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Preface

This is the second edition of our 2003 book. It is primarily a book for lectur-
ers and graduate and undergraduate students. To this group the book offers a
thorough introduction to evolutionary computing (EC), descriptions of popu-
lar evolutionary algorithm (EA) variants, discussions of methodological issues
and particular EC techniques. We end by presenting an outlook to evolu-
tionary robotics and the future of EC, as it stands poised to make a major
transition from evolution within computers to the evolution of things [147].

This book is also meant for those who wish to apply EC to a particular
problem or within a given application area. To this group the book is valuable
because it presents EC as something to be used, rather than just studied,
and it contains an explicit treatment of guidelines for good experimentation.
Finally, this book contains information on the state of the art in a wide range
of subjects that are interesting to fellow researchers, as quick reference on
subjects outside of their own specialist field of EC.

This book has a supporting website at

www.evolutionarycomputation.org

which offers additional information. In particular, the educational role of the
book is emphasised:

1. There are exercises and a list of recommended further reading for each
chapter.

2. The outline of a full academic course based on this book is given.

3. There are slides for each chapter in PDF and PowerPoint format. These
slides can be freely downloaded, altered, and used to teach the material
covered in the book.

4. Furthermore, the website offers answers to the exercises, downloadables
for easy experimentation, a discussion forum, and errata.

When updating the book we altered its main logic. In the first edition, pop-
ular evolutionary algorithm variants, such as genetic algorithms or evolution
strategies, had a prominent role. They were treated in separate chapters and
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VI Preface

specific representations and evolutionary operators were presented within the
framework of one of these algorithm variants. In the second edition we are
emphasising the generic scheme of EAs as an approach to problem-solving.
This is reflected by the following major changes:

e We added a chapter on problems. Since the whole book is about problem
solvers, we felt it was good to start with a chapter on problems.

e The treatment of EAs is organised according to the main algorithm com-
ponents, such as representation, variation and selection operators.

e The most popular EA variants are presented as special cases of the generic
EA scheme. Although the treatment of each variant is now shorter, the list
of variants is longer, now including differential evolution, particle swarm
optimisation, and estimation of distribution algorithms.

We also extended the treatment of the how-to parts of the book. We added
a new chapter on parameter tuning and grouped this with the chapters on pa-
rameter control and the how-to-work-with content into a methodological part.
Furthermore, we dropped the Exercises and Recommended Reading sections
at the end of each chapter as they were too static. Instead, we offer these on
the website for the book.

The overall structure of the new edition is three-tier: Part I presents the
basics, Part II is concerned with methodological issues, and Part IIT discusses
advanced topics. These parts are followed by the References, and although
that now contains nearly five hundred entries, we inevitably missed some. We
apologise, it is nothing personal. Just send us an email if we forgot a really
important one.

Writing this book would not have been possible without the support of
many. In the first place, we wish to express our gratitude to Daphne and
Cally for their patience, understanding, and tolerance. Without their support
this book could not have been written. Furthermore, we acknowledge the help
of our colleagues and the students worldwide who pointed out errors in and
gave us feedback about the earlier version of the book. We are especially
grateful to Bogdan Filipi¢ for his comments on the almost-final draft of this
book.

We wish everybody a pleasant and fruitful time reading and using this book.

Amsterdam, Bristol, April 2015 Gusz Eiben and Jim Smith
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Part 1

The Basics



1

Problems to Be Solved

In this chapter we discuss problems to be solved, as encountered frequently
by engineers, computer scientists, etc. We argue that problems and problem
solvers can, and should, be distinguished, and observe that the field of evolu-
tionary computing is primarily concerned with problem solvers. However, to
characterise any problem solver it is useful to identify the kind of problems
to which it can be applied. Therefore we start this book by discussing various
classes of problems, and, in fact, even different ways of classifying problems.

In the following informal discussion, we introduce the concepts and the
terminology needed for our purposes by examples, only using a formal treat-
ment when it is necessary for a good understanding of the details. To avoid
controversy, we are not concerned with social or political problems. The prob-
lems we have in mind are the typical ones with which artificial intelligence
is associated: more akin to puzzles (e.g., the famous zebra puzzle), numerical
problems (e.g., what is the shortest route from a northern city to a southern
city), or pattern discovery (e.g., what will a new customer buy in our online
book store, given their gender, age, address, etc).

1.1 Optimisation, Modelling, and Simulation Problems

The classification of problems used in this section is based on a black box
model of computer systems. Informally, we can think of any computer-based
system as follows. The system initially sits, awaiting some input from either
a person, a sensor, or another computer. When input is provided, the system
processes that input through some computational model, whose details are not
specified in general (hence the name black box). The purpose of this model is
to represent some aspects of the world relevant to the particular application.
For instance, the model could be a formula that calculates the total route
length from a list of consecutive locations, a statistical tool estimating the
likelihood of rain given some meteorological input data, a mapping from real-
time data regarding a car’s speed to the level of acceleration necessary to

© Springer-Verlag Berlin Heidelberg 2015 1
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2 1 Problems to Be Solved

approach some prespecified target speed, or a complex series of rules that
transform a series of keystrokes into an on screen version of the page you are
reading now. After processing the input the system provides some outputs —
which might be messages on screen, values written to a file, or commands sent
to an actuator such as an engine. Depending on the application, there might
be one or more inputs of different types, and the computational model might
be simple, or very complex. Importantly, knowing the model means that we
can compute the output for any input. To provide some concrete examples:

e When designing aircraft wings, the inputs might represent a description
of a proposed wing shape. The model might contain equations of complex
fluid dynamics to estimate the drag and lift coefficients of any wing shape.
These estimates form the output of the system.

e A voice control system for smart homes takes as input the electrical signal
produced when a user speaks into a microphone. Suitable outputs might
be commands to be sent to the heating system, the TV set, or the lights.
Thus in this case the model consists of a mapping from certain patterns
in electrical waveforms coming from an audio input onto the outputs that
would normally be created by key-presses on a keyboard.

e For a portable music player, the inputs might be a series of gestures and
button presses — perhaps choosing a playlist that the user has created.
Here the response of the model might involve selecting a series of mp3 files
from a database and processing them in some way to provide the desired
output for that sequence of gestures. In this case the output would be a
fluctuating electrical signal fed to a pair of earphones that in turn produce
the sound of the chosen songs.

In essence, the black box view of systems distinguishes three components,
the input, the model, and the output. In the following we will describe three
problem types, depending on which of these three is unknown.

1.1.1 Optimisation

In an optimisation problem the model is known, together with the desired
output (or a description of the desired output), and the task is to find the
input(s) leading to this output (Fig. 1.1).

For an example, let us consider the travelling salesman problem. This ap-
parently rather abstract problem is popular in computer science, as there are
many practical applications which can be reduced to this, such as organising
delivery routes, plant layout, production schedules, and timetabling. In the
abstract version we are given a set of cities and have to find the shortest tour
which visits each city exactly once. For a given instance of this problem, we
have a formula (the model) that for each given sequence of cities (the inputs)
will compute the length of the tour (the output). The problem is to find an
input with a desired output, that is, a sequence of cities with optimal (mini-
mal) length. Note that in this example the desired output is defined implicitly.
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That is, rather specifying the exact length, it is required that the tour should
be shorter than all others, and we are looking for inputs realising this.

Another example is that of the eight-queens problem. Here we are given a
chess board and eight queens that need to be placed on the board in such a way
that no two queens can check each other, i.e., they must not share the same
row, column, or diagonal. This problem can be captured by a computational
system where an input is a certain configuration of all eight queens, the model
calculates whether the queens in a given configuration check each other or not,
and the output is the number of queens not being checked. As opposed to the
travelling salesman problem, here the desired output is specified explicitly:
the number of queens not being checked must be eight. An alternative system
capturing this problem could have the same set of inputs, the same model,
but the output can be a simple binary value, representing “OK” or “not OK”,
referring to the configuration as a whole. In this case we are looking for an
input that generates “OK” as output. Intuitively, this problem may not feel
like real optimisation, because there is no graded measure of goodness. In
Sect. 1.3 we will discuss this issue in more detail.

Model

? —> known |—> specified
Input Output

Fig. 1.1. Optimisation problems. These occur frequently in engineering and design.
The label on the Output reads “specified”, instead of “known”, because the specific
value of the optimum may not be known, only defined implicitly (e.g., the lowest of
all possibilities).

1.1.2 Modelling

In a modelling or system identification problem, corresponding sets of
inputs and outputs are known, and a model of the system is sought that
delivers the correct output for each known input (Fig. 1.2). In terms of human
learning this corresponds to finding a model of the world that matches our
previous experience, and can hopefully generalise to as-yet unseen examples.
Let us take the stock exchange as an example, where some economic and
societal indices (e.g., the unemployment rate, gold price, euro—dollar exchange
rate, etc.) form the input, and the Dow Jones index is seen as output. The task
is now to find a formula that links the known inputs to the known outputs,
thereby representing a model of this economic system. If one can find a correct
model for the known data (from the past), and if we have good reasons to
believe that the relationships captured in this model remain true, then we
have a prediction tool for the value of the Dow Jones index given new data.
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As another example, let us take the task of identifying traffic signs in images
— perhaps from video feeds in a smart car. In this case the system is composed
of two elements. In a preprocessing stage, image processing routines take the
electrical signals produced by the camera, divide these into regions of interest
that might be traffic signs, and for each one they produce a set of numerical
descriptors of the size, shape, brightness, contrast, etc. These values represent
the image in a digital form and we consider the preprocessing component to
be given for now. Then in the main system each input is a vector of numbers
describing a possible sign, and the corresponding output is a label from a
predefined set, e.g., “stop”, “give-way”, “50”, etc. (the traffic sign). The model
is then an algorithm which takes images as input and produces labels of traffic
signs as output. The task here is to produce a model that responds with
the appropriate traffic sign labels in every situation. In practice, the set of
all possible situations would be represented by a large collection of images
that are all labelled appropriately. Then the modelling problem is reduced to
finding a model that gives a correct output for each image in the collection.

Also the voice control system for smart homes described in the beginning of
this section includes a modelling problem. The set of all phrases pronounced
by the user (inputs) must be correctly mapped onto the set of all control
commands in the repertoire of the smart home.

Model

known ———>| ’7 ——> known

Input Output

Fig. 1.2. Modelling or system identification problems. These occur frequently in
data mining and machine learning

It is important to note that modelling problems can be transformed into
optimisation problems. The general trick is to designate the error rate of a
model as the quantity to be minimised or its hit rate to be maximised. As
an example, let us take the traffic sign identification problem. This can be
formulated as a modelling problem: that of finding the correct model m that
maps each one of a collection of images onto the appropriate label(s) identi-
fying the traffic signs in that image. The model m that solves the problem
is unknown in advance, hence the question mark in Figure 1.2. In order to
find a solution we need to start by choosing a technology. For instance, we
may wish to have it as a decision tree, an artificial neural network, a piece
of Java code, or a MATLAB expression. This choice allows us to specify the
required form or syntax of m. Having done that, we can define the set of all
possible solutions M for our chosen technology, being all correct expressions
in the given syntax, e.g., all decision trees with the appropriate variables or all
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possible artificial neural networks with a given topology. Now we can define
a related optimisation problem. The set of inputs is M and the output for a
given m € M is an integer saying how many images were correctly labelled by
m. It is clear that a solution of this optimisation problem with the maximum
number of correctly labelled images is a solution to the original modelling
problem.

1.1.3 Simulation

In a simulation problem we know the system model and some inputs, and
need to compute the outputs corresponding to these inputs (Fig. 1.3). As an
example, think of an electronic circuit, say, a filter cutting out low frequen-
cies in a signal. Our model is a complex system of formulas (equations and
inequalities) describing the working of the circuit. For any given input signal
this model can compute the output signal. Using this model (for instance, to
compare two circuit designs) is much cheaper than building the circuit and
measuring its properties in the physical world. Another example is that of a
weather forecast system. In this case, the inputs are the meteorological data
regarding, temperature, wind, humidity, rainfall, etc., and the outputs are ac-
tually the same: temperature, wind, humidity, rainfall, etc., but at a different
time. The model here is a temporal one to predict meteorological data.

Simulation problems occur in many contexts, and using simulators offers
various advantages in different applications. For instance, simulation can be
more economical than studying the real-world effects, e.g., for the electronic
circuit designers. The real-world alternative may not be feasible at all, for
instance, performing what-if analyses of various tax systems in vivo is prac-
tically impossible. And simulation can be the tool that allows us to look into
the future, as in weather forecast systems.

Model

known ——> known p—— ')
Input Output

Fig. 1.3. Simulation problems. These occur frequently in design and in socio-
economical contexts

1.2 Search Problems

A deeply rooted assumption behind the black box view of systems is that
a computational model is directional: it computes from the inputs towards



6 1 Problems to Be Solved

the outputs and it cannot be simply inverted. This implies that solving a
simulation problem is different from solving an optimisation or a modelling
problem. To solve a simulation problem, we only need to apply the model
to some inputs and simply wait for the outcome.! However, solving an op-
timisation or a modelling problem requires the identification of a particular
object in a space of possibilities. This space can be, and usually is, enormous.
This leads us to the notion that the process of problem solving can be viewed
as a search through a potentially huge set of possibilities to find the desired
solution. Consequently, the problems that are to be solved this way can be
seen as search problems. In terms of the classification of problems discussed in
Section 1.1, optimisation and modelling problems can be naturally perceived
as search problems, while this does not hold for simulation problems.

This view naturally leads to the concept of a search space, being the
collection of all objects of interest including the solution we are seeking. De-
pending on the task at hand, the search space consists of all possible inputs to
a model (optimisation problems), or all possible computational models that
describe the phenomenon we study (modelling problems). Such search spaces
can indeed be very large; for instance, the number of different tours through n
cities is (n— 1)!, and the number of decision trees with real-valued parameters
is infinite. The specification of the search space is the first step in defining a
search problem. The second step is the definition of a solution. For optimi-
sation problems such a definition can be explicit, e.g., a board configuration
where the number of checked queens is zero, or implicit, e.g., a tour that is
the shortest of all tours. For modelling problems, a solution is defined by the
property that it produces the correct output for every input. In practice, how-
ever, this is often relaxed, only requiring that the number of inputs for which
the output is correct be maximal. Note that this approach transforms the
modelling problem into an optimisation one, as illustrated in Section 1.1.2.

This notion of problem solving as search gives us an immediate benefit: we
can draw a distinction between (search) problems — which define search spaces
— and problem solvers — which are methods that tell us how to move through
search spaces.

1.3 Optimisation Versus Constraint Satisfaction

The classification scheme discussed in this section is based on distinguishing
between objective functions to be optimised and constraints to be satisfied. In
general, we can consider an objective function to be some way of assigning
a value to a possible solution that reflects its quality on a scale, whereas a
constraint represents a binary evaluation telling us whether a given require-
ment holds or not. In the previous sections several objective functions were
mentioned, including:

! The main challenge here is very often to build the simulator, which, in fact,
amounts to solving a modelling problem.
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(1) the number of unchecked queens on a chess board (to be maximised);

(2) the length of a tour visiting each city in a given set exactly once (to be
minimised);

(3) the number of images in a collection that are labelled correctly by a given
model m (to be maximised).

These examples illustrate that solutions to a problem can be identified in
terms of optimality with respect to some objective function. Additionally, so-
lutions can be subject to constraints phrased as criteria that must be satisfied.
For instance:

(4) Find a configuration of eight queens on a chess board such that no two
queens check each other.

(5) Find a tour with minimal length for a travelling salesman such that city
X is visited after city Y.

There are a number of observations to be made about these examples. Ex-
ample 2 refers to a problem whose solution is defined purely in terms of opti-
misation. On the other hand, example 4 illustrates the case where a solution is
defined solely in terms of a constraint: a given configuration is either good or
not. Note that this overall constraint regarding a whole configuration is actu-
ally composed from more elementary constraints concerning pairs of queens.
A complete configuration is OK if all pairs of queens are OK. Example 5 is
a mixture of these two basic types since it has an objective function (tour
length) and a constraint (visit X after Y). Based on these observations we
can set up another system for classifying problems, depending on the presence
or absence of an objective function and constraints in the problem definition.
The resulting four categories are shown in Table 1.1.

Objective function

Constraints Yes [ No
Constrained | Constraint
Yes optimisation |satisfaction
problem problem
Free
No optimisation No
problem problem

Table 1.1. Problem types distinguished by the presence or absence of an objective
function and constraints

In these terms, the travelling salesman problem (item 2 above) is a free
optimisation problem (FOP), the eight-queens problem (item 4 above)
is a constraint satisfaction problem (CSP), and the problem shown in
item 5 is a constrained optimisation problem (COP). Comparing items
1 and 4 we can see that constraint satisfaction problems can be transformed
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into optimisation problems. The basic trick is the same as in transforming
modelling problems into optimisation problems: rather than requiring per-
fection, we just count the number of satisfied constraints (e.g., non-checking
pairs of queens) and introduce this as an objective function to be maximised.
Obviously, an object (e.g., a board configuration) is a solution of the original
constraint satisfaction problem if and only if it is a solution of this associated
optimisation problem.

To underpin further interesting insights about problems, let us have a closer
look at the eight-queens problem. Its original formulation is in natural lan-
guage:

Place eight queens on a chess board in such a way that no two
queens check each other.

This problem definition is informal in the sense that it lacks any reference
to the formal constructs we have introduced here, such as inputs/outputs, a
search space, etc. In order to develop an algorithm for this problem, it needs
to be formalised. As it happens, it can be formalised in different ways, and
these lead to different types of formal problems describing it. The easiest way
to illustrate a number of options is to take the search perspective.

FOP If we define search space S to be the set of all board configurations with
eight queens, we can capture the original problem as a free optimisation
problem with an objective function f that reports the number of free
queens for a given configuration, and define a solution as a configuration
s €S with f(s) =8.

CSP Alternatively, we can formalise it as a constraint satisfaction problem
with the same search space S and define a constraint ¢ such that ¢(s) =
true if and only if no two queens check each other for the configuration s.

COP Yet another formalisation is obtained if we take a different search
space. This can be motivated by the observation that in any solution of
the eight-queens problem the number of queens in each column must be
exactly one. Obviously, the same holds for rows. So we could distinguish
vertical constraints (for columns), horizontal constraints (for rows), and
diagonal constraints, and decide to restrict ourselves to board configura-
tions that satisfy the vertical and horizontal constraints already. This is a
workable approach, since it is rather easy to find configurations with one
queen in each column and in each row. These configurations are a subset of
the original search space — let us call this §’. Formally, we can then define
a constrained optimisation problem over S with a modified constraint 1)’
such that ¢'(s) = true if and only if all vertical and horizontal constraints
are satisfied in s (i.e. ¢'(s) = true if and only if s is in S’) and a new
function g that reports the number of pairs of queens in s that violate
the diagonal constraints. It is easy to see that a board configuration is a
solution of the eight-queens problem if and only if it is a solution of this
constrained optimisation problem with g(s) = 0 and ¢'(s) = true.
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These examples illustrate that the nature of a problem is less obvious than
it may seem. In fact, it all depends on how we choose to formalise it. Which
formalisation is to be preferred is a subject for discussion. It can be argued
that some formalisations are more natural, or fit the problem better, than
others. For instance, one may prefer to see the eight-queens problem as a con-
straint satisfaction problem by nature and consider all other formalisations as
secondary transformations. Likewise, one can consider the traffic sign recogni-
tion problem as a modelling problem in the first place and transform it to an
optimisation problem for practical purposes. Algorithmic considerations can
also be a major influence here. If one has an algorithm that can solve free
optimisation problems well, but cannot cope with constraints, then it is very
sensible to formalise problems as free optimisation.

1.4 The Famous NP Problems

Up to this point we have discussed a number of different ways of categorising
problems, and have deliberately stayed away from discussions about problem-
solvers. Consequently, it is possible to classify a problem according to one
of those schemes by only looking at the problem. In this section we discuss
a classification scheme where this is not possible because the problem cate-
gories are defined through the properties of problem-solving algorithms. The
motivation behind this approach is the intention to talk about problems in
terms of their difficulty, for instance, being hard or easy to solve. Roughly
speaking, the basic idea is to call a problem easy if there exists a fast solver
for it, and hard otherwise. This notion of problem hardness leads to the study
of computational complexity.

Before we proceed we need to make a further distinction among optimisa-
tion problems, depending on the type of objects in the corresponding search
space. If the search space S is defined by continuous variables (i.e., real num-
bers), then we have a numerical optimisation problem. If S is defined by
discrete variables (e.g., Booleans or integers), then we have a combinatorial
optimisation problem. The various notions of problem hardness discussed
further on are defined for combinatorial optimisation problems. Notice that
discrete search spaces are always finite or, in the worst case, countably infinite.

We do not attempt to provide a complete overview of computational com-
plexity as this is well covered in many books, such as [180, 330, 331, 318].
Rather, we provide a brief outline of some important concepts, their impli-
cations for problem-solving, and also of some very common misconceptions.
Furthermore, we do not treat the subject with mathematical rigour as it would
not be appropriate for this book. Thus, we do not give precise definitions of es-
sential concepts, like algorithm, problem size, or run-time, but use such terms
in an intuitive manner, explaining their meaning by examples if necessary.

The first key notion in computational complexity is that of problem size,
which is grounded in the dimensionality of the problem at hand (i.e., the num-
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ber of variables) and the number of different values for the problem variables.
For the examples discussed before, the number of cities to visit, or the num-
ber of queens to place on the board could be sensible measures to indicate
problem size. The second notion concerns algorithms, rather than problems.
The running-time of an algorithm is the number of elementary steps, or
operations, it takes to terminate. The general, although not always correct,
intuition behind computational complexity is that larger problems need more
time to solve. The best-known definitions of problem hardness relate the size
of a problem to the (worst-case) running-time of an algorithm to solve it. This
relationship is expressed by a formula that specifies an upper-bound for the
worst-case running-time as a function of the problem size. To put it simply, this
formula can be polynomial (considered to indicate relatively short running-
times) or superpolynomial, e.g., exponential (indicating long running-times).
The final notion is that of problem reduction, which is the idea that we
can transform one problem into another via a suitable mapping. Note that the
transformation might not be reversible. Although this idea of transforming or
reducing problems is slightly complex, it is not entirely unfamiliar since we
saw in the previous section that a given problem in the real world can often
by formalised in different, but equivalent ways. The frequently used notions
regarding problem hardness can now be phrased as follows.

A problem is said to belong to the class P if there exists an algorithm that
can solve it in polynomial time. That is, if there exists an algorithm for it
whose worst-case running-time for problem size n is less than F(n) for some
polynomial formula F. In common parlance, the set P contains the problems
that can be easily solved, e.g., the Minimum Spanning Tree problem.

A problem is said to belong to the class NP if it can be solved by some
algorithm (with no claims about its run-time) and any solution can be verified
within polynomial time by some other algorithm.? Note that it follows that
P is a subset of VP, since a polynomial solver can also be used to verify so-
lutions in polynomial time. An example of an N P-problem is the subset-sum
problem: given a set of integers, is there some set of one or more elements of
that set which sum to zero? Clearly, giving a negative answer to this prob-
lem for a given set of numbers would require examining all possible subsets.
Unfortunately, the number of the possible subsets is more than polynomial in
the size of the set. However verifying that a solution is valid merely involves
summing the contents of the subset discovered.

A problem is said to belong to the class NP-complete if it belongs to
the class NP and any other problem in NP can be reduced to this problem
by an algorithm which runs in polynomial time. In practice these represent
difficult problems which crop up all the time. Several large lists of well-known
examples of N P-complete problems can readily be found on the internet —

2 For the sake of correctness, here we commit the most blatant oversimplification.
We ‘define’” NP without any reference to non-deterministic Turing Machines, or
restricting the notion to decision problems.



1.4 The Famous NP Problems 11

we will not attempt to summarise other than to say that the vast majority of
interesting problems in computer science turn out to be N P-complete.

Finally a problem is said to belong to the class NP-hard if it is at least
as hard as any problem in N P-complete (so all problems in N P-complete can
be reduced to one in N P-hard), but where the solutions cannot necessarily be
verified within polynomial time. One such example is the Halting Problem.

The existence of problems where a solution cannot be verified in polynomial
time proves that the class P is not the same as the class N P-hard. What is
unknown is whether the two classes P and NP are in fact the same. If this
were to be the case then the implications would be enormous for computer
science and mathematics as it would be known that fast algorithms must
exist for problems which were previously thought to be difficult. Thus whether
P = NP is one of the grand challenges of complexity theory, and there is a
million-dollar reward offered for any proof that P = NP or P # N P. Notice,
that while the latter is the subject of much complex mathematics, the former
could simply be proved by the creation of a fast algorithm for any of the
N P-complete problems, for instance, an algorithm for the travelling salesman
problem whose worst-case running-time scaled polynomially with the number
of cities. Figure 1.4 shows the classes of problem hardness depending on the
equality of P and NP. If P = NP then the sets P = NP = N P-complete
but they are still a subset of N P-hard.

P#NP P=NP

NP-complete
NP-complete

Fig. 1.4. Classes of problem hardness depending on the equality of P and NP

While this sounds rather theoretical, it has some very important implica-
tions for problem-solving. If a problem is N P-complete, then although we
might be able to solve particular instances within polynomial time, we can-
not say that we will be able to do so for all possible instances. Thus if we
wish to apply problem-solving methods to those problems we must currently
either accept that we can probably only solve very small (or otherwise easy)
instances, or give up the idea of providing exact solutions and rely on approx-
imation or metaheuristics to create good enough solutions. This is in contrast
to problems which are known to be in P. Although the number of possible
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solutions for these problems may scale exponentially, algorithms exist which
find solutions and whose running-times scale polynomially with the size of the
instance.

To summarise this section, there are a huge number of practical problems
which, on examination, turn out to be a variant of an abstract problem that
is known to be in the class N P-complete. Although some instances of such a
problem might be easy, most computer scientists believe that no polynomial-
time algorithm exists for such problems, and certainly one has not yet been
discovered. Therefore, if we wish to be able to create acceptable solutions for
any instance of such a problem, we must turn to the use of approximation and
metaheuristics and abandon the idea of definitely finding a solution which is
provably the best for the instance.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.
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2

Evolutionary Computing: The Origins

This chapter provides the reader with the basics for studying evolutionary
computing (EC) through this book. We begin with a brief history of the
field of evolutionary computing, followed by an introduction to some of the
biological processes that have served as inspiration and that have provided a
rich source of ideas and metaphors to researchers. We then discuss motivations
for working with, and studying, evolutionary computing methods. We end
with examples of applications where EC was successfully applied.

2.1 The Main Evolutionary Computing Metaphor

Evolutionary computing is a research area within computer science. As the
name suggests, it is a special flavour of computing, which draws inspiration
from the process of natural evolution. It is not surprising that some computer
scientists have chosen natural evolution as a source of inspiration: the power
of evolution in nature is evident in the diverse species that make up our world,
each tailored to survive well in its own niche. The fundamental metaphor of
evolutionary computing relates this powerful natural evolution to a particular
style of problem solving — that of trial-and-error.

Descriptions of relevant fragments of evolutionary theory and genetics are
given later on. For the time being let us consider natural evolution simply as
follows. A given environment is filled with a population of individuals that
strive for survival and reproduction. The fitness of these individuals is deter-
mined by the environment, and relates to how well they succeed in achieving
their goals. In other words, it represents their chances of survival and of mul-
tiplying. Meanwhile, in the context of a stochastic trial-and-error (also known
as generate-and-test) style problem solving process, we have a collection of
candidate solutions. Their quality (that is, how well they solve the problem)
determines the chance that they will be kept and used as seeds for construct-
ing further candidate solutions. The analogies between these two scenarios are
shown in Table 2.1.

© Springer-Verlag Berlin Heidelberg 2015 13
A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing,
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Evolution Problem solving
Environment <— Problem
Individual +— Candidate solution
Fitness «+— Quality

Table 2.1. The basic evolutionary computing metaphor linking natural evolution
to problem solving

2.2 Brief History

Surprisingly enough, this idea of applying Darwinian principles to automated
problem solving dates back to the 1940s, long before the breakthrough of
computers [167]. As early as 1948, Turing proposed “genetical or evolutionary
search”, and by 1962 Bremermann had actually executed computer experi-
ments on “optimization through evolution and recombination”. During the
1960s three different implementations of the basic idea were developed in
different places. In the USA, Fogel, Owens, and Walsh introduced evolution-
ary programming [173, 174], while Holland called his method a genetic
algorithm [102, 218, 220]. Meanwhile, in Germany, Rechenberg and Schwe-
fel invented evolution strategies [352, 373]. For about 15 years these areas
developed separately; but since the early 1990s they have been viewed as differ-
ent representatives (‘dialects’) of one technology that has come to be known
as evolutionary computing (EC) [22, 27, 28, 137, 295, 146, 104, 12]. In
the early 1990s a fourth stream following the general ideas emerged, genetic
programming, championed by Koza [37, 252, 253]. The contemporary ter-
minology denotes the whole field by evolutionary computing, the algorithms
involved are termed evolutionary algorithms, and it considers evolutionary
programming, evolution strategies, genetic algorithms, and genetic program-
ming as subareas belonging to the corresponding algorithm variants.

The development of scientific forums devoted to EC gives an indication of
the field’s past and present, and is sketched in Fig. 2.1. The first interna-
tional conference specialising in the subject was the International Conference
on Genetic Algorithms (ICGA), first held in 1985 and repeated every second
year until 1997. In 1999 it merged with the Annual Conference on Genetic
Programming to become the annual Genetic and Evolutionary Computation
Conference (GECCO). At the same time, in 1999, the Annual Conference on
Evolutionary Programming, held since 1992, merged with the IEEE Confer-
ence on Evolutionary Computation, held since 1994, to form the Congress on
Evolutionary Computation (CEC), which has been held annually ever since.

The first European event (explicitly set up to embrace all streams) was
Parallel Problem Solving from Nature (PPSN) in 1990, which has became a
biennial conference. The first scientific journal devoted to this field, Evolution-
ary Computation, was launched in 1993. In 1997 the European Commission
decided to fund a European research network in EC, called EvoNet, whose
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EVOSTAR

FOGA
PPSN

—
—
i

Fig. 2.1. Brief sketch of the EC conference history

funds were guaranteed until 2003. At the time of writing (2014), there were
three major EC conferences (CEC, GECCO, and PPSN) and many smaller
ones, including one dedicated exclusively to theoretical analysis and devel-
opment, Foundations of Genetic Algorithms (FOGA), held biennially since
1990, and a European event seeded by EvoNet, the annual EVOSTAR confer-
ence. There are now various scientific EC journals ( Evolutionary Computation,
IEEE Transactions on Evolutionary Computation, Genetic Programming and
Evolvable Machines, Evolutionary Intelligence, Swarm and Evolutionary Com-
puting) and many with a closely related profile, e.g., on natural computing,
soft computing, or computational intelligence. We estimate the number of EC
publications in 2014 at somewhere over 2000 — many of them in journals and
conference proceedings of specific application areas.

2.3 The Inspiration from Biology

2.3.1 Darwinian Evolution

Darwin’s theory of evolution [92] offers an explanation of the origins of biolog-
ical diversity and its underlying mechanisms. In what is sometimes called the
macroscopic view of evolution, natural selection plays a central role. Given
an environment that can host only a limited number of individuals, and the
basic instinct of individuals to reproduce, selection becomes inevitable if the
population size is not to grow exponentially. Natural selection favours those
individuals that compete for the given resources most effectively, in other
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words, those that are adapted or fit to the environmental conditions best.
This phenomenon is also known as survival of the fittest.! Competition-
based selection is one of the two cornerstones of evolutionary progress. The
other primary force identified by Darwin results from phenotypic variations
among members of the population. Phenotypic traits (see also Sect. 2.3.2) are
those behavioural and physical features of an individual that directly affect
its response to the environment (including other individuals), thus determin-
ing its fitness. Each individual represents a unique combination of phenotypic
traits that is evaluated by the environment. If this combination evaluates
favourably, then the individual has a higher chance of creating offspring; oth-
erwise the individual is discarded by dying without offspring. Importantly, if
they are heritable (and not all traits are), favourable phenotypic traits may be
propagated via the individual’s offspring. Darwin’s insight was that small, ran-
dom variations — mutations — in phenotypic traits occur during reproduction
from generation to generation. Through these variations, new combinations of
traits occur and get evaluated. The best ones survive and reproduce, and so
evolution progresses. To summarise this basic model, a population consists of
a number of individuals. These individuals are the units of selection, that is to
say that their reproductive success depends on how well they are adapted to
their environment relative to the rest of the population. As the more success-
ful individuals reproduce, occasional mutations give rise to new individuals to
be tested. Thus, as time passes, there is a change in the constitution of the
population, i.e., the population is the unit of evolution.

This process is well captured by the intuitive metaphor of an adaptive
landscape or adaptive surface [468]. On this landscape the height dimension
belongs to fitness: high altitude stands for high fitness. The other two (or
more, in the general case) dimensions correspond to biological traits as shown
in Fig. 2.2. The xy-plane holds all possible trait combinations, and the z-
values show their fitnesses. Hence, each peak represents a range of successful
trait combinations, while troughs belong to less fit combinations. A given
population can be plotted as a set of points on this landscape, where each dot
is one individual realising a possible trait combination. Evolution is then the
process of gradual advances of the population to high-altitude areas, powered
by variation and natural selection. Our familiarity with the physical landscape
on which we exist naturally leads us to the concept of multimodal problems.
These are problems in which there are a number of points that are better than
all their neighbouring solutions. We call each of these points a local optimum
and denote the highest of these as the global optimum. A problem in which
there is only one local optimum is known as unimodal.

The link with an optimisation process is as straightforward as it is mislead-
ing, because evolution is not a unidirectional uphill process [103]. Because the

! This term is actually rather misleading. It is often, and incorrectly, taken to mean
that the best fit individual always survives. Since nature, and EC by design,
contains a lot of randomness, this does not always happen.
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Fig. 2.2. Illustration of Wright’s adaptive landscape with two traits

population has a finite size, and random choices are made in the selection
and variation operators, it is common to observe the phenomenon of genetic
drift, whereby highly fit individuals may be lost from the population, or the
population may suffer from a loss of variety concerning some traits. This can
have the effect that populations ‘melt down’ the hill, and enter low-fitness
valleys. The combined global effects of drift and selection enable populations
to move uphill as well as downhill, and of course there is no guarantee that
the population will climb back up the same hill. Escaping from locally optimal
regions is hereby possible, and according to Wright’s shifting balance theory
the maximum of a fixed landscape can be reached.

2.3.2 Genetics

The microscopic view of natural evolution is offered by molecular genetics. It
sheds light on the processes below the level of visible phenotypic features, in
particular relating to heredity. The fundamental observation from genetics is
that each individual is a dual entity: its phenotypic properties (outside) are
represented at a genotypic level (inside). In other words, an individual’s geno-
type encodes its phenotype. Genes are the functional units of inheritance
encoding phenotypic characteristics. For instance, visible properties like the
fur colour or tail length could be determined by genes. Here it is important
to distinguish genes and alleles. An allele is one of the possible values that
a gene can have — so its relationship to a gene is just like that of a specific
value to a variable in mathematics. To illustrate this by an oversimplified
example, bears could have a gene that determines fur colour, and for a po-
lar bear we would expect to see the allele that specifies the colour white. In
natural systems the genetic encoding is not one-to-one: one gene might affect
more phenotypic traits (pleitropy), and in turn one phenotypic trait can be
determined by more than one gene (polygeny). Phenotypic variations are
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always caused by genotypic variations, which in turn are the consequences of
mutations of genes, or recombination of genes by sexual reproduction.

Another way to think of this is that the genotype contains all the informa-
tion necessary to build the particular phenotype. The term genome stands for
the complete genetic information of a living being containing its total building
plan. This genetic material, that is, all genes of an organism, is arranged in
several chromosomes; there are 46 in humans. Higher life forms (many plants
and animals) contain a double complement of chromosomes in most of their
cells, and such cells — and the host organisms — are called diploid. Thus
the chromosomes in human diploid cells are arranged into 23 pairs. Gametes
(i.e., sperm and egg cells) contain only one single complement of chromosomes
and are called haploid. The combination of paternal and maternal features in
the offspring of diploid organisms is a consequence of fertilisation by a fusion
of such gametes: the haploid sperm cell merges with the haploid egg cell and
forms a diploid cell, the zygote. In the zygote, each chromosome pair is formed
by a paternal and a maternal half. The new organism develops from this zy-
gote by the process named ontogenesis, which does not change the genetic
information of the cells. Consequently, all body cells of a diploid organism
contain the same genetic information as the zygote it originates from.

In evolutionary computing, the combination of features from two individ-
uals in offspring is often called crossover. It is important to note that this is
not analogous to the working of diploid organisms, where crossing-over is
not a process during mating and fertilisation, but rather happens during the
formation of gametes, a process called meiosis. Meiosis is a special type of
cell division that ensures that gametes contain only one copy of each chromo-
some. As said above, a diploid body cell contains chromosome pairs, where
one half of the pair is identical to the paternal chromosome from the sperm
cell, and the other half is identical to the maternal chromosome from the
egg cell. During meiosis a chromosome pair first aligns physically, that is, the
copies of the paternal and maternal chromosomes, which form the pair, move
together and stick to each other at a special position (the centromere, not
indicated, see Fig. 2.3, left). In the second step the chromosomes double so
that four strands (called chromatids) are aligned (Fig. 2.3, middle). The ac-
tual crossing-over takes place between the two inner strands that break at a
random point and exchange parts (Fig. 2.3, right). The result is four differ-

Fig. 2.3. Three steps in the (simplified) meiosis procedure regarding one chromo-
some
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ent copies of the chromosome in question, of which two are identical to the
original parental chromosomes, and two are new recombinations of paternal
and maternal material. This provides enough genetic material to form four
haploid gametes, which is done via a random arrangement of one copy of each
chromosome. Thus in the newly created gametes the genome is composed of
chromosomes that are either identical to one of the parent chromosomes, or
recombinants. The resulting four haploid gametes are usually different from
both original parent genomes, facilitating genotypic variation in offspring.

In the 19th century Mendel first investigated and understood heredity in
diploid organisms. Modern genetics has added many details to his early pic-
ture, but we are still very far from understanding the whole genetic process.
What we do know is that all life on Earth is based on DNA — the famous
double helix of nucleotides encoding the whole organism be it a plant, animal,
or Homo sapiens. Triplets of nucleotides form so-called codons, each of which
codes for a specific amino acid. The genetic code (the translation table from
the 43 = 64 possible codons to the 20 amino acids from which proteins are
created) is universal, that is, it is the same for all life on Earth. This fact
is generally acknowledged as strong evidence that the whole biosphere has
the same origin. Genes are larger structures on the DNA, containing many
codons, carrying the code of proteins. The path from DNA to protein con-
sists of two main steps: transcription, where information from the DNA is
written to RNA, and translation, the step from RNA to protein. It is one of
the principal dogmas of molecular genetics that this information flow is only
one-way. Speaking in terms of genotypes and phenotypes, this means that phe-
notypic features cannot influence genotypic information. This refutes earlier
theories (for instance, that of Lamarck), which asserted that features acquired
during an individual’s lifetime could be passed on to its offspring via inheri-
tance. A consequence of this view is that changes in the genetic material of a
population can only arise from random variations and natural selection and
definitely not from individual learning. It is important to understand that all
variations (mutation and recombination) happen at the genotypic level, while
selection is based on actual performance in a given environment, that is, at
the phenotypic level.

2.3.3 Putting It Together

The Darwinian theory of evolution and the insights from genetics can be put
together to clarify the dynamics behind the emergence of life on Earth. For
the purposes of this book a simplified picture is sufficient. The main points
are then the following. Any living being is a dual entity with an invisible code
(its genotype) and observable traits (its phenotype). Its success in surviving
and reproducing is determined by its phenotypical properties, e.g., good ears,
strong muscles, white fur, friendly social attitude, attractive scent, etc. In
other words, the forces known as natural selection and sexual selection act on
the phenotype level. Obviously, selection also affects the genotype level, albeit
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implicitly. The key here is reproduction. New individuals may have one single
parent (asexual reproduction) or two parents (sexual reproduction). In
either case, the genome of the new individual is not identical to that of the
parent(s), because of small reproductive variations and because the combina-
tion of two parents will differ from both. In this way genotype variations are
created, which in turn translate to phenotype variations? and thus are subject
to selection. Hence, at a second level, genes are also subject to the game of
survival and reproduction, and some evolutionary biologists would argue that
viewing evolution from the perspective of genes is more productive — so that
rather than thinking about populations of individuals, we should think about
a ‘gene pool’ containing genes which compete and replicate over time, being
evaluated as they reoccur in different individuals [100].

Elevating this process to an abstract level, we can perceive each newborn
individual as a new sample in the space of all possible living things. This new
sample is produced by forces of variation, i.e., asexual or sexual reproduction,
and it is evaluated by the forces of selection. It needs to pass two hurdles:
first proving viable to live on its own, then proving capable of reproducing. In
species using sexual reproduction, this implies an extra test of being able to
find a mate (sexual selection). This cycle of production and evaluation may
sound familiar to readers with an algorithmic background, such procedures
are known as generate-and-test methods.

2.4 Evolutionary Computing: Why?

Developing automated problem solvers (that is, algorithms) is one of the cen-
tral themes of mathematics and computer science. Just as engineers have
always looked at Nature’s solutions for inspiration, copying ‘natural prob-
lem solvers’ is a stream within these disciplines. When looking for the most
powerful natural problem solver, there are two rather obvious candidates:

e the human brain (that created “the wheel, New York, wars and so on” [4,
Chap. 23));
e the evolutionary process (that created the human brain).

Trying to design problem solvers based on the first candidate leads to the
field of neurocomputing. The second option forms a basis for evolutionary
computing.

Another motivation can be identified from a technical perspective. Com-
puterisation in the second half of the 20th century created a growing demand
for problem-solving automation. The growth rate of the research and develop-
ment capacity has not kept pace with these needs. Hence, the time available
for thorough problem analysis and tailored algorithm design has been decreas-
ing. A parallel trend has been the increase in the complexity of problems to

2 Some genotype variations may not cause observable phenotype differences, but
this is not relevant for the present argument.
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be solved. These two trends imply an urgent need for robust algorithms with
satisfactory performance. That is, there is a need for algorithms that are ap-
plicable to a wide range of problems, do not need much tailoring for specific
problems, and deliver good (not necessarily optimal) solutions within accept-
able time. Evolutionary algorithms do all this, and so provide an answer to
the challenge of deploying automated solution methods for more and more
problems, which are ever more complex, in less and less time.

A third motivation is one that can be found behind every science: human
curiosity. Evolutionary processes are the subjects of scientific studies where the
main objective is to understand how evolution works. From this perspective,
evolutionary computing represents the possibility of performing experiments
differently from traditional biology. Evolutionary processes can be simulated
in a computer, where millions of generations can be executed in a matter of
hours or days and repeated under various circumstances. These possibilities go
far beyond studies based on excavations and fossils, or those possible in vivo.
Naturally, the interpretation of such simulation experiments must be done
very carefully. First, because we do not know whether the computer models
represent the biological reality with sufficient fidelity. Second, it is unclear
whether conclusions drawn in a digital medium, in silico, can be transferred
to the carbon-based biological medium. Despite these caveats there is a strong
tradition within evolutionary computing to ‘play around’ with evolution for
the sake of understanding how it works. Application issues do not play a
role here, at least not in the short term. But, of course, learning more about
evolutionary processes in general can help in designing better algorithms later.

Having given three rather different reasons why people might want to use
evolutionary computation, we next illustrate the power of evolutionary prob-
lem solving by a number of application examples from various areas.

A challenging optimisation task that has successfully been carried out by
evolutionary algorithms is the timetabling of university classes [74, 329]. Typ-
ically, some 2000-5000 events take place during a university week, and these
must each be given a day, time, and room. The first optimisation task is to
reduce the number of clashes, for example, a student needing to be in two
places at once, or a room being used for two lectures at the same time. Pro-
ducing feasible timetables with no clashes is a hard task. In fact, it turns out
that in most cases the vast majority of the space of all timetables is filled with
infeasible solutions. In addition to producing feasible timetables, we also want
to produce timetables that are optimised as far as the users are concerned.
This optimisation task involves considering a large number of objectives that
compete with each other. For example, students may wish to have no more
than two classes in a row, while their lecturers may be more concerned with
having whole days free for conducting research. Meanwhile, the main goal of
the university management might be to make room utilisation more efficient,
or to cut down the amount of movement around or between the buildings.

EC applications in industrial design optimisation can be illustrated with the
case of a satellite dish holder boom. This ladder-like construction connects the
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satellite’s body with the dish needed for communication. It is essential that
this boom is stable, in particular vibration resistant, as there is no air in
space that would damp vibrations that could break the whole construction.
Keane et al. [245] optimised this construction using an evolutionary algorithm.
The resulting structure is 20,000% (!) better than traditional shapes, but
for humans it looks very strange: it exhibits no symmetry, and there is no
intuitive design logic visible (Fig. 2.4). The final design looks pretty much

Fig. 2.4. The initial, regular design of the 3D boom (left) and the final design found
by a genetic algorithm (right)

like a random drawing, and the crucial thing is this: it is a random drawing,
drawn without intelligence, but evolving through a number of consecutive
generations of improving solutions. This illustrates the power of evolution
as a designer: it is not limited by conventions, aesthetic considerations, or
ungrounded preferences for symmetry. On the contrary, it is purely driven
by quality, and thereby it can come to solutions that lie outside of the scope
of human thinking, with its implicit and unconscious limitations. It is worth
mentioning that evolutionary design often goes hand-in-hand with reverse
engineering. In particular, once a provably superior solution is evolved, it can
be analysed and explained through the eyes of traditional engineering. This
can lead to generalisable knowledge, i.e., the formulation of new laws, theories,
or design principles applicable to a variety of other problems of similar type.3

Modelling tasks typically occur in data-rich environments. A frequently
encountered situation is the presence of many examples of a certain event or
phenomenon without a formal description. For instance, a bank may have one
million records (profiles) of clients containing their sociogeographical data,
financial overviews of their mortgages, loans, and insurances, details of their
card usage, and so forth. Certainly, the bank also has information about client

3 In the case of the satellite dish boom, it is exactly the asymmetric character that
works so well. Namely, vibrations are waves that traverse the boom along the
rungs. If the rungs are of different lengths then these waves meet in a different
phase and cancel each other. This small theory sounds trivial, but it took the
asymmetric evolved solution to come to it.
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behaviour in terms of paying back loans, for instance. In this situation it is a
reasonable assumption that the profile (facts and known data from the past)
is related to behaviour (future events). In order to understand the repayment
phenomenon, what is needed is a model relating the profile inputs to the
behavioural patterns (outputs). Such a model would have predictive power,
and thus would be very useful when deciding about new loan applicants. This
situation forms a typical application context for the areas of machine learning
and data mining. Evolutionary computing is a possible technology that has
been used to solve such problems [179].

Another example of this type of modelling approach can be seen in [370],
where Schulenburg and Ross use a learning classifier system to evolve sets of
rules modelling the behaviour of stock market traders. As their inputs they
used ten years of trading history, in the form of daily statistics such as volume
of trade, current price, change in price over the last few days, whether this
price is a new high (or low), and so on for a given company’s stock. The evolved
traders consisted of sets of condition—action rules. Each day the current
stock market conditions were presented to the trader, triggering a rule that
decided whether stock was bought or sold. Periodically a genetic algorithm
is run on the set of (initially random) rules, so that well-performing ones are
rewarded, and poorly performing ones are discarded. It was demonstrated
that the system evolved trading agents that outperformed many well-known
strategies, and varied according to the nature of the particular stock they
were trading. Of particular interest, and benefit, compared to methods such
as neural networks (which are also used for this kind of modelling problem in
time-series forecasting), is the fact that the rule-bases of the evolved traders
are easily examinable, that is to say that the models that are evolved are
particularly transparent to the user.

Evolutionary computing can also be applied to simulation problems, that is,
to answer what-if questions in a context where the investigated subject matter
is evolving, i.e., driven by variation and selection. Evolutionary economics is
an established research area, roughly based on the perception that the game
and the players in the socioeconomic arena have much in common with the
game of life. In common parlance, the survival of the fittest principle is also
fundamental in the economic context. Evolving systems with a socioeconomic
interpretation can differ from biological ones in that the behavioural rules
governing the individuals play a very strong role in the system. The term
agent-based computational economy is often used to emphasise this aspect
[427]. Academic research in this direction is often based on a simple model
called Sugarscape world [155]. This features agent-like inhabitants in a grid
space, and a commodity (the sugar) that can be consumed, owned, traded,
and so on by the inhabitants. There are many ways to set up system variants
with an economics interpretation and conduct simulation experiments. For in-
stance, Back et al. [31] investigate how artificially forced sugar redistribution
(tax) and evolution interact under various circumstances. Clearly, interpreta-
tion of the outcomes of such experiments must be done very carefully, avoiding
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ungrounded claims on transferability of results into a real socioeconomic con-
text.

Finally, we note that evolutionary computing experiments with a clear bio-
logical interpretation are also very interesting. Let us mention two approaches
by way of illustration: trying existing biological features or trying nonexisting
biological features. In the first approach, simulating a known natural phe-
nomenon is a key issue. This may be motivated by an expectation that the
natural trick will also work for algorithmic problem-solving, or by simply be-
ing willing to test whether the effects known in carbon would occur in silicon
as well. Take incest as an example. A strong moral taboo against incest has
existed for thousands of years, and for the last century or two there is also
scientific insight supporting this: incest leads to degeneration of the popula-
tion. The results in [158] show that computer-simulated evolution also benefits
from incest prevention. This confirms that the negative effects of incest are
inherent for evolutionary processes, independently from the medium in which
they take place. The other approach to simulations with a biological flavour is
the opposite of this: it implements a feature that does not exist in biology, but
can be implemented in a computer. As an illustration, let us take multipar-
ent reproduction, where more than two parents are required for mating, and
offspring inherit genetic material from each of them. Eiben et al. [126, 128]
have experimented a great deal with such mechanisms showing the beneficial
effects under many different circumstances.

To summarise this necessarily brief introduction, evolutionary computing
is a branch of computer science concerned with a class of algorithms that
are broadly based on the Darwinian principles of natural selection, and that
draw inspiration from molecular genetics. Over the history of the world, many
species have arisen and evolved to suit different environments, all using the
same biological machinery. In the same way, if we provide an evolutionary
algorithm with a new environment we hope to see adaptation of the initial
population in a way that better suits the environment. Typically (but not
always) this environment will take the form of a problem to be solved, with
feedback to the individuals representing how well the solutions they represent
solve the problem, and we have provided some examples of this. However, as
we have indicated, the search for optimal solutions to some problem is not the
only use of evolutionary algorithms; their nature as flexible adaptive systems
gives rise to applications varying from economic modelling and simulation to
the study of diverse biological processes during adaptation.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.
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3

What Is an Evolutionary Algorithm?

The most important aim of this chapter is to describe what an evolutionary
algorithm (EA) is. In order to give a unifying view we present a general scheme
that forms the common basis for all the different variants of evolutionary
algorithms. The main components of EAs are discussed, explaining their role
and related issues of terminology. This is immediately followed by two example
applications to make things more concrete. We then go on to discuss general
issues concerning the operation of EAs, to place them in a broader context
and explain their relationship with other global optimisation techniques.

3.1 What Is an Evolutionary Algorithm?

As the history of the field suggests, there are many different variants of evolu-
tionary algorithms. The common underlying idea behind all these techniques
is the same: given a population of individuals within some environment that
has limited resources, competition for those resources causes natural selection
(survival of the fittest). This in turn causes a rise in the fitness of the pop-
ulation. Given a quality function to be maximised, we can randomly create
a set of candidate solutions, i.e., elements of the function’s domain. We then
apply the quality function to these as an abstract fitness measure — the higher
the better. On the basis of these fitness values some of the better candidates
are chosen to seed the next generation. This is done by applying recombina-
tion and/or mutation to them. Recombination is an operator that is applied
to two or more selected candidates (the so-called parents), producing one or
more new candidates (the children). Mutation is applied to one candidate
and results in one new candidate. Therefore executing the operations of re-
combination and mutation on the parents leads to the creation of a set of
new candidates (the offspring). These have their fitness evaluated and then
compete — based on their fitness (and possibly age) — with the old ones for a
place in the next generation. This process can be iterated until a candidate
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with sufficient quality (a solution) is found or a previously set computational
limit is reached.
There are two main forces that form the basis of evolutionary systems:

e Variation operators (recombination and mutation) create the necessary
diversity within the population, and thereby facilitate novelty.

e Selection acts as a force increasing the mean quality of solutions in the
population.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy to view this process
as if evolution is optimising (or at least ‘approximising’) the fitness function,
by approaching the optimal values closer and closer over time. An alterna-
tive view is that evolution may be seen as a process of adaptation. From this
perspective, the fitness is not seen as an objective function to be optimised,
but as an expression of environmental requirements. Matching these require-
ments more closely implies an increased viability, which is reflected in a higher
number of offspring. The evolutionary process results in a population which
is increasingly better adapted to the environment.

It should be noted that many components of such an evolutionary pro-
cess are stochastic. For example, during selection the best individuals are not
chosen deterministically, and typically even the weak individuals have some
chance of becoming a parent or of surviving. During the recombination pro-
cess, the choice of which pieces from the parents will be recombined is made
at random. Similarly for mutation, the choice of which pieces will be changed
within a candidate solution, and of the new pieces to replace them, is made
randomly. The general scheme of an evolutionary algorithm is given in
pseudocode in Fig. 3.1, and is shown as a flowchart in Fig. 3.2.

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 FVALUATE new candidates;
5 SELECT individuals for the next generation;
0D
END

Fig. 3.1. The general scheme of an evolutionary algorithm in pseudocode
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It is easy to see that this scheme falls into the category of generate-and-test
algorithms. The evaluation (fitness) function provides a heuristic estimate of
solution quality, and the search process is driven by the variation and selection
operators. Evolutionary algorithms possess a number of features that can help
position them within the family of generate-and-test methods:

e FEAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously.

e Most EAs use recombination, mixing information from two or more can-
didate solutions to create a new one.

e EAs are stochastic.
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Nitia dl10N >

Recombination

ulation
’ Y Mutation

v \ 4

 ofsprng |

Survivor selection

Fig. 3.2. The general scheme of an evolutionary algorithm as a flowchart

The various dialects of evolutionary computing we have mentioned pre-
viously all follow these general outlines, differing only in technical details.
In particular, different streams are often characterised by the representation
of a candidate solution — that is to say the data structures used to encode
candidates. Typically this has the form of strings over a finite alphabet in
genetic algorithms (GAs), real-valued vectors in evolution strategies (ESs), fi-
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nite state machines in classical evolutionary programming (EP), and trees in
genetic programming (GP). The origin of these differences is mainly histori-
cal. Technically, one representation might be preferable to others if it matches
the given problem better; that is, it makes the encoding of candidate solutions
easier or more natural. For instance, when solving a satisfiability problem with
n logical variables, the straightforward choice is to use bit-strings of length n
so that the contents of the ith bit would denote that variable ¢ took the value
true (1) or false (0). Hence, the appropriate EA would be a GA. To evolve
a computer program that can play checkers, the parse trees of the syntactic
expressions forming the programs are a natural choice to represent candidate
solutions, thus a GP approach is likely. It is important to note two points.
First, the recombination and mutation operators working on candidates must
match the given representation. Thus, for instance, in GP the recombination
operator works on trees, while in GAs it operates on strings. Second, in con-
trast to variation operators, the selection process only takes fitness information
into account, and so it works independently from the choice of representation.
Therefore differences between the selection mechanisms commonly applied in
each stream are a matter of tradition rather than of technical necessity.

3.2 Components of Evolutionary Algorithms

In this section we discuss evolutionary algorithms in detail. There are a num-
ber of components, procedures, or operators that must be specified in order to
define a particular EA. The most important components, indicated by italics
in Fig. 3.1, are:

representation (definition of individuals)
evaluation function (or fitness function)
population

parent selection mechanism

variation operators, recombination and mutation
survivor selection mechanism (replacement)

To create a complete, runnable algorithm, it is necessary to specify each com-
ponent and to define the initialisation procedure. If we wish the algorithm to
stop at some stage!, we must also provide a termination condition.

3.2.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the ‘real world’ to the ‘EA world’,
that is, to set up a bridge between the original problem context and the

! Note that this is not always this case. For instance, there are many examples of
open-ended evolution of art on the Internet.
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problem-solving space where evolution takes place. This often involves sim-
plifying or abstracting some aspects of the real world to create a well-defined
and tangible problem context within which possible solutions can exist and be
evaluated, and this work is often undertaken by domain experts. The first step
from the point of view of automated problem-solving is to decide how possible
solutions should be specified and stored in a way that can be manipulated by
a computer. We say that objects forming possible solutions within the original
problem context are referred to as phenotypes, while their encoding, that is,
the individuals within the EA, are called genotypes. This first design step
is commonly called representation, as it amounts to specifying a mapping
from the phenotypes onto a set of genotypes that are said to represent them.
For instance, given an optimisation problem where the possible solutions are
integers, the given set of integers would form the set of phenotypes. In this
case one could decide to represent them by their binary code, so, for exam-
ple, the value 18 would be seen as a phenotype, and 10010 as a genotype
representing it. It is important to understand that the phenotype space can
be very different from the genotype space, and that the whole evolutionary
search takes place in the genotype space. A solution — a good phenotype —
is obtained by decoding the best genotype after termination. Therefore it is
desirable that the (optimal) solution to the problem at hand — a phenotype
— is represented in the given genotype space. In fact, since in general we will
not know in advance what that solution looks like, it is usually desirable that
all possible feasible solutions can be represented?.
The evolutionary computation literature contains many synonyms:

e On the side of the original problem context the terms candidate solu-
tion, phenotype, and individual are all used to denote possible solutions.
The space of all possible candidate solutions is commonly called the phe-
notype space.

e On the side of the EA, the terms genotype, chromosome, and again indi-
vidual are used to denote points in the space where the evolutionary search
actually takes place. This space is often termed the genotype space.

e There are also many synonymous terms for the elements of individuals. A
placeholder is commonly called a variable, a locus (plural: loci), a position,
or — in a biology-oriented terminology — a gene. An object in such a place
can be called a value or an allele.

It should be noted that the word ‘representation’ is used in two slightly dif-
ferent ways. Sometimes it stands for the mapping from the phenotype to the
genotype space. In this sense it is synonymous with encoding, e.g., one could
mention binary representation or binary encoding of candidate solutions. The
inverse mapping from genotypes to phenotypes is usually called decoding,
and it is necessary that the representation should be invertible so that for each

2 In the language of generate-and-test algorithms, this means that the generator is
complete.
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genotype there is at most one corresponding phenotype. The word represen-
tation can also be used in a slightly different sense, where the emphasis is not
on the mapping itself, but on the data structure of the genotype space. This
interpretation is the one we use when, for example, we speak about mutation
operators for binary representation.

3.2.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements the
population should adapt to meet. It forms the basis for selection, and so it fa-
cilitates improvements. More accurately, it defines what improvement means.
From the problem-solving perspective, it represents the task to be solved in
the evolutionary context. Technically, it is a function or procedure that assigns
a quality measure to genotypes. Typically, this function is composed from the
inverse representation (to create the corresponding phenotype) followed by a
quality measure in the phenotype space. To stick with the example above, if
the task is to find an integer 2 that maximises 22, the fitness of the genotype
10010 could be defined by decoding its corresponding phenotype (10010 — 18)
and then taking its square: 182 = 324.

The evaluation function is commonly called the fitness function in EC.
This might cause a counterintuitive terminology if the original problem re-
quires minimisation, because the term fitness is usually associated with max-
imisation. Mathematically, however, it is trivial to change minimisation into
maximisation, and vice versa. Quite often, the original problem to be solved
by an EA is an optimisation problem (treated in more technical detail in
Sect. 1.1). In this case the name objective function is often used in the origi-
nal problem context, and the evaluation (fitness) function can be identical to,
or a simple transformation of, the given objective function.

3.2.3 Population

The role of the population is to hold (the representation of) possible solu-
tions. A population is a multiset? of genotypes. The population forms the unit
of evolution. Individuals are static objects that do not change or adapt; it is
the population that does. Given a representation, defining a population may
be as simple as specifying how many individuals are in it, that is, setting the
population size. In some sophisticated EAs a population has an additional
spatial structure, defined via a distance measure or a neighbourhood relation.
This corresponds loosely to the way that real populations evolve within the
context of a spatial structure given by individuals’ geographical locations.
In such cases the additional structure must also be defined in order to fully
specify a population.

3 A multiset is a set where multiple copies of an element are possible.
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In almost all EA applications the population size is constant and does not
change during the evolutionary search — this produces the limited resources
need to create competition. The selection operators (parent selection and sur-
vivor selection) work at the population level. In general, they take the whole
current population into account, and choices are always made relative to what
is currently present. For instance, the best individual of a given population is
chosen to seed the next generation, or the worst individual of a given popula-
tion is chosen to be replaced by a new one. This population level activity is in
contrast to variation operators, which act on one or more parent individuals.

The diversity of a population is a measure of the number of different solu-
tions present. No single measure for diversity exists. Typically people might
refer to the number of different fitness values present, the number of different
phenotypes present, or the number of different genotypes. Other statistical
measures such as entropy are also used. Note that the presence of only one
fitness value in a population does not necessarily imply that only one pheno-
type is present, since many phenotypes may have the same fitness. Equally, the
presence of only one phenotype does not necessarily imply only one genotype.
However, if only one genotype is present then this implies only one phenotype
and fitness value are present.

3.2.4 Parent Selection Mechanism

The role of parent selection or mate selection is to distinguish among
individuals based on their quality, and, in particular, to allow the better indi-
viduals to become parents of the next generation. An individual is a parent
if it has been selected to undergo variation in order to create offspring. To-
gether with the survivor selection mechanism, parent selection is responsible
for pushing quality improvements. In EC, parent selection is typically proba-
bilistic. Thus, high-quality individuals have more chance of becoming parents
than those with low quality. Nevertheless, low-quality individuals are often
given a small, but positive chance; otherwise the whole search could become
too greedy and the population could get stuck in a local optimum.

3.2.5 Variation Operators (Mutation and Recombination)

The role of variation operators is to create new individuals from old ones. In
the corresponding phenotype space this amounts to generating new candidate
solutions. From the generate-and-test search perspective, variation operators
perform the generate step. Variation operators in EC are divided into two
types based on their arity, distinguishing unary (mutation) and n-ary versions
(recombination).

Mutation

A unary variation operator is commonly called mutation. It is applied to one
genotype and delivers a (slightly) modified mutant, the child or offspring.
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A mutation operator is always stochastic: its output — the child — depends on
the outcomes of a series of random choices. It should be noted that not all
unary operators are seen as mutation. For example, it might be tempting to
use the term mutation to describe a problem-specific heuristic operator which
acts systematically on one individual trying to find its weak spot and improve
it by performing a small change. However, in general mutation is supposed to
cause a random, unbiased change. For this reason it might be more appropri-
ate not to call heuristic unary operators mutation. Historically, mutation has
played a different role in various EC dialects. Thus, for example, in genetic
programming it is often not used at all, whereas in genetic algorithms it has
traditionally been seen as a background operator, providing the gene pool
with ‘fresh blood’, and in evolutionary programming it is the only variation
operator, solely responsible for the generation of new individuals.

Variation operators form the evolutionary implementation of elementary
(search) steps, giving the search space its topological structure. Generating a
child amounts to stepping to a new point in this space. From this perspective,
mutation has a theoretical role as well: it can guarantee that the space is con-
nected. There are theorems which state that an EA will (given sufficient time)
discover the global optimum of a given problem. These often rely on this con-
nectedness property that each genotype representing a possible solution can
be reached by the variation operators [129]. The simplest way to satisfy this
condition is to allow the mutation operator to jump everywhere: for example,
by allowing any allele to be mutated into any other with a nonzero probability.
However, many researchers feel these proofs have limited practical importance,
and EA implementations often don’t possess this property.

Recombination

A binary variation operator is called recombination or crossover. As the
names indicate, such an operator merges information from two parent geno-
types into one or two offspring genotypes. Like mutation, recombination is a
stochastic operator: the choices of what parts of each parent are combined,
and how this is done, depend on random drawings. Again, the role of re-
combination differs between EC dialects: in genetic programming it is often
the only variation operator, and in genetic algorithms it is seen as the main
search operator, whereas in evolutionary programming it is never used. Re-
combination operators with a higher arity (using more than two parents) are
mathematically possible and easy to implement, but have no biological equiva-
lent. Perhaps this is why they are not commonly used, although several studies
indicate that they have positive effects on the evolution [126, 128].

The principle behind recombination is simple — by mating two individuals
with different but desirable features, we can produce an offspring that com-
bines both of those features. This principle has a strong supporting case — for
millennia it has been successfully applied by plant and livestock breeders to
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produce species that give higher yields or have other desirable features. Evo-
lutionary algorithms create a number of offspring by random recombination,
and we hope that while some will have undesirable combinations of traits,
and most may be no better or worse than their parents, some will have im-
proved characteristics. The biology of the planet Earth, where, with very few
exceptions, lower organisms reproduce asexually and higher organisms repro-
duce sexually [288, 289], suggests that recombination is the superior form of
reproduction. However recombination operators in EAs are usually applied
probabilistically, that is, with a nonzero chance of not being performed.

It is important to remember that variation operators are representation de-
pendent. Thus for different representations different variation operators have
to be defined. For example, if genotypes are bit-strings, then inverting a bit
can be used as a mutation operator. However, if we represent possible solutions
by tree-like structures another mutation operator is required.

3.2.6 Survivor Selection Mechanism (Replacement)

Similar to parent selection, the role of survivor selection or environmental
selection is to distinguish among individuals based on their quality. However,
it is used in a different stage of the evolutionary cycle — the survivor selec-
tion mechanism is called after the creation of the offspring from the selected
parents. As mentioned in Sect. 3.2.3, in EC the population size is almost al-
ways constant. This requires a choice to be made about which individuals will
be allowed in to the next generation. This decision is often based on their
fitness values, favouring those with higher quality, although the concept of
age is also frequently used. In contrast to parent selection, which is typically
stochastic, survivor selection is often deterministic. Thus, for example, two
common methods are the fitness-based method of ranking the unified multi-
set of parents and offspring and selecting the top segment, or the age-biased
approach of selecting only from the offspring.

Survivor selection is also often called the replacement strategy. In many
cases the two terms can be used interchangeably, but we use the name survivor
selection to keep terminology consistent: steps 1 and 5 in Fig. 3.1 are both
named selection, distinguished by a qualifier. Equally, if the algorithm creates
surplus children (e.g., 500 offspring from a population of 100), then using the
term survivor selection is clearly appropriate. On the other hand, the term
“replacement” might be preferred if the number of newly-created children is
small compared to the number of individuals in the population. For example,
a “steady-state” algorithm might generate two children per iteration from a
population of 100. In this case, survivor selection means choosing the two old
individuals that are to be deleted to make space for the new ones, so it is
more efficient to declare that everybody survives unless deleted and to choose
whom to replace. Both strategies can of course be seen in nature, and have
their proponents in EC, so in the rest of this book we will be pragmatic about
this issue. We will use survivor selection in the section headers for reasons of
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generality and uniformity, while using replacement if it is commonly used in
the literature for the given procedure we are discussing.

3.2.7 Initialisation

Initialisation is kept simple in most EA applications; the first population
is seeded by randomly generated individuals. In principle, problem-specific
heuristics can be used in this step, to create an initial population with higher
fitness. Whether this is worth the extra computational effort, or not, very
much depends on the application at hand. There are, however, some general
observations concerning this question that we discuss in Sect. 3.5, and we also
return to this issue in Chap. 10.

3.2.8 Termination Condition

We can distinguish two cases of a suitable termination condition. If the
problem has a known optimal fitness level, probably coming from a known
optimum of the given objective function, then in an ideal world our stopping
condition would be the discovery of a solution with this fitness. If we know
that our model of the real-world problem contains necessary simplifications, or
may contain noise, we may accept a solution that reaches the optimal fitness to
within a given precision € > 0. However, EAs are stochastic and mostly there
are no guarantees of reaching such an optimum, so this condition might never
get satisfied, and the algorithm may never stop. Therefore we must extend this
condition with one that certainly stops the algorithm. The following options
are commonly used for this purpose:

1. The maximally allowed CPU time elapses.

2. The total number of fitness evaluations reaches a given limit.

3. The fitness improvement remains under a threshold value for a given pe-
riod of time (i.e., for a number of generations or fitness evaluations).

4. The population diversity drops under a given threshold.

Technically, the actual termination criterion in such cases is a disjunction:
optimum value hit or condition X satisfied. If the problem does not have a
known optimum, then we need no disjunction. We simply need a condition
from the above list, or a similar one that is guaranteed to stop the algorithm.
We will return to the issue of when to terminate an EA in Sect. 3.5.

3.3 An Evolutionary Cycle by Hand

To illustrate the working of an EA, we show the details of one selection—
reproduction cycle on a simple problem after Goldberg [189], that of max-
imising the values of x? for integers in the range 0-31. To execute a full
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evolutionary cycle, we must make design decisions regarding the EA compo-
nents representation, parent selection, recombination, mutation, and survivor
selection.

For the representation we use a simple five-bit binary encoding mapping
integers (phenotypes) to bit-strings (genotypes). For parent selection we use
a fitness proportional mechanism, where the probability p; that an individual
i in population P is chosen to be a parent is p; = f(i)/ > ,cp f(j). Fur-
thermore, we can decide to replace the entire population in one go by the
offspring created from the selected parents. This means that our survivor se-
lection operator is very simple: all existing individuals are removed from the
population and all new individuals are added to it without comparing fitness
values. This implies that we will create as many offspring as there are mem-
bers in the population. Given our chosen representation, the mutation and
recombination operators can be kept simple. Mutation is executed by gener-
ating a random number (from a uniform distribution over the range [0, 1]) in
each bit position, and comparing it to a fixed threshold, usually called the
mutation rate. If the random number is below that rate, the value of the
gene in the corresponding position is flipped. Recombination is implemented
by the classic one-point crossover. This operator is applied to two parents and
produces two children by choosing a random crossover-point along the strings
and swapping the bits of the parents after this point.

String Initial |x Value| Fitness |Prob;|Expected|Actual
no. population f(z) =22 count | count
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 2

Table 3.1. The z? example, 1: initialisation, evaluation, and parent selection

After having made the essential design decisions, we can execute a full
selection—reproduction cycle. Table 3.1 shows a random initial population of
four genotypes, the corresponding phenotypes, and their fitness values. The
cycle then starts with selecting the parents to seed the next generation. The
fourth column of Table 3.1 shows the expected number of copies of each indi-
vidual after parent selection, being f;/f, where f denotes the average fitness
(displayed values are rounded up). As can be seen, these numbers are not in-
tegers; rather they represent a probability distribution, and the mating pool
is created by making random choices to sample from this distribution. The
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String Mating |Crossover| Offspring |z Value| Fitness
no. pool point |after xover flz) =22
1 01101 4 01100 12 144
2 110010 4 11001 25 625
2 11]000 2 11011 27 729
4 10/011 2 10000 16 256
Sum 1754
Average 439
Max 729

Table 3.2. The z? example, 2: crossover and offspring evaluation

String | Offspring Offspring |z Value| Fitness
no. after xover|after mutation f(z) =22
1 01100 11100 26 676
2 11001 11001 25 625
2 11011 11011 27 729
4 10000 10100 18 324
Sum 2354
Average 588.5
Max 729

Table 3.3. The z? example, 3: mutation and offspring evaluation

column “Actual count” stands for the number of copies in the mating pool,
i.e., it shows one possible outcome.

Next the selected individuals are paired at random, and for each pair a ran-
dom point along the string is chosen. Table 3.2 shows the results of crossover
on the given mating pool for crossover points after the fourth and second
genes, respectively, together with the corresponding fitness values. Mutation
is applied to the offspring delivered by crossover. Once again, we show one
possible outcome of the random drawings, and Table 3.3 shows the hand-made
‘mutants’. In this case, the mutations shown happen to have caused positive
changes in fitness, but we should emphasise that in later generations, as the
number of 1’s in the population rises, mutation will be on average (but not
always) deleterious. Although manually engineered, this example shows a typ-
ical progress: the average fitness grows from 293 to 588.5, and the best fitness
in the population from 576 to 729 after crossover and mutation.

3.4 Example Applications

3.4.1 The Eight-Queens Problem

This is the problem of placing eight queens on a regular 8 x 8 chessboard
so that no two of them can check each other. This problem can be naturally
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generalised, yielding the N-queens problem described in Sect. 1.3. There are
many classical artificial intelligence approaches to this problem, which work
in a constructive, or incremental, fashion. They start by placing one queen,
and after having placed n queens, they attempt to place the (n + 1)th in a
feasible position where the new queen does not check any others. Typically
some sort of backtracking mechanism is applied; if there is no feasible position
for the (n+1)th queen, the nth is moved to another position.

An evolutionary approach to this problem is drastically different in that it is
not incremental. Our candidate solutions are complete (rather than partial)
board configurations, which specify the positions of all eight queens. The
phenotype space P is the set of all such configurations. Clearly, most elements
of this space are infeasible, violating the condition of nonchecking queens. The
quality ¢(p) of any phenotype p € P can be simply quantified by the number of
checking queen pairs. The lower this measure, the better a phenotype (board
configuration), and a zero value, ¢(p) = 0, indicates a good solution. From this
observation we can formulate a suitable objective function to be minimised,
with a known optimal value. Even though we have not defined genotypes at
this point, we can state that the fitness (to be maximised) of a genotype g that
represents phenotype p is some inverse of ¢(p). There are many possible ways
of specifying what kind of inverse we wish to use here. For instance, 1/¢(p) is
an easy option, but has the disadvantage that attempting division by zero is a
problem for many computing systems. We could circumvent this by watching
for ¢(p) = 0 and saying that when this occurs we have a solution, or by adding
a small value ¢, i.e., 1/(¢q(p) + ¢). Other options are to use —q(p) or M — q(p),
where M is a sufficiently large number to make all fitness values positive, e.g.,
M > max{q(p) | p € P}. This fitness function inherits the property of ¢ that
it has a known optimum M.

To design an EA to search the space P we need to define a representa-
tion of phenotypes from P. The most straightforward idea is to use a matrix
representation of elements of P directly as genotypes, meaning that we must
design variation operators for these matrices. In this example, however, we
define a more clever representation as follows. A genotype, or chromosome, is
a permutation of the numbers 1,...,8, and a given g = (iy,...,is) denotes
the (unique) board configuration, where the nth column contains exactly one
queen placed on the i,th row. For instance, the permutation g = (1,...,8)
represents a board where the queens are placed along the main diagonal. The
genotype space GG is now the set of all permutations of 1,...,8 and we also
have defined a mapping F' : G — P.

It is easy to see that by using such chromosomes we restrict the search to
board configurations where horizontal constraint violations (two queens on
the same row) and vertical constraint violations (two queens on the same
column) do not occur. In other words, the representation guarantees half of
the requirements of a solution — what remains to be minimised is the number
of diagonal constraint violations. From a formal perspective we have chosen
a representation that is not surjective since only part of P can be obtained
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by decoding elements of G. While in general this could carry the danger of
missing solutions in P, in our present example this is not the case, since we
know a priori that those phenotypes from P \ F(G) can never be solutions.

The next step is to define suitable variation operators (mutation and
crossover) for our representation, i.e., to work on genotypes that are per-
mutations. The crucial feature of a suitable operator is that it does not lead
out of the space G. In common parlance, the offspring of permutations must
themselves be permutations. Later, in Sects. 4.5.1 and 4.5.2, we will discuss
such operators in great detail. Here we only describe one suitable mutation
and one crossover operator for the purpose of illustration. For mutation we can
use an operator that randomly selects two positions in a given chromosome,
and swaps the values found in those positions. A good crossover for permuta-
tions is less obvious, but the mechanism outlined in Fig. 3.3 will create two
child permutations from two parents.

1. Select a random position, the crossover point, 7 € {1,...,7}

2. Cut both parents into two segments at this position

3. Copy the first segment of parent 1 into child 1 and the first segment
of parent 2 into child 2

4. Scan parent 2 from left to right and fill the second segment of child
1 with values from parent 2, skipping those that it already contains

5. Do the same for parent 1 and child 2

Fig. 3.3. ‘Cut-and-crossfill’ crossover

The important thing about these variation operators is that mutation causes
a small undirected change, and crossover creates children that inherit genetic
material from both parents. It should be noted though that there can be
large performance differences between operators, e.g., an EA using mutation
A might find a solution quickly, whereas one using mutation B might never
find a solution. The operators we sketch here are not necessarily efficient,
they merely serve as examples of operators that are applicable to the given
representation.

The next step in setting up an EA is to decide upon the selection and pop-
ulation update mechanisms. We will choose a simple scheme for managing the
population. In each evolutionary cycle we will select two parents, producing
two children, and the new population of size n will contain the best n of the
resulting n + 2 individuals (the old population plus the two new ones).

Parent selection (step 1 in Fig. 3.1) will be done by choosing five individuals
randomly from the population and taking the best two as parents. This ensures
a bias towards using parents with relatively high fitness. Survivor selection
(step 5 in Fig. 3.1) checks which old individuals should be deleted to make
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place for the new ones — provided the new ones are better. Following the
naming convention discussed from Sect. 3.2.6 we define a replacement strategy.
The strategy we will use merges the population and offspring, then ranks them
according to fitness, and deletes the worst two.

To obtain a full specification we can decide to fill the initial population
with randomly generated permutations, and to terminate the search when we
find a solution, or when 10,000 fitness evaluations have elapsed, whichever
happens sooner. Furthermore we can decide to use a population size of 100,
and to use the variation operators with a certain frequency. For instance, we
always apply crossover to the two selected parents and in 80% of the cases
apply mutation to the offspring. Putting this all together, we obtain an EA
as summarised in Table 3.4.

Representation Permutations
Recombination ‘Cut-and-crossfill’ crossover
Recombination probability|100%

Mutation Swap

Mutation probability 80%

Parent selection Best 2 out of random 5
Survival selection Replace worst

Population size 100

Number of offspring 2

Initialisation Random

Termination condition Solution or 10,000 fitness evaluations

Table 3.4. Description of the EA for the eight-queens problem

3.4.2 The Knapsack Problem

The 0-1 knapsack problem, a generalisation of many industrial problems, can
be briefly described as follows. We are given a set of n items, each of which has
attached to it some value v;, and some cost ¢;. The task is to select a subset of
those items that maximises the sum of the values, while keeping the summed
cost within some capacity C),q.. Thus, for example, when packing a backpack
for a round-the-world trip, we must balance likely utility of the items against
the fact that we have a limited volume (the items chosen must fit in one bag),
and weight (airlines impose fees for luggage over a given weight).

It is a natural idea to represent candidate solutions for this problem as
binary strings of length n, where a 1 in a given position indicates that an
item is included and a 0 that it is omitted. The corresponding genotype space
G is the set of all such strings with size 2", which increases exponentially
with the number of items considered. Using this GG, we fix the representation
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in the sense of data structure, and next we need to define the mapping from
genotypes to phenotypes.

The first representation (in the sense of a mapping) that we consider takes
the phenotype space P and the genotype space to be identical. The quality of
a given solution p, represented by a binary genotype g, is thus determined by
summing the values of the included items, i.e., g(p) = > ._, v; - g;. However,
this simple representation leads us to some immediate problems. By using a
one-to-one mapping between the genotype space G and the phenotype space
P, individual genotypes may correspond to invalid solutions that have an
associated cost greater than the capacity, i.e., > i, ¢; - gi > Cpag. This issue
is typical of a class of problems that we return to in Chap. 13, and a number
of mechanisms have been proposed for dealing with it.

The second representation that we outline here solves this problem by em-
ploying a decoder function, that breaks the one-to-one correspondence be-
tween the genotype space G and the solution space P. In essence, our geno-
type representation remains the same, but when creating a solution we read
from left to right along the binary string, and keep a running tally of the cost
of included items. When we encounter a value 1, we first check to see whether
including the item would break our capacity constraint. In other words, rather
than interpreting a value 1 as meaning include this item, we interpret it as
meaning include this item IF it does not take us over the cost constraint. The
effect of this scheme is to make the mapping from genotype to phenotype
space many-to-one, since once the capacity has been reached, the values of all
bits to the right of the current position are irrelevant, as no more items will
be added to the solution. Furthermore, this mapping ensures that all binary
strings represent valid solutions with a unique fitness (to be maximised).

Having decided on a fixed-length binary representation, we can now choose
off-the-shelf variation operators from the GA literature, because the bit-string
representation is ‘standard’ there. A suitable (but not necessarily optimal)
recombination operator is the so-called one-point crossover, where we align
two parents and pick a random point along their length. The two offspring are
created by exchanging the tails of the parents at that point. We will apply this
with 70% probability, i.e., for each pair of parents there is a 70% chance that
we will create two offspring by crossover and 30% that the children will be just
copies of the parents. A suitable mutation operator is so-called bit-flipping:
in each position we invert the value with a small probability p,, € [0,1).

In this case we will create the same number of offspring as we have members
in our initial population. As noted above, we create two offspring from each
two parents, so we will select that many parents and pair them randomly. We
will use a tournament for selecting the parents, where each time we pick two
members of the population at random (with replacement), and the one with
the highest value ¢(p) wins the tournament and becomes a parent. We will
institute a generational scheme for survivor selection, i.e., all of the population
in each iteration are discarded and replaced by their offspring.
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Finally, we should consider initialisation (which we will do by random choice
of 0 and 1 in each position of our initial population), and termination. In this
case, we do not know the maximum value that we can achieve, so we will run
our algorithm until no improvement in the fitness of the best member of the
population has been observed for 25 generations.

We have already defined our crossover probability as 0.7; we will work with
a population size of 500 and a mutation rate of p,, = 1/n, i.e., that will on
average change one value in every offspring. Our evolutionary algorithm to
tackle this problem can be specified as below in Table 3.5.

Representation Binary strings of length n
Recombination One-point crossover

Recombination probability|70%

Mutation Each value inverted with independent probability p,,
Mutation probability p,, |1/n

Parent selection Best out of random 2

Survival selection Generational

Population size 500

Number of offspring 500

Initialisation Random

Termination condition No improvement in last 25 generations

Table 3.5. Description of the EA for the knapsack problem

3.5 The Operation of an Evolutionary Algorithm

Evolutionary algorithms have some rather general properties concerning how
they work. To illustrate how an EA typically works, we will assume a one-
dimensional objective function to be maximised. Figure 3.4 shows three stages
of the evolutionary search, showing how the individuals might typically be
distributed in the beginning, somewhere halfway, and at the end of the evo-
lution. In the first stage directly after initialisation, the individuals are ran-
domly spread over the whole search space (Fig. 3.4, left). After only a few
generations this distribution changes: because of selection and variation oper-
ators the population abandons low-fitness regions and starts to climb the hills
(Fig. 3.4, middle). Yet later (close to the end of the search, if the termination
condition is set appropriately), the whole population is concentrated around
a few peaks, some of which may be suboptimal. In principle it is possible
that the population might climb the wrong hill, leaving all of the individu-
als positioned around a local but not global optimum. Although there is no
universally accepted rigorous definition of the terms exploration and exploita-
tion, these notions are often used to categorize distinct phases of the search
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process. Roughly speaking, exploration is the generation of new individuals
in as-yet untested regions of the search space, while exploitation means the
concentration of the search in the vicinity of known good solutions. Evolu-
tionary search processes are often referred to in terms of a trade-off between
exploration and exploitation. Too much of the former can lead to inefficient
search, and too much of the latter can lead to a propensity to focus the search
too quickly (see [142] for a good discussion of these issues). Premature con-
vergence is the well-known effect of losing population diversity too quickly,
and getting trapped in a local optimum. This danger is generally present in
evolutionary algorithms, and techniques to prevent it are discussed in Chap. 5.
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Fig. 3.4. Typical progress of an EA illustrated in terms of population distribution.
For each point z in the search space y shows the corresponding fitness value.

The other effect we want to illustrate is the anytime behaviour of EAs
by plotting the development of the population’s best fitness value over time
(Fig. 3.5). This curve shows rapid progress in the beginning and flattening out
later on. This is typical for many algorithms that work by iterative improve-
ments to the initial solution(s). The name ‘anytime’ comes from the property
that the search can be stopped at any time, and the algorithm will have
some solution, even if it is suboptimal. Based on this anytime curve we can

best value in population

time

Fig. 3.5. Typical progress of an EA illustrated in terms of development over time
of the highest fitness in the population

make some general observations concerning initialisation and the termination
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condition for EAs. In Sect. 3.2.7 we questioned whether it is worth putting
extra computational effort into applying intelligent heuristics to seed the ini-
tial population with better-than-random individuals. In general, it could be
said that that the typical progress curve of an evolutionary process makes
it unnecessary. This is illustrated in Fig. 3.6. As the figure indicates, using

best value in population

L >

Kk time

Fig. 3.6. Illustration of why heuristic initialisation might not be worth additional
effort. Level a shows the best fitness in a randomly initialised population; level b
belongs to heuristic initialisation

heuristic initialisation can start the evolutionary search with a better popu-
lation. However, typically a few (k in the figure) generations are enough to
reach this level, making the extra effort questionable. In Chap. 10 we will
return to this issue.

The anytime behaviour also gives some general indications regarding the
choice of termination conditions for EAs. In Fig. 3.7 we divide the run into
two equally long sections. As the figure indicates, the progress in terms of
fitness increase in the first half of the run (X) is significantly greater than in
the second half (Y'). This suggests that it might not be worth allowing very
long runs. In other words, because of frequently observed anytime behaviour
of EAs, we might surmise that effort spent after a certain time (number of
fitness evaluations) is unlikely to result in better solution quality.

We close this review of EA behaviour by looking at EA performance from a
global perspective. That is, rather than observing one run of the algorithm, we
consider the performance of EAs for a wide range of problems. Fig. 3.8 shows
the 1980s view after Goldberg [189]. What the figure indicates is that EAs
show a roughly evenly good performance over a wide range of problems. This
performance pattern can be compared to random search and to algorithms tai-
lored to a specific problem type. EAs are suggested to clearly outperform ran-
dom search. In contrast, a problem-tailored algorithm performs much better
than an EA, but only on the type of problem for which it was designed. As we
move away from this problem type to different problems, the problem-specific
algorithm quickly loses performance. In this sense, EAs and problem-specific
algorithms form two opposing extremes. This perception played an important
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Fig. 3.7. Why long runs might not be worth performing. X shows the fitness
increase in the first half of the run, while Y belongs to the second half

role in positioning EAs and stressing the difference between evolutionary and
random search, but it gradually changed in the 1990s based on new insights
from practice as well as from theory. The contemporary view acknowledges
the possibility of combining the two extremes into a hybrid algorithm. This
issue is treated in detail in Chap. 10, where we also present the revised version
of Fig. 3.8. As for theoretical considerations, the No Free Lunch theorem has
shown that (under some conditions) no black-box algorithm can outperform
random walk when averaged over ‘all’ problems [467]. That is, showing the
EA line always above that of random search is fundamentally incorrect. This
is discussed further in Chap. 16.
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Fig. 3.8. 1980s view of EA performance after Goldberg [189]

3.6 Natural Versus Artificial Evolution

From the perspective of the underlying substrate, the emergence of evolution-
ary computation can be considered as a major transition of the evolutionary
principles from wetware, the realm of biology, to software, the realm of com-
puters. This was made possible by using computers as instruments for creat-
ing digital worlds that are very flexible and much more controllable than the
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physical reality we live in. Together with the increased understanding of the
genetic mechanisms behind evolution this brought about the opportunity to
become active masters of evolutionary processes that are fully designed and
executed by human experimenters from above.

It could be argued that evolutionary algorithms are not faithful models of
natural evolution. However, they certainly are a form of evolution. As phrased
by Dennett [116]: If you have variation, heredity, and selection, then you
must get evolution. In Table 3.6 we compare natural evolution and artificial
evolution as used in contemporary evolutionary algorithms.

|

‘Natural evolution

‘Artiﬁcial evolution

Fitness

Observed quantity: a posteriori
effect of selection (‘in the eye of
the observer’).

Predefined a priori quantity
that drives selection.

Selection

Complex  multifactor  force
based on environmental condi-
tions, other individuals of the
same species and other species
(e.g., predators). Viability
is tested continually; repro-
ducibility is tested at discrete
times.

Randomized operator with se-
lection probabilities based on
given fitness values. Parent se-
lection and survivor selection
both happen at discrete times.

Genotype-
phenotype
mapping

biochemical
the

Highly complex
process influenced by
environment.

Relatively simple mathemati-
cal transformation or parame-
terised procedure.

Variation

Offspring created from one
(asexual reproduction) or two
parents (sexual reproduction).

Offspring may be generated
from one, two, or many parents.

Execution

Parallel, decentralized execu-
tion; birth and death events are
not synchronised.

Typically centralized with syn-
chronised birth and death.

Population

Spatial ~ embedding  implies
structured populations. Popula-
tion size varies according to the
relative number of death and
birth events.

Typically unstructured and
panmictic (all individuals are
potential partners). Population
size is kept constant by syn-
chronising time and number of
birth and death events.

Table 3.6. Differences between natural and artificial evolution
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3.7 Evolutionary Computing, Global Optimisation, and
Other Search Algorithms

In Chap. 2 we noted that evolutionary algorithms are often used for problem
optimisation. Of course EAs are not the only optimisation technique known, so
in this section we explain where EAs fall into the general class of optimisation
methods, and why they are of increasing interest.

In an ideal world, we would possess the technology and algorithms that
could provide a provably optimal solution to any problem that we could suit-
ably pose to the system. In fact such algorithms do exist: an exhaustive enu-
meration of all of the possible solutions to a problem is clearly such an al-
gorithm. Moreover, for many problems that can be expressed in a suitably
mathematical formulation, much faster, exact techniques such as branch and
bound search are well known. However, despite the rapid progress in com-
puting technology, and even if there is no halt to Moore’s Law, all too often
the types of problems posed by users exceed in their demands the capacity of
technology to answer them.

Decades of computer science research have taught us that many real-world
problems can be reduced in their essence to well-known abstract forms, for
which the number of potential solutions grows very quickly with the number
of variables considered. For example, many problems in transportation can be
reduced to the well-known travelling salesperson problem (TSP): given a list
of destinations, construct the shortest tour that visits each destination exactly
once. If we have n destinations, with symmetric distances between them, the
number of possible tours is n!/2 = n-(n—1)-(n—2)-...-3, which is exponential
in n. For some of these abstract problems exact methods are known whose
time complexity scales linearly (or at least polynomially) with the number
of variables (see [212] for an overview). However, it is widely accepted that
for many types of problems encountered, no such algorithms exist — as was
discussed in Sect. 1.4. Thus, despite the increase in computing power, beyond
a certain size of problem we must abandon the search for provably optimal
solutions, and look to other methods for finding good solutions.

The term global optimisation refers to the process of attempting to find
the solution with the optimal value for some fitness function. In mathematical
terminology, we are trying to find the solution x* out of a set of possible
solutions S, such that x # z* = f(x*) > f(z) Vo € S. Here we have assumed
a maximisation problem — the inequality is simply reversed for minimisation.

As noted above, a number of deterministic algorithms exist that, if allowed
to run to completion, are guaranteed to find x*. The simplest example is,
of course, complete enumeration of all the solutions in S, which can take an
exponentially long time as the number of variables increases. A variety of other
techniques, collectively known as box decomposition, are based on ordering the
elements of S into some kind of tree, and then reasoning about the quality of
solutions in each branch in order to decide whether to investigate its elements.
Although methods such as branch and bound can sometimes make very fast
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progress, in the worst case (caused by searching in a suboptimal order) the
time complexity of the algorithms is still the same as complete enumeration.

Another class of search methods is known as heuristics. These may be
thought of as sets of rules for deciding which potential solution out of S
should next be generated and tested. For some randomised heuristics, such
as simulated annealing [2, 250] and certain variants of EAs, convergence
proofs do in fact exist, i.e., they are guaranteed to find z*. Unfortunately
these algorithms are fairly weak, in the sense that they will not identify z* as
being globally optimal, rather as simply the best solution seen so far.

An important class of heuristics is based on the idea of using operators that
impose some kind of structure onto the elements of S, such that each point
x has associated with it a set of neighbours N(z). In Fig. 2.2 the variables
(traits) = and y were taken to be real-valued, which imposes a natural struc-
ture on S. The reader should note that for those types of problem where each
variable takes one of a finite set of values (so-called combinatorial optimi-
sation), there are many possible neighbourhood structures. As an example of
how the landscape ‘seen’ by a local search algorithm depends on its neighbour-
hood structure, the reader might wish to consider what a chessboard would
look like if we reordered it, so that squares that are possible next moves for
the knight piece were adjacent to each other. Thus points which are locally
optimal (fitter than all their neighbours) in the landscape induced by one
neighbourhood structure may not be for another. However, by its definition,
the global optimum z* will always be fitter than all of its neighbours under
any neighbourhood structure.

So-called local search algorithms [2] and their many variants work by tak-
ing a starting solution x, and then searching the candidate solutions in N (x)
for one ' that performs better than z. If such a solution exists, then this is
accepted as the new incumbent solution, and the search proceeds by exam-
ining the candidate solutions in N(z’). This process will eventually lead to
the identification of a local optimum: a solution that is superior to all those
in its neighbourhood. Such algorithms (often referred to as hill climbers
for maximisation problems) have been well studied over the decades. They
have the advantage that they are often quick to identify a good solution to
the problem, which is sometimes all that is required in practical applications.
However, the downside is that problems will frequently exhibit numerous local
optima, some of which may be significantly worse than the global optimum,
and no guarantees can be offered for the quality of solution found.

A number of methods have been proposed to get around this problem by
changing the search landscape, either by changing the neighbourhood struc-
ture (e.g., variable neighbourhood search [208]), or by temporarily assigning
low fitness to already-seen good solutions (e.g., Tabu search [186]). However
the theoretical basis behind these algorithms is still very much in gestation.

There are a number of features of EAs that distinguish them from local
search algorithms, relating principally to their use of a population. The pop-
ulation provides the algorithm with a means of defining a nonuniform prob-
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ability distribution function (p.d.f.) governing the generation of new points
from S. This p.d.f. reflects possible interactions between points in S which are
currently represented in the population. The interactions arise from the re-
combination of partial solutions from two or more members of the population
(parents). This potentially complex p.d.f. contrasts with the globally uniform
distribution of blind random search, and the locally uniform distribution used
by many other stochastic algorithms such as simulated annealing and various
hill-climbing algorithms.

The ability of EAs to maintain a diverse set of points provides not only a
means of escaping from local optima, but also a means of coping with large
and discontinuous search spaces. In addition, as will be seen in later chapters,
if several copies of a solution can be generated, evaluated, and maintained
in the population, this provides a natural and robust way of dealing with
problems where there is noise or uncertainty associated with the assignment
of a fitness score to a candidate solution.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.
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4

Representation, Mutation, and Recombination

As explained in Chapt. 3, there are two fundamental forces that form the basis
of evolutionary systems: variation and selection. In this chapter we discuss the
EA components behind the first one. Since variation operators work at the
equivalent of the genetic level, that is to say they work on the representation of
solutions, rather than on solutions themselves, this chapter is subdivided into
sections that deal with different ways in which solutions can be represented
and varied within the overall search algorithm.

4.1 Representation and the Roles of Variation Operators

The first stage of building any evolutionary algorithm is to decide on a genetic
representation of a candidate solution to the problem. This involves defining
the genotype and the mapping from genotype to phenotype. When choosing
a representation, it is important to choose the right representation for the
problem being solved. In many cases there will be a range of options, and get-
ting the representation right is one of the most difficult parts of designing a
good evolutionary algorithm. Often this only comes with practice and a good
knowledge of the application domain. In the following sections, we look more
closely at some commonly used representations, and the genetic operators
that might be applied to them. It is important to stress, however, that while
the representations described here are commonly used, they might not be the
best representations for your application. Equally, although we present the
representations and their associate operators separately, it frequently turns
out in practice that using mixed representations is a more natural and suit-
able way of describing and manipulating a solution than trying to shoehorn
different aspects of a problem into a common form.

Mutation is the generic name given to those variation operators that use
only one parent and create one child by applying some kind of randomised
change to the representation (genotype). The form taken depends on the
choice of encoding used, as does the meaning of the associated parameter,
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which is often introduced to regulate the intensity or magnitude of mutation.
Depending on the given implementation, this can be mutation probability, mu-
tation rate, mutation step size, etc. In the descriptions below we concentrate
on the choice of operators rather than of parameters. However, the latter can
make a significant difference in the behaviour of the evolutionary algorithm,
and this is discussed in more depth in Chap. 7.

Recombination, the process whereby a new individual solution is created
from the information contained within two (or more) parent solutions, is con-
sidered by many to be one of the most important features in evolutionary
algorithms. A lot of research activity has focused on it as the primary mecha-
nism for creating diversity, with mutation considered as a background search
operator. However, different strands of EC historically emphasised different
variation operators, and as these came together under the umbrella of evolu-
tionary algorithms, this emphasis prompted a great deal of debate. Regardless
of the merits of different viewpoints, the ability to combine partial solutions
via recombination is certainly one of the features that most distinguishes EAs
from other global optimisation algorithms.

Although the term recombination has come to be used for the more general
case, early authors used the term crossover, motivated by the biological
analogy to meiosis (see Sect. 2.3.2). Therefore we will occasionally use the
terms interchangeably, although crossover tends to refer to the most common
two-parent case. Recombination operators are usually applied probabilistically
according to a crossover rate p.. Usually two parents are selected and two
offspring are created via recombination of the two parents with probability
De; or by simply copying the parents, with probability 1 — p,.

Distinguishing variation operators by their arity ¢ makes it a straightfor-
ward idea to go beyond the usual a = 1 (mutation) and a = 2 (crossover).
The resulting multiparent recombination operators for a = 3,4,... are
simple to define and implement. This provides the opportunity to experiment
with evolutionary processes using reproduction schemes that do not exist in
biology. From the technical point of view this offers a tool for amplifying the
effects of recombination. Although such operators are not widely used in EC,
there are many examples that have been proposed during the development of
the field, even as early as 1966 [67], see [126, 128] for an overview, and Sect. 6.6
for a description of how this idea is applied in differential evolution. These
operators can be categorised by the basic mechanism used for combining the
information of the parent individuals. This mechanism can be:

e Dbased on allele frequencies, e.g., p-sexual voting [311] generalising uniform
CroSSover;

e based on segmentation and recombination of the parents, e.g., the diagonal
crossover in [139]; generalising n-point crossover

e based on numerical operations on real-valued alleles, e.g., the centre of
mass crossover [434], generalising arithmetic recombination operators.
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In general, it cannot be claimed that increasing the arity of recombination
has a positive effect on the performance of an EA — this depends very much
on the type of recombination and the problem at hand. However, systematic
studies on landscapes with tuneable ruggedness [143] and a large number of
experimental investigations on various problems clearly show that using more
than two parents can accelerate evolutionary search and be advantageous in
many cases.

4.2 Binary Representation

The first representation we look at is one of the simplest — the binary one used
in Sect. 3.3. This is one of the earliest representations, and historically many
genetic algorithms (GAs) have (mistakenly) used this representation almost
independently of the problem they were trying to solve. Here the genotype
consists simply of a string of binary digits — a bit-string.

For a particular application we have to decide how long the string should
be, and how we will interpret it to produce a phenotype. In choosing the
genotype—phenotype mapping for a specific problem, one has to make sure that
the encoding allows that all possible bit strings denote a valid solution to the
given problem' and that, vice versa, all possible solutions can be represented.

For some problems, particularly those concerning Boolean decision vari-
ables, the genotype—phenotype mapping is natural. One example is the knap-
sack problem described in Sect. 3.4.2, where for each possible item a Boolean
decision was evolved, denoting whether it was included in the final solution.
Frequently bit-strings are used to encode other nonbinary information. For
example, we might interpret a bit-string of length 80 as 10 integers, each en-
coded as 8-bit integers (allowing for 256 possible values), or five 16-bit real
numbers. Using bit-strings to encode nonbinary information is usually a mis-
take, and better results can be obtained by using the integer or real-valued
representations directly.

One of the problems of coding numbers in binary is that different bits
have different significance, and so the effect of a single bit mutation is very
variable. Using standard binary code has the disadvantage that the Hamming
distance between two consecutive integers is often not equal to one. If the
goal is to evolve an integer number, you would like to have equal probabilities
of changing a 7 into an 8 or a 6. However, changing 0111 to 1000 requires
four bit-flips while changing it to 0110 takes just one. Thus with a mutation
operator that randomly, and independently, changes each allele value with
probability p,, < 0.5, the probability of changing 7 to 8 is much less than
changing 7 to 6. This can be helped by using Gray coding, a variation on
the way that integers are mapped on bit strings where consecutive integers
always have Hamming distance one.

! In practice this restriction to validity in not always possible; see Chap. 13 for a
more complete discussion of this issue.



52 4 Representation, Mutation, and Recombination
4.2.1 Mutation for Binary Representation

Although a few other schemes have been occasionally used, the most common
mutation operator for binary encodings considers each gene separately and
allows each bit to flip (i.e., from 1 to 0 or 0 to 1) with a small probability
Pm. The actual number of values changed is thus not fixed, but depends on
the sequence of random numbers drawn, so for an encoding of length L, on
average L -p,, values will be changed. In Fig. 4.1 this is illustrated for the case
where the third, fourth, and eighth random values generated are less than the
bitwise mutation rate py,.

(1fof1folo[ofo[1[0] ——> [1]ofof1]o[0[0fO]O]

Fig. 4.1. Bitwise mutation for binary encodings

A number of studies and recommendations have been made for the choice
of suitable values for the bitwise mutation rate p,,. Most binary coded GAs
use mutation rates in a range such that on average between one gene per
generation and one gene per offspring is mutated. However, it is worth noting
at the outset that the most suitable choice to use depends on the desired
outcome. For example, does the application require a population in which
all members have high fitness, or simply that one highly fit individual is
found? The former suggests a lower mutation rate, less likely to disrupt good
solutions. In the latter case one might choose a higher mutation rate if the
potential benefits of ensuring good coverage of the search space outweighed
the cost of disrupting copies of good solutions?.

4.2.2 Recombination for Binary Representation

Three standard forms of recombination are generally used for binary repre-
sentations. They all start from two parents and create two children, although
all of these have been extended to the more general case where a number of
parents may be used [152], and there are also situations in which only one of
the offspring might be considered (Sect. 5.1).

One-Point Crossover One-point crossover was the original recombination
operator proposed in [220] and examined in [102]. It works by choosing a

2 In fact this example illustrates that the algorithm’s parameters cannot be chosen
independently: in the second case we might couple higher mutation rates with a
more aggressive selection policy to ensure the best solutions were not lost.
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random number r in the range [1,1 — 1] (with ! the length of the encoding),
and then splitting both parents at this point and creating the two children
by exchanging the tails (Fig. 4.2, top). Note that by using the range [1,1 — 1]
the crossover point is prevented from falling before the first position (r = 0)
or after the last position (r =1).

[0fofofo[1[ofo[o]0] [oTofofofo[o[o[0[1]
 —

(1[1[o[1]ofofo[0]1] (1[1[o[1[4Tofofof0]
[olololo[1[0]0l0[0] [o[ofoJolofofofof0]
 —

(1[1]o[1]ofofo[0]1] (1[1[o[1[4T0f0[0[1]

Fig. 4.2. One-point crossover (top) and n-point crossover with n = 2 (bottom)

n-Point Crossover One-point crossover can easily be generalised to
n-point crossover, where the chromosome is broken into more than two
segments of contiguous genes, and the offspring are created by taking alter-
native segments from the parents. In practice this means choosing n random
crossover points in [1,1— 1], which is illustrated in Fig. 4.2 (bottom) for n = 2.

Uniform Crossover The previous two operators worked by dividing the
parents into a number of sections of contiguous genes and reassembling them
to produce offspring. In contrast to this, uniform crossover [422] works by
treating each gene independently and making a random choice as to which
parent it should be inherited from. This is implemented by generating a string
of | random variables from a uniform distribution over [0,1]. In each position,
if the value is below a parameter p (usually 0.5), the gene is inherited from
the first parent; otherwise from the second. The second offspring is created
using the inverse mapping. This is illustrated in Fig. 4.3.

In our discussion so far, we have suggested that in the absence of prior
information, recombination worked by randomly mixing parts of the parents.
However, as Fig. 4.2 illustrates, n-point crossover has an inherent bias in
that it tends to keep together genes that are located close to each other in
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[ofoTofo[1TofoTol0] [0l 1]ofolo[ofofo[0]

(1[1]o[1]olofo]o[1] (1Tolo1[4Tolofol 1]

Fig. 4.3. Uniform crossover. The array [0.3, 0.6, 0.1, 0.4, 0.8, 0.7, 0.3, 0.5, 0.3] of
random numbers and p = 0.5 were used to decide inheritance for this example.

the representation. Furthermore, when n is odd (e.g., one-point crossover),
there is a strong bias against keeping together combinations of genes that are
located at opposite ends of the representation. These effects are known as
positional bias and have been extensively studied from both a theoretical
and experimental perspective [157, 412] (see Sect. 16.1 for more details). In
contrast, uniform crossover does not exhibit any positional bias. However, un-
like n-point crossover, uniform crossover does have a strong tendency towards
transmitting 50% of the genes from each parent and against transmitting an
offspring a large number of coadapted genes from one parent. This is known
as distributional bias.

The general nature of these algorithms (and the No Free Lunch theorem
[467], Sect. 16.10) make it impossible to state that one or the other of these
operators performs best on any given problem. Nevertheless, an understand-
ing of the types of bias exhibited by different recombination operators can be
invaluable when designing an algorithm for a particular problem, particularly
if there are known patterns or dependencies in the chosen representation that
can be exploited. To use the knapsack problem as an example, it might make
sense to use an operator that is likely to keep together the decisions for the
first few heaviest items. If the items are ordered by weight (cost) in our rep-
resentation, then we could make this more likely by using n-point crossover
with its positional bias. However, if we used a random ordering this might
actually make it less likely that co-adapted values for certain decisions were
transmitted together, so we might prefer uniform crossover.

4.3 Integer Representation

As we hinted in the previous section, binary representations are not always
the most suitable if our problem more naturally maps onto a representation
where different genes can take one of a set of values. One obvious example of
when this might occur is the problem of finding the optimal values for a set of
variables that all take integer values. These values might be unrestricted (i.e.,
any integer value is permissible), or might be restricted to a finite set: for ex-
ample, if we are trying to evolve a path on a square grid, we might restrict the
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values to the set {0,1,2,3} representing { North, East, South, West}. In either
case an integer encoding is probably more suitable than a binary encoding.
When designing the encoding and variation operators, it is worth considering
whether there are any natural relations between the possible values that an
attribute can take. This might be obvious for ordinal attributes such as
integers (2 is more like 3 than it is 389), but for cardinal attributes such
as the compass points above, there may not be a natural ordering.?

To give a well-known example of where there is no natural ordering, let
us consider the graph k-colouring problem. Here we are given a set of points
(vertices) and a list of connections between them (edges). The task is to assign
one of k colours to each vertex, so that no two vertices which are connected by
an edge share the same colour. For this problem there is no natural ordering:
‘red’ is no more like ‘yellow’ than ‘blue’; as long as they are different. In fact,
we could assign the colours to the k integers representing them in any order,
and still get valid equivalent solutions.

4.3.1 Mutation for Integer Representations

For integer encodings there are two principal forms of mutation used, both of
which mutate each gene independently with user-defined probability p,,.

Random Resetting Here the bit-flipping mutation of binary encodings
is extended to random resetting: in each position independently, with
probability p,,, a new value is chosen at random from the set of permissible
values. This is the most suitable operator to use when the genes encode for
cardinal attributes, since all other gene values are equally likely to be chosen.

Creep Mutation This scheme was designed for ordinal attributes and works
by adding a small (positive or negative) value to each gene with probability p.
Usually these values are sampled randomly for each position, from a distribu-
tion that is symmetric about zero, and is more likely to generate small changes
than large ones. It should be noted that creep mutation requires a number of
parameters controlling the distribution from which the random numbers are
drawn, and hence the size of the steps that mutation takes in the search space.
Finding appropriate settings for these parameters may not be easy, and it is
sometimes common to use more than one mutation operator in tandem from
integer-based problems. For example, in [98] both a “big creep” and a “little
creep” operator are used. Alternatively, random resetting might be used with
low probability, in conjunction with a creep operator that tended to make
small changes relative to the range of permissible values.

3 There are various naming conventions used to distinguish these two types of
attributes. These are discussed further in Chap. 7 and displayed in Table 7.1.
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4.3.2 Recombination for Integer Representation

For representations where each gene has a finite number of possible allele
values (such as integers) it is normal to use the same set of operators as
for binary representations. On the one hand, these operators are valid: the
offspring would not fall outside the given genotype space. On the other hand,
these operators are also sufficient: it usually does not make sense to consider
‘blending’ allele values of this sort. For example, even if genes represent integer
values, averaging an even and an odd integer yields a non-integral result.

4.4 Real-Valued or Floating-Point Representation

Often the most sensible way to represent a candidate solution to a problem is
to have a string of real values. This occurs when the values that we want to
represent as genes come from a continuous rather than a discrete distribution
— for example, if they represent physical quantities such as the length, width,
height, or weight of some component of a design that can be specified within a
tolerance smaller than integer values. A good example would be the satellite
dish holder boom described in Sect. 2.4, where the design is encoded as a
series of angles and spar lengths. Another example might be if we wished to
use an EA to evolve the weights on the connections beween the nodes in an
artificial neural network. Of course, on a computer the precision of these real
values is actually limited by the implementation, so we will refer to them as
floating-point numbers. The genotype for a solution with £ genes is now a
vector (1, ...,x) with z; € IR.

4.4.1 Mutation for Real-Valued Representation

For floating-point representations, it is normal to ignore the discretisation
imposed by hardware and consider the allele values as coming from a contin-
uous rather than a discrete distribution, so the forms of mutation described
above are no longer applicable. Instead it is common to change the allele value
of each gene randomly within its domain given by a lower L; and upper U;
bound,* resulting in the following transformation:

(r1,...,2,) = {2),...,2)), where x;,2} € [L;,U].

As with integer representations, two types can be distinguished according
to the probability distribution from which the new gene values are drawn:
uniform and nonuniform mutation.

4 We assume here that the domain of each variable is a single interval [L;, U;] C IR.
The generalisation to a union of disjoint intervals is straightforward.
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Uniform Mutation For this operator the values of z} are drawn uniformly
randomly from [L;, U;]. This is the most straightforward option, analogous
to bit-flipping for binary encodings and the random resetting for integer
encodings. It is normally used with a positionwise mutation probability.

Nonuniform Mutation Perhaps the most common form of nonuniform
mutation used with floating-point representations takes a form analogous to
the creep mutation for integers. It is designed so that usually, but not always,
the amount of change introduced is small. This is achieved by adding to the
current gene value an amount drawn randomly from a Gaussian distribution
with mean zero and user-specified standard deviation, and then curtailing the
resulting value to the range [L;, U;] if necessary. This distribution, shown in
Eq. 4.1, has the feature that the probability of drawing a random number
with any given magnitude is a rapidly decreasing function of the standard
deviation o. Approximately two thirds of the samples drawn will lie within
plus or minus one standard deviation, which means that most of the changes
made will be small, but there is nonzero probability of generating very large
changes since the tail of the distribution never reaches zero. Thus the o value
is a parameter of the algorithm that determines the extent to which given
values x; are perturbed by the mutation operator. For this reason o is often
called the mutation step size. It is normal practice to apply this operator
with probability one per gene, and instead the mutation parameter is used
to control the standard deviation of the Gaussian and hence the probability
distribution of the step sizes taken.

1 _(Ax;—)?

cem 2T (4.1)

p(Az;) =

oV 2T

An alternative to the Gaussian distribution is the use of a Cauchy dis-
tribution, which has a ‘fatter’ tail. That is, the probabilities of generating
larger values are slightly higher than for a Gaussian with the same standard
deviation [469].

4.4.2 Self-adaptive Mutation for Real-Valued Representation

As described above, non-uniform mutation applied to continuous variables is
usually done by adding some random variables from a Gaussian distribution,
with zero mean and a standard deviation which controls the mutation step
size. The concept of self~adaptation represents a solution to the problem
of how to adapt the step-sizes, which has been successfully demonstrated in
many domains, not only for real-valued, but also for binary and integer search
spaces [24]. The essential feature is that the step sizes are also included in the
chromosomes and they themselves undergo variation and selection.

Details on how to mutate the value of o are given below. The key concept
is that the mutation step sizes are not set by the user; rather the ¢ coevolves
with the solutions (the Z part). In order to achieve this behaviour it is essential
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to modify the value of ¢ first, and then mutate the x; values with the new o
value. The rationale behind this is that a new individual (', ¢’) is effectively
evaluated twice. Primarily, it is evaluated directly for its viability during sur-
vivor selection based on f(Z'). Second, it is evaluated for its ability to create
good offspring. This happens indirectly: a given step size evaluates favourably
if the offspring generated by using it prove viable (in the first sense). Thus,
an individual (&', 0’) represents both a good Z’ that survived selection and a
good ¢’ that proved successful in generating this good z’ from z.

The alert reader may have noticed that there is an important underlying
assumption behind the idea of using varying mutation step sizes. Namely,
we assume that under different circumstances different step sizes will behave
differently: some will be better than others. These circumstances can be
given various interpretations. For instance, we might consider time and
distinguish different stages within the evolutionary search process and expect
that different mutation strategies would be appropriate in different stages.
Self-adaptation can then be a mechanism adjusting the mutation strategy as
the search is proceeding. Alternatively, we can consider space and observe
that the local vicinity of an individual, i.e., the shape of the fitness landscape
in its neighbourhood, determines what good mutations are: those that jump
into the direction of fitness increase. Assigning a separate mutation strategy
to each individual, which coevolves with it, opens the possibility to learn and
use a mutation operator suited for the local topology. Issues related to these
considerations are treated extensively in the chapter on parameter control,
Chap. 8. In the following we describe three special cases of self-adaptive
mutation in more detail.

Uncorrelated Mutation with One Step Size In the case of uncorrelated
mutation with one step size, the same distribution is used to mutate each x;,
therefore we only have one strategy parameter o in each individual. This o
is mutated each time step by multiplying it by a term e’, with I' a random
variable drawn each time from a normal distribution with mean 0 and standard
deviation 7. Since N(0,7) = 7 - N(0,1), the mutation mechanism is thus
specified by the following formulas:

o =g e NOD (4.2)
Furthermore, since standard deviations very close to zero are unwanted

(they will have on average a negligible effect), the following boundary rule is
used to force step sizes to be no smaller than a threshold:

O'/<€0:>JI:€0.

In these formulas N(0,1) denotes a draw from the standard normal distri-
bution, while N;(0,1) denotes a separate draw from the standard normal
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distribution for each variable . The proportionality constant 7 is an external
parameter to be set by the user. It is usually inversely proportional to the
square root of the problem size:

T ox 1/+/n.

The parameter 7 can be interpreted as a kind of learning rate, as in neural
networks. Béck [22] explains the reasons for mutating o by multiplying with
a variable with a lognormal distribution as follows:

Smaller modifications should occur more often than large ones.

Standard deviations have to be greater than 0.

The median (0.5-quantile) should be 1, since we want to multiply the o.
Mutation should be neutral on average. This requires equal likelihood of
drawing a certain value and its reciprocal value, for all values.

The lognormal distribution satisfies all these requirements.

Local
maximum — >

Fig. 4.4. Mutation with n = 2,n, = 1,n, = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form a circle. The probability of
moving along the y-axis (little effect on fitness) is the same as that of moving along
the z-axis (large effect on fitness)

Figure 4.4 shows the effects of mutation in two dimensions. That is, we
have an objective function IR? — IR, and individuals are of the form (z,y, o).
Since there is only one o, the mutation step size is the same in each direction
and the points in the search space where the offspring can be placed with a
given probability form a circle around the individual to be mutated.



60 4 Representation, Mutation, and Recombination

Uncorrelated Mutation with n Step Sizes The motivation behind using
n step sizes is the wish to treat dimensions differently. In particular, we want
to be able to use different step sizes for different dimensions i € {1,...,n}.
The reason for this is the trivial observation that the fitness landscape can
have a different slope in one direction (along axis 4) than in another direc-
tion (along axis j). The solution is straightforward: each basic chromosome

(1, ...,2n) is extended with n step sizes, one for each dimension, resulting in
(x1,...,Zn,01,...,0n). The mutation mechanism is now specified as follows:
ol = g; e NODFTN:(0.1) (4.4)
:c; = 1‘7;4—0'; -Ni(O,l), (45)

where 7/ o 1/4/2n , and 7 « 1/4/24/n. Once again a boundary rule is applied
to prevent standard deviations very close to zero.

’ r
O-Z<€0:>0-7,_EO'

Notice that the mutation formula for ¢ is different from that in Eq. (4.2).
The present mutation mechanism is based on a finer granularity. Instead of
the individual level (each individual  having its own o) it works on the
coordinate level (one o; for each x; in ). The corresponding straightforward
modification of Eq. (4.2) is

but ES use Eq. (4.4). Technically, this is correct since the sum of two nor-
mally distributed variables is also normally distributed, hence the resulting
distribution is still lognormal. The conceptual motivation is that the com-
mon base mutation e N1 allows for an overall change of the mutability,
guaranteeing the preservation of all degrees of freedom, while the coordinate-
specific ™ V(0D provides the flexibility to use different mutation strategies
in different directions.

In Fig. 4.5 the effects of mutation are shown in two dimensions. Again, we
have an objective function IR — IR, but the individuals now have the form
(x,y,04,0y). Since the mutation step sizes can differ in each direction (z and
y), the points in the search space where the offspring can be placed with a
given probability form an ellipse around the individual to be mutated. The
axes of such an ellipse are parallel to the coordinate axes, with the length
along axis 7 proportional to the value of o;.

Correlated Mutations The second version of mutation discussed above in-
troduced different standard deviations for each axis, but this only allows el-
lipses orthogonal to the axes. The rationale behind correlated mutations is to
allow the ellipses to have any orientation by rotating them with a rotation
(covariance) matrix C.
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Fig. 4.5. Mutation with n = 2,n, = 2,n, = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form an ellipse. The probability of
moving along the z-axis (large effect on fitness) is larger than that of moving along
the y-axis (little effect on fitness)

The probability density function for Az replacing Eq. (4.1) now becomes
Y e v

p(Az) = (det C - (2m)")1/2°

with C' the covariance matrix with entries

Ciy; — O
no correlations,

(07 — 07) tan(2a;) correlations. (4.7)

T =

[N el

Cijiitj =

The relation between covariance and rotation angle is as follows:

QCZ']'
taH(QOéij) = W’
which explains Eq. (4.7). This formula is derived from the trigonometric prop-

erties of rotations. A rotation in two dimensions is a multiplication with the

matrix
<cos(ozij) — sin(o;) )

sin(aij)  cos(aj)
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A rotation in more dimensions can be performed by a successive series of 2D
rotations, i.e., matrix multiplications.
The complete mutation mechanism is described by the following equations:

/ .
— g, 7 NOD+TNiO1)

;':aj—i_ﬁ'Nj(Ov]-)v
7 =72+ N(0,C),

!
i

«

where n, = %, j €1,...,n4. The other constants are usually taken as:

T o< 1/4/2y/n, 7' < 1//2n, and B = 5°.

The object variables T are now mutated by adding Az drawn from an n-
dimensional normal distribution with covariance matrix C’. The C’ in the
formula is the old C after mutation of the a values (and recalculation of
covariances). The o; are mutated in the same way as before: with a multipli-
cation by a log-normal variable, which consists of a global and an individual
part. The a; are mutated with an additive, normally distributed variation,
similar to mutation of object variables.

We also have a boundary rule for the «; values. The rotation angles should
lie in the range [—, 7], so the new value is simply mapped circularly into the
feasible range:

o] > 7= o) = oy — 27 sign(a)).

Fig. 4.6 shows the effects of correlated mutations in two dimensions. The
individuals now have the form (z,y, 0,, 0y, @z ), and the points in the search
space where the offspring can be placed with a given probability form a rotated
ellipse around the individual to be mutated, where again the axis lengths are
proportional to the o values.

Table 4.1 summarises three possible common settings for self-adaptive mu-
tation regarding the length and structure of the individuals. Simply consider-
ing the size of the representation of the individuals in each scheme, i.e., the
number of values that need to be learned by the algorithm as it evolves (let
alone their complex interrelationships) brings home an important point: we
can get nothing for free! In other words, what we must consider is that as
the ability of the algorithm to adapt the nature of its search according to the
local topology increases, so too does the scale of the learning task. To sim-
plify matters a little, as we increase the precision with which we can specify
the shape of the lines of equiprobable mutations, so we increase the number
of different options which should be tried. Since the merits of these different
possibilities are evaluated indirectly, i.e., by applying them and gauging the
relative fitness of the individuals created, it is reasonable to conclude that an
increased number of function evaluations will be needed to learn good search
strategies as the complexity of the mutation operator increases.

While this may sound a little pessimistic, it is also worth noting that it is
easy to imagine a situation where the extra complexity is required, for exam-
ple, if the landscape contains a ‘ridge’ of increasing fitness, perhaps running at
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Fig. 4.6. Correlated mutation: n = 2, n, = 2,n, = 1. Part of a fitness landscape
with a conical shape is shown. The black dot indicates an individual. Points where
the offspring can be placed with a given probability form a rotated ellipse. The
probability of generating a move in the direction of the steepest ascent (largest
effect on fitness) is now larger than that for other directions

an angle to the co-ordinate axis. In short, there are no fixed recommendations
about which scheme to use, but a common approach is to start with uncor-
related mutation with n o values and then try moving to a simpler model
if good results are obtained but too slowly (or if the o; all evolve to similar
values), or to the more complex model if the results are not of good enough
quality.

Ne N Structure of individuals Remark

1 0 (z1,...,2Zn,0) Standard mutation

n 0 (T1,- oy Tn, 01, .., 0n) Standard mutations
nin-(n—1)/2(x1,...,Tn,01,...,00,01,...,0,.(n_1)/2)|Correlated mutations

Table 4.1. Some possible settings of n, and n, for different mutation operators

Self-adaptive mutation mechanisms have been used and studied for decades
in EC. Besides experimental evidence, showing that an EA with self-
adaptation outperforms the same algorithm without self-adaptation, there
are also theoretical results showing that self-adaptation works [52]. Theoret-
ical and experimental results can neatly complement each other in this area
if experimentally obtained mutation step sizes show a good match with the
theoretically derived optimal values. Unfortunately, for a complex problem
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and/or algorithm a theoretical analysis is infeasible. However, for simple ob-
jective functions theoretically optimal mutation step sizes can be calculated
(in light of some performance criterion, e.g., progress rate during a run) and
compared to step sizes obtained during a run of the EA in question.

Theoretical and experimental results agree on the fact that for a successful
run the o values must decrease over time. The intuitive explanation for this
is that in the beginning of a search process a large part of the search space
has to be sampled in an explorative fashion to locate promising regions (with
good fitness values). Therefore, large mutations are appropriate in this phase.
As the search proceeds and optimal values are approached, only fine tuning
of the given individuals is needed; thus smaller mutations are required.

Another kind of convincing evidence for the power of self-adaptation is
provided in the context of changing fitness landscapes. In this case, where the
objective function is changing, the evolutionary process is aiming at a moving
target. When the objective function changes, the given individuals may have
a low fitness, since they have been adapted to the old objective function.
Thus, the present population needs to be reevaluated, and the search space
re-explored. Often the mutation step sizes will prove ill-adapted: they are too
low for the new exploration phase required. The experiment presented in [217]
illustrates how self-adaptation is able to reset the step sizes after each change
in the objective function (Fig. 4.7).

0.1
0.01}

0.001

le-04 |

1e-05 ¢

1e-10

0 200 400 600 800 1000 1e-06

0 200 400 600 800 1000
Fig. 4.7. Moving optimum ES experiment on the sphere function with n = 30,
ne = 1. The location of the optimum is changed after every 200 generations (z-
axes) with a clear effect on the average best objective function values (y-axis, left)
in the given population. Self-adaptation is adjusting the step sizes (y-axis, right) with
a small delay to larger values appropriate for exploring the new fitness landscape,
whereafter the values of o start decreasing again as the population approaches the
new optimum
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Over recent decades much experience has been gained over self-adaptation
in Evolutionary Algorithms, in particular in Evolution Strategies. The accu-
mulated knowledge has identified necessary conditions for self-adaptation:

1> 1 so that different strategies are present

generation of an offspring surplus: A > pu

a not too strong selective pressure (heuristic: \/u =7, e.g., (15,100))
(14, A)-selection (to guarantee extinction of misadapted individuals)
recombination, usually intermediate, of strategy parameters

CU @ =

4.4.3 Recombination Operators for Real-Valued Representation

In general, we have three options for recombining two floating-point strings.
First, using an analogous operator to those used for bit-strings, but now split
between floats. In other words, an allele is one floating-point value instead
of one bit. This has the disadvantage (shared with all of the recombination
operators described above) that only mutation can insert new values into the
population, since recombination only gives us new combinations of existing
values. Recombination operators of this type for floating-point representations
are known as discrete recombination and have the property that if we are
creating an offspring z from parents x and y, then the allele value for gene i
is given by z; = x; or y; with equal likelihood.

Second, using an operator that, in each gene position, creates a new allele
value in the offspring that lies between those of the parents. Using the ter-
minology above, we have z; = ax; + (1 — a)y; for some « in [0,1]. In this
way, recombination is now able to create new gene material, but it has the
disadvantage that as a result of the averaging process the range of the allele
values in the population for each gene is reduced. Operators of this type are
known as intermediate or arithmetic recombination.

Third, using an operator that in each position creates a new allele value in
the offspring which is close to that of one of the parents, but may lie outside
them (i.e., bigger than the larger of the two values, or smaller than the lesser).
Operators of this type can create new material without restricting the range.
Operators of this type are known as blend recombination.

Three types of arithmetic recombination are described in [295]. In all of
these, the choice of the parameter « is sometimes made at random over [0,1],
but in practice it is common to use a constant value, often 0.5 (in which case
we have uniform arithmetic recombination).

Simple Arithmetic Recombination First pick a recombination point k.
Then, for child 1, take the first k& floats of parent 1 and put them into the
child. The rest is the arithmetic average of parent 1 and 2:

Child 1: (z1, ...,z ypyr1 + (1 — @) Tp1, - sy + (1 — @) - @),
Child 2 is analogous, with x and y reversed (Fig. 4.8, top).
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[0.1]0.2]0.3]0.4]0.5]0.6|0.7]0.8]0.9] [0.10.2]0.3[0.4]0.5[0.6]0/5[0:5]026]
_

[0.3]0.2]0.3]0.2]0.3]0.2]0.3]0.2]0.3] [03]0.2]0.3]0.2]0.3[0.2[0l5[05]0%6]
[0.1]0.2]0.3]0.4]0.5]0.6]0.7]0.8]0.9] [0.10.2]0.3]0.4]0.5[0.6]0.7][0.5]0.9]
_

[0.3]0.2]0.3]0.2]0.3]0.2]0.3]0.2]0.3] [03]0.2]0.3]0.2]0.3[0.2]0.3[05]0.3]
[0.1]02]0.3[0.4]0.5]0.6[0.7]0.8]0.9] [02]ol2]0}3]0.3]04]0.4]0l5[d:5]0%6]
_—

[0.3]0.2]0.3]0.2]0.3]0.2]0.3[0.2]0.3] [02]ol2]0}3]0.3]04]0.4]0l5[d:5]0%6]

Fig. 4.8. Simple arithmetic recombination with k = 6, = 1/2 (top), single arith-
metic recombination with & = 8, « = 1/2 (middle), whole arithmetic recombination
with a = 1/2 (bottom).

Single Arithmetic Recombination Pick a random allele k. At that posi-
tion, take the arithmetic average of the two parents. The other points are the
points from the parents, i.e.:

Child 1: (zq1,...,zp—1, 0 -y + (1 — @) - Tk, Tt 1y -+, T )

The second child is created in the same way with 2 and y reversed (Fig. 4.8,
middle).

Whole Arithmetic Recombination This is the most commonly used op-
erator and works by taking the weighted sum of the two parental alleles for
each gene, i.e.:

Childl=a-Z+(1—«)-7, Child 2 =a -5+ (1 — ) - Z.

This is illustrated in Fig. 4.8, bottom. As the example shows, if a = 1/2
the two offspring will be identical for this operator.
Blend Crossover Blend Crossover (BLX — «) was introduced in [160] as a
way of creating offspring in a region that is bigger than the (n-dimensional)
rectangle spanned by the parents. The extra space is proportional to the
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.83 2w .S4

S1

Fig. 4.9. Possible offspring from different recombination operators for two real-
valued parents X and Y. {s1,...,s4} are the four possible offspring from single
arithmetic recombination with a = 0.5. w is the offspring from whole arithmetic
recombination with @ = 0.5 and the inner box represents all the possible offspring
positions as « is varied. The outer dashed box shows all possible offspring positions
for blend crossover with o = 0.5 (BLX — 0.5), each position being equally likely.

distance between the parents and it varies per coordinate. If we have two
parents z and y and assume that in position ¢ the value x; < y; then the
difference d; = y; — x; and the range for the ith value in the child z is [z; — a -
d;, x; + - d;]. To create a child we can sample a random number u uniformly
from [0, 1], calculate v = (1 — 2a)u — «, and set:

zi = (1 =y)zi + 7y

Interestingly, the original authors reported best results with o = 0.5, where
the chosen values are equally likely to lie inside the two parent values as
outside, so balancing exploration and exploitation.

Figure 4.9 illustrates the difference between single arithmetic recombina-
tion, whole arithmetic combination and Blend Crossover, with in each case
the value of o set to 0.5. More recent methods such as Simulated Binary
Crossover [111, 113] have built on Blend Crossover, so that rather than se-
lecting offspring values uniformly from a range around each parent values, they
are selected from a distribution which is more likely to create small changes,
and the distribution is controlled by the distance between the parents.

4.5 Permutation Representation

Many problems naturally take the form of deciding on the order in which a
sequence of events should occur. While other forms do occur (for example,
decoder functions based on unrestricted integer representations [28, 201] or
“floating keys” based on real-valued representations [27, 44]), the most natu-
ral representation of such problems is as a permutation of a fixed set of values
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that can be represented as integers. One immediate consequence is that while
a binary, or simple integer, representation allows numbers to occur more than
once, such sequences of integers will not represent valid permutations. It is
clear therefore that when choosing or designing variation operators to work
with solutions that are represented as permutations, we require them to pre-
serve the permutation property that each possible allele value occurs exactly
once in the solution. We previously described one example, when we designed
an EA for solving the N-queens problem efficiently, by representing each so-
lution as a list of the rows on which each queen was positioned (with each on
a different column), and insisted that these be a permutation so that no two
queens shared the same row.

When choosing variation operators it is worth bearing in mind that there
are actually two classes of problems that are represented by permutations. In
the first of these, the order in which events occur is important. This might
happen when the events use limited resources or time, and a typical example of
this sort of problem is the production scheduling problem. This is the common
problem of deciding in which order a series of times should be manufactured
on a set of machines, where there may be dependencies between products, for
example, there might be different set-up times between products, or one might
be a component of another. As an example, it might be better for widget 1
to be produced before widgets 2 and 3, which in turn might be preferably
produced before widget 4, no matter how far in advance this is done. In this
case it might well be that the sequences [1,2,3,4] and [1,3,2,4] have similar
fitness, and are much better than, for example, [4,3,2,1].

Another type of problem depends on adjacency, and is typified by the trav-
elling salesperson problem (TSP). The problem is to find a complete tour of n
given cities of minimal length. The search space for this problem is huge: there
are (n-1)! different routes possible for n given cities (for the asymmetric case
counting back and forth as two routes).” For n = 30 there are approximately
1032 different tours. Labelling the cities 1,2, ..., n, a complete tour is a permu-
tation, so that for n = 4, the routes [1,2,3,4] and [3,4,2,1] are both valid. The
vital point here is that it is the links between cities that are important. The
difference from order-based problems can clearly be seen if we consider that
the starting point of the tour is also not important, thus [1,2,3,4], [2,3,4,1],
[3,4,1,2], and [4,1,2,3] are all equivalent. Many examples of this class are also
symmetric, so that [4,3,2,1] and so on are also equivalent.

Finally, we should mention that there are two possible ways to encode a
permutation. In the first (most commonly used) of these the ith element of the
representation denotes the event that happens in that place in the sequence
(or the ith destination visited). In the second, the value of the ith element
denotes the position in the sequence in which the ith event happens. Thus
for the four cities [A,B,C,D], and the permutation [3,1,2,4], the first encoding
denotes the tour [C,A,B,D] and the second [B,C,A,D].

5 These comments about problem size apply to all permutation problems.
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4.5.1 Mutation for Permutation Representation

For permutation representations, it is no longer possible to consider each
gene independently, rather finding legal mutations is a matter of moving
alleles around in the genome. This has the immediate consequence that the
mutation parameter is interpreted as the probability that the chromosome
undergoes mutation, rather than that a single gene in the chromosome is
altered. The three most common forms of mutation used for order-based
problems were first described in [423]. Whereas the first three operators
below (in particular insertion ) work by making small changes to the order in
which allele values occur, for adjacency-based problems these can cause huge
numbers of links to be broken, and so inversion is more commonly used.

Swap Mutation Two positions (genes) in the chromosome are selected at
random and their allele values swapped. This is illustrated in Fig. 4.10 (top),
where the values in positions two and five have been swapped.

Insert Mutation Two alleles are selected at random and the second moved
next to the first, shuffling along the others to make room. This is illustrated
in Fig. 4.10 (middle), where the values two and five have been chosen.
Scramble Mutation Here the entire chromosome, or some randomly chosen
subset of values within it, have their positions scrambled. This is illustrated
in Fig. 4.10 (bottom), where the values from two to five have been chosen.

[112]3]4]5]6[7[8[9] —— > [1[5]3[4[2[6]7][8]9]

[1[2[3]4]5]6[7[8][9] ———>» [1[2[6]3[4[6]7[8]9]

[112]8]4[5]6[7][8[9] ——— > [1[3[5]4[2[6]7][8]9]

Fig. 4.10. Swap (top), insert (middle), and scramble mutation (bottom).

Inversion Mutation Inversion mutation works by randomly selecting two
positions in the chromosome and reversing the order in which the values ap-
pear between those positions. It effectively breaks the chromosome into three
parts, with all links inside a part being preserved, and only the two links be-
tween the parts being broken. The inversion of a randomly chosen substring
is the thus smallest change that can be made to an adjacency-based problem,
and all other changes can be easily constructed as a series of inversions. The



70 4 Representation, Mutation, and Recombination

ordering of the search space induced by this operator thus forms a natural ba-
sis for considering this class of problems, equivalent to the Hamming space for
binary problem representations. It is the basic move behind the 2-opt search
heuristic for TSP [271], and by extension k-opt. This operator is illustrated
in Fig. 4.11, where the substring between positions two and five was inverted.

[1[2[3T4[5[6[7[8[9] ——>» [1[5[4[3[2[6[7[8[9]

Fig. 4.11. Inversion mutation

4.5.2 Recombination for Permutation Representation

At first sight, permutation-based representations present particular difficul-
ties for the design of recombination operators, since it is not generally possible
simply to exchange substrings between parents and still maintain the permu-
tation property. However, this situation is alleviated when we consider what it
is that the solutions actually represent, i.e., either an order in which elements
occur, or a set of moves linking pairs of elements. A number of specialised
recombination operators have been designed for permutations, which aim at
transmitting as much as possible of the information contained in the parents,
especially that held in common. We shall concentrate here on describing two
of the best known and most commonly used operators for each subclass of
permutation problems.

Partially Mapped Crossover (PMX) was first proposed by Goldberg and
Lingle as a recombination operator for the TSP in [192], and has become
one of the most widely used operators for adjacency-type problems. Over the
years many slight variations of PMX appeared in the literature; here we use
Whitley’s definition from [452], which works as follows (Figs. 4.12-4.14).

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the first crossover point look for elements in that segment
of the second parent (P2) that have not been copied.

3. For each of these (say i), look in the offspring to see what element (say j)
has been copied in its place from P1.

4. Place 7 into the position occupied by j in P2, since we know that we will
not be putting j there (as we already have it in our string).

5. If the place occupied by j in P2 has already been filled in the offspring by
an element k, put 7 in the position occupied by k in P2.
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6. Having dealt with the elements from the crossover segment, the remaining
positions in this offspring can be filled from P2, and the second child is
created analogously with the parental roles reversed.

(112]3[4]5]6[718[9]

—> [ [ [ [4]5[6[7] [ ]

[9[3]7[8[2]6[5]1]4]

Fig. 4.12. PMX, step 1: copy randomly selected segment from first parent into
offspring

(112]3[4]5]6]718[9]

—> [ [ [2]4]5]6]7] [8]

[9[3[7[8[2]6]5]1]4]

Fig. 4.13. PMX, step 2: consider in turn the placement of the elements that occur
in the middle segment of parent 2 but not parent 1. The position that 8 takes in P2
is occupied by 4 in the offspring, so we can put the 8 into the position vacated by
the 4 in P2. The position of the 2 in P2 is occupied by the 5 in the offspring, so we
look first to the place occupied by the 5 in P2, which is position 7. This is already
occupied by the value 7, so we look to where this occurs in P2 and finally find a
slot in the offspring that is vacant — the third. Finally, note that the values 6 and 5
occur in the middle segments of both parents.

(1]2]3[4]5]6[718[9]

—> [9]3]2]4]5[6[7[1]8]

[9[3]7[8[2]6]5]1[4]

Fig. 4.14. PMX, step 3: copy remaining elements from second parent into same
positions in offspring

Inspection of the offspring created shows that in this case six of the nine
links present in the offspring are present in one or more of the parents. How-
ever, of the two edges {56} and {7-8} common to both parents, only the first
is present in the offspring. Radcliffe [350] suggests that a desirable property
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of any recombination operator is that of respect, i.e., that any information
carried in both parents should also be present in the offspring. A moment’s
reflection tells us that this is clearly true for all of the recombination opera-
tors described above for binary and integer representations, and for discrete
recombination for floating-point representations, but as the example above
shows, is not necessarily true of PMX. With this issue in mind, several other
operators have been designed for adjacency-based permutation problems, of
which the best known is described next.

Edge crossover is based on the idea that offspring should be created as
far as possible using only edges that are present in (one of) the parents. It
has undergone a number of revisions over the years. Here we describe the
most commonly used version: edge-3 crossover after Whitley [452], which is
designed to ensure that common edges are preserved.

In order to achieve this, an edge table (also known as an adjacency list) is
constructed, which for each element lists the other elements that are linked
to it in the two parents. A ‘+’ in the table indicates that the edge is present
in both parents. The operator works as follows:

1. Construct the edge table

Pick an initial element at random and put it in the offspring

Set the variable current_element = entry

Remove all references to current_element from the table

Examine list for current_element

e If there is a common edge, pick that to be the next element

e Otherwise pick the entry in the list which itself has the shortest list

e Ties are split at random

6. In the case of reaching an empty list, the other end of the offspring is
examined for extension; otherwise a new element is chosen at random

Gk @

Clearly only in the last case will so-called foreign edges be introduced.

Edge-3 recombination is illustrated by the following example where the
parents are the same two permutations used in the PMX example [ 1 2 3 4
56789 and [93 782651 4], giving the edge table seen in Table 4.2
and the construction illustrated in Table 4.3. Note that only one child per
recombination is created by this operator.

Element| Edges |[Element| Edges
1 2,5,4,9 6 2,5+,7

2 1,368 7 [3,68+
3 24,79 8 2,7+, 9
4 1,359 9 [1,348
5 |1,4,6+

Table 4.2. Edge crossover: example edge table
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Choices|Element|Reason Partial
selected result
All 1 Random [1]
2,5,4,9 5 Shortest list [15]
4,6 6 Common edge [156]
2,7 2 |Random choice (both have two items in list)|[ 1 5 6 2]
3,8 8  |Shortest list [15628]
7.9 7 |Common edge [156287]
3 3 |Only item in list [156287 3]
4,9 9  |Random choice [156287309]
4 4 Last element [156287394]

Table 4.3. Edge crossover: example of permutation construction

Order crossover This operator was designed by Davis for order-based per-
mutation problems [98]. It begins in a similar fashion to PMX, by copying a
randomly chosen segment of the first parent into the offspring. However, it
proceeds differently because the intention is to transmit information about
relative order from the second parent.

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the second crossover point in the second parent, copy the
remaining unused numbers into the first child in the order that they appear
in the second parent, wrapping around at the end of the list.

3. Create the second offspring in an analogous manner, with the parent roles
reversed.

This is illustrated in Figs. 4.15 and 4.16.

(112]3[4]5]6[78[9]

—> [ [ [ [4]5[6[7] [ ]

[9[3]7[8[2]6]5]1[4]

Fig. 4.15. Order crossover, step 1: copy randomly selected segment from first parent
into offspring

Cycle Crossover The final operator that we will consider in this section is
cycle crossover [325], which is concerned with preserving as much information
as possible about the absolute position in which elements occur. The operator
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(112]3[4]5]6[7]8[9]

—> [3]8]2]4]5]6]7[1]9]

[9[3]7[8[2]6]5]1[4]

Fig. 4.16. Order crossover, step 2: copy rest of alleles in order they appear in second
parent, treating string as toroidal

works by dividing the elements into cycles. A cycle is a subset of elements
that has the property that each element always occurs paired with another
element of the same cycle when the two parents are aligned. Having divided
the permutation into cycles, the offspring are created by selecting alternate
cycles from each parent. The procedure for constructing cycles is as follows:

1. Start with the first unused position and allele of P1

Look at the allele in the same position in P2

Go to the position with the same allele in P1

Add this allele to the cycle

Repeat steps 2 through 4 until you arrive at the first allele of P1

CU @

The complete operation of the operator is illustrated in Fig. 4.17.

[M12[3[4]5]6[7[8[9] [112]314]5]6]7[8]9] [113[7[4]2[6[5[8]8]

[913[718]2]6[5[1]4] [9]3[7[8]2]6[5[114] [913[7[8]2[6]5[1]4]

[112[3[4]5]6[7[8]9] [113[7[4]2]6]5[8]9]

[9]3[7[8[2]6[5[1]4] [9]2[3[8]5]6]7[1]4]

Fig. 4.17. Cycle crossover. Top: step 1- identification of cycles. Bottom: step 2-
construction of offspring
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4.6 Tree Representation

Trees are among the most general structures for representing objects in com-
puting, and form the basis for the branch of evolutionary algorithms known
as genetic programming (GP). In general, (parse) trees capture expressions
in a given formal syntax. Depending on the problem at hand, and the users’
perceptions on what the solutions must look like, this can be the syntax of
arithmetic expressions, formulas in first-order predicate logic, or code written
in a programming language. To illustrate the matter, let us consider one of
each of these types of expressions.

e an arithmetic formula:

2-w+((x+3)—%), (4.8)
e a logical formula:
(x ANtrue) = ((xVy)V(z < (xAy))), (4.9)

e the following program:

i=1;
while (i < 20)
{

i=i+1;

Figures. 4.18 and 4.19 show the parse trees belonging to these expressions.
These examples illustrate generally how parse trees can be used and inter-
preted.

Technically speaking, the specification of how to represent individuals boils
down to defining the syntax of the trees, or equivalently the syntax of the
symbolic expressions (s-expressions) they represent. This is commonly done
by defining a function set and a terminal set. Elements of the terminal set
are allowed as leaves, while symbols from the function set are internal nodes.
For example, a suitable function and terminal set that allow the expression in
Eq. (4.8) as syntactically correct is given in Table 4.4.

Function set [{+,—,, /}
Terminal set|IR U {z,y}

Table 4.4. Function and terminal set that allow the expression in Eq. (4.8) as
syntactically correct
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./-I—\_ /\/_)\\/
N +A/ WS
2 :/\ yA+ N AA
T PN

= while
VANIVZAN
i 1 < =
VA NIZN
i 20 i *
N
i 1

Fig. 4.19. Parse tree belonging to the above program

Strictly speaking, we should specify the arity (the number of attributes it
takes) for each function symbol in the function set, but for standard arithmetic
or logical functions this is often omitted. Similarly, a definition of correct
expressions (trees) based on the function and terminal set should be given.
However, as this follows the general way of defining terms in formal languages
it is also often omitted. For the sake of completeness we provide it below:

e All elements of the terminal set T' are correct expressions.

o If f € F is a function symbol with arity n and ey,...,e, are correct
expressions, then so is f(e,...,e,).

e There are no other forms of correct expressions.

Note that in this definition we do not distinguish different types of expressions;
each function symbol can take any expression as argument. This feature is
known as the closure property.

In practice, function symbols and terminal symbols are often typed and
impose extra syntactic requirements. For instance, one might need both arith-
metic and logical function symbols, e.g., to allow (N = 2) A (S > 80.000)) as
a correct expression. In this case it is necessary to enforce that an arithmetic
(logical) function symbol only has arithmetic (logical) arguments, e.g., to ex-
clude N A 80.000 as a correct expression. This issue is addressed in strongly
typed genetic programming [304].
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4.6.1 Mutation for Tree Representation

The most common implementation of tree-based mutation works by se-
lecting a node at random from the tree, and replacing the subtree starting
there with a randomly generated tree. This newly created subtree is usually
generated the same way as in the initial population, (Sect. 6.4), and so is
subject to conditions on maximum depth and width. Figure 4.20 illustrates
how the parse tree belonging to Eq. (4.8) (left) is mutated into one standing
for 27+ ((z + 3) — y). Note that since a node is selected at random to be
the replacement point, and that as one goes down through a tree there are
potentially more nodes at any given depth, the size (tree depth) of the child
can exceed that of the parent tree.

A +
VANEVAN N

e
N TN 2An ey
N N

X 3

parent child

Fig. 4.20. Tree-based mutation illustrated: the node designated by a circle in the
tree on the left is selected for mutation. The subtree staring at that node is replaced
by a randomly generated tree, which is a leaf here

Tree-based mutation has two parameters:

e the probability of choosing mutation at the junction with recombination
e the probability of choosing an internal point within the parent as the root
of the subtree to be replaced

It is remarkable that Koza’s classic book on GP from 1992 [252] advises
users to set the mutation rate at 0, i.e., it suggests that GP works without
mutation. More recently Banzhaf et al. recommended 5% [37]. In giving mu-
tation such a limited role, GP differs from other EA streams. The reason for
this is the generally shared view that crossover has a large shuffling effect, act-
ing in some sense as a macromutation operator [9]. The current GP practice
uses low, but positive, mutation frequencies, even though some studies indi-
cate that the common wisdom favouring an (almost) pure crossover approach
might be misleading [275].
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4.6.2 Recombination for Tree Representation

Tree-based recombination creates offspring by swapping genetic material
among the selected parents. In technical terms, it is a binary operator creating
two child trees from two parent trees. The most common implementation
is subtree crossover, which works by interchanging the subtrees starting
at two randomly selected nodes in the given parents. This is illustrated in
Fig. 4.21. Note that the size (tree depth) of the children can exceed that of
the parent trees. In this, recombination within GP differs from recombination
in other EC dialects. Tree-based recombination has two parameters:

e the probability of choosing recombination at the junction with mutation
e the probability of choosing internal nodes as crossover points

+

SN
NN

2 Tt T
N AN
* 3 Y X a 3 3 b
/N N
5 1 y 12
parent 1 pa.rent 2

A AL
2NN VAN

X 3 a 3 5 1 Yy 12

child 1 child 2

Fig. 4.21. Tree-based crossover illustrated: the nodes designated by a circle in the
parent trees are selected to serve as crossover points. The subtrees staring at those
nodes are swapped, resulting in two new trees, which are the children

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.
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5

Fitness, Selection, and Population Management

As explained in Chap. 3, there are two fundamental forces that form the basis
of evolutionary systems: variation and selection. In this chapter we discuss the
EA components behind the second one. Having discussed some typical popula-
tion management models, and selection operators, we then go on to explicitly
look at some situations where diversity is needed, such as multimodal prob-
lems, and some approaches to population management, and altering selection,
that have been proposed to increase useful diversity.

5.1 Population Management Models

In the previous chapter we have focused on the way that potential solutions
are represented to give a population of diverse individuals, and on the way that
variation (recombination and mutation) operators work on those individuals
to yield offspring. These offspring will generally inherit some of their parents’
properties but also differ slightly from them, providing new potential solutions
to be evaluated. We now turn our attention to the second important element
of the evolutionary process — the differential survival of individuals to compete
for resources and take part in reproduction, based on their relative fitness.
Two different models of population management are found in the literature:
the generational model and the steady-state model. The generational
model is the one used in the example in Sect. 3.3. In each generation we
begin with a population of size u, from which a mating pool of parents is
selected. Every member of the pool is a copy of something in the population,
but the proportions will probably differ, with (usually) more copies of the
‘better’ parents. Next, A offspring are created from the mating pool by the
application of variation operators, and evaluated. After each generation, the
whole population is replaced by p individuals selected from its offspring, which
is called the next generation. In the model typically used within the Simple
Genetic Algorithm, the population, mating pool and offspring are all the same
size, so that each generation is replaced by all of its offspring. This restriction
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is not necessary: for example in the (u,\) Evolution Strategy, an excess of
offspring is created (typically A/u is in the range 5-7) from which the next
generation is selected on the basis of fitness.

In the steady-state model, the entire population is not changed at once,
but rather a part of it. In this case, A (< p) old individuals are replaced by A
new ones, the offspring. The proportion of the population that is replaced is
called the generational gap, and is equal to \/u. Since its introduction in
Whitley’s GENITOR algorithm [460], the steady-state model has been widely
studied and applied [105, 354, 442], often with A = 1.

At this stage it is worth reiterating that the operators that are responsible
for this competitive element of population management work on the basis of an
individual’s fitness. As a direct consequence, these selection and replacement
operators work independently of the problem representation chosen. As was
seen in the general description of an evolutionary algorithm at the start of
Chap. 3, there are two points in the evolutionary cycle at which fitness-based
competition can occur: during selection to take part in mating, and during
the selection of individuals to survive into the next generation. We begin by
describing the most commonly used methods for parent selection, but note
that many of these can also be applied during the survival selection phase.
As a final preliminary, please note that we will adopt a convention that we
are trying to maximise fitness, and that fitness values are not negative. Often
problems are expressed in terms of an objective function to be minimised,
and sometimes negative fitness values occur. However, in all cases these can
be mapped into the desired form by using an appropriate transformation.

5.2 Parent Selection

5.2.1 Fitness Proportional Selection

The principles of fitness proportional selection (FPS) were described in
the simple example in Sect. 3.3. Recall that for each choice, the probability
that an individual 7 is selected for mating depends on its absolute fitness value
compared to the absolute fitness values of the rest of the population. Observing
that the sum of the probabilities over the whole population must equal 1 the
selection probability of individual ¢ using FPS is Prpg(i) = fi/ Z?:l fi
This selection mechanism was introduced in [220] and has been the topic
of intensive study ever since, not least because it happens to be particularly
amenable to theoretical analysis. However, it has been recognised that there

are some problems with this selection mechanism:

e Outstanding individuals take over the entire population very quickly. This
tends to focus the search process, and makes it less likely that the algo-
rithm will thoroughly search the space of possible solutions, where better
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solutions may exist. This phenomenon is often observed in early genera-
tions, when many of the randomly created individuals will have low fitness,
and is known as premature convergence.

e When fitness values are all very close together, there is almost no selection
pressure, so selection is almost uniformly random, and having a slightly
better fitness is not very ‘useful’ to an individual. Therefore, later in a
run, when some convergence has taken place and the worst individuals
are gone, it is typically observed that the mean population fitness only
increases very slowly.

e The mechanism behaves differently if the fitness function is transposed.

This last point is illustrated in Table 5.1, which shows three individuals
and a fitness function with f(A4) = 1, f(B) = 4, and f(C) = 5. Transposing
this fitness function changes the selection probabilities, while the shape of the
fitness landscape, and hence the location of the optimum, remains the same.

Individual |Fitness|Sel. prob.| Fitness |Sel. prob.| Fitness | Sel. prob.
for f for f |for f+ 10|for f + 10|for f + 100|for f + 100

A 1 0.1 11 0.275 101 0.326

B 4 0.4 14 0.35 104 0.335

C 5 0.5 15 0.375 105 0.339
Sum 10 1.0 40 1.0 310 1.0

Table 5.1. Transposing the fitness function changes selection probabilities for
fitness-proportionate selection

To avoid the second two problems with FPS, a procedure known as win-
dowing is often used. Under this scheme, fitness differentials are maintained
by subtracted from the raw fitness f(z) a value 3%, which depends in some
way on the recent search history, and so can change over time (hence the su-
perscript t). The simplest approach is just to subtract the value of the least-fit
member of the current population P* by setting 8° = minge pt f(y) This value
may fluctuate quite rapidly, so one alternative is to use a running average over
the last few generations.

Another well-known approach is sigma scaling [189], which incorporates
information about the mean f and standard deviation o of fitnesses in the
population:

(@) = maz(f(z) - (f —c-0y),0),

where c is a constant value, usually set to 2.

5.2.2 Ranking Selection

Rank-based selection is another method that was inspired by the observed
drawbacks of fitness proportionate selection [32]. It preserves a constant se-
lection pressure by sorting the population on the basis of fitness, and then
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allocating selection probabilities to individuals according to their rank, rather
than according to their actual fitness values. Let us assume that the ranks
are numbered so that an individual’s rank notes how many worse solutions
are in the population, so the best has rank p-1 and the worst has rank 0.
The mapping from rank number to selection probability can be done in many
ways, for example, linearly or exponentially decreasing. As with FPS above,
and any selection scheme, we insist that the sum over the population of the
selection probabilities must be unity — that we must select one of the parents.

The usual formula for calculating the selection probability for linear ranking
schemes is parameterised by a value s (1 < s < 2). In the case of a generational
EA, where o = A, this can be interpreted as the ezpected number of offspring
allotted to the fittest individual. Since this individual has rank g — 1, and the
worst has rank 0, then the selection probability for an individual of rank i is:

(2—s) 2i(s—1)
W -1

]Dlin—'rank (Z) =

Note that the first term will be constant for all individuals (it is there to
ensure the probabilities add to one). Since the second term will be zero for
the worst individual (with rank ¢ = 0), it can be thought of as the ‘baseline’
probability of selecting that individual.

In Table 5.2 we show an example of how the selection probabilities differ
for a population of p = 3 different individuals with fitness proportionate and
rank-based selection with different values of s.

Individual |Fitness|Rank|Pseipp | Pscirr (8 = 2)|Psair (s = 1.5)
A 1 0 0.1 0 0.167
B 4 1 0.4 0.33 0.33
C 5 2 0.5 0.67 0.5
Sum 10 1.0 1.0 1.0

Table 5.2. Fitness proportionate (FP) versus linear ranking (LR) selection

When the mapping from rank to selection probabilities is linear, only lim-
ited selection pressure can be applied. This arises from the assumption that,
on average, an individual of median fitness should have one chance to be re-
produced, which in turn imposes a maximum value of s = 2. (Since the scaling
is linear, letting s > 2 would require the worst to have a negative selection
probability if the probabilities are to sum to unity.) If a higher selection pres-
sure is required, i.e., more emphasis on selecting individuals of above-average
fitness, an exponential ranking scheme is often used, of the form:

. 1—e™?
Pexp—rank (Z) - .

c

The normalisation factor ¢ is chosen so that the sum of the probabilities is
unity, i.e., it is a function of the population size.
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5.2.3 Implementing Selection Probabilities

The description above provides two alternative schemes for deciding a prob-
ability distribution that defines the likelihood of each individual in the popu-
lation being selected for reproduction. In an ideal world, the mating pool of
parents taking part in recombination would have exactly the same proportions
as this selection probability distribution. This would mean that the number
of any given individual would be given by its selection probability, multiplied
by the size of the mating pool. However, in practice this is not possible be-
cause of the finite size of the population, i.e., when we do this multiplication,
we find typically that some individuals have an ezpected number of copies
which is noninteger — whereas of course in practice we need to select complete
individuals. In other words, the mating pool of parents is sampled from the
selection probability distribution, but will not in general accurately reflect it,
as was seen in the example in Sect. 3.3.

The simplest way of achieving this sampling is known as the roulette
wheel algorithm. Conceptually this is the same as repeatedly spinning a
one-armed roulette wheel, where the sizes of the holes reflect the selection
probabilities. In general, the algorithm can be applied to select A\ members
from the set of p parents into a mating pool. To illustrate the workings of
this algorithm, we will assume some order over the population (ranking or
random) from 1 to p, so that we can calculate the cumulative probability dis-
tribution, which is a list of values [ay,as,...,a,] such that a; = D] Psei(i),
where P (i) is defined by the selection distribution — fitness proportionate
or ranking. Note that this implies a, = 1. The outlines of the algorithm are
given in Fig. 5.1.

BEGIN
/* Given the cumulative probability distribution a */
/* and assuming we wish to select \ members of the mating pool */
set current-member = 1;
WHILE ( current_member < X\ ) DO
Pick a random value 7 uniformly from [0, 1];

set 1 =1;

WHILE ( a; <7 ) DO
set i =1+ 1;

0D

set mating _pool [current-member] = parentsl[i];
set current_member = current_member + 1;
0D
END

Fig. 5.1. Pseudocode for the roulette wheel algorithm
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Despite its inherent simplicity, it has been recognised that the roulette
wheel algorithm does not in fact give a particularly good sample of the re-
quired distribution. Whenever more than one sample is to be drawn from the
distribution — for instance A — the use of the stochastic universal sam-
pling (SUS) algorithm [32] is preferred. Conceptually, this is equivalent to
making one spin of a wheel with A\ equally spaced arms, rather than A spins of
a one-armed wheel. Given the same list of cumulative selection probabilities
lai,asz,...,a,], it selects the mating pool as described in Fig. 5.2.

BEGIN
/* Given the cumulative probability distribution a */
/* and assuming we wish to select \ members of the mating pool */
set current_-member =1 =1;
Pick a random value r uniformly from [0,1/A];
WHILE ( current-member < \ ) DO
WHILE ( r <a[i] ) DO
set mating_pool [current-member] = parentsl[i];
set r=r+1/A;
set current_member = current_member + 1;
0D
set 1 =1+ 1;
0D
END

Fig. 5.2. Pseudocode for the stochastic universal sampling algorithm making A
selections

Since the value of the variable r is initialised in the range [0,1/A] and
increases by an amount 1/\ every time a selection is made, it is guaranteed
that the number of copies made of each parent 7 is at least the integer part of
A - Psei(7) and is no more than one greater. Finally, we should note that with
minor changes to the code, SUS can be used to make any number of selections
from the parents, and in the case of making just one selection, it is the same
as the roulette wheel.

5.2.4 Tournament Selection

The previous two selection methods and the algorithms used to sample from
their probability distributions relied on a knowledge of the entire population.
However, in certain situations, for example, if the population size is very
large, or if the population is distributed in some way (perhaps on a parallel
system), obtaining this knowledge is either highly time consuming or at worst
impossible. Furthermore, both methods assume that fitness is a quantifiable
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measure (based on some explicit objective function to be optimised), which
may not be valid. Think, for instance, of an application evolving game playing
strategies. In this case we might not be able to quantify the strength of a given
individual (strategy) in isolation, but we can compare any two of them by
simulating a game played by these strategies as opponents. Similar situations
occur also in evolutionary design and evolutionary art applications [48, 49]. In
these the user typically makes a subjective selection by comparing individuals
representing designs or pieces of art, rather than using a quantitative measure
to assign fitness, cf. Sect. 14.1.

Tournament selection is an operator with the useful property that it does
not require any global knowledge of the population, nor a quantifiable measure
of quality. Instead it only relies on an ordering relation that can compare
and rank any two individuals. It is therefore conceptually simple and fast
to implement and apply. The application of tournament selection to select A
members of a pool of u individuals works according to the procedure shown
in Fig. 5.3.

BEGIN
/* Assume we wish to select )\ members of a pool of p individuals */
set current-member = 1;
WHILE ( current_member < X ) DO
Pick k individuals randomly, with or without replacement;
Compare these k individuals and select the best of them;
Denote this individual as i;
set mating_pool [current-member] = i;
set current_member = current_member + 1;
0D
END

Fig. 5.3. Pseudocode for the tournament selection algorithm

Because tournament selection looks at relative rather than absolute fit-
ness, it has the same properties as ranking schemes in terms of invariance
to translation and transposition of the fitness function. The probability that
an individual will be selected as the result of a tournament depends on four
factors, namely:

e Its rank in the population. Effectively this is estimated without the need
for sorting the whole population.

e The tournament size k. The larger the tournament, the greater the
chance that it will contain members of above-average fitness, and the less
that it will consist entirely of low-fitness members. Thus the probability
of selecting a high-fitness member increases, and that of selecting a low-
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fitness member decreases, as k is increased. Hence we say that increasing
k increases the selection pressure.

e The probability p that the most fit member of the tournament is selected.
Usually this is 1 (deterministic tournaments), but stochastic versions are
also used with p < 1. Since this makes it more likely that a less-fit member
will be selected, decreasing p will decrease the selection pressure.

e Whether individuals are chosen with or without replacement. In the sec-
ond case, with deterministic tournaments, the k-1 least-fit members of the
population can never be selected, since the other member of the tour-
nament will be fitter. However, if the tournament candidates are picked
with replacement, it is always possible for even the least-fit member of the
population to be selected, since with probability 1/ p* > 0 all tournament
candidates will be copies of that member.

These properties of tournament selection were characterised in [20, 58],
and it was shown [190] that for binary (k = 2) tournaments with parameter
p the expected time for a single individual of high fitness to take over the
population is the same as that for linear ranking with s = 2p. However,
since A tournaments are required to produce A selections, it suffers from the
same problems as the roulette wheel algorithm, in that the outcomes can
show a high variance from the theoretical probability distribution. Despite
this drawback, tournament selection is perhaps the most widely used selection
operator in some EC dialects (in particular, Genetic Algorithms), due to its
extreme simplicity and the fact that the selection pressure is easy to control
by varying the tournament size k.

5.2.5 Uniform Parent Selection

In some dialects of EC it is common to use mechanisms such that each in-
dividual has the same chance to be selected. At first sight this might appear
to suggest that there is no selection pressure in the algorithm, which would
indeed be true if this was not coupled with a strong fitness-based survivor
selection mechanism.

In Evolutionary Programming, usually there is no recombination, only mu-
tation, and parent selection is deterministic. In particular, each parent pro-
duces exactly one child by mutation. Evolution Strategies are also usually
implemented with uniform random selection of parents into the mating pool,
i.e., for each 1 <i < p we have Pyuyiform (i) = 1/p.

5.2.6 Overselection for Large Populations

In some cases it may be desirable to work with extremely large populations.
Sometimes this could be for technical reasons — for example, there has been
a lot of interest in implementing EAs using graphics cards (GPUs), which
offer similar speed-up to clusters or supercomputers, but at much lower cost.
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However, achieving the maximum potential speed-up typically depends on
having a large population on each processing node.

Regardless of the implementation details, if the potential search space is
enormous it might be a good idea to use a large population to avoid ‘missing’
promising regions in the initial random generation, and thereafter to maintain
the diversity needed to support exploration. For example, in Genetic Program-
ming it is not unusual to use population sizes of several thousands: in 1994
[254] used 1000; in 1996 [7] used 128,000; and in 1999 [255] used 1,120,000
individuals. In the latter case, often a method called over-selection is used
for population sizes of 1000 and above.

In this method, the population is first ranked by fitness and then divided
into two groups, the top % in one and the remaining (100 —2)% in the other.
When parents are selected, 80% of the selection operations choose from the
first group, and the other 20% from the second. Koza [252] provides rule of
thumb values for z depending on the population size as shown in Table 5.3.
As can be seen, the number of individuals from which the majority of parents
are chosen stays constant, i.e., the selection pressure increases dramatically
for larger populations.

Population size|Proportion of population
in fitter group ()

1000 32%
2000 16%
4000 8%
8000 4%

Table 5.3. Rule of thumb values for overselection: Proportion of ranked population
in fitter subpopulation from which majority of parents are selected

5.3 Survivor Selection

The survivor selection mechanism is responsible for managing the process
of reducing the working memory of the EA from a set of p parents and A
offspring to a set of p individuals forming the next generation. In principle,
any of the mechanisms introduced for parent selection could be also used
for selecting survivors. However, over the history of EC a number of special
survivor selection strategies have been suggested and are widely used.

As explained in Sect. 3.2.6, this step in the main evolutionary cycle is also
called replacement. In the present section we often use this latter term to
be consistent with the literature. Replacement strategies can be categorised
according to whether they discriminate on the basis of the fitness or the age
of individuals.
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5.3.1 Age-Based Replacement

The basis of these schemes is that the fitness of individuals is not taken into
account during the selection of which individuals to replace in the population.
Instead, they are designed so that each individual exists in the population for
the same number of EA iterations. This does not preclude the possibly that
copies of highly-fit individuals might persist in the population, but for this
to happen they must be chosen at least once in the selection phase and then
survive the recombination and mutation stages without being modified. Note
that since fitness is not taken into account, the mean, and even best fitness of
any given generation, may be lower than that of its predecessor. While slightly
counterintuitive, this is not a problem as long as it does not happen too often,
and may even be beneficial if the population is concentrated around a local
optimum. A net increase in the mean fitness over time therefore relies on (i)
having sufficient selection pressure when selecting parents into the mating
pool, and (ii) using variation operators that are not too disruptive.

Age-based replacement is the strategy used in the simple Genetic Algorithm.
Since the number of offspring produced is the same as the number of parents
(= M), each individual exists for just one cycle, and the parents are simply
discarded, to be replaced by the entire set of offspring. This is the generational
model, but in fact this replacement strategy can also be implemented in a
steady-state with overlapping populations (A < u), right to the other extreme
where a single offspring is created and inserted in the population in each cycle.
In this case the strategy takes the form of a first-in-first-out (FIFO) queue.

An alternative method of age-based replacement for steady-state GAs is to
randomly select a parent for replacement. A straightforward mathematical ar-
gument based on the population size being fixed tells us that this probabilistic
strategy has the same mean effect — that is, on average individuals live for
u iterations. De Jong and Sarma [105] investigated this strategy experimen-
tally, and found that the algorithm showed higher variance in performance
than a comparable generational GA. Smith and Vavak [400] showed that this
was because the random strategy is far more likely to lose the best member
of the population than a delete-oldest (FIFO) strategy. For these reasons the
random replacement strategy is not recommended.

5.3.2 Fitness-Based Replacement

A wide number of strategies based on fitness have been proposed for choosing
which p of the p parents + A offspring should go forward to the next
generation. Some also take age into account.

Replace worst (GENITOR) In this scheme the worst A members of the
population are selected for replacement. Although this can lead to very rapid
improvements in the mean population fitness, it can also lead to premature
convergence as the population tends to rapidly focus on the fittest member
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currently present. For this reason it is commonly used in conjunction with
large populations and/or a “no duplicates” policy.

Elitism This scheme is commonly used in conjunction with age-based
and stochastic fitness-based replacement schemes, to prevent the loss of the
current fittest member of the population. In essence a trace is kept of the
current fittest member, and it is always kept in the population. Thus if it is
chosen in the group to be replaced, and none of the offspring being inserted
into the population has equal or better fitness, then it is kept and one of the
offspring is discarded.

Round-robin tournament This mechanism was introduced within Evo-
lutionary Programming, where it is applied to choose p survivors. However,
in principle, it can also be used to select A parents from a given population
of p. The method works by holding pairwise tournament competitions in
round-robin format, where each individual is evaluated against ¢ others
randomly chosen from the merged parent and offspring populations. For each
comparison, a “win” is assigned if the individual is better than its opponent.
After finishing all tournaments, the p individuals with the greatest number
of wins are selected. Typically, ¢ = 10 is recommended in Evolutionary Pro-
gramming. It is worth noting that this stochastic variant of selection allows
for less-fit solutions to be selected if they had a lucky draw of opponents. As
the value of ¢ increases this chance becomes more and unlikely, until in the
limit it becomes deterministic p + p.

(v + A) Selection The name and the notation of the (u + A) selection
comes from Evolution Strategies. In general, it refers to the case where the
set of offspring and parents are merged and ranked according to (estimated)
fitness, then the top p are kept to form the next generation. This strategy
can be seen as a generalisation of the GENITOR method (¢ > A) and the
round-robin tournament in Evolutionary Programming (u = A). In Evolution
Strategies A > p with a great offspring surplus (typically A\/u ~ 5 — 7) that
induces a large selection pressure.

(1, A) Selection The (u,\) strategy used in Evolution Strategies where
typically A > pu children are created from a population of p parents. This
method works on a mixture of age and fitness. The age component means
that all the parents are discarded, so no individual is kept for more than
one generation (although of course copies of it might exist later). The fitness
component comes from the fact that the A offspring are ranked according to
the fitness, and the best p form the next generation.

In Evolution Strategies, (p, A) selection, is generally preferred over (u+ A)
selection for the following reasons:
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e The (u,A) discards all parents and is therefore in principle able to leave
(small) local optima. This may be advantageous in a multimodal search
space with many local optima.

e If the fitness function is not fixed, but changes in time, the (u+\) selection
preserves outdated solutions, so it is not able to follow the moving optimum
well.

e (u+ A) selection hinders the self-adaptation mechanism used to adapt
strategy parameters, cf. Sect. 6.2.

5.4 Selection Pressure

Throughout this chapter we have referred rather informally to the notion
of selection pressure, using an intuitive description that as selection pressure
increases, so fitter solutions are more likely to survive, or be chosen as parents,
and less-fit solutions are correspondingly less likely.

A number of measures have been proposed for quantifying this, and studied
theoretically, of which the best known is the takeover time. The takeover
time 7* of a given selection mechanism is defined as the number of generations
it takes until the application of selection completely fills the population with
copies of the best individual, given one copy initially. Goldberg and Deb [190]

showed that
In A

-~ In(A/p)
For a typical evolution strategy with p = 15 and A = 100, this results in
7* & 2. For fitness proportional selection in a genetic algorithm it is

*

7" = An ),

resulting in 7* = 460 for population size A = 100.

Other authors have extended this analysis to other strategies in generational
and steady-state population models [79, 400]; Rudolph applied it to different
population structures such as rings [360], and also to consider a range of other
measures of selection operators’ performance, such as the ‘Diversity Indica-
tor’. Other measures of selection pressure have been proposed, including the
‘Expected Loss of Diversity’ [310], which is the expected change in the number
of diverse solutions after p selection events; and from theoretical biology, the
‘Selection Intensity’, which is the expected relative increase in mean popula-
tion fitness after applying a selection operator.

While these measures can help in understanding the effect of different strate-
gies, they can also be rather misleading since they consider selection alone,
rather than in the context of variation operators providing diversity. Smith
[390] derived mathematical expressions for a number of these indicators con-
sidering a wide range of replacement strategies in steady-state EAs. Experi-
ments bore out the analytic results, and a benchmark comparison using well-
known test problems showed that both the mean and variance of the takeover



5.5 Multimodal Problems, Selection, and the Need for Diversity 91

time could correctly predict the relative ordering of the mean and variance of
the time taken to first locate the global optimum. However, for many appli-
cations of EAs the most important measure is the quality of the best solution
found and also possibly the diversity of good solutions discovered. Smith’s
results showed that in fact none of the theoretical measures were particularly
indicative of the relative performance of different algorithms in these terms.

5.5 Multimodal Problems, Selection, and the Need for
Diversity

5.5.1 Multimodal Problems

In Sects. 2.3.1 and 3.5 we introduced the concept of multimodal search land-
scapes and local optima. We discussed how effective search relies on the preser-
vation of sufficient diversity to allow both exploitation of learned information
(by investigating regions contained high fitness solutions discovered) and ex-
ploration in order to uncover new high-fitness regions.

Multimodality is a typical aspect of the type of problems for which EAs are
often employed, either in attempt to locate the global optimum (particularly
when a local optimum has the largest basin of attraction), or to identify a
number of high—fitness solutions corresponding to various local optima. The
latter situation can often arise, for example, when the fitness function used by
the EA does not completely specify the underlying problem. An example of
this might be in the design of a new widget, where the parameters of the fitness
function may change during the design process, as progressively more refined
and detailed models are used as decisions such as the choice of materials, etc.,
are made. In this situation it is valuable to be able to examine a number of
possible options, first so as to permit room for human aesthetic judgements,
and second because it is probably desirable to use solutions from niches with
broader peaks rather than from a sharp peak. This is because the latter may
be overfitted (that is, overly specialised) to the current fitness function and
may not be as good once the fitness function is refined.

The population-based nature of EAs holds out much promise for identifying
multiple optima, however, in practice the finite population size, when coupled
with recombination between any parents (known as panmictic mixing) leads
to the phenomenon known as genetic drift and eventual convergence around
one optimum. The reasons for this can easily be seen: imagine that we have
two equally fit niches, and a population of 100 individuals originally equally
divided between them. Eventually, because of the random effects in selection,
it is likely that we will obtain a parent population consisting of 49 of one sort
and 51 of the other. Ignoring the effects of recombination and mutation, in the
next generation the probabilities of selecting individuals from the two niches
are now 0.49 and 0.51 respectively, i.e., we are increasingly likely to select
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individuals from the second niche. This effect increases as the two subpopu-
lations become unbalanced, until eventually we end up with only one niche
represented in the population.

5.5.2 Characterising Selection and Population Management
Approaches for Preserving Diversity

A number of mechanisms have been proposed to aid the use of EAs on mul-
timodal problems. These can be broadly separated into two camps: explicit
approaches, in which specific changes are made to operators in order to pre-
serve diversity, and implicit approaches, in which a framework is used that
permits, but does not guarantee, the preservation of diverse solutions. Before
describing these it is useful to clarify exactly what we mean by ‘diversity’ and
‘space’. Just as biological evolution takes place on a geographic surface, but
can also be considered to occur on an adaptive landscape, so we can define a
number of spaces within which the evolutionary algorithms operate:

e Genotype Space: We may perceive the set of representable solutions as
a genotype space and define some distance metrics. This can be a natural
distance metrics in that space (e.g., the Manhattan distance) or based on
some fundamental move operator. Typical move operators include a single
bit-flip for binary spaces, a single inversion for adjacency-based permuta-
tion problems and a single swap for order-based permutations problems.

e Phenotype Space: This is the end result: a search space whose struc-
ture is based on distance metrics between solutions. The neighbourhood
structure in this space may bear little relationship to that in the genotype
space according to the complexity of the representation—solution mapping.

e Algorithmic Space: This is the equivalent of the geographical space on
which life on Earth has evolved. Effectively we are considering that the
working memory of the EA, that is, the population of candidate solutions,
can be structured in some way. This spatial structure could be either a
conceptual division, or real: for example, a population might be split over
a number of processors or cores.

Explicit approaches to diversity maintenance based on measures of either
genotype or phenotypic space include Fitness Sharing (Sect. 5.5.3), Crowding
(Sect. 5.5.4), and Speciation (Sect. 5.5.5), all of which work by affecting the
probability distributions used by selection. Implicit approaches to diversity
maintenance based on the concept of algorithmic space include Island Model
EAs (Sect. 5.5.6) and Cellular EAs (Sect. 5.5.7).

5.5.3 Fitness Sharing

This scheme is based upon the idea that the number of individuals within a
given niche is controlled by sharing their fitness immediately prior to selec-
tion, in an attempt to allocate individuals to niches in proportion to the niche
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fitness [193]. In practice the scheme considers each possible pairing of individ-
uals ¢ and j within the population (including i with itself) and calculates a
distance d(i,j) between them according to some distance metric (phenotypic
is preferred if possible, else genotypic, e.g., Hamming distance for binary rep-
resentations). The fitness F' of each individual i is then adjusted according
to the number of individuals falling within some prespecified distance ospqare
using a power-law distribution:

F(i)
S, sh(d(i,3)”

where the sharing function sh(d) is a function of the distance d, given by

F'(i) =

_ 1- (d/ashare)a ifd < Oshare
sh{d) = { 0 otherwise .
The constant value o determines the shape of the sharing function: for a=1
the function is linear, but for values greater than this the effect of similar
individuals in reducing a solution’s fitness falls off more rapidly with distance.
The value of the share radius ogpqre decides both how many niches can
be maintained and the granularity with which different niches can be dis-
criminated. Deb [114] gives some suggestions for how this might be set if the
number of niches is known in advance, but clearly this is not always the case.
In [110] he suggests that a default value in the range 5-10 should be used.
We should point out that the use of fitness proportionate selection is implicit
within the fitness-sharing method. In this case there exists a stable distribu-
tion of solutions amongst the niches when solutions from each peak have the
same effective fitness F”. Since the niche fitness F}, = F}, /ny, in this stable dis-
tribution each niche k contains a number of solutions n; proportional to the
niche fitness Fj,'. This point is illustrated in Fig. 5.4. Studies have indicated
that the use of alternative selection methods does not lead to the formation
and preservation of stable subpopulations in niches [324].

5.5.4 Crowding

The crowding algorithm was first suggested in De Jong’s thesis [102] as a
way of preserving diversity by ensuring that new individuals replaced similar
members of the population. The original scheme worked in a steady-state
setting (the number of new individuals generated in each step was 20% of
the population size). When a new offspring is inserted into the population, a
number 2 of members of the parent population are chosen at random, and then
the offspring replaces the most similar of those parents. A number of problems

! This assumes for the sake of ease that all solutions within a given niche lie at its
optimal point, at zero distance from each other.
2 called the Crowding Factor (CF) - De Jong used CF=2
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Fig. 5.4. Idealised population distributions under fitness sharing (top) and crowding
(bottom). There are five peaks in the landscape with fitnesses (5,4,3,2,1) and the
population size is 15. Fitness sharing allocates individuals to peaks in proportion to
their fitness, whereas crowding distributes the population evenly amongst the peaks

were found with this approach, and Mahfoud has suggested an improvement
called deterministic crowding [278]. This algorithm relies on the fact that
offspring are likely to be similar to their parents as follows:

1. The parent population is randomly paired.

Each pair produces two offspring via recombination.

These offspring are mutated and then evaluated.

The four pairwise distances between offspring and parents are calculated.
Each offspring then competes for survival in a tournament with one par-
ent, so that the intercompetition distances are minimised. In other words,
denoting the parents as p, the offspring as o, and using the subscript to
indicate tournament pairing, d(p1,01) + d(p2,02) < d(p1,02) + d(pz,01).

Gk R

The net result of all this is that offspring tend to compete for survival
with the most similar parent, so subpopulations are preserved in niches but
their size does not depend on fitness; rather it is equally distributed amongst
the peaks available. Fig. 5.4 illustrates this point in comparison with the
distribution achieved under crowding.
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5.5.5 Automatic Speciation Using Mating Restrictions

The automatic speciation approach imposes mating restrictions based on some
aspect of the candidate solutions (or their genotypes) defining them as belong-
ing to different species. The population contains multiple species, and during
parent selection for recombination individuals will only mate with others from
the same (or similar) species. The biological analogy becomes particularly
clear when we note that some authors refer to the aspect controlling repro-
ductive opportunities as an individual’s ‘plumage’ [401].

A number of schemes have been proposed to implement speciation, which
can be divided into two main approaches. In the first speciation is based on the
solution (or its representation), e.g., Deb’s phenotype (genotype)-restricted
mating [109, 114, 401]. The alternative approach is to add some elements
such as tags to the genotype that code for the individual’s species, rather
than representing part of the solution. See [62, 109, 409] for implementations,
noting that many of these ideas were previously suggested by other authors.
These are usually randomly initialised and subject to recombination and mu-
tation. Common to both approaches is the idea that once an individual has
been selected to be a parent, then the choice of mate involves the use of a
pairwise distance metric (in phenotype or genotype space as appropriate),
with potential mates being rejected beyond a certain distance.

Note that in the tag scheme, there is initially no guarantee that individuals
with similar tags will represent similar solutions, although after a few genera-
tions selection will usually take care of this problem. Neither is there any guar-
antee that different species will contain different solutions, although Spears
goes some way towards rectifying this by also using the tags to perform fit-
ness sharing [409], and even without this Deb reported improved performance
compared to a standard GA [109]. Similarly, although the phenotype-based
speciation scheme does not guarantee diversity maintenance, when used in
conjunction with fitness sharing, it was reported to give better results than
fitness sharing on its own [114].

5.5.6 Running Multiple Populations in Tandem: Island Model EAs

The idea of evolving multiple populations in tandem is also known as island
model EAs, parallel EA, and, more precisely coarse-grain parallel EAs.
These schemes attracted great interest in the 1980s when parallel computing
became popular [87, 88, 274, 339, 356, 425] and are still applicable on MIMD
systems such as computing clusters. Of course, they can equally well be im-
plemented on a single-processor architecture, without the time speed-up.
The essential idea is to run multiple populations in parallel, in some kind of
communication structure. The communication structure is usually a ring or a
torus, but in principle any form is possible, and sometimes this is determined
by the architecture of the parallel system, e.g., a hypercube [425]. After a
(usually fixed) number of generations (known as an epoch), a number of
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individuals are selected from each population to be exchanged with others
from neighbouring populations — this can be thought of as migration.

In [284] this approach is discussed in the context of Eldredge and Gould’s
theory of punctuated equilibria [154] and the exploration—exoloitation trade-
off. They suggest that during the epochs between communication, when each
subpopulation is evolving independently of the others, exploitation occurs,
so that the subpopulations each explore the search space around the fitter
solutions that they contain. When communication takes place, the injection
of individuals of potentially high fitness, and with (possibly) radically differ-
ent genotypes, facilitates exploration, particularly as recombination happens
between the two different solutions.

Whilst extremely attractive in theory, it is obvious that there are no guar-
antees per se that the different subpopulations are actually exploring different
regions of the search space. One possibility is clearly to achieve a start at
this through a careful initialisation process, but even if this is used, there are
a number of parameters that have been shown to affect the ability of this
technique to explore different peaks and obtain good results even when only
a single solution is desired as the end result.

A number of detailed studies have been made of the effects of different pa-
rameters and implementations of this basic scheme (see, e.g., earlier references
in this section, and [276] for a more recent treatment), but of course we must
bear in mind that the results obtained may be problem dependent, and so we
will restrict ourselves to commenting on a few important facets:

e How often to exchange individuals? The essential problem here is that
if the communication occurs too frequently, then all subpopulations will
converge to the same solution. Equally if it is done too infrequently, and
one or more subpopulations has converged quickly in the vicinity of a
peak, then significant amounts of computational effort may be wasted.
Most authors have used epoch lengths of the range 25-150 generations. An
elegant alternative strategy proposed in [284] is to organise communication
adaptively, that is to say, to stop the evolution in each subpopulation when
no improvement has been observed for, say, 25 generations.

e How many, and which individuals to exchange? Many authors have found
that in order to prevent too rapid convergence to the same solution, it is
better to exchange a small number of solutions between subpopulations —
usually 2-5. Once the amount of communication has been decided, it is
necessary to specify which individuals are selected from each population
to be exchanged. Clearly this can be done either by some fitness-based se-
lection mechanism (e.g., “copy-best” [339], “pick-from-fittest-half” [425])
or at random [87]. It must also be decided whether the individuals be-
ing exchanged are effectively moved from one population to another, thus
(assuming a symmetrical communication structure) maintaining subpop-
ulation sizes, or whether they are merely copied, in which case each sub-
population must then undergo some kind of survivor selection mechanism.
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The choices of how many and which individuals to exchange will evidently
affect the tendency of the subpopulations to converge to the same solu-
tion. Random, rather than fitness-based, selection strategy is less likely to
lead to takeover of one population by a new high-fitness migrant, and ex-
changing more solutions also leads to faster mixing and possible takeover.
However, the extent to which these factors affect the behaviour is clearly
tied to the epoch length, since if this is long enough to permit fitness con-
vergence then all of the solutions contained within a given subpopulation
are likely to be genotypically very similar, so the selection method used
becomes less important.

e How to divide the population into subpopulations? The general rule here
appears to be that provided a certain (problem-dependent) minimum sub-
population size is respected, then more subpopulations usually gives better
results. This clearly fits in with our understanding, since if each subpop-
ulation is exploring a different peak (the ideal scenario), the more peaks
explored, the likely it is that one of them will contain the global optimum.

Finally, it is worth mentioning that it is perfectly possible to use different
algorithmic parameters on different islands. Thus in the injection island
models the subpopulations are arranged hierarchically with each level oper-
ating at a different granularity of representation. Equally, parameters such as
the choice of recombination or mutation operator and associated parameters,
or even subpopulation sizes, might be different between different subpopula-
tions [148, 367].

5.5.7 Spatial Distribution Within One Population: Cellular EAs

In the previous section we described the implementation of a population
structure in the form of a number of subpopulations with occasional com-
munication. In this section we describe an alternative model whereby a single
population is considered to be split into a larger number of smaller overlap-
ping subpopulations (demes) by being distributed within algorithmic space.
We can consider this to be equivalent to the situation whereby biological in-
dividuals are separated, only mating and competing for survival with those
within a certain distance to them. To take a simple example from the days of
less-rapid transport, a person might only have been able to marry and have
children with someone from their own or surrounding villages. Thus should a
new gene for say, telekinesis, evolve, even if it offers huge evolutionary advan-
tage, at first it will only spread to surrounding villages. In the next generation
it might spread to those surrounding them, and so on, only slowly diffusing
or percolating throughout the society.

This effect is implemented by considering each member of the population
to exist on a different point on a grid, and only permitting recombination and
selection with neighbours, hence the common names of parallel EAs [195, 311],
fine-grain parallel EAs [281], diffusion model EA [451], distributed
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EAs [225] and, more commonly nowadays cellular EAs [456, 5]. There have
been a great many differing implementations of this form of EA, but we can
broadly outline the algorithm as follows:

1. The current population is conceptually distributed on a (usually toroidal)
grid, with one individual per node.

2. For each node we have defined a deme (neighbourhood). This is usually
the same for all nodes, e.g., for a neighbourhood size of nine on a square
lattice, we take the node and all of its immediate neighbours.

3. In each generation we consider each deme in turn and perform the follow-
ing operations within it:

e Select two solutions from the nodes in the deme that will act as parents.

e Generate an offspring via recombination.

e Mutate, then evaluate the offspring.

e Select one solution residing on a node in the deme and replace it with
the new offspring.

Within this general structure there is scope for considerable differences in
implementation. The ASPARAGOS algorithm [195, 311] uses a ladder topol-
ogy rather than a lattice, and also performs a hill-climbing step after muta-
tion. Several algorithms implemented on massively parallel SIMD or SPMD
machines use asynchronous updates in step 3 rather than the sequential mode
suggested in the third step above (a good discussion of this issue can be found
in [338]). The selection of parents might be fitness-based [95] or random (or
one of each [281]), and often one parent is taken to be that residing on the
central node of the deme. When fitness-based selection is used it is usually a
local implementation of a well-known global scheme such as fitness propor-
tionate or tournament. De Jong and Sarma [106] analysed a number of such
schemes and found that local selection techniques generally exhibited less se-
lection pressure than their global versions. While it is common to replace the
central node of the deme, again fitness-based or random selection have been
used to select the individual to be replaced, or a combination such as “replace
current solution if better” [195]. White and Pettey reported results suggest-
ing that the use of fitness in the survivor selection is preferred [451]. A good
recent treatment and discussion can be found in the book [5].

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.
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6

Popular Evolutionary Algorithm Variants

In this chapter we describe the most widely known evolutionary algorithm
variants. This overview serves a twofold purpose: On the one hand, it in-
troduces those historical EA variants without which no EC textbook would
be complete together with some more recent versions that deserve their own
place in the family tableau. On the other hand, it demonstrates the diversity
of realisations of the same basic evolutionary algorithm concept.

6.1 Genetic Algorithms

The genetic algorithm (GA) is the most widely known type of evolutionary al-
gorithm. It was initially conceived by Holland as a means of studying adaptive
behaviour, as suggested by the title of the book describing his early research:
Adaptation in Natural and Artificial Systems [220]. However, GAs have largely
(if perhaps mistakenly — see [103]) been considered as function optimisation
methods. This is perhaps partly due to the title of Goldberg’s seminal book:
Genetic Algorithms in Search, Optimization and Machine Learning [189] and
some very high-profile early successes in solving optimisation problems. To-
gether with De Jong’s thesis [102] this work helped to define what has come
to be considered as the classical genetic algorithm — commonly referred to as
the ‘canonical’ or ‘simple GA’ (SGA). This has a binary representation, fit-
ness proportionate selection, a low probability of mutation, and an emphasis
on genetically inspired recombination as a means of generating new candidate
solutions. It is summarised in Table 6.1. Perhaps because it is so widely used
for teaching EAs, and is the first EA that many people encounter, it is worth
re-iterating that many features that have been developed over the years are
missing from the SGA — most obviously that of elitism.

While, the table does not indicate this, GAs traditionally have a fixed work-
flow: given a population of p individuals, parent selection fills an intermedi-
ary population of p, allowing duplicates. Then the intermediary population is
shuffled to create random pairs and crossover is applied to each consecutive
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pair with probability p. and the children replace the parents immediately.
The new intermediary population undergoes mutation individual by individ-
ual, where each of the [ bits in an individual is modified by mutation with
independent probability p,,. The resulting intermediary population forms the
next generation replacing the previous one entirely. Note that in this new
generation there might be pieces, perhaps complete individuals, from the pre-
vious one that survived crossover and mutation without being modified, but
the likelihood of this is rather low (depending on the parameters p, pe, pm)-

Representation |Bit-strings

Recombination |1-Point crossover

Mutation Bit flip

Parent selection |Fitness proportional - implemented by Roulette Wheel
Survival selection|Generational

Table 6.1. Sketch of the simple GA

In the early years of the field there was significant attention paid to trying
to establish suitable values for GA parameters such as the population size,
crossover and mutation probabilities. Recommendations were for mutation
rates between 1/l and 1/u, crossover probabilities around 0.6-0.8, and popu-
lation sizes in the fifties or low hundreds, although to some extent these values
reflect the computing power available in the 1980s and 1990s.

More recently it has been recognised that there are some flaws in the SGA.
Factors such as elitism, and non-generational models were added to offer
faster convergence if needed. As discussed in Chap. 5, SUS is preferred to
roulette wheel implementation, and most commonly rank-based selection is
used, implemented via tournament selection for simplicity and speed. Study-
ing the biases in the interplay between representation and one-point crossover
(e.g. [411]) led to the development of alternatives such as uniform crossover,
and a stream of work through ‘messy-GAs’ [191] and ‘Linkage Learning’
[209, 395, 385, 83] to Estimation of Distribution Algorithms (see Sect. 6.8).
Analysis and experience has recognised the need to use non-binary representa-
tions where more appropriate (as discussed in Chap. 4). Finally the problem of
how to choose a suitable fixed mutation rate has largely been solved by adopt-
ing the idea of self-adaptation, where the rates are encoded as extra genes in
an individuals representation and allowed to evolve [18, 17, 396, 383, 375].

Nevertheless, despite its simplicity, the SGA is still widely used, not just
for teaching purposes, and for benchmarking new algorithms, but also for
relatively straightforward problems in which binary representation is suitable.
It has also been extensively modelled by theorists (see Chap. 16). Since it has
provided so much inspiration and insight into the behaviour of evolutionary
processes in combinatorial search spaces, it is fair to consider that if OneMax
is the Drosophilia of combinatorial problems for researchers, then the SGA is
the Drosophilia of evolutionary algorithms.
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6.2 Evolution Strategies

Evolution strategies (ES) were invented in the early 1960s by Rechenberg
and Schwefel, who were working at the Technical University of Berlin on an
application concerning shape optimisation (see [54] for a brief history). The
earliest ES’s were simple two-membered algorithms denoted (1+1) ES’s (pro-
nounce: one plus one ES), working in a vector space. An offspring is generated
by the addition of a random number independently to each to the elements
of the parent vector and accepted if fitter. An alternative scheme, denoted
as (1,1) ES (pronounce: one comma one ES) always replaces the parent by
the offspring, thus forgetting the previous solutions by definition. The ran-
dom numbers are drawn from a Gaussian distribution with mean zero and a
standard deviation o, where o is called the mutation step size. One of the key
early breakthroughs of ES research was to propose a simple mechanism for on-
line adjustment of step sizes by the famous 1/5 success rule of Rechenberg
[352] as described in Sect. 8.2.1. In the 1970s the concept of multi-membered
evolution strategies was introduced, with the naming convention based on p
individuals in the population and X offspring generated in one cycle. The re-
sulting (u+A) and (i, A) ES’s gave rise to the possibility of more sophisticated
forms of step-size control, and led to the development of a very useful feature
in evolutionary computing: self-adaptation of strategy parameters, see Sect.
4.4.2. In general, self-adaptivity means that some parameters of the EA are
varied during a run in a specific manner: the parameters are included in the
chromosomes and coevolve with the solutions. Technically this means that
an ES works with extended chromosomes (Z,p), where T € IR" is a vector
from the domain of the given objective function to be optimised, while p car-
ries the algorithm parameters. Modern evolution strategies always self-adapt
the mutation step sizes and sometimes their rotation angles. That is, since
the procedure was detailed in 1977 [372] most ESs have been self-adaptive,
and other EAs have increasingly adopted self-adaptivity. Recent forms of ES
such as the CMA [207] are among the leading algorithms for optimisation of
complex real-valued functions. A summary of ES is given in Table 6.2.

Representation |Real-valued vectors

Recombination |Discrete or intermediary

Mutation Gaussian perturbation

Parent selection |Uniform random

Survivor selection|Deterministic elitist replacement by (u, A) or (u + X)
Speciality Self-adaptation of mutation step sizes

Table 6.2. Sketch of ES

The basic recombination scheme in evolution strategies involves two par-
ents that create one child. To obtain A offspring recombination is performed A



102 6 Popular Evolutionary Algorithm Variants

times. There are two recombination variants distinguished by the manner of
recombining parent alleles. Using discrete recombination one of the parent
alleles is randomly chosen with equal chance for either parents. In inter-
mediate recombination the values of the parent alleles are averaged. An
extension of this scheme allows the use of more than two recombinants, be-
cause the two parents are drawn randomly for each position i € {1,...,n}
in the offspring anew. These drawings take the whole population of p indi-
viduals into consideration, and the result is a recombination operator with
possibly more than two individuals contributing to the offspring. The exact
number of parents, however, cannot be defined in advance. This multiparent
variant is called global recombination. To make terminology unambiguous,
the original variant is called local recombination. Evolution strategies typ-
ically use global recombination. Interestingly, different recombination is used
for the object variable part (discrete is recommended) and the strategy pa-
rameters part (intermediary is recommended). This scheme preserves diversity
within the phenotype (solution) space, allowing the trial of very different com-
binations of values, whilst the averaging effect of intermediate recombination
assures a more cautious adaptation of strategy parameters.

The selection scheme that is generally used in evolution strategies is (i, \)
selection, which is preferred over (p + A) selection for the following reasons:

e The (u, A) discards all parents and so can in principle leave (small) local
optima, which is advantageous for multimodal problems.

e If the fitness function changes over time, the (u + \) selection preserves
outdated solutions, so is less able to follow the moving optimum.

e (u+ M) selection hinders the self-adaptation, because misadapted strategy
parameters may survive for a relatively large number of generations. For
example, if an individual has relatively good object variables but poor
strategy parameters, often all of its children will be bad. Thus they will
be removed by an elitist policy, while the misadapted strategy parameters
in the parent may survive for longer than desirable.

The selective pressure in evolution strategies is very high because A is typi-
cally much higher than p (traditionally a 1/7 ratio is recommended, although
recently values around 1/4 seem to gain popularity). The takeover time 7*
of a given selection mechanism is defined as the number of generations it takes
until the application of selection completely fills the population with copies of
the best individual, given one copy initially. Goldberg and Deb [190] showed

that
In \

YD)
For a typical evolution strategy with p = 15 and A = 100, this results in
7" &~ 2. By way of contrast, for fitness proportional selection in a genetic
algorithm with = A =100 it is 7 = Aln A = 460. This indicates that an ES
is a more aggressive optimizer than a (simple) GA.

*
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6.3 Evolutionary Programming

Evolutionary programming (EP) was originally developed by Fogel et al. in
the 1960s to simulate evolution as a learning process with the aim of gener-
ating artificial intelligence [166, 174]. Intelligence, in turn, was viewed as the
capability of a system to adapt its behaviour in order to meet some speci-
fied goals in a range of environments. Adaptive behaviour is the key term in
this definition, and the capability to predict the environment was considered
to be a prerequisite. The classic EP systems used finite state machines as
individuals.

Nowadays EP frequently uses real-valued representations, and so has almost
merged with ES. The principal differences lie perhaps in the biological inspi-
ration: in EP each individual is seen as corresponding to a distinct species,
and so there is no recombination. Furthermore, the selection mechanisms are
different. In ES parents are selected stochastically, then the selection of the
1 best from the union of p + A offspring is deterministic. By contrast, in EP
each parent generates exactly one offspring (i.e., A = u), but these parents and
offspring populations are then merged and compete in stochastic round-robin
tournaments for survival, as described in Sect. 5.3.2. The field now adopts a
very open, pragmatic approach that the choice of representation, and hence
mutation, should be driven by the problem; Table 6.3 is therefore a represen-
tative rather than a standard algorithm variant.

Representation |Real-valued vectors

Recombination |None

Mutation Gaussian perturbation

Parent selection |Deterministic (each parent creates one offspring via mutation)
Survivor selection|Probabilistic (p + )

Speciality Self-adaptation of mutation step sizes (in meta-EP)

Table 6.3. Sketch of EP

The issue of the advantage of using a mutation-only algorithm versus a
recombination and mutation variant has been intensively discussed since the
1990s. Fogel and Atmar [170] compared the results of EP algorithms with and
without recombination on a series of linear functions with parameterisable in-
teractions between genes. They concluded that improved performance was
obtained from the version without recombination. This led to intensive peri-
ods of research in both the EP and the GA communities to try and establish
the circumstances under which the availability of a recombination operator
yielded improved performance [159, 171, 222, 408]. The current state of think-
ing has moved on to a stable middle ground. The latest results [232] confirm
that the ability of both crossover or Gaussian mutation to produce new off-
spring of superior fitness to their parents depends greatly on the state of the
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search process, with mutation better initially but crossover gaining in ability
as evolution progresses. These conclusions agree with theoretical resu