works well
with single-layer architectures is to use a feature engineering trick in which an additional
feature is created with a constant value of 1. The coefficient of this feature provides the bias,
and one can then work with Equation 1.1. Throughout this book, biases will not be explicitly
used (for simplicity in architectural representations) because they can be incorporated with
bias neurons. The details of the training algorithms remain the same by simply treating the
bias neurons like any other neuron with a fixed activation value of 1. Therefore, the following
will work with the predictive assumption of Equation 1.1, which does not explicitly uses
biases.

At the time that the perceptron algorithm was proposed by Rosenblatt [405], these op-
timizations were performed in a heuristic way with actual hardware circuits, and it was not
presented in terms of a formal notion of optimization in machine learning (as is common
today). However, the goal was always to minimize the error in prediction, even if a for-
mal optimization formulation was not presented. The perceptron algorithm was, therefore,
heuristically designed to minimize the number of misclassifications, and convergence proofs
were available that provided correctness guarantees of the learning algorithm in simplified
settings. Therefore, we can still write the (heuristically motivated) goal of the perceptron
algorithm in least-squares form with respect to all training instances in a data set D con-
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taining feature-label pairs:

Minimizey; L = Z (y—19)*= Z (y — sign{W - Y})2
(X,y)eD (X,y)eD

This type of minimization objective function is also referred to as a loss function. As we
will see later, almost all neural network learning algorithms are formulated with the use
of a loss function. As we will learn in Chapter 2, this loss function looks a lot like least-
squares regression. However, the latter is defined for continuous-valued target variables,
and the corresponding loss is a smooth and continuous function of the variables. On the
other hand, for the least-squares form of the objective function, the sign function is non-
differentiable, with step-like jumps at specific points. Furthermore, the sign function takes
on constant values over large portions of the domain, and therefore the exact gradient takes
on zero values at differentiable points. This results in a staircase-like loss surface, which
is not suitable for gradient-descent. The perceptron algorithm (implicitly) uses a smooth
approximation of the gradient of this objective function with respect to each example:

Vigmooth = Z (y—19)
(X,y)eD

>

(1.3)

Note that the above gradient is not a true gradient of the staircase-like surface of the (heuris-
tic) objective function, which does not provide useful gradients. Therefore, the staircase is
smoothed out into a sloping surface defined by the perceptron criterion. The properties of the
perceptron criterion will be described in Section 1.2.1.1. It is noteworthy that concepts like
the “perceptron criterion” were proposed later than the original paper by Rosenblatt [405]
in order to explain the heuristic gradient-descent steps. For now, we will assume that the
perceptron algorithm optimizes some unknown smooth function with the use of gradient
descent.

Although the above objective function is defined over the entire training data, the train-
ing algorithm of neural networks works by feeding each input data instance X into the
network one by one (or in small batches) to create the prediction . The weights are then
updated, based on the error value E(X) = (y — ). Specifically, when the data point X is
fed into the network, the weight vector W is updated as follows:

WeW+aly—9)X (1.4)

The parameter a regulates the learning rate of the neural network. The perceptron algorithm
repeatedly cycles through all the training examples in random order and iteratively adjusts
the weights until convergence is reached. A single training data point may be cycled through
many times. Each such cycle is referred to as an epoch. One can also write the gradient-

descent update in terms of the error E(X) = (y — ) as follows:

W<W+aB(X)X (1.5)

The basic perceptron algorithm can be considered a stochastic gradient-descent method,
which implicitly minimizes the squared error of prediction by performing gradient-descent
updates with respect to randomly chosen training points. The assumption is that the neural
network cycles through the points in random order during training and changes the weights
with the goal of reducing the prediction error on that point. It is easy to see from Equa-
tion 1.5 that non-zero updates are made to the weights only when y # ¢, which occurs only



8 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

when errors are made in prediction. In mini-batch stochastic gradient descent, the aforemen-
tioned updates of Equation 1.5 are implemented over a randomly chosen subset of training
points S:
WeW+a) EX)X (1.6)
Xes

+ * %
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LINEARLY SEPARABLE NOT LINEARLY SEPARABLE

Figure 1.4: Examples of linearly separable and inseparable data in two classes

The advantages of using mini-batch stochastic gradient descent are discussed in Section 3.2.8
of Chapter 3. An interesting quirk of the perceptron is that it is possible to set the learning
rate a to 1, because the learning rate only scales the weights.

The type of model proposed in the perceptron is a linear model, in which the equation
W - X = 0 defines a linear hyperplane. Here, W = (wj ...wy) is a d-dimensional vector that
is normal to the hyperplane. Furthermore, the value of W - X is positive for values of X on
one side of the hyperplane, and it is negative for values of X on the other side. This type of
model performs particularly well when the data is linearly separable. Examples of linearly
separable and inseparable data are shown in Figure 1.4.

The perceptron algorithm is good at classifying data sets like the one shown on the
left-hand side of Figure 1.4, when the data is linearly separable. On the other hand, it tends
to perform poorly on data sets like the one shown on the right-hand side of Figure 1.4. This
example shows the inherent modeling limitation of a perceptron, which necessitates the use
of more complex neural architectures.

Since the original perceptron algorithm was proposed as a heuristic minimization of
classification errors, it was particularly important to show that the algorithm converges
to reasonable solutions in some special cases. In this context, it was shown [405] that the
perceptron algorithm always converges to provide zero error on the training data when
the data are linearly separable. However, the perceptron algorithm is not guaranteed to
converge in instances where the data are not linearly separable. For reasons discussed in
the next section, the perceptron might sometimes arrive at a very poor solution with data
that are not linearly separable (in comparison with many other learning algorithms).

1.2.1.1 What Objective Function Is the Perceptron Optimizing?

As discussed earlier in this chapter, the original perceptron paper by Rosenblatt [405] did
not formally propose a loss function. In those years, these implementations were achieved
using actual hardware circuits. The original Mark I perceptron was intended to be a machine
rather than an algorithm, and custom-built hardware was used to create it (cf. Figure 1.5).
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The general goal was to minimize the number of classification errors with a heuristic update
process (in hardware) that changed weights in the “correct” direction whenever errors were
made. This heuristic update strongly resembled gradient descent but it was not derived
as a gradient-descent method. Gradient descent is defined only for smooth loss functions
in algorithmic settings, whereas the hardware-centric approach was designed in a more

Figure 1.5: The perceptron algorithm was originally implemented using hardware circuits.
The image depicts the Mark I perceptron machine built in 1958. (Courtesy: Smithsonian
Institute)

heuristic way with binary outputs. Many of the binary and circuit-centric principles were
inherited from the McCulloch-Pitts model [321] of the neuron. Unfortunately, binary signals
are not prone to continuous optimization.

Can we find a smooth loss function, whose gradient turns out to be the perceptron
update? The number of classification errors in a binary classification problem can be written
in the form of a 0/1 loss function for training data point (X;,y;) as follows:

) - o
Lo 5 (Wi —sign{W - Xi})? = 1 —y; - sign{W - X} (1.7)

The simplification to the right-hand side of the above objective function is obtained by set-
ting both y2 and sign{W - X;}? to 1, since they are obtained by squaring a value drawn from
{—1,+41}. However, this objective function is not differentiable, because it has a staircase-
like shape, especially when it is added over multiple points. Note that the 0/1 loss above
is dominated by the term —y;sign{W - X;}, in which the sign function causes most of
the problems associated with non-differentiability. Since neural networks are defined by
gradient-based optimization, we need to define a smooth objective function that is respon-
sible for the perceptron updates. It can be shown [41] that the updates of the perceptron
implicitly optimize the perceptron criterion. This objective function is defined by dropping
the sign function in the above 0/1 loss and setting negative values to 0 in order to treat all
correct predictions in a uniform and lossless way:

L; = max{—y;(W - X;),0} (1.8)

The reader is encouraged to use calculus to verify that the gradient of this smoothed objec-
tive function leads to the perceptron update, and the update of the perceptron is essentially
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W <= W — aVwL;. The modified loss function to enable gradient computation of a non-
differentiable function is also referred to as a smoothed surrogate loss function. Almost all
continuous optimization-based learning methods (such as neural networks) with discrete
outputs (such as class labels) use some type of smoothed surrogate loss function.

PERCEPTRON CRITERION HlNG\E | OSS

LOSS
v

Ay
0 N
VALUE OF We X FOR
POSITIVE CLASS INSTANCE

Figure 1.6: Perceptron criterion versus hinge loss

Although the aforementioned perceptron criterion was reverse engineered by working
backwards from the perceptron updates, the nature of this loss function exposes some of
the weaknesses of the updates in the original algorithm. An interesting observation about the
perceptron criterion is that one can set W to the zero vector irrespective of the training data
set in order to obtain the optimal loss value of 0. In spite of this fact, the perceptron updates
continue to converge to a clear separator between the two classes in linearly separable cases;
after all, a separator between the two classes provides a loss value of 0 as well. However,
the behavior for data that are not linearly separable is rather arbitrary, and the resulting
solution is sometimes not even a good approximate separator of the classes. The direct
sensitivity of the loss to the magnitude of the weight vector can dilute the goal of class
separation; it is possible for updates to worsen the number of misclassifications significantly
while improving the loss. This is an example of how surrogate loss functions might sometimes
not fully achieve their intended goals. Because of this fact, the approach is not stable and
can yield solutions of widely varying quality.

Several variations of the learning algorithm were therefore proposed for inseparable data,
and a natural approach is to always keep track of the best solution in terms of the number of
misclassifications [128]. This approach of always keeping the best solution in one’s “pocket”
is referred to as the pocket algorithm. Another highly performing variant incorporates the
notion of margin in the loss function, which creates an identical algorithm to the linear
support vector machine. For this reason, the linear support vector machine is also referred
to as the perceptron of optimal stability.

1.2.1.2 Relationship with Support Vector Machines

The perceptron criterion is a shifted version of the hinge-loss used in support vector ma-
chines (see Chapter 2). The hinge loss looks even more similar to the zero-one loss criterion
of Equation 1.7, and is defined as follows:

L™ = max{1 — y;(W - X;), 0} (1.9)

Note that the perceptron does not keep the constant term of 1 on the right-hand side of
Equation 1.7, whereas the hinge loss keeps this constant within the maximization function.
This change does not affect the algebraic expression for the gradient, but it does change
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which points are lossless and should not cause an update. The relationship between the
perceptron criterion and the hinge loss is shown in Figure 1.6. This similarity becomes
particularly evident when the perceptron updates of Equation 1.6 are rewritten as follows:

WeWta Y, yX (1.10)
(X,y)es+

Here, ST is _defined as the set of all misclassified training points X € S that satisfy the
condition y(W - X) < 0. This update seems to look somewhat different from the perceptron,

because the perceptron uses the error F(X) for the update, which is replaced with y in the
update above. A key point is that the (integer) error value E(X) = (y — sign{W - X}) €
{—2,42} can never be 0 for misclassified points in S*. Therefore, we have F(X) = 2y
for misclassified points, and E(X) can be replaced with y in the updates after absorbing
the factor of 2 within the learning rate. This update is identical to that used by the primal
support vector machine (SVM) algorithm [448], except that the updates are performed only
for the misclassified points in the perceptron, whereas the SVM also uses the marginally
correct points near the decision boundary for updates. Note that the SVM uses the condition
y(W - X) < 1 [instead of using the condition y(W - X) < 0] to define ST, which is one of
the key differences between the two algorithms. This point shows that the perceptron is
fundamentally not very different from well-known machine learning algorithms like the
support vector machine in spite of its different origins. Freund and Schapire provide a
beautiful exposition of the role of margin in improving stability of the perceptron and also
its relationship with the support vector machine [123]. It turns out that many traditional
machine learning models can be viewed as minor variations of shallow neural architectures
like the perceptron. The relationships between classical machine learning models and shallow

neural networks are described in detail in Chapter 2.

1.2.1.3 Choice of Activation and Loss Functions

The choice of activation function is a critical part of neural network design. In the case of the
perceptron, the choice of the sign activation function is motivated by the fact that a binary
class label needs to be predicted. However, it is possible to have other types of situations
where different target variables may be predicted. For example, if the target variable to be
predicted is real, then it makes sense to use the identity activation function, and the resulting
algorithm is the same as least-squares regression. If it is desirable to predict a probability
of a binary class, it makes sense to use a sigmoid function for activating the output node, so
that the prediction ¢ indicates the probability that the observed value, y, of the dependent
variable is 1. The negative logarithm of |y/2 — 0.5+ §| is used as the loss, assuming that y is
coded from {—1,1}. If § is the probability that y is 1, then |y/2 — 0.5 + | is the probability
that the correct value is predicted. This assertion is easy to verify by examining the two
cases where y is 0 or 1. This loss function can be shown to be representative of the negative
log-likelihood of the training data (see Section 2.2.3 of Chapter 2).

The importance of nonlinear activation functions becomes significant when one moves
from the single-layered perceptron to the multi-layered architectures discussed later in this
chapter. Different types of nonlinear functions such as the sign, sigmoid, or hyperbolic tan-
gents may be used in various layers. We use the notation ® to denote the activation function:

j=dW-X) (1.11)
Therefore, a neuron really computes two functions within the node, which is why we have

incorporated the summation symbol ¥ as well as the activation symbol ¢ within a neuron.
The break-up of the neuron computations into two separate values is shown in Figure 1.7.
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Figure 1.7: Pre-activation and post-activation values within a neuron

The value computed before applying the activation function ®(-) will be referred to as the
pre-activation value, whereas the value computed after applying the activation function is
referred to as the post-activation value. The output of a neuron is always the post-activation
value, although the pre-activation variables are often used in different types of analyses, such
as the computations of the backpropagation algorithm discussed later in this chapter. The
pre-activation and post-activation values of a neuron are shown in Figure 1.7.

The most basic activation function ®(-) is the identity or linear activation, which provides
no nonlinearity:

d(v)=wv

The linear activation function is often used in the output node, when the target is a real
value. It is even used for discrete outputs when a smoothed surrogate loss function needs
to be set up.

The classical activation functions that were used early in the development of neural
networks were the sign, sigmoid, and the hyperbolic tangent functions:

®(v) = sign(v) (sign function)

d(v) (sigmoid function)

T 1tev
e?r —1

P - -
=5~

(tanh function)
While the sign activation can be used to map to binary outputs at prediction time, its
non-differentiability prevents its use for creating the loss function at training time. For
example, while the perceptron uses the sign function for prediction, the perceptron crite-
rion in training only requires linear activation. The sigmoid activation outputs a value in
(0,1), which is helpful in performing computations that should be interpreted as probabil-
ities. Furthermore, it is also helpful in creating probabilistic outputs and constructing loss
functions derived from maximum-likelihood models. The tanh function has a shape simi-
lar to that of the sigmoid function, except that it is horizontally re-scaled and vertically
translated /re-scaled to [—1,1]. The tanh and sigmoid functions are related as follows (see
Exercise 3):

tanh(v) = 2 - sigmoid(2v) — 1

The tanh function is preferable to the sigmoid when the outputs of the computations are de-
sired to be both positive and negative. Furthermore, its mean-centering and larger gradient
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Figure 1.8: Various activation functions

(because of stretching) with respect to sigmoid makes it easier to train. The sigmoid and the
tanh functions have been the historical tools of choice for incorporating nonlinearity in the
neural network. In recent years, however, a number of piecewise linear activation functions
have become more popular:

®(v) = max{v,0} (Rectified Linear Unit [ReLU])
®(v) = max {min [v,1],—1} (hard tanh)

The ReLU and hard tanh activation functions have largely replaced the sigmoid and soft
tanh activation functions in modern neural networks because of the ease in training multi-
layered neural networks with these activation functions.

Pictorial representations of all the aforementioned activation functions are illustrated
in Figure 1.8. It is noteworthy that all activation functions shown here are monotonic.
Furthermore, other than the identity activation function, most® of the other activation
functions saturate at large absolute values of the argument at which increasing further does
not change the activation much.

As we will see later, such nonlinear activation functions are also very useful in multilayer
networks, because they help in creating more powerful compositions of different types of
functions. Many of these functions are referred to as squashing functions, as they map the
outputs from an arbitrary range to bounded outputs. The use of a nonlinear activation plays
a fundamental role in increasing the modeling power of a network. If a network used only
linear activations, it would not provide better modeling power than a single-layer linear
network. This issue is discussed in Section 1.5.

1The ReLU shows asymmetric saturation.
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Figure 1.9: An example of multiple outputs for categorical classification with the use of a
softmax layer

1.2.1.4 Choice and Number of Output Nodes

The choice and number of output nodes is also tied to the activation function, which in
turn depends on the application at hand. For example, if k-way classification is intended,
k output values can be used, with a softmax activation function with respect to outputs
T = [vy,...,vx| at the nodes in a given layer. Specifically, the activation function for the ith
output is defined as follows:

o) = — P icn g (1.12)

S5 exp(v;)

It is helpful to think of these k values as the values output by k£ nodes, in which the in-
puts are vy ...v,. An example of the softmax function with three outputs is illustrated in
Figure 1.9, and the values vy, v2, and v3 are also shown in the same figure. Note that the
three outputs correspond to the probabilities of the three classes, and they convert the three
outputs of the final hidden layer into probabilities with the softmax function. The final hid-
den layer often uses linear (identity) activations, when it is input into the softmax layer.
Furthermore, there are no weights associated with the softmax layer, since it is only con-
verting real-valued outputs into probabilities. The use of softmax with a single hidden layer
of linear activations exactly implements a model, which is referred to as multinomial logistic
regression [6]. Similarly, many variations like multi-class SVMs can be easily implemented
with neural networks. Another example of a case in which multiple output nodes are used is
the autoencoder, in which each input data point is fully reconstructed by the output layer.
The autoencoder can be used to implement matrix factorization methods like singular value
decomposition. This architecture will be discussed in detail in Chapter 2. The simplest neu-
ral networks that simulate basic machine learning algorithms are instructive because they
lie on the continuum between traditional machine learning and deep networks. By exploring
these architectures, one gets a better idea of the relationship between traditional machine
learning and neural networks, and also the advantages provided by the latter.

1.2.1.5 Choice of Loss Function

The choice of the loss function is critical in defining the outputs in a way that is sensitive
to the application at hand. For example, least-squares regression with numeric outputs
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requires a simple squared loss of the form (y — ¢)? for a single training instance with target
y and prediction g. One can also use other types of loss like hinge loss for y € {—1,+1} and
real-valued prediction ¢ (with identity activation):

L =max{0,1 —y -4} (1.13)

The hinge loss can be used to implement a learning method, which is referred to as a support
vector machine.

For multiway predictions (like predicting word identifiers or one of multiple classes),
the softmax output is particularly useful. However, a softmax output is probabilistic, and
therefore it requires a different type of loss function. In fact, for probabilistic predictions,
two different types of loss functions are used, depending on whether the prediction is binary
or whether it is multiway:

1. Binary targets (logistic regression): In this case, it is assumed that the observed
value y is drawn from {—1, +1}, and the prediction § is a an arbitrary numerical value
on using the identity activation function. In such a case, the loss function for a single
instance with observed value y and real-valued prediction ¢ (with identity activation)
is defined as follows:

L =log(1 + exp(~y - 9)) (1.14)

This type of loss function implements a fundamental machine learning method, re-
ferred to as logistic regression. Alternatively, one can use a sigmoid activation function
to output § € (0,1), which indicates the probability that the observed value y is 1.
Then, the negative logarithm of |y/2 — 0.5 4 §| provides the loss, assuming that y is
coded from {—1,1}. This is because |y/2 — 0.5 + §| indicates the probability that the
prediction is correct. This observation illustrates that one can use various combina-
tions of activation and loss functions to achieve the same result.

2. Categorical targets: In this case, if ¢; ... Jr are the probabilities of the k classes
(using the softmax activation of Equation 1.9), and the rth class is the ground-truth
class, then the loss function for a single instance is defined as follows:

L = —log(j,) (1.15)

This type of loss function implements multinomial logistic regression, and it is re-
ferred to as the cross-entropy loss. Note that binary logistic regression is identical to
multinomial logistic regression, when the value of k is set to 2 in the latter.

The key point to remember is that the nature of the output nodes, the activation function,
and the loss function depend on the application at hand. Furthermore, these choices also
depend on one another. Even though the perceptron is often presented as the quintessential
representative of single-layer networks, it is only a single representative out of a very large
universe of possibilities. In practice, one rarely uses the perceptron criterion as the loss
function. For discrete-valued outputs, it is common to use softmax activation with cross-
entropy loss. For real-valued outputs, it is common to use linear activation with squared
loss. Generally, cross-entropy loss is easier to optimize than squared loss.



16

CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

ES El 05 o 05 1 15 E ES El 05 o 05 1 15 2 EQ E3 o 5 10

(a) Identity (b) Sign (c) Sigmoid

) -2 o 2 4 6 -2 ES El EY o 05 1 15 -2 ES El EY o 05 5

(d) Tanh (e) ReLU (f) Hard Tanh

Figure 1.10: The derivatives of various activation functions

1.2.1.6 Some Useful Derivatives of Activation Functions

Most neural network learning is primarily related to gradient-descent with activation func-
tions. For this reason, the derivatives of these activation functions are used repeatedly in
this book, and gathering them in a single place for future reference is useful. This section
provides details on the derivatives of these loss functions. Later chapters will extensively
refer to these results.

1. Linear and sign activations: The derivative of the linear activation function is 1 at

all places. The derivative of sign(v) is 0 at all values of v other than at v = 0,
where it is discontinuous and non-differentiable. Because of the zero gradient and
non-differentiability of this activation function, it is rarely used in the loss function
even when it is used for prediction at testing time. The derivatives of the linear and
sign activations are illustrated in Figure 1.10(a) and (b), respectively.

Sigmoid activation: The derivative of sigmoid activation is particularly simple, when
it is expressed in terms of the output of the sigmoid, rather than the input. Let o be
the output of the sigmoid function with argument v:

1

_ 1.16
°T1+ exp(—v) (1.16)
Then, one can write the derivative of the activation as follows:
9 _
o_ _exp(-v) (1.17)

A (14 exp(—v))2
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The key point is that this sigmoid can be written more conveniently in terms of the
outputs:

0o

!
The derivative of the sigmoid is often used as a function of the output rather than the
input. The derivative of the sigmoid activation function is illustrated in Figure 1.10(c).

1-0) (1.18)

3. Tanh activation: As in the case of the sigmoid activation, the tanh activation is often
used as a function of the output o rather than the input v:

_exp(2v) — 1
0= @ 1 (1.19)

One can then compute the gradient as follows:

0o 4 - exp(2v)

— = 1.20
v (exp(20) + 1)2 (1.20)
One can also write this derivative in terms of the output o:
0o
—=1-0° 1.21
50 0 (1.21)

The derivative of the tanh activation is illustrated in Figure 1.10(d).

4. ReLU and hard tanh activations: The ReLU takes on a partial derivative value of 1
for non-negative values of its argument, and 0, otherwise. The hard tanh function
takes on a partial derivative value of 1 for values of the argument in [—1,+1] and 0,
otherwise. The derivatives of the ReLU and hard tanh activations are illustrated in
Figure 1.10(e) and (f), respectively.

1.2.2 Multilayer Neural Networks

Multilayer neural networks contain more than one computational layer. The perceptron
contains an input and output layer, of which the output layer is the only computation-
performing layer. The input layer transmits the data to the output layer, and all com-
putations are completely visible to the user. Multilayer neural networks contain multiple
computational layers; the additional intermediate layers (between input and output) are
referred to as hidden layers because the computations performed are not visible to the user.
The specific architecture of multilayer neural networks is referred to as feed-forward net-
works, because successive layers feed into one another in the forward direction from input
to output. The default architecture of feed-forward networks assumes that all nodes in one
layer are connected to those of the next layer. Therefore, the architecture of the neural
network is almost fully defined, once the number of layers and the number/type of nodes in
each layer have been defined. The only remaining detail is the loss function that is optimized
in the output layer. Although the perceptron algorithm uses the perceptron criterion, this
is not the only choice. It is extremely common to use softmax outputs with cross-entropy
loss for discrete prediction and linear outputs with squared loss for real-valued prediction.

As in the case of single-layer networks, bias neurons can be used both in the hidden
layers and in the output layers. Examples of multilayer networks with or without the bias
neurons are shown in Figure 1.11(a) and (b), respectively. In each case, the neural network
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contains three layers. Note that the input layer is often not counted, because it simply
transmits the data and no computation is performed in that layer. If a neural network
contains pj ...pg units in each of its k layers, then the (column) vector representations of
these outputs, denoted by h; ... h; have dimensionalities p; ...ps. Therefore, the number
of units in each layer is referred to as the dimensionality of that layer.

INPUT LAYER INPUT LAYER

HIDDEN LAYER HIDDEN LAYER

X, X3
5/
UTPUT LAYER <2
S OUTPUT LAYER
X OV X A’l‘% ‘A"h‘

X y Oy

(a) No bias neurons (b) With bias neurons

i SCALAR WEIGHTS ON CONNECTIONS

WEIGHT MATRICES ON CONNECTIONS

5X3 3X3 3X1
L I T MATRIX
X =—| X h, h, ,O:. y

(¢) Scalar notation and architecture (d) Vector notation and architecture

Figure 1.11: The basic architecture of a feed-forward network with two hidden layers and
a single output layer. Even though each unit contains a single scalar variable, one often
represents all units within a single layer as a single vector unit. Vector units are often
represented as rectangles and have connection matrices between them.

INPUT LAYER OUTPUT LAYER

OUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

Figure 1.12: An example of an autoencoder with multiple outputs
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The weights of the connections between the input layer and the first hidden layer are
contained in a matriz Wy with size d X p;, whereas the weights between the rth hidden
layer and the (r 4+ 1)th hidden layer are denoted by the p, X p,11 matrix denoted by W,.
If the output layer contains o nodes, then the final matrix W41 is of size py x o. The
d-dimensional input vector T is transformed into the outputs using the following recursive
equations:

hy = ®(W'7) [Input to Hidden Layer]
hpt1 = ®(W,l k) Ype{l...k—1} [Hidden to Hidden Layer]
o=oW. hi) [Hidden to Output Layer]

Here, the activation functions like the sigmoid function are applied in element-wise fashion
to their vector arguments. However, some activation functions such as the softmax (which
are typically used in the output layers) naturally have vector arguments. Even though each
unit of a neural network contains a single variable, many architectural diagrams combine
the units in a single layer to create a single vector unit, which is represented as a rectangle
rather than a circle. For example, the architectural diagram in Figure 1.11(c) (with scalar
units) has been transformed to a vector-based neural architecture in Figure 1.11(d). Note
that the connections between the vector units are now matrices. Furthermore, an implicit
assumption in the vector-based neural architecture is that all units in a layer use the same
activation function, which is applied in element-wise fashion to that layer. This constraint is
usually not a problem, because most neural architectures use the same activation function
throughout the computational pipeline, with the only deviation caused by the nature of
the output layer. Throughout this book, neural architectures in which units contain vector
variables will be depicted with rectangular units, whereas scalar variables will correspond
to circular units.

Note that the aforementioned recurrence equations and vector architectures are valid
only for layer-wise feed-forward networks, and cannot always be used for unconventional
architectural designs. It is possible to have all types of unconventional designs in which
inputs might be incorporated in intermediate layers, or the topology might allow connections
between non-consecutive layers. Furthermore, the functions computed at a node may not
always be in the form of a combination of a linear function and an activation. It is possible
to have all types of arbitrary computational functions at nodes.

Although a very classical type of architecture is shown in Figure 1.11, it is possible to
vary on it in many ways, such as allowing multiple output nodes. These choices are often
determined by the goals of the application at hand (e.g., classification or dimensionality
reduction). A classical example of the dimensionality reduction setting is the autoencoder,
which recreates the outputs from the inputs. Therefore, the number of outputs and inputs
is equal, as shown in Figure 1.12. The constricted hidden layer in the middle outputs the
reduced representation of each instance. As a result of this constriction, there is some loss in
the representation, which typically corresponds to the noise in the data. The outputs of the
hidden layers correspond to the reduced representation of the data. In fact, a shallow variant
of this scheme can be shown to be mathematically equivalent to a well-known dimensionality
reduction method known as singular value decomposition. As we will learn in Chapter 2,
increasing the depth of the network results in inherently more powerful reductions.

Although a fully connected architecture is able to perform well in many settings, better
performance is often achieved by pruning many of the connections or sharing them in an
insightful way. Typically, these insights are obtained by using a domain-specific understand-
ing of the data. A classical example of this type of weight pruning and sharing is that of
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the convolutional neural network architecture (cf. Chapter 8), in which the architecture is
carefully designed in order to conform to the typical properties of image data. Such an ap-
proach minimizes the risk of overfitting by incorporating domain-specific insights (or bias).
As we will discuss later in this book (cf. Chapter 4), overfitting is a pervasive problem in
neural network design, so that the network often performs very well on the training data,
but it generalizes poorly to unseen test data. This problem occurs when the number of free
parameters, (which is typically equal to the number of weight connections), is too large
compared to the size of the training data. In such cases, the large number of parameters
memorize the specific nuances of the training data, but fail to recognize the statistically
significant patterns for classifying unseen test data. Clearly, increasing the number of nodes
in the neural network tends to encourage overfitting. Much recent work has been focused
both on the architecture of the neural network as well as on the computations performed
within each node in order to minimize overfitting. Furthermore, the way in which the neu-
ral network is trained also has an impact on the quality of the final solution. Many clever
methods, such as pretraining (cf. Chapter 4), have been proposed in recent years in order to
improve the quality of the learned solution. This book will explore these advanced training
methods in detail.

1.2.3 The Multilayer Network as a Computational Graph

It is helpful to view a neural network as a computational graph, which is constructed by
piecing together many basic parametric models. Neural networks are fundamentally more
powerful than their building blocks because the parameters of these models are learned
jointly to create a highly optimized composition function of these models. The common use
of the term “perceptron” to refer to the basic unit of a neural network is somewhat mis-
leading, because there are many variations of this basic unit that are leveraged in different
settings. In fact, it is far more common to use logistic units (with sigmoid activation) and
piecewise/fully linear units as building blocks of these models.

A multilayer network evaluates compositions of functions computed at individual nodes.
A path of length 2 in the neural network in which the function f(-) follows g(-) can be
considered a composition function f(g(-)). Furthermore, if g1(-), g2(*) ... gx(-) are the func-
tions computed in layer m, and a particular layer-(m + 1) node computes f(-), then the
composition function computed by the layer-(m + 1) node in terms of the layer-m inputs
is f(g1(:),...gk(-)). The use of nonlinear activation functions is the key to increasing the
power of multiple layers. If all layers use an identity activation function, then a multilayer
network can be shown to simplify to linear regression. It has been shown [208] that a net-
work with a single hidden layer of nonlinear units (with a wide ranging choice of squashing
functions like the sigmoid unit) and a single (linear) output layer can compute almost
any “reasonable” function. As a result, neural networks are often referred to as universal
function approzimators, although this theoretical claim is not always easy to translate into
practical usefulness. The main issue is that the number of hidden units required to do so
is rather large, which increases the number of parameters to be learned. This results in
practical problems in training the network with a limited amount of data. In fact, deeper
networks are often preferred because they reduce the number of hidden units in each layer
as well as the overall number of parameters.

The “building block” description is particularly appropriate for multilayer neural net-
works. Very often, off-the-shelf softwares for building neural networks? provide analysts

2Examples include Torch [572], Theano [573], and TensorFlow [574].



1.3. TRAINING A NEURAL NETWORK WITH BACKPROPAGATION 21

with access to these building blocks. The analyst is able to specify the number and type of
units in each layer along with an off-the-shelf or customized loss function. A deep neural
network containing tens of layers can often be described in a few hundred lines of code.
All the learning of the weights is done automatically by the backpropagation algorithm that
uses dynamic programming to work out the complicated parameter update steps of the
underlying computational graph. The analyst does not have to spend the time and effort
to explicitly work out these steps. This makes the process of trying different types of ar-
chitectures relatively painless for the analyst. Building a neural network with many of the
off-the-shelf softwares is often compared to a child constructing a toy from building blocks
that appropriately fit with one another. Each block is like a unit (or a layer of units) with a
particular type of activation. Much of this ease in training neural networks is attributable
to the backpropagation algorithm, which shields the analyst from explicitly working out the
parameter update steps of what is actually an extremely complicated optimization problem.
Working out these steps is often the most difficult part of most machine learning algorithms,
and an important contribution of the neural network paradigm is to bring modular thinking
into machine learning. In other words, the modularity in neural network design translates
to modularity in learning its parameters; the specific name for the latter type of modularity
is “backpropagation.” This makes the design of neural networks more of an (experienced)
engineer’s task rather than a mathematical exercise.

1.3 Training a Neural Network with Backpropagation

In the single-layer neural network, the training process is relatively straightforward because
the error (or loss function) can be computed as a direct function of the weights, which
allows easy gradient computation. In the case of multi-layer networks, the problem is that
the loss is a complicated composition function of the weights in earlier layers. The gradient
of a composition function is computed using the backpropagation algorithm. The backprop-
agation algorithm leverages the chain rule of differential calculus, which computes the error
gradients in terms of summations of local-gradient products over the various paths from a
node to the output. Although this summation has an exponential number of components
(paths), one can compute it efficiently using dynamic programming. The backpropagation
algorithm is a direct application of dynamic programming. It contains two main phases,
referred to as the forward and backward phases, respectively. The forward phase is required
to compute the output values and the local derivatives at various nodes, and the backward
phase is required to accumulate the products of these local values over all paths from the
node to the output:

1. Forward phase: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared to that of the
training instance and the derivative of the loss function with respect to the output is
computed. The derivative of this loss now needs to be computed with respect to the
weights in all layers in the backwards phase.

2. Backward phase: The main goal of the backward phase is to learn the gradient of the
loss function with respect to the different weights by using the chain rule of differen-
tial calculus. These gradients are used to update the weights. Since these gradients
are learned in the backward direction, starting from the output node, this learning
process is referred to as the backward phase. Consider a sequence of hidden units
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UGLY COMPOSITION FUNCTION
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Figure 1.13: Illustration of chain rule in computational graphs: The products of
node-specific partial derivatives along paths from weight w to output o are aggregated. The
resulting value yields the derivative of output o with respect to weight w. Only two paths
between input and output exist in this simplified example.

h1, ha, ..., hi followed by output o, with respect to which the loss function L is com-
puted. Furthermore, assume that the weight of the connection from hidden unit h, to
hyy1is wen, n,.,)- Then, in the case that a single path exists from h; to o, one can
derive the gradient of the loss function with respect to any of these edge weights using
the chain rule:

oL oL
8w(hr_l,hr) 60

aw(hr 1,hr )

8hz—&-l hr
8hk ];[ ] Vrel.. .k (1.22)

The aforementioned expression assumes that only a single path from hy to o exists in
the network, whereas an exponential number of paths might exist in reality. A gener-
alized variant of the chain rule, referred to as the multivariable chain rule, computes
the gradient in a computational graph, where more than one path might exist. This is
achieved by adding the composition along each of the paths from h; to 0. An example
of the chain rule in a computational graph with two paths is shown in Figure 1.13.
Therefore, one generalizes the above expression to the case where a set P of paths
exist from h, to o:
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Backpropagation computes A(h;.,0) = g}f
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Ohy

The computation of Bu

on the right-hand side is straightforward and will

r—1,hr)

be discussed below (cf. Equation 1.27). However, the path-aggregated term above
[annotated by A(h,.,0) = g,ﬁ] is aggregated over an exponentially increasing number
of paths (with respect to path length), which seems to be intractable at first sight. A
key point is that the computational graph of a neural network does not have cycles,
and it is possible to compute such an aggregation in a principled way in the backwards
direction by first computing A(hy,0) for nodes hy closest to o, and then recursively
computing these values for nodes in earlier layers in terms of the nodes in later layers.

Furthermore, the value of A(o,0) for each output node is initialized as follows:

oL
0o
This type of dynamic programming technique is used frequently to efficiently compute
all types of path-centric functions in directed acyclic graphs, which would otherwise
require an exponential number of operations. The recursion for A(h,., 0) can be derived
using the multivariable chain rule:

oL oL Oh on
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A(o,0) = (1.24)

A(h, o) (1.25)

Since each h is in a later layer than h,, A(h,o0) has already been computed while
evaluating A(h,., 0). However, we still need to evaluate 82% in order to compute Equa-
tion 1.25. Consider a situation in which the edge joining h, to h has weight w, ),
and let aj be the value computed in hidden unit A just before applying the activation
function ®(-). In other words, we have h = ®(ay,), where ay, is a linear combination of
its inputs from earlier-layer units incident on h. Then, by the univariate chain rule,
the following expression for aa—fr can be derived:
ah _ 8h 8ah _ 8<I>(ah)
dh, — da, h,  day

This value of % is used in Equation 1.25, which is repeated recursively in the back-

wards direction,r starting with the output node. The corresponding updates in the
backwards direction are as follows:

A(hy,0) = Z ' (an) - wp, ) - A(h,0) (1.26)
hihe=h

“Wen,n) = P'(an) - we,n

Therefore, gradients are successively accumulated in the backwards direction, and
each node is processed exactly once in a backwards pass. Note that the computation
of Equation 1.25 (which requires proportional operations to the number of outgoing
edges) needs to be repeated for each incoming edge into the node to compute the gra-
dient with respect to all edge weights. Finally, Equation 1.23 requires the computation

of %, which is easily computed as follows:
15k

Ohy

L — A U 1.27
T 1 ®'(an,) (1.27)

Here, the key gradient that is backpropagated is the derivative with respect to layer acti-
vations, and the gradient with respect to the weights is easy to compute for any incident
edge on the corresponding unit.
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It is noteworthy that the dynamic programming recursion of Equation 1.26 can be
computed in multiple ways, depending on which variables one uses for intermediate chaining.
All these recursions are equivalent in terms of the final result of backpropagation. In the
following, we give an alternative version of the dynamic programming recursion, which is
more commonly seen in textbooks. Note that Equation 1.23 uses the variables in the hidden
layers as the “chain” variables for the dynamic programming recursion. One can also use
the pre-activation values of the variables for the chain rule. The pre-activation variables in a
neuron are obtained after applying the linear transform (but before applying the activation
variables) as the intermediate variables. The pre-activation value of the hidden variable
h = ®(ap) is ap. The differences between the pre-activation and post-activation values
within a neuron are shown in Figure 1.7. Therefore, instead of Equation 1.23, one can use
the following chain rule:

k—1
L L o Oap,
9 _oL ' (a,) - 3 Ja Bhiss dan, (1.28)
Owmn, _,n,y 0o dap,, 1 Oan, | Owe,_, k)
[h7.7h7.+1,4..hk,o]€73 1=r \ ,
- B
Backpropagation computes §(h,.,0) = aif '
Here, we have introduced the notation §(h,.,0) = B(Z—}LL instead of A(h,,0) = % for setting
up the recursive equation. The value of §(0,0) = aaTLO is initialized as follows:
OL oL
5(0,0) = =d(a,)  — 1.29
(0,0) = - = (as) - (129

Then, one can use the multivariable chain rule to set up a similar recursion:
6(h,0)
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This recursion condition is found more commonly in textbooks discussing backpropagation.
The partial derivative of the loss with respect to the weight is then computed using 6 (h,., 0)
as follows:

oL

—— =6(hy,0) - hy_q (1.31)
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As with the single-layer network, the process of updating the nodes is repeated to conver-
gence by repeatedly cycling through the training data in epochs. A neural network may
sometimes require thousands of epochs through the training data to learn the weights at
the different nodes. A detailed description of the backpropagation algorithm and associated

issues is provided in Chapter 3. In this chapter, we provide a brief discussion of these issues.

1.4 Practical Issues in Neural Network Training

In spite of the formidable reputation of neural networks as universal function approximators,
considerable challenges remain with respect to actually training neural networks to provide
this level of performance. These challenges are primarily related to several practical problems
associated with training, the most important one of which is overfitting.



1.4. PRACTICAL ISSUES IN NEURAL NETWORK TRAINING 25

1.4.1 The Problem of Overfitting

The problem of overfitting refers to the fact that fitting a model to a particular training
data set does not guarantee that it will provide good prediction performance on unseen test
data, even if the model predicts the targets on the training data perfectly. In other words,
there is always a gap between the training and test data performance, which is particularly
large when the models are complex and the data set is small.

In order to understand this point, consider a simple single-layer neural network on a
data set with five attributes, where we use the identity activation to learn a real-valued
target variable. This architecture is almost identical to that of Figure 1.3, except that the
identity activation function is used in order to predict a real-valued target. Therefore, the
network tries to learn the following function:

5
i=1

Consider a situation in which the observed target value is real and is always twice the
value of the first attribute, whereas other attributes are completely unrelated to the target.
However, we have only four training instances, which is one less than the number of features
(free parameters). For example, the training instances could be as follows:

Lo @ w3 x4 w5y
1 1 0 0 0|2
2 0 1 0 04
3 0 0 1 0|6
4 0 0 0O 1|8
The correct parameter vector in this case is W = [2,0,0,0,0] based on the known rela-

tionship between the first feature and target. The training data also provides zero error
with this solution, although the relationship needs to be learned from the given instances
since it is not given to us a priori. However, the problem is that the number of training
points is fewer than the number of parameters and it is possible to find an infinite number
of solutions with zero error. For example, the parameter set [0, 2,4, 6, 8] also provides zero
error on the training data. However, if we used this solution on unseen test data, it is likely
to provide very poor performance because the learned parameters are spuriously inferred
and are unlikely to generalize well to new points in which the target is twice the first at-
tribute (and other attributes are random). This type of spurious inference is caused by the
paucity of training data, where random nuances are encoded into the model. As a result,
the solution does not generalize well to unseen test data. This situation is almost similar to
learning by rote, which is highly predictive for training data but not predictive for unseen
test data. Increasing the number of training instances improves the generalization power
of the model, whereas increasing the complexity of the model reduces its generalization
power. At the same time, when a lot of training data is available, an overly simple model
is unlikely to capture complex relationships between the features and target. A good rule
of thumb is that the total number of training data points should be at least 2 to 3 times
larger than the number of parameters in the neural network, although the precise number
of data instances depends on the specific model at hand. In general, models with a larger
number of parameters are said to have high capacity, and they require a larger amount of
data in order to gain generalization power to unseen test data. The notion of overfitting is
often understood in the trade-off between bias and variance in machine learning. The key
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take-away from the notion of bias-variance trade-off is that one does not always win with
more powerful (i.e., less biased) models when working with limited training data, because
of the higher variance of these models. For example, if we change the training data in the
table above to a different set of four points, we are likely to learn a completely different set
of parameters (from the random nuances of those points). This new model is likely to yield
a completely different prediction on the same test instance as compared to the predictions
using the first training data set. This type of variation in the prediction of the same test
instance using different training data sets is a manifestation of model variance, which also
adds to the error of the model; after all, both predictions of the same test instance could not
possibly be correct. More complex models have the drawback of seeing spurious patterns
in random nuances, especially when the training data are insufficient. One must be careful
to pick an optimum point when deciding the complexity of the model. These notions are
described in detail in Chapter 4.

Neural networks have always been known to theoretically be powerful enough to ap-
proximate any function [208]. However, the lack of data availability can result in poor
performance; this is one of the reasons that neural networks only recently achieved promi-
nence. The greater availability of data has revealed the advantages of neural networks over
traditional machine learning (cf. Figure 1.2). In general, neural networks require careful
design to minimize the harmful effects of overfitting, even when a large amount of data is
available. This section provides an overview of some of the design methods used to mitigate
the impact of overfitting.

1.4.1.1 Regularization

Since a larger number of parameters causes overfitting, a natural approach is to constrain
the model to use fewer non-zero parameters. In the previous example, if we constrain the
vector W to have only one non-zero component out of five components, it will correctly
obtain the solution [2,0,0,0,0]. Smaller absolute values of the parameters also tend to
overfit less. Since it is hard to constrain the values of the parameters, the softer approach
of adding the penalty A|[WW|[? to the loss function is used. The value of p is typically set to
2, which leads to Tikhonov regularization. In general, the squared value of each parameter
(multiplied with the regularization parameter A > 0) is added to the objective function.
The practical effect of this change is that a quantity proportional to Aw; is subtracted from
the update of the parameter w;. An example of a regularized version of Equation 1.6 for
mini-batch S and update step-size a > 0 is as follows:

WeWl-a))+a > EBEX)X (1.33)
Xes

Here, E[X] represents the current error (y — §) between observed and predicted values
of training instance X. One can view this type of penalization as a kind of weight decay
during the updates. Regularization is particularly important when the amount of available
data is limited. A neat biological interpretation of regularization is that it corresponds to
gradual forgetting, as a result of which “less important” (i.e., noisy) patterns are removed.
In general, it is often advisable to use more complex models with regularization rather than
simpler models without regularization.

As a side note, the general form of Equation 1.33 is used by many regularized machine

learning models like least-squares regression (cf. Chapter 2), where E(X) is replaced by the
error-function of that specific model. Interestingly, weight decay is only sparingly used in the
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single-layer perceptron® because it can sometimes cause overly rapid forgetting with a small
number of recently misclassified training points dominating the weight vector; the main
issue is that the perceptron criterion is already a degenerate loss function with a minimum
value of 0 at W = 0 (unlike its hinge-loss or least-squares cousins). This quirk is a legacy
of the fact that the single-layer perceptron was originally defined in terms of biologically
inspired updates rather than in terms of carefully thought-out loss functions. Convergence
to an optimal solution was never guaranteed other than in linearly separable cases. For the
single-layer perceptron, some other regularization techniques, which are discussed below,
are more commonly used.

1.4.1.2 Neural Architecture and Parameter Sharing

The most effective way of building a neural network is by constructing the architecture of the
neural network after giving some thought to the underlying data domain. For example, the
successive words in a sentence are often related to one another, whereas the nearby pixels
in an image are typically related. These types of insights are used to create specialized
architectures for text and image data with fewer parameters. Furthermore, many of the
parameters might be shared. For example, a convolutional neural network uses the same
set of parameters to learn the characteristics of a local block of the image. The recent
advancements in the use of neural networks like recurrent neural networks and convolutional
neural networks are examples of this phenomena.

1.4.1.3 Early Stopping

Another common form of regularization is early stopping, in which the gradient descent is
ended after only a few iterations. One way to decide the stopping point is by holding out a
part of the training data, and then testing the error of the model on the held-out set. The
gradient-descent approach is terminated when the error on the held-out set begins to rise.
Early stopping essentially reduces the size of the parameter space to a smaller neighborhood
within the initial values of the parameters. From this point of view, early stopping acts as
a regularizer because it effectively restricts the parameter space.

1.4.1.4 Trading Off Breadth for Depth

As discussed earlier, a two-layer neural network can be used as a universal function approx-
imator [208], if a large number of hidden units are used within the hidden layer. It turns out
that networks with more layers (i.e., greater depth) tend to require far fewer units per layer
because the composition functions created by successive layers make the neural network
more powerful. Increased depth is a form of regularization, as the features in later layers
are forced to obey a particular type of structure imposed by the earlier layers. Increased
constraints reduce the capacity of the network, which is helpful when there are limitations
on the amount of available data. A brief explanation of this type of behavior is given in
Section 1.5. The number of units in each layer can typically be reduced to such an extent
that a deep network often has far fewer parameters even when added up over the greater
number of layers. This observation has led to an explosion in research on the topic of deep
learning.

3Weight decay is generally used with other loss functions in single-layer models and in all multi-layer
models with a large number of parameters.
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Even though deep networks have fewer problems with respect to overfitting, they come
with a different family of problems associated with ease of training. In particular, the loss
derivatives with respect to the weights in different layers of the network tend to have vastly
different magnitudes, which causes challenges in properly choosing step sizes. Different
manifestations of this undesirable behavior are referred to as the vanishing and exploding
gradient problems. Furthermore, deep networks often take unreasonably long to converge.
These issues and design choices will be discussed later in this section and at several places
throughout the book.

1.4.1.5 Ensemble Methods

A variety of ensemble methods like bagging are used in order to increase the generalization
power of the model. These methods are applicable not just to neural networks but to
any type of machine learning algorithm. However, in recent years, a number of ensemble
methods that are specifically focused on neural networks have also been proposed. Two
such methods include Dropout and Dropconnect. These methods can be combined with
many neural network architectures to obtain an additional accuracy improvement of about
2% in many real settings. However, the precise improvement depends to the type of data and
the nature of the underlying training. For example, normalizing the activations in hidden
layers can reduce the effectiveness of Dropout methods, although one can gain from the
normalization itself. Ensemble methods are discussed in Chapter 4.

1.4.2 The Vanishing and Exploding Gradient Problems

While increasing depth often reduces the number of parameters of the network, it leads to
different types of practical issues. Propagating backwards using the chain rule has its draw-
backs in networks with a large number of layers in terms of the stability of the updates. In
particular, the updates in earlier layers can either be negligibly small (vanishing gradient) or
they can be increasingly large (exploding gradient) in certain types of neural network archi-
tectures. This is primarily caused by the chain-like product computation in Equation 1.23,
which can either exponentially increase or decay over the length of the path. In order to
understand this point, consider a situation in which we have a multi-layer network with one
neuron in each layer. Each local derivative along a path can be shown to be the product of
the weight and the derivative of the activation function. The overall backpropagated deriva-
tive is the product of these values. If each such value is randomly distributed, and has an
expected value less than 1, the product of these derivatives in Equation 1.23 will drop off ex-
ponentially fast with path length. If the individual values on the path have expected values
greater than 1, it will typically cause the gradient to explode. Even if the local derivatives
are randomly distributed with an expected value of exactly 1, the overall derivative will
typically show instability depending on how the values are actually distributed. In other
words, the vanishing and exploding gradient problems are rather natural to deep networks,
which makes their training process unstable.

Many solutions have been proposed to address this issue. For example, a sigmoid activa-
tion often encourages the vanishing gradient problem, because its derivative is less than 0.25
at all values of its argument (see Exercise 7), and is extremely small at saturation. A ReLU
activation unit is known to be less likely to create a vanishing gradient problem because its
derivative is always 1 for positive values of the argument. More discussions on this issue are
provided in Chapter 3. Aside from the use of the ReLU, a whole host of gradient-descent
tricks are used to improve the convergence behavior of the problem. In particular, the use
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of adaptive learning rates and conjugate gradient methods can help in many cases. Further-
more, a recent technique called batch normalization is helpful in addressing some of these
issues. These techniques are discussed in Chapter 3.

1.4.3 Difficulties in Convergence

Sufficiently fast convergence of the optimization process is difficult to achieve with very
deep networks, as depth leads to increased resistance to the training process in terms of
letting the gradients smoothly flow through the network. This problem is somewhat related
to the vanishing gradient problem, but has its own unique characteristics. Therefore, some
“tricks” have been proposed in the literature for these cases, including the use of gating
networks and residual networks [184]. These methods are discussed in Chapters 7 and 8,
respectively.

1.4.4 Local and Spurious Optima

The optimization function of a neural network is highly nonlinear, which has lots of local
optima. When the parameter space is large, and there are many local optima, it makes sense
to spend some effort in picking good initialization points. One such method for improving
neural network initialization is referred to as pretraining. The basic idea is to use either
supervised or unsupervised training on shallow sub-networks of the original network in
order to create the initial weights. This type of pretraining is done in a greedy and layerwise
fashion in which a single layer of the network is trained at one time in order to learn
the initialization points of that layer. This type of approach provides initialization points
that ignore drastically irrelevant parts of the parameter space to begin with. Furthermore,
unsupervised pretraining often tends to avoid problems associated with overfitting. The
basic idea here is that some of the minima in the loss function are spurious optima because
they are exhibited only in the training data and not in the test data. Using unsupervised
pretraining tends to move the initialization point closer to the basin of “good” optima in
the test data. This is an issue associated with model generalization. Methods for pretraining
are discussed in Section 4.7 of Chapter 4.

Interestingly, the notion of spurious optima is often viewed from the lens of model gen-
eralization in neural networks. This is a different perspective from traditional optimization.
In traditional optimization, one does not focus on the differences in the loss functions of
the training and test data, but on the shape of the loss function in only the training data.
Surprisingly, the problem of local optima (from a traditional perspective) is a smaller issue
in neural networks than one might normally expect from such a nonlinear function. Most
of the time, the nonlinearity causes problems during the training process itself (e.g., failure
to converge), rather than getting stuck in a local minimum.

1.4.5 Computational Challenges

A significant challenge in neural network design is the running time required to train the
network. It is not uncommon to require weeks to train neural networks in the text and image
domains. In recent years, advances in hardware technology such as Graphics Processor Units
(GPUs) have helped to a significant extent. GPUs are specialized hardware processors that
can significantly speed up the kinds of operations commonly used in neural networks. In
this sense, some algorithmic frameworks like Torch are particularly convenient because they
have GPU support tightly integrated into the platform.
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Although algorithmic advancements have played a role in the recent excitement around
deep learning, a lot of the gains have come from the fact that the same algorithms can do
much more on modern hardware. Faster hardware also supports algorithmic development,
because one needs to repeatedly test computationally intensive algorithms to understand
what works and what does not. For example, a recent neural model such as the long short-
term memory has changed only modestly [150] since it was first proposed in 1997 [204]. Yet,
the potential of this model has been recognized only recently because of the advances in
computational power of modern machines and algorithmic tweaks associated with improved
experimentation.

One convenient property of the vast majority of neural network models is that most of
the computational heavy lifting is front loaded during the training phase, and the prediction
phase is often computationally efficient, because it requires a small number of operations
(depending on the number of layers). This is important because the prediction phase is
often far more time-critical compared to the training phase. For example, it is far more
important to classify an image in real time (with a pre-built model), although the actual
building of that model might have required a few weeks over millions of images. Methods
have also been designed to compress trained networks in order to enable their deployment
in mobile and space-constrained settings. These issues are discussed in Chapter 3.

1.5 The Secrets to the Power of Function Composition

Even though the biological metaphor sounds like an exciting way to intuitively justify the
computational power of a neural network, it does not provide a complete picture of the
settings in which neural networks perform well. At its most basic level, a neural network is
a computational graph that performs compositions of simpler functions to provide a more
complex function. Much of the power of deep learning arises from the fact that repeated
composition of multiple nonlinear functions has significant expressive power. Even though
the work in [208] shows that the single composition of a large number of squashing functions
can approximate almost any function, this approach will require an extremely large number
of units (i.e., parameters) of the network. This increases the capacity of the network, which
causes overfitting unless the data set is extremely large. Much of the power of deep learning
arises from the fact that the repeated composition of certain types of functions increases the
representation power of the network, and therefore reduces the parameter space required for
learning.

Not all base functions are equally good at achieving this goal. In fact, the nonlinear
squashing functions used in neural networks are not arbitrarily chosen, but are carefully
designed because of certain types of properties. For example, imagine a situation in which
the identity activation function is used in each layer, so that only linear functions are
computed. In such a case, the resulting neural network is no stronger than a single-layer,
linear network:

Theorem 1.5.1 A multi-layer network that uses only the identity activation function in
all its layers reduces to a single-layer network performing linear regression.

Proof: Consider a network containing k hidden layers, and therefore contains a total of
(k+1) computational layers (including the output layer). The corresponding (k + 1) weight
matrices between successive layers are denoted by Wy ... Wy1. Let T be the d-dimensional
column vector corresponding to the input, A ... Ay be the column vectors corresponding to
the hidden layers, and o be the m-dimensional column vector corresponding to the output.
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Then, we have the following recurrence condition for multi-layer networks:
h=o(Wlz)=w/z
hyp1 = ®(W, hy) =W hy, Vpe{l...k—1}

= ‘I)(WkTHEk) = WkT+1Ek

Ql

In all the cases above, the activation function ®(-) has been set to the identity function.
Then, by eliminating the hidden layer variables, it is easy to show the following:

o=WoLwl.. . wlz
= (W1W2...Wk+1)Tf

T
wi,

Note that one can replace the matrix W1 W5 ... Wi with the new d x m matrix W,,, and
learn the coefficients of W, instead of those of all the matrices W1, Wa ... W41, without
loss of expressivity. In other words, we have the following:

- T _—
o=W_7

However, this condition is exactly identical to that of linear regression with multiple out-
puts [6]. In fact, it is a bad idea to learn the redundant matrices W7 ... Wy, instead of
Wo, because doing so increases the number of parameters to be learned without increasing
the power of the model in any way. Therefore, a multilayer neural network with identity
activations does not gain over a single-layer network in terms of expressivity. |
The aforementioned result is for the case of regression modeling with numeric target vari-
ables. A similar result holds true for binary target variables. In the special case, where all
layers use identity activation and the final layer uses a single output with sign activation
for prediction, the multilayer neural network reduces to the perceptron.

Lemma 1.5.1 Consider a multilayer network in which all hidden layers use identity acti-
vation and the single output node uses the perceptron criterion as the loss function and the
sign activation for prediction. This neural network reduces to the single-layer perceptron.

The proof of this result is almost identical to that of the one discussed above. In fact, as
long as the hidden layers are linear, nothing is gained using the additional layers.

This result shows that deep networks largely make sense only when the activation func-
tions in intermediate layers are non-linear. Typically, the functions like sigmoid and tanh
are squashing functions in which the output is bounded within an interval, and the gradients
are largest near zero values. For large absolute values of their arguments, these functions
are said to reach saturation where increasing the absolute value of the argument further
does not change its value significantly. This type of function in which values do not vary
significantly at large absolute values of their arguments is shared by another family of func-
tions, referred to as Gaussian kernels, which are commonly used in non-parametric density
estimation:

®(v) = exp(—v?/2) (1.34)

The only difference is that Gaussian kernels saturate to 0 at large values of their argument,
whereas functions like sigmoid and tanh can also saturate to values of +1 and —1. It is well
known in the literature on density estimation [451] that the sum of many small Gaussian
kernels can be used to approximate any density function. Density functions have a special



32 CHAPTER 1. AN INTRODUCTION TO NEURAL NETWORKS

nonnegative structure in which extremes of the data distribution always saturate to zero
density, and therefore the underlying kernels also show the same behavior. A similar prin-
ciple holds true (more generally) for squashing functions in which the linear combination
of many small activation functions can be used to approximate an arbitrary function; how-
ever, squashing functions do not saturate to zero in order to handle arbitrary behavior at
extreme values. The universal approximation result of neural networks [208] posits that a
linear combination of sigmoid units (and/or most other reasonable squashing functions) in
a single hidden layer can be used to approximate any function well. Note that the linear
combination can be performed by a single output node. Therefore, a two-layer network is
sufficient as long as the number of hidden units is large enough. However, some kind of
basic non-linearity in the activation function is always required in order to model the turns
and twists in an arbitrary function. To understand this point, note that all 1-dimensional
functions can be approximated as a sum of scaled/translated step functions and most of the
activation functions discussed in this chapter (e.g., sigmoid) look awfully like step functions
(see Figure 1.8). This basic idea is the essence of the universal approximation theorem of
neural networks. In fact, the proof of the ability of squashing functions to approximate any
function is conceptually similar to that of kernels at least at an intuitive level. However, the
number of base functions required to reach a high level of approximation can be extremely
large in both cases, potentially increasing the data-centric requirements to an unmanageable
level. For this reason, shallow networks face the persistent problem of overfitting. The uni-
versal approximation theorem asserts the ability to well-approximate the function implicit
in the training data, but makes no guarantee about whether the function can be generalized
to unseen test data.

1.5.1 The Importance of Nonlinear Activation

The previous section provides a concrete proof of the fact that a neural network with only
linear activations does not gain from increasing the number of layers in it. For example,
consider the two-class data set illustrated in Figure 1.14, which is represented in two di-
mensions denoted by 1 and x5. There are two instances, A and B, of the class denoted by
“ with coordinates (1,1) and (—1, 1), respectively. There is also a single instance B of the
class denoted by ‘+’ with coordinates (0,1), A neural network with only linear activations
will never be able to classify the training data perfectly because the points are not linearly
separable.

On the other hand, consider a situation in which the hidden units have ReLLU activation,
and they learn the two new features hy and hs, which are as follows:

hl = max{xl, 0}
ho

max{—x1,0}

Note that these goals can be achieved by using appropriate weights from the input
to hidden layer, and also applying a ReLU activation unit. The latter achieves the goal
of thresholding negative values to 0. We have indicated the corresponding weights in the
neural network shown in Figure 1.14. We have shown a plot of the data in terms of hy
and ho in the same figure. The coordinates of the three points in the 2-dimensional hidden
layer are {(1,0), (0,1), (0,0)}. It is immediately evident that the two classes become linearly
separable in terms of the new hidden representation. In a sense, the task of the first layer
was representation learning to enable the solution of the problem with a linear classifier.
Therefore, if we add a single linear output layer to the neural network, it will be able to
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Figure 1.14: The power of nonlinear activation functions in transforming a data set to linear
separability

classify these training instances perfectly. The key point is that the use of the nonlinear
ReLU function is crucial in ensuring this linear separability. Activation functions enable
nonlinear mappings of the data, so that the embedded points can become linearly separable.
In fact, if both the weights from hidden to output layer are set to 1 with a linear activation
function, the output O will be defined as follows:

O = hy + hy (1.35)

This simple linear function separates the two classes because it always takes on the value
of 1 for the two points labeled ‘*’ and takes on 0 for the point labeled ‘+’. Therefore,
much of the power of neural networks is hidden in the use of activation functions. The
weights shown in Figure 1.14 will need to be learned in a data-driven manner, although
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Figure 1.15: Deeper networks can learn more complex functions by composing the functions
learned in earlier layers.
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there are many alternative choices of weights that can make the hidden representation
linearly separable. Therefore, the learned weights may be different than the ones shown in
Figure 1.14 if actual training is performed. Nevertheless, in the case of the perceptron, there
is no choice of weights at which one could hope to classify this training data set perfectly
because the data set is not linearly separable in the original space. In other words, the
activation functions enable nonlinear transformations of the data, that become increasingly
powerful with multiple layers. A sequence of nonlinear activations imposes a specific type
of structure on the learned model, whose power increases with the depth of the sequence
(i.e., number of layers in the neural network).

Another classical example is the XOR function in which the two points {(0,0), (1,1)}
belong to one class, and the other two points {(1,0),(0,1)} belong to the other class.
It is possible to use ReLU activation to separate these two classes as well, although bias
neurons will be needed in this case (see Exercise 1). The original backpropagation paper [409]
discusses the XOR function, because this function was one of the motivating factors for
designing multilayer networks and the ability to train them. The XOR function is considered
a litmus test to determine the basic feasibility of a particular family of neural networks to
properly predict nonlinearly separable classes. Although we have used the ReLU activation
function above for simplicity, it is possible to use most of the other nonlinear activation
functions to achieve the same goals.

1.5.2 Reducing Parameter Requirements with Depth

The basic idea of deep learning is that repeated composition of functions can often reduce
the requirements on the number of base functions (computational units) by a factor that
is exponentially related to the number of layers in the network. Therefore, even though the
number of layers in the network increases, the number of parameters required to approximate
the same function reduces drastically. This increases the generalization power of the network.

The idea behind deeper architectures is that they can better leverage repeated reqularities
in the data patterns in order to reduce the number of computational units and therefore
generalize the learning even to areas of the data space where one does not have examples.
Often these repeated regularities are learned by the neural network within the weights as the
basis vectors of hierarchical features. Although a detailed proof [340] of this fact is beyond
the scope of this book, we provide a simple example to elucidate this point. Consider a
situation in which a 1-dimensional function is defined by 1024 repeated steps of the same
size and height. A shallow network with one hidden layer and step activation functions
would require at least 1024 units in order to model the function. However, a multilayer
network would model a pattern of 1 step in the first layer, 2 steps in the next, 4 steps in
the third, and 2" steps in the rth layer. This situation is illustrated in Figure 1.15. Note
that the pattern of 1 step is the simplest feature because it is repeated 1024 times, whereas
a pattern of 2 steps is more complex. Therefore, the features (and the functions learned)
in successive layers are hierarchically related. In this case, a total of 10 layers are required
and a small number of constant nodes are required in each layer to model the joining of the
two patterns from the previous layer.

Another way to understand this point is as follows. Consider a 1-dimensional function
which takes one the value of 1 and —1 in alternate intervals, and this value switches 1024
times at regular intervals of the argument. The only way to simulate this function with a
linear combination of step activation functions (containing only one switch in value) is to
use 1024 of them (or a small constant factor of this number). However, a neural network
with 10 hidden layers and only 2 units per layer has 2! = 1024 paths from the source
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to the output. As long as the function to be learned is regular in some way, it is often
possible to learn parameters for the layers so that these 1024 paths are able to capture the
complexity of 1024 different value switches in the function. The earlier layers learn more
detailed patterns, whereas the later layers learn higher-level patterns. Therefore, the overall
number of nodes required is an order of magnitude less than that required in the single-
layer network. This means that the amount of data required for learning is also an order of
magnitude less. The reason for this is that the multilayer network implicitly looks for the
repeated regularities and learns them with less data, rather than trying to explicitly learn
every turn and twist of the target function. When using convolutional neural networks with
image data, this behavior becomes intuitively obvious in which earlier layers model simple
features like lines, a middle layer might model elementary shapes, and a later layer might
model a complex shape like a face. On the other hand, a single layer would have difficulty
in modeling every twist and turn of a face. This provides the deeper model with better
generalization power and also the ability to learn with less data.

However, increasing the depth of the network is not without its disadvantages. Deeper
networks are often harder to train, and they show all types of unstable behavior such as the
vanishing and exploding gradient problems. Deep networks are also notoriously unstable
to parameter choice. These issues are often addressed with careful design of the functions
computed within nodes, as well as the use of pretraining procedures to improve performance.

1.5.3 Unconventional Neural Architectures

The aforementioned discussion provides an overview of the most common ways in which the
operations and structures of typical neural networks are constructed. However, there are
many variations of this common theme. The following will discuss some of these variations.

1.5.3.1 Blurring the Distinctions Between Input, Hidden,
and Output Layers

In general, there is a heavy emphasis on layer-wise feed-forward networks in the neural net-
work domain with a sequential arrangement between input, hidden, and output layers. In
other words, all input nodes feed into the first hidden layer, the hidden layers successively
feed into one another, and the final hidden layer feeds into the output layer. The compu-
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Figure 1.16: An example of an unconventional architecture in which inputs occur to layers
other than the first hidden layer. As long as the neural network is acyclic (or can be trans-
formed into an acyclic representation), the weights of the underlying computation graph
can be learned using dynamic programming (backpropagation).
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tational units are often defined by squashing functions applied to linear combinations of
input. The hidden layer generally does not take inputs, and the loss is generally not com-
puted over the values in the hidden layers. Because of this focus, it is easy to forget that a
neural network can be defined as any type of parameterized computation graph, where these
restrictions are not necessary for the backpropagation algorithm to work. In general, it is
possible to have input and loss computation in intermediate layers, although this is less
common. For example, a neural network is proposed in [515] that is inspired by the notion
of a random forest [49], and it allows input in different layers of the network. An example
of this type of network is shown in Figure 1.16. In this case, it is clear that the distinction
between the input layers and the hidden layers has been blurred.

In other variations of the basic feed-forward architecture, loss functions are computed
not just at the output nodes, but also at the hidden nodes. The contributions at the hidden
nodes are often in the form of penalties that act as regularizers. For example, these types of
methods are used to perform sparse feature learning by imposing penalties on the hidden
nodes (cf. Chapters 2 and 4). In this case, the distinction between the hidden layers and
output layers is blurred.

Another recent example of a design choice is the use of skip connections [184] in which
the inputs from a particular layer are allowed to connect to layers beyond the immediate
next layer. This type of approach leads to truly deep models. For example, a 152-layer ar-
chitecture, referred to as ResNet [184], has reached human-level performance in the image
recognition task. Although this architecture does not blur the distinction between input,
hidden, and output layers, its structure differs from a traditional feed-forward network in
which connections are placed only between successive layers. These networks have an it-
erative view of feature engineering [161], in which the features in later layers are iterative
refinements of those in previous layers. In contrast, the traditional approach to feature
engineering is hierarchical, in which features in later layers are increasingly abstract repre-
sentations obtained from those in previous layers.

1.5.3.2 Unconventional Operations and Sum-Product Networks

Some neural networks like long short-term memory and convolutional neural networks define
various types of multiplicative “forgetting,” convolution, and pooling operations between
variables that are not strictly in any of the forms discussed in this chapter. In fact, these
architectures are now used so heavily in the text and image domains that they are no longer
considered unusual.

Another unique type of architecture is the sum-product network [383]. In this case, the
nodes are either summation nodes or product nodes. Summation nodes are similar to the
traditional linear transformation with a set of weighted edges. However, the weights are
constrained to be positive. The product nodes simply multiply its inputs without the need
for weights. It is noteworthy that there are many variations in terms of how products can
be computed. For example, if the inputs are two scalars, then one can simply compute their
product. If the inputs are two vectors of equal length, one can compute their element-wise
product. Several deep learning libraries do support these types of product operations. It is
natural for the summation layers and the product layers to alternate in order to maximize
expressivity.

Sum-product networks are quite expressive, and it is often possible to build deep varia-
tions with a high level of expressivity [30, 93]. A key point is that almost any mathematical
function can be approximately written as a polynomial function of its inputs. Therefore,
almost any function can be expressed using the sum-product architecture, although deeper
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architectures allow modeling with greater structure. Unlike traditional neural networks in
which nonlinearity is incorporated with activation functions, the product operation is the
key to nonlinearity in the sum-product network.

Training Issues

It is often helpful to be flexible in using different types of computational operations within
the nodes beyond the known transformations and activation functions. Furthermore, the
connections between nodes need not be structured in layer-wise fashion and nodes in the
hidden layer can be included in the loss computation. As long as the underlying computa-
tional graph is acyclic, it is easy to generalize the backpropagation algorithm to any type
of architecture and computational operation. After all, a dynamic programming algorithm
(like backpropagation) can be used on virtually any type of directed acyclic graph in which
multiple nodes can be used for initializing the dynamic programming recursion. It is im-
portant to keep in mind that architectures that are designed with a proper domain-specific
understanding can often provide superior results to black-box methods that use fully con-
nected feed-forward networks.

1.6 Common Neural Architectures

There are several types of neural architectures that are used commonly in various machine
learning applications. This section will provide a brief overview of some of these architec-
tures, which will be discussed in greater detail in later chapters.

1.6.1 Simulating Basic Machine Learning with Shallow Models

Most of the basic machine learning models like linear regression, classification, support
vector machines, logistic regression, singular value decomposition, and matrix factorization
can be simulated with shallow neural networks containing no more than one or two layers.
It is instructive to explore these basic architectures, because it indirectly showcases the
power of neural networks; most of what we know about machine learning can be simulated
with relatively simple models! Furthermore, many basic neural network models like the
Widrow-Hoff learning model are directly related to traditional machine learning models like
the Fisher’s discriminant, even though they were proposed independently. A noteworthy
observation is that deeper architectures are often created by stacking these simpler models
in a creative way. The neural architectures for basic machine learning models are discussed
in Chapter 2. A number of applications to text mining, graphs, and recommender systems
will also be discussed in this chapter.

1.6.2 Radial Basis Function Networks

Radial basis function (RBF) networks represent the forgotten architecture from the rich
history of neural networks. They are not commonly used in the modern era, although they
do have significant potential for specific types of problems. One limiting issue is that these
networks are not deep, and they typically use only two layers. The first layer is constructed
in an unsupervised way, whereas the second layer is trained using supervised methods. These
networks are fundamentally different from feed-forward networks, and gain their power from
the larger number of nodes in the unsupervised layer. The basic principles of using RBF
networks are fundamentally very different from those of feed-forward networks, in the sense
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that the former gains its power from expanding the size of the feature space rather than
depth. This approach is based on Cover’s theorem on separability of patterns [84], which
states that pattern classification problems are more likely to be linearly separable when
cast into a high-dimensional space with a nonlinear transformation. The second layer of the
network contains a prototype in each node and the activation is defined by the similarity of
the input data to the prototype. These activations are then combined with trained weights
of the next layer to create a final prediction. This approach is very similar to that of nearest-
neighbor classifiers, except that the weights in the second layer provide an additional level
of supervision. In other words, the approach is a supervised nearest-neighbor method.
Notably, support vector machines are known to be supervised variants of nearest-
neighbor classifiers in which a kernel function is combined with supervised weights to weight
the neighboring points in the final prediction [6]. Radial basis function networks can be used
to simulate kernel methods like support vector machines. For specific types of problems like
classification, one can use these architectures more effectively than an off-the-shelf kernel
support vector machine. This is because these models are more general, providing more
opportunities for experimentation than a kernel support vector machine. Furthermore, it is
sometimes possible to gain some advantages from increased depth in the supervised layers.
The full potential of radial basis function networks remains unexplored in the literature,
because this architecture has largely been forgotten with the increased focus on vanilla feed-
forward methods. A discussion of radial basis function networks is provided in Chapter 5.

1.6.3 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) use the notion of energy minimization in order
to create neural network architectures for modeling data in an unsupervised way. These
methods are particularly useful for creating generative models of the data, and they are
closely related to probabilistic graphical models [251]. Restricted Boltzmann machines owe
their origins to the use of Hopfield networks [207], which can be used to store memories.
Stochastic variants of these networks were generalized to Boltzmann machines, in which
hidden layers modeled generative aspects of the data.

Restricted Boltzmann machines are often used for unsupervised modeling and dimen-
sionality reduction, although they can also be used for supervised modeling. However, since
they were not naturally suited to supervised modeling, the supervised training was often
preceded by an unsupervised phase. This naturally led to the discovery of the notion of
pretraining, which was found to be extremely beneficial for supervised learning. RBMs were
among the first models that were used for deep learning, especially in the unsupervised set-
ting. The pretraining approach was eventually adopted by other types of models. Therefore,
RBMs also have a historical significance in terms of motivating some training methodologies
for deep models.

The training process of a restricted Boltzmann machine is quite different from that of a
feed-forward network. In particular, these models cannot be trained using backpropagation,
and they require Monte Carlo sampling in order to perform the training. The particular al-
gorithm that is used commonly for training an RBM is the contrastive divergence algorithm.
A discussion of restricted Boltzmann machines is provided in Chapter 6.

1.6.4 Recurrent Neural Networks

Recurrent neural networks are designed for sequential data like text sentences, time-series,
and other discrete sequences like biological sequences. In these cases, the input is of the
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form 7 ...T,, where T; is a d-dimensional point received at the time-stamp ¢. For example,
the vector T; might contain the d values at the tth tick of a multivariate time-series (with
d different series). In a text-setting, the vector T, will contain the one-hot encoded word at
the tth time-stamp. In one-hot encoding, we have a vector of length equal to the lexicon
size, and the component for the relevant word has a value of 1. All other components are 0.

An important point about sequences is that successive words are dependent on one
another. Therefore, it is helpful to receive a particular input T; only after the earlier inputs
have already been received and converted into a hidden state. The traditional type of feed-
forward network in which all inputs feed into the first layer does not achieve this goal.
Therefore, the recurrent neural network allows the input Z; to interact directly with the
hidden state created from the inputs at previous time stamps. The basic architecture of
the recurrent neural network is illustrated in Figure 1.17(a). The key point is that there is
an input Z; at each time-stamp, and a hidden state h; that changes at each time stamp
as new data points arrive. Each time-stamp also has an output value ¥,. For example, in
a time-series setting, the output 7, might be the forecasted prediction of Z;41. When used
in the text-setting of predicting the next word, this approach is referred to as language
modeling. In some applications, we do not output 7, at each time stamp, but only at the
end of the sequence. For example, if one is trying the classify the sentiment of a sentence
as “positive” or “negative,” the output will occur only at the final time stamp.

The hidden state at time t is given by a function of the input vector at time ¢ and the
hidden vector at time (¢t — 1):

hi = f(hi—1,Tt) (1.36)

A separate function 7, = g(h¢) is used to learn the output probabilities from the hidden
states. Note that the functions f(-) and g(-) are the same at each time stamp. The implicit
assumption is that the time-series exhibits a certain level of stationarity; the underlying
properties do not change with time. Although this property is not exactly true in real
settings, it is a good assumption to use for regularization.

A key point here is the presence of the self-loop in Figure 1.17(a), which will cause
the hidden state of the neural network to change after the input of each Z;. In practice,
one only works with sequences of finite length, and it makes sense to unfurl the loop into
a “time-layered” network that looks more like a feed-forward network. This network is
shown in Figure 1.17(b). Note that in this case, we have a different node for the hidden
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Figure 1.17: A recurrent neural network and its time-layered representation
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state at each time-stamp and the self-loop has been unfurled into a feed-forward network.
This representation is mathematically equivalent to Figure 1.17(a), but is much easier to
comprehend because of its similarity to a traditional network. Note that unlike traditional
feed-forward networks, the inputs also occur to intermediate layers in this unfurled network.
The weight matrices of the connections are shared by multiple connections in the time-
layered network to ensure that the same function is used at each time stamp. This sharing is
the key to the domain-specific insights that are learned by the network. The backpropagation
algorithm takes the sharing and temporal length into account when updating the weights
during the learning process. This special type of backpropagation algorithm is referred to as
backpropagation through time (BPTT). Because of the recursive nature of Equation 1.36,
the recurrent network has the ability to compute a function of variable-length inputs. In
other words, one can expand the recurrence of Equation 1.36 to define the function for h;
in terms of ¢ inputs. For example, starting at hg, which is typically fixed to some constant
vector, we have hy = f(ho,T1) and hy = f(f(ho,T1),T2). Note that h; is a function of only
T, whereas ho is a function of both Z; and Z». Since the output Y, is a function of hy, these
properties are inherited by ¥, as well. In general, we can write the following:

¥, = Fi(T1, T2, ... Tt) (1.37)

Note that the function F(-) varies with the value of ¢. Such an approach is particularly useful
for variable-length inputs like text sentences. More details of recurrent neural networks are
provided in Chapter 7; this chapter will also discuss the applications of recurrent neural
networks in various domains.

An interesting theoretical property of recurrent neural networks is that they are Turing
complete [444]. What this means is that given enough data and computational resources, a
recurrent neural network can simulate any algorithm. In practice, however, this theoretical
property is not useful because recurrent networks have significant practical problems with
generalization for long sequences. The amount of data and the size of the hidden states
required for longer sequences increases in a way that is not realistic. Furthermore, there are
practical issues in finding the optimum choices of parameters because of the vanishing and
exploding gradient problems. As a result, specialized variants of the recurrent neural network
architecture have been proposed, such as the use of long short-term memory. These advanced
architectures will also be discussed in Chapter 7. Furthermore, some advanced variants of
the recurrent architecture, such as neural Turing machines, have shown improvements over
the recurrent neural network in some applications.

1.6.5 Convolutional Neural Networks

Convolutional neural networks are biologically inspired networks that are used in computer
vision for image classification and object detection. The basic motivation for the convo-
lutional neural network was obtained from Hubel and Wiesel’s understanding [212] of the
workings of the cat’s visual cortex, in which specific portions of the visual field seemed to
excite particular neurons. This broader principle was used to design a sparse architecture
for convolutional neural networks. The first basic architecture based on this biological inspi-
ration was the neocognitron, which was then generalized to the LeNet-5 architecture [279)].
In the convolutional neural network architecture, each layer of the network is 3-dimensional,
which has a spatial extent and a depth corresponding to the number of features. The notion
of depth of a single layer in a convolutional neural network is distinct? from the notion of

4This is an overloading of the terminology used in convolutional neural networks. The meaning of the
word “depth” is inferred from the context in which it is used.
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depth in terms of the number of layers. In the input layer, these features correspond to the
color channels like RGB (i.e., red, green, blue), and in the hidden channels these features
represent hidden feature maps that encode various types of shapes in the image. If the input
is in grayscale (like LeNet-5), then the input layer will have a depth of 1, but later layers
will still be 3-dimensional. The architecture contains two types of layers, referred to as the
convolution and subsampling layers, respectively.

For the convolution layers, a convolution operation is defined, in which a filter is used to
map the activations from one layer to the next. A convolution operation uses a 3-dimensional
filter of weights with the same depth as the current layer but with a smaller spatial extent.
The dot product between all the weights in the filter and any choice of spatial region (of
the same size as the filter) in a layer defines the value of the hidden state in the next layer
(after applying an activation function like ReLU). The operation between the filter and the
spatial regions in a layer is performed at every possible position in order to define the next
layer (in which the activations retain their spatial relationships from the previous layer).

The connections in a convolutional neural network are very sparse, because any activa-
tion in a particular layer is a function of only a small spatial region in the previous layer.
All layers other than the final set of two of three layers maintain their spatial structure.
Therefore, it is possible to spatially visualize what parts of the image affect particular por-
tions of the activations in a layer. The features in lower-level layers capture lines or other
primitive shapes, whereas the features in higher-level layers capture more complex shapes
like loops (which commonly occur in many digits). Therefore, later layers can create digits
by composing the shapes in these intuitive features. This is a classical example of the way in
which semantic insights about specific data domains are used to design clever architectures.
In addition, a subsampling layer simply averages the values in the local regions of size 2 x 2
in order to compress the spatial footprints of the layers by a factor of 2. An illustration of
the architecture of LeNet-5 is shown in Figure 1.18. In the early years, LeNet-5 was used
by several banks to recognize hand-written numbers on checks.

Convolutional neural networks have historically been the most successful of all types of
neural networks. They are used widely for image recognition, object detection/localization,
and even text processing. The performance of these networks has recently exceeded that of
humans in the problem of image classification [184]. Convolutional neural networks provide
a very good example of the fact that architectural design choices in a neural network should
be performed with semantic insight about the data domain at hand. In the particular case
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Figure 1.18: LeNet-5: One of the earliest convolutional neural networks.
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of the convolutional neural network, this insight was obtained by observing the biological
workings of a cat’s visual cortex, and heavily using the spatial relationships among pixels.
This fact also provides some evidence that a further understanding of neuroscience might
also be helpful for the development of methods in artificial intelligence.

Pretrained convolutional neural networks from publicly available resources like ImageNet
are often available for use in an off-the-shelf manner for other applications and data sets.
This is achieved by using most of the pretrained weights in the convolutional network with-
out any change except for the final classification layer. The weights of the final classification
layer are learned from the data set at hand. The training of the final layer is necessary
because the class labels in a particular setting may be different from those of ImageNet.
Nevertheless, the weights in the early layers are still useful because they learn various types
of shapes in the images that can be useful for virtually any type of classification application.
Furthermore, the feature activations in the penultimate layer can even be used for unsu-
pervised applications. For example, one can create a multidimensional representation of an
arbitrary image data set by passing each image through the convolutional neural network
and extracting the activations of the penultimate layer. Subsequently, any type of indexing
can be applied to this representation for retrieving images that are similar to a specific
target image. Such an approach often provides surprisingly good results in image retrieval
because of the semantic nature of the features learned by the network. It is noteworthy that
the use of pretrained convolutional networks is so popular that training is rarely started
from scratch. Convolutional neural networks are discussed in detail in Chapter 8.

1.6.6 Hierarchical Feature Engineering and Pretrained Models

Many deeper architectures with feed-forward architectures have multiple layers in which
successive transformations of the inputs from the previous layer lead to increasingly so-
phisticated representations of the data. The values of each hidden layer for a particular
input contain a transformed representation of the input point, which becomes increasingly
informative about the target value we are trying to learn, as the layer gets closer to the
output node. As shown in Section 1.5.1, appropriately transformed feature representations
are more amenable to simple types of predictions in the output layer. This sophistication is
a result of the nonlinear activations in intermediate layers. Traditionally, the sigmoid and
tanh activations were the most popular choices in the hidden layers, but the ReLU activa-
tion has become increasingly popular in recent years because of the desirable property that
it is better at avoiding the vanishing and exploding gradient problems (cf. Section 3.4.2 of
Chapter 3). For classification, the final layer can be viewed as a relatively simple prediction
layer which contains a single linear neuron in the case of regression, and is a sigmoid/sign
function in the case of binary classification. More complex outputs might require multiple
nodes. One way of viewing this division of labor between the hidden layers and final pre-
diction layer is that the early layers create a feature representation that is more amenable
to the task at hand. The final layer then leverages this learned feature representation. This
division of labor is shown in Figure 1.19. A key point is that the features learned in the
hidden layers are often (but not always) generalizable to other data sets and problem set-
tings in the same domain (e.g., text, images, and so on). This property can be leveraged in
various ways by simply replacing the output node(s) of a pretrained network with a different
application-specific output layer (e.g., linear regression layer instead of sigmoid classification
layer) for the data set and problem at hand. Subsequently, only the weights of the newly
replaced output layer may need to be learned for the new data set and application, whereas
the weights of other layers are fixed.
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Figure 1.19: The feature engineering role of the hidden layers

The output of each hidden layer is a transformed feature representation of the data, in
which the dimensionality of the representation is defined by the number of units in that
layer. One can view this process as a kind of hierarchical feature engineering in which the
features in earlier layers represent primitive characteristics of the data, whereas those in
later layers represent complex characteristics with semantic significance to the class labels.
Data represented in the terms of the features of later layers are often more well behaved
(e.g., linearly separable) because of the semantic nature of the features learned by the
transformation. This type of behavior is particularly evident in a visually interpretable way
in some domains like convolutional neural networks for image data. In convolutional neural
networks, the features in earlier layers capture detailed but primitive shapes like lines or
edges from the data set of images. On the other hand, the features in later layers capture
shapes of greater complexity like hexagons, honeycombs, and so forth, depending on the
type of images provided as training data. Note that such semantically interpretable shapes
often have closer correlations with class labels in the image domain. For example, almost
any image will contain lines or edges, but images belonging to particular classes will be more
likely to have hexagons or honeycombs. This property tends to make the representations
of later layers easier to classify with simple models like linear classifiers. This process is
illustrated in Figure 1.19. The features in earlier layers are used repeatedly as building
blocks to create more complex features. This general principle of “putting together” simple
features to create more complex features lies at the core of the successes achieved with
neural networks. As it turns out, this property is also useful in leveraging pretrained models
in a carefully calibrated way. The practice of using pretrained models is also referred to as
transfer learning.

A particular type of transfer learning, which is used commonly in neural networks, is
that the data and structure available in a given data set are used to learn features for that
entire domain. A classical example of this setting is that of text or image data. In text data,
the representations of text words are created using standardized benchmark data sets like
Wikipedia [594] and models like word2vec. These can be used in almost any text application,
since the nature of text data does not change very much with the application. A similar
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approach is often used for image data, in which the ImageNet data set (cf. Section 1.8.2)
is used to pretrain convolutional neural networks, and provide ready-to-use features. One
can download a pretrained convolutional neural network model and convert any image data
set into a multidimensional representation by passing the image through the pretrained
network. Furthermore, if additional application-specific data is available, one can regulate
the level of transfer learning depending on the amount of available data. This is achieved
by fine-tuning a subset of the layers in the pretrained neural network with this additional
data. If a small amount of application-specific data is available, one can fix the weights
of the early layers to their pretrained values and fine-tune only the last few layers of the
neural network. The early layers often contain primitive features, which are more easily
generalizable to arbitrary applications. For example, in a convolutional neural network,
the early layers learn primitive features like edges, which are useful across diverse images
like trucks or carrots. On the other hand, the later layers contain complex features which
might depend on the image collection at hand (e.g., truck wheel versus carrot top). Fine-
tuning only the weights of the later layers makes sense in such cases. If a large amount of
application-specific data is available, one can fine-tune a larger number of layers. Therefore,
deep networks provide significant flexibility in terms of how transfer learning is done with
pretrained neural network models.

1.7 Advanced Topics

Several topics in deep learning have increasingly gained attention, and have had significant
successes. Although some of these methods are limited by current computational consider-
ations, their potential is quite significant. This section will discuss some of these topics.

1.7.1 Reinforcement Learning

In general forms of artificial intelligence, the neural network must learn to take actions in
ever-changing and dynamic situations. Examples include learning robots and self-driving
cars. In these cases, a critical assumption is that the learning system has no knowledge of
the appropriate sequence of actions up front, and it learns through reward-based reinforce-
ment as it takes various actions. These types of learning correspond to dynamic sequences
of actions that are hard to model using traditional machine learning methods. The key
assumption here is that these systems are too complex to explicitly model, but they are
simple enough to evaluate, so that a reward value can be assigned for each action of the
learner.

Imagine a setting in which one wishes to train a learning system to play a video game
from scratch without any prior knowledge of the rules. Video games are excellent test beds
for reinforcement learning methods because they are microcosms of living the “game” of
life. As in real-world settings, the number of possible states (i.e., unique position in game)
might be too large to even enumerate, and the optimal choice of move depends critically on
the knowledge of what is truly important to model from a particular state. Furthermore,
since one does not start with any knowledge of the rules, the learning system would need to
collect the data through its actions much as a mouse explores a maze to learn its structure.
Therefore, the collected data is highly biased by the user actions, which provides a partic-
ularly challenging landscape for learning. The successful training of reinforcement learning
methods is a critical gateway for self-learning systems, which is the holy grail of artificial
intelligence. Although the field of reinforcement learning was developed independently of
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the field of neural networks, the strong complementarity of the two fields has brought them
together. Deep learning methods can be useful in learning feature representations from
high-dimensional sensory inputs (e.g., the video screens of pixels in a video game or the
screen of pixels in a robot’s “vision”). Furthermore, reinforcement learning methods are of-
ten used to support various types of neural network algorithms like attention mechanisms.
Reinforcement learning methods are discussed in Chapter 9.

1.7.2 Separating Data Storage and Computations

An important aspect of neural networks is that the data storage and computations are
tightly integrated. For example, the states in a neural network can be considered a type of
transient memory, which behave much like the ever-changing registers in the central pro-
cessing unit of a computer. But what if we want to construct a neural network where one can
control where to read data from, and where to write the data to. This goal is achieved with
the notion of attention and external memory. Attention mechanisms can be used in various
applications like image processing where one focuses on small parts of the image to gain
successive insights. These techniques are also used for machine translation. Neural networks
that can tightly control access in reading and writing to an external memory are referred
to as neural Turing machines [158] or memory networks [528]. Although these methods are
advanced variants of recurrent neural networks, they show significantly improved potential
than their predecessors in terms of the types of problems they can handle. These methods
are discussed in Chapter 10.

1.7.3 Generative Adversarial Networks

Generative adversarial networks are a model of data generation that can create a generative
model of a base data set by using an adversarial game between two players. The two players
correspond to a generator and a discriminator. The generator takes Gaussian noise as input
and produces an output, which is a generated sample like the base data. The discriminator
is typically a probabilistic classifier like logistic regression whose job is to distinguish real
samples from the base data set and the generated sample. The generator tries to create
samples that are as realistic as possible; its job is to fool the discriminator, whereas the job
of the discriminator is to identify the fake samples irrespective of how well the generator tries
to fool it. The problem can be understood as an adversarial game between the generator
and discriminator, and the formal optimization model is a minimax learning problem. The
Nash equilibrium of this minimax game provides the final trained model. Typically, this
equilibrium point is one at which the discriminator is unable to distinguish between real
and fake samples.

Such methods can create realistic fantasy samples using a base data set, and are used
commonly in the image domain. For example, if the approach is trained using a data set
containing images of bedrooms, it will produce realistic looking bedrooms that are not
actually a part of the base data. Therefore, the approach can be used for artistic or creative
endeavors. These methods can also be conditioned on specific types of context, which could
be any type of object such as label, text caption, or an image with missing details. In these
cases, pairs of related training objects are used. A typical pair could be a caption (context)
and an image (base object). Similarly, one might have pairs corresponding to sketches of
objects and actual photographs. Therefore, starting with a captioned image data set of
various types of animals, it is possible to create a fantasy image that is not a part of the
base data by using a contextual caption such as “blue bird with sharp claws.” Similarly,
starting with an artist’s sketch of a purse, the approach can create a realistic and colored
image of a purse. Generative adversarial networks are discussed in Chapter 10.
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1.8 Two Notable Benchmarks

The benchmarks used in the neural network literature are dominated by data from the
domain of computer vision. Although traditional machine learning data sets like the UCI
repository [601] can be used for testing neural networks, the general trend is towards using
data sets from perceptually oriented data domains that can be visualized well. Although
there are a variety of data sets drawn from the text and image domains, two of them stand
out because of their ubiquity in deep learning papers. Although both are data sets drawn
from computer vision, the first of them is simple enough that it can also be used for testing
generic applications beyond the field of vision. In the following, we provide a brief overview
of these two data sets.

1.8.1 The MNIST Database of Handwritten Digits

The MNIST database, which stands for Modified National Institute of Standards and Tech-
nology database, is a large database of handwritten digits [281]. As the name suggests, this
data set was created by modifying an original database of handwritten digits provided by
NIST. The data set contains 60,000 training images and 10,000 testing images. Each image
is a scan of a handwritten digit from 0 to 9, and the differences between different images
are a result of the differences in the handwriting of different individuals. These individuals
were American Census Bureau employees and American high school students. The original
black and white images from NIST were size normalized to fit in a 20 x 20 pixel box while
preserving their aspect ratio and centered in a 28 x 28 image by computing the center of
mass of the pixels. The images were translated to position this point at the center of the
28 x 28 field. Each of these 28 x 28 pixel values takes on a value from 0 to 255, depending on
where it lies in the grayscale spectrum. The labels associated with the images correspond
to the ten digit values. Examples of the digits in the MNIST database are illustrated in
Figure 1.20. The size of the data set is rather small, and it contains only a simple object
corresponding to a digit. Therefore, one might argue that the MNIST database is a toy data
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Figure 1.20: Examples of handwritten digits in the MNIST database

set. However, its small size and simplicity is also an advantage because it can be used as a
laboratory for quick testing of machine learning algorithms. Furthermore, the simplification
of the data set by virtue of the fact that the digits are (roughly) centered makes it easy
to use it to test algorithms beyond computer vision. Computer vision algorithms require
specialized assumptions such as translation invariance. The simplicity of this data set makes
these assumptions unnecessary. It has been remarked by Geoff Hinton [600] that the MNIST
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database is used by neural network researchers in much the same way as biologists use fruit
flies for early and quick results (before serious testing on more complex organisms).

Although the matrix representation of each image is suited to a convolutional neural
network, one can also convert it into a multidimensional representation of 28 x 28 = 784
dimensions. This conversion loses some of the spatial information in the image, but this
loss is not debilitating (at least in the case of the MNIST data set) because of its relative
simplicity. In fact, the use of a simple support vector machine on the 784-dimensional rep-
resentation can provide an impressive error rate of about 0.56%. A straightforward 2-layer
neural network on the multidimensional representation (without using the spatial structure
in the image) generally does worse than the support vector machine across a broad range
of parameter choices! A deep neural network without any special convolutional architecture
can achieve an error rate of 0.35% [72]. Deeper neural networks and convolutional neural
networks (that do use spatial structure) can reduce the error rate to as low as 0.21% by
using an ensemble of five convolutional networks [402]. Therefore, even on this simple data
set, one can see that the relative performance of neural networks with respect to traditional
machine learning is sensitive to the specific architecture used in the former.

Finally, it should be noted that the 784-dimensional non-spatial representation of the
MNIST data is used for testing all types of neural network algorithms beyond the domain
of computer vision. Even though the use of the 784-dimensional (flattened) representation
is not appropriate for a vision task, it is still useful for testing the general effectiveness of
non-vision oriented (i.e., generic) neural network algorithms. For example, the MNIST data
is frequently used to test generic autoencoders and not just convolutional ones. Even when
the non-spatial representation of an image is used to reconstruct it with an autoencoder,
one can still visualize the results with the original spatial positions of the reconstructed
pixels to obtain a feel of what the algorithm is doing with the data. This visual exploration
often gives the researcher some insights that are not available with arbitrary data sets like
those obtained from the UCI Machine Learning Repository [601]. In this sense, the MNIST
data set tends to have broader usability than many other types of data sets.

1.8.2 The ImageNet Database

The ImageNet database [581] is a huge database of over 14 million images drawn from 1000
different categories. Its class coverage is exhaustive enough that it covers most types of
images that one would encounter in everyday life. This database is organized according to
a WordNet hierarchy of nouns [329]. The WordNet database is a data set containing the
relationships among English words using the notion of synsets. The WordNet hierarchy has
been successfully used for machine learning in the natural language domain, and therefore
it is natural to design an image data set around these relationships.

The ImageNet database is famous for the fact that an annual ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [582] is held using this dataset. This competition
has a very high profile in the vision community and receives entries from most major research
groups in computer vision. The entries to this competition have resulted in many of the
state-of-the-art image recognition architectures today, including the methods that have
surpassed human performance on some narrow tasks like image classification [184]. Because
of the wide availability of known results on these data sets, it is a popular alternative for
benchmarking. We will discuss some of the state-of-the-art algorithms submitted to the
ImageNet competition in Chapter 8 on convolutional neural networks.

Another important significance of the ImageNet data set is that it is large and diverse
enough to be representative of the key visual concepts within the image domain. As a result,
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convolutional neural networks are often trained on this data set; the pretrained network can
be used to extract features from an arbitrary image. This image representation is defined
by the hidden activations in the penultimate layer of the neural network. Such an approach
creates new multidimensional representations of image data sets that are amenable for use
with traditional machine learning methods. One can view this approach as a kind of transfer
learning in which the visual concepts in the ImageNet data set are transferred to unseen
data objects for other applications.

1.9 Summary

Although a neural network can be viewed as a simulation of the learning process in living
organisms, a more direct understanding of neural networks is as computational graphs. Such
computational graphs perform recursive composition of simpler functions in order to learn
more complex functions. Since these computational graphs are parameterized, the problem
generally boils down to learning the parameters of the graph in order to optimize a loss
function. The simplest types of neural networks are often basic machine learning models
like least-squares regression. The real power of neural networks is unleashed by using more
complex combinations of the underlying functions. The parameters of such networks are
learned by using a dynamic programming method, referred to as backpropagation. There
are several challenges associated with learning neural network models, such as overfitting
and training instability. In recent years, numerous algorithmic advancements have reduced
these problems. The design of deep learning methods in specific domains such as text and
images requires carefully crafted architectures. Examples of such architectures include re-
current neural networks and convolutional neural networks. For dynamic settings in which
a sequence of decisions need to be learned by a system, methods like reinforcement learning
are useful.

1.10 Bibliographic Notes

A proper understanding of neural network design requires a solid understanding of machine
learning algorithms, and especially the linear models based on gradient descent. The reader
is recommended to refer to [2, 3, 40, 177] for basic knowledge on machine learning methods.
Numerous surveys and overviews of neural networks in different contexts may be found
in [27, 28, 198, 277, 345, 431]. Classical books on neural networks for pattern recognition
may be found in [41, 182], whereas more recent perspectives on deep learning may be found
in [147]. A recent text mining book [6] also discusses recent advances in deep learning for
text analytics. An overview of the relationships between deep learning and computational
neuroscience may be found in [176, 239].

The perceptron algorithm was proposed by Rosenblatt [405]. To address the issue of
stability, the pocket algorithm [128], the Mazover algorithm [523], and other margin-based
methods [123]. Other early algorithms of a similar nature included the Widrow-Hoff [531]
and the Winnow algorithms [245]. The Winnow algorithm uses multiplicative updates in-
stead of additive updates, and is particularly useful when many features are irrelevant. The
original idea of backpropagation was based on the idea of differentiation of composition of
functions as developed in control theory [54, 237]. The use of dynamic programming to per-
form gradient-based optimization of variables that are related via a directed acyclic graph
has been a standard practice since the sixties. However, the ability to use these methods for
neural network training had not yet been observed at the time. In 1969, Minsky and Papert
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published a book on perceptrons [330], which was largely negative about the potential of
being able to properly train multilayer neural networks. The book showed that a single
perceptron had limited expressiveness, and no one knew how to train multiple layers of per-
ceptrons anyway. Minsky was an influential figure in artificial intelligence, and the negative
tone of his book contributed to the first winter in the field of neural networks. The adap-
tation of dynamic programming methods to backpropagation in neural networks was first
proposed by Paul Werbos in his PhD thesis in 1974 [524]. However, Werbos’s work could
not overcome the strong views against neural networks that had already become entrenched
at the time. The backpropagation algorithm was proposed again by Rumelhart et al. in
1986 [408, 409]. Rumelhart et al.’s work is significant for the beauty of its presentation, and
it was able to address at least some of the concerns raised earlier by Minsky and Papert.
This is one of the reasons that the Rumelhart et al. paper is considered very influential from
the perspective of backpropagation, even though it was certainly not the first to propose
the method. A discussion of the history of the backpropagation algorithm may be found in
the book by Paul Werbos [525].

At this point, the field of neural networks was only partially resurrected, as there were
still problems with training neural networks. Nevertheless, pockets of researchers continued
to work in the area, and had already set up most of the known neural architectures, such as
convolution neural networks, recurrent neural networks, and LSTMs, before the year 2000.
The accuracy of these methods was still quite modest because of data and computation
limitations. Furthermore, backpropagation turned out to be less effective at training deeper
networks because of the vanishing and exploding gradient problems. However, by this time,
it was already hypothesized by several prominent researchers that existing algorithms would
yield large performance improvements with increases in data, computational power, and
algorithmic experimentation. The coupling of big data frameworks with GPUs turned out
to be a boon for neural network research in the late 2000s. With reduced cycle times for
experimentation enabled by increased computational power, tricks like pretraining started
showing up in the late 2000s [198]. The publicly obvious resurrection of neural networks
occurred after the year 2011 with the resounding victories [255] of neural networks in deep
learning competitions for image classification. The consistent victories of deep learning
algorithms in these competitions laid the foundation for the explosion in popularity we
see today. Notably, the differences of these winning architectures from the ones that were
developed more than two decades earlier are modest (but essential).

Paul Werbos was a pioneer of recurrent neural networks, and proposed the original ver-
sion of backpropagation through time [526]. The basics of the convolutional neural network
were proposed in the context of the neocognitron in [127]. This idea was then generalized
to LeNet-5, which was one of the first convolutional neural networks. The ability of neural
networks to perform universal function approximation is discussed in [208]. The beneficial
effect of depth on reducing the number of parameters is discussed in [340].

The theoretical expressiveness of neural networks was recognized early in its develop-
ment. For example, early work recognized that a neural network with a single hidden layer
can be used to approximate any function [208]. A further result is that certain neural ar-
chitectures like recurrent networks are Turing complete [444]. The latter means that neural
networks can potentially simulate any algorithm. Of course, there are numerous practical
issues associated with neural network training, as to why these exciting theoretical results
do not always translate into real-world performance. The foremost problem among them is
the data-hungry nature of shallow architectures, which is ameliorated with increased depth.
Increased depth can be viewed as a form of regularization in which one is forcing the neural
network to identify and learn repeating patterns in data points. Increased depth, however,
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makes the neural network harder to train from an optimization point of view. A discussion
on some of these issues may be found in [41, 140, 147]. An experimental evaluation showing
the advantages of deeper architectures is provided in [267].

1.10.1 Video Lectures

Deep learning has a significant number of free video lectures available on resources such
as YouTube and Coursera. Two of the most authoritative resources include Geoff Hinton’s
course at Coursera [600]. Coursera has multiple offerings on deep learning, and offers a group
of related courses in the area. During the writing of this book, an accessible course from
Andrew Ng was also added to the offerings. A course on convolutional neural networks from
Stanford University is freely available on YouTube [236]. The Stanford class by Karpathy,
Johnson, and Fei-Fei [236] is on convolutional neural networks, although it does an excellent
job in covering broader topics in neural networks. The initial parts of the course deal with
vanilla neural networks and training methods.

Numerous topics in machine learning [89] and deep learning [90] are covered by Nando
de Freitas in a lectures available on YouTube. Another interesting class on neural networks
is available from Hugo Larochelle at the Universite de Sherbrooke [262]. A deep learning
course by Ali Ghodsi at the University of Waterloo is available at [137]. Video lectures by
Christopher Manning on natural language processing methods for deep learning may be
found in [312]. David Silver’s course on reinforcement learning is available at [619].

1.10.2 Software Resources

Deep learning is supported by numerous software frameworks like Caffe [571], Torch [572],
Theano [573], and TensorFlow [574]. Extensions of Caffe to Python and MATLAB are
available. Caffe was developed at the University of California at Berkeley, and it is writ-
ten in C++4. It provides a high-level interface in which one can specify the architecture
of the network, and it enables the construction of neural networks with very little code
writing and relatively simple scripting. The main drawback of Caffe is the relatively limited
documentation available. Theano [35] is Python-based, and it provides high-level packages
like Keras [575] and Lasagne [576] as interfaces. Theano is based on the notion of computa-
tional graphs, and most of the capabilities provided around it use this abstraction explicitly.
TensorFlow [574] is also strongly oriented towards computational graphs, and is the frame-
work proposed by Google. Torch [572] is written in a high-level language called Lua, and
it is relatively friendly to use. In recent years, Torch has gained some ground compared to
other frameworks. Support for GPUs is tightly integrated in Torch, which makes it rela-
tively easy to deploy Torch-based applications on GPUs. Many of these frameworks contain
pretrained models from computer vision and text mining, which can be used to extract
features. Many off-the-shelf tools for deep learning are available from the DeepLearning4j
repository [590]. IBM has a PowerAI platform that offers many machine learning and deep
learning frameworks on top of IBM Power Systems [599]. Notably, as of the writing of this
book, this platform also has a free edition available for certain uses.



1.11. EXERCISES o1

1.11 Exercises

1. Consider the case of the XOR function in which the two points {(0,0), (1,1)} belong
to one class, and the other two points {(1,0), (0,1)} belong to the other class. Show
how you can use the ReLU activation function to separate the two classes in a manner
similar to the example in Figure 1.14.

2. Show the following properties of the sigmoid and tanh activation functions (denoted
by ®(-) in each case):

(a) Sigmoid activation: ®(—v) =1 — &(v)
(b) Tanh activation: ®(—v) = —®(v)
(¢) Hard tanh activation: ®(—v) = —®(v)

3. Show that the tanh function is a re-scaled sigmoid function with both horizontal and
vertical stretching, as well as vertical translation:

tanh(v) = 2sigmoid(2v) — 1

4. Consider a data set in which the two points {(—1, —1), (1,1)} belong to one class, and
the other two points {(1, —1), (—1,1)} belong to the other class. Start with perceptron
parameter values at (0, 0), and work out a few stochastic gradient-descent updates with
«a = 1. While performing the stochastic gradient-descent updates, cycle through the
training points in any order.

(a) Does the algorithm converge in the sense that the change in objective function
becomes extremely small over time?

(b) Explain why the situation in (a) occurs.

5. For the data set in Exercise 4, where the two features are denoted by (x1, z3), define
a new l-dimensional representation z denoted by the following:

Z=T1"T2

Is the data set linearly separable in terms of the 1-dimensional representation corre-
sponding to z7 Explain the importance of nonlinear transformations in classification
problems.

6. Implement the perceptron in a programming language of your choice.

7. Show that the derivative of the sigmoid activation function is at most 0.25, irrespective
of the value of its argument. At what value of its argument does the sigmoid activation
function take on its maximum value?

8. Show that the derivative of the tanh activation function is at most 1, irrespective of
the value of its argument. At what value of its argument does the tanh activation take
on its maximum value?

9. Consider a network with two inputs x; and x5. It has two hidden layers, each of which
contain two units. Assume that the weights in each layer are set so that top unit in
each layer applies sigmoid activation to the sum of its inputs and the bottom unit in
each layer applies tanh activation to the sum of its inputs. Finally, the single output
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node applies ReLLU activation to the sum of its two inputs. Write the output of this
neural network in closed form as a function of x1 and x5. This exercise should give
you an idea of the complexity of functions computed by neural networks.

Compute the partial derivative of the closed form computed in the previous exercise
with respect to x;. Is it practical to compute derivatives for gradient descent in neural
networks by using closed-form expressions (as in traditional machine learning)?

Consider a 2-dimensional data set in which all points with z; > x5 belong to the
positive class, and all points with z; < x5 belong to the negative class. Therefore, the
true separator of the two classes is linear hyperplane (line) defined by z1 — 2 = 0.
Now create a training data set with 20 points randomly generated inside the unit
square in the positive quadrant. Label each point depending on whether or not the
first coordinate x; is greater than its second coordinate xs.

(a) Implement the perceptron algorithm without regularization, train it on the 20
points above, and test its accuracy on 1000 randomly generated points inside the
unit square. Generate the test points using the same procedure as the training
points.

(b) Change the perceptron criterion to hinge-loss in your implementation for training,
and repeat the accuracy computation on the same test points above. Regulariza-
tion is not used.

(¢) In which case do you obtain better accuracy and why?

(d) In which case do you think that the classification of the same 1000 test instances
will not change significantly by using a different set of 20 training points?
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Machine Learning with Shallow Neural
Networks

“Simplicity is the ultimate sophistication.”—Leonardo da Vinci

2.1 Introduction

Conventional machine learning often uses optimization and gradient-descent methods for
learning parameterized models. Examples of such models include linear regression, sup-
port vector machines, logistic regression, dimensionality reduction, and matrix factorization.
Neural networks are also parameterized models that are learned with continuous optimiza-
tion methods. This chapter will show that a wide variety of optimization-centric methods
in machine learning can be captured with very simple neural network architectures contain-
ing one or two layers. In fact, neural networks can be viewed as more powerful versions of
these simple models, with this power being achieved by combining the basic models into
a comprehensive neural architecture (i.e., computational graph). It is useful to show these
parallels early on, as this allows the understanding of the design of a deep network as a com-
position of the basic units that one often uses in machine learning. Furthermore, showing
this relationship provides an appreciation of the specific way in which traditional machine
learning is different from neural networks, and of the cases in which one can hope to do
better with neural networks. In many cases, minor variations of these simple neural net-
work architectures (corresponding to traditional machine learning methods) provide useful
variations of machine learning models that have not been studied elsewhere. In a sense, the
number of ways in which one can combine the different elements of a computational graph is
far greater than what is studied in traditional machine learning, even when shallow models
are used.

Complex or deep neural architectures are often an overkill in instances where only a
small amount of data are available. Additionally, it is easier to optimize traditional machine
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learning models in data-lean settings as these models are more interpretable. On the other
hand, as the amount of data increases, neural networks have an advantage because they

DEEP LEARNING

gl
“CONVENTIONAL
MACHINE LEARNING

ACCURACY

AMOUNT OF DATA
Figure 2.1: Re-visiting Figure 1.2: The effect of increased data availability on accuracy.

retain the flexibility to model more complex functions with the addition of neurons to the
computational graph. Figure 2.1 illustrates this point.

One way of viewing deep learning models is as a stacking of simpler models like logistic
or linear regression. The coupling of a linear neuron with the sigmoid activation leads to
logistic regression, which will be discussed in detail in this chapter. The coupling of a linear
unit with sigmoid activation is also used' extensively for building complex neural networks.
Therefore, it is natural to ask the following question [312]:

Is deep learning simply a stacking of simpler models like logistic or linear regres-
sion?

Although many neural networks can be viewed in this way, this point of view does not
fully capture the complexity and the style of thinking involved in deep learning models.
For example, several models (such as recurrent neural networks or convolutional neural
networks) perform this stacking in a particular way with a domain-specific understanding
of the input data. Furthermore, the parameters of different units are sometimes shared in
order to force the solution to obey specific types of properties. The ability to put together
the basic units in a clever way is a key architectural skill required by practitioners in deep
learning. Nevertheless, it is also important to learn the properties of the basic models in
machine learning, since they are used repeatedly in deep learning as elementary units of
computation. This chapter will, therefore, explore these basic models.

It is noteworthy that there are close relationships between some of the earliest neu-
ral networks (e.g., perceptron and Widrow-Hoff learning) and traditional machine learning
models (e.g., support vector machine and Fisher discriminant). In some cases, these relation-
ships remained unnoticed for several years, as these models were proposed independently
by different communities. As a specific example, the loss function of the Ls-support vec-
tor machine was proposed by Hinton [190] in the context of a neural architecture in 1989.
When used with regularization, the resulting neural network would behave identically to
an Lo-support vector machine. In comparison, Cortes and Vapnik’s paper on the support
vector machine [82] appeared several years later with an L;-loss function. These relation-
ships are not surprising because the best way to define a shallow neural network is often
closely related to a known machine learning algorithm. Therefore, it is important to explore
these basic neural models in order to develop an integrated view of neural networks and
traditional machine learning.

n recent years, the sigmoid unit has fallen out of favor compared to the ReLU.
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This chapter will primarily discuss two classes of models for machine learning:

1. Supervised models: The supervised models discussed in this chapter primarily corre-
spond to linear models and their variants. These include methods like least-squares
regression, support vector machines, and logistic regression. Multiclass variants of
these models will also be studied.

2. Unsupervised models: The unsupervised models discussed in this chapter primarily
correspond to dimensionality reduction and matrix factorization. Traditional meth-
ods like principal component analysis can also be presented as simple neural network
architectures. Minor variations of these models can provide reductions of vastly differ-
ent properties, which will be discussed later. The neural network framework also pro-
vides a way of understanding the relationships between widely different unsupervised
methods like linear dimensionality reduction, nonlinear dimensionality reduction, and
sparse feature learning, thereby providing an integrated view of traditional machine
learning algorithms.

This chapter assumes that the reader has a basic familiarity with the classical machine
learning models. Nevertheless, a brief overview of each model will also be provided to the
uninitiated reader.

Chapter Organization

The next section will discuss some basic models for classification and regression, such as
least-squares regression, binary Fisher discriminant, support vector machine, and logistic
regression. The multiway variants of these models will be discussed in Section 2.3. Feature
selection methods for neural networks are discussed in Section 2.4. The use of autoencoders
for matrix factorization is discussed in Section 2.5. As a specific application of simple neural
architectures, the word2vec method is discussed in Section 2.6. Simple methods for creating
node embeddings in graphs are introduced in Section 2.7. A summary is given in Section 2.8.

2.2 Neural Architectures for Binary Classification
Models

In this section, we will discuss some basic architectures for machine learning models such
as least-squares regression and classification. As we will see, the corresponding neural ar-
chitectures are minor variations of the perceptron model in machine learning. The main
difference is in the choice of the activation function used in the final layer, and the loss
function used on these outputs. This will be a recurring theme throughout this chapter,
where we will see that small changes in neural architectures can result in distinct models
from traditional machine learning. Presenting traditional machine learning models in the
form of neural architectures also helps one appreciate the true closeness among various
machine learning models.

Throughout this section, we will work with a single-layer network with d input nodes
and a single output node. The coefficients of the connections from the d input nodes to the
output node are denoted by W = (wy ... wg). Furthermore, the bias will not be explicitly
shown because it can be seamlessly modeled as the coefficient of an additional dummy input
with a constant value of 1.
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INPUT NODES —_
W

/ PERCEPTRON CRITERION
CONTINUOUS

=‘O\‘ SCORE OUTPUT ]

LOSS = MAxgo,-lev-YR v

DISCRETE OUTPUT

LINEAR ACTIVATION

SIGN ACTIVATION

Figure 2.2: An extended architecture of the perceptron with both discrete and continuous
predictions

2.2.1 Revisiting the Perceptron

Let (X;,y;) be a _training instance, in which the observed value y; is predicted from the
feature variables X; using the following relationship:

Ji = sign(W - X;) (2.1)

Here, W is the d-dimensional coefficient vector learned by the perceptron. Note the circum-
flex on top of g; to indicate that it is a predicted value rather than an observed value. In
general, the goal of training is to ensure that the prediction g; is as close as possible to the
observed value y;. The gradient-descent steps of the perceptron are focused on reducing the
number of misclassifications, and therefore the updates are proportional to the difference
(y; — 9;) between the observed and predicted values based on Equation 1.33 of Chapter 1:

W< W —a) +aly — 5% (2.2)

A gradient-descent update that is proportional to the difference between the observed and
predicted values is naturally caused by a squared loss function such as (y; — ¢;)2. Therefore,
one possibility is to consider the squared loss between the predicted and observed values as
the loss function. This architecture is shown in Figure 2.3(a), and the output is a discrete
value. However, the problem is that this loss function is discrete because it takes on the
value of either 0 or 4. Such a loss function is not differentiable because of its staircase-like
jumps.

The perceptron is one of the few learning models in which the gradient-descent updates
were proposed historically before the loss function was proposed. What differentiable ob-
jective function does the perceptron really optimize? The answer to this question may be
found in Section 1.2.1.1 of Chapter 1 by observing that the updates are performed only
for misclassified training instances (i.e., y;9; < 0), and may be written using the indicator
function I(-) € {0,1} that takes on 1 when the condition in its argument is satisfied:

W =W —aX) + ayiX; [I(yigi < 0)] (2.3)

This rewrite from Equation 2.2 to Equation 2.3 uses the fact that y;, = (y; — 4;)/2 for
misclassified points, and one can absorb a constant factor of 2 within the learning rate.
This update can be shown to be consistent with the loss function L; (specific to the ith
training example) as follows:

L; = max{0, —y;(W - X;)} (2.4)
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Figure 2.3: Different variants of the perceptron

This loss function is referred to as the perceptron criterion, which is correspondingly reflected
in Figure 2.3(b). Note that Figure 2.3(b) uses linear activations to compute the continuous
loss function, although it still uses sign activations to compute the discrete predictions for
a given test instance. In many discrete variable prediction settings, the output is often a
predicted score (e.g., probability of class or the value of W - X;), which is then converted
into a discrete prediction. Nevertheless, the final prediction need not always be converted
into a discrete value, and one can simply output the relevant score for the class (which is
often used for computing the loss function anyway). The sign activation is rarely used in
most neural-network implementations, as most class-variable predictions of neural-network
implementations are continuous scores. One can, in fact, create an extended architecture
for the perceptron (cf. Figure 2.2), in which both discrete and continuous values are output.
However, since the discrete part is not relevant to the loss computation and most outputs are
reported as scores anyway, one rarely uses this type of extended representation. Therefore,
throughout the remainder of this book, the activation in the output node is based on the
score output (and how the loss function is computed), rather than on how a test instance
is predicted as a discrete value.
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2.2.2 Least-Squares Regression

In least-squares regression, the training data contains n different training pairs
(X1,y1) .. (Xn,yn), where each X; is a d-dimensional representation of the data points,
and each y; is a real-valued target. The fact that the target is real-valued is important,
because the underlying problem is then referred to as regression rather than classification.
Least-squares regression is the oldest of all learning problems, and the gradient-descent
methods proposed by Tikhonov and Arsenin in the 1970s [499] are very closely related to
the gradient-descent updates of Rosenblatt [405] for the perceptron algorithm. In fact, as
we will see later, one can also use least-squares regression on binary targets by “pretending”
that these targets are real-valued. The resulting approach is equivalent to the Widrow-Hoff
learning algorithm, which is famous in the neural network literature as the second learning
algorithm proposed after the perceptron.

In least-squares regression, the target variable is related to the feature variables using
the following relationship:

g =W-X; (2.5)

Note the presence of the circumflex on top of ¢; to indicate that it is a predicted value.
The bias is missing in the relationship of Equation 2.5. Throughout this section, it will
be assumed that one of the features in the training data has a constant value of 1, and
the coefficient of this dummy feature is the bias. This is a standard feature engineering
trick borrowed from conventional machine learning. In neural networks, the bias is often
represented with the use of a bias neuron (cf. Section 1.2.1 of Chapter 1) with a constant
output of 1. Although the bias neuron is almost always used in real settings, we avoid
showing it explicitly throughout this book in order to maintain simplicity in presentation.

The error of the prediction, e;, is given by e; = (y; — ;). Here, W = (wy ... wq) is a
d-dimensional coefficient vector that needs to be learned so as to minimize the total squared
error on the training data, which is Y i, e2. The portion of the loss that is specific to the
ith training instance is given by the following:

Li= e} = (yi — i)’ (2.6)

This loss can be simulated with the use of an architecture similar to the perceptron except
that the squared loss is paired with the identity activation function. This architecture is
shown in Figure 2.3(c), whereas the perceptron architecture is shown in Figure 2.3(a). Both
the perceptron and least-squares regression have the same goal of minimizing the prediction
error. However, since the loss function in classification is inherently discrete, the perceptron
algorithm uses a smooth approximation of the desired goal. This results in the smoothed
perceptron criterion shown in Figure 2.3(b). As we will see below, the gradient-descent
update in least-squares regression is very similar to that in the perceptron, with the main
difference being that real-valued errors are used in regression rather than discrete errors
drawn from {-2,42}.

As in the perceptron algorithm, the stochastic gradient-descent steps are determined by
computing the gradient of e? with respect to W, when the training pair (X, y;) is presented
to the neural network. This gradient can be computed as follows:

2
§W . 27)

Therefore, the gradient-descent updates for W are computed using the above gradient and
step-size a:

W<=W+ae; X
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One can rewrite the above update as follows:

It is possible to modify the gradient-descent updates of least-squares regression to incorpo-
rate forgetting factors. Adding regularization is equivalent to penalizing the loss function of
least-squares classification with the additional term proportional to A - |[[W||?, where A > 0
is the regularization parameter. With regularization, the update can be written as follows:

WeWl-a-A)+aly, —9:)X (2.9)

Note that the update above looks identical to the perceptron update of Equation 2.2.
The updates are, however, not exactly identical because of how the predicted value g; is
computed in the two cases. In the case of the perceptron, the sign function is applied to
W - X, in order to compute the binary value ¢; and therefore the error (y; — ;) can only be
drawn from {—2,+2}. In least-squares regression, the prediction ¢; is a real value without
the application of the sign function.

This observation naturally leads to the following question; what if we applied least-
squares regression directly to minimize the squared distance of the real-valued prediction
§; from the observed binary targets y; € {—1,4+1}? The direct application of least-squares
regression to binary targets is referred to as least-squares classification. The gradient-descent
update is the same as the one shown in Equation 2.9, which looks identical to that of the
perceptron. However, the least-squares classification method does not yield the same result
as the perceptron algorithm, because the real-valued training errors (y; — ;) in least-squares
classification are computed differently from the integer error (y; — ;) in the perceptron. This
direct application of least-squares regression to binary targets is referred to as Widrow-Hoff
learning.

2.2.2.1 Widrow-Hoff Learning

Following the perceptron, the Widrow-Hoff learning rule was proposed in 1960. However, the
method was not a fundamentally new one, as it is a direct application of least-squares regres-
sion to binary targets. Although the sign function is applied to the real-valued prediction of
unseen test instances to convert them to binary predictions, the error of training instances
is computed directly using real-valued predictions (unlike the perceptron). Therefore, it is
also referred to as least-squares classification or linear least-squares method [6]. Remarkably,
a seemingly unrelated method proposed in 1936, known as the Fisher discriminant, also
reduces to Widrow-Hoff learning in the special case of binary targets.

The Fisher discriminant is formally defined as a direction W along which the ratio
of inter-class variance to the intra-class variance is maximized in the projected data. By
choosing a scalar b in order to define the hyperplane W - X = b, it is possible to model
the separation between the two classes. This hyperplane is used for classification. Although
the definition of the Fisher discriminant seems quite different from least-squares regres-
sion/classification at first sight, a remarkable result is that the Fisher discriminant for
binary targets is identical to the least-squares regression as applied to binary targets (i.e.,
least-squares classification). Both the data and the targets need to be mean-centered, which
allows the bias variable b to be set to 0. Several proofs of this result are available in the
literature [3, 6, 40, 41].

The neural architecture for classification with the Widrow-Hoff method is illustrated
in Figure 2.3(c). The gradient-descent steps in both the perceptron and the Widrow-Hoff
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would be given by Equation 2.8, except for differences in how (y; — ¢;) is computed. In
the case of the perceptron, this value will always be drawn from {—2,+2}. In the case of
Widrow-Hoff, these errors can be arbitrary real values, since §; is set to W - X; without
using the sign function. This difference is important because the perceptron algorithm never
penalizes a positive class point for W - X; being “too correct” (i.e., larger than 1), whereas
using real-valued predictions to compute the error has the unfortunate effect of penalizing
such points. The inappropriate penalization of over-performance is the Achilles heel of
Widrow-Hoff learning and the Fisher discriminant [6].

It is noteworthy that least-squares regression/classification, Widrow-Hoff learning, and
the Fisher discriminant were proposed independently in very different eras and by different
communities of researchers. Indeed, the Fisher discriminant, which is oldest of these methods
and dates back to 1936, is often viewed as a method for finding class-sensitive directions
rather than as a classifier. It can, however, also be used as a classifier by using the resulting
direction W to create a linear prediction. The completely different origins and seemingly
different motives of all these methods make the equivalence in their solutions all the more
noticeable. The Widrow-Hoff learning rule is also referred to as Adaline, which is short for
adaptive linear neuron. It is also referred to as the delta rule. To recap, the learning rule
of Equation 2.8, when applied to binary targets in {—1,+1}, can be alternatively referred
to as least-squares classification, least mean-squares algorithm (LMS), Fisher? discriminant
classifier, the Widrow-Hoff learning rule, delta rule, or Adaline. Therefore, the family of
least-squares classification methods has been rediscovered several times in the literature
under different names and with different motivations.

The loss function of the Widrow-Hoff method can be rewritten slightly from least-squares
regression because of its binary responses:

Li=(yi—0:)° = v (yi—0:)°
~—~
1

= (v} —0ii)® = (1 —Giy:)°
~—
1

This type of encoding is possible when the target variable y; is drawn from {—1, +1} because
we can use y? = 1. It is helpful to convert the Widrow-Hoff objective function to this form
because it can be more easily related to other objective functions like the perceptron and
the support vector machine. For example, the loss function of the support vector machine is
obtained by “repairing” the above loss so that over-performance is not penalized. One can
repair the loss function by changing the objective function to [max{(1—%;y;),0}]?, which was
Hinton’s Ls-loss support vector machine (SVM) [190]. Almost all the binary classification
models discussed in this chapter can be shown to be closely related to the Widrow-Hoff
loss function by using different ways of repairing the loss, so that over-performance is not
penalized.

The gradient-descent updates (cf. Equation 2.9) of least-squares regression can be rewrit-
ten slightly for Widrow-Hoff learning because of binary response variables:

W<=W(1—-a-A+a(y; —9,)X  [For numeric as well as binary responses]
=W(1 —a-A)+ay(l1—y9)X [Only for binary responses, since y? = 1]

2In order to obtain exactly the same direction as the Fisher method with Equation 2.8, it is important
to mean-center both the feature variables and the binary targets. Therefore, each binary target will be one
of two real values with different signs. The real values will contain the fraction of instances belonging to the
other class. Alternatively, one can use a bias neuron to absorb the constant offsets.
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The second form of the update is helpful in relating it to perceptron and SVM updates, in
each of which (1 —y;¢;) is replaced with an indicator variable that is a function of y;¢;. This
point will be discussed in a later section.

2.2.2.2 Closed Form Solutions

The special case of least-squares regression and classification is solvable in closed form
(without gradient-descent) by using the pseudo-inverse of the n x d training data matrix
D, whose rows are X ...X,,. Let the n-dimensional column vector of dependent variables
be denoted by 7 = [y; - .. y»]T. The pseudo-inverse of matrix D is defined as follows:

Dt = (DTD)"'DT (2.10)
Then, the row-vector W is defined by the following relationship:
W' =Dy (2.11)
If regularization is incorporated, the coefficient vector W is given by the following:
W' =(DTD+A)"'DTy (2.12)

Here, A > 0 is the regularization parameter. However, inverting a matrix like (DT D + )
is typically done using numerical methods that require gradient descent anyway. One rarely
inverts large matrices like DT D. In fact, the Widrow-Hoff updates provide a very efficient
way of solving the problem without using the closed-form solution.

2.2.3 Logistic Regression

Logistic regression is a probabilistic model that classifies the instances in terms of prob-
abilities. Because the classification is probabilistic, a natural approach for optimizing the
parameters is to ensure that the predicted probability of the observed class for each training
instance is as large as possible. This goal is achieved by using the notion of mazimum-
likelihood estimation in order to learn the parameters of the model. The likelihood of the
training data is defined as the product of the probabilities of the observed labels of each
training instance. Clearly, larger values of this objective function are better. By using the
negative logarithm of this value, one obtains an a loss function in minimization form. There-
fore, the output node uses the negative log-likelihood as a loss function. This loss function
replaces the squared error used in the Widrow-Hoff method. The output layer can be for-
mulated with the sigmoid activation function, which is very common in neural network
design.

Let (X1,v1), (X2,92), .. (Xn,yn) be a set of n training pairs in which X; contains the
d-dimensional features and y; € {—1,+1} is a binary class variable. As in the case of a
perceptron, a single-layer architecture with weights W = (w;...wy) is used. Instead of
using the hard sign activation on W - X; to predict y;, logistic regression applies the soft
sigmoid function to W - X; in order to estimate the probability that y; is 1:

1

gi=Plyi=1) E—— o

(2.13)

For a test instance, it can be predicted to the class whose predicted probability is greater
than 0.5. Note that P(y; = 1) is 0.5 when W - X; = 0, and X; lies on the separating



62 CHAPTER 2. MACHINE LEARNING WITH SHALLOW NEURAL NETWORKS

hyperplane. Moving X; in either direction from the hyperplane results in different signs of
W - X; and corresponding movements in the probability values. Therefore, the sign of W - X;
also yields the same prediction as picking the class with probability larger than 0.5.

We will now describe how the loss function corresponding to likelihood estimation is
set up. This methodology is important because it is used widely in many neural models.
For positive samples in the training data, we want to maximize P(y; = 1) and for negative
samples, we want to maximize P(y; = —1). For positive samples satisfying y; = 1, one
wants to maximize gj; and for negative samples satisfying y; = —1, one wants to maximize
1 — ;. One can write this casewise maximization in the form of a consolidated expression of
always maximizing |y; /2 — 0.5+ ¢;|. The products of these probabilities must be maximized
over all training instances to maximize the likelihood L:

L=T]lvi/2- 05+ (2.14)

i=1

Therefore, the loss function is set to L; = —log(|y;/2 — 0.5 + g;|) for each training instance,
so that the product-wise maximization is converted to additive minimization over training

instances.
n

LL = —log(L) =Y —log(|yi/2 — 0.5 + §ii]) (2.15)

=1

L;

Additive forms of the objective function are particularly convenient for the types of stochas-
tic gradient updates that are common in neural networks. The overall architecture and loss
function is illustrated in Figure 2.3(d). For each training instance, the predicted probability
7; is computed by passing it through the neural network, and the loss is used to determine
the gradient for each training instance.

Let the loss for the ith training instance be denoted by L;, which is also annotated in
Equation 2.15. Then, the gradient of L; with respect to the weights in W can be computed
as follows:

OL; _ sign(yi/2—05+9:) O

oW |yi/2—05+4] oW
__sign(yi/2— 0.5+ ) X; 1
a 1Yi/2=05+3;| 14+exp(-W-X;) 1+exp(W-X;)
X e
T 1+exp(W-X,) ify; =1
Xi

1+exXp(—W -X;) ify; = -1

Note that one can concisely write the above gradient as follows:

OL; _ Yi X
oW  1+exp(yiW - X;)

= — [Probability of mistake on (X;, ;)] (v:X;) (2.16)

Therefore, the gradient-descent updates of logistic regression are given by the following
(including regularization):

Yi X
1+ exply;(W - X;)]

We=W(l-a))+a (2.17)
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Just as the perceptron and the Widrow-Hoff algorithms use the magnitudes of the mistakes
to make updates, the logistic regression method uses the probabilities of the mistakes to
make updates. This is a natural extension of the probabilistic nature of the loss function to
the update.

2.2.3.1 Alternative Choices of Activation and Loss

It is possible to implement the same model by using different choices of activation and loss
in the output node as long as they combine to yield the same result. Instead of using sigmoid
activation to create the output g; € (0,1), it is also possible to use identity activation to
create the output §; € (—o0, 4+00), and then apply the following loss function:

L; =log(1 + exp(—yi - 9:)) (2.18)

The alternative architecture for logistic regression is shown in Figure 2.3(e). For the final
prediction of the test instance, the sign function can be applied to g;, which is equivalent to
predicting it to the class for which its probability is greater than 0.5. This example shows
that it is possible to implement the same model using different combinations of activation
and loss functions, as long as they combine to yield the same result.

One desirable property of using the identity activation to define §; is that it is consistent
with how the loss functions of other models like the perceptron and Widrow-Hoff learning
are defined. Furthermore, the loss function of Equation 2.18 contains the product of y; and
¥; as in other models. This makes it possible to directly compare the loss functions of various
models, which will be explored later in this chapter.

2.2.4 Support Vector Machines

The loss function in support vector machines is closely related to that in logistic regression.
However, instead of using a smooth loss function (like that in Equation 2.18), the hinge-loss
is used instead.

Consider the training data set of n instances denoted by (X1,%1), (X2,%2), - - (X0, Un)-
The neural architecture of the support-vector machine is identical to that of least-squares
classification (Widrow-Hoff). The main difference is in the choice of loss function. As in the
case of least-squares classification, the prediction ¢; for the training point X; is obtained
by applying the identity activation function on W - X;. Here, W = (wy, ... wg) contains the
vector of d weights for the d different inputs into the single-layer network. Therefore, the
output of the neural network is §; = W - X; for computing the loss function, although a test
instance is predicted by applying the sign function to the output.

The loss function L; for the ith training instance in the support-vector machine is defined
as follows:

L; = max{0,1 — y;9;} (2.19)

This loss is referred to as the hinge-loss, and the corresponding neural architecture is illus-
trated in Figure 2.3(f). The overall idea behind this loss function is that a positive training
instance is only penalized for being less than 1, and a negative training instance is only pe-
nalized for being greater than —1. In both cases, the penalty is linear, and abruptly flattens
out at the aforementioned thresholds. It is helpful to compare this loss function with the
Widrow-Hoff loss value of (1 — y;7;)?, in which predictions are penalized for being different
from the target values. As we will see later, this difference is an important advantage for
the support vector machine over the Widrow-Hoff loss function.
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In order to explain the difference in loss functions between the perceptron, Widrow-
Hoff, logistic regression, and the support vector machine, we have shown the loss for a
single positive training instance at different values of §; = W - X; in Figure 2.4. In the
case of the perceptron, only the smoothed surrogate loss function (cf. Section 1.2.1.1 of
Chapter 1) is shown. Since the target value is +1, the loss function shows diminishing
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Figure 2.4: The loss functions of different variants of the perceptron. Key observations: (i)
The SVM loss is shifted from the perceptron (surrogate) loss by exactly one unit to the right;
(ii) the logistic loss is a smooth variant of the SVM loss; (iii) the Widrow-Hoff/Fisher loss is
the only case in which points are increasingly penalized for classifying points “too correctly”
(i.e., increasing W - X beyond +1 for X in positive class). Repairing the Widrow-Hoff loss
function by setting it to 0 for W - X > 1 yields the quadratic loss SVM [190].

improvement by increasing W - X; beyond +1 in the case of logistic regression. In the case
of the support-vector machine the hinge-loss function flattens out beyond this point. In
other words, only misclassified points or points that are too close to the decision boundary
W - X = 0 are penalized. The perceptron criterion is identical in shape to the hinge loss,
except that it is shifted by one unit to the left. The Widrow-Hoff method is the only case in
which a positive training point is penalized for having too large a positive value of W - X.
In other words, the Widrow-Hoff method penalizes points for being properly classified in a
very strong way. This is a potential problem with the Widrow-Hoff objective function, in
which well-separated points cause problems in training.

The stochastic gradient-descent method computes the partial derivative of the point-wise
loss function L; with respect to the elements in W. The gradient is computed as follows:

OL; {—ini ify;g; <1

oW - 0 otherwise

(2.20)

Therefore, the stochastic gradient method samples a point and checks whether y,;5; < 1. If

this is the case, an update is performed that is proportional to y; X;:
W <W(1—-a)) + oy X; [I(yig < 1)] (2.21)

Here, I(-) € {0,1} is the indicator function that takes on the value of 1 when the condition
in its argument is satisfied. This approach is the simplest version of the primal update for
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SVMs [448]. The reader should also convince herself is that this update is identical to that
of a (regularized) perceptron (cf. Equation 2.3), except that the condition for making this
update in the perceptron is y;; < 0. Therefore, a perceptron makes the update only when
a point is misclassified, whereas the support vector machine also makes updates for points
that are classified correctly, albeit not very confidently. This neat relationship is because the
loss function of the perceptron criterion shown in Figure 2.4 is shifted from the hinge-loss
in the SVM.

To emphasize the similarities and differences in the loss functions used by the different
methods, we tabulate the loss functions below:

H Model [ Loss function L; for (X;, ;) H
Perceptron (Smoothed surrogate) max{0, —y; - (W - X;)}
Widrow-Hoff/Fisher (i =W -X)2={1-y;-(W-X;)}?
Logistic Regression log(1 + exp[—y: (W - X;)])
Support vector machine (Hinge) max{0,1 —y; - (W - X;)}
Support vector machine (Hinton’s La-Loss) [190] | [max{0,1 —y; - (W - X;)}]?

It is noteworthy that all the derived updates in this section typically correspond to
stochastic gradient-descent updates that are encountered both in traditional machine learn-
ing and in neural networks. The updates are the same whether or not we use a neural
architecture to represent the models for these algorithms. Our main point in going through
this exercise is to show that rudimentary special cases of neural networks are instantiations
of well-known algorithms in the machine learning literature. The key point is that with
greater availability of data one can incorporate additional nodes and depth to increase the
model’s capacity, explaining the superior behavior of neural networks with larger data sets
(cf. Figure 2.1).

2.3 Neural Architectures for Multiclass Models

All the models discussed so far in this chapter are designed for binary classification. In this
section, we will discuss how one can design multiway classification models by changing the
architecture of the perceptron slightly, and allowing multiple output nodes.

2.3.1 Multiclass Perceptron

Consider a setting with k different classes. Each training instance (X;,c(i)) contains a d-
dimensional feature vector X; and the index c(i) € {1...k} of its observed class. In such
a case, we would like to find %k different linear separators W ... W)}, simultaneously so that
the value of W ;) - X; is larger than W, - X; for each r # c(i). This is because one always
predicts a data instance X; to the class r with the largest value of W, - X;. Therefore, the
loss function for the ith training instance in the case of the multiclass perceptron is defined
as follows:

L; = maxrzr#c(i)max(m X — Wc(i) - X;,0) (2.22)

The multiclass perceptron is illustrated in Figure 2.5(a). As in all neural network models,
one can use gradient-descent in order to determine the updates. For a correctly classified
instance, the gradient is always 0, and there are no updates. For a misclassified instance,
the gradients are as follows:
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oL ~X; ifr = c(i)
A X;  if r # c(i) is most misclassified prediction (2.23)
T .
0 otherwise
V= Wi’ i:PREDICTION OF OUTPUT NODE i V= Wi’ X= PREDICTION OF OUTPUT NODE i

Zm

LOSS = MAX(MAXI[0,9,-7,], MAX[0,9,-7,]) LOSS = MAX[0,3,-§,+1] + MAX[0, §,-§,+1]

(a) Multiclass perceptron (b) Multiclass SVM

x|

¥, = exp(v,)/[Sexp(v;)]

¥, = exp(v,)/[Fexp(v)]
TRUE CLASS

¥, = exp(v,)/[3exp(v;)]

3 SOFTMAX
LAYER

LOSS = -LOG(- §,,)

(¢) Multinomial logistic regression

Figure 2.5: Multiclass models: In each case, class 2 is assumed to be the ground-truth class.

Therefore, the stochastic gradient-descent method is applied as follows. Each training
instance is fed into the network. If the correct class r = ¢(i) receives the largest of output
W, - X;, then no update needs to be executed. Otherwise, the following update is made to
each separator W, for learning rate o > 0:

aX; ifr=c(i)
W, <= W, + 1 —aX; if r # c(i) is most misclassified prediction (2.24)

0 otherwise

Only two of the separators are always updated at a given time. In the special case that
k = 2, these gradient updates reduce to the perceptron because both the separators W, and
W, will be related as W; = —Ws if the descent is started at W, = W5 = 0. Another quirk
that is specific to the unregularized perceptron is that it is possible to use a learning rate
of a = 1 without affecting the learning because the value of a only has the effect of scaling
the weight when starting with Wj = 0 (see Exercise 2). This property is, however, not true
for other linear models in which the value of « does affect the learning.
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2.3.2 Weston-Watkins SVM
The Weston-Watkins SVM [529] varies on the multiclass perceptron in two ways:

1. The multiclass perceptron only updates the linear separator of a class that is predicted
most incorrectly along with the linear separator of the true class. On the other hand,
the Weston-Watkins SVM updates the separator of any class that is predicted more
favorably than the true class. In both cases, the separator of the observed class is
updated by the same aggregate amount as the incorrect classes (but in the opposite
direction).

2. Not only does the Weston-Watkins SVM update the separator in the case of misclas-
sification, it updates the separators in cases where an incorrect class gets a prediction
that is “uncomfortably close” to the true class. This is based on the notion of margin.

As in the case of the multiclass perceptron, it is assumed that the ith training instance
is denoted by (Xj,c(i)), where X; contains the d-dimensional feature variables, and c(i)
contains the class index drawn from {1,. .., k}. One wants to learn d-dimensional coefficients
Wi ... Wy, of the k linear separators so that the class index r with the largest value of W,.- X;
is predicted to be the correct class ¢(i). The loss function L; for the ith training instance
(Xi,c(i)) in the Weston-Watkins SVM is as follows:

Li= Y max(W,-X; o) Xi +1,0) (2.25)
rir#£c(i)

The neural architecture of the Weston-Watkins SVM is illustrated in Figure 2.5(b). It is
instructive to compare the objective function of the Weston-Watkins SVM (Equation 2.25)
with that of the multiclass perceptron (Equation 2.22). First, for each class r # (i), if the
prediction W, - X; lags behind that of the true class by less than a margin amount of 1,
then a loss is incurred for that class. Furthermore, the losses over all such classes r # ¢(i)
are added, rather than taking the maximum of the losses. These two differences accomplish
the two intuitive goals discussed above.

In order to determine the gradient-descent updates, one can find the gradient of the loss
function with respect to each W,. In the event that the loss function L; is 0, the gradient of
the loss function is 0 as well. Therefore, no update is required when the training instance is
classified correctly with sufficient margin with respect to the second-best class. However, if
the loss function is non-zero we have either a misclassified or a “barely correct” prediction
in which the second-best and best class prediction are not sufficiently separated. In such
cases, the gradient of the loss is non-zero. The loss function of Equation 2.25 is created by
adding up the contributions of the (k — 1) separators belonging to the incorrect classes. Let
§(r, X;) be a 0/1 indicator function, which is 1 when the rth class separator contributes
positively to the loss function in Equation 2.25. In such a case, the gradient of the loss
function is as follows:

W, {Xi[‘S(ﬁ %‘)] if 7 # c(i) (2.26)

This results in the following stochastic gradient-descent step for the rth separator W, at
learning rate a:

T Xi[Xj 200, X3)]  if r = c(i)
W, = Wr(l—a\) +a {—&[5(;;, e £ £ c(i) (2.27)
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For training instances X; in which the loss L; is zero, ‘the above update can be shown to
simplify to a regularization update of each hyperplane W,.:

W, < Wo(1 - a)) (2.28)

The regularization uses the parameter A > 0. Regularization is considered essential to the
proper functioning of a support vector machine.

2.3.3 Multinomial Logistic Regression (Softmax Classifier)

Multinomial logistic regression can be considered the multi-way generalization of logistic
regression, just as the Weston-Watkins SVM is the multiway generalization of the binary
SVM. Multinomial logistic regression uses negative log-likelihood loss, and is therefore a
probabilistic model. As in the case of the multiclass perceptron, it is assumed that the
input to the model is a training data set containing pairs of the form (X;,c(i)), where
c(i) € {1...k} is the index of the class of d-dimensional data point X;. As in the case of
the previous two models, the class r with the largest value of W, - X, is predicted to be
the label of the data point X;. However, in this case, there is an additional probabilistic
interpretation of W, - X; in terms of the posterior probability P(r|X;) that the data point
X; takes on the label r. This estimation can be naturally accomplished with the softmax
activation function: L
P(r|X;) = kexp(Wri(zL
Zj:] exp(W - Xi)

In other words, the model predicts the class membership in terms of probabilities. The
loss function L; for the ith training instance is defined by the cross-entropy, which is the
negative logarithm of the probability of the true class. The neural architecture of the softmax
classifier is illustrated in Figure 2.5(c).

The cross-entropy loss may be expressed in terms of either the input features or in terms

of the softmax pre-activation values v, = W,. - X; as follows:

(2.29)

L; = —log[P(c(i)|X;)] (2.30)
k

= —Weau) - Xi + log[z exp(W; - X;)] (2.31)
k "~

= —Vc(s) + log[z exp(v;)] (2.32)

Therefore, the partial derivative of L; with respect to v, can be computed as follows:

exp(v,) ol
oL, B — (1— j?:lexp(vj)) if r = ¢(1) (2.33)
() e
P(r|X5) if r # c(i) '

The gradient of the loss of the ith training instance with respect to the separator of the rth
class is computed by using the chain rule of differential calculus in terms of its pre-activation
value v; = W; - X;:
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8Li 8LZ (9’()]‘ 6L1- 8%
= L) = = — 2.35
oW, Z (3%') (3Wr) vy OW, (2.35)
J N
X;

In the above simplification, we used the fact that v; has a zero gradient with respect to
W, for j # r. The value of gf in Equation 2.35 can be substituted from Equation 2.34 to
obtain the following result:

oW, X Pel%) it # (i) (236)

L, {—Xi(l — P(r[Xy)) ifr = c(i)
Note that we have expressed the gradient indirectly using probabilities (based on Equa-
tion 2.29) both for brevity and for intuitive understanding of how the gradient is related to
the probability of making different types of mistakes. Each of the terms [1 — P(r|X;)] and
P(r|X;) is the probability of making a mistake for an instance with label c(i) with respect
to the predictions for the rth class. After including similar regularization impact as other
models, the separator for the rth class is updated as follows:

W, <= Wo(1—a)) 4+« (2.37)

Xi- (1= P(r[X;) ifr=c()

X POIX) it A
Here, « is the learning rate, and A is the regularization parameter. The softmax classifier
updates all the k separators for each training instance, unlike the multiclass perceptron and
the Weston-Watkins SVM, each of which updates only a small subset of separators (or no
separator) for each training instance. This is a consequence of probabilistic modeling, in
which correctness is defined in a soft way.

2.3.4 Hierarchical Softmax for Many Classes

Consider a classification problem in which we have an extremely large number of classes.
In such a case, learning becomes too slow, because of the large number of separators that
need to be updated for each training instance. This situation can occur in applications like
text mining, where the prediction is a target word. Predicting target words is particularly
common in neural language models, which try to predict the next word given the immediate
history of previous words. The cardinality of the number of classes will typically be larger
than 10° in such cases. Hierarchical softmax is a way of improving learning efficiency by
decomposing the classification problem hierarchically. The idea is to group the classes hier-
archically into a binary tree-like structure, and then perform log, (k) binary classifications
from the root to the leaf for k-way classification. Although the hierarchical classification can
compromise the accuracy to some extent, the efficiency improvements can be significant.

How is the hierarchy of classes obtained? The naive approach is to create a random
hierarchy. However, the specific grouping of classes has an effect on performance. Grouping
similar classes tends to improve performance. It is possible to use domain-specific insights
to improve the quality of the hierarchy. For example, if the prediction is a target word,
one can use the WordNet hierarchy [329] to guide the grouping. Further reorganization
may be needed [344] because the WordNet hierarchy is not exactly a binary tree. Another
option is to use Huffman encoding in order to create the binary tree [325, 327]. Refer to the
bibliographic notes for more pointers.
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2.4 Backpropagated Saliency for Interpretability and
Feature Selection

One of the common refrains about neural networks has been their lack of interpretabil-
ity [97]. However, it turns out that one can use backpropagation in order to determine the
features that contribute the most to the classification of a particular test instance. This
provides the analyst with an understanding of the relevance of each feature to classification.
This approach also has the useful property that it can be used for feature selection [406].

Consider a test instance X = (r1,...74), for which the multilabel output scores of
the neural network are o7 ...o0,. Furthermore, let the output of the winning class among
the k outputs be o,,, where m € {1...k}. Our goal is to identify the features that are
most relevant to the classification of this test instance. In general, for each attribute x;,
we would like to determine the sensitivity of the output o,, to z;. Features with large
absolute magnitudes of this sensitivity are obviously relevant to the classification of this test
instance. In order to achieve this goal, we would like to compute the absolute magnitude of
a"’" . The features with the largest absolute value of the partial derivative have the greatest
1nﬂuence on the classification to the winning class. The sign of this derivative also tells us
whether increasing z; slightly from its current value increases or decreases the score of the
winning class. For classes other than the winning class, the derivative also provides some
understanding of the sensitivity, but this is less important, particularly when the number of
classes is large. The value of a‘i,m can be computed by a straightforward application of the
backpropagation algorithm, in which one does not stop backpropagating at the first hidden
layer but applies the process all the way to the input layer.

One can also use this approach for feature selection by aggregating the absolute value
of the gradient over all classes and all correctly classified training instances. The features
with the largest aggregate sensitivity over the whole training data are the most relevant.
Strictly speaking, one does not need to aggregate this value over all classes, but one can
simply use only the winning class for correctly classified training instances. However, the
original work in [406] aggregates this value over all classes and all instances.

Similar methods for interpreting the effects of different portions of the input are also
used in computer vision with convolutional neural networks [466]. A discussion of some of
these methods is provided in Section 8.5.1 of Chapter 8. In the case of computer vision, the
visual effects of this type of saliency analysis are sometimes spectacular. For example, for
an image of a dog, the analysis will tell us which features (i.e., pixels) results in the image
being considered a dog. As a result, we can create a black-and-white saliency image in which
the portion corresponding to a dog is emphasized in light color against a dark background
(cf. Figure 8.12 of Chapter 8).

2.5 Matrix Factorization with Autoencoders

Autoencoders represent a fundamental architecture that is used for various types of unsu-
pervised learning, including matrix factorization, principal component analysis, and dimen-
sionality reduction. Natural architectural variations of the autoencoder can also be used
for matrix factorization of incomplete data to create recommender systems. Furthermore,
some recent feature engineering methods in the natural language domain like word2vec can
also be viewed as variations of autoencoders, which perform nonlinear matrix factorizations
of word-context matrices. The nonlinearity is achieved with the activation function in the
output layer, which is usually not available with traditional matrix factorization. Therefore,
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one of our goals will be to demonstrate how small changes to the underlying building blocks
of the neural network can be used to implement sophisticated variations of a given family
of methods. This is particularly convenient for the analyst, who only has to experiment
with small variations of the architecture to test different types of models. Such variations
would require more effort to construct in traditional machine learning, because one does not
have the benefit of learning abstractions like backpropagation. First, we begin with a simple
simulation of a traditional matrix factorization method with a shallow neural architecture.
Then, we discuss how this basic setup provides the path to generalizations to nonlinear
dimensionality reduction methods by adding layers and/or nonlinear activation functions.
Therefore, the goal of this section is to show two things:

1. Classical dimensionality reduction methods like singular value decomposition and
principal component analysis are special cases of neural architectures.

2. By adding different types of complexities to the basic architecture, one can gener-
ate complex nonlinear embeddings of the data. While nonlinear embeddings are also
available in machine learning, neural architectures provide unprecedented flexibility in
controlling the properties of the embedding by making various types of architectural
changes (and allowing backpropagation to take care of the changes in the underlying
learning algorithms).

We will also discuss a number of applications such as recommender systems and outlier
detection.

2.5.1 Autoencoder: Basic Principles

The basic idea of an autoencoder is to have an output layer with the same dimensionality as
the inputs. The idea is to try to reconstruct each dimension exactly by passing it through
the network. An autoencoder replicates the data from the input to the output, and is
therefore sometimes referred to as a replicator neural network. Although reconstructing the
data might seem like a trivial matter by simply copying the data forward from one layer to
another, this is not possible when the number of units in the middle are constricted. In other
words, the number of units in each middle layer is typically fewer than that in the input (or
output). As a result, these units hold a reduced representation of the data, and the final
layer can no longer reconstruct the data exactly. Therefore, this type of reconstruction is
inherently lossy. The loss function of this neural network uses the sum-of-squared differences
between the input and the output in order to force the output to be as similar as possible to
the input. This general representation of the autoencoder is given in Figure 2.6(a), where an
architecture is shown with three constricted layers. It is noteworthy that the representation
of the innermost hidden layer will be hierarchically related to those in the two outer hidden
layers. Therefore, an autoencoder is capable of performing hierarchical data reduction.

It is common (but not necessary) for an M-layer autoencoder to have a symmetric
architecture between the input and output, where the number of units in the kth layer
is the same as that in the (M — k + 1)th layer. Furthermore, the value of M is often
odd, as a result of which the (M + 1)/2th layer is often the most constricted layer. Here,
we are counting the (non-computational) input layer as the first layer, and therefore the
minimum number of layers in an autoencoder would be three, corresponding to the input
layer, constricted layer, and the output layer. As we will see later, this simplest form of the
autoencoder is used in traditional machine learning for singular value decomposition. The
symmetry in the architecture often extends to the fact that the weights outgoing from the
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kth layer are tied to those incoming to the (M — k)th layer in many architectures. For now,
we will not make this assumption for simplicity in presentation. Furthermore, the symmetry
is never absolute because of the effect of nonlinear activation functions. For example, if a
nonlinear activation function is used in the output layer, there is no way to symmetrically
mirror that fact in the (non-computational) input layer.
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Figure 2.6: The basic schematic of the autoencoder

The reduced representation of the data is also sometimes referred to as the code, and
the number of units in this layer is the dimensionality of the reduction. The initial part
of the neural architecture before the bottleneck is referred to as the encoder (because it
creates a reduced code), and the final part of the architecture is referred to as the decoder
(because it reconstructs from the code). The general schematic of the autoencoder is shown
in Figure 2.6(b).

2.5.1.1 Autoencoder with a Single Hidden Layer

In the following, we describe the simplest version of an autoencoder, which is used for matrix
factorization. This autoencoder only has a single hidden layer of k < d units between the
input and output layers of d units each. For the purpose of discussion, assume that we have
an n X d matrix denoted by D, which we would like to factorize into an n x k matrix U and
a d X k matrix V:

D~UVT (2.38)

Here, k is the rank of the factorization. The matrix U contains the reduced representation
of the data, and the matrix V contains the basis vectors. Matrix factorization is one of
the most widely studied problems in supervised learning, and it is used for dimensionality
reduction, clustering, and predictive modeling in recommender systems.

In traditional machine learning, this problem is solved by minimizing the Frobenius norm
of the residual matriz denoted by (D — UVT). The squared Frobenius norm of a matrix is
the sum of the squares of the entries in the matrix. Therefore, one can write the objective
function of the optimization problem as follows:

Minimize J = ||D — UVT||%

Here, the notation || - || indicates the Frobenius norm. The parameter matrices U and V
need to be learned in order to optimize the aforementioned error. This objective function
has an infinite number of optima, one of which has mutually orthogonal basis vectors.
That particular solution is referred to as truncated singular value decomposition. Although
it is relatively easy to derive the gradient-descent steps [6] for this optimization problem
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(without worrying about neural networks at all), our goal here is to capture this optimization
problem within a neural architecture. Going through this exercise helps us show that SVD
is a special case of an autoencoder architecture, which sets the stage for understanding the
gains obtained with more complex autoencoders.
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Figure 2.7: A basic autoencoder with a single layer

This neural architecture for SVD is illustrated in Figure 2.7, where the hidden layer
contains k units. The rows of D are input into the autoencoder, whereas the k-dimensional
rows of U are the activations of the hidden layer. The k x d matrix of weights in the decoder
is VT, As we discussed in the introduction to the multilayer neural network in Chapter 1,
the vector of values in a particular layer of the network can be obtained by multiplying the
vector of values in the previous layer with the matrix of weights connecting the two layers
(with linear activation). Since the activations of the hidden layer are U and the decoder
weights contain the matrix V7, it follows that the reconstructed output contains the rows
of UVT. The autoencoder minimizes the sum-of-squared differences between the input and
the output, which is equivalent to minimizing ||D — UV T||2. Therefore, the same problem
is being solved as singular value decomposition.

Note that one can use this approach to provide the reduced representation of out-of-
sample instances that were not included in the original matrix D. One simply has to feed
these out-of-sample rows as the input, and the activations of the hidden layer will provide the
reduced representation. Reducing out-of-sample instances is particularly useful for nonlinear
dimensionality-reduction methods, as it is more difficult for traditional machine learning
methods to fold in new instances.

Encoder Weights

As shown in Figure 2.7, the encoder weights are contained in the k x d matrix denoted
by W. How is this matrix related to U and V? Note that the autoencoder creates the
reconstructed representation DWTVT of the original data matrix. Therefore, it tries to
optimize the problem of minimizing ||[DWT VT — D||2. The optimal solution to this problem
is obtained when the matrix W contains the pseudo-inverse of V', which is defined as follows:

W= (vTv)-tyT (2.39)
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This result is easy to show at least for non-degenerate cases in which the rows of matrix
D span the full rank of d dimensions (see Exercise 14). Of course, the final solution found
by the training algorithm of the autoencoder might deviate from this condition because it
might not solve the problem precisely or because the matrix D might be of smaller rank.
By the definition of the pseudo-inverse, it follows that WV = I and VI W7 = I, where I
is a k x k identity matrix. Post-multiplying Equation 2.38 with W7 we obtain the following:

Dwt ~Uu (VW) =U (2.40)
N—_——
I

In other words, multiplying each row of the matrix D with the d x k matrix W7 yields the
reduced representation of that instance, which is the corresponding row in U. Furthermore,
multiplying that row of U again with V7 yields the reconstructed version of the original
data matrix D.

Note that there are many alternate optima for W and V', but in order for reconstruction
to occur (i.e., minimization of loss function), the learned matrix W will always be (ap-
proximately) related to V as its pseudo-inverse and the columns of V will always span® a
particular k-dimensional subspace defined by the SVD optimization problem.

2.5.1.2 Connections with Singular Value Decomposition

The single-layer autoencoder architecture is closely connected with singular value decompo-
sition (SVD). Singular value decomposition finds a factorization UV7 in which the columns
of V are orthonormal. The loss function of this neural network is identical to that of sin-
gular value decomposition, and a solution V in which the columns of V are orthonormal
will always be one of the possible optima obtained by training the neural network. However,
since this loss function allows alternative optima, it is possible to find an optimal solution
in which the columns of V' are not necessarily mutually orthogonal or scaled to unit norm.
SVD is defined by an orthonormal basis system. Nevertheless, the subspace spanned by
the k columns of V will be the same as that spanned by the top-k basis vectors of SVD.
Principal component analysis is identical to singular value decomposition, except that it is
applied to a mean-centered matrix D. Therefore, the approach can also be used to find the
subspace spanned by the top-k principal components. However, each column of D needs to
be mean-centered up front by subtracting its mean. One can achieve an orthonormal basis
system, which is even closer to SVD and PCA by sharing some of the weights in the encoder
and decoder. This approach is discussed in the next section.

2.5.1.3 Sharing Weights in Encoder and Decoder

There are many possible alternate solutions for W and V in the above discussion, in which
W is the pseudo-inverse of V. One can, therefore, reduce the parameter footprint further
without significant® loss in reconstruction accuracy. A common practice that is used in
the autoencoder construction is to share some of the weights between the encoder and the

3This subspace is defined by the top-k singular vectors of singular value decomposition. However, the
optimization problem does not impose orthogonality constraints, and therefore the columns of V' might use
a different non-orthogonal basis system to represent this subspace.

4There is no loss in reconstruction accuracy in several special cases like the single-layer case discussed
here, even on the training data. In other cases, the loss of accuracy is only on the training data, but the
autoencoder tends to better reconstruct out-of-sample data because of the regularization effects of parameter
footprint reduction.
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decoder. This is also referred to as tying the weights. In particular, the autoencoder has
an inherently symmetric structure, in which the weights of the encoder and decoder are
forced to be the same in symmetrically matching layers. In the shallow case, the encoder
and decoder weights are shared by using the following relationship:

w=vT (2.41)
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Figure 2.8: Basic autoencoder with a single layer; note tied weights (unlike the autoencoder
shown in Figure 2.7).

This architecture is shown in Figure 2.8, and it is identical to the architecture of Figure 2.7
except for the presence of tied weights. In other words, the d x k& matrix V of weights is
first used to transform the d-dimensional data point X into a k-dimensional representation.
Then, the matrix V7T of weights is used to reconstruct the data to its original representation.

The tying of the weights effectively means that V7 is the pseudo-inverse of V (see
Exercise 14). In other words, we have VIV = I, and therefore the columns of V are
mutually orthogonal. As a result, by tying the weights, it is now possible to ezactly simulate
SVD, in which the different basis vectors need to be mutually orthogonal.

In this particular example of an architecture with a single hidden layer, the tying of
weights is done only for a pair of weight matrices. In general, one would have an odd
number of hidden layers and an even number of weight matrices. It is a common practice
to match up the weight matrices in a symmetric way about the middle. In such a case, the
symmetrically arranged hidden layers would need to have the same numbers of units. Even
though it is not necessary to share weights between the encoder and decoder portions of
the architecture, it reduces the number of parameters by a factor of 2. This is beneficial
from the point of view of reducing overfitting. In other words, the approach would better
reconstruct out-of-sample data. Another benefit of tying the weight matrices in the encoder
and the decoder is that it automatically normalizes the columns of V' to similar values.
For example, if we do not tie the weight matrices in the encoder and the decoder, it is
possible for the different columns of V' to have very different norms. At least in the case of
linear activations, tying the weight matrices forces all columns of V' to have similar norms.
This is also useful from the perspective of providing better normalization of the embedded
representation. The normalization and orthogonality properties no longer hold exactly when
nonlinear activations are used in the computational layers. However, there are considerable
benefits in tying the weights even in these cases in terms of better conditioning of the
solution.
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The sharing of weights does require some changes to the backpropagation algorithm
during training. However, these modifications are not very difficult. All that one has to do
is to perform normal backpropagation by pretending that the weights are not tied in order
to compute the gradients. Then, the gradients across different copies of the same weight are
added in order to compute the gradient-descent steps. The logic for handing shared weights
in this way is discussed in Section 3.2.9 of Chapter 3.

2.5.1.4 Other Matrix Factorization Methods

It is possible to modify the simple three-layer autoencoder to simulate other types of ma-
trix factorization methods such as non-negative matrix factorization, probabilistic latent
semantic analysis, and logistic matrix factorization methods. Different methods for logistic
matrix factorization will be discussed in the next section, in Section 2.6.3, and in Exercise 8.
Methods for non-negative matrix factorization and probabilistic latent semantic analysis are
discussed in Exercises 9 and 10. It is instructive to examine the relationships between these
different variations, because it shows how one can vary on simple neural architectures in
order to get results with vastly different properties.

2.5.2 Nonlinear Activations

So far, the discussion has focussed on simulating singular value decomposition using a neural
architecture. Clearly, this does not seem to achieve much because many off-the-shelf tools
exist for singular value decomposition. However, the real power of autoencoders is realized
when one starts using nonlinear activations and multiple layers. For example, consider a
situation in which the matrix D is binary. In such a case, one can use the same neural
architecture as shown in Figure 2.7, but one can also use a sigmoid function in the final
layer to predict the output. This sigmoid layer is combined with negative log loss. Therefore,
for a binary matrix B = [b;;], the model assumes the following:

B ~ sigmoid(UV7T) (2.42)

Here, the sigmoid function is applied in element-wise fashion. Note the use of ~ instead
of ~ in the above expression, which indicates that the binary matrix B is an instantiation
of random draws from Bernoulli distributions with corresponding parameters contained in
sigmoid(UVT). The resulting factorization can be shown to be equivalent to logistic matriz
factorization. The basic idea is that the (i,j)th element of UVT is the parameter of a
Bernoulli distribution, and the binary entry b;; is generated from a Bernoulli distribution
with these parameters. Therefore, U and V are learned using the log-likelihood loss of this
generative model. The log-likelihood loss implicitly tries to find parameter matrices U and V'
so that the probability of the matrix B being generated by these parameters is maximized.

Logistic matrix factorization has only recently been proposed [224] as a sophisticated
matrix factorization method for binary data, which is useful for recommender systems with
implicit feedback ratings. Implicit feedback refers to the binary actions of users such as buy-
ing or not buying specific items. The solution methodology of this recent work on logistic
matrix factorization [224] seems to be vastly different from SVD, and it is not based on a
neural network approach. However, for a neural network practitioner, the change from the
SVD model to that of logistic matrix factorization is a relatively small one, where only the
final layer of the neural network needs to be changed. It is this modular nature of neural
networks that makes them so attractive to engineers and encourages all types of experi-
mentation. In fact, one of the variants of the popular word2vec neural approach [325, 327]



2.5. MATRIX FACTORIZATION WITH AUTOENCODERS 7

for text feature engineering is a logistic matrix factorization method, when one examines it
more closely. Interestingly, word2vec was proposed earlier than logistic matrix factorization
in traditional machine learning [224], although the equivalence of the two methods was not
shown in the original work. The equivalence was first shown in [6], and a proof of this result
is also provided later in this chapter. Indeed, for multilayer variants of the autoencoder,
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Figure 2.9: The effect of nonlinear dimensionality reduction. This figure is drawn for illus-
trative purposes only.

an exact counterpart does not even exist in traditional machine learning. All this seems to
suggest that it is often more natural to discover sophisticated machine learning algorithms
when working with the modular approach of constructing multilayer neural networks. Note
that one can even use this approach to factorize real-valued matrix entries drawn from
[0, 1], as long as the log-loss is suitably modified to handle fractional values (see Exercise 8).
Logistic matrix factorization is a type of kernel matriz factorization.

One can also use non-linear activations in the hidden layer rather than (or in addition to)
the output layer. By using the non-linearity in the hidden layer to impose non-negativity,
one can simulate non-negative matrix factorization (cf. Exercises 9 and 10). Furthermore,
consider an autoencoder with a single hidden layer in which sigmoid units are used in
the hidden layer, and the output layer is linear. Furthermore, the input-to-hidden and
the hidden-to-output matrices are denoted by W7 and V7, respectively. In this case, the
matrix W will no longer be the pseudo-inverse of V' because of the non-linear activation in
the hidden layer.

If U is the output of the hidden layer in which the nonlinear activation ®(-) is applied,
we have:

U=3aDwT) (2.43)
If the output layer is linear, the overall factorization is still of the following form:
D~UVT (2.44)

Note, however, that we can write U’ = DW7, which is a linear projection of the original
matrix D. Then, the factorization can be written as follows:

D~ oU)VT (2.45)

Here, U’ is a linear projection of D. This is a different type of nonlinear matrix factoriza-
tion [521, 558]. Although the specific form of the nonlinearity (e.g., sigmoid) might seem
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simplistic compared to what is considered typical in kernel methods, in reality multiple
hidden layers are used to learn more complex forms of nonlinear dimensionality reduction.
Nonlinearity can also be combined in the hidden layers and in the output layer. Nonlinear
dimensionality reduction methods can map the data into much lower dimensional spaces
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Figure 2.10: An example of an autoencoder with three hidden layers. Combining nonlinear
activations with multiple hidden layers increases the representation power of the network.

(with good reconstruction characteristics) than would be possible with methods like PCA.
An example of a data set, which is distributed on a nonlinear spiral, is shown in Fig-
ure 2.9(a). This data set cannot be reduced to lower dimensionality using PCA (without
causing significant reconstruction error). However, the use of nonlinear dimensionality re-
duction methods can flatten out the nonlinear spiral into a 2-dimensional representation.
This representation is shown in Figure 2.9(b).

Nonlinear dimensionality-reduction methods often require deeper networks due to the
more complex transformations possible with the combination of nonlinear units. The ben-
efits of depth will be discussed in the next section.

2.5.3 Deep Autoencoders

The real power of autoencoders in the neural network domain is realized when deeper vari-
ants are used. For example, an autoencoder with three hidden layers is shown in Figure 2.10.
One can increase the number of intermediate layers in order to further increase the repre-
sentation power of the neural network. It is noteworthy that it is essential for some of the
layers of the deep autoencoder to use a nonlinear activation function to increase its repre-
sentation power. As shown in Lemma 1.5.1 of Chapter 1, no additional power is gained by a
multilayer network when only linear activations are used. Although this result was shown in
Chapter 1 for the classification problem, it is broadly true for any type of multilayer neural
network (including an autoencoder).

Deep networks with multiple layers provide an extraordinary amount of representation
power. The multiple layers of this network provide hierarchically reduced representations
of the data. For some data domains like images, hierarchically reduced representations are
particularly natural. Note that there is no precise analog of this type of model in tradi-
tional machine learning, and the backpropagation approach rescues us from the challenges
associated in computing the complicated gradient-descent steps. A nonlinear dimensionality
reduction might map a manifold of arbitrary shape into a reduced representation. Although
several methods for nonlinear dimensionality reduction are known in machine learning,
neural networks have some advantages over these methods:
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1. Many nonlinear dimensionality reduction methods have a very hard time mapping
out-of-sample data points to reduced representations, unless these points are included
in the training data up front. On the other hand, it is a relatively simple matter to
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Figure 2.11: A depiction of the typical difference between the embeddings created by non-
linear autoencoders and principal component analysis (PCA). Nonlinear and deep autoen-
coders are often able to separate out the entangled class structures in the underlying data,
which is not possible within the constraints of linear transformations like PCA. This occurs
because individual classes are often populated on curved manifolds in the original space,
which would appear mixed when looking at a data in any 2-dimensional cross-section unless
one is willing to warp the space itself. The figure above is drawn for illustrative purposes
only and does not represent a specific data set.

compute the reduced representation of an out-of-sample point by passing it through
the network.

2. Neural networks allow more power and flexibility in the nonlinear data reduction by
varying on the number and type of layers used in intermediate stages. Furthermore,
by choosing specific types of activation functions in particular layers, one can engineer
the nature of the reduction to the properties of the data. For example, it makes sense
to use a logistic output layer with logarithmic loss for a binary data set.

It is possible to achieve extraordinarily compact reductions by using this approach. For
example, the work in [198] shows how one can convert a 784-dimensional representation of
the pixels of an image into a 6-dimensional reduction with the use of deep autoencoders.
Greater reduction is always achieved by using nonlinear units, which implicitly map warped
manifolds into linear hyperplanes. The superior reduction in these cases is because it is easier
to thread a warped surface (as opposed to a linear surface) through a larger number of points.
This property of nonlinear autoencoders is often used for 2-dimensional visualizations of the
data by creating a deep autoencoder in which the most compact hidden layer has only two
dimensions. These two dimensions can then be mapped on a plane to visualize the points.
In many cases, the class structure of the data is exposed in terms of well-separated clusters.

An illustrative example of the typical behavior of real data distributions is shown in
Figure 2.11, in which the 2-dimensional mapping created by a deep autoencoder seems
to clearly separate out the different classes. On the other hand, the mapping created by
PCA does not seem to separate the classes well. Figure 2.9, which provides a nonlinear
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spiral mapped to a linear hyperplane, clarifies the reason for this behavior. In many cases,
the data may contain heavily entangled spirals (or other shapes) that belong to different
classes. Linear dimensionality reduction methods cannot attain clear separation because
nonlinearly entangled shapes are not linearly separable. On the other hand, deep autoen-
coders with nonlinearity are far more powerful and able to disentangle such shapes. Deep
autoencoders can sometimes be used as alternatives to other robust visualization methods
like t-distributed stochastic neighbor embedding (¢-SNE) [305]. Although ¢-SNE can often
provide better performance® for visualization (because it is specifically designed for visual-
ization rather than dimensionality reduction), the advantage of an autoencoder over t-SNE
is that it is easier to generalize to out-of-sample data. When new data points are received,
they can simply be passed through the encoder portion of the autoencoder in order to
add them to the current set of visualized points. A specific example of a visualization of a
high-dimensional document collection with an autoencoder is provided in [198].

It is, however, possible to go too far and create representations that are not useful. For
example, one can compress a very high-dimensional data point into a single dimension, which
reconstructs a point from the training data very well but gives high reconstruction error
for test data. In other words, the neural network has found a way to memorize the data set
without sufficient ability to create reduced representations of unseen points. Therefore, even
for unsupervised problems like dimensionality reduction, it is important to keep aside some
points as a validation set. The points in the validation set are not used during training. One
can then quantify the difference in reconstruction error between the training and validation
data. Large differences in reconstruction error between the training and validation data
are indicative of overfitting. Another issue is that deep networks are harder to train, and
therefore tricks like pretraining are important. These tricks will be discussed in Chapters 3
and 4.

2.5.4 Application to Outlier Detection

Dimensionality reduction is closely related to outlier detection, because outlier points are
hard to encode and decode without losing substantial information. It is a well-known fact
that if a matrix D is factorized as D ~ D’ = UVT, then the low-rank matrix D’ is a
de-noised representative of the data. After all, the compressed representation U captures
only the regularities in the data, and is unable to capture the unusual variations in specific
points. As a result, reconstruction to D’ misses all these unusual variations.

The absolute values of the entries of (D — D’) represent the outlier scores of the matrix
entries. Therefore, one can use this approach to find outlier entries, or add the squared
scores of the entries in each row of D to find the outlier score of that row. Therefore, one
can identify outlier data points. Furthermore, by adding the squared scores in each column
of D, one can find outlier features. This is useful for applications like feature selection in
clustering, where a feature with a large outlier score can be removed because it adds noise
to the clustering. Although we have provided the description above with the use of matrix
factorization, any type of autoencoder can be used. In fact, the construction of de-noising
autoencoders is a vibrant field in its own right. Refer to the bibliographic notes.

5The t-SNE method works on the principle is that it is impossible to preserve all pairwise similarities
and dissimilarities with the same level of accuracy in a low-dimensional embedding. Therefore, unlike di-
mensionality reduction or autoencoders that try to faithfully reconstruct the data, it has an asymmetric
loss function in terms of how similarity is treated versus dissimilarity. This type of asymmetric loss function
is particularly helpful for separating out different manifolds during visualization. Therefore, t-SNE might
perform better than autoencoders at visualization.
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2.5.5 When the Hidden Layer Is Broader than the Input Layer

So far, we have only discussed cases in which the hidden layer has fewer units than the
input layer. It makes sense for the hidden layer to have fewer units than the input layer
when one is looking for a compressed representation of the data. A constricted hidden layer
forces dimensionality reduction, and the loss function is designed to avoid information loss.
Such representations are referred to as undercomplete representations, and they correspond
to the traditional use-case of autoencoders.

What about the case when the number of hidden units is greater than the input dimen-
sionality? This situation corresponds to the case of over-complete representations. Increasing
the number of hidden units beyond the number of input units makes it possible for the hid-
den layer to simply learn the identity function (with zero loss). Simply copying the input
across the layers does not seem to be particularly useful. However, this does not occur in
practice (while learning weights), especially if certain types of regularization and sparsity
constraints are imposed on the hidden layer. Even if no sparsity constraints are imposed,
and stochastic gradient descent is used for learning, the probabilistic regularization caused
by stochastic gradient descent is sufficient to ensure that the hidden representation will
always scramble the input before reconstructing it at the output. This is because stochastic
gradient descent is a type of noise addition to the learning process, and therefore it will
not be possible to learn weights that simply copy input to output as identity functions
across layers. Furthermore, because of some peculiarities of the training process, a neural
network almost never uses its full modeling ability, which leads to dependencies among the
weights [94]. Rather, an over-complete representation may be created, although it may not
have the property of sparsity (which needs to be explicitly encouraged). The next section
will discuss ways of encouraging sparsity.

2.5.5.1 Sparse Feature Learning

When explicit sparsity constraints are imposed, the resulting autoencoder is referred to as a
sparse autoencoder. A sparse representation of a d-dimensional point is a k-dimensional point
in which k£ > d and most of the values in the sparse representation are 0s. Sparse feature
learning has tremendous applicability to many settings like image data, where the learned
features are often intuitively more interpretable from an application-specific perspective.
Furthermore, points with a variable amount of information will be naturally represented by
having varying numbers of nonzero feature values. This type of property is naturally true
in some input representations like documents; documents with more information will have
more non-zero features (word frequencies) when represented in multidimensional format.
However, if the available input is not sparse to begin with, there are often benefits in
creating a sparse transformation where such a flexibility of representation exists. Sparse
representations also enable the effective use of particular types of efficient algorithms that
are highly dependent on sparsity. There are many ways in which constraints might be
enforced on the hidden layer to create sparsity. One approach is to add biases to the hidden
layer, so that many units are encouraged to be zeros. Some examples are as follows:

1. One can impose an L;i-penalty on the activations in the hidden layer to force sparse
activations. The notion of L;-penalties for creating sparse solutions (in terms of either
weights or hidden units) is discussed in Sections 4.4.2 and 4.4.4 of Chapter 4. In
such a case, backpropagation must also propagate the gradient of this penalty in the
backwards direction. Surprisingly, this natural alternative is rarely used.
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2. One can allow only the top-r activations in the hidden layer to be nonzero for r < k. In
such a case, backpropagation only backpropagates through the activated units. This
approach is referred to as the r-sparse autoencoder [309].

3. Another approach is the winner-take-all autoencoder [310], in which only a fraction f
of the activations of each hidden unit are allowed over the whole training data. In this
case, the top activations are computed across training examples, whereas in the pre-
vious case the top activations are computed across a hidden layer for a single training
example. Therefore node-specific thresholds need to be estimated using the statistics
of a minibatch. The backpropagation algorithm needs to propagate the gradient only
through the activated units.

Note that the implementations of the competitive mechanisms are almost like ReLU ac-
tivations with adaptive thresholds. Refer to the bibliographic notes for pointers and more
details of these algorithms.

2.5.6 Other Applications

Autoencoders form the workhorse of unsupervised learning in the neural network domain.
They are used for a host of applications, which will be discussed later in the book. After
training an autoencoder, it is not necessary to use both the encoder and decoder portions.
For example, when using the approach for dimensionality reduction, one can use the encoder
portion in order to create the reduced representations of the data. The reconstructions of
the decoder might not be required at all.

Although an autoencoder naturally removes noise (like almost any dimensionality re-
duction method), one can enhance the ability of the autoencoder to remove specific types of
noise. To perform the training of a de-noising autoencoder, a special type of training is used.
First, some noise is added to the training data before passing it through the neural net-
work. The distribution of the added noise reflects the analyst’s understanding of the natural
types of noise in that particular data domain. However, the loss is computed with respect
to the original training data instances rather than their corrupted versions. The original
training data are relatively clean, although one expects the test instances to be corrupted.
Therefore, the autoencoder learns to recover clean representations from corrupted data. A
common approach to add noise is to randomly set a fraction f of the inputs to zeros [506].
This approach is especially effective when the inputs are binary. The value of f regulates the
level of corruption in the inputs. One can either fix f or even allow f to randomly vary over
different training instances. In some cases, when the input is real-valued, Gaussian noise
is also used. More details of the de-noising autoencoder are provided in Section 4.10.2 of
Chapter 4. A closely related autoencoder is the contractive autoencoder, which is discussed
in Section 4.10.3.

Another interesting application of the autoencoder is one in which we use only the
decoder portion of the network to create artistic renderings. This idea is based on the
notion of wariational autoencoders [242, 399], in which the loss function is modified to
impose a specific structure on the hidden layer. For example, one might add a term to
the loss function to enforce the fact that the hidden variables are drawn from a Gaussian
distribution. Then, one might repeatedly draw samples from this Gaussian distribution and
use only the decoder portion of the network in order to generate samples of the original data.
The generated samples often represent realistic samples from the original data distribution.

A closely related model is that of generative adversarial networks, which have become
increasingly popular in recent years. These models pair the learning of a decoding network
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with that of an adversarial discriminator in order to create generative samples of a data set.
Generative adversarial networks are used frequently with image, video, and text data, and
they generate artistic renderings of images and videos, which often have the flavor of an
Al that is “dreaming.” These methods can be used for image-to-image translation as well.
The variational autoencoder is discussed in detail in Section 4.10.4 of Chapter 4. Generative
adversarial networks are discussed in Section 10.4 of Chapter 10.

| mAGE INPUT |
| ImAGE ouTpuT |

JOINT SPACE

7

Figure 2.12: Multimodal embedding with autoencoders
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One can use an autoencoder for embedding multimodal data in a joint latent space.
Multimodal data is essentially data in which the input features are heterogeneous. For
example, an image with descriptive tags can be considered multimodal data. Multimodal
data pose challenges to mining applications because different features require different types
of processing and treatment. By embedding the heterogeneous attributes in a unified space,
one is removing this source of difficulty in the mining process. An autoencoder can be used
to embed the heterogeneous data into a joint space. An example of such a setting is shown
in Figure 2.12. This figure shows an autoencoder with only a single layer, although one
might have multiple layers in general [357, 468]. Such joint spaces can be very useful in a
variety of applications.

Finally, autoencoders are used to improve the learning process in neural networks. A
specific example is that of pretraining in which an autoencoder is used to initialize the
weights of a neural network. The basic idea is that learning the manifold structure of a
data set is also useful for supervised learning applications like classification. This is because
the features that define the manifold of a data set are often likely to be more informative
in terms of their relationships to different classes. Pretraining methods are discussed in
Section 4.7 of Chapter 4.

2.5.7 Recommender Systems: Row Index to Row Value Prediction

One of the most interesting applications of matrix factorization is the design of neural
architectures for recommender systems. Consider an n x d ratings matrix D with n users
and d items. The (i, j)th entry of the matrix is the rating of user i for item j. However,
most entries in the matrix are not specified, which creates difficulties in using a traditional
autoencoder architecture. This is because traditional autoencoders are designed for fully
specified matrices, in which a single row of the matrix is input at one time. On the other
hand, recommender systems are inherently suited to elementwise learning, in which a very
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small subset of ratings from a row may be available. As a practical matter, one might
consider the input to a recommender system as a set of triplets of the following form:

(Rowld), ( Columnld ), ( Rating )

As in traditional forms of matrix factorization, the ratings matrix D is given by UVT.
However, the difference is that one must learn U and V using triplet-centric input because

USERS ITEMS

ONE-HOT ENCODED INPUT
Figure 2.13: Row-index-to-value encoder for matrix factorization with missing values.

all entries of D are not observed. Therefore, a natural approach is to create an architecture
in which the inputs are not affected by the missing entries and can be uniquely specified.
The input layer contains n input units, which is the same as the number of rows (users).
However, the input is a one-hot encoded index of the row identifier. Therefore, only one
entry of the input takes on the value of 1, with the remaining entries taking on values of
0. The hidden layer contains k units, where k is the rank of the factorization. Finally, the
output layer contains d units, where d is the number of columns (items). The output is a
vector containing the d ratings (even though only a small subset of them are observed). The
goal is to train the neural network with an incomplete data matrix D so that the network
outputs all the ratings corresponding to a one-hot encoded row index after it is input. The
approach is to be able to reconstruct the data by learning the ratings associated with each
row index.

Consider a setting in which the n x k input-to-hidden matrix is U, and the k x d hidden-
to-output matrix is V7. The entries of the matrix U are denoted by Uiq, and those of the
matrix V' are denoted by v;4. Assume that all activation functions are linear. Furthermore,
let the one-hot encoded input (row) vector for the rth user be €,. This row vector contains
n dimensions in which only the rth value is 1, and the remaining values are zeros. The loss
function is the sum of the squares of the errors in the output layer. However, because of
the missing entries, not all output nodes have an observed output value, and the updates
are performed only with respect to entries that are known. The overall architecture of this
neural network is illustrated in Figure 2.13. For any particular row-wise input we are really
training on a neural network that is a subset of this base network, depending on which entries
are specified. However, it is possible to give predictions for all outputs in the network (even
though a loss function cannot be computed for missing entries). Since a neural network
with linear activations performs matrix multiplications, it is easy to see that the vector of d
outputs for the rth user is given by €, UV 7. In essence, pre-multiplication with &, pulls out
the rth row in the matrix UV™. These values appear at the output layer and represent the
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item-wise ratings predictions for the rth user. Therefore, all feature values are reconstructed
in one shot.

How is training performed? The main attraction of this architecture is that one can
perform the training either in row-wise fashion or in element-wise fashion. When performing
the training in row-wise fashion, the one-hot encoded index for that row is input, and all
specified entries of that row are used to compute the loss. The backpropagation algorithm is

OBSERVED RATINGS (SAYANI): E.T., SHREK OBSERVED RATINGS (BOB): E.T., NIXON, GANDHI, NERO

Figure 2.14: Dropping output nodes based on missing values. Output nodes are missing only
at training time. At prediction time, all output nodes are materialized. One can achieve
similar results with an RBM architecture as well (cf. Figure 6.5 of Chapter 6).

done only starting at output nodes where the values are specified. From a theoretical point
of view, each row is being trained on a slightly different neural network with a subset of
the base output nodes (depending on which entries are observed), although the weights for
the different neural networks are shared. This situation is shown in Figure 2.14, where the
neural networks for the movie ratings of two different users, Bob and Sayani, are shown. For
example, Bob is missing a rating for Shrek, as a result of which the corresponding output
node is missing. However, since both users have specified a rating for E.T., the k-dimensional
hidden factors for this movie in matrix V will be updated during backpropagation when
either Bob or Sayani is processed. This ability to train using only a subset of the output
nodes is sometimes used as an efficiency optimization to reduce training time even in cases
where all outputs are specified. Such situations occur often in binary recommendation data
sets (referred to as implicit feedback data sets), where the vast majority of outputs are
zeros. In such cases, only a subset of zeros is sampled for training in matrix factorization
methods [4]. This technique is referred to as negative sampling. A specific example is that
of neural models for natural language processing like word2vec.

It is also possible to perform the training in element-wise fashion, where a single triplet
is input. In such a case, the loss is computed only with respect to a single column index
specified in the triplet. Consider the case where the row index is i, and the column index is
j- In this specific case, and the single error computed at the output layer is y — § = e;;. the
backpropagation algorithm essentially updates the weights on all the k paths from node j
in the output layer to the node ¢ in the input layer. These k paths pass through the k£ nodes
in the hidden layer. It is easy to show that the update along the qth such path is as follows:

Uiqg <= Uiq(1 — X) + ae v

Vjqg < Ujq(1 — a) + cejjuig
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Here, « is the step-size, and A is the regularization parameter. These updates are identical to
those used in stochastic gradient descent for matriz factorization in recommender systems.
However, an important advantage of the use of the neural architecture (over traditional
matrix factorization) is that we can vary on it in so many different ways in order to enforce
different properties. For example, for matrices with binary data, we can use a logistic layer
in the output. This will result in logistic matriz factorization. We can incorporate multiple
hidden layers to create more powerful models. For matrices with categorical entries (and
count-centric weights attached to entries), one can use a softmax layer at the very end.
This will result in multinomial matrixz factorization. To date, we are not aware of a formal
description of multinomial matrix factorization in traditional machine learning; yet, it is a
simple modification of the neural architecture (implicitly) used by recommender systems.
In general, it is often easy to stumble upon sophisticated models when working with neural
architectures because of their modular structure. One does not need to relate the neural
architecture to a conventional machine learning model, as long as empirical results establish
its robustness. For example, two variations of the (highly successful) skip-gram model of
word2vec [325, 327] correspond to logistic and multinomial matrix factorizations of word-
context matrices; yet, this fact does not seem to be pointed® out by either by the original
authors of word2vec [325, 327] or the broader community. In conventional machine learning,
models like logistic matrix factorization are considered relatively esoteric techniques that
have only recently been proposed [224]; yet, these sophisticated models represent relatively
simple neural architectures. In general, the neural network abstraction brings practitioners
(without too much mathematical training) much closer to sophisticated methods in machine
learning, while being shielded from the details of optimization with the backpropagation
framework.

2.5.8 Discussion

The main goal of this section was to show the benefits of the modular nature of neural
networks in unsupervised learning. In our particular example, we started with a simple
simulation of SVD, and then showed how minor changes to the neural architecture can
achieve very different types of goals in intuitive settings. However, from an architectural
point of view, the amount of effort required by the analyst to change from one architecture
to the other is often a few lines of code. This is because modern softwares for building neural
networks often provide templates for describing the architecture of the neural network, where
each layer is specified independently. In a sense, the neural network is “built” with the well-
known types of machine-learning units much like a child puts together building blocks of a
toy. Backpropagation takes care of the details of optimization, while shielding the user from
the complexities of the steps. Consider the significant mathematical differences between the
specific details of SVD and logistic matrix factorization. Changing the output layer from
linear to sigmoid (along with a change of loss function) can literally be a matter of changing
a trivially small number of lines of code without affecting most of the remaining code (which
usually isn’t large anyway). This type of modularity is tremendously useful in application-
centric settings. Autoencoders are also related to another type of unsupervised learning
method, known as a Restricted Boltzmann Machines (RBM) (cf. Chapter 6). These methods
can also be used for recommender systems, as discussed in Section 6.5.2 of Chapter 6.

6The work in [287] does point out a number of implicit relationships with matrix factorization, but not
the more direct ones pointed out in this book. Some of these relationships are also pointed out in [6].
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2.6 Word2vec: An Application of Simple Neural Archi-
tectures

Neural network methods have been used to learn word embeddings of text data. In general,
one can create embeddings of both documents and words by using methods like SVD. In
SVD, an n x d matrix of document-word counts is created. This matrix is then factorized as
D =~ UV. Here, U and V are n X k and k x d matrices, respectively. The rows of U contain
embeddings of documents and the columns of V' contain embeddings of words. Note that
we have changed the notation slightly from the previous section (by using UV instead of
UVT for factorization), because it is more convenient for this section.

SVD is, however, a method that treats a document as a bag of words. Here, we are
interested in factorizations that use the sequential orderings among words to create embed-
dings. The focus here is to create word embeddings rather than document embeddings. The
family of word2vec methods is well suited to creating word embeddings. The two variants
of word2vec are as follows:

1. Predicting target words from contexrts: This model tries to predict the ¢th word, w;,
in a sentence using a window of width ¢ around the word. Therefore, the words
Wi g Wi—pp] - - - Wi—1Wig] - - - Wipp—1Wi4¢ are used to predict the target word w;. This
model is also referred to as the continuous bag-of-words (CBOW) model.

2. Predicting contexts from target words: This model tries to predict the context
Wi g Wi pp 1+« Wi 1 Wi 1 - -« Wipp—1Wip¢ around word w;, given the ith word in the
sentence, denoted by w;. This model is referred to as the skip-gram model. There are,
however, two ways in which one can perform this prediction. The first technique is a
multinomial model which predicts one word out of d outcomes. The second model is a
Bernoulli model, which predicts whether or not each context is present for a particular
word. The second model uses negative sampling of contexts for better efficiency and
accuracy.

Each of these methods will be discussed in this section.

2.6.1 Neural Embedding with Continuous Bag of Words

In the continuous bag-of-words (CBOW) model, the training pairs are all context-word pairs
in which a window of context words is input, and a single target word is predicted. The
context contains 2 -t words, corresponding to ¢t words both before and after the target word.
For notational ease, we will use the length m = 2 - ¢ to define the length of the context.
Therefore, the input to the system is a set of m words. Without loss of generality, let the
subscripts of these words be numbered so that they are denoted by w; ... w,,, and let the
target (output) word in the middle of the context window be denoted by w. Note that w
can be viewed as a categorical variable with d possible values, where d is the size of the
lexicon. The goal of the neural embedding is to compute the probability P(w|wiws . .. w:,)
and maximize the product of these probabilities over all training samples.

The overall architecture of this model is illustrated in Figure 2.15. In the architecture,
we have a single input layer with m x d nodes, a hidden layer with p nodes, and an output
layer with d nodes. The nodes in the input layer are clustered into m different groups, each
of which has d units. Each group with d input units is the one-hot encoded input vector
of one of the m context words being modeled by CBOW. Only one of these d inputs will
be 1 and the remaining inputs will be 0. Therefore, one can represent an input z;; with
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two indices corresponding to contextual position and word identifier. Specifically, the input
x;; € {0,1} contains two indices ¢ and j in the subscript, where ¢ € {1...m} is the position
of the context, and j € {1...d} is the identifier of the word.

The hidden layer contains p units, where p is the dimensionality of the hidden layer in
word2vec. Let hy, ha, ... hy, be the outputs of the hidden layer nodes. Note that each of the d
words in the lexicon has m different representatives in the input layer corresponding to the
m different context words, but the weight of each of these m connections is the same. Such
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Figure 2.15: Word2vec: The CBOW model. Note the similarities and differences with Fig-
ure 2.13, which uses a single set of inputs with a linear output layer. One could also choose
to collapse the m sets of d input nodes into a single set of d inputs, and aggregate the m
one-hot encoded inputs in a single context window to achieve the same effect. In such a
case, the input is no longer one-hot encoded.

weights are referred to as shared. Sharing weights is a common trick used for regularization
in neural networks, when one has specific insight about the domain at hand. Let the shared
weight of each connection from the jth word in the lexicon to the gth hidden layer node be
denoted by uj,. Note that each of the m groups in the input layer has connections to the
hidden layer that are defined by the same d x p weight matrix U. This situation is shown
in Figure 2.15.

It is noteworthy that u; = (uj1,uj2,...u;p) can be viewed as the p-dimensional em-
bedding of the jth input word over the entire corpus, and h = (hi...hp) provides the
embedding of a specific instantiation of an input context. Then, the output of the hidden

layer is obtained by averaging the embeddings of the words present in the context. In other
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words, we have the following:

m d

hg = Z UjqLij Vge{l...p} (2.46)
1

i=1 | j=

Many expositions use an additional factor of m in the denominator on the right-hand side,
although this type of multiplicative scaling (with a constant) is inconsequential. One can
also write this relationship in vector form:

m d
i=1 j=1

In essence, the one-hot encodings of the input words are aggregated, which implies that
the ordering of the words within the window of size m does not affect the output of the
model. This is the reason that the model is referred to as the continuous bag-of-words
model. However, sequential information is still used by virtue of restricting the prediction
to a context window.

The embedding (h; ... hy,) is used to predict the probability that the target word is one
of each of the d outputs with the use of the softmax function. The weights in the output
layer are parameterized with a p x d matrix V = [vg;]. The jth column of V is denoted
by v;. The output after applying softmax creates d output values g .. .34, which are real
values in (0,1). These real values sum to 1 because they can be interpreted as probabilities.
The ground-truth value of only one of the outputs y; ...yq is 1 and the remaining values
are 0 for a given training instance. One can write this condition as follows:

(2.48)

1 if the target word w is the jth word
Yj = .
0 otherwise

The softmax function computes the probability P(w|w; ... w,,) of the one-hot encoded
ground-truth outputs y; as follows:

_ eXP(25=1 hqvgs)
T d
> k=t eXP(Z§:1 hqvqr)

Note that this probabilistic form of the prediction is based on the softmax layer (cf. Sec-
tion 1.2.1.4 of Chapter 1). For a particular target word w = r € {1...d}, the loss function
is given by L = —log[P(y, = l|w; ... wy,)] = —log(§,). The use of the negative logarithm
turns the multiplicative likelihoods over different training instances into an additive loss
function using log-likelihoods.

The updates are defined by using the backpropagation algorithm, as training instances
are passed through the neural network one by one. First, the derivative of the aforementioned
loss function can be used to update the gradients of the weight matrix V' in the output layer.
Then, backpropagation can be used to update the weight matrix U between the input and
hidden layer. The update equations with learning rate « are as follows:

oL

U < T — Vi
U U aaﬂi 7
oL
J J an

One can compute the partial derivatives of this expression easily [325, 327, 404].
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The probability of making a mistake in prediction on the jth word in the lexicon is
defined by |y; — 9;|. However, we use signed mistakes ¢;, in which only the correct word
with y; = 1is given a positive mistake value, while all the other words in the lexicon receive
negative mistake values. This is achieved by dropping the modulus:

€ = yj — ’gj (250)

Note that €; can also be shown to be equal to the negative of the derivative of the cross-
entropy loss with respect to jth input into the softmax layer (which is & - U;). This result is
shown in Section 3.2.5.1 of the next chapter and is useful in deriving the backpropagation
updates. Then, the updates’ for a particular input context and output word are as follows:

d
U <= +a Z €;U; [V words ¢ present in context window]
j=1
U; < U; +ae;h [V in lexicon]

Here, @ > 0 is the learning rate. Repetitions of the same word 7 in the context window trigger
multiple updates of ;. It is noteworthy that the input embeddings of the context words
are aggregated in both updates, considering the fact that h aggregates input embeddings
according to Equation 2.47. This type of aggregation has a smoothing effect on the CBOW
model, which is particularly helpful with smaller data sets.

The training examples of context-target pairs are presented one by one, and the weights
are trained to convergence. It is noteworthy that the word2vec model provides not one but
two different embeddings corresponding to the p-dimensional rows of the matrix U and the
p-dimensional columns of the matrix V. The former type of embedding of words is referred
to as the input embedding, whereas the latter is referred to as the output embedding. In the
CBOW model, the input embedding represents context, and therefore it makes sense to use
the output embedding. However, the input embedding (or the sum/concatenation of input
and output embeddings) can also be helpful for many tasks.

2.6.2 Neural Embedding with Skip-Gram Model

In the skip-gram model, the target words are used to predict the m context words. There-
fore, we have one input word and m outputs. One issue with the CBOW model is that the
averaging effect of the input words in the context window (which creates the hidden repre-
sentation) has a (helpful) smoothing effect with less data, but fails to take full advantage
of a larger amount of data. The skip-gram model is the technique of choice when a large
amount of data is available.

The skip-gram model uses a single target word w as the input and outputs the m context
words denoted by wj ... w,,. Therefore, the goal is to estimate P(wq,ws. ... w;,|w), which
is different from the quantity P(w|w; ...w,,) estimated in the CBOW model. As in the
case of the continuous bag-of-words model, we can use one-hot encoding of the (categorical)
input and outputs in the skip-gram model. After such an encoding, the skip-gram model
will have d binary inputs denoted by xi...xz4 corresponding to the d possible values of
the single input word. Similarly, the output of each training instance is encoded as m x d
values y;; € {0,1}, where ¢ ranges from 1 to m (size of context window), and j ranges

"There is a slight abuse of notation in the updates adding %; and v;. This is because u; is a row vector
and 7; is a column vector. Throughout this section, we omit the explicit transposition of one of these two
vectors to avoid notational clutter, since the updates are intuitively clear.
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from 1 to d (lexicon size). Each y;; € {0,1} indicates whether the ith contextual word
takes on the jth possible value for that training instance. However, the (7, j)th output node
only computes a soft probability value g;; = P(y;; = 1|w). Therefore, the probabilities g;;
in the output layer for fixed ¢ and varying j sum to 1, since the ith contextual position
takes on exactly one of the d words. The hidden layer contains p units, the outputs are
denoted by h; ... h,. Each input x; is connected to all the hidden nodes with a d x p matrix
U. Furthermore, the p hidden nodes are connected to each of the m groups of d output
nodes with the same set of shared weights. This set of shared weights between the p hidden
nodes and the d output nodes of each of the context words is defined by the p x d matrix
V. Note that the input-output structure of the skip-gram model is an inverted version of
the input-output structure of the CBOW model. The neural architecture of the skip-gram
model is illustrated in Figure 2.16(a). However, in the case of the skip-gram model, one can
collapse the m identical outputs into a single output, and achieve the same results simply
by using a particular type of mini-batching during stochastic gradient descent. In particular,
all elements of a single context window are always forced to belong to the same mini-batch.
This architecture is shown in Figure 2.16(b). Since the value of m is small, this specific type
of mini-batching has a very limited effect, and the simplified architecture of Figure 2.16(b)
is sufficient to describe the model whether or not any specific type of mini-batching is used.
For the purpose of further discussion, we will use the architecture of Figure 2.16(a).

The output of the hidden layer can be computed from the input layer using the d x p
matrix of weights U = [u;,] between the input and hidden layer as follows:

d
hg =Y ujer; Vg€ {l...p} (2.51)
j=1

The above equation has a simple interpretation because of the one-hot encoding of the input
word w in terms of x; ...z4. If the input word w is the rth word, then one simply copies
Urq to the gth node of the hidden layer for each ¢ € {1...p}. In other words, the rth row
u, of U is copied to the hidden layer. As discussed above, the hidden layer is connected to
m groups of d output nodes, each of which is connected to the hidden layer with a p x d
matrix V' = [vy;]. Each of these m groups of d output nodes computes the probabilities of
the various words for a particular context word. The jth column of V' is denoted by v; and
represents the output embedding of the jth word. The output §;; is the probability that the
word in the ith context position takes on the jth word of the lexicon. However, since the
same matrix V is shared by all groups, the neural network predicts the same multinomial
distribution for each of the context words. Therefore, we have the following:

eXp(ZS:1 hqvq;)
Sy exp(Sh_ hgvg)

Independent of context position

9ij = P(yi; = lw) = Vie{l...m} (2.52)

Note that the probability g;; is the same for varying 4 and fixed j, since the right-hand side
of the above equation does not depend on the exact location i in the context window.

The loss function for the backpropagation algorithm is the negative of the log-likelihood
values of the ground truth y;; € {0,1} of a training instance. This loss function L is given
by the following:

m d

L==Y" yilog(@;) (2.53)

i=1 j=1
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Figure 2.16: Word2vec: The skip-gram model. Note the similarity with Figure 2.13, which
uses a single set of linear outputs. One could also choose to collapse the m sets of d output
nodes in (a) into a single set of d outputs, and mini-batch the m instances in a single
context window during stochastic gradient descent to achieve the same effect. All elements
in the mini-batch are explicitly shown in (a), whereas the elements of the mini-batch are not
explicitly shown in (b). However, both are equivalent as long as the nature of mini-batching
is respected.



2.6. WORD2VEC: AN APPLICATION OF SIMPLE NEURAL ARCHITECTURES 93

Note that the value outside the logarithm is a ground-truth binary value, whereas the value
inside the logarithm is a predicted (probability) value. Since y;; is one-hot encoded for fixed i
and varying j, the objective function has only m non-zero terms. For each training instance,
this loss function is used in combination with backpropagation to update the weights of the
connections between the nodes. The update equations with learning rate « are as follows:

OL

U < T — Vi
U U a%i 7
oL
J J 811]'

We state the details of the updates below after introducing some additional notations.
The probability of making a mistake in predicting the jth word in the lexicon for the
ith context is defined by |yi;; — 9i;|. However, we use signed mistakes €;; in which only
the predicted words (positive examples) have a positive probability. This is achieved by
dropping the modulus:
€ij = Yij — ij (2.54)

Then, the updates for a particular input word r and its output context are as follows:
d m
Uy <= Uy + o Z [Z eij] v [Only for input word r]
j=1 Li=1

V; =Vt

Z eij] h [For all words j in lexicon]

i=1

Here, a > 0 is the learning rate. The p-dimensional rows of the matrix U are used as the
embeddings of the words. In other words, the convention is to use the input embeddings in
the rows of U rather than the output embeddings in the columns of V. It is stated in [288]
that adding the input and output embeddings can help in some tasks (but hurt in others).
The concatenation of the two can also be useful.

Practical Issues

Several practical issues are associated with the accuracy and efficiency of the word2vec
framework. The embedding dimensionality, defined by the number of nodes in the hidden
layer, provides the trade-off between bias and variance. Increasing the embedding dimen-
sionality improves discrimination, but it requires a greater amount of data. In general, the
typical embedding dimensionality is of the order of several hundred, although it is possi-
ble to choose dimensionalities in the thousands for very large collections. The size of the
context window typically varies between 5 and 10, with larger window sizes being used for
the skip-gram model as compared to the CBOW model. Using a random window size is a
variant that has the implicit effect of giving greater weight to words that are placed close
together. The skip-gram model is slower but it works better for infrequent words and for
larger data sets.

Another issue is that the effect of frequent and less discriminative words (e.g., “the”)
can dominate the results. Therefore, a common approach is to downsample the frequent
words, which improves both accuracy and efficiency. Note that downsampling frequent words
has the implicit effect of increasing the context window size because dropping a word in
the middle of two words brings the latter pair closer. The words that are very rare are
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misspellings, and it is hard to create a meaningful embedding for them without overfitting.
Therefore, such words are ignored.

From a computational point of view, the updates of output embeddings are expensive.
This is caused by applying the softmax over a lexicon of d words, which requires an update
of each 7;. Therefore, the softmax function is implemented hierarchically with Huffman
encoding for better efficiency. We refer the reader to [325, 327, 404] for details.

Skip-Gram with Negative Sampling

An efficient alternative to the hierarchical softmax technique is a method known as skip-
gram with negative sampling (SGNS) [327], in which both presence or absence of word-
context pairs are used for training. As the name implies, the negative contexts are artificially
generated by sampling words in proportion to their frequencies in the corpus (i.e., unigram
distribution). This approach optimizes a different objective function from the skip-gram
model, which is related to ideas from noise contrastive estimation [166, 333, 334].

The basic idea is that instead of directly predicting each of the m words in the context
window, we try to predict whether or not each of the d words in the lexicon is present in
the window. In other words, the final layer of Figure 2.16 is not a softmax prediction, but
a Bernoulli layer of sigmoids. The output unit for each word at each context position in
Figure 2.16 is a sigmoid providing a probability value that the position takes on that word.
As the ground-truth values are also available, it is possible to use the logistic loss function
over all the words. Therefore, in this point of view, even the prediction problem is defined
differently. Of course, it is computationally inefficient to try to make binary predictions
for all d words. Therefore, the SGNS approach uses all the positive words in a context
window and a sample of negative words. The number of negative samples is k times the
number of positive samples. Here, k is a parameter controlling the sampling rate. Negative
sampling becomes essential in this modified prediction problem to avoid learning trivial
weights that predict all examples to 1. In other words, we cannot choose to avoid negative
samples entirely (i.e., we cannot set k = 0).

How does one generate the negative samples? The vanilla unigram distribution samples
words in proportion to their relative frequencies f; ... f4 in the corpus. Better results are
obtained [327] by sampling words in proportion to f;’ /% rather than f;. As in all word2vec
models, let U be a d x p matrix representing the input embedding, and V' be a p x d matrix
representing the output embedding. Let @; be the p-dimensional row of U (input embedding
of ith word) and U; be the p-dimensional column of V' (output embedding of jth word).
Let P be the set of positive target-context word pairs in a context window, and A be the
set of negative target-context word pairs which are created by sampling. Therefore, the size
of P is equal to the context window m, and that of N is m - k. Then, the (minimization)
objective function for each context window is obtained by summing up the logistic loss over
the m positive samples and m - k negative samples:

O== > log(PlPredict (i,5) to 1) = > log(P[Predict (i) to 0))  (255)
(LDEP (1.d)EN
= - Z log< L _ ) — Z log (1) (2.56)
(irj)EP Ltexp(—u;-75) ) 52y 1+ exp(u; - v;)

This modified objective function is used in the skip-gram with negative sampling (SGNS)
model in order to update the weights of U and V. SGNS is mathematically different from
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the basic skip-gram model discussed earlier. SGNS is not only efficient, but it also provides
the best results among the different variants of skip-gram models.

What Is the Actual Neural Architecture of SGNS?

Even though the original word2vec paper seems to treat SGNS as an efficiency optimization
of the skip-gram model, it is using a fundamentally different architecture in terms of the
activation function used in the final layer. Unfortunately, the original word2vec paper does
not explicitly point this out (and only provides the changed objective function), which
causes confusion.

The modified neural architecture of SGNS is as follows. The softmax layer is no longer
used in the SGNS implementation. Rather, each observed value y;; in Figure 2.16 is inde-
pendently treated as a binary outcome, rather than as a multinomial outcome in which the
probabilistic predictions of different outcomes at a contextual position depend on one an-
other. Instead of using softmax to create the prediction ¢;;, it uses the sigmoid activation to
create probabilistic predictions §;;, whether each y;; is 0 or 1. Then, one can add up the log
loss of §;; with respect to observed y;; over all m-d possible values of (¢, j) to create the full
loss function of a context window. However, this is impractical because the number of zero
values of y;; is too large and zero values are noisy anyway. Therefore, SGNS uses negative
sampling to approximate this modified objective function. This means that for each context
window, we are backpropagating from only a subset of the m - d outputs in Figure 2.16. The
size of this subset is m + m - k. This is where efficiency is achieved. However, since the final
layer uses binary predictions (with sigmoids), it makes the SGNS architecture fundamen-
tally different from the vanilla skip-gram model even in terms of the basic neural network
it uses (i.e., logistic instead of softmax activation). The difference between the SGNS model
and the vanilla skip-gram model is analogous to the difference between the Bernoulli and
multinomial models in naive Bayes classification (with negative sampling applied only to
the Bernoulli model). Obviously, one cannot be considered a direct efficiency optimization
of the other.

2.6.3 Word2vec (SGNS) Is Logistic Matrix Factorization

Even though the work in [287] shows an implicit relationship between word2vec and matrix
factorization, we provide a more direct relationship here. The architectures of the skip-
gram models look suspiciously similar to those used in row index to value prediction in
recommender systems (cf. Section 2.5.7). The use of a backpropagation from a subset of
observed outputs is similar to the negative sampling idea, except that the dropping of
outputs in negative sampling is performed for the purpose of efficiency. However, unlike
the linear outputs of Figure 2.13 in Section 2.5.7, the SGNS model uses logistic outputs
to model binary predictions. The SGNS model of word2vec can be simulated with logistic
matrix factorization. To understand the similarity with the problem setting of Section 2.5.7,
one can understand the predictions of a particular word-context window using the following
triplets:

(WordId), (Context WordId), (0/1)

Each context window produces m - d such triplets, although negative sampling only uses
m - k +m of them, and mini-batches them during training. This mini-batching is another
source of the difference between the architectures between Figures 2.13 and 2.16, wherein
the latter has m different groups of outputs to accommodate m positive samples. However,
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these differences are relatively superficial, and one can still use logistic matrix factorization
to represent the underlying model.

Let B = [b;;] be a binary matrix in which the (¢, j)th value is 1 if word j occurs at
least once in the context of word ¢ in the data set, and 0 otherwise. The weight c;; for any
word (4, ) that occurs in the corpus is defined by the number of times word j occurs in
the context of word i. The weights of the zero entries in B are defined as follows. For each
row ¢ in B we sample k) y b;; different entries from row 4, among the entries for which

bi; = 0, and the frequency with which the jth word is sampled is proportional to f;’/ 4

These are the negative samples, and one sets the weights ¢;; for the negative samples (i.e.,
those for which b;; = 0) to the number of times that each entry is sampled. As in word2vec,
the p-dimensional embeddings of the ith word and jth context are denoted by wu; and vy,
respectively. The simplest way of factorizing is to use weighted matrix factorization of B
with the Frobenius norm:

Minimize UV Z Cij (b” —Uu; - Ej)2 (257)
]
Even though the matrix B is of size O(d?), this matrix factorization only has a limited
number of nonzero terms in the objective function, which have ¢;; > 0. These weights
are dependent on co-occurrence counts, but some zero entries also have positive weight.
Therefore, the stochastic gradient-descent steps only have to focus on entries with ¢;; > 0.
Each cycle of stochastic gradient-descent is linear in the number of non-zero entries, as in
the SGNS implementation of word2vec.
However, this objective function also looks somewhat different from word2vec, which has
a logistic form. Just as it is advisable to replace linear regression with logistic regression in
supervised learning of binary targets, one can use the same trick in matrix factorization of
binary matrices [224]. We can change the squared error term to the familiar likelihood term
L;;, which is used in logistic regression:

1
Lij=by - — 2.58
J 1 —l—exp(@- 'Ej) ( )

The value of L;; always lies in the range (0, 1), and higher values indicate greater likelihood
(which results in a maximization objective). The modulus in the above expression flips the
sign only for the negative samples in which b;; = 0. Now, one can optimize the following
objective function in minimization form:

Minimizeyy J = — Z cijlog(Lij) (2.59)
i,j
The main difference from the objective function (cf. Equation 2.56) of word2vec is that
this is a global objective function over all matrix entries, rather than a local objective
function over a particular context window. Using mini-batch stochastic gradient-descent in
matrix factorization (with an appropriately chosen mini-batch) makes the approach almost
identical to word2vec’s backpropagation updates.

How can one interpret this type of factorization? Instead of B ~ UV, we have B ~
f(UV), where f(-) is the sigmoid function. More precisely, this is a probabilistic factorization
in which one computes the product of matrices U and V, and then applies the sigmoid
function to obtain the parameters of the Bernoulli distribution from which B is generated:

1

P(bj; =1) =
(biy =1) 1 + exp(—; - U;)

[Matrix factorization analog of logistic regression]
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It is also easy to verify from Equation 2.58 that L;; is P(b;; = 1) for positive samples
and P(b;; = 0) for negative samples. Therefore, the objective function of the factorization
is in the form of log-likelihood maximization. This type of logistic matrix factorization is
commonly used [224] in recommender systems with binary data (e.g., user click-streams).

Gradient Descent

It is also helpful to examine the gradient-descent steps of the factorization. One can compute
the derivative of J with respect to the input and output embeddings:

oJ o Cijﬁj Cijﬂj
ou; Z 1+eXp(ﬂi-Uj)+ Z

jibij=1 j:bij=0 1+ eXp(_ﬂi ' Ej)

Gibij=1 §ibi; =0
Positive Mistakes Negative Mistakes
oJ CijUs CijUs
ov; _Mg:_l 1+ exp(t; - 7;) + Zgo 1+ exp(—; - ;)
== > cjPbi; =00+ Y ci;P(bij = 1)U
itby ;=1 i:b;=0
Positive Mistakes Negative Mistakes

The optimization procedure uses gradient descent to convergence:

aJ
U <=u; —a— Vi
8ui
@-¢i-—ay Vj
J J 65]‘

It is noteworthy that the derivatives can be expressed in terms of the probabilities of making
mistakes in predicting b;;. This is common in gradient descent with log-likelihood optimiza-
tion. It is also noteworthy that the derivative of the SGNS objective in Equation 2.56 yields
a similar form of the gradient. The only difference is that the derivative of the SGNS ob-
jective is expressed over a smaller batch of instances, defined by a context window. We can
also solve the probabilistic matrix factorization with mini-batch stochastic gradient descent.
With an appropriate choice of the mini-batch, the stochastic gradient descent of matrix fac-
torization becomes identical to the backpropagation update of SGNS. The only difference
is that SGNS samples negative entries for each set of updates on the fly, whereas matrix
factorization fixes the negative samples up front. Of course, on-the-fly sampling can also be
used with matrix factorization updates. The similarity of SGNS to matrix factorization can
also be inferred by observing that the architecture of Figure 2.16(b) is almost identical to the
matrix factorization architecture for recommender systems in Figure 2.13. As in the case of
recommender systems, SGNS has missing (negative) entries. This is caused by the fact the
negative sampling uses only a subset of the zero values. The only difference between the two
cases is that the architecture of SGNS caps the output layer with sigmoid units, whereas a
linear layer is used for recommender systems. However, recommender systems with implicit
feedback use logistic matriz factorization [224], which is similar to the word2vec setting.
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2.6.4 Vanilla Skip-Gram Is Multinomial Matrix Factorization

Since we have already shown that the SGNS enhancement of the skip-gram model is logistic
matrix factorization, a natural question arises as to whether we can also recast the original
skip-gram model as a matrix factorization method. It turns out that one can also recast the
vanilla skip-gram model as a multinomial matriz factorization model because of the use of
the softmax layer at the very end.

Let C' = [¢;5] be a d x d word-context co-occurrence matrix in which the value of ¢;; is
the number of times that word j occurs in the context of word i. Let U be a d x p matrix
containing the input embedding in its rows, and V be a p X d matrix containing the output
embedding in its columns. Then, the skip-gram model roughly creates a model in which the
frequency vector of the rth row of C' is an empirical instantiation of the probabilities obtained
by applying the softmaz to the rth row of UV.

Let w; be the p-dimensional vector corresponding to the ith row of U and v; be the
p-dimensional vector corresponding to the jth column of V. The loss function of the afore-
mentioned factorization is as follows:

0= ,iic,,log ( exp(ﬂi ’FJ‘) ) (2 60)
ij d .

i=1j=1 Zq:l exp(; - Uq)

p(word jjword i)

This loss function is written in minimization form. Note that this loss function is identical
to the one used in the vanilla skip-gram model, except that the latter uses a mini-batch
stochastic gradient descent in which the m words in a given context are grouped together.
This type of specific mini-batch does not make a significant difference.

2.7 Simple Neural Architectures for Graph Embed-
dings

Large networks have become very common because of their ubiquity in many social- and
Web-centric applications. Graphs are structural entries containing nodes and edges connect-
ing them. For example, in a social network, each person is a node, and a friendship link
between two people is an edge. In this particular exposition, we consider the case of very
large networks like the Web, a social network, or a communication network. The goal is to
embed the nodes into feature vectors, so that the graph captures the relationships between
nodes. For simplicity we consider undirected graphs, although directed graphs with weights
on the edges can be easily handled with very few changes to the exposition below.

Consider an n x n adjacency matrix B = [b;;] for a graph with n nodes. The entry b;; is 1
if an undirected edge exists between nodes ¢ and j. Furthermore, the matrix B is symmetric,
because we have b;; = bj;; for an undirected graph. In order to determine the embedding, we
would like to determine two n x p factor matrices U and V, so that B can be derived as a
function of UV, In the simplest case, one can set B to exactly UV, which is no different
than a traditional matrix factorization method for factoring graphs [4]. However, for binary
matrices, one can do better and use logistic matrix factorization instead. In other words,
each entry of B is generated using the matrix of Bernoulli parameters in f(UVT), where
f(-) is the element-wise application of the sigmoid function to each entry of the matrix in
its argument: .

flz) = T+ exp(—2) (2.61)



2.7. SIMPLE NEURAL ARCHITECTURES FOR GRAPH EMBEDDINGS 99

BASE GRAPH NEURAL NETWORK FOR LEARNING NODE FEATURES

NODE INDEX NEIGHBOR INDICATOR

ONE-HOT ENCODED INPUT SIGMOID ACTIVATION

Figure 2.17: A graph of five nodes is shown together with a neural architecture for row
index to neighbor indicator mapping. The shown input and output represent node 3 and
its neighbors. Note the similarity to Figure 2.13. The main difference is that there are no
missing values above, and the number of inputs is the same as the number of outputs for
a square matrix. Both input and outputs are binary vectors. However, if negative sampling
is used with sigmoid activation, most output nodes with zero values may be dropped.

Therefore, if w; is the ith row of U and v, is the jth row of V', we have the following:
b;; ~ Bernoulli distribution with parameter f(@; - 7;) (2.62)

This type of generative model is typically solved using a log-likelihood model. Furthermore,
the problem formulation is identical to the logistic matriz factorization equivalent of the
SGNS model in word2vec.

Note that all word2vec models are logistic/multinomial variants of the model in Fig-
ure 2.13 that maps row indexes to values with linear activation. In order to explain this
point, we show the neural architecture in Figure 2.17 for a toy graph containing 5 nodes.
The input is the one-hot encoded index of a row in B (i.e., node), and the output is the
list of all 0/1 values for all nodes in the network. In this particular case, we have shown
the input for node 3 and its corresponding output. Since the node 3 has three neighbors,
the output vector contains three 1s. Note that this architecture is not very different from
Figure 2.13 except that it uses a sigmoid activations at the output (rather than linear ac-
tivations). Furthermore, since the number of 0s is usually much greater® than the number
of 1s in the output, it is possible to drop many of the Os with the use of negative sampling.
This type of negative sampling will create a situation similar to that of Figure 2.14. With
this neural architecture, the gradient-descent steps will be identical to the SGNS model of
word2vec. The main difference is that a node appears at most once as a neighbor of an-
other node, whereas a word might appear more than once in the context of another word.
Allowing arbitrary counts on the edges takes away this distinction.

8This fact is not evident in the toy example of Figure 2.17. In practice, the degree of a node is a tiny
fraction of the total number of nodes. For example, a person might have 100 friends in a social network of
millions of nodes.
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2.7.1 Handling Arbitrary Edge Counts

The aforementioned discussion assumes that the weight of each edge is binary. Consider
a setting in which an arbitrary count ¢;; is associated with the edge (4, 7). In such cases,
both positive and negative sampling are required. The first step is to sample an edge (4, 5)
from the network with probability proportional to c;;. The input is, therefore, a one-hot
encoded vector of the node at one end point (say, i) of this edge. The output is the one-
hot encoding of node j. By default, both the input and output are n-dimensional vectors.
However, if negative sampling is used, then one can reduce the output vector to a (k + 1)-
dimensional vector. Here, k < n is a parameter that defines the sampling rate. A total of
k negative nodes are sampled with probabilities proportional to their (weighted) degrees®
and the outputs of these nodes are 0s. One can compute the log-likelihood loss by treating
each output as the outcome of a Bernoulli trial, where the parameter of the Bernoulli trial
is the output of the sigmoid activation function. The gradient descent is performed with
respect to this loss. This variant is an almost exact simulation of the SGNS variant of the
wordZ2vec model.

2.7.2 Multinomial Model

The vanilla skip-gram model of word2vec is a multinomial model. It is also possible to use
a multinomial model to create the embedding. The only difference is that the final layer of
the neural network in Figure 2.17 needs to use softmax activation (instead of the sigmoid
activation function). Furthermore, negative sampling is not used in the multinomial model,
and both input and output layers contain exactly n nodes. As in the SGNS model, a single
edge (i, j) is sampled with probability proportional to ¢;; to create each input-output pair.
The input is the one-hot encoding of ¢ and the output is the one-hot encoding of j. One
can also use mini-batch sampling of edges to improve performance. The stochastic gradient-
descent steps of this model are virtually similar to those used in the vanilla skip-gram model
of word2vec.

2.7.3 Connections with DeepWalk and Node2vec

The recently proposed Deep Walk [372] and node2vec models [164] belong to the family
of multinomial models discussed above (with specialized preprocessing steps). The main
difference is that the Deep Walk and node2vec models use depth-first or breadth-first walks
to (indirectly) generate c;;. Deep Walk is itself a precursor to (and special case of) node2vec
in terms of how the random walks are performed. In this case, c;; can be interpreted as the
number of times that node j appears in the neighborhood of node ¢ because it was included
in a breadth-first or depth-first walk starting at node i. One can view the value of ¢;; in
the walk-based models as providing a more robust measure of the affinity between nodes
1 and j, as compared to the raw weights in the original graph. Of course, there is nothing
sacrosanct about using a random walk to improve the robustness of ¢;;. The number of
choices is almost unlimited in terms of how to generate this type of affinity value. All link
prediction methods [295] generate such affinity values. For example, the Katz measure [295],
which is closely related to the number of random walks between a pair of nodes, is a robust
measure of the affinity between nodes 7 and j.

9The weighted degree of node j is 3, cj.
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2.8 Summary

This chapter discusses a number of neural models supervised and unsupervised learning.
One of the goals was to show that many of the traditional models used in machine learning
are instantiations of relatively simple neural models. Methods for binary/multiclass classifi-
cation and matrix factorization were discussed. In addition, the applications of the approach
to recommender systems and word embedding were introduced. When a traditional machine
learning technique like singular value decomposition is generalized to a neural representa-
tion, it is often inefficient compared to its counterpart in traditional machine learning.
However, the advantage of neural models is that they can usually be generalized to more
powerful nonlinear models. Furthermore, it is relatively easy to experiment with nonlinear
variants of traditional machine learning models with the use of neural networks. This chap-
ter also discusses several practical applications like recommender systems, text, and graph
embeddings.

2.9 Bibliographic Notes

The perceptron algorithm was proposed by Rosenblatt [405], and a detailed discussion may
be found in [405]. The Widrow-Hoff algorithm was proposed in [531] and is closely re-
lated to Tikhonov-Arsenin’s work [499]. The Fisher discriminant was proposed by Ronald
Fisher [120] in 1936, and is a specific case of the family of linear discriminant analysis meth-
ods [322]. Even though the Fisher discriminant uses an objective function that appears o to
be different from least-squares regression, it turns out to be a special case of least-squares
regression in which the binary response variable is used as the regressand [40]. A detailed
discussion of generalized linear models is provided in [320]. A variety of procedures such
as generalized iterative scaling, iteratively reweighted least-squares, and gradient descent for
multinomial logistic regression are discussed in [178]. The support-vector machine is gener-
ally credited to Cortes and Vapnik [82], although the primal method for Ls-loss SVMs was
proposed several years earlier by Hinton [190]! This approach repairs the loss function in
least-squares classification by keeping only one-half of the quadratic loss curve and setting
the remaining to zero, so that it looks like a smooth version of hinge loss (try this on Fig-
ure 2.4). The specific significance of this contribution was lost within the broader literature
on neural networks. Hinton’s work also does not focus on the importance of regularization in
SVMs, although the general notion of adding shrinkage to gradient-descent steps in neural
networks was well known. The hinge-loss SVM [82] is heavily presented from the perspective
of duality and the maximum-margin interpretation, making its relationship to regularized
least-squares classification somewhat opaque. The relationship of SVMs to least-squares
classification is more evident from other related works [400, 442], where it becomes evident
that quadratic and hinge-loss SVMs are natural variations of regularized Lo-loss (i.e., Fisher
discriminant) and L;-loss classification that use the binary class variables as the regression
responses [139]. The Weston-Watkins multiclass SVM was introduced in [529]. It was shown
in [401] that the one-against-all approach to generalizing multiple classes seems to be as
effective as the tightly integrated multiclass variants. Many hierarchical softmax methods
are discussed in [325, 327, 332, 344].

An excellent overview paper on methods for reducing the dimensionality of data with
neural networks is available in [198], although this work focuses on the use of a related
model known as the Restricted Boltzmann Machine (RBM). The earliest introduction of the
autoencoder (in a more general form) is given in the backpropagation paper [408]. This work
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discusses the problem of recoding between input and output patterns. Both classification
and autoencoders can be considered special cases of this architecture by using an appropriate
choice of input and output patterns. The paper on backpropagation [408] also discusses the
special case in which the recoding of the input is the identity mapping, which is exactly the
scenario of the autoencoder. More detailed discussions of the autoencoder during its early
years were provided in [48, 275]. A discussion of single-layer unsupervised learning may be
found in [77]. The standard method for regularizing an autoencoder is to use weight decay,
which corresponds to Lo-regularization. Sparse autoencoders are discussed in [67, 273, 274,
284, 354]. Another way of regularizing the autoencoder is to penalize the derivatives during
gradient descent. This ensures that the learned function does not change too much with
change in input. This method is referred to as the contractive autoencoder [397]. Variational
autoencoders can encode complex probabilistic distributions, and are discussed in [106,
242, 399]. The de-noising autoencoder is discussed in [506]. Many of these methods are
discussed in detail in Chapter 4. The use of autoencoders for outlier detection is explored
in [64, 181, 564], and a survey on the use in clustering is provided in [8].

The application of dimensionality reduction for recommender systems may be found
in [414], although this approach uses a restricted Boltzmann machine, which is different
from the matrix factorization method discussed in this chapter. An item-based autoencoder
is discussed in [436], and this approach is a neural generalization of item-based neighborhood
regression [253]. The main difference is that the regression weights are regularized with a
constricted hidden layer. Similar works with different types of item-to-item models with
the use of de-noising autoencoders are discussed in [472, 535]. A more direct generalization
of matrix factorization methods may be found in [186], although the approach in [186] is
slightly different from the simpler approach presented in this chapter. The incorporation of
content in building recommender systems for deep learning is discussed in [513]. A multiview
deep learning approach, which has also been extended to temporal recommender systems in
a later work [465], is proposed in [110]. A survey of deep learning methods for recommenders
may be found in [560].

The word2vec model is proposed in [325, 327], and a detailed exposition may be found
in [404]. The basic idea has been extended to sentence- and paragraph-level embeddings,
with a model, which is referred to as doc2vec [272]. An alternative of word2vec that uses
a different type of matrix factorization is GloVe [371]. Multi-lingual word embeddings are
presented in [9]. The extension of word2vec to graphs with node-level embeddings is provided
in the Deep Walk [372] and node2vec [164] models. Various types of network embeddings are
discussed in [62, 512, 547, 548].

2.9.1 Software Resources

Machine learning models like linear regression, SVMs, and logistic regression are available
from scikit-learn [587]. The DISSECT (Distributional Semantics Composition Toolkit) [588]
is a toolkit that uses word co-occurrence counts in order to create embeddings. The GloVe
method is available from Stanford NLP [589] and the gensim library [394]. The word2vec
tool is available under the Apache license [591], and as a TensorFlow version [592]. The
gensim library has Python implementations of word2vec and doc2vec [394]. Java versions
of doc2vec, word2vec, and GloVe may be found in the DeepLearning4j repository [590].
In several cases, one can simply download pre-trained versions of the representations (on a
large corpus that is considered generally representative of text) and use them directly, as a
convenient alternative to training for the specific corpus at hand. The node2vec software is
available from the original author at [593].
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2.10 Exercises

1.

10.

Consider the following loss function for training pair (X, y):
L = max{0,a —y(W - X)}

The test instances are predicted as § = sign{W - X}. A value of a = 0 corresponds
to the perceptron criterion and a value of a = 1 corresponds to the SVM. Show that
any value of a > 0 leads to the SVM with an unchanged optimal solution when no
regularization is used. What happens when regularization is used?

. Based on Exercise 1, formulate a generalized objective for the Weston-Watkins SVM.

. Consider the unregularized perceptron update for binary classes with learning rate

a. Show that using any value of « is inconsequential in the sense that it only scales
up the weight vector by a factor of . Show that these results also hold true for the
multiclass case. Do the results hold true when regularization is used?

. Show that if the Weston-Watkins SVM is applied to a data set with k = 2 classes, the

resulting updates are equivalent to the binary SVM updates discussed in this chapter.

. Show that if multinomial logistic regression is applied to a data set with k = 2 classes,

the resulting updates are equivalent to logistic regression updates.

. Implement the softmax classifier using a deep-learning library of your choice.

In linear-regression-based neighborhood models, the rating of an item is predicted
as a weighted combination of the ratings of other items of the same user, where the
item-specific weights are learned with linear regression. Show how you can construct
an autoencoder architecture to create this type of model. Discuss the relationship of
this architecture with the matrix factorization architecture.

. Logistic matrix factorization: Consider an autoencoder which has an input layer,

a single hidden layer containing the reduced representation, and an output layer with
sigmoid units. The hidden layer has linear activation:

(a) Set up a negative log-likelihood loss function for the case when the input data
matrix is known to contain binary values from {0, 1}.

(b) Set up a negative log-likelihood loss function for the case when the input data
matrix contains real values from [0, 1].

. Non-negative matrix factorization with autoencoders: Let D be an n x d

data matrix with non-negative entries. Show how you can approximately factorize
D ~ UVT into two non-negative matrices U and V, respectively, by using an autoen-
coder architecture with d inputs and outputs. [Hint: Choose an appropriate activation
function in the hidden layer, and modify the gradient-descent updates.]

Probabilistic latent semantic analysis: Refer to [99, 206] for a definition of proba-
bilistic latent semantic analysis. Propose a modification of the approach in Exercise 9
for probabilistic latent semantic analysis. [Hint: What is the relationship between
non-negative matrix factorization and probabilistic latent semantic analysis?]
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12.

13.

14.
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Simulating a model combination ensemble: In machine learning, a model com-
bination ensemble averages the scores of multiple models in order to create a more
robust classification score. Discuss how you can approximate the averaging of an Ada-
line and logistic regression with a two-layer neural network. Discuss the similarities
and differences of this architecture with an actual model combination ensemble when
backpropagation is used to train it. Show how to modify the training process so that
the final result is a fine-tuning of the model combination ensemble.

Simulating a stacking ensemble: In machine learning, a stacking ensemble creates
a higher-level classification model on top of features learned from first-level classifiers.
Discuss how you can modify the architecture of Exercise 11, so that the first level of
classifiers correspond to an Adaline and a logistic regression classifier and the higher-
level classifier corresponds to a support vector machine. Discuss the similarities and
differences of this architecture with an actual stacking ensemble when backpropagation
is used to train it. Show how you can modify the training process of the neural network
so that the final result is a fine-tuning of the stacking ensemble.

Show that the stochastic gradient-descent updates of the perceptron, Widrow-Hoff
learning, SVM, and logistic regression are all of the form W <« W(l — a)) +
ay[d(X,y)]X. Here, the mistake function §(X,y) is 1 — y(W - X) for least-squares
classification, an indicator variable for perceptron/SVMs, and a probability value for
logistic regression. Assume that « is the learning rate, and y € {—1,+1}. Write the
specific forms of 6(X,y) in each case.

The linear autoencoder discussed in the chapter is applied to each d-dimensional row
of the n x d data set D to create a k-dimensional representation. The encoder weights
contain the k x d weight matrix W and the decoder weights contain the d x k weight
matrix V. Therefore, the reconstructed representation is DWTVT, and the aggregate
loss value ||[DWTVT — DJ|? is minimized over the entire training data set.

(a) For a fixed value of V, show that the optimal matrix W must satisfy
DTDWTVTV — V) =0.

(b) Use (a) to show that if the n x d matrix D has rank d, we have WT VTV = V.

Use (b) to show that W = (VTV)=1VT. Assume that VTV is invertible.

(d) Repeat exercise parts (a), (b), and (c), when the encoder-decoder weights are
tied as W = VT. Show that the columns of V' must be orthonormal.

—
o
~



Chapter 3 @

updates

Training Deep Neural Networks

“I hated every minute of training, but I said, ‘Don’t quit. Suffer now and live
the rest of your life as a champion.”—Muhammad Ali

3.1 Introduction

The procedure for training neural networks with backpropagation is briefly introduced in
Chapter 1. This chapter will expand on the description on Chapter 1 in several ways:

1. The backpropagation algorithm is presented in greater detail together with imple-
mentation details. Some details from Chapter 1 are repeated for completeness of the
presentation, and so that readers do not have to frequently refer back to the earlier
text.

2. Important issues related to feature preprocessing and initialization will be studied in
the chapter.

3. The computational procedures that are paired with gradient descent will be intro-
duced. The effect of network depth on training stability will be studied, and methods
will be presented for addressing these issues.

4. The efficiency issues associated with training will be discussed. Methods for compress-
ing trained models of neural networks will be presented. Such methods are useful for
deploying pretrained networks on mobile devices.
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In the early years, methods for training multilayer networks were not known. In their
influential book, Minsky and Papert [330] strongly argued against the prospects of neural
networks because of the inability to train multilayer networks. Therefore, neural networks
stayed out of favor as a general area of research till the eighties. The first significant break-
through in this respect was proposed! by Rumelhart et al. [408, 409] in the form of the
backpropagation algorithm. The proposal of this algorithm rekindled an interest in neural
networks. However, several computational, stability, and overfitting challenges were found
in the use of this algorithm. As a result, research in the field of neural networks again fell
from favor.

At the turn of the century, several advances again brought popularity to neural networks.
Not all of these advances were algorithm-centric. For example, increased data availability
and computational power have played the primary role in this resurrection. However, some
changes to the basic backpropagation algorithm and clever methods for initialization, such
as pretraining, have also helped. It has also become easier in recent years to perform the
intensive experimentation required for making algorithmic adjustments due to the reduced
testing cycle times (caused by improved computational hardware). Therefore, increased
data, computational power, and reduced experimentation time (for algorithmic tweaking)
went hand-in-hand. These so-called “tweaks” are, nevertheless, very important; this chapter
and the next will discuss most of these important algorithmic advancements.

One key point is that the backpropagation algorithm is rather unstable to minor changes
in the algorithmic setting, such as the initialization point used by the approach. This in-
stability is particularly significant when one is working with very deep networks. A point
to note is that neural network optimization is a multivariable optimization problem. These
variables correspond to the weights of the connections in various layers. Multivariable opti-
mization problems often face stability challenges because one must perform the steps along
each direction in the “right” proportion. This turns out to be particularly hard in the neural
network domain, and the effect of a gradient-descent step might be somewhat unpredictable.
One issue is that a gradient only provides a rate of change over an infinitesimal horizon
in each direction, whereas an actual step has a finite length. One needs to choose steps of
reasonable size in order to make any real progress in optimization. The problem is that the
gradients do change over a step of finite length, and in some cases they change drastically.
The complex optimization surfaces presented by neural network optimization are particu-
larly treacherous in this respect, and the problem is exacerbated with poorly chosen settings
(such as the initialization point or the normalization of the input features). As a result, the
(easily computable) steepest-descent direction is often not the best direction to use for re-
taining the ability to use large steps. Small step sizes lead to slow progress, whereas the
optimization surface might change in unpredictable ways with the use of large step sizes. All
these issues make neural network optimization more difficult than would seem at first sight.
However, many of these problems can be avoided by carefully tailoring the gradient-descent
steps to be more robust to the nature of the optimization surface. This chapter will discuss
algorithms that leverage some of this understanding.

L Although the backpropagation algorithm was popularized by the Rumelhart et al. papers [408, 409], it
had been studied earlier in the context of control theory. Crucially, Paul Werbos’s forgotten (and eventually
rediscovered) thesis in 1974 discussed how these backpropagation methods could be used in neural networks.
This was well before Rumelhart et al.’s papers in 1986, which were nevertheless significant because the style
of presentation contributed to a better understanding of why backpropagation might work.
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Chapter Organization

This chapter is organized as follows. The next section reviews the backpropagation algorithm
initially discussed in Chapter 1. The discussion in this chapter is more detailed, and several
variants of the algorithm are discussed. Some parts of the backpropagation algorithm that
were already discussed in Chapter 1 are repeated so that this chapter is self-contained. Fea-
ture preprocessing and initialization issues are discussed in Section 3.3. The vanishing and
exploding gradient problem, which is common in deep networks, is discussed in Section 3.4,
with common solutions for dealing with this issue presented. Gradient-descent strategies
for deep learning are discussed in Section 3.5. Batch normalization methods are introduced
in Section 3.6. A discussion of accelerated implementations of neural networks is found in
Section 3.7. The summary is presented in Section 3.8.

3.2 Backpropagation: The Gory Details

In this section, the backpropagation algorithm from Chapter 1 is reviewed again in consid-
erably more detail. The goal of this more-detailed review is to show that the chain rule can
be used in multiple ways. To this end, we first explore the standard backpropagation update
as it is commonly presented in most textbooks (and Chapter 1). Second, a simplified and
decoupled view of backpropagation is examined in which the linear matrix multiplications
are decoupled from the activation layers. This decoupled view of backpropagation is what
most off-the-shelf systems implement.

3.2.1 Backpropagation with the Computational Graph Abstrac-
tion

A neural network is a computational graph, in which a unit of computation is the neuron.
Neural networks are fundamentally more powerful than their building blocks because the
parameters of these models are learned jointly to create a highly optimized composition
function of these models. Furthermore, the nonlinear activations between the different layers
add to the expressive power of the network.

A multilayer network evaluates compositions of functions computed at individual nodes.
A path of length 2 in the neural network in which the function f(-) follows g(-) can be
considered a composition function f(g(-)). Just to provide an idea, let us look at a trivial
computational graph with two nodes, in which the sigmoid function is applied at each node
to the input weight w. In such a case, the computed function appears as follows:

1

flg(w)) = (3.1)

n 1
1 +exp [* T+exp(—w)

We can already see how awkward it would be to compute the derivative of this function with
respect to w. Furthermore, consider the case in which ¢1(-), g2(+) ... gx(:) are the functions
computed in layer m, and they feed into a particular layer-(m+ 1) node that computes f(-).
In such a case, the composition function computed by the layer-(m -+ 1) node in terms of the
layer-m inputs is f(g1(-), ... gr(+)). As we can see, this is a multivariate composition function,
which looks rather ugly. Since the loss function uses the output(s) as its argument(s), it may
typically be expressed a recursively nested function in terms of the weights in earlier layers.
For a neural network with 10 layers and only 2 nodes in each layer, a recursively nested
function of depth 10 will result in a summation of 2!° recursively nested terms, which appear
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forbidding from the perspective of computing partial derivatives. Therefore, we need some
kind of iterative approach to compute these derivatives. The resulting iterative approach is
dynamic programming, and the corresponding update is really the chain rule of differential
calculus.

In order to understand how the chain rule works in a computational graph, we will
discuss the two basic variants of the rule that one needs to keep in mind. The simplest
version of the chain rule works for a straightforward composition of the functions:

9f(g(w)) _ 0f(g(w)) 9g(w)
ow  Og(w) ow (32)

w y=g(W) O = f(g(w))=cos(w?)
INPUT OUTPUT
WEIGHT

Figure 3.1: A simple computational graph with two nodes

UGLY COMPOSITION FUNCTION

l

O =K(p,q) = K(g(f(w)),h(f(w)))

INPUT
WEIGHT

OUTPUT

00 _00 Op 30 0y
ow 9dp Ow dq Ow
do Op @ do @.82

o 3y w + % 9. 9w [Univariate Chain Rule]

[Multivariable Chain Rule]

_0K(p,q) / OK(p,q) ,, /
= ) £ )+ P W) f ()
First path Second path

Figure 3.2: Revisiting Figure 1.13 on chain rule in computational graphs: The
products of node-specific partial derivatives along paths from weight w to output o are
aggregated. The resulting value yields the derivative of output O with respect to weight w.
Only two paths between input and output exist in this simplified example.

This variant is referred to as the univariate chain rule. Note that each term on the right-
hand side is a local gradient because it computes the derivative of a function with respect
to its immediate argument rather than a recursively derived argument. The basic idea is
that a composition of functions is applied on the weight w to yield the final output, and the
gradient of the final output is given by the product of the local gradients along that path.
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Each local gradient only needs to worry about its specific input and output, which simplifies
the computation. An example is shown in Figure 3.1 in which the function f(y) is cos(y)
and g(w) = w?. Therefore, the composition function is cos(w?). On using the univariate
chain rule, we obtain the following:

0f(g(w)) _ 0f(g(w)) Og(w)

= = —2w - sin(w?)

ow dg(w) ow
; 2
—sin(g(w)) v

The computational graphs in neural networks are not paths, which is the main reason
that backpropagation is needed. A hidden layer often gets its input from multiple units,
which results in multiple paths from a variable w to an output. Consider the function

"0,
O = [cos(W2)] + [sin(w?)]

K(p,q)
=Pt/ oytpuT

INPUT
WEIGHT

e“f(,,)

do  OK(p, 0K (p, y
%0 _ KB4 gy i) + PO yie) i)
ow (9]) N N~ 6q N N~
ﬁlf—’ sin(y) 2w ﬁl/—‘ cos(z) 2w
= —2w - sin(y) + 2w - cos(z)

= —2w - sin(w?) + 2w - cos(w?)

Figure 3.3: An example of the chain rule in action based on the computational graph of
Figure 3.2.

flg1(w),...gr(w)), in which a unit computing the multivariate function f(-) gets its inputs
from k units computing ¢1 (w) ... gr(w). In such cases, the multivariable chain rule needs to
be used. The multivariable chain rule is defined as follows:
k
Of(gr(w), ... gr(w)) _ 3 f(g1(w), ... gr(w)) 9gi(w)
ow 0g;(w) ow

(3.3)

i=1

It is easy to see that the multivariable chain rule of Equation 3.3 is a simple generalization
of that in Equation 3.2. An important consequence of the multivariable chain rule is as
follows:

Lemma 3.2.1 (Pathwise Aggregation Lemma) Consider a directed acyclic computa-
tional graph in which the ith node contains variable y(i). The local derivative z(i,j) of the
directed edge (i,7) in the graph is defined as z(i,j) = gz(d)) Let a non-null set of paths P
exist from variable w in the graph to output node containing variable o. Then, the value

of g—;’) is given by computing the product of the local gradients along each path in P, and
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summing these products over all paths.
=> Il - (3.4)
PeP (i,j)eP

(4

This lemma can be easily shown by applying Equation 3.3 recursively. Although
Lemma 3.2.1 is not used anywhere in the backpropagation algorithm, it helps us develop
another exponential-time algorithm that computes the derivatives explicitly. This point of
view helps us interpret the multivariable chain rule as a dynamic programming recursion
to compute a quantity that would otherwise be computationally too expensive to evaluate.
Consider the example shown in Figure 3.2. There are two paths in this particular case. The
recursive application of the chain rule is also shown in this example. It is evident that the
final result is obtained by computing the product of the local gradients along each of the
two paths and then adding them. In Figure 3.3, we have shown a more concrete example of
a function that is evaluated by the same computational graph.

o = sin(w?) + cos(w?) (3.5)
We have also shown in Figure 3.3 that the application of the chain rule on the computational
graph correctly evaluates the derivative, which is —2w - sin(w?) + 2w - cos(w?).
An Exponential-Time Algorithm

The fact that we can compute the composite derivative as an aggregation of the prod-
ucts of local derivatives along all paths in the computational graph leads to the following
exponential-time algorithm:

1. Use computational graph to compute the value y(i) of each nodes 7 in a forward phase.
(4

2. Compute the local partial derivatives z(i,j) = gg( 3 on each edge in the computational

graph.

3. Let P be the set of all paths from an input node with value w to the output. For each
path P € P compute the product of each local derivative z(i,j) on that path.

4. Add up these values over all paths in P.

In general, a computational graph will have an exponentially increasing number of paths
with depth and one must add the product of the local derivatives over all paths. An example
is shown in Figure 3.4, in which we have five layers, each of which has only two units.
Therefore, the number of paths between the input and output is 2° = 32. The jth hidden
unit of the ith layer is denoted by h(i,5). Each hidden unit is defined as the product of its
inputs:

h(i, j) =h(i—-1,1)-h(i—1,2) Vje{1,2} (3.6)

In this case, the output is w32, which is expressible in closed form, and can be differentiated
easily with respect to w. However, we will use the exponential time algorithm to elucidate
the workings of the exponential time algorithm. The derivative of each h(i, j) with respect
to each of its two inputs are the values of the complementary inputs:

Oh(i, j) Oh(i, j)

oG-y ML mE T g

= h(i—1,1)
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The pathwise aggregation lemma implies that the value of is the product of the local
derivatives (which are the complementary input values in thls partlcular case) along all 32
paths from the input to the output:

a . . .
70 = Z I I h ’Jl 3.72) h(3a]3)h(4a]4) h(5a]5)

ow 5 < N——
J1,J2,J3,J4,5€{1,2}

= Z w3l = 32w‘31

All 32 paths

wt w8 wl6

h(1,1)  h(2,1) h(3,1) h{4,1) h(51)

O=w3?

INPUT

WEIGHT OUTPUT

h(1,2) h(2,2) h(3,2) h(4,2) h(52)

EACH NODE COMPUTES THE PRODUCT OF ITS INPUTS

Figure 3.4: The number of paths in a computational graph increases exponentially with
depth. In this case, the chain rule will aggregate the product of local derivatives along
25 = 32 paths.

This result is, of course, consistent with what one would obtain on differentiating w32 di-
rectly with respect to w. However, an important observation is that it requires 2° aggrega-
tions to compute the derivative in this way for a relatively simple graph. More importantly,
we repeatedly differentiate the same function computed in a node for aggregation.

Obviously, this is an inefficient approach to compute gradients. For a network with
100 nodes in each layer and three layers, we will have a million paths. Nevertheless, this
is exactly what we do in traditional machine learning when our prediction function is a
complex composition function. This also explains why most of traditional machine learning
is a shallow neural model (cf. Chapter 2). Manually working out the details of a complex
composition function is tedious and impractical beyond a certain level of complexity. It
is here that the beautiful dynamic programming idea of backpropagation brings order to
chaos, and enables models that would otherwise have been impossible.

3.2.2 Dynamic Programming to the Rescue

Although the summation discussed above has an exponential number of components (paths),
one can compute it efficiently using dynamic programming. In graph theory, computing
all types of path-aggregative values over directed acyclic graphs is done using dynamic
programming. Consider a directed acyclic graph in which the value z(i,j) (interpreted as
local partial derivative of variable in node j with respect to variable in node 7) is associated
with edge (4,7). An example of such a computational graph is shown in Figure 3.5. We
would like to compute the product of z(%, j) over each path P € P from source node w to
output o and then add them.

o)=Y [ 269 (3.7)

PeP (i,j)eP
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Let A(i) be the set of nodes at the end points of outgoing edges from node i. We can
compute the aggregated value S(i,0) for each intermediate node i (between w and o) using
the following well-known dynamic programming update:

S(i,0) <= > S(j,0)2(i, ) (3.8)

JEA(®)

This computation can be performed backwards starting from the nodes directly incident
on o, since S(o,0) is already known to be 1. The algorithm discussed above is among the
most widely used methods for computing all types of path-centric functions on directed
acyclic graphs, which would otherwise require exponential time. For example, one can even

WEIGHT OUTPUT

EACH NODE i CONTAINS y(i) AND EACH EDGE BETWEEN i AND j CONTAINS z(i, j)
EXAMPLE: z(4, 6)= PARTIAL DERIVATIVE OF y(6) WITH RESPECT TO y(4)

Figure 3.5: Example of computational graph with edges corresponding to local partial
derivatives

use a variation of the above algorithm to find the longest path in a directed acyclic graph
(which is known to be NP-hard for general graphs with cycles) [7]. This generic dynamic
programming approach is used extensively in directed acyclic graphs.

In fact, the aforementioned dynamic programming update is exactly the multivariable
chain rule of Equation 3.3, which is repeated in the backwards direction starting at the output
node where the local gradient is known. This is because we derived the path-aggregative
form of the loss gradient (Lemma 3.2.1) using this chain rule in the first place. The main
difference is that we apply the rule in a particular order in order to minimize computations.
We summarize this point below:

Using dynamic programming to efficiently aggregate the product of local gradi-
ents along the exponentially many paths in a computational graph results in a
dynamic programming update that is identical to the multivariable chain rule
of differential calculus.

The above discussion is for the case of generic computational graphs. How do we apply
these ideas to neural networks? In the case of neural networks, one can easily compute
% in terms of the known value of o (by running the input through the network). This
derivative is propagated backwards using the local partial derivatives z(4, j), depending on
which variables in the neural network are used as intermediate variables. For example, when
the post-activation values inside nodes are treated as nodes of the computational graph,
the value of z(i,j) is the product of the weight of edge (¢,7) and the local derivative of
the activation at node j. On the other hand, if we use the pre-activation variables as the
nodes of the computational graph, the value of z(i, j) is product of the local derivative of
the activation at node ¢ and the weight of the edge (i, 7). We will discuss more about the
notion of pre-activation variables and post-activation variables in a neural network with
the use of an example slightly later (Figure 3.6). We can even create computational graphs
containing both pre-activation and post-activation variables to decouple linear operations
from activation functions. All these methods are equivalent, and will be discussed in the
upcoming sections.
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3.2.3 Backpropagation with Post-Activation Variables

In this section, we show how to instantiate the aforementioned approach by considering a
computational graph in which the nodes contain the post-activation variables in a neural
network. These are the same as the hidden variables of different layers.

The backpropagation algorithm first uses a forward phase in order to compute the
output and the loss. Therefore, the forward phase sets up the initialization for the dy-
namic programming recurrence, and also the intermediate variables that will be needed
in the backwards phase. As discussed in the previous section, the backwards phase uses
the dynamic programming recurrence based on the multivariable chain rule of differential
calculus. We describe the forward and backward phases as follows:

Forward phase: In the forward phase, a particular input vector is used to compute the
values of each hidden layer based on the current values of the weights; the name “forward
phase” is used because such computations naturally cascade forward across the layers. The
goal of the forward phase is to compute all the intermediate hidden and output variables
for a given input. These values will be required during the backward phase. At the point
at which the computation is completed, the value of the output o is computed, as is the
derivative of the loss function L with respect to this output. The loss is typically a function
of all the outputs in the presence of multiple nodes; therefore, the derivatives with respect
to all outputs are computed. For now, we will consider the case of a single output node o
for simplicity, and then discuss the straightforward generalization to multiple outputs.

Backward phase: The backward phase computes the gradient of the loss function with
respect to various weights. The first step is to compute the derivative g—ﬁ. If the network has
multiple outputs, then this value is computed for each output. This sets up the initialization
of the gradient computation. Subsequently, the derivatives are propagated in the backwards
direction using the multivariable chain rule of Equation 3.3.

Consider a path is denoted by the sequence of hidden units hq, hs, ..., hi followed by
output o. The weight of the connection from hidden unit h,. to h,1 is denoted by ws, p,,)-
If a single path exists in the network, it would be a simple matter to backpropagate the
derivative of the loss function L with respect to the weights along this path. In most cases,
an exponentially large number of paths will exist in the network from any node h, to
the output node o. As shown in Lemma 3.2.1, the partial derivative can be computed by
aggregating the products of partial derivatives over all paths from h, to 0. When a set P
of paths exist from h,. to o, one can write the loss derivative as follows:

OL B 67[, Z ﬁk_l Ohit1 Oh, (3.9)
aw(hr_l,m) do By horss o 0] €P ahk i 8h1 a’w(hT_hhr)

Backpropagation computes A(h,.,0) = gTL

Oh,
OW(h,._1,hy)
computed partial derivative with respect to layer activations into a partial derivative with
oL

respect to the weights. The path-aggregated term above [annotated by A(h,,0) = 7= is

very similar to the quantity S(i,0) = g—; discussed in Section 3.2.2. As in that section, the

idea is to first compute A(hy, o) for nodes hy, closest to o, and then recursively compute these

values for nodes in earlier layers in terms of nodes in later layers. The value of A(o,0) = %—g is

The computation of on the right-hand side is useful in converting a recursively
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computed as the initial point of the recursion. Subsequently, this computation is propagated
in the backwards direction with dynamic programming updates (similar to Equation 3.8).
The multivariable chain rule directly provides the recursion for A(h,.,0):

oL oL Oh oh
Alhr,0) = 5= T & Dhoh, > oh,

thy= h:h,.=h

A(h, 0) (3.10)

Since each h is in a later layer than h,., A(h,0) has already been computed while evaluating
A(h;,0). However, we still need to evaluate 08}?, in order to compute Equation 3.10. Consider
a situation in which the edge joining h, to h has weight w,, ), and let a, be the value
computed in hidden unit h just before applying the activation function ®(-). In other words,
we have h = ®(ay), where ay, is a linear combination of its inputs from earlier-layer units
incident on h. Then, by the univariate chain rule, the following expression for 2% can be

. Oh,
derived:

oh o ﬂ ) 8ah - 8<I>(ah)
oh,  da, Oh,  Oay

This value of 5% is used in Equation 3.10 to obtain the following:

W,y = P (an) Wi, n) (3.11)

A(hp0)= > ®(an) - w,.n - Ak, o) (3.12)
h:h,.=h

This recursion is repeated in the backwards direction, starting with the output node. The

entire process is linear in the number of edges in the network. Note that one could also have

derived Equation 3.12 by using the generic computational graph algorithm in Section 3.2.2

with respect to post-activation variables. One simply needs to set z(, j) in Equation 3.8 to

the product of the weight between nodes 7 and j, and the activation derivative at node j.
Backpropagation can be summarized in the following steps:

1. Use a forward-pass to compute the values of all hidden units, output o, and loss L for
a particular input-output pattern (X, y).

e 1 oL
2. Initialize A(o,0) to 5.

3. Use the recurrence of Equation 3.12 to compute each A(h,,0) in the backwards di-
rection. After each such computation, compute the gradients with respect to incident
weights as follows:

oL

— — A(hy,0)hyy - @ (ap. 1
G = Al 0) ey @) (3.13)

The partial derivatives with respect to incident biases can be computed by using the
fact that bias neurons are always activated at a value of +1. Therefore, to compute
the partial derivative of the loss with respect to the bias of node h,., we simply set
h-—1 to 1 in the right-hand side of Equation 3.13.

4. Use the computed partial derivatives of loss function with respect to weights in order
to perform stochastic gradient descent for input-output pattern (X,y).

This description of backpropagation is greatly simplified, and actual implementations have
to incorporate numerous changes for efficiency and stability. For example, the gradients
are computed with respect to multiple training instances at one time, and these multiple
instances are referred to as a mini-batch. These are all backpropagated simultaneously in



3.2. BACKPROPAGATION: THE GORY DETAILS 115

order to add up their local gradients and execute mini-batch stochastic gradient descent.
This enhancement will be discussed in Section 3.2.8. Another difference is that we have
assumed a single output. However, in many types of neural networks (e.g., multiclass per-
ceptrons), multiple outputs exist. The description of this section can easily be generalized
to multiple outputs by adding the contributions of different outputs to the loss derivatives
(see Section 3.2.7).

A few observations are noteworthy. Equation 3.13 shows that the partial derivative of
the loss with respect to an edge from h,_; to h, always contains h,_1 as a multiplicative
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Figure 3.6: Pre- and post-activation values within a neuron

term. The remaining portion of the multiplicative factor in Equation 3.13 is seen as a
backpropagated “error.” In a sense, the algorithm recursively backpropagates the errors
and multiplies them with the values in the hidden layer just before the weight matrix to be
updated. This is why backpropagation is sometimes understood as error propagation.

3.2.4 Backpropagation with Pre-activation Variables

In the aforementioned discussion, the values hy ... hy along a path are used to compute the
chain rule. However, one can also use the values before computing the activation function
®(-) in order to define the chain rule. In other words, the gradients are computed with
respect to the pre-activation values of the hidden variables, which are then propagated
backwards. This alternative approach to backpropagation is how it is presented in most
textbooks.

The pre-activation value of the hidden variable h, is denoted by ay,., where:

h, = ®(ap,) (3.14)

Figure 3.6 shows the distinction between pre- and post-activation values. In such a case, we
can rewrite Equation 3.9 as follows:

oL oL da ' day,
7:7.¢,/ a) - o YChip1 315
owp, _yn,y 0o (o) [hmhm’z;hk’o]ep H dan, -1 (3.15)

Backpropagation computes §(h,.,0) = agf

We have introduced the notation 6() to enable recurrence in this case. Note that the

recurrence for A(h,,0) = % uses the hidden values after each activation as intermediate
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variables in the chain rule, whereas the recurrence for d(h.., 0) = z&aT,L uses the hidden values

before activation. Like Equation 3.10, we can obtain the following recurrence equations:

oL oL 8ah 8ah
6(hy,0) = = — = 6(h,o 3.16
( ) Oan, hZ=>h an dan, h:hz=>h an, (o) (316

One can use the chain rule to compute the expression for % on the right-hand side of

Equation 3.16:

8ah _ 8ah (3'hr —w 8@(0,},,7‘)
dan.  Ohy Oan, My

= (I)/(CL}LT) . w(hmh) (3.17)

By substituting the computed expression for Danin the right-hand side of Equation 3.16,

dap,.
we obtain the following:

3(hr,0) = ®'(an,) Y wi,n - 0(h,0) (3.18)

h:h,.=h

Equation 3.18 can also be derived by using pre-activation variables in the generic computa-
tional graph algorithm of Section 3.2.2. One simply needs to set z(i,j) in Equation 3.8 to
the product of the weight between nodes 7 and j, and the activation derivative at node i.

One advantage of this recurrence condition over the one obtained using post-activation
variables is that the activation gradient is outside the summation, and therefore we can eas-
ily compute the specific form of the recurrence for each type of activation function at node
h,. Furthermore, since the activation gradient is outside the summation, one can simplify
the backpropagation computation by decoupling the effect of the activation function and
that of the linear transformation in backpropagation updates. The simplified and decoupled
view will be discussed in more detail in Section 3.2.6, and it uses both pre-activation and
post-activation variables for the dynamic programming recursion. This simplified approach
represents how backpropagation is actually implemented in real systems. From an imple-
mentation point of view, decoupling the linear transformation from the activation function
is helpful, because the linear portion is a simple matrix multiplication and the activation
portion is an elementwise multiplication. Both can be implemented efficiently on all types
of matrix-friendly hardware (such as graphics processor units).

The backpropagation process can now be described as follows:

1. Use a forward-pass to compute the values of all hidden units, output o, and loss L for
a particular input-output pattern (X, y).

2. Initialize aaTl; = 6(0,0) to g—’; - ®'(a,).

3. Use the recurrence of Equation 3.18 to compute each d(h,,0) in the backwards di-
rection. After each such computation, compute the gradients with respect to incident
weights as follows:

oL

=6(hy,0) - hy_ 3.19
OW(h, 1 h,) (hrs0) - Brs (319)

The partial derivatives with respect to incident biases can be computed by using the
fact that bias neurons are always activated at a value of +1. Therefore, to compute
the partial derivative of the loss with respect to the bias of node h,., we simply set
h-—1 to 1 in the right-hand side of Equation 3.19.
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4. Use the computed partial derivatives of loss function with respect to weights in order
to perform stochastic gradient descent for input-output pattern (X,y).

The main difference of this (more common) variant of the backpropagation algorithm is
in terms of the way in which the recursion is written, because pre-activation variables
have been used for dynamic programming. Both the pre- and post-activation variants of
backpropagation are mathematically equivalent (see Exercise 9). We have chosen to show
both variations of backpropagation in order to emphasize the fact that one can use dynamic
programming in a variety of ways to derive equivalent equations. An even more simplified
view of backpropagation, in which both pre-activation and post-activation variables are used,
is provided in Section 3.2.6.

3.2.5 Examples of Updates for Various Activations

One advantage of Equation 3.18 is that we can compute the specific types of updates for
various nodes. In the following, we provide the instantiation of Equation 3.18 for different
types of nodes:

0(hy,0) = Z W(h, hy0(h,0) [Linear]

h:h,.=h
8(hp,0) = hp(L—hy) > w, myd(h,0) [Sigmoid]
h:h,.=h
5(hr,0) = (1= h7) Y wp, nyd(h,0) [Tanh]
h:h,.=h

Note that the derivative of the sigmoid can be written in terms of its output value h, as
h,(1 — h,). Similarly, the tanh derivative can be expressed as (1 — h2). The derivatives of
different activation functions are discussed in Section 1.2.1.6 of Chapter 1. For the ReLU
function, the value of d(h,.,0) can be computed in case-wise fashion:

5(h O) _ Zh:hr:h w(h,‘,h)é(hao) if0< Qp,.
" 0 otherwise
A similar recurrence can be shown for the hard tanh function except that the update
condition is slightly different:

5(hr O) — Zh:hT:ﬂL w(hﬁh)é(h,o) if -1 < Qh,. <1
’ 0 otherwise
It is noteworthy that the ReLU and tanh are non-differentiable at exactly the condition
boundaries. However, this is rarely a problem in practical settings, in which one works with
finite precision.

3.2.5.1 The Special Case of Softmax

Softmax activation is a special case because the function is not computed with respect
to one input, but with respect to multiple inputs. Therefore, one cannot use exactly the
same type of update, as with other activation functions. As discussed in Equation 1.12 of
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Chapter 1, the softmax converts k real-valued predictions v ... vg into output probabilities
01 ...0g using the following relationship:

o= OPW) g 3.20
Y ey (3:20)

Note that if we try to use the chain rule to backpropagate the derivative of the loss L with

respect to vy ...vg, then one has to compute each % and also each gg? . This backpropa-
7 J

gation of the softmax is greatly simplified, when we take two facts into account:

1. The softmax is almost always used in the output layer.

2. The softmax is almost always paired with the cross-entropy loss. Let yy ... yx € {0,1}
be the one-hot encoded (observed) outputs for the & mutually exclusive classes. Then,
the cross-entropy loss is defined as follows:

k
L=— Z yilog(o;) (3.21)

The key point is that the value of % has a particularly simple form in the case of the

softmax:
L <~ AL Do,
_ . =0; — 1y .22
8’Ui ;603' 61)1- © y (3 )

The reader is encouraged to work out the detailed derivation of the result above; it is tedious,
but relatively straightforward algebra. The derivation is enabled by the fact that the value
of g% in Equation 3.22 can be shown to be equal to 0;(1 — 0;) when i = j (which is the
same as sigmoid), and otherwise can be shown to be equal to —o;0;(see Exercise 10).

Therefore, in the case of the softmax, one first backpropagates the gradient from the
output to the layer containing wv; ...wv. Further backpropagation can proceed according
to the rules discussed earlier in this section. Note that in this case, we have decoupled
the backpropagation update of the softmax activation from the backpropagation in the
rest of the network, in which matrix multiplications are always included along with the
activation function in the backpropagation update. In general, it is helpful to create a view
of backpropagation in which the linear matrix multiplications and activation layers are
decoupled because it greatly simplifies the updates. This view will be discussed in the next
section.

3.2.6 A Decoupled View of Vector-Centric Backpropagation

In the previous discussion, two equivalent ways of computing the updates based on Equa-
tions 3.12 and 3.18 were provided. In each case, one s really backpropagating through a linear
matriz multiplication and an activation computation simultaneously. The way in which we
order these two coupled computations affects whether we obtain Equation 3.12 or 3.18.
Unfortunately, this unnecessarily complicated view of backpropagation has proliferated in
papers and textbooks since the beginning. This is, in part, because layers are traditionally
defined in a neural network by combining the two separate operations of linear transforma-
tion and activation function computation.
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However, in many real implementations, the linear computations and the activation com-
putations are decoupled as separate “layers,” and one separately backpropagates through
the two layers. Furthermore, we use a vector-centric representation of the neural network, so
that operations on vector representations of layers are vector-to-vector operations such as
a matrix multiplication in a linear layer [cf. Figure 1.11(d) in Chapter 1]. This view greatly
simplifies the computations. Therefore, one can create a neural network in which activa-
tion layers are alternately arranged with linear layers, as shown in Figure 3.7. Note that
the activation layers can use identity activation if needed. Activation layers (usually) per-
form one-to-one, elementwise computations on the vector components with the activation
function ®(-), whereas linear layers perform all-to-all computations by multiplying with the
coefficient matrix W. Then, for each pair of matrix multiplication and activation function
layers, the following forward and backward steps need to be performed:

MULTIPLY WITH WT APPLYd) (ELEMENTWISE)
= LINEAR = v ?
< TRANSFORM | £ ACTIVATION = =
e [ some = = @ | SOME e [SoME
5 FUNCTION g S E FUNCTIO E LOSS,
o 3 3 o a | >
o [=] [=] w w |
5 o o g 5
=} = = = =
1] 3 3 o <}
o o [*] O [w]
i 2 2 z &
) u Q =) a

7
MULTIPLY WITH W MULTIPLY q) (ELEMENTWISE)

Figure 3.7: A decoupled view of backpropagation

Table 3.1: Examples of different functions and their backpropagation updates between layers
i and (¢ 4+ 1). The hidden values and gradients in layer ¢ are denoted by Z; and g,. Some of
these computations use I(-) as the binary indicator function.

H Function [ Type [ Forward [ Backward ”
Linear Many-Many Ziv1 = W'z 9, =Wgit1
Sigmoid One-One Zi+1 =sigmoid(z;) 9= 0i41 ©Zit1 © (1 — Ziy1)
Tanh One-One Zi+1 :tanh(zi) 9i =941 © 1-Zi4+1 0 Ei+1)
ReLU One-One Zi41 = 2; © I(Ei > 0) g9, = §i+1 ® I(Ei > 0)
Hard One-One Set to +1 (& [—1,+1]) Set to 0 (& [—1,+1])
Tanh Copy (€ [—1,+1]) Copy ( € [-1,+1])
Max Many-One Maximum of inputs Set to 0 (non-maximal inputs)
Copy (maximal input)
Arbitrary Anything EE{?I = fi(Zi) g, = JT§H_1
function f(-) J is Jacobian (Equation 3.23)

1. Let Z; and Z; 1 be the column vectors of activations in the forward direction when the
matrix of linear transformations from the ith to the (i + 1)th layer is denoted by W.
Furthermore, let g; and g, ; be the backpropagated vectors of gradients in the two
layers. Each element of g, is the partial derivative of the loss function with respect to
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a hidden variable in the ith layer. Then, we have the following:

Ziy1 = W'z, [Forward Propagation]
;i =Wg,,, [Backward Propagation]

2. Now consider a situation where the activation function ®(-) is applied to each node
in layer (i + 1) to obtain the activations in layer (¢ 4+ 2). Then, we have the following:

Zit2 = ®(Zi41) [Forward Propagation]
Giv1 = Jire © ®'(Zi41) [Backward Propagation]

Here, ®(-) and its derivative ®’(-) are applied in element-wise fashion to vector argu-
ments. The symbol ® indicates elementwise multiplication.

Note the extraordinary simplicity once the activation is decoupled from the matrix
multiplication in a layer. The forward and backward computations are shown in Figure 3.7.
Furthermore, the derivatives of ®(Z;1+1) can often be computed in terms of the outputs of
the next layer. Based on Section 3.2.5, one can show the following for sigmoid activations:

D' (Zit1) = P(Zig1) © (1 — B(Zi41))
=Ziy2 O (1 = Ziy2)

Examples of different types of backpropagation updates for various forward functions are
shown in Table 3.1. In this case, we have used layer indices of ¢ and (i + 1) for both linear
transformations and activation functions (rather than using (i + 2) for activation function).
Note that the second to last entry in the table corresponds to the maximization function.
This type of function is useful for maz-pooling operations in convolutional neural networks.
Therefore, the backward propagation operation is just like forward propagation. Given the
vector of gradients in a layer, one only has to apply the operations shown in the final column
of Table 3.1 to obtain the gradients with respect to the previous layer.

Some neural operations are more complex many-to-many functions than simple matrix
multiplications. These cases can be handled by assuming that the kth activation in layer-
(i + 1) is obtained by applying an arbitrary function fi(-) on the vector of activations in
layer-i. Then, the elements of the Jacobian are defined as follows:

O0fr(Zi
0z,

(3.23)

Here, ZZ(-T) is the rth element in Z;. Let J be the matrix whose elements are Jy,.. Then, it is

easy to see that the backpropagation update from layer to layer can be written as follows:

9; = JT§i+1 (3.24)

Writing backpropagation equations as matrix multiplications is often beneficial from
an implementation-centric point of view, such as acceleration with Graphics Processor
Units (cf. Section 3.7.1). Note that the elements in g, represent gradients of the loss with
respect to the activations in the ith layer, and therefore an additional step is needed to
compute gradients with respect to the weights. The gradient of the loss with respect to a
weight between the pth unit of the (i — 1)th layer and the gth unit of ith layer is obtained
by multiplying the pth element of Z;_; with the gth element of g,.
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3.2.7 Loss Functions on Multiple Output Nodes and Hidden Nodes

For simplicity, the discussion above has used only a single output node at which the loss
function is computed. However, in most applications, the loss function is computed over
multiple output nodes O. The only difference in this case is that the value of each {?TL =

0(0,0) for o € O is initialized to %@/(0). Backpropagation is then executed in order to
compute 6871; = 0(h, O) for each hidden node h.

In some forms of sparse feature learning, even the outputs of the hidden nodes have
loss functions associated with them. This occurs frequently in order to encourage solutions
with specific properties, such as a hidden layer that is sparse (e.g., sparse autoencoder), or
a hidden layer with a specific type of regularization penalty (e.g., contractive autoencoder).
The case of sparsity penalties is discussed in Section 4.4.4 of Chapter 4, and the problem
of contractive autoencoders is discussed in Section 4.10.3 of Chapter 4. In such cases, the
backpropagation algorithm requires only minor modifications in which the gradient flow in
the backwards direction is based on all the nodes at which the loss is computed. This can
be achieved by simple aggregation of the gradient flows resulting from different losses. One
can view this as a special type of network in which the hidden nodes are also output nodes,
and the output nodes are not restricted to the final layer of the network. At a fundamental
level, the backpropagation methodology remains the same.

Consider the case in which the loss function Ly, is associated with the hidden node h,.,
whereas the overall loss over all nodes is L. Furthermore, let % = 0(hy, N(h;)) denote

the gradient flow from all nodes N (h,) reachable from node h,., with which some portion
of the loss is associated. In this case, the node set N(h,) might contain both nodes in the
output layer as well as nodes in the hidden layer (with which a loss is associated), as long as
these nodes are reachable from h,.. Therefore, the set N(h,.) uses h, as an argument. Note
that the set N(h,.) includes the node h,. Then, the update of Equation 3.18 is first applied
as follows:

5 N(hy)) = ' (an,) 32w md(h, N(h)) (3.25)

h:h.=>h

This is similar to the standard backpropagation update. However, the current value of

0(hyy, N(h,)) does not yet include the contribution of h,. Therefore, an additional step is
executed to adjust §(h,, N(h,)) based on the contribution of h, to the loss function:

aLn.

§(hry N(hy)) <= 6(hy, N(hy)) + @' (hy) o

(3.26)

It is important to keep in mind that the overall loss L is different from Ly, , which is the
loss specific to node h,.. Furthermore, the addition to the gradient flow in Equation 3.26
has a similar algebraic form to the value of the initialization of the output nodes. In other
words, the gradient flows caused by the hidden nodes are similar to those of the output
nodes. The only difference is that the computed value is added to the existing gradient
flow at the hidden nodes. Therefore, the overall framework of backpropagation remains
almost identical, with the main difference being that the backpropagation algorithm picks
up additional contributions from the losses at the hidden nodes.

3.2.8 Mini-Batch Stochastic Gradient Descent

From the very first chapter of this book, all updates to the weights are performed in point-
specific fashion, which is referred to as stochastic gradient descent. Such an approach is
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common in machine learning algorithms. In this section, we provide a justification for this
choice along with related variants like mini-batch stochastic gradient descent. We also pro-
vide an understanding of the advantages and disadvantages of various choices.

Most machine learning problems can be recast as optimization problems over specific
objective functions. For example, the objective function in neural networks can be defined
in terms optimizing a loss function L, which is often a linearly separable sum of the loss
functions on the individual training data points. For example, in a linear regression applica-
tion, one minimizes the sum of the squared prediction errors over the training data points.
In a dimensionality reduction application, one minimizes the sum of squared representation
errors in the reconstructed training data points. One can write the loss function of a neural
network in the following form:

L=>Y L (3.27)

Here, L; is the loss contributed by the ith training point. For most of the algorithms in
Chapter 2, we have worked with training point-specific loss rather than the aggregate loss.

In gradient descent, one tries to minimize the loss function of the neural network by
moving the parameters along the negative direction of the gradient. For example, in the
case of the perceptron, the parameters correspond to W = (wy ... wg). Therefore, one would
try to compute the loss of the underlying objective function over all points simultaneously
and perform gradient descent. Therefore, in traditional gradient descent, one would try to
perform gradient-descent steps such as the following:

W<:W—a<aL oL aL) (3.28)

dwy’ Owy " dwg

This type of derivative can also be written succinctly in vector notation (i.e., matrix calculus

notation):
Wew-all (3.29)
ow
For single-layer networks like the perceptron, gradient-descent is done only with respect
to W, whereas for larger networks, all parameters in the network need to be updated
with backpropagation. The number of parameters can easily be on the order of millions
in large-scale applications, and one needs to simultaneously run all examples forwards and
backwards through the network in order to compute the backpropagation updates. It is,
however, impractical to simultaneously run all examples through the network to compute
the gradient with respect to the entire data set in one shot. Note that even the memory
requirements of all intermediate/final predictions for each training instance would need to
be maintained by gradient descent. This can be exceedingly large in most practical settings.
At the beginning of the learning process, the weights are often incorrect to such a degree that
even a small sample of points can be used to create an excellent estimate of the gradient’s
direction. The additive effect of the updates created from such samples can often provide
an accurate direction of movement. This observation provides a practical foundation for the
success of the stochastic gradient-descent method and its variants.
Since the loss function of most optimization problems can be expressed as a linear sum
of the losses with respect to individual points (cf. Equation 3.27), it is easy to show the
following:

oL OL; (3.30)

oW =9

=

=1
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In this case, updating the full gradient with respect to all the points sums up the individual
point-specific effects. Machine learning problems inherently have a high level of redundancy
between the knowledge captured by different training points, and one can often more effi-
ciently undertake the learning process with the point-specific updates of stochastic gradient
descent: oL
WeW-a— (3.31)
ow

This type of gradient descent is referred to as stochastic because one cycles through the
points in some random order. Note that the long-term effect of repeated updates is ap-
proximately the same, although each update in stochastic gradient descent can only be
viewed as a probabilistic approximation. Each local gradient can be computed efficiently,
which makes stochastic gradient descent fast, albeit at the expense of accuracy in gradient
computation. However, one interesting property of stochastic gradient descent is that even
though it might not perform as well on the training data (compared to gradient descent),
it often performs comparably (and sometimes even better) on the test data [171]. As you
will learn in Chapter 4, stochastic gradient descent has the indirect effect of regularization.
However, it can occasionally provide very poor results with certain orderings of training
points.

In mini-batch stochastic descent, one uses a batch B = {ji ... jm} of training points for
the update:

oL;
ow

WeW-a)
i€B

(3.32)

Mini-batch stochastic gradient descent often provides the best trade-off between stability,
speed, and memory requirements. When using mini-batch stochastic gradient descent, the
outputs of a layer are matrices instead of vectors, and forward propagation requires the mul-
tiplication of the weight matrix with the activation matrix. The same is true for backward
propagation in which matrices of gradients are maintained. Therefore, the implementation
of mini-batch stochastic gradient descent increases the memory requirements, which is a
key limiting factor on the size of the mini-batch.

The size of the mini-batch is therefore regulated by the amount of memory available on
the particular hardware architecture at hand. Keeping a batch size that is too small also
results in constant overheads, which is inefficient even from a computational point of view.
Beyond a certain batch size (which is typically of the order of a few hundred points), one
does not gain much in terms of the accuracy of gradient computation. It is common to
use powers of 2 as the size of the mini-batch, because this choice often provides the best
efficiency on most hardware architectures; commonly used values are 32, 64, 128, or 256.
Although the use of mini-batch stochastic gradient descent is ubiquitous in neural network
learning, most of this book will use a single point for the update (i.e., pure stochastic
gradient descent) for simplicity in presentation.

3.2.9 Backpropagation Tricks for Handling Shared Weights

A very common approach for regularizing neural networks is to use shared weights. The
basic idea is that if one has some semantic insight that a similar function will be computed
in different nodes of the network, then the weights associated with those nodes will be
constrained to be the same value. Some examples are as follows:

1. In an autoencoder simulating PCA (cf. Section 2.5.1.3 of Chapter 2), the weights in
the input layer and the output layer are shared.
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2. In a recurrent neural network for text (cf. Chapter 7), the weights in different temporal
layers are shared, because it is assumed that the language model at each time-stamp
is the same.

3. In a convolutional neural network, the same grid of weights (corresponding to a visual
field) is used over the entire spatial extent of the neurons (cf. Chapter 8).

Sharing weights in a semantically insightful way is one of the key tricks to successful neural
network design. When one can identify the insight that the function computed at two nodes
ought to be similar, it makes sense to use the same set of weights in that pair of nodes.

At first sight, it might seem to be an onerous task to compute the gradient of the loss
with respect to the shared weights in these different regions of the network, because the
different uses of the weights would also influence one another in an unpredictable way in
the computational graph. However, backpropagation with respect to shared weights turns
out to be mathematically simple.

Let w be a weight, which is shared at T different nodes in the network, and the corre-
sponding copies of the weights at these nodes be denoted by ws ... wr. Let the loss function
be L. Then, it is easy to use the chain rule to show the following:

L ZT: OL  Qw;
w L~ dw; Ow
i=1 -
=1

L

- =1 awZ

In other words, all we have to do is to pretend that these weights are independent, compute
their derivatives, and add them! Therefore, we simply have to execute the backpropagation
algorithm without any change and then sum up the gradients of different copies of the
shared weight. This simple observation is used at many places in neural network learning.
It also forms the basis of the learning algorithm in recurrent neural networks.

3.2.10 Checking the Correctness of Gradient Computation

The backpropagation algorithm is quite complex, and one might occasionally check the
correctness of gradient computation. This can be performed easily with the use of numerical
methods. Consider a particular weight w of a randomly selected edge in the network. Let
L(w) be the current value of the loss. The weight of this edge is perturbed by adding a small
amount € > 0 to it. Then, the forward algorithm is executed with this perturbed weight
and the loss L(w + ¢€) is computed. Then, the partial derivative of the loss with respect to
w can be shown to be the following:
OL(w)  L(w+e¢€)— L(w)

o ; (3.33)

When the partial derivatives do not match closely enough, it is easy to detect that an error
must have occurred in computation. One needs to perform the above estimation for only two
or three checkpoints in the training process, which is quite efficient. However, it might be
advisable to perform the checking over a large subset of the parameters at these checkpoints.
One problem is in determining when the gradients are “close enough,” especially when one
has no idea about the absolute magnitudes of these values. This is achieved by using relative
ratios.
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Let the backpropagation-determined derivative be denoted by G,, and the aforemen-
tioned estimation be denoted by G,. Then, the relative ratio p is defined as follows:

_ |Ge =Gl

P =G5 Cal (3:34)

Typically, the ratio should be less than 1079, although for some activation functions like
the ReLU in which sharp changes in derivatives occur at particular points, it is possible for
the numerical gradient to be different from the computed gradient. In such cases, the ratio
should still be less than 1073. One can use this numerical approximation to test various
edges and check the correctness of their gradients. If there are millions of parameters, then
one can test a sample of the derivatives for a quick check of correctness. It is also advisable to
perform this check at two or three points in the training because the checks at initialization
might correspond to special cases that do not generalize to arbitrary points in the parameter
space.

3.3 Setup and Initialization Issues

There are several important issues associated with the setup of the neural network, pre-
processing, and initialization. First, the hyperparameters of the neural network (such as the
learning rates and regularization parameters) need to be selected. Feature preprocessing
and initialization can also be rather important. Neural networks tend to have larger pa-
rameter spaces compared to other machine learning algorithms, which magnifies the effect
of preprocessing and initialization in many ways. In the following, we will discuss the ba-
sic methods used for feature preprocessing and initialization. Strictly speaking, advanced
methods like pretraining can also be considered initialization techniques. However, these
techniques require a deeper understanding of the model generalization issues associated
with neural network training. For this reason, discussion on this topic will be deferred to
the next chapter.

3.3.1 Tuning Hyperparameters

Neural networks have a large number of hyperparameters such as the learning rate, the
weight of regularization, and so on. The term “hyperparameter” is used to specifically refer
to the parameters regulating the design of the model (like learning rate and regularization),
and they are different from the more fundamental parameters representing the weights of
connections in the neural network. In Bayesian statistics, the notion of hyperparameter is
used to control the prior distribution, although we use this definition in a somewhat loose
sense here. In a sense, there is a two-tiered organization of parameters in the neural network,
in which primary model parameters like weights are optimized with backpropagation only
after fixing the hyperparameters either manually or with the use of a tuning phase. As we
will discuss in Section 4.3 of Chapter 4, the hyperparameters should not be tuned using the
same data used for gradient descent. Rather, a portion of the data is held out as validation
data, and the performance of the model is tested on the validation set with various choices
of hyperparameters. This type of approach ensures that the tuning process does not overfit
to the training data set (while providing poor test data performance).

How should the candidate hyperparameters be selected for testing? The most well-known
technique is grid search, in which a set of values is selected for each hyperparameter. In the
most straightforward implementation of grid search, all combinations of selected values of
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the hyperparameters are tested in order to determine the optimal choice. One issue with
this procedure is that the number of hyperparameters might be large, and the number of
points in the grid increases exponentially with the number of hyperparameters. For example,
if we have 5 hyperparameters, and we test 10 values for each hyperparameter, the training
procedure needs to be executed 10° = 100000 times to test its accuracy. Although one does
not run such testing procedures to completion, the number of runs is still too large to be
reasonably executed for most settings of even modest size. Therefore, a commonly used
trick is to first work with coarse grids. Later, when one narrows down to a particular range
of interest, finer grids are used. One must be careful when the optimal hyperparameter
selected is at the edge of a grid range, because one would need to test beyond the range to
see if better values exist.

The testing approach may at times be too expensive even with the coarse-to-fine-grained
process. It has been pointed out [37] that grid-based hyperparameter exploration is not
necessarily the best choice. In some cases, it makes sense to randomly sample the hyperpa-
rameters uniformly within the grid range. As in the case of grid ranges, one can perform
multi-resolution sampling, where one first samples in the full grid range. One then creates
a new set of grid ranges that are geometrically smaller than the previous grid ranges and
centered around the optimal parameters from the previously explored samples. Sampling is
repeated on this smaller box and the entire process is iteratively repeated multiple times to
refine the parameters.

Another key point about sampling many types of hyperparameters is that the logarithms
of the hyperparameters are sampled uniformly rather than the hyperparameters themselves.
Two examples of such parameters include the regularization rate and the learning rate. For
example, instead of sampling the learning rate o between 0.1 and 0.001, we first sample
log(a) uniformly between —1 and —3, and then exponentiate it to the power of 10. It is
more common to search for hyperparameters in the logarithmic space, although there are
some hyperparameters that should be searched for on a uniform scale.

Finally, a key point about large-scale settings is that it is sometimes impossible to run
these algorithms to completion because of the large training times involved. For example,
a single run of a convolutional neural network in image processing might take a couple of
weeks. Trying to run the algorithm over many different choices of parameter combinations is
impractical. However, one can often obtain a reasonable estimate of the broader behavior of
the algorithm in a short time. Therefore, the algorithms are often run for a certain number of
epochs to test the progress. Runs that are obviously poor or diverge from convergence can be
quickly killed. In many cases, multiple threads of the process with different hyperparameters
can be run, and one can successively terminate or add new sampled runs. In the end, only
one winner is allowed to train to completion. Sometimes a few winners may be allowed to
train to completion, and their predictions will be averaged as an ensemble.

A mathematically justified way of choosing for hyperparameters is the use of Bayesian
optimization [42, 306]). However, these methods are often too slow to practically use in large-
scale neural networks and remain an intellectual curiosity for researchers. For smaller net-
works, it is possible to use libraries such as Hyperopt [614], Spearmint [616], and SMAC [615].

3.3.2 Feature Preprocessing

The feature processing methods used for neural network training are not very different from
those in other machine learning algorithms. There are two forms of feature preprocessing
used in machine learning algorithms:
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1. Additive preprocessing and mean-centering: It can be useful to mean-center the data
in order to remove certain types of bias effects. Many algorithms in traditional ma-
chine learning (such as principal component analysis) also work with the assumption
of mean-centered data. In such cases, a vector of column-wise means is subtracted
from each data point. Mean-centering is often paired with standardization, which is
discussed in the section of feature normalization.

A second type of pre-processing is used when it is desired for all feature values to be
non-negative. In such a case, the absolute value of the most negative entry of a feature
is added to the corresponding feature value of each data point. The latter is typically
combined with min-max normalization, which is discussed below.

2. Feature normalization: A common type of normalization is to divide each feature
value by its standard deviation. When this type of feature scaling is combined with
mean-centering, the data is said to have been standardized. The basic idea is that each
feature is presumed to have been drawn from a standard normal distribution with zero
mean and unit variance.

The other type of feature normalization is useful when the data needs to be scaled
in the range (0, 1). Let min; and maz; be the minimum and maximum values of the
jth attribute. Then, each feature value x;; for the jth dimension of the ith point is
scaled by min-max normalization as follows:

Tij — minj

(3.35)

J mazr; — min;

Feature normalization often does ensure better performance, because it is common for the
relative values of features to vary by more than an order of magnitude. In such cases,
parameter learning faces the problem of ill-conditioning, in which the loss function has an
inherent tendency to be more sensitive to some parameters than others. As we will see later
in this chapter, this type of ill-conditioning affects the performance of gradient descent.
Therefore, it is advisable to perform the feature scaling up front.

Whitening

Another form of feature pre-processing is referred to as whitening, in which the axis-system
is rotated to create a new set of de-correlated features, each of which is scaled to unit
variance. Typically, principal component analysis is used to achieve this goal.

Principal component analysis can be viewed as the application of singular value decom-
position after mean-centering a data matrix (i.e., subtracting the mean from each column).
Let D be an n x d data matrix that has already been mean-centered. Let C' be the d x d
co-variance matrix of D in which the (7, j)th entry is the co-variance between the dimensions
1 and j. Because the matrix D is mean-centered, we have the following:

D™D
B n

C

x DD (3.36)

The eigenvectors of the co-variance matrix provide the de-correlated directions in the data.
Furthermore, the eigenvalues provide the variance along each of the directions. Therefore, if
one uses the top-k eigenvectors (i.e., largest k eigenvalues) of the covariance matrix, most of
the variance in the data will be retained and the noise will be removed. One can also choose
k = d, but this will often result in the variances along the near-zero eigenvectors being
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dominated by numerical errors in the computation. It is a bad idea to include dimensions
in which the variance is caused by computational errors, because such dimensions will
contain little useful information for learning application-specific knowledge. Furthermore,
the whitening process will scale each transformed feature to unit variance, which will blow
up the errors along these directions. At the very least, it is advisable to use some threshold
like 10~° on the magnitude of the eigenvalues. Therefore, as a practical matter, k will rarely
be exactly equal to d. Alternatively, one can add 107> to each eigenvalue for regularization
before scaling each dimension.

Let P be a d x k matrix in which each column contains one of the top-k eigenvectors.
Then, the data matrix D can be transformed into the k-dimensional axis system by post-
multiplying with the matrix P. The resulting n x k matrix U, whose rows contain the
transformed k-dimensional data points, is given by the following:

U=DP (3.37)

Note that the variances of the columns of U are the corresponding eigenvalues, because
this is the property of the de-correlating transformation of principal component analysis.
In whitening, each column of U is scaled to unit variance by dividing it with its standard
deviation (i.e., the square root of the corresponding eigenvalue). The transformed features
are fed into the neural network. Since whitening might reduce the number of features, this
type of preprocessing might also affect the architecture of the network, because it reduces
the number of inputs.

One important aspect of whitening is that one might not want to make a pass through
a large data set to estimate its covariance matrix. In such cases, the covariance matrix
and columnwise means of the original data matrix can be estimated on a sample of the
data. The d x k eigenvector matrix P is computed in which the columns contain the top-k
eigenvectors. Subsequently, the following steps are used for each data point: (i) The mean
of each column is subtracted from the corresponding feature; (ii) Each d-dimensional row
vector representing a training data point (or test data point) is post-multiplied with P to
create a k-dimensional row vector; (iii) Each feature of this k-dimensional representation is
divided by the square-root of the corresponding eigenvalue.

The basic idea behind whitening is that data is assumed to be generated from an inde-
pendent Gaussian distribution along each principal component. By whitening, one assumes
that each such distribution is a standard normal distribution, and provides equal importance
to the different features. Note that after whitening, the scatter plot of the data will roughly
have a spherical shape, even if the original data is elliptically elongated with an arbitrary
orientation. The idea is that the uncorrelated concepts in the data have now been scaled to
equal importance (on an a priori basis), and the neural network can decide which of them to
emphasize in the learning process. Another issue is that when different features are scaled
very differently, the activations and gradients will be dominated by the “large” features
in the initial phase of learning (if the weights are initialized randomly to values of similar
magnitude). This might hurt the relative learning rate of some of the important weights in
the network. The practical advantages of using different types of feature preprocessing and
normalization are discussed in [278, 532].

3.3.3 Initialization

Initialization is particularly important in neural networks because of the stability issues
associated with neural network training. As you will learn in Section 3.4, neural networks
often exhibit stability problems in the sense that the activations of each layer either become
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successively weaker or successively stronger. The effect is exponentially related to the depth
of the network, and is therefore particularly severe in deep networks. One way of amelio-
rating this effect to some extent is to choose good initialization points in such a way that
the gradients are stable across the different layers.

One possible approach to initialize the weights is to generate random values from a Gaus-
sian distribution with zero mean and a small standard deviation, such as 1072. Typically,
this will result in small random values that are both positive and negative. One problem
with this initialization is that it is not sensitive to the number of inputs to a specific neuron.
For example, if one neuron has only 2 inputs and another has 100 inputs, the output of
the former is far more sensitive to the average weight because of the additive effect of more
inputs (which will show up as a much larger gradient). In general, it can be shown that the
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Figure 3.8: The vanishing and exploding gradient problems

variance of the outputs linearly scales with the number of inputs, and therefore the standard
deviation scales with the square root of the number of inputs. To balance this fact, each
weight is initialized to a value drawn from a Gaussian distribution with standard deviation
\/1/77“, where 7 is the number of inputs to that neuron. Bias neurons are always initial-
ized to zero weight. Alternatively, one can initialize the weight to a value that is uniformly
distributed in [—1/4/7,1/4/7].

More sophisticated rules for initialization consider the fact that the nodes in different
layers interact with one another to contribute to output sensitivity. Let r;, and 7,,: respec-
tively be the fan-in and fan-out for a particular neuron. One suggested initialization rule,
referred to as Xavier initialization or Glorot initialization is to use a Gaussian distribution
with standard deviation of \/2/(7in + Tout)-

An important consideration in using randomized methods is that symmetry breaking is
important. if all weights are initialized to the same value (such as 0), all updates will move
in lock-step in a layer. As a result, identical features will be created by the neurons in a
layer. It is important to have a source of asymmetry among the neurons to begin with.

3.4 The Vanishing and Exploding Gradient Problems

Deep neural networks have several stability issues associated with training. In particular,
networks with many layers may be hard to train because of the way in which the gradients
in earlier and later layers are related.

In order to understand this point, let us consider a very deep network that has a
single node in each layer. We assume that there are (m + 1) layers, including the non-
computational input layer. The weights of the edges between the various layers are denoted
by w1, wa, . . . wy,. Furthermore, assume that the sigmoid activation function ®(-) is applied
in each layer. Let x be the input, hy...h, _1 be the hidden values in the various layers,
and o be the ﬁnal output. Let ®'(h;) be the derivative of the activation function in hidden
layer t. Let g~ be the derivative of the loss function with respect to the hidden activa-
tion h;. The neural architecture is illustrated in Figure 3.8. It is relatively easy to use the



130 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

backpropagation update to show the following relationship:

oL oL

aiht = (p/(ht+1) W41 Wm (338)
Since the fan-in is 1 of each node, assume that the weights are initialized from a standard
normal distribution. Therefore, each w; has an expected average magnitude of 1.

Let us examine the specific behavior of this recurrence in the case where the sigmoid
activation is used. The derivative with a sigmoid with output f € (0,1) is given by f(1— f).
This value takes on its maximum at f = 0.5, and therefore the value of ®'(h;) is no more
than 0.25 even at its maximum. Since the absolute value of w;,1 is expected to be 1, it
follows that each weight update will (typically) cause the value of g—}ft to be less than 0.25

that of affi - Therefore, after moving by about r layers, this value will typically be less than
0.257. Just to get an idea of the magnitude of this drop, if we set r = 10, then the gradient
update magnitudes drop to 10~ of their original values! Therefore, when backpropagation
is used, the earlier layers will receive very small updates compared to the later layers. This
problem is referred to as the vanishing gradient problem. Note that we could try to solve
this problem by using an activation function with larger gradients and also initializing
the weights to be larger. However, if we go too far in doing this, it is easy to end up in
the opposite situation where the gradient exzplodes in the backward direction instead of
vanishing. In general, unless we initialize the weight of every edge so that the product of
the weight and the derivative of each activation is exactly 1, there will be considerable
instability in the magnitudes of the partial derivatives. In practice, this is impossible with
most activation functions because the derivative of an activation function will vary from
iteration to iteration.

Although we have used an oversimplified example here with only one node in each layer,
it is easy to generalize the argument to cases in which multiple nodes are available in
each layer. In general, it is possible to show that the layer-to-layer backpropagation update
includes a matrix multiplication (rather than a scalar multiplication). Just as repeated scalar
multiplication is inherently unstable, so is repeated matrix multiplication. In particular,
the loss derivatives in layer-(i + 1) are multiplied by a matrix referred to as the Jacobian
(cf. Equation 3.23). The Jacobian contains the derivatives of the activations in layer-(i + 1)
with respect to those in layer ¢. In certain cases like recurrent neural networks, the Jacobian
is a square matrix and one can actually impose stability conditions with respect to the
largest eigenvalue of the Jacobian. These stability conditions are rarely satisfied exactly,
and therefore the model has an inherent tendency to exhibit the vanishing and exploding
gradient problems. Furthermore, the effect of activation functions like the sigmoid tends to
encourage the vanishing gradient problem. One can summarize this problem as follows:

Observation 3.4.1 The relative magnitudes of the partial derivatives with respect to the
parameters in different parts of the network tend to be very different, which creates problems
for gradient-descent methods.

In the next section, we will provide a geometric understanding of why it is natural for
unstable gradient ratios to cause problems in most multivariate optimization problems,
even when working in relatively simple settings.

3.4.1 Geometric Understanding of the Effect of Gradient Ratios

The vanishing and exploding gradient problems are inherent to multivariable optimization,
even in cases where there are no local optima. In fact, minor manifestations of this problem
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are encountered in almost any convex optimization problem. Therefore, in this section, we
will consider the simplest possible case of a convex, quadratic objective function with a bowl-
like shape and a single global minimum. In a single-variable problem, the path of steepest
descent (which is the only path of descent), will always pass through the minimum point
of the bowl (i.e., optimum objective function value). However, the moment we increase the
number of variables in the optimization problem from 1 to 2, this is no longer the case. The
key point to understand is that with very few exceptions, the path of steepest descent in most
loss functions is only an instantaneous direction of best movement, and is not the correct
direction of descent in the longer term. In other words, small steps with “course corrections”
are always needed. When an optimization problem exhibits the vanishing gradient problem,
it means that the only way to reach the optimum with steepest-descent updates is by using
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Figure 3.9: The effect of the shape of the loss function on steepest-gradient descent.

an extremely large number of tiny updates and course corrections, which is obviously very
inefficient.

In order to understand this point, we look at two bivariate loss functions in Figure 3.9. In
this figure, the contour plots of the loss function are shown, in which each line corresponds
to points in the XY-plane where the loss function has the same value. The direction of
steepest descent is always perpendicular to this line. The first loss function is of the form
L = 22 + y?, which takes the shape of a perfectly circular bowl, if one were to view the
height as the objective function value. This loss function treats x and y in a symmetric way.
The second loss function is of the form L = 2 4 4y?, which is an elliptical bowl. Note that
this loss function is more sensitive to changes in the value of y as compared to changes in
the value of z, although the specific sensitivity depends on the position of the data point.

In the case of the circular bowl of Figure 3.9(a), the gradient points directly at the
optimum solution, and one can reach the optimum in a single step, as long as the correct
step-size is used. This is not quite the case in the loss function of Figure 3.9(b), in which
the gradients are often more significant in the y-direction compared to the z-direction.
Furthermore, the gradient never points to the optimal solution, as a result of which many
course corrections are needed over the descent. A salient observation is that the steps along
the y-direction are large, but subsequent steps undo the effect of previous steps. On the other
hand, the progress along the z-direction is consistent but tiny. Although the situation of
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Figure 3.9(b) occurs in almost any optimization problem using steepest descent, the case of
the vanishing gradient is an extreme manifestation? of this behavior. The fact that a simple
quadratic bowl (which is trivial compared to the typical loss function of a deep network)
shows so much oscillation with the steepest-descent method is concerning. After all, the
repeated composition of functions (as implied by the underlying computational graph) is
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Figure 3.10: The derivatives of different activation functions are shown. Piecewise linear
activation functions have local gradient values of 1.

highly unstable in terms of the sensitivity of the output to the parameters in different parts
of the network. The problem of differing relative derivatives is extraordinarily large in real
neural networks, in which we have millions of parameters and gradient ratios that vary by
orders of magnitude. Furthermore, many activation functions have small derivatives, which
tends to encourage the vanishing gradient problem during backpropagation. As a result,
the parameters in later layers with large descent components are often oscillating with large
updates, whereas those in earlier layers make tiny but consistent updates. Therefore, neither
the earlier nor the later layers make much progress in getting closer to the optimal solution.
As a result, it is possible to get into situations where very little progress is made even after
training for a long time.

2A different type of manifestation occurs in cases where the parameters in earlier and later layers are
shared. In such cases, the effect of an update can be highly unpredictable because of the combined effect of
different layers. Such scenarios occur in recurrent neural networks in which the parameters in later temporal
layers are tied to those of earlier temporal layers. In such cases, small changes in the parameters can cause
large changes in the loss function in very localized regions without any gradient-based indication in nearby
regions. Such topological characteristics of the loss function are referred to as cliffs (cf. Section 3.5.4),
and they make the problem harder to optimize because the gradient descent tends to either overshoot or
undershoot.
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3.4.2 A Partial Fix with Activation Function Choice

The specific choice of activation function often has a considerable effect on the severity of the
vanishing gradient problem. The derivatives of the sigmoid and the tanh activation functions
are illustrated in Figure 3.10(a) and (b), respectively. The sigmoid activation function never
has a gradient of more than 0.25, and therefore it is very prone to the vanishing gradient
problem. Furthermore, it saturates at large absolute values of the argument, which refers
to the fact that the gradient is almost 0. In such cases, the weights of the neuron change
very slowly. Therefore, a few such activations within the network can significantly affect the
gradient computations. The tanh function fares better than the sigmoid function because it
has a gradient of 1 near the origin, but the gradient saturates rapidly at increasingly large
absolute values of the argument. Therefore, the tanh function will also be susceptible to the
vanishing gradient problem.

In recent years, the use of the sigmoid and the tanh activation functions has been
increasingly replaced with the ReLU and the hard tanh functions. The ReLU is also faster
to train because its gradient is efficient to compute. The derivatives of the ReLU and the
hard tanh functions are shown in Figure 3.10(c) and (d), respectively. It is evident that
these functions take on the derivative of 1 in certain intervals, although they might have
zero gradient in others. As a result, the vanishing gradient problem tends to occur less
often, as long as most of these units operate within the intervals where the gradient is 1.
In recent years, these piecewise linear variants have become far more popular than their
smooth counterparts. Note that the replacement of the activation function is only a partial
fix because the matrix multiplication across layers still causes a certain level of instability.
Furthermore, the piecewise linear activations introduce the new problem of dead neurons.

3.4.3 Dying Neurons and “Brain Damage”

It is evident from Figure 3.10(c) and (d) that the gradient of the ReLU is zero for negative
values of its argument. This can occur for a variety of reasons. For example, consider the case
where the input into a neuron is always nonnegative, whereas all the weights have somehow
been initialized to negative values. Therefore, the output will be 0. Another example is the
case where a high learning rate is used. In such a case, the pre-activation values of the
ReLU can jump to a range where the gradient is 0 irrespective of the input. In other words,
high learning rates can “knock out” ReLU units. In such cases, the ReLU might not fire for
any data instance. Once a neuron reaches this point, the gradient of the loss with respect
to the weights just before the ReLU will always be zero. In other words, the weights of
this neuron will never be updated further during training. Furthermore, its output will not
vary across different choices of inputs and therefore will not play a role in discriminating
between different instances. Such a neuron can be considered dead, which is considered a
kind of permanent “brain damage” in biological parlance. The problem of dying neurons
can be partially ameliorated by using learning rates that are somewhat modest. Another fix
is to use the leaky ReL U, which allows the neurons outside the active interval to leak some
gradient backwards.

3.4.3.1 Leaky ReLU
The leaky ReLU is defined using an additional parameter o € (0,1):

. <
B(v) = {O‘ v vs0 (3.39)
v otherwise
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Although « is a hyperparameter chosen by the user, it is also possible to learn it. Therefore,
at negative values of v, the leaky ReLLU can still propagate some gradient backwards, albeit
at a reduced rate defined by a < 1.

The gains with the leaky ReLU are not guaranteed, and therefore this fix is not com-
pletely reliable. A key point is that dead neurons are not always a problem, because they
represent a kind of pruning to control the precise structure of the neural network. Therefore,
a certain level of dropping of neurons can be viewed as a part of the learning process. After
all, there are limitations to our ability to tune the number of neurons in each layer. Dying
neurons do a part of this tuning for us. Indeed, the intentional pruning of connections is
sometimes used as a strategy for regularization [282]. Of course, if a very large fraction of
the neurons in the network are dead, that can be a problem as well because much of the
neural network will be inactive. Furthermore, it is undesirable for too many neurons to be
knocked out during the early training phases, when the model is very poor.

3.4.3.2 Maxout

A recently proposed solution is the use of mazout networks [148]. The idea in the maxout
unit is to have two coefficient vectors W and W instead of a single one. Subsequently, the
activation used is max{Wi - X, W5 - X }. In the event that bias neurons are used, the maxout
activation is max{Wl X 40, Wy - X + by }. One can view the maxout as a generalization
of the ReLU, because the ReLU is obtained by setting one of the coefficient vectors to
0. Even the leaky ReLU can be shown to be a special case of maxout, in which we set
Wy = aW; for a € (0,1). Like the ReLU, the maxout function is piecewise linear. However,
it does not saturate at all, and is linear almost everywhere. In spite of its linearity, it
has been shown [148] that maxout networks are universal function approximators. Maxout
has advantages over the ReLLU, and it enhances the performance of ensemble methods like
Dropout (cf. Section 4.5.4 of Chapter 4). The only drawback with the use of maxout is that

it doubles the number of required parameters.

3.5 Gradient-Descent Strategies

The most common method for parameter learning in neural networks is the steepest-descent
method, in which the gradient of the loss function is used to make parameter updates. In
fact, all the discussions in previous chapters are based on this assumption. As discussed
in the earlier section, the steepest-gradient method can sometimes behave unexpectedly
because it does not always point in the best direction of improvement, when steps of finite
size are considered. The steepest-descent direction is the optimal direction only from the
perspective of infinitesimal steps. A steepest-descent direction can sometimes become an
ascent direction after a small update in parameters. As a result, many course corrections
are needed. A specific example of this phenomenon is discussed in Section 3.4.1 in which
minor differences in sensitivity to different features can cause a steepest-descent algorithm to
have oscillations. The problem of oscillation and zigzagging is quite ubiquitous whenever the
steepest-descent direction moves along a direction of high curvature in the loss function. The
most extreme manifestation of this problem occurs in the case of extreme ill-conditioning,
for which the partial derivatives of the loss are wildly different with respect to the different
optimization variables. In this section, we will discuss several clever learning strategies that
work well in these ill-conditioned settings.
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3.5.1 Learning Rate Decay

A constant learning rate is not desirable because it poses a dilemma to the analyst. The
dilemma is as follows. A lower learning rate used early on will cause the algorithm to take
too long to come even close to an optimal solution. On the other hand, a large initial
learning rate will allow the algorithm to come reasonably close to a good solution at first;
however, the algorithm will then oscillate around the point for a very long time, or diverge
in an unstable way, if the high rate of learning is maintained. In either case, maintaining
a constant learning rate is not ideal. Allowing the learning rate to decay over time can
naturally achieve the desired learning-rate adjustment to avoid these challenges.

The two most common decay functions are exponential decay and inverse decay. The
learning rate «; can be expressed in terms of the initial decay rate oy and epoch t as
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Figure 3.11: Effect of momentum in smoothing zigzag updates

follows:

ap = apexp(—k -t) [Exponential Decay]
0

=T [Inverse Decay]

The parameter k controls the rate of the decay. Another approach is to use step decay in
which the learning rate is reduced by a particular factor every few epochs. For example, the
learning rate might be multiplied by 0.5 every 5 epochs. A common approach is to track the
loss on a held-out portion of the training data set, and reduce the learning rate whenever
this loss stops improving. In some cases, the analyst might even babysit the learning process,
and use an implementation in which the learning rate can be changed manually depending
on the progress. This type of approach can be used with simple implementations of gradient
descent, although it does not address many of the other problematic issues.
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3.5.2 Momentum-Based Learning

Momentum-based techniques recognize that zigzagging is a result of highly contradictory
steps that cancel out one another and reduce the effective size of the steps in the correct
(long-term) direction. An example of this scenario is illustrated in Figure 3.9(b). Simply
attempting to increase the size of the step in order to obtain greater movement in the correct
direction might actually move the current solution even further away from the optimum
solution. In this point of view, it makes a lot more sense to move in an “averaged” direction
of the last few steps, so that the zigzagging is smoothed out.

In order to understand this point, consider a setting in which one is performing gradient-
descent with respect to the parameter vector W. The normal updates for gradient-descent
with respect to loss function L (defined over a mini-batch of instances) are as follows:
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Figure 3.12: Effect of momentum in navigating complex loss surfaces. The annotation “GD”
indicates pure gradient descent without momentum. Momentum helps the optimization
process retain speed in flat regions of the loss surface and avoid local optima.

Here, « is the learning rate. In momentum-based descent, the vector V is modified with
exponential smoothing, where 8 € (0, 1) is a smoothing parameter:
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VefgV-—a—; W<=W+V

ow

Larger values of 3 help the approach pick up a consistent velocity V' in the correct direction.
Setting 5 = 0 specializes to straightforward mini-batch gradient-descent. The parameter [ is
also referred to as the momentum parameter or the friction parameter. The word “friction”
is derived from the fact that small values of 8 act as “brakes,” much like friction.

With momentum-based descent, the learning is accelerated, because one is generally
moving in a direction that often points closer to the optimal solution and the useless “side-
ways” oscillations are muted. The basic idea is to give greater preference to consistent
directions over multiple steps, which have greater importance in the descent. This allows
the use of larger steps in the correct direction without causing overflows or “explosions” in
the sideways direction. As a result, learning is accelerated. An example of the use of momen-
tum is illustrated in Figure 3.11. It is evident from Figure 3.11(a) that momentum increases
the relative component of the gradient in the correct direction. The corresponding effects
on the updates are illustrated in Figure 3.11(b) and (c). It is evident that momentum-based
updates can reach the optimal solution in fewer updates.
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The use of momentum will often cause the solution to slightly overshoot in the direction
where velocity is picked up, just as a marble will overshoot when it is allowed to roll down a
bowl. However, with the appropriate choice of [, it will still perform better than a situation
in which momentum is not used. The momentum-based method will generally perform
better because the marble gains speed as it rolls down the bowl; the quicker arrival at the
optimal solution more than compensates for the overshooting of the target. Overshooting is
desirable to the extent that it helps avoid local optima. Figure 3.12, which shows a marble
rolling down a complex loss surface (picking up speed as it rolls down), illustrates this
concept. The marble’s gathering of speed helps it efficiently navigate flat regions of the loss
surface. The parameter 8 controls the amount of friction that the marble encounters while
rolling down the loss surface. While increased values of 8 help in avoiding local optima, it
might also increase oscillation at the end. In this sense, the momentum-based method has a
neat interpretation in terms of the physics of a marble rolling down a complex loss surface.

3.5.2.1 Nesterov Momentum

The Nesterov momentum [353] is a modification of the traditional momentum method in
which the gradients are computed at a point that would be reached after executing a (-
discounted version of the previous step again (i.e., the momentum portion of the current
step). This point is obtained by multiplying the previous update vector V with the friction
parameter  and then computing the gradient at W + SV. The idea is that this corrected
gradient uses a better understanding of how the gradients will change because of the mo-
mentum portion of the update, and incorporates this information into the gradient portion
of the update. Therefore, one is using a certain amount of lookahead in computing the
updates. Let us denote the loss function by L(W) at the current solution W. In this case,
it is important to explicitly denote the argument of the loss function because of the way in
which the gradient is computed. Therefore, the update may be computed as follows:

V@ﬁV—aw; WeW+V
ow
Note that the only difference from the standard momentum method is in terms of where
the gradient is computed. Using the value of the gradient a little further along the previous
update can lead to faster convergence. In the previous analogy of the rolling marble, such
an approach will start applying the “brakes” on the gradient-descent procedure when the
marble starts reaching near the bottom of the bowl, because the lookahead will “warn” it
about the reversal in gradient direction.

The Nesterov method works only in mini-batch gradient descent with modest batch sizes;
using very small batches is a bad idea. In such cases, it can be shown that the Nesterov
method reduces the error to O(1/t?) after ¢ steps, as compared to an error of O(1/t) in the

momentum method.

3.5.3 Parameter-Specific Learning Rates

The basic idea in the momentum methods of the previous section is to leverage the consis-
tency in the gradient direction of certain parameters in order to speed up the updates. This
goal can also be achieved more explicitly by having different learning rates for different pa-
rameters. The idea is that parameters with large partial derivatives are often oscillating and
zigzagging, whereas parameters with small partial derivatives tend to be more consistent
but move in the same direction. An early method, which was proposed in this direction,
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was the delta-bar-delta method [217]. This approach tracks whether the sign of each partial
derivative changes or stays the same. If the sign of a partial derivative stays consistent, then
it is indicative of the fact that the direction is correct. In such a case, the partial derivative
in that direction increases. On the other hand, if the sign of the partial derivative flips all
the time, then the partial derivative decreases. However, this kind of approach is designed
for gradient descent rather than stochastic gradient descent, because the errors in stochastic
gradient descent can get magnified. Therefore, a number of methods have been proposed
that can work well even when the mini-batch method is used.

3.5.3.1 AdaGrad

In the AdaGrad algorithm [108], one keeps track of the aggregated squared magnitude of
the partial derivative with respect to each parameter over the course of the algorithm. The
square-root of this value is proportional to the root-mean-square slope for that parameter
(although the absolute value will increase with the number of epochs because of successive
aggregation).

Let A; be the aggregate value for the ith parameter. Therefore, in each iteration, the
following update is performed:

OL\? .

The update for the ith parameter w; is as follows:

w; = Wi — —e L. Vi
7 ’L \/E awZ b

If desired, one can use v/A; + € in the denominator instead of v/A; to avoid ill-conditioning.
Here, € is a small positive value such as 1078,

Scaling the derivative inversely with /4; is a kind of “signal-to-noise” normalization
because A; only measures the historical magnitude of the gradient rather than its sign; it
encourages faster relative movements along gently sloping directions with consistent sign
of the gradient. If the gradient component along the ith direction keeps wildly fluctuating
between +100 and —100, this type of magnitude-centric normalization will penalize that
component far more than another gradient component that consistently takes on the value in
the vicinity of 0.1 (but with a consistent sign). For example, in Figure 3.11, the movements
along the oscillating direction will be de-emphasized, and the movement along the consistent
direction will be emphasized. However, absolute movements along all components will tend
to slow down over time, which is the main problem with the approach. The slowing down is
caused by the fact that A; is the aggregate value of the entire history of partial derivatives.
This will lead to diminishing values of the scaled derivative. As a result, the progress of
AdaGrad might prematurely become too slow, and it will eventually (almost) stop making
progress. Another problem is that the aggregate scaling factors depend on ancient history,
which can eventually become stale. The use of stale scaling factors can increase inaccuracy.
As we will see later, most of the other methods use exponential averaging, which solves
both problems.

3.5.3.2 RMSProp

The RMSProp algorithm [194] uses a similar motivation as AdaGrad for performing the
“signal-to-noise” normalization with the absolute magnitude 1/ A; of the gradients. However,
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instead of simply adding the squared gradients to estimate A;, it uses exponential averaging.
Since one uses averaging to normalize rather than aggregate values, the progress is not slowed
prematurely by a constantly increasing scaling factor A;. The basic idea is to use a decay
factor p € (0,1), and weight the squared partial derivatives occurring ¢ updates ago by
pt. Note that this can be easily achieved by multiplying the current squared aggregate
(i.e., running estimate) by p and then adding (1 — p) times the current (squared) partial
derivative. The running estimate is initialized to 0. This causes some (undesirable) bias in
early iterations, which disappears over the longer term. Therefore, if A; is the exponentially
averaged value of the ith parameter w;, we have the following way of updating A;:

aeptita-p(28) v (3.41)
i i - ( .
p p ws
The square-root of this value for each parameter is used to normalize its gradient. Then,
the following update is used for (global) learning rate «:

Wy = Wy — e L. Vi
i ) /714% 8101', )

If desired, one can use v/A; + € in the denominator instead of v/A; to avoid ill-conditioning.
Here, € is a small positive value such as 10~®. Another advantage of RMSProp over AdaGrad
is that the importance of ancient (i.e., stale) gradients decays exponentially with time. Fur-
thermore, it can benefit by incorporating concepts of momentum within the computational
algorithm (cf. Sections 3.5.3.3 and 3.5.3.5). The drawback of RMSProp is that the running
estimate A; of the second-order moment is biased in early iterations because it is initialized
to 0.

3.5.3.3 RMSProp with Nesterov Momentum

RMSProp can also be combined with Nesterov momentum. Let A; be the squared aggregate
of the ith weight. In such cases, we introduce the additional parameter 8 € (0,1) and use
the following updates:

v = Bu; — e! (8L(W+BV)

\/Ai 3’[1)2
Note that the partial derivative of the loss function is computed at a shifted point, as is
common in the Nesterov method. The weight W is shifted with gV while computing the

partial derivative with respect to the loss function. The maintenance of A; is done using
the shifted gradients as well:

); w; < w; +v; Vi

8L(W+5V>) vi (3.42)

Although this approach benefits from adding momentum to RMSProp, it does not correct
for the initialization bias.

3.5.3.4 AdaDelta

The AdaDelta algorithm [553] uses a similar update as RMSProp, except that it eliminates
the need for a global learning parameter by computing it as a function of incremental



140 CHAPTER 3. TRAINING DEEP NEURAL NETWORKS

updates in previous iterations. Consider the update of RMSProp, which is repeated below:

w; = w; — — oL, Vi
K3 K3 \/E awl k)

Awi

We will show how « is replaced with a value that depends on the previous incremental
updates. In each update, the value of Aw; is the increment in the value of w;. As with the
exponentially smoothed gradients A;, we keep an exponentially smoothed value §; of the
values of Aw; in previous iterations with the same decay parameter p:

8; <= pdi + (1 — p)(Aw;)? Vi (3.43)

For a given iteration, the value of §; can be computed using only the iterations before it
because the value of Aw; is not yet available. On the other hand, A; can be computed using
the partial derivative in the current iteration as well. This is a subtle difference between
how A; and §; are computed. This results in the following AdaDelta update:

Ww; Wy A/ Al awZ ; 1
~—_————

Awi

It is noteworthy that a parameter « for the learning rate is completely missing from this
update. The AdaDelta method shares some similarities with second-order methods because

the ratio 4/ % in the update is a heuristic surrogate for the inverse of the second derivative

of the loss with respect to w; [553]. As discussed in subsequent sections, many second-order
methods like the Newton method also do not use learning rates.

3.5.3.5 Adam

The Adam algorithm uses a similar “signal-to-noise” normalization as AdaGrad and RM-
SProp; however, it also exponentially smooths the first-order gradient in order to incorpo-
rate momentum into the update. It also directly addresses the bias inherent in exponential
smoothing when the running estimate of a smoothed value is unrealistically initialized to O.

As in the case of RMSProp, let A; be the exponentially averaged value of the ith pa-
rameter w;. This value is updated in the same way as RMSProp with the decay parameter

p€(0,1):

diephit (- (22) v (3.44)
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At the same time, an exponentially smoothed value of the gradient is maintained for which
the ith component is denoted by F;. This smoothing is performed with a different decay
parameter py:

oL
F, < prF+ (1= py) (aw) Vi (3.45)

This type of exponentially smoothing of the gradient with p; is a variation of the momentum
method discussed in Section 3.5.2 (which is parameterized by a friction parameter 3 instead
of ps). Then, the following update is used at learning rate o in the tth iteration:

Qi

——=Fi; Vi
VTR

W; <= W; —
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There are two key differences from the RMSProp algorithm. First, the gradient is replaced
with its exponentially smoothed value in order to incorporate momentum. Second, the
learning rate oy now depends on the iteration index ¢, and is defined as follows:

1= pt
= < A4
oy a(l—p?) (3.46)
—_——
Adjust Bias

Technically, the adjustment to the learning rate is actually a bias correction factor that is
applied to account for the unrealistic initialization of the two exponential smoothing mech-
anisms, and it is particularly important in early iterations. Both F; and A; are initialized
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Figure 3.13: An example of a cliff in the loss surface

to 0, which causes bias in early iterations. The two quantities are affected differently by the
bias, which accounts for the ratio in Equation 3.46. It is noteworthy that each of p* and p’}
converge to 0 for large ¢ because p, py € (0,1). As a result, the initialization bias correction
factor of Equation 3.46 converges to 1, and oy converges to a. The default suggested values
of py and p are 0.9 and 0.999, respectively, according to the original Adam paper [241].
Refer to [241] for details of other criteria (such as parameter sparsity) used for selecting p
and py. Like other methods, Adam uses \/A; + € (instead of \/4;) in the denominator of
the update for better conditioning. The Adam algorithm is extremely popular because it
incorporates most of the advantages of other algorithms, and often performs competitively
with respect to the best of the other methods [241].

3.5.4 Cliffs and Higher-Order Instability

So far, only the use of first-order derivatives has been discussed in this chapter. The progress
with first-order derivatives can be slow with some error surfaces. Part of the problem is that
the first-order derivatives provide a limited amount of information about the error surface,
which can cause the updates to overshoot. The complexity of the loss surfaces of many
neural networks can cause gradient-based updates to perform in an unanticipated way.

An example of a loss surface is shown in Figure 3.13. In this case, there is a gently sloping
surface that rapidly changes into a cliff. However, if one computed only the first-order partial
derivative with respect to the variable x shown in the figure, one would only see a gentle
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slope. As a result, a small learning rate will lead to very slow learning, whereas increasing
the learning rate can suddenly cause overshooting to a point far from the optimal solution.
This problem is caused by the nature of the curvature (i.e., changing gradient), where
the first-order gradient does not contain the information needed to control the size of the
update. In many cases, the rate of change of gradient can be computed using the second-
order derivative, which provides useful (additional) information. In general, second-order
methods approximate the local loss surface with a quadratic bowl, which is more accurate
than the linear approximation. Some second-order methods like the Newton method require
exactly one iteration in order to find the local optimal solution for a quadratic surface.
Of course, the loss surface of neural models is typically not quadratic. Nevertheless, the
approximation is often good enough that gradient-descent methods are greatly accelerated
at least in cases where the change in the gradient is not too sudden or drastic.

Cliffs are not desirable because they manifest a certain level of instability in the loss
function. This implies that a small change in some of the weights can either change the
loss in a tiny way or suddenly change the loss by such a large amount that the resulting
solution is even further away from the true optimum. As you will learn in Chapter 7,
all temporal layers of a recurrent neural network share the same parameters. In such a
case, the vanishing and exploding gradient means that there is varying sensitivity of the
loss function with respect to the parameters in earlier and later layers (which are tied
anyway). Therefore, a small change in a well-chosen parameter can cascade in an unstable
way through the layers and either blow up or have negligible effect on the value of the loss
function. Furthermore, it is hard to control the step size in a way that prevents one of these
two events. This is the typical behavior one would encounter near a cliff. As a result, it is
easy to miss the optimum during a gradient-descent step. One way of understanding this
behavior is that sharing parameters across layers naturally leads to higher-order effects of
weight perturbations on the loss function. This is because the shared weights of different
layers are multiplied during neural network prediction, and a first-order gradient is now
insufficient to model the effect of the curvature in the loss function, which is a measure of
the change in gradient along a particular direction. Such settings are often addressed with
techniques that either clip the gradient, or explicitly use the curvature (i.e., second-order
derivative) of the loss function.

3.5.5 Gradient Clipping

Gradient clipping is a technique that is used to deal with settings in which the partial
derivatives along different directions have exceedingly different magnitudes. Some forms of
gradient clipping use a similar principle to that used in adaptive learning rates by trying the
make the different components of the partial derivatives more even. However, the clipping
is done only on the basis of the current values of the gradients rather than their historical
values. Two forms of gradient clipping are most common:

1. Value-based clipping: In value-based clipping, a minimum and maximum threshold
are set on the gradient values. All partial derivatives that are less than the minimum
are set to the minimum threshold. All partial derivatives that are greater than the
maximum are set to the maximum threshold.

2. Norm-based clipping: In this case, the entire gradient vector is normalized by the
Lo-norm of the entire vector. Note that this type of clipping does not change the
relative magnitudes of the updates along different directions. However, for neural
networks that share parameters across different layers (like recurrent neural networks),
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the effect of the two types of clipping is very similar. By clipping, one can achieve a
better conditioning of the values, so that the updates from mini-batch to mini-batch
are roughly similar. Therefore, it would prevent an anomalous gradient explosion in
a particular mini-batch from affecting the solution too much.

By and large, the effects of gradient clipping are quite limited compared to many other
methods. However, it is particularly effective in avoiding the exploding gradient problem in
recurrent neural networks. In recurrent neural networks (cf. Chapter 7), the parameters are
shared across different layers, and a derivative is computed with respect to each copy of the
shared parameter by treating it as a separate variable. These derivatives are the temporal
components of the overall gradient, and the values are clipped before adding them in order
to obtain the overall gradient. A geometric interpretation of the exploding gradient problem
is provided in [369], and a detailed exploration of why gradient clipping works is provided
in [368].

3.5.6 Second-Order Derivatives

A number of methods have been proposed in recent years for using second-order derivatives
for optimization. Such methods can partially alleviate some of the problems caused by
curvature of the loss function.

Consider the parameter vector W = (w;...wq)T, which is expressed® as a column

vector. The second-order derivatives of the loss function L(W) are of the following form:

. O*L(W)
E 8’(1)1611)]
Note that the partial derivatives use all pairwise parameters in the denominator. Therefore,
for a neural network with d parameters, we have a d x d Hessian matriz H, for which the
(i, 7)th entry is H;;. The second-order derivatives of the loss function can be computed with
backpropagation [315], although this is rarely done in practice. The Hessian can be viewed
as the Jacobian of the gradient.
One can write a quadratic approximation of the loss function in the vicinity of parameter
vector W by using the following Taylor expansion:

L(W) % L(Wo) + (I — Wo) [VL(Wo)] + 3 (¥ — o) H(W ~ Wo) (3.47)

Note that the Hessian H is computed at W . Here, the parameter vectors W and W are
d-dimensional column vectors, as is the gradient of the loss function. This is a quadratic
approximation, and one can simply set the gradient to 0, which results in the following
optimality condition for the quadratic approximation:

VL(W) =0 [Gradient of Loss Function]
VL(Wo) + HW —Wy) =0 [Gradient of Taylor approximation|

One can rearrange the above optimality condition to obtain the following Newton update:

W' =Wo— H VLW, (3.48)

3In most of this book, we have worked with W as a row-vector. However, it is notationally convenient
here to work with W as a column-vector.
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One interesting characteristic of this update is that it is directly obtained from an opti-
mality condition, and therefore there is no learning rate. In other words, this update is
approximating the loss function with a quadratic bowl and moving ezactly to the bottom
of the bowl in a single step; the learning rate is already incorporated implicitly. Recall from
Figure 3.9 that first-order methods bounce along directions of high curvature. Of course,
the bottom of the quadratic approximation is not the bottom of the true loss function, and
therefore multiple Newton updates will be needed.

The main difference of Equation 3.48 from the update of steepest-gradient descent is pre-
multiplication of the steepest direction (which is [V L(Wg)]) with the inverse of the Hessian.
This multiplication with the inverse Hessian plays a key role in changing the direction of
the steepest-gradient descent, so that one can take larger steps in that direction (resulting
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Figure 3.14: The effect of pre-multiplication of steepest-descent direction with the inverse
Hessian

LEAST
CURVATURE
DIRECTION

f(x, y)

Figure 3.15: The curvature effect in valleys

in better improvement of the objective function) even if the instantaneous rate of change in
that direction is not as large as the steepest-descent direction. This is because the Hessian
encodes how fast the gradient is changing in each direction. Changing gradients are bad for
larger updates because one might inadvertently worsen the objective function, if the signs
of many components of the gradient change during the step. It is profitable to move in
directions where the ratio of the gradient to the rate of change of the gradient is large, so
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that one can take larger steps without causing harm to the optimization. Pre-multiplication
with the inverse of the Hessian achieves this goal. The effect of the pre-multiplication of
the steepest-descent direction with the inverse Hessian is shown in Figure 3.14. It is helpful
to reconcile this figure with the example of the quadratic bowl in Figure 3.9. In a sense,
pre-multiplication with the inverse Hessian biases the learning steps towards low-curvature
directions. In one dimension, the Newton step is simply the ratio of the first derivative (rate
of change) to the second derivative (curvature). In multiple dimensions, the low-curvature
directions tend to win out because of multiplication by the inverse Hessian.

The specific effect of curvature is particularly evident when one encounters loss functions
in the shape of sloping or winding valleys. An example of a sloping valley is shown in
Figure 3.15. A valley is a dangerous topography for a gradient-descent method, particularly
if the bottom of the valley has a steep and rapidly changing surface (which creates a narrow
valley). This is, of course, not the case in Figure 3.15, which is a relatively easier case.
However, even in this case, the steepest-descent direction will often bounce along the sides of
the valley, and move down the slope relatively slowly if the step-sizes are chosen inaccurately.
In narrow valleys, the gradient-descent method will bounce along the steep sides of the
valley even more violently without making much progress in the gently sloping direction,
where the greatest long-term gains are present. In such cases, it is only by normalizing the
gradient information with the curvature, that will provide the correct directions of long-
term movement. This type of normalization tends to favor low-curvature directions like the
ones shown in Figure 3.15. Multiplication of the steepest-descent direction with the inverse
Hessian achieves precisely this goal.

In most large-scale neural network settings, the Hessian is too large to store or compute
explicitly. It is not uncommon to have neural networks with millions of parameters. Trying
to compute the inverse of a 10 x 106 Hessian matrix is impractical with the computational
power available today. In fact, it is difficult to even compute the Hessian, let alone invert it!
Therefore, many approximations and variations of the Newton method have been developed.
Examples of such methods include Hessian-free optimization [41, 189, 313, 314] (or method
of conjugate gradients) and quasi-Newton methods that approximate the Hessian. The basic
goal of these methods to make second-order updates without exactly computing the Hessian.

3.5.6.1 Conjugate Gradients and Hessian-Free Optimization

The conjugate gradient method [189] requires d steps to reach the optimal solution of a
quadratic loss function (instead of a single Newton step). This approach is well known in
the classical literature on neural networks [41, 443], and a variant has recently been reborn
under the title of “Hessian-free optimization.” This name is motivated by the fact that the
search direction can be computed without the explicit computation of the Hessian.

A key problem in first-order methods is the zigzag movement of the optimization process,
which undoes much of the work done in previous iterations. In the conjugate gradient
method, the directions of movement are related to one another in such a way that the work
done in previous iterations is never undone (for a quadratic loss function). This is because
the change in gradient in a step, when projected along the vector of any other movement
direction, is always 0. Furthermore, one uses line search to determine the optimal step size
by searching over different step sizes. Since an optimal step is taken along each direction and
the work along that direction is never undone by subsequent steps, d linearly independent
steps are needed to reach the optimum of a d-dimensional function. Since it is possible to
find such directions only for quadratic loss functions, we will first discuss the conjugate

gradient method under the assumption that the loss function L(W) is quadratic.
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A quadratic and convex loss function L(W) has an ellipsoidal contour plot of the type
shown in Figure 3.16. The orthonormal eigenvectors g ...q,_; of the symmetric Hessian
represent the axes directions of the ellipsoidal contour plot. One can rewrite the loss func-
tion in a new coordinate space corresponding to the eigenvectors. In the axis system cor-
responding the eigenvectors, the (transformed) variables do not have interactions with one
another because of the alignment of ellipsoidal loss contour with the axis system. This s
because the new Hessian Hy = QTHQ obtained by rewriting the loss function in terms of
the transformed variables is diagonal, where @ is a d X d matrix with columns containing
the eigenvectors. Therefore, each transformed variable can be optimized independently of

(a) Eigenvectors of Hessian (b) Arbitrary conjugate pair
Mutually Orthogonal: @T@ =0  Non-orthogonal: g7 H ;=0

Figure 3.16: The eigenvectors of the Hessian of a quadratic function represent the orthogonal
axes of the quadratic ellipsoid and are also mutually orthogonal. The eigenvectors of the
Hessian are orthogonal conjugate directions. The generalized definition of conjugacy may
result in non-orthogonal directions.

the others. Alternatively, one can work with the original variables by successively making
the best (projected) gradient-descent step along each eigenvector so as to minimize the loss
function. The best movement along a particular direction is done using line search to select
the step size. The nature of the movement is illustrated in Figure 3.16(a). Note that move-
ment along the jth eigenvector does not disturb the work done along earlier eigenvectors
and therefore d steps are sufficient to each the optimal solution.

Although it is impractical to compute the eigenvectors of the Hessian, there are other
efficiently computable directions satisfying similar properties; this key property is referred
to as mutual conjugacy of vectors. Note that two eigenvectors g; and g; of the Hessian satisfy
qiqu = 0 because of orthogonality. Furthermore, since g; is an eigenvector of H, we have
Hq; = \;q; for some scalar eigenvalue \;. Multiplying both sides with @T, we can easily show
that the eigenvectors of the Hessian satisfy qiTqu = 0 in pairwise fashion. This condition
is referred to as the mutual conjugacy condition, and it is equivalent to saying that the
Hessian H, = QT HQ in the transformed axis-system of directions g, . ..g,_; is diagonal. In
fact, it turns out that if we select any set of (not necessarily orthogonal) vectors Gy ... G 1
satisfying the mutual conjugacy condition, then movement along any of these directions
does not disturb the projected gradient along other directions. Conjugate directions other
than Hessian eigenvectors, such as those shown in Figure 3.16(b), may not be mutually
orthogonal. If we re-write the quadratic loss function in terms of coordinates in a non-
orthogonal axis system of conjugate directions, we will get nicely separated variables with
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a diagonal Hessian H, = QTHQ. However, H, is not a true diagonalization of H because
QT Q # I. Nevertheless, such non-interacting directions are crucial to avoid zigzagging.

Let W; and W, represent the respective parameter vectors before and after move-
ment along q,. The change in gradient VL(W ;1) — VL(W,) caused by movement along
the direction g, points in the same direction as Hgq,. This is because the product of the
second-derivative (Hessian) matrix with a direction is proportional to the change in the
first-derivative (gradient) when moving along that direction. This relationship is a finite-
difference approximation for non-quadratic functions and it is exact for quadratic functions.
Therefore, the projection (or dot product) of this change vector with respect to any other
step vector (W;41 — W;) o g, is given by the following:

Wis1 — W' [VL(W 1) — VL(W,)] o qf Hg, =0

Earlier step Current gradient change

This means that the only change to the gradient along a particular direction g; (during the
entire learning) occurs during the step along that direction. Line search ensures that the final
gradient along that direction is 0. Convex loss functions have linearly independent conjugate
directions (see Exercise 7). By making the best step along each conjugate direction, the final
gradient will have zero dot product with d linearly independent directions; this is possible
only when the final gradient is the zero vector (see Exercise 8), which implies optimality
for a convex function. In fact, one can often reach a near-optimal solution in far fewer than
d updates.

How can one generate conjugate directions iteratively? The obvious approach requires
one needs to track O(d?) vector components of all previous O(d) conjugate directions in
order to enforce conjugacy of the next direction with respect to all these previous direc-
tions (see Exercise 11). Surprisingly, only the most recent conjugate direction is needed to
generate the next direction [359, 443], when steepest decent directions are used for iterative
generation. This is not an obvious result (see Exercise 12). The direction g, is, therefore,
defined iteratively as a linear combination of only the previous conjugate direction g, and
the current steepest descent direction VL(W ;1) with combination parameter /3;:

Gpp1 = —~VL(Wit1) + Beg, (3.49)

Premultiplying both sides with g/ H and using the conjugacy condition to set the left-hand
side to 0, one can solve for G;:

@ HVL(Ti)

B i — (3.50)
ngQt

This leads to an iterative update process, which initializes g, = —VL(Wj), and computes
Gy, iteratively for ¢ =0,1,2,...T:

1. Update W1 <= Wy + o;q,. Here, the step size a; is computed using line search to
minimize the loss function.
- =T A7
2. Set §py = —VL(Wi41) + (M) G, Increment t by 1.
q, Haq,
It can be shown [359, 443] that g, satisfies conjugacy with respect to all previous g;. A
systematic road-map of this proof is provided in Exercise 12.
The above updates do not seem to be Hessian-free, because the matrix H is included in
the above updates. However, the underlying computations only need the projection of the
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Hessian along particular directions; we will see that these can be computed indirectly using
the method of finite differences without explicitly computing the individual elements of the
Hessian. Let ¥ be the vector direction for which the projection Hv needs to be computed.
The method of finite differences computes the loss gradient at the current parameter vector
W and at W + v for some small value of § in order to perform the approximation:

VLW + 6v) — VL(W)
6

H7o ~ o VL(W + 6v) — VL(W) (3.51)
The right-hand side is free of the Hessian. The condition is exact for quadratic functions.
Other alternatives for Hessian-free updates are discussed in [41].

So far, we have discussed the simplified case of quadratic loss functions, in which the
second-order derivative matrix (i.e., Hessian) is a constant matrix (i.e., independent of the
current parameter vector). However, neural loss functions are not quadratic and, therefore,
the Hessian matrix is dependent on the current value of W;. Do we first create a quadratic
approximation at a point and then solve it for a few iterations with the Hessian (quadratic
approximation) fixed at that point, or do we change the Hessian every iteration? The former
is referred to as the linear conjugate gradient method, whereas the latter is referred to as
the nonlinear conjugate gradient method. The two methods are equivalent for quadratic loss
functions, which almost never occur in neural networks.

Classical work in neural networks and machine learning has predominantly explored the
use of the nonlinear conjugate gradient method [41], whereas recent work [313, 314] ad-
vocates the use of linear conjugate methods. In the nonlinear conjugate gradient method,
the mutual conjugacy of the directions will deteriorate over time, which can have an un-
predictable effect on overall progress even after a large number of iterations. A part of the
problem is that the process of computing conjugate directions needs to be restarted every
few steps as the mutual conjugacy deteriorates. If the deterioration occurs too fast, one does
not gain much from conjugacy. On the other hand, each quadratic approximation in the lin-
ear conjugate gradient method can be solved exactly, and will typically be (almost) solved
in much fewer than d iterations. Although multiple such approximations will be needed,
there is guaranteed progress within each approximation, and the required number of ap-
proximations is often not too large. The work in [313] experimentally shows the superiority
of linear conjugate gradient methods.

3.5.6.2 Quasi-Newton Methods and BFGS

The acronym BFGS stands for the Broyden—Fletcher—-Goldfarb—Shanno algorithm, and it
is derived as an approximation of the Newton method. Let us revisit the updates of the
Newton method. A typical update of the Newton method is as follows:

W' <=Wo— H VLW, (3.52)

In quasi-Newton methods, a sequence of approximations of the inverse Hessian matrix are
used in various steps. Let the approximation of the inverse Hessian matrix in the ¢th step be
denoted by Gy. In the very first iteration, the value of G is initialized to the identity matrix,
which amounts to moving along the steepest-descent direction. This matrix is continuously
updated from G; to G¢41 with low-rank updates. A direct restatement of the Newton update
in terms of the inverse Hessian Gy ~ H; ' is as follows:

Wt-i—l < Wt — Gt[VL(Wt)] (353)
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The above update can be improved with an optimized learning rate «; for non-quadratic
loss functions working with (inverse) Hessian approximations like Gy:

Wt+1 = Wt — oGy [VL(Wt)] (354)

The optimized learning rate ay is identified with line search. The line search does not
need to be performed exactly (like the conjugate gradient method), because maintenance
of conjugacy is no longer critical. Nevertheless, approximate conjugacy of the early set of
directions is maintained by the method when starting with the identity matrix. One can
(optionally) reset Gy to the identity matrix every d iterations (although this is rarely done).
It remains to be discussed how the matrix G471 is approximated from Gy. For this
purpose, the quasi-Newton condition, also referred to as the secant condition, is needed:

Wt+1 - Wt = Gt+1 [VL(Wt+1) - VL(Wt)] (355)
———
Parameter Change First derivative change

The above formula is simply a finite-difference approximation. Intuitively, multiplication
of the second-derivative matrix (i.e., Hessian) with the parameter change (vector) approx-
imately provides the gradient change. Therefore, multiplication of the inverse Hessian ap-
proximation Gyy; with the gradient change provides the parameter change. The goal is
to find a symmetric matrix Gy satisfying Equation 3.55, but it represents an under-
determined system of equations with an infinite number of solutions. Among these, BFGS
chooses the closest symmetric G¢41 to the current Gy, and achieves this goal by posing a
minimization objective function ||Gty1 — Gt||F in the form of a weighted Frobenius norm.
The solution is as follows:

Gii1 < (I — Agol )Go(I — Awid; ) + AvGea; (3.56)

Here, the (column) vectors g, and v, represent the parameter change and the gradient
change; the scalar A; = 1/(g} v;) is the inverse of the dot product of these two vectors.

G =W — Wy v, =VL(Wy11)— VL(W,)

The update in Equation 3.56 can be made more space efficient by expanding it, so that fewer
temporary matrices need to be maintained. Interested readers are referred to [300, 359, 376]
for implementation details and derivation of these updates.

Even though BFGS benefits from approximating the inverse Hessian, it does need to
carry over a matrix Gy of size O(d?) from one iteration to the next. The limited memory
BFGS (L-BFGS) reduces the memory requirement drastically from O(d?) to O(d) by not
carrying over the matrix G; from the previous iteration. In the most basic version of the L-
BFGS method, the matrix G is replaced with the identity matrix in Equation 3.56 in order
to derive G11. A more refined choice is to store the m =~ 30 most recent vectors g, and v;.
Then, L-BFGS is equivalent to initializing G;_,,+1 to the identity matrix and recursively
applying Equation 3.56 m times to derive G;11. In practice, the implementation is optimized
to directly compute the direction of movement from the vectors without explicitly storing
large intermediate matrices from Gi_,,+1 to G¢. The directions found by L-BFGS roughly
satisfy mutual conjugacy even with approximate line search.

3.5.6.3 Problems with Second-Order Methods: Saddle Points

Second-order methods are susceptible to the presence of saddle points. A saddle point is a
stationary point of a gradient-descent method because its gradient is zero, but it is not a
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minimum (or maximum). A saddle point is an inflection point, which appears to be either a
minimum or a maximum depending on which direction we approach it from. Therefore, the
quadratic approximation of the Newton method will give vastly different shapes depending
on the direction that one approaches the saddle point from. A 1-dimensional function with
a saddle point is the following:

SADDLE
POINT

a(x, y)

-0.2

. . . . . . . . . 1
-1 -0.8 -06 -04 -02 0 0.2 04 06 08 1 y -1
X

(a) 1-dimensional saddle point (b) 2-dimensional saddle point
Figure 3.17: Illustrations of saddle points

This function is shown in Figure 3.17(a), and it has an inflection point at z = 0. Note
that a quadratic approximation at > 0 will look like an upright bowl, whereas a quadratic
approximation at x < 0 will look like an inverted bowl. Furthermore, even if one reaches
x = 0 in the optimization process, both the second derivative and the first derivative will
be zero. Therefore, a Newton update will take the 0/0 form and become indefinite. Such a
point is a degenerate point from the perspective of numerical optimization. Not all saddle
points are degenerate points and vice versa. For multivariate problems, such degenerate
points are often wide and flat regions that are not minima of the objective function. They
do present a significant problem for numerical optimization. An example of such a function
is h(x,y) = 23 + y3, which is degenerate at (0,0). Furthermore, the region near (0,0) will
appear like a flat plateau. These types of plateaus create problems for learning algorithms,
because first-order algorithms slow down in these regions and second-order algorithms also
cannot recognize them as spurious regions. It is noteworthy that such saddle points arise
only in higher-order algebraic functions (i.e., higher than second order), which are common
in neural network optimization.

It is also instructive to examine the case of a saddle point that is not a degenerate point.
An example of a 2-dimensional function with a saddle point is as follows:

g(z,y) =2 —y°

This function is shown in Figure 3.17(b). The saddle point is (0,0). It is easy to see that
the shape of this function resembles a riding saddle. In this case, approaching from the
x direction or from the y direction will result in very different quadratic approximations.
In one case, the function will appear to be a minimum, and in another case the function
will appear to be a maximum. Furthermore, the saddle point (0,0) will be a stationary
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point from the perspective of a Newton update, even though it is not an extremum. Saddle
points occur frequently in regions between two hills of the loss function, and they present
a problematic topography for second-order methods. Interestingly, first-order methods are
often able to escape from saddle points [146], because the trajectory of first-order methods
is simply not attracted by such points. On the other hand, Newton’s method will jump
directly to the saddle point.

Unfortunately, some neural-network loss functions seem to contain a large number of
saddle points. Second-order methods therefore are not always preferable to first-order meth-
ods; the specific topography of a particular loss function may have an important role to
play. Second-order methods are advantageous in situations with complex curvatures of the
loss function or in the presence of cliffs. In other functions with saddle points, first-order
methods are advantageous. Note that the pairing of computational algorithms (like Adam)
with first-order gradient-descent methods already incorporates several advantages of second-
order methods in an implicit way. Therefore, real-world practitioners often prefer first-order
methods in combination with computational algorithms like Adam. Recently, some methods
have been proposed [88] to address saddle points in second-order methods.

3.5.7 Polyak Averaging

One of the motivations for second-order methods is to avoid the kind of bouncing behavior
caused by high-curvature regions. The example of the bouncing behavior caused in valleys
(cf. Figure 3.15) is another example of this setting. One way of achieving some stability with
any learning algorithm is to create an exponentially decaying average of the parameters
over time, so that the bouncing behavior is avoided. Let W1 ... Wy, be the sequence of
parameters found by any learning method over the full sequence of T steps. In the simplest
version of Polyak averaging, one simply computes the average of all the parameters as the
final set W;:
7 _ Zle Wz

Wr === (3.57)

For simple averaging, we only need to compute Wﬁ} once at the end of the process, and we
do not need to compute the values at 1...7 — 1.

However, for exponential averaging with decay parameter 8 < 1, it is helpful to compute
these values iteratively and maintain a running average over the course of the algorithm:

T B

tT St ge—i
a1 B

W{ =(1-B)W;+ b’W{_l [Recursive Formula]

[Explicit Formula]

The two formulas above are approximately equivalent at large values of ¢. The second
formula is convenient because it enables maintenance over the course of the algorithm, and
one does not need to maintain the entire history of parameters. Exponentially decaying
averages are more useful than simple averages to avoid the effect of stale points. In simple
averaging, the final result may be too heavily influenced by the early points, which are poor
approximations to the correct solution.

3.5.8 Local and Spurious Minima

The example of the quadratic bowl given in earlier sections is a relatively simple optimiza-
tion problem that has a single global optimum. Such problems are referred to as convex
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optimization problems, and they represent the simplest case of optimization. In general,
however, the objective function of a neural network is not convex, and it is likely to have
many local minima. In such cases, it is possible for the learning to converge to a subopti-
mal solution. In spite of this fact, with reasonably good initialization, the problem of local
minima in neural networks causes fewer problems than might be expected.

Local minima are problematic only when their objective function values are significantly
larger than that of the global minimum. In practice, however, this does not seem to be the
case in neural networks. Many research results [88, 426] have shown that the local minima
of real-life networks have very similar objective function values to the global minimum. As
a result, their presence does not seem to cause as strong a problem as usually thought.

Local minima often cause problems in the context of model generalization with limited
data. An important point to keep in mind is that the loss function is always defined on a
limited sample of the training data, which is only a rough approximation of what the shape
of the loss function looks like on the true distribution of the unseen test data. When the
size of the training data is small, a number of spurious global or local minima are created
by the paucity of training data. These minima are not seen in the (infinitely large) unseen
distribution of test examples, but they appear as random artifacts of the particular choice of
the training data set. Such spurious minima are often more prominent and attractive when
the loss function is constructed on smaller training samples. In such cases, spurious minima
can indeed create a problem, because they do not generalize well to unseen test instances.
This problem is slightly different from the usual concept of local minima understood in
traditional optimization; the local minima on the training data do not generalize well to
the test data. In other words, the shape of the loss function is not even the same on the
training and on the test data, and therefore the minima in the two cases do not match. Here,
it is important to understand that there are fundamental differences between traditional
optimization and machine learning methods that attempt to generalize a loss function on a
limited data set to the universe of test examples. This is a notion referred to as empirical
risk minimization, in which one computes the (approximate) empirical risk for a learning
algorithm because the true distribution of the examples is unknown. When starting with
random initialization points, it is often possible to fall into one of these spurious minima,
unless one is careful to move the initialization point to a place closer to the basins of
true optima (from a model generalization point of view). One such approach is that of
unsupervised pretraining, which is discussed in Chapter 4.

The specific problem of spurious minima (caused by the inability to generalize the results
from a limited training data to unseen test data) is a much larger problem in neural network
learning than the problem of local minima (from the perspective of traditional optimization).
The nature of this problem is different enough from the normal understanding of local
minima, so that it discussed in a separate chapter on model generalization (cf. Chapter 4).

3.6 Batch Normalization

Batch normalization is a recent method to address the vanishing and exploding gradient
problems, which cause activation gradients in successive layers to either reduce or increase
in magnitude. Another important problem in training deep networks is that of internal
covariate shift. The problem is that the parameters change during training, and therefore
the hidden variable activations change as well. In other words, the hidden inputs from early
layers to later layers keep changing. Changing inputs from early layers to later layers causes
slower convergence during training because the training data for later layers is not stable.
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Batch normalization is able to reduce this effect.

In batch normalization, the idea is to add additional “normalization layers” between
hidden layers that resist this type of behavior by creating features with somewhat similar
variance. Furthermore, each unit in the normalization layers contains two additional pa-
rameters 3; and -y; that regulate the precise level of normalization in the ith unit; these

ADD BATCH
NORMALIZATION BREAK UP
— (5 ﬂ @)
(a) Post-activation normalization ) Pre-activation normalization

Figure 3.18: The different choices in batch normalization

parameters are learned in a data-driven manner. The basic idea is that the output of the
ith unit will have a mean of §; and a standard deviation of ~y; over each mini-batch of
training instances. One might wonder whether it might make sense to simply set each §;
to 0 and each ~; to 1, but doing so reduces the representation power of the network. For
example, if we make this transformation, then the sigmoid units will be operating within
their linear regions, especially if the normalization is performed just before activation (see
below for discussion of Figure 3.18). Recall from the discussion in Chapter 1 that multilayer
networks do not gain power from depth without nonlinear activations. Therefore, allowing
some “wiggle” with these parameters and learning them in a data-driven manner makes
sense. Furthermore, the parameter §; plays the role of a learned bias variable, and therefore
we do not need additional bias units in these layers.

We assume that the ith unit is connected to a special type of node BN;, where BN
stands for batch normalization. This unit contains two parameters §; and ~y; that need to
be learned. Note that BN; has only one input, and its job is to perform the normalization
and scaling. This node is then connected to the next layer of the network in the standard
way in which a neural network is connected to future layers. Here, we mention that there
are two choices for where the normalization layer can be connected:

1. The normalization can be performed just after applying the activation function to the
linearly transformed inputs. This solution is shown in Figure 3.18(a). Therefore, the
normalization is performed on post-activation values.

2. The normalization can be performed after the linear transformation of the inputs,
but before applying the activation function. This situation is shown in Figure 3.18(b).
Therefore, the normalization is performed on pre-activation values.

It is argued in [214] that the second choice has more advantages. Therefore, we focus on this
choice in this exposition. The BN node shown in Figure 3.18(b) is just like any other compu-
tational node (albeit with some special properties), and one can perform backpropagation

through this node just like any other computational node.

What transformations does BN; apply? Consider the case in which its input is vz(r),

(O

corresponding to the rth element of the batch feeding into the ith unit. Each v; ’ is obtained
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by using the linear transformation defined by the coefficient vector W; (and biases if any).
For a particular batch of m instances, let the values of the m activations be denoted by
vi(l), 111(2), . vgm). The first step is to compute the mean u; and standard deviation o; for
the ith hidden unit. These are then scaled using the parameters §; and ~; to create the

outputs for the next layer:

m (T)
i = 21V Vi (3.58)
m
moo )
o2 2V ), (3.59)
m
o~ i
o = gy (3.60)
g5
o) =i -0 + B Vi, (3.61)

A small value of € is added to o2 to regularize cases in which all activations are the same,
which results in zero variance. Note that al(-r) is the pre-activation output of the ith node,
when the rth batch instance passes through it. This value would otherwise have been set
to vi(r), if we had not applied batch normalization. We conceptually represent this node
with a special node BN; that performs this additional processing. This node is shown in
Figure 3.18(b). Therefore, the backpropagation algorithm has to account for this additional
node and ensure that the loss derivative of layers earlier than the batch normalization layer
accounts for the transformation implied by these new nodes. It is important to note that the
function applied at each of these special BN nodes is specific to the batch at hand. This type
of computation is unusual for a neural network in which the gradients are linearly separable
sums of the gradients with respect to individual training examples. This is not quite true in
this case because the batch normalization layer computes nonlinear metrics from the batch
(such as its standard deviation). Therefore, the activations depend on how the examples
in a batch are related to one another, which is not common in most neural computations.
However, this special property of the BN node does not prevent us from backpropagating
through the computations performed in it.

The following will describe the changes in the backpropagation algorithm caused by
the normalization layer. The main point of this change is to show how to backpropagate
through the newly added layer of normalization nodes. Another point to be aware of is that
we want to optimize the parameters 8; and ~;. For the gradient-descent steps with respect
to each B; and -;, we need the gradients with respect to these parameters. Assume that we
have already backpropagated up to the output of the BN node, and therefore we have each
% available. Then, the derivatives with respect to the two parameters can be computed

as follows:

oL <~ oL adl" I~ oL

B~ = adD OB = g
0L <~ 0L 8a(-r)_zm: oL .

0 = odD O 9

r=1

oL
vl *

to the pre-activation values gaL for all nodes j in the previous layer uses the straightfor-

We also need a way to compute Once this value is computed, the backpropagation

J
ward backpropagation update introduced earlier in this chapter. Therefore, the dynamic
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programming recursion will be complete because one can then use these values of g (LLT One
j

(T), i, and o;, by observing that UZ(T)

written as a (normalization) functlon of only ’U( ) , mean ;, and variance 7. Observe that
w; and o; are not treated as constants, but as variables because they depend on the batch
at hand. Therefore, we have the following:

can compute the value of a% in terms of ¥

can be

oL oL 98" AL ou; | OL do?

K3

av™ 9™ o™ O gul”) T 007 gy o

oL (1 oL (1 oL (20" — )
Gl <o) i (m> * 902 (m (3.63)

We need to evaluate each of the three partial derivatives on the right-hand side of the
above equation in terms of the quantities that have been computed using the already-
executed dynamic programming updates of backpropagation. This allows the creation of the
recurrence equation for the batch normalization layer. Among these, the first expression,
which is %, can be substituted in terms of the loss derivatives of the next layer by

observing that alm is related to f)i(r)

(3.62)

by a constant of proportionality ~;:

oL 0L . ) _
PRCIPWO) [Since a{” = ;- 0" + ;] (3.64)

Therefore, by substituting this value of (T) in Equation 3.63, we have the following:
oL AL [(v\ 0L (1 oL (20" — p;
— = = (7) + (> + 2(vi ” — pi) (3.65)
ov; day” \ i i \m) = Oo; m
It now remains to compute the partial derivative of the loss with respect to the mean and

the variance. The partial derivative of the loss with respect to the variance is computed as
follows:

oL <\ oL ol 1 < AL, 1 (0l

25 =) i AT = 53 (v, — i) = —5 i (0" — i)

007 ; ool o7 207 ; 09" )T Tan Z  da (q) Z Z
Chain rule Use Equation 3.60 Substitution from Equation 3.64

The partial derivatives of the loss with respect to the mean can be computed as follows:
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Chain rule Use Equations 3.59 and 3.60
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By plugging in the partial derivatives of the loss with respect to the mean and variance in
Equation 3.65, we get a full recursion for % (value before batch-normalization layer) in
Vi

terms of % (value after the batch normalization layer). This provides a full view of the
a:

backpropagétion of the loss through the batch-normalization layer corresponding to the BN
node. The other aspects of backpropagation remain similar to the traditional case. Batch
normalization enables faster inference because it prevents problems such as the exploding
and vanishing gradient (which cause slow learning).

A natural question about batch normalization arises during inference (prediction) time.
Since the transformation parameters u; and o; depend on the batch, how should one com-
pute them during testing when a single test instance is available? In this case, the values of y;
are o; are computed up front using the entire population (of training data), and then treated
as constants during testing time. One can also keep an exponentially weighted average of
these values during training. Therefore, the normalization is a simple linear transformation
during inference.

An interesting property of batch normalization is that it also acts as a reqularizer. Note
that the same data point can cause somewhat different updates depending on which batch
it is included in. One can view this effect as a kind of noise added to the update process.
Regularization is often achieved by adding a small amount of noise to the training data. It
has been experimentally observed that regularization methods like Dropout (cf. Section 4.5.4
of Chapter 4) do not seem to improve performance when batch normalization is used [184],
although there is not a complete agreement on this point. A variant of batch normalization,
known as layer normalization, is known to work well with recurrent networks. This approach
is discussed in Section 7.3.1 of Chapter 7.

3.7 Practical Tricks for Acceleration and Compression

Neural network learning algorithms can be extremely expensive, both in terms of the number
of parameters in the model and the amount of data that needs to be processed. There are
several strategies that are used to accelerate and compress the underlying implementations.
Some of the common strategies are as follows:

1. GPU-acceleration: Graphics Processor Units (GPUs) have historically been used for
rendering video games with intensive graphics because of their efficiency in settings
where repeated matrix operations (e.g., on graphics pixels) are required. It was even-
tually realized by the machine learning community (and GPU hardware companies)
that such repetitive operations are also used in settings like neural networks, in which
matrix operations are extensively used. Even the use of a single GPU can significantly
speed up implementation because of its high memory bandwidth and multithreading
within its multicore architecture.

2. Parallel implementations: One can parallelize the implementations of neural networks
by using multiple GPUs or CPUs. Either the neural network model or the data can
be partitioned across different processors. These implementations are referred to as
model-parallel and data-parallel implementations.

3. Algorithmic tricks for model compression during deployment: A key point about the
practical use of neural networks is that they have different computational requirements
during training and deployment. While it is acceptable to train a model for a week
with a large amount of memory, the final deployment might be performed on a mobile
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phone, which is highly constrained both in terms of memory and computational power.
Therefore, numerous tricks are used for model compression during testing time. This
type of compression often results in better cache performance and efficiency as well.

In the following, we will discuss some of these acceleration and compression techniques.

3.7.1 GPU Acceleration

GPUs were originally developed for rendering graphics on screens with the use of lists of
3-dimensional coordinates. Therefore, graphics cards were inherently designed to perform
many matrix multiplications in parallel to render the graphics rapidly. GPU processors have
evolved significantly, moving well beyond their original functionality of graphics rendering.
Like graphics applications, neural-network implementations require large matrix multipli-
cations, which is inherently suited to the GPU setting. In a traditional neural network,
each forward propagation is a multiplication of a matrix and vector, whereas in a convolu-
tional neural network, two matrices are multiplied. When a mini-batch approach is used,
activations become matrices (instead of vectors) in a traditional neural network. Therefore,
forward propagations require matrix multiplications. A similar result is true for backprop-
agation, during which two matrices are multiplied frequently to propagate the derivatives
backwards. In other words, most of the intensive computations involve vector, matrix, and
tensor operations. Even a single GPU is good at parallelizing these operations in its dif-
ferent cores with multithreading [203], in which some groups of threads sharing the same
code are executed concurrently. This principle is referred to as Single Instruction Multiple
Threads (SIMT). Although CPUs also support short-vector data parallelization via Single
Instruction Multiple Data (SIMD) instructions, the degree of parallelism is much lower as
compared to the GPU. There are different trade-offs when using GPUs as compared to
traditional CPUs. GPUs are very good at repetitive operations, but they have difficulty at
performing branching operations like if-then statements. Most of the intensive operations
in neural network learning are repetitive matrix multiplications across different training
instances, and therefore this setting is suited to the GPU. Although the clock speed of a
single instruction in the GPU is slower than the traditional CPU, the parallelization is so
much greater in the GPU that huge advantages are gained.

GPU threads are grouped into small units called warps. Each thread in the warp shares
the same code in each cycle, and this restriction enables a concurrent execution of the
threads. The implementation needs to be carefully tailored to reduce the use of memory
bandwidth. This is done by coalescing the memory reads and writes from different threads,
so that a single memory transaction can be used to read and write values from different
threads. Consider a common operation like matrix multiplication in neural network settings.
The matrices are multiplied by making each thread responsible for computing a single entry
in the product matrix. For example, consider a situation in which a 100 x 50 matrix is
multiplied with a 50 x 200 matrix. In such a case, a total of 100 x 200 = 20000 threads
would be launched in order to compute the entries of the matrix. These threads will typically
be partitioned into multiple warps, each of which is highly parallelized. Therefore, speedups
are achieved. A discussion of matrix multiplication on GPUs is provided in [203].

With high amounts of parallelization, memory bandwidth is often the primary limiting
factor. Memory bandwidth refers to the speed at which the processor can access the relevant
parameters from their stored locations in memory. GPUs have a high degree of parallelism
and high memory bandwidth as compared to traditional CPUs. Note that if one cannot
access the relevant parameters from memory fast enough, then faster execution does not
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help the speed of computation. In such cases, the memory transfer cannot keep up with the
speed of the processor whether working with the CPU or the GPU, and the CPU/GPU cores
will idle. GPUs have different trade-offs between cache access, computation, and memory
access. CPUs have much larger caches than GPUs and they rely on the caches to store an
intermediate result, such as the result of multiplying two numbers. Accessing a computed
value from a cache is much faster than multiplying them again, which is where the CPU
has an advantage over the GPU. However, this advantage is neutralized in neural network
settings, where the sizes of the parameter matrices and activations are often too large to fit
in the CPU cache. Even though the CPU cache is larger than that of the GPU, it is not large
enough to handle the scale at which neural-network operations are performed. In such cases,
one has to rely on high memory bandwidth, which is where the GPU has an advantage over
the CPU. Furthermore, it is often faster to perform the same computation again rather
than accessing it from memory, when working with the GPU (assuming that the result
is unavailable in a cache). Therefore, GPU implementations are done somewhat differently
from traditional CPU implementations. Furthermore, the advantage gained can be sensitive
to the choice of neural network architecture, as the memory bandwidth requirements and
multi-threading gains of different architectures can be different.

At first sight, it might seem from the above example that the use of a GPU requires a
lot of low-level programming, and it would indeed be a challenge to create custom GPU
code for each neural architecture. With this problem in mind, companies like NVIDIA have
modularized the interface between the programmer and the GPU implementation. The key
point is that the speeding of primitives like matrix multiplication and convolution can be
hidden from the user by providing a library of neural network operations that perform
these faster operations behind the scenes. The GPU library is tightly integrated with deep
learning frameworks like Caffe or Torch to take advantage of the accelerated operations on
the GPU. A specific example of such a library is the NVIDIA CUDA Deep Neural Network
Library [643], which is referred to in short as cu DNN. CUDA is a parallel computing plat-
form and programming model that works with CUDA-enabled GPU processors. However,
it provides an abstraction and a programming interface that is easy to use with relatively
limited rewriting of code. The cuDNN library can be integrated with multiple deep learning
frameworks such as Caffe, TensorFlow, Theano, and Torch. The changes required to convert
the training code of a particular neural network from its CPU version to a GPU version
are often small. For example, in Torch, the CUDA Torch package is incorporated at the
beginning of the code, and various data structures (like tensors) are initialized as CUDA
tensors (instead of regular tensors). With these types of modest modifications, virtually the
same code can run on a GPU instead of a CPU in Torch. A similar situation holds true
in other deep learning frameworks. This type of approach shields the developers from the
low-level performance tuning required in GPU frameworks, because the primitives in the
library already have the code that takes care of all the low-level details of parallelization on
the GPU.

3.7.2 Parallel and Distributed Implementations

It is possible to make training even faster by using multiple CPUs or GPUs. Since it is more
common to use multiple GPUs, we focus on this setting. Parallelism is not a simple matter
when working with GPUs because there are overheads associated with the communication
between different processors. The delay caused by these overheads has recently been re-
duced with specialized network cards for GPU-to-GPU transfer. Furthermore, algorithmic
tricks like using 8-bit approximations of the gradients [98] can help in speeding up the
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communication. There are several ways in which one can partition the work across different
processors, namely hyperparameter parallelism, model parallelism, and data parallelism.
These methods are discussed below.

Hyperparameter Parallelism

The simplest possible way to achieve parallelism in the training process without much
overhead is to train neural networks with different parameter settings on different processors.
No communication is required across different executions, and therefore wasteful overhead
is avoided. As discussed earlier in this chapter, runs with suboptimal hyperparameters are
often terminated long before running them to completion. Nevertheless, a small number of
different runs with optimized parameters are often used in order to create an ensemble of
models. The training of different ensemble components can be performed independently on
different processors.

Model Parallelism

Model parallelism is particularly useful when a single model is too large to fit on a GPU. In
such a case, the hidden layer is divided across the different GPUs. The different GPUs work
on exactly the same batch of training points, although different GPUs compute different
parts of the activations and the gradients. Each GPU only contains the portion of the weight
matrix that are multiplied with the hidden activations present in the GPU. However, it
would still need to communicate the results of its activations to the other GPUs. Similarly,
it would need to receive the derivatives with respect to the hidden units in other GPUs in
order to compute the gradients of the weights between its hidden units and those of other
GPUs. This is achieved with the use of inter-connections across GPUs, and the computations
across these interconnections add to the overhead. In some cases, these interconnections are
dropped in a subset of the layers in order to reduce the communication overhead (although
the resulting model would not quite be the same as the sequential version). Model parallelism
is not helpful in cases where the number of parameters in the neural network is small, and
should only be used for large networks. A good practical example of model parallelism is the
design of AlexNet, which is a convolutional neural network (cf. Section 8.4.1 of Chapter 8).
A sequential version of AlexNet and a GPU-partitioned version of AlexNet are both shown
in Figure 8.9 of Chapter 8. Note that the sequential version in Figure 8.9 is not exactly
equivalent to the GPU-partitioned version because the interconnections between GPUs have
been dropped in some of the layers. A discussion of model parallelism may be found in [74].

Data Parallelism

Data parallelism works best when the model is small enough to fit on each GPU, but the
amount of training data is large. In these cases, the parameters are shared across the different
GPUs and the goal of the updates is to use the different processors with different training
points for faster updates. The problem is that perfect synchronization of the updates can
slow down the process, because locking mechanisms would need to be used to synchronize
the updates. The key point is that each processor would have to wait for the others to
make their updates. As a result, the slowest processor creates a bottleneck. A method that
uses asynchronous stochastic gradient descent was proposed in [91]. The basic idea is to
use a parameter server in order to share the parameters across different GPU processors.
The updates are performed without using any locking mechanism. In other words, each
GPU can read the shared parameters at any time, perform the computation, and write the
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parameters to the parameter server without worrying about locks. In this case, inefficiency
would still be caused by one GPU processor overwriting the progress made by another, but
there would be no waiting times for writes. As a result, the overall progress would still be
faster than with a synchronized mechanism. Distributed asynchronous gradient descent is
quite popular as a strategy for parallelism in large-scale industrial settings.

Exploiting the Trade-Offs for Hybrid Parallelism

It is evident from the above discussion that model parallelism is well suited to models with a
large parameter footprint, whereas data parallelism is well suited to smaller models. It turns
out that one can combine the two types of parallelism over different parts of the network.
In certain types of convolutional neural networks that have fully connected layers, the vast
majority of parameters occur in the fully connected layers, whereas more computations are
performed in the earlier layers. In these cases, it makes sense to use data parallelism for
the early part of the network, and model parallelism for the later part of the network. This
type of approach is referred to as hybrid parallelism. A discussion of this type of approach
may be found in [254].

3.7.3 Algorithmic Tricks for Model Compression

Training a neural network and deploying it typically have different requirements in terms of
memory and efficiency requirements. While it may be acceptable to require a week to train
a neural network to recognize faces in images, the end user might wish to use the trained
neural network to recognize a face within a matter of a few seconds. Furthermore, the model
might be deployed on a mobile device with little memory and computational availability. In
such cases, it is crucial to be able to use the trained model efficiently, and also use it with a
limited amount of storage. Efficiency is generally not a problem at deployment time, because
the prediction of a test instance often requires straightforward matrix multiplications over
a few layers. On the other hand, storage requirements are often a problem because of the
large number of parameters in multilayer networks. There are several tricks that are used
for model compression in such cases. In most of the cases, a larger trained neural network
is modified so that it requires less space by approximating some parts of the model. In
addition, some efficiency improvements can also be realized at prediction time by model
compression because of better cache performance and fewer operations, although this is not
the primary goal. Interestingly, this approximation might occasionally improve accuracy on
out-of-sample predictions because of regularization effects, especially if the original model
is unnecessarily large compared to the training data size.

Sparsifying Weights in Training

The links in a neural network are associated with weights. If the absolute value of a par-
ticular weight is small, then the model is not strongly influenced by that weight. Such
weights can be dropped, and the neural network can be fine-tuned starting with the current
weights on links that have not yet been dropped. The level of sparsification will depend on
the weight threshold at which links are dropped. By choosing a larger threshold at which
weights are dropped, the size of the model will reduce significantly. In such cases, it is par-
ticularly important to fine-tune the values of the retained weights with further epochs of
training. One can also encourage the dropping of links by using Li-regularization, which
will be discussed in Chapter 4. When L;-regularization is used during training, many of
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the weights will have zero values anyway because of the natural mathematical properties of
this form of regularization. However, it has been shown in [169] that Lo-regularization has
the advantage of higher accuracy. Therefore, the work in [169] uses Lo-regularization and
prunes the weights that are below a particular threshold.

Further enhancements were reported in [168], where the approach was combined with
Huffman coding and quantization for compression. The goal of quantization is to reduce the
number of bits representing each connection. This approach reduced the storage required
by AlexNet [255] by a factor of 35, or from about 240MB to 6.9MB, with no loss of accuracy.
It is now possible as a result of this reduction to fit the model into an on-chip SRAM cache
rather than off-chip DRAM memory; this also provide a beneficial effect on prediction times.

Leveraging Redundancies in Weights

It was shown in [94] that the vast majority of the weights in a neural network are redundant.
In other words, for any m xn weight matrix W between a pair of layers with m, and mo units
respectively, one can express this weight matrix as W ~ UV7T, where U and V are of sizes
my X k and ms X k, respectively. Furthermore, it is assumed that k& < min{m;, mo}. This
phenomenon occurs because of several peculiarities in the training process. For example, the
features and weights in a neural network tend to co-adapt because of different parts of the
network training at different rates. Therefore, the faster parts of the network often adapt
to the slower parts. As a result, there is a lot of redundancy in the network both in terms
of the features and the weights, and the full expressivity of the network is never utilized.
In such a case, one can replace the pair of layers (containing weight matrix W) with three
layers of size mq, k, and mo. The weight matrices between the first pair of layers is U and
the weight matrix between the second pair of layers is V7. Even though the new matrix
is deeper, it is better regularized as long as W — UV™ only contains noise. Furthermore,
the matrices U and V require (mj + ms) - k parameters, which is less than the number of
parameters in W as long as k is less than half the harmonic mean of m; and mo:

Parameters in W m;-mo  HARMONIC-MEAN(my, ms)
Parameters in U, V. k(my +ma) 2k

As shown in [94], more than 95% of the parameters in the neural network are redundant,
and therefore a low value of the rank k suffices for approximation.

An important point is that the replacement of W with U and V must be done after
completion of the learning of W. For example, if we replaced the pair of layers corresponding
to W with the three layers containing the two weight matrices U and VT and trained from
scratch, good results may not be obtained. This is because co-adaptation will occur again
during training, and the resulting matrices U and V will have a rank even lower than k. As
a result, under-fitting might occur.

Finally, one can compress even further by realizing that both U and V need not be
learned because they are redundant with respect to each other. For any rank-k matrix U,
one can learn V so that the product UV is the same value. Therefore, the work in [94]
provides methods to fix U, and then learn V instead.

Hash-Based Compression

One can reduce the number of parameters to be stored by forcing randomly chosen entries
of the weight matrix to take on shared values of the parameters. The random choice is
achieved with the application of a hash function on the entry position (4, j) in the matrix.
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For example, imagine a situation where we have a weight matrix of size 100 x 100 with 10*
entries. In such a case, one can hash each weight to a value in the range {1,...1000} to
create 1000 groups. Each of these groups will contain an average of 10 connections that will
share weights. Backpropagation can handle shared weights using the approach discussed
in Section 3.2.9. This approach requires a space requirement of only 1000 for the matrix,
which is 10% of the original space requirement. Note that one could instead use a matrix
of size 100 x 10 to achieve the same compression, but the key point is that using shared
weights does not hurt the expressivity of the model as much as would reducing the size of
the weight matrix a priori. More details of this approach are discussed in [66].

Leveraging Mimic Models

Some interesting results in [13, 55] show that it is possible to significantly compress a model
by creating a new training data set from a trained model, which is easier to model. This
“easier” training data can be used to train a much smaller network without significant loss
of accuracy. This smaller model is referred to as a mimic model. The following steps are
used to create the mimic model:

1. A model is created on the original training data. This model might be very large,
and potentially even created out of an ensemble of different models, further increasing
the number of parameters; it would not be appropriate to use in space-constrained
settings. It is assumed that the model outputs softmax probabilities of the different
classes. This model is also referred to as the teacher model.

2. New training data is created by passing unlabeled examples through the trained net-
work. The targets in the newly created training data are set to the softmax probability
outputs of the trained model on the unlabeled examples. Since unlabeled data is often
copious, it is possible to create a lot of training data in this way. It is noteworthy that
the new training data contains soft (probabilistic) targets rather than the discrete
targets in the original training data, which significantly contributes to the creation of
the compressed model.

3. A much smaller and shallower network is trained using the new training data (with
artificially generated labels). The original training data is not used at all. This much
smaller and shallower network, which is referred to as the mimic or student model,
is what is deployed in space-constrained settings. It can be shown that the accuracy
of the mimic model does not substantially degrade from the model trained over the
original neural network, even though it is much smaller in size.

A natural question arises as to why the mimic model should perform as well as the original
model, even though it is much smaller in size both in terms of the depth as well as the
number of parameters. Trying to construct a shallow model on the original data cannot
match the accuracy of either the shallow model or the mimic model. A number of possible
reasons have been hypothesized for the superior performance of the mimic model [13]:

1. If there are errors in the original training data because of mislabeling, it causes un-
necessary complexity in the trained model. These types of errors are largely removed
in the new training data.

2. If there are complex regions of the decision space, the teacher model simplifies them
by providing softer labels in terms of probabilities. Complexity is washed away by
filtering targets through the teacher model.
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3. The original training data contains targets with 0/1 values, whereas the newly created
training contains soft targets, which are more informative. This is particularly useful in
one-hot encoded multilabel targets, where there are clear correlations across different
classes.

4. The original targets might depend on inputs that are not available in the training data.
On the other hand, the teacher-created labels depend on only the available inputs.
This makes the model simpler to learn and washes away unexplained complexity.
Unexplained complexity often leads to unnecessary parameters and depth.

One can view some of the above benefits as a kind of regularization effect. The results
in [13] are stimulating, because they show that deep networks are not theoretically necessary,
although the regularization effect of depth is practically necessary when working with the
original training data. The mimic model enjoys the benefits of this regularization effect by
using the artificially created targets instead of depth.

3.8 Summary

This chapter discusses the problem of training deep neural networks. We revisit the back-
propagation algorithm in detail along with its challenges. The vanishing and the exploding
gradient problems are introduced along with the challenges associated with varying sensi-
tivity of the loss function to different optimization variables. Certain types of activation
functions like ReLU are less sensitive to this problem. However, the use of the ReLU can
sometimes lead to dead neurons, if one is not careful about the learning rate. The type of
gradient descent used to accelerate learning is also important for more efficient executions.
Modified stochastic gradient-descent methods include the use of Nesterov momentum, Ada-
Grad, AdaDelta, RMSProp, and Adam. All these methods encourage gradient-steps that
accelerate the learning process.

Numerous methods have been introduced for addressing the problem of cliffs with the
use of second-order optimization methods. In particular, Hessian-free optimization is seen
as an effective approach for handling many of the underlying optimization issues. An ex-
citing method that has been used recently to improve learning rates is the use of batch
normalization. Batch normalization transforms the data layer by layer in order to ensure
that the scaling of different variables is done in an optimum way. The use of batch nor-
malization has become extremely common in different types of deep networks. Numerous
methods have been proposed for accelerating and compressing neural network algorithms.
Acceleration is often achieved via hardware improvements, whereas compression is achieved
with algorithmic tricks.

3.9 Bibliographic Notes

The original idea of backpropagation was based on idea of differentiation of composition of
functions as developed in control theory [54, 237] under the ambit of automatic differenti-
ation. The adaptation of these methods to neural networks was proposed by Paul Werbos
in his PhD thesis in 1974 [524], although a more modern form of the algorithm was pro-
posed by Rumelhart et al. in 1986 [408]. A discussion of the history of the backpropagation
algorithm may be found in the book by Paul Werbos [525].

A discussion of algorithms for hyperparameter optimization in neural networks and other
machine learning algorithms may be found in [36, 38, 490]. The random search method for
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hyperparameter optimization is discussed in [37]. The use of Bayesian optimization for
hyperparameter tuning is discussed in [42, 306, 458]. Numerous libraries are available for
Bayesian tuning such as Hyperopt [614], Spearmint [616], and SMAC [615].

The rule that the initial weights should depend on both the fan-in and fan-out of a node
in proportion to \/2/(7in + Tout) is based on [140]. The analysis of initialization methods
for rectifier neural networks is provided in [183]. Evaluations and analysis of the effect of
feature preprocessing on neural network learning may be found in [278, 532]. The use of
rectifier linear units for addressing some of the training challenges is discussed in [141].

Nesterov’s algorithm for gradient descent may be found in [353]. The delta-bar-delta
method was proposed by [217]. The AdaGrad algorithm was proposed in [108]. The RM-
SProp algorithm is discussed in [194]. Another adaptive algorithm using stochastic gradient
descent, which is AdaDelta, is discussed in [553]. This algorithms shares some similarities
with second-order methods, and in particular to the method in [429]. The Adam algo-
rithm, which is a further enhancement along this line of ideas, is discussed in [241]. The
practical importance of initialization and momentum in deep learning is discussed in [478].
Beyond the use of the stochastic gradient method, the use of coordinate descent has been
proposed [273]. The strategy of Polyak averaging is discussed in [380].

Several of the challenges associated with the vanishing and exploding gradient problems
are discussed in [140, 205, 368]. Ideas for parameter initialization that avoid some of these
problems are discussed in [140]. The gradient clipping rule was discussed by Mikolov in his
PhD thesis [324]. A discussion of the gradient clipping method in the context of recurrent
neural networks is provided in [368]. The ReLU activation function was introduced in [167],
and several of its interesting properties are explored in [141, 221].

A description of several second-order gradient optimization methods (such as the New-
ton method) is provided in [41, 545, 300]. The basic principles of the conjugate gradient
method have been described in several classical books and papers [41, 189, 443], and the
work in [313, 314] discusses applications to neural networks. The work in [316] leverages
a Kronecker-factored curvature matrix for fast gradient descent. Another way of approx-
imating the Newton method is the quasi-Newton method [273, 300], with the simplest
approximation being a diagonal Hessian [24]. The acronym BFGS stands for the Broyden-
Fletcher-Goldfarb-Shanno algorithm. A variant known as limited memory BFGS or L-
BFGS [273, 300] does not require as much memory. Another popular second-order method
is the Levenberg—Marquardt algorithm. This approach is, however, defined for squared loss
functions and cannot be used with many forms of cross-entropy or log-losses that are com-
mon in neural networks. Overviews of the approach may be found in [133, 300]. General
discussions of different types of nonlinear programming methods are provided in [23, 39].

The stability of neural networks to local minima is discussed in [88, 426]. Batch nor-
malization methods were introduced recently in [214]. A method that uses whitening for
batch normalization is discussed in [96], although the approach seems not to be practical.
Batch normalization requires some minor adjustments for recurrent networks [81], although
a more effective approach for recurrent networks is that of layer normalization [14]. In this
method (cf. Section 7.3.1), a single training case is used for normalizing all units in a layer,
rather than using mini-batch normalization of a single unit. The approach is useful for
recurrent networks. An analogous notion to batch normalization is that of weight normal-
ization [419], in which the magnitudes and directions of the weight vectors are decoupled
during the learning process. Related training tricks are discussed in [362].

A broader discussion of accelerating machine learning algorithms with GPUs may be
found in [644]. Various types of parallelization tricks for GPUs are discussed in [74, 91,
254], and specific discussions on convolutional neural networks are provided in [541]. Model
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compression with regularization is discussed in [168, 169]. A related model compression
method is proposed in [213]. The use of mimic models for compression is discussed in [55,
13]. A related approach is discussed in [202]. The leveraging of parameter redundancy for
compressing neural networks is discussed in [94]. The compression of neural networks with
the hashing trick is discussed in [66].

3.9.1 Software Resources

All the training algorithms discussed in this chapter are supported by numerous deep learn-
ing frameworks like Caffe [571], Torch [572], Theano [573], and TensorFlow [574]. Extensions
of Caffe to Python and MATLAB are available. All these frameworks provide a variety of
training algorithms that are discussed in this chapter. Options for batch normalization
are available as separate layers in these frameworks. Several software libraries are avail-
able for Bayesian optimization of hyperparameters. These libraries include Hyperopt [614],
Spearmint [616], and SMAC [615]. Although these are designed for smaller machine learn-
ing problems, they can still be used in some cases. Pointers to the NVIDIA cuDNN may be
found in [643]. The different frameworks supported by cuDNN are discussed in [645].

3.10 Exercises

1. Consider the following recurrence:

($t+1ayt+1) = (f(xtayt)ag(zt;yt)) (3-66)

Here, f() and g() are multivariate functions.

(a) Derive an expression for 6;;;;2 in terms of only z; and ;.
(b) Can you draw an architecture of a neural network corresponding to the above
recursion for ¢t varying from 1 to 57 Assume that the neurons can compute any

function you want.

2. Consider a two-input neuron that multiplies its two inputs z; and x5 to obtain the
output o. Let L be the loss function that is computed at o. Suppose that you know
that 2& =5, 21 = 2, and x5 = 3. Compute the values of gTLl and gTLg'

3. Consider a neural network with three layers including an input layer. The first (input)
layer has four inputs x1, x2, 3, and x4. The second layer has six hidden units cor-
responding to all pairwise multiplications. The output node o simply adds the values
in the six hidden units. Let L be the loss at the output node. Suppose that you know
that g—g =2,and 1 =1, 9 = 2, x3 = 3, and x4 = 4. Compute g—fi for each 1.

4. How does your answer to the previous question change when the output o is computed
as a maximum of its six inputs rather than its sum?

5. The chapter discusses (cf. Table 3.1) how one can perform a backpropagation of an
arbitrary function by using the multiplication with the Jacobian matrix. Discuss why
one must be careful in using this matrix-centric approach.[Hint: Compute the Jacobian
with respect to sigmoid function]
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10.

11.

12.
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. Consider the loss function L = z24y'°. Implement a simple steepest-descent algorithm

to plot the coordinates as they vary from the initialization point to the optimal value
of 0. Consider two different initialization points of (0.5,0.5) and (2,2) and plot the
trajectories in the two cases at a constant learning rate. What do you observe about
the behavior of the algorithm in the two cases?

The Hessian H of a strongly convex quadratic function always satisfies Z7 HZ > 0
for any nonzero vector Z. For such problems, show that all conjugate directions are
linearly independent.

. Show that if the dot product of a d-dimensional vector T with d linearly independent

vectors is 0, then 7 must be the zero vector.

. This chapter discusses two variants of backpropagation, which use the pre-activation

and the postactivation variables, respectively, for the dynamic programming recursion.
Show that these two variants of backpropagation are mathematically equivalent.

Consider the softmax activation function in the output layer, in which real-valued out-
puts v ... v, are converted into probabilities as follows (according to Equation 3.20):
exp(v;
Zj:l exp(v;)
(a) Show that the value of ggj is 0;(1 — 0;) when ¢ = j. In the case that i # j, show
that this value is —o;0;.

(b) Use the above result to show the correctness of Equation 3.22:

oL
= 0; — ;
Do, i — Yi
Assume that we are using the cross-entropy loss L = — Zle y;log(o;), where

y; € {0,1} is the one-hot encoded class label over different values of ¢ € {1...k}.

The chapter uses steepest descent directions to iteratively generate conjugate direc-
tions. Suppose we pick d arbitrary directions Uy . ..04_1 that are linearly independent.
Show that (with appropriate choice of ;) we can start with g, = Ty and generate
successive conjugate directions in the following form:

t

41 = V41 + Z Brid;
=0

Discuss why this approach is more expensive than the one discussed in the chapter.

The definition of 3; in Section 3.5.6.1 ensures that g, is conjugate to g, , ;. This exercise
systematically shows that any direction g, for i < t satisfies q; Hg, 11 =0.
[Hint: Prove (b), (c), and (d) jointly with induction on ¢ while staring at (a).]

(a) Recall from Equation 3.51 that Hg, = [VL(W51) — VL(W,)]/é; for quadratic
loss functions, where §; depends on ith step-size. Combine this condition with
Equation 3.49 to show the following for all ¢ < ¢:

8i[q; Hqyr) = —~[VL(Wig1) = VLW )] [VL(W 31)) + 6:6:(q; Hg,)
Also show that [VL(W 1) — VL(W,)] - g, = 6:q; Hq,.
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(b) Show that VL(W ;1) is orthogonal to each g, for i < t. [The proof for the case
when ¢ = t is trivial because the gradient at line-search termination is always
orthogonal to the search direction.]

(c) Show that the loss gradients at W ... Wy are mutually orthogonal.
(d) Show that g} Hg,,; = 0 for i < t. [The case for i = ¢ is trivial.]



Chapter 4 @

updates

Teaching Deep Learners to Generalize

“All generalizations are dangerous, even this one.”—Alexandre Dumas

4.1 Introduction

Neural networks are powerful learners that have repeatedly proven to be capable of learning
complex functions in many domains. However, the great power of neural networks is also
their greatest weakness; neural networks often simply overfit the training data if care is not
taken to design the learning process carefully. In practical terms, what overfitting means
is that a neural network will provide excellent prediction performance on the training data
that it is built on, but will perform poorly on unseen test instances. This is caused by the fact
that the learning process often remembers random artifacts of the training data that do not
generalize well to the test data. Extreme forms of overfitting are referred to as memorization.
A helpful analogy is to think of a child who can solve all the analytical problems for which
he or she has seen the solutions, but is unable to provide useful solutions to a new problem.
However, if the child is exposed to the solutions of more and more different types of problems,
he or she will be more likely to solve a new problem by abstracting out the essence of the
patterns that are repeated across different problems and their solutions. Machine learning
proceeds in a similar way by identifying patterns that are useful for prediction. For example,
in a spam detection application, if the pattern “Free Money!! occurs thousands of times
in spam emails, the machine learner generalizes this rule to identify spam email instances
it has not seen before. On the other hand, a prediction that is based on the patterns seen
in a tiny training data set of two emails will lead to good performance on those emails but
not on new emails. The ability of a learner to provide useful predictions for instances it has
not seen before is referred to as generalization.

Generalization is a useful practical property, and is therefore the holy grail in all machine
learning applications. After all, if the training examples are already labeled, there is no prac-
tical use of predicting such examples again. For example, in an image-captioning application,
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one is always looking to use the labeled images in order to learn captions for images that
the learner has not seen before.

LINEAR SIMPLIFICATION

Figure 4.1: An example of a nonlinear distribution in which one would expect a model with
d = 3 to work better than a linear model with d = 1.

The level of overfitting depends both on the complexity of the model and on the amount
of data available. The complexity of the model defined by a neural network depends on the
number of underlying parameters. Parameters provide additional degrees of freedom, which
can be used to explain specific training data points without generalizing well to unseen
points. For example, imagine a situation in which we attempt to predict the variable y from
x using the following formula for polynomial regression:

d
J= Zwixi (4.1)
=0

This is a model that uses (d + 1) parameters wy...wy in order to explain pairs (z,y)
available to us. One could implement this model by using a neural network with d inputs
corresponding to z, z2...z% and a single bias neuron whose coefficient is wg. The loss
function uses the squared difference between the observed value y and predicted value .
In general, larger values of d can capture better nonlinearity. For example, in the case of
Figure 4.1, a nonlinear model with d = 4 should be able to fit the data better than a linear
model with d = 1, given an infinite amount (or a lot) of data. However, when working with
a small, finite data set, this does not always turn out to be the case.

If we have (d+1) or less training pairs (z, y), it is possible to fit the data exactly with zero
error irrespective of how well these training pairs reflect the true distribution. For example,
consider a situation in which we have five training points available. One can show that it is
possible to fit the training points exactly with zero error using a polynomial of degree 4. This
does not, however, mean that zero error will be achieved on unseen test data. An example
of this situation is illustrated in Figure 4.2, where both the linear and polynomial models on
three sets of five randomly chosen data points are shown. It is clear that the linear model is
stable, although it is unable to exactly model the curved nature of the true data distribution.
On the other hand, even though the polynomial model is capable of modeling the true data
distribution more closely, it varies wildly over the different training data sets. Therefore, the
same test instance at x = 2 (shown in Figure 4.2) would receive similar predictions from the
linear model, but would receive very different predictions from the polynomial model over
different choices of training data sets. The behavior of the polynomial model is, of course,
undesirable from a practitioner’s point of view, who would expect similar predictions for
a particular test instance, even when different samples of the training data set are used.
Since all the different predictions of the polynomial model cannot be correct, it is evident
that the increased power of the polynomial model over the linear model actually increases
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Figure 4.2: Overfitting with increased model complexity: The linear model does not
change much with the training data, whereas the polynomial model changes drastically.
As a result, the inconsistent predictions of the polynomial model at x = 2 are often more
inaccurate than those of the linear model. The polynomial model does have the ability to
outperform the linear model if enough training data is provided.

the error rather than reducing it. This difference in predictions for the same test instance
(but different training data sets) is manifested as the variance of a model. As evident from
Figure 4.2, models with high variance tend to memorize random artifacts of the training
data, causing inconsistency and inaccuracy in the prediction of unseen test instances. It is
noteworthy that a polynomial model with higher degree is inherently more powerful than
a linear model because the higher-order coefficients could always be set to 0; however, it is
unable to achieve its full potential when the amount of data is limited. Simply speaking,
the variance inherent in the finiteness of the data set causes increased complexity to be
counterproductive. This trade-off between the power of a model and its performance on
limited data is captured with the bias-variance trade-off.
There are several tell-tale signs of overfitting:

1. When a model is trained on different data sets, the same test instance might obtain
very different predictions. This is a sign that the training process is memorizing the
nuances of the specific training data set, rather than learning patterns that generalize
to unseen test instances. Note that the three predictions at x = 2 in Figure 4.2 are
quite different for the polynomial model. This is not quite the case for the linear
model.

2. The gap between the error of predicting training instances and unseen test instances
is rather large. Note that in Figure 4.2, the predictions at the unseen test point x = 2
are often more inaccurate in the polynomial model than in the linear model. On the
other hand, the training error is always zero for the polynomial model, whereas the
training error is always nonzero for the linear model.
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Because of the large gaps between training and test error, models are often tested on unseen
portions of the training data. These unseen portions of the test data are often held out early
on, and then used in order to make different types of algorithmic decisions such as parameter
tuning. This set of points is referred to as the validation set. The final accuracy is tested on a
fully out-of-sample set of points that was not used for either model building or for parameter
tuning. The error on out-of-sample test data is also referred to as the generalization error.

Neural networks are large, and they might have millions of parameters in complex appli-
cations. In spite of these challenges, there are a number of tricks that one can use in order
to ensure that overfitting is not a problem. The choice of method depends on the specific
setting, and the type of neural network used. The key methods for avoiding overfitting in a
neural network are as follows:

1. Penalty-based regularization: Penalty-based regularization is the most common tech-
nique used by neural networks in order to avoid overfitting. The idea in regularization
is to create a penalty or other types of constraints on the parameters in order to
favor simpler models. For example, in the case of polynomial regression, a possible
constraint on the parameters would be to ensure that at most k different values of w;
are non-zero. This will ensure simpler models. However, since it is hard to impose such
constraints explicitly, a simpler approach is to impose a softer penalty like A Z?:o w?

and add it to the loss function. Such an approach roughly amounts to multiplying
each parameter w; with a multiplicative decay factor of (1 — a\) before each update
at learning rate a. Aside from penalizing parameters of the network, one can also
choose to penalize the activations of hidden units. This approach often leads to sparse
hidden representations.

2. Generic and tailored ensemble methods: Many ensemble methods are not specific to
neural networks, but can be used for other machine learning problems. We will discuss
bagging and subsampling, which are two of the simplest ensemble methods that can be
implemented for virtually any model or learning problem. These methods are inherited
from traditional machine learning.

There are several ensemble methods that are specifically designed for neural net-
works. A straightforward approach is to average the predictions of different neural
architectures obtained by quick and dirty hyper-parameter optimization. Dropout is
another ensemble technique that is designed for neural networks. This technique uses
the selective dropping of nodes to create different neural networks. The predictions of
different networks are combined to create the final result. Dropout reduces overfitting
by indirectly acting as a regularizer.

3. Early stopping: In early stopping, the iterative optimization method is terminated
early without converging to the optimal solution on the training data. The stopping
point is determined using a portion of the training data that is not used for model
building. One terminates when the error on the held-out data begins to rise. Even
though this approach is not optimal for the training data, it seems to perform well on
the test data because the stopping point is determined on the basis of the held-out
data.

4. Pretraining: Pretraining is a form of learning in which a greedy algorithm is used
to find a good initialization. The weights in different layers of the neural network
are trained sequentially 