
Natural Computing Series

A.E. Eiben
J.E. Smith

Introduction to 
Evolutionary 
Computing
Second Edition



Natural Computing Series

Series Editors: G. Rozenberg

Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen

T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer
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Preface

This is the second edition of our 2003 book. It is primarily a book for lectur-
ers and graduate and undergraduate students. To this group the book offers a
thorough introduction to evolutionary computing (EC), descriptions of popu-
lar evolutionary algorithm (EA) variants, discussions of methodological issues
and particular EC techniques. We end by presenting an outlook to evolu-
tionary robotics and the future of EC, as it stands poised to make a major
transition from evolution within computers to the evolution of things [147].
This book is also meant for those who wish to apply EC to a particular

problem or within a given application area. To this group the book is valuable
because it presents EC as something to be used, rather than just studied,
and it contains an explicit treatment of guidelines for good experimentation.
Finally, this book contains information on the state of the art in a wide range
of subjects that are interesting to fellow researchers, as quick reference on
subjects outside of their own specialist field of EC.
This book has a supporting website at

www.evolutionarycomputation.org

which offers additional information. In particular, the educational role of the
book is emphasised:

1. There are exercises and a list of recommended further reading for each
chapter.

2. The outline of a full academic course based on this book is given.
3. There are slides for each chapter in PDF and PowerPoint format. These

slides can be freely downloaded, altered, and used to teach the material
covered in the book.

4. Furthermore, the website offers answers to the exercises, downloadables
for easy experimentation, a discussion forum, and errata.

When updating the book we altered its main logic. In the first edition, pop-
ular evolutionary algorithm variants, such as genetic algorithms or evolution
strategies, had a prominent role. They were treated in separate chapters and
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VI Preface

specific representations and evolutionary operators were presented within the
framework of one of these algorithm variants. In the second edition we are
emphasising the generic scheme of EAs as an approach to problem-solving.
This is reflected by the following major changes:

• We added a chapter on problems. Since the whole book is about problem
solvers, we felt it was good to start with a chapter on problems.

• The treatment of EAs is organised according to the main algorithm com-
ponents, such as representation, variation and selection operators.

• The most popular EA variants are presented as special cases of the generic
EA scheme. Although the treatment of each variant is now shorter, the list
of variants is longer, now including differential evolution, particle swarm
optimisation, and estimation of distribution algorithms.

We also extended the treatment of the how-to parts of the book. We added
a new chapter on parameter tuning and grouped this with the chapters on pa-
rameter control and the how-to-work-with content into a methodological part.
Furthermore, we dropped the Exercises and Recommended Reading sections
at the end of each chapter as they were too static. Instead, we offer these on
the website for the book.
The overall structure of the new edition is three-tier: Part I presents the

basics, Part II is concerned with methodological issues, and Part III discusses
advanced topics. These parts are followed by the References, and although
that now contains nearly five hundred entries, we inevitably missed some. We
apologise, it is nothing personal. Just send us an email if we forgot a really
important one.
Writing this book would not have been possible without the support of

many. In the first place, we wish to express our gratitude to Daphne and
Cally for their patience, understanding, and tolerance. Without their support
this book could not have been written. Furthermore, we acknowledge the help
of our colleagues and the students worldwide who pointed out errors in and
gave us feedback about the earlier version of the book. We are especially
grateful to Bogdan Filipič for his comments on the almost-final draft of this
book.

We wish everybody a pleasant and fruitful time reading and using this book.

Amsterdam, Bristol, April 2015 Gusz Eiben and Jim Smith
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Part I

The Basics



1

Problems to Be Solved

In this chapter we discuss problems to be solved, as encountered frequently
by engineers, computer scientists, etc. We argue that problems and problem
solvers can, and should, be distinguished, and observe that the field of evolu-
tionary computing is primarily concerned with problem solvers. However, to
characterise any problem solver it is useful to identify the kind of problems
to which it can be applied. Therefore we start this book by discussing various
classes of problems, and, in fact, even different ways of classifying problems.
In the following informal discussion, we introduce the concepts and the

terminology needed for our purposes by examples, only using a formal treat-
ment when it is necessary for a good understanding of the details. To avoid
controversy, we are not concerned with social or political problems. The prob-
lems we have in mind are the typical ones with which artificial intelligence
is associated: more akin to puzzles (e.g., the famous zebra puzzle), numerical
problems (e.g., what is the shortest route from a northern city to a southern
city), or pattern discovery (e.g., what will a new customer buy in our online
book store, given their gender, age, address, etc).

1.1 Optimisation, Modelling, and Simulation Problems

The classification of problems used in this section is based on a black box
model of computer systems. Informally, we can think of any computer-based
system as follows. The system initially sits, awaiting some input from either
a person, a sensor, or another computer. When input is provided, the system
processes that input through some computational model, whose details are not
specified in general (hence the name black box). The purpose of this model is
to represent some aspects of the world relevant to the particular application.
For instance, the model could be a formula that calculates the total route
length from a list of consecutive locations, a statistical tool estimating the
likelihood of rain given some meteorological input data, a mapping from real-
time data regarding a car’s speed to the level of acceleration necessary to
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2 1 Problems to Be Solved

approach some prespecified target speed, or a complex series of rules that
transform a series of keystrokes into an on screen version of the page you are
reading now. After processing the input the system provides some outputs –
which might be messages on screen, values written to a file, or commands sent
to an actuator such as an engine. Depending on the application, there might
be one or more inputs of different types, and the computational model might
be simple, or very complex. Importantly, knowing the model means that we
can compute the output for any input. To provide some concrete examples:

• When designing aircraft wings, the inputs might represent a description
of a proposed wing shape. The model might contain equations of complex
fluid dynamics to estimate the drag and lift coefficients of any wing shape.
These estimates form the output of the system.

• A voice control system for smart homes takes as input the electrical signal
produced when a user speaks into a microphone. Suitable outputs might
be commands to be sent to the heating system, the TV set, or the lights.
Thus in this case the model consists of a mapping from certain patterns
in electrical waveforms coming from an audio input onto the outputs that
would normally be created by key-presses on a keyboard.

• For a portable music player, the inputs might be a series of gestures and
button presses – perhaps choosing a playlist that the user has created.
Here the response of the model might involve selecting a series of mp3 files
from a database and processing them in some way to provide the desired
output for that sequence of gestures. In this case the output would be a
fluctuating electrical signal fed to a pair of earphones that in turn produce
the sound of the chosen songs.

In essence, the black box view of systems distinguishes three components,
the input, the model, and the output. In the following we will describe three
problem types, depending on which of these three is unknown.

1.1.1 Optimisation

In an optimisation problem the model is known, together with the desired
output (or a description of the desired output), and the task is to find the
input(s) leading to this output (Fig. 1.1).

For an example, let us consider the travelling salesman problem. This ap-
parently rather abstract problem is popular in computer science, as there are
many practical applications which can be reduced to this, such as organising
delivery routes, plant layout, production schedules, and timetabling. In the
abstract version we are given a set of cities and have to find the shortest tour
which visits each city exactly once. For a given instance of this problem, we
have a formula (the model) that for each given sequence of cities (the inputs)
will compute the length of the tour (the output). The problem is to find an
input with a desired output, that is, a sequence of cities with optimal (mini-
mal) length. Note that in this example the desired output is defined implicitly.
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That is, rather specifying the exact length, it is required that the tour should
be shorter than all others, and we are looking for inputs realising this.
Another example is that of the eight-queens problem. Here we are given a

chess board and eight queens that need to be placed on the board in such a way
that no two queens can check each other, i.e., they must not share the same
row, column, or diagonal. This problem can be captured by a computational
system where an input is a certain configuration of all eight queens, the model
calculates whether the queens in a given configuration check each other or not,
and the output is the number of queens not being checked. As opposed to the
travelling salesman problem, here the desired output is specified explicitly:
the number of queens not being checked must be eight. An alternative system
capturing this problem could have the same set of inputs, the same model,
but the output can be a simple binary value, representing “OK” or “not OK”,
referring to the configuration as a whole. In this case we are looking for an
input that generates “OK” as output. Intuitively, this problem may not feel
like real optimisation, because there is no graded measure of goodness. In
Sect. 1.3 we will discuss this issue in more detail.

Fig. 1.1. Optimisation problems. These occur frequently in engineering and design.
The label on the Output reads “specified”, instead of “known”, because the specific
value of the optimum may not be known, only defined implicitly (e.g., the lowest of
all possibilities).

1.1.2 Modelling

In a modelling or system identification problem, corresponding sets of
inputs and outputs are known, and a model of the system is sought that
delivers the correct output for each known input (Fig. 1.2). In terms of human
learning this corresponds to finding a model of the world that matches our
previous experience, and can hopefully generalise to as-yet unseen examples.
Let us take the stock exchange as an example, where some economic and

societal indices (e.g., the unemployment rate, gold price, euro–dollar exchange
rate, etc.) form the input, and the Dow Jones index is seen as output. The task
is now to find a formula that links the known inputs to the known outputs,
thereby representing a model of this economic system. If one can find a correct
model for the known data (from the past), and if we have good reasons to
believe that the relationships captured in this model remain true, then we
have a prediction tool for the value of the Dow Jones index given new data.
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As another example, let us take the task of identifying traffic signs in images
– perhaps from video feeds in a smart car. In this case the system is composed
of two elements. In a preprocessing stage, image processing routines take the
electrical signals produced by the camera, divide these into regions of interest
that might be traffic signs, and for each one they produce a set of numerical
descriptors of the size, shape, brightness, contrast, etc. These values represent
the image in a digital form and we consider the preprocessing component to
be given for now. Then in the main system each input is a vector of numbers
describing a possible sign, and the corresponding output is a label from a
predefined set, e.g., “stop”, “give-way”, “50”, etc. (the traffic sign). The model
is then an algorithm which takes images as input and produces labels of traffic
signs as output. The task here is to produce a model that responds with
the appropriate traffic sign labels in every situation. In practice, the set of
all possible situations would be represented by a large collection of images
that are all labelled appropriately. Then the modelling problem is reduced to
finding a model that gives a correct output for each image in the collection.
Also the voice control system for smart homes described in the beginning of

this section includes a modelling problem. The set of all phrases pronounced
by the user (inputs) must be correctly mapped onto the set of all control
commands in the repertoire of the smart home.

Fig. 1.2. Modelling or system identification problems. These occur frequently in
data mining and machine learning

It is important to note that modelling problems can be transformed into
optimisation problems. The general trick is to designate the error rate of a
model as the quantity to be minimised or its hit rate to be maximised. As
an example, let us take the traffic sign identification problem. This can be
formulated as a modelling problem: that of finding the correct model m that
maps each one of a collection of images onto the appropriate label(s) identi-
fying the traffic signs in that image. The model m that solves the problem
is unknown in advance, hence the question mark in Figure 1.2. In order to
find a solution we need to start by choosing a technology. For instance, we
may wish to have it as a decision tree, an artificial neural network, a piece
of Java code, or a MATLAB expression. This choice allows us to specify the
required form or syntax of m. Having done that, we can define the set of all
possible solutions M for our chosen technology, being all correct expressions
in the given syntax, e.g., all decision trees with the appropriate variables or all
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possible artificial neural networks with a given topology. Now we can define
a related optimisation problem. The set of inputs is M and the output for a
given m ∈ M is an integer saying how many images were correctly labelled by
m. It is clear that a solution of this optimisation problem with the maximum
number of correctly labelled images is a solution to the original modelling
problem.

1.1.3 Simulation

In a simulation problem we know the system model and some inputs, and
need to compute the outputs corresponding to these inputs (Fig. 1.3). As an
example, think of an electronic circuit, say, a filter cutting out low frequen-
cies in a signal. Our model is a complex system of formulas (equations and
inequalities) describing the working of the circuit. For any given input signal
this model can compute the output signal. Using this model (for instance, to
compare two circuit designs) is much cheaper than building the circuit and
measuring its properties in the physical world. Another example is that of a
weather forecast system. In this case, the inputs are the meteorological data
regarding, temperature, wind, humidity, rainfall, etc., and the outputs are ac-
tually the same: temperature, wind, humidity, rainfall, etc., but at a different
time. The model here is a temporal one to predict meteorological data.
Simulation problems occur in many contexts, and using simulators offers

various advantages in different applications. For instance, simulation can be
more economical than studying the real-world effects, e.g., for the electronic
circuit designers. The real-world alternative may not be feasible at all, for
instance, performing what-if analyses of various tax systems in vivo is prac-
tically impossible. And simulation can be the tool that allows us to look into
the future, as in weather forecast systems.

Fig. 1.3. Simulation problems. These occur frequently in design and in socio-
economical contexts

1.2 Search Problems

A deeply rooted assumption behind the black box view of systems is that
a computational model is directional: it computes from the inputs towards
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the outputs and it cannot be simply inverted. This implies that solving a
simulation problem is different from solving an optimisation or a modelling
problem. To solve a simulation problem, we only need to apply the model
to some inputs and simply wait for the outcome.1 However, solving an op-
timisation or a modelling problem requires the identification of a particular
object in a space of possibilities. This space can be, and usually is, enormous.
This leads us to the notion that the process of problem solving can be viewed
as a search through a potentially huge set of possibilities to find the desired
solution. Consequently, the problems that are to be solved this way can be
seen as search problems. In terms of the classification of problems discussed in
Section 1.1, optimisation and modelling problems can be naturally perceived
as search problems, while this does not hold for simulation problems.
This view naturally leads to the concept of a search space, being the

collection of all objects of interest including the solution we are seeking. De-
pending on the task at hand, the search space consists of all possible inputs to
a model (optimisation problems), or all possible computational models that
describe the phenomenon we study (modelling problems). Such search spaces
can indeed be very large; for instance, the number of different tours through n
cities is (n−1)!, and the number of decision trees with real-valued parameters
is infinite. The specification of the search space is the first step in defining a
search problem. The second step is the definition of a solution. For optimi-
sation problems such a definition can be explicit, e.g., a board configuration
where the number of checked queens is zero, or implicit, e.g., a tour that is
the shortest of all tours. For modelling problems, a solution is defined by the
property that it produces the correct output for every input. In practice, how-
ever, this is often relaxed, only requiring that the number of inputs for which
the output is correct be maximal. Note that this approach transforms the
modelling problem into an optimisation one, as illustrated in Section 1.1.2.
This notion of problem solving as search gives us an immediate benefit: we

can draw a distinction between (search) problems – which define search spaces
– and problem solvers – which are methods that tell us how to move through
search spaces.

1.3 Optimisation Versus Constraint Satisfaction

The classification scheme discussed in this section is based on distinguishing
between objective functions to be optimised and constraints to be satisfied. In
general, we can consider an objective function to be some way of assigning
a value to a possible solution that reflects its quality on a scale, whereas a
constraint represents a binary evaluation telling us whether a given require-
ment holds or not. In the previous sections several objective functions were
mentioned, including:

1 The main challenge here is very often to build the simulator, which, in fact,
amounts to solving a modelling problem.



1.3 Optimisation Versus Constraint Satisfaction 7

(1) the number of unchecked queens on a chess board (to be maximised);
(2) the length of a tour visiting each city in a given set exactly once (to be

minimised);
(3) the number of images in a collection that are labelled correctly by a given

model m (to be maximised).

These examples illustrate that solutions to a problem can be identified in
terms of optimality with respect to some objective function. Additionally, so-
lutions can be subject to constraints phrased as criteria that must be satisfied.
For instance:

(4) Find a configuration of eight queens on a chess board such that no two
queens check each other.

(5) Find a tour with minimal length for a travelling salesman such that city
X is visited after city Y .

There are a number of observations to be made about these examples. Ex-
ample 2 refers to a problem whose solution is defined purely in terms of opti-
misation. On the other hand, example 4 illustrates the case where a solution is
defined solely in terms of a constraint: a given configuration is either good or
not. Note that this overall constraint regarding a whole configuration is actu-
ally composed from more elementary constraints concerning pairs of queens.
A complete configuration is OK if all pairs of queens are OK. Example 5 is
a mixture of these two basic types since it has an objective function (tour
length) and a constraint (visit X after Y ). Based on these observations we
can set up another system for classifying problems, depending on the presence
or absence of an objective function and constraints in the problem definition.
The resulting four categories are shown in Table 1.1.

Objective function

Constraints Yes No

Constrained Constraint
Yes optimisation satisfaction

problem problem

Free
No optimisation No

problem problem

Table 1.1. Problem types distinguished by the presence or absence of an objective
function and constraints

In these terms, the travelling salesman problem (item 2 above) is a free
optimisation problem (FOP), the eight-queens problem (item 4 above)
is a constraint satisfaction problem (CSP), and the problem shown in
item 5 is a constrained optimisation problem (COP). Comparing items
1 and 4 we can see that constraint satisfaction problems can be transformed
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into optimisation problems. The basic trick is the same as in transforming
modelling problems into optimisation problems: rather than requiring per-
fection, we just count the number of satisfied constraints (e.g., non-checking
pairs of queens) and introduce this as an objective function to be maximised.
Obviously, an object (e.g., a board configuration) is a solution of the original
constraint satisfaction problem if and only if it is a solution of this associated
optimisation problem.
To underpin further interesting insights about problems, let us have a closer

look at the eight-queens problem. Its original formulation is in natural lan-
guage:

Place eight queens on a chess board in such a way that no two
queens check each other.

This problem definition is informal in the sense that it lacks any reference
to the formal constructs we have introduced here, such as inputs/outputs, a
search space, etc. In order to develop an algorithm for this problem, it needs
to be formalised. As it happens, it can be formalised in different ways, and
these lead to different types of formal problems describing it. The easiest way
to illustrate a number of options is to take the search perspective.

FOP If we define search space S to be the set of all board configurations with
eight queens, we can capture the original problem as a free optimisation
problem with an objective function f that reports the number of free
queens for a given configuration, and define a solution as a configuration
s ∈ S with f(s) = 8.

CSP Alternatively, we can formalise it as a constraint satisfaction problem
with the same search space S and define a constraint φ such that φ(s) =
true if and only if no two queens check each other for the configuration s.

COP Yet another formalisation is obtained if we take a different search
space. This can be motivated by the observation that in any solution of
the eight-queens problem the number of queens in each column must be
exactly one. Obviously, the same holds for rows. So we could distinguish
vertical constraints (for columns), horizontal constraints (for rows), and
diagonal constraints, and decide to restrict ourselves to board configura-
tions that satisfy the vertical and horizontal constraints already. This is a
workable approach, since it is rather easy to find configurations with one
queen in each column and in each row. These configurations are a subset of
the original search space – let us call this S′. Formally, we can then define
a constrained optimisation problem over S with a modified constraint ψ′

such that ψ′(s) = true if and only if all vertical and horizontal constraints
are satisfied in s (i.e. φ′(s) = true if and only if s is in S′) and a new
function g that reports the number of pairs of queens in s that violate
the diagonal constraints. It is easy to see that a board configuration is a
solution of the eight-queens problem if and only if it is a solution of this
constrained optimisation problem with g(s) = 0 and φ′(s) = true.
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These examples illustrate that the nature of a problem is less obvious than
it may seem. In fact, it all depends on how we choose to formalise it. Which
formalisation is to be preferred is a subject for discussion. It can be argued
that some formalisations are more natural, or fit the problem better, than
others. For instance, one may prefer to see the eight-queens problem as a con-
straint satisfaction problem by nature and consider all other formalisations as
secondary transformations. Likewise, one can consider the traffic sign recogni-
tion problem as a modelling problem in the first place and transform it to an
optimisation problem for practical purposes. Algorithmic considerations can
also be a major influence here. If one has an algorithm that can solve free
optimisation problems well, but cannot cope with constraints, then it is very
sensible to formalise problems as free optimisation.

1.4 The Famous NP Problems

Up to this point we have discussed a number of different ways of categorising
problems, and have deliberately stayed away from discussions about problem-
solvers. Consequently, it is possible to classify a problem according to one
of those schemes by only looking at the problem. In this section we discuss
a classification scheme where this is not possible because the problem cate-
gories are defined through the properties of problem-solving algorithms. The
motivation behind this approach is the intention to talk about problems in
terms of their difficulty, for instance, being hard or easy to solve. Roughly
speaking, the basic idea is to call a problem easy if there exists a fast solver
for it, and hard otherwise. This notion of problem hardness leads to the study
of computational complexity.
Before we proceed we need to make a further distinction among optimisa-

tion problems, depending on the type of objects in the corresponding search
space. If the search space S is defined by continuous variables (i.e., real num-
bers), then we have a numerical optimisation problem. If S is defined by
discrete variables (e.g., Booleans or integers), then we have a combinatorial
optimisation problem. The various notions of problem hardness discussed
further on are defined for combinatorial optimisation problems. Notice that
discrete search spaces are always finite or, in the worst case, countably infinite.
We do not attempt to provide a complete overview of computational com-

plexity as this is well covered in many books, such as [180, 330, 331, 318].
Rather, we provide a brief outline of some important concepts, their impli-
cations for problem-solving, and also of some very common misconceptions.
Furthermore, we do not treat the subject with mathematical rigour as it would
not be appropriate for this book. Thus, we do not give precise definitions of es-
sential concepts, like algorithm, problem size, or run-time, but use such terms
in an intuitive manner, explaining their meaning by examples if necessary.
The first key notion in computational complexity is that of problem size,

which is grounded in the dimensionality of the problem at hand (i.e., the num-
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ber of variables) and the number of different values for the problem variables.
For the examples discussed before, the number of cities to visit, or the num-
ber of queens to place on the board could be sensible measures to indicate
problem size. The second notion concerns algorithms, rather than problems.
The running-time of an algorithm is the number of elementary steps, or
operations, it takes to terminate. The general, although not always correct,
intuition behind computational complexity is that larger problems need more
time to solve. The best-known definitions of problem hardness relate the size
of a problem to the (worst-case) running-time of an algorithm to solve it. This
relationship is expressed by a formula that specifies an upper-bound for the
worst-case running-time as a function of the problem size. To put it simply, this
formula can be polynomial (considered to indicate relatively short running-
times) or superpolynomial, e.g., exponential (indicating long running-times).
The final notion is that of problem reduction, which is the idea that we
can transform one problem into another via a suitable mapping. Note that the
transformation might not be reversible. Although this idea of transforming or
reducing problems is slightly complex, it is not entirely unfamiliar since we
saw in the previous section that a given problem in the real world can often
by formalised in different, but equivalent ways. The frequently used notions
regarding problem hardness can now be phrased as follows.
A problem is said to belong to the class P if there exists an algorithm that

can solve it in polynomial time. That is, if there exists an algorithm for it
whose worst-case running-time for problem size n is less than F (n) for some
polynomial formula F . In common parlance, the set P contains the problems
that can be easily solved, e.g., the Minimum Spanning Tree problem.
A problem is said to belong to the class NP if it can be solved by some

algorithm (with no claims about its run-time) and any solution can be verified
within polynomial time by some other algorithm.2 Note that it follows that
P is a subset of NP , since a polynomial solver can also be used to verify so-
lutions in polynomial time. An example of an NP -problem is the subset-sum
problem: given a set of integers, is there some set of one or more elements of
that set which sum to zero? Clearly, giving a negative answer to this prob-
lem for a given set of numbers would require examining all possible subsets.
Unfortunately, the number of the possible subsets is more than polynomial in
the size of the set. However verifying that a solution is valid merely involves
summing the contents of the subset discovered.
A problem is said to belong to the class NP-complete if it belongs to

the class NP and any other problem in NP can be reduced to this problem
by an algorithm which runs in polynomial time. In practice these represent
difficult problems which crop up all the time. Several large lists of well-known
examples of NP -complete problems can readily be found on the internet –

2 For the sake of correctness, here we commit the most blatant oversimplification.
We ‘define’ NP without any reference to non-deterministic Turing Machines, or
restricting the notion to decision problems.
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we will not attempt to summarise other than to say that the vast majority of
interesting problems in computer science turn out to be NP -complete.
Finally a problem is said to belong to the class NP-hard if it is at least

as hard as any problem in NP -complete (so all problems in NP -complete can
be reduced to one in NP -hard), but where the solutions cannot necessarily be
verified within polynomial time. One such example is the Halting Problem.
The existence of problems where a solution cannot be verified in polynomial

time proves that the class P is not the same as the class NP -hard. What is
unknown is whether the two classes P and NP are in fact the same. If this
were to be the case then the implications would be enormous for computer
science and mathematics as it would be known that fast algorithms must
exist for problems which were previously thought to be difficult. Thus whether
P = NP is one of the grand challenges of complexity theory, and there is a
million-dollar reward offered for any proof that P = NP or P �= NP . Notice,
that while the latter is the subject of much complex mathematics, the former
could simply be proved by the creation of a fast algorithm for any of the
NP -complete problems, for instance, an algorithm for the travelling salesman
problem whose worst-case running-time scaled polynomially with the number
of cities. Figure 1.4 shows the classes of problem hardness depending on the
equality of P and NP . If P = NP then the sets P = NP = NP -complete
but they are still a subset of NP -hard.
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Fig. 1.4. Classes of problem hardness depending on the equality of P and NP

While this sounds rather theoretical, it has some very important implica-
tions for problem-solving. If a problem is NP -complete, then although we
might be able to solve particular instances within polynomial time, we can-
not say that we will be able to do so for all possible instances. Thus if we
wish to apply problem-solving methods to those problems we must currently
either accept that we can probably only solve very small (or otherwise easy)
instances, or give up the idea of providing exact solutions and rely on approx-
imation or metaheuristics to create good enough solutions. This is in contrast
to problems which are known to be in P . Although the number of possible
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solutions for these problems may scale exponentially, algorithms exist which
find solutions and whose running-times scale polynomially with the size of the
instance.
To summarise this section, there are a huge number of practical problems

which, on examination, turn out to be a variant of an abstract problem that
is known to be in the class NP -complete. Although some instances of such a
problem might be easy, most computer scientists believe that no polynomial-
time algorithm exists for such problems, and certainly one has not yet been
discovered. Therefore, if we wish to be able to create acceptable solutions for
any instance of such a problem, we must turn to the use of approximation and
metaheuristics and abandon the idea of definitely finding a solution which is
provably the best for the instance.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


2

Evolutionary Computing: The Origins

This chapter provides the reader with the basics for studying evolutionary
computing (EC) through this book. We begin with a brief history of the
field of evolutionary computing, followed by an introduction to some of the
biological processes that have served as inspiration and that have provided a
rich source of ideas and metaphors to researchers. We then discuss motivations
for working with, and studying, evolutionary computing methods. We end
with examples of applications where EC was successfully applied.

2.1 The Main Evolutionary Computing Metaphor

Evolutionary computing is a research area within computer science. As the
name suggests, it is a special flavour of computing, which draws inspiration
from the process of natural evolution. It is not surprising that some computer
scientists have chosen natural evolution as a source of inspiration: the power
of evolution in nature is evident in the diverse species that make up our world,
each tailored to survive well in its own niche. The fundamental metaphor of
evolutionary computing relates this powerful natural evolution to a particular
style of problem solving – that of trial-and-error.
Descriptions of relevant fragments of evolutionary theory and genetics are

given later on. For the time being let us consider natural evolution simply as
follows. A given environment is filled with a population of individuals that
strive for survival and reproduction. The fitness of these individuals is deter-
mined by the environment, and relates to how well they succeed in achieving
their goals. In other words, it represents their chances of survival and of mul-
tiplying. Meanwhile, in the context of a stochastic trial-and-error (also known
as generate-and-test) style problem solving process, we have a collection of
candidate solutions. Their quality (that is, how well they solve the problem)
determines the chance that they will be kept and used as seeds for construct-
ing further candidate solutions. The analogies between these two scenarios are
shown in Table 2.1.
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Evolution Problem solving

Environment ←→ Problem
Individual ←→ Candidate solution

Fitness ←→ Quality

Table 2.1. The basic evolutionary computing metaphor linking natural evolution
to problem solving

2.2 Brief History

Surprisingly enough, this idea of applying Darwinian principles to automated
problem solving dates back to the 1940s, long before the breakthrough of
computers [167]. As early as 1948, Turing proposed “genetical or evolutionary
search”, and by 1962 Bremermann had actually executed computer experi-
ments on “optimization through evolution and recombination”. During the
1960s three different implementations of the basic idea were developed in
different places. In the USA, Fogel, Owens, and Walsh introduced evolution-
ary programming [173, 174], while Holland called his method a genetic
algorithm [102, 218, 220]. Meanwhile, in Germany, Rechenberg and Schwe-
fel invented evolution strategies [352, 373]. For about 15 years these areas
developed separately; but since the early 1990s they have been viewed as differ-
ent representatives (‘dialects’) of one technology that has come to be known
as evolutionary computing (EC) [22, 27, 28, 137, 295, 146, 104, 12]. In
the early 1990s a fourth stream following the general ideas emerged, genetic
programming, championed by Koza [37, 252, 253]. The contemporary ter-
minology denotes the whole field by evolutionary computing, the algorithms
involved are termed evolutionary algorithms, and it considers evolutionary
programming, evolution strategies, genetic algorithms, and genetic program-
ming as subareas belonging to the corresponding algorithm variants.
The development of scientific forums devoted to EC gives an indication of

the field’s past and present, and is sketched in Fig. 2.1. The first interna-
tional conference specialising in the subject was the International Conference
on Genetic Algorithms (ICGA), first held in 1985 and repeated every second
year until 1997. In 1999 it merged with the Annual Conference on Genetic
Programming to become the annual Genetic and Evolutionary Computation
Conference (GECCO). At the same time, in 1999, the Annual Conference on
Evolutionary Programming, held since 1992, merged with the IEEE Confer-
ence on Evolutionary Computation, held since 1994, to form the Congress on
Evolutionary Computation (CEC), which has been held annually ever since.
The first European event (explicitly set up to embrace all streams) was

Parallel Problem Solving from Nature (PPSN) in 1990, which has became a
biennial conference. The first scientific journal devoted to this field, Evolution-
ary Computation, was launched in 1993. In 1997 the European Commission
decided to fund a European research network in EC, called EvoNet, whose
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Fig. 2.1. Brief sketch of the EC conference history

funds were guaranteed until 2003. At the time of writing (2014), there were
three major EC conferences (CEC, GECCO, and PPSN) and many smaller
ones, including one dedicated exclusively to theoretical analysis and devel-
opment, Foundations of Genetic Algorithms (FOGA), held biennially since
1990, and a European event seeded by EvoNet, the annual EVOSTAR confer-
ence. There are now various scientific EC journals (Evolutionary Computation,
IEEE Transactions on Evolutionary Computation, Genetic Programming and
Evolvable Machines, Evolutionary Intelligence, Swarm and Evolutionary Com-
puting) and many with a closely related profile, e.g., on natural computing,
soft computing, or computational intelligence. We estimate the number of EC
publications in 2014 at somewhere over 2000 – many of them in journals and
conference proceedings of specific application areas.

2.3 The Inspiration from Biology

2.3.1 Darwinian Evolution

Darwin’s theory of evolution [92] offers an explanation of the origins of biolog-
ical diversity and its underlying mechanisms. In what is sometimes called the
macroscopic view of evolution, natural selection plays a central role. Given
an environment that can host only a limited number of individuals, and the
basic instinct of individuals to reproduce, selection becomes inevitable if the
population size is not to grow exponentially. Natural selection favours those
individuals that compete for the given resources most effectively, in other
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words, those that are adapted or fit to the environmental conditions best.
This phenomenon is also known as survival of the fittest.1 Competition-
based selection is one of the two cornerstones of evolutionary progress. The
other primary force identified by Darwin results from phenotypic variations
among members of the population. Phenotypic traits (see also Sect. 2.3.2) are
those behavioural and physical features of an individual that directly affect
its response to the environment (including other individuals), thus determin-
ing its fitness. Each individual represents a unique combination of phenotypic
traits that is evaluated by the environment. If this combination evaluates
favourably, then the individual has a higher chance of creating offspring; oth-
erwise the individual is discarded by dying without offspring. Importantly, if
they are heritable (and not all traits are), favourable phenotypic traits may be
propagated via the individual’s offspring. Darwin’s insight was that small, ran-
dom variations – mutations – in phenotypic traits occur during reproduction
from generation to generation. Through these variations, new combinations of
traits occur and get evaluated. The best ones survive and reproduce, and so
evolution progresses. To summarise this basic model, a population consists of
a number of individuals. These individuals are the units of selection, that is to
say that their reproductive success depends on how well they are adapted to
their environment relative to the rest of the population. As the more success-
ful individuals reproduce, occasional mutations give rise to new individuals to
be tested. Thus, as time passes, there is a change in the constitution of the
population, i.e., the population is the unit of evolution.
This process is well captured by the intuitive metaphor of an adaptive

landscape or adaptive surface [468]. On this landscape the height dimension
belongs to fitness: high altitude stands for high fitness. The other two (or
more, in the general case) dimensions correspond to biological traits as shown
in Fig. 2.2. The xy-plane holds all possible trait combinations, and the z-
values show their fitnesses. Hence, each peak represents a range of successful
trait combinations, while troughs belong to less fit combinations. A given
population can be plotted as a set of points on this landscape, where each dot
is one individual realising a possible trait combination. Evolution is then the
process of gradual advances of the population to high-altitude areas, powered
by variation and natural selection. Our familiarity with the physical landscape
on which we exist naturally leads us to the concept ofmultimodal problems.
These are problems in which there are a number of points that are better than
all their neighbouring solutions. We call each of these points a local optimum
and denote the highest of these as the global optimum. A problem in which
there is only one local optimum is known as unimodal.
The link with an optimisation process is as straightforward as it is mislead-

ing, because evolution is not a unidirectional uphill process [103]. Because the

1 This term is actually rather misleading. It is often, and incorrectly, taken to mean
that the best fit individual always survives. Since nature, and EC by design,
contains a lot of randomness, this does not always happen.
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Fig. 2.2. Illustration of Wright’s adaptive landscape with two traits

population has a finite size, and random choices are made in the selection
and variation operators, it is common to observe the phenomenon of genetic
drift, whereby highly fit individuals may be lost from the population, or the
population may suffer from a loss of variety concerning some traits. This can
have the effect that populations ‘melt down’ the hill, and enter low-fitness
valleys. The combined global effects of drift and selection enable populations
to move uphill as well as downhill, and of course there is no guarantee that
the population will climb back up the same hill. Escaping from locally optimal
regions is hereby possible, and according to Wright’s shifting balance theory
the maximum of a fixed landscape can be reached.

2.3.2 Genetics

The microscopic view of natural evolution is offered by molecular genetics. It
sheds light on the processes below the level of visible phenotypic features, in
particular relating to heredity. The fundamental observation from genetics is
that each individual is a dual entity: its phenotypic properties (outside) are
represented at a genotypic level (inside). In other words, an individual’s geno-
type encodes its phenotype. Genes are the functional units of inheritance
encoding phenotypic characteristics. For instance, visible properties like the
fur colour or tail length could be determined by genes. Here it is important
to distinguish genes and alleles. An allele is one of the possible values that
a gene can have – so its relationship to a gene is just like that of a specific
value to a variable in mathematics. To illustrate this by an oversimplified
example, bears could have a gene that determines fur colour, and for a po-
lar bear we would expect to see the allele that specifies the colour white. In
natural systems the genetic encoding is not one-to-one: one gene might affect
more phenotypic traits (pleitropy), and in turn one phenotypic trait can be
determined by more than one gene (polygeny). Phenotypic variations are
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always caused by genotypic variations, which in turn are the consequences of
mutations of genes, or recombination of genes by sexual reproduction.
Another way to think of this is that the genotype contains all the informa-

tion necessary to build the particular phenotype. The term genome stands for
the complete genetic information of a living being containing its total building
plan. This genetic material, that is, all genes of an organism, is arranged in
several chromosomes; there are 46 in humans. Higher life forms (many plants
and animals) contain a double complement of chromosomes in most of their
cells, and such cells – and the host organisms – are called diploid. Thus
the chromosomes in human diploid cells are arranged into 23 pairs. Gametes
(i.e., sperm and egg cells) contain only one single complement of chromosomes
and are called haploid. The combination of paternal and maternal features in
the offspring of diploid organisms is a consequence of fertilisation by a fusion
of such gametes: the haploid sperm cell merges with the haploid egg cell and
forms a diploid cell, the zygote. In the zygote, each chromosome pair is formed
by a paternal and a maternal half. The new organism develops from this zy-
gote by the process named ontogenesis, which does not change the genetic
information of the cells. Consequently, all body cells of a diploid organism
contain the same genetic information as the zygote it originates from.
In evolutionary computing, the combination of features from two individ-

uals in offspring is often called crossover. It is important to note that this is
not analogous to the working of diploid organisms, where crossing-over is
not a process during mating and fertilisation, but rather happens during the
formation of gametes, a process called meiosis. Meiosis is a special type of
cell division that ensures that gametes contain only one copy of each chromo-
some. As said above, a diploid body cell contains chromosome pairs, where
one half of the pair is identical to the paternal chromosome from the sperm
cell, and the other half is identical to the maternal chromosome from the
egg cell. During meiosis a chromosome pair first aligns physically, that is, the
copies of the paternal and maternal chromosomes, which form the pair, move
together and stick to each other at a special position (the centromere, not
indicated, see Fig. 2.3, left). In the second step the chromosomes double so
that four strands (called chromatids) are aligned (Fig. 2.3, middle). The ac-
tual crossing-over takes place between the two inner strands that break at a
random point and exchange parts (Fig. 2.3, right). The result is four differ-
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Fig. 2.3. Three steps in the (simplified) meiosis procedure regarding one chromo-
some
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ent copies of the chromosome in question, of which two are identical to the
original parental chromosomes, and two are new recombinations of paternal
and maternal material. This provides enough genetic material to form four
haploid gametes, which is done via a random arrangement of one copy of each
chromosome. Thus in the newly created gametes the genome is composed of
chromosomes that are either identical to one of the parent chromosomes, or
recombinants. The resulting four haploid gametes are usually different from
both original parent genomes, facilitating genotypic variation in offspring.
In the 19th century Mendel first investigated and understood heredity in

diploid organisms. Modern genetics has added many details to his early pic-
ture, but we are still very far from understanding the whole genetic process.
What we do know is that all life on Earth is based on DNA – the famous
double helix of nucleotides encoding the whole organism be it a plant, animal,
or Homo sapiens. Triplets of nucleotides form so-called codons, each of which
codes for a specific amino acid. The genetic code (the translation table from
the 43 = 64 possible codons to the 20 amino acids from which proteins are
created) is universal, that is, it is the same for all life on Earth. This fact
is generally acknowledged as strong evidence that the whole biosphere has
the same origin. Genes are larger structures on the DNA, containing many
codons, carrying the code of proteins. The path from DNA to protein con-
sists of two main steps: transcription, where information from the DNA is
written to RNA, and translation, the step from RNA to protein. It is one of
the principal dogmas of molecular genetics that this information flow is only
one-way. Speaking in terms of genotypes and phenotypes, this means that phe-
notypic features cannot influence genotypic information. This refutes earlier
theories (for instance, that of Lamarck), which asserted that features acquired
during an individual’s lifetime could be passed on to its offspring via inheri-
tance. A consequence of this view is that changes in the genetic material of a
population can only arise from random variations and natural selection and
definitely not from individual learning. It is important to understand that all
variations (mutation and recombination) happen at the genotypic level, while
selection is based on actual performance in a given environment, that is, at
the phenotypic level.

2.3.3 Putting It Together

The Darwinian theory of evolution and the insights from genetics can be put
together to clarify the dynamics behind the emergence of life on Earth. For
the purposes of this book a simplified picture is sufficient. The main points
are then the following. Any living being is a dual entity with an invisible code
(its genotype) and observable traits (its phenotype). Its success in surviving
and reproducing is determined by its phenotypical properties, e.g., good ears,
strong muscles, white fur, friendly social attitude, attractive scent, etc. In
other words, the forces known as natural selection and sexual selection act on
the phenotype level. Obviously, selection also affects the genotype level, albeit
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implicitly. The key here is reproduction. New individuals may have one single
parent (asexual reproduction) or two parents (sexual reproduction). In
either case, the genome of the new individual is not identical to that of the
parent(s), because of small reproductive variations and because the combina-
tion of two parents will differ from both. In this way genotype variations are
created, which in turn translate to phenotype variations2 and thus are subject
to selection. Hence, at a second level, genes are also subject to the game of
survival and reproduction, and some evolutionary biologists would argue that
viewing evolution from the perspective of genes is more productive – so that
rather than thinking about populations of individuals, we should think about
a ‘gene pool’ containing genes which compete and replicate over time, being
evaluated as they reoccur in different individuals [100].
Elevating this process to an abstract level, we can perceive each newborn

individual as a new sample in the space of all possible living things. This new
sample is produced by forces of variation, i.e., asexual or sexual reproduction,
and it is evaluated by the forces of selection. It needs to pass two hurdles:
first proving viable to live on its own, then proving capable of reproducing. In
species using sexual reproduction, this implies an extra test of being able to
find a mate (sexual selection). This cycle of production and evaluation may
sound familiar to readers with an algorithmic background, such procedures
are known as generate-and-test methods.

2.4 Evolutionary Computing: Why?

Developing automated problem solvers (that is, algorithms) is one of the cen-
tral themes of mathematics and computer science. Just as engineers have
always looked at Nature’s solutions for inspiration, copying ‘natural prob-
lem solvers’ is a stream within these disciplines. When looking for the most
powerful natural problem solver, there are two rather obvious candidates:

• the human brain (that created “the wheel, New York, wars and so on” [4,
Chap. 23]);

• the evolutionary process (that created the human brain).

Trying to design problem solvers based on the first candidate leads to the
field of neurocomputing. The second option forms a basis for evolutionary
computing.
Another motivation can be identified from a technical perspective. Com-

puterisation in the second half of the 20th century created a growing demand
for problem-solving automation. The growth rate of the research and develop-
ment capacity has not kept pace with these needs. Hence, the time available
for thorough problem analysis and tailored algorithm design has been decreas-
ing. A parallel trend has been the increase in the complexity of problems to

2 Some genotype variations may not cause observable phenotype differences, but
this is not relevant for the present argument.
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be solved. These two trends imply an urgent need for robust algorithms with
satisfactory performance. That is, there is a need for algorithms that are ap-
plicable to a wide range of problems, do not need much tailoring for specific
problems, and deliver good (not necessarily optimal) solutions within accept-
able time. Evolutionary algorithms do all this, and so provide an answer to
the challenge of deploying automated solution methods for more and more
problems, which are ever more complex, in less and less time.
A third motivation is one that can be found behind every science: human

curiosity. Evolutionary processes are the subjects of scientific studies where the
main objective is to understand how evolution works. From this perspective,
evolutionary computing represents the possibility of performing experiments
differently from traditional biology. Evolutionary processes can be simulated
in a computer, where millions of generations can be executed in a matter of
hours or days and repeated under various circumstances. These possibilities go
far beyond studies based on excavations and fossils, or those possible in vivo.
Naturally, the interpretation of such simulation experiments must be done
very carefully. First, because we do not know whether the computer models
represent the biological reality with sufficient fidelity. Second, it is unclear
whether conclusions drawn in a digital medium, in silico, can be transferred
to the carbon-based biological medium. Despite these caveats there is a strong
tradition within evolutionary computing to ‘play around’ with evolution for
the sake of understanding how it works. Application issues do not play a
role here, at least not in the short term. But, of course, learning more about
evolutionary processes in general can help in designing better algorithms later.
Having given three rather different reasons why people might want to use

evolutionary computation, we next illustrate the power of evolutionary prob-
lem solving by a number of application examples from various areas.
A challenging optimisation task that has successfully been carried out by

evolutionary algorithms is the timetabling of university classes [74, 329]. Typ-
ically, some 2000–5000 events take place during a university week, and these
must each be given a day, time, and room. The first optimisation task is to
reduce the number of clashes, for example, a student needing to be in two
places at once, or a room being used for two lectures at the same time. Pro-
ducing feasible timetables with no clashes is a hard task. In fact, it turns out
that in most cases the vast majority of the space of all timetables is filled with
infeasible solutions. In addition to producing feasible timetables, we also want
to produce timetables that are optimised as far as the users are concerned.
This optimisation task involves considering a large number of objectives that
compete with each other. For example, students may wish to have no more
than two classes in a row, while their lecturers may be more concerned with
having whole days free for conducting research. Meanwhile, the main goal of
the university management might be to make room utilisation more efficient,
or to cut down the amount of movement around or between the buildings.
EC applications in industrial design optimisation can be illustrated with the

case of a satellite dish holder boom. This ladder-like construction connects the
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satellite’s body with the dish needed for communication. It is essential that
this boom is stable, in particular vibration resistant, as there is no air in
space that would damp vibrations that could break the whole construction.
Keane et al. [245] optimised this construction using an evolutionary algorithm.
The resulting structure is 20,000% (!) better than traditional shapes, but
for humans it looks very strange: it exhibits no symmetry, and there is no
intuitive design logic visible (Fig. 2.4). The final design looks pretty much

Fig. 2.4. The initial, regular design of the 3D boom (left) and the final design found
by a genetic algorithm (right)

like a random drawing, and the crucial thing is this: it is a random drawing,
drawn without intelligence, but evolving through a number of consecutive
generations of improving solutions. This illustrates the power of evolution
as a designer: it is not limited by conventions, aesthetic considerations, or
ungrounded preferences for symmetry. On the contrary, it is purely driven
by quality, and thereby it can come to solutions that lie outside of the scope
of human thinking, with its implicit and unconscious limitations. It is worth
mentioning that evolutionary design often goes hand-in-hand with reverse
engineering. In particular, once a provably superior solution is evolved, it can
be analysed and explained through the eyes of traditional engineering. This
can lead to generalisable knowledge, i.e., the formulation of new laws, theories,
or design principles applicable to a variety of other problems of similar type.3

Modelling tasks typically occur in data-rich environments. A frequently
encountered situation is the presence of many examples of a certain event or
phenomenon without a formal description. For instance, a bank may have one
million records (profiles) of clients containing their sociogeographical data,
financial overviews of their mortgages, loans, and insurances, details of their
card usage, and so forth. Certainly, the bank also has information about client

3 In the case of the satellite dish boom, it is exactly the asymmetric character that
works so well. Namely, vibrations are waves that traverse the boom along the
rungs. If the rungs are of different lengths then these waves meet in a different
phase and cancel each other. This small theory sounds trivial, but it took the
asymmetric evolved solution to come to it.
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behaviour in terms of paying back loans, for instance. In this situation it is a
reasonable assumption that the profile (facts and known data from the past)
is related to behaviour (future events). In order to understand the repayment
phenomenon, what is needed is a model relating the profile inputs to the
behavioural patterns (outputs). Such a model would have predictive power,
and thus would be very useful when deciding about new loan applicants. This
situation forms a typical application context for the areas of machine learning
and data mining. Evolutionary computing is a possible technology that has
been used to solve such problems [179].
Another example of this type of modelling approach can be seen in [370],

where Schulenburg and Ross use a learning classifier system to evolve sets of
rules modelling the behaviour of stock market traders. As their inputs they
used ten years of trading history, in the form of daily statistics such as volume
of trade, current price, change in price over the last few days, whether this
price is a new high (or low), and so on for a given company’s stock. The evolved
traders consisted of sets of condition→action rules. Each day the current
stock market conditions were presented to the trader, triggering a rule that
decided whether stock was bought or sold. Periodically a genetic algorithm
is run on the set of (initially random) rules, so that well-performing ones are
rewarded, and poorly performing ones are discarded. It was demonstrated
that the system evolved trading agents that outperformed many well-known
strategies, and varied according to the nature of the particular stock they
were trading. Of particular interest, and benefit, compared to methods such
as neural networks (which are also used for this kind of modelling problem in
time-series forecasting), is the fact that the rule-bases of the evolved traders
are easily examinable, that is to say that the models that are evolved are
particularly transparent to the user.
Evolutionary computing can also be applied to simulation problems, that is,

to answer what-if questions in a context where the investigated subject matter
is evolving, i.e., driven by variation and selection. Evolutionary economics is
an established research area, roughly based on the perception that the game
and the players in the socioeconomic arena have much in common with the
game of life. In common parlance, the survival of the fittest principle is also
fundamental in the economic context. Evolving systems with a socioeconomic
interpretation can differ from biological ones in that the behavioural rules
governing the individuals play a very strong role in the system. The term
agent-based computational economy is often used to emphasise this aspect
[427]. Academic research in this direction is often based on a simple model
called Sugarscape world [155]. This features agent-like inhabitants in a grid
space, and a commodity (the sugar) that can be consumed, owned, traded,
and so on by the inhabitants. There are many ways to set up system variants
with an economics interpretation and conduct simulation experiments. For in-
stance, Bäck et al. [31] investigate how artificially forced sugar redistribution
(tax) and evolution interact under various circumstances. Clearly, interpreta-
tion of the outcomes of such experiments must be done very carefully, avoiding
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ungrounded claims on transferability of results into a real socioeconomic con-
text.
Finally, we note that evolutionary computing experiments with a clear bio-

logical interpretation are also very interesting. Let us mention two approaches
by way of illustration: trying existing biological features or trying nonexisting
biological features. In the first approach, simulating a known natural phe-
nomenon is a key issue. This may be motivated by an expectation that the
natural trick will also work for algorithmic problem-solving, or by simply be-
ing willing to test whether the effects known in carbon would occur in silicon
as well. Take incest as an example. A strong moral taboo against incest has
existed for thousands of years, and for the last century or two there is also
scientific insight supporting this: incest leads to degeneration of the popula-
tion. The results in [158] show that computer-simulated evolution also benefits
from incest prevention. This confirms that the negative effects of incest are
inherent for evolutionary processes, independently from the medium in which
they take place. The other approach to simulations with a biological flavour is
the opposite of this: it implements a feature that does not exist in biology, but
can be implemented in a computer. As an illustration, let us take multipar-
ent reproduction, where more than two parents are required for mating, and
offspring inherit genetic material from each of them. Eiben et al. [126, 128]
have experimented a great deal with such mechanisms showing the beneficial
effects under many different circumstances.
To summarise this necessarily brief introduction, evolutionary computing

is a branch of computer science concerned with a class of algorithms that
are broadly based on the Darwinian principles of natural selection, and that
draw inspiration from molecular genetics. Over the history of the world, many
species have arisen and evolved to suit different environments, all using the
same biological machinery. In the same way, if we provide an evolutionary
algorithm with a new environment we hope to see adaptation of the initial
population in a way that better suits the environment. Typically (but not
always) this environment will take the form of a problem to be solved, with
feedback to the individuals representing how well the solutions they represent
solve the problem, and we have provided some examples of this. However, as
we have indicated, the search for optimal solutions to some problem is not the
only use of evolutionary algorithms; their nature as flexible adaptive systems
gives rise to applications varying from economic modelling and simulation to
the study of diverse biological processes during adaptation.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


3

What Is an Evolutionary Algorithm?

The most important aim of this chapter is to describe what an evolutionary
algorithm (EA) is. In order to give a unifying view we present a general scheme
that forms the common basis for all the different variants of evolutionary
algorithms. The main components of EAs are discussed, explaining their role
and related issues of terminology. This is immediately followed by two example
applications to make things more concrete. We then go on to discuss general
issues concerning the operation of EAs, to place them in a broader context
and explain their relationship with other global optimisation techniques.

3.1 What Is an Evolutionary Algorithm?

As the history of the field suggests, there are many different variants of evolu-
tionary algorithms. The common underlying idea behind all these techniques
is the same: given a population of individuals within some environment that
has limited resources, competition for those resources causes natural selection
(survival of the fittest). This in turn causes a rise in the fitness of the pop-
ulation. Given a quality function to be maximised, we can randomly create
a set of candidate solutions, i.e., elements of the function’s domain. We then
apply the quality function to these as an abstract fitness measure – the higher
the better. On the basis of these fitness values some of the better candidates
are chosen to seed the next generation. This is done by applying recombina-
tion and/or mutation to them. Recombination is an operator that is applied
to two or more selected candidates (the so-called parents), producing one or
more new candidates (the children). Mutation is applied to one candidate
and results in one new candidate. Therefore executing the operations of re-
combination and mutation on the parents leads to the creation of a set of
new candidates (the offspring). These have their fitness evaluated and then
compete – based on their fitness (and possibly age) – with the old ones for a
place in the next generation. This process can be iterated until a candidate

© Springer-Verlag Berlin Heidelberg 2015

 ,A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing

25

    DOI 10.1007/978-3- -662 44874-8_Natural Computing Series, 3



26 3 What Is an Evolutionary Algorithm?

with sufficient quality (a solution) is found or a previously set computational
limit is reached.
There are two main forces that form the basis of evolutionary systems:

• Variation operators (recombination and mutation) create the necessary
diversity within the population, and thereby facilitate novelty.

• Selection acts as a force increasing the mean quality of solutions in the
population.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy to view this process
as if evolution is optimising (or at least ‘approximising’) the fitness function,
by approaching the optimal values closer and closer over time. An alterna-
tive view is that evolution may be seen as a process of adaptation. From this
perspective, the fitness is not seen as an objective function to be optimised,
but as an expression of environmental requirements. Matching these require-
ments more closely implies an increased viability, which is reflected in a higher
number of offspring. The evolutionary process results in a population which
is increasingly better adapted to the environment.
It should be noted that many components of such an evolutionary pro-

cess are stochastic. For example, during selection the best individuals are not
chosen deterministically, and typically even the weak individuals have some
chance of becoming a parent or of surviving. During the recombination pro-
cess, the choice of which pieces from the parents will be recombined is made
at random. Similarly for mutation, the choice of which pieces will be changed
within a candidate solution, and of the new pieces to replace them, is made
randomly. The general scheme of an evolutionary algorithm is given in
pseudocode in Fig. 3.1, and is shown as a flowchart in Fig. 3.2.

BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END

Fig. 3.1. The general scheme of an evolutionary algorithm in pseudocode
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It is easy to see that this scheme falls into the category of generate-and-test
algorithms. The evaluation (fitness) function provides a heuristic estimate of
solution quality, and the search process is driven by the variation and selection
operators. Evolutionary algorithms possess a number of features that can help
position them within the family of generate-and-test methods:

• EAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously.

• Most EAs use recombination, mixing information from two or more can-
didate solutions to create a new one.

• EAs are stochastic.

Fig. 3.2. The general scheme of an evolutionary algorithm as a flowchart

The various dialects of evolutionary computing we have mentioned pre-
viously all follow these general outlines, differing only in technical details.
In particular, different streams are often characterised by the representation
of a candidate solution – that is to say the data structures used to encode
candidates. Typically this has the form of strings over a finite alphabet in
genetic algorithms (GAs), real-valued vectors in evolution strategies (ESs), fi-
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nite state machines in classical evolutionary programming (EP), and trees in
genetic programming (GP). The origin of these differences is mainly histori-
cal. Technically, one representation might be preferable to others if it matches
the given problem better; that is, it makes the encoding of candidate solutions
easier or more natural. For instance, when solving a satisfiability problem with
n logical variables, the straightforward choice is to use bit-strings of length n
so that the contents of the ith bit would denote that variable i took the value
true (1) or false (0). Hence, the appropriate EA would be a GA. To evolve
a computer program that can play checkers, the parse trees of the syntactic
expressions forming the programs are a natural choice to represent candidate
solutions, thus a GP approach is likely. It is important to note two points.
First, the recombination and mutation operators working on candidates must
match the given representation. Thus, for instance, in GP the recombination
operator works on trees, while in GAs it operates on strings. Second, in con-
trast to variation operators, the selection process only takes fitness information
into account, and so it works independently from the choice of representation.
Therefore differences between the selection mechanisms commonly applied in
each stream are a matter of tradition rather than of technical necessity.

3.2 Components of Evolutionary Algorithms

In this section we discuss evolutionary algorithms in detail. There are a num-
ber of components, procedures, or operators that must be specified in order to
define a particular EA. The most important components, indicated by italics
in Fig. 3.1, are:

• representation (definition of individuals)
• evaluation function (or fitness function)
• population
• parent selection mechanism
• variation operators, recombination and mutation
• survivor selection mechanism (replacement)

To create a complete, runnable algorithm, it is necessary to specify each com-
ponent and to define the initialisation procedure. If we wish the algorithm to
stop at some stage1, we must also provide a termination condition.

3.2.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the ‘real world’ to the ‘EA world’,
that is, to set up a bridge between the original problem context and the

1 Note that this is not always this case. For instance, there are many examples of
open-ended evolution of art on the Internet.
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problem-solving space where evolution takes place. This often involves sim-
plifying or abstracting some aspects of the real world to create a well-defined
and tangible problem context within which possible solutions can exist and be
evaluated, and this work is often undertaken by domain experts. The first step
from the point of view of automated problem-solving is to decide how possible
solutions should be specified and stored in a way that can be manipulated by
a computer. We say that objects forming possible solutions within the original
problem context are referred to as phenotypes, while their encoding, that is,
the individuals within the EA, are called genotypes. This first design step
is commonly called representation, as it amounts to specifying a mapping
from the phenotypes onto a set of genotypes that are said to represent them.
For instance, given an optimisation problem where the possible solutions are
integers, the given set of integers would form the set of phenotypes. In this
case one could decide to represent them by their binary code, so, for exam-
ple, the value 18 would be seen as a phenotype, and 10010 as a genotype
representing it. It is important to understand that the phenotype space can
be very different from the genotype space, and that the whole evolutionary
search takes place in the genotype space. A solution – a good phenotype –
is obtained by decoding the best genotype after termination. Therefore it is
desirable that the (optimal) solution to the problem at hand – a phenotype
– is represented in the given genotype space. In fact, since in general we will
not know in advance what that solution looks like, it is usually desirable that
all possible feasible solutions can be represented2.
The evolutionary computation literature contains many synonyms:

• On the side of the original problem context the terms candidate solu-
tion, phenotype, and individual are all used to denote possible solutions.
The space of all possible candidate solutions is commonly called the phe-
notype space.

• On the side of the EA, the terms genotype, chromosome, and again indi-
vidual are used to denote points in the space where the evolutionary search
actually takes place. This space is often termed the genotype space.

• There are also many synonymous terms for the elements of individuals. A
placeholder is commonly called a variable, a locus (plural: loci), a position,
or – in a biology-oriented terminology – a gene. An object in such a place
can be called a value or an allele.

It should be noted that the word ‘representation’ is used in two slightly dif-
ferent ways. Sometimes it stands for the mapping from the phenotype to the
genotype space. In this sense it is synonymous with encoding, e.g., one could
mention binary representation or binary encoding of candidate solutions. The
inverse mapping from genotypes to phenotypes is usually called decoding,
and it is necessary that the representation should be invertible so that for each

2 In the language of generate-and-test algorithms, this means that the generator is
complete.
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genotype there is at most one corresponding phenotype. The word represen-
tation can also be used in a slightly different sense, where the emphasis is not
on the mapping itself, but on the data structure of the genotype space. This
interpretation is the one we use when, for example, we speak about mutation
operators for binary representation.

3.2.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements the
population should adapt to meet. It forms the basis for selection, and so it fa-
cilitates improvements. More accurately, it defines what improvement means.
From the problem-solving perspective, it represents the task to be solved in
the evolutionary context. Technically, it is a function or procedure that assigns
a quality measure to genotypes. Typically, this function is composed from the
inverse representation (to create the corresponding phenotype) followed by a
quality measure in the phenotype space. To stick with the example above, if
the task is to find an integer x that maximises x2, the fitness of the genotype
10010 could be defined by decoding its corresponding phenotype (10010 → 18)
and then taking its square: 182 = 324.
The evaluation function is commonly called the fitness function in EC.

This might cause a counterintuitive terminology if the original problem re-
quires minimisation, because the term fitness is usually associated with max-
imisation. Mathematically, however, it is trivial to change minimisation into
maximisation, and vice versa. Quite often, the original problem to be solved
by an EA is an optimisation problem (treated in more technical detail in
Sect. 1.1). In this case the name objective function is often used in the origi-
nal problem context, and the evaluation (fitness) function can be identical to,
or a simple transformation of, the given objective function.

3.2.3 Population

The role of the population is to hold (the representation of) possible solu-
tions. A population is a multiset3 of genotypes. The population forms the unit
of evolution. Individuals are static objects that do not change or adapt; it is
the population that does. Given a representation, defining a population may
be as simple as specifying how many individuals are in it, that is, setting the
population size. In some sophisticated EAs a population has an additional
spatial structure, defined via a distance measure or a neighbourhood relation.
This corresponds loosely to the way that real populations evolve within the
context of a spatial structure given by individuals’ geographical locations.
In such cases the additional structure must also be defined in order to fully
specify a population.

3 A multiset is a set where multiple copies of an element are possible.
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In almost all EA applications the population size is constant and does not
change during the evolutionary search – this produces the limited resources
need to create competition. The selection operators (parent selection and sur-
vivor selection) work at the population level. In general, they take the whole
current population into account, and choices are always made relative to what
is currently present. For instance, the best individual of a given population is
chosen to seed the next generation, or the worst individual of a given popula-
tion is chosen to be replaced by a new one. This population level activity is in
contrast to variation operators, which act on one or more parent individuals.
The diversity of a population is a measure of the number of different solu-

tions present. No single measure for diversity exists. Typically people might
refer to the number of different fitness values present, the number of different
phenotypes present, or the number of different genotypes. Other statistical
measures such as entropy are also used. Note that the presence of only one
fitness value in a population does not necessarily imply that only one pheno-
type is present, since many phenotypes may have the same fitness. Equally, the
presence of only one phenotype does not necessarily imply only one genotype.
However, if only one genotype is present then this implies only one phenotype
and fitness value are present.

3.2.4 Parent Selection Mechanism

The role of parent selection or mate selection is to distinguish among
individuals based on their quality, and, in particular, to allow the better indi-
viduals to become parents of the next generation. An individual is a parent
if it has been selected to undergo variation in order to create offspring. To-
gether with the survivor selection mechanism, parent selection is responsible
for pushing quality improvements. In EC, parent selection is typically proba-
bilistic. Thus, high-quality individuals have more chance of becoming parents
than those with low quality. Nevertheless, low-quality individuals are often
given a small, but positive chance; otherwise the whole search could become
too greedy and the population could get stuck in a local optimum.

3.2.5 Variation Operators (Mutation and Recombination)

The role of variation operators is to create new individuals from old ones. In
the corresponding phenotype space this amounts to generating new candidate
solutions. From the generate-and-test search perspective, variation operators
perform the generate step. Variation operators in EC are divided into two
types based on their arity, distinguishing unary (mutation) and n-ary versions
(recombination).

Mutation

A unary variation operator is commonly called mutation. It is applied to one
genotype and delivers a (slightly) modified mutant, the child or offspring.
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A mutation operator is always stochastic: its output – the child – depends on
the outcomes of a series of random choices. It should be noted that not all
unary operators are seen as mutation. For example, it might be tempting to
use the term mutation to describe a problem-specific heuristic operator which
acts systematically on one individual trying to find its weak spot and improve
it by performing a small change. However, in general mutation is supposed to
cause a random, unbiased change. For this reason it might be more appropri-
ate not to call heuristic unary operators mutation. Historically, mutation has
played a different role in various EC dialects. Thus, for example, in genetic
programming it is often not used at all, whereas in genetic algorithms it has
traditionally been seen as a background operator, providing the gene pool
with ‘fresh blood’, and in evolutionary programming it is the only variation
operator, solely responsible for the generation of new individuals.
Variation operators form the evolutionary implementation of elementary

(search) steps, giving the search space its topological structure. Generating a
child amounts to stepping to a new point in this space. From this perspective,
mutation has a theoretical role as well: it can guarantee that the space is con-
nected. There are theorems which state that an EA will (given sufficient time)
discover the global optimum of a given problem. These often rely on this con-
nectedness property that each genotype representing a possible solution can
be reached by the variation operators [129]. The simplest way to satisfy this
condition is to allow the mutation operator to jump everywhere: for example,
by allowing any allele to be mutated into any other with a nonzero probability.
However, many researchers feel these proofs have limited practical importance,
and EA implementations often don’t possess this property.

Recombination

A binary variation operator is called recombination or crossover. As the
names indicate, such an operator merges information from two parent geno-
types into one or two offspring genotypes. Like mutation, recombination is a
stochastic operator: the choices of what parts of each parent are combined,
and how this is done, depend on random drawings. Again, the role of re-
combination differs between EC dialects: in genetic programming it is often
the only variation operator, and in genetic algorithms it is seen as the main
search operator, whereas in evolutionary programming it is never used. Re-
combination operators with a higher arity (using more than two parents) are
mathematically possible and easy to implement, but have no biological equiva-
lent. Perhaps this is why they are not commonly used, although several studies
indicate that they have positive effects on the evolution [126, 128].
The principle behind recombination is simple – by mating two individuals

with different but desirable features, we can produce an offspring that com-
bines both of those features. This principle has a strong supporting case – for
millennia it has been successfully applied by plant and livestock breeders to
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produce species that give higher yields or have other desirable features. Evo-
lutionary algorithms create a number of offspring by random recombination,
and we hope that while some will have undesirable combinations of traits,
and most may be no better or worse than their parents, some will have im-
proved characteristics. The biology of the planet Earth, where, with very few
exceptions, lower organisms reproduce asexually and higher organisms repro-
duce sexually [288, 289], suggests that recombination is the superior form of
reproduction. However recombination operators in EAs are usually applied
probabilistically, that is, with a nonzero chance of not being performed.
It is important to remember that variation operators are representation de-

pendent. Thus for different representations different variation operators have
to be defined. For example, if genotypes are bit-strings, then inverting a bit
can be used as a mutation operator. However, if we represent possible solutions
by tree-like structures another mutation operator is required.

3.2.6 Survivor Selection Mechanism (Replacement)

Similar to parent selection, the role of survivor selection or environmental
selection is to distinguish among individuals based on their quality. However,
it is used in a different stage of the evolutionary cycle – the survivor selec-
tion mechanism is called after the creation of the offspring from the selected
parents. As mentioned in Sect. 3.2.3, in EC the population size is almost al-
ways constant. This requires a choice to be made about which individuals will
be allowed in to the next generation. This decision is often based on their
fitness values, favouring those with higher quality, although the concept of
age is also frequently used. In contrast to parent selection, which is typically
stochastic, survivor selection is often deterministic. Thus, for example, two
common methods are the fitness-based method of ranking the unified multi-
set of parents and offspring and selecting the top segment, or the age-biased
approach of selecting only from the offspring.
Survivor selection is also often called the replacement strategy. In many

cases the two terms can be used interchangeably, but we use the name survivor
selection to keep terminology consistent: steps 1 and 5 in Fig. 3.1 are both
named selection, distinguished by a qualifier. Equally, if the algorithm creates
surplus children (e.g., 500 offspring from a population of 100), then using the
term survivor selection is clearly appropriate. On the other hand, the term
“replacement” might be preferred if the number of newly-created children is
small compared to the number of individuals in the population. For example,
a “steady-state” algorithm might generate two children per iteration from a
population of 100. In this case, survivor selection means choosing the two old
individuals that are to be deleted to make space for the new ones, so it is
more efficient to declare that everybody survives unless deleted and to choose
whom to replace. Both strategies can of course be seen in nature, and have
their proponents in EC, so in the rest of this book we will be pragmatic about
this issue. We will use survivor selection in the section headers for reasons of
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generality and uniformity, while using replacement if it is commonly used in
the literature for the given procedure we are discussing.

3.2.7 Initialisation

Initialisation is kept simple in most EA applications; the first population
is seeded by randomly generated individuals. In principle, problem-specific
heuristics can be used in this step, to create an initial population with higher
fitness. Whether this is worth the extra computational effort, or not, very
much depends on the application at hand. There are, however, some general
observations concerning this question that we discuss in Sect. 3.5, and we also
return to this issue in Chap. 10.

3.2.8 Termination Condition

We can distinguish two cases of a suitable termination condition. If the
problem has a known optimal fitness level, probably coming from a known
optimum of the given objective function, then in an ideal world our stopping
condition would be the discovery of a solution with this fitness. If we know
that our model of the real-world problem contains necessary simplifications, or
may contain noise, we may accept a solution that reaches the optimal fitness to
within a given precision ǫ > 0. However, EAs are stochastic and mostly there
are no guarantees of reaching such an optimum, so this condition might never
get satisfied, and the algorithm may never stop. Therefore we must extend this
condition with one that certainly stops the algorithm. The following options
are commonly used for this purpose:

1. The maximally allowed CPU time elapses.
2. The total number of fitness evaluations reaches a given limit.
3. The fitness improvement remains under a threshold value for a given pe-

riod of time (i.e., for a number of generations or fitness evaluations).
4. The population diversity drops under a given threshold.

Technically, the actual termination criterion in such cases is a disjunction:
optimum value hit or condition X satisfied. If the problem does not have a
known optimum, then we need no disjunction. We simply need a condition
from the above list, or a similar one that is guaranteed to stop the algorithm.
We will return to the issue of when to terminate an EA in Sect. 3.5.

3.3 An Evolutionary Cycle by Hand

To illustrate the working of an EA, we show the details of one selection–
reproduction cycle on a simple problem after Goldberg [189], that of max-
imising the values of x2 for integers in the range 0–31. To execute a full
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evolutionary cycle, we must make design decisions regarding the EA compo-
nents representation, parent selection, recombination, mutation, and survivor
selection.
For the representation we use a simple five-bit binary encoding mapping

integers (phenotypes) to bit-strings (genotypes). For parent selection we use
a fitness proportional mechanism, where the probability pi that an individual
i in population P is chosen to be a parent is pi = f(i)/

∑

j∈P f(j). Fur-
thermore, we can decide to replace the entire population in one go by the
offspring created from the selected parents. This means that our survivor se-
lection operator is very simple: all existing individuals are removed from the
population and all new individuals are added to it without comparing fitness
values. This implies that we will create as many offspring as there are mem-
bers in the population. Given our chosen representation, the mutation and
recombination operators can be kept simple. Mutation is executed by gener-
ating a random number (from a uniform distribution over the range [0, 1]) in
each bit position, and comparing it to a fixed threshold, usually called the
mutation rate. If the random number is below that rate, the value of the
gene in the corresponding position is flipped. Recombination is implemented
by the classic one-point crossover. This operator is applied to two parents and
produces two children by choosing a random crossover-point along the strings
and swapping the bits of the parents after this point.

String Initial x Value Fitness Probi Expected Actual
no. population f(x) = x2 count count

1 0 1 1 0 1 13 169 0.14 0.58 1
2 1 1 0 0 0 24 576 0.49 1.97 2
3 0 1 0 0 0 8 64 0.06 0.22 0
4 1 0 0 1 1 19 361 0.31 1.23 1

Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 2

Table 3.1. The x2 example, 1: initialisation, evaluation, and parent selection

After having made the essential design decisions, we can execute a full
selection–reproduction cycle. Table 3.1 shows a random initial population of
four genotypes, the corresponding phenotypes, and their fitness values. The
cycle then starts with selecting the parents to seed the next generation. The
fourth column of Table 3.1 shows the expected number of copies of each indi-
vidual after parent selection, being fi/f̄ , where f̄ denotes the average fitness
(displayed values are rounded up). As can be seen, these numbers are not in-
tegers; rather they represent a probability distribution, and the mating pool
is created by making random choices to sample from this distribution. The
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String Mating Crossover Offspring x Value Fitness
no. pool point after xover f(x) = x2

1 0 1 1 0 | 1 4 0 1 1 0 0 12 144
2 1 1 0 0 | 0 4 1 1 0 0 1 25 625
2 1 1 | 0 0 0 2 1 1 0 1 1 27 729
4 1 0 | 0 1 1 2 1 0 0 0 0 16 256

Sum 1754
Average 439
Max 729

Table 3.2. The x2 example, 2: crossover and offspring evaluation

String Offspring Offspring x Value Fitness
no. after xover after mutation f(x) = x2

1 0 1 1 0 0 1 1 1 0 0 26 676
2 1 1 0 0 1 1 1 0 0 1 25 625
2 1 1 0 1 1 1 1 0 1 1 27 729
4 1 0 0 0 0 1 0 1 0 0 18 324

Sum 2354
Average 588.5
Max 729

Table 3.3. The x2 example, 3: mutation and offspring evaluation

column “Actual count” stands for the number of copies in the mating pool,
i.e., it shows one possible outcome.
Next the selected individuals are paired at random, and for each pair a ran-

dom point along the string is chosen. Table 3.2 shows the results of crossover
on the given mating pool for crossover points after the fourth and second
genes, respectively, together with the corresponding fitness values. Mutation
is applied to the offspring delivered by crossover. Once again, we show one
possible outcome of the random drawings, and Table 3.3 shows the hand-made
‘mutants’. In this case, the mutations shown happen to have caused positive
changes in fitness, but we should emphasise that in later generations, as the
number of 1’s in the population rises, mutation will be on average (but not
always) deleterious. Although manually engineered, this example shows a typ-
ical progress: the average fitness grows from 293 to 588.5, and the best fitness
in the population from 576 to 729 after crossover and mutation.

3.4 Example Applications

3.4.1 The Eight-Queens Problem

This is the problem of placing eight queens on a regular 8 × 8 chessboard
so that no two of them can check each other. This problem can be naturally
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generalised, yielding the N -queens problem described in Sect. 1.3. There are
many classical artificial intelligence approaches to this problem, which work
in a constructive, or incremental, fashion. They start by placing one queen,
and after having placed n queens, they attempt to place the (n + 1)th in a
feasible position where the new queen does not check any others. Typically
some sort of backtracking mechanism is applied; if there is no feasible position
for the (n+1)th queen, the nth is moved to another position.
An evolutionary approach to this problem is drastically different in that it is

not incremental. Our candidate solutions are complete (rather than partial)
board configurations, which specify the positions of all eight queens. The
phenotype space P is the set of all such configurations. Clearly, most elements
of this space are infeasible, violating the condition of nonchecking queens. The
quality q(p) of any phenotype p ∈ P can be simply quantified by the number of
checking queen pairs. The lower this measure, the better a phenotype (board
configuration), and a zero value, q(p) = 0, indicates a good solution. From this
observation we can formulate a suitable objective function to be minimised,
with a known optimal value. Even though we have not defined genotypes at
this point, we can state that the fitness (to be maximised) of a genotype g that
represents phenotype p is some inverse of q(p). There are many possible ways
of specifying what kind of inverse we wish to use here. For instance, 1/q(p) is
an easy option, but has the disadvantage that attempting division by zero is a
problem for many computing systems. We could circumvent this by watching
for q(p) = 0 and saying that when this occurs we have a solution, or by adding
a small value ǫ, i.e., 1/(q(p)+ ǫ). Other options are to use −q(p) or M − q(p),
where M is a sufficiently large number to make all fitness values positive, e.g.,
M ≥ max{q(p) | p ∈ P}. This fitness function inherits the property of q that
it has a known optimum M .
To design an EA to search the space P we need to define a representa-

tion of phenotypes from P . The most straightforward idea is to use a matrix
representation of elements of P directly as genotypes, meaning that we must
design variation operators for these matrices. In this example, however, we
define a more clever representation as follows. A genotype, or chromosome, is
a permutation of the numbers 1, . . . , 8, and a given g = 〈i1, . . . , i8〉 denotes
the (unique) board configuration, where the nth column contains exactly one
queen placed on the inth row. For instance, the permutation g = 〈1, . . . , 8〉
represents a board where the queens are placed along the main diagonal. The
genotype space G is now the set of all permutations of 1, . . . , 8 and we also
have defined a mapping F : G → P .
It is easy to see that by using such chromosomes we restrict the search to

board configurations where horizontal constraint violations (two queens on
the same row) and vertical constraint violations (two queens on the same
column) do not occur. In other words, the representation guarantees half of
the requirements of a solution – what remains to be minimised is the number
of diagonal constraint violations. From a formal perspective we have chosen
a representation that is not surjective since only part of P can be obtained
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by decoding elements of G. While in general this could carry the danger of
missing solutions in P , in our present example this is not the case, since we
know a priori that those phenotypes from P \ F (G) can never be solutions.
The next step is to define suitable variation operators (mutation and

crossover) for our representation, i.e., to work on genotypes that are per-
mutations. The crucial feature of a suitable operator is that it does not lead
out of the space G. In common parlance, the offspring of permutations must
themselves be permutations. Later, in Sects. 4.5.1 and 4.5.2, we will discuss
such operators in great detail. Here we only describe one suitable mutation
and one crossover operator for the purpose of illustration. For mutation we can
use an operator that randomly selects two positions in a given chromosome,
and swaps the values found in those positions. A good crossover for permuta-
tions is less obvious, but the mechanism outlined in Fig. 3.3 will create two
child permutations from two parents.

1. Select a random position, the crossover point, i ∈ {1, . . . , 7}
2. Cut both parents into two segments at this position
3. Copy the first segment of parent 1 into child 1 and the first segment

of parent 2 into child 2
4. Scan parent 2 from left to right and fill the second segment of child

1 with values from parent 2, skipping those that it already contains
5. Do the same for parent 1 and child 2

Fig. 3.3. ‘Cut-and-crossfill’ crossover

The important thing about these variation operators is that mutation causes
a small undirected change, and crossover creates children that inherit genetic
material from both parents. It should be noted though that there can be
large performance differences between operators, e.g., an EA using mutation
A might find a solution quickly, whereas one using mutation B might never
find a solution. The operators we sketch here are not necessarily efficient;
they merely serve as examples of operators that are applicable to the given
representation.
The next step in setting up an EA is to decide upon the selection and pop-

ulation update mechanisms. We will choose a simple scheme for managing the
population. In each evolutionary cycle we will select two parents, producing
two children, and the new population of size n will contain the best n of the
resulting n+ 2 individuals (the old population plus the two new ones).
Parent selection (step 1 in Fig. 3.1) will be done by choosing five individuals

randomly from the population and taking the best two as parents. This ensures
a bias towards using parents with relatively high fitness. Survivor selection
(step 5 in Fig. 3.1) checks which old individuals should be deleted to make
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place for the new ones – provided the new ones are better. Following the
naming convention discussed from Sect. 3.2.6 we define a replacement strategy.
The strategy we will use merges the population and offspring, then ranks them
according to fitness, and deletes the worst two.
To obtain a full specification we can decide to fill the initial population

with randomly generated permutations, and to terminate the search when we
find a solution, or when 10,000 fitness evaluations have elapsed, whichever
happens sooner. Furthermore we can decide to use a population size of 100,
and to use the variation operators with a certain frequency. For instance, we
always apply crossover to the two selected parents and in 80% of the cases
apply mutation to the offspring. Putting this all together, we obtain an EA
as summarised in Table 3.4.

Representation Permutations

Recombination ‘Cut-and-crossfill’ crossover

Recombination probability 100%

Mutation Swap

Mutation probability 80%

Parent selection Best 2 out of random 5

Survival selection Replace worst

Population size 100

Number of offspring 2

Initialisation Random

Termination condition Solution or 10,000 fitness evaluations

Table 3.4. Description of the EA for the eight-queens problem

3.4.2 The Knapsack Problem

The 0–1 knapsack problem, a generalisation of many industrial problems, can
be briefly described as follows. We are given a set of n items, each of which has
attached to it some value vi, and some cost ci. The task is to select a subset of
those items that maximises the sum of the values, while keeping the summed
cost within some capacity Cmax. Thus, for example, when packing a backpack
for a round-the-world trip, we must balance likely utility of the items against
the fact that we have a limited volume (the items chosen must fit in one bag),
and weight (airlines impose fees for luggage over a given weight).
It is a natural idea to represent candidate solutions for this problem as

binary strings of length n, where a 1 in a given position indicates that an
item is included and a 0 that it is omitted. The corresponding genotype space
G is the set of all such strings with size 2n, which increases exponentially
with the number of items considered. Using this G, we fix the representation
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in the sense of data structure, and next we need to define the mapping from
genotypes to phenotypes.
The first representation (in the sense of a mapping) that we consider takes

the phenotype space P and the genotype space to be identical. The quality of
a given solution p, represented by a binary genotype g, is thus determined by
summing the values of the included items, i.e., q(p) =

∑n
i=1 vi · gi. However,

this simple representation leads us to some immediate problems. By using a
one-to-one mapping between the genotype space G and the phenotype space
P , individual genotypes may correspond to invalid solutions that have an
associated cost greater than the capacity, i.e.,

∑n
i=1 ci · gi > Cmax. This issue

is typical of a class of problems that we return to in Chap. 13, and a number
of mechanisms have been proposed for dealing with it.
The second representation that we outline here solves this problem by em-

ploying a decoder function, that breaks the one-to-one correspondence be-
tween the genotype space G and the solution space P . In essence, our geno-
type representation remains the same, but when creating a solution we read
from left to right along the binary string, and keep a running tally of the cost
of included items. When we encounter a value 1, we first check to see whether
including the item would break our capacity constraint. In other words, rather
than interpreting a value 1 as meaning include this item, we interpret it as
meaning include this item IF it does not take us over the cost constraint. The
effect of this scheme is to make the mapping from genotype to phenotype
space many-to-one, since once the capacity has been reached, the values of all
bits to the right of the current position are irrelevant, as no more items will
be added to the solution. Furthermore, this mapping ensures that all binary
strings represent valid solutions with a unique fitness (to be maximised).
Having decided on a fixed-length binary representation, we can now choose

off-the-shelf variation operators from the GA literature, because the bit-string
representation is ‘standard’ there. A suitable (but not necessarily optimal)
recombination operator is the so-called one-point crossover, where we align
two parents and pick a random point along their length. The two offspring are
created by exchanging the tails of the parents at that point. We will apply this
with 70% probability, i.e., for each pair of parents there is a 70% chance that
we will create two offspring by crossover and 30% that the children will be just
copies of the parents. A suitable mutation operator is so-called bit-flipping:
in each position we invert the value with a small probability pm ∈ [0, 1).

In this case we will create the same number of offspring as we have members
in our initial population. As noted above, we create two offspring from each
two parents, so we will select that many parents and pair them randomly. We
will use a tournament for selecting the parents, where each time we pick two
members of the population at random (with replacement), and the one with
the highest value q(p) wins the tournament and becomes a parent. We will
institute a generational scheme for survivor selection, i.e., all of the population
in each iteration are discarded and replaced by their offspring.



3.5 The Operation of an Evolutionary Algorithm 41

Finally, we should consider initialisation (which we will do by random choice
of 0 and 1 in each position of our initial population), and termination. In this
case, we do not know the maximum value that we can achieve, so we will run
our algorithm until no improvement in the fitness of the best member of the
population has been observed for 25 generations.
We have already defined our crossover probability as 0.7; we will work with

a population size of 500 and a mutation rate of pm = 1/n, i.e., that will on
average change one value in every offspring. Our evolutionary algorithm to
tackle this problem can be specified as below in Table 3.5.

Representation Binary strings of length n

Recombination One-point crossover

Recombination probability 70%

Mutation Each value inverted with independent probability pm
Mutation probability pm 1/n

Parent selection Best out of random 2

Survival selection Generational

Population size 500

Number of offspring 500

Initialisation Random

Termination condition No improvement in last 25 generations

Table 3.5. Description of the EA for the knapsack problem

3.5 The Operation of an Evolutionary Algorithm

Evolutionary algorithms have some rather general properties concerning how
they work. To illustrate how an EA typically works, we will assume a one-
dimensional objective function to be maximised. Figure 3.4 shows three stages
of the evolutionary search, showing how the individuals might typically be
distributed in the beginning, somewhere halfway, and at the end of the evo-
lution. In the first stage directly after initialisation, the individuals are ran-
domly spread over the whole search space (Fig. 3.4, left). After only a few
generations this distribution changes: because of selection and variation oper-
ators the population abandons low-fitness regions and starts to climb the hills
(Fig. 3.4, middle). Yet later (close to the end of the search, if the termination
condition is set appropriately), the whole population is concentrated around
a few peaks, some of which may be suboptimal. In principle it is possible
that the population might climb the wrong hill, leaving all of the individu-
als positioned around a local but not global optimum. Although there is no
universally accepted rigorous definition of the terms exploration and exploita-
tion, these notions are often used to categorize distinct phases of the search
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process. Roughly speaking, exploration is the generation of new individuals
in as-yet untested regions of the search space, while exploitation means the
concentration of the search in the vicinity of known good solutions. Evolu-
tionary search processes are often referred to in terms of a trade-off between
exploration and exploitation. Too much of the former can lead to inefficient
search, and too much of the latter can lead to a propensity to focus the search
too quickly (see [142] for a good discussion of these issues). Premature con-
vergence is the well-known effect of losing population diversity too quickly,
and getting trapped in a local optimum. This danger is generally present in
evolutionary algorithms, and techniques to prevent it are discussed in Chap. 5.

begin halfway end

Fig. 3.4. Typical progress of an EA illustrated in terms of population distribution.
For each point x in the search space y shows the corresponding fitness value.

The other effect we want to illustrate is the anytime behaviour of EAs
by plotting the development of the population’s best fitness value over time
(Fig. 3.5). This curve shows rapid progress in the beginning and flattening out
later on. This is typical for many algorithms that work by iterative improve-
ments to the initial solution(s). The name ‘anytime’ comes from the property
that the search can be stopped at any time, and the algorithm will have
some solution, even if it is suboptimal. Based on this anytime curve we can

Fig. 3.5. Typical progress of an EA illustrated in terms of development over time
of the highest fitness in the population

make some general observations concerning initialisation and the termination
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condition for EAs. In Sect. 3.2.7 we questioned whether it is worth putting
extra computational effort into applying intelligent heuristics to seed the ini-
tial population with better-than-random individuals. In general, it could be
said that that the typical progress curve of an evolutionary process makes
it unnecessary. This is illustrated in Fig. 3.6. As the figure indicates, using

Fig. 3.6. Illustration of why heuristic initialisation might not be worth additional
effort. Level a shows the best fitness in a randomly initialised population; level b
belongs to heuristic initialisation

heuristic initialisation can start the evolutionary search with a better popu-
lation. However, typically a few (k in the figure) generations are enough to
reach this level, making the extra effort questionable. In Chap. 10 we will
return to this issue.
The anytime behaviour also gives some general indications regarding the

choice of termination conditions for EAs. In Fig. 3.7 we divide the run into
two equally long sections. As the figure indicates, the progress in terms of
fitness increase in the first half of the run (X) is significantly greater than in
the second half (Y ). This suggests that it might not be worth allowing very
long runs. In other words, because of frequently observed anytime behaviour
of EAs, we might surmise that effort spent after a certain time (number of
fitness evaluations) is unlikely to result in better solution quality.
We close this review of EA behaviour by looking at EA performance from a

global perspective. That is, rather than observing one run of the algorithm, we
consider the performance of EAs for a wide range of problems. Fig. 3.8 shows
the 1980s view after Goldberg [189]. What the figure indicates is that EAs
show a roughly evenly good performance over a wide range of problems. This
performance pattern can be compared to random search and to algorithms tai-
lored to a specific problem type. EAs are suggested to clearly outperform ran-
dom search. In contrast, a problem-tailored algorithm performs much better
than an EA, but only on the type of problem for which it was designed. As we
move away from this problem type to different problems, the problem-specific
algorithm quickly loses performance. In this sense, EAs and problem-specific
algorithms form two opposing extremes. This perception played an important
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Fig. 3.7. Why long runs might not be worth performing. X shows the fitness
increase in the first half of the run, while Y belongs to the second half

role in positioning EAs and stressing the difference between evolutionary and
random search, but it gradually changed in the 1990s based on new insights
from practice as well as from theory. The contemporary view acknowledges
the possibility of combining the two extremes into a hybrid algorithm. This
issue is treated in detail in Chap. 10, where we also present the revised version
of Fig. 3.8. As for theoretical considerations, the No Free Lunch theorem has
shown that (under some conditions) no black-box algorithm can outperform
random walk when averaged over ‘all’ problems [467]. That is, showing the
EA line always above that of random search is fundamentally incorrect. This
is discussed further in Chap. 16.

Fig. 3.8. 1980s view of EA performance after Goldberg [189]

3.6 Natural Versus Artificial Evolution

From the perspective of the underlying substrate, the emergence of evolution-
ary computation can be considered as a major transition of the evolutionary
principles from wetware, the realm of biology, to software, the realm of com-
puters. This was made possible by using computers as instruments for creat-
ing digital worlds that are very flexible and much more controllable than the
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physical reality we live in. Together with the increased understanding of the
genetic mechanisms behind evolution this brought about the opportunity to
become active masters of evolutionary processes that are fully designed and
executed by human experimenters from above.
It could be argued that evolutionary algorithms are not faithful models of

natural evolution. However, they certainly are a form of evolution. As phrased
by Dennett [116]: If you have variation, heredity, and selection, then you
must get evolution. In Table 3.6 we compare natural evolution and artificial
evolution as used in contemporary evolutionary algorithms.

Natural evolution Artificial evolution

Fitness Observed quantity: a posteriori
effect of selection (‘in the eye of
the observer’).

Predefined a priori quantity
that drives selection.

Selection Complex multifactor force
based on environmental condi-
tions, other individuals of the
same species and other species
(e.g., predators). Viability
is tested continually; repro-
ducibility is tested at discrete
times.

Randomized operator with se-
lection probabilities based on
given fitness values. Parent se-
lection and survivor selection
both happen at discrete times.

Genotype-
phenotype
mapping

Highly complex biochemical
process influenced by the
environment.

Relatively simple mathemati-
cal transformation or parame-
terised procedure.

Variation Offspring created from one
(asexual reproduction) or two
parents (sexual reproduction).

Offspring may be generated
from one, two, or many parents.

Execution Parallel, decentralized execu-
tion; birth and death events are
not synchronised.

Typically centralized with syn-
chronised birth and death.

Population Spatial embedding implies
structured populations. Popula-
tion size varies according to the
relative number of death and
birth events.

Typically unstructured and
panmictic (all individuals are
potential partners). Population
size is kept constant by syn-
chronising time and number of
birth and death events.

Table 3.6. Differences between natural and artificial evolution
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3.7 Evolutionary Computing, Global Optimisation, and

Other Search Algorithms

In Chap. 2 we noted that evolutionary algorithms are often used for problem
optimisation. Of course EAs are not the only optimisation technique known, so
in this section we explain where EAs fall into the general class of optimisation
methods, and why they are of increasing interest.
In an ideal world, we would possess the technology and algorithms that

could provide a provably optimal solution to any problem that we could suit-
ably pose to the system. In fact such algorithms do exist: an exhaustive enu-
meration of all of the possible solutions to a problem is clearly such an al-
gorithm. Moreover, for many problems that can be expressed in a suitably
mathematical formulation, much faster, exact techniques such as branch and
bound search are well known. However, despite the rapid progress in com-
puting technology, and even if there is no halt to Moore’s Law, all too often
the types of problems posed by users exceed in their demands the capacity of
technology to answer them.
Decades of computer science research have taught us that many real-world

problems can be reduced in their essence to well-known abstract forms, for
which the number of potential solutions grows very quickly with the number
of variables considered. For example, many problems in transportation can be
reduced to the well-known travelling salesperson problem (TSP): given a list
of destinations, construct the shortest tour that visits each destination exactly
once. If we have n destinations, with symmetric distances between them, the
number of possible tours is n!/2 = n·(n−1)·(n−2)·. . .·3, which is exponential
in n. For some of these abstract problems exact methods are known whose
time complexity scales linearly (or at least polynomially) with the number
of variables (see [212] for an overview). However, it is widely accepted that
for many types of problems encountered, no such algorithms exist — as was
discussed in Sect. 1.4. Thus, despite the increase in computing power, beyond
a certain size of problem we must abandon the search for provably optimal
solutions, and look to other methods for finding good solutions.
The term global optimisation refers to the process of attempting to find

the solution with the optimal value for some fitness function. In mathematical
terminology, we are trying to find the solution x∗ out of a set of possible
solutions S, such that x �= x∗ ⇒ f(x∗) ≥ f(x) ∀x ∈ S. Here we have assumed
a maximisation problem – the inequality is simply reversed for minimisation.
As noted above, a number of deterministic algorithms exist that, if allowed

to run to completion, are guaranteed to find x∗. The simplest example is,
of course, complete enumeration of all the solutions in S, which can take an
exponentially long time as the number of variables increases. A variety of other
techniques, collectively known as box decomposition, are based on ordering the
elements of S into some kind of tree, and then reasoning about the quality of
solutions in each branch in order to decide whether to investigate its elements.
Although methods such as branch and bound can sometimes make very fast



progress, in the worst case (caused by searching in a suboptimal order) the
time complexity of the algorithms is still the same as complete enumeration.
Another class of search methods is known as heuristics. These may be

thought of as sets of rules for deciding which potential solution out of S
should next be generated and tested. For some randomised heuristics, such
as simulated annealing [2, 250] and certain variants of EAs, convergence
proofs do in fact exist, i.e., they are guaranteed to find x∗. Unfortunately
these algorithms are fairly weak, in the sense that they will not identify x∗ as
being globally optimal, rather as simply the best solution seen so far.
An important class of heuristics is based on the idea of using operators that

impose some kind of structure onto the elements of S, such that each point
x has associated with it a set of neighbours N(x). In Fig. 2.2 the variables
(traits) x and y were taken to be real-valued, which imposes a natural struc-
ture on S. The reader should note that for those types of problem where each
variable takes one of a finite set of values (so-called combinatorial optimi-
sation), there are many possible neighbourhood structures. As an example of
how the landscape ‘seen’ by a local search algorithm depends on its neighbour-
hood structure, the reader might wish to consider what a chessboard would
look like if we reordered it, so that squares that are possible next moves for
the knight piece were adjacent to each other. Thus points which are locally
optimal (fitter than all their neighbours) in the landscape induced by one
neighbourhood structure may not be for another. However, by its definition,
the global optimum x∗ will always be fitter than all of its neighbours under
any neighbourhood structure.
So-called local search algorithms [2] and their many variants work by tak-

ing a starting solution x, and then searching the candidate solutions in N(x)
for one x′ that performs better than x. If such a solution exists, then this is
accepted as the new incumbent solution, and the search proceeds by exam-
ining the candidate solutions in N(x′). This process will eventually lead to
the identification of a local optimum: a solution that is superior to all those
in its neighbourhood. Such algorithms (often referred to as hill climbers
for maximisation problems) have been well studied over the decades. They
have the advantage that they are often quick to identify a good solution to
the problem, which is sometimes all that is required in practical applications.
However, the downside is that problems will frequently exhibit numerous local
optima, some of which may be significantly worse than the global optimum,
and no guarantees can be offered for the quality of solution found.
A number of methods have been proposed to get around this problem by

changing the search landscape, either by changing the neighbourhood struc-
ture (e.g., variable neighbourhood search [208]), or by temporarily assigning
low fitness to already-seen good solutions (e.g., Tabu search [186]). However
the theoretical basis behind these algorithms is still very much in gestation.
There are a number of features of EAs that distinguish them from local

search algorithms, relating principally to their use of a population. The pop-
ulation provides the algorithm with a means of defining a nonuniform prob-

473.7 Evolutionary Computing, Global Optimisation, and Other Search Algorithms
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ability distribution function (p.d.f.) governing the generation of new points
from S. This p.d.f. reflects possible interactions between points in S which are
currently represented in the population. The interactions arise from the re-
combination of partial solutions from two or more members of the population
(parents). This potentially complex p.d.f. contrasts with the globally uniform
distribution of blind random search, and the locally uniform distribution used
by many other stochastic algorithms such as simulated annealing and various
hill-climbing algorithms.
The ability of EAs to maintain a diverse set of points provides not only a

means of escaping from local optima, but also a means of coping with large
and discontinuous search spaces. In addition, as will be seen in later chapters,
if several copies of a solution can be generated, evaluated, and maintained
in the population, this provides a natural and robust way of dealing with
problems where there is noise or uncertainty associated with the assignment
of a fitness score to a candidate solution.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


4

Representation, Mutation, and Recombination

As explained in Chapt. 3, there are two fundamental forces that form the basis
of evolutionary systems: variation and selection. In this chapter we discuss the
EA components behind the first one. Since variation operators work at the
equivalent of the genetic level, that is to say they work on the representation of
solutions, rather than on solutions themselves, this chapter is subdivided into
sections that deal with different ways in which solutions can be represented
and varied within the overall search algorithm.

4.1 Representation and the Roles of Variation Operators

The first stage of building any evolutionary algorithm is to decide on a genetic
representation of a candidate solution to the problem. This involves defining
the genotype and the mapping from genotype to phenotype. When choosing
a representation, it is important to choose the right representation for the
problem being solved. In many cases there will be a range of options, and get-
ting the representation right is one of the most difficult parts of designing a
good evolutionary algorithm. Often this only comes with practice and a good
knowledge of the application domain. In the following sections, we look more
closely at some commonly used representations, and the genetic operators
that might be applied to them. It is important to stress, however, that while
the representations described here are commonly used, they might not be the
best representations for your application. Equally, although we present the
representations and their associate operators separately, it frequently turns
out in practice that using mixed representations is a more natural and suit-
able way of describing and manipulating a solution than trying to shoehorn
different aspects of a problem into a common form.
Mutation is the generic name given to those variation operators that use

only one parent and create one child by applying some kind of randomised
change to the representation (genotype). The form taken depends on the
choice of encoding used, as does the meaning of the associated parameter,

© Springer-Verlag Berlin Heidelberg 2015

 ,A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing

49

    DOI 10.1007/978-3- -662 44874-8_Natural Computing Series, 4



50 4 Representation, Mutation, and Recombination

which is often introduced to regulate the intensity or magnitude of mutation.
Depending on the given implementation, this can be mutation probability, mu-
tation rate, mutation step size, etc. In the descriptions below we concentrate
on the choice of operators rather than of parameters. However, the latter can
make a significant difference in the behaviour of the evolutionary algorithm,
and this is discussed in more depth in Chap. 7.
Recombination, the process whereby a new individual solution is created

from the information contained within two (or more) parent solutions, is con-
sidered by many to be one of the most important features in evolutionary
algorithms. A lot of research activity has focused on it as the primary mecha-
nism for creating diversity, with mutation considered as a background search
operator. However, different strands of EC historically emphasised different
variation operators, and as these came together under the umbrella of evolu-
tionary algorithms, this emphasis prompted a great deal of debate. Regardless
of the merits of different viewpoints, the ability to combine partial solutions
via recombination is certainly one of the features that most distinguishes EAs
from other global optimisation algorithms.
Although the term recombination has come to be used for the more general

case, early authors used the term crossover, motivated by the biological
analogy to meiosis (see Sect. 2.3.2). Therefore we will occasionally use the
terms interchangeably, although crossover tends to refer to the most common
two-parent case. Recombination operators are usually applied probabilistically
according to a crossover rate pc. Usually two parents are selected and two
offspring are created via recombination of the two parents with probability
pc; or by simply copying the parents, with probability 1− pc.
Distinguishing variation operators by their arity a makes it a straightfor-

ward idea to go beyond the usual a = 1 (mutation) and a = 2 (crossover).
The resulting multiparent recombination operators for a = 3, 4, . . . are
simple to define and implement. This provides the opportunity to experiment
with evolutionary processes using reproduction schemes that do not exist in
biology. From the technical point of view this offers a tool for amplifying the
effects of recombination. Although such operators are not widely used in EC,
there are many examples that have been proposed during the development of
the field, even as early as 1966 [67], see [126, 128] for an overview, and Sect. 6.6
for a description of how this idea is applied in differential evolution. These
operators can be categorised by the basic mechanism used for combining the
information of the parent individuals. This mechanism can be:

• based on allele frequencies, e.g., p-sexual voting [311] generalising uniform
crossover;

• based on segmentation and recombination of the parents, e.g., the diagonal
crossover in [139]; generalising n-point crossover

• based on numerical operations on real-valued alleles, e.g., the centre of
mass crossover [434], generalising arithmetic recombination operators.
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In general, it cannot be claimed that increasing the arity of recombination
has a positive effect on the performance of an EA – this depends very much
on the type of recombination and the problem at hand. However, systematic
studies on landscapes with tuneable ruggedness [143] and a large number of
experimental investigations on various problems clearly show that using more
than two parents can accelerate evolutionary search and be advantageous in
many cases.

4.2 Binary Representation

The first representation we look at is one of the simplest – the binary one used
in Sect. 3.3. This is one of the earliest representations, and historically many
genetic algorithms (GAs) have (mistakenly) used this representation almost
independently of the problem they were trying to solve. Here the genotype
consists simply of a string of binary digits – a bit-string.
For a particular application we have to decide how long the string should

be, and how we will interpret it to produce a phenotype. In choosing the
genotype–phenotype mapping for a specific problem, one has to make sure that
the encoding allows that all possible bit strings denote a valid solution to the
given problem1 and that, vice versa, all possible solutions can be represented.
For some problems, particularly those concerning Boolean decision vari-

ables, the genotype–phenotype mapping is natural. One example is the knap-
sack problem described in Sect. 3.4.2, where for each possible item a Boolean
decision was evolved, denoting whether it was included in the final solution.
Frequently bit-strings are used to encode other nonbinary information. For
example, we might interpret a bit-string of length 80 as 10 integers, each en-
coded as 8-bit integers (allowing for 256 possible values), or five 16-bit real
numbers. Using bit-strings to encode nonbinary information is usually a mis-
take, and better results can be obtained by using the integer or real-valued
representations directly.
One of the problems of coding numbers in binary is that different bits

have different significance, and so the effect of a single bit mutation is very
variable. Using standard binary code has the disadvantage that the Hamming
distance between two consecutive integers is often not equal to one. If the
goal is to evolve an integer number, you would like to have equal probabilities
of changing a 7 into an 8 or a 6. However, changing 0111 to 1000 requires
four bit-flips while changing it to 0110 takes just one. Thus with a mutation
operator that randomly, and independently, changes each allele value with
probability pm < 0.5, the probability of changing 7 to 8 is much less than
changing 7 to 6. This can be helped by using Gray coding, a variation on
the way that integers are mapped on bit strings where consecutive integers
always have Hamming distance one.

1 In practice this restriction to validity in not always possible; see Chap. 13 for a
more complete discussion of this issue.
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4.2.1 Mutation for Binary Representation

Although a few other schemes have been occasionally used, the most common
mutation operator for binary encodings considers each gene separately and
allows each bit to flip (i.e., from 1 to 0 or 0 to 1) with a small probability
pm. The actual number of values changed is thus not fixed, but depends on
the sequence of random numbers drawn, so for an encoding of length L, on
average L ·pm values will be changed. In Fig. 4.1 this is illustrated for the case
where the third, fourth, and eighth random values generated are less than the
bitwise mutation rate pm.

Fig. 4.1. Bitwise mutation for binary encodings

A number of studies and recommendations have been made for the choice
of suitable values for the bitwise mutation rate pm. Most binary coded GAs
use mutation rates in a range such that on average between one gene per
generation and one gene per offspring is mutated. However, it is worth noting
at the outset that the most suitable choice to use depends on the desired
outcome. For example, does the application require a population in which
all members have high fitness, or simply that one highly fit individual is
found? The former suggests a lower mutation rate, less likely to disrupt good
solutions. In the latter case one might choose a higher mutation rate if the
potential benefits of ensuring good coverage of the search space outweighed
the cost of disrupting copies of good solutions2.

4.2.2 Recombination for Binary Representation

Three standard forms of recombination are generally used for binary repre-
sentations. They all start from two parents and create two children, although
all of these have been extended to the more general case where a number of
parents may be used [152], and there are also situations in which only one of
the offspring might be considered (Sect. 5.1).

One-Point Crossover One-point crossover was the original recombination
operator proposed in [220] and examined in [102]. It works by choosing a

2 In fact this example illustrates that the algorithm’s parameters cannot be chosen
independently: in the second case we might couple higher mutation rates with a
more aggressive selection policy to ensure the best solutions were not lost.
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random number r in the range [1, l − 1] (with l the length of the encoding),
and then splitting both parents at this point and creating the two children
by exchanging the tails (Fig. 4.2, top). Note that by using the range [1, l− 1]
the crossover point is prevented from falling before the first position (r = 0)
or after the last position (r = l).

Fig. 4.2. One-point crossover (top) and n-point crossover with n = 2 (bottom)

n-Point Crossover One-point crossover can easily be generalised to
n-point crossover, where the chromosome is broken into more than two
segments of contiguous genes, and the offspring are created by taking alter-
native segments from the parents. In practice this means choosing n random
crossover points in [1, l−1], which is illustrated in Fig. 4.2 (bottom) for n = 2.

Uniform Crossover The previous two operators worked by dividing the
parents into a number of sections of contiguous genes and reassembling them
to produce offspring. In contrast to this, uniform crossover [422] works by
treating each gene independently and making a random choice as to which
parent it should be inherited from. This is implemented by generating a string
of l random variables from a uniform distribution over [0,1]. In each position,
if the value is below a parameter p (usually 0.5), the gene is inherited from
the first parent; otherwise from the second. The second offspring is created
using the inverse mapping. This is illustrated in Fig. 4.3.

In our discussion so far, we have suggested that in the absence of prior
information, recombination worked by randomly mixing parts of the parents.
However, as Fig. 4.2 illustrates, n-point crossover has an inherent bias in
that it tends to keep together genes that are located close to each other in
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Fig. 4.3. Uniform crossover. The array [0.3, 0.6, 0.1, 0.4, 0.8, 0.7, 0.3, 0.5, 0.3] of
random numbers and p = 0.5 were used to decide inheritance for this example.

the representation. Furthermore, when n is odd (e.g., one-point crossover),
there is a strong bias against keeping together combinations of genes that are
located at opposite ends of the representation. These effects are known as
positional bias and have been extensively studied from both a theoretical
and experimental perspective [157, 412] (see Sect. 16.1 for more details). In
contrast, uniform crossover does not exhibit any positional bias. However, un-
like n-point crossover, uniform crossover does have a strong tendency towards
transmitting 50% of the genes from each parent and against transmitting an
offspring a large number of coadapted genes from one parent. This is known
as distributional bias.
The general nature of these algorithms (and the No Free Lunch theorem

[467], Sect. 16.10) make it impossible to state that one or the other of these
operators performs best on any given problem. Nevertheless, an understand-
ing of the types of bias exhibited by different recombination operators can be
invaluable when designing an algorithm for a particular problem, particularly
if there are known patterns or dependencies in the chosen representation that
can be exploited. To use the knapsack problem as an example, it might make
sense to use an operator that is likely to keep together the decisions for the
first few heaviest items. If the items are ordered by weight (cost) in our rep-
resentation, then we could make this more likely by using n-point crossover
with its positional bias. However, if we used a random ordering this might
actually make it less likely that co-adapted values for certain decisions were
transmitted together, so we might prefer uniform crossover.

4.3 Integer Representation

As we hinted in the previous section, binary representations are not always
the most suitable if our problem more naturally maps onto a representation
where different genes can take one of a set of values. One obvious example of
when this might occur is the problem of finding the optimal values for a set of
variables that all take integer values. These values might be unrestricted (i.e.,
any integer value is permissible), or might be restricted to a finite set: for ex-
ample, if we are trying to evolve a path on a square grid, we might restrict the
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values to the set {0,1,2,3} representing {North, East, South, West}. In either
case an integer encoding is probably more suitable than a binary encoding.
When designing the encoding and variation operators, it is worth considering
whether there are any natural relations between the possible values that an
attribute can take. This might be obvious for ordinal attributes such as
integers (2 is more like 3 than it is 389), but for cardinal attributes such
as the compass points above, there may not be a natural ordering.3

To give a well-known example of where there is no natural ordering, let
us consider the graph k-colouring problem. Here we are given a set of points
(vertices) and a list of connections between them (edges). The task is to assign
one of k colours to each vertex, so that no two vertices which are connected by
an edge share the same colour. For this problem there is no natural ordering:
‘red’ is no more like ‘yellow’ than ‘blue’, as long as they are different. In fact,
we could assign the colours to the k integers representing them in any order,
and still get valid equivalent solutions.

4.3.1 Mutation for Integer Representations

For integer encodings there are two principal forms of mutation used, both of
which mutate each gene independently with user-defined probability pm.

Random Resetting Here the bit-flipping mutation of binary encodings
is extended to random resetting: in each position independently, with
probability pm, a new value is chosen at random from the set of permissible
values. This is the most suitable operator to use when the genes encode for
cardinal attributes, since all other gene values are equally likely to be chosen.

Creep Mutation This scheme was designed for ordinal attributes and works
by adding a small (positive or negative) value to each gene with probability p.
Usually these values are sampled randomly for each position, from a distribu-
tion that is symmetric about zero, and is more likely to generate small changes
than large ones. It should be noted that creep mutation requires a number of
parameters controlling the distribution from which the random numbers are
drawn, and hence the size of the steps that mutation takes in the search space.
Finding appropriate settings for these parameters may not be easy, and it is
sometimes common to use more than one mutation operator in tandem from
integer-based problems. For example, in [98] both a “big creep” and a “little
creep” operator are used. Alternatively, random resetting might be used with
low probability, in conjunction with a creep operator that tended to make
small changes relative to the range of permissible values.

3 There are various naming conventions used to distinguish these two types of
attributes. These are discussed further in Chap. 7 and displayed in Table 7.1.
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4.3.2 Recombination for Integer Representation

For representations where each gene has a finite number of possible allele
values (such as integers) it is normal to use the same set of operators as
for binary representations. On the one hand, these operators are valid: the
offspring would not fall outside the given genotype space. On the other hand,
these operators are also sufficient: it usually does not make sense to consider
‘blending’ allele values of this sort. For example, even if genes represent integer
values, averaging an even and an odd integer yields a non-integral result.

4.4 Real-Valued or Floating-Point Representation

Often the most sensible way to represent a candidate solution to a problem is
to have a string of real values. This occurs when the values that we want to
represent as genes come from a continuous rather than a discrete distribution
— for example, if they represent physical quantities such as the length, width,
height, or weight of some component of a design that can be specified within a
tolerance smaller than integer values. A good example would be the satellite
dish holder boom described in Sect. 2.4, where the design is encoded as a
series of angles and spar lengths. Another example might be if we wished to
use an EA to evolve the weights on the connections beween the nodes in an
artificial neural network. Of course, on a computer the precision of these real
values is actually limited by the implementation, so we will refer to them as
floating-point numbers. The genotype for a solution with k genes is now a
vector 〈x1, . . . , xk〉 with xi ∈ IR.

4.4.1 Mutation for Real-Valued Representation

For floating-point representations, it is normal to ignore the discretisation
imposed by hardware and consider the allele values as coming from a contin-
uous rather than a discrete distribution, so the forms of mutation described
above are no longer applicable. Instead it is common to change the allele value
of each gene randomly within its domain given by a lower Li and upper Ui

bound,4 resulting in the following transformation:

〈x1, . . . , xn〉 → 〈x′
1, . . . , x

′
n〉, where xi, x

′
i ∈ [Li, Ui].

As with integer representations, two types can be distinguished according
to the probability distribution from which the new gene values are drawn:
uniform and nonuniform mutation.

4 We assume here that the domain of each variable is a single interval [Li, Ui] ⊆ IR.
The generalisation to a union of disjoint intervals is straightforward.
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Uniform Mutation For this operator the values of x′
i are drawn uniformly

randomly from [Li, Ui]. This is the most straightforward option, analogous
to bit-flipping for binary encodings and the random resetting for integer
encodings. It is normally used with a positionwise mutation probability.

Nonuniform Mutation Perhaps the most common form of nonuniform
mutation used with floating-point representations takes a form analogous to
the creep mutation for integers. It is designed so that usually, but not always,
the amount of change introduced is small. This is achieved by adding to the
current gene value an amount drawn randomly from a Gaussian distribution
with mean zero and user-specified standard deviation, and then curtailing the
resulting value to the range [Li, Ui] if necessary. This distribution, shown in
Eq. 4.1, has the feature that the probability of drawing a random number
with any given magnitude is a rapidly decreasing function of the standard
deviation σ. Approximately two thirds of the samples drawn will lie within
plus or minus one standard deviation, which means that most of the changes
made will be small, but there is nonzero probability of generating very large
changes since the tail of the distribution never reaches zero. Thus the σ value
is a parameter of the algorithm that determines the extent to which given
values xi are perturbed by the mutation operator. For this reason σ is often
called the mutation step size. It is normal practice to apply this operator
with probability one per gene, and instead the mutation parameter is used
to control the standard deviation of the Gaussian and hence the probability
distribution of the step sizes taken.

p(Δxi) =
1

σ
√
2π

· e−
(∆xi−ξ)2

2σ2 . (4.1)

An alternative to the Gaussian distribution is the use of a Cauchy dis-
tribution, which has a ‘fatter’ tail. That is, the probabilities of generating
larger values are slightly higher than for a Gaussian with the same standard
deviation [469].

4.4.2 Self-adaptive Mutation for Real-Valued Representation

As described above, non-uniform mutation applied to continuous variables is
usually done by adding some random variables from a Gaussian distribution,
with zero mean and a standard deviation which controls the mutation step
size. The concept of self-adaptation represents a solution to the problem
of how to adapt the step-sizes, which has been successfully demonstrated in
many domains, not only for real-valued, but also for binary and integer search
spaces [24]. The essential feature is that the step sizes are also included in the
chromosomes and they themselves undergo variation and selection.
Details on how to mutate the value of σ are given below. The key concept

is that the mutation step sizes are not set by the user; rather the σ coevolves
with the solutions (the x̄ part). In order to achieve this behaviour it is essential
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to modify the value of σ first, and then mutate the xi values with the new σ
value. The rationale behind this is that a new individual 〈x̄′, σ′〉 is effectively
evaluated twice. Primarily, it is evaluated directly for its viability during sur-
vivor selection based on f(x̄′). Second, it is evaluated for its ability to create
good offspring. This happens indirectly: a given step size evaluates favourably
if the offspring generated by using it prove viable (in the first sense). Thus,
an individual 〈x̄′, σ′〉 represents both a good x̄′ that survived selection and a
good σ′ that proved successful in generating this good x̄′ from x̄.
The alert reader may have noticed that there is an important underlying

assumption behind the idea of using varying mutation step sizes. Namely,
we assume that under different circumstances different step sizes will behave
differently: some will be better than others. These circumstances can be
given various interpretations. For instance, we might consider time and
distinguish different stages within the evolutionary search process and expect
that different mutation strategies would be appropriate in different stages.
Self-adaptation can then be a mechanism adjusting the mutation strategy as
the search is proceeding. Alternatively, we can consider space and observe
that the local vicinity of an individual, i.e., the shape of the fitness landscape
in its neighbourhood, determines what good mutations are: those that jump
into the direction of fitness increase. Assigning a separate mutation strategy
to each individual, which coevolves with it, opens the possibility to learn and
use a mutation operator suited for the local topology. Issues related to these
considerations are treated extensively in the chapter on parameter control,
Chap. 8. In the following we describe three special cases of self-adaptive
mutation in more detail.

Uncorrelated Mutation with One Step Size In the case of uncorrelated
mutation with one step size, the same distribution is used to mutate each xi,
therefore we only have one strategy parameter σ in each individual. This σ
is mutated each time step by multiplying it by a term eΓ , with Γ a random
variable drawn each time from a normal distribution with mean 0 and standard
deviation τ . Since N(0, τ) = τ · N(0, 1), the mutation mechanism is thus
specified by the following formulas:

σ′ = σ · eτ ·N(0,1), (4.2)

x′
i = xi + σ′ ·Ni(0, 1). (4.3)

Furthermore, since standard deviations very close to zero are unwanted
(they will have on average a negligible effect), the following boundary rule is
used to force step sizes to be no smaller than a threshold:

σ′ < ε0 ⇒ σ′ = ε0.

In these formulas N(0, 1) denotes a draw from the standard normal distri-
bution, while Ni(0, 1) denotes a separate draw from the standard normal
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distribution for each variable i. The proportionality constant τ is an external
parameter to be set by the user. It is usually inversely proportional to the
square root of the problem size:

τ ∝ 1/
√
n.

The parameter τ can be interpreted as a kind of learning rate, as in neural
networks. Bäck [22] explains the reasons for mutating σ by multiplying with
a variable with a lognormal distribution as follows:

• Smaller modifications should occur more often than large ones.
• Standard deviations have to be greater than 0.
• The median (0.5-quantile) should be 1, since we want to multiply the σ.
• Mutation should be neutral on average. This requires equal likelihood of

drawing a certain value and its reciprocal value, for all values.

The lognormal distribution satisfies all these requirements.

Fig. 4.4. Mutation with n = 2, nσ = 1, nα = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form a circle. The probability of
moving along the y-axis (little effect on fitness) is the same as that of moving along
the x-axis (large effect on fitness)

Figure 4.4 shows the effects of mutation in two dimensions. That is, we
have an objective function IR2 → IR, and individuals are of the form 〈x, y, σ〉.
Since there is only one σ, the mutation step size is the same in each direction
and the points in the search space where the offspring can be placed with a
given probability form a circle around the individual to be mutated.
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Uncorrelated Mutation with n Step Sizes The motivation behind using
n step sizes is the wish to treat dimensions differently. In particular, we want
to be able to use different step sizes for different dimensions i ∈ {1, . . . , n}.
The reason for this is the trivial observation that the fitness landscape can
have a different slope in one direction (along axis i) than in another direc-
tion (along axis j). The solution is straightforward: each basic chromosome
〈x1, . . . , xn〉 is extended with n step sizes, one for each dimension, resulting in
〈x1, . . . , xn, σ1, . . . , σn〉. The mutation mechanism is now specified as follows:

σ′
i = σi · eτ

′·N(0,1)+τ ·Ni(0,1), (4.4)

x′
i = xi + σ′

i ·Ni(0, 1), (4.5)

where τ ′ ∝ 1/
√
2n , and τ ∝ 1/

√

2
√
n. Once again a boundary rule is applied

to prevent standard deviations very close to zero.

σ′
i < ε0 ⇒ σ′

i = ε0.

Notice that the mutation formula for σ is different from that in Eq. (4.2).
The present mutation mechanism is based on a finer granularity. Instead of
the individual level (each individual x̄ having its own σ) it works on the
coordinate level (one σi for each xi in x̄). The corresponding straightforward
modification of Eq. (4.2) is

σ′
i = σi · eτ ·Ni(0,1),

but ES use Eq. (4.4). Technically, this is correct since the sum of two nor-
mally distributed variables is also normally distributed, hence the resulting
distribution is still lognormal. The conceptual motivation is that the com-
mon base mutation eτ

′·N(0,1) allows for an overall change of the mutability,
guaranteeing the preservation of all degrees of freedom, while the coordinate-
specific eτ ·Ni(0,1) provides the flexibility to use different mutation strategies
in different directions.
In Fig. 4.5 the effects of mutation are shown in two dimensions. Again, we

have an objective function IR2 → IR, but the individuals now have the form
〈x, y, σx, σy〉. Since the mutation step sizes can differ in each direction (x and
y), the points in the search space where the offspring can be placed with a
given probability form an ellipse around the individual to be mutated. The
axes of such an ellipse are parallel to the coordinate axes, with the length
along axis i proportional to the value of σi.

Correlated Mutations The second version of mutation discussed above in-
troduced different standard deviations for each axis, but this only allows el-
lipses orthogonal to the axes. The rationale behind correlated mutations is to
allow the ellipses to have any orientation by rotating them with a rotation
(covariance) matrix C.
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Fig. 4.5. Mutation with n = 2, nσ = 2, nα = 0. Part of a fitness landscape with
a conical shape is shown. The black dot indicates an individual. Points where the
offspring can be placed with a given probability form an ellipse. The probability of
moving along the x-axis (large effect on fitness) is larger than that of moving along
the y-axis (little effect on fitness)

The probability density function for Δx replacing Eq. (4.1) now becomes

p(Δx) =
e−

1
2∆x

T
·C−1·∆x

(detC · (2π)n)1/2 ,

with C the covariance matrix with entries

cii = σ2
i , (4.6)

cij,i�=j =

⎧

⎨

⎩

0 no correlations,
1
2 (σ

2
i − σ2

j ) tan(2αij) correlations. (4.7)

The relation between covariance and rotation angle is as follows:

tan(2αij) =
2cij

σ2
i − σ2

j

,

which explains Eq. (4.7). This formula is derived from the trigonometric prop-
erties of rotations. A rotation in two dimensions is a multiplication with the
matrix

(

cos(αij) − sin(αij)
sin(αij) cos(αij)

)

.



62 4 Representation, Mutation, and Recombination

A rotation in more dimensions can be performed by a successive series of 2D
rotations, i.e., matrix multiplications.
The complete mutation mechanism is described by the following equations:

σ′
i = σi · eτ

′·N(0,1)+τ ·Ni(0,1),

α′
j = αj + β ·Nj(0, 1),

x′ = x+N(0, C ′),

where nα = n·(n−1)
2 , j ∈ 1, . . . , nα. The other constants are usually taken as:

τ ∝ 1/
√

2
√
n, τ ′ ∝ 1/

√
2n, and β ≈ 5o.

The object variables x are now mutated by adding Δx drawn from an n-
dimensional normal distribution with covariance matrix C ′. The C ′ in the
formula is the old C after mutation of the α values (and recalculation of
covariances). The σi are mutated in the same way as before: with a multipli-
cation by a log-normal variable, which consists of a global and an individual
part. The αj are mutated with an additive, normally distributed variation,
similar to mutation of object variables.
We also have a boundary rule for the αj values. The rotation angles should

lie in the range [−π, π], so the new value is simply mapped circularly into the
feasible range:

|α′
j | > π ⇒ α′

j = α′
j − 2π sign(α′

j).

Fig. 4.6 shows the effects of correlated mutations in two dimensions. The
individuals now have the form 〈x, y, σx, σy, αx,y〉, and the points in the search
space where the offspring can be placed with a given probability form a rotated
ellipse around the individual to be mutated, where again the axis lengths are
proportional to the σ values.
Table 4.1 summarises three possible common settings for self-adaptive mu-

tation regarding the length and structure of the individuals. Simply consider-
ing the size of the representation of the individuals in each scheme, i.e., the
number of values that need to be learned by the algorithm as it evolves (let
alone their complex interrelationships) brings home an important point: we
can get nothing for free! In other words, what we must consider is that as
the ability of the algorithm to adapt the nature of its search according to the
local topology increases, so too does the scale of the learning task. To sim-
plify matters a little, as we increase the precision with which we can specify
the shape of the lines of equiprobable mutations, so we increase the number
of different options which should be tried. Since the merits of these different
possibilities are evaluated indirectly, i.e., by applying them and gauging the
relative fitness of the individuals created, it is reasonable to conclude that an
increased number of function evaluations will be needed to learn good search
strategies as the complexity of the mutation operator increases.
While this may sound a little pessimistic, it is also worth noting that it is

easy to imagine a situation where the extra complexity is required, for exam-
ple, if the landscape contains a ‘ridge’ of increasing fitness, perhaps running at
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Fig. 4.6. Correlated mutation: n = 2, nσ = 2, nα = 1. Part of a fitness landscape
with a conical shape is shown. The black dot indicates an individual. Points where
the offspring can be placed with a given probability form a rotated ellipse. The
probability of generating a move in the direction of the steepest ascent (largest
effect on fitness) is now larger than that for other directions

an angle to the co-ordinate axis. In short, there are no fixed recommendations
about which scheme to use, but a common approach is to start with uncor-
related mutation with n σ values and then try moving to a simpler model
if good results are obtained but too slowly (or if the σi all evolve to similar
values), or to the more complex model if the results are not of good enough
quality.

nσ nα Structure of individuals Remark

1 0 〈x1, . . . , xn, σ〉 Standard mutation
n 0 〈x1, . . . , xn, σ1, . . . , σn〉 Standard mutations
n n · (n− 1)/2 〈x1, . . . , xn, σ1, . . . , σn, α1, . . . , αn·(n−1)/2〉 Correlated mutations

Table 4.1. Some possible settings of nσ and nα for different mutation operators

Self-adaptive mutation mechanisms have been used and studied for decades
in EC. Besides experimental evidence, showing that an EA with self-
adaptation outperforms the same algorithm without self-adaptation, there
are also theoretical results showing that self-adaptation works [52]. Theoret-
ical and experimental results can neatly complement each other in this area
if experimentally obtained mutation step sizes show a good match with the
theoretically derived optimal values. Unfortunately, for a complex problem
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and/or algorithm a theoretical analysis is infeasible. However, for simple ob-
jective functions theoretically optimal mutation step sizes can be calculated
(in light of some performance criterion, e.g., progress rate during a run) and
compared to step sizes obtained during a run of the EA in question.
Theoretical and experimental results agree on the fact that for a successful

run the σ values must decrease over time. The intuitive explanation for this
is that in the beginning of a search process a large part of the search space
has to be sampled in an explorative fashion to locate promising regions (with
good fitness values). Therefore, large mutations are appropriate in this phase.
As the search proceeds and optimal values are approached, only fine tuning
of the given individuals is needed; thus smaller mutations are required.
Another kind of convincing evidence for the power of self-adaptation is

provided in the context of changing fitness landscapes. In this case, where the
objective function is changing, the evolutionary process is aiming at a moving
target. When the objective function changes, the given individuals may have
a low fitness, since they have been adapted to the old objective function.
Thus, the present population needs to be reevaluated, and the search space
re-explored. Often the mutation step sizes will prove ill-adapted: they are too
low for the new exploration phase required. The experiment presented in [217]
illustrates how self-adaptation is able to reset the step sizes after each change
in the objective function (Fig. 4.7).

Fig. 4.7. Moving optimum ES experiment on the sphere function with n = 30,
nσ = 1. The location of the optimum is changed after every 200 generations (x-
axes) with a clear effect on the average best objective function values (y-axis, left)
in the given population. Self-adaptation is adjusting the step sizes (y-axis, right) with
a small delay to larger values appropriate for exploring the new fitness landscape,
whereafter the values of σ start decreasing again as the population approaches the
new optimum
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Over recent decades much experience has been gained over self-adaptation
in Evolutionary Algorithms, in particular in Evolution Strategies. The accu-
mulated knowledge has identified necessary conditions for self-adaptation:

1. μ > 1 so that different strategies are present
2. generation of an offspring surplus: λ > μ
3. a not too strong selective pressure (heuristic: λ/μ = 7, e.g., (15,100))
4. (μ, λ)-selection (to guarantee extinction of misadapted individuals)
5. recombination, usually intermediate, of strategy parameters

4.4.3 Recombination Operators for Real-Valued Representation

In general, we have three options for recombining two floating-point strings.
First, using an analogous operator to those used for bit-strings, but now split
between floats. In other words, an allele is one floating-point value instead
of one bit. This has the disadvantage (shared with all of the recombination
operators described above) that only mutation can insert new values into the
population, since recombination only gives us new combinations of existing
values. Recombination operators of this type for floating-point representations
are known as discrete recombination and have the property that if we are
creating an offspring z from parents x and y, then the allele value for gene i
is given by zi = xi or yi with equal likelihood.

Second, using an operator that, in each gene position, creates a new allele
value in the offspring that lies between those of the parents. Using the ter-
minology above, we have zi = αxi + (1 − α)yi for some α in [0,1]. In this
way, recombination is now able to create new gene material, but it has the
disadvantage that as a result of the averaging process the range of the allele
values in the population for each gene is reduced. Operators of this type are
known as intermediate or arithmetic recombination.
Third, using an operator that in each position creates a new allele value in

the offspring which is close to that of one of the parents, but may lie outside
them (i.e., bigger than the larger of the two values, or smaller than the lesser).
Operators of this type can create new material without restricting the range.
Operators of this type are known as blend recombination.
Three types of arithmetic recombination are described in [295]. In all of

these, the choice of the parameter α is sometimes made at random over [0,1],
but in practice it is common to use a constant value, often 0.5 (in which case
we have uniform arithmetic recombination).

Simple Arithmetic Recombination First pick a recombination point k.
Then, for child 1, take the first k floats of parent 1 and put them into the
child. The rest is the arithmetic average of parent 1 and 2:

Child 1: 〈x1, . . . , xk, α · yk+1 + (1− α) · xk+1, . . . , α · yn + (1− α) · xn〉.
Child 2 is analogous, with x and y reversed (Fig. 4.8, top).
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Fig. 4.8. Simple arithmetic recombination with k = 6, α = 1/2 (top), single arith-
metic recombination with k = 8, α = 1/2 (middle), whole arithmetic recombination
with α = 1/2 (bottom).

Single Arithmetic Recombination Pick a random allele k. At that posi-
tion, take the arithmetic average of the two parents. The other points are the
points from the parents, i.e.:

Child 1: 〈x1, . . . , xk−1, α · yk + (1− α) · xk, xk+1, . . . , xn〉.

The second child is created in the same way with x and y reversed (Fig. 4.8,
middle).

Whole Arithmetic Recombination This is the most commonly used op-
erator and works by taking the weighted sum of the two parental alleles for
each gene, i.e.:

Child 1 =α · x̄+ (1− α) · ȳ, Child 2 =α · ȳ + (1− α) · x̄.

This is illustrated in Fig. 4.8, bottom. As the example shows, if α = 1/2
the two offspring will be identical for this operator.
Blend Crossover Blend Crossover (BLX −α) was introduced in [160] as a
way of creating offspring in a region that is bigger than the (n-dimensional)
rectangle spanned by the parents. The extra space is proportional to the
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Fig. 4.9. Possible offspring from different recombination operators for two real-
valued parents X and Y . {s1, . . . , s4} are the four possible offspring from single
arithmetic recombination with α = 0.5. w is the offspring from whole arithmetic
recombination with α = 0.5 and the inner box represents all the possible offspring
positions as α is varied. The outer dashed box shows all possible offspring positions
for blend crossover with α = 0.5 (BLX − 0.5), each position being equally likely.

distance between the parents and it varies per coordinate. If we have two
parents x and y and assume that in position i the value xi < yi then the
difference di = yi−xi and the range for the ith value in the child z is [xi−α ·
di, xi +α · di]. To create a child we can sample a random number u uniformly
from [0, 1], calculate γ = (1− 2α)u− α, and set:

zi = (1− γ)xi + γyi

Interestingly, the original authors reported best results with α = 0.5, where
the chosen values are equally likely to lie inside the two parent values as
outside, so balancing exploration and exploitation.

Figure 4.9 illustrates the difference between single arithmetic recombina-
tion, whole arithmetic combination and Blend Crossover, with in each case
the value of α set to 0.5. More recent methods such as Simulated Binary
Crossover [111, 113] have built on Blend Crossover, so that rather than se-
lecting offspring values uniformly from a range around each parent values, they
are selected from a distribution which is more likely to create small changes,
and the distribution is controlled by the distance between the parents.

4.5 Permutation Representation

Many problems naturally take the form of deciding on the order in which a
sequence of events should occur. While other forms do occur (for example,
decoder functions based on unrestricted integer representations [28, 201] or
“floating keys” based on real-valued representations [27, 44]), the most natu-
ral representation of such problems is as a permutation of a fixed set of values
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that can be represented as integers. One immediate consequence is that while
a binary, or simple integer, representation allows numbers to occur more than
once, such sequences of integers will not represent valid permutations. It is
clear therefore that when choosing or designing variation operators to work
with solutions that are represented as permutations, we require them to pre-
serve the permutation property that each possible allele value occurs exactly
once in the solution. We previously described one example, when we designed
an EA for solving the N -queens problem efficiently, by representing each so-
lution as a list of the rows on which each queen was positioned (with each on
a different column), and insisted that these be a permutation so that no two
queens shared the same row.
When choosing variation operators it is worth bearing in mind that there

are actually two classes of problems that are represented by permutations. In
the first of these, the order in which events occur is important. This might
happen when the events use limited resources or time, and a typical example of
this sort of problem is the production scheduling problem. This is the common
problem of deciding in which order a series of times should be manufactured
on a set of machines, where there may be dependencies between products, for
example, there might be different set-up times between products, or one might
be a component of another. As an example, it might be better for widget 1
to be produced before widgets 2 and 3, which in turn might be preferably
produced before widget 4, no matter how far in advance this is done. In this
case it might well be that the sequences [1,2,3,4] and [1,3,2,4] have similar
fitness, and are much better than, for example, [4,3,2,1].
Another type of problem depends on adjacency, and is typified by the trav-

elling salesperson problem (TSP). The problem is to find a complete tour of n
given cities of minimal length. The search space for this problem is huge: there
are (n-1)! different routes possible for n given cities (for the asymmetric case
counting back and forth as two routes).5 For n = 30 there are approximately
1032 different tours. Labelling the cities 1, 2, . . . , n, a complete tour is a permu-
tation, so that for n = 4, the routes [1,2,3,4] and [3,4,2,1] are both valid. The
vital point here is that it is the links between cities that are important. The
difference from order-based problems can clearly be seen if we consider that
the starting point of the tour is also not important, thus [1,2,3,4], [2,3,4,1],
[3,4,1,2], and [4,1,2,3] are all equivalent. Many examples of this class are also
symmetric, so that [4,3,2,1] and so on are also equivalent.
Finally, we should mention that there are two possible ways to encode a

permutation. In the first (most commonly used) of these the ith element of the
representation denotes the event that happens in that place in the sequence
(or the ith destination visited). In the second, the value of the ith element
denotes the position in the sequence in which the ith event happens. Thus
for the four cities [A,B,C,D], and the permutation [3,1,2,4], the first encoding
denotes the tour [C,A,B,D] and the second [B,C,A,D].

5 These comments about problem size apply to all permutation problems.
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4.5.1 Mutation for Permutation Representation

For permutation representations, it is no longer possible to consider each
gene independently, rather finding legal mutations is a matter of moving
alleles around in the genome. This has the immediate consequence that the
mutation parameter is interpreted as the probability that the chromosome
undergoes mutation, rather than that a single gene in the chromosome is
altered. The three most common forms of mutation used for order-based
problems were first described in [423]. Whereas the first three operators
below (in particular insertion ) work by making small changes to the order in
which allele values occur, for adjacency-based problems these can cause huge
numbers of links to be broken, and so inversion is more commonly used.

Swap Mutation Two positions (genes) in the chromosome are selected at
random and their allele values swapped. This is illustrated in Fig. 4.10 (top),
where the values in positions two and five have been swapped.
Insert Mutation Two alleles are selected at random and the second moved
next to the first, shuffling along the others to make room. This is illustrated
in Fig. 4.10 (middle), where the values two and five have been chosen.
Scramble Mutation Here the entire chromosome, or some randomly chosen
subset of values within it, have their positions scrambled. This is illustrated
in Fig. 4.10 (bottom), where the values from two to five have been chosen.

Fig. 4.10. Swap (top), insert (middle), and scramble mutation (bottom).

Inversion Mutation Inversion mutation works by randomly selecting two
positions in the chromosome and reversing the order in which the values ap-
pear between those positions. It effectively breaks the chromosome into three
parts, with all links inside a part being preserved, and only the two links be-
tween the parts being broken. The inversion of a randomly chosen substring
is the thus smallest change that can be made to an adjacency-based problem,
and all other changes can be easily constructed as a series of inversions. The
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ordering of the search space induced by this operator thus forms a natural ba-
sis for considering this class of problems, equivalent to the Hamming space for
binary problem representations. It is the basic move behind the 2-opt search
heuristic for TSP [271], and by extension k-opt. This operator is illustrated
in Fig. 4.11, where the substring between positions two and five was inverted.

Fig. 4.11. Inversion mutation

4.5.2 Recombination for Permutation Representation

At first sight, permutation-based representations present particular difficul-
ties for the design of recombination operators, since it is not generally possible
simply to exchange substrings between parents and still maintain the permu-
tation property. However, this situation is alleviated when we consider what it
is that the solutions actually represent, i.e., either an order in which elements
occur, or a set of moves linking pairs of elements. A number of specialised
recombination operators have been designed for permutations, which aim at
transmitting as much as possible of the information contained in the parents,
especially that held in common. We shall concentrate here on describing two
of the best known and most commonly used operators for each subclass of
permutation problems.
Partially Mapped Crossover (PMX) was first proposed by Goldberg and
Lingle as a recombination operator for the TSP in [192], and has become
one of the most widely used operators for adjacency-type problems. Over the
years many slight variations of PMX appeared in the literature; here we use
Whitley’s definition from [452], which works as follows (Figs. 4.12–4.14).

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the first crossover point look for elements in that segment
of the second parent (P2) that have not been copied.

3. For each of these (say i), look in the offspring to see what element (say j)
has been copied in its place from P1.

4. Place i into the position occupied by j in P2, since we know that we will
not be putting j there (as we already have it in our string).

5. If the place occupied by j in P2 has already been filled in the offspring by
an element k, put i in the position occupied by k in P2.
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6. Having dealt with the elements from the crossover segment, the remaining
positions in this offspring can be filled from P2, and the second child is
created analogously with the parental roles reversed.

Fig. 4.12. PMX, step 1: copy randomly selected segment from first parent into
offspring

Fig. 4.13. PMX, step 2: consider in turn the placement of the elements that occur
in the middle segment of parent 2 but not parent 1. The position that 8 takes in P2
is occupied by 4 in the offspring, so we can put the 8 into the position vacated by
the 4 in P2. The position of the 2 in P2 is occupied by the 5 in the offspring, so we
look first to the place occupied by the 5 in P2, which is position 7. This is already
occupied by the value 7, so we look to where this occurs in P2 and finally find a
slot in the offspring that is vacant – the third. Finally, note that the values 6 and 5
occur in the middle segments of both parents.

Fig. 4.14. PMX, step 3: copy remaining elements from second parent into same
positions in offspring

Inspection of the offspring created shows that in this case six of the nine
links present in the offspring are present in one or more of the parents. How-
ever, of the two edges {5–6} and {7–8} common to both parents, only the first
is present in the offspring. Radcliffe [350] suggests that a desirable property
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of any recombination operator is that of respect, i.e., that any information
carried in both parents should also be present in the offspring. A moment’s
reflection tells us that this is clearly true for all of the recombination opera-
tors described above for binary and integer representations, and for discrete
recombination for floating-point representations, but as the example above
shows, is not necessarily true of PMX. With this issue in mind, several other
operators have been designed for adjacency-based permutation problems, of
which the best known is described next.
Edge crossover is based on the idea that offspring should be created as
far as possible using only edges that are present in (one of) the parents. It
has undergone a number of revisions over the years. Here we describe the
most commonly used version: edge-3 crossover after Whitley [452], which is
designed to ensure that common edges are preserved.
In order to achieve this, an edge table (also known as an adjacency list) is

constructed, which for each element lists the other elements that are linked
to it in the two parents. A ‘+’ in the table indicates that the edge is present
in both parents. The operator works as follows:

1. Construct the edge table
2. Pick an initial element at random and put it in the offspring
3. Set the variable current element = entry
4. Remove all references to current element from the table
5. Examine list for current element

• If there is a common edge, pick that to be the next element
• Otherwise pick the entry in the list which itself has the shortest list
• Ties are split at random

6. In the case of reaching an empty list, the other end of the offspring is
examined for extension; otherwise a new element is chosen at random

Clearly only in the last case will so-called foreign edges be introduced.
Edge-3 recombination is illustrated by the following example where the

parents are the same two permutations used in the PMX example [ 1 2 3 4
5 6 7 8 9] and [ 9 3 7 8 2 6 5 1 4], giving the edge table seen in Table 4.2
and the construction illustrated in Table 4.3. Note that only one child per
recombination is created by this operator.

Element Edges Element Edges

1 2,5,4,9 6 2,5+,7
2 1,3,6,8 7 3,6,8+
3 2,4,7,9 8 2,7+, 9
4 1,3,5,9 9 1,3,4,8
5 1,4,6+

Table 4.2. Edge crossover: example edge table
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Choices Element Reason Partial
selected result

All 1 Random [ 1]
2,5,4,9 5 Shortest list [ 1 5]
4,6 6 Common edge [ 1 5 6]
2,7 2 Random choice (both have two items in list) [ 1 5 6 2]
3,8 8 Shortest list [ 1 5 6 2 8]
7,9 7 Common edge [ 1 5 6 2 8 7]
3 3 Only item in list [ 1 5 6 2 8 7 3]
4,9 9 Random choice [ 1 5 6 2 8 7 3 9]
4 4 Last element [ 1 5 6 2 8 7 3 9 4 ]

Table 4.3. Edge crossover: example of permutation construction

Order crossover This operator was designed by Davis for order-based per-
mutation problems [98]. It begins in a similar fashion to PMX, by copying a
randomly chosen segment of the first parent into the offspring. However, it
proceeds differently because the intention is to transmit information about
relative order from the second parent.

1. Choose two crossover points at random, and copy the segment between
them from the first parent (P1) into the first offspring.

2. Starting from the second crossover point in the second parent, copy the
remaining unused numbers into the first child in the order that they appear
in the second parent, wrapping around at the end of the list.

3. Create the second offspring in an analogous manner, with the parent roles
reversed.

This is illustrated in Figs. 4.15 and 4.16.

Fig. 4.15. Order crossover, step 1: copy randomly selected segment from first parent
into offspring

Cycle Crossover The final operator that we will consider in this section is
cycle crossover [325], which is concerned with preserving as much information
as possible about the absolute position in which elements occur. The operator
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Fig. 4.16. Order crossover, step 2: copy rest of alleles in order they appear in second
parent, treating string as toroidal

works by dividing the elements into cycles. A cycle is a subset of elements
that has the property that each element always occurs paired with another
element of the same cycle when the two parents are aligned. Having divided
the permutation into cycles, the offspring are created by selecting alternate
cycles from each parent. The procedure for constructing cycles is as follows:

1. Start with the first unused position and allele of P1
2. Look at the allele in the same position in P2
3. Go to the position with the same allele in P1
4. Add this allele to the cycle
5. Repeat steps 2 through 4 until you arrive at the first allele of P1

The complete operation of the operator is illustrated in Fig. 4.17.

Fig. 4.17. Cycle crossover. Top: step 1- identification of cycles. Bottom: step 2-
construction of offspring
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4.6 Tree Representation

Trees are among the most general structures for representing objects in com-
puting, and form the basis for the branch of evolutionary algorithms known
as genetic programming (GP). In general, (parse) trees capture expressions
in a given formal syntax. Depending on the problem at hand, and the users’
perceptions on what the solutions must look like, this can be the syntax of
arithmetic expressions, formulas in first-order predicate logic, or code written
in a programming language. To illustrate the matter, let us consider one of
each of these types of expressions.

• an arithmetic formula:

2 · π + ((x+ 3)− y

5 + 1
), (4.8)

• a logical formula:

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y))), (4.9)

• the following program:

i = 1;

while (i < 20)

{
i = i+1;

}

Figures. 4.18 and 4.19 show the parse trees belonging to these expressions.
These examples illustrate generally how parse trees can be used and inter-
preted.
Technically speaking, the specification of how to represent individuals boils

down to defining the syntax of the trees, or equivalently the syntax of the
symbolic expressions (s-expressions) they represent. This is commonly done
by defining a function set and a terminal set. Elements of the terminal set
are allowed as leaves, while symbols from the function set are internal nodes.
For example, a suitable function and terminal set that allow the expression in
Eq. (4.8) as syntactically correct is given in Table 4.4.

Function set {+,−, ·, /}

Terminal set IR ∪ {x, y}

Table 4.4. Function and terminal set that allow the expression in Eq. (4.8) as
syntactically correct
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Fig. 4.18. Parse trees belonging to Eqs. (4.8) (left) and (4.9) (right)

Fig. 4.19. Parse tree belonging to the above program

Strictly speaking, we should specify the arity (the number of attributes it
takes) for each function symbol in the function set, but for standard arithmetic
or logical functions this is often omitted. Similarly, a definition of correct
expressions (trees) based on the function and terminal set should be given.
However, as this follows the general way of defining terms in formal languages
it is also often omitted. For the sake of completeness we provide it below:

• All elements of the terminal set T are correct expressions.
• If f ∈ F is a function symbol with arity n and e1, . . . , en are correct

expressions, then so is f(e1, . . . , en).
• There are no other forms of correct expressions.

Note that in this definition we do not distinguish different types of expressions;
each function symbol can take any expression as argument. This feature is
known as the closure property.
In practice, function symbols and terminal symbols are often typed and

impose extra syntactic requirements. For instance, one might need both arith-
metic and logical function symbols, e.g., to allow (N = 2) ∧ (S > 80.000)) as
a correct expression. In this case it is necessary to enforce that an arithmetic
(logical) function symbol only has arithmetic (logical) arguments, e.g., to ex-
clude N ∧ 80.000 as a correct expression. This issue is addressed in strongly
typed genetic programming [304].
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4.6.1 Mutation for Tree Representation

The most common implementation of tree-based mutation works by se-
lecting a node at random from the tree, and replacing the subtree starting
there with a randomly generated tree. This newly created subtree is usually
generated the same way as in the initial population, (Sect. 6.4), and so is
subject to conditions on maximum depth and width. Figure 4.20 illustrates
how the parse tree belonging to Eq. (4.8) (left) is mutated into one standing
for 2 · π + ((x + 3) − y). Note that since a node is selected at random to be
the replacement point, and that as one goes down through a tree there are
potentially more nodes at any given depth, the size (tree depth) of the child
can exceed that of the parent tree.

parent child

Fig. 4.20. Tree-based mutation illustrated: the node designated by a circle in the
tree on the left is selected for mutation. The subtree staring at that node is replaced
by a randomly generated tree, which is a leaf here

Tree-based mutation has two parameters:

• the probability of choosing mutation at the junction with recombination
• the probability of choosing an internal point within the parent as the root

of the subtree to be replaced

It is remarkable that Koza’s classic book on GP from 1992 [252] advises
users to set the mutation rate at 0, i.e., it suggests that GP works without
mutation. More recently Banzhaf et al. recommended 5% [37]. In giving mu-
tation such a limited role, GP differs from other EA streams. The reason for
this is the generally shared view that crossover has a large shuffling effect, act-
ing in some sense as a macromutation operator [9]. The current GP practice
uses low, but positive, mutation frequencies, even though some studies indi-
cate that the common wisdom favouring an (almost) pure crossover approach
might be misleading [275].
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4.6.2 Recombination for Tree Representation

Tree-based recombination creates offspring by swapping genetic material
among the selected parents. In technical terms, it is a binary operator creating
two child trees from two parent trees. The most common implementation
is subtree crossover, which works by interchanging the subtrees starting
at two randomly selected nodes in the given parents. This is illustrated in
Fig. 4.21. Note that the size (tree depth) of the children can exceed that of
the parent trees. In this, recombination within GP differs from recombination
in other EC dialects. Tree-based recombination has two parameters:

• the probability of choosing recombination at the junction with mutation
• the probability of choosing internal nodes as crossover points

parent 1 parent 2

child 1 child 2

Fig. 4.21. Tree-based crossover illustrated: the nodes designated by a circle in the
parent trees are selected to serve as crossover points. The subtrees staring at those
nodes are swapped, resulting in two new trees, which are the children

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


5

Fitness, Selection, and Population Management

As explained in Chap. 3, there are two fundamental forces that form the basis
of evolutionary systems: variation and selection. In this chapter we discuss the
EA components behind the second one. Having discussed some typical popula-
tion management models, and selection operators, we then go on to explicitly
look at some situations where diversity is needed, such as multimodal prob-
lems, and some approaches to population management, and altering selection,
that have been proposed to increase useful diversity.

5.1 Population Management Models

In the previous chapter we have focused on the way that potential solutions
are represented to give a population of diverse individuals, and on the way that
variation (recombination and mutation) operators work on those individuals
to yield offspring. These offspring will generally inherit some of their parents’
properties but also differ slightly from them, providing new potential solutions
to be evaluated. We now turn our attention to the second important element
of the evolutionary process – the differential survival of individuals to compete
for resources and take part in reproduction, based on their relative fitness.
Two different models of population management are found in the literature:

the generational model and the steady-state model. The generational
model is the one used in the example in Sect. 3.3. In each generation we
begin with a population of size μ, from which a mating pool of parents is
selected. Every member of the pool is a copy of something in the population,
but the proportions will probably differ, with (usually) more copies of the
‘better’ parents. Next, λ offspring are created from the mating pool by the
application of variation operators, and evaluated. After each generation, the
whole population is replaced by μ individuals selected from its offspring, which
is called the next generation. In the model typically used within the Simple
Genetic Algorithm, the population, mating pool and offspring are all the same
size, so that each generation is replaced by all of its offspring. This restriction
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is not necessary: for example in the (μ, λ) Evolution Strategy, an excess of
offspring is created (typically λ/μ is in the range 5–7) from which the next
generation is selected on the basis of fitness.
In the steady-state model, the entire population is not changed at once,

but rather a part of it. In this case, λ (< μ) old individuals are replaced by λ
new ones, the offspring. The proportion of the population that is replaced is
called the generational gap, and is equal to λ/μ. Since its introduction in
Whitley’s GENITOR algorithm [460], the steady-state model has been widely
studied and applied [105, 354, 442], often with λ = 1.
At this stage it is worth reiterating that the operators that are responsible

for this competitive element of population management work on the basis of an
individual’s fitness. As a direct consequence, these selection and replacement
operators work independently of the problem representation chosen. As was
seen in the general description of an evolutionary algorithm at the start of
Chap. 3, there are two points in the evolutionary cycle at which fitness-based
competition can occur: during selection to take part in mating, and during
the selection of individuals to survive into the next generation. We begin by
describing the most commonly used methods for parent selection, but note
that many of these can also be applied during the survival selection phase.
As a final preliminary, please note that we will adopt a convention that we
are trying to maximise fitness, and that fitness values are not negative. Often
problems are expressed in terms of an objective function to be minimised,
and sometimes negative fitness values occur. However, in all cases these can
be mapped into the desired form by using an appropriate transformation.

5.2 Parent Selection

5.2.1 Fitness Proportional Selection

The principles of fitness proportional selection (FPS) were described in
the simple example in Sect. 3.3. Recall that for each choice, the probability
that an individual i is selected for mating depends on its absolute fitness value
compared to the absolute fitness values of the rest of the population. Observing
that the sum of the probabilities over the whole population must equal 1 the
selection probability of individual i using FPS is PFPS(i) = fi/

∑µ
j=1 fj .

This selection mechanism was introduced in [220] and has been the topic
of intensive study ever since, not least because it happens to be particularly
amenable to theoretical analysis. However, it has been recognised that there
are some problems with this selection mechanism:

• Outstanding individuals take over the entire population very quickly. This
tends to focus the search process, and makes it less likely that the algo-
rithm will thoroughly search the space of possible solutions, where better
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solutions may exist. This phenomenon is often observed in early genera-
tions, when many of the randomly created individuals will have low fitness,
and is known as premature convergence.

• When fitness values are all very close together, there is almost no selection
pressure, so selection is almost uniformly random, and having a slightly
better fitness is not very ‘useful’ to an individual. Therefore, later in a
run, when some convergence has taken place and the worst individuals
are gone, it is typically observed that the mean population fitness only
increases very slowly.

• The mechanism behaves differently if the fitness function is transposed.

This last point is illustrated in Table 5.1, which shows three individuals
and a fitness function with f(A) = 1, f(B) = 4, and f(C) = 5. Transposing
this fitness function changes the selection probabilities, while the shape of the
fitness landscape, and hence the location of the optimum, remains the same.

Individual Fitness Sel. prob. Fitness Sel. prob. Fitness Sel. prob.
for f for f for f + 10 for f + 10 for f + 100 for f + 100

A 1 0.1 11 0.275 101 0.326
B 4 0.4 14 0.35 104 0.335
C 5 0.5 15 0.375 105 0.339

Sum 10 1.0 40 1.0 310 1.0

Table 5.1. Transposing the fitness function changes selection probabilities for
fitness-proportionate selection

To avoid the second two problems with FPS, a procedure known as win-
dowing is often used. Under this scheme, fitness differentials are maintained
by subtracted from the raw fitness f(x) a value βt, which depends in some
way on the recent search history, and so can change over time (hence the su-
perscript t). The simplest approach is just to subtract the value of the least-fit
member of the current population P t by setting βt = miny∈P tf(y) This value
may fluctuate quite rapidly, so one alternative is to use a running average over
the last few generations.
Another well-known approach is sigma scaling [189], which incorporates

information about the mean f̄ and standard deviation σf of fitnesses in the
population:

f ′(x) = max(f(x)− (f̄ − c · σf ), 0),

where c is a constant value, usually set to 2.

5.2.2 Ranking Selection

Rank-based selection is another method that was inspired by the observed
drawbacks of fitness proportionate selection [32]. It preserves a constant se-
lection pressure by sorting the population on the basis of fitness, and then
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allocating selection probabilities to individuals according to their rank, rather
than according to their actual fitness values. Let us assume that the ranks
are numbered so that an individual’s rank notes how many worse solutions
are in the population, so the best has rank μ-1 and the worst has rank 0.
The mapping from rank number to selection probability can be done in many
ways, for example, linearly or exponentially decreasing. As with FPS above,
and any selection scheme, we insist that the sum over the population of the
selection probabilities must be unity – that we must select one of the parents.
The usual formula for calculating the selection probability for linear ranking

schemes is parameterised by a value s (1 < s ≤ 2). In the case of a generational
EA, where μ = λ, this can be interpreted as the expected number of offspring
allotted to the fittest individual. Since this individual has rank μ− 1, and the
worst has rank 0, then the selection probability for an individual of rank i is:

Plin−rank(i) =
(2− s)

μ
+

2i(s− 1)

μ(μ− 1)
.

Note that the first term will be constant for all individuals (it is there to
ensure the probabilities add to one). Since the second term will be zero for
the worst individual (with rank i = 0), it can be thought of as the ‘baseline’
probability of selecting that individual.
In Table 5.2 we show an example of how the selection probabilities differ

for a population of μ = 3 different individuals with fitness proportionate and
rank-based selection with different values of s.

Individual Fitness Rank PselFP PselLR (s = 2) PselLR (s = 1.5)

A 1 0 0.1 0 0.167
B 4 1 0.4 0.33 0.33
C 5 2 0.5 0.67 0.5

Sum 10 1.0 1.0 1.0

Table 5.2. Fitness proportionate (FP) versus linear ranking (LR) selection

When the mapping from rank to selection probabilities is linear, only lim-
ited selection pressure can be applied. This arises from the assumption that,
on average, an individual of median fitness should have one chance to be re-
produced, which in turn imposes a maximum value of s = 2. (Since the scaling
is linear, letting s > 2 would require the worst to have a negative selection
probability if the probabilities are to sum to unity.) If a higher selection pres-
sure is required, i.e., more emphasis on selecting individuals of above-average
fitness, an exponential ranking scheme is often used, of the form:

Pexp−rank(i) =
1− e−i

c
.

The normalisation factor c is chosen so that the sum of the probabilities is
unity, i.e., it is a function of the population size.
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5.2.3 Implementing Selection Probabilities

The description above provides two alternative schemes for deciding a prob-
ability distribution that defines the likelihood of each individual in the popu-
lation being selected for reproduction. In an ideal world, the mating pool of
parents taking part in recombination would have exactly the same proportions
as this selection probability distribution. This would mean that the number
of any given individual would be given by its selection probability, multiplied
by the size of the mating pool. However, in practice this is not possible be-
cause of the finite size of the population, i.e., when we do this multiplication,
we find typically that some individuals have an expected number of copies
which is noninteger – whereas of course in practice we need to select complete
individuals. In other words, the mating pool of parents is sampled from the
selection probability distribution, but will not in general accurately reflect it,
as was seen in the example in Sect. 3.3.
The simplest way of achieving this sampling is known as the roulette

wheel algorithm. Conceptually this is the same as repeatedly spinning a
one-armed roulette wheel, where the sizes of the holes reflect the selection
probabilities. In general, the algorithm can be applied to select λ members
from the set of μ parents into a mating pool. To illustrate the workings of
this algorithm, we will assume some order over the population (ranking or
random) from 1 to μ, so that we can calculate the cumulative probability dis-

tribution, which is a list of values [a1, a2, . . . , aµ] such that ai =
∑i

1 Psel(i),
where Psel(i) is defined by the selection distribution — fitness proportionate
or ranking. Note that this implies aµ = 1. The outlines of the algorithm are
given in Fig. 5.1.

BEGIN

/* Given the cumulative probability distribution a */
/* and assuming we wish to select λ members of the mating pool */
set current member = 1;
WHILE ( current member ≤ λ ) DO

Pick a random value r uniformly from [0, 1];
set i = 1;
WHILE ( ai < r ) DO

set i = i+ 1;
OD

set mating pool[current member] = parents[i];
set current member = current member + 1;

OD

END

Fig. 5.1. Pseudocode for the roulette wheel algorithm
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Despite its inherent simplicity, it has been recognised that the roulette
wheel algorithm does not in fact give a particularly good sample of the re-
quired distribution. Whenever more than one sample is to be drawn from the
distribution – for instance λ – the use of the stochastic universal sam-
pling (SUS) algorithm [32] is preferred. Conceptually, this is equivalent to
making one spin of a wheel with λ equally spaced arms, rather than λ spins of
a one-armed wheel. Given the same list of cumulative selection probabilities
[a1, a2, . . . , aµ], it selects the mating pool as described in Fig. 5.2.

BEGIN

/* Given the cumulative probability distribution a */
/* and assuming we wish to select λ members of the mating pool */
set current member = i = 1;
Pick a random value r uniformly from [0, 1/λ];
WHILE ( current member ≤ λ ) DO

WHILE ( r ≤ a[i] ) DO

set mating pool[current member] = parents[i];
set r = r + 1/λ;
set current member = current member + 1;

OD

set i = i+ 1;
OD

END

Fig. 5.2. Pseudocode for the stochastic universal sampling algorithm making λ
selections

Since the value of the variable r is initialised in the range [0, 1/λ] and
increases by an amount 1/λ every time a selection is made, it is guaranteed
that the number of copies made of each parent i is at least the integer part of
λ · Psel(i) and is no more than one greater. Finally, we should note that with
minor changes to the code, SUS can be used to make any number of selections
from the parents, and in the case of making just one selection, it is the same
as the roulette wheel.

5.2.4 Tournament Selection

The previous two selection methods and the algorithms used to sample from
their probability distributions relied on a knowledge of the entire population.
However, in certain situations, for example, if the population size is very
large, or if the population is distributed in some way (perhaps on a parallel
system), obtaining this knowledge is either highly time consuming or at worst
impossible. Furthermore, both methods assume that fitness is a quantifiable
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measure (based on some explicit objective function to be optimised), which
may not be valid. Think, for instance, of an application evolving game playing
strategies. In this case we might not be able to quantify the strength of a given
individual (strategy) in isolation, but we can compare any two of them by
simulating a game played by these strategies as opponents. Similar situations
occur also in evolutionary design and evolutionary art applications [48, 49]. In
these the user typically makes a subjective selection by comparing individuals
representing designs or pieces of art, rather than using a quantitative measure
to assign fitness, cf. Sect. 14.1.
Tournament selection is an operator with the useful property that it does

not require any global knowledge of the population, nor a quantifiable measure
of quality. Instead it only relies on an ordering relation that can compare
and rank any two individuals. It is therefore conceptually simple and fast
to implement and apply. The application of tournament selection to select λ
members of a pool of μ individuals works according to the procedure shown
in Fig. 5.3.

BEGIN

/* Assume we wish to select λ members of a pool of µ individuals */
set current member = 1;
WHILE ( current member ≤ λ ) DO

Pick k individuals randomly, with or without replacement;

Compare these k individuals and select the best of them;

Denote this individual as i;
set mating pool[current member] = i;
set current member = current member + 1;

OD

END

Fig. 5.3. Pseudocode for the tournament selection algorithm

Because tournament selection looks at relative rather than absolute fit-
ness, it has the same properties as ranking schemes in terms of invariance
to translation and transposition of the fitness function. The probability that
an individual will be selected as the result of a tournament depends on four
factors, namely:

• Its rank in the population. Effectively this is estimated without the need
for sorting the whole population.

• The tournament size k. The larger the tournament, the greater the
chance that it will contain members of above-average fitness, and the less
that it will consist entirely of low-fitness members. Thus the probability
of selecting a high-fitness member increases, and that of selecting a low-
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fitness member decreases, as k is increased. Hence we say that increasing
k increases the selection pressure.

• The probability p that the most fit member of the tournament is selected.
Usually this is 1 (deterministic tournaments), but stochastic versions are
also used with p < 1. Since this makes it more likely that a less-fit member
will be selected, decreasing p will decrease the selection pressure.

• Whether individuals are chosen with or without replacement. In the sec-
ond case, with deterministic tournaments, the k-1 least-fit members of the
population can never be selected, since the other member of the tour-
nament will be fitter. However, if the tournament candidates are picked
with replacement, it is always possible for even the least-fit member of the
population to be selected, since with probability 1/μk > 0 all tournament
candidates will be copies of that member.

These properties of tournament selection were characterised in [20, 58],
and it was shown [190] that for binary (k = 2) tournaments with parameter
p the expected time for a single individual of high fitness to take over the
population is the same as that for linear ranking with s = 2p. However,
since λ tournaments are required to produce λ selections, it suffers from the
same problems as the roulette wheel algorithm, in that the outcomes can
show a high variance from the theoretical probability distribution. Despite
this drawback, tournament selection is perhaps the most widely used selection
operator in some EC dialects (in particular, Genetic Algorithms), due to its
extreme simplicity and the fact that the selection pressure is easy to control
by varying the tournament size k.

5.2.5 Uniform Parent Selection

In some dialects of EC it is common to use mechanisms such that each in-
dividual has the same chance to be selected. At first sight this might appear
to suggest that there is no selection pressure in the algorithm, which would
indeed be true if this was not coupled with a strong fitness-based survivor
selection mechanism.
In Evolutionary Programming, usually there is no recombination, only mu-

tation, and parent selection is deterministic. In particular, each parent pro-
duces exactly one child by mutation. Evolution Strategies are also usually
implemented with uniform random selection of parents into the mating pool,
i.e., for each 1 ≤ i ≤ μ we have Puniform(i) = 1/μ.

5.2.6 Overselection for Large Populations

In some cases it may be desirable to work with extremely large populations.
Sometimes this could be for technical reasons – for example, there has been
a lot of interest in implementing EAs using graphics cards (GPUs), which
offer similar speed-up to clusters or supercomputers, but at much lower cost.
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However, achieving the maximum potential speed-up typically depends on
having a large population on each processing node.
Regardless of the implementation details, if the potential search space is

enormous it might be a good idea to use a large population to avoid ‘missing’
promising regions in the initial random generation, and thereafter to maintain
the diversity needed to support exploration. For example, in Genetic Program-
ming it is not unusual to use population sizes of several thousands: in 1994
[254] used 1000; in 1996 [7] used 128,000; and in 1999 [255] used 1,120,000
individuals. In the latter case, often a method called over-selection is used
for population sizes of 1000 and above.
In this method, the population is first ranked by fitness and then divided

into two groups, the top x% in one and the remaining (100−x)% in the other.
When parents are selected, 80% of the selection operations choose from the
first group, and the other 20% from the second. Koza [252] provides rule of
thumb values for x depending on the population size as shown in Table 5.3.
As can be seen, the number of individuals from which the majority of parents
are chosen stays constant, i.e., the selection pressure increases dramatically
for larger populations.

Population size Proportion of population
in fitter group (x)

1000 32%
2000 16%
4000 8%
8000 4%

Table 5.3. Rule of thumb values for overselection: Proportion of ranked population
in fitter subpopulation from which majority of parents are selected

5.3 Survivor Selection

The survivor selection mechanism is responsible for managing the process
of reducing the working memory of the EA from a set of μ parents and λ
offspring to a set of μ individuals forming the next generation. In principle,
any of the mechanisms introduced for parent selection could be also used
for selecting survivors. However, over the history of EC a number of special
survivor selection strategies have been suggested and are widely used.
As explained in Sect. 3.2.6, this step in the main evolutionary cycle is also

called replacement. In the present section we often use this latter term to
be consistent with the literature. Replacement strategies can be categorised
according to whether they discriminate on the basis of the fitness or the age
of individuals.
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5.3.1 Age-Based Replacement

The basis of these schemes is that the fitness of individuals is not taken into
account during the selection of which individuals to replace in the population.
Instead, they are designed so that each individual exists in the population for
the same number of EA iterations. This does not preclude the possibly that
copies of highly-fit individuals might persist in the population, but for this
to happen they must be chosen at least once in the selection phase and then
survive the recombination and mutation stages without being modified. Note
that since fitness is not taken into account, the mean, and even best fitness of
any given generation, may be lower than that of its predecessor. While slightly
counterintuitive, this is not a problem as long as it does not happen too often,
and may even be beneficial if the population is concentrated around a local
optimum. A net increase in the mean fitness over time therefore relies on (i)
having sufficient selection pressure when selecting parents into the mating
pool, and (ii) using variation operators that are not too disruptive.
Age-based replacement is the strategy used in the simple Genetic Algorithm.

Since the number of offspring produced is the same as the number of parents
(μ = λ), each individual exists for just one cycle, and the parents are simply
discarded, to be replaced by the entire set of offspring. This is the generational
model, but in fact this replacement strategy can also be implemented in a
steady-state with overlapping populations (λ < μ), right to the other extreme
where a single offspring is created and inserted in the population in each cycle.
In this case the strategy takes the form of a first-in-first-out (FIFO) queue.
An alternative method of age-based replacement for steady-state GAs is to

randomly select a parent for replacement. A straightforward mathematical ar-
gument based on the population size being fixed tells us that this probabilistic
strategy has the same mean effect – that is, on average individuals live for
μ iterations. De Jong and Sarma [105] investigated this strategy experimen-
tally, and found that the algorithm showed higher variance in performance
than a comparable generational GA. Smith and Vavak [400] showed that this
was because the random strategy is far more likely to lose the best member
of the population than a delete-oldest (FIFO) strategy. For these reasons the
random replacement strategy is not recommended.

5.3.2 Fitness-Based Replacement

A wide number of strategies based on fitness have been proposed for choosing
which μ of the μ parents + λ offspring should go forward to the next
generation. Some also take age into account.

Replace worst (GENITOR) In this scheme the worst λ members of the
population are selected for replacement. Although this can lead to very rapid
improvements in the mean population fitness, it can also lead to premature
convergence as the population tends to rapidly focus on the fittest member
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currently present. For this reason it is commonly used in conjunction with
large populations and/or a “no duplicates” policy.

Elitism This scheme is commonly used in conjunction with age-based
and stochastic fitness-based replacement schemes, to prevent the loss of the
current fittest member of the population. In essence a trace is kept of the
current fittest member, and it is always kept in the population. Thus if it is
chosen in the group to be replaced, and none of the offspring being inserted
into the population has equal or better fitness, then it is kept and one of the
offspring is discarded.

Round-robin tournament This mechanism was introduced within Evo-
lutionary Programming, where it is applied to choose μ survivors. However,
in principle, it can also be used to select λ parents from a given population
of μ. The method works by holding pairwise tournament competitions in
round-robin format, where each individual is evaluated against q others
randomly chosen from the merged parent and offspring populations. For each
comparison, a “win” is assigned if the individual is better than its opponent.
After finishing all tournaments, the μ individuals with the greatest number
of wins are selected. Typically, q = 10 is recommended in Evolutionary Pro-
gramming. It is worth noting that this stochastic variant of selection allows
for less-fit solutions to be selected if they had a lucky draw of opponents. As
the value of q increases this chance becomes more and unlikely, until in the
limit it becomes deterministic μ+ μ.

(μ + λ) Selection The name and the notation of the (μ + λ) selection
comes from Evolution Strategies. In general, it refers to the case where the
set of offspring and parents are merged and ranked according to (estimated)
fitness, then the top μ are kept to form the next generation. This strategy
can be seen as a generalisation of the GENITOR method (μ > λ) and the
round-robin tournament in Evolutionary Programming (μ = λ). In Evolution
Strategies λ > μ with a great offspring surplus (typically λ/μ ≈ 5 − 7) that
induces a large selection pressure.

(μ, λ) Selection The (μ, λ) strategy used in Evolution Strategies where
typically λ > μ children are created from a population of μ parents. This
method works on a mixture of age and fitness. The age component means
that all the parents are discarded, so no individual is kept for more than
one generation (although of course copies of it might exist later). The fitness
component comes from the fact that the λ offspring are ranked according to
the fitness, and the best μ form the next generation.

In Evolution Strategies, (μ, λ) selection, is generally preferred over (μ+ λ)
selection for the following reasons:
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• The (μ, λ) discards all parents and is therefore in principle able to leave
(small) local optima. This may be advantageous in a multimodal search
space with many local optima.

• If the fitness function is not fixed, but changes in time, the (μ+λ) selection
preserves outdated solutions, so it is not able to follow the moving optimum
well.

• (μ + λ) selection hinders the self-adaptation mechanism used to adapt
strategy parameters, cf. Sect. 6.2.

5.4 Selection Pressure

Throughout this chapter we have referred rather informally to the notion
of selection pressure, using an intuitive description that as selection pressure
increases, so fitter solutions are more likely to survive, or be chosen as parents,
and less-fit solutions are correspondingly less likely.
A number of measures have been proposed for quantifying this, and studied

theoretically, of which the best known is the takeover time. The takeover
time τ∗ of a given selection mechanism is defined as the number of generations
it takes until the application of selection completely fills the population with
copies of the best individual, given one copy initially. Goldberg and Deb [190]
showed that

τ∗ =
lnλ

ln(λ/μ)
.

For a typical evolution strategy with μ = 15 and λ = 100, this results in
τ∗ ≈ 2. For fitness proportional selection in a genetic algorithm it is

τ∗ = λ lnλ,

resulting in τ∗ = 460 for population size λ = 100.
Other authors have extended this analysis to other strategies in generational

and steady-state population models [79, 400]; Rudolph applied it to different
population structures such as rings [360], and also to consider a range of other
measures of selection operators’ performance, such as the ‘Diversity Indica-
tor’. Other measures of selection pressure have been proposed, including the
‘Expected Loss of Diversity’ [310], which is the expected change in the number
of diverse solutions after μ selection events; and from theoretical biology, the
‘Selection Intensity’, which is the expected relative increase in mean popula-
tion fitness after applying a selection operator.
While these measures can help in understanding the effect of different strate-

gies, they can also be rather misleading since they consider selection alone,
rather than in the context of variation operators providing diversity. Smith
[390] derived mathematical expressions for a number of these indicators con-
sidering a wide range of replacement strategies in steady-state EAs. Experi-
ments bore out the analytic results, and a benchmark comparison using well-
known test problems showed that both the mean and variance of the takeover



5.5 Multimodal Problems, Selection, and the Need for Diversity 91

time could correctly predict the relative ordering of the mean and variance of
the time taken to first locate the global optimum. However, for many appli-
cations of EAs the most important measure is the quality of the best solution
found and also possibly the diversity of good solutions discovered. Smith’s
results showed that in fact none of the theoretical measures were particularly
indicative of the relative performance of different algorithms in these terms.

5.5 Multimodal Problems, Selection, and the Need for

Diversity

5.5.1 Multimodal Problems

In Sects. 2.3.1 and 3.5 we introduced the concept of multimodal search land-
scapes and local optima. We discussed how effective search relies on the preser-
vation of sufficient diversity to allow both exploitation of learned information
(by investigating regions contained high fitness solutions discovered) and ex-
ploration in order to uncover new high-fitness regions.
Multimodality is a typical aspect of the type of problems for which EAs are

often employed, either in attempt to locate the global optimum (particularly
when a local optimum has the largest basin of attraction), or to identify a
number of high–fitness solutions corresponding to various local optima. The
latter situation can often arise, for example, when the fitness function used by
the EA does not completely specify the underlying problem. An example of
this might be in the design of a new widget, where the parameters of the fitness
function may change during the design process, as progressively more refined
and detailed models are used as decisions such as the choice of materials, etc.,
are made. In this situation it is valuable to be able to examine a number of
possible options, first so as to permit room for human aesthetic judgements,
and second because it is probably desirable to use solutions from niches with
broader peaks rather than from a sharp peak. This is because the latter may
be overfitted (that is, overly specialised) to the current fitness function and
may not be as good once the fitness function is refined.
The population-based nature of EAs holds out much promise for identifying

multiple optima, however, in practice the finite population size, when coupled
with recombination between any parents (known as panmictic mixing) leads
to the phenomenon known as genetic drift and eventual convergence around
one optimum. The reasons for this can easily be seen: imagine that we have
two equally fit niches, and a population of 100 individuals originally equally
divided between them. Eventually, because of the random effects in selection,
it is likely that we will obtain a parent population consisting of 49 of one sort
and 51 of the other. Ignoring the effects of recombination and mutation, in the
next generation the probabilities of selecting individuals from the two niches
are now 0.49 and 0.51 respectively, i.e., we are increasingly likely to select
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individuals from the second niche. This effect increases as the two subpopu-
lations become unbalanced, until eventually we end up with only one niche
represented in the population.

5.5.2 Characterising Selection and Population Management
Approaches for Preserving Diversity

A number of mechanisms have been proposed to aid the use of EAs on mul-
timodal problems. These can be broadly separated into two camps: explicit
approaches, in which specific changes are made to operators in order to pre-
serve diversity, and implicit approaches, in which a framework is used that
permits, but does not guarantee, the preservation of diverse solutions. Before
describing these it is useful to clarify exactly what we mean by ‘diversity’ and
‘space’. Just as biological evolution takes place on a geographic surface, but
can also be considered to occur on an adaptive landscape, so we can define a
number of spaces within which the evolutionary algorithms operate:

• Genotype Space: We may perceive the set of representable solutions as
a genotype space and define some distance metrics. This can be a natural
distance metrics in that space (e.g., the Manhattan distance) or based on
some fundamental move operator. Typical move operators include a single
bit-flip for binary spaces, a single inversion for adjacency-based permuta-
tion problems and a single swap for order-based permutations problems.

• Phenotype Space: This is the end result: a search space whose struc-
ture is based on distance metrics between solutions. The neighbourhood
structure in this space may bear little relationship to that in the genotype
space according to the complexity of the representation–solution mapping.

• Algorithmic Space: This is the equivalent of the geographical space on
which life on Earth has evolved. Effectively we are considering that the
working memory of the EA, that is, the population of candidate solutions,
can be structured in some way. This spatial structure could be either a
conceptual division, or real: for example, a population might be split over
a number of processors or cores.

Explicit approaches to diversity maintenance based on measures of either
genotype or phenotypic space include Fitness Sharing (Sect. 5.5.3), Crowding
(Sect. 5.5.4), and Speciation (Sect. 5.5.5), all of which work by affecting the
probability distributions used by selection. Implicit approaches to diversity
maintenance based on the concept of algorithmic space include Island Model
EAs (Sect. 5.5.6) and Cellular EAs (Sect. 5.5.7).

5.5.3 Fitness Sharing

This scheme is based upon the idea that the number of individuals within a
given niche is controlled by sharing their fitness immediately prior to selec-
tion, in an attempt to allocate individuals to niches in proportion to the niche
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fitness [193]. In practice the scheme considers each possible pairing of individ-
uals i and j within the population (including i with itself) and calculates a
distance d(i, j) between them according to some distance metric (phenotypic
is preferred if possible, else genotypic, e.g., Hamming distance for binary rep-
resentations). The fitness F of each individual i is then adjusted according
to the number of individuals falling within some prespecified distance σshare

using a power-law distribution:

F ′(i) =
F (i)

∑

j sh(d(i, j))
,

where the sharing function sh(d) is a function of the distance d, given by

sh(d) =

{

1− (d/σshare)
α if d ≤ σshare,

0 otherwise .

The constant value α determines the shape of the sharing function: for α=1
the function is linear, but for values greater than this the effect of similar
individuals in reducing a solution’s fitness falls off more rapidly with distance.
The value of the share radius σshare decides both how many niches can

be maintained and the granularity with which different niches can be dis-
criminated. Deb [114] gives some suggestions for how this might be set if the
number of niches is known in advance, but clearly this is not always the case.
In [110] he suggests that a default value in the range 5–10 should be used.
We should point out that the use of fitness proportionate selection is implicit

within the fitness-sharing method. In this case there exists a stable distribu-
tion of solutions amongst the niches when solutions from each peak have the
same effective fitness F ′. Since the niche fitness F ′

k = Fk/nk, in this stable dis-
tribution each niche k contains a number of solutions nk proportional to the
niche fitness Fk

1. This point is illustrated in Fig. 5.4. Studies have indicated
that the use of alternative selection methods does not lead to the formation
and preservation of stable subpopulations in niches [324].

5.5.4 Crowding

The crowding algorithm was first suggested in De Jong’s thesis [102] as a
way of preserving diversity by ensuring that new individuals replaced similar
members of the population. The original scheme worked in a steady-state
setting (the number of new individuals generated in each step was 20% of
the population size). When a new offspring is inserted into the population, a
number 2 of members of the parent population are chosen at random, and then
the offspring replaces the most similar of those parents. A number of problems

1 This assumes for the sake of ease that all solutions within a given niche lie at its
optimal point, at zero distance from each other.

2 called the Crowding Factor (CF) - De Jong used CF=2
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Fig. 5.4. Idealised population distributions under fitness sharing (top) and crowding
(bottom). There are five peaks in the landscape with fitnesses (5,4,3,2,1) and the
population size is 15. Fitness sharing allocates individuals to peaks in proportion to
their fitness, whereas crowding distributes the population evenly amongst the peaks

were found with this approach, and Mahfoud has suggested an improvement
called deterministic crowding [278]. This algorithm relies on the fact that
offspring are likely to be similar to their parents as follows:

1. The parent population is randomly paired.
2. Each pair produces two offspring via recombination.
3. These offspring are mutated and then evaluated.
4. The four pairwise distances between offspring and parents are calculated.
5. Each offspring then competes for survival in a tournament with one par-

ent, so that the intercompetition distances are minimised. In other words,
denoting the parents as p, the offspring as o, and using the subscript to
indicate tournament pairing, d(p1, o1) + d(p2, o2) < d(p1, o2) + d(p2, o1).

The net result of all this is that offspring tend to compete for survival
with the most similar parent, so subpopulations are preserved in niches but
their size does not depend on fitness; rather it is equally distributed amongst
the peaks available. Fig. 5.4 illustrates this point in comparison with the
distribution achieved under crowding.
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5.5.5 Automatic Speciation Using Mating Restrictions

The automatic speciation approach imposes mating restrictions based on some
aspect of the candidate solutions (or their genotypes) defining them as belong-
ing to different species. The population contains multiple species, and during
parent selection for recombination individuals will only mate with others from
the same (or similar) species. The biological analogy becomes particularly
clear when we note that some authors refer to the aspect controlling repro-
ductive opportunities as an individual’s ‘plumage’ [401].
A number of schemes have been proposed to implement speciation, which

can be divided into two main approaches. In the first speciation is based on the
solution (or its representation), e.g., Deb’s phenotype (genotype)-restricted
mating [109, 114, 401]. The alternative approach is to add some elements
such as tags to the genotype that code for the individual’s species, rather
than representing part of the solution. See [62, 109, 409] for implementations,
noting that many of these ideas were previously suggested by other authors.
These are usually randomly initialised and subject to recombination and mu-
tation. Common to both approaches is the idea that once an individual has
been selected to be a parent, then the choice of mate involves the use of a
pairwise distance metric (in phenotype or genotype space as appropriate),
with potential mates being rejected beyond a certain distance.
Note that in the tag scheme, there is initially no guarantee that individuals

with similar tags will represent similar solutions, although after a few genera-
tions selection will usually take care of this problem. Neither is there any guar-
antee that different species will contain different solutions, although Spears
goes some way towards rectifying this by also using the tags to perform fit-
ness sharing [409], and even without this Deb reported improved performance
compared to a standard GA [109]. Similarly, although the phenotype-based
speciation scheme does not guarantee diversity maintenance, when used in
conjunction with fitness sharing, it was reported to give better results than
fitness sharing on its own [114].

5.5.6 Running Multiple Populations in Tandem: Island Model EAs

The idea of evolving multiple populations in tandem is also known as island
model EAs, parallel EA, and, more precisely coarse-grain parallel EAs.
These schemes attracted great interest in the 1980s when parallel computing
became popular [87, 88, 274, 339, 356, 425] and are still applicable on MIMD
systems such as computing clusters. Of course, they can equally well be im-
plemented on a single-processor architecture, without the time speed-up.
The essential idea is to run multiple populations in parallel, in some kind of

communication structure. The communication structure is usually a ring or a
torus, but in principle any form is possible, and sometimes this is determined
by the architecture of the parallel system, e.g., a hypercube [425]. After a
(usually fixed) number of generations (known as an epoch), a number of
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individuals are selected from each population to be exchanged with others
from neighbouring populations – this can be thought of as migration.
In [284] this approach is discussed in the context of Eldredge and Gould’s

theory of punctuated equilibria [154] and the exploration–exoloitation trade-
off. They suggest that during the epochs between communication, when each
subpopulation is evolving independently of the others, exploitation occurs,
so that the subpopulations each explore the search space around the fitter
solutions that they contain. When communication takes place, the injection
of individuals of potentially high fitness, and with (possibly) radically differ-
ent genotypes, facilitates exploration, particularly as recombination happens
between the two different solutions.
Whilst extremely attractive in theory, it is obvious that there are no guar-

antees per se that the different subpopulations are actually exploring different
regions of the search space. One possibility is clearly to achieve a start at
this through a careful initialisation process, but even if this is used, there are
a number of parameters that have been shown to affect the ability of this
technique to explore different peaks and obtain good results even when only
a single solution is desired as the end result.
A number of detailed studies have been made of the effects of different pa-

rameters and implementations of this basic scheme (see, e.g., earlier references
in this section, and [276] for a more recent treatment), but of course we must
bear in mind that the results obtained may be problem dependent, and so we
will restrict ourselves to commenting on a few important facets:

• How often to exchange individuals? The essential problem here is that
if the communication occurs too frequently, then all subpopulations will
converge to the same solution. Equally if it is done too infrequently, and
one or more subpopulations has converged quickly in the vicinity of a
peak, then significant amounts of computational effort may be wasted.
Most authors have used epoch lengths of the range 25–150 generations. An
elegant alternative strategy proposed in [284] is to organise communication
adaptively, that is to say, to stop the evolution in each subpopulation when
no improvement has been observed for, say, 25 generations.

• How many, and which individuals to exchange? Many authors have found
that in order to prevent too rapid convergence to the same solution, it is
better to exchange a small number of solutions between subpopulations –
usually 2–5. Once the amount of communication has been decided, it is
necessary to specify which individuals are selected from each population
to be exchanged. Clearly this can be done either by some fitness-based se-
lection mechanism (e.g., “copy-best” [339], “pick-from-fittest-half” [425])
or at random [87]. It must also be decided whether the individuals be-
ing exchanged are effectively moved from one population to another, thus
(assuming a symmetrical communication structure) maintaining subpop-
ulation sizes, or whether they are merely copied, in which case each sub-
population must then undergo some kind of survivor selection mechanism.
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The choices of how many and which individuals to exchange will evidently
affect the tendency of the subpopulations to converge to the same solu-
tion. Random, rather than fitness-based, selection strategy is less likely to
lead to takeover of one population by a new high-fitness migrant, and ex-
changing more solutions also leads to faster mixing and possible takeover.
However, the extent to which these factors affect the behaviour is clearly
tied to the epoch length, since if this is long enough to permit fitness con-
vergence then all of the solutions contained within a given subpopulation
are likely to be genotypically very similar, so the selection method used
becomes less important.

• How to divide the population into subpopulations? The general rule here
appears to be that provided a certain (problem-dependent) minimum sub-
population size is respected, then more subpopulations usually gives better
results. This clearly fits in with our understanding, since if each subpop-
ulation is exploring a different peak (the ideal scenario), the more peaks
explored, the likely it is that one of them will contain the global optimum.

Finally, it is worth mentioning that it is perfectly possible to use different
algorithmic parameters on different islands. Thus in the injection island
models the subpopulations are arranged hierarchically with each level oper-
ating at a different granularity of representation. Equally, parameters such as
the choice of recombination or mutation operator and associated parameters,
or even subpopulation sizes, might be different between different subpopula-
tions [148, 367].

5.5.7 Spatial Distribution Within One Population: Cellular EAs

In the previous section we described the implementation of a population
structure in the form of a number of subpopulations with occasional com-
munication. In this section we describe an alternative model whereby a single
population is considered to be split into a larger number of smaller overlap-
ping subpopulations (demes) by being distributed within algorithmic space.
We can consider this to be equivalent to the situation whereby biological in-
dividuals are separated, only mating and competing for survival with those
within a certain distance to them. To take a simple example from the days of
less-rapid transport, a person might only have been able to marry and have
children with someone from their own or surrounding villages. Thus should a
new gene for say, telekinesis, evolve, even if it offers huge evolutionary advan-
tage, at first it will only spread to surrounding villages. In the next generation
it might spread to those surrounding them, and so on, only slowly diffusing
or percolating throughout the society.
This effect is implemented by considering each member of the population

to exist on a different point on a grid, and only permitting recombination and
selection with neighbours, hence the common names of parallel EAs [195, 311],
fine-grain parallel EAs [281], diffusion model EA [451], distributed
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EAs [225] and, more commonly nowadays cellular EAs [456, 5]. There have
been a great many differing implementations of this form of EA, but we can
broadly outline the algorithm as follows:

1. The current population is conceptually distributed on a (usually toroidal)
grid, with one individual per node.

2. For each node we have defined a deme (neighbourhood). This is usually
the same for all nodes, e.g., for a neighbourhood size of nine on a square
lattice, we take the node and all of its immediate neighbours.

3. In each generation we consider each deme in turn and perform the follow-
ing operations within it:
• Select two solutions from the nodes in the deme that will act as parents.
• Generate an offspring via recombination.
• Mutate, then evaluate the offspring.
• Select one solution residing on a node in the deme and replace it with

the new offspring.

Within this general structure there is scope for considerable differences in
implementation. The ASPARAGOS algorithm [195, 311] uses a ladder topol-
ogy rather than a lattice, and also performs a hill-climbing step after muta-
tion. Several algorithms implemented on massively parallel SIMD or SPMD
machines use asynchronous updates in step 3 rather than the sequential mode
suggested in the third step above (a good discussion of this issue can be found
in [338]). The selection of parents might be fitness-based [95] or random (or
one of each [281]), and often one parent is taken to be that residing on the
central node of the deme. When fitness-based selection is used it is usually a
local implementation of a well-known global scheme such as fitness propor-
tionate or tournament. De Jong and Sarma [106] analysed a number of such
schemes and found that local selection techniques generally exhibited less se-
lection pressure than their global versions. While it is common to replace the
central node of the deme, again fitness-based or random selection have been
used to select the individual to be replaced, or a combination such as “replace
current solution if better” [195]. White and Pettey reported results suggest-
ing that the use of fitness in the survivor selection is preferred [451]. A good
recent treatment and discussion can be found in the book [5].

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Popular Evolutionary Algorithm Variants

In this chapter we describe the most widely known evolutionary algorithm
variants. This overview serves a twofold purpose: On the one hand, it in-
troduces those historical EA variants without which no EC textbook would
be complete together with some more recent versions that deserve their own
place in the family tableau. On the other hand, it demonstrates the diversity
of realisations of the same basic evolutionary algorithm concept.

6.1 Genetic Algorithms

The genetic algorithm (GA) is the most widely known type of evolutionary al-
gorithm. It was initially conceived by Holland as a means of studying adaptive
behaviour, as suggested by the title of the book describing his early research:
Adaptation in Natural and Artificial Systems [220]. However, GAs have largely
(if perhaps mistakenly – see [103]) been considered as function optimisation
methods. This is perhaps partly due to the title of Goldberg’s seminal book:
Genetic Algorithms in Search, Optimization and Machine Learning [189] and
some very high-profile early successes in solving optimisation problems. To-
gether with De Jong’s thesis [102] this work helped to define what has come
to be considered as the classical genetic algorithm — commonly referred to as
the ‘canonical’ or ‘simple GA’ (SGA). This has a binary representation, fit-
ness proportionate selection, a low probability of mutation, and an emphasis
on genetically inspired recombination as a means of generating new candidate
solutions. It is summarised in Table 6.1. Perhaps because it is so widely used
for teaching EAs, and is the first EA that many people encounter, it is worth
re-iterating that many features that have been developed over the years are
missing from the SGA — most obviously that of elitism.
While, the table does not indicate this, GAs traditionally have a fixed work-

flow: given a population of μ individuals, parent selection fills an intermedi-
ary population of μ, allowing duplicates. Then the intermediary population is
shuffled to create random pairs and crossover is applied to each consecutive
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pair with probability pc and the children replace the parents immediately.
The new intermediary population undergoes mutation individual by individ-
ual, where each of the l bits in an individual is modified by mutation with
independent probability pm. The resulting intermediary population forms the
next generation replacing the previous one entirely. Note that in this new
generation there might be pieces, perhaps complete individuals, from the pre-
vious one that survived crossover and mutation without being modified, but
the likelihood of this is rather low (depending on the parameters μ, pc, pm).

Representation Bit-strings

Recombination 1-Point crossover

Mutation Bit flip

Parent selection Fitness proportional - implemented by Roulette Wheel

Survival selection Generational

Table 6.1. Sketch of the simple GA

In the early years of the field there was significant attention paid to trying
to establish suitable values for GA parameters such as the population size,
crossover and mutation probabilities. Recommendations were for mutation
rates between 1/l and 1/μ, crossover probabilities around 0.6-0.8, and popu-
lation sizes in the fifties or low hundreds, although to some extent these values
reflect the computing power available in the 1980s and 1990s.
More recently it has been recognised that there are some flaws in the SGA.

Factors such as elitism, and non-generational models were added to offer
faster convergence if needed. As discussed in Chap. 5, SUS is preferred to
roulette wheel implementation, and most commonly rank-based selection is
used, implemented via tournament selection for simplicity and speed. Study-
ing the biases in the interplay between representation and one-point crossover
(e.g. [411]) led to the development of alternatives such as uniform crossover,
and a stream of work through ‘messy-GAs’ [191] and ‘Linkage Learning’
[209, 395, 385, 83] to Estimation of Distribution Algorithms (see Sect. 6.8).
Analysis and experience has recognised the need to use non-binary representa-
tions where more appropriate (as discussed in Chap. 4). Finally the problem of
how to choose a suitable fixed mutation rate has largely been solved by adopt-
ing the idea of self-adaptation, where the rates are encoded as extra genes in
an individuals representation and allowed to evolve [18, 17, 396, 383, 375].
Nevertheless, despite its simplicity, the SGA is still widely used, not just

for teaching purposes, and for benchmarking new algorithms, but also for
relatively straightforward problems in which binary representation is suitable.
It has also been extensively modelled by theorists (see Chap. 16). Since it has
provided so much inspiration and insight into the behaviour of evolutionary
processes in combinatorial search spaces, it is fair to consider that if OneMax
is the Drosophilia of combinatorial problems for researchers, then the SGA is
the Drosophilia of evolutionary algorithms.
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6.2 Evolution Strategies

Evolution strategies (ES) were invented in the early 1960s by Rechenberg
and Schwefel, who were working at the Technical University of Berlin on an
application concerning shape optimisation (see [54] for a brief history). The
earliest ES’s were simple two-membered algorithms denoted (1+1) ES’s (pro-
nounce: one plus one ES), working in a vector space. An offspring is generated
by the addition of a random number independently to each to the elements
of the parent vector and accepted if fitter. An alternative scheme, denoted
as (1,1) ES (pronounce: one comma one ES) always replaces the parent by
the offspring, thus forgetting the previous solutions by definition. The ran-
dom numbers are drawn from a Gaussian distribution with mean zero and a
standard deviation σ, where σ is called the mutation step size. One of the key
early breakthroughs of ES research was to propose a simple mechanism for on-
line adjustment of step sizes by the famous 1/5 success rule of Rechenberg
[352] as described in Sect. 8.2.1. In the 1970s the concept of multi-membered
evolution strategies was introduced, with the naming convention based on μ
individuals in the population and λ offspring generated in one cycle. The re-
sulting (μ+λ) and (μ, λ) ES’s gave rise to the possibility of more sophisticated
forms of step-size control, and led to the development of a very useful feature
in evolutionary computing: self-adaptation of strategy parameters, see Sect.
4.4.2. In general, self-adaptivity means that some parameters of the EA are
varied during a run in a specific manner: the parameters are included in the
chromosomes and coevolve with the solutions. Technically this means that
an ES works with extended chromosomes 〈x, p〉, where x ∈ IRn is a vector
from the domain of the given objective function to be optimised, while p car-
ries the algorithm parameters. Modern evolution strategies always self-adapt
the mutation step sizes and sometimes their rotation angles. That is, since
the procedure was detailed in 1977 [372] most ESs have been self-adaptive,
and other EAs have increasingly adopted self-adaptivity. Recent forms of ES
such as the CMA [207] are among the leading algorithms for optimisation of
complex real-valued functions. A summary of ES is given in Table 6.2.

Representation Real-valued vectors

Recombination Discrete or intermediary

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection Deterministic elitist replacement by (µ, λ) or (µ+ λ)

Speciality Self-adaptation of mutation step sizes

Table 6.2. Sketch of ES

The basic recombination scheme in evolution strategies involves two par-
ents that create one child. To obtain λ offspring recombination is performed λ
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times. There are two recombination variants distinguished by the manner of
recombining parent alleles. Using discrete recombination one of the parent
alleles is randomly chosen with equal chance for either parents. In inter-
mediate recombination the values of the parent alleles are averaged. An
extension of this scheme allows the use of more than two recombinants, be-
cause the two parents are drawn randomly for each position i ∈ {1, . . . , n}
in the offspring anew. These drawings take the whole population of μ indi-
viduals into consideration, and the result is a recombination operator with
possibly more than two individuals contributing to the offspring. The exact
number of parents, however, cannot be defined in advance. This multiparent
variant is called global recombination. To make terminology unambiguous,
the original variant is called local recombination. Evolution strategies typ-
ically use global recombination. Interestingly, different recombination is used
for the object variable part (discrete is recommended) and the strategy pa-
rameters part (intermediary is recommended). This scheme preserves diversity
within the phenotype (solution) space, allowing the trial of very different com-
binations of values, whilst the averaging effect of intermediate recombination
assures a more cautious adaptation of strategy parameters.
The selection scheme that is generally used in evolution strategies is (μ, λ)

selection, which is preferred over (μ+ λ) selection for the following reasons:

• The (μ, λ) discards all parents and so can in principle leave (small) local
optima, which is advantageous for multimodal problems.

• If the fitness function changes over time, the (μ + λ) selection preserves
outdated solutions, so is less able to follow the moving optimum.

• (μ+λ) selection hinders the self-adaptation, because misadapted strategy
parameters may survive for a relatively large number of generations. For
example, if an individual has relatively good object variables but poor
strategy parameters, often all of its children will be bad. Thus they will
be removed by an elitist policy, while the misadapted strategy parameters
in the parent may survive for longer than desirable.

The selective pressure in evolution strategies is very high because λ is typi-
cally much higher than μ (traditionally a 1/7 ratio is recommended, although
recently values around 1/4 seem to gain popularity). The takeover time τ∗

of a given selection mechanism is defined as the number of generations it takes
until the application of selection completely fills the population with copies of
the best individual, given one copy initially. Goldberg and Deb [190] showed
that

τ∗ =
lnλ

ln(λ/μ)
.

For a typical evolution strategy with μ = 15 and λ = 100, this results in
τ∗ ≈ 2. By way of contrast, for fitness proportional selection in a genetic
algorithm with μ = λ = 100 it is τ∗ = λ lnλ = 460. This indicates that an ES
is a more aggressive optimizer than a (simple) GA.
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6.3 Evolutionary Programming

Evolutionary programming (EP) was originally developed by Fogel et al. in
the 1960s to simulate evolution as a learning process with the aim of gener-
ating artificial intelligence [166, 174]. Intelligence, in turn, was viewed as the
capability of a system to adapt its behaviour in order to meet some speci-
fied goals in a range of environments. Adaptive behaviour is the key term in
this definition, and the capability to predict the environment was considered
to be a prerequisite. The classic EP systems used finite state machines as
individuals.
Nowadays EP frequently uses real-valued representations, and so has almost

merged with ES. The principal differences lie perhaps in the biological inspi-
ration: in EP each individual is seen as corresponding to a distinct species,
and so there is no recombination. Furthermore, the selection mechanisms are
different. In ES parents are selected stochastically, then the selection of the
μ best from the union of μ+ λ offspring is deterministic. By contrast, in EP
each parent generates exactly one offspring (i.e., λ = μ), but these parents and
offspring populations are then merged and compete in stochastic round-robin
tournaments for survival, as described in Sect. 5.3.2. The field now adopts a
very open, pragmatic approach that the choice of representation, and hence
mutation, should be driven by the problem; Table 6.3 is therefore a represen-
tative rather than a standard algorithm variant.

Representation Real-valued vectors

Recombination None

Mutation Gaussian perturbation

Parent selection Deterministic (each parent creates one offspring via mutation)

Survivor selection Probabilistic (µ+ µ)

Speciality Self-adaptation of mutation step sizes (in meta-EP)

Table 6.3. Sketch of EP

The issue of the advantage of using a mutation-only algorithm versus a
recombination and mutation variant has been intensively discussed since the
1990s. Fogel and Atmar [170] compared the results of EP algorithms with and
without recombination on a series of linear functions with parameterisable in-
teractions between genes. They concluded that improved performance was
obtained from the version without recombination. This led to intensive peri-
ods of research in both the EP and the GA communities to try and establish
the circumstances under which the availability of a recombination operator
yielded improved performance [159, 171, 222, 408]. The current state of think-
ing has moved on to a stable middle ground. The latest results [232] confirm
that the ability of both crossover or Gaussian mutation to produce new off-
spring of superior fitness to their parents depends greatly on the state of the



104 6 Popular Evolutionary Algorithm Variants

search process, with mutation better initially but crossover gaining in ability
as evolution progresses. These conclusions agree with theoretical results de-
veloped elsewhere and discussed in more depth in Chap. 7. In particular it is
stated that: “the traditional practice of setting operator probabilities at con-
stant values, . . . is quite limiting and may even prevent the successful discovery
of suitable solutions.” However, it is perhaps worth noting that even in these
studies the authors did not detect a difference between the performance of
different crossover operators, which they claim casts significant doubt on the
building block hypothesis (Sect. 16.1), so we are not entirely without healthy
scientific debate!
Since the 1990s EP variants for optimisation of real-valued parameter vec-

tors have become more frequent and even positioned as ‘standard’ EP [22, 30].
During the history of EP a number of mutation schemes, such as one in which
the step size is inversely related to the fitness of the solutions, have been pro-
posed. Since the proposal of meta-EP [165, 166], self-adaptation of step sizes
has become the norm, using the scheme in Eq. (4.4). A variety of schemes have
been proposed, including mutation variables first then strategy parameters
(which violates the rationale explained in Sect. 4.4.2). Tracing the literature
on this issue, the paper by Gehlhaar and Fogel [182] seems to be a turning
point. Here the authors explicitly compare the ‘sigma first’ and ‘sigma last’
strategies and conclude that the first one – the standard ES manner – offers
a consistent general advantage over the second one. Notably in a paper and
book [81, 168], Fogel uses the lognormal adaptation of n standard deviations
σi, followed by the mutation of the object variables xi themselves, suggesting
that EP is practically merging with ES regarding this aspect. Other ideas
from ES have also informed the development of EP algorithms, and a version
with self-adaptation of covariance matrices, called R-meta-EP is also in use.
Worthy of note is Yao’s improved fast evolutionary programming algorithm
(IFEP) [470], whereby two offspring are created from each parent, one using
a Gaussian distribution to generate the random mutations, and the other us-
ing the Cauchy distribution. The latter has a fatter tail (i.e., more chance
of generating a large mutation), which the authors suggest gives the overall
algorithm greater chance of escaping from local minima, whilst the Gaussian
distribution (if small step sizes evolve) gives greater ability to fine-tune the
current parents.

6.4 Genetic Programming

Genetic programming is a relatively young member of the evolutionary al-
gorithm family. It differs from other EA strands in its application area as
well as the particular representation (using trees as chromosomes). While the
EAs discussed so far are typically applied to optimisation problems, GP could
instead be positioned in machine learning. In terms of the different problem
types as discussed in Chapter 2, most other EAs are for finding some input
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realising maximum payoff (Fig. 1.1), whereas GP is used to seek models with
maximum fit (Fig. 1.2). Clearly, once maximisation is introduced, modelling
problems can be seen as special cases of optimisation. This, in fact, is the basis
of using evolution for such tasks: models — represented as parse trees — are
treated as individuals, and their fitness is the model quality to be maximised.
The summary of GP is given in Table 6.4.

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement

Table 6.4. Sketch of GP

The parse trees used by GP as chromosomes capture expressions in a given
formal syntax. Depending on the problem at hand, and the users’ perceptions
on what the solutions must look like, this can be the syntax of arithmetic
expressions, formulas in first-order predicate logic, or code written in a pro-
gramming language, cf. Sect. 4.6. In particular, they can be envisioned as
executable codes, that is, programs. The syntax of functional programming,
e.g., the language LISP, very closely matches the so-called Polish notation of
expressions. For instance, the formula in Eq. (4.8) can be rewritten in this
Polish notation as

+(·(2, π),−(+(x, 3), /(y,+(5, 1)))),

while the executable LISP code1 looks like:

(+ (· 2 π) (− (+ x 3) (/ y (+ 5 1)))).

Based on this perception, GP can be positioned as the “programming of
computers by means of natural selection” [252], or the “automatic evolution
of computer programs” [37].
There are a few other issues that are specific to tree-based representations,

and hence (but not exclusively) to genetic programming.
Initialisation can be carried out in different ways for trees. The most

common method used in GP is the so-called ramped half-and-half method.
In this method a maximum initial depth Dmax of trees is chosen, and then
each member of the initial population is created from the sets of functions F
and terminals T using one of the two methods below with equal probability:

• Full method: here each branch of the tree has depth Dmax. The contents
of nodes at depth d are chosen from F if d < Dmax or from T if d = Dmax.

1 To be precise we should use PLUS, etc., for the operators.
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• Grow method: here the branches of the tree may have different depths, up
to the limit Dmax. The tree is constructed beginning from the root, with
the contents of a node being chosen stochastically from F ∪T if d < Dmax.

Stochastic Choice of a Single Variation Operator. In GP offspring
are typically created by either recombination or mutation, rather than re-
combination followed by mutation, as is more common in other variants. This
difference is illustrated in Fig. 6.1 (inspired by Koza [252]), which compares
the loop for filling the next generation in a generational GA with that of GP.

GA loop GP loop

Fig. 6.1. GP flowchart versus GA flowchart. The two diagrams show two options
for filling the intermediary population in a generational scheme. In a conventional
GA mutation and crossover are used to produce the next offspring (left). Within
GP, a new individual is created by either mutation or crossover (right).

Low or Zero Mutation Probabilities. Koza’s classic book on GP from
1992 [252] advises users to set the mutation rate at 0, i.e., it suggests that GP
works without mutation. More recently Banzhaf et al. recommended 5% [37].
In giving mutation such a limited role, GP differs from other EA streams.
The reason for this is the generally shared view that crossover has a large
shuffling effect, acting in some sense as a macromutation operator [9]. The
current GP practice uses low mutation frequencies, even though some studies
indicate that an (almost) pure crossover approach might be inferior [275].
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Over-selection is often used to deal with the typically large population
sizes (population sizes of several thousands are not unusual in GP). The
method first ranks the population, then divides it into two groups, one contain-
ing the top x% and the other containing the other (100−x)%. When parents
are selected, 80% of the selection operations come from the first group, and
the other 20% from the second group. The values of x used are found em-
pirically by rule of thumb and depend on the population size with the aim
that the number of individuals from which the majority of parents are cho-
sen stays constant in the low hundreds, i.e., the selection pressure increases
dramatically for larger populations.
Bloat (sometimes called the ‘survival of the fattest’) is a phenomenon ob-

served in GP whereby average tree sizes tend to grow during the course of a
run. There are many studies devoted to understanding why bloat occurs and
to proposing countermeasures, see for instance [268, 407]. Although the results
and discussions are not conclusive, one primary suspect is the sheer fact that
we have chromosomes with variable length, meaning that the possibility for
chromosome sizes to grow along the evolution already implies that they will
actually do so. Probably the simplest way to prevent bloat is to introduce a
maximum tree size and forbid a variation operator if the child(ren) resulting
from its application would exceed this maximum size. In this case, this thresh-
old can be seen as an additional parameter of mutation and recombination in
GP. Several advanced techniques have also been proposed, but the only one
that is widely acknowledged is that of parsimony pressure. Such a pressure
towards parsimony (i.e., being ‘stingy’ or ungenerous) is achieved through
introducing a penalty term in the fitness formula that reduces the fitness of
large chromosomes [228, 406] or using multiobjective techniques [115].

6.5 Learning Classifier Systems

Learning Classifier Systems (LCS) represent an alternative evolutionary ap-
proach to model building based on the use of rule sets, rather than parse
trees, to represent knowledge [270, 269]. LCS are used primarily in appli-
cations where the objective is to evolve a system that will respond to the
current state of its environment (i.e., the inputs to the system) by suggesting
a response that in some way maximises future reward from the environment.
An LCS is therefore a combination of a classifier system and a learning

algorithm. The classifier system component is typically a set of rules, each
mapping certain inputs to actions. The whole rule set therefore constitutes
a model that covers the space of possible inputs and suggests the most ap-
propriate actions for each. The learning algorithm component of an LCS is
implemented by an evolutionary algorithm, whose population members ei-
ther represent individual rules, or complete rule sets, known respectively as
the Michigan and Pittsburgh approaches. The fitness driving the evolutionary
process may be driven by many different forms of learning, here we restrict
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ourselves to ‘supervised’ learning, where at each stage the system receives
a training signal (reward) from the environment in response to the output
it proposes. This helps emphasise the difference between the Michigan and
Pittsburgh approaches. In the former, data items are presented to the system
one-by-one and individual rules are rewarded according to their predictions.
By contrast, in a Pittsburgh approach each individual represents a complete
model, so the fitness would normally be calculated by presenting the entire
data set and calculating the mean accuracy of the predictions.
The Michigan-style LCS was first described by Holland in 1976 as a

framework for studying learning in condition/action rule-based systems, us-
ing genetic algorithms as the principal method for the discovery of new rules
and the reinforcement of successful ones [219]. Typically each member of
the population was a single rule representing a partial model – that is to
say it might only cover a region of the decision space. Thus it is the entire
population that together represents the learned model. Each rule is a tuple
{condition:action:payoff}. The condition specifies a region of the space
of possible inputs in which the rule applies. The condition parts of rules may
contain wildcard, or ‘don’t-care’ characters for certain variables, or may de-
scribe a set of values that a given variable may take – for example, a range of
values for a continuous variable. Rules may be distinguished by the number of
wildcards they contain, and one rule is said to be more specific than another
if it contains fewer wildcards, or if the ranges for certain variables are smaller
— in other words if it covers a smaller region of the input space. Given this
flexibility, it is common for the condition parts of rules to overlap, so a given
input may match a number of rules. In the terminology of LCS, the subset
of rules whose condition matches the current inputs from the environment
is known as the match set. These rules may prescribe different actions, of
which one is chosen. The action specifies either the action to be taken (for
example, if controlling robots or on-line trading agents) or the system’s pre-
diction (such as a class label or a numerical value). The subset of the match set
advocating the chosen action is known as the action set. Holland’s original
framework maintained lists of which rules have been used, and when a reward
was received from the environment a portion was passed back to recently used
rules to provide information for the selection mechanism. The intended effect
is that the strength of a rule predicts the value of the reward that the system
will gain for undertaking the action. However the framework proved unwieldy
and difficult to make work well in practice.
LCS research was reinvigorated in the mid-1990s by Wilson who removed

the concept of memory and stripped out all but the essential components in his
minimalist ZCS algorithm [464]. At the same time several authors were noting
the conceptual similarity between LCS and reinforcement learning algorithms
which attempt to learn, for each input state, an accurate mapping from pos-
sible actions to expected rewards. The XCS algorithm [465] firmly established
this link by extending rule-tuples to {condition:action:payoff,accuracy},
where the accuracy value reflects the system’s experience of how well the pre-
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dicted payoff matches the reward received. Unlike ZCS, the EA is restricted
at each cycle — originally to the match set, latterly to the action set, which
increases the pressure to discover generalised conditions for each action. As
per ZCS, a credit assignment mechanism is triggered by the receipt of re-
wards from the environment to update the predicted pay-offs for rules in the
previous action set. However, the major difference is that these are not used
directly to drive selection in the evolution process. Instead selection operates
on the basis of accuracy, so the algorithm can in principle evolve a complete
mapping from input space to actions.
Table 6.5 gives a simple overview of the major features of Michigan-style

classifiers for a problem with a binary input and output space. The list below
summarizes the main workflow of the algorithm.

1. A new set of inputs are received from the environment.
2. The rule base is examined to find the match-set of rules.

• If the match set is empty, a ‘cover operator’ is invoked to generate one
or more new matching rules with a random action.

3. The rules in the match-set are grouped according to their actions.
4. For each of these groups the mean accuracy of the rules is calculated.
5. An action is chosen, and its corresponding group noted as the action set.

• If the system is an ‘exploit’ cycle, the action with the highest mean
accuracy is chosen.

• If the system is in an ‘explore’ cycle, an action is chosen randomly or
via fitness-proportionate selection, acting on the mean accuracies.

6. The action is carried out and a reward is received from the environment.
7. The estimated accuracy and predicted payoffs are then updated for the

rule in the current and previous action sets, based on the rewards received
and the predicted pay-offs, using a Widrow–Hoff style update mechanism.

8. If the system is in an ‘explore’ cycle, an EA is run within the action-set,
creating new rules (with pay-off and accuracies set to the mean of their
parents), and deleting others.

Representation tuple of {condition:action:payoff,accuracy}
conditions use {0,1,#} alphabet

Recombination One-point crossover on conditions/actions

Mutation Binary/ternary resetting as appropriate on action/conditions

Parent selection Fitness proportional with sharing within environmental niches

Survivor selection Stochastic, inversely related to number of rules
covering same environmental niche

Fitness Each reward received updates predicted payoff and accuracy
of rules in relevant action sets by reinforcement learning.

Table 6.5. Sketch of a Michigan-style LCS for a binary input and action space
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The Pittsburgh-style LCS predates, but is similar to the better-known
GP: each member of the evolutionary algorithm’s population represents a
complete model of the mapping from input to output spaces. Each gene in
an individual typically represents a rule, and again a new input item may
match more than one rule, in which case typically the first match is taken.
This means that the representation should be viewed as an ordered list, and
two individuals which contain the same rules, but in a different order on the
genome, are effectively different models. Learning of appropriately complex
models is typically facilitated by using a variable-length representation so that
new rules can be added at any stage. This approach has several conceptual
advantages — in particular, since fitness is awarded to complete rule sets,
models can be learned for complex multi-step problems. The downside of
this flexibility is that, like GP, Pittsburgh-style LCS suffers from bloat and
the search space becomes potentially infinite. Nevertheless, given sufficient
computational resources, and effective methods of parsimony to counteract
bloat, Pittsburgh-style LCS has demonstrated state-of-the-art performance
in several machine learning domains, especially for applications such as bio-
informatics and medicine, where human-interpretability of the evolved models
is vital and large data-sets are available so that the system can evolve off-line
to minimise prediction error. Two recent examples winning Humies Awards for
better than human performance are in the realms of prostate cancer detection
[272] and protein structure prediction [16].

6.6 Differential Evolution

In this section we describe a young, but powerful member of the evolutionary
algorithm family: differential evolution (DE). Its birth can be dated to 1995,
when Storn and Price published a technical report describing the main con-
cepts behind a “new heuristic approach for minimizing possibly nonlinear and
nondifferentiable continuous space functions” [419]. The distinguishing feature
that delivered the name of this approach is a twist to the usual reproduction
operators in EC: the so-called differential mutation. Given a population
of candidate solution vectors in IRn a new mutant vector x′ is produced by
adding a perturbation vector to an existing one,

x′ = x+ p,

where the perturbation vector p is the scaled vector difference of two other,
randomly chosen population members

p = F · (y − z), (6.1)

and the scaling factor F > 0 is a real number that controls the rate at which
the population evolves. The other reproduction operator is the usual uniform
crossover, subject to one parameter, the crossover probability Cr ∈ [0, 1] that
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defines the chance that for any position in the parents currently undergoing
crossover, the allele of the first parent will be included in the child. (Remember
that in GAs the crossover rate pc ∈ [0, 1] is defined for any given pair of
individuals and it is the likelihood of actually executing crossover.) DE also has
a slight twist to the crossover operator: at one randomly chosen position the
child allele is taken from the first parent without making a random decision.
This ensures that the child does not duplicate the second parent.
In the main DE workflow populations are lists, rather than (multi)sets, al-

lowing references to the i-th individual by its position i ∈ {1, . . . , μ} in this
list. The order of individuals in such a population P = 〈x1, . . . , xi, . . . , xµ〉 is
not related to their fitness values. An evolutionary cycle starts with creating
a mutant vector population M = 〈v1, . . . , vµ〉. For each new mutant vi three
vectors are chosen randomly from P , a base vector to be mutated and two
others to define a perturbation vector. After making the mutant vector pop-
ulation, a so-called trial vector population T = 〈u1, . . . , uµ〉 is created, where
ui is the result of applying crossover to vi and xi. (Note, that it is guaranteed
that ui does not duplicate xi.) In the last step deterministic selection is ap-
plied to each pair xi and ui: the i-th individual in the next generation is ui if
f(ui) ≤ f(xi) and xi otherwise.

Representation Real-valued vectors

Recombination Uniform crossover

Mutation Differential mutation

Parent selection Uniform random selection of the 3 necessary vectors

Survival selection Deterministic elitist replacement (parent vs. child)

Table 6.6. Sketch of differential evolution

In general, a DE algorithm has three parameters, the scaling factor F ,
the population size μ (usually denoted by NP in the DE literature), and
the crossover probability Cr. It is worth noting that despite mediating a
crossover process, Cr can also be thought of as a mutation rate, i.e., the
approximate probability that an allele will be inherited from a mutant [343].
The DE community also emphasises another aspect of uniform crossover: The
number of inherited mutant alleles follows a binomial distribution, since allele
origins are determined by a finite number of independent trials having two
outcomes with constant probabilities.
Over the years, several DE variants have been invented and published. One

of the modifications concerns the choice of the base vector when building the
mutant population M . It can be randomly chosen for each vi, as presented
here, but it can be fixed, always using the best vector in the population
and only varying the perturbation vectors. Another extension is obtained by
allowing more than one difference vector to define the perturbation vector in
the mutation operator. For example, using two difference vectors, Equation



112 6 Popular Evolutionary Algorithm Variants

6.1 becomes
p = F · (y − z + y′ − z′) (6.2)

where y, z, y′, z′ are four randomly chosen population members.
In order to classify the different variants, the notation DE/a/b/c has been

introduced in the literature, where a specifies the base vector, e.g., “rand” or
“best”, b is the number of difference vectors used to define the perturbation
vector, and c denotes the crossover scheme, e.g., “bin” stands for using uniform
crossover (because of the binomial distribution of donor alleles it generates).
Using this notation, the basic version described above is DE/rand/1/bin.

6.7 Particle Swarm Optimisation

The algorithm we describe here deviates somewhat from other evolutionary
algorithms in that it is inspired by social behavior of bird flocking or fish
schooling, while the name and the technical terminology are grounded in
physical particles [340, 248]. Seemingly there is no evolution in a particle
swarm optimizer, but algorithmically it does fit in the general EA framework.
Particle swarm optimisation (PSO) was launched in 1995, when Kennedy and
Eberhart published their seminal paper about a “concept for the optimization
of nonlinear functions using particle swarm methodology” [247]. Similarly to
DE, the distinguishing feature of PSO is a twist to the usual reproduction op-
erators in EC: PSO does not use crossover and its mutation is defined through
a vector addition. However, PSO differs from DE and most other EC dialects
in that every candidate solution x ∈ IRn carries its own perturbation vector
p ∈ IRn. Technically, this makes them quite similar to evolution strategies that
use the mutation step sizes in the perturbation vector parts, cf. Sect. 4.4.2 and
Sect. 6.2. However, the PSO mindset and terminology is based on a spatial
metaphor of particles with a location and velocity, rather than a biological
one of individuals with a genotype and mutation.
To simplify the explanation and to emphasise the similarities to other evolu-

tionary algorithms, we present PSOs in two steps. First we give a description
that captures the essence of the system using the notion of perturbation vec-
tors p. Second, we provide the technical details in terms of vectors for velocity
v and a personal best b in line with the PSO literature.
On a conceptual level every population member in a PSO can be considered

as a pair 〈x, p〉, where x ∈ IRn is a candidate solution vector and p ∈ IRn is
a perturbation vector that determines how the solution vector is changed to
produce a new one. The main idea is that a new pair 〈x′, p′〉 is produced from
〈x, p〉 by first calculating a new perturbation vector p′ (using p and some
additional information) and adding this to x. That is,

x′ = x+ p′
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The core of the PSO perspective is to consider a population member as a
point in space with a position and a velocity and use the latter to determine
a new position (and a new velocity). Thus, looking under the hood of a PSO
we find that a perturbation vector is a velocity vector v and a new velocity
vector v′ is defined as the weighted sum of three components: v and two vector
differences. The first points from the current position x to the best position
y the given population member ever had in the past, and the second points
from x to the best position z the whole population ever had. Formally, we
have

v′ = w · v + φ1U1 · (y − x) + φ2U2 · (z − x)

where w and φi are the weights (w is called the inertia, φ1 is the learning rate
for the personal influence and φ2 is the learning rate for the social influence),
while U1 and U2 are randomizer matrices that multiply every coordinate of
y − x and z − x by a number drawn from the uniform distribution.
It is worth noting that this mechanism requires some additional book keep-

ing. In particular, the personal best y and the global best z must be kept in
memory. This requires a unique identifier for population members that keeps
the ‘identity’ of the given individuals and allows it to maintain the personal
memory. To this end, PSO populations are lists, rather than (multi)sets, allow-
ing references to the i-th individual. Similarly to DE, the order of individuals
in such a population is not related to their fitness values. Furthermore, the
perturbation vector pi ∈ IRn for any given xi ∈ IRn is not stored directly, as
the notation 〈x, p〉 in the previous paragraph would indicate, but indirectly by
the velocity vector vi and the personal best bi of the i-th population member.
Thus, technically, the i-th individual is a triple 〈xi, vi, bi〉, where xi is the
solution vector (perceived as a position), vi is its velocity vector, and bi is its
personal best. During an evolutionary cycle each triple 〈xi, vi, bi〉 is replaced
by the mutant triple 〈x′

i, v
′
i, b

′

i〉 using the following formulas

x′
i = x+ v′i

v′i = w · vi + φ1U1 · (bi − xi) + φ2U2 · (c− xi)

where c denotes the population’s global best (champion) and

b
′

i =

{

x′
i if f(x′

i) < f(bi)

bi otherwise

The rest of the basic PSO algorithm is actually quite simple, since parent
selection and survivor selection are trivial. An overview is given in Table 6.7.

6.8 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDA) are based on the idea of replac-
ing the creation of offspring by ‘standard’ variation operators (recombination
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Representation Real-valued vectors

Recombination None

Mutation Adding velocity vector

Parent selection Deterministic (each parent creates one offspring via mutation)

Survival selection Generational (offspring replace parents)

Table 6.7. Sketch of particle swarm optimisation

and mutation) by a three-step process. First a ‘graphical model’ is chosen to
represent the current state of the search in terms of the dependencies between
variables (genes) describing a candidate solution. Next the parameters of this
model are estimated from the current population to create a conditional proba-
bility distribution over the variables. Finally, offspring are created by sampling
this distribution.
Probabilistic Graphical Models (PGMs) have been used as models of uncer-

tainty in artificial intelligence systems since the early 1980s. In this approach
models are considered to be graphs G = (V,E), where each vertex v ∈ V
represents a single variable, and each directed edge e ∈ E represents a de-
pendency between two variables. Thus, for example, the presence of an edge
e = {i, j} denotes that the probability of obtaining a particular value for vari-
able j depends on the value of variable i. Usually graphs are restricted to be
acyclic to avoid difficulties with infinite loops.
The pseudocode in Figure 6.2 illustrates the way that offspring are created

via the processes of model selection, model fitting and model sampling.

BEGIN

INITIALISE population P 0 with µ random candidate solutions;

set t = 0;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

EVALUATE each candidate in P t;

SELECT subpopulation P t
s to be used in the modeling steps;

MODEL SELECTION creates graph G by dependencies in P t
s;

MODEL FITTING creates Bayesian Network BN with G and P t
s;

MODEL SAMPLING produces a set Sample(BN) of µ candidates;

set t = t+ 1;
P t = Sample(BN);

OD

END

Fig. 6.2. Pseudocode for generic estimation of distribution algorithm
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In principle, any standard selection method may be used to select P t
s , but it

is normal practice to use truncation selection and to take the fittest subset of
the current population as the basis for the subsequent modelling process. Sur-
vivor selection in EDAs typically uses a generational model: newly generated
offspring replaces the old population.
Model selection is the critical element in using a PGM approach to data

modelling (in our case modelling a population in an EDA). In essence, it
amounts to finding the appropriate structure to capture the conditional
(in)dependencies between variables. In the context of genetics, and also of
evolutionary computation, this process is also known as the “Linkage Learn-
ing” problem. Historically the pattern of research in this area has progressed
via permitting increasing complexity for the types of structural dependencies
examined. The earliest univariate algorithms such as PBIL [35] assumed vari-
ables behaved independently. The second generation of EDAs such as MIMIC
[59] and BMDA [337] selected structures from the possible pairwise interac-
tions, and current methods such as BOA [336] select structures from the set
of all trees of some prespecified maximum size. Of course the number of possi-
ble combinations of variables expands extremely rapidly, meaning that some
form of search is needed to identify good structural models. Broadly speaking
there are two approaches to this. The first is direct estimation that has the
reputation of being complex and in most cases impractical. More widely used
is the “score + search” approach, which is effectively heuristic search in the
space of possible graphical models. This relies heavily on the use of metrics
which reflect how well a model, and hence the induced Bayesian Network,
captures the underlying structure of the data. A variety of metrics have been
proposed in the literature, mostly based on the Kullback–Liebler Divergence
metric which is closely related to entropy. A full description of these different
quality metrics is beyond the scope of this book.
The process of model-fitting may be characterised as per the pseudocode

in Figure 6.3, where we use the notation P (x, i, c) to denote the probability
of obtaining allele value i for variable x given the set of conditions c. For the
unconditional case we will use P (x, i,−). It should be noted that this code
is intended to illustrate the general concept, and that much more efficient
implementations exist. For discrete data these parameters form a Bayesian
Network, and for continuous data it is common to use a mixture of Gaussian
models. Both of these processes are relatively straightforward.
The process of model sampling follows a similar pattern, but in this case

within each subgraph we draw random variables to select the parent–node al-
leles, and then to select allele values for the other nodes using the probabilities
from the appropriate partition.
Most of the discussion above has tacitly assumed discrete combinatorial

problems and the models fitted have been Bayesian networks. For continu-
ous variable problems a slightly different approach is needed to measure and
describe probabilities, which is typically based on normal (Gaussian) distribu-
tions. There have been a number of developments, such as the Iterated Den-



116 6 Popular Evolutionary Algorithm Variants

BEGIN

/* Let P (x, i, c) denote the probability of generating */
/* allele value i for variable x given conditions c */
/* Let D denote the set of selected parents */
/* Let G denote the model selected */

FOR EACH unconnected subgraph g ⊂ G DO

FOR EACH node x ∈ g with no parents DO

FOR EACH possible allele value i for variable x DO

set P (x, i,−) = Frequency In Subpop(x, i,D);
OD

OD

FOR EACH child node x ∈ g DO

Partition D according to allele values in x’s parents;

FOR EACH partition c DO

set P (c) = Sizeof(c)/Sizeof(D);
FOR EACH possible allele value i for variable x DO

set P (x, i, c) = Frequency In Subpop(x, i, c)/P (c);
OD

OD

OD

OD

END

Fig. 6.3. Pseudocode for generic model fitting

sity Estimation Algorithm [64], and also continuous versions for EDAs.
Depending on the complexity of the models permitted, the result is either
a univariate or multivariate normal distribution. These are very similar to
the correlation matrix in evolution strategies, and a comparison of these ap-
proaches may be found in [206].

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Methodological Issues
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Parameters and Parameter Tuning

Chapter 3 presented an algorithmic framework that forms the common basis
for all evolutionary algorithms. A decision to use an evolutionary algorithm
implies that the user adopts the main design decisions behind this framework.
Thus, the main algorithm setup follows automatically: the algorithm is based
on a population of candidate solutions that is manipulated by selection, re-
combination, and mutation operators. To obtain a concrete, executable EA,
the user only needs to specify a few details. In this chapter we have a closer
look at these details, named parameters. We discuss the notion of EA pa-
rameters and explain why the task of designing an evolutionary algorithm
can be seen as the problem of finding appropriate parameter values. Further-
more, we elaborate on the problem of tuning EA parameters and provide an
overview of different algorithms that can tune EAs with limited user effort.

7.1 Evolutionary Algorithm Parameters

For detailed discussion of the notion of EA parameters, let us consider a
simple GA. As explained in Section 6.1, this is a well-established algorithm
with a few degrees of freedom, including the parameters crossoveroperator,
crossoverrate, and populationsize (and some others we do not need for
the present discussion). To obtain a fully specified, executable version we
must provide specific values for these parameters, for instance, setting the
parameter crossoveroperator to onepoint, the parameter crossoverrate
to 0.5, and the parameter populationsize to 100. In principle, we need not
distinguish different types of parameters, but intuitively there is a difference
between deciding on the crossover operator to be used and choosing a value
for the related crossover rate. This difference can be formalized if we dis-
tinguish parameters by their domains. The parameter crossoveroperator

has a finite domain with no sensible distance metric or ordering, e.g.,
{onepoint, uniform, averaging}, whereas the domain of the parameter pc ∈
[0, 1] is a subset of the real numbers IR with the natural structure for real
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Table 7.1. Pairs of terms used in the literature to distinguish two types of param-
eters (variables).

Parameter with an Parameter with an
unordered domain ordered domain

qualitative quantitative
symbolic numeric
categorical numerical
structural behavioral
component parameter
nominal ordinal

categorical ordered

numbers. This difference is essential for searchability. For parameters with a
domain that has a distance metric, or is at least partially ordered, one can
use heuristic search and optimization methods to find optimal values. For
the other type of parameters this is not possible because the domain has no
exploitable structure. The only option in this case is sampling.
The difference between two types of parameters has already been noted in

evolutionary computing, but various authors use various naming conventions
as shown in Table 7.1. Table 7.2 shows an EA-specific illustration with com-
monly used parameters in both categories. Throughout this book we use the
terms symbolic parameter and numeric parameter. For both types of
parameters the elements of the parameter’s domain are called parameter
values and we instantiate a parameter by allocating a value to it.
It is important to note that, depending on particular design choices, one

might obtain different numbers of parameters for an EA. For instance, instan-
tiating the symbolic parameter parentselection by tournament implies a
new numeric parameter tournamentsize. However, choosing roulettewheel

does not add any parameters. This example also shows that there can be a
hierarchy among parameters. Namely, symbolic parameters may have numeric
parameters ‘under them’.

7.2 EAs and EA Instances

The distinction between symbolic and numeric parameters naturally supports
a distinction between EAs and EA instances. To be specific, we can consider
symbolic parameters as high-level ones that define the essence of an evolution-
ary algorithm, and look at numeric parameters as low-level ones that define
a specific variant of this EA. Following this naming convention, an evolu-
tionary algorithm is a partially specified algorithm fitting the framework
introduced in Chapter 3, where the values to instantiate symbolic parameters
are defined, but the numeric parameters are not. Hence, we consider two EAs
to be different if they differ in one or more of their symbolic parameters, for
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instance, if they use different mutation operators. If the values are specified for
all parameters, including the numeric ones then we obtain an evolutionary
algorithm instance. If two EA instances differ only in some of the values of
their numeric parameters (e.g., the mutation rate and the tournament size),
then we consider them as two variants of the same EA. Table 7.2 illustrates
this matter by showing three EA instances belonging to just two EAs.

A1 A2 A3

symbolic parameters

representation bitstring bitstring real-valued

recombination 1-point 1-point averaging

mutation bit-flip bit-flip Gaussian N(0, σ)

parentselection tournament tournament uniform random

survivorselection generational generational (µ, λ)

numeric parameters

pm 0.01 0.1 0.05

σ n.a. n.a. 0.1

pc 0.5 0.7 0.7

µ 100 100 10

λ equal µ equal µ 70

κ 2 4 n.a.

Table 7.2. Three EA instances specified by the symbolic parameters
representation, recombination, mutation, parentselection, survivorselection,
and the numeric parameters mutationrate (pm), mutationstepsize (σ),
crossoverrate (pc), populationsize (µ), offspringsize (λ), and tournamentsize

(κ). In our terminology, the instances in columns A1 and A2 are just variants of the
same EA. The EA instance in column A3 is an example of a different EA, because
it has different symbolic parameter values.

This terminology enables precise formulations and enforces care with phras-
ing. Observe that the distinction between EAs and EA instances is similar to
distinguishing between problems and problem instances. If rigorous termi-
nology is required then the right phrasing is “to apply an EA instance to a
problem instance”. However, such rigour is not always needed, and formally
inaccurate but understandable phrases like “to apply an EA to a problem”
are acceptable if they cannot lead to confusion.

7.3 Designing Evolutionary Algorithms

In the broad sense, algorithm design includes all the decisions needed to spec-
ify an algorithm (instance) to solve a given problem (instance). The principal
challenge for evolutionary algorithm designers is that the design details, i.e.,
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parameter values, have such a large influence on the performance of the algo-
rithm. Hence, the design of algorithms in general, and EAs in particular, is
an optimization problem itself.
To understand this issue, we distinguish three layers: application, algorithm,

and design, as shown in Figure 7.1. The whole scheme can be divided into two
optimization problems that we refer to as problem solving (the lower part) and
algorithm design (the upper part). The lower part consists of an EA instance
at the algorithm layer that is trying to find an optimal solution for the given
problem instance at the application layer. The upper part contains a design
method — the intuition and heuristics of a human user or an automated design
strategy — that is trying to find optimal parameter values for the given EA
at the algorithm layer. The quality of a given parameter vector is based on
the performance of the EA instance using these values.

Fig. 7.1. Control flow (left) and information flow (right) through the three layers
in the hierarchy of algorithm design. Left: the entity on a given layer optimises the
entity on the layer below. Right: the entity on a given layer provides information to
the entity on the layer above.

To avoid confusion we use distinct terms to designate the quality function
of these optimization problems. In keeping with the usual EC terminology
we use the term fitness at the application layer, and the term utility at
the algorithm layer. In the same spirit, we use the term evaluation only in
relation to fitness, cf. fitness evaluation, and testing in relation to utility.
With this nomenclature, the problem to be solved by the algorithm designer
can be seen as an optimization problem in the space of parameter vectors given
some utility function. Solutions of the EA design problem are therefore EA
parameter vectors with maximum utility. Table 7.3 provides a quick overview
of the resulting vocabulary.
Now we can define the utility landscape as an abstract landscape where

the locations are the parameter vectors of an EA and the height reflects util-
ity. It is obvious that fitness landscapes, commonly used in EC, have a lot in
common with utility landscapes as introduced here. However, despite the ob-
vious analogies, there are some differences we want to note. First of all, fitness
values are typically deterministic for most problems. However, utility values
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are always stochastic, because they reflect the performance of an EA which is
a stochastic search method. This implies that the maximum utility needs to
be defined in some statistical sense. Consequently, comparing EA parameter
vectors can be difficult if the underlying data produced by different EA runs
shows a big variance. Second, the notion of fitness is usually strongly related
to the objective function of the problem in the application layer, and differ-
ences between suitable fitness functions mostly concern arithmetic details. In
contrast, the notion of utility depends on the performance metrics used, which
reflect the preferences of the user and the context in which the EA is being
used. For example, solving a single problem instance just once or repeatedly
solving instances of the same problem type represent two very different use
cases with different implications for the optimal EA (instance). This issue is
dealt with in more detail in Chap. 9.

7.4 The Tuning Problem

To recap, producing an executable EA instance requires specifying values
for its parameters. These values determine whether it will find an optimal
solution, and whether it will do so efficiently. Parameter tuning is a commonly
practised approach to algorithm design, where the values for the parameters
are established before the run of the algorithm and they remain fixed during
the run.
The common way to solve the tuning problem is based on conventions

(“mutation rate should be low”), ad hoc choices (“why not use population
size 100”) and limited experimentation with different values, for example,
considering four parameters and five values for each of them. The drawbacks
to the first two are obvious. The problems with the experimentation-based
approach are traditionally summarised as follows:

• Parameter effects interact (for example, diversity can be created by re-
combination or mutation), hence they cannot be optimised one by one.

• Trying all different combinations systematically is extremely time con-
suming. Testing five different values for four parameters leads to 54 = 625
different setups. Performing 100 independent EA runs with each setup
implies 62,500 runs with the EA before we can even start the ‘real’ run.

Problem solving Algorithm design

Method at work evolutionary algorithm design procedure
Search space solution vectors parameter vectors
Quality fitness utility
Assessment evaluation testing

Table 7.3. Vocabulary for problem solving and algorithm design.
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• For a numerical parameter, the best parameter values may not even be
among the ones we selected for testing. This is because an optimal pa-
rameter value could very well lie between the points in the grid we were
testing. Increasing the resolution by increasing the number of grid points
increases the number of runs exponentially.

This picture becomes even more discouraging if one is after a generally
good setup that would perform well on a range of problems. During the his-
tory of EAs considerable effort has been spent on finding parameter values
that worked well for a number of test problems. A well-known early example
is De Jong’s thesis [102], which determined recommended values for the prob-
abilities of single-point crossover and bit mutation on what is now called the
De Jong test suite of five functions. The contemporary view of EAs, however,
acknowledges that specific problem (instances) may require specific EA se-
tups for satisfactory performance [26]. Thus, the scope of ‘optimal’ parameter
settings is necessarily narrow. There are also theoretical arguments that any
quest for generally good parameter settings is lost a priori, cf. the discussion
of the No Free Lunch theorem [467] in Chap. 16.
During the first decades of the evolutionary computing history the tun-

ing issue was largely neglected. Scientific publications did not provide any
justification for the parameter values used, nor did they describe the effort
spent at arriving to these parameter values. Consequently, it was impossible to
tell if the reported EA performance was exceptional (only achievable through
intensive tuning) or trivial (obtained by just a bit of tweaking with the pa-
rameter values). There was not much research into developing decent tuning
procedures either. The idea of optimising GA parameters by a meta-GA was
suggested in 1986 [202], but algorithmic approaches to parameter tuning did
not receive significant attention for a long time. This situation changed around
2005, when several good tuning algorithms were proposed within a short time
interval, such as SPO [42, 41, 43], (iterative) F-race [55, 33], and REVAC
[313, 314] and the idea of the meta-GA was also revived [471]. In the last
ten years parameter tuning has reached a mature stage: the most important
issues are well understood and there are various tuning algorithms available
[145, 125]. There are experimental comparisons between some of these meth-
ods [378]. However, large-scale adoption by EC researchers and practitioners
is still ahead of us.
The basis of the modern approach to parameter tuning is to consider the

design of an evolutionary algorithm as a search problem and that of a tuning
method as a search algorithm. To this end, it is important that a search
algorithm generates a lot of data. In our case, these data concern parameter
vectors and their utility values. If one is only interested in an optimal EA
configuration then such data are not relevant – finding a good parameter
vector is enough. However, these data can be used to reveal information about
the given evolutionary algorithm, for instance on its robustness, distribution
of solution quality, sensitivity, etc. Thus, adopting the terminology of Hooker
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[221], parameter tuning can then be used for competitive as well as scientific
testing:

• to configure an EA by choosing parameter values that optimise its perfor-
mance, and

• to analyse an EA by studying how its performance depends on its param-
eter values and/or the problems it is applied to.

In both cases, the solutions of a tuning problem depend on the problem(s) to
be solved, the EA used, and the utility function that defines how we measure
algorithm quality. Adding the tuner to the equation, we obtain Fig. 7.2 which
illustrates the generic scheme of parameter tuning in graphical form.
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Fig. 7.2. Generic scheme of parameter tuning showing how good parameter values
depend on four factors: the problem instance(s) to be solved, the EA used, the utility
function, and the tuner itself.

7.5 Algorithm Quality: Performance and Robustness

In general, there are two basic performance measures for EAs, one regarding
solution quality and one regarding algorithm speed. Most, if not all, metrics
used in EC are based on variations and combinations of these two. Solution
quality can be naturally expressed by the fitness function. As for algorithm
speed, time or search effort needs to be measured. This can be done by, for
instance, the number of fitness evaluations, CPU time, wall-clock time, etc. In
[124] and in Chap. 9 of this book we discuss the pros and cons of various time
measures. Here we do not go into this issue, we just assume that one of them
has been chosen. Then there are three basic combinations of solution quality
and computing time that can be used to define algorithm performance in a
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single run: fix time and measure quality; fix quality and measure time; or fix
both and measure completion. For instance:

• Given a maximum running time (computational effort), performance is
defined as the best fitness at termination.

• Given a minimum fitness level, performance is defined as the running time
(computational effort) needed to reach it.

• Given a maximum running time (computational effort) and a minimum
fitness level, performance is defined through the Boolean notion of success:
a run is deemed successful if the given fitness is reached within the given
time.

Because of the stochastic nature of EAs, a good estimation of performance
requires multiple runs on the same problem with the same parameter values
and some statistical aggregation of the measures defined for single runs. Doing
this for the three measures above gives us the performance metrics commonly
used in evolutionary computing:

• MBF (mean best fitness),
• AES (average number of evaluations to a solution),
• SR (success rate).

In Chapter 9 we discuss performance measures in more detail. For this
discussion we merely note that it is the choice of performance metrics that
determines the utility landscape, and therefore which parameter vector is best.
It was recently shown that tuning for different performance measures can yield
parameter values that differ in orders of magnitude [376]. This demonstrates
why any claim about good parameter values in general, without a reference
to the performance measure, should be taken with a pinch of salt.
Regarding robustness, the first thing to be noted is that there are different

interpretations of this notion in the literature. The existing (informal) defi-
nitions do agree that robustness is related to the variance of an algorithm’s
performance across some dimension, but they differ in what this dimension
is. There are indeed more options here, given the fact that the performance
of an EA (instance) depends on (1) the problem instance it is solving, (2) the
parameter vector it uses, and (3) effects from the random number generator.
Therefore, the variance of performance can be considered along three different
dimensions: parameter values, problem instances, and random seeds, leading
to three different types of robustness.
The first type of robustness is encountered if we are tuning an evolution-

ary algorithm A on a test suite consisting of many problem instances or test
functions. The result of the tuning process is a parameter vector p̄ and the cor-
responding EA instance A(p̄) that exhibits good performance over the whole
test suite. Note that in this case robustness is defined for EA instances, not
EAs. For the historically inclined readers, the famous figures in the classic
books of Goldberg [189, page 6], and Michalewicz, [296, page 292], refer to
this kind of robustness, with respect to a range of problems.
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Another popular interpretation of algorithm robustness is related to per-
formance variations caused by different parameter values. This notion of ro-
bustness is defined for EAs. Of course, it is again the EA instance A(p̄) whose
performance forms the basic measurement, but here we aggregate over pa-
rameter vectors. Using such a definition, it is EAs (specified by a particular
configuration of the symbolic parameters) that can be compared by their
robustness. Finding robust EAs in this sense requires a search through the
symbolic parameters.

Fig. 7.3. Illustration of the grand utility landscape showing the performance (z) of
EA instances belonging to a given parameter vector (x) on a given problem instance
(y). Note: The ‘cloud’ of repeated runs is not shown.

Figure 7.3 shows the grand utility landscape based on all possible combina-
tions of EA parameters and problem instances. For the sake of this illustration
we only take a single parameter into account. Thus, we obtain a 3D landscape
with one axis, x, representing the values of the parameter and another axis,
y, representing the problem instances investigated. (In the general case of n
parameters, we have n+1 axes here.) The third dimension, z, shows the per-
formance of the EA instance belonging to a given parameter vector on a given
problem instance. It should be noted that for stochastic algorithms, such as
EAs, this landscape is blurry if the repetitions with different random seeds
are also taken into account. That is, rather than one z-value for a pair 〈x, y〉,
we have one z for every run, for repeated runs we get a ‘cloud’.
Although this 3D landscape gives the best complete overview of EA per-

formance and robustness, lower-dimensional hyperplanes are also interesting
and can be more revealing. The left-hand side of Figure 7.4 shows 2D slices
corresponding to specific parameter vectors, i.e., EA instances. Such a slice
shows how the performance of an EA instance varies over the range of problem
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Fig. 7.4. Illustration of parameter-wise slices (left) and problem-wise slices (right)
of the grand utility landscape shown in Figure 7.3. (The ‘cloud’ of repeated runs is
not shown.) See the text for explanation and interpretation.

instances. This provides information on robustness with regard to changes in
problem specification. Such data are often reported in the literature, often
in the form of tables containing the experimental results of one or more EA
instances on a predefined test suite, such as the five De Jong functions, the
25 functions of the CEC 2005 contest [420], and the GECCO 2010 test suite
[13].
The right-hand side of Figure 7.4 shows 2D slices corresponding to specific

problem instances. Each slice shows how the performance of the given EA
depends on the parameter values it uses, i.e., its robustness to changes in
parameter values. In evolutionary computing such data is hardly ever pub-
lished. This is a straightforward consequence of the current practice, where
parameter values are mostly selected by conventions, ad hoc choices, and very
limited experimental comparisons. In other words, usually such data is not
even produced, let alone stored and presented. By the increased adoption of
tuning algorithms this practice could change, and knowledge about EA pa-
rameterization could be collected and disseminated.

7.6 Tuning Methods

In essence, all tuning algorithms work by the GENERATE-and-TEST princi-
ple, i.e., by generating parameter vectors and testing them to establish their
utility. Considering the GENERATE step, tuners can be then divided into two
main categories: non-iterative and iterative tuners. All non-iterative tuners ex-
ecute the GENERATE step only once, during initialization, thus creating a
fixed set of vectors. Each of those vectors is then tested during the TEST phase
to find the best vector in the given set. Hence, one could say that non-iterative
tuners follow the INITIALIZE-and-TEST template. Initialization can be done
by random sampling, generating a systematic grid in the parameter space, or
some space filling set of vectors. Examples of such methods are Latin-Square
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citemyers2001empirical-model and Taguchi Orthogonal Arrays [424]. Perhaps
the best-known method in this category is the frequently used parameter ‘opti-
misation’ through a systematic comparison of a few combinations of parameter
values, e.g., four mutation rates, four crossover rates, two values for tourna-
ment size, and four values for population size. In contrast, iterative tuners do
not fix the set of vectors during initialization, but start with a small initial
set and create new vectors iteratively during execution. Common examples of
such methods are meta-EAs and iterative sampling methods.
Considering the TEST step, we can again distinguish two types of tuners:

single-stage and multi-stage procedures. In both cases the tuners perform a
number of tests (i.e., EA runs with the given parameter values) for a reliable
estimate of utility. This is necessary because of the stochastic nature of EAs.
The difference between the two types is that single-stage procedures perform
the same number of tests for each given vector, while multi-stage procedures
use a more sophisticated strategy. In general, they augment the TEST step by
adding a SELECT step, where only promising vectors are selected for further
testing, deliberately ignoring those with a low performance. The best-known
method to this end is racing [283].
A further useful distinction between tuning methods can be made by their

use of meta-models of the utility landscape. From this perspective tuners can
be divided into two major classes: model-free and model-based approaches
[226]. Meta-EAs, ParamILS [227], and F-Race [56] belong to the first cate-
gory. They are ‘simply’ optimising the given utility landscape, trying to find
parameter vectors that maximise the performance of the EA to be tuned. SPO,
REVAC, and Bonesa [377] do more than that: during the tuning process they
create a model that estimates the performance of an EA for any given pa-
rameter vector. In other words, they use meta models or surrogate models
[153, 235] that have two advantages. First, meta models reduce the number of
expensive utility tests by replacing some of the real tests by model estimates
that can be calculated very quickly. Second, they capture information about
parameters and their utility for algorithm analysis.
In summary, there exist good tuners that are able to find good parameter

values for EAs, and in principle they can tune any heuristic search method
with parameters. There are differences between them in terms of efficiency
(time needed for tuning), solution quality (performance of the optimised EA),
and ease of use (e.g., the number of their own parameters). However, as of
2013, a solid experimental comparison of such tuners is not available. For more
details we refer to two recent survey papers [145, 125].

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Parameter Control

The issue of setting the values of evolutionary algorithm parameters before
running an EA was treated in the previous chapter. In this chapter we dis-
cuss how to do this during a run of an EA, in other words, we elaborate on
controlling EA parameters on-the-fly. This has the potential of adjusting the
algorithm to the problem while solving the problem. We provide a classifi-
cation of different approaches based on a number of complementary features
and present examples of control mechanisms for every major EA component.
Thus we hope to both clarify the points we wish to raise and also to give
the reader a feel for some of the many possibilities available for controlling
different parameters.

8.1 Introduction

In the previous chapter we argued that parameter tuning can greatly increase
the performance of EAs. However, the tuning approach has an inherent draw-
back: parameter values are specified before the run of the EA and these values
remain fixed during the run. But a run of an EA is an intrinsically dynamic,
adaptive process. The use of rigid parameters that do not change their values
is thus in contrast to this spirit. Additionally, it is intuitively obvious, and
has been empirically and theoretically demonstrated on many occasions, that
different values of parameters might be optimal at different stages of the evo-
lutionary process. For instance, large mutation steps can be good in the early
generations, helping the exploration of the search space, and small mutation
steps might be needed in the late generations for fine-tuning candidate solu-
tions. This implies that the use of static parameters itself can lead to inferior
algorithm performance.
A straightforward way to overcome the limitations of static parameters is by

replacing a parameter p by a function p(t), where t is the generation counter
(or any other measure of elapsed time). However, as discussed in Chap. 7,
the problem of finding optimal static parameters for a particular problem
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is already hard. Designing optimal dynamic parameters (that is, functions
for p(t)) may be even more difficult. Another drawback to this approach is
that the parameter value p(t) changes are caused by a ‘blind’ deterministic
rule triggered by the progress of time t, unaware of the current state of the
search. A well-known instance of this problem occurs in simulated anneal-
ing (Sect. 8.4.5) where a so-called cooling schedule has to be set before the
execution of the algorithm.
Mechanisms for modifying parameters during a run in an ‘informed’ way

were realised quite early in EC history. For instance, evolution strategies
changed mutation parameters on-the-fly by Rechenberg’s 1/5 success rule
[352] using information about the ratio of successful mutations. Davis ex-
perimented with changing the crossover rate in GAs based on the progress
realised by particular crossover operators [97]. The common feature of such
methods is the presence of a human-designed feedback mechanism that utilises
actual information about the search to determine new parameter values.
A third approach is based on the observation that finding good parameter

values for an EA is a poorly structured, ill-defined, complex problem. This is
exactly the kind of problem on which EAs are often considered to perform
better than other methods. It is thus a natural idea to use an EA for tuning an
EA to a particular problem. This could be done using a meta-EA or by using
only one EA that tunes itself to a given problem while solving that problem.
Self-adaptation, as introduced in evolution strategies for varying the mutation
parameters, falls within this category. In the next section we discuss various
options for changing parameters, illustrated by an example.

8.2 Examples of Changing Parameters

Consider a numerical optimisation problem of minimising

f(x) = f(x1, . . . , xn),

subject to some inequality and equality constraints

gi(x) ≤ 0, i = 1, . . . , q,

and
hj(x) = 0, j = q + 1, . . . ,m,

where the domains of the variables are given by lower and upper bounds
li ≤ xi ≤ ui for 1 ≤ i ≤ n. For such a problem we might design an EA based
on a floating-point representation, where each individual x in the population
is represented as a vector of floating-point numbers x = 〈x1, . . . , xn〉.
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8.2.1 Changing the Mutation Step Size

Let us assume that offspring are produced by arithmetic crossover followed
by Gaussian mutation that replaces components of the vector x by

x′
i = xi +N(0, σ).

To adjust σ over time we use a function σ(t) defined by some heuristic rule
and a given measure of time t. For example, the mutation step size may be
defined by the current generation number t as:

σ(t) = 1− 0.9 · t

T
,

where t varies from 0 to T , the maximum generation number. Here, the mu-
tation step size σ(t), which is used for all for vectors in the population and for
all variables of each vector, decreases slowly from 1 at the beginning of the run
(t = 0) to 0.1 as the number of generations t approaches T . Such decreases may
assist the fine-tuning capabilities of the algorithm. In this approach, the value
of the given parameter changes according to a fully deterministic scheme. The
user thus has full control of the parameter, and its value at a given time t is
completely determined and predictable.
Second, it is possible to incorporate feedback from the search process, still

using the same σ for all vectors in the population and for all variables of each
vector. For example, Rechenberg’s 1/5 success rule [352] states that the ratio
of successful mutations to all mutations should be 1/5. Hence if the ratio is
greater than 1/5 the step size should be increased, and if the ratio is less
than 1/5 it should be decreased. The rule is executed at periodic intervals, for
instance, after k iterations each σ is reset by

σ′ =

⎧

⎨

⎩

σ/c if ps > 1/5,
σ · c if ps < 1/5,
σ if ps = 1/5,

where ps is the relative frequency of successful mutations, measured over a
number of trials, and the parameter c should be 0.817 ≤ c ≤ 1 [372]. Using
this mechanism, changes in the parameter values are now based on feedback
from the search. The influence of the user is much less direct here than in
the deterministic scheme above. Of course, the mechanism that embodies the
link between the search process and parameter values is still a heuristic rule
indicating how the changes should be made, but the values of σ(t) are not
deterministic.
Third, we can assign an individual mutation step size to each solution

and make these co-evolve with the values encoding the candidate solutions.
To this end we extend the representation of individuals to length n + 1 as
〈x1, . . . , xn, σ〉 and apply some variation operators (e.g., Gaussian mutation
and arithmetic crossover) to the values of xi as well as to the σ value of an



134 8 Parameter Control

individual. In this way, not only the solution vector values (xi) but also the
mutation step size of an individual undergo evolution. A solution introduced
in Sect. 4.4.2 is:

σ′ = σ · eτ ·N(0,1), (8.1)

x′
i = xi + σ′ ·Ni(0, 1). (8.2)

Observe that within this self-adaptive scheme the heuristic character of the
mechanism resetting the parameter values is eliminated, and a certain value
of σ acts on all values of a single individual.
Finally, we can use a separate σi for each xi, extend the representation to

〈x1, . . . , xn, σ1, . . . , σn〉,

and use the mutation mechanism described in Eq. (4.4). The resulting system
is the same as the previous one, except the granularity, here we are co-evolving
n parameters of the EA instead of 1.

8.2.2 Changing the Penalty Coefficients

In this section we illustrate that the evaluation function (and consequently
the fitness function) can also be parameterised and varied over time. While
this is a less common option than tuning variation operators, it can provide
a useful mechanism for increasing the performance of an EA.
When dealing with constrained optimisation problems, penalty functions

are often used (see Chap. 13 for more details). A common technique is the
method of static penalties [302], which requires penalty parameters within the
evaluation function as follows:

eval(x) = f(x) +W · penalty(x),

where f is the objective function, penalty(x) is zero if no violation occurs
and is positive1 otherwise, and W is a user-defined weight prescribing how
severely constraint violations are weighted. For instance, a set of functions
fj (1 ≤ j ≤ m) can be used to construct the penalty, where the function fj
measures the violation of the jth constraint:

fj(x) =

{

max{0, gj(x)} if 1 ≤ j ≤ q,
|hj(x)| if q + 1 ≤ j ≤ m.

(8.3)

To adjust the evaluation function over time, we can replace the static pa-
rameter W by a function W (t). For example, the method in [237] uses

W (t) = (C · t)α,
1 For minimisation problems.
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where C and α are constants. Note that the penalty pressure grows with the
evolution time provided 1 ≤ C and 1 ≤ α.
A second option is to utilise feedback from the search process. In one exam-

ple, the method decreases the penalty component W (t+1) for the generation
t+1 if all best individuals in the last k generations were feasible, and increases
penalties if all best individuals in the last k generations were infeasible. If there
are some feasible and infeasible individuals as best individuals in the last k
generations, W (t + 1) remains without change, cf. [45]. Technically, W (t) is
updated in every generation t in the following way:

W (t+ 1) =

⎧

⎪

⎨

⎪

⎩

(1/β1) ·W (t) if b
i ∈ F for all t− k + 1 ≤ i ≤ t,

β2 ·W (t) if b
i ∈ S−F for all t− k + 1 ≤ i ≤ t,

W (t) otherwise.

In this formula, S is the set of all search points (solutions), F ⊆ S is a set of

all feasible solutions, b
i
denotes the best individual in terms of the function

eval in generation i, β1, β2 > 1, and β1 �= β2 (to avoid cycling).
Third, we could allow self-adaptation of the weight parameter, similarly to

the mutation step sizes in the previous section. For example, it is possible
to extend the representation of individuals into 〈x1, . . . , xn,W 〉, where W
is the weight that undergoes the same mutation and recombination as any
other variable xi. Furthermore, we can introduce a separate penalty for each
constraint as per Eq. (8.3). Hereby we obtain a vector of weights and can
extend the representation to 〈x1, . . . , xn, w1, . . . , wm〉. Then define

eval(x) = f(x) +

m
∑

j=1

wjfj(x),

as the function to be minimised. Variation operators can then be applied to
both the x and the w part of these chromosomes, realising a self-adaptation
of the penalties, and thereby the fitness function.
It is important to note the crucial difference between self-adapting mutation

step sizes and constraint weights. Even if the mutation step sizes are encoded
in the chromosomes, the evaluation of a chromosome is independent from the
actual σ values. That is,

eval(〈x, σ〉) = f(x),

for any chromosome 〈x, σ〉. In contrast, if constraint weights are encoded in
the chromosomes, then we have

eval(〈x,w〉) = fw(x),

for any chromosome 〈x,w〉. This could enable the evolution to ‘cheat’ in the
sense of making improvements by minimising the weights instead of optimising
f and satisfying the constraints. Eiben et al. investigated this issue in [134]
and found that using a specific tournament selection mechanism neatly solves
this problem and enables the EA to solve constraints.
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8.3 Classification of Control Techniques

In classifying parameter control techniques of an evolutionary algorithm, many
aspects can be taken into account. For example:

1. what is changed (e.g., representation, evaluation function, operators, se-
lection process, mutation rate, population size, and so on)

2. how the change is made (i.e., deterministic heuristic, feedback-based
heuristic, or self-adaptive)

3. the evidence upon which the change is carried out (e.g., monitoring per-
formance of operators, diversity of the population, and so on)

4. the scope/level of change (e.g., population-level, individual-level, and so
forth)

In the following we discuss these items in more detail.

8.3.1 What Is Changed?

To classify parameter control techniques from the perspective of what com-
ponent or parameter is changed, it is necessary to agree on a list of all major
components of an evolutionary algorithm, which is a difficult task in itself.
For that purpose, let us assume the following components of an EA:

• representation of individuals
• evaluation function
• variation operators and their probabilities
• selection operator (parent selection or mating selection)
• replacement operator (survival selection or environmental selection)
• population (size, topology, etc.)

Note that each component can be parameterised, and that the number of
parameters is not clearly defined. Despite the somewhat arbitrary character
of this list of components and of the list of parameters of each component,
we will maintain the ‘what-aspect’ as one of the main classification features,
since this allows us to locate where a specific mechanism has its effect.

8.3.2 How Are Changes Made?

As illustrated in Sect. 8.2, methods for changing the value of a parameter (i.e.,
the ’how-aspect’) can be classified into one of three categories.

• Deterministic parameter control
Here the value of a parameter is altered by some deterministic in rule
predetermined (i.e., user-specified) manner without using any feedback
from the search. Usually, a time-varying schedule is used, i.e., the rule is
activated at specified intervals.
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• Adaptive parameter control
Here some form of feedback from the search serves as input to a mechanism
that determines the change. Updating the parameter values may involve
credit assignment, based on the quality of solutions discovered by different
operators/parameters, so that the updating mechanism can distinguish
between the merits of competing strategies. The important point to note
here is that the updating mechanism used to control parameter values is
externally supplied, rather than being part of the usual evolutionary cycle.

• Self-adaptive parameter control
Here the evolution of evolution is used to implement the self-adaptation
of parameters [257]. The parameters to be adapted are encoded into the
chromosomes and undergo mutation and recombination. The better values
of these lead to better individuals, which in turn are more likely to survive,
produce offspring and hence propagate these better parameter values. This
is an important distinction between adaptive and self-adaptive schemes: in
the latter the mechanisms for the credit assignment and updating of dif-
ferent strategy parameters are entirely implicit, i.e., they are the selection
and variation operators of the evolutionary cycle itself.

This terminology leads to the taxonomy illustrated in Fig. 8.1.

before the run during the run

Parameter setting

Parameter tuning Parameter control

Deterministic Adaptive Self−adaptive

Fig. 8.1. Global taxonomy of parameter setting in EAs

Some authors have introduced a different terminology, cf. [8] or [410], but
after the publication of [133] the one in Fig. 8.1 became the most widely
accepted one. However, we acknowledge that the terminology proposed here
is not perfect. For instance, the term “deterministic” control might not be
the most appropriate, as it is not determinism that matters, but the fact
that the parameter-altering mechanism is “uninformed”, i.e., takes no input
related to the progress of the search process. For example, one might randomly
change the mutation probability after every 100 generations, which is not a
deterministic process. Also, the terms “adaptive” and “self-adaptive” could
be replaced by the equally meaningful “explicitly adaptive” and “implicitly
adaptive”, respectively. We have chosen to use “adaptive” and “self-adaptive”
because of the widely accepted usage of the latter term.
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8.3.3 What Evidence Informs the Change?

The third criterion for classification concerns the evidence used for determin-
ing the change of parameter value [382, 397]. Most commonly, the progress of
the search is monitored by looking at the performance of operators, the di-
versity of the population, and so on, and the information gathered is used as
feedback for adjusting the parameters. From this perspective, we can further
distinguish between the following two cases:

• Absolute evidence
We speak of absolute evidence when the rule to change the value of a
parameter is applied when a predefined event occurs. For instance, one
could increase the mutation rate when the population diversity drops under
a given value, or resize the population based on estimates of schemata
fitness and variance. As opposed to deterministic parameter control, where
a rule fires by a deterministic trigger (e.g., time elapsed), here feedback
from the search is used. Such mechanisms require that the user has a clear
intuition about how to steer the given parameter into a certain direction in
cases that can be specified in advance (e.g., they determine the threshold
values for triggering rule activation). This intuition relies on the implicit
assumption that changes that were appropriate in another run on another
problem are applicable to this run on this problem.

• Relative evidence
In the case of using relative evidence, parameter values within the same
run are compared according to the positive/negative effects they produce,
and the better values get rewarded. The direction and/or magnitude of
the change of the parameter is not specified deterministically, but relative
to the performance of other values, i.e., it is necessary to have more than
one value present at any given time. As an example, consider an EA using
several crossovers with crossover rates adding up to 1.0 and being reset
based on the crossover’s performance measured by the quality of offspring
they create.

8.3.4 What Is the Scope of the Change?

As discussed earlier, any change within any component of an EA may affect
a gene (parameter), whole chromosomes (individuals), the entire population,
another component (e.g., selection), or even the evaluation function. This is
the aspect of the scope or level of adaptation [8, 214, 397]. Note, however,
that the scope or level is not an independent dimension, as it usually depends
on the component of the EA where the change takes place. For example, a
change of the mutation step size may affect a gene, a chromosome, or the entire
population, depending on the particular implementation (i.e., scheme used),
but a change in the penalty coefficients typically affects the whole population.
In this respect the scope feature is a secondary one, usually depending on the
given component and its actual implementation.
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8.3.5 Summary

In conclusion, the main criteria for classifying methods that change the values
of the strategy parameters of an algorithm during its execution are:

1. What component/parameter is changed?
2. How is the change made?
3. What evidence is used to make the change?

Our classification is thus three-dimensional. The component dimension con-
sists of six categories: representation, evaluation function, variation opera-
tors (mutation and recombination), selection, replacement, and population.
The other dimensions have respectively three (deterministic, adaptive, self-
adaptive) and two categories (absolute, relative). Their possible combinations
are given in Table 8.1. As the table indicates, deterministic parameter con-
trol with relative evidence is impossible by definition, and so is self-adaptive
parameter control with absolute evidence. Within the adaptive scheme both
options are possible and are indeed used in practice.

Deterministic Adaptive Self-adaptive

Absolute + + –

Relative – + +

Table 8.1. Refined taxonomy of parameter setting in EAs: types of parameter
control along the type and evidence dimensions. The ‘–’ entries represent meaningless
(nonexistent) combinations

8.4 Examples of Varying EA Parameters

Here we discuss some illustrative examples concerning all major EA compo-
nents. For a more comprehensive overview the reader is referred to the classic
survey from 1999 [133] and its recent successor [241].

8.4.1 Representation

We illustrate variable representations with the delta coding algorithm of
Mathias and Whitley [461], which effectively modifies the encoding of the
function parameters. The motivation behind this algorithm is to maintain a
good balance between fast search and sustaining diversity. In our taxonomy
it can be categorised as an adaptive adjustment of the representation based
on absolute evidence. The GA is used with multiple restarts; the first run is
used to find an interim solution, and subsequent runs decode the genes as
distances (delta values) from the last interim solution. This way each restart
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forms a new hypercube with the interim solution at its origin. The resolution
of the delta values can also be altered at the restarts to expand or contract the
search space. The restarts are triggered when population diversity (measured
by the Hamming distance between the best and worst strings of the current
population) is not greater than 1. The sketch of the algorithm showing the
main idea is given in Fig. 8.2. Note that the number of bits for δ can be
increased if the same solution INTERIM is found.

BEGIN

/* given a starting population and genotype-phenotype encoding */
WHILE ( HD > 1 ) DO

RUN GA with k bits per object variable;

OD

REPEAT UNTIL ( global termination is satisfied ) DO

save best solution as INTERIM;

reinitialise population with new coding;

/* k-1 bits as the distance δ to the object value in */
/* INTERIM and one sign bit */
WHILE ( HD > 1 ) DO

RUN GA with this encoding;

OD

OD

END

Fig. 8.2. Outline of the delta coding algorithm

8.4.2 Evaluation Function

Evaluation functions are typically not varied in an EA because they are often
considered as part of the problem to be solved and not as part of the problem-
solving algorithm. In fact, an evaluation function forms the bridge between
the two, so both views are at least partially true. In many EAs the evaluation
function is derived from the (optimisation) problem at hand with a simple
transformation of the objective function. In the class of constraint satisfaction
problems, however, there is no objective function in the problem definition, cf.
Chap. 13. One possible approach here is based on penalties. Let us assume that
we have m constraints ci (i ∈ {1, . . . ,m}) and n variables vj (j ∈ {1, . . . , n})
with the same domain S. Then the penalties can be defined as follows:

f(s̄) =

m
∑

i=1

wi × χ(s̄, ci),
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where wi is the weight associated with violating ci, and

χ(s̄, ci) =

{

1 if s̄ violates ci,
0 otherwise.

Obviously, the setting of these weights has a large impact on the EA per-
formance, and ideally wi should reflect how hard ci is to satisfy. The problem
is that finding the appropriate weights requires much insight into the given
problem instance, and therefore it might not be practicable.
The stepwise adaptation of weights (SAW) mechanism, introduced by Eiben

and van der Hauw [149], provides a simple and effective way to set these
weights. The basic idea behind the SAW mechanism is that constraints that
are not satisfied after a certain number of steps (fitness evaluations) must be
difficult, and thus must be given a high weight (penalty). SAW-ing changes
the evaluation function adaptively in an EA by periodically checking the best
individual in the population and raising the weights of those constraints this
individual violates. Then the run continues with the new evaluation function.
A nice feature of SAW-ing is that it liberates the user from seeking good
weight settings, thereby eliminating a possible source of error. Furthermore,
the used weights reflect the difficulty of constraints for the given algorithm on
the given problem instance in the given stage of the search [151]. This property
is also valuable since, in principle, different weights could be appropriate for
different algorithms.

8.4.3 Mutation

A large majority of work on adapting or self-adapting EA parameters concerns
variation operators: mutation and recombination (crossover). The 1/5 rule of
Rechenberg we discussed earlier constitutes a classic example for adaptive mu-
tation step size control in ES. Furthermore, self-adaptive control of mutation
step sizes is traditional in ES [257].

8.4.4 Crossover

The classic example for adapting crossover rates in GAs is Davis’s adaptive
operator fitness. The method adapts the rates of crossover operators by re-
warding those that are successful in creating better offspring. This reward is
diminishingly propagated back to operators of a few generations back, who
helped set it all up; the reward is an increase in probability at the cost of other
operators [98]. The GA using this method applies several crossover operators
simultaneously within the same generation, each having its own crossover rate
pc(opi). Additionally, each operator has its local delta value di that represents
the strength of the operator measured by the advantage of a child created by
using that operator with respect to the best individual in the population. The
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local deltas are updated after every use of operator i. The adaptation mech-
anism recalculates the crossover rates periodically redistributing 15% of the
probabilities biased by the accumulated operator strengths, that is, the local
deltas. To this end, these di values are normalised so that their sum equals
15, yielding dnormi for each i. Then the new value for each pc(opi) is 85% of
its old value and its normalised strength:

pc(opi) = 0.85 · pc(opi) + dnormi .

Clearly, this method is adaptive based on relative evidence.

8.4.5 Selection

Most existing mechanisms for varying the selection pressure are based on
the so-called Boltzmann selection mechanism, which changes the selection
pressure during evolution according to a predefined cooling schedule [279].
The name originates from the Boltzmann trial from condensed matter physics,
where a minimal energy level is sought by state transitions. Being in a state
i the chance of accepting state j is

P [accept j] =

{

1 if Ei ≥ Ej ,

exp
(

Ei−Ej

Kb·T

)

if Ei < Ej ,

where Ei, Ej are the energy levels, Kb is a parameter called the Boltz-
mann constant, and T is the temperature. This acceptance rule is called the
Metropolis criterion.
We illustrate variable selection pressure in the survivor selection (replace-

ment) step by simulated annealing (SA). SA is a generate-and-test search
technique based on a physical, rather than a biological, analogy [2, 250]. For-
mally, however, SA can be envisioned as an evolutionary process with popu-
lation size of 1, undefined (problem-dependent) representation and mutation,
and a specific survivor selection mechanism. The selective pressure changes
during the course of the algorithm in the Boltzmann style. The main cycle in
SA is given in Fig. 8.3.
In this mechanism the parameter ck, the temperature, decreases accord-

ing to a predefined scheme as a function of time, making the probability of
accepting inferior solutions smaller and smaller (for minimisation problems).
From an evolutionary point of view, we have here a (1+1) EA with increasing
selection pressure.

8.4.6 Population

An innovative way to control the population size is offered by Arabas et
al. [11, 295] in their GA with variable population size (GAVaPS). In fact,
the population size parameter is removed entirely from GAVaPS, rather than
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BEGIN

/* given a current solution i ∈ S */
/* given a function to generate the set of neighbours Ni of i */
generate j ∈ Ni;

IF (f(i) < f(j)) THEN

set i = j;
ELSE

IF ( exp
(

f(i)−f(j)
ck

)

> random[0, 1)) THEN

set i = j;
FI

ESLE

FI

END

Fig. 8.3. Outline of the simulated annealing algorithm

adjusted on-the-fly. Certainly, in an evolutionary algorithm the population
always has a size, but in GAVaPS this size is a derived measure, not a con-
trollable parameter. The main idea is to assign a lifetime to each individual
when it is created, and then to reduce its remaining lifetime by one in each
consecutive generation. When the remaining lifetime becomes zero, the indi-
vidual is removed from the population. Two things must be noted here. First,
the lifetime allocated to a newborn individual is biased by its fitness: fitter in-
dividuals are allowed to live longer. Second, the expected number of offspring
of an individual is proportional to the number of generations it survives. Con-
sequently, the resulting system favours the propagation of good genes.
Fitting this algorithm into our general classification scheme is not straight-

forward because it has no explicit mechanism that sets the value of the popu-
lation size parameter. However, the procedure that implicitly determines how
many individuals are alive works in an adaptive fashion using information
about the status of the search. In particular, the fitness of a newborn indi-
vidual is related to the fitness of the present generation, and its lifetime is
allocated accordingly. This amounts to using relative evidence.

8.4.7 Varying Several Parameters Simultaneously

Mutation, crossover, and population size are all controlled on-the-fly in the
GA “without parameters” of Bäck et al. in [25]. Here, the self-adaptive mu-
tation from [17] (Sect. 8.4.3) is adopted without changes, a new self-adaptive
technique is invented for regulating the crossover rates of the individuals,
and the GAVaPS lifetime idea (Sect. 8.4.6) is adjusted for a steady-state GA
model. The crossover rates are included in the chromosomes, much like the
mutation rates. If a pair of individuals is selected for reproduction, then their
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individual crossover rates are compared with a random number r ∈ [0, 1], and
an individual is seen as ready to mate if its pc > r. Then there are three
possibilities:

1. If both individuals are ready to mate then uniform crossover is applied,
and the resulting offspring is mutated.

2. If neither is ready to mate then both create a child by mutation only.
3. If exactly one of them is ready to mate, then the one not ready creates a

child by mutation only (which is inserted into the population immediately
through the steady-state replacement), the other is put on hold, and the
next parent selection round picks only one other parent.

This study differs from those discussed before in that it explicitly com-
pares GA variants using only one of the (self-)adaptive mechanisms and the
GA applying them all. The experiments show remarkable outcomes: the com-
pletely (self-)adaptive GA wins, closely followed by the one using only the
adaptive population size control, and the GAs with self-adaptive mutation
and crossover are significantly worse.

8.5 Discussion

Summarising this chapter, a number of things can be noted. First, parameter
control in an EA can have two purposes. It can be done to find good parameter
values for the EA at hand. Thus, it offers the same benefits as parameter
tuning, but in an on-line fashion. From this perspective tuning and control are
two different approaches to solving the same problem. Whether or not one is
preferable over the other is an open question with very little empirical evidence
to support an answer. Systematic investigations are particularly difficult here
because of methodological problems. The essence of these problems is that a
fair comparison of the extra computational costs (learning overhead) and the
performance gains is hard to define in general.
The other motivation for controlling parameters on-the-fly is the assumption

that the given parameter can have a different ‘optimal’ value in different stages
of the search. If this holds, then there is simply no optimal static parameter
value; for good EA performance one must vary this parameter. From this
perspective tuning and control are not the same, control offers a benefit that
tuning cannot.
The second thing to remark is that making a parameter (self-)adaptive does

not necessarily mean that we obtain an EA with fewer parameters. For in-
stance, in GAVaPS the population size parameter is eliminated at the cost
of introducing two new ones: the minimum and maximum lifetime of new-
born individuals. If the EA performance is sensitive to these new parameters
then such a parameter replacement can make things worse. This problem
also occurs on another level. One could say that the procedure that allocates
lifetimes in GAVaPS, the probability redistribution mechanism for adaptive
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crossover rates (Sect. 8.4.4), or the function specifying how the σ values are
mutated in ES (Eq. (4.4)) are also (meta)parameters. It is in fact an assump-
tion that these are intelligently designed and their effect is positive. In many
cases there are more possibilities, that is, possibly well-working procedures
one can design. Comparing these possibilities implies experimental (or the-
oretical) studies very much like comparing different parameter values in a
classical setting. Here again, it can be the case that algorithm performance is
not so sensitive to details of this (meta)parameter, which fully justifies this
approach.
Third, it is important to note that the examples in the foregoing sections,

while serving as good illustrations of various aspects of parameter control, do
not represent the state of the art in 2014. There has been much research into
parameter control during the last decade. It has been successfully applied
in various domains of metaheuristics, including Evolution Strategies [257],
Genetic Algorithms [162, 291], Differential Evolution [349, 280], and Par-
ticle Swarm Optimization [473]. Furthermore, there are several noteworthy
contributions to the techniques behind parameter control. These range from
inventive ideas that need further elaboration, like applying self-organised crit-
icality [266], self-adaptation of population level parameters (e.g., population
size) [144] or tuning the controllers to a problem instance [242], to gener-
ally applicable mechanisms including adaptive pursuit strategies for operator
allocation [429], the Compass method [286] or ACROMUSE [291].
These and other valuable contributions to the field provide more and more

evidence about the possible benefits and accumulate the knowhow of suc-
cessful parameter control. Although the field is still in development, we can
identify some trends and challenges. The research community seems to con-
verge on the idea that successful parameter control must take into account two
types of information regarding the evolutionary search: data about fitness and
population diversity. However, there is a wide variety of approaches to how
exactly we should define these types of information; for instance, there are
many different ways to define diversity. A very promising approach was put
forward recently by McGinley et al. based on the idea of considering the di-
versity of the fittest part of the population (the ‘healthy’ individuals) instead
of the whole population’s diversity [291]. Another agreement on a conceptual
level is that a control mechanism is only successful if it appropriately balances
exploration and exploitation. But here again, there is no generally accepted
definition of these notions, indicating the need for more research [142, 91].
Perhaps one of the biggest obstacles that hinders widespread adoption of ex-
isting parameter control techniques is the ‘patchwork problem’. The problem
here is the lack of generally applicable methods for controlling EA parameters.
There are numerous techniques to control mutation, quite a lot for control-
ling recombination, several ways to adjust population size and a handful for
changing selection pressure on-the fly. To build an EA with all parameters
controlled, one needs to pick some method for each parameter thus creating a
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potpourri or patchwork with no solid evidence indicating how it all will work
together.
Finally, let us place the issue in a larger perspective of parameter setting

in EAs [273]. Over recent decades the EC community shifted from believing
that EA performance is to a large extent independent from the given prob-
lem instance to realising that it is. In other words, it is now acknowledged
that EAs need more or less fine-tuning to specific problems and problem in-
stances. Ideally, this should be automated and advanced (search) algorithms
should determine the best EA setting, instead of conventions and the users’
intuitions. For the case of doing this in advance, before the EA run there
are several powerful algorithms developed over the last ten years, see Section
7.6 and [145]. To put it optimistically, the tuning problem is now solved, and
the community of EA researchers and practitioners can adopt tuning as part
of the regular workflow. However, the picture is completely different for pa-
rameter control. As outlined above, this field is still in its infancy, requiring
fundamental research into the most essential concepts (diversity, exploration,
etc.) as well as algorithmic development towards good control strategies and
some unification (solution of the patchwork problem). To this end, we can rec-
ommend the recent overview of Karafotias et al. [241] that identifies current
research trends and provides suggestions for important research directions.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Working with Evolutionary Algorithms

In this chapter we discuss the practical aspects of using EAs. Working with
EAs often means comparing different versions experimentally, and we pro-
vide guidelines for doing this, including the issues of algorithm performance
measures, statistics, and benchmark test suites. The example application
(Sect. 9.4) is also adjusted to the special topics here; it illustrates the ap-
plication of different experimental practices, rather than EA design.

9.1 What Do You Want an EA to Do?

Throughout this book so far, we have seemingly never considered this issue:
“What do you want an EA to do?”. The reason is that we tacitly assumed
the trivial answer: “I want the EA solve my problem”. Many of the subjects
treated in this chapter concern specific interpretations and refinements of this
answer, and it will become clear that different objectives imply different ways
of designing and working with an EA.
A good first step is to examine the given problem context. We can roughly

distinguish two main types of problems:

• design (one-off) problems
• repetitive problems, including on-line control problems as special cases

As an example of a design problem, let us consider the optimisation of
extensions to an existing road network to meet new demands. This is most
certainly a highly complex multiobjective optimisation problem, subject to
many constraints. Computer support for this problem requires an algorithm
that creates one excellent solution at least once. In this context the quality of
the solution is of utmost importance, and other aspects of algorithm perfor-
mance are secondary. For instance, since the time scale of the whole project
spans years, the algorithm does not have to be fast. It can be given months
of computing time, perhaps performing several runs and keeping the best re-
sult, if this helps in achieving superior solution quality. The algorithm does
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not need to be generally applicable either. The present problem most proba-
bly contains very specific aspects, hindering reapplication of the algorithm to
other problems. Furthermore, a similar problem will occur as part of a similar
project allowing enough time to develop a good EA for that problem.
Repetitive problems form a counterpoint to design problems. As an illus-

tration, consider a domestic transportation firm, having dozens of trucks and
drivers that need to be given a daily schedule every morning. The sched-
ule should contain a pick-up and delivery plan, plus the corresponding route
description for each truck and driver. For each of them, this is just a TSP
problem (probably with time windows), but the optimisation criteria and the
constraints must be taken across the whole firm, together making the ac-
tual problem very complex. Depending on the type of business, the data and
requirements for a day’s schedule might become available weeks, days, but
maybe only hours before the schedules are to be handed out to the drivers.
In any case, the dispatcher must provide a schedule every morning to every
available driver. Suitable computer support for this problem, an EA in our
case, must be able to find good solutions quickly and be able to do this re-
peatedly for different instances of the problem (i.e., with different data and
requirements every day). The implications for the algorithm are radically dif-
ferent from those in the case of a design problem. The balance in the speed
versus quality trade-off is clearly towards speed. Solutions must be good, e.g.,
better than hand-made ones, but not necessarily optimal. Speed, however, is
crucial. For example, it could be required that the time between feeding the
data into the system and receiving the schedules does not exceed 30 minutes.
Closely related to this issue, it is important that the algorithm performance is
stable. Since an EA is a stochastic algorithm, the quality of end solutions over
a number of runs shows a certain variance. For a design problem we typically
have the time to perform many runs and select the best solution. Therefore
it is not a problem if some runs terminate with bad results, as long as oth-
ers end with good solutions. For repetitive problems, however, we might only
have time for one run. To reduce the probability of really bad runs, we need a
consistent EA to keep the variance of end solution quality as low as possible.
Finally, for repetitive problems the widescale applicability of the algorithm
is also important as the system will be used under various circumstances. In
other words, the algorithm will be run on different problem instances.
On-line control problems can also be seen as repetitive problems with ex-

tremely tight time constraints. To remain in the transportation context, we
can think of traffic light optimisation. In particular, let us consider the task
of optimising a controller to set the green times of a single crossing with four
crossroads. We assume that each of the crossroads has sensors embedded in
the road surface that continuously monitor traffic approaching the crossing.1

This sensory information is sent to the traffic light controller, a piece of soft-
ware running on a special device at the crossing. The task of this controller

1 This is common in many countries, and standard in the Netherlands.
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is to calculate the green times for each of the roads in such a way that the
throughput of vehicles is maximised. It is important to note that an EA can
be used for this problem in two completely different ways. First, we can use an
EA to develop a controller, based on simulations, which is then deployed at the
crossing in question. This type of application was mentioned in Sect. 6.4 on
genetic programming. The other way is to have an EA that is the controller,
and this is what we have in mind here. The most important requirement here
is, of course, speed. A controller is working in on-line mode, and it has to cope
with streaming sensory information and needs to control the traffic lights in
real time. The speed requirements are given in wall-clock time: the length of
one full cycle2 is typically a few minutes, and this time must be enough to cal-
culate the green times for the following cycle. This can be very demanding for
an EA that works with a whole population of candidate solutions and needs
quite a few generations to evolve a good result. Fortunately, by the nature of
traffic flows, the situation does not change very rapidly, which also holds for
many other control problems. This means that the consecutive problem in-
stances are rather similar to each other, and therefore it can be expected that
the corresponding near-optimal solutions are similar as well. This motivates
an EA that keeps the best solutions from previous runs and uses them in the
new run. The second requirement, similar to repetitive problems, is a small
variance in end solution quality. The third one is that the controller (the EA)
must be very fault-tolerant and robust. This means that noise in the data
(measurement errors of the sensors) or missing data (breakdown of a sensor)
must not have a critical effect. The system, and the EA, must keep working
and delivering the best possible results under the given circumstances.
Finally, let us mention a different but important context for working with

EAs: academic research. The considerations above apply in an application-
oriented situation, and it can be argued that making good applications is one
of the major goals of the whole evolutionary computing field. However, an
examination of the EC literature soon reveals that a huge majority of papers in
scientific journals, conference proceedings, or monographs are ignorant of such
concrete application-related issues. Scientific research apparently has its own
dynamics, goals, methodologies, and conventions. Some of these arise from the
fact that EAs can exhibit complex behaviours and emergent phenomena that
are interesting per se, and developing a solid theoretical understanding may
yield insight into real biological evolution. This chapter would not be complete
without paying attention to working with EAs in an academic environment.
The objective in many experimental research papers, implicitly or explicitly,

is to show that some EA is better than other EAs or their competitors – at
least for some ‘interesting’ problems. This objective is typically not placed
into an application context. The requirements of the algorithm are therefore

2 One cycle is defined as the time between two consecutive turn-to-green moments
of traffic light no. 1.
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not inferred from what we want it to do; rather, they are based on conventions
or ad hoc choices. Typical goals for academic experimentation are:

• Get a good solution for a given problem, e.g., challenging combinatorial
optimisation.

• Show that EC is applicable in a (possibly new) problem domain.
• Show that an EA with some newly invented feature is better than some

benchmark EA.
• Show that EAs outperform traditional methods on some relevant problems.
• Find best setup for parameters of a given EA, in particular, get data on

the impact of varying some EA component, e.g., the population size.
• Obtain insights into algorithm behaviour, e.g., the interaction between

selection and variation.
• See how an EA scales-up with problem size.
• See how the performance is influenced by parameters of the problem and

the algorithm.

While these goals are different among themselves, and academic experimen-
tal research is apparently different from application-oriented work, there are
general issues for all of these cases. The most prominent issue present in all
experimental work is the objective of assessing algorithm performance.

9.2 Performance Measures

Assessing the quality of an evolutionary algorithm commonly implies exper-
imental comparisons between the given EA and other evolutionary or tradi-
tional algorithms. Even if showing the superiority of some EA is not the main
goal, parameter tuning for good performance still requires experimental work
to compare different algorithm variants.
Such comparisons always assume the use of some algorithm performance

measures, since claims about ranking algorithms are always meant in terms
of their relative performances rather than, for instance, code length or read-
ability. Because EAs are stochastic, performance measures are statistical in
nature, meaning that a number of experiments need to be conducted to gain
sufficient experimental data, as noted in Sect. 7.5. In the following we discuss
three basic performance measures:

• success rate
• effectiveness (solution quality)
• efficiency (speed)

Additionally, we discuss the use of progress curves, i.e., plots of algorithm
behaviour against time.
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9.2.1 Different Performance Measures

In quite a few cases, experimental research concerns problems where either the
optimal solution can be recognised, which is typical in academia, or a criterion
for sufficient solution quality can be given, as in many practical applications.
In these cases one can easily define a success criterion: finding a solution of
the required quality, and the success rate (SR) measure can be defined as
the percentage of runs where this happens. For problems where the optimal
solutions cannot be recognised, the SR measure cannot be used in theory.
This is the case if the optimum of the objective function is unknown, or if
perhaps not even a lower/upper bound is available. Nevertheless, a success
criterion in the practical sense can often be given even in these cases. For
example, think of a university timetabling problem. The theoretical optimum
for any given year is surely unknown here. However, one could use last year’s
timetable, or the one made by hand as benchmark and declare that a run
ending with a timetable beating the benchmark by 10% is a success. Practical
success criteria can also be used even in cases when the theoretical optimum
is known, but the user does not require this optimum. For instance, it might
be sufficient if we have a solution with an error less than a given ǫ > 0.
The mean best fitness measure (MBF) can be defined for any prob-

lem that is tackled with an EA – at least for any EA using an explicit fit-
ness measure (thus excluding, for instance, interactive evolution applications,
Sect. 14.1). For each run of a given EA, we record the fitness of the best
individual at termination. The MBF is the average of these values over all
runs.
Note that although SR and MBF are related, they are different, and there

is no general advice on which one to use for algorithm comparison. The dif-
ference between the two measures is rather obvious: SR cannot be defined
for some problems, while the MBF is always a valid measure. Furthermore,
all possible combinations of low or high SR and MBF values can occur. For
example, low SR and high MBF is possible and indicates a good approximizer
algorithm: it gets close consistently, but seldom really makes it. Such an out-
come could motivate increasing the length of the runs, hoping that this allows
the algorithm to finish the search. An opposite combination of a high SR and
low MBF is also possible, indicating a ‘Murphy algorithm’: if it goes wrong, it
goes very wrong. That is, those few runs that terminate without an (optimal)
solution end in a disaster, with a very bad best fitness value deteriorating
MBF. Clearly, whether the first or the second type of algorithm behaviour
is preferable depends on the problem. As mentioned above, for a timetabling
problem the SR measure might not be meaningful, so one should be inter-
ested in a high MBF. To demonstrate the other situation, think of solving the
3-SAT problem with the number of unsatisfied clauses as fitness measure. In
this case a high SR is pursued, since the MBF measure – although formally
correct – is useless because the number of unsatisfied clauses at termination
says, in general, very little about how close the EA got to a solution. Notice,



152 9 Working with Evolutionary Algorithms

however, that the particular application objectives (coming from the original
problem-solving context) might necessitate a refinement of this picture. For
instance, if the 3-SAT problem to be solved represents a practical problem,
with some tolerance for a solution, then measuring MBF and striving for a
good MBF value might be appropriate.
In addition to the mean best fitness calculated over a number of runs,

in specific cases one might be interested in the best-ever or the worst-ever
fitness. As discussed above, for design problems, the best-ever fitness is more
appropriate than MBF, since one excellent solution is all that is required.
For repetitive problems the worst-ever fitness can be interesting, as it can be
used for studying worst-case scenarios and can help to establish statistical
guarantees on solution quality.
It is important to note that for both SR and MBF, it is assumed that they

are measured using an a priori specified limit of computational efforts. That
is, SR and MBF always reflect performance within a fixed maximum amount
of computing. If this maximum is changed, the ranking of algorithms might
change as well. This is illustrated in Fig. 9.1, which shows a ‘tortoise and
hare’ situation, where algorithm A (the hare) shows rapid progress, and in
the case of limited time it beats algorithm B (the tortoise). In turn algorithm
B outperforms algorithm A if given more time. Summarising, SR and MBF
are performance measures for an algorithm’s effectiveness, indicating how
far can it get within a given computational limit.

Fig. 9.1. Comparing algorithms A and B by after terminating at time T1 and T2

(for a minimisation problem). Algorithm A clearly wins in the first case, while B is
better in the second one

The complementary approach is to specify when a candidate solution is
satisfactory and measure the amount of computing needed to achieve this
solution quality. Roughly speaking, this is the issue of algorithm efficiency
or speed. Speed is often measured in elapsed computer time, CPU time, or
user time. However, these measures depend on the specific hardware, oper-
ating system, compiler, network load, and so on, and therefore are ill-suited
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for reproducible research. In other words, repeating the same experiments,
possibly elsewhere, may lead to different results. For generate-and-test-style
algorithms, such as EAs, a common way around this problem is to count the
number of points visited in the search space. Since EAs immediately evaluate
each newly generated candidate solution, this measure is usually expressed
as the number of fitness evaluations. Of necessity, because of the stochastic
nature of EAs, this is always measured over a number of independent runs,
and the average number of evaluations to a solution (AES) is used. It
is important to note that the average is only taken over the successful runs
(that is, ‘to a solution’). Sometimes the average number of evaluations to
termination measure is used instead of the AES, but this has clear disadvan-
tages. Namely, for runs finding no solutions, the specified maximum number
of evaluations will be used when calculating this average. This means that the
values obtained will depend on how long the unsuccessful runs are allowed to
continue. That is, this measure mixes the AES and the SR measures, and the
outcome figures are hard to interpret.
Using the AES measure generally gives a fair comparison of algorithm speed,

but its usage can be disputed, or even misleading in some cases:

1. First, if an EA uses ‘hidden labour’, for instance, some local search heuris-
tics incorporated in the mutation operator. The extra computational ef-
forts may increase performance, but are invisible to the AES measure.

2. Second, if some evaluations take longer than others. For instance, if a
repair mechanism is applied, then evaluations invoking this repair take
much longer. One EA with good variation operators might proceed by
chromosomes that do not have to be repaired, while another EA may need
a lot of repair. The AES values of the two may be close, but the second EA
would be much slower, and this is not an artifact of the implementation.

3. Third, if evaluations can be done very quickly compared with executing
other steps in the EA cycle.3 Then the AES does not truly reflect algo-
rithm speed as other components of the EA have a relatively large impact.

An additional problem with AES is that it can be difficult to apply for
comparing an EA with search algorithms that do not work in the same search
space, in the same fashion. An EA iteratively improves complete candidate
solutions, so each elementary search step consists of the creation and testing of
one new candidate solution. However, a constructive search algorithm works
in the space of partial solutions (including the complete ones through which
an EA is searching), so one elementary search step consists of extending the
current solution. In general, counting the number of elementary search steps is
misleading unless the nature of those steps is the same. A possible treatment
for this, and also for the hidden labour problem, is to compare the scale-up
behaviour of the algorithms. This requires a problem that is scalable, i.e., its

3 Typically this is not the case, and around 70–90% of the time is spent on fitness
evaluations.
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size can be changed. The number of variables is a natural scaling parameter
for many problems. Two different types of methods can then be compared
by plotting their own speed measure figures against the problem size. Even
though the measures used in each curve are different, the steepness infor-
mation is a fair basis for comparison: the curve that grows at a higher rate
indicates an inferior algorithm (Fig. 9.2). A great advantage of this compar-
ison is that it can also be applied to plain running times (e.g., CPU times),
not only to the number of abstract search steps. As discussed above, there
are important arguments against using running times themselves for compar-
isons. However, the scale-up curves of running times do give a fair comparison
without those drawbacks.

Fig. 9.2. Comparing algorithms A and B by their scale-up behaviour. Algorithm B
can be considered preferable because its scale-up curve is less steep

Success percentages and run lengths can be meaningfully combined into a
measure expressing the amount of processing required to solve a problem with
a given probability [252, Chap. 8]. This measure (defined for generational EAs
and used frequently in GP) depends on the population size and the number
of generations as tuneable quantities. The probability Y (μ, i) that a given
run with population size μ hits a solution for the first time in generation i is
estimated by observed statistics, which require a substantial number of runs.
Cumulating these estimations, we can calculate the probability P (μ, i) that a
given generation i will contain a solution (found in a generation j ≤ i), and
hence the probability that generation i finds a solution at least once in R runs
as 1− (1− P (μ, i))R. Then the number of independent runs needed to find a
solution by generation i with a probability of z is

R(μ, i, z) =

⌈

log(1− z)

log(1− P (μ, i))

⌉

, (9.1)

where ⌈ ⌉ is the ceiling function. Being a function of the population size, this
measure can give information on how to set μ. For instance, after collecting
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enough data with different settings, the total amount of processing, that is, the
number of fitness evaluations, needed to find a solution with a probability of z
by generation i using a population size μ is I(μ, i, z) = μ · i ·R(μ, i, z). Notice
that the dependence on μ is not the crucial issue here; in fact, any algorithm
parameter p can be used in an analogous way to estimate for R(p, i, z).
Another alternative to AES, especially in cases where one cannot specify

satisfactory solution quality in advance, is the pace of progress to indicate
algorithm speed. Here the best (or alternatively the worst or average) fitness
value of the consecutive populations is plotted against a time axis – typically
the number of generations or fitness evaluations (Fig. 9.1). Clearly, such a
plot provides much more information than the AES, and therefore it can also
be used when a clear success criterion is available. In particular, a progress
plot can help rank two algorithms that score the same on AES. For example,
progress curves might disclose that algorithm A has achieved the desired qual-
ity halfway through the run. Then the maximum number of evaluations might
be decreased and the competition redone. The chance is high that algorithm
A keeps its performance, e.g., its MBF, at lower costs and algorithm B does
not, thus a well-motivated preference can be formulated. Another possible
difference between progress curves of algorithms can be the steepness towards
the end of the run. If, for instance, curve A has already flattened out, but
curve B did not, one might extend the runs. The chance is high that B will
make further progress in the extra time, but A will not; thus again, the two
algorithms can be distinguished.
A problem with using such progress plots is that it is hard to use them in

a statistical way. Averaging the data of, say, 100 runs and only drawing the
average plot can hide interesting effects by smoothening them out. Overlay-
ing all curves forms an alternative, but has obvious disadvantages: it might
result in a chaotic figure with too much black ink and no visible structure.
A practical solution is depicting a typical curve, that is, one single plot that
is representative for all others. This option might not have a solid statistical
basis, but it can deliver the most information when used with care.

9.2.2 Peak Versus Average Performance

For some, but not all, performance measures, there is an additional question of
whether one is interested in peak performance, or average performance, con-
sidered over all these experiments. In evolutionary computing it is typical to
suggest that algorithm A is better than algorithm B if its average performance
is better. In many applications, however, one is often interested in the best
solution found in X runs or within Y hours/days/weeks (peak performance),
and the average performance is not that relevant. This is typical, for instance,
in design problems as discussed in Section 9.1. In general, if there is time for
more runs on the given problem and the final solution can be selected from
the best solutions of these runs, then peak performance is more relevant than
average performance.
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We have a different situation if a problem-solving session only allows time
for one run that must deliver the solution. This might be the case if a com-
putationally expensive simulation is needed to calculate fitness values or for
a real-time application, like repetitive and on-line control problems. Here, an
algorithm with high average performance and small standard deviation is the
best option, since it carries the lowest risk of missing the only chance we have.
It is interesting to note that academic experimental EC research falls in

the first category – there is always time to perform more runs on any given
set of test problems. In this light, it is strange that the huge majority of
experimental EC research is comparing average performances of algorithms.
This might be because researchers do not consider the differences between
design and repetitive problems, and do not realise the different implications
for the requirements of the problem-solving algorithm. Instead, it seems, they
simply assume that the EA will be used in the repetitive mode.
Next we consider an example to show how the interpretation of figures

concerning averages and standard deviations can depend on application ob-
jectives. In EC it is common to express preferences for algorithms with better
averages for a given performance measure, e.g., higher MBF or lower AES,
especially if a better average is coupled to a lower standard deviation. This
attitude is never discussed, but it is less self-evident than it might seem. Us-
ing the timetabling example, let us assume that two algorithms are compared
based on 50 independent runs and the resulting MBF values that are given in
Fig. 9.3. Given these results, it could be tempting to conclude that algorithm
A is better, because of the slightly higher MBF, and the more consistent be-
haviour (that is, lower variation in best fitness values at termination). This is
indeed a sound argument in the case of a repetitive application, for instance,
if a team of hospital employees must be scheduled every morning, based on
fresh data and constraints. Notice, however, that six runs of algorithm B
terminated with a solution quality that algorithm A never achieved. There-
fore in a design application algorithm B is preferable, because of the higher
chance of delivering a better timetable. Making a university timetable would
fall into this category, since it has to be made only once a year, and the data
is available weeks, perhaps months, before the timetable must be effective.
This discussion of performance measures is not exhaustive, but it illustrates
the point that for a sound comparison it is necessary to specify the objectives
of the algorithms in light of some problem-solving context and to derive the
performance measures used for comparison from these objectives.
Finally, let us pay some attention to using statistics. It is clear that by

the stochastic nature of EAs only statistical statements about behaviour are
possible. Typically, averages and standard deviations supply the necessary
basis for claims about (relative) performance of algorithms. In a few cases
these can be considered as sufficient, but in principle it is possible that two
(or more) series of runs deliver data that are statistically indistinguishable,
i.e., may come from the same distribution, and the differences are due to
random effects. This means that the two series, and the behaviour of the two
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Fig. 9.3. Comparing algorithms by histograms of the best found fitness values

EAs behind these series, should be considered as statistically identical, and
claims about one being better are ill-founded. It is important to recall that
the mean and standard deviation of any given observable are only two values
by which we try to describe the whole set of data. Consequently, considering
only the standard deviations often cannot eliminate the possibility that any
observed difference is only a result of randomness.
Good experimental practice therefore requires the use of specific tests to

establish whether observed differences in performance are truly statistically
significant. A popular method for this purpose is the two-tailed t-test, which
gives an indication about the chance that the values came from the same
underlying distribution. The applicability of this test is subject to certain
conditions, for instance, that the data are normally distributed, but in practice
it proves rather robust and is often used without verifying these conditions.
When more than two algorithms are being compared, it is suggested that an
analysis of variance (ANOVA) test be performed. This uses all of the data
to calculate a probability that any observed differences are due to random
effects, and should be performed before comparing algorithms pairwise. More
sophisticated variants also exist: for instance, if we want to investigate the
effects of two parameters (say, population size and mutation rate), then we
can perform a two-way ANOVA, which simultaneously analyses the effects of
each parameter and their interactions.
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If we have limited amounts of data, or our results are not normally dis-
tributed, then using t-tests and ANOVA is not appropriate. For example, if
we are comparing MBF values for a number of algorithms, with SR < 1 for
some (but not all) of them, then our data will almost certainly not be nor-
mally distributed, since there is a fixed upper limit to the MBF value defined
by the problem’s optimum. In this type of cases, it is better to use the equiv-
alent rank-based non-parametric test, noting that it is less likely to show a
difference, since it makes fewer assumptions about the nature of the data.
Unfortunately, the present experimental EC practice seems rather unaware

of the importance of statistics. This is a great shame, since there are many
readily available software packages for performing these tests, so there is no
excuse for not performing a proper statistical analysis of results. However
this problem is easily remediable. There are any number of excellent books
on statistics that deal with these issues, aimed at experimental sciences, or
business and management courses, see for instance [290, 472]. The areas of
concern are broadly known as hypothesis testing, and experimental design.
Additionally, a wealth of information and on-line course material can be found
by entering these terms into any Internet search engine.

9.3 Test Problems for Experimental Comparisons

In addition to the issue of performance measures, experimental comparisons
between algorithms require a choice of benchmark problems and problem in-
stances. We distinguish three different approaches:

1. Using problem instances from an academic benchmark repository.
2. Using problem instances created by a problem instance generator.
3. Using real-life problem instances.

9.3.1 Using Predefined Problem Instances

The first option amounts to obtaining prepared problem instances that are
freely available from Web-based repositories, monographs, or other printed lit-
erature. In the history of EC some objective functions had a large impact on
experimental studies. For instance, the so-called De Jong test suite, consisting
of five functions has long been very popular [102]. This test suite was carefully
designed to span an interesting variety of fitness landscapes. However, both
computing power and our understanding of EAs have advanced considerably
since the 1970s. Consequently, a modern study that only showed results on
these functions and then proceeded to make general claims would not be con-
sidered methodologically sound. Over the last decade other functions have
been added to the ‘obligatory’ list and are used frequently, such as the Ack-
ley, Griewank, and Rastrigin functions, just to name the most popular ones.
Obviously, new functions pose new challenges to evolutionary algorithms, but
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the improvement is still rather quantitive. To put it plainly: How much better
is a claim based on ten test landscapes than one only using the five De Jong
functions? There is, of course, a straightforward solution to this problem by
limiting the scope of statements about EA performance and restricting it to
the functions used in the comparative experiments. Formally, this is a sound
option, but in practice these careful refinements can easily skip the reader’s
attention. Additionally, the whole EC community using the same test suite
can lead to overfitting new algorithms to these test functions. In other words,
the community will not develop better and better EAs over the years, but
only better and better EAs for these problems!
Another problem with the present practice of using particular objective

functions or fitness landscapes is that these functions do not form a system-
atically searchable collection. That is, using 15 such functions will deliver 15
data points without structure. Unfortunately, although we have some ideas
about the sorts of features that make problems hard for EAs, we do not cur-
rently possess the tools to divide these functions into meaningful categories,
so it is not possible to draw conclusions on the relationship between char-
acteristics of the problem (the objective function) and the EA behaviour. A
deliberate attempt by Eiben and Bäck [130] in this direction failed in the sense
that the EA behaviour turned out to be inconsistent with the borders of the
test function categories. In other words, the EAs showed different behaviours
within one category and similar behaviours on functions belonging to different
categories. This example shows that developing a meaningful classification of
objective functions or test landscapes is nontrivial because the present vo-
cabulary to describe and to distinguish test functions seems inappropriate to
define good categories (see [239] for a good survey of these issues). For the
time being this remains a research challenge [135].
Building on cumulative experience in the EC community, for instance that

of Whitley et al. [454], Bäck and Michalewicz gave some general guidelines for
composing test suites for EC research in [29]. Below we reproduce the main
points from their recommendations. The test suite should contain:

1. A few unimodal functions for comparisons of convergence velocity (effi-
ciency), e.g., AES.

2. Several multimodal functions with a large number of local optima (e.g., a
number growing exponentially with n, the search space dimension). These
functions are intended to be representatives of the characteristics that are
typical for real-world problems, where the best out of a number of local
optima is sought.

3. A test function with randomly perturbed objective function values models
a typical characteristic of numerous real-world applications and helps to
investigate the robustness of the algorithm with respect to noise.

4. Constrained problems, since real-world problems are typically constrained,
and constraint handling is a topic of active research.
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5. High-dimensional objective functions, because these are representative
of real-world applications. Furthermore, low-dimensional functions (e.g.,
with n = 2) are not suitable representatives of application problems where
an evolutionary algorithm would be applied, because they can be solved
optimally with traditional methods. Most useful are test functions that are
scalable with respect to n, i.e., which can be used for arbitrary dimensions.

9.3.2 Using Problem Instance Generators

An alternative to such test landscapes is formed by problem instances of a
certain (larger) class, for instance, operations research problems, constrained
problems or machine-learning problems. The related research communities
have developed their collections, like the OR library http://www.ms.ic.

ac.uk/info.html, the constraints archive at http://www.cs.unh.edu/ccc/
archive, or the UCI Machine Learning Repository at http://www.ics.uci.
edu/~mlearn/MLRepository.html. The advantage of such collections is that
the problem instances are interesting in the sense that many other researchers
have investigated and evaluated them already. Besides, an archive often con-
tains performance reports of other techniques, facilitating direct feedback on
one’s own achievements.
Over the last few years there has been a growing research interest in using

problem instance generators. Using such a generator, which could of course
come from an archive, means that problem instances are produced on-the-spot.
Generators usually have some problem-specific parameters, for example, the
number of clauses and the number of variables for 3-SAT, or the number of
variables and the extent of their interaction for NK landscapes [244], and can
generate random instances for each parameter value. The advantage of this
approach is that the characteristics of the problem instances can be tuned by
the generator’s parameters. In particular, for many combinatorial problems
there is a lot of information available about the location of really hard prob-
lem instances, the so-called phase transition, related to the given parameters
of the problem [80, 183, 344]. A generator makes it possible to perform a sys-
tematic investigation in and around the hardest parameter range. Thus one
can create results relating problem characteristics to algorithm performance.
An illustration is given in Fig. 9.4. The question “which of the two algorithms
is better” can now be refined to “which algorithm is better on which problem
instances”. On mid-range parameter values (apparently the hardest instances)
algorithm B outperforms algorithm A. On the easier instances belonging to
low and high parameter values, this behaviour is reversed.

9.3.3 Using Real-World Problems

Testing on real data has the advantages that results can be considered as very
relevant viewed from the application domain (data supplier). However, it also
has some disadvantages. Namely, practical problems can be overcomplicated.

http://www.ms.ic.ac.uk/info.html
http://www.cs.unh.edu/ccc/archive
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ms.ic.ac.uk/info.html
http://www.cs.unh.edu/ccc/archive
http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 9.4. Comparing algorithms on problem instances with a scalable parameter

Furthermore, there can be few available sets of real data, and these data
may be commercially sensitive and therefore difficult to publish and to allow
others to compare. Last, but not least, there might be so many application-
specific aspects involved that the results are hard to generalise. Despite these
drawbacks it remains highly relevant to tackle real-world problems as the
proof of the pudding is in the eating!

9.4 Example Applications

As mentioned in the introduction to this chapter, instead of presenting two
case studies with implementation details, we next describe examples of good
and bad practice, in order to illustrate some of our points.

9.4.1 Bad Practice

This section shows a hypothetical example of an experimental study following
the template that can be found in many EC publications.4 In this imaginary
case a researcher has invented a new EA feature, e.g., “tricky mutation”, and
assessed the value of this new feature by running a standard GA and “tricky
GA” 20 times independently on each of 10 objective functions chosen from
the literature. The outcomes of these experiments proved tricky GA better on
seven, equal on one, and worse on two objective functions in terms of SR. On
this basis it was concluded that the new feature is indeed valuable.
The main question here is what did we, the EC community, learn from this

experience? We did learn a new feature (tricky mutation) and obtained some
indication that it might be a promising idea to try in a GA. This can of course
justify publishing a paper reporting this; however, there are also many things
that we did not learn here, including:

4 The authors admit that some of their own papers also follow this template.
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• How relevant are these results, e.g., are the test functions typical of real-
world problems, or important only from an academic perspective?

• What would have happened if a different performance metric had been
used, or if the runs had been ended sooner, or later?

• What is the scope of claims about the superiority of the tricky GA?
• Is there a property distinguishing the seven good and two bad functions?
• Are these results generalisable? Alternatively, do some features of the

tricky GA make it applicable for other specific problems, and if so which?
• How sensitive are these results to changes in the algorithm’s parameters?
• Are the performance differences as measured here statistically significant,

or can they be just artifacts caused by random effects?

The next example explicitly addresses some of these issues and therefore
forms a showcase for a better, albeit still not perfect, practice.

9.4.2 Better Practice

A better example of how to evaluate the behaviour of a new algorithm takes
into account questions such as:

• What type of problem am I trying to solve?
• What would be a desirable property of an algorithm for this type of prob-

lem, for example: speed of finding good solutions, reliably locating good
solutions, or occasional brilliance?

• What methods currently exist for this problem, and why am I trying to
make a new one, i.e., when do they not perform well?

After considering these issues, a particular problem type can be chosen, a
careful set of experiments can be designed, and the necessary data to collect
can be identified. A typical process might proceed along the following lines:

• inventing a new EA (xEA) for solving problem X
• identifying three other EAs and a traditional benchmark heuristic for prob-

lem X in the literature
• asking when and why xEA could be better than the other four methods
• obtaining a problem instance generator for problem X with two parame-

ters: n (problem size) and k (some problem-specific indicator)
• selecting five values for k and five values for n
• generating 100 random problem instances for all 25 combinations
• executing all algorithms on each instance 100 times (the benchmark heuris-

tic is also stochastic)
• recording AES, SR, and MBF values and standard deviations (not for SR)
• identifying appropriate tests based on the data and assessing the statistical

significance of results
• putting the program code and the instances on the Web

The advantages of this template with respect to the one in the previous ex-
ample are numerous:
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• The results can be arranged in 3D: that is, as a performance landscape
over the (n, k) plane with special attention to the effect of n on scale-up.

• The niche for xEA can be identified, e.g., weak with respect to other algo-
rithms for (n, k) combinations of type 1, strong for (n, k) combinations of
type 2, comparable otherwise. Thus the ‘when’ question can be answered.

• Analysing the specific features and the niches of each algorithm can shed
light on the ‘why’ question.

• A lot of knowledge has been collected about problem X and its solvers.
• Generalisable results are achieved, or at least claims with well-identified

scope based on solid data.
• Reproduction of the results, and further research elsewhere, is facilitated.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Hybridisation with Other Techniques: Memetic

Algorithms

In the preceding chapters we described the main varieties of evolutionary
algorithms and described various examples of how they might be suitably
implemented for different applications. In this chapter we turn our attention
to systems in which, rather than existing as stand-alone algorithms, EA-based
approaches are either incorporated within larger systems, or alternatively have
other methods or data structures incorporated within them. This category of
algorithms is very successful in practice and forms a rapidly growing research
area with great potential. This area and the algorithms that form its subject
of study are named memetic algorithms (MA). In this chapter we explain
the rationale behind MAs, outline a number of possibilities for combining
EAs with other techniques, and give some guidelines for designing successful
hybrid algorithms.

10.1 Motivation for Hybridising EAs

There are a number of factors that motivate the hybridization of evolutionary
algorithms with other techniques. In the following we discuss some of the most
salient of these. Many complex problems can be decomposed into a number of
parts, for some of which exact methods, or very good heuristics, may already
be available. In these cases it makes sense to use a combination of the most
appropriate methods for different subproblems.
Overall, successful and efficient general problem solvers do not exist. The

rapidly growing body of empirical evidence and some theoretical results, like
the No Free Lunch theorem (NFL),1 strongly support this view. From an EC
perspective this implies that EAs do not exhibit the performance as suggested
in the 1980s, cf. Fig. 3.8 in Sect. 3.5. An alternative view on this issue is

1 The NFL is treated in detail in Chap. 16, including a discussion about what it
really says. For the present we interpret it as stating that all stochastic algorithms
have the same performance when averaged over all discrete problems.
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given in Fig. 10.1. The figure considers the possibility that we could combine
problem-specific heuristics and an EA into a hybrid algorithm. Furthermore,
it is assumed that the amount of problem-specific knowledge is variable and
can be adjusted. Depending on the amount of problem-specific knowledge in
the hybrid algorithm, the global performance curve will gradually change from
roughly flat (pure EA) to a narrow peak (problem-specific method).

Fig. 10.1. 1990s view of EA performance after Michalewicz [295]

In practice we frequently apply an evolutionary algorithm to a problem
where there is a considerable amount of hard-won user experience and knowl-
edge available. In such cases performance benefits can often arise from utilis-
ing this information in the form of specialist operators and/or good solutions,
provided that care is taken not to bias the search too much away from the
generation of novel solutions. In these cases it is commonly experienced that
the combination of an evolutionary and a heuristic method – a hybdrid EA
– performs better than either of its ‘parent’ algorithms alone. Note, that in
this sense, Figure 10.1 is misleading as it does not indicate this effect.
There is a body of opinion that while EAs are very good at rapidly iden-

tifying good areas of the search space (exploration), they are less good at
the ‘endgame’ of fine-tuning solutions (exploitation), partly as a result of the
stochastic nature of the variation operators. To illustrate this point, as anyone
who has implemented a GA to solve the One-Max problem2 knows, the al-
gorithm is quick to reach near-optimal solutions, but the process of mutation
finding the last few bits to change can be slow, since the choice of which genes
are mutated is random. A more efficient method might be to incorporate a
more systematic search of the vicinity of good solutions by adding a local
search improvement step to the evolutionary cycle (in this case, a bit-flipping
hill-climber).
A final concept, which is often used as a motivation by researchers in this

field, is Dawkins’ idea ofmemes [100]. These can be viewed as units of cultural

2 A binary coded maximisation problem, where the fitness is simply the count of
the number of genes set to 1.
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transmission, in the same way that genes are the units of biological transmis-
sion. They are selected for replication according to their perceived utility or
popularity, and then copied and transmitted via interperson communication.

Examples of memes are tunes, ideas, catch-phrases, clothes fashions,
ways of making pots or of building arches. Just as genes propagate
themselves in the gene pool by leaping from body to body via sperm
or eggs, so memes propagate themselves in the meme pool by leaping
from brain to brain via a process which, in the broad sense, can be
called imitation [100, pg. 192].

Since the idea of memes was first proposed by Dawkins, it has been extended
by other authors (e.g., [57, 70]). From the point of view of the study of adaptive
systems and optimisation techniques, it is the idea of memes as agents that can
transform a candidate solution that is of direct interest. We can consider the
addition of a learning phase to the evolutionary cycle as a form of meme–gene
interaction, whereby the problem representation (genotype) is now considered
to be ‘plastic’, and the influence of the learning mechanism (meme) can be
thought of as a developmental process.
In the years since 2000 there has been an increasing amount of attention

paid to the concept that, rather than acting as fixed learning strategies, memes
themselves could be subjected to selection and adaptation according to their
perceived usefulness, giving rise to the field that has become known as Adap-
tive Memetic Algorithms [264, 326, 328]. Section 10.4 describes this progres-
sion in more detail.
Extending this perspective beyond local search-evolutionary hybrids, Ong

et al. consider Memetic Computation as a more general paradigm which uses
“the notion of meme(s) as units of information encoded in computational
representations for the purposes of problem solving”, cf. [327]. In their more
general view memes might be represented as “decision trees, artificial neu-
ral networks, fuzzy system, graphs etc.” , and are not necessarily coupled to
any evolutionary components at all, requiring simply a method for credit as-
signment. This enticing view offers the promise of memes capturing useful
structural and behavioural patterns which can be carried between instances
of the same problem, as is being explored in, for example, [431].
As this short selection of motivating considerations suggests, there are a

number of diverse reasons why the hybridisation of evolutionary algorithms
with other techniques is of interest to both the researcher and the practi-
tioner. The use of other techniques and knowledge to augment the EA has
been given various names in research papers such as: hybrid GAs, Baldwinian
EAs, Lamarckian EAs, genetic local search algorithms, and others. Moscato
[308] coined the name memetic algorithm (MA) to cover a wide range of
techniques where evolutionary search is augmented by the addition of one or
more phases of local search, or by the use of problem-specific information. The
field is now sufficiently mature and distinct to have its own journal, annual
workshop, and special issues of major journals dedicated to it.
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10.2 A Brief Introduction to Local Search

In Section 3.7 we briefly described local search as an iterative process of
examining the set of points in the neighbourhood of the current solution, and
replacing it with a better neighbour if one exists. In this section we give a
brief introduction to local search in the context of memetic algorithms. For
more information there are a number of books on optimisation that cover local
search in more detail, such as [3]. A local search algorithm can be illustrated
by the pseudocode given in Fig. 10.2.

BEGIN

/* given a starting solution i and a neighbourhood function n */
set best = i;
set iterations = 0;
REPEAT UNTIL ( depth condition is satisfied ) DO

set count = 0;
REPEAT UNTIL ( pivot rule is satisfied ) DO

generate the next neighbour j ∈ n(i);
set count = count+ 1;
IF (f(j) is better than f(best)) THEN

set best = j;
FI

OD

set i = best;
set iterations = iterations+ 1;

OD

END

Fig. 10.2. Pseudocode of a local search algorithm

There are three principal components that affect the workings of this local
search algorithm.
The first is the choice of pivot rule, which can be steepest ascent or

greedy ascent (also known as first ascent). In the former, the condition for
terminating the inner loop is that the entire neighbourhood n(i) has been
searched, i.e., count =| n(i) |; whereas in the latter the termination condition
is ((count =| n(i) |) or (best �= i)), i.e., it stops as soon as an improvement
is found. In practice it is sometimes necessary to only consider a randomly
drawn sample of size N <<| n(i) | if the neighbourhood is too large to search.
The second component is the depth of the local search, i.e., the termination

condition for the outer loop. This lies in the continuum between only one
improving step being applied (iterations = 1) to the search continuing to
local optimality: ((count =| n(i) |) and (best = i)). Considerable attention
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has been paid to studying the effect of changing this parameter within MAs
[211], and it can be shown to have an effect on the performance of the local
search algorithm, both in terms of time taken, and in the quality of solution
found.
The third, and most important, factor that affects the behaviour of the

local search is the choice of neighbourhood generating function. In practice
n(i) is often defined in a operational way, that is, as a set of points that
can be reached by the application of some move operator to the point i. An
equivalent representation is as a graph G = (v, e), where the set of vertices
v are the points in the search space, and the edges relate to applications of
the move operator i.e., eij ∈ G ⇐⇒ j ∈ n(i). The provision of a scalar
fitness value f defined over the search space means that we can consider the
graphs defined by different move operators as fitness landscapes [238]. Merz
and Freisleben [293] present a number of statistical measures that can be used
to characterise fitness landscapes, and that have been proposed by various
authors as potential measures of problem difficulty. Merz and Freisleben show
that the choice of move operator can have a dramatic effect on the efficiency
and effectiveness of the local search, and hence of the resultant MA.
In some cases, domain-specific information may be used to guide the choice

of neighbourhood structure within the local search algorithms. However, it
has recently been shown that the optimal choice of operators can be not only
instance specific within a class of problems [293, pp. 254–258], but also depen-
dent on the state of the evolutionary search [264]. This result is not surprising
when we consider that points that are locally optimal with respect to one
neighbourhood structure may not be locally optimal with respect to another,
unless of course they are globally optimal. Thus if a set of points has con-
verged to the state where all are locally optimal with respect to the current
neighbourhood operator, then changing the neighbourhood operator may pro-
vide a means of progression, in addition to recombination and mutation. This
observation has also been applied in other fields of optimisation and forms the
heart of methods such as the variable neighbourhood search algorithm [208]
and Hyperheuristics [89, 246, 72, 71].

10.2.1 Lamarckianism and the Baldwin Effect

The framework of the local search algorithm outlined above works on the
assumption that the current incumbent solution is always replaced by the
fitter neighbour when found. Within a memetic algorithm, we can consider the
local search stage to occur as an improvement or developmental learning phase
within the evolutionary cycle, and (taking our cue from biology) we should
consider whether the changes made to the individual (acquired traits) should
be kept in the genotype, or whether the resulting improved fitness should be
awarded to the original (pre-local search) member of the population.
The issue of whether acquired traits could be inherited by an individual’s

offspring was a major issue in the nineteenth century, with Lamarck arguing in
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favour. By contrast, the Baldwin effect [34] suggests a mechanism whereby
evolutionary progress can be guided towards favourable adaptation without
the changes in individuals’ fitness arising from learning or development be-
ing reflected in changed genetic characteristics. Modern theories of genetics
strongly favour the latter viewpoint. Pragmatically, we saw in Sect. 2.3.2 that
the mapping from DNA to protein is highly complex and nonlinear, let alone
the complexity of the developmental process by which the mature phenotype
is created. In the light of this, it is hardly credible to believe that a process of
reverse engineering could go on, coding the effects of phenotypically acquired
traits back into the genotype.
Luckily, working within the medium of computer algorithms we are not re-

stricted by these biological constraints, and so in practice both schemes are
usually possible to implement within a memetic algorithm. In general, MAs
are referred to as Lamarckian if the result of the local search stage replaces
the individual in the population, and Baldwinian if the original member is
kept, but has as its fitness the value belonging to the outcome of the local
search process. In a classic early study, Hinton and Nowlan [215] showed that
the Baldwin effect could be used to improve the evolution of artificial neural
networks, and a number of researchers have studied the relative benefits of
Baldwinian versus Lamarckian algorithms [224, 287, 435, 458, 459]. In prac-
tice, most recent work has tended to use either a pure Lamarckian approach,
or a probabilistic combination of the two approaches, such that the improved
fitness is always used, and the improved individual replaces the original with
a given probability.

10.3 Structure of a Memetic Algorithm

There are a number of ways in which an EA can be used in conjunction with
other operators and/or domain-specific knowledge as illustrated by Fig 10.3.
A full taxonomy of possibilities can be found in [265].

10.3.1 Heuristic or Intelligent Initialisation

The most obvious way in which existing knowledge about the structure of
a problem or potential solutions can be incorporated into an EA is in the
initialisation phase. In our discussion of this issue in Sect. 3.5 we gave reasons
why this might not be worth the effort in general, cf. Fig. 3.6. However,
starting the EA by using existing solutions can offer interesting benefits:

1. It is possible to avoid reinventing the wheel by using existing solutions.
Preventing waste of computational efforts can yield increased efficiency
(speed).

2. A nonrandom initial population can direct the search into particular re-
gions of the search space that contain good solutions. Biasing the search
can result in increased effectivity (quality of end solution).
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Fig. 10.3. Possible places to incorporate knowledge or other operators within the
evolutionary cycle

3. All in all, a given total amount of computational effort divided over heuris-
tic initialisation and evolutionary search might deliver better results than
spending it all on ‘pure’ evolutionary search, or an equivalent multistart
heuristic.

There are a number of possible ways in which the initialisation function can
be changed from simple random creation, such as:

• Seeding the population with one or more previously known good solu-
tions arising from other techniques. These techniques span the range from
human trial and error to the use of highly specialised greedy construc-
tive heuristics using instance-specific information. Examples of the lat-
ter include nearest-neighbour heuristics for TSP-like problems, ‘schedule
hardest first’ for scheduling and planning problems, and a wealth of other
techniques for different problems, which can be found in the operations
research literature.

• In selective initialisation a large number of random solutions are cre-
ated and then the initial population is selected from these. Bramlette [66]
suggests that this should be done as a series of N k-way tournaments rather
than by selecting the best N from k · N solutions. Other alternatives in-
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clude selecting a set based not only on fitness but also on diversity so as
to maximise the coverage of the search space.

• Performing a local search starting from each member of the initial pop-
ulation, so that the initial population consists of a set of points that are
locally optimal with respect to some move operator.

• Using one or more of the above methods to identify one (or possibly more)
good solutions, and then cloning them and applying mutation at a high
rate (mass mutation) to produce a number of individuals in the vicinity
of the start point.

All of these methods have been tried and have exhibited performance gains
for certain problems. However, the important issue of providing the EA with
sufficient diversity for evolution to occur must also be considered. In [421]
Surry and Radcliffe examined the effect of varying the proportion of the ini-
tial population of a GA that was derived from known good solutions. They
concluded that the use of a small proportion of derived solutions in the initial
population aided genetic search, and as the proportion was increased, the av-
erage performance improved. However, the best performance came about from
a more random initial population. In other words, as the proportion of solu-
tions derived from heuristics used increased, so did the mean performance,
but the variance in performance decreased. This meant that there were fewer
really bad runs, but also fewer really good runs. For a certain type of problems
(in particular, design problems as discussed in Chap. 9) this is an undesirable
property.

10.3.2 Hybridisation Within Variation Operators: Intelligent
Crossover and Mutation

A number of authors have proposed so-called intelligent variation operators,
which incorporate problem- or instance-specific knowledge. At their most sim-
ple, these might take the form of introducing bias into the operators. To give
a simple example, if a binary-coded GA is used to select features for use in
another classification algorithm, one might attempt to bias the search towards
more compact feature sets via the use of a greater probability for mutating
from the allele value “use” to “don’t use” rather than vice versa. A related
approach can be seen in [392], where genes encode for microprocessor in-
structions, which group naturally into sets with similar effects. The mutation
operator was then biased to incorporate this expert knowledge, so that mu-
tations were more likely to occur between instructions in the same set than
between sets.
A slightly different example of the use of problem-specific (rather than

instance-specific) knowledge can be seen in the modified one-point crossover
operator used for protein structure prediction in [436]. Here the authors re-
alised that the heritable features being combined by recombination were folds,
or fragments of three-dimensional structure. A property of the problem is that



10.3 Structure of a Memetic Algorithm 175

during folding protein structures can be free to rotate about peptide bonds.
The modified operator made good use of this knowledge by explicitly testing
all the possible different orientations of the two fragments (accomplished by
trying all the possible allele values in the gene at the crossover point), in or-
der to find the most energetically favourable. If no feasible conformation was
found, then a different crossover point was selected and the process repeated.
This can be seen as a simple example of the incorporation of a local search
phase into the recombination operator. Note that this should be distinguished
from the simpler “crossover hill-climber” proposed in [238], in which all of the
l − 1 possible offspring arising from one-point crossover are constructed and
the best chosen.
At the other end of the scale, at their most complex, the operators can be

modified to incorporate highly specific heuristics, which make use of instance-
specific knowledge. A good example of this is Merz and Freisleben’s distance-
preserving crossover (DPX) operator for the TSP [178]. This operator has two
motivating principles: making use of instance-specific knowledge, while at the
same time preserving diversity within the population to prevent premature
convergence. Diversity is maintained by ensuring that the offspring inherits
all of the edges common to both parents, but none of the edges that are present
in only one parent, and is thus at the same distance to each parent as they
are to each other. The intelligent part of the operator comes from the use of
a nearest-neighbour heuristic to join together the subtours inherited from the
parents, thus explicitly exploiting instance-specific edge length information.
It is easy to see how this type of scheme could be adapted to other problems,
via the use of suitable heuristics for completing the partial solutions after
inheritance of the common factors from both parents.

10.3.3 Local Search Acting on the Output from Variation
Operators

The most common use of hybridisation within EAs, and that which fits best
with Dawkins’ concept of the meme, is via the application of one or more
phases of improvement to individual members of the population during the
EA cycle, i.e., local search acting on whole solutions created by mutation
or recombination. As is suggested from Fig. 10.3, this can occur in different
places in cycle i.e., before or after selection or after crossover and/or mutation,
but a typical implementation might take the form given in Fig. 10.4
The natural analogies between human evolution and learning, and EAs and

artificial neural networks (ANNs) prompted a great deal of research into the
use of EAs to evolve the structure of ANNs, which were then trained using
back-propagation or similar means during the 1980s and early 1990s. This
research gave a great deal of insight into the role of learning, Lamarckianism,
and the Baldwin effect to guide evolution (e.g., [215, 224, 287, 435, 458, 459]
amongst many others), and served to reinforce messages that were proposed



176 10 Hybridisation with Other Techniques: Memetic Algorithms

BEGIN

INITIALISE population;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

SELECT parents;

RECOMBINE to produce offspring;

MUTATE offspring;

EVALUATE offspring;

[optional] CHOOSE Local Search method to apply;

IMPROVE offspring via Local Search;

[optional] Assign Credit to Local Search methods;

(according to fitness improvements they cause);

SELECT individuals for next generation;

REWARD currently successful Local Search methods;

(by increasing probability that they are used);

OD

END

Fig. 10.4. Pseudocode for a simple memetic algorithm with optional choices for
multiple memes

by “real-world” practitioners for several years as to the usefulness of incorpo-
rating local search and domain-based heuristics. Since then a number of PhD
theses [211, 259, 267, 292, 309] have provided the beginnings of a theoretical
analysis, and both theoretical and empirical results to justify an increased
interest in these algorithms.
One recent result of particular interest to the practitioner is Krasnogor’s

formal proof that, in order to reduce the worst-case run times, it is necessary
to choose a local search method whose move operator is not the same as
those of the recombination and mutation operators [259]. This formalises the
intuitive point that within an MA recombination, and particularly mutation,
have valuable roles in generating points that lie in different basins of attraction
with respect to the local search operator. This diversification is best done
either by an aggressive mutation rate, or preferably by the use of a variation
operators that have different neighbourhood structures.

10.3.4 Hybridisation During Genotype to Phenotype Mapping

A widely used hybridisation of memetic algorithms with other heuristics is
during the genotype–phenotype mapping prior to evaluation. A good example
of this is the use of instance-specific knowledge within a decoder or a repair
function, as seen in Sect. 3.4.2, where we can consider the decoder function
for the knapsack problem as being a packing algorithm that takes its inputs
in the order suggested by the EA.
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This approach, where the EA is used to provide the inputs controlling the
application of another heuristic, is frequently used to great effect in, for exam-
ple, timetabling and scheduling problems [210], and in the “sector first–order
second” approach to the vehicle routing problem [428].
As can be seen, there is a common thread to all of these approaches, which

is to make use of existing heuristics and domain information wherever pos-
sible. The role of the EA is often that of enabling a less biased application
of the heuristics, or of problem decomposition, so as to permit the use of so-
phisticated, but badly scaling heuristics when the overall problem size would
preclude their use.

10.4 Adaptive Memetic Algorithms

Probably the most important factor in the design of a memetic algorithm
incorporating local search or heuristic improvement is the choice of improving
heuristic or local search move operator, that is to say, the way that the set of
neighbouring points — to be examined when looking for an improved solution
— is generated.
To this end, a large body of theoretical and empirical analysis of the util-

ity of various statistical measures of landscapes for predicting problem diffi-
culty is available [239]. Merz and Freisleben [293] consider a number of these
measures in the context of memetic algorithms, and show that the choice of
move operator can have a dramatic effect on the efficiency and effectiveness of
the local search, and hence of the resultant MA. We have already mentioned
Krasnogor’s PLS complexity analysis result, which suggests that to reduce the
worst-case time complexity of the algorithm it is desirable for the move oper-
ator of the LS to define a different landscape to the mutation and crossover
operators.
In general then, it is worth giving careful consideration to the choice of

move operators used when designing a MA: for example, using 2-opt for
a TSP problem might yield better improvement if not used in conjunction
with the inversion mutation operator described in Sect. 4.5.1. In some cases,
domain-specific information may be used to guide the choice of neighbourhood
structure within the local search algorithms.
One simple way to surmount these problems is the use of multiple local

search operators in tandem, in a similar fashion to the use of multiple varia-
tion operators seen in Chapter 8. Krasnogor and Smith [264] introduced the
idea of what they first called ‘multimeme’ algorithms, where the evolution-
ary algorithm was coupled with not one, but several, local search methods,
together with some mechanism for choosing between them according to their
perceived usefulness at any given stage of search. In this case they used self-
adaptation, so that each candidate solution carried a gene which indicated
which local search method to use. This was inherited from its parents and
was subject to mutation, in much the same way that Self-adaptation is widely
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used to adapt the choice of mutation rates (see, for example, Sect. 4.4.2).
An example of this can be seen in [261],where a range of problem specific
move operators, such as local stretches, rotations, and reflections, each tai-
lored to different stages of the folding process, are used for a protein structure
prediction problem.
Working with continuous representations, Ong and Keane applied simi-

lar ideas, but used a different choice mechanism [326] in what they called
‘Meta-Lamarckian Learning’. The commonality between these approaches was
quickly recognised, and [328] present an excellent recent review of work in the
field of what they term “Adaptive Memetic Algorithms”. This encompasses
Multi-memetic Algorithms ( [258, 259, 263, 264, 261]), the coevolving memetic
algorithms (COMA) framework ([384, 387, 388, 389, 381]), Meta-Lamarckian
MAs ([326]), Hyperheuristics ([89, 246, 72, 71]), and Self-generating MAs (
[260, 262]).
Essentially, all of these approaches maintain a pool of local search operators

available to be used by the algorithm, and at each decision point make a choice
of which to apply. Ong’s classification uses terminology developed elsewhere to
describe adaptation of operators and parameters in evolutionary algorithms
(see Chap. 8). This taxonomy categorises algorithms according to the way
that these decisions are made. One way (‘static’) is to use a fixed strategy.
Another (‘adaptive’) uses feedback of which operators have provided the best
improvement recently, and is further subdivided into “external”, “local” (to a
deme or region of search space), and “global” (to the population) according to
the nature of the knowledge considered. Finally, they note that LS operators
may be linked to candidate solutions (‘self-adaptive’). As with the field of
parameter tuning and control, a lot of research has been focussed on good
ways of identifying currently helpful local search mechanisms (also known
as credit assignment [381, 391]), rewarding useful memes by increasing their
probability of being used, and adapting the definitions of the local search
mechanisms.
Based on these ideas, Meuth et al. [294] distinguished between:

• First-Generation MAs — which they define as “Global search paired with
local search”,

• Second-Generation MAs — “Global search with multiple local optimizers.
Memetic information (Choice of optimizer) passed to offspring (Lamarck-
ian evolution)”,

• Third-Generation MAs: — “Global search with multiple local optimiz-
ers. Memetic information (choice of local optimizer) passed to offspring
(Lamarckian evolution). A mapping between evolutionary trajectory and
choice of local optimizer is learned”.

They noted that at the time of writing the Self-generating MAs, and COMA
are the only algorithms falling into the 3G class, and go on to propose (but not
implement) a fourth generation of MAs in which they suggest: “Mechanisms of
recognition, generalization, optimization, and memory are utilized”. Arguably
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the use of pattern-based memes in COMA falls into this class, and certainly
the framework described in [82] represents an important step towards such
algorithms.
A number of subsequent papers have expanded on these themes. Barkat-

Ullah et al. [40] propose an agent-based approach for optimising constrained
problems defined over continuous spaces. Here each agent has available to
it a suite of local search algorithms, and maintains a local record for each.
This is a scalar value in the range {−1,1} according to the meme’s effect on
the feasibility of the candidate solution, and also on the fitness improvement
caused in the last generation. Nguyen et al. [319] proposed static adaption in
cellular memetic algorithms. Their approach split the population into groups
according to fitness diversity and applied global search to one member from
each group, with a blacklist of members that did not benefit from local search.
This blacklist method uses local historical evidence to bias the global / local
search tradeoff, and while highly effective, it will of course only work with
fixed memes. A more general probabilistic memetic framework was proposed
in [320] to adapt the global/local search trade-off. Using arguments based
on the likelihood of generating points within a basin of attraction on a con-
tinuous landscape, they proposed dynamically estimating the probabilities of
achieving benefits via local search and global search, and adapting the num-
ber of iterations allowed to local search accordingly. This was successfully
instantiated using local search traces plus a database of historical points.
What is notable about many of these advanced algorithms is that although

they avoid some of the issues such as robustness, which arise from a single
fixed choice of meme, their focus highlights some of the common design issues
that are faced when implementing an MA, which we now turn to.

10.5 Design Issues for Memetic Algorithms

So far we have discussed the rationale for the use of problem-specific knowlege
or heuristics within EAs, and some possible ways in which this can be done.
However, as ever, we must accept the caveat that, like any other technique,
MAs are not some ‘magic solution’ to optimisation problems, and care must
be taken in their implementation. In the sections below we briefly discuss
some of the issues that have arisen from experience and theoretical reasoning.

Preservation of Diversity

The problem of premature convergence, whereby the population converges
around some suboptimal point, is recognised within EAs but is exacerbated
in MAs by the effect of local search. If the local search phase continues until
each point has been moved to a local optimum, then this leads to an inevitable
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loss of diversity within the population.3 A number of approaches have been
developed to combat this problem such as:

• When initialising the population with known good individuals, only using
a relatively small proportion of them.

• Using recombination operators which are designed to preserve diversity.
• Modifying the selection operator to prevent duplicates.
• Modifying the selection operator or local search acceptance criteria to use

a Boltzmann method so as to preserve diversity.

This last method bears natural analogies to simulated annealing [2, 250],
where worsening moves can be accepted with nonzero probability, to aid es-
cape from local optima, see also Sect. 8.4.5. A promising method that tackles
the diversity issue explicitly is proposed in [263], where during the local search
phase a less-fit neighbour may be accepted with a probability that increases
exponentially as the range of fitness values in the population decreases:

P (accept) =

{

1 if ΔE > 0,

e
k∆E

Fmax−Favg , otherwise,

where k is a normalisation constant and we assume a maximisation problem,
ΔE = Fneighbour − Foriginal.

Recently this issue has been revisited in the context of adaptive MAs, using
insights from the behaviour of different local search mechanisms. Neri and
Caponio [77] propose a ‘Fast Adaptive Memetic Algorithm’ which simultane-
ously adapts the global and local search characteristics according to a measure
of (global) fitness diversity. The former is done by adjusting the EA’s pop-
ulation size and the ‘aggressiveness’ of mutation to maintain diversity. The
probability of applying two very different local search operators is determined
using a static external rule, taking as evidence the generation count and the
ratio of the current fitness diversity to the extremal value ever observed. This
concept is explored further in [316, 317].

Use of Knowledge

A final point that might be taken into consideration when designing a new
memetic algorithm concerns the use and reuse of knowledge gained during
the optimisation process. To a certain extent this is done automatically by
recombination, but, generally speaking, explicit mechanisms are not used.
One possible hybridisation that explicitly uses knowledge about points al-

ready searched to guide optimisation is with tabu search [185]. In this al-
gorithm a “tabu” list of visited points is maintained, to which the algorithm
is forbidden to return. Such methods appear to offer promise for maintaining

3 Apart from the exceptional case where each member of the population lies within
the basin of attraction of a different local optimum.
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diversity. Similarly, it is easy to imagine extensions to the Boltzmann accep-
tance/selection schemes that utilise information about the spread of genotypes
in the current population, or even past populations, when deciding whether
to accept new solutions.

10.6 Example Application: Multistage Memetic

Timetabling

In order to illustrate some of the ways that EAs can be combined with other
techniques, we take as our example an application to examination timetabling
described in [73]. Timetabling is, in general, an NP-complete problem, and
the examination timetabling application is particularly beloved of academic
researchers, not least because they are regularly made aware of its importance
and difficulty. The general form that the problem takes is of a set of examina-
tions, E, each of which has a number of seats required, si, to schedule over a
set of time periods P . Usually a co-occurrence matrix C is provided, where cij
gives the number of students sitting both exams i and j. If feasible solutions
exist, then this is a constraint satisfaction problem, but in general this might
not be the case, so it is more common to take an indirect approach and treat
it as a constrained optimisation problem via the use of a penalty function.4

This function considers a number of terms

• Exams can only be scheduled in rooms with adequate capacity.
• It is highly undesirable to timetable two exams i and j at the same time if

cij > 0, since this requires quarantining those students until they can sit
the second paper.

• It is not desirable to have students sitting two exams on the same day.
• It is preferable not to have students sitting exams in consecutive periods,

even if there is a night between them.

This timetabling problem has been well studied, and many heuristic ap-
proaches have been proposed, but a common problem has been that they do
not always scale well. The approach documented by Burke and Newell is par-
ticularly interesting and is relevant to this chapter because it has the following
features:

• A decomposition approach is taken, whereby a heuristic scheduler breaks
down the problem into smaller parts that can be more easily solved by an
optimisation technique.

• The optimisation heuristic used is an EA.
• The EA itself incorporates other heuristics, i.e., it is an MA in its own

right.

4 See Chap. 13.
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The heuristic scheduler divides the set E into a number of equal-sized
smaller sub-groups, which are scheduled in turn. Thus when scheduling the
elements of the nth subgroup, the elements of the previous n − 1 subgroups
are already in place and cannot be altered. The set E is partitioned by using
a metric to estimate the difficulty of scheduling each exam, and then ranking
the exams so that the most difficult ones are scheduled first. Three different
metrics are considered, based on the number of conflicts with other events, the
number of conflicts with previously scheduled events, and the number of valid
periods for an event left in the timetable. The authors also consider the use
of look-ahead techniques in which two subsets are considered, but only one
timetabled. This strategy could, of course, be used with any one of a number
of techniques embedded within it to handle the timetabling of each subset in
turn. The heuristic chosen is itself a memetic algorithm with the parameters
listed in Table 10.1.

Representation Set of linked lists of exams, each encoding for one period

Recombination None

Mutation Random choice of “light” or “heavy” mutation

Mutation probability 100%

Parent selection Exponential ranking

Survival selection Best 50 of 100 offspring

Population size 50

Initialisation Randomly generated then local search applied to each

Termination condition Five generations with no improvement in best fitness

Special features Local search (to local optimum) applied after mutation

Table 10.1. Table describing MA embedded with multistage timetabling algorithm

As can be seen, there are several points worth commenting on. Each member
of the initial population is created by generating a random permutation of the
exams, and then (in that order) assigning each one to the first valid period.
The local search algorithm is always applied until a locally optimal solution
is reached, but it uses a greedy ascent mechanism so there is some variability
in the output. It is applied to each initial solution, and to each offspring, thus
the EA is always working with solutions that are locally optimal, at least with
respect to this operator.
The authors reported that previous experiments motivated them against the

use of recombination for this problem, but instead each offspring is created
via the use of one of two problem-specific mutation operators. The “light”
operator is a version of the scramble mutation that checks for the feasibility
of the solutions it produces. The “heavy” mutation operator is highly instance
specific. It looks at the parent and calculates a probability of “disrupting” the
events in each period based on the amount of penalty it seems to be causing.
However, this operator also makes use of knowledge from other solutions,
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since these probabilities of disruption are modified by reference to the best-
performing solution in the current population.
The results obtained by this algorithm are impressive, both in terms of

speed and quality of solutions. It is worth emphasizing the following points
that have led to this success:

• The combination of heuristic sequencing with an EA-based approach finds
better results faster than either approach does on its own.

• The algorithm uses local search so that its initial population is already
considerably better than random.

• Strong selection pressure is applied: both exponential ranking for parent
selection plus (50,100) survivor selection.

• Intelligent mutation operators are used. One uses instance-specific infor-
mation to prevent it from producing solutions that violate the most impor-
tant constraints. The second is highly problem specific, aimed at disrupting
‘poor’ periods.

• The “heavy” mutation operator makes use of information from the rest of
the population to decide how likely it is to disrupt a period.

• The depth of local search is always maximal, i.e., the parent population
will only come from the set of local optima of the local search landscape.

• Despite the strong selection pressure, and the point above, the fact that
mutation is always applied, and that all the search operators have different
underlying move mechanisms, means that a premature loss of diversity is
avoided.

• As detailed in the paper, there is major use of a variety of coding and
algorithmic strategies to avoid full evaluation of solutions and to speed up
the manipulation of partial solutions.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Nonstationary and Noisy Function

Optimisation

Unlike most of the examples we have used so far, real-world environments
typically contain sources of uncertainty. This means that if we measure the
fitness of a solution more than once, we will not always get the same result. Of
course, biological evolution happens in just such a dynamic environment, but
there are also many EA applications in environments featuring change or noise
when solutions are evaluated. In these nonstationary situations the search
algorithm has to be designed so that it can compensate for the unpredictable
environment by monitoring its performance and altering some aspects of its
behaviour. An objective of the resulting adaptation is not to find a single
optimum, but rather to select a sequence of values over time that maximise
or minimise some measure of the evaluations, such as the average or worst.
This chapter discusses the various sources of unpredictability, and describes
the principal adaptations to the basic EA in response to them.

11.1 Characterisation of Nonstationary Problems

At this stage we must consider some basic facts about the process of going
from a representation of a solution (genotype) x, to measuring the quality of
a candidate solution for the task at hand, f(x). For illustration we will use
a simple household example — designing a mop for cleaning spills of various
different liquids from a floor. We will assume that the candidate solution in
fact describes the structure of the sponge — that is to say the size of pores,
elasticity, shape of contact area, etc.1 The quality recorded for a given solution
may be unpredictable for one or more of the following reasons.

1 In general, δq stands for a small random change in the value of some property q.
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The Genotype to Phenotype Mapping Is Not Exact and
One-to-One

If the fitness is to be measured via simulations, the genotype may use double-
precision floating point numbers to code for the design parameters, but in the
simulation there might be differences in the resolution of the models. If the
fitness is to be measured via physical effects, the manufactured phenotype may
not perfectly reflect the encoded design parameters. Thus, for our example,
we might be measuring the cleaning ability of a slightly different sponge to
the one we thought. In terms of a search landscape, the fitness observed may
be that of a point in the region of x: fobserved(x) = f(x+ δx).

The Act of Measurement Itself Is Prone to Error or Uncertainty

This might arise from, for example, human error, small random fluctuations
in shape of physical objects as their molecules vibrate, randomness in the
movement of electrons through a sensor or wire, or the collected randomness
of more complex organisms such as people, markets, packets on computer
network or physical traffic. In terms of our mop, we might mismeasure the
quantities of fluid absorbed by the sponge. This means a rethink of our land-
scape metaphor: the unique surface in the altitude dimension representing the
fitness of points in the search space is replaced by a ‘cloud’ — a probability
distribution from which we sample when we measure fitness, whose ‘thickness’
may vary across the space. Many different models may be used to characterise
the noise. The most straightforward is to break down a quality function into
two components: fobserved(x) = fmean(x)+fnoise(x). Here the first component
represents the average that we would find if we measured fitness many times,
and the second noise component is typically modelled as a random drawing
from a normal distribution N(0, σ).

The Environment Changes Over Time

This may be because the external environment is inherently volatile, or it
may be that the very act of evaluating solutions affects subsequent fitness.
For example, in an interactive EA, each interaction potentially increases user
fatigue and changes the expectations (Sect. 14.1). If our mop is being tested
in an environment with significant seasonal fluctuations in temperature, then
this may affect either the absorbency of the sponge material, or the viscosity
of fluids tested. This could mean that if we measured the same design every
day for a year we would observe seasonal cyclic changes in the fitness. In the
context of a search landscape, this means that the locations of the optima are
now time-dependent, i.e., fobserved(x) = f(x, t).
In many real-world problems, one or more of these effects occur in combi-

nation. It remains for the algorithm designer to decide which will be present,
take account of the context in which the tool created will be used, and select
appropriate modifications from those listed in subsequent sections.



11.2 The Effect of Different Sources of Uncertainty 187

11.2 The Effect of Different Sources of Uncertainty

A number of researchers have proposed mechanisms for dealing with uncer-
tainty, and examined their performance on test cases and real-world problems.
Algorithms are typically compared by running them for a fixed period and
calculating two time-averaged metrics, which correspond to different types of
real-world applications.
The first of these is the online measure [102] and is simply the average

of all calls to the evaluation function during the run of the algorithm. This
measure relates to applications where it is desirable to maintain consistently
good solutions, e.g., online process control [164, 444] or financial trading. The
second metric considered is the offline performance and is the time-averaged
value of the best-performing member of the current population. Unlike the
online metric, offline performance is unaffected by the occasional generation
of individuals with very low fitness, and so is more suitable for problems where
the testing of such individuals is not penalised, e.g., parameter optimisation
using a changing design model.
If we use the time-dependent notation for the fitness function as f(x, t) and

denote the best individual in a population P (t) at time t by best(P (t)), then
we can formalise the two metrics over a period T as follows:

online =
1

T
×

T
∑

t=1

1

|P (t)|
∑

x∈P (t)

f(x, t)),

offline =
1

T
×

T
∑

t=1

f((best(P (t)), t)).

Finally, let us note that in some cases it may be appropriate to consider
both metrics in a multiobjective approach, since optimising the mean fitness
may be the principle desiderata, but evaluating low-fitness solutions might be
catastrophic. In this case one approach might be to use a surrogate model to
screen out such potential fatal errors.
The three different sources of uncertainty identified in the previous section

affect the performance of the EA in different ways. Considering errors in
the genotype–phenotype mapping, we can note that using the average of n
repeated fitness evaluations 1

n ×∑

n f(x+ δx) to determine the fitness of any
given x means using a sample of n points from the neighbourhood around
x. However, the sampled neighbourhoods of adjacent solutions can overlap,
that is, x + δx can coincide with y + δy. Hence, fine-grained features of the
fitness landscape will be smoothened out possibly removing local optima in the
process. In practice this is often a good thing. From the search perspective
it creates gradients around steps and plateaus in the landscape, and from
a problem-solving perspective it reduces the attractiveness of high-quality
solutions that are surrounded by much lower quality neighbours, which might
be considered very ‘brittle’.
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Considering noise in the act of measurement itself, the average of n repeated
measurements is f(x)+ 1

n ×∑

n N(0, σ) and the second term will approximate
zero as n is increased. In other words, when repeatedly sampling from random
noise, the deviations cancel out and you get an estimate of the mean. Unlike
the case above, there is no smoothing of landscape features. This is illustrated
in Figure 11.1, which shows a fitness function f(x) = 1/(0.1 + x2) and the
values estimated after five samples with two different sorts of uncertainty
present. Both types of noise were drawn uniformly from a distribution between
+/− 0.4. Already becoming apparent is that the errors in the genotype–
phenotype mapping reduce the height of the estimated local optimum and
make it wider. In contrast, the effect of noise in the measurement alone is
already being reduced to near-zero after five samples.
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Fig. 11.1. Effect of different types of uncertainty on estimated fitness. Curves show
mean values estimated after five samples for each value of x

Regarding the third situation of nonstationary fitness functions, Cobb [84]
defines two ways of classifying these:

• Switching versus continuous, which is based on time-scale of change with
respect to the rate of evaluation — the former providing sudden and the
latter more gradual changes. Continuous changes might be cyclical (e.g.,
related to seasonal effects) or reflect a more uniform movement of land-
scape features (for example, when arising from gradual wear-and-tear of
physical parts).

• Markovian versus state dependent. In the first of these, the environment
at the next time step is purely derived from the current one, whereas in
the latter far more complex dynamics may play out.

To illustrate these differences, consider a simple example many of us en-
counter daily – modelling and predicting traffic levels on a commute. These
will change gradually during each day, building up to, and then tailing off
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from, peak values at rush hours. When planning a journey we would expect
that the likely travel time of a direct route involving a busy road will vary
during the day. However, there will also be more switching behaviour as the
flows are affected by one-off events such as public holidays, and between differ-
ent periods — for example the amount of variation and overall levels of traffic
are often less during school holidays. On these days we might happily decide
take the most direct route. Considering ten-minute intervals over a single day
in a city, we might view traffic levels as driven by some Markovian process
— the value at the next period depends on traffic levels now, but not prior
to that, since the cause is the aggregated behaviour of lots of independent
people, mostly travelling to, from, and in the course of work. However, if we
turn our attention to modelling air traffic, the situation is still clearly time-
varying, but is highly state-dependent as disruption to an airline’s schedule
in one place can have enormous knock-on effects due to planes being in the
wrong place, etc.

11.3 Algorithmic Approaches

11.3.1 Approaches That Increase Robustness or Reduce Noise

The only viable approach for reducing the effect of noise, whether in the
fitness function evaluation, or in the genotype-to-phenotype mapping, is to
repeatedly re-evaluate solutions and take an average. This might be done
either explicitly, or (as described further below) implicitly via the population
management processes of parent and survivor selection.
The principle question that arises in explicit approaches is, how many times

should the fitness be sampled? Bearing in mind that EAs naturally contain
some randomness in their processes anyway, the key issue from the perspec-
tive of evolution is being able to reliably distinguish between good and bad
members of the population. Thus, a common approach is to monitor the de-
gree of variation present, and resample when this is greater than the range of
estimated fitnesses in the population. This reasoning suggests that the rate of
resampling would increase as the population converges towards high-quality
solutions.
When calculating how large a sample to take, there is also the law of di-

minishing returns: in general, the standard deviation observed decreases only
as fast as the square root of the number of measurements taken.
Finally, it is worth mentioning that it is often worth the extra book-keeping

of making resampling decisions independently for each solution, since the
amount of noise will often not be uniform across the search space.

11.3.2 Pure Evolutionary Approaches to Dynamic Environments

The distributed nature of the genetic search provides a natural source of
power for exploring in changing environments. As long as sufficient diversity
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remains in the population, the EA can respond to a changing search landscape
by reallocating future trials. However, the tendency of EAs, especially of GAs,
to converge rapidly results in the population becoming homogeneous, which
reduces the ability of the EA to identify regions of the search space that
might become more attractive as the environment changes. In such cases it is
necessary to complement the standard EA with a mechanism for maintaining
a healthy exploration of the search space. (Recall the self-adaptation example
from Sect. 4.4.2.)
In [84] the behaviour of a standard GA on a parabolic function with the

optima moving sinusoidally in space was observed. This was done for a range
of bitwise mutation rates. It was found that the offline performance decreased
as the rate of change increased, for all mutation probabilities. As the rate
of change increased, the mutation rate that gave optimal offline performance
increased. Finally, it was noted that as problem difficulty increased, the rate
of change that GA could track decreased.
In the light of these findings, various approaches have been proposed that

are aimed at responding to different types of environmental change.

11.3.3 Memory-Based Approaches for Switching or Cyclic
Environments

The first strategy expands the memory of the EA in order to build up a
repertoire of ready responses for various environmental conditions. The main
examples of this approach are the GA with diploid representation [194] and
the structured GA [94]. Goldberg and Smith examined the use of diploid
representation and dominance operators to improve performance of an EA in
an oscillating environment [402], while Dasgupta and McGregor presented a
modified “structured GA” with a multilayered structure of the chromosome
which constitutes a “long-term distributed memory”.

11.3.4 Explicitly Increasing Diversity in Dynamic Environments

The second modification strategy effectively increases diversity in the popula-
tion directly (i.e., without extending the EA memory) in order to compensate
for changes encountered in the environment. Examples of this strategy involve
the GA with a hypermutation operator [84, 85], the random immigrants GA
[199], the GA with a variable local search (VLS) operator [443, 444], and the
thermodynamic GA [306].
The hypermutation operator temporarily increases the mutation rate to

a high value, called the hypermutation rate, during periods when the time-
averaged best performance of the EA worsens. In his 1992 study, Grefenstette
noted that under certain conditions hypermutation might never get triggered
[199].
The random immigrants mechanism replaces a fraction of a standard GA’s

population by randomly generated individuals in each generation in order to
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maintain a continuous level of exploration of the search space. It was reported
that 30% replacement gave the best off-line tracking: if the value is too high
the algorithm is unable to converge between changes; however, off-line perfor-
mance decreases with proportion replaced.
In an extensive study, Cobb and Grefenstette compared hypermutation with

random immigrants and simple GA (with high mutation rate) [85]. They noted
that there was a qualitative difference in the nature of the mutation operator
in the three algorithms:

• Simple Genetic Algorithm (SGA) – uniform in population and time
• Hypermutation – uniform in population, not in time
• Random immigrants – uniform in time, not in population

They used two landscapes, and three types of change: a linear motion in the
first problem (moving 1 step along an axis every 2 or 5 generations), randomly
shifting the optima in the first problem every 20 generations, and swapping
between the two problems every 2 or 20 generations. Their findings were:

• SGA: A high mutation probability of 0.1 was reasonably good at the trans-
lation tasks, but gave very poor online performance. It was unable to track
the steadily moving optimum or oscillation. In general, the mutation prob-
ability needs to be matched to the degree of change.

• Hypermutation: High variances in performance were noted, and the higher
mutation rate needed careful tuning to the problem instance. It was much
better at tracking sudden changes than SGA and gave better online per-
formance than SGA or random immigrants when the rate of change was
slow enough to allow a lower rate of mutation.

• Random Immigrants: This strategy was not very good at tracking linear
movement, but was the best at the oscillating task. They hypothesised
that this was because it allowed the preservation of niches. The strategy
displayed poor performance on stationary and slowly changing problems.

The VLS operator uses a similar triggering mechanism to hypermutation,
and it enables local search around the location of the population members be-
fore the environmental change. The range of the search is gradually extended
using a heuristic that attempts to match the degree of change.
The thermodynamic GA can maintain a given level of diversity in popula-

tion by evaluating the entropy and free energy of the GA’s population. The
free energy function is effectively used to control selection pressure during the
process of creating a new population.

11.3.5 Preserving Diversity and Resampling: Modifying Selection
and Replacement Policies

In [441, 442] the suitability of generational GAs (GGAs) and steady-state
GAs (SSGAs) was studied for use in dynamic environments. Results showed
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that the SSGA with a “delete-oldest” replacement strategy can adapt to envi-
ronmental changes with reduced degradation of offline and particularly online
performance. The improved performance of the SSGA can be explained by the
fact that an offspring is immediately used as a part of the mating pool, mak-
ing a shift towards the optimal solution possible in a relatively early phase of
search. The authors concluded that the steady-state model was better suited
tor use in nonstationary environments, particularly for on-line applications.
Selection is a vital force in any evolutionary algorithm, and an understand-

ing of the nature of its effects is necessary if effective algorithms are to be
developed. For GGAs selection has been well studied, and methods have been
developed that reduce much of the noise inherent in the stochastic algorithm,
e.g., SUS [32]. Unfortunately, the very nature of SSGAs precludes the use of
such methods and those available are inherently more noisy.
In [400] a Markov chain analysis of the takeover probability versus time

was used to investigate sources of noise in several replacement strategies.
Some variations in performance arise from losing the only copy of the current
best in the population, which happened approximately 50% of the time for
delete random, and 10% of the time for delete-oldest. Performance compar-
isons on static landscapes demonstrated that the extent to which this affects
the quality of the solutions obtained depends on the ability of the reproductive
operators to rediscover the lost points. In [78] other strategies, e.g., deletion
by exponential ranking, were also shown to lose the optimum.
A common way of avoiding this problem is to incorporate elitism, often

in the form of a delete-worst strategy. Chakraborty [78, 79] showed that this
exhibits increased selection pressure, which can lead to premature convergence
and poor performance on higher dimensional problems.
In [399] a number of replacement strategies were compared in combina-

tion with two different ways of achieving elitism. The first was the common
method described in Section 5.3.2, and the elite member can either be pre-
served with its original fitness value, or be reevaluated and the new fitness
value saved. The second, “conservative selection” is an implicit mechanism
introduced in [444]. Here each parent was selected by a binary tournament
between a randomly selected member of the population and the member about
to be replaced. If the latter is the current best, then it will win both tour-
naments, so recombination will have no effect, and (apart from the effects of
mutation) elitism is attained. In [400] this was shown to guarantee takeover
by the optimal class, but at a much slower rate than delete-worst or elitist
delete-oldest. In total, ten selection strategies were evaluated for their online
and offline performance on two different test problems. Deletion of the oldest,
worst, and random members was done in conjunction with both standard and
conservative tournaments. Additionally, a delete-oldest policy was tested with
four variants of elitism. These were:

1. Oldest is kept if it is one of the current best, but is re-evaluated.
2. Oldest is kept if it is the sole copy of the current best and is re-evaluated.
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3. As 1, but without re-evaluation (original fitness value kept).
4. As 2, but without re-evaluation (original fitness value kept).

This was done for algorithms with and without hypermutation on two differ-
ent classes of problems. The results obtained clearly confirmed that for some
algorithms an extra method for creating diversity (in this case, hypermuta-
tion) can improve tracking performance, although not all of the strategies
tested were able to take advantage of this. However, two factors are immedi-
ately apparent from these results which hold with or without hypermutation.
Exploitation: Strategies such as delete-oldest or delete-random, which can

lose the sole copy of the current population best, performed poorly. This
matched the theoretical analysis and results on static landscapes noted above.
Therefore some form of elitism is desirable.
Reevaluation: In potentially dynamic environments it is essential that the

fitness of points on the landscape is continuously and systematically reeval-
uated. Failure to do so leads to two effects. First, the population can get
‘dragged back’ to the original peak position, as solutions near there are se-
lected to be parents on the basis of out-of-date information. Second, it can
also lead to a failure to trigger the hypermutation mechanism. Although this
was obvious for the third and fourth variants of elitism tested, it also applies
to the much more common delete-worst policy. In this case if the population
had converged close to the optimum prior to the change, the worst members
that get deleted may be the only ones with a true fitness value attached. The
importance of systematic reevaluation was clear from the difference between
conservative delete-oldest and conservative delete-random. The former always
produced better performance than the latter, and very significantly so when
hypermutation was present.
Of all the policies tested, the conservative delete-oldest was the best suited

to the points noted above and produced the best performance. The improve-
ment over the elitist policy with reevaluation is believed to result not merely
from the reduced selection pressure, but from the fact that the exploitation of
good individuals is not limited to preserving the very best, but will also apply
(with decreasing probability) to the second-best member, and so on. Since the
implicit elitism still allows changes via mutation, there is a higher probability
of local search around individuals of high fitness, while worse members are less
likely to win tournaments, and so they are replaced with offspring created by
recombination. The result is that even without hypermutation the algorithm
was able to track environmental changes of modest size.

11.3.6 Example Application: Time-Varying Knapsack Problem

This problem is a variant of that described in [306]. As discussed in Sect. 3.4.2,
we have a number of items each having a value (vti) and a weight or cost (cti)
associated with them, and the problem is to select a subset that maximises
the sum of the elements’ values while meeting a (time-varying) total capacity
constraint C(t).
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In [399], Smith and Vavak outline a series of experiments on this problem
aimed at investigating the effect of different survivor selection policies. In the
particular case investigated, the values vi and costs ci attached to the items
remained constant, but the capacity constraint C(t) alternated between 50%,
30%, and 80% of Csum, changing once every 20,000 evaluations.

The algorithm used was a binary-coded SSGA with 100 members. Parent
selection was by binary tournaments, with the fitter member always selected.
In some cases the conservative tournament selection operator was used. Uni-
form crossover was used (with probability 1.0) to generate offspring, as this
shows no positional bias (Sect. 16.1). The rest of the parameter settings were
decided after some initial experimentation to establish robust values.
The hypermutation operator was implemented as it is currently the most

commonly used method for tracking. It was triggered if the running average
of the best performing members of the population over an equivalent of three
generations of the generational GA (in this case, 300 evaluations) drops by an
amount that exceeds a predefined threshold. In this case a value of threshold
TH=3 was used. The best performing member of the population was re-
evaluated for 100 evaluations. Once it had been triggered, the hypermutation
rate (0.2) was switched back to the baseline mutation rate (0.001) as soon
as the best performing member of the population reached 80% of its value
before the environmental change occurred. The setting of the parameters (80%
and hypermutation rate 0.2) was found to provide good results for the given
problem. A prolonged period of high mutation for values higher than 80% has a
negative effect on on-line performance because diversity is introduced into the
population despite the correct region of the search space having already been
identified. Similarly to the choice of the threshold level described previously,
the values of both parameters were selected empirically.
As hinted above, the best results came from the combination of conservative

tournaments for parent selection policy, with a delete-oldest policy. Here each
member has a fixed lifespan, but when its turn comes to be deleted it enters the
tournament to be a parent of the offspring that will replace it. The algorithm
using this policy, along with hypermutation, was able to successfully track
the global optimum in both a switching environment, as here, and also in a
problem with a continuously moving optimum.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


12

Multiobjective Evolutionary Algorithms

In this chapter we describe the application of evolutionary techniques to a
particular class of problems, namely multiobjective optimisation. We begin
by introducing this class of problems and the particularly important notion of
Pareto optimality. We then look at some of the current state-of-the-art mul-
tiobjective EAs (MOEAs) for this class of problems and examine the ways in
which they make use of concepts of different evolutionary spaces and tech-
niques for promoting and preserving diversity within the population.

12.1 Multiobjective Optimisation Problems

In the majority of our discussions in previous chapters we have made free
use of analogies such as adaptive landscapes under the assumption that the
goal of the EA in an optimisation problem is to find a single solution that
maximises a fitness value that is directly related to a single underlying measure
of quality. We also discussed a number of modifications to EAs that are aimed
at preserving diversity so that a set of solutions is maintained; these represent
niches of high fitness, but we have still maintained the conceptual link to
an adaptive landscape defined via the assignment of a single quality metric
(objective) to each of the set of possible solutions.
We now turn our attention to a class of problems that are currently receiving

a lot of interest within the optimisation community, and in practical appli-
cations. These are the so-called multiobjective problems (MOPs), where
the quality of a solution is defined by its performance in relation to several,
possibly conflicting, objectives. In practice it turns out that a great many
applications that have traditionally been tackled by defining a single objec-
tive function (quality function) have at their heart a multiobjective problem
that has been transformed into a single-objective function in order to make
optimisation tractable.
To give a simple illustration (inspired by [334]), imagine that we have moved

to a new city and are in the process of looking for a house to buy. There are
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a number of factors that we will probably wish to take into account, such
as: number of rooms, style of architecture, commuting distance to work and
method, provision of local amenities, access to pleasant countryside, and of
course, price. Many of these factors work against each other (particularly
price), and so the final decision will almost inevitably involve a compromise,
based on trading off the house’s rating on different factors.
The example we have just presented is a particularly subjective one, with

some factors that are hard to quantify numerically. It does exhibit a feature
that is common to multiobjective problems, namely that it is desirable to
present the user with a diverse set of possible solutions, representing a range
of different trade-offs between objectives.
The alternative is to assign a numerical quality function to each objective,

and then combine these scores into a single fitness score using some (usu-
ally fixed) weighting. This approach, often called scalarisation, has been
used for many years within the operations research and heuristic optimisation
communities (see [86, 110] for good reviews), but suffers from a number of
drawbacks:

• the use of a weighting function implicitly assumes that we can capture
all of the user’s preferences, even before we know what range of possible
solutions exist.

• for applications where we are repeatedly solving different instances of the
same problem, the use of a weighting function assumes that the user’s
preferences remain static, unless we explicitly seek a new weighting every
time.

For these reasons optimisation methods that simultaneously find a diverse
set of high-quality solutions are attracting increasing interest.

12.2 Dominance and Pareto Optimality

The concept of dominance is a simple one: given two solutions, both of
which have scores according to some set of objective values (which, without
loss of generality, we will assume to be maximised), one solution is said to
dominate the other if its score is at least as high for all objectives, and is
strictly higher for at least one. We can represent the scores that a solution
A gets for n objectives as an n-dimensional vector a. Using the � symbol to
indicate domination, we can define A � B formally as:

A � B ⇐⇒ ∀i ∈ {1, . . . , n} ai ≥ bi, and ∃i ∈ {1, . . . , n}, ai > bi.

For conflicting objectives, there exists no single solution that dominates all
others, and we will call a solution nondominated if it is not dominated by
any other. All nondominated solutions possess the attribute that their quality
cannot be increased with respect to any of the objective functions without
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detrimentally affecting one of the others. In the presence of constraints, such
solutions usually lie on the edge of the feasible regions of the search space.
The set of all nondominated solutions is called the Pareto set or the Pareto
front.

Fig. 12.1. Illustration of the Pareto front. The x- and y-axes represent two con-
flicting objectives subject to constraints. The quality of solutions is represented by
their x and y values (larger is better). Point A dominates B and all other points in
the grey area. A and C do not dominate each other. The line represents the Pareto
set, of which point A is an example. Solutions above and to the right of the line,
such as D, are infeasible

In Figure 12.1 this front is illustrated for two conflicting objectives that are
both to be maximised. This figure also illustrates some of the features, such as
nonconvexity and discontinuities, frequently observed in real applications that
can cause particular problems for traditional optimisation techniques using of-
ten sophisticated variants of scalarisation to identify the Pareto set. EAs have
a proven ability to identify high-quality solutions in high-dimensional search
spaces containing difficult features such as discontinuities and multiple con-
straints. When coupled with their population-based nature and their ability
for finding and preserving diverse sets of good solutions, it is not surprising
that EA-based methods are currently the state of the art in many multiob-
jective optimisation problems.
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12.3 EA Approaches to Multiobjective Optimisation

There have been many approaches to multiobjective optimisation using EAs,
beginning with Schaffer’s vector-evaluated genetic algorithm (VEGA) in 1984
[364]. In this algorithm the population was randomly divided into subpop-
ulations that were then each assigned a fitness (and subject to selection)
according to a different objective function, but parent selection and recombi-
nation were performed globally. This modification was shown to be enough to
preserve an approximation to the Pareto front for a few generations, but not
indefinitely.
Subsequent to this, Goldberg suggested the use of fitness based on dom-

inance rather than on absolute objective scores [189], coupled with niching
and/or speciation methods to preserve diversity, and this breakthrough trig-
gered a dramatic increase in research activity in this area. We briefly describe
some of the best-known algorithms below, noting that the choice of represen-
tation, and hence variation operators, are entirely problem dependent, and
so we concentrate on the way that fitness assignment and selection are per-
formed.

12.3.1 Nonelitist Approaches

Amongst the first algorithms to explicitly exert selection pressure towards the
discovery of nondominated solutions are discussed below:
Fonseca and Fleming’s multiobjective genetic algorithm (MOGA) [175] as-

signs a raw fitness to each solution equal to the number of members of the
current population that it dominates, plus one. It uses fitness sharing amongst
solutions of the same rank, coupled with fitness-proportionate selection to help
promote diversity.
Srinivas and Deb’s nondominated sorting genetic algorithm (NSGA) [417]

works in a similar way, but assigns fitness based on dividing the population
into a number of fronts of equal domination. To achieve this, the algorithm
iteratively seeks all the nondominated points in the population that have not
been labelled as belonging to a previous front. It then labels the new set as
belonging to the current front, and increments the front count, repeating until
all solutions have been labelled. Each point in a given front gets as its raw
fitness the count of all solutions in inferior fronts. Again fitness sharing is
implemented to promote diversity, but this time it is calculated considering
only members from that individual’s front.
Horn et al.’s niched Pareto genetic algorithm (NPGA) [223] differs in that

it uses a modified version of tournament selection rather than fitness pro-
portionate with sharing. The tournament operator works by comparing two
solutions first on the basis of whether they dominate each other, and then
second on the number of similar solutions already in the new population.
Although all three of these algorithms show good performance on a number

of test problems, they share two common features. The first of these is that
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the performance they achieve is heavily dependent on a suitable choice of
parameters in the sharing/niching procedures. The second is that they can
potentially lose good solutions.

12.3.2 Elitist Approaches

During the 1990s much work was done elsewhere in the EA research com-
munity, developing methods for reducing dependence on parameter settings
(Chaps. 7 and 8). Theoretical breakthroughs were achieved showing that
single-objective EAs converge to the global optimum on some problems, pro-
viding that an elitist strategy (Sect. 5.3.2) is used. In the light of this research
Deb and coworkers proposed the revised NSGA-II [112], which still uses the
idea of non-dominated fronts, but incorporates the following changes:

• A crowding distance metric is defined for each point as the average side
length of the cuboid defined by its nearest neighbours in the same front.
The larger this value, the fewer solutions reside in the vicinity of the point.

• A (μ + λ) survivor selection strategy is used (with μ = λ). The two pop-
ulations are merged and fronts assigned. The new population is obtained
by accepting individuals from progressively inferior fronts until it is full.
If not all of the individuals in the last front considered can be accepted,
they are chosen on the basis of their crowding distance.

• Parent selection uses a modified tournament operator that considers first
dominance rank then crowding distance.

As can be seen, this achieves elitism (via the plus strategy) and an explicit
diversity maintenance scheme, as well as reduced dependence on parameters.
Two other prominent algorithms, the strength Pareto evolutionary algo-

rithm (SPEA-2) [475] and the Pareto archived evolutionary strategy (PAES)
[251], both achieve the elitist effect in a slightly different way by using an
archive containing a fixed number of nondominated points discovered dur-
ing the search process. Both maintain a fixed sized archive, and consider the
number of archived points close to a new solution, as well as dominance in-
formation, when updating the archive.

12.3.3 Diversity Maintenance in MOEAs

To finish our discussion on MOEAs it is appropriate to consider how sets of
diverse solutions can be maintained during evolution. It should be clear from
the descriptions of the MOEAs above that all of them use explicit methods
to enforce preservation of diversity, rather than relying simply on implicit
measures such as parallelism (in one form or another) or artificial speciation.
In single-objective optimisation, explicit diversity maintenance methods are

often combined with implicit speciation methods to permit the search for
optimal solutions within the preserved niches. The outcome of this is a few
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highly fit diverse solutions, often with multiple copies of each (Fig. 5.4). In
contrast to this, the aim of MOEAs is to attempt to distribute the population
evenly along the current approximation to the Pareto front. This partially
explains why speciation techniques have not been used in conjunction with the
explicit measures. Finally, it is worth noting that the more modern algorithms
discussed have abandoned fitness sharing in favour of direct measures of the
distance to the nearest nondominating solution, more akin to crowding.

12.3.4 Decomposition-Based Approaches

An unavoidable problem of trying to evenly represent an approximation of
the Pareto front is that this approach does not scale well as the dimen-
sionality of the solution space increases above 5–10 objectives. One recent
method that has gathered a lot of attention is the decomposition approach
taken by Zhang’s MOEA-D algorithm [474] which shares features from the
single-objective weighted sum approach and the population-based approaches.
Rather than use a single weighted combination, MOEA-D starts by evenly
distributing a set of N weight vectors in the objective space, and for each
building a list of its T closest neighbours (measured by Euclidean distances
between them). It then creates and evolves a population of N individuals, each
associated with one of the weight vectors, and uses it to calculate a single fit-
ness value. What differentiates this from simply being N parallel independent
searches is the use of the neighbourhood sets to structure the population, with
selection and recombination only happening within demes, as in cellular EAs
(Sect. 5.5.7). Periodically the location of the weight vectors and the neighbour
sets are recalculated so that the focus of the N parallel searches reflects what
has been discovered about the solution space. MOEA-D, and variants on the
original algorithm, have been shown to perform equivalently to dominance-
based methods in low dimensions, and to scale far better to many-objective
problems with 5 or more conflicting dimensions.

12.4 Example Application: Distributed Coevolution of

Job Shop Schedules

An interesting application, which makes use of many of the ideas in this
chapter, and also some in Chap. 15, can be seen in Husbands’ distributed
coevolutionary approach to multiobjective problems [225]. In this approach
he uses a coevolutionary model to tackle a complex multiobjective, multi-
constraint problem, namely a generalised version of job shop scheduling. Here
a number of items need to be manufactured, each requiring a number of
operations on different machines. Each item may need a different number of
operations, and in general the order of the operations may be varied, so that
the problem of finding an optimal production plan for one item is itself NP-
hard. The usual approach to the multiple task problem is to optimise each plan
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individually, and then use a heuristic scheduler to interleave the plans so as to
obtain an overall schedule. However, this approach is inherently flawed because
it optimises the plans in isolation rather than taking into consideration the
availability of machines, etc.
Husbands’ approach is different: he uses a separate population to evolve

plans for each item and optimises these concurrently. In this sense we have
a MOP, although the desired final output is a single set of plans (one for
each item) rather than a set of diverse schedules. A candidate plan for one
item gets evaluated in the context of a member from each other population,
i.e., the fitness value (related to time and machining costs) is for a complete
production schedule. An additional population is used to evolve ‘arbitrators’,
which resolve conflicts during the production of the complete schedule.
Early experiments experienced problems with premature loss of diversity.

These problems are treated by the use of an implicit approach to diversity
preservation, namely the use of a diffusion model EA. Furthermore, by colo-
cating one individual from each population in each grid location, the problem
of partner selection (Sect. 15.2.1) is neatly solved: a complete solution for
evaluation corresponds to a grid cell.
We will not give details of Husbands’ representation and variation operators

here, as these are highly problem specific. Rather we will focus on the details
of his algorithm that were aimed at aiding the search for high-class solutions.
The first of these is, of course, the use of a coevolutionary approach. If a single
population were used, with a solution representing the plans for all items,
there would be a greater likelihood of genetic hitchhiking (see Sect. 16.1 for a
description), whereby a good plan for one item in the initial population would
take over, even if the plans for the other items were poor. By contrast, the
decomposition into different subpopulations means that the good plan can at
worst take over one population.
The second feature that aids the search over diverse local optima is the use

of a diffusion model approach. The implementation uses a 15-by-15 square
toroidal grid, thus a population size of 225. Plans for 5 items, each needing
between 20 and 60 operations, were evolved, so in total there were 6 popula-
tions, and each cell contained a plan for each of the 5 items plus an arbitrator.
A generational approach is used: within each generation each cell’s popula-
tions are ‘bred’, with a random permutation to decide the order in which cells
are considered.
The breeding process within each cell is iterated for each population and

consists of the following steps:

1. Generate a set of points to act as neighbours by iteratively generating
random lateral and vertical offsets from the current position. A binomial
approximation to a Gaussian distribution is used, which falls off sharply
for distances more than 2 and is truncated to distance 4.

2. Rank the cells in this neighbourhood according to cost, and select one
using linear ranking with s = 2.
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3. Take the member of the current population from the selected cell and the
member in the current cell, and generate an offspring via recombination
and mutation.

4. Choose a cell from the neighbourhood using inverse linear ranking.
5. Replace the member of the current population in that cell with the newly

created offspring.
6. Re-evaluate all the individuals in that cell using the newly created off-

spring.

The results presented from this technique showed that the system managed
to evolve low-cost plans for each item, together with a low total schedule time.
Notably, even after several thousand iterations, the system had still preserved
a number of diverse solutions.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


13

Constraint Handling

In this chapter we return to an issue first introduced in Sect. 1.3, namely
that some problems have constraints associated with them. This means that
not all possible combinations of variable values represent valid solutions to
the problem at hand, and we examine how this impacts on the design of an
evolutionary algorithm. This issue has great practical relevance because many
real-world problems are constrained. It is also theoretically challenging, since
many intractable problems (NP-hard, NP-complete, etc.) are constrained. Un-
fortunately, constraint handling is not straightforward in an EA, because the
variation operators (mutation and recombination) are typically ‘blind’ to con-
straints. This means that even if the parents satisfy some constraints, there
is no guarantee their offspring will. This chapter reviews the most commonly
used techniques for constraint handling, identifies a number of common fea-
tures, and provides some guidance for the algorithm designer.

13.1 Two Main Types of Constraint Handling

Before discussing how constraints may be dealt with, we first briefly recap our
classification from Chap. 1. That was based on whether problems contained
two features: constraints on the form that solutions were allowed to take; and
a quality, or fitness function. If we have:

• neither feature then we do not have a problem;
• a fitness function but no constraints then we have a Free Optimisation

Problem (FOP);
• constraints that a candidate solution must meet but no other fitness cri-

teria then we have a Constraint Satisfaction Problem (CSP);
• both a fitness function and constraints then we have a Constrained Opti-

misation Problem (COP).

Finally, we discussed how, depending on how we frame a problem, we might
have different numbers of possible solutions. In Chap. 1 we illustrated this
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using the eight-queens problem, restricting the search space of a CSP to give
a much reduced COP, which is far easier to solve. Here we attempt to broaden
this concept. To that end, various techniques for constraint handling are dis-
cussed in Sect. 13.2. Before going into details, let us distinguish two concep-
tually different possibilities.

• In the case of indirect constraint handling, constraints are transformed
into optimisation objectives. After the transformation, they effectively dis-
appear, and all we need to care about is optimising the resulting objective
function. This type of constraint handling is done before the EA run.

• In direct constraint handling, the problem offered to the EA to solve
has constraints (is a COP) that are enforced explicitly during the EA run.

These options are not exclusive: for a given constrained problem (CSP or
COP) some constraints might be treated directly and some others indirectly.
In fact, even when all constraints are treated indirectly, so that our EA

is applied to a FOP, this does not mean that the EA is necessarily ignoring
the constraints. In theory one could fully rely on the general optimisation
power of EAs and try to solve the given FOP without taking note of how the
values of the fitness function f are obtained. It would remain the designer’s
responsibility (and one of the main design guidelines) to ensure that solutions
to the transformed FOP represent solutions to the original CSP or COP.
However, it is also possible to take the origin of f into account, i.e., the fact
that it is constructed from constraints. For example, one can try to make use
of specific constraint-based information within the EA by designing special
mutation or crossover operators that explicitly use heuristics to try to ensure
that offspring satisfy more constraints than the parents.

13.2 Approaches to Handling Constraints

In the discussion so far, we have not considered the nature of the domains
of the variables. In this respect there are two extremes: they are all discrete
or all continuous. Continuous CSPs are rather rare, so by default a CSP is
discrete [433]. For COPs this is not the case as we have discrete COPs (com-
binatorial optimisation problems) and continuous COPs as well. Much of
the evolutionary literature on constraint handling is restricted to one of these
cases, but in fact the ways for handling constraints are practically identical
– at least at the conceptual level. Therefore the following treatment of con-
straint handling methods is general, and we note simply that the presence of
constraints will divide the space of potential solutions S into two or more dis-
joint regions, the feasible region (or regions) F containing those candidate
solutions that satisfy the given constraints, and U, the infeasible region
containing those that do not.
We distinguish between approaches by considering how they modify one or

more facets of the search: the genotype space, the phenotype space S, the
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mapping from genotype to phenotype, or the fitness function. Building on our
division above, the commonly accepted set of methods used is:

• Indirect Approaches
1. Penalty functions modify the fitness function. For feasible solutions in

F the objective function values are used, but for those in U an extra
penalty value is applied. Preferably this is designed so that the fitness
is reduced in proportion to the number of constraints violated, or to
the distance from the feasible region.

• Direct Approaches
1. Specialised representations, together with initialisation, and reproduc-

tion operators reduce the genotype space to ensure all candidate solu-
tions are feasible. The mapping, phenotype space and fitness functions
are left unchanged. The use of permutation representations with spe-
cialised recombination and mutation as described in Sect. 4.5 is an
example of this approach. Although this example is fairly straightfor-
ward, in more complex cases it may be hard to reverse-engineer the
mapping in order to ensure that all of the valid phenotype space is
covered by the new smaller genotype space.

2. Repair mechanisms modify the original mapping. For feasible solutions
in F the mapping is left unchanged, but for those in U an extra stage
is added to turn an infeasible solution into a feasible one, hopefully
close to the infeasible one. Note that this assumes that we can in some
sense evaluate a solution to see if it violates constraints.

3. Decoder functions that replace the original mapping from genotype to
phenotype so that all solutions (i.e., phenotypes) are guaranteed to be
feasible. The genotype space and fitness functions are left unchanged,
and standard evolutionary operators may be applied. Unlike repair
functions, which work on whole solutions, decoder functions typically
take constraints into account as a solution is constructed from partial
components.

In the following sections we briefly discuss the above approaches, focusing
on the facets that have implications for the applications of EAs in general. We
will use as a common example the 0–1 knapsack problem introduced in Sect.
3.4.2. We are given a set of n items, each with an associated value and cost,
v(i), sc(i) : 1 ≤ i ≤ n. The usual representation is a binary vector x ∈ {0, 1}n,
and we seek the vector x∗ which maximises the value of the chosen items
∑

i x(i) · v(i) subject to the maximum cost constraint
∑

i x(i) · c(i) ≤ Cmax.
We should note that, in practice, it is common to utilise as much domain-

specific knowledge as possible, in order to reduce the amount of time spent
generating infeasible solutions. As is pointed out in [302], the global opti-
mum of a COP with continuous variables often lies on, or very near to, the
boundary between the feasible and infeasible regions, and promising results
are reported using algorithms that specifically search along that boundary.
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However, we concentrate here on the more general case, since the domain
knowledge required to specify such operators may not be present.
For a fuller review of work in this area, the reader is referred to [127, 141,

300, 302]. Furthermore, [90, 298, 301, 361] are especially recommended because
they contain descriptions of problem instance generators for binary CSPs [90],
continuous COPs [298, 301], or a large collection of continuous COP test
landscapes [361], together with detailed experimental results. Reinforcing this
book’s emphasis on the importance of choosing appropriate representations,
[302] reported that for problems in the continuous domain, use of a real-valued
rather than binary representation consistently gave better results.

13.2.1 Penalty Functions

Penalty functions modify the original fitness function f(x) applied to a can-
didate solution x such that f ′(x) = f(x) + P (d(x, F )), where d(x, F )) is a
distance metric of the infeasible point to the feasible region F (this might be
simply a count of the number of constraints violated). The penalty function
P is zero for feasible solutions, and it increases with distance from the feasible
region (for minimisation problems).
For our knapsack problem in Sect. 3.4.2, one simple approach is to calculate

the excess weight e(x) =
∑

i x(i) · c(i) − Cmax, and then use the penalty
function:

P (x) =

{

0 if e(x) ≤ 0
w · e(x) if e(x) > 0.

where the fixed weight w is large enough that feasible solutions are preferred.
It is important to note that this approach assumes that it is possible to

evaluate an infeasible point; although in this example it is, for many others this
is not the case. This discussion is also confined to exterior penalty functions,
where the penalty is only applied to infeasible solutions, rather than interior
penalty functions, which apply penalties to all solutions based on distance
from the constraint boundary in order to encourage exploration of this region.
The conceptual simplicity of penalty function methods means that they are

widely used, and they are especially suited to problems with disjoint feasible
regions, or where the global optimum lies on (or near) the constraint boundary.
However, their successful use depends on a balance between exploration of the
infeasible region and not wasting time, which places a lot of emphasis on the
form of the penalty function and the distance metric.
If the penalty function is too severe, then infeasible points near the con-

straint boundary will be discarded, which may delay, or even prevent, ex-
ploration of this region. Equally, if the penalty function is not sufficient in
magnitude, then solutions in infeasible regions may dominate those in feasible
regions, leading to the algorithm spending too much time in the infeasible
regions and possibly stagnating there. In general, for a system with m con-
straints, the form of the penalty function is a weighted sum
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P (d(x, F )) =

m
∑

i=1

wi · dκi (x)

where κ is a user-defined constant, often taking the value 1 or 2, and as above
the distance metrics di(x) from the point x to the boundary for constraint i
may be a simple binary value according to whether the constraint is satisfied,
or a metric based on cost of repair.
Many different approaches have been proposed, and a good review is given

in [379], where penalty functions are classified as constant, static, dynamic,
or adaptive. This classification closely matches the options discussed in the
example given in Sect. 8.2.2.

Static Penalty Functions

Three methods have commonly been used with static penalty functions,
namely extinctive penalties (where all of the wi are set so high as to pre-
vent the use of infeasible solutions), binary penalties (where the value di is 1
if the constraint is violated, and zero otherwise), and distance-based penalties.
It has been reported that, of these three, the latter give the best results [189],

and the literature contains many examples of this approach. This approach
relies on the ability to specify a distance metric that accurately reflects the
difficulty of repairing the solution, which is obviously problem dependent, and
may also vary from constraint to constraint. The usual approach is to take
the square of the Euclidean distance (i.e., set κ = 2) .
However, the main problem in using static penalty functions remains the

setting of the values of wi. In some situations it may be possible to find these
by experimentation, using repeated runs and incorporating domain-specific
knowledge, but this is a time-consuming process that is not always possible.

Dynamic Penalty Functions

An alternative approach to setting fixed values of wi by hand is to use dynamic
values, which vary as a function of time. A typical approach is that of [237],
in which the static values wi were replaced with a simple function of the form
si(t) = (wit)

α, where it was found that for best performance α ∈ {1, 2}.
Although this approach is possibly less brittle as a result of not using fixed
(possibly inappropriate) values for wi, the user must still decide on the initial
values.
An alternative, which can be seen as the logical extension of this approach,

is the behavioural memory algorithm of [369]. Here a population is evolved
in a number of stages – the same number as there are constraints. In each
stage i, the fitness function used to evaluate the population is a combination
of the distance function for constraint i with a death penalty for all solu-
tions violating constraints j < i . In the final stage all constraints are active,
and the objective function is used as the fitness function. It should be noted
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that different results may be obtained, depending on the order in which the
constraints are dealt with.

Adaptive Penalty Functions

Adaptive penalty functions represent an attempt to remove the danger of
poor performance resulting from an inappropriate choice of values for the
penalty weights wi. An early approach described in [45, 205] was discussed in
Sect. 8.2.2. A second approach is that of [380, 426], in which adaptive scaling
(based on population statistics of the best feasible and infeasible raw fitnesses
yet discovered) is coupled with the distance metrics for each constraint based
on the notion of “near feasible thresholds”. These latter are scaling factors for
each distance metric, which can vary with time.
The Stepwise Adaptation of Weights (SAW) algorithm of [149, 150, 151] can

be seen as a population-level adaptation of the search space. In this method
the weights wi are adapted according to a simple heuristic: if the best in-
dividual in the current population violates constraint i, then this constraint
must be hard and its weight should be increased. In contrast to the adap-
tive mechanisms above, the updating function is much simpler. In this case
a fixed penalty increment Δw is added to the penalty values for each of the
constraints violated in the best individual of the generation at which the up-
dating takes place. This algorithm was able to adapt weight values that were
independent of the EA operators and the initial weight values, suggesting that
this is a robust technique.

13.2.2 Repair Functions

The use of repair algorithms for solving COPs with EAs can be seen as a
special case of adding local search to the EA. In this case the aim of the local
search is to reduce (or remove) the constraint violation, rather than to simply
improve the value of the fitness function, as is usually the case.
The use of local search has been intensively researched, with attention fo-

cusing on the benefits of so-called Baldwinian versus Lamarckian learning
(Sect. 10.2.1). In either case, the repair algorithm works by taking an infea-
sible point and generating a feasible solution based on it. In the Baldwinian
case, the fitness of the repaired solution is allocated to the infeasible point,
which is kept, whereas with Lamarckian learning, the infeasible solution is
overwritten with the new feasible point. Although the Baldwin vs. Lamarck
debate has not been settled within unconstrained learning, many COP al-
gorithms reach a compromise by introducing some stochasticity, for example
Michalewicz’s GENOCOP algorithm uses the repaired solution around 15%
of the time [299].
For our knapsack example, a simple repair method is to change some of

the gene values in x from 1 to 0. Although this sounds simple, this example
raises some interesting questions. One of these is the replacement question
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just discussed; the second is whether the genes should be selected for altering
in a predetermined order, or at random. In [295] it was reported that using a
greedy deterministic repair algorithm gave the best results, and certainly the
use of a nondeterministic repair algorithm will add noise to the evaluation of
every individual, since the same potential solution may yield different fitnesses
on separate evaluations. However, it has been found by some authors [398] that
the addition of noise can assist the GA in avoiding premature convergence. In
practice it is likely that the best method is not only dependent on the problem
instance, but on the size of the population and the selection pressure.
Although the knapsack example is fairly simple, in general defining a repair

function may be as complex as solving the problem itself. One algorithm that
eases this problem (and incidentally uses stochastic repair), is Michalewicz’s
GENOCOP III algorithm for optimisation in continuous domains [299]. This
works by maintaining two populations, one Ps of so-called search points and
one Pr of ‘reference points’, with all of the latter being feasible. Points in Pr

and feasible points from Ps are evaluated directly. When an infeasible point
is generated in Ps it is repaired by picking a point in Pr and drawing a line
segment from it to the infeasible point. This is then sampled until a repaired
feasible point is found. If the new point is superior to that used from Pr, the
new point replaces it. With a small probability (which represents the balance
between Lamarckian and Baldwinian search) the new point replaces the in-
feasible point in Ps. It is worth noting that although two different methods
are available for selecting the reference point used in the repair, both are
stochastic, so the evaluation is necessarily noisy.

13.2.3 Restricting Search to the Feasible Region

In many COP applications it may be possible to construct a representation
and operators so that the search is confined to the feasible region of the
search space. In constructing such an algorithm, care must be taken in order
to ensure that all of the feasible region is capable of being represented. It is
equally desirable that any feasible solution can be reached from any other by
(possibly repeated) applications of the mutation operator. The classic example
of this is permutation problems. In Sect. 3.4.1 we showed an illustration for
the eight-queens problem, and in Sects. 4.5.1 and 4.5.2 we described a number
of variation operators that deliver feasible offspring from feasible parents.
For our knapsack problem, we could imagine the following operators. A

randomised initialisation operator might construct solutions by starting with
an empty set x(i) = 0, ∀i and randomly picking elements i to flip the gene
value from to 1 until adding the next value chosen would violate the cost
constraint. This would give an initial population where the excess cost e(x)
was negative for each member. For recombination, we could apply a slightly
modified one-point crossover. For any given pair of parents, first we generate
a random permutation of the values {1, , . . . , n−1} in which to consider the
potential crossover points. In that order we consider the pairs of offspring
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created, accepting the first pair that is feasible. For mutation we apply bitwise
mutation, accepting any move that changes a gene from 1 to 0, but only those
from 0 to 1 that do not created excess cost. Again we might choose to do this
in a random order to remove bias towards selecting items at the start of our
representation.
It should be noted that this approach to solving COP, although attractive,

is not suitable for all types of constraints. In many cases it is difficult to find
an existing or design a new operator that guarantees that the offspring are
feasible. Although one possible option is simply to discard any infeasible points
and reapply the operator until a feasible solution is generated, the process of
checking that a solution is feasible may be so time consuming as to render
this approach unsuitable. However, there remains a large class of problems
where this approach is valid and with suitable choice of operators can be very
successfully applied.

13.2.4 Decoder Functions

Decoder functions are a class of mappings from the genotype space S′ to the
feasible regions F of the solution space S that have the following properties:

• Every z ∈ S′ must map to a single solution s ∈ F .
• Every solution s ∈ F must have at least one representation s′ ∈ S′.
• Every s ∈ F must have the same number of representations in S′ (this

need not be 1).

Such decoder functions provide a relatively simple way of using EAs for
this type of problem, but they are not without drawbacks. These are centred
around the fact that decoder functions generally introduce a lot of redundancy
into the original genotype space. This arises when the new mapping is many-
to-one, meaning that a number of potentially radically different genotypes
may be mapped onto the same phenotype, and only a subset of the phenotype
space can be reached.
Considering the knapsack example, a simple approach would leave the geno-

type, initialisation and variation operators unchanged. When constructing a
solution, the decoder function could start at the left hand end of the string
and interpret a 1 as take this item if possible ... If the cost limit is reached
after considering, say, j of the n genes, then it is irrelevant what values the
rest take, and so 2n−j strings all map onto the same solution.
In a few cases it may be possible to devise a decoder function that permits

the use of relatively standard representation and operators while preserving
a one-to-one mapping between genotype and phenotype. One such example
is the decoder for the TSP problem proposed by Grefenstette, which is well
described by Michalewicz in [297]. In this case a simple integer representation
was used with each gene ai ∈ {1, . . . , n+1−i}. This representation permits
the use of common crossover operators and a bitwise mutation operator that
randomly resets a gene value to one of its permitted allele values. The outcome
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of both of these operators is guaranteed to be valid. The decoder function
works by considering an ordered list of cities, ABCDE, and using the genotype
to index into this.
For example, with a genotype 〈4, 2, 3, 1, 1〉 the first city in the constructed

tour is the fourth item in the list, i.e.,D. This city is then removed from the list
and the second gene is considered, which in this case points to B. This process
is continued until a complete tour is constructed: 〈4, 2, 3, 1, 1〉 → DBEAC.

Although the one-to-one mapping means that there is no redundancy in
the genotype space, and it permits the use of straightforward crossover and
mutation operators, the complexity of the mapping function means that a
small mutation can have a large effect, e.g., 〈3, 2, 3, 1, 1〉 → CBDAE. Equally,
it can be easily shown that recombination operators no longer respect and
propagate all features common to both solutions. Thus if the two solutions
〈1, 1, 1, 1, 1〉 → ABCDE and 〈5, 1, 2, 3, 1〉 → EACDB, which share the
common feature that C occurs in the third position and D in the fourth
undergo 1-point crossover between the third and fourth loci, the solution
〈5, 1, 2, 1, 1〉 → EACBD is obtained, which does not possess this feature.
If the crossover occurs in other positions, the edge CD may be preserved, but
in a different position in the cycle.
In both of the examples given, the complexity of the genotype–phenotype

mapping makes it very difficult to ensure locality and makes the fitness land-
scape associated with the search space highly complex, since the potential
effects in fitness of changes at the left-hand end of the string are much bigger
than those at the right-hand end [196]. Equally, it can become very difficult
to specify exactly the common features the recombination operators are sup-
posed to be preserving.

13.3 Example Application: Graph Three-Colouring

We illustrate the approaches outlined above via the description of two different
ways of solving a well-known CSP problem, graph three-colouring. This is an
abstract version of colouring a political map so that no two adjacent areas
(counties, states, countries) have the same colour. We are given a graph G =
{v, e} with n = |v| vertices and m = |e| edges connecting some pairs of the
vertices. The task is to find, if possible, an assignment of one of three colours to
each vertex so that there are no edges in the graph connecting same-coloured
vertices.

Indirect Approach

We begin by illustrating an indirect approach, transforming the problem from
a CSP to a FOP by means of penalty functions. The most straightforward
representation is using ternary strings of length n = |v|, where each variable
stands for one node, and the integers 1, 2, and 3 denote the three colours.
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Using this standard GA representation has the advantage that all standard
variation operators are immediately applicable. We now define two objective
functions (penalty functions) that measure the amount of ‘incorrectness’ of a
chromosome. The first function is based on the number of ’incorrect edges’
that connect two nodes with the same colour, while the second relies on count-
ing the ‘incorrect nodes’ that have a neighbour with the same colour. For a
formal description let us denote the constraints belonging to the edges as ci
(i = {1, . . . ,m}), and let Ci be the set of constraints involving variable vi
(edges connecting to node i). Then the penalties belonging to the two options
described above can be expressed as follows:

f1(s̄) =

m
∑

i=1

wi × χ(s̄, ci),

where χ(s̄, ci) =

{

1 if s̄ violates ci,
0 otherwise.

Respectively,

f2(s̄) =

n
∑

i=1

wi × χ(s̄, Ci),

where χ(s̄, Ci) =

{

1 if s̄ violates at least one c ∈ Ci,
0 otherwise.

Note that both functions are correct transformations of the constraints in
the sense that for each s̄ ∈ S we have that φ(s̄) = true if and only if fi(s̄) = 0
(i = 1, 2). The motivation to use weighted sums in this example, and in
general, is that they provide the possibility of emphazising certain constraints
(variables) by giving them a higher weight. This can be beneficial if some
constraints are more important or known to be harder to satisfy. Assigning
them a higher weight gives a higher reward to a chromosome, hence the EA
naturally focuses on these. Setting the weights can be done manually by the
user, but can also be done by the EA itself on-the-fly as in the stepwise
adaptation of weights (SAW) mechanism [151].
Now the EA for the graph three-colouring problem can be composed from

standard components. For instance, we can apply a steady-state GA with
population size 100, binary tournament selection and worst fitness deletion,
using random resetting mutation with pm = 1/n and uniform crossover with
pc = 0.8. Notice that this EA really ignores constraints; it only tries to min-
imise the given objective function (penalty function).

Direct Approach

For this problem, two of the direct approaches would be extremely difficult, if
not impossible, to implement. Specifying either an initialisation operator, or
a repair function, to create valid solutions would effectively mean solving the
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problem, and since it is thought to be NP-complete it is unlikely that there is
a polynomial time algorithm that could accomplish either of these.
However, we now present another EA for this problem, illustrating how

constraints can be handled by a decoder. The main idea is to use permu-
tations of the nodes as chromosomes. The phenotype (colouring) belong-
ing to a genotype (permutation) is determined by a procedure that assigns
colours to nodes in the order they occur in the given permutation, trying the
colours in increasing order (1,2,3), and leaving the node uncoloured if all three
colours would lead to a constraint violation. Formally, we shift from the search
space of all colourings S = {1, 2, 3}n to the space of all n-long permutations
S′ = {s̄ ∈ {1, . . . , n}n | si �= sj i, j = 1, . . . , n}, and the colouring procedure
(the decoder) is the mapping from S′ to S. At first glance this might not seem
like a good idea as we still have constraints in the transformed problem – those
that define the property of being a permutation in the definition of S′ above.
However, we know from Sect. 4.5 that working in a permutation space is easy,
as there are many suitable variation operators keeping the search in this space.
In other words, we have various operators preserving the constraints defining
this space.
An appropriate objective function for this representation can simply be

defined as the number (weighted sum) of nodes that remain uncoloured after
decoding. This function also has the property that an optimal value (0) implies
that all constraints are satisfied, i.e., all nodes are coloured correctly. The rest
of the EA can again use off-the-shelf components: a steady-state GA with
population size 100, binary tournament selection and worst fitness deletion,
using swap mutation with pm = 1/n and order crossover with pc = 0.8.

Looking at this solution at a conceptual level we can note that there are two
constraint-handling issues. Primary constraint-handling concerns handling the
constraints of the original problem, the graph three-colouring CSP. This is
done by the mapping approach via a decoder. However, the transformed search
space S′ in which the EA has to work is not free, rather it is restricted by
the constraints defining permutations. This constitutes the secondary con-
straint handling issue that is solved by a (direct) preserving approach using
appropriate variation operators.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Interactive Evolutionary Algorithms

This chapter discusses the topic of interactive evolution, where the mea-
sure of a solution’s fitness is provided by a human’s subjective judgement,
rather than by some predefined model of a problem. Of course, the world
around us is full of examples of human intervention in biological evolution, in
the form of pets, garden flowers, food crops and farm animals. Applications of
Interactive Evolutionary Algorithms (IEAs) range from capturing aes-
thetics in art and design, to the personalisation of artefacts such as medical
devices. When including humans ‘in the loop’ we must consider their peculiar
characteristics. On one hand, they can provide insight and guidance beyond
simply selecting parents for breeding. On the other, they can be inconsistent,
and are prone to fatigue and loss of attention. These factors make it inappro-
priate to use the ‘traditional’ model of an EA generating possibly thousands
of candidate solutions. This chapter describes and explains some of the major
algorithmic changes that have been proposed to cope with these issues.

14.1 Characteristics of Interactive Evolution

The defining feature of IEAs is that the user effectively becomes part of the
system, acting as a guiding oracle to control the evolutionary process. As
a starting point, consider agricultural breeding, where human interference
changes the reproductive process. Based on functional (faster horses, higher
yields) or aesthetic (nicer cats, brighter flowers) judgements, a supervisor
selects the individuals that are allowed to reproduce. Over time, new types
of individuals emerge that meet the human expectations better than their
ancestors. From this familiar process we can now start to distinguish some
particular features that impact on the design of IEAs.
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14.1.1 The Effect of Time

Many crop plants have annual life cycles, and farm animals may take years to
reach maturity. Thus in plant breeding and animal husbandry we are used to
the idea of many humans playing successive roles, in a process that may take
centuries. Although both of these are nonstationary problems, since fashions
in flowers, pets, and food change, the relative infrequency of intervention, and
the importance of making the right choice, makes human input fairly reliable.
However, when we are considering simulated evolution, then many decisions

may be required fairly rapidly from a single user. Also, each individual deci-
sion may seem less important, since we are used to the idea that we can re-run
computer programs. In these cases human fatigue, and its effect on the consis-
tency of evaluation, becomes a major factor, even if the person is attempting
to apply a well-understood standard. People have a natural limited attention
span, and, like fatigue, a loss of engagement with the process has been shown
to lead to increasingly erratic decisions as the user performs more and more
evaluations [76]. Thus, from the perspective of evolutionary time, there is a
need to avoid lengthy evolution over hundreds or thousands of generations,
and instead focus on making rapid gains to fit in with human needs.
Even taking this into account, from the perspective of wall-clock time IEAs

can be slow to run, as it usually takes much longer for a person to make a
decision than it does to calculate a mathematical fitness function. The net
effect of time constraints and human cognitive limitations is that typically
only a small fraction of the search space is considered. This is the major chal-
lenge facing IEA designers, and it is common for successful IEA applications
to employ one or more different approaches to alleviate this issue. A sense
of progress can be achieved by evaluating fewer solutions per generation —
either via small populations, or by only evaluating some of a large population.
Frustration can be reduced by not losing good solutions. More generally, en-
gagement can be increased, and the onset of fatigue delayed, by allowing the
user more direct input into the process.

14.1.2 The Effect of Context: What Has Gone Before

Closely related to the issue of time, or the length of the search process, is that
of context. By this we mean that human expectations, and ideas about what is
a good solution, change in response to what evolution produces. If (as we hope)
people are pleasantly surprised by what they see, then their expectations rise.
This can mean that a solution might be judged average early in a run, but only
sub-standard after more solutions have been presented. Alternatively, after a
few generations of viewing similar solutions, a user may decide that they are in
a ‘blind alley’. In that case they might wish to return to what were previously
thought to be only average solutions to explore their potential. Both of these
imply a need to generate a diverse range of solutions — either by increasing
the rate of mutation or by a restart mechanism, or by maintaining some kind
of archive.
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14.1.3 Advantages of IEAs

Despite, or perhaps because of, the issues identified above, it is worth re-
iterating the potential advantages of incorporating humans directly into the
evolutionary cycle. These were summarised by Bentley and Corne in [50]:

• Handling situations with no clear fitness function. If the reasons for pre-
ferring certain solutions cannot be formalised, no fitness function can be
specified and implemented within the EA code. Subjective user selection
circumvents this problem. It is also helpful when the objectives and pref-
erences are changeable, as it avoids having to rewrite the fitness function.

• Improved search ability. If evolution gets stuck, the user can redirect search
by changing his or her guiding principle.

• Increased exploration and diversity. The longer the user ‘plays’ with the
system, the more and more diverse solutions will be encountered.

14.2 Algorithmic Approaches to the Challenges of IEAs

Having outlined the issues confronting IEA designers, we now discuss some of
the ways in which they have been addressed.

14.2.1 Interactive Selection and Population Size

In general, the user can influence selection in various ways. The influence can
be very direct, for example, actually choosing the individuals that are allowed
to reproduce. Alternatively, it can be indirect — by defining the fitness values
or perhaps only sorting the population, and then using one of the selection
mechanisms described in Sect. 5.2. In all cases (even in the indirect one) the
user’s influence is named subjective selection, and in an evolutionary art
context the term aesthetic selection is often used.
Population size can be an important issue for a number of reasons. For

visual tasks, computer screens have a fixed size and humans need a certain
minimum image resolution, which limits how many solutions can be viewed
at once. If the artefacts being evolved are not visual (or if they are, but
the population cannot be viewed simultaneously), then the user has to rely
heavily on memory to rank or choose individuals. Psychology provides the
rule of thumb that people only hold around seven things in memory. Another
aspect is that if a screenful of solutions are being ranked, the number of
pairwise comparisons and decisions to be made grows with the square of the
number onscreen. For all these reasons, interactive EAs frequently work with
relatively small populations. Also, small populations can help keep the user
engaged by providing them with a sense of progress.
Since the mid-2000s a number of authors have investigated ways of dealing

with problems that exhibit a mixture of quantitative and qualitative aspects.
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The usual approach is to use a multi-objective EA as described in Chap.
12, and the increased solution space usually requires bigger population sizes.
However, not all of these need be evaluated by the user, since some can be
ruled out on the basis of inferior performance on quantitative metrics.

14.2.2 Interaction in the Variation Process

However controversially, advances in biology have meant that agricultural
breeding can now act not just on the selection process, but also on varia-
tion operators — for example, inserting genes to produce genetically modified
crops. Similarly, Interactive Artificial Evolution can permit direct user inter-
vention in the variation process. In some cases this is implicit - for example
allowing the user to periodically adjust the choice and parameterisation of
variation operators. Caleb-Solly and Smith [76] used the score given to an
individual to control mutation — so that ‘worse’ individuals were more likely
to have values changed, or to have values changed by a larger amount. As well
as noting performance benefits, they also reported an effect which is typical of
human interactions with Artificial Intelligence. Specifically, users’ behaviour
changed over time, as they got used to the system and developed a perception
of how it would respond to their input. This manifested as users alternating
between exploiting promising regions (awarding high scores to cause small
changes), and exploring new regions (awarding low scores as a kind of reset
button).
More explicit forms of control may also be used. For instance, interactive

evolutionary timetabling might allow planners to inspect promising solutions,
interchange events by hand and place the modified solutions back to the pop-
ulation. This is an explicit Lamarckian influence on variation.
Both types of algorithmic adaptation have in common the desire to max-

imise the value of each interaction with a user. Methods for directly affecting
variation are usually designed with the goal of increasing the rate of adapta-
tion towards good solutions by removing some of the black-box elements of
search. However, in practice a nice synergy has been observed – in fact the
ability to guide search actually increases user engagement, and so delays the
onset of fatigue [335]. Again, this mimics results elsewhere in interactive AI.

14.2.3 Methods for Reducing the Frequency of User Interactions

The third major algorithmic adaptation attempts to reduce the number of
solutions a user is asked to evaluate, while simultaneously maintaining large
populations and/or using many generations. This is done by use of a surro-
gate fitness function which attempts to approximate the decisions a human
would make. In fact this approach is also used to reduce the wall-clock time of
evolutionary algorithms working with heavily time-intensive fitness functions.
Typically the surrogate fitness models are adaptive and attempt to learn to

reflect the users’ decisions. Normally the model is used to provide fitness for
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all solutions, and only occasionally is the user asked to evaluate a solution.
This input can then be used as feedback to update the parameters of the
model used. Hopefully, over time, the fitness values predicted by the surrogate
model match the users’ input better and better. Models used range from
the simple (offspring receive the mean fitness of their parents) to the use of
advanced machine learning algorithms such as Support Vector Machines and
Neural Networks. The crucial decisions from an algorithmic perspective are:
how complex a model is necessary; how often should the real fitness function
be invoked (in this case a human evaluation); how should solutions be chosen
to be properly evaluated; and how should the surrogate model be updated
to reflect the new information obtained. Full discussion is beyond the scope
of this book, but the interested reader will find a good review of this type
of approach in [235] and a discussion of recent developments and the current
research issues in [236].

14.3 Interactive Evolution as Design vs. Optimisation

Interactive evolution is often related to evolutionary art and design. It can
even be argued that evolution is design, rather than optimisation. From this
conceptual perspective the canonical task of (natural or computer) evolution is
to design good solutions for specific challenges. Many exponents have arrived
at a view that distinguishes parameter optimisation and exploration [48, 49],
the main underlying difference being the representation of a solution.
Many problems can be solved by defining a parameterised model of possible

solutions and seeking the parameter values that encode an optimal solution.
This encoding is ‘knowledge-rich’ in the sense that the appropriate parameters
must be chosen intelligently – if there is no parameter for a feature that
influences solution quality that feature can never be modified, different values
cannot be compared, and possibly good solutions will be overlooked. Design
optimisation typically uses this type of representation. Propagating changes
across generations, an EA acts as an optimiser in the parameter space.
An alternative to parameterised representations is component-based rep-

resentation. Here a set of low-level components is defined, and solutions are
constructed from these components. This is a ‘knowledge-lean’ representation
with possibly no, or only weak, assumptions of relationships between com-
ponents and the ways they can be assembled. IEAs for evolutionary design
commonly use this sort of representation. Also known as Generative and
Developmental Systems, these quite naturally give rise to exploration, aim-
ing at identifying novel and good solutions, where novelty can be more impor-
tant than optimality (which might not even be definable). In this paradigm,
evolution works as a design discovery engine, discovering new designs and
helping to identifying new design principles by analysing the evolved designs
[303]. The basic template for interactive evolutionary design systems consists
of five components [50]:
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1. A phenotype definition specifying the application-specific kind of objects
we are to evolve.

2. A genotype representation, where the genes represent (directly or indi-
rectly) a variable number of components that make up a phenotype.

3. A decoder, often called growth function or embryogeny, defining the
mapping process from genotypes to phenotypes.

4. A solution evaluation facility allowing the user to perform selection within
the evolutionary cycle in an interactive way.

5. An evolutionary algorithm to carry out the search.

This scheme can be used to evolve objects with an amazing variety, includ-
ing Dawkins’ pioneering Biomorphs [101], coffee tables [47], images imitating
works of the artist M.C. Escher [138], scenes of medieval towns [405], music
[307], and art such as the ‘Mondriaan Evolver’ [437] or collaborative online
‘art breeder’ systems.1 The basics of such evolutionary art systems are the
same as those of evolutionary design in general: some evolvable genotype is
specified that encodes an interpretable phenotype. These might be visual (two-
dimensional images, animations, and three-dimensional objects) or audible
(sounds, ringtones, music). The main feature that distinguishes the applica-
tion of IEAs to art from other forms of design lies in the intention: the evolved
objects are simply to please the user, and need not serve any practical purpose
[355].

14.4 Example Application: Automatic Elicitation of User

Preferences

Pauplin et al. [335] described the development of an interactive tool used by
quality control engineers. The task is to create customised software that au-
tomatically detects and highlights defects in images of processed items. The
context is a flexible manufacturing environment where changes in equipment
(cameras, lighting, machinery), or in the product being created, mean that
the system frequently needs reconfiguring. The concept exploited here is that
interactive evolution provides a means to automatically elicit user preferences.
This can replace the time-consuming, and often costly, process where a series
of interviews are followed up by an image-processing expert implementing a
system, which then needs iterative refinement. Instead, a good image process-
ing system is evolved interactively. The user is shown a series of images of
products containing various defects. Candidate image processing systems are
applied to segment these images and the results are shown by coloured lines.
Each different candidate solution will segment images in a different way, so
the question asked of the user by the interface in Fig. 14.1 becomes: “Which
of these sets of images has the lines drawn to separate out things you might
be interested in, and how well do they do?”

1 http://picbreeder.org or http://endlessforms.com/

http://picbreeder.org
http://endlessforms.com/


14.4 Example Application: Automatic Elicitation of User Preferences 221

Fig. 14.1. User interface for the IPAT tool. Top window shows ‘raw’ images, bottom
window shows segmentation results for six different images processed by current
solution, right-hand side shows enlarged preview of image under cursor

In order to reduce the influence of human preconceptions, the component-
based approach is used. A candidate solution, i.e., an image processing system,
is composed of a variable number of image processing kernels. Each kernel con-
sists of a module drawn from a large library of routines, together with any
relevant parameter values. Kernels may be composed in a range of ways (par-
allel/sequential) and may be inverted to produce the final segmented version
of an input image.
The algorithm, and in particular the detailed graphical user interface (GUI)

design, were based on the twin principles of reducing the number and complex-
ity of the decisions that the user had to make at each stage, and maximising
the information extracted from those decisions. The user’s concentration is
treated as a limited resource that should be used sparingly, and is reduced by
every mouse click, whereas attention is reinforced when the system appears
to be working in collaboration with them. Thus, for example, the interface
shown in Fig. 14.1 uses widgets that change the focus and images displayed
in the right-hand ‘preview’ window according to mouse position rather than
clicks.
Typically a session will examine several images at once, containing different

types of defects, and try to find a compromise that segments them all. The
interface handles this multi-objective search in two ways. Users can assign
a partial fitness for each image segmented by the current solution (in which
case these are averaged), or can assign an overall fitness for the solution. One



222 14 Interactive Evolutionary Algorithms

mouse click allows them to switch between comparing all images segmented
by a solution, or all solutions’ segmentation of a single image.
Behind the interface, the principal algorithmic adaptations were:

• To reduce the number of decisions required, users were only asked to pro-
vide a score for the best solution in each generation, and only six images
were presented. This necessitated a (1 + 5) selection strategy.

• Only 10 different fitness levels were used to reduce the cognitive burden
of scoring.

• In response to videos showing users’ surprise and frustration when evolu-
tion appeared to ‘forget’ good solutions, one copy of the chosen solution
was always shown unchanged. Comparative results showed that this eval-
uation regime increased the number of user interactions and the quality of
the final solution (according to subjective and objective criteria).

• The applied mutation rate was determined by the users’ scoring, decreas-
ing from a high of 50% for a score of 0 to 0% for a ‘perfect’ solution. Results
demonstrated that users’ behaviour changed over time as they gained ex-
perience — so that effectively they used a low score as a reset button to
counteract the high selection pressure of the (1 + 5) strategy.

• Hint buttons were provided to allow the user to directly guide the direction
of search. In this case domain-specific knowledge was applied to translate
user input such as ‘too many regions segmented’ into biases in the mutation
rate applied to parts of the solutions.

The most obvious component not present in this tool was the use of a
surrogate fitness function. Nevertheless, the results showed that naive users
were able to create image processing systems that accurately segmented a
range of images, from scratch, in fewer than 20 iterations.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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Coevolutionary Systems

In most of this book we have been concerned with problems where the qual-
ity of a proposed solution can be relatively easily measured in isolation by
some externally provided fitness function. Evaluating a solution may involve
an element of random noise, but does not particularly depend on the context
in which it is done. However, there are two obvious scenarios in which this
set-up does not really hold. The first occurs when a solution represents some
strategy or design that works in opposition to some competitor that is itself
adapting. The most obvious example here would be adversarial game-playing
such as chess. The second comes about when a solution being evolved does not
represent a complete solution to a problem, but instead can only be evaluated
as part of a greater whole, that together accomplishes some task. An example
might be the evolution of a set of traffic-light controllers, each to be sited on
a different junction, with fitness reflecting their joint performance in reduc-
ing congestion over a day’s simulated traffic. Both of these are examples of
coevolution. This chapter gives an overview of the types of scenarios where
coevolution might be usefully applied, and of some of the issues involved in
designing a successful application.

15.1 Coevolution in Nature

Previously in this book we made extensive use of Wright’s analogy of the
adaptive landscape, where an evolving population is conceptualised as mov-
ing on a surface whose points represent the set of possible solutions. This
metaphor ascribes a vertical dimension to the search space that denotes the
fitness of a particular solution, and the combined effects of selection and vari-
ation operators move the set of points into high-fitness regions.
While an attractive metaphor, this can also be profoundly misleading when

we consider the adaptation of a biological species. This is because it tends to
lead to the implicit notion that solutions have a fitness value per se. Of course,
in life the adaptive value (that is, fitness) of an organism is entirely determined
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by the environmental niche in which it finds itself. The characteristics of this
niche are predominantly determined by the presence and character of other
organisms from the same and, in particular, different species.1

The effect of other species in determining the fitness of an organism can be
positive – for example, the pollination of plants by insects feeding on their
nectar – or negative – for example, the eating of rabbits by foxes. Biologists
tend to use the terms mutualism and symbiosis to refer to the coadaptation
of species in a mutually beneficial way, and the terms predation or para-
sitism to refer to relationships in which one species has a negative effect on
the survival and reproductive success of the other (antagonism).
If all of the other species in an environmental niche remained the same, and

only one species was evolving, then the notion of a fixed adaptive landscape
would be valid for that species. However, since evolution affects all species,
the net effect is that the landscape ‘seen’ by each species is affected by the
configuration of all the other interacting species, i.e., it will move. This process
is known as coevolution. To give a concrete example, the adaptive value to a
rabbit of being able to run at, say, 20 km/h depends entirely on whether the
fox that preys on it has a maximum top speed of 15 km/h or 30 km/h. The
height on the landscape of a 20-km/h phenotype is reduced over time from a
high value to a low value as the fox evolves the ability to run faster.
Despite the additional complications of coevolutionary models, they hold

some significant advantages that have been exploited within EAs to aid the
generation of solutions to a range of difficult problems. One that we have
already described in Sect. 6.5 is the coevolution of a population of partial
models in Michigan-style LCS — these may be thought of as co-operating to
provide a complete model of a problem. Another very well known example is
the modelling and evolution of game-playing strategies. In this case evolving
solutions play against each other to get their fitness, i.e., only one species is
used and the model is competitive in the sense defined in Sect. 15.3. Since
computers provide the freedom to use a number of different models, and bi-
ology is serving as an inspiration rather than a strict blueprint, a number of
different models have been used successfully. Coevolutionary EAs have been
implemented using both cooperation and competition, and both single and
multiple-species models, as we shall now describe.

15.2 Cooperative Coevolution

Coevolutionary models in which a number of different species, each repre-
senting part of a problem, cooperate in order to solve a larger problem have
been successfully applied many times. Among many examples of this are high-
dimensional function optimisation [342] and job shop scheduling [225].
The advantage of this approach is that it permits effective function de-

composition; each subpopulation is effectively solving a much smaller, more

1 With the possible exception of some extremely simple organisms.



15.2 Cooperative Coevolution 225

tractable problem. The disadvantage is that it relies on the user to subdi-
vide the problem which may not be obvious from the overall specification.
In nature, mutually beneficial relationships have as their ultimate expression
so-called endosymbiosis, where the two species become so interdependent
that they end up inextricably physically linked – for example, the various gut
bacteria that live entirely within a host’s body and are passed from mother
to offspring. The equivalent in EA optimisation is where the different parts of
a problem are so interdependent that they are not amenable to division.
Bull [68] conducted a series of more general studies on cooperative coevolu-

tion using Kauffman’s static NKC model [244] in which the amount of effect
that the species have on each other can be varied systematically. In [69] he ex-
amined the evolution of coevolving symbiotic systems that had the ability to
evolve linkage flags denoting that solutions from different populations should
stay together. He showed that the strategies that emerge depend heavily on
the extent to which the two populations affect each other’s fitness landscape,
with linkage preferred in highly interdependent situations.

15.2.1 Partnering Strategies

When cooperating populations are used, a major issue is that of deciding how
a solution from one population should be paired with the necessary others in
order to gain a fitness evaluation.
Potter and De Jong [342] used a generational GA in each subpopulation,

with the different species taking it in turns to undergo a round of selection,
recombination, and mutation. Evaluation was performed using the current
best from each of the other species.
Paredis coevolved solutions and their representations in a steady-state

model using what he termed lifetime fitness evaluation (LTFE) [332]. In the
most general form of LTFE a new individual undergoes 20 ‘encounters’ with
solutions selected from the other population. The fitness of the new individ-
ual is initially set as the mean fitness from these encounters. The effect of
this scheme is that individuals from each population are continuously under-
going new encounters, and the fitness of an individual is given by the run-
ning average of its performance in the last 20 encounters. The benefit of this
running-average approach is that it effectively slows down the rate at which
each fitness landscape changes in response to changes in the composition of
the other populations.
Husbands [225] solved the pairing problem and also effectively changed the

rate at which the composition of the different populations are perceived to
change by using a diffusion model EA (Sect. 5.5.7) with one member of each
species located on each grid point.
Bull [69] examined the use of a range of different pairing strategies: best,

random, stochastic fitness-based, joined, and distributed, as per [225]. His
results showed that no one strategy performed better across the range of dif-
ferent interaction strengths and generational models, but random was robust
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in a generational GA, and distributed did best in a steady-state GA. When
fitness sharing was added to prevent premature convergence, “best” became
the most robust solution.
Finally, within the field of cooperative coevolution it is worth mentioning

the use of automatically defined functions within GP [253]. In this ex-
tension of GP, the function set is extended to include calls to functions that
are themselves being evolved in parallel, in separate populations. The great
advantage of this is in permitting the evolution of modularity and code reuse.

15.3 Competitive Coevolution

In the competitive coevolution paradigm individuals compete against each
other to gain fitness at each other’s expense. These individuals may belong
to the same or different species, in which case it is arguably more accurate to
say that the different species are competing against each other.
As noted above, the classic example of this that generated much interest

in the paradigm was Axelrod’s work on the iterated prisoner’s dilemma
[14, 15], although early work can be traced back as far as 1962 [39]. This is
a two-player game, where each participant must decide whether to cooperate
or defect in each iteration. The payoff received depends on the actions of the
other player, as determined by a matrix such as Table 15.1.

Player B

Player A Cooperate Defect

Cooperate (3,3) (0,5)
Defect (5,0) (1,1)

Table 15.1. Example payoff matrix for iterated prisoner’s dilemma. Payoff to player
A is first of pair

Axelrod organised tournaments in which human-designed strategies com-
peted against each other, with strategies only allowed to “see” the last three
actions of their opponent. He then set up experiments in which strategies were
evolved using as their fitness the mean score attained against a set of eight
human strategies. He was able to illustrate that the system evolved the best
strategy (tit-for-tat), but there was some brittleness according to the set of
human strategies chosen. In a subsequent experiment he demonstrated that
a strategy similar to tit-for-tat could also be evolved if a coevolutionary ap-
proach was used with each solution playing against every other in its current
generation in order to assess its quality.
In another groundbreaking study, Hillis [213] used a two-species model with

the pairing strategy determined by colocation on a grid in a diffusion model
EA. Note that this parallel model is similar to, and in fact was a precursor



of, Husbands’ cooperative algorithm described above. Hillis’ two populations
represented sorting networks, whose task it was to sort a number of inputs
numerically, and sets of test cases for those networks. Fitness for the networks
is assigned according to how many of the test cases they sort correctly. Using
the antagonistic approach, fitness for the individuals representing sets of test
cases is assigned according to how many errors they cause in the network’s
output. His study caused considerable attention as it found correct sorting
networks that were smaller than any previously known.
This two-species competitive model has been used by a number of authors

to coevolve classification systems [181, 333]. The approach of Paredis is worth
noting as it solves the pairing strategy problem by using a variant of the LTFE
method sketched above.
As with cooperative coevolution, the fitness landscapes will change as the

populations evolve, and the choice of pairing strategies can have a major
effect on the observed behaviour. When the competition arises within a single
population, the most common approaches are to either pair each strategy
against each other, or just against a randomly chosen fixed-size sample of the
others. Once this has been done, the solutions can be ranked according to the
number of wins they achieve and any rank-based selection mechanism chosen.
If the competition arises between different populations, then a pairing strat-

egy must be chosen for fitness evaluation, as it is for cooperative coevolution.
Since the NKC model essentially assigns random effects to the interactions
between species, i.e., it is neither explicitly cooperative nor competitive, it is
likely that Bull’s results summarised above will also translate to this paradigm.
The main engine behind coevolution is sometimes called “competitive fit-

ness evaluation”. As Angeline states in [10], the chief advantage of the method
is that it is self-scaling: early in the run relatively poor solutions may survive,
for their competitors are not strong either. But as the run proceeds and the
average strength of the population increases, the difficulty of the fitness func-
tion is continually scaled.

15.4 Summary of Algorithmic Adaptations for

Context-Dependent Evaluation

As the discussion above shows, the choice of context, or equivalently the pair-
ing strategy, can have a significant effect on how well EAs perform in this type
of situation, and many successful approaches attempt to reduce this effect by
awarding fitness as an average of a number of contexts encountered.
The second major algorithmic adaptation is the incorporation of some kind

of history into the evaluation — often in the form of an archive of histori-
cally ‘good solutions against which evolving solutions are periodically tested.
The reason for this is to avoid the problem of cycling: a phenomenon where
evolution repeatedly moves through a series of solutions rather than making
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advances. To illustrate this consider as an example the simple ‘rock–scissors–
paper game. In a population which had converged to a ‘rock strategy, a mu-
tant individual displaying ‘scissors would be disadvantaged, whereas a ‘paper
strategy would do well and come to dominate the population. This in turn
provides the conditions to favour a chance mutation into a ‘scissors strategy,
and later back to ‘rock’, and so on. This form of cycling can be avoided by
the use of an archive of different solutions, which can provide impetus for the
evolution of more complex strategies, and has been demonstrated in a range
of applications.

15.5 Example Application: Coevolving Checkers Players

In [81], which is expanded into a highly readable book [168] and further sum-
marised in [169], Fogel charts the development of a program for playing the
game of checkers (a.k.a. draughts), a board game that is also highly popu-
lar on the Internet. In this two-player game a standard 8 × 8 squared board
is used, and each player has an (initially fixed) number of pieces (checkers),
which move diagonally on the board. A checker can ‘take’ an opponent’s piece
if it is adjacent, and the checker jumps over it into an empty square (both
players use the same-coloured squares on the board). If a checker reaches the
opponent’s home side, it becomes a ‘king’ in which case it can move back-
wards as well as forwards. Human checker players regularly compete against
each other in a variety of tournaments (often Internet-hosted), and there is a
standard scheme for rating a player according to their results.
In order to play the game, the program evaluates the future value of possible

moves. It does this by calculating the likely board state if that move is made,
using an iterative approach that looks a given distance (‘ply’) into the future.
A board state is assigned a value by a neural network, whose output is taken
as the ‘worth’ of the state from the perspective of the last player to move.
The board state is presented to the neural network as a vector of length 32,

since there are 32 possible board sites. Each component comes from the set
{−K,−1, 0, 1,K}, where the minus sign presents an opponent’s king or piece,
and K takes a value in the range [1.0, 3.0].
The neural network thus defines a “strategy” for playing the game, and this

strategy is evolved with evolutionary programming. A fixed structure is used
for the neural networks, which has a total of 5046 weights and bias terms that
are evolved, along with the importance given to the kings K. An individual
solution is thus a vector of dimension 5047.
The authors used a population size of 15, with a tournament size 5. When

programs played against each other they scored +1, 0, −2 points for a win,
draw, and loss, respectively. The 30 solutions were ranked according to their
scores over the 5 games, then the best 15 became the next generation.
The mutation operator used took two forms: the weights/biases were mu-

tated using the addition of Gaussian noise, with lognormal adaptation of the
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step sizes before mutation of the variables, i.e., using standard self-adaptation
with n = 5046 strategy parameters. The offspring king weightings were mu-
tated accorded to K ′ = K+ δ, where δ is sampled uniformly from [−0.1, 0.1],
and the resulting values of K ′ are constrained to the range [1.0, 3.0]. Weights
and biases were initialised randomly over the range [−0.2, 0.2]. K values were
initially set to 2.0, and the strategy parameters were initialised to 0.05.
The authors proceeded by having the neural networks compete against each

other for 840 generations (6 months) before taking the best evolved strategy
and testing it against human opponents on the Internet. The results were
highly impressive: over a series of trials the program earned an average ranking
that put it in the “expert” class, and better than 99.61% of all rated players
on the website. This work is particularly interesting in the context of artificial
intelligence research for the following reasons:

• There is no input of human expertise about good short-term strategies or
endgames.

• There is no input to tell the evolving programs that in evaluating board
positions a negative vector sum (that is, the opponent has a higher piece-
count) is worse than a positive vector sum.

• There is no explicit credit assignment’mechanism to reward moves that
lead to wins; rather a ‘top-down’ approach is taken that gives a single
reward for an entire game.

• The selection function averages over five games, so the effects of strategies
that lead to wins or losses are blurred.

• The strategies evolve by playing against themselves, with no need for hu-
man intervention!

In the spirit of this chapter, we can say that the approach taken is rather
similar to Paredis’ Life-time fitness evaluation — to even out the effect of a
specific context (combination of opponents) fitness is awarded as the average
performance across a number of contexts.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


16

Theory

In this chapter we present a brief overview of some of the approaches taken to
analysing and modelling the behaviour of evolutionary algorithms. The Holy
Grail of these efforts is the formulation of predictive models describing the
behaviour of an EA on arbitrary problems, and permitting the specification
of the most efficient form of optimiser for any given problem. However, (at
least in the authors’ opinions) this is unlikely ever to be realised, and most
researchers will currently happily settle for techniques that provide any veri-
fiable insights into EA behaviour, even on simple test problems. The reason
for what might seem like limited ambition lies in one simple fact: evolution-
ary algorithms are hugely complex systems, involving many random factors.
Moreover, while the field of EAs is fairly young, it is worth noting that the
field of population genetics and evolutionary theory has a head start of more
than a hundred years, and is still battling against the barrier of complexity.
Full descriptions and analysis of the various techniques currently used to

develop EA theory would require both an amount of space and an assumption
of prior knowledge of mathematics and statistics that are unsuitable here. We
therefore restrict ourselves to a fairly brief description of the principal methods
and results which historically informed the field. We begin by describing some
of the approaches taken to modelling EAs using a discrete representation
(i.e., for combinatorial optimisation problems), before moving on to describe
the techniques used for continuous representations. This chapter finishes with
a description of an important theoretical result concerning all optimisation
algorithms, the No Free Lunch (NFL) theorem.
For further details, we point the interested reader to ‘bird’s eye overviews’

such as [140], and extensive monographs such as [52, 446, 353]. For a good
overview of the most promising recent approaches and results we would sug-
gest [234], or collections such as [63].
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16.1 Competing Hyperplanes in Binary Spaces: The

Schema Theorem

What Is a Schema?

Since Holland’s initial analysis, two related concepts have dominated much
of the theoretical analysis and thinking about GAs. These are the concepts
of schema (plural schemata) and building blocks. A schema is simply a
hyperplane in the search space, and the common representation of these for
binary alphabets uses a third symbol — # the “don’t care” symbol. Thus for
a five-bit problem, the schema 11### is the hyperplane defined by having
ones in its first two positions. All strings meeting this criterion are instances,
or examples, of this schema (in this case there are 23 = 8 of them). The fitness
of a schema is the mean fitness of all strings that are examples of it; in practice
this is often estimated from samples when there are many such strings. Global
optimisation can be seen as the search for the schema with zero “don’t care”
symbols, which has the highest fitness.
Holland’s initial work showed that the analysis of GA behaviour was far

simpler if carried out in terms of schemata. This is an example of aggregation
in which rather than model the evolution of all possible strings, they are
grouped together in some way and the evolution of the aggregated variables
is modelled. He showed that a string of length l is an example of 2l schemata.
Although in general there will not be as many as μ ·2l distinct schemata in
a population of size μ, he derived an estimate that a population will usefully
process O(μ3) schemata. This result, known as implicit parallelism is widely
quoted as being one of the main factors in the success of GAs.
Two features are used to describe schemata. The order is the number of po-

sitions in the schema that do not have the # sign. The defining length is the
distance between the outermost defined positions (which equals the number
of possible crossover points between them). Thus the schema H=1##0#1#0
has order o(H) = 4 and defining length d(H) = 8− 1 = 7.
The number of examples of a schema in an evolving population depends on

the effects of variation operators. While selection operators can only change
the relative frequency of pre-existing examples, operators such as recombina-
tion and mutation can both create new examples and disrupt current ones.
In what follows we use the notation Pd(H,x) to denote the probability that
the action of an operator x on an instance of a schema H is to destroy it,
and Ps(H) to denote the probability that a string containing an instance of
schema H is selected.

Holland’s Formulation for the SGA

Holland’s analysis applied to the standard genetic algorithm (SGA) using
fitness proportionate parent selection, one-point crossover (1X), and bitwise
mutation, with a generational survivor selection. Considering a genotype of
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length l that contains an example of a schemaH, the schema may be disrupted
if the crossover point falls between the ends, which happens with probability

Pd(H, 1X) =
d(H)

(l − 1)
.

The chance that bitwise mutation with rate Pm will disrupt the schema H is
proportional to the order of the schema: Pd(H,mutation) = 1−(1−Pm)o(H).
After expansion, and ignoring high-order terms in Pm, this approximates to

Pd(H,mutation) = o(H) · Pm.

The probability of a schema being selected depends on the fitness of the
individuals in which it appears relative to the total population fitness, and the
number of examples present n(H, t). Using f(H) to represent the fitness of
the schema H, defined as the mean fitness of individuals that are examples
of schema H, and <f > to denote the mean population fitness, we obtain:

Ps(H, t) =
n(H, t) · f(H)

μ· < f >
.

μ independent samples are taken to create the next set of parents, so the
expected number of instances of H in the population after selection is:

n′(H, t) = μ · Ps(H, t) =
n(H, t) · f(H)

<f >
.

After normalising by μ (to make the result population-size independent), al-
lowing for the disruptive effects of recombination and mutation derived above,
and using an inequality to allow for the creation of new instances of H by the
variation operators, the proportion m(H) of individuals representing schema
H at subsequent time-steps is given by:

m(H, t+ 1) ≥ m(H, t) · f(H)

<f >
·
[

1−
(

pc ·
d(H)

l − 1

)]

· [1− pm · o(H)] , (16.1)

where pc and pm are the probabilities of applying crossover, and the bitwise
mutation probability, respectively.
This is the schema theorem, and the original understanding of this result

was that schemata of above-average fitness would increase their number of in-
stances within the population from generation to generation. We can quantify
this by noting that the condition for a schema to increase its representation
is m(H, t+ 1) > m(H, t) which is equivalent to:

f(H)

<f >
>

[

1−
(

pc ·
d(H)

l − 1

)]

· [1− pm · o(H)] .
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Schema-Based Analysis of Variation Operators

Holland’s original version of the schema theorem, as formulated above, was
for one-point crossover and bitwise mutation. Following the rapid prolifer-
ation of alternative variation (particularly recombination) operators as the
field expanded and diversified, a considerable body of results was developed
to try and understand why some operators gave improved performance on cer-
tain problems. Particularly worthy of mention within this were two long-term
research programs. Over a number of years, Spears and De Jong developed
analytical results for Pd(H,x) as a function of defining length d(H) and or-
der o(H) for a number of different recombination and mutation operators
[107, 108, 408, 412, 413, 414], which are brought together in [411].
Meanwhile, Eshelman and Schaffer conducted a series of empirical studies

[157, 159, 161, 366] in which they compared the effects of mutation with
various crossover operators on the performance of a GA. They introduced
the notion of operator bias to describe the interdependence of Pd(H,x) on
d(H), o(H) and x, which takes two forms:

• If an operator x displays positional bias it is more likely to keep together
bits that are close together in the representation. This has the effect that
given two schemata H1, H2 with f(H1)= f(H2) and d(H1)<d(H2), then
Pd(H1, x)<Pd(H2, x).

• By contrast, if an operator displays distributional bias then the prob-
ability that it will transmit a schema is a function of o(H). One example
of this is bitwise mutation, where, as we have seen, the probability of dis-
ruption increases with the order: Pd(H,mutation) ≈ Pm · o(H). Another
example is uniform crossover which will on average select half of the genes
from one parent, and so is increasingly likely to disrupt a schema as the
ratio o(H)/l increases beyond 0.5.

Although these results provided valuable insight and have informed many
practical implementations, it is worth bearing in mind that they are only con-
sidering the disruptive effects of operators. Analysis of the constructive effects
of operators in creating new instances of a schema H are harder, since these
effects depend heavily on the constitution of the current population. However,
under some simplifying assumptions, Spears and De Jong [414] developed the
surprising result that the expected number of instances of a schema destroyed
by a recombination operator is equal to the expected number of instances
created, for all recombination operators!

Walsh Analysis and Deception

If we return our attention to the derivation of the schema theorem, we can
immediately see from an examination of the disruption probabilities given
above that all other things being equal, short low-order schema have a greater
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chance of being transmitted to the next generation than longer or higher-
order schema of the same mean fitness. This analysis has led to what has
become known as the building block hypothesis [189, pp. 41–45]: that
GAs begin by selecting amongst competing short low-order schemata, and
then progressively combine them to create higher-order schemata, repeating
this process until (hopefully) a schema of length l − 1 and order l, i.e., the
globally optimal string, is created and selected for. Note that for two schemata
to compete they must have fixed bits (1 or 0) in the same positions. Thinking
along these lines raised the obvious question: “What happens if the global
optimum is not an example of the low-order schemata that have the highest
mean fitness?”.
To give an immediate example, let us consider a four-bit problem that

has 0000 as its global optimum. It turns out that it is relatively simple to
create the situation where all of the order-n schemata containing 0’s in their
defining positions are less fit than the corresponding schemata with 1’s in
those position, i.e., f(0###)<f(1###), f(#0##)<f(#1##), etc., right
up to f(#000) < f(#111), f(0#00) < f(1#11), etc. All that is required to
achieve this is that the fitness of a globally optimal string is sufficiently greater
than all the other strings in every schema of which it is a member. In this
case we might expect that every time the GA makes a decision between two
order-n schemata, it is likely to make the wrong decision unless n=4.
This type of problem is known as deceptive and has been of great interest

since it would appear to make life hard for a GA, in that the necessary build-
ing blocks for successful optimisation are not present. However, it has been
postulated that if a fitness function is composed of a number of deceptive
problems, then at least a GA using recombination offers the possibility that
these can be solved independently and mixed via crossover. By comparison,
an optimisation technique relying on local search continuously makes deci-
sions on the basis of low-order schema, and so is far more likely to be ‘fooled’.
Note that we have not provided a formal definition of the conditions necessary
for a function to be deceptive; much work has been done on this subject and
slightly differing definitions exist [200, 403, 455].
The importance of deceptive problems to GA theory and analysis is debat-

able. At various stages some eminent practitioners have made claims that “the
only challenging problems are deceptive” [93], (although this view may have
been modified with hindsight), but others have argued forcibly against the rel-
evance of deception. Grefenstette showed that it is simple to circumnavigate
the problem of deception in GAs by looking for the best solution in each new
generation and then creating its inverse [200]. Moreover, Smith and Smith
created an abstract randomised test problem generator (NKPRS) in which
the probability that a landscape was deceptive could be directly manipulated
[404]. Their findings did not demonstrate that there was a correlation between
the likelihood of deception and the ability of a standard GA to discover the
global optimum.
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Much of the work in this area makes use of Walsh functions to analyse
fitnesses. This technique was first used for GA analysis in [51], but became
more widely known after a series of important papers by Goldberg [187, 188].
These are a set of functions that provide a natural basis for the decomposi-
tion of a binary search landscape. They can be thought of as equivalent to
the way that Fourier transforms decompose a complex signal in the time do-
main into a weighted sum of sinusoidal waves, which can be represented and
manipulated in the frequency domain. Just as Fourier transforms form a vital
part in a huge range of signal processing and other engineering applications,
because sine functions are so easily manipulable, so Walsh transforms form an
easily manipulable way of analysing binary search landscapes, with the added
bonus that there is a natural correspondence between Walsh partitions (the
equivalent of harmonic frequencies) and schemata. For more details on Walsh
analysis the reader is directed to [187] or [353].

16.2 Criticisms and Recent Extensions of the Schema

Theorem

Despite the attractiveness of the schema theorem as a description for how GAs
work, it has come in for a good amount of criticism, and significant quantities
of experimental evidence and theoretical arguments have been produced to
dispute its importance. This is perhaps inevitable given that early on some
rather extravagant claims were made by its adherents, and given the perhaps
natural tendency of humans to take pot-shots at ‘sacred cows’.
Ironically, empirical counterevidence was provided by Holland himself, in

conjunction with Mitchell and Forrest, who created the Royal Road func-
tions based on schema ideas in order to demonstrate the superiority of GAs
over local search methods. Unfortunately, their results demonstrated that the
opposite was in fact true [177]! However, this work did lead to the under-
standing of the phenomenon of hitchhiking whereby an unfavourable allele
becomes established in the population because of an early association with an
instance of a high-fitness schema.
Theoretical arguments against the value of the schema theorem and asso-

ciated analysis have included:

• Even if it is correctly estimated, the rate of increase in representation of
any given schema is not in fact exponential. This is because its selective
advantage f(H)/ <f > decreases as its share of the population increases
and the mean fitness rises accordingly.

• Eq. (16.1) applies to the estimated fitness of a given schema as averaged
over all the instances in the current population, which might not be repre-
sentative of the schema as a whole. Thus although the schema theorem is
correct in predicting the frequency of a schema in the next generation, it
can tell us almost nothing about the frequency in future generations, since
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as the proportions of other schema change, so will the composition of the
set of strings which represent H, and hence the estimates of f(H).

• Findings that Holland’s idea that fitness proportionate selection allocated
optimal amounts of trials to competing schemata is incorrect [277, 359].

• The fact that the schema theorem ignores the constructive effects of op-
erators. Altenberg [6] showed that in fact the schema theorem is a special
case of Price’s theorem in population genetics. This latter includes both
constructive and disruptive terms. Whilst exact versions of the schema
theorem have recently been derived [418], these currently remain some-
what intractable even for relatively simple test problems, although their
use is starting to offer interesting new perspectives.

These arguments and more are summarised eloquently in [353, pp. 74–90].
We should point out that despite these criticisms, schemata represent a useful
tool for understanding some of how GAs work, and we would wish to stress
the vital role that Holland’s insights into the importance of schemata have
had in the development of genetic algorithms.

16.3 Gene Linkage: Identifying and Recombining

Building Blocks

The Building Block Hypothesis offers an explanation of the operation of GAs
as a process of discovering and putting together blocks of coadapted genes
of increasing higher orders. To do this, it is necessary for the GA to discrim-
inate between competing schemata on the basis of their estimated fitness.
The Messy GA [191] was an attempt to explicitly construct an algorithm
that worked in this fashion. The use of a representation that allowed variable
length strings and removed the need to manipulate strings in the order of
their expression began a focus on the notion of gene linkage (in this context
gene is taken to mean the combination of a particular allele value and locus).
Munetomo and Goldberg [312] identify three approaches to the identifica-

tion of linkage groups. The first of these they refer to as the “direct detec-
tion of bias in probability distributions”, and is exemplified by Estimation
of Distribution Algorithms described in Section 6.8. Common to all of these
approaches is the notion of first identifying a factorisation of the problem into
a number of subgroups, such that a given statistical criterion is minimised,
based on the current population. This corresponds to learning a linkage model
of the problem. Once these models have been derived, conditional probabili-
ties of gene frequencies within the linkage groups are calculated, and a new
population is generated based on these, replacing the traditional recombina-
tion and mutation steps of an EA. It should be emphasised that these EDA
approaches are based on statistical modelling rather than on a schema-based
analysis. However, since they implicitly construct a linkage analysis of the
problem, it would be inappropriate not to mention them here.
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The other two approaches identified by Munetomo and Goldberg use more
traditional recombination and mutation stages, but bias the recombination
operator to use linkage information.
In [243, 312] first-order statistics based on pairwise perturbation of allele

values are used to identify the blocks of linked genes that algorithms manip-
ulate. Similar statistics are used in a number of other schemes such as [438].
The third approach identified does not calculate statistics on the gene

interactions based on perturbations, but rather adapts linkage groups ex-
plicitly or implicitly via the adaptation of recombination operators. Exam-
ples of this approach that explicitly adapt linkage models can be seen in
[209, 362, 393, 394, 395]. A mathematical model of the linkage models of
different operators, together with an investigation of how the adaptation of
linkage must happen at an appropriate level (see Sect. 8.3.4 for a discussion
of the issue of the scope of adaptation), can be found in [385].

16.4 Dynamical Systems

The dynamical systems approach to modelling EAs in finite search spaces
has principally been concerned with genetic algorithms because of their (rel-
ative) simplicity. Michael Voses established the basic formalisms and results
in a string of papers culminating in the publication of his book [446]. This
work has been taken on and extended by a number of authors (see, for ex-
ample, the proceedings of the Foundations of Genetic Algorithms workshops
[38, 285, 341]). The approach can be characterised as follows:

• Start with an n-dimensional vector p, where n is the size of the search
space, and the component pti represents the proportion of the population
that is of type i at iteration t.

• Construct a mixing matrix M representing the effects of recombination
and mutation, and a selection matrix F representing the effects of the
selection operator on each string for a given fitness function.

• Compose a genetic operator G = F ◦ M as the matrix product of these
two functions.

• The action of the GA to generate the next population can then be char-
acterised as the application of this operator G to the current population:
pt+1 = Gpt.

Under this scheme the population can be envisaged as a point on what
is known as the simplex: a surface in n-dimensional space made up of all
the possible vectors whose components sum to 1.0 and are nonnegative. The
form of G governs the way that a population will trace a trajectory on this
surface as it evolves. A common way of visualising this approach is to think
of G as defining a ‘force-field’ over the simplex describing the direction and
intensity of the forces of evolution acting on a population. The form of G alone
determines which points on the surface act as attractors towards which the
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population is drawn; and analytical analysis of G, and its constituents F and
M , has led to many insights into GA behaviour.
Vose and Liepens [447] presented models for F and M under fitness propor-

tionate selection, one-point crossover and bitwise mutation, and these have
been extended to other operators in [446]. One of the insights gained by
analysing the form of M is that schemata provided a natural way of ag-
gregating strings into equivalence classes under recombination and mutation,
which provides a nice tie-in to Holland’s ideas.
Other authors have examined a number of alternative ways of aggregating

the elements in the search space into a smaller number of equivalence classes,
so as to make the models more amenable to solution. Using this approach, a
number of important results have been derived, explaining facets of behaviour
such as the punctuated equilibria effect (described qualitatively in [447] but
expanded and including for the first time accurate predictions of the time
spent between the discovery of new fitness levels in [439]). These ideas have
also been applied to model mechanisms such as self-adaptive mutation in
binary coded GAs [383, 386].
It is worth pointing out that while this model exactly predicts the expected

proportions of different individuals present in evolving populations, these val-
ues can only be attained if the population size is infinite. For this reason
this approach falls into a class known as infinite population models. For
finite populations, the evolving vectors p can be thought of as representing
the probability distribution from which μ independent samples are drawn to
generate the next population. Because the smallest proportion that can be
present in a real population has a size 1/μ, this effectively constrains the
population to move between a subset of points on the simplex representing a
lattice of size 1/μ. This means that, given an initial population, the trajectory
predicted may not actually be attainable, and corrections must be made for
finite population effects. This work is still ongoing.

16.5 Markov Chain Analysis

Markov chain analysis is a well-established technique that is used to study
the properties and behaviour of stochastic systems. A good description can
be found in many textbooks on stochastic processes [216]. For our purposes it
is sufficient to note that we can describe a system as a discrete-time Markov
chain provided that the following conditions are met:

• At any given time the system is in one of a finite number (N) of states.
• The probability that the system will be in any given state Xt+1 in the

next iteration is solely determined by the state that it is in at the current
iteration Xt, regardless of the previous sequence of states.

The impact of the second condition is that we can define a transition
matrix Q where the entry Qij contains the probability of moving from state
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i to state j in a single step (i, j ∈ {1, . . . , N}). It is simple to show that the
probability that after n steps the system has moved from state i to state j is
given by the (i, j)th entry of matrix Qn. A number of well-known theorems
and proofs exist for making predictions of the behaviour of Markov chains.
There are a finite number of ways in which we can select a finite sized

population from a finite search space, so we can treat any EA working within
such a representation as a Markov chain whose states represent the different
possible populations, and a number of authors have used these techniques to
study evolutionary algorithms.
As early as in 1989 Eiben et al. [1, 129] proposed a Markov model for the

abstract genetic algorithm built from a choice, a production, and a selection
function, and used it to establish convergence properties. In contemporary
terminology it is a general framework for EAs based on parent selection, vari-
ation, and survivor selection, respectively. It has been proved that an EA
optimising a function over an arbitrary finite space converges to an optimum
with probability 1 under some rather permissive conditions. Simplifying and
reformulating the results, it is shown that if, in any given population,

• every individual has a nonzero probability of selection as a parent, and
• every individual has a nonzero probability of selection as a survivor, and
• the survival selection mechanism is elitist, and
• any solution can be created by the action of variation operators with a

nonzero probability,

then the nth generation certainly contains the global optimum for some n.
Rudolph [357] tightened the assumptions and showed that a genetic algo-

rithm with nonzero mutation and elitism will always converge to the globally
optimal solution, but that this would not necessarily happen if elitism was
not used. In [358] the convergence theorems are extended to EAs working in
arbitrary (e.g., continuous) search spaces.
A number of authors have proposed exact formulations for the transition

matrices Q of binary coded genetic algorithms with fitness proportionate se-
lection, one-point crossover, and bit-flipping mutation [99, 321]. They essen-
tially work by decomposing the action of a GA into two functions, one of
which encompasses recombination and mutation (and is purely a function of
the crossover probability and mutation rate), and the other that represents
the action of the selection operator (which encompasses information about
the fitness function). These represent a significant step towards developing
a general theory; however, their usefulness is limited by the fact that the
associated transition matrices are enormous: for an l-bit problem there are
(

μ+ 2l − 1
2l − 1

)

possible populations of size μ and this many rows and columns

in the transition matrix.
It is left as an exercise for the reader to calculate the size of the transition

matrix for a ten-bit problem with ten members in the population, in order to
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get a feel for how likely it is that advances in computing will make it possible
to manipulate these matrices.

16.6 Statistical Mechanics Approaches

The statistical mechanics approach to modelling EA behaviour was inspired
by the way that complex systems consisting of ensembles of many smaller parts
have been modelled in physics. Rather than trying to trace the behaviour of all
the elements of a system (the microscopic approach), this approach focuses
on modelling the behaviour of a few variables that characterise the system.
This is known as the macroscopic approach. There are obvious links to
the aggregating versions of the dynamical systems approach described above;
however, the quantities modelled are related to the cumulants of the variables
of interest [345, 346, 348, 354].
Thus if we are interested in the fitness of an evolving population, equations

are derived that yield the progress of the moments of fitness <f >,<f2>,
<f3>, and so on (where the braces <> denote that the mean is taken over
the set of possible populations) under the effects of selection and variation.
From these properties, cumulants such as the mean (< f > by definition),
variance, skewness, etc., of the evolving population can be predicted as a
function of time. Note that these predictions are necessarily approximations
whose accuracy depends on the number of moments modelled.
The equations derived rely on various ‘tricks’ from the statistical mechanics

literature and are predominantly for a particular form of selection (Boltzmann
selection). The approach does not pretend to offer predictions other than
of the population mean, variance and so on, so it cannot be used for all
the aspects of behaviour one might desire to model. These techniques are
nevertheless impressively accurate at predicting the behaviour of real GAs
on a variety of simple test functions. In [347] Prügel-Bennett compares this
approach with a dynamical systems approach based on aggregating fitness
classes and concludes that the latter approach is less accurate at predicting
dynamic behaviour of the population mean fitness (as opposed to the long-
term limit) because the variables that it tracks are not representative as a
result of the averaging process. Clearly this work deserves further study.

16.7 Reductionist Approaches

So far we have described a number of methods for modelling the behaviour
of EAs that attempt to make predictions about the composition of the next
population by considering the effect of all the genetic operators on the cur-
rent population. We could describe these as holistic approaches, since they
explicitly recognise that there will be interactions between the effects of dif-
ferent operators on the evolving population. An unfortunate side effect of this
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holistic approach is that either the resulting systems become very difficult to
manipulate, as a result of their sheer size, or necessarily involve approxima-
tions and may not model all of the variables that we would like to predict.
An alternative methodology is to take a reductionist approach, and exam-

ine parts of the system separately. Although ultimately flawed in neglecting
interaction effects, this approach is common to many branches of physics and
engineering, where it has been used to yield frequently accurate predictions
and insights, provided that a suitable decomposition of the system is made.
The advantage of taking a reductionist approach is that frequently it is

possible to derive analytical results and insights when only a part of the
problem is considered. A typical division is between selection and variation.
A great deal of work has been done on characterising the effects of different
selection operators, which can be thought of as complementary to the work
described in Section 16.1.
Goldberg and Deb [190] introduced the concept of takeover time, which

is the number of generations needed for a single copy of the fittest string to
completely take over the population in a “selecto-EA” (i.e., one in which no
variation operators are used). This work has been extended to cover a variety
of different mechanisms for parental and survivor selection, using a variety
of theoretical tools such as difference equations, order statistics, and Markov
chains [19, 20, 21, 58, 78, 79, 360, 400].
Parallel to this, Goldberg, Thierens, and others examined what they called

the mixing time, which characterises the speed at which recombination
brings together building blocks initially present in different members of a pop-
ulation [430]. Their essential insight is that in order to build a well-performing
EA, in particular a GA, it is necessary for the mixing time to be less than the
takeover time, so that all possible combinations of the building blocks present
can be tried before one fitter string takes over the population and removes
some of them. While the rigour of this approach can be debated, it does have
the immense benefit of providing practical guidelines for population sizing,
operator probabilities, choice of selection methods, and so on, which can be
used to help design an effective EA for new applications.

16.8 Black Box Analsyis

One of the approaches which has yielded the most promising advances since
the first edition of this book was written has been the ‘black box complexity’
approach introduced by Droste, Jansen and Wegener [120]. A good recent
review can be found in [234], or in collections such as [63]. The essence of
this approach is to model the run-time complexity of algorithms on specific
functions – that is to say on their expected time from an arbitrary starting
point to reaching the global optima. This is done by modelling the process as a
system of steps whose likelihood can be expressed and then deriving upper and
lower bounds on the run-time from these equations. This approach has lead
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to many useful insights on the behaviour of population-based methods, and
has in part settled some long-running debates within the field – for example,
by illustrating non-artificial problems on which crossover is provably useful
[118].

16.9 Analysing EAs in Continuous Search Spaces

In contrast to the situation with discrete search spaces, the state of theory for
continuous search spaces, and evolution strategies in particular, is fairly ad-
vanced. As noted in Section 16.5, Rudolph has shown the existence of global
proofs of convergence also in such spaces [358], since the evolution of the
population is itself a Markov process. Unfortunately, it turns out that the
Chapman–Kolmogorov equation describing this is intractable, so the popu-
lation probability distribution as a function of time cannot be determined
directly. However, it turns out that much of the dynamics of ESs can be
recovered from simpler models concerning the evolution of two macroscopic
variables, and many theoretical results have been obtained on this basis.
The first of the variables modelled is the progress rate, which measures

the distance of the centre of mass of the population from the global optimum
(in variable space) as a function of time. The second is the quality gain,
which measures the expected improvement in fitness between generations.
Most of this analysis has concerned variants of two fitness functions, the

sphere model: f(x) =
∑

i x
n
i for some n, and the corridor model [373].

The latter takes various forms but essentially contains a single direction in
which fitness is improving, hence the name. Since an arbitrary fitness function
in a continuous space can usually be expanded (using a Taylor expansion) to
a sum of simpler terms, the vicinity of a local optimum of one of these models
is often a good approximation to the local landscape.
The continuous nature of the search space, coupled with the use of normally

distributed mutations and well-known results from order statistics, have per-
mitted a relatively straightforward derivation of equations describing the mo-
tion of the two macroscopic variables over time as a function of the values of
μ, λ, and σ, starting with Rechenberg’s analysis of the (1+1) ES on the sphere
model, from which he derived the 1/5 success rule [352]. Following from this,
the principles of self-adaptation and multimembered strategies have also been
analysed. A thorough overview of these results is given in [53].

16.10 No Free Lunch Theorem

By now we hope the reader will have realised that the search for a mathe-
matical model of EAs, which will permit us to make accurate predictions of
a given algorithm on any given problem, is still a daunting distance from its
goal. Whilst the tools are now in place to make some accurate predictions
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of some aspects of behaviour on some problems, these are often restricted to
simple problems for which an EA is almost certainly not the most efficient
algorithm anyway.
However, a recent line of work has come up with a result that allows us

to make some statements about the comparative performance of different
algorithms across all problems: they are all the same! This result is known as
the No Free Lunch theorem (NFL) [467]. In layperson’s terms it says that
if we average over the space of all possible problems, then all nonrevisiting
black box algorithms will exhibit the same performance.
By nonrevisiting we mean that the algorithm does not generate and test

the same point in the search space twice. Although not typically a feature
of EAs, this can simply be achieved by implementing an archive of all so-
lutions ever seen, and then each time we generate an offspring discarding it
and repeating the process if it already exists in the archive. An alternative
approach (taken by Wolpert and Macready in their analysis) is to view per-
formance as the number of distinct calls to the evaluation function. In this
case we still need an archive, but we can allow duplicates in the population.
By black box algorithms we mean those that do not incorporate any problem
or instance-specific knowledge.
There has been some considerable debate about the utility of the No Free

Lunch theorem, often centred around the question of whether the set of prob-
lems that we are likely to try to tackle with EAs is representative of all prob-
lems, or forms some special subset. However, they have come to be widely
accepted, and the following lessons can be drawn:

• If we invent a new algorithm and it appears to be the best ever at solving
some particular class of problems, then it will pay for this by performing
poorly at some others. This suggests that a careful strategy is required to
evaluate new operators and algorithms, as discussed in Chap. 9.

• For a given problem we can circumvent the NFL theorem by incorporat-
ing problem-specific knowledge. This of course leads us towards memetic
algorithms (cf. Chap. 10).

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org


17

Evolutionary Robotics

In this chapter we discuss evolutionary robotics (ER), where evolutionary
algorithms are employed to design robots. Our emphasis lies on the evolution-
ary aspects, not on robotics per se. Therefore, we only briefly discuss the ER
approaches that work with conventional evolutionary algorithms to optimize
some robotic features and pay more attention to systems that can give rise
to a new kind of evolutionary algorithms. In particular, we consider groups
of mobile robots whose features evolve in real-time, for example, a swarm of
Mars explorers or ‘robot moles’ mining ore deep under the surface. In such
settings the group of robots is a population itself, which leads to interest-
ing interactions between the robotic and the evolutionary components of the
whole system. For robotics, this new kind of ER offers the ability to evolve
controllers as well as morphology in partially unknown and changing envi-
ronments on the fly. For evolutionary computing, autonomous mobile robots
provide a special substrate for implementing and studying artificial evolution-
ary processes in physical entities going beyond the digital systems of today’s
evolutionary computing.

17.1 What Is It All About?

Evolutionary robotics is part of a greater problem domain that does not have
a precise definition, but it can be characterised as problems involving physical
environments. (The first edition of this book treated it very briefly in Sect.
6.10.) Evolutionary systems in this domain have populations whose members
are not just points in some abstract, stateless search space, e.g., the set of all
permutations of 1, . . . , n, but are embedded in real time and real space. In
other words, such systems feature ‘situated evolution’ or ‘physically embod-
ied evolution’ as discussed in [371]. Examples include robot swarms where the
robot controllers are evolving on-the-fly, artificial life systems where preda-
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tors and prey coevolve in a simulated world1, or adaptive control systems to
regulate a chemical factory where the adaptive force that changes the control
policy over time is an evolutionary algorithm. In all these examples the entities
undergoing evolution are active, in the sense that they do something, i.e., they
exhibit some behaviour that can change the environment. This distinguishes
them from applications evolving passive entities, e.g., using evolutionary al-
gorithms for combinatorial or numerical optimisation. Hence, one of the main
distinguishing features of problems in this area is that the algorithmic goal is
formulated in terms of functional, rather than structural properties. In other
words, it is some exhibited behaviour we are after.
The fundamental problem in the design of autonomous robots is that the

targeted robot behaviour is a “dynamical process resulting from nonlinear
interactions between the robot’s control system, its body, and the environ-
ment” [163]. Therefore, the robot’s makeup, which falls under the designer’s
influence, has only a partial and indirect effect on the desired behaviour. This
implies that the link between the controllable parameters and the target vari-
ables is weak, ill-defined, and noisy. Furthermore, the solution space can be
– and typically is – subject to conflicting constraints and objectives. Think,
for instance, of trying to be fast while also sparing the batteries. Evolution-
ary algorithms offer a very promising approach here, because they do not
require a crisply defined fitness function, they can cope with constraints and
multiple objectives, and they can find good solutions in complex spaces even
under noisy and dynamically changing conditions, as discussed in the previous
chapters.
The use of evolutionary computing techniques to solve problems arising in

robotics began in the 1990s and now evolutionary robotics has a large body
of related work [322, 432, 450]. Reviewing the field is beyond the scope of
this chapter, the surveys in [61, 163, 449] give a good impression of the area.
The picture that arises from the literature shows a large variety of work with
different robot morphologies, different controller architectures, and different
tasks in different environments, including underwater and flying robots. Some
of the evolved solutions are really outstanding, but many roboticists are still
skeptical and the evolutionary approach to robot design is outside of the
mainstream. As phrased by Bongard in [61]: “The evolution of robot bodies
and brains differs markedly from all other approaches to robotics”.

17.2 Introductory Example

As an introductory example let us consider the problem of evolving a controller
for a wheeled robot that must ride towards the light source in a flat and
empty arena. Regarding the hardware we can assume a simple cylindric robot

1 Note that we consider physical environments in a broad sense, including simulated
environments, as long as they include some notion of space and time.
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with a couple of wheels and a few LED lights, a camera, a gyroscope, and
four infrared sensors, one on each side. As for the control software, the robot
can use a neural network that receives inputs from the sensors (camera,
infrared sensors, gyroscope) and gives instructions to the actuators (motors
and LEDs). Thus, a robot controller is a mapping between sensory inputs
and actuatory outputs. Its quality – which determines its fitness used in an
evolutionary algorithm – depends on the behaviour it induces. For instance,
the time needed from start to hitting the source can be used for this purpose.
As with any application of an EA, an essential design decision when evolv-

ing robot controllers is to distinguish phenotypes and genotypes, cf. Chap. 3.
Simply put, this distinction means that we perceive the controllers with all
their structural and procedural complexity as phenotypes and we introduce a
structurally more simple representation of the controllers as genotypes. Ob-
viously, we also need a mapping from genotypes to phenotypes, which might
be a simple mapping, or a complex transformation. For example, a robot
controller may consist of a collection of artificial neural nets (ANNs) and a
decision tree, where the decision tree specifies which ANN will be invoked to
produce the robot’s response in a given situation. This decision tree can be
as simple as calling ANN-1 when the room is lit and calling ANN-2 when
the room is dark. This complex controller, i.e., the decision tree and the two
ANNs as phenotype, could be represented by a simple genotype of two vectors,
w1 ∈ IRm and w2 ∈ IRn, showing the weights of the hidden layer in ANN-1
and ANN-2, respectively.
After making these application-specific design decisions, developing a suit-

able EA is rather straightforward because one can simply use the standard
machinery and employ any EA that works in real-valued vector spaces. The
only robotic-specific component is the fitness function that requires one or
more test runs of the robot using the controller under evaluation. Then the
behaviour of the robot is observed and some task-specific quality measure is
taken to determine a fitness value. Running such an EA is not different from
running any other EA, except for the fitness measurements, see Fig. 17.1.
Sometimes, these can be performed by a simulator and the whole evolution-
ary process can be completed inside a computer. Alternatively, some or all
fitness evaluations are carried out by real robots. In this case the genotype to
be evaluated is sent to a robot to test it. Such a test delivers fitness values that
are sent back to the computer running the EA. Employing real-world fitness
evaluations implies a specific architecture, with a computational component
that runs the EA and a robot component that executes the real-world fitness
measurements. However, it could be argued that for the EA this dual archi-
tecture is invisible, it only needs to pause for longish periods waiting for the
fitness values to be returned. A general approach to cope with time-consuming
fitness evaluations is the use of surrogate models, as discussed in Chap. 14.
In terms of the problem categories discussed in Chap. 1, the task of design-

ing a good robot controller represents a model-building problem. As explained
above, a robot controller is a mapping between sensory inputs and actuator
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Fig. 17.1. Classic scheme of evolving robot designs. Note that any EA can be
employed here, the only application-specific detail is the way fitness values are cal-
culated

outputs and the essence of constructing a good controller is to find a mapping
that provides an appropriate output for all inputs. In general, a model-building
problem can be converted into an optimisation problem by creating a training
set of input–output records and measuring model quality by the number or
percentage of correct outputs it produces on the training set. For our example
we could set up a training set consisting of pairs of sensory input patterns
and corresponding actuator commands. However, this requires a microscopic-
level description of desired robot behaviour and in practice this is not feasible.
Instead, we could follow a macroscopic-level approach and use training cases
where the input component describes the starting conditions (e.g., position
of the robot in the arena and the brightness in the room) and the output
component specifies that the robot is close enough to the light source.

17.3 Offline and Online Evolution of Robots

The usual approach in evolutionary robotics is to employ offline evolution,
cf. Fig. 17.2. This means that an evolutionary algorithm to find a good con-
troller is applied before the operational period of the robot. When the user
is satisfied with the evolved controller, then it is deployed (installed on the
physical robot) and the operational stage can start. In general, the evolved
controllers do not change after deployment during the operational stage, or at
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Fig. 17.2. Workflow of robot design distinguishing the design stage and the oper-
ational stage of the robots, separated by the moment of deployment (circle in the
middle). Offline evolution takes place in the design stage and the evolved features
(controllers or morphological details) do not change after deployment. Online evo-
lution is performed during the operational period, which means that the robot’s
features are continually changed by the evolutionary operators

least not by evolutionary operators. The alternative is to apply online evo-
lution to evolve controllers during the operational period. This implies that
evolutionary operators can change the robot’s control software even after its
deployment.
The difference between the offline and online approaches was identified early

in the history of the field, for instance by Walker et al. in [449] who used
the names “training phase evolution” and “lifelong adaptation by evolution”,
respectively. However, the online variant has received very little attention
and the huge majority of existing work is based on the offline approach.2 This
preference is understandable, because it is fully in line with the widespread use
of EAs as optimizers. However, natural evolution is not a function optimizer.
The natural role of evolution is that of permanent adaptation and this role
is expected to become more and more important in the future of robotics, as
phrased by Nelson et al. in [315].

“Advanced autonomous robots may someday be required to negotiate
environments and situations that their designers had not anticipated.
The future designers of these robots may not have adequate expertise
to provide appropriate control algorithms in the case that an unfore-
seen situation is encountered in a remote environment in which a robot

2 This is true of machine learning in general – the huge majority of algorithms and
papers about model building are concerned with learning from a fixed training
set rather than continuous learning.
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cannot be accessed. It is not always practical or even possible to de-
fine every aspect of an autonomous robots environment, or to give a
tractable dynamical systems-level description of the task the robot is
to perform. The robot must have the ability to learn control without
human supervision.”

The vision articulated here identifies a problem, and evolutionary comput-
ing can be (part of) the solution. Of course, online adaptation need not be
based on or restricted to evolutionary techniques. One may even argue that
evolution is too slow for such applications. However, we have seen in Chap. 11
that EAs can be used for dynamic optimization and there are good examples
of using EAs for online learning, e.g., [75].

17.4 Evolutionary Robotics: The Problems Are Different

After the above considerations, we can discuss the properties that make
robotics a very interesting context for evolutionary computing. To begin with,
let us consider the problems, in particular the fitness functions for robotics.
These exhibit a number of particular features that may not be unique one by
one, but together they form a very challenging combination.

• The fitness function is very noisy.
• The fitness function is very costly.
• The fitness function is very complex.
• There may not be an explicit fitness function at all.
• The fitness landscape has ‘no-go areas’.

The first four challenges occur in all segments of ER, including offline evo-
lution based on simulation, the fifth one is characteristic for applications with
online evolution is real hardware. In what follows we discuss these one by one.
Noisy Fitness: Noise is inherent in the physical world. For instance, two

LEDs on a robot are not fully identical and the light they emit can be different
even though they receive the same controller instruction. Furthermore, seem-
ingly small environmental details can cause differences, e.g., the left wheel may
be a bit warmer than the right wheel and make the robot deviate from the
intended trajectory. This means that the link between actually controllable
responses and robot behaviour is nondeterministic and the range of variations
can be quite large.
Costly Fitness: Calculating the tour length for a given route of a traveling

salesman can be done in the blink of an eye. However, measuring the time
a robot needs for navigating to a target location can take several minutes.
Moreover, it is an essential requirement for robot controllers that they work
under many different circumstances. To this end, the controller must be tested
under different initial conditions, for instance starting at different locations of
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the arena and/or under various lights. Ultimately this means that many time-
consuming measurements are needed to assess the fitness of a given controller.
Complex Fitness: The phenotypes encoded by genotypes in ER are con-

trollers that define the response of the actuators for any given combination
of the inputs provided by the sensors.3 However, a controller can only deter-
mine the actuator response on a low level (e.g., the torque on the left wheel
or the colour of the LED light), whereas the fitness depends on exhibited
robot behaviour on a high level (e.g., the robot is driving in circles). Hence,
the phenotypes, i.e., the controllers, cannot be directly evaluated and one
has to observe and assess the robot behavior induced by the given controller.
Thus, in EC we have a 3-step chain, genotype–phenotype–fitness, while in ER
the chain is 4-fold, genotype–phenotype–behavior–fitness. Furthermore, in the
case of robot swarms, we have one more level, that of the group behaviour that
raises further questions about considering the individual or the group when
executing selection [448]. Thus, in general, the link between actually control-
lable values in the genotypes and robot behaviour is complex and ill-defined
without analytical models.
Implicit Fitness: In the true spirit of biological evolution, EC can be

used in an objective-free fashion to invent robots that are well suited to some
(previously unknown and/or changing) environment. In such cases robots do
not have a quantifiable level of fitness; they are fit if they survive long enough
to be able to mate and propagate their genetic makeup. Such problems are
very different from classic optimization and design problems in that they
require a ‘curiosity instinct’ for pursuing novelty and open-ended exploration,
rather than a drive for chasing optima.
‘No-Go-Areas’ in Fitness Landscape: Evaluating a poor candidate so-

lution of a traveling salesman problem can waste time. Evaluating a poor
candidate solution (bad controller) can destroy the robot. When working in
real hardware, such candidate solutions must be avoided during the evolution-
ary search.
For further elaboration let us focus on a particular subarea in robotics:

applications that involve (possibly large) groups of autonomous robots that
undergo online evolution. One noteworthy property of such applications is
that artificial evolution is required to play two roles at the same time: opti-
mising towards some quantifiable skills of the robots as specified by the user
as well as enabling open-ended adaptation to the given environment. To illus-
trate this recall the examples about Mars explorers and deep mining ‘robot
moles’. These are problems where the environment is not fully known to the
designers in advance. The robot designs at the time of deployment are there-
fore just initial guesses and the designers’ work needs to be finalised on the
spot. As a necessary prerequisite for surviving at all, the robots must be fit for
the environment (viability) and to fulfill the users’ expectations they should

3 Genotypes can of course also encode for morphological features. We disregard this
option here for the sake of simplifying the argument.
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perform their tasks well (usefulness). Artificial evolutionary systems today are
typically developed with either but not both roles in mind. Optimising task
performance is the leading motive in evolutionary computing and mainstream
evolutionary robotics, whereas ‘goal-less’ adaptation to some environment is
common in artificial life, but recent work has demonstrated that the two pri-
orities can be integrated elegantly in one system [204].
Another special property here is that robots can be passive as well as active

components of the evolutionary system.4 On the one hand, robots are passive
from the evolutionary algorithm perspective if they just passively undergo
selection and reproduction. This is the dominant perspective when using tra-
ditional EAs to optimise robot designs in an offline fashion. In these cases
the robots’ only role in the EA is to establish fitness values that the selection
mechanism needs in order to decide about who is to reproduce and who is
to survive. On the other hand, robots can be active from the evolutionary al-
gorithm perspective because they have processors on board that can perform
computations and execute evolutionary operators. For instance, a robot could
select another robot to mate with, perform recombination on the two parent
controllers, evaluate the child controllers, and select the best one for further
usage. Obviously, different robots can apply different reproduction operators
and/or different selection preferences. This constitutes a new type of evolu-
tionary system that is not only distributed, but also heterogeneous regarding
the evolutionary operators.
A further property worth mentioning is that robots can also influence the

evolutionary dynamics implicitly by structuring the population. This influence
is grounded in the physical embedding which makes a group of robots spa-
tially structured. Spatially structured EAs are, of course, nothing new, see for
instance Sect. 5.5.7. However, in evolving robot swarms this structure is not
designed, but emergent, without being explicitly specified by the EA designer,
and it can have a large impact on the evolutionary process. For instance, the
maximum sensor and communication ranges imply (dynamically changing)
neighbourhoods that affect evolutionarily relevant interactions, e.g., mate se-
lection and recombination. Obviously, sensor ranges and the like are robot
attributes that can be controlled by the designer or experimenter, but their
evolutionary effects are complex and to date there is no know-how available
on adjusting evolutionary algorithms through such parameters.
To conclude this section let us briefly consider simulated and real fitness

evaluations. A straightforward way of circumventing hardware-related diffi-
culties and coping with costly fitness functions is the use of simulators. The
simulator must represent the robot and the test environment including ob-
stacles and other robots, if applicable. Using a simulator with a high level of
abstraction (low level of details) can make a simulation orders of magnitude
faster than a real-life experiment. Meanwhile, detailed simulations with a hi-
fidelity physics engine and robots with many sensors can be much slower than

4 This is not the same passive–active division we discussed in Sect. 17.1.
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real life. Parallel execution on several processors can mitigate this problem
and, in the end, simulations can save a lot of time when assessing the fitness
of robot controllers. However, this comes at a price, the infamous reality gap
that stands for the inevitable differences between simulated and real-life be-
haviour [233]. For evolutionary robotics, the reality gap means that the fitness
function does not capture the real target correctly and even the high fitness
solutions may perform poorly in the real world.

17.5 Evolutionary Robotics: The Algorithms Are

Different

As mentioned above, standard EAs can be used to help design robots in
an offline fashion. However, new types of EAs are needed when controllers,
morphologies or both are evolved on the fly. Despite a handful of promising
publications, there is not much know-how on such EAs, indicating the need
for further research. In the following we try to identify some of the related
issues, arranged by the following aspects:

• the overall system architecture (evolutionary vs. robotic components);
• the evolutionary operators (variation and selection);
• the fitness evaluations;
• the use of simulators.

By system architecture we mean the structural and functional relations
between the evolutionary and the robotics system components as outlined in
[123]. The classic offline architecture relies on a computer that hosts a popula-
tion of genotypes that represent robot controllers, cf. Fig. 17.1. This computer
executes the evolutionary operators (variation and selection), managed in the
usual EC fashion. Fitness evaluations can be performed on this computer us-
ing a simulator. In this case the whole evolutionary process can be completed
inside this computer. Alternatively, (some) fitness evaluations can be carried
out by real robots. To this end, the genotype to be evaluated is sent to a robot
to test it. After an evaluation period, the robot sends the fitness values back
to the computer. Using more robots, evaluation of genotypes can happen in
parallel which can lead to significant speed up. After finishing the evolutionary
process the best genotype is deployed in the robot(s).
Online architectures are aimed at evolving robot controllers during their op-

erational period. Here we can distinguish between centralised and distributed
systems. One type of centralised system works as the online variant of the
classic architecture. A master computer oversees the robots and runs the evo-
lutionary process: it collects fitness information, executes variation and selec-
tion operators, and sends new controllers to the robots for them to use and
test. As opposed to the offline scheme, the operational usage and fitness eval-
uation of controllers are not separated here. This is illustrated in Fig. 17.3,
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left. In the other type of centralised online system the computer running the
evolutionary algorithm is internal to the robot, see Fig. 17.3, right.
Distributed online architectures also come in two flavours. In a pure dis-

tributed system each robot carries one genome that encodes its own pheno-
typic features. Selection and reproduction require interaction between more
robots, see Fig. 17.4, left. In a hybrid system the encapsulated and the pure
distributed approaches are combined, as shown in Fig. 17.4, right.

Fig. 17.3. Centralised online evolution architectures. Left: an external master com-
puter oversees the robots and runs the evolutionary process. Right: an internal
computer (the robot’s own processor) runs an encapsulated evolutionary process,
where selection and reproduction do not require information from other robots

Fig. 17.4. Distributed online evolution architectures. Left: distributed system with
one-robot–one-genome. Selection and reproduction require interaction between more
robots. Right: a hybrid system is encapsulated and distributed. Encapsulated pop-
ulations form islands that evolve independently but can crossfertilize.

Regarding the evolutionary operators, we can mention two prominent re-
quirements. First and foremost, reproduction must be constrained to phys-
ically viable candidate solutions. This requirement is related to the issue of
the ‘no-go areas’ on the fitness landscape: a poor candidate solution (a bad
controller) can break, immobilize, or otherwise disable the robot. Hence, the
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evolutionary path should avoid these regions. The area of evolutionary con-
straint handling, cf. Chap. 13, could be relevant here, especially the use of
intelligent reproduction operators and repair mechanisms. However, these are
always based on application-specific heuristics and as of today there are no
general recipes in EC that would offer solutions here. One promising avenue
to avoid damaging robots is the use of a surrogate model to estimate the via-
bility of new candidate solutions before launching them in the real world. We
discussed the use of surrogates for interactive EAs in Sect. 14.2. Such models
can be maintained and continually updated in every robot independently, but
the robot population could also collaborate and develop the models collec-
tively. The second requirement concerns the speed of evolution. Because of
the online character of the robotic application, rapid progress is desirable. In
other words, it should not take many iterations to reach good performance lev-
els. To this end, there are generic options supported by common evolutionary
computing wisdom. For example, using high selection pressure or multiparent
crossovers can be considered as accelerators, but with a caveat: greedy search
can easily get trapped in local optima.
There are also special considerations for selection in the distributed cases.

The physical embedding implies a natural notion of distance, that in turn
induces neighbourhoods for robots. The composition, location, and size of
these neighbourhoods will depend on the specific circumstances, e.g., ranges
for sensing and communication, the environment, noise, etc., but in general
it will hold that robots do not have direct access to all other robots. Thus,
the selection operators will act on local and partial information, using fitness
data of only a fraction of the whole population. In principle, this can be
circumvented by using some form of epidemic or gossiping protocols that help
in estimating global information. The first results with autonomous selection
in peer-to-peer evolutionary systems are very promising [463].
Concerning fitness evaluations, perhaps the most important robotics-

specific feature is their duration. In typical EAs for optimization or for offline
robot design the real-time duration of fitness evaluations does not impact the
evolutionary dynamics. Figuratively speaking, the EA can freeze until the fit-
ness values are returned and proceed with the search afterwards. Thus, no
matter how long a fitness evaluation really takes, from the EA perspective it
can be seen as instantaneous. Using online evolution in robots this is differ-
ent, because the real world will not freeze awaiting the fitness evaluations to
finish. In such systems, the time needed to complete fitness evaluations is a
parameter with a paramount impact. On the one hand, long evaluations imply
fewer evaluations in any given time interval. This is certainly disadvantageous
for the (real-time) speed of the evolutionary progress. On the other hand,
short evaluations increase the risk of poor fitness estimations. This misleads
selection operators and drives the population to suboptimal regions. Conse-
quently, the parameter(s) that determine the duration of fitness evaluations
should have robust parameter values that work over a wide range of circum-
stances, or a good parameter control method should be applied that adjusts
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the values appropriately on the fly. Research in this direction is just starting,
but promising results have been published recently based on a (self-)adaptive
mechanism [117].
Finally, let us return to the issue of using simulations to assess the qual-

ity of robot designs. A very promising idea here is to use simulations within
robots for continuous self-modelling [60]. In principle, this means that fitness
evaluations can be performed without real-life trials during an online evolu-
tionary process. This approach bears great advantages because it can save
time, it can save robots (that otherwise may run into irreparable problems),
and it can help experimenters learn about the problem (if only these models
are readable). A very recent study showing the benefits of this approach in a
robot swarm undergoing online evolution is presented in [323].

17.6 A Glimpse into the Future

Let us conclude this chapter with a somewhat speculative section about the
future of evolutionary robotics and evolutionary computing itself. We believe
that the combination of robotics and evolutionary computing has a great
potential with mutual benefits. On the one hand, EC can provide solutions
to hard problems in robotics. In particular, evolution can help design and
optimise robot controllers, robot morphologies, or both and it can provide
adaptive capabilities for on-the-fly adjustments without human intervention.
On the other hand, robotics forms a demanding testing ground for EC and
the specific (combination of) challenges in robotics can drive the development
of novel types of artificial evolutionary systems.
A detailed discussion of the robotics perspective is beyond the scope of this

book. For the interested reader, we recommend [119], which distinguishes four
major areas of development at different levels of maturity:

• automatic parameter tuning in the design space (mature technique),
• evolutionary-aided design (current trend),
• online evolutionary adaptation (current trend),
• automatic synthesis (long-term research).

Regarding EC, our main premise is that we are at the verge of a major
breakthrough that will open up a completely new substrate for artificial evo-
lutionary systems. This breakthrough is the technology of self-reproducing
physical artefacts. This may be achieved through, for instance, 3D printing
or autonomous self-assembly in the very near future. This achievement would
extend the meaning of evolvable hardware [466]. To be specific, this means a
technology that enables the autonomous construction of a new robot based
on a genetic plan produced by mutation or crossover applied to the genetic
plan(s) of its parent(s). Given this technology it will be possible to make sys-
tems where bodies and brains (i.e., morphologies and controllers) of robots
coevolve without the human in the loop. The Triangle of Life framework of
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Eiben et al. [132] provides a general description of such systems and the pa-
per demonstrates a rudimentary implementation of some of the main system
components with cubic robots as building blocks. The Triangle of Life can
be considered as the counterpart of the general scheme of an evolutionary
algorithm in Chap. 3.
From a historical perspective, the technology of self-reproducing physical

artefacts will be a radical game changer in that it will allow us to create,
utilize, and study artificial evolutionary processes outside of computers. The
entire history of EC can be considered as the process of learning how to con-
struct and operate artificial evolutionary systems in imaginary, digital spaces.
This very book is a collection of knowledge accumulated over the last few
decades about this. The technology of self-reproducing artifacts will bring the
game into real physical spaces. The emerging area will be concerned with
Embodied Artificial Evolution [136] or the Evolution of Things [122]. The his-
torical perspective is illustrated by Fig. 17.5 that shows two major transitions
of Darwinian principles from one substrate to another. The first transition in
the 20th century followed the emergence of computer technology that provided
the possibility of creating digital worlds that are very flexible and controllable.
This brought about the opportunity to become active masters of evolutionary
processes that are fully designed and executed by human experimenters. The
second transition is about to take place through an emerging technology based
on material science, rapid prototyping (3D printing) and evolvable hardware.
This will provide flexible and controllable physical, in materio, substrates and
be the basis of Embodied Artificial Evolution or the Evolution of Things [147].
Finally, let us mention a new kind of synergy between evolutionary comput-

ing, artificial life, robotics, and biology. As of today, the level of technology
will not allow for emulating all chemical and biological micro-mechanisms un-
derlying evolution in some artificial substrate. However, even a system that
only mimics the macro-mechanisms (e.g., selection, reproduction, and hered-
ity) in a physical medium is a better tool for studying evolution than pure
software simulations because it will not violate the laws of physics and will
be able to exploit the richness of matter. A recently published list of grand
challenges for evolutionary robotics includes “Open-Ended Robot Evolution”
where physical robots undergo open-ended evolution in an open environment
[121]. With such systems one could investigate fundamental issues, e.g., the
minimal conditions for evolution to take place, the factors influencing evolv-
ability, or the rate of progress under various circumstances. Given enough
time, we may even witness some of the events natural evolution encountered,
such as the emergence of species, perhaps even the Cambrian explosion. This
line of development can bridge evolutionary computing, artificial life, robotics,
and biology, producing a new category: Life, but not as we know it.
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Fig. 17.5. Major transitions of evolutionary principles from one substrate to an-
other. Natural evolution in vivo was discovered and described in the 19th century.
Computer technology in the 20th century provided digital, in silico substrates for
creating, utilizing, and studying artificial evolutionary processes. This formed the
basis of Evolutionary Computing. An emerging technology based on material sci-
ence, rapid prototyping (3D printing) and evolvable hardware will provide physical,
in materio substrates. This will be the basis of Embodied Artificial Evolution or the
Evolution of Things.

For exercises and recommended reading for this chapter, please visit
www.evolutionarycomputation.org.

http://www.evolutionarycomputation.org
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J.A. Vázquez Rodŕıguez, and M. Gendreau. Iterated local search vs. hyper-
heuristics: Towards general-purpose search algorithms. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE Press, 2010.

72. E.K. Burke, G. Kendall, and E. Soubeiga. A tabu search hyperheuristic for
timetabling and rostering. Journal of Heuristics, 9(6), 2003.

73. E.K. Burke and J.P. Newall. A multi-stage evolutionary algorithm for the
timetable problem. IEEE Transactions on Evolutionary Computation, 3(1):63–
74, 1999.

74. E.K. Burke, J.P. Newall, and R.F. Weare. Initialization strategies and diversity
in evolutionary timetabling. Evolutionary Computation, 6(1):81–103, 1998.



References 263

75. M.V. Butz. Rule-Based Evolutionary Online Learning Systems. Studies in
Fuzziness and Soft Computing Series. Springer, 2006.

76. P. Caleb-Solly and J.E. Smith. Adaptive surface inspection via interactive
evolution. Image and Vision Computing, 25(7):1058–1072, 2007.

77. A. Caponio, G.l. Cascella, F. Neri., N. Salvatore., and M. Sumner. A Fast
Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM
Drives. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cy-
bernetics, 37(1):28–41, 2007.

78. U.K. Chakraborty. An analysis of selection in generational and steady state
genetic algorithms. In Proceedings of the National Conference on Molecular
Electronics. NERIST (A.P.) India, 1995.

79. U.K. Chakraborty, K. Deb, and M. Chakraborty. Analysis of selection algo-
rithms: A Markov Chain aproach. Evolutionary Computation, 4(2):133–167,
1997.

80. P. Cheeseman, B. Kenefsky, and W. M. Taylor. Where the really hard problems
are. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, IJCAI-91, pages 331–337, 1991.

81. K. Chellapilla and D.B. Fogel. Evolving an expert checkers playing program
without human expertise. IEEE Transactions on Evolutionary Computation,
5(4):422–428, 2001.

82. X. Chen. An Algorithm Development Environment for Problem-Solving. In
(ICCP), 2010 International Conference on Computational Problem-Solving,
pages 85–90, 2010.

83. Y.P. Chen. Extending the Scalability of Linkage Learning Genetic Algorithms:
- Theory & Practice, volume 190 of Studies in Fuzziness and Soft Computing.
Springer, 2006.

84. H. Cobb. An investigation into the use of hypermutation as an adaptive oper-
ator in a genetic algorithm having continuous, time-dependent nonstationary
environments. Memorandum 6760, Naval Research Laboratory, 1990.

85. H.G. Cobb and J.J. Grefenstette. Genetic algorithms for tracking changing
environments. In Forrest [176], pages 523–530.

86. C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
Boston, 2nd edition, 2007. ISBN 0-3064-6762-3.

87. J.P. Cohoon, S.U. Hedge, W.N. Martin, and D. Richards. Punctuated equilib-
ria: A parallel genetic algorithm. In Grefenstette [198], pages 148–154.

88. J.P. Cohoon, W.N. Martin, and D.S. Richards. Genetic algorithms and punc-
tuated equilibria in VLSI. In Schwefel and Männer [374], pages 134–144.

89. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to
scheduling a sales summit. Lecture Notes in Computer Science, 2079:176–95,
2001.

90. B. Craenen, A.E. Eiben, and J.I. van Hemert. Comparing evolutionary al-
gorithms on binary constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation, 7(5):424–444, 2003.

91. M. Crepinsek, S. Liu, and M. Mernik. Exploration and exploitation in evolu-
tionary algorithms: A survey. ACM Computing Surveys, 45(3):35:1–35:33, July
2013.

92. C. Darwin. The Origin of Species. John Murray, 1859.



264 References

93. R. Das and D. Whitley. The only challenging problems are deceptive: Global
search by solving order-1 hyperplanes. In Belew and Booker [46], pages 166–
173.

94. D. Dasgupta and D. McGregor. SGA: A structured genetic algorithm. Tech-
nical Report IKBS-8-92, University of Strathclyde, 1992.

95. Y. Davidor. A naturally occurring niche & species phenomenon: The model
and first results. In Belew and Booker [46], pages 257–263.

96. Y. Davidor, H.-P. Schwefel, and R. Männer, editors. Proceedings of the 3rd
Conference on Parallel Problem Solving from Nature, number 866 in Lecture
Notes in Computer Science. Springer, 1994.

97. L. Davis. Adapting operator probabilities in genetic algorithms. In Schaffer
[365], pages 61–69.

98. L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
1991.

99. T.E. Davis and J.C. Principe. A Markov chain framework for the simple genetic
algorithm. Evolutionary Computation, 1(3):269–288, 1993.

100. R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1976.
101. R. Dawkins. The Blind Watchmaker. Longman Scientific and Technical, 1986.
102. K.A. De Jong. An Analysis of the Behaviour of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, 1975.
103. K.A. De Jong. Genetic algorithms are NOT function optimizers. In Whitley

[457], pages 5–18.
104. K.A. De Jong. Evolutionary Computation: A Unified Approach. The MIT

Press, 2006.
105. K.A. De Jong and J. Sarma. Generation gaps revisited. In Whitley [457], pages

19–28.
106. K.A. De Jong and J. Sarma. On decentralizing selection algoritms. In Eshelman

[156], pages 17–23.
107. K.A. De Jong and W.M. Spears. An analysis of the interacting roles of popu-

lation size and crossover in genetic algorithms. In Schwefel and Männer [374],
pages 38–47.

108. K.A. De Jong and W.M. Spears. A formal analysis of the role of multi-point
crossover in genetic algorithms. Annals of Mathematics and Artificial Intelli-
gence, 5(1):1–26, April 1992.

109. K. Deb. Genetic algorithms in multimodal function optimization. Master’s
thesis, University of Alabama, 1989.

110. K. Deb. Multi-objective Optimization using Evolutionary Algorithms. Wiley,
Chichester, UK, 2001.

111. K. Deb and R.B. Agrawal. Simulated binary crossover for continuous search
space. Complex Systems, 9:115–148, 1995.

112. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In Schoenauer et al. [368], pages 849–858.

113. K. Deb and H.-G. Beyer. Self-Adaptive Genetic Algorithms with Simulated
Binary Crossover. Evolutionary Computation, 9(2), June 2001.

114. K. Deb and D.E. Goldberg. An investigation of niche and species formation in
genetic function optimization. In Schaffer [365], pages 42–50.

115. E.D. deJong, R.A. Watson, and J.B. Pollack. Reducing bloat and promoting
diversity using multi-objective methods. In Spector et al. [415], pages 11–18.



References 265

116. D. Dennett. Darwin’s Dangerous Idea. Penguin,London, 1995.
117. C.M. Dinu, P. Dimitrov, B. Weel, and A. E. Eiben. Self-adapting fitness eval-

uation times for on-line evolution of simulated robots. In GECCO ’13: Proc of
the 15th conference on Genetic and Evolutionary Computation, pages 191–198.
ACM Press, 2013.

118. B. Doerr, E. Happ, and C. Klein. Crossover can provably be useful in evolu-
tionary computation. Theor. Comput. Sci., 425:17–33, March 2012.

119. S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois. Evolutionary robotics:
Exploring new horizons. In S. Doncieux, N. Bredeche, and J.-B. Mouret, edi-
tors, New Horizons in Evolutionary Robotics, volume 341 of Studies in Com-
putational Intelligence, chapter 2, pages 3–25. Springer, 2011.

120. S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for randomized
search heuristics in black-box optimization. Theory of Computing Systems,
39(4):525–544, 2006.

121. A. E. Eiben. Grand challenges for evolutionary robotics. Frontiers in Robotics
and AI, 1(4), 2014.

122. A. E. Eiben. In Vivo Veritas: towards the Evolution of Things. In T. Bartz-
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tomatic algorithm configuration framework. Journal of Artificial Intelligence
Research, 36:267–306, October 2009.

228. H. Iba, H. de Garis, and T. Sato. Genetic programming using a minimum
description length principle. In Kinnear [249], pages 265–284.

229. Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE
Press, Piscataway, NJ, 1994.

230. Proceedings of the 1996 IEEE Conference on Evolutionary Computation. IEEE
Press, Piscataway, NJ, 1996.

231. Proceedings of the 1997 IEEE Conference on Evolutionary Computation. IEEE
Press, Piscataway, NJ, 1997.



References 271

232. A. Jain and D.B. Fogel. Case studies in applying fitness distributions in evolu-
tionary algorithms. II. Comparing the improvements from crossover and gaus-
sian mutation on simple neural networks. In X. Yao and D.B. Fogel, editors,
Proc. of the 2000 IEEE Symposium on Combinations of Evolutionary Compu-
tation and Neural Networks, pages 91–97. IEEE Press, Piscataway, NJ, 2000.

233. N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use
of noise and the reality gap: The use of simulation in evolutionary robotics.
In Proc. of the Third European Conference on Artificial Life, number 929 in
LNCS, pages 704–720. Springer, 1995.

234. T. Jansen. Analyzing Evolutionary Algorithms. The Computer Science Per-
spective. Natural Computing Series. Springer, 2013.

235. Y. Jin. A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing, 9(1):3–12, 2005.

236. Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011.

237. J.A. Joines and C.R. Houck. On the use of non-stationary penalty functions
to solve nonlinear constrained optimisation problems with GA’s. In ICEC-94
[229], pages 579–584.

238. T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico, Albuquerque, NM, 1995.

239. L. Kallel, B. Naudts, and C. Reeves. Properties of fitness functions and search
landscapes. In Kallel et al. [240], pages 175–206.

240. L. Kallel, B. Naudts, and A. Rogers, editors. Theoretical Aspects of Evolution-
ary Computing. Springer, 2001.

241. G. Karafotias, M. Hoogendoorn, and A.E. Eiben. Trends and challenges in evo-
lutionary algorithms parameter control. IEEE Transactions on Evolutionary
Computation, 19(2):167–187, 2015.

242. G. Karafotias, S.K. Smit, and A.E. Eiben. A generic approach to parameter
control. In C. Di Chio et al., editor, Applications of Evolutionary Computing,
EvoStar 2012, volume 7248 of LNCS, pages 361–370. Springer, 2012.

243. H. Kargupta. The gene expression messy genetic algorithm. In ICEC-96 [230],
pages 814–819.

244. S.A. Kauffman. Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, New York, NY, 1993.

245. A.J. Keane and S.M. Brown. The design of a satellite boom with enhanced
vibration performance using genetic algorithm techniques. In I.C. Parmee,
editor, Proceedings of the Conference on Adaptive Computing in Engineering
Design and Control 96, pages 107–113. P.E.D.C., Plymouth, 1996.

246. G. Kendall, P. Cowling, and E. Soubeiga. Choice function and random hy-
perheuristics. In Proceedings of Fourth Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL), pages 667–671, 2002.

247. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on Neural Networks, volume 4, pages
1942–1948, November 1995.

248. J. Kennedy and R.C. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001.
249. K.E. Kinnear, editor. Advances in Genetic Programming. MIT Press, Cam-

bridge, MA, 1994.
250. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated anealing.

Science, 220:671–680, 1983.



272 References

251. J.D. Knowles and D.W. Corne. Approximating the nondominated front using
the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–
172, 2000.

252. J.R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
253. J.R. Koza. Genetic Programming II. MIT Press, Cambridge, MA, 1994.
254. J.R. Koza. Scalable learning in genetic programming using automatic function

definition. In Kinnear [249], pages 99–117.
255. J.R. Koza and F.H. Bennett. Automatic synthesis, placement, and routing of

electrical circuits by means of genetic programming. In Spector et al. [416],
pages 105–134.

256. J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo,
editors. Proceedings of the 2nd Annual Conference on Genetic Programming.
MIT Press, Cambridge, MA, 1997.

257. Oliver Kramer. Evolutionary self-adaptation: a survey of operators and strat-
egy parameters. Evolutionary Intelligence, 3(2):51–65, 2010.

258. N. Krasnogor. Coevolution of genes and memes in memetic algorithms. In A.S.
Wu, editor, Proceedings of the 1999 Genetic and Evolutionary Computation
Conference Workshop Program, 1999.

259. N. Krasnogor. Studies in the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England, 2002.

260. N. Krasnogor. Self-generating metaheuristics in bioinformatics: The protein
structure comparison case. Genetic Programming and Evolvable Machines.
Kluwer academic Publishers, 5(2):181–201, 2004.

261. N. Krasnogor, B.P. Blackburne, E.K. Burke, and J.D. Hirst. Multimeme algo-
rithms for protein structure prediction. In Guervos et al. [203], pages 769–778.

262. N. Krasnogor and S.M. Gustafson. A study on the use of “self-generation” in
memetic algorithms. Natural Computing, 3(1):53–76, 2004.

263. N. Krasnogor and J.E. Smith. A memetic algorithm with self-adaptive local
search: TSP as a case study. In Whitley et al. [453], pages 987–994.

264. N. Krasnogor and J.E. Smith. Emergence of profitable search strategies based
on a simple inheritance mechanism. In Spector et al. [415], pages 432–439.

265. N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms:
Model, taxonomy and design issues. IEEE Transactions on Evolutionary Com-
putation, 9(5):474–488, 2005.

266. T. Krink, P. Rickers, and R. Thomsen. Applying self-organised criticality to
evolutionary algorithms. In Schoenauer et al. [368], pages 375–384.

267. M.W.S. Land. Evolutionary Algorithms with Local Search for Combinatorial
Optimization. PhD thesis, University of California, San Diego, 1998.

268. W.B. Langdon, T. Soule, R. Poli, and J.A. Foster. The evolution of size and
shape. In Spector et al. [416], pages 163–190.

269. P.L. Lanzi. Learning classifier systems: then and now. Evolutionary Intelli-
gence, 1:63–82, 2008.

270. P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors. Learning Classifier Sys-
tems: From Foundations to Applications, volume 1813 of LNAI. Springer, 2000.

271. S. Lin and B. Kernighan. An effective heuristic algorithm for the Traveling
Salesman Problem. Operations Research, 21:498–516, 1973.

272. X. Llora, R. Reddy, B. Matesic, and R. Bhargava. Towards better than human
capability in diagnosing prostate cancer using infrared spectroscopic imaging.
In Bosman et al. [65], pages 2098–2105.



References 273

273. F.G. Lobo, C.F. Lima, and Z. Michalewicz, editors. Parameter Setting in
Evolutionary Algorithms. Springer, 2007.

274. R. Lohmann. Application of evolution strategy in parallel populations. In
Schwefel and Männer [374], pages 198–208.

275. S. Luke and L. Spector. A comparison of crossover and mutation in genetic
programming. In Koza et al. [256], pages 240–248.

276. G. Luque and E. Alba. Parallel Genetic Algorithms, volume 367 of Studies in
Computational Intelligence. Springer, 2011.

277. W.G. Macready and D.H. Wolpert. Bandit problems and the explo-
ration/exploitation tradeoff. IEEE Transactions on Evolutionary Computa-
tion, 2(1):2–22, April 1998.

278. S.W. Mahfoud. Crowding and preselection revisited. In Männer and Manderick
[282], pages 27–36.

279. S.W. Mahfoud. Boltzmann selection. In Bäck et al. [26], pages C2.5:1–4.
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