
Undergraduate Topics in Computer Science

Kent D. Lee

Foundations of
Programming
Languages
 Second Edition

Undergraduate Topics in Computer
Science

Series editor

Ian Mackie

Advisory Boards

Samson Abramsky, University of Oxford, Oxford, UK

Chris Hankin, Imperial College London, London, UK

Dexter C. Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality

instructional content for undergraduates studying in all areas of computing and

information science. From core foundational and theoretical material to final-year

topics and applications, UTiCS books take a fresh, concise, and modern approach

and are ideal for self-study or for a one- or two-semester course. The texts are all

authored by established experts in their fields, reviewed by an international advisory

board, and contain numerous examples and problems. Many include fully worked

solutions.

More information about this series at http://www.springer.com/series/7592

Kent D. Lee

Foundations
of Programming
Languages

Second Edition

123

Kent D. Lee
Luther College
Decorah, IA
USA

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-70789-1 ISBN 978-3-319-70790-7 (eBook)
https:\\doi.org\10.1007/978-3-319-70790-7

Library of Congress Control Number: 2017958018

1st edition: © Springer International Publishing Switzerland 2014

2nd edition: © Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

A career in computer science is a commitment to a lifetime of learning. You will not

be taught every detail you will need in your career while you are a student. The goal

of a computer science education is to give you the tools you need so you can teach

yourself new languages, frameworks, and architectures as they come along. The

creativity encouraged by a lifetime of learning makes computer science one of the

most exciting fields today.

There are engineering and theoretical aspects to the field of computer science.

Theory often is a part of the development of new programming languages and tools

to make programmers more productive. Computer programming is the process of

building complex systems with those tools. Computer programmers are program

engineers, and this process is sometimes called software engineering. No matter

what kind of job you end up doing, understanding the tools of computer science,

and specifically the programming languages you use, will help you become a better

programmer.

As programmers it is important that we be able to predict what our programs will

do. Predicting what a program will do is easier if you understand the way the pro-

gramming language works. Programs execute according to a computational model.

A model may be implemented in many different ways depending on the targeted

hardware architecture. While there are currently a number of popular hardware

architectures, most can be categorized into one of two main areas: register-based

central processing units and stack-based virtual machines. While these two types of

architectures are different in some ways, they also share a number of characteristics

when used as the target for programming languages. This text develops a stack-based

virtual machine based on the Python virtual machine called JCoCo.

Computer scientists differentiate programming languages based on three paradigms

or ways of thinking about programming: object-oriented/imperative programming,

functional programming, and logic programming. This text covers these three para-

digms while using each of them in the implementation of a non-trivial programming

language.

v

It is expected that most readers of this text will have had some prior experience

with object-oriented languages. JCoCo is implemented in Java (hence the J), pro-

viding a chance to learn Java in some detail and see it used in a larger software

project like the JCoCo implementation. The text proceeds in a bottom-up fashion by

implementing extensions to JCoCo using Java. Then, a full-featured functional

language called Small is implemented on top of the JCoCo virtual machine. The

Small language is a subset of Standard ML. Standard ML is first introduced in this

text and then used to implement the Small subset of the Standard ML language,

which really is not that small afterall. Finally, late in the text a type inference system

for Small is developed and implemented in Prolog. Prolog is an example of a logic

programming language.

The text is meant to be used interactively. You should read a section, and as you

read it, do the practice exercises. Each of the exercises is meant to give you a goal

in reading a section of the text.

The text Web site http://www.cs.luther.edu/*leekent/PL includes code and

other support files that may be downloaded. These include the JCoCo virtual

machine and the MLComp compiler/type inference system.

I hope you enjoy reading the text and working through the exercises and practice

problems. Have fun with it and get creative!

Acknowledgements

I have been fortunate to have good teachers throughout high school, college, and

graduate school. Ken Slonneger was my advisor in graduate school, and this book

came into being because of him. He inspired me to write a text that supports the

same teaching style he used in his classroom. I’d also like to thank Eric Manley of

Drake University for working with me by trying the projects with his students and

for the valuable feedback he provided to me during the development of this text.

Thanks, Eric.

I’m also fortunate to have good students working with me. Thanks go to

Jonathan Opdahl for his help in building the Java version of CoCo, a virtual

machine used throughout this text, and named JCoCo both because it is imple-

mented in Java and because Jonathan helped me build it. Thank you Jonathan for

your work on this project. It is greatly appreciated.

For Teachers

This book was written to fulfill two goals. The first is to introduce students to three

programming paradigms: object-oriented/imperative, functional, and logic pro-

gramming. To be ready for the content of this book, students should have some

background in an imperative language, probably an object-oriented language such

vi Preface

as Python, Java, or C++. They should have had an introductory course and a course

in data structures as a minimum. While the prepared student will have written

several programs, some of them fairly complex, most probably still struggle with

predicting exactly what their program will do. It is assumed that ideas such as

polymorphism, recursion, and logical implication are relatively new to students

reading this book. The text assumes that students have little or no experience with

the functional and logic programming paradigms.

The object-oriented language presented in this book is Java. C++ has many

nuances that are worthy of several chapters in a textbook. The first edition of this

text did cover C++ as the object-oriented language, but Java is better suited to the

JCoCo virtual machine implementation presented in this text. However, significant

topics of C++ are contrasted to Java in this text. Notably, the pass-by-value and

pass-by-reference mechanisms in C++ create considerable complexity in the lan-

guage. In addition, the ability of C++ programs to create objects both on the

run-time stack and in the heap is contrasted to Java. Of course the standard

object-oriented concepts including polymorphism and inheritance and a comparison

of templates from C++ and interfaces from Java are covered in this text.

The text uses Standard ML as the functional language. ML has a polymorphic

type inference system to statically type programs of the language. In addition, the

type inference system of ML is formally proven sound and complete. This has some

implications in writing programs. While ML’s cryptic compiler error messages are

sometimes hard to understand at first, once a program compiles it will often work

correctly the first time. That’s an amazing statement to make if your past experience

is in a dynamically typed language such as Lisp, Scheme, Ruby, or Python.

The logic language used in this text is Prolog. While Prolog has traditionally

been an Artificial Intelligence language, it originated as a metalanguage for

expressing other languages. The text concentrates on using Prolog to implement a

type inference system. Students learn about logical implication and how a problem

they are familiar with can be re-expressed in a logic programming language.

The second goal of the text is to be interactive. This book is intended to be used

in and outside of class. It is my experience that we almost all learn more by doing

than by seeing. To that end, the text encourages teachers to actively teach. Each

chapter follows a pattern of presenting a topic followed by a practice exercise or

exercises that encourage students to try what they have just read. These exercises

can be used in class to help students check their understanding of a topic. Teachers

are encouraged to take the time to present a topic and then allow students time to

reflect and practice the concept just presented. In this way, the text becomes a

lecture resource. Students get two things out of this. It forces them to be interac-

tively engaged in the lectures, not just passive observers. It also gives them

immediate feedback on key concepts to help them determine whether they under-

stand the material or not. This encourages them to ask questions when they have

difficulty with an exercise. Tell students to bring the book to class along with a

pencil and paper. The practice exercises are easily identified.

Preface vii

This book presents several projects to reinforce topics outside the classroom.

Each chapter of the text suggests several non-trivial programming projects that

accompany the paradigm being covered to drive home the concepts covered in that

chapter. The projects and exercises described in this text have been tested in

practice, and documentation and solutions are available upon request.

Decorah, USA Kent D. Lee

viii Preface

Contents

1 Introduction . 1

1.1 Historical Perspective . 2

1.2 Models of Computation . 6

1.2.1 The Imperative Model . 7

1.2.2 The Functional Model . 9

1.2.3 The Logic Model. 10

1.3 The Origins of a Few Programming Languages 10

1.3.1 A Brief History of C and C++ 11

1.3.2 A Brief History of Java . 12

1.3.3 A Brief History of Python . 14

1.3.4 A Brief History of Standard ML 14

1.3.5 A Brief History of Prolog . 16

1.4 Language Implementation . 18

1.4.1 Compilation . 19

1.4.2 Interpretation . 21

1.4.3 Virtual Machines . 23

1.5 Types and Type Checking . 25

1.6 Chapter Summary . 27

1.7 Review Questions . 28

1.8 Solutions to Practice Problems . 29

2 Syntax . 31

2.1 Terminology . 31

2.2 Backus Naur Form (BNF) . 33

2.2.1 BNF Examples . 33

2.2.2 Extended BNF (EBNF) . 34

2.3 Context-Free Grammars . 34

2.3.1 The Infix Expression Grammar 35

2.4 Derivations . 35

2.4.1 A Derivation . 35

2.4.2 Types of Derivations . 36

2.4.3 Prefix Expressions . 36

2.4.4 The Prefix Expression Grammar 36

ix

2.5 Parse Trees . 37

2.6 Abstract Syntax Trees . 38

2.7 Lexical Analysis . 39

2.7.1 The Language of Regular Expressions 39

2.7.2 Finite State Machines . 40

2.7.3 Lexer Generators . 42

2.8 Parsing . 42

2.9 Top-Down Parsers . 43

2.9.1 An LL(1) Grammar . 43

2.9.2 A Non-LL(1) Grammar . 44

2.9.3 An LL(1) Infix Expression Grammar. 45

2.10 Bottom-Up Parsers . 45

2.10.1 Parsing an Infix Expression . 46

2.11 Ambiguity in Grammars . 49

2.12 Other Forms of Grammars . 49

2.13 Limitations of Syntactic Definitions . 50

2.14 Chapter Summary . 51

2.15 Review Questions . 51

2.16 Exercises. 52

2.17 Solutions to Practice Problems . 52

3 Assembly Language. 57

3.1 Overview of the JCoCo VM . 58

3.2 Getting Started . 61

3.3 Input/Output . 64

3.4 If-Then-Else Statements . 66

3.4.1 If-Then Statements . 69

3.5 While Loops . 71

3.6 Exception Handling . 73

3.7 List Constants . 76

3.8 Calling a Method . 77

3.9 Iterating Over a List . 79

3.10 Range Objects and Lazy Evaluation . 81

3.11 Functions and Closures . 83

3.12 Recursion . 87

3.13 Support for Classes and Objects . 89

3.13.1 Inheritance . 92

3.13.2 Dynamically Created Classes. 94

3.14 Chapter Summary . 98

3.15 Review Questions . 98

3.16 Exercises. 99

3.17 Solutions to Practice Problems . 100

x Contents

4 Object-Oriented Programming . 111

4.1 The Java Environment . 114

4.2 The C++ Environment . 116

4.2.1 The Macro Processor . 119

4.2.2 The Make Tool . 120

4.3 Namespaces . 121

4.4 Dynamic Linking . 122

4.5 Defining the Main Function . 123

4.6 I/O Streams. 124

4.7 Garbage Collection . 125

4.8 Threading . 126

4.9 The PyToken Class. 127

4.9.1 The C++ PyToken Class . 128

4.10 Inheritance and Polymorphism . 130

4.11 Interfaces and Adapters. 134

4.12 Functions as Values . 136

4.13 Anonymous Inner Classes. 137

4.14 Type Casting and Generics . 138

4.15 Auto-Boxing and Unboxing . 141

4.16 Exception Handling in Java and C++ . 142

4.17 Signals . 145

4.18 JCoCo in Depth . 145

4.19 The Scanner . 145

4.20 The Parser . 148

4.21 The Assembler . 151

4.22 ByteCode . 152

4.23 JCoCo’s Class and Interface Type Hierarchy 155

4.24 Code . 157

4.25 Functions . 158

4.26 Classes . 160

4.27 Methods . 160

4.28 JCoCo Exceptions and Tracebacks . 163

4.29 Magic Methods . 165

4.30 Dictionaries. 168

4.30.1 Two New Classes . 169

4.30.2 Two New Types . 171

4.30.3 Two New Instructions . 171

4.31 Chapter Summary . 171

4.32 Review Questions . 172

4.33 Exercises. 173

4.34 Solutions to Practice Problems . 175

Contents xi

5 Functional Programming . 179

5.1 Imperative Versus Functional Programming 181

5.2 The Lambda Calculus . 182

5.2.1 Normal Form . 182

5.2.2 Problems with Applicative Order Reduction 184

5.3 Getting Started with Standard ML . 184

5.4 Expressions, Types, Structures, and Functions 185

5.5 Recursive Functions . 187

5.6 Characters, Strings, and Lists . 190

5.7 Pattern Matching. 193

5.8 Tuples. 194

5.9 Let Expressions and Scope . 194

5.10 Datatypes . 197

5.11 Parameter Passing in Standard ML . 200

5.12 Efficiency of Recursion. 200

5.13 Tail Recursion . 203

5.14 Currying . 204

5.15 Anonymous Functions . 206

5.16 Higher-Order Functions . 207

5.16.1 Composition . 207

5.16.2 Map . 208

5.16.3 Reduce or Foldright. 209

5.16.4 Filter . 211

5.17 Continuation Passing Style . 212

5.18 Input and Output . 213

5.19 Programming with Side-effects . 214

5.19.1 Variables in Standard ML . 214

5.19.2 Sequential Execution . 215

5.19.3 Iteration . 216

5.20 Exception Handling . 216

5.21 Encapsulation in ML . 217

5.21.1 Signatures . 217

5.21.2 Implementing a Signature . 218

5.22 Type Inference . 219

5.23 Building a Prefix Calculator Interpreter 220

5.23.1 The Prefix Calc Parser. 222

5.23.2 The AST Evaluator . 222

5.23.3 Imperative Programming Observations 224

5.24 Chapter Summary . 224

5.25 Exercises. 225

5.26 Solutions to Practice Problems . 228

xii Contents

6 Compiling Standard ML. 235

6.1 ML-lex . 237

6.2 The Small AST Definition . 241

6.3 Using ML-yacc . 243

6.4 Compiling and Running the Compiler . 248

6.5 Function Calls . 252

6.6 Let Expressions . 254

6.7 Unary Negation . 257

6.8 If-Then-Else Expressions . 259

6.9 Short-Circuit Logic . 262

6.10 Defining Functions . 265

6.10.1 Curried Functions . 267

6.10.2 Mutually Recursive Functions . 268

6.11 Reference Variables . 269

6.12 Chapter Summary . 272

6.13 Review Questions . 273

6.14 Exercises. 273

6.15 Solutions to Practice Problems . 276

7 Logic Programming . 277

7.1 Getting Started with Prolog . 279

7.2 Fundamentals . 280

7.3 The Prolog Program . 281

7.4 Lists . 283

7.5 The Accumulator Pattern . 284

7.6 Built-In Predicates . 285

7.7 Unification and Arithmetic . 285

7.8 Input and Output . 286

7.9 Structures . 287

7.10 Parsing in Prolog . 289

7.10.1 Difference Lists . 292

7.11 Prolog Grammar Rules . 293

7.12 Building an AST . 294

7.13 Attribute Grammars . 295

7.13.1 Synthesized Versus Inherited . 298

7.14 Chapter Summary . 298

7.15 Review Questions . 299

7.16 Exercises. 299

7.17 Solutions to Practice Problems . 301

8 Standard ML Type Inference . 305

8.1 Why Static Type Inference? . 306

8.1.1 Exception Program . 306

8.1.2 A Bad Function Call . 307

Contents xiii

8.2 Type Inference Rules . 308

8.3 Using Prolog. 309

8.4 The Type Environment . 312

8.5 Integers, Strings, and Boolean Constants 313

8.6 List and Tuple Constants . 314

8.7 Identifiers . 315

8.8 Function Application . 316

8.8.1 Instantiation . 319

8.9 Let Expressions . 319

8.10 Patterns . 321

8.11 Matches . 325

8.12 Anonymous Functions . 326

8.13 Sequential Execution . 327

8.14 If-Then and While-Do . 327

8.15 Exception Handling . 328

8.16 Chapter Summary . 329

8.17 Review Questions . 329

8.18 Exercises. 330

8.19 Solutions to Practice Problems . 334

9 Appendix A: The JCoCo Virtual Machine Specification 337

9.1 Types . 338

9.2 JCoCo Magic and Attr Methods . 339

9.3 Global Built-In Functions . 340

9.4 Virtual Machine Instructions . 341

9.5 Arithmetic Instructions . 342

9.6 Load and Store Instructions . 342

9.7 List, Tuple, and Dictionary Instructions 344

9.8 Stack Manipulation Instructions . 345

9.9 Conditional and Iterative Execution Instructions 345

9.10 Function Execution Instructions . 347

9.11 Special Instructions . 348

10 Appendix B: The Standard ML Basis Library 349

10.1 The Bool Structure . 349

10.2 The Int Structure. 350

10.3 The Real Structure . 352

10.4 The Char Structure . 357

10.5 The String Structure . 358

10.6 The List Structure . 361

10.7 The Array Structure . 364

10.8 The TextIO Structure . 365

Bibliography . 369

xiv Contents

1Introduction

This text on Programming Languages is intended to introduce you to new ways of

thinking about programming. Typically, computer science students start out learning

to program in an imperative model of programming where variables are created and

updated as a program executes. There are other ways to program. As you learn to

program in these new paradigms you will begin to understand that there are different

ways of thinking about problem solving. Each paradigm is useful in some contexts.

This book is not meant to be a survey of lots of different languages. Rather, its purpose

is to introduce you to the three styles of programming languages by using them to

implement a non-trivial programming language. These three styles of programming

are:

• Imperative/Object-Oriented Programming with languages like Java, C++, Python,

and other languages you may have used before.

• Functional Programming with languages like Standard ML, Haskell, Lisp,

Scheme, and others.

• Logic Programming with Prolog.

The book provides an in-depth look at programming in assembly language, Java,

Standard ML, and Prolog. However, the programming language concepts covered

in this text apply to all languages in use today. The goal of the text is to help you

understand how to use the paradigms and models of computation these languages

represent to solve problems. The text elaborates on when these languages may be

appropriate for a problem by showing you how they can be used to implement a

programming language. Many of the problems solved while implementing a pro-

gramming language are similar to other problems in computer science. The text

elaborates on techniques for problem solving that you may be able to apply in the

future. You might be surprised by what you can do and how quickly a program can

come together given the right choice of language.

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_1

1

2 1 Introduction

To begin you should know something about the history of computing, particularly

as it applies to the models of computation that have been used in implementing many

of the programming languages we use today. All of what we know in Computer

Science is built on the shoulders of those who came before us. To understand where

we are, we really should know something about where we came from in terms of

Computer Science. Many great people have been involved in the development of

programming languages and to learn even a little about who these people are is

really fascinating and worthy of an entire book in itself.

1.1 Historical Perspective

Much of what we attribute to Computer Science actually came from Mathematics.

Many mathematicians are programmers that have written their programs, or proofs

in the words of Mathematics, using mathematical notation. In the mid 1800s abstract

algebra and geometry were hot topics of research among mathematicians. In the early

1800s Niels Henrik Abel, a Norwegian mathematician, was interested in solving

a problem called the quintic equation. Eventually he developed a new branch of

mathematics called Group Theory with which he was able to prove there was no

general algebraic solution to the quintic equation. Considering the proof of this

required a new branch of mathematics, much of Abel’s work involved developing

the mathematical notation or language to describe his work. Unfortunately, Abel

died of tuberculosis at twenty six years old.

Sophus Lie (pronounced Lee), pictured in Fig. 1.1, was another Norwegian math-

ematician who lived from 1842–1899 [20]. He began where Abel’s research ended

and explored the connection of Abstract Algebra and Group Theory with Geometry.

From this work he developed a set of group theories, eventually named Lie Groups.

From this discovery he found ways of solving Ordinary Differential Equations by

Fig. 1.1 Sophus Lie [21]

1.1 Historical Perspective 3

exploiting properties of symmetry within the equations [8]. One Lie group, the E8

group was too complicated to map in Lie’s time. In fact, it wasn’t until 2007 that

the structure of the E8 group could be mapped because the solution produced sixty

times more data than the human genome project [1].

While the techniques Lie and Abel discovered were hard for people to learn and

use at the time, today computer programs capable of symbolic manipulation use

Lie’s techniques to solve these and other equally complicated problems. And, the

solutions of these problems are very relevant in the world today. For example, the

work of Sophus Lie is used in the design of aircraft.

As mathematicians’ problem solving techniques became more sophisticated and

the problems they were solving became more complex, they were interested in finding

automated ways of solving these problems. Charles Babbage (1791–1871) saw the

need for a computer to do calculations that were too error-prone for humans to

perform. He designed a difference engine to compute mathematical tables when he

found that human computers weren’t very accurate [27]. However, his computer was

mechanical and couldn’t be built using engineering techniques known at that time.

In fact it wasn’t completed until 1990, but it worked just as he said it would over a

hundred years earlier.

Charles Babbage’s difference engine was an early attempt at automating a solution

to a problem, but others would follow of course. Alan Turing was a British mathe-

matician and one of the first computer scientists. He lived from 1912–1954. In 1936

he wrote a paper entitled, “On Computable Numbers, with an Application to the

Entscheidungsproblem” [23]. The Entscheidungsproblem, or decision problem, had

been proposed a decade earlier by a German mathematician named David Hilbert.

This problem asks: Can an algorithm be defined that decides if a statement given in

first order logic can be proved from a set of axioms and known truth values? The

problem was later generalized to the following question: Can we come up with a

general set of steps that given any algorithm and its data, will decide if it terminates?

In Alan Turing’s paper, he devised an abstract machine called the Turing Machine.

This Turing Machine was very general and simple. It consisted of a set of states and

a tape. The set of states were decided on by a programmer. The machine starts in

the start state as decided by the programmer. From that state it could read a symbol

from a tape. Based on the symbol it could write a symbol to the tape and move to

the left or right, while transitioning to another state. As the Turing machine ran, the

action that it took was dictated by the current state and the symbol on the tape. The

programmer got to decide how many states were a part of the machine, what each

state should do, and how to move from one state to another. In Turing’s paper he

proved that such a machine could be used to solve any computable function and that

the decision problem was not solvable by this machine. The more general statement

of this problem was named the Halting Problem. This was a very important result in

the field of theoretical Computer Science.

In 1939 John Atanasoff, at Iowa State University, designed what is arguably the

first computer, the ABC or Atanasoff-Berry Computer [28]. Clifford Berry was one of

his graduate students. The computer had no central processing unit, but it did perform

logical and other mathematical operations. Eckert and Mauchly, at the University of

4 1 Introduction

Pennsylvania, were interested in building a computer during the second world war.

They were funded by the Department of Defense to build a machine to calculate

trajectory tables for launching shells from ships. The computer, called ENIAC for

Electronic Numerical Integrator and Computer, was unveiled in 1946, just after the

war had ended. ENIAC was difficult to program since the program was written by

plugging cables into a switch, similar to an old telephone switchboard.

Around that same time a new computer, called EDVAC, was being designed. In

1945 John von Neumann proposed storing the computer programs on EDVAC in

memory along with the program data [26]. Alan Turing closely followed John von

Neumann’s paper by publishing a paper of his own in 1946 describing a more com-

plete design for stored-program computers [24]. To this day the computers we build

and use are stored-program computers. The architecture is called the von Neumann

architecture because of John von Neumann’s and Alan Turing’s contributions. While

Turing didn’t get the architecture named after him, he is famous in Computer Science

for other reasons like the Turing machine and the Halting problem.

In the early days of Computer Science, many programmers were interested in

writing tools that made it easier to program computers. Much of the programming

was based on the concept of a stored-program computer and many early programming

languages were extensions of this model of computation. In the stored-program

model the program and data are stored in memory. The program manipulates data

based on some input. It then produces output.

Around 1958, Algol was created and the second revision of this language, called

Algol 60, was the first modern, structured, imperative programming language. While

the language was designed by a committee, a large part of the success of the project

was due to the contributions of John Backus pictured in Fig. 1.2. He described the

structure of the Algol language using a mathematical notation that would later be

called Backus-Naur Format or BNF. Very little has changed with the underlying

computer architecture over the years. Of course, there have been many changes in

the size, speed, and cost of computers! In addition, the languages we use have become

Fig. 1.2 John Backus [3]

1.1 Historical Perspective 5

even more structured over the years. But, the principles that Algol 60 introduced are

still in use today.

Recalling that most early computer scientists were mathematicians, it shouldn’t

be too surprising to learn that there were others that approached the problem of

programming differently. Much of the initial interest in computers was spurred by the

invention of the stored-program computer and many of the early languages reflected

this excitement. The imperative style was closely tied to the architecture of a stored

program computer. Data was read from an input device and the program acted on

that data by updating memory as the program executed. There was another approach

developing at the same time. Back in 1936, Alonzo Church, a U.S. mathematician

who lived from 1903–1995, was also interested in the decision problem proposed

by David Hilbert. To try to solve the problem he devised a language called the

lambda calculus, usually written as the λ-calculus. Using his very simple language

he was able to describe computation as symbol manipulation. Alan Turing was a

doctoral student of Church and while they independently came up with two ways to

prove that the decision problem was not solvable, they later proved their two models

of computation, Turing machines and the λ-calculus, were equivalent. Their work

eventually led to a very important result called the Church-Turing Thesis. Informally,

the thesis states that all computable problems can be solved by a Turing Machine or

the λ-calculus. The two models are equivalent in power.

Ideas from the λ-calculus led to the development of Lisp by John McCarthy,

pictured in Fig. 1.3. The λ-calculus and Lisp were not designed based on the principle

of the stored-program computer. In contrast to Algol 60, the focus of these languages

was on functions and what could be computed using functions. Lisp was developed

around 1958, the same time that Algol 60 was being developed.

Logic is important both in Computer Science and Mathematics. Logicians were

also interested in solving problems in the early days of Computer Science. Many

problems in logic are expressed in the languages of propositional or predicate logic.

Fig. 1.3 John McCarthy [14]

6 1 Introduction

Of course, the development of logic goes all the way back to ancient Greece. Some

logicians of the 20th century were interested in understanding natural language and

they were looking for a way to use computers to solve at least some of the problems

related to processing natural language statements. The desire to use computers in

solving problems from logic led to the development of Prolog, a powerful program-

ming language based on predicate logic.

Practice 1.1 Find the answers to the following questions.

1. What are the origins of the three major computational models that early computer

scientists developed?

2. Who were Alan Turing and Alonzo Church and what were some of their contri-

butions to Computer Science?

3. What idea did both John von Neumann and Alan Turing contribute to?

4. What notation did John Backus develop and what was one of its first uses?

5. What year did Alan Turing first propose the Turing machine and why?

6. What year did Alonzo Church first propose the λ-calculus and why?

7. Why are Eckert and Mauchly famous?

8. Why are the history of Mathematics and Computer Science so closely tied

together?

You can check your answer(s) in Section 1.8.1.

1.2 Models of Computation

While there is some controversy about who originally came up with the concept of

a stored program computer, John von Neumann is generally given credit for the idea

of storing a program as a string of 0’s and 1’s in memory along with the data used by

the program. Von Neumann’s architecture had very little structure to it. It consisted

of several registers and memory. The Program Counter (PC) register kept track of

the next instruction to execute. There were other registers that could hold a value or

point to other values stored in memory. This model of computation was useful when

programs were small. However, without additional structure, anything but a small

program would quickly get hard to manage. This was what was driving the need for

better and newer programming languages. Programmers needed tools that let them

organize their code so they could focus on problem solving instead of the details of

the hardware.

1.2 Models of Computation 7

1.2.1 The Imperative Model

As programs grew in size it was necessary to provide the means for applying addi-

tional structure to them. In the early days a function was often called a sub-routine.

Functions, procedures, and sub-routines were introduced by languages like Algol

60 so that programs could be decomposed into simpler sub-programs, providing

a way for programmers to organize their code. Terms like top-down or bottom-

up design were used to describe this process of subdividing programs into simpler

sub-programs. This process of subdividing programs was often called structured

programming, referring to the decomposition of programs into simpler, more man-

ageable pieces. Most modern languages provide the means to decompose problems

into simpler subproblems. We often refer to this structured approach as the imperative

model of programming.

To implement functions and function calls in the von Neumann architecture, it

was necessary to apply some organization to the data of a program. In the imperative

model, memory is divided into regions which hold the program and the data. The

data area is further subdivided into the static or global data area, the run-time stack,

and the heap as pictured in Fig. 1.4.

In the late 1970s and 1980s people like Niklaus Wirth and Bjarne Stroustrup were

interested in developing languages that supported an additional level of organization

called Object-Oriented Programming, often abbreviated OOP. Object-oriented pro-

gramming still uses the imperative model of programming. The addition of a means

to describe classes of objects gives programmers another way of organizing their

code into functions that are related to a particular type of object.

When a program executes it uses a special register called the stack pointer (SP) to

point to the top activation record on the run-time stack. The run-time stack contains

one activation record for each function or procedure invocation that is currently

unfinished in the program. The top activation record corresponds to the current

Fig. 1.4 Imperative model

8 1 Introduction

function invocation. When a function call is made an activation record is pushed

onto the run-time stack. When a function returns, the activation record is popped by

decrementing the stack pointer to point to the previous activation record.

An activation record contains information about its associated function. The local

variables of the function are stored there. The program counter’s value before the

function call was made is stored there. This is often called the return address. Other

state information may also be stored there depending on the language and the details

of the underlying von Neumann architecture. For instance, parameters passed to the

function may also be stored there.

Static or global data refers to data and functions that are accessible globally in

the program. Global data and functions are visible throughout the program. Where

global data is stored depends on the implementation of the compiler or interpreter. It

might be part of the program code in some instances. In any case, this area is where

constants, global variables, and possibly built-in globally accessible functions are

stored.

The heap is an area for dynamic memory allocation. The word dynamic means

that it happens while the program is running. All data that is created at run-time is

located in the heap. The data in the heap has no names associated with the values

stored there. Instead, named variables called pointers or references point to the data

in the heap. In addition, data in the heap may contain pointers that point to other

data, which is also usually in the heap.

Like the original von Neumann architecture, the primary goal of the imperative

model is to get data as input, transform it via updates to memory, and then produce

output based on this imperatively changed data. The imperative model of computation

parallels the underlying von Neumann architecture and is used by many modern

languages. Some variation of this model is used by languages like Algol 60, C++,

C, Java, VB.net, Python, and many other languages.

Practice 1.2 Find the answers to the following questions.

1. What are the three divisions of data memory called?

2. When does an item in the heap get created?

3. What goes in an activation record?

4. When is an activation record created?

5. When is an activation record deleted?

6. What is the primary goal of imperative, object-oriented programming?

You can check your answer(s) in Section 1.8.2.

1.2 Models of Computation 9

1.2.2 The Functional Model

In the functional model the goal of a program is slightly different. This slight change

in the way the model works has a big influence on how you program. In the functional

model of computation the focus is on function calls. Functions and parameter passing

are the primary means of accomplishing data transformation.

Data is generally not changed in the functional model. Instead, new values are

constructed from old values. A pure functional model wouldn’t allow any updates

to existing values. However, most functional languages allow limited updates to

memory in the imperative style.

The conceptual view presented in Fig. 1.4 is similar to the view in the functional

world. However, the difference between program and data is eliminated. A function

is data like any other data element. Integers and functions are both first-class citizens

of the functional world.

The static data area is still present, but takes on a minor role in the functional model.

The run-time stack becomes more important because most work is accomplished

by calling functions. Functional languages are much more careful about how they

allow programmers to access the heap and as a result, you really aren’t aware of

the heap when programming in a functional language. Data is certainly dynamically

allocated, but once data is created on the heap it is not modified in a pure functional

model. Impure models might allow some modification of storage but this is the

influence of imperative languages creeping into the functional model as a way to

deal with performance issues. The result is that you spend less time thinking about

the underlying architecture when programming in a functional language.

Lisp, Scheme, Scala, Clojure, Elixir, Haskell, Caml, and Standard ML, which is

covered in this text, are all examples of functional languages. Functional languages

may be pure, which means they do not support variable updates like the imperative

model. Scheme is a pure functional language. Most functional languages are not

pure. Standard ML and Lisp are examples of impure functional languages. Scala is

a recent functional language that also supports object-oriented programming.

Practice 1.3 Answer the following questions.

1. What are some examples of functional languages?

2. What is the primary difference between the functional and imperative models?

3. Immutable data is data that cannot be changed once created. The presence of

immutable data simplifies the conceptual model of programming. Does the imper-

ative or functional model emphasize immutable data?

You can check your answer(s) in Section 1.8.3.

10 1 Introduction

Fig. 1.5 Logic model of computation

1.2.3 The Logic Model

The logic model of computation, pictured in Fig. 1.5, is quite different from either the

imperative or functional model. In the logic model the programmer doesn’t actually

write a program at all. Instead, the programmer provides a database of facts or rules.

From this database, a single program tries to answer questions with a yes or no

answer. In the case of Prolog, the program acts in a predictable manner allowing

the programmer to provide the facts in an order that determines how the program

will work. The actual implementation of this conceptual view is accomplished by a

virtual machine, a technique for implementing languages that is covered later in this

text.

There is still the concept of a heap in Prolog. One can assert new rules and retract

rules as the program executes. To dynamically add rules or retract them there must

be an underlying heap. In fact, the run-time stack is there too. However, the run-time

stack and heap are so hidden in this view of the world that it is debatable whether

they should appear in the conceptual model at all.

Practice 1.4 Answer these questions on what you just read.

1. How many programs can you write in a logic programming language like Prolog?

2. What does the programmer do when writing in Prolog?

You can check your answer(s) in Section 1.8.4.

1.3 The Origins of a Few Programming Languages

This book explores language implementation using several small languages and

exercises that illustrate each of these models of computation. In addition, exercises

within the text will require implementation in four different languages: assembly

1.3 The Origins of a Few Programming Languages 11

language, Java (or alternatively C++), Standard ML, and Prolog. But where did

these languages come from and why are we interested in learning how to use them?

1.3.1 A Brief History of C and C++

The Unix operating system was conceived of, designed, and written around 1972.

Ken Thompson was working on the design of Unix with Dennis Ritchie. It was their

project that encouraged Ritchie to create the C language. C was more structured than

the assembly language most operating systems were written in at the time and it was

portable and could be compiled to efficient machine code. Thompson and Ritchie

wanted an operating system that was portable, small, and well organized.

While C was efficient, there were other languages that had either been developed or

were being developed that encouraged a more structured approach to programming.

For several years there had been ideas floating around about how to write code

in object-oriented form. Simula, created by Ole-Johan Dahl and Kristen Nygaard

around 1967, was an early example of a language that supported Object-Oriented

design. Modula-2, created by Niklaus Wirth around 1978, was also taking advantage

of these ideas. Smalltalk, an interpreted language, was object-oriented and was also

developed in the mid 1970s and released in 1980.

In 1980 Bjarne Stroustrup, pictured in Fig. 1.6, began working on the design of

C++ while working at Bell Labs. He envisioned C++ as a language that would allow

C programmers to keep their old code while new code could be written using these

Object-Oriented concepts. In 1983 he named this new language C++, as in the next

increment of C, and with much anticipation, in 1985 the language was released.

About the same time Dr. Stroustrup released a book called The C++ Programming

Language [19], which described the language. The language is still evolving. For

instance, templates, an important part of C++ were first described by Stroustrup in

1988 [17] and it wasn’t until 1998 that it was standardized as ANSI C++. Today

an ANSI committee oversees the continued development of C++. The latest C++

standard was released in 2014 as of this writing. The previous standard was released

Fig. 1.6 Bjarne Stroustrup [18]

12 1 Introduction

in 2011. C++ is a mature language, but is still growing and evolving. The 2017

standard is currently in the works with comments presently being solicited by the

standards committee.

1.3.2 A Brief History of Java

C++ is a very powerful language, but also demands that programmers be very careful

when writing code. The biggest problem with C++ programs are memory leaks. When

objects are created on the heap in C++, they remain on the heap until they are freed.

If a programmer forgets to free an object, then that space cannot be re-used while the

program is running. That space is gone until the program is stopped, even if no code

has a pointer to that object anymore. This is a memory leak. And, for long-running

C++ programs it is the number one problem. Destructors are a feature of C++ that

help programmers prevent memory leaks. Depending on the structure of a class in

your program, it may need a destructor to take care of cleaning up instances of itself

(i.e. objects of the class) when they are freed.

C++ programs can create objects in the run-time stack, on the heap, or within

other objects. This is another powerful feature of C++. But, with this power over the

creation of objects comes more responsibility for the programmer. This control over

object creation leads to the need for extra code to decide how copies of objects are

made. In C++ every class may contain a copy constructor so the programmer can

control how copies of objects are made.

In 1991 a team called the Green Team, was working for a company named Sun

Microsystems. This group of software engineers wanted to design a programming

language and run-time system that could be used in the next generation of personal

devices. The group was led by a man named James Gosling. To support their vision,

they designed the Java Virtual Machine (i.e. JVM), a program that would interpret

byte code files. The JVM was designed as the run-time system for the Java program-

ming language. Java programs, when compiled, are translated into bytecode files that

run on the JVM.

The year 1995 brought the birth of the world wide web and with it one of the first

web browsers, Netscape Navigator, which later became Mozilla Firefox. In 1995 it

was announced that Netscape would include Java technology within the browser.

This led to some of the initial interest in the language, but the language has grown

way beyond web browsers. In fact, Java is not really a web browser technology

anymore. It is used in many web backends, where Java programs wait for connections

from web browsers, but it doesn’t run programs within web browsers much these

days. Another language, Javascript, is now the primary language of web browsers.

Javascript is similar to Java in name, but not its technology. Javascript was licensed

as a name from Sun Microsystems in its early days because of the popularity of

Java [22].

The original intention of Java was to serve as a means for running software for

personal devices. Java has become very important in that respect. It now is the basis

for the Android operating system that runs on many phones and other personal

devices like tablets. So, in a sense, the original goal of the Green Team has been

realized, just fifteen or so years later.

1.3 The Origins of a Few Programming Languages 13

When the original Green Team was designing Java they wanted to take the best

of C++ while leaving behind some of its complexity. In Java objects can only be

created in one location, on the heap. Sticking to one and only one memory model for

objects simplifies many aspects of Java. Objects are never copied by the language. So,

copy constructors are unnecessary in Java. When an object is passed to a function, a

reference to an object is passed without making a copy of the object. When one object

wants to contain another object, it keeps a reference to that object. Java objects are

never stored inside other objects. Simplifying the memory model for objects means

that in Java programs we don’t have to worry about copying objects.

Objects can still be copied in Java, but making copies of objects is the responsibility

of the programmer. The Java language does not make copies. Programmers make

copies by calling a special method called clone.

Java also includes garbage collection. This means that the Java Virtual Machine

takes care of deciding when the space that an object resides in can be reclaimed. It

can be reclaimed when no other objects or code have a reference to it anymore. This

means that programmers don’t have to write destructors. The JVM manages this for

them.

So, while C++ and Java share a lot of syntax, there are many differences as well.

Java has a simpler memory model. Garbage collection removes the fear of memory

leaks in Java programs. The Java Virtual Machine also provides other advantages to

writing Java programs. This does not make C++ a bad language by any means. It’s

just that Java and C++ have different goals. The JVM and Java manage a lot of the

complexity of writing object-oriented programs, freeing the programmer from these

duties. C++ on the other hand, gives you the power to manage all the details of a

program, right down to the hardware interface. Neither is better than the other, they

just serve different purposes while the two languages also share a lot of the same

syntax.

Fig. 1.7 Guido van Rossum [25]

14 1 Introduction

1.3.3 A Brief History of Python

Python was designed and implemented by Guido van Rossum, pictured in Fig. 1.7. He

started Python as a hobby project during the winter months of 1989. A more complete

history of this language is available on the web at http://python-history.blogspot.com.

Python is another object-oriented language like C++ and Java. Unlike C++, Python

is an interpreted language. Mr. van Rossum designed Python’s interpreter as a virtual

machine, like the Java Virtual Machine (i.e. JVM). But Python’s virtual machine is

not accessible separately, unlike the JVM. The Python virtual machine is an internal

implementation detail of the Python interpreter. Virtual machines have been around

for some time including an operating system for IBM mainframe computers, called

VM. Using a virtual machine when implementing a programming language can make

the language and its programs more portable across platforms. Python runs on many

different platforms like Apple’s Mac OS X, Linux, and Microsoft Windows. Virtual

machines can also provide services that make language implementation easier.

Programmers world-wide have embraced Python and have developed many

libraries for Python and written many programs. Python has gained popularity among

developers because of its portability and the ability to provide libraries to others.

Guido van Rossum states in his history of Python, “A large complex system should

have multiple levels of extensibility. This maximizes the opportunities for users,

sophisticated or not, to help themselves.” Extensibility refers to the ability to define

libraries of classes to solve problems from many different application areas. Python

is used in internet programming, server scripting, computer graphics, visualization,

Mathematics, Computer Science education, and many, many other application areas.

Mr. van Rossum continues, saying “In many ways, the design philosophy I used

when creating Python is probably one of the main reasons for its ultimate success.

Rather than striving for perfection, early adopters found that Python worked “well

enough” for their purposes. As the user-base grew, suggestions for improvement

were gradually incorporated into the language.” Growing the user-base has been

key to the success of Python. As the number of programmers that know Python

has increased so has interest in improving the language. Python now has two major

versions, Python 2 and Python 3. Python 3 is not backward compatible with Python

2. This break in compatibility gave the Python developers an opportunity to make

improvements in the language. Chapters 3 and 4 cover some of the implementation

details of the Python programming language.

1.3.4 A Brief History of Standard ML

Standard ML originated in 1986, but was the follow-on of ML which originated in

1973 [16]. Like many other languages, ML was implemented for a specific purpose.

The ML stands for Meta Language. Meta means above or about. So a metalanguage

is a language about language. In other words, a language used to describe a language.

ML was originally designed for a theorem proving system. The theorem prover was

called LCF, which stands for Logic for Computable Functions. The LCF theorem

http://python-history.blogspot.com
http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_4

1.3 The Origins of a Few Programming Languages 15

Fig. 1.8 Robin Milner [15]

prover was developed to check proofs constructed in a particular type of logic first

proposed by Dana Scott in 1969 and now called Scott Logic. Robin Milner, pictured

in Fig. 1.8, was the principal designer of the LCF system. Milner designed the first

version of LCF while at Stanford University. In 1973, Milner moved to Edinburgh

University and hired Lockwood Morris and Malcolm Newey, followed by Michael

Gordon and Christopher Wadsworth, as research associates to help him build a new

and better version called Edinburgh LCF [9].

For the Edinburgh version of LCF, Dr. Milner and his associates created the ML

programming language to allow proof commands in the new LCF system to be

extended and customized. ML was just one part of the LCF system. However, it

quickly became clear that ML could be useful as a general purpose programming

language. In 1990 Milner, together with Mads Tofte and Robert Harper, published

the first complete formal definition of the language; joined by David MacQueen,

they revised this standard to produce the Standard ML that exists today [16].

ML was influenced by Lisp, Algol, and the Pascal programming languages. In

fact, ML was originally implemented in Lisp. There are now two main versions of

ML: Moscow ML and Standard ML. Today, ML’s main use is in academia in the

research of programming languages. But, it has been used successfully in several

other types of applications including the implementation of the TCP/IP protocol

stack [4] and a web server as part of the Fox Project. A goal of the Fox Project was

the development of system software using advanced programming languages [10].

ML is a very good language to use in learning to implement other languages.

It includes tools for automatically generating parts of a language implementation

including components called a scanner and a parser which are introduced in Chap. 6.

These tools, along with the polymorphic strong type checking provided by Standard

ML, make implementing a compiler or interpreter a much easier task. Much of the

work of implementing a program in Standard ML is spent in making sure all the

types in the program are correct. This strong type checking often means that once a

http://dx.doi.org/10.1007/978-3-319-70790-7_6

16 1 Introduction

program is properly typed it will run the first time. This is quite a statement to make,

but nonetheless it is often true.

Important Standard ML features include:

• ML is higher-order supporting functions as first-class values. This means functions

may be passed as parameters to functions and returned as values from functions.

• Strong type checking (discussed later in this chapter) means it is pretty infrequent

that you need to debug your code. What a great thing!

• Pattern-matching is used in the specification of functions in ML. Pattern-matching

is convenient for writing recursive functions.

• The exception handling system implemented by Standard ML has been proven

type safe, meaning that the type system encompasses all possible paths of execu-

tion in an ML program.

1.3.5 A Brief History of Prolog

Prolog was developed in 1972 by Alain Colmerauer, pictured in Fig. 1.9, with

Philippe Roussel. Colmerauer and Roussel and their research group had been work-

ing on natural language processing for the French language and were studying logic

and automated theorem proving [7] to answer simple questions in French. Their

research led them to invite Robert Kowalski, pictured in Fig. 1.10, who was working

in the area of logic programming and had devised an algorithm called SL-Resolution,

to work with them in the summer of 1971 [11,29]. Colmerauer and Kowalski, while

working together in 1971, discovered a way formal grammars could be written as

clauses in predicate logic. Colmerauer soon devised a way that logic predicates could

be used to express grammars that would allow automated theorem provers to parse

natural language sentences efficiently. This is covered in some detail in Chap. 7.

Fig. 1.9 Alain Colmerauer [6]

http://dx.doi.org/10.1007/978-3-319-70790-7_7

1.3 The Origins of a Few Programming Languages 17

Fig. 1.10 Robert Kowalski [12]

In the summer of 1972, Kowalski and Colmerauer worked together again and

Kowalski was able to describe the procedural interpretation of what are known as

Horn Clauses. Much of the debate at the time revolved around whether logic pro-

gramming should focus on procedural representations or declarative representations.

The work of Kowalski showed how logic programs could have a dual meaning, both

procedural and declarative.

Colmerauer and Roussel used this idea of logic programs being both declarative

and procedural to devise Prolog in the summer and fall of 1972. The first large

Prolog program, which implemented a question and answering system in the French

language, was written in 1972 as well.

Later, the Prolog language interpreter was rewritten at Edinburgh to compile

programs into DEC-10 machine code. This led to an abstract intermediate form

that is now known as the Warren Abstract Machine or WAM. WAM is a low-level

intermediate representation that is well-suited for representing Prolog programs.

The WAM virtual machine can be (and has been) implemented on a wide variety

of hardware. This means that Prolog implementations exist for most computing

platforms.

Practice 1.5 Answer the following questions.

1. Who invented C++? C? Standard ML? Prolog? Python? Java?

2. What do Standard ML and Prolog’s histories have in common?

3. What do Prolog and Python have in common?

4. What language or languages is Standard ML based on?

You can check your answer(s) in Section 1.8.5.

18 1 Introduction

1.4 Language Implementation

There are three ways that languages can be implemented.

• A language can be interpreted.

• A language can be compiled to a machine language.

• A language can be implemented by some combination of the first two methods.

Computers are only capable of executing machine language. Machine language is

the language of the Central Processing Unit (CPU) and is very simple. For instance,

typical instructions are fetch this value into the CPU, store this value into memory

from the CPU, add these two values together, and compare these two values and if they

are equal, jump here next. The goal of any programming language implementation

is to translate a source program into this simpler machine language so it can be

executed by the CPU. The overall process is pictured in Fig. 1.11.

Fig. 1.11 Language implementation

1.4 Language Implementation 19

All language implementations translate a source program to some intermediate

representation before translating the intermediate representation to machine lan-

guage. Exactly how these two translations are packaged varies significantly from

one programming language to the next, but luckily most language implementations

follow one of a few methodologies. The following sections will present some case

studies of different languages so you can see how this translation is accomplished

and packaged.

1.4.1 Compilation

The most direct method of translating a program to machine language is called

compilation. The process is shown in Fig. 1.12. A compiler is a program that internally

is composed of several parts. The parser reads a source program and translates it

into an intermediate form called an abstract syntax tree (AST). An AST is a tree-

like data structure that internally represents the source program. We’ll read about

abstract syntax trees in later chapters. The code generator then traverses the AST

and produces another intermediate form called an assembly language program. This

program is not machine language, but it is much closer. Finally, an assembler and

linker translate an assembly language program to machine language making the

program ready to execute.

This whole process is encapsulated by a tool called a compiler. In most instances,

the assembler and linker are separate from the compiler, but normally the com-

piler runs the assembler and linker automatically when a program is compiled so

as programmers we tend to think of a compiler compiling our programs and don’t

necessarily think about the assembly and link phases.

Programming in a compiled language is a three-step process.

• First, you write a source program.

• Then you compile the source program, producing an executable program.

• Then you run the executable program.

When you are done, you have a source program and an executable program that

represent the same computation, one in the source language, the other in machine

language. If you make further changes to the source program, the source program and

the machine language program are not in sync. After making changes to the source

program you must remember to recompile before running the executable program

again.

Machine language is specific to a CPU architecture and operating system. Com-

piling a source program on Linux means it will run on most Linux machines with a

similar CPU. However, you cannot take a Linux executable and put it on a Microsoft

Windows machine and expect it to run, even if the two computers have the same

CPU. The Linux and Windows operating systems each have their own format for

executable machine language programs. In addition, compiled programs use operat-

ing system services for printing, reading input, and doing other Input/Output (I/O)

operations. These services are invoked differently between operating systems. Lan-

20 1 Introduction

Fig. 1.12 The compilation process

guages like C++ hide these implementation details from you in the code generator,

but the end result is that a program compiled for one operating system will not work

on another operating system without being recompiled.

C, C++, Pascal, Fortran, COBOL and many others are typically compiled lan-

guages. On the Linux operating system the C compiler is called gcc and the C++

compiler is called g++. The g in both names reflects the fact that both compilers

come out of the GNU project and the Free Software Foundation. Linux, gcc, and

g++ are freely available to anyone who wants to download them. The best way to

get these tools is to download a Linux distribution and install it on a computer. The

gcc and g++ compilers come standard with Linux.

There are implementations of C and C++ for many other platforms. The web site

http://gcc.gnu.org contains links to source code and to prebuilt binaries for the g++

compiler. You can also download C++ compilers from Apple and Microsoft. For

Mac OS X computers you can get C++ by downloading the XCode Developer Tools.

http://gcc.gnu.org

1.4 Language Implementation 21

You can also install g++ and gcc for Mac OS X computers using a tool called brew.

If you run Microsoft Windows you can install Visual C++ Express from Microsoft.

It is free for educational use.

1.4.2 Interpretation

An interpreter is a program that is written in some other language and compiled

into machine language. The interpreter itself is the machine language program. The

interpreter itself is written to read source programs from the interpreted language

and interpret them. For instance, Python is an interpreted language. The Python

interpreter is written in C and is compiled for a particular platform like Linux, Mac

OS X, or Microsoft Windows. To run a Python program, you must download and

install the Python interpreter that goes with your operating system and CPU.

When you run an interpreted source program, as depicted in Fig. 1.13, you are

actually running the interpreter. Your program is not running because your program

is never translated to machine language. The interpreter is the machine language

program that executes all the programs you write in the interpreted language. The

source program you write controls the behavior of the interpreter program.

Programming in an interpreted language is a two step process.

• First you write a source program.

• Then you execute the source program by running the interpreter.

Each time your program is executed it is translated into an AST by a part of the

interpreter called the parser. There may be an additional step that translates the

AST to some lower-level representation, often called bytecode. In an interpreter, this

lower-level representation is still internal to the interpreter program. Then a part of

the interpreter, often called a virtual machine, executes the byte code instructions.

Not every interpreter translates the AST to bytecode. Sometimes the interpreter

directly interprets the AST but it is often convenient to translate the source program’s

AST to some simpler representation before executing it.

Eliminating the compile step has a few implications.

• Since you have one less step in development you may be encouraged to run your

code more frequently during development. This is a generally a good thing and

can shorten the development cycle.

• Secondly, because you don’t have an executable version of your code, you don’t

have to manage the two versions. You only have a source code program to keep

track of.

• Finally, because the source code is not platform dependent, you can usually easily

move your program between platforms. The interpreter insulates your program

from platform dependencies.

Of course, source programs for compiled languages are generally platform indepen-

dent too. But, they must be recompiled to move the executable program from one

22 1 Introduction

Fig. 1.13 The interpretation process

platform to another. The interpreter itself isn’t platform independent. There must

be a version of an interpreter for each platform/language combination. So there is

a Python interpreter for Linux, another for Microsoft Windows, and yet another

for Mac OS X. Thankfully, because the Python interpreter is written in C the same

Python interpreter program can be compiled (with some small differences) for each

platform.

There are many interpreted languages available including Python, Ruby, Standard

ML, Unix scripting languages like Bash and Csh, Prolog, and Lisp. The portability of

interpreted languages has made them very popular among programmers, especially

when writing code that needs to run across multiple platforms.

One huge problem that has driven research into interpreted languages is that

of heap memory management. Recall that the heap is the place where memory is

dynamically allocated. As mentioned earlier in the chapter, C and C++ programs are

notorious for having memory leaks. Every time a C++ programmer reserves some

space on the heap he/she must remember to free that space. If they don’t free the

1.4 Language Implementation 23

space when they are done with it the space will never be available again while the

program continues to execute. The heap is a big space, but if a program runs long

enough and continues to allocate and not free space, eventually the heap will fill up

and the program will terminate abnormally. In addition, even if the program doesn’t

terminate abnormally, the performance of the system will degrade as more and more

time is spent managing the large heap space.

Most, if not all, interpreted languages don’t require programmers to free space

on the heap. Instead, there is a special task or thread that runs periodically as part

of the interpreter to check the heap for space that can be freed. This task is called

the garbage collector. Programmers can allocate space on the heap but don’t have

to be worried about freeing that space. For a garbage collector to work correctly,

space on the heap has to be allocated and accessed in the right way. Many interpreted

languages are designed to insure that a garbage collector will work correctly.

The disadvantage of an interpreted language is in speed of execution. Interpreted

programs typically run slower than compiled programs. In a compiled program,

parsing and code generation happen once when the program is compiled. When

running an interpreted program, parsing and code generation happen each time the

program is executed. In addition, if an application has real-time dependencies then

having the garbage collector running at more or less random intervals may not be

desirable. As you’ll read in the next section some steps have been taken to reduce

the difference in execution time between compiled and interpreted languages.

1.4.3 Virtual Machines

The advantages of interpretation over compilation are pretty significant. It turns out

that one of the biggest advantages is the portability of programs. It’s nice to know

when you invest the time in writing a program that it will run the same on Linux,

Microsoft Windows, Mac OS X, or some other operating system. This portability

issue has driven a lot of research into making interpreted programs run as fast as

compiled languages.

As discussed earlier in this chapter, the concept of a virtual machine has been

around quite a while. A virtual machine is a program that provides insulation from

the actual hardware and operating system of a machine while supplying a consistent

implementation of a set of low-level instructions, often called bytecode. Figure 1.14

shows how a virtual machine sits on top of the operating system/CPU to act as this

insulator.

There is no one specification for bytecode instructions. They are specific to the

virtual machine being defined. Python has a virtual machine buried within the inter-

preter. Prolog is another interpreter that uses a virtual machine as part of its imple-

mentation. Some languages, like Java have taken this idea a step further. Java has a

virtual machine that executes bytecode instructions as does Python. The creators of

Java separated the virtual machine from the compiler. Instead of storing the bytecode

instructions internally as in an interpreter, the Java compiler, called javac, compiles

a Java source code program to a bytecode file. This file is not machine language

so it cannot be executed directly on the hardware. It is a Java bytecode file which

24 1 Introduction

Fig. 1.14 Virtual machine implementation

is interpreted by the Java virtual machine, called java in the Java set of tools. Java

bytecode files all end with a .class extension. You may have noticed these files at

some point after compiling a Java program.

Programs written using a hybrid language like Java are compiled. However, the

compiled bytecode program is interpreted. Source programs in the language are not

interpreted directly. By adding this intermediate step the interpreter can be smaller

and faster than traditional interpreters. Very little parsing needs to happen to read

the program and executing the program is straightforward because each bytecode

instruction usually has a simple implementation.

Languages that fall into this virtual machine category include Java, ML, Python,

C#, Visual Basic .NET, JScript, and other .NET platform languages. You might notice

that Standard ML and Python were included as examples of interpreted languages.

Both ML and Python include interactive interpreters as well as the ability to compile

and run low-level bytecode programs. Python bytecode files are named with a .pyc

extension. Standard ML compiled files are named with a -platform as the last part of

1.4 Language Implementation 25

the compiled file name. In the case of Python and Standard ML the virtual machine

is not a separate program. Both interpreters are written to recognize a bytecode file

and execute it just like a source program.

Java and the .NET programming environments do not include interactive inter-

preters. The only way to execute programs with these platforms is to compile the

program and then run the compiled program using the virtual machine. Programs

written for the .NET platform run under Microsoft Windows and in some cases

Linux. Microsoft submitted some of the .NET specifications to the ISO to allow

third party software companies to develop support for .NET on other platforms. In

theory all .NET programs are portable like Java, but so far implementations of the

.NET framework are not as generally available as Java. The Java platform has been

implemented and released on all major platforms. In fact, in November 2006 Sun, the

company that created Java, announced they were releasing the Java Virtual Machine

and related software under the GNU Public License to encourage further develop-

ment of the language and related tools. Since then the rights to Java have now been

purchased by Oracle where it continues to be supported.

Java and .NET language implementations maintain backwards compatibility of

their virtual machines. This means that a program compiled for an earlier version of

Java or .NET will continue to run on newer implementations of the language’s virtual

machine. In contrast, Python’s virtual machine is regarded as an internal design issue

and does not maintain backwards compatibility. A .pyc file compiled for one version

of Python will not run on a newer version of Python. This distinction makes Python

more of an interpreted language, while Java and .NET languages are truly virtual

machine implementations.

Maintaining backwards compatibility of the virtual machine means that program-

mers can distribute application for Java and .NET implementations without releasing

their source code. .NET and Java applications can be distributed while maintaining

privacy of the source code. Since intellectual property is an important asset of compa-

nies, the ability to distribute programs in binary form is important. The development

of virtual machines made memory management and program portability much easier

in languages like Java, Standard ML, and the various .NET languages while also pro-

viding a means for programmers to distribute programs in binary format so source

code could be kept private.

1.5 Types and Type Checking

Every programming language defines operations that can be used to transform data.

Data transformation is the fundamental operation that is performed by all program-

ming languages. Some programming languages mutate data to new values. Other

languages transform data by building new values from old values. However the

transformation takes place, these data transformation operations are defined for cer-

tain types of data. Not every transformation operation makes sense for every type of

value. For instance, addition is an operation that makes sense for numbers, but does

26 1 Introduction

not make any sense for customers. How would you add two customers together and

what would that mean?

Since programming languages define data transformation operations, they simi-

larly define types to specify which operations make sense on which types of data.

Types in programming languages include integers, booleans, real numbers (i.e. some-

times called floating point numbers), strings, lists, tuples, and user-defined types like

customers. Transformation operations are defined operators on these values. The

plus sign (e.g. +) often defines addition. String concatenation might also be denoted

by the plus sign. Or it might be some other symbol.

One of the jobs of a programming language implementation is to determine which

operation is meant when, for instance, the plus sign is written in a program. Does

it mean the addition of two numbers, string concatenation, or is it an error because

you can’t add two customers together? Determining if the plus sign makes sense in

the context of its operands (i.e. the two things being added together) is the job of a

programming language implementation. More generally, the programming language

implementation is responsible for checking that the operations performed on its data

types are defined and the programming language is responsible for invoking the

correct operation.

There are two different times that this type checking might occur. Some pro-

gramming languages defer all type checking until the last possible second when

the program is actually executing. When the next operation occurs, a programming

language implementation may terminate a program and report that the next opera-

tion to be executed is not defined. This is called a dynamically typed programming

language.

Python is a dynamically typed programming language. You don’t find out that an

operation is undefined until the operation is about to be executed. No earlier warning

is given. When the code is executed, if you try to add two customers together, you

find out that this has not been defined.

Other programming languages report any operation that is not defined before the

program begins execution. In this case the programming language is statically typed.

A statically typed language goes through a step during before execution where type

checking is performed to see if the operations are defined for the given types of

operands. This type checking step is performed in languages like Java and C++.

These languages are statically typed.

An important facet of Standard ML is the strong type checking provided by the

language. The type inference system, commonly called Hindley-Milner type infer-

ence, statically checks the types of all expressions and operations in the language.

In addition, the type checking system is polymorphic, meaning that it handles types

that may contain type variables. The polymorphic type checker is sound. It will

never say a program is typed correctly when it is not. Interestingly, the type checker

has also been proven complete, which means that all correctly typed programs will

indeed pass the type checker. No correctly typed program will be rejected by the

type checker. We expect soundness out of type checkers but completeness is much

harder to prove and it has been proven for Standard ML.

1.5 Types and Type Checking 27

There are trade-offs between statically and dynamically typed languages. Typi-

cally there is more overhead to programming with a statically typed language. Types

in C++ and Java must be declared so that static type checking can be performed.

But this is not always the case. Standard ML infers the types of most values in the

language without requiring the types of its values to be declared.

Dynamically typed languages typically require less overhead in declaring values.

In Python you don’t declare the value of any object, except through the creation of

that object. Writing

x = 6

p r i n t (x+x)

results in x referring to an integer value. Then printing x + x will result in 12 being

printed because + is determined to be a valid operation on integers at run-time, as

x + x is computed.

The problem with dynamically typed languages comes from the lateness of deter-

mining if the operation is defined on the objects. If the operation is only determined

to be valid right before it is executed, then every single line of a program must be

tested to determine if the program is correct or not. While static typing tells you

whether operations are defined or not before the program executes, dynamically

typed languages don’t help you with that. They only tell you that an operation is not

defined if you actually try to execute that line of code.

So, which is better, dynamically or statically typed languages? It depends on the

complexity of the program you are writing and its size. Static typing is certainly

desirable if all other things are equal. But static typing typically does increase the

work of a programmer up front. On the other hand, static typing is likely to decrease

the amount of time you spend testing as evidenced by the Fox Project [10] at Carnegie

Mellon.

1.6 Chapter Summary

The history of languages is fascinating and a lot more detail is available than was

covered in this chapter. There are many great resources on the web where you

can get more information. Use Google or Wikipedia and search for “History of

your_favorite_language” as a place to begin. However, be careful. You can’t believe

everything you read on the web and that includes Wikipedia. While the web is a great

source, you should always research your topic enough to independently verify the

information you find there.

While learning new languages and studying programming language implementa-

tion it becomes important to understand models of computation. A compiler translates

a high-level programming language into a lower level computation. These low-level

computations are usually expressed in terms of machine language but not always.

More important than the actual low-level language is the model of computation. Some

models are based on register machines. Some models are based on stack machines.

Still other models may be based on something entirely different. Chapters 3 and 4

explore stack-based virtual machines in much more detail.

http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_4

28 1 Introduction

The next chapter provides the foundations for understanding how the syntax of a

language is formally defined by a grammar. Then chapter three introduces a Python

Virtual Machine implementation called JCoCo. JCoCo is an interpreter of Python

bytecode instructions. Chapter three introduces assembly language programming

using JCoCo, providing some insight into how programming languages are imple-

mented.

Subsequent chapters in the book will again look at language implementation to

better understand the languages you are learning, their strengths and weaknesses.

While learning these languages you will also be implementing a compiler for a high

level functional language called Small which is a robust subset of Standard ML. This

will give you even more insight into language implementation and knowledge of

how to use these languages to solve problems.

Finally, in the last two chapters of this text, you will learn about type checking

and type inference using Prolog, a language that is well-suited to logic problems like

type inference. Learning how to use Prolog and implement a type checker is a great

way to cap off a text on programming languages and language implementation.

A great way to summarize the rest of this text is to see it moving from very

prescriptive approaches to programming to very descriptive approaches to program-

ming. The word prescriptive means that you dwell on details, thinking very carefully

about the details of what you are writing. For instance, in a prescriptive approach

you might ask yourself, how do you set things up to invoke a particular type of

instruction? In contrast, descriptive programming relies on programmers describing

relationships between things. Functional programming languages, to some extent,

and logic programming languages employ this descriptive approach to programming.

Read on to begin the journey from prescriptive to descriptive programming!

1.7 Review Questions

1. What are the three ways of thinking about programming, often called program-

ming paradigms?

2. Name at least one language for each of the three methods of programming

described in the previous question.

3. Name one person who had a great deal to do with the development of the impera-

tive programming model. Name another who contributed to the functional model.

Finally, name a person who was responsible for the development of the logic

model of programming.

4. What are the primary characteristics of each of the imperative, functional, and

logic models?

5. Who are recognized as the founders of each of the languages this text covers:

Java, C++, Python, Standard ML, and Prolog?

6. Name a language, other than Python, C++, or Java, that is imperative object-

oriented in nature.

7. Name a language besides Standard ML, that is a functional programming lan-

guage.

1.7 Review Questions 29

8. What other logic programming languages are there other than Prolog? You might

have to get creative on this one.

9. Why is compiling a program preferred over interpreting a program?

10. Why is interpreting a program preferred over compiling a program?

11. What benefits do virtual machine languages have over interpreted languages?

12. What is a bytecode program? Name two languages that use bytecode in their

implementation.

13. Why are types important in a programming language?

14. What does it mean for a programming language to be dynamically typed?

15. What does it mean for a programming language to be statically typed?

1.8 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers

after you have tried each of them for yourself first. Practice problems are meant to

help reinforce the material you have just read so make use of them.

1.8.1 Solution to Practice Problem 1.1

1. The origins of the three models are the Turing Machine, the λ-calculus, and

propositional and predicate logic.

2. Alan Turing as a PhD student of Alonzo Church. Alan Turing developed the Turing

Machine and Alonzo Church developed the λ-calculus to answer prove there were

somethings that are not computable. They later proved the two approaches were

equivalent in their power to express computation.

3. Both von Neumann and Turing contributed to the idea of a stored-program com-

puter.

4. Backus developed BNF notation which was used in the development of Algol 60.

5. 1936 was a big year for Computer Science.

6. So was 1946. That was the year ENIAC was unveiled. Eckert and Mauchly

designed and built ENIAC.

7. The problems in Mathematics were growing complex enough that many mathe-

maticians were developing models and languages for expressing their algorithms.

This was one of the driving factors in the development of computers and Computer

Science as a discipline.

1.8.2 Solution to Practice Problem 1.2

1. The run-time stack, global memory, and the heap are the three divisions of data

memory.

2. Data on the heap is created at run-time.

30 1 Introduction

3. An activation record holds information like local variables, the program counter,

the stack pointer, and other state information necessary for a function invocation.

4. An activation record is created each time a function is called.

5. An activation record is deleted when a function returns.

6. The primary goal of imperative, object-oriented programming is to update mem-

ory by updating variables and/or objects as the program executes. The primary

operation is memory updates.

1.8.3 Solution to Practice Problem 1.3

1. Functional languages include Standard ML, Lisp, Haskell, and Scheme.

2. In the imperative model the primary operation revolves around updating memory

(the assignment statement). In the functional model the primary operation is

function application.

3. The functional model emphasizes immutable data. However, some imperative

languages have some immutable data as well. For instance, Java strings are

immutable.

1.8.4 Solution to Practice Problem 1.4

1. You never write a program in Prolog. You write a database of rules in Prolog that

tell the single Prolog program (depth first search) how to proceed.

2. The programmer provides a database of facts and predicates that tell Prolog

about a problem. In Prolog the programmer describes the problem instead of

programming the solution.

1.8.5 Solution to Practice Problem 1.5

1. C++ was invented by Bjourne Stroustrup. C was created by Dennis Ritchie. Stan-

dard ML was primarily designed by Robin Milner. Prolog was designed by Alain

Colmerauer and Philippe Roussel with the assistance of Robert Kowalski. Python

was created by Guido van Rossum. Java was the work of the Green team and James

Gosling.

2. Standard ML and Prolog were both designed as languages for automated theorem

proving first. Then they became general purpose programming languages later.

3. Both Python and Prolog run on virtual machine implementations. Python’s virtual

machine is internal to the interpreter. Prolog’s virtual machine is called WAM

(Warren Abstract Machine).

4. Standard ML is influenced by Lisp, Pascal, and Algol.

2Syntax

Once you’ve learned to program in one language, learning a similar programming

language isn’t all that hard. But, understanding just how to write in the new language

takes looking at examples or reading documentation to learn its details. In other

words, you need to know the mechanics of putting a program together in the new

language. Are the semicolons in the right places? Do you use begin...end or do you

use curly braces (i.e. { and })? Learning how a program is put together is called

learning the syntax of the language. Syntax refers to the words and symbols of a

language and how to write the symbols down in some meaningful order.

Semantics is the word that is used when deriving meaning from what is written.

The semantics of a program refers to what the program will do when it is executed.

Informally it is much easier to say what a program does than to describe the syntactic

structure of the program. However, syntax is a lot easier to formally describe than

semantics. In either case, if you are learning a new language, you need to learn

something about both the syntax and semantics of the language.

2.1 Terminology

Once again, the syntax of a programming language determines the well-formed or

grammatically correct programs of the language. Semantics describes how or whether

such programs will execute.

• Syntax is how programs look

• Semantics is how programs work

Many questions we might like to ask about a program either relate to the syntax

of the language or to its semantics. It is not always clear which questions pertain to

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_2

31

32 2 Syntax

syntax and which pertain to semantics. Some questions may concern semantic issues

that can be determined statically, meaning before the program is run. Other semantic

issues may be dynamic issues, meaning they can only be determined at run-time.

The difference between static semantic issues and syntactic issues is sometimes a

difficult distinction to make.

The code

a=b+c;

is correct syntax in many languages. But is it a correct C++ statement?

1. Do b and c have values?

2. Have b and c been declared as a type that allows the + operation? Or, do the

values of b and c support the + operation?

3. Is a assignment compatible with the result of the expression b + c?

4. Does the assignment statement have the proper form?

There are lots of questions that need to be answered about this assignment statement.

Some questions could be answered sooner than others. When a C++ program is

compiled it is translated from C++ to machine language as described in the previous

chapter. Questions 2 and 3 are issues that can be answered when the C++ program

is compiled. However, the answer to the first question might not be known until

the C++ program executes in some cases. The answers to questions 2 and 3 can

be answered at compile-time and are called static semantic issues. The answer to

question 1 is a dynamic issue and is probably not determinable until run-time. In

some circumstances, the answer to question 1 might also be a static semantic issue.

Question 4 is definitely a syntactic issue.

Unlike the dynamic semantic issues, the correct syntax of a program is statically

determinable. Said another way, determining a syntactically valid program can be

accomplished without running the program. The syntax of a programming language

is specified by a grammar. But before discussing grammars, the parts of a grammar

must be defined. A terminal or token is a symbol in the language.

• C++, Java, and Python terminals: while, for, (, ;, 5, b

• Type names like int and string

Keywords, types, operators, numbers, identifiers, etc. are all tokens or terminals in

a language.

A syntactic category or nonterminal is a set of phrases, or strings of tokens,

that will be defined in terms of symbols in the language (terminal and nonterminal

symbols).

• C++, Java, or Python nonterminals:<statement>,<expression>,<if-statement>,

etc.

• Syntactic categories define parts of a program like statements, expressions, dec-

larations, and so on.

2.1 Terminology 33

A metalanguage is a higher-level language used to specify, discuss, describe, or

analyze another language. English is used as a metalanguage for describing pro-

gramming languages, but because of the ambiguities in English, more formal meta-

languages have been developed. The next section describes a formal metalanguage

for describing programming language syntax.

2.2 Backus Naur Form (BNF)

Backus Naur Format (i.e. BNF) is a formal metalanguage for describing language

syntax. The word formal is used to indicate that BNF is unambiguous. Unlike English,

the BNF language is not open to our own interpretations. There is only one way to

read a BNF description.

BNF was used by John Backus to describe the syntax of Algol in 1963. In 1960,

John Backus and Peter Naur, a computer magazine writer, had just attended a confer-

ence on Algol. As they returned from the trip it became apparent that they had very

different views of what Algol would look like. As a result of this discussion, John

Backus worked on a method for describing the grammar of a language. Peter Naur

slightly modified it. The notation is called BNF, or Backus Naur Form or sometimes

Backus Normal Form. BNF consists of a set of rules that have this form:

<syntactic category> ::= a string of terminals and nonterminals

The symbol ::= can be read as is composed of and means the syntactic category is

the set of all items that correspond to the right hand side of the rule.

Multiple rules defining the same syntactic category may be abbreviated using the |

character which can be read as “or” and means set union. That is the entire language.

It’s not a very big metalanguage, but it is powerful.

2.2.1 BNF Examples

Here are a couple BNF examples from Java.

<primitive -type > ::= boolean
<primitive -type > ::= char

BNF syntax is often abbreviated when there are multiple similar rules like these

primitive type rules. Whether abbreviated or not, the meaning is the same.

<primitive -type > ::= boolean | char | byte | short | int | long | float | ...

<argument -list > ::= <expression > | <argument -list > , <expression >

<selection -statement > ::=

if (<expression >) <statement > |

if (<expression >) <statement > else <statement > |

switch (<expression >) <block >

<method -declaration > ::=

<modifiers > <type -specifier > <method declarator > <throws -clause > <method -body > |

<modifiers > <type -specifier > <method -declarator > <method -body > |

34 2 Syntax

<type -specifier > <method -declarator > <throws -clause > <method -body > |

<type -specifier > <method -declarator > <method -body >

This description can be described in English: The set of method declarations is the

union of the sets of method declarations that explicitly throw an exception with those

that don’t explicitly throw an exception with or without modifiers attached to their

definitions. The BNF is much easier to understand and is not ambiguous like this

English description.

2.2.2 Extended BNF (EBNF)

Since a BNF description of the syntax of a programming language relies heavily on

recursion to provide lists of items, many definitions use these extensions:

1. item? or [item] means the item is optional.

2. item* or {item} means zero or more occurrences of an item are allowable.

3. item+ means one or more occurrences of an item are allowable.

4. Parentheses may be used for grouping

2.3 Context-Free Grammars

A BNF is a way of describing the grammar of a language. Most interesting grammars

are context-free, meaning that the contents of any syntactic category in a sentence are

not dependent on the context in which it is used. A context-free grammar is defined

as a four tuple:

G = (N , T ,P, S)

where

• N is a set of symbols called nonterminals or syntactic categories.

• T is a set of symbols called terminals or tokens.

• P is a set of productions of the form n → α where n ∈ N and α ∈ {N ∪ T }∗.

• S ∈ N is a special nonterminal called the start symbol of the grammar.

Informally, a context-free grammar is a set of nonterminals and terminals. For each

nonterminal there are one or more productions with strings of zero or more non-

terminals and terminals on the right hand side as described in the BNF description.

There is one special nonterminal called the start symbol of the grammar.

2.3 Context-Free Grammars 35

2.3.1 The Infix Expression Grammar

A context-free grammar for infix expressions can be specified as G = (N , T ,P,E)

where

N = {E, T, F}

T = {identi f ier, number, +,−, ∗, /, (,)}

P is defined by the set of productions

E → E + T | E − T | T

T → T ∗ F | T / F | F

F → (E) | identi f ier | number

2.4 Derivations

A sentence of a grammar is a string of tokens from the grammar. A sentence belongs

to the language of a grammar if it can be derived from the grammar. This process

is called constructing a derivation. A derivation is a sequence of sentential forms

that starts with the start symbol of the grammar and ends with the sentence you are

trying to derive. A sentential form is a string of terminals and nonterminals from

the grammar. In each step in the derivation, one nonterminal of a sentential form,

call it A, is replaced by a string of terminals and nonterminals, β, where A → β

is a production in the grammar. For a grammar, G, the language of G is the set of

sentences that can be derived from G and is usually written as L(G).

2.4.1 A Derivation

Here we prove that the expression (5∗ x)+ y is a member of the language defined by

the grammar given in Sect. 2.3.1 by constructing a derivation for it. The derivation

begins with the start symbol of the grammar and ends with the sentence.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ (E) + T ⇒ (T) + T ⇒ (T ∗ F) + T

⇒ (F ∗ F) + T ⇒ (5 ∗ F) + T ⇒ (5 ∗ x) + T ⇒ (5 ∗ x) + F ⇒ (5 ∗ x) + y

Each step is a sentential form. The underlined nonterminal in each sentential form is

replaced by the right hand side of a production for that nonterminal. The derivation

proceeds from the start symbol, E, to the sentence (5 ∗ x) + y. This proves that

(5 ∗ x) + y is in the language L(G) as G is defined in Sect. 2.3.1.

36 2 Syntax

Practice 2.1 Construct a derivation for the infix expression 4 + (a − b) ∗ x .

You can check your answer(s) in Section 2.17.1.

2.4.2 Types of Derivations

A sentence of a grammar is valid if there exists at least one derivation for it using

the grammar. There are typically many different derivations for a particular sentence

of a grammar. However, there are two derivations that are of some interest to us in

understanding programming languages.

• Left-most derivation - Always replace the left-most nonterminal when going from

one sentential form to the next in a derivation.

• Right-most derivation - Always replace the right-most nonterminal when going

from one sentential form to the next in a derivation.

The derivation of the sentence (5 ∗ x) + y in Sect. 2.4.1 is a left-most derivation. A

right-most derivation for the same sentence is:

E ⇒ E + T ⇒ E + F ⇒ E + y ⇒ T + y ⇒ F + y ⇒ (E) + y ⇒ (T) + y

⇒ (T ∗ F) + y ⇒ (T ∗ x) + y ⇒ (F ∗ x) + y ⇒ (5 ∗ x) + y

Practice 2.2 Construct a right-most derivation for the expression x ∗ y + z.

You can check your answer(s) in Section 2.17.2.

2.4.3 Prefix Expressions

Infix expressions are expressions where the operator appears between the operands.

Another type of expression is called a prefix expression. In prefix expressions the

operator appears before the operands. The infix expression 4 + (a − b) ∗ x would

be written +4 ∗ −abx as a prefix expression. Prefix expressions are in some sense

simpler than infix expressions because we don’t have to worry about the precedence

of operators. The operator precedence is determined by the order of operations in

the expression. Because of this, parentheses are not needed in prefix expressions.

2.4.4 The Prefix Expression Grammar

A context-free grammar for prefix expressions can be specified as G = (N , T ,P,E)

where

2.4 Derivations 37

N = {E}

T = {identi f ier, number, +,−, ∗, /}

P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E | identi f ier | number

Practice 2.3 Construct a left-most derivation for the prefix expression +4 ∗

−abx .

You can check your answer(s) in Section 2.17.3.

2.5 Parse Trees

A grammar, G, can be used to build a tree representing a sentence of L(G), the

language of the grammar G. This kind of tree is called a parse tree. A parse tree is

another way of representing a sentence of a given language. A parse tree is constructed

with the start symbol of the grammar at the root of the tree. The children of each

node in the tree must appear on the right hand side of a production with the parent

on the left hand side of the same production. A program is syntactically valid if there

is a parse tree for it using the given grammar.

While there are typically many different derivations of a sentence in a language,

there is only one parse tree. This is true as long as the grammar is not ambiguous.

In fact that’s the definition of ambiguity in a grammar. A grammar is ambiguous if

and only if there is a sentence in the language of the grammar that has more than one

parse tree.

The parse tree for the sentence derived in Sect. 2.4.1 is depicted in Fig. 2.1. Notice

the similarities between the derivation and the parse tree.

Practice 2.4 What does the parse tree look like for the right-most derivation

of (5 ∗ x) + y?

You can check your answer(s) in Section 2.17.4.

Practice 2.5 Construct a parse tree for the infix expression 4 + (a − b) ∗ x .

HINT: What has higher precedence, “+” or “∗”? The given grammar auto-

matically makes “∗” have higher precedence. Try it the other way and see

why!

You can check your answer(s) in Section 2.17.5.

38 2 Syntax

Fig. 2.1 A parse tree

Practice 2.6 Construct a parse tree for the prefix expression +4 ∗ −abx .

You can check your answer(s) in Section 2.17.6.

2.6 Abstract Syntax Trees

There is a lot of information in a parse tree that isn’t really needed to capture the

meaning of the program that it represents. An abstract syntax tree is like a parse tree

except that non-essential information is removed. More specifically,

• Nonterminal nodes in the tree are replaced by nodes that reflect the part of the

sentence they represent.

• Unit productions in the tree are collapsed.

For example, the parse tree from Fig. 2.1 can be represented by the abstract syntax

tree in Fig. 2.2. The abstract syntax tree eliminates all the unnecessary information

and leaves just what is essential for evaluating the expression. Abstract syntax trees,

often abbreviated ASTs, are used by compilers while generating code and may be

used by interpreters when running your program. Abstract syntax trees throw away

superfluous information and retain only what is essential to allow a compiler to

generate code or an interpreter to execute the program.

2.6 Abstract Syntax Trees 39

Fig. 2.2 An AST

Practice 2.7 Construct an abstract syntax tree for the expression 4+(a−b)∗x .

You can check your answer(s) in Section 2.17.7.

2.7 Lexical Analysis

The syntax of modern programming languages are defined via grammars. A grammar,

because it is a well-defined mathematical structure, can be used to construct a program

called a parser. A language implementation, like a compiler or an interpreter, has

a parser that reads the program from the source file. The parser reads the tokens,

or terminals, of a program and uses the language’s grammar to check to see if the

stream of tokens form a syntactically valid program.

For a parser to do its job, it must be able to get the stream of tokens from the

source file. Forming tokens from the individual characters of a source file is the job

of another program often called a tokenizer, or scanner, or lexer. Lex is the Latin

word for word. The words of a program are its tokens. In programming language

implementations a little liberty is taken with the definition of word. A word is any

terminal or token of a language. It turns out that the tokens of a language can be

described by another language called the language of regular expressions.

2.7.1 The Language of Regular Expressions

The language of regular expression is defined by a context-free grammar. The context-

free grammar for regular expressions is RE = (N , T ,P,E) where

N = {E, T, K , F}

T = {character, ∗, +, ., (,)}

P is defined by the set of productions

40 2 Syntax

E → E + T | T

T → T .K | K

K → F∗ | F

F → character | (E)

The + operator is the choice operator, meaning either E or T, but not both. The

dot operator means that T is followed by K. The ∗ operator, called Kleene Star

for the mathematician that first defined it, means zero or more occurrences of F.

The grammar defines the precedence of these operators. Kleene star has the highest

precedence followed by the dot operator, followed by the choice operator. At its most

primitive level, a regular expression may be just a single character.

Frequently, a choice between many different characters may be abbreviated with

some sensible name. For instance, letter may be used to abbreviate A + B + · · · +

Z + a + b + · · · z and digit may abbreviate 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

Usually these abbreviations are specified explicitly before the regular expression is

given.

The tokens of the infix grammar are identifier, number, +, −, ∗, /, (, and). For

brevities sake, assume that letter and digit have the usual definitions. We’ll also

put each operator character in single quotes so as not to confuse them with the

metalanguage. Then, these tokens might be defined by the regular expression

letter.letter* + digit.digit* + ‘+’ + ‘−‘ + ‘∗’ + ‘/’ + ‘(‘ + ‘)’

From this regular expression specification a couple of things come to light. Identifiers

must be at least one character long, but can be as long as we wish them to be.

Numbers are only non-negative integers in the infix expression language. Floating

point numbers cannot be specified in the language as the tokens are currently defined.

Practice 2.8 Define a regular expression so that negative and non-negative

integers can both be specified as tokens of the infix expression language.

You can check your answer(s) in Section 2.17.8.

2.7.2 Finite State Machines

A finite state machine is a mathematical model that accepts or rejects strings of

characters for some regular expression. A finite state machine is often called a finite

state automaton. The word automaton is just another word for machine. Every regular

expression has at least one finite state machine and vice versa, every finite state

machine has at least one matching regular expression. In fact, there is an algorithm

that given any regular expression can be used to construct a finite state machine for

it.

Formally a finite state automata is defined as follows.

2.7 Lexical Analysis 41

M = (�, S, F, s0, δ) where � (pronounced sigma) is the input alphabet (the characters

understood by the machine), S is a set of states, F is a subset of S usually written as

F ⊆ S, s0 is a special state called the start state, and δ (pronounced delta) is a function

that takes as input an alphabet symbol and a state and returns a new state. This is usually

written as δ : � × S → S.

A finite state machine has a current state which initially is the start state. The machine

starts in the start state and reads characters one at a time. As characters are read, the

finite state machine changes state. Each state has transitions to other states based

on the last character read. Each time the machine transitions to a new state, another

character is read from the stream of characters.

After reading all the characters of a token, if the current state is in the set of final

states, F , then the token is accepted by the finite state machine. Otherwise, it is

rejected. Finite state machines are typically represented graphically by drawing the

states, transitions, start state, and final states. States in a graphical representation are

depicted as nodes in a graph. The start state has an arrow going into it with nothing at

the back side of the arrow. The transitions are represented as arrows going from one

state to another and are labelled with the characters that trigger the given transition.

Finally, final or accepting states are denoted with a double circle.

Fig. 2.3 A finite state machine

42 2 Syntax

Figure 2.3 depicts a finite state machine for the language of infix expression tokens.

The start state is 1. Each of states 2 through 9 are accepting states, denoted with a

double circle. State 2 accepts identifier tokens. State 3 accepts number tokens. States

4 to 9 accept operators and the parenthesis tokens. The finite state machine accepts

one token at a time. For each new token, the finite state machine starts over in state 1.

If, while reading a token, an unexpected character is read, then the stream of tokens

is rejected by the finite state machine as invalid. Only valid strings of characters are

accepted as tokens. Characters like spaces, tabs, and newline characters are not

recognized by the finite state machine. The finite state machine only responds with

yes the string of tokens is in the language accepted by the machine or no it is not.

2.7.3 Lexer Generators

It is relatively easy to construct a lexer by writing a regular expression, drawing a

finite state machine, and then writing a program that mimics the finite state machine.

However, this process is largely the same for all programming languages so there

are tools that have been written to do this for us. Typically these tools are called

lexer generators. To use a lexer generator you must write regular expressions for the

tokens of the language and provide these to the lexer generator.

A lexer generator will generate a lexer program that internally uses a finite state

machine like the one pictured in Fig. 2.3, but instead of reporting yes or no, for each

token the lexer will return the string of characters, called the lexeme or word of

the token, along with a classification of the token. So, identifiers are categorized as

identifier tokens while ‘+’ is categorized as an add token.

The lex tool is an example of a lexical generator for the C language. If you are

writing an interpreter or compiler using C as the implementation language, then

you would use lex or a similar tool to generate your lexer. lex was a tool included

with the original Unix operating system. The Linux alternative is called flex. Java,

Python, Standard ML, and most programming languages have equivalent available

lexer generators.

2.8 Parsing

Parsing is the process of detecting whether a given string of tokens is a valid sentence

of a grammar. Every time you compile a program or run a program in an interpreter

the program is first parsed using a parser. When a parser isn’t able to parse a program

the programmer is told there is a syntax error in the program. A parser is a program

that given a sentence, checks to see if the sentence is a member of the language of

the given grammar. A parser usually does more than just answer yes or no. A parser

frequently builds an abstract syntax tree representation of the source program. There

are two types of parsers that are commonly constructed.

2.8 Parsing 43

Fig. 2.4 Parser data flow

• A top-down parser starts with the root of the parse tree.

• A bottom-up parser starts with the leaves of the parse tree.

Top-down and bottom-up parsers check to see if a sentence belongs to a grammar by

constructing a derivation for the sentence, using the grammar. A parser either reports

success (and possibly returns an abstract syntax tree) or reports failure (hopefully

with a nice error message). The flow of data is pictured in Fig. 2.4.

2.9 Top-Down Parsers

Top-down parsers are generally written by hand. They are sometimes called recursive

descent parsers because they can be written as a set of mutually recursive functions. A

top-down parser performs a left-most derivation of the sentence (i.e. source program).

A top-down parser operates by (possibly) looking at the next token in the source

file and deciding what to do based on the token and where it is in the derivation.

To operate correctly, a top-down parser must be designed using a special kind of

grammar called an LL(1) grammar. An LL(1) grammar is simply a grammar where

the next choice in a left-most derivation can be deterministically chosen based on the

current sentential form and the next token in the input. The first L refers to scanning

the input from left to right. The second L signifies that while performing a left-most

derivation, there is only 1 symbol of lookahead that is needed to make the decision

about which production to choose next in the derivation.

2.9.1 An LL(1) Grammar

The grammar for prefix expressions is LL(1). Examine the prefix expression grammar

G = (N , T , P,E) where

N = {E}

T = {identi f ier, number, +,−, ∗, /}

P is defined by the set of productions

44 2 Syntax

E → + E E | − E E | ∗ E E | / E E | identi f ier | number

While constructing any derivation for a sentence of this language, the next production

chosen in a left-most derivation is going to be obvious because the next token of the

source file must match the first terminal in the chosen production.

2.9.2 A Non-LL(1) Grammar

Some grammars are not LL(1). The grammar for infix expressions is not LL(1).

Examine the infix expression grammar G = (N , T ,P,E) where

N = {E, T, F}

T = {identi f ier, number, +,−, ∗, /, (,)}

P is defined by the set of productions

E → E + T | E − T | T

T → T ∗ F | T / F | F

F → (E) | identi f ier | number

Consider the infix expression 5 ∗ 4. A left-most derivation of this expression would

be

E ⇒ T ⇒ T ∗ F ⇒ F ∗ F ⇒ 5 ∗ F ⇒ 5 ∗ 4

Consider looking at only the 5 in the expression. We have to choose whether to use

the production E → E + T or E → T . We are only allowed to look at the 5 (i.e.

we can’t look beyond the 5 to see the multiplication operator). Which production do

we choose? We can’t decide based on the 5. Therefore the grammar is not LL(1).

Just because this infix expression grammar is not LL(1) does not mean that infix

expressions cannot be parsed using a top-down parser. There are other infix expres-

sion grammars that are LL(1). In general, it is possible to transform any context-free

grammar into an LL(1) grammar. It is possible, but the resulting grammar is not

always easily understandable.

The infix grammar given in Sect. 2.9.2 is left recursive. That is, it contains the

production E → E + T and another similar production for terms in infix expressions.

These rules are left recursive. Left recursive rules are not allowed in LL(1) grammars.

A left recursive rule can be eliminated in a grammar through a straightforward

transformation of its production.

Common prefixes in the right hand side of two productions for the same nontermi-

nal are also not allowed in an LL(1) grammar. The infix grammar given in Sect. 2.9.2

does not contain any common prefixes. Common prefixes can be eliminated by intro-

ducing a new nonterminal to the grammar, replacing all common prefixes with the

new nonterminal, and then defining one new production so the new nonterminal is

composed of the common prefix.

2.9 Top-Down Parsers 45

2.9.3 An LL(1) Infix Expression Grammar

The following grammar is an LL(1) grammar for infix expressions. G = (N , T ,

P,E) where

N = {E, Rest E, T, RestT, F}

T = {identi f ier, number, +,−, ∗, /, (,)}

P is defined by the set of productions

E → T Rest E

Rest E → + T Rest E | − T Rest E | ǫ

T → F RestT

RestT → ∗ F RestT | / F RestT | ǫ

F → (E) | identi f ier | number

In this grammar the ǫ (pronounced epsilon) is a special symbol that denotes an empty

production. An empty production is a production that does not consume any tokens.

Empty productions are sometimes convenient in recursive rules.

Once common prefixes and left recursive rules are eliminated from a context-free

grammar, the grammar will be LL(1). However, this transformation is not usually

performed because there are more convenient ways to build a parser, even for non-

LL(1) grammars.

Practice 2.9 Construct a left-most derivation for the infix expression 4+ (a −

b) ∗ x using the grammar in Sect. 2.9.3, proving that this infix expression is in

L(G) for the given grammar.

You can check your answer(s) in Section 2.17.9.

2.10 Bottom-Up Parsers

While the original infix expression language is not LL(1) it is LALR(1). In fact, most

grammars for programming languages are LALR(1). The LA stands for look ahead

with the 1 meaning just one symbol of look ahead. The LR refers to scanning the

input from left to right while constructing a right-most derivation. A bottom-up parser

constructs a right-most derivation of a source program in reverse. So, an LALR(1)

parser constructs a reverse right-most derivation of a program.

Building a bottom-up parser is a somewhat complex task involving the computa-

tion of item sets, look ahead sets, a finite state machine, and a stack. The finite state

machine and stack together are called a pushdown automaton. The construction of

the pushdown automaton and the look ahead sets are calculated from the grammar.

Bottom-up parsers are not usually written by hand. Instead, a parser generator is used

46 2 Syntax

Fig. 2.5 Parser generator data flow

to generate the parser program from the grammar. A parser generator is a program

that is given a grammar and builds a parser for the language of the grammar by

constructing the pushdown automaton and lookahead sets needed to parse programs

in the language of the grammar.

The original parser generator for Unix was called yacc, which stood for yet another

compiler compiler since it was a compiler for grammars that produced a parser for

a language. Since a parser is part of a compiler, yacc was a compiler compiler. The

Linux version of yacc is called Bison. Hopefully you see the pun that was used

in naming it Bison. The Bison parser generator generates a parser for compilers

implemented in C, C++, or Java. There are versions of yacc for other languages

as well. Standard ML has a version called ml-yacc for compilers implemented in

Standard ML. ML-yacc is introduced and used in Chap. 6.

Parser generators like Bison produce what is called a bottom-up parser because

the right-most derivation is constructed in reverse. In other words, the derivation is

done from the bottom up. Usually, a bottom-up parser is going to return an AST

representing a successfully parsed source program. Figure 2.5 depicts the dataflow

in an interpreter or compiler. The parser generator is given a grammar and runs once

to build the parser. The generated parser runs each time a source program is parsed.

A bottom-up parser parses a program by constructing a reverse right-most deriva-

tion of the source code. As the reverse derivation proceeds the parser shifts tokens

from the input onto the stack of the pushdown automaton. Then at various points

in time it reduces by deciding, based on the look ahead sets, that a reduction is

necessary.

2.10.1 Parsing an Infix Expression

Consider the grammar for infix expressions as G = (N , T ,P,E) where

N = {E, T, F}

T = {identi f ier, number, +,−, ∗, /, (,)}

P is defined by the set of productions

http://dx.doi.org/10.1007/978-3-319-70790-7_6

2.10 Bottom-Up Parsers 47

(1) E → E + T

(2) E → T

(3) T → T ∗ F

(4) T → F

(5) F → number

(6) F → (E)

Now assume we are parsing the expression 5 ∗ 4 + 3. A right-most derivation for
this expression is as follows.

E ⇒ E +T ⇒ E + F ⇒ E +3 ⇒ T +3 ⇒ T ∗ F +3 ⇒ T ∗4+3 ⇒ F ∗4+3 ⇒ 5∗4+3

A bottom-up parser does a right-most derivation in reverse using a pushdown automa-

ton. It can be useful to look at the stack of the pushdown automaton as it parses the

expression as pictured in Fig. 2.6. In step A the parser is beginning. The dot to the left

of the 5 indicates the parser has not yet processed any tokens of the source program

and is looking at the 5. The stack is empty. From step A to step B one token, the 5 is

shifted onto the stack. From step B to C the parser looks at the multiplication operator

and realizes that a reduction using rule 5 of the grammar must be performed. It is

called a reduction because the production is employed in reverse order. The reduction

pops the right hand side of rule 5 from the stack and replaces it with the nonterminal

F. If you look at this derivation in reverse order, the first step is to replace the number

5 with F.

The rest of the steps of parsing the source program follow the right-most derivation

either shifting tokens onto the stack or reducing using rules of the grammar. In step

O the entire source has been parsed, the stack is empty, and the source program is

accepted as a valid program. The actions taken while parsing include shifting and

reducing. These are the two main actions of any bottom-up parser. In fact, bottom-up

parsers are often called shift-reduce parsers.

Practice 2.10 For each step in Fig. 2.6, is there a shift or reduce operation

being performed? If it is a reduce operation, then what production is being

reduced? If it is a shift operation, what token is being shifted onto the stack?

You can check your answer(s) in Section 2.17.10.

Practice 2.11 Consider the expression (6 + 5) ∗ 4. What are the contents of

the pushdown automaton’s stack as the expression is parsed using a bottom-up

parser? Show the stack after each shift and each reduce operation.

You can check your answer(s) in Section 2.17.11.

48 2 Syntax

Fig. 2.6 A pushdown automaton stack

2.11 Ambiguity in Grammars 49

2.11 Ambiguity in Grammars

A grammar is ambiguous if there exists more than one parse tree for a given sentence

of the language. In general, ambiguity in a grammar is a bad thing. However, some

ambiguity may be allowed by parser generators for LALR(1) languages.

A classic example of ambiguity in languages arises from nested if-then-else state-

ments. Consider the following Pascal statement:

i f a<b t h e n

i f b<c t h e n

w r i t e l n ("a<c")
e l s e

w r i t e l n ("?")

Which if statement does the else go with? It’s not entirely clear. The BNF for an

if-then-else statement might look something like this.

<statement > ::= if <expression > then <statement > else <statement >

| if <expression > then <statement >

| writeln (<expression >)

The recursive nature of this rule means that if-then-else statements can be arbitrarily

nested. Because of this recursive definition, the else in this code is dangling. That is,

it is unclear if it goes with the first or second if statement.

When a bottom-up parser is generated using this grammar, the parser generator

will detect that there is an ambiguity in the grammar. The problem manifests itself

as a conflict between a shift and a reduce operation. The first rule says when looking

at an else keyword the parser should shift. The second rule says when the parser is

looking at an else it should reduce. To resolve this conflict there is generally a way

to specify whether the generated parser should shift or reduce. The default action is

usually to shift and that is what makes the most sense in this case. By shifting, the

else would go with the nearest if statement. This is the normal behavior of parsers

when encountering this if-then-else ambiguity.

2.12 Other Forms of Grammars

As a computer programmer you will likely learn at least one new language and

probably a few during your career. New application areas frequently cause new

languages to be developed to make programming applications in that area more

convenient. Java, JavaScript, and ASP.NET are three languages that were created

because of the world wide web. Ruby and Perl are languages that have become

popular development languages for database and server side programming. Objective

C is another language made popular by the rise of iOS App programming for Apple

products. A recent trend in programming languages is to develop domain specific

languages for particular embedded platforms.

50 2 Syntax

Programming language manuals contain some kind of reference that describes

the constructs of the language. Many of these reference manuals give the grammar

of the language using a variation of a context free grammar. Examples include CBL

(Cobol-like) grammars, syntax diagrams, and as we have already seen, BNF and

EBNF. All these syntax metalanguages share the same features as grammars. They

all have some way of defining parts of a program or syntactic categories and they all

have a means of defining a language through recursively defined productions. The

definitions, concepts, and examples provided in this chapter will help you understand

a language reference when the time comes to learn a new language.

2.13 Limitations of Syntactic Definitions

The concrete syntax for a language is almost always an incomplete description. Not

all syntactically valid strings of tokens should be regarded as valid programs. For

instance, consider the expression 5 + 4/0. Syntactically, this is a valid expression,

but of course cannot be evaluated since division by zero is undefined. This is a

semantic issue. The meaning of the expression is undefined because division by zero

is undefined. This is a semantic issue and semantics are not described by a syntactic

definition. All that a grammar can ensure is that the program is syntactically valid.

In fact, there is no BNF or EBNF grammar that generates only legal programs in

any programming language including C++, Java, and Standard ML. A BNF grammar

defines a context-free language: the left-hand side of each rules contains only one

syntactic category. It is replaced by one of its alternative definitions regardless of the

context in which it occurs.

The set of programs in any interesting language is not context-free. For instance,

when the expression a + b is evaluated, are a and b type compatible and defined

over the + operator? This is a context sensitive issue that can’t be specified using a

context-free grammar. Context-sensitive features may be formally described as a set

of restrictions or context conditions. Context-sensitive issues deal mainly with dec-

larations of identifiers and type compatibility. Sometimes, context-sensitive issues

like this are said to be part of the static semantics of the language.

While a grammar describes how tokens are put together to form a valid program

the grammar does not specify the semantics of the language nor does it describe the

static semantics or context-sensitive characteritics of the language. Other means are

necessary to describe these language characteristics. Some methods, like type infer-

ence rules, are formally defined. Most semantic characteristics are defined informally

in some kind of English language description.

These are all context-sensitive issues.

• In an array declaration in C++, the array size must be a nonnegative value.

• Operands for the && operation must be boolean in Java.

• In a method definition, the return value must be compatible with the return type

in the method declaration.

2.13 Limitations of Syntactic Definitions 51

• When a method is called, the actual parameters must match the formal parameter

types.

2.14 Chapter Summary

This chapter introduced you to programming language syntax and syntactic descrip-

tions. Reading and understanding syntactic descriptions is worthwhile since you

will undoubtedly come across new languages in your career as a computer scientist.

There is certainly more that can be said about the topic of programming language

syntax. Aho, Sethi, and Ullman [2] have written the widely recognized definitive

book on compiler implementation which includes material on syntax definition and

parser implementation. There are many other good compiler references as well. The

Chomsky hierarchy of languages is also closely tied to grammars and regular expres-

sions. Many books on Discrete Structures in Computer Science introduce this topic

and a few good books explore the Chomsky hierarchy more deeply including an

excellent text by Peter Linz [13].

In the next chapter you put this knowledge of syntax definition to good use learning

a new language: the JCoCo assembly language. JCoCo is a virtual machine for inter-

preting Python bytecode instructions. Learning assembly language helps in having a

better understanding of how higher level languages work and Chap. 3 provides many

examples of Python programs and their corresponding JCoCo assembly language

programs to show you how a higher level language is implemented.

2.15 Review Questions

1. What does the word syntax refer to? How does it differ from semantics?

2. What is a token?

3. What is a nonterminal?

4. What does BNF stand for? What is its purpose?

5. What kind of derivation does a top-down parser construct?

6. What is another name for a top-down parser?

7. What does the abstract syntax tree for 3∗ (4+5) look like for infix expressions?

8. What is the prefix equivalent of the infix expression 3 ∗ (4 + 5)? What does the

prefix expression’s abstract syntax tree look like?

9. What is the difference between lex and yacc?

10. Why aren’t all context-free grammars good for top-down parsing?

11. What kind of machine is needed to implement a bottom-up parser?

12. What is a context-sensitive issue in a language? Give an example in Java.

13. What do the terms shift and reduce apply to?

http://dx.doi.org/10.1007/978-3-319-70790-7_3

52 2 Syntax

2.16 Exercises

1. Rewrite the BNF in Sect. 2.2.1 using EBNF.

2. Given the grammar in Sect. 2.3.1, derive the sentence 3∗(4+5) using a right-most

derivation.

3. Draw a parse tree for the sentence 3 ∗ (4 + 5).

4. Describe how you might evaluate the abstract syntax tree of an expression to get

a result? Write out your algorithm in English that describes how this might be

done.

5. Write a regular expression to describe identifier tokens which must start with a

letter and then can be followed by any number of letters, digits, or underscores.

6. Draw a finite state machine that would accept identifier tokens as specified in the

previous exercise.

7. For the expression 3 ∗ (4 + 5) show the sequence of shift and reduce operations

using the grammar in Sect. 2.10.1. Be sure to say what is shifted and which rule

is being used to reduce at each step. See the solution to practice problem 2.1 for

the proper way to write the solution to this problem.

8. Construct a left-most derivation of 3 ∗ (4 + 5) using the grammar in Sect. 2.9.3.

2.17 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers

after you have tried each of them for yourself first. Practice problems are meant to

help reinforce the material you have just read so make use of them.

2.17.1 Solution to Practice Problem 2.1

This is a left-most derivation of the expression. There are other derivations that would

be correct as well.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ 4 + T ⇒ 4 + T ∗ F ⇒ 4 + F ∗ F ⇒ 4 + (E) ∗ F

⇒ 4 + (E − T) ∗ F ⇒ 4 + (T − T) ∗ F ⇒ 4 + (F − T) ∗ F ⇒ 4 + (a − T) ∗ F ⇒

4 + (a − F) ∗ F ⇒ 4 + (a − b) ∗ F ⇒ 4 + (a − b) ∗ x

2.17.2 Solution to Practice Problem 2.2

This is a right-most derivation of the expression x ∗ y + z. There is only one correct

right-most derivation.

E ⇒ E +T ⇒ E + F ⇒ E + z ⇒ T + z ⇒ T ∗ F + z ⇒ T ∗ y + z ⇒ F ∗ y + z ⇒ x ∗ y + z

2.17 Solutions to Practice Problems 53

2.17.3 Solution to Practice Problem 2.3

This is a left-most derivation of the expression +4 ∗ −abx .

E ⇒ +E E ⇒ +4E ⇒ +4 ∗ E E ⇒ +4 ∗ −E E E ⇒ +4 ∗ −aE E ⇒ +4∗

− abE ⇒ +4 ∗ −abx

2.17.4 Solution to Practice Problem 2.4

Exactly like the parse tree for any other derivation of (5 ∗ x) + y. There is only one

parse tree for the expression given this grammar.

2.17.5 Solution to Practice Problem 2.5

54 2 Syntax

2.17.6 Solution to Practice Problem 2.6

2.17.7 Solution to Practice Problem 2.7

2.17.8 Solution to Practice Problem 2.8

In order to define both negative and positive numbers, we can use the choice operator.

letter.letter* + digit.digit* + ‘-‘.digit.digit* ‘+’ + ‘-‘ + ‘*’ + ‘/’ + ‘(‘ + ‘)’

2.17 Solutions to Practice Problems 55

2.17.9 Solution to Practice Problem 2.9

E ⇒ T Rest E ⇒ F RestT Rest E ⇒ 4 RestT Rest E ⇒ 4 Rest E ⇒

4 + T Rest E ⇒ 4 + F RestT Rest E ⇒ 4 + (E) RestT Rest E ⇒ 4 + (T Rest E)RestT Rest E

⇒ 4 + (F RestT Rest E) RestT Rest E ⇒ 4 + (a RestT Rest E)RestT Rest E ⇒

4 + (a Rest E) RestT Rest E ⇒ 4 + (a − T Rest E) RestT Rest E ⇒

4 + (a − F Rest E) RestT Rest E ⇒ 4 + (a − b Rest E) ⇒ 4 + (a − b) RestT Rest E

⇒ 4 + (a − b) ∗ F RestT Rest E ⇒ 4 + (a − b) ∗ x RestT Rest E ⇒ 4 + (a − b) ∗ x Rest E

⇒ 4 + (a − b) ∗ x

2.17.10 Solution to Practice Problem 2.10

In the parsing of 5 ∗ 4 + 3 the following shift and reduce operations: step A initial

condition, step B shift, step C reduce by rule 5, step D reduce by rule 4, step E shift,

step F shift, step G reduce by rule 5, step H reduce by rule 3, step I reduce by rule

2, step J shift, step K shift, step L reduce by rule 5, step M reduce by rule 4, step N

reduce by rule 1, step O finished parsing with dot on right side and E on top of stack

so pop and complete with success.

2.17.11 Solution to Practice Problem 2.11

To complete this problem it is best to do a right-most derivation of (6 + 5) ∗ 4 first.

Once that derivation is complete, you go through the derivation backwards. The

difference in each step of the derivation tells you whether you shift or reduce. Here

is the result.

E ⇒ T ⇒ T ∗ F ⇒ T ∗ 4 ⇒ F ∗ 4 ⇒ (E) ∗ 4 ⇒ (E + T) ∗ 4 ⇒ (E + F) ∗ 4

⇒ (E + 5) ∗ 4 ⇒ (T + 5) ∗ 4 ⇒ (F + 5) ∗ 4 ⇒ (6 + 5) ∗ 4

We get the following operations from this. Stack contents have the top on the right

up to the dot. Everything after the dot has not been read yet. We shift when we must

move through the tokens to get to the next place we are reducing. Each step in the

reverse derivation provides the reduce operations. Since there are seven tokens there

should be seven shift operations.

1. Initially: . (6 + 5) ∗ 4

2. Shift: (. 6 + 5) ∗ 4

3. Shift: (6 . + 5) ∗ 4

4. Reduce by rule 5: (F . + 5) ∗ 4

5. Reduce by rule 4: (T . + 5) ∗ 4

6. Reduce by rule 2: (E . + 5) ∗ 4

7. Shift: (E + . 5) ∗ 4

56 2 Syntax

8. Shift: (E + 5 .) ∗ 4

9. Reduce by rule 5: (E + F .) ∗ 4

10. Reduce by rule 4: (E + T .) ∗ 4

11. Shift: (E + T) . ∗ 4

12. Reduce by rule 1: (E) . ∗ 4

13. Reduce by rule 6: F . ∗ 4

14. Reduce by rule 4: T . ∗ 4

15. Shift: T ∗ . 4

16. Shift: T ∗ 4 .

17. Reduce by rule 5: T ∗ F .

18. Reduce by rule 3: T .

19. Reduce by rule 2: E .

3Assembly Language

Python is an object-oriented, interpreted language. Internally to the Python inter-

preter, a Python program is converted to bytecode and interpreted using a virtual

machine. Most modern programming languages have support for high-level abstrac-

tions while the instructions of a virtual machine are closer to the machine language

instructions supported by hardware architectures, making the interpretation of byte-

code easier than interpretation of the original source program. The advantage of

virtual machine implementations results from dividing the mapping from high-level

abstractions to low-level machine instructions into two parts: high-level abstractions

to bytecode and bytecode to machine instructions.

While bytecode is a higher level abstraction than machine language, it is not greatly

so. As programmers, if we understand how the underlying machine executes our

programs, we better equip ourselves to make good choices about how we program.

Just as importantly, having an understanding of how programs are executed can help

us diagnose problems when things go wrong.

This chapter introduces assembly language programming in the bytecode lan-

guage of the Python virtual machine. The Python virtual machine is an internal

component of the Python interpreter and is not available to use directly. Instead, a

bytecode interpreter called JCoCo has been developed that mimics a subset of the

behavior of the Python 3.2 virtual machine. Instead of writing bytecode files directly,

JCoCo supports a Python virtual machine assembly language.

While learning assembly language, we’ll limit ourselves to a subset of Python.

JCoCo supports boolean values, integers, strings, floats, tuples, lists, and dictionaries.

It supports class and function definitions and function calls. It also supports most

of the instructions of the Python virtual machine including support for conditional

execution, iteration, and exception handling. It does not support importing modules

or module level code. JCoCo differs from Python by requiring a main function where

execution of a JCoCo assembled program begins.

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_3

57

58 3 Assembly Language

To run an assembly language program it must first be assembled, then it can be

executed. The JCoCo virtual machine includes the assembler so assembly isn’t a

separate step. An assembly language programmer writes a program in the JCoCo

assembly language format, providing it to JCoCo, which then assembles and inter-

prets the program.

The main difference between JCoCo assembly language and bytecode is the pres-

ence of labels in the assembly language format. Labels are the targets of instructions

that change the normal sequence of execution of instructions. Instructions like branch

and jump instructions are much easier to decipher if it says “jump to loop1” rather

than “jump to address 63”. Of course, bytecode instructions are encoded as numbers

themselves, so the assembler translates “jump to loop1” to something like “48 63”

which of course would require a manual to decipher.

Learning to program in assembly isn’t all that hard once you learn how constructs

like while loops, for loops, if-then statements, function definitions, and function calls

are implemented in assembly language. String and list manipulation is another skill

that helps if you have examples to follow. A disassembler is a tool that will take a

machine language program and produce an assembly language version of it. Python

includes a module called dis that includes a disassembler. When you write a Python

program it is parsed and converted to bytecode when read by the interpreter. The dis

module disassembler produces an assembly language program from this bytecode.

JCoCo includes its own disassembler which uses the Python dis module and produces

output suitable for the JCoCo virtual machine.

The existence of the disassembler for JCoCo means that learning assembly lan-

guage is as easy as writing a Python program and running it through the disassembler

to see how it is implemented in assembly language. That means you can discover

how Python is implemented while learning assembly language! Because Python’s

virtual machine is not guaranteed to be backwards compatible, you must use Python

3.2 when disassembling programs so make sure that version 3.2 is installed on your

system. To test this you can try typing “python3.2” in a terminal window in your

favorite operating system. If it says command not found, you likely don’t have Python

3.2 installed. In that case you can download it from http://python.org or directly from

the JCoCo website at http://cs.luther.edu/~leekent/JCoCo. The rest of this chapter

introduces you to assembly language programming using the JCoCo virtual machine.

You can download the full binary implementation of the JCoCo virtual machine

by going to http://cs.luther.edu/~leekent/JCoCo. Download the zip file containing a

coco shell script which runs the Java Virtual Machine on the JCoCo jar file. You can

also go to github and get the source code for the reduced functionality JCoCo project

at http://github.com/kentdlee/JCoCo.

3.1 Overview of the JCoCo VM

JCoCo, like Python, is a virtual machine, or interpreter, for bytecode instructions.

JCoCo is written in Java using object-oriented principles and does not store its

instructions in actual bytecode format. Instead, it reads an assembly language file

http://python.org
http://cs.luther.edu/~leekent/JCoCo
http://cs.luther.edu/~leekent/JCoCo
http://github.com/kentdlee/JCoCo

3.1 Overview of the JCoCo VM 59

and assembles it building an internal representation of the program as a sequence of

functions each with their own sequence of bytecode instructions. CoCo is another

implementation of this virtual machine, implemented in C++. You can find documen-

tation on the C++ version at http://cs.luther.edu/~leekent/CoCo. JCoCo is backwards

compatible with CoCo, but JCoCo does provide some additional functionality includ-

ing the ability to define classes, create objects, and utilize single inheritance which

are not used extensively in this text. Additionally, JCoCo provides an interactive

command-line debugger that can be used for debugging JCoCo assembly language

programs.

Most of the material presented in this chapter is true of either JCoCo or CoCo.

Chap. 6 again revisits JCoCo as a target language for Small, but either JCoCo or

CoCo will work as the Small compiler target.

A JCoCo program, like programs in other programming languages, utilizes a

run-time stack to store information about each function called while the program

is executing. Each function call in a JCoCo program results in a new stack frame

object being created and pushed onto the run-time stack. When a function returns, its

corresponding stack frame is popped from the run-time stack and discarded. Figure

3.1 depicts four active function calls. Function A called function B, which called

function C, which called function D before any of the functions returned. The top of

the stack is at the top of Fig. 3.1. Each stack frame contains all local variables that

are defined in the function. Each stack frame also contains two additional stacks, an

operand stack and a block stack.

JCoCo, like the Python virtual machine, is a stack based architecture. This means

that operands for instructions are pushed onto an operand stack. Virtual machine

instructions pop their operands from the operand stack, do their intended operation,

and push their results onto the operand stack. Most CPUs are not stack based. Instead

they have general purpose registers for holding intermediate results. Stack based

architectures manage the set of intermediate results as a stack rather than forcing the

programmer to keep track of which registers hold which results. The stack abstraction

makes the life of an assembly language programmer a little easier. The operand

stack is used by the virtual machine to store all intermediate results of instruction

execution. This style of computation has been in use a long time, from Hewlett

Packard mainframe computers of the 1960’s through the 1980’s to calculators still

made by Hewlett Packard today. The Java Virtual Machine, or JVM, is another

example of a stack machine.

The other stack utilized by JCoCo is a block stack. The block stack keeps track

of exit points for blocks of code within a JCoCo function. When a loop is entered,

the exit address of the loop is pushed onto the block stack. The instructions of each

function are at zero-based offsets from the beginning of the function, so we can think

of each function having its own instruction address space starting at 0. By storing

each loop’s exit point address on the block stack, if a break instruction is executed

inside a loop, the exit point of the loop can be found and the execution of the break

instruction will jump to that address. Exception handlers also push the address of the

handler onto the block stack. If an exception occurs, execution jumps to the exception

http://cs.luther.edu/~leekent/CoCo
http://dx.doi.org/10.1007/978-3-319-70790-7_6

60 3 Assembly Language

Fig. 3.1 The JCoCo virtual machine

3.1 Overview of the JCoCo VM 61

handler by popping the address from the block stack. When a loop or try block is

exited, the corresponding block stack address is popped from the block stack.

A program counter, or PC, is responsible for holding the address of the next

instruction to be executed. The machine proceeds by fetching an instruction from

the code, incrementing the PC, and executing the fetched instruction. Execution

proceeds this way until a RETURN_VALUE instruction is executed or an exception

occurs. When a function call is executed, the current program counter is stored in

the stack frame until the called function returns, when the PC is restored to the next

instruction in the current stack frame. This is depicted in Fig. 3.1 with the arrows

from the stack frames to the code of their corresponding functions.

When an exception occurs, if no matching exception handler is found, execution

of the function terminates and control is passed to the previously called function

where the exception continues to propagate back until a matching exception handler

is found. If no matching handler is found, the complete traceback of the exception is

printed. If no exception occurs during the running of a program, execution terminates

when the main function executes the RETURN_VALUE instruction.

The specification for JCoCo, including all instructions, global functions, and the

complete assembly language BNF supported by JCoCo can be found in Appendix

A. The rest of this chapter examines various Python language constructs and the

corresponding assembly language that implement these constructs. JCoCo assembly

language can be learned by examining Python code and learning how it is imple-

mented in assembly language. The rest of this chapter proceeds in this fashion.

3.2 Getting Started

JCoCo includes a disassembler that works with Python 3.2 to disassemble Python

programs into JCoCo assembly language programs, providing a great way to learn

assembly language programming using the JCoCo virtual machine. Consider the

following Python program that adds 5 and 6 together and prints the sum to the

screen.

1 f r o m disassembler i m p o r t *

2 i m p o r t sys

3

4 d e f main ():

5 x=5

6 y=6

7 z=x+y

8 p r i n t (z)

9

10 i f l e n (sys.argv) == 1:

11 main()

12 e l s e :

13 disassemble(main)

62 3 Assembly Language

Running this with python 3.2 as follows produces this output. Note that the 1 argument

is required to get assembly output because of the code on lines 10-13 of the Python

program.

MyComputer > python3 .2 addtwo.py 1

Function: main/0

Constants: None , 5, 6

Locals: x, y, z

Globals: print

BEGIN

LOAD_CONST 1

STORE_FAST 0

LOAD_CONST 2

STORE_FAST 1

LOAD_FAST 0

LOAD_FAST 1

BINARY_ADD

STORE_FAST 2

LOAD_GLOBAL 0

LOAD_FAST 2

CALL_FUNCTION 1

POP_TOP

LOAD_CONST 0

RETURN_VALUE

END

MyComputer > python3 .2 addtwo.py 1 > addtwo.casm

The disassembler prints the assembly language program to standard output, which is

usually the screen. The second run of the addtwo.py program redirects the standard

output to a file called addtwo.casm. The casm is the extension chosen for JCoCo

assembly language files and stands for CoCo Assembly. This CASM file holds all

the lines between the two MyComputer prompts above. To run this program you can

invoke the JCoCo virtual machine as shown here.

MyComputer > coco -v addtwo.casm

Function: main/0

Constants: None , 5, 6

Locals: x, y, z

Globals: print

BEGIN

LOAD_CONST 1

STORE_FAST 0

LOAD_CONST 2

STORE_FAST 1

LOAD_FAST 0

LOAD_FAST 1

BINARY_ADD

STORE_FAST 2

LOAD_GLOBAL 0

LOAD_FAST 2

CALL_FUNCTION 1

POP_TOP

3.2 Getting Started 63

LOAD_CONST 0

RETURN_VALUE

END

11

MyComputer > coco addtwo.casm

11

MyComputer >

The first run invokes coco which assembles the program producing the assembled

output and then runs the program producing the 11 that appears below the assembled

output. The assembled output is shown because the -v option was used when invoking

coco. The assembled output is printed to a stream called standard error which is

separate from the standard output stream where the 11 is printed. To only print the

exact output of the program, the -v option can be omitted.

In this JCoCo program there is one function called main. The assembly indicates

main has 0 formal parameters. Constants that are used in the code include None, 5,

and 6. There are three local variables in the function: x, y, and z. The global print

function is called and so is in the list of globals. Every function in JCoCo has these

categories of identifiers and values within each defined function. Sometimes one or

more of these categories may be empty and can be omitted in that case.

The instructions follow the begin keyword and preceed the end keyword.

LOAD_CONST loads the constant value at its index (zero based and 1 in this case)

into the constants onto the operand stack. JCoCo is a stack machine and therefore all

operations are performed with operands pushed and popped from the operand stack.

The STORE_FAST instruction stores a value in the locals list, in this case at

offset 0, the location of x. LOAD_FAST does the opposite of STORE_FAST, push-

ing a value on the operand stack from the locals list of variables. BINARY_ADD

pops two operands from the stack and adds them together, pushing the result.

CALL_FUNCTION pops the number of arguments specified in the instruction (1

in this case) and then pops the function from the stack. Finally, it calls the popped

function with the popped arguments. The result of the function call is left on the

top of the operand stack. In the case of the print function, None is returned and left

on the stack. The POP_TOP instruction pops the None from the stack and discards

it only to have the main function push a None on the stack just before returning.

RETURN_VALUE pops the top argument from the operand stack and returns that

value to the calling function. Since main was the only function called, returning from

it ends the coco interpretation of the program.

To run this code, you must have the coco executable somewhere in your path.

Then you can execute the following code to try it out.

MyComputer > python3 .2 addtwo.py 1 > addtwo.casm

MyComputer > coco addtwo.casm

64 3 Assembly Language

3.3 Input/Output

JCoCo provides one built-in function to read input from the keyboard and several

functions for writing output to this screen or standard output. The following program

demonstrates getting input from the keyboard and printing to standard output.

1 i m p o r t disassembler

2 d e f main ():

3 name = i n p u t ("Enter your name: ")

4 age = i n t (i n p u t ("Enter your age: "))

5 p r i n t (name + ", a year from now you will be", age+1, "years old.")

6 #main()

7 disassembler.disassemble(main)

In the Python code in Sect. 3.3, the input function is called. Calling input requires

a string prompt and returns a string of the input that was entered. Calling the int

function on a string, as is done in the line that gets the age from the user, returns the

integer representation of the string’s value. Finally, the print function takes a random

number of arguments, converts each to a string using the _ _str_ _ magic method,

and prints each string separated by spaces. The first argument to print in the code of

Sect. 3.3 is the result of concatenating name and the string”, a year from now you

will be”. String concatenation was used because there shouldn’t be a space between

the name value and the comma.

The assembly language that implements the program in Sect. 3.3 is given in

Fig. 3.2. Notice that built-in functions like input, int, and print are declared under

the Globals list. The name and age variables are the locals.

Line 9 pushes the input function onto the operand stack. Line 10 pushes the string

prompt for input. Line 11 calls the input function with the one allowed argument

given to it. The 1 in line 11 is the number of arguments. When the input function

returns it leaves string entered by the user on the operand stack. Line 12 stores that

string in the name location in the locals.

Line 13 prepares to convert the next input to an integer by first pushing the int

function on the operand stack. Then line 14 loads the input function. Line 15 loads

the prompt like line 10 did previously. Line 16 calls the input function. The result

is immediately passed to the int function by calling it on line 17. The int function

leaves an integer on the top of the operand stack and line 18 stores that in the age

variable location.

The next part of the program prints the output. To prepare for calling the print

function, the arguments must be evaluated first, then print can be called. Line 19

pushes the print function onto the stack but does not call print. There are three

arguments to the print function. The first argument is the result of concatenating

two strings together. Line 20 pushes the name variable’s value on the stack. Line

21 pushes the string”, a year from now you will be” onto the stack. Line 22 calls

the _ _add_ _ magic method to concatenate the two strings. The BINARY_ADD

instruction pops two operands from the stack, calls the _ _add_ _ method on the first

object popped with the second object as the argument which is described in more

detail in Appendix A.

Lines 23–25 add together age and 1 to get the correct age value to pass to print.

Line 26 pushes the last string constant on the operand stack and line 27 finally calls

3.3 Input/Output 65

Fig. 3.2 JCoCo I/O

the print function leaving None on the operand stack afterwards. Line 28 pops the

None value and immediately None is pushed back on the stack in line 29 because

the main function returns None in this case, which is returned in line 30, ending the

iotest.casm program’s execution.

A few important things to learn from this section:

• Getting input and producing output rely on the built-in functions input and print.

• Before a function can be called, it must be pushed on the operand stack. All

required arguments to the function must also be pushed onto the stack on top of

the function to be called.

• Finally, when a function returns, it leaves its return value on the operand stack.

66 3 Assembly Language

Practice 3.1 The code in Fig. 3.2 is a bit wasteful which often happens when

compiling a program written in a higher level language. Optimize the code in

Fig. 3.2 so it contains fewer instructions.

You can check your answer(s) in Section 3.17.1.

3.4 If-Then-Else Statements

Programming languages must be able to execute code based on conditions, either

externally provided via input or computed from other values as the program executes.

If-then statements are one means of executing code conditionally. The code provided

here isolates just an if-then statement to show how it is implemented in JCoCo

assembly.

1 i m p o r t disassembler

2 d e f main ():

3 x=5

4 y=6

5 i f x > y:

6 z=x

7 e l s e :

8 z=y

9 p r i n t (z)

10 disassembler.disassemble(main)

Disassembling this Python code results in the code in Fig. 3.3. There are new instruc-

tions in Fig. 3.3 that haven’t been encountered until now, but just as importantly, there

are labels in this code. A label provides a symbolic target to jump to in the code.

Labels, like label00 and label01, are defined by writing them before an instruction

and are terminated with a colon. A label to the right of an instruction is a target

for that instruction. Labels are a convenience in all assembly languages. They let

assembly language programmers think of jumping to a target in a program, rather

than changing the contents of the PC register, which is what actually happens. When

a program is executed using JCoCo the labels disappear because JCoCo assembles

the code, replacing the labels with the actual PC target addresses. The JCoCo code

in Fig. 3.4 shows the JCoCo code after it has been assembled. The assembled code

is printed by coco when the program is executed.

The first instruction, the LOAD_CONST, is at offset 0 in the code. The instructions

of each function are at zero-based offsets from the beginning of the function, so we

can think of each function as having its own address space starting at zero. In the

code in Figs. 3.3 and 3.4 the line number of the first instruction is 6, so 6 can be

subtracted from the line numbers to determine any instruction’s address within the

function and 6 can be added to any target to determine the line number of the target

3.4 If-Then-Else Statements 67

Fig. 3.3 If-Then-Else assembly

location. In Fig. 3.4 the target of line 13 is 11 which corresponds to line 17. Looking

at Fig. 3.3 this corresponds to the line where label00 is defined. Likewise, the target

of the JUMP_FORWARD instruction in Fig. 3.4 is label01 which is defined on line

19. Subtracting 6, we expect to see 13 as the target PC address in the assembled code

of Fig. 3.4.

Consulting the JCoCo BNF in Appendix A, there can be multiple labels on one

instruction. In addition, instruction addresses have nothing to do with which line

they are on. That only appears to be the case in Fig. 3.4 because the instructions

are on consecutive lines. But, adding blank lines to the program would do nothing

to change the instruction addresses. So, we could have a program like this where

one instruction has two labels. These three instructions would be at three addresses

within the program even though there are four lines in the code.

onelabel: LOAD_FAST 1

STORE_FAST 2

twolabel:

threelabel: LOAD_GLOBAL 0

68 3 Assembly Language

Fig. 3.4 Assembled code

Labels can be composed of any sequence of letters, digits, underscores, or the @

character, but must start with a letter, underscore, or the @ character. They can be

any number of characters long.

In Fig. 3.3, lines 6–11 load the two values to be compared on the stack. The

COMPARE_OP instruction on line 12 has an argument of 4. Consulting the COM-

PARE_OP instruction in Appendix A reveals that a 4 corresponds to a greater than

comparison. The comparison is done by calling the __gt__ magic method on the

second item from the top of the operand stack and passing it the top of the operand

stack. The two operands are popped by the COMPARE_OP instruction and a boolean

value, either True or False, is pushed on the operand stack as the result.

The next instruction jumps to the target location if the value left on the operand

stack was False. Either way, the POP_JUMP_IF_FALSE instruction pops the top

value from the operand stack.

Take note of line 16 in Fig. 3.3. In assembly there is nothing like an if-then-

else statement. Line 15 is the end of the code that implements the then part of the

statement. Without line 16, JCoCo would continue executing and would go right

into the else part of the statement. The JUMP_FORWARD instruction is necessary

to jump past the else part of the code if the then part was executed. Line 17 begins

3.4 If-Then-Else Statements 69

the else code and line 18 is the last instruction of the if-then-else statement. The

label definition for label01 is still part of the if-then-else statement, but labels the

instruction immediately following the if-then-else statement.

Practice 3.2 Without touching the code that compares the two values, the

assembly in Fig. 3.4 can be optimized to remove at least three instructions.

Rewrite the code to remove at least three instructions from this code. With a

little more work, five instructions could be removed.

You can check your answer(s) in Section 3.17.2.

3.4.1 If-Then Statements

Frequently if-then statements are written without an else clause. For instance, this

program prints x if x is greater than y. In either case y is printed.

1 i m p o r t disassembler

2

3 d e f main ():

4 x = 5

5 y = 6

6 i f x > y:

7 p r i n t (x)

8

9 p r i n t (y)

10

11 disassembler.disassemble(main)

Disassembling this code produces the program in Fig. 3.5. The code is very similar

to the code presented in Fig. 3.3. Line 13 once again jumps past the then part of the

program. Lines 14–17 contain the then code. Interestingly, line 18 jumps forward to

line 19. Comparing this to the code in Fig. 3.3 where the jump forward jumps past

the else part, the same happens in Fig. 3.5 except that there is no else part of the

statement.

Some assembly languages do not have an equivalent to POP_JUMP_IF_FALSE.

Instead, only an equivalent to POP_JUMP_IF_TRUE is available. In that case, the

opposite of the condition can be tested and the jump will be executed if the opposite

is true, skipping over the then part. For instance, if testing for greater than is the

intent of the code, less than or equal to can be tested to jump around the then part

of an if-then-else statement.

70 3 Assembly Language

Fig. 3.5 If-Then assembly

Whether testing the original condition or the opposite, clearly the

JUMP_FORWARD is not needed in the code in Fig. 3.5. As was seen in practice

3.1, the Python compiler generated a wasteful instruction. It isn’t wrong to jump

forward, it’s just not needed. The convenience of writing in a language like Python

far outweighs the inconvenience of writing in a language like JCoCo assembly lan-

guage, so an extra instruction now and then is not that big a deal. In this case though,

the Python compiler could be written in such a way as to recognize when the extra

instruction is not needed.

Practice 3.3 Rewrite the code in Fig. 3.5 so it executes with the same result

using POP_JUMP_IF_TRUE instead of the jump if false instruction. Be sure to

optimize your code when you write it so there are no unnecessary instructions.

You can check your answer(s) in Section 3.17.3.

3.5 While Loops 71

3.5 While Loops

Consider this code which computes the Fibonacci number for the value stored in the

variable f. The sequence of Fibonacci numbers are computed by adding the previous

two numbers in the sequence together to get the next number. The sequence consists

of 1, 1, 2, 3, 5, 8, 13, 21, and so on, the eighth element of the sequence being 21.

1 i m p o r t disassembler

2 d e f main ():

3 f=8

4 i=1

5 j=1

6 n=1

7 w h i l e n < f:

8 n=n+1

9 tmp = j

10 j=j+i

11 i = tmp

12 p r i n t ("Fib("+ s t r (n)+") is",i)

13 disassembler.disassemble(main)

The JCoCo assembly for this program implements the while loop of the Python

program using JUMP_ABSOLUTE and POP_JUMP_IF_FALSE instructions. Prior

to the loop, the SETUP_LOOP instruction’s purpose is not readily apparent. In

Python a loop may be exited using a break instruction. Using break inside a loop is not

a recommended programming style. A break is never needed. It is sometimes used

as a convenience. To handle the break instruction when it is executed there must be

some knowledge about where the loop ends. In the code in Fig. 3.6 the first instruction

after the loop is on line 33, where label02 is defined. The SETUP_LOOP instruction

pushes the address of that instruction on the block stack. If a break instruction is

executed, the block stack is popped and the PC is set to the popped instruction

address.

Lines 15–18 of Fig. 3.6 implement the comparison of n < f similarly to the way

if-then-else comparisons are performed. The first line of this code is labeled with

label00 because the end of the loop jumps back there to see if another iteration

should be performed. A while loop continues executing until the condition evaluates

to False so the POP_JUMP_IF_FALSE instruction jumps to label01 when the loop

terminates.

The instruction at label01 labels the POP_BLOCK instruction. This instruction

is needed if the loop exits normally, not as the result of a break statement. The block

stack is popped, removing the loop exit point from it. When exiting as a result of

a break, execution jumps to the instruction at line 33, skipping the POP_BLOCK

instruction since the break statement already popped the block stack.

An important thing to notice is that a while loop and an if-then-else statement

are implemented using the same instructions. There is no special loop instruction

in assembly language. The overall flow of a while loop is a test before the body

of the loop corresponding to the while loop condition. If the loop condition is not

72 3 Assembly Language

Fig. 3.6 While loop assembly

3.5 While Loops 73

met, execution jumps to the next instruction after the loop. After the body of the

loop a jump returns execution to the while loop condition code to check if another

iteration of the body will be performed. This idiom, or pattern of instructions, is

used to implement loops and similar patterns are used for loops in other assembly

languages as well.

Practice 3.4 Write a short program that tests the use of the BREAK_LOOP

instruction. You don’t have to write a while loop to test this. Simply write some

code that uses a BREAK_LOOP and prints something to the screen to verify

that it worked.

You can check your answer(s) in Section 3.17.4.

3.6 Exception Handling

Exception handling occurs in Python within a try-except statement. Statements within

the try block are executed and if an exception occurs execution jumps to the except

block of statements. If main were called on the Python program given here, any error

condition would send it to the except block which simply prints the exception in this

case. The except block is only executed if there is an error in the try block. Errors

that could occur in this program would be a conversion error for either of the two

floating point number conversions or a division by zero error. The code catches an

exception if a zero is entered for the second value.

1 i m p o r t disassembler

2 d e f main ():

3 t r y :

4 x = f l o a t (i n p u t ("Enter a number: "))

5 y = f l o a t (i n p u t ("Enter a number: "))

6 z=x/y

7 p r i n t (x,"/",y,"=",z)

8 e x c e p t Exception as ex:

9 p r i n t (ex)

10 disassembler.disassemble(main)

Implementing exception handling in JCoCo is similar in some ways to implementing

the BREAK_LOOP instruction. The difference is that the exception causes the pro-

gram to jump from one place to the next instead of the BREAK_LOOP instruction.

Both exception handling and the break instruction make use of the block stack. When

a loop is entered, the SETUP_LOOP instruction pushes the exit point of the loop

onto the block stack; the exit point being an integer referring to the address of the

first instruction after the loop.

To distinguish between loop exit points and exception handling, the

SETUP_EXCEPT instruction pushes the negative of the except handler’s address

74 3 Assembly Language

(i.e. –1*address). So a negative number on the block stack refers to an exception

handler while a positive value refers to a loop exit point. In the code in Fig. 3.7 the

exception handler’s code begins at label00.

The try block code begins on line 7 with the SETUP_EXCEPT. This pushes

the handler’s address for label00 on the block stack which corresponds to a –27.

Execution proceeds by getting input from the user, converting the input to floats,

doing the division, and printing the result. The print completes on line 24 where

None, which is returned by print, is popped from the operand stack.

If execution makes it to the end of the try block, then no exception occurred and

line 25 pops the –27 from the block stack, ending the try block. Line 26 jumps past

the end of the except block.

If an exception occurs, three things are pushed onto the operand stack before any

handling of the exception occurs. The traceback is pushed first. The traceback is a

copy of the run-time stack containing each function call and the stored PC of all

pending functions including the current function’s stack frame and PC. Above the

traceback there are two copies of the exception object pushed on the operand stack

when an exception occurs.

If an exception occurs in the try block, JCoCo consults the block stack and pops

values until a negative address is found corresponding to some except block. Multiple

try-except statements may be nested, so it is possible that the block stack will contain

more than one negative address. When a negative address is found, the PC is set to

its positive value causing execution to jump to the except block. In Fig. 3.7, that’s

line 27. The traceback and two copies of the exception are pushed onto the stack

prior to line 27 being executed.

Why are three objects pushed on the operand stack when an exception occurs?

Python’s RAISE_VARARGS instruction describes the contents of the operand stack

as TOS2 containing the traceback, TOS1 the parameter, and TOS the exception

object. In the JCoCo implementation the parameter to an exception can be retrieved

by converting the exception to a string, so the object at TOS1 is simply the exception

again. For the sake of compatibility with the Python disassembler JCoCo pushes

three operands pushed onto the operand stack when an exception is raised.

Exception handlers in Python may be written to match only certain types of

exceptions. For instance, in Python a division by zero exception is different than a

float conversion error. The JCoCo virtual machine currently only has one type of

exception, called Exception. It is possible to extend JCoCo to support other types

of exceptions, but currently there is only one type of exception object that can be

created. The argument to the exception object can be anything that is desired. The

program in Fig. 3.7 is written to catch any type of exception, but it could be written to

catch only a certain type of exception. Line 27 duplicates the exception object on the

top of the operand stack. Line 35 loads a global Exception object onto the stack. The

COMPARE_OP 10 instruction compares the exception using the exception match

comparison which calls the __excmatch__ magic method to see if there is a match

between the thrown exception and the specified pattern. If there is not a match, line

30 jumps to the end of the except block. The END_FINALLY instruction on line 47

detects if the exception was handled and if not, it re-throws the exception for some

outer exception handling block.

3.6 Exception Handling 75

Fig. 3.7 Exception handling assembly

76 3 Assembly Language

If the exception was a match, execution of the handler code commences as it does

on line 31 of the program. The top of the operand stack contains the extra exception

object so it is thrown away by line 31. Line 32 takes the remaining exception object

and makes the ex reference point to it. Line 33 pops the traceback from the operand

stack.

Should an exception occur while executing an exception handler, then JCoCo must

clean up from the exception. Line 34 executes the SETUP_FINALLY instruction to

push another block stack record to keep track of the end of the exception handler.

Lines 35–38 print the exception named ex in the code.

Line 39 pops the exit address that was pushed by the SETUP_FINALLY instruc-

tion. The POP_EXCEPT instruction on line 40 then pops the block stack address

for the exception handler exit address. Line 41 pushes a None on the operand stack.

Line 42 is either the next instruction executed or it is jumped to as a result of an

exception while executing the handler code for the previous exception. Either way,

the ex variable is made to refer to None. The DELETE_FAST instruction doesn’t

appear to do much in this code. It is generated by the disassembler, but appears to

delete None which doesn’t seem to need to be done.

The last instruction of the handler code, the END_FINALLY instruction checks

to see if the exception was handled. In this case, it was handled and the instruction

does nothing. If execution jumps to line 47 then the exception handler did not match

the raised exception and therefore the exception is re-raised. Line 48 wraps up by

setting up to return None from the main function.

Practice 3.5 Write a short program that tests creating an exception, raising it,

and printing the handled exception. Write this as a JCoCo program without

using the disassembler.

You can check your answer(s) in Section 3.17.5.

3.7 List Constants

Building a compound value like a list is not too hard. To build a list constant using

JCoCo you push the elements of the list on the operand stack in the order you want

them to appear in the list. Then you call the BUILD_LIST instruction. The argument

to the instruction specifies the length of the list. This code builds a list and prints it

to the screen.

1 i m p o r t disassembler

2 d e f main ():

3 lst = ["hello","world"]

4 p r i n t (lst)

5 disassembler.disassemble(main)

3.7 List Constants 77

Fig. 3.8 Assembly for building a list

The assembly language program in Fig. 3.8 builds a list with two elements: [‘hello’,

‘world’]. Lines 6 and 7 push the two strings on the operand stack. Line 8 pops the

two operands from the stack, builds the list object, and pushes the resulting list on the

operand stack. Python defines the __str__ magic method for built-in type of value,

which is called on the list on line 12.

If you run this program using the JCoCo interpreter you will notice that [‘hello’,

‘world’] is not printed to the screen. Instead, [hello, world] is printed. This is because

currently the __str__ method is called on each element of the list to convert it to

a string for printing. This is not the correct method to call. Instead, the __repr__

magic method should be called which returns a printable representation of the value

retaining any type information. In the next chapter there will be an opportunity to

fix this.

3.8 Calling a Method

Calling functions like print and input was relatively simple. Push the function name

followed by the arguments to the function on the operand stack. Then, call the

function with the CALL_FUNCTION instruction. But, how about methods? How

does a method like split get called on a string? Here is a program that demonstrates

how to call split in Python.

78 3 Assembly Language

Fig. 3.9 Assembly for Calling a method

1 i m p o r t disassembler

2 d e f main ():

3 s = i n p u t ("Enter integers:")

4 lst = s.split()

5 p r i n t (lst)

6 disassembler.disassemble(main)

Line 6 of the assembly language code in Fig. 3.9 prepares to call the input function

by loading the name input onto the operand stack. Line 7 loads the argument to

input, the prompt string. Line 8 calls the input function leaving the entered text on

the operand stack. Calling split is done similarly.

In this Python code the syntax of calling input and split is quite different. Python

sees the difference and uses the LOAD_ATTR instruction in the assembly language

instructions to get the split attribute of the object referred to by s. Line 10 loads the

object referred to by s on the stack. Then line 11 finds the split attribute of that object.

Each object in JCoCo and Python contains a dictionary of all the object’s attributes.

This LOAD_ATTR instruction examines the dictionary and with the key found in the

globals list at the operands index. It then loads that attribute onto the operand stack.

The CALL_FUNCTION instruction then calls the method that was located with the

LOAD_ATTR instruction.

The STORE_ATTR instruction stores an attribute in an object in much the same

way that an attribute is loaded. JCoCo does not presently support the STORE_ATTR

instruction but could with relatively little effort. The ability to load and store object

3.8 Calling a Method 79

attributes means that JCoCo could be used to implement an object-oriented language.

This makes sense since Python is an object-oriented language.

Practice 3.6 Normally, if you want to add to numbers together in Python,

like 5 and 6, you write 5+6. This corresponds to using the BINARY_ADD

instruction in JCoCo which in turn calls the magic method __add__ with the

method call 5._ _add_ _(6). Write a short JCoCo program where you add two

integers together without using the BINARY_ADD instruction. Print the result

to the screen.

You can check your answer(s) in Section 3.17.6.

3.9 Iterating Over a List

Iterating through a sequence of any sort in JCoCo requires an iterator. There are

iterator objects for every type of sequence: lists, tuples, strings, and other types of

sequences that have yet to be introduced. Here is a Python program that splits a string

into a list of strings and iterates over the list.

1 f r o m disassembler i m p o r t *

2 d e f main ():

3 x = i n p u t ("Enter a list: ")

4 lst = x.split()

5 f o r b i n lst:

6 p r i n t (b)

7 disassemble(main)

Lines 6–8 of the assembly code in Fig. 3.10 gets an input string from the user, leaving

it on the operand stack. Line 9 stores this in the variable x. Lines 10–12 call the split

method on this string, leaving a list object on the top of the operand stack. The list

contains the list of space separated strings from the original string in x. Line 13 stores

this list in the variable lst.

Line 14 sets up the exit point of a loop as was covered earlier in this chapter. Line

15 loads the lst variable onto the operand stack. The GET_ITER instruction creates

an iterator with the top of the operand stack. The lst is popped from the operand

stack during this instruction and the resulting iterator is pushed onto the stack.

An iterator has a __next__ magic method that is called by the FOR_ITER instruc-

tion. When FOR_ITER executes the iterator is popped from the stack, __next__ is

called on it, and the iterator and the next value from the sequence are pushed onto

the operand stack. The iterator is left below the next value in the sequence at TOS1.

When __next__ is called on the iterator and there are no more elements left in the

sequence, the PC is set to the label of the FOR_ITER instruction, ending the loop.

When the loop is finished the block stack is popped to clean up from the loop.

Line 25 loads the None on the stack before returning from the main function.

80 3 Assembly Language

Fig. 3.10 List iteration assembly

Practice 3.7 Write a JCoCo program that gets a string from the user and

iterates over the characters of the string, printing them to the screen.

You can check your answer(s) in Section 3.17.7.

3.10 Range Objects and Lazy Evaluation 81

3.10 Range Objects and Lazy Evaluation

Indexing into a sequence is another way to iterate in a program. When you index

into a list, you use a subscript to retrieve an element of the list. Generally, indices

are zero-based. So the first element of a sequence is at index 0, the second at index

1, and so on.

There are two versions of Python in use today. Version 2, while older is still widely

used because there are many Python programs that were written using it and there is a

cost to converting them to use Python 3. Python 3 was created so new features could

be added that might be incompatible with the older version. One difference was in

the range function. In Python 2, the range function generated a list of integers of the

specified size and values. This is inefficient because some ranges might consist of

millions of integers. A million integers takes up a lot of space in memory and takes

some time to generate. In addition, depending on how code is written, not all the

integers in a range may be needed. These problems are a result of eager evaluation of

the range function. Eager evaluation is when an entire sequence is generated before

any element of the sequence will actually be used. In Python 2 the entire list of

integers is created as soon as the range function is called even though the code can

only use one integer at a time.

Python 3 has dealt with the eager evaluation of the range function by defining a

range object that is lazily evaluated. This means that when you call the range function

to generate a million integers, you don’t get any of them right away. Instead, you get

a range object. From the range object you can access an iterator. When __next__

is called on an iterator you get the next item in the sequence. When __next__ is

called on a range object iterator you get the next integer in the range’s sequence.

Lazy evaluation is when the next value in a sequence is generated only when it is

ready to be used and not before. This code creates a range object. The range object

is designed to provide lazy evaluation of integer sequences.

1 f r o m disassembler i m p o r t *

2 d e f main ():

3 x = i n p u t ("Enter list: ")

4 lst = x.split()

5 f o r i i n r a n g e (l e n (lst)-1,-1,-1):

6 p r i n t (lst[i])

7 disassemble(main)

This Python code uses indices to iterate backwards through a list. In this case an

iterator over the range object yields a descending list of integers which are the indices

into the list of values entered by the user. If the use enters four space separated values,

then the range object will yield the sequence [3, 2, 1, 0]. The first argument to range

is the start value, the second is one past the stop value, and the third argument is the

increment. So the sequence in the Python code in Sect. 3.10 is a descending sequence

that goes down one integer at a time from the length of the list minus one to zero.

The JCoCo assembly code in Fig. 3.11 implements this same program. Lines 15–

23 set up for calling the range function with the three integer values. Lines 15–20

call the len function to get the length of the list and subtract one. Lines 21 and 22 put

82 3 Assembly Language

Fig. 3.11 Range assembly

two –1 values on the operand stack. Line 23 calls the range function which creates

and pushes a range object onto the operand stack as its result.

Line 24 creates an iterator for the range object. As described in the last section,

the FOR_ITER instruction calls the __next__ magic method on the iterator to get the

next integer in the range’s sequence. The lazy evaluation occurs because an iterator

keeps track of which integer is the next value in the sequence. Line 26 stores the next

integer in the variable i.

3.10 Range Objects and Lazy Evaluation 83

The BINARY_SUBSCR instruction is an instruction that has not been encountered

yet in this chapter. Line 28 loads the list called lst onto the operand stack. Line 29

loads the value of i onto the operand stack. The BINARY_SUBSCR instruction indexes

into lst at position i and pushes the value found at that position onto the operand

stack. That value is printed by the print function call on line 31 of the program.

Lazy evaluation is an important programming language concept. If you ever find

yourself writing code that must generate a predictable sequence of values you prob-

ably want to generate that sequence lazily. Iterators, like range iterators, are the

means by which we can lazily access a sequence of values and range objects define

a sequence of integers without eagerly generating all of them.

3.11 Functions and Closures

Up to this point in the chapter all the example programs have been defined in a

main function. JCoCo supports the definition of multiple functions and even nested

functions. Here is a Python program that demonstrates how to write nested functions

in the Python programming language. The main function calls the function named

f which returns the function g nested inside the f function. The g function returns

x. This program demonstrates nested functions in JCoCo along with how to build a

closure.

1 i m p o r t disassembler

2 d e f main ():

3 x = 10

4 d e f f(x):

5 d e f g():

6 r e t u r n x

7 r e t u r n g

8 p r i n t (f(3)())

9 disassembler.disassemble(main)

Notice the Python code in section 3.11 calls the disassembler on the top-level function

main. It is not called on f or g because they are nested inside main and the disassembler

automatically disassembles any nested functions of a disassembled function.

The format of the corresponding JCoCo program in Fig. 3.12 is worth noting as

well. The top level main function is defined along the left hand side. Indentation has

no effect on JCoCo but visually you see that f is nested inside main. The function g

is nested inside f because it appears immediately after the first line of the definition

of f on line 3. The rest of the definition of f starts again on line 10 and extends to

line 21. The definition of g starts on line 3 and extends to line 9.

The number of arguments for each function is given by the integer after the slash.

The f/1 indicates that f expects one argument. The main and g functions expect zero

arguments. These values are used during a function call to verify that the function is

called with the required number of arguments.

84 3 Assembly Language

Fig. 3.12 Nested functions assembly

3.11 Functions and Closures 85

Examine the Python code in section 3.11 carefully. The main function calls the

function f which returns the function g. Notice that f returns g, it does not call g.

In the print statement of main the function f is called, passing 3 to the function that

returns g. The extra set of parens after the function call f(3) calls g. This is a valid

Python program, but not a common one. The question is: What does the program

print? There are two possible choices it seems: either 10 or 3. Which seems more

likely?

On the one hand, g is being called from the main function where x is equal to 10. If

the program printed 10, we would say that Python is a dynamically scoped language,

meaning that the function executes in the environment in which it is called. Since

g is called from main the value of x is 10 and in a dynamically scoped language

10 would be printed. The word dynamic is used because if g were called in another

environment it may return something completely different. We can only determine

what g will return by tracing the execution of the program to the point where g is

called.

On the other hand, g was defined in the scope of an x whose value was 3. In that

case, the environment in which g executes is the environment provided by f. If 3

is printed then Python is a statically scoped language meaning that we need only

understand what the environment contained when g was defined, not when it was

called. In a statically scoped language this specific instance of g will return the same

value each and every time it is called, not matter where it is called in the program.

The value of x is determined when g is defined.

Dynamically scoped languages are rare. Lisp, when it was first defined, was

dynamically scoped. McCarthy quickly corrected that and made Lisp a statically

scoped language. It is interesting to note that Emacs Lisp is dynamically scoped.

Python is statically scoped as are most modern programming languages.

To execute functions in a statically scoped language, two pieces are needed when a

function may return another function. To execute g not only is the code for g required,

but so also is the environment in which this instance of g was defined. A closure is

formed. A closure is the environment in which a function is defined and the code for

the function itself. This closure is what is called when the function g is finally called

in main.

Take a look at the JCoCo code for this program in Fig. 3.12. Line 14 begins

creating a new closure object in the body of function f by loading the cell variable

named x onto the stack. A cell variable is an indirect reference to a value. Figure

3.13 depicts what is happening in the program just before the x is returned in the

function g. A variable in Python, like Java and many other languages, is actually a

reference that points to a value. Values exist on the heap and are created dynamically

as the program executes. When a variable is assigned to a new value, the variables

reference is made to point to a new value on the heap. The space for values on the

heap that are no longer needed is reclaimed by a garbage collector that frees space

on the heap so it can be re-used. In Fig. 3.13 there are three values on the heap, a 10,

a 3, and one other value called a cell in JCoCo and the Python virtual machine.

Because the function g needs access to the variable x outside the function f, the

3 is indirectly referenced through a cell variable. The LOAD_CLOSURE instruction

86 3 Assembly Language

Fig. 3.13 Execution of nested.casm

pushes that cell variable onto the stack to be used in the closure. Since only one

value is needed from the environment, the next instruction on line 15 builds a tuple

of all the values needed from the environment. Line 16 loads the code for g onto the

stack. Line 17 forms the closure by popping the function and the environment from

the stack and building a closure object.

The variable x is a local variable for the function f. But, because x is referenced

in g and g is nested inside f, the variable x is also listed as a cell variable in f. A

cell variable is an indirect reference to a value. This means there is one extra step to

finding the value that x refers to. We must go through the cell to get to the 3.

The LOAD_DEREF instruction on line 7 is new. A LOAD_DEREF loads the

value that is referenced by the reference pointed to in the list of cellvars. So, this

instructions pushes the 3 onto the operand stack. Finally, line 35 calls the closure

consisting of the function and its data.

In the function g the freevars refer to the tuple of references in the closure that was

just called, so the first instruction, the LOAD_DEREF, loads the 3 onto the operand

stack. Figure 3.13 depicts this state right before the RETURN_VALUE instruction is

executed.

To finish up the execution of this program a 3 is returned from the call to g and

its frame is popped from the run-time stack. Control returns to main where the 3 is

3.11 Functions and Closures 87

printed. After returning from main its frame is also popped from the run-time stack

which ends the program.

Practice 3.8 The program in Fig. 3.12 would work just fine without the cell.

The variable x could refer directly to the 3 in both the f and g functions without

any ramifications. Yet, a cell variable is needed in some circumstances. Can

you come up with an example where a cell variable is absolutely needed?

You can check your answer(s) in Section 3.17.8.

3.12 Recursion

Functions in JCoCo can call themselves. A function that calls itself is a recursive

function. Recursive functions are studied in some detail in Chap. 5 of this text. Learn-

ing to write recursive functions well is not hard if you follow some basic rules. The

mechanics of writing a recursive function include providing a base case that comes

first in the function. Then, the solution to the problem you are solving must be solved

by calling the same function on some smaller piece of data while using that result to

construct a solution to the bigger problem.

Consider the factorial definition. Factorial of zero, written 0!, is defined to be 1.

This is the base case. For integer n greater than 0, n! = n*(n–1)!. This is a recursive

definition because factorial is defined in terms of itself. It is called on something

smaller, meaning n–1 which is closer to the base case, and the result is used in

computing n!. Here is a Python program that computes 5!.

1 i m p o r t disassembler

2 d e f factorial(n):

3 i f n==0:

4 r e t u r n 1

5 r e t u r n n*factorial(n-1)

6 d e f main ():

7 p r i n t (factorial (5))

8

9 disassembler.disassemble(factorial)

10 disassembler.disassemble(main)

The JCoCo implementation of this program is given in Fig. 3.14. The program begins

in main by loading 5 on the operand stack and calling the factorial function. The

result is printed to the screen with the print function.

Calling factorial jumps to the first instruction of the function where n is loaded

onto the operand stack, which in this case is 5. Lines 7–8 compare n to 0 and if the two

values are equal, 1 is returned. Notice that the RETURN_VALUE instruction appears

in the middle of the factorial function in this case. A return instruction doesn’t have

http://dx.doi.org/10.1007/978-3-319-70790-7_5

88 3 Assembly Language

Fig. 3.14 Recursion assembly

to appear at the end of a function. It can appear anywhere it makes sense and in this

case, it makes sense to return from the base case as soon as soon as possible.

The code from label00 forward is the recursive case since otherwise we would

have returned already. The code subtracts one from n and calls factorial with that

new, smaller value. Notice that the recursive function call is identical to any other

function call. Finally, after the function call the result of the call is on the operand

stack and it is multiplied by n to get n! which is returned.

Because this is a recursive function, the preceding two paragraphs are repeated

5 more times, each time reducing n by 1. The program continues to count down

until 1 is returned for the factorial of 0. At its deepest, there are 7 stack frames on

the run-time stack for this program: one for the main function, and six more for the

3.12 Recursion 89

recursive factorial function calls. The run-time stack grows to 7 stack frames deep

when the base case is executed and then shrinks again as the recursion unwinds.

Finally, when the program returns to main, 120 is printed to the screen.

Practice 3.9 Draw a picture of the run-time stack just before the instruction

on line 11 of Fig. 3.14 is executed. Use Fig. 3.13 as a guide to how you draw

this picture. Be sure to include the code, the values of n, and the PC values.

You can check your answer(s) in Section 3.17.9.

3.13 Support for Classes and Objects

In Python a class definition consists of a class declaration. The class declaration

contains a magic method named __init__ which is responsible for initializing any

created object. On line 14 of this Python program an object is instantiated. Python

automatically calls the constructor to initialize the space allocated by Python for the

object.

1 i m p o r t disassembler

2 c l a s s Dog:

3 d e f __init__(self):

4 self.food = 0

5 d e f eat(self):

6 self.food = self.food + 1

7 d e f speak(self):

8 i f self.food > 2:

9 p r i n t ("I am happy!")

10 e l s e :

11 p r i n t ("I am hungry !!!")

12 self.food=self.food - 1

13 d e f main ():

14 mesa = Dog()

15 mesa.eat()

16 mesa.speak()

17 mesa.eat()

18 mesa.eat()

19 mesa.speak()

20 disassembler.disassemble(Dog)

21 disassembler.disassemble(main)

A class is a collection of functions that all operate on some given grouping of data.

For instance, the class Dog contains a function called eat and another called speak.

Both the eat and speak functions operate on objects of type Dog.

90 3 Assembly Language

The functions of a class definition are often called methods to differentiate them

from stand-alone functions. Methods are provided a reference to the current object

which is the collection of data on which a method operates. The reference self is

used to reference the current object and is always the first parameter to a method

in Python. This description of methods isn’t entirely accurate when considering the

Python virtual machine.

In the Python virtual machine methods are created from the class’ functions when

an object is instantiated. Consider the assembly program in Fig. 3.15 which demon-

strates the instantiation of a class called Dog. In line 36 of the main function the

class called Dog is called. Calling a class in Python means executing the code that

allocates a Dog object in memory. This work is handled by the virtual machine.

The assembly language program does not directly allocate the space for the object

through any instruction. It is accomplished by calling the class.

All objects in Python consist of a dictionary that stores the attributes of the object.

When the Dog class is called, the dictionary in the Dog object is initialized with the

methods Dog object. The methods of the Dog object are essentially the functions of

the Dog class. The difference between a method and a function is the self parameter.

A method provides the self argument to its function by providing a reference to the

current object as the first parameter. The method is a wrapper for the function. After

the methods are stored in the object’s dictionary, the __init__ method is called to

perform any further initialization of the object.

To get a better understanding of the difference between methods and functions,

consider the code that calls the eat method. When the eat method is called on the Dog

object, the method provides a reference to the current Dog object mesa as the first

parameter before calling the Dog class’ eat function. This is appearent starting on

line 38 in Fig. 3.15. Line 38 loads the the reference for mesa onto the operand stack.

Then line 39 looks up the eat method in the object’s dictionary, leaving the method

on top of the operand stack, but not the reference to the Dog object. Also, notice

that no arguments are loaded on top of the method. Yet, the eat function has one

parameter, self. When the eat method is called on line 40 the virtual machine loads

the self parameter before calling the eat function. The distinction between methods

and functions is revisted again in the next chapter.

Practice 3.10 In this section it was stated that every object consists of a dic-

tionary which holds the attributes of the object. What is stored in the dictionary

of the object that mesa refers to in this section?

You can check your answer(s) in Section 3.17.10.

3.13 Support for Classes and Objects 91

Fig. 3.15 The dog class

92 3 Assembly Language

3.13.1 Inheritance

In object-oriented programming, inheritance comes into play when one class inherits

from another. Inheritance is useful for polymorphism and code re-use. When pro-

gramming using Python, polymorphism happens without inheritance because Python

is a dynamically typed language, meaning that all method calls are looked up at run-

time as was seen in the last section when the LOAD_ATTR instruction was executed.

The LOAD_ATTR instruction looks up a method by name in the object’s dictionary.

The run-time look up of methods by name creates the polymorphic behavior of

Python. The only purpose of inheritance in Python is code re-use. The next chapter

will have more on polymorphism and how it applies to Java programming where

inheritance is needed to implement polymorphism.

Consider the Python program in this section. Again there is a Dog class that this

time inherits from an Animal class. The Animal class defines an eat method which is

re-used by the Dog class. The Animal constructor also contains code that is re-used

by the Dog class. But, the Dog class defines its own speak method, overriding the

speak method in the Animal class.

The inheritance of Animal contributing to the Dog class is indicated by writing

Dog(Animal) on line 12. The call to super on line 14 returns an instance of a super

class object which can be used to reference the super class, in this case the Animal

class. Python programs can use multiple inheritance. This is not true in JCoCo. Only

single inheritance is currently supported.

1 i m p o r t disassembler

2

3 c l a s s Animal:

4 d e f __init__(self ,name):

5 self.name = name

6 self.food = 0

7 d e f eat(self):

8 self.food = self.food + 1

9 d e f speak(self):

10 p r i n t (self.name , "is an animal")

11

12 c l a s s Dog(Animal):

13 d e f __init__(self ,name):

14 s u p e r (). __init__(name)

15 d e f speak(self):

16 p r i n t (self.name , "says woof!")

17

18 d e f main ():

19 mesa = Dog("Mesa")

20 mesa.eat()

21 mesa.speak()

22

23 disassembler.disassemble(Animal)

24 disassembler.disassemble(Dog)

25 disassembler.disassemble(main)

3.13 Support for Classes and Objects 93

Fig. 3.16 Inheritance in JCoCo - part 1

Practice 3.11 Code was omitted in Figs. 3.16 and 3.17 for brevity in the

chapter. Pick a method and complete the assembly code according to the orig-

inal Python code from which it is derived.

You can check your answer(s) in Section 3.17.11.

94 3 Assembly Language

Fig. 3.17 Inheritance in JCoCo - part 2

3.13.2 Dynamically Created Classes

The previous section demonstrates declaring a class and creating objects in the JCoCo

assembly language. It is also possible to create a class dynamically, at run-time. This

also makes it possible to define class variables if desired. A class variable is a variable

assigned to the class instead of instances of the class (i.e. objects). Consider this

Python program where dogNumber is a class variable that can be used to count the

number of instances of an object that have been created. Building this class requires

3.13 Support for Classes and Objects 95

that extra code be executed when building the class. The class variable must be

initialized to 0.

1 i m p o r t disassembler

2

3 d e f main ():

4

5 c l a s s Dog:

6 dogNumber = 0

7

8 d e f __init__(self ,name):

9 self.name = name

10 self. i d = Dog.dogNumber

11 Dog.dogNumber += 1

12

13 d e f speak(self):

14 p r i n t ("Dog number: ", self. i d)

15

16 x = Dog("Mesa")

17 y = Dog("Sequoia")

18

19 x.speak()

20 y.speak()

21

22 disassembler.disassemble(main)

The assembly code for this program looks a bit different than the previous section.

Instead of seeing a Dog class, there is a Dog function. The Dog function becomes the

Dog class as a result of its execution. To explain what happens, let’s start with Fig. 3.19

which contains the code for the main function. Line 55 of this code contains the

LOAD_BUILD_CLASS instruction. This instruction loads a built-in function which

builds a class from two arguments. A closure is one argument. As was stated in

Sect. 3.11, a closure is code and an environment. We will visit this again in chapters

4 and 6. A closure is both code and the environment (i.e. the collection of variables)

in which the code should be executed. The closure in this example is responsible for

building the class’ contents including its class variable and the methods of the class,

which if you recall from earlier in this section are really functions until an object is

instantiated.

The other argument to the built-in class builder function is the name of the class.

Line 56 creates a closure. Line 57 buildes a tuple from the closure. Line 58 loads the

code for the class initialization (i.e. the code for the Dog function). Line 59 builds

the closure with the tuple and the code. Line 60 loads the name of the class onto the

operand stack. Line 61 then calls the built-in class builder function passing to it the

closure and the name of the class.

The built-in class builder function then does some housekeeping by creating a

class instance, naming it Dog since that was passed as the name of the class, and

calls the Dog function to complete the class instantiation. This takes us to the code

on line 33 in Fig. 3.18.

96 3 Assembly Language

Fig. 3.18 Dynamically created class - part 1

3.13 Support for Classes and Objects 97

Fig. 3.19 Dynamically created class - part 2

The STORE_LOCALS instruction on line 34 deserves some explanation. The local

variables of the function Dog are a dictionary or map from strings (i.e. the names of

the variables) to their values. When the built-in class builder function calls the Dog

function to complete the construction of the class, it passes the dictionary for the class

into the function. This dictionary is the dictionary of the class Dog and by executing

the STORE_LOCALS instruction the dictionary also becomes the dictionary of locals

for the Dog function. So, anything that is stored in the local variables will then be

stored in the class instance. This sharing of the local variables dictionary and the class

dictionary simplifies the class construction by making any variables stored in the Dog

function also named variables, including named methods, in the class instance.

Line 35 of Fig. 3.18 stores Dog as the module name. The __name__ attribute is

already set to Dog by the built-in class builder function. So line 36 gives the same

name to the __module__ attribute.

Lines 37 and 38 initialize the class variable dogNumber to 0. Line 39 begins the

work of adding the functions into the class instance, which will be instantiated to

methods when a Dog instance is created. The first function to be stored is the __init__

constructor which happens on lines 39–43. Lines 44–46 store the speak function in

the class. The reason the constructor takes a bit more work is because it references and

increments the class variable dogNumber and because of this the constructor needs

both the code and the environment to executed correctly. The speak method does not

reference any class variables so no environment is needed. The MAKE_FUNCTION

instruction builds a closure with an empty environment.

98 3 Assembly Language

While classes can be built either dynamically (i.e. at run-time) or statically using

the assembly language syntax, the disassembler will use dynamic allocation when

the environment is used in one of the instance methods of the class. Using the

environment requires a closure and closures can be constructed during dynamic

allocation of the class.

Practice 3.12 In some detail, describe the contents of the operand stack before

and after the built-in class builder function is called to create a class instance.

You can check your answer(s) in Section 3.17.12.

3.14 Chapter Summary

An understanding of assembly language is key to learning how higher level pro-

gramming languages work. This chapter introduced assembly language program-

ming through a series of examples, drawing parallels between Python and Python

virtual machine or JCoCo instructions. The use of a disassembler was key to gaining

this insight and is a great tool to be able to use with any platform.

Most of the key constructs of programming languages were presented as both

Python programs and JCoCo programs. The chapter concluded by covering classes,

inheritance, and dynamic class creation.

The assembly language covered in this chapter comes up again in Chaps. 4 and 6.

Chapter 4 covers the implementation of the JCoCo virtual machine and Chap. 6 imple-

ments a high-level functional language compiler that produces JCoCo assembly lan-

guage programs.

JCoCo is an assembler/virtual machine for Python virtual machine instructions.

Of course, there are other assembly languages. MIPS is a CPU architecture that has

wide support for writing assembly language programs including a MIPS simulator

called SPIM. In fact, assemblers are available for pretty much any hardware/oper-

ating system combination in use today. Intel/Linux, Intel/Windows, Intel/Mac OS

X all support assembly language programming. The Java Virtual Machine can be

programmed with the instructions of the JVM using a java assembler called Jasmin.

Assembly language is the fundamental language that all higher level programming

languages use in their implementations.

3.15 Review Questions

1. How do the Python virtual machine and JCoCo differ? Name three differences

between the two implementations.

http://dx.doi.org/10.1007/978-3-319-70790-7_4
http://dx.doi.org/10.1007/978-3-319-70790-7_6
http://dx.doi.org/10.1007/978-3-319-70790-7_4
http://dx.doi.org/10.1007/978-3-319-70790-7_6

3.15 Review Questions 99

2. What is a disassembler?

3. What is an assembler?

4. What is a stack frame? Where are they stored? What goes inside a stack frame?

5. What is the purpose of the block stack and where is it stored?

6. What is the purpose of the Program Counter?

7. Name an instruction that is responsible for creating a list object and describe

how it works.

8. Describe the execution of the STORE_FAST and LOAD_FAST instructions.

9. How can JCoCo read a line of input from the keyboard?

10. What is the difference between a disassembled Python program and an assembled

JCoCo program? Provide a short example and point out the differences.

11. When a Python while loop is implemented in JCoCo, what is the last instruction

of the loop and what is its purpose?

12. What do exception handling and loops have in common in the JCoCo imple-

mentation?

13. What is lazy evaluation and why is it important to Python and JCoCo?

14. What is a closure and why are closures needed?

15. How do you create an instance of a class in JCoCo? What instructions must be

executed to create objects?

16. Write a class, using JCoCo, and create some instances of the class.

3.16 Exercises

1. Consulting the JCoCo assembly language program in the solution to exercise 3.2,

provide the contents of the operand stack after each instruction is executed.

2. Write a JCoCo program which reads an integer from the user and then creates a

list of all the even numbers from 0 up to and including that integer. The program

should conclude printing the list to the screen. Test your program with JCoCo to

be sure it works. Do this with as few instructions as possible.

3. With as few instructions as possible add some exception handling to the previous

exercise to print “You didn’t enter an integer!” if the user fails to enter an integer

in their program.

4. In as few instructions as possible write a JCoCo program that computes the sum

of the first n integers where the non-negative n is read from the user.

5. Write a recursive JCoCo program that adds up the first n integers where n is

read from the user. Remember, there must be a base case that comes first in this

function and the recursive case must be called on something smaller which is

used in computing the solution to the whole problem.

6. Write a Rational class that can be used to add and multiply fractions together.

A Rational number has an integer numerator and denominator. The __add__

method is needed to add together Rationals. The __mul__ method is for multi-

plication. To get fractions in reduced format you may want to find the greatest

common divisor of the numerator and the denominator when creating a Rational

100 3 Assembly Language

number. Write this code in Python first, then disassemble it to get started with

this assignment.

You may wish to write the greatest common divisor function gcd as part of the

class although no self parameter is needed for this function. The greatest common

divisor of two integers, x and y, can be defined recursively. If y is zero then x is

the greatest common divisor. Otherwise, the greatest common divisor of x and y

is equal to the greatest common divisor of y and the remainder x divided by y.

Write a recursive function called gcd to determine the greatest common divisor

of x and y.

Disassemble the program and then look for ways of shortening up the JCoCo

assembly language program. Use the following main program in your code.

import disassembler

def main ():

x = Rational (1,2)

y = Rational (2,3)

print(x+y)

print(x*y)

disassembler.disassemble(Rational)

disassembler.disassemble(main)

From this code you should get the following output which matches the output

you should get had this been a Python program. Remember to use Python 3.2

when disassembling your program. And, remember to turn in as short a program

as possible while getting this output below from the main program given above.

7/6

1/3

3.17 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers

after you have tried each of them for yourself first. Practice problems are meant to

help reinforce the material you have just read so make use of them.

3.17.1 Solution to Practice Problem 3.1

The assembly code in Fig. 3.2 blindly pops the None at the end and then pushes

None again before returning from main. This can be eliminated resulting in two

fewer instructions. This would also mean that None is not needed in the constants,

but this was not eliminated below.

1 Function: main/0

2 Constants: None ,

3.17 Solutions to Practice Problems 101

3 "Enter your name: ", "Enter your age: ",

4 ", a year from now you will be",

5 1, "years old."

6 Locals: name , age

7 Globals: input , int , print

8 BEGIN

9 LOAD_GLOBAL 0

10 LOAD_CONST 1

11 CALL_FUNCTION 1

12 STORE_FAST 0

13 LOAD_GLOBAL 1

14 LOAD_GLOBAL 0

15 LOAD_CONST 2

16 CALL_FUNCTION 1

17 CALL_FUNCTION 1

18 STORE_FAST 1

19 LOAD_GLOBAL 2

20 LOAD_FAST 0

21 LOAD_CONST 3

22 BINARY_ADD

23 LOAD_FAST 1

24 LOAD_CONST 4

25 BINARY_ADD

26 LOAD_CONST 5

27 CALL_FUNCTION 3

28 RETURN_VALUE

29 END

3.17.2 Solution to Practice Problem 3.2

As in practice 3.1 the POP_TOP and LOAD_CONST from the end can be eliminated.

In the if-then-else code both the then part and the else part execute exactly the same

STORE_FAST instruction. That can be moved after the if-then-else code and written

just once, resulting in one less instruction and three less overall. Furthermore, if we

move the LOAD_GLOBAL for the call to print before the if-then-else statement, we

can avoid storing the maximum value in z at all and just leave the result on the top

of the operand stack: either x or y. By leaving the bigger of x or y on the top of the

stack, the call to print will print the correct value. This eliminates five instructions

from the original code.

1 Function: main/0

2 Constants: None , 5, 6

3 Locals: x, y

4 Globals: print

5 BEGIN

6 LOAD_CONST 1

7 STORE_FAST 0

8 LOAD_CONST 2

102 3 Assembly Language

9 STORE_FAST 1

10 LOAD_GLOBAL 0

11 LOAD_FAST 0

12 LOAD_FAST 1

13 COMPARE_OP 4

14 POP_JUMP_IF_FALSE label00

15 LOAD_FAST 0

16 JUMP_FORWARD label01

17 label00: LOAD_FAST 1

18 label01: CALL_FUNCTION 1

19 RETURN_VALUE

20 END

It is worth noting that the code above is exactly the disassembled code from this

Python program.

1 i m p o r t disassembler

2 d e f main ():

3 x=5

4 y=6

5 p r i n t (x i f x > y e l s e y)

6

7 disassembler.disassemble(main)

When main is called, this code prints the result of a conditional expression. The

if-then-else expression inside the print statement is different than an if-then-else state-

ment. An if-then-else statement updates a variable or has some other side-effect. An

if-then-else expression, or conditional expression as it is called in Python documen-

tation, yields a value: either the then value or the else value. In the assembly language

code we see that the yielded value is passed to the print function as its argument.

3.17.3 Solution to Practice Problem 3.3

1 Function: main/0

2 Constants: None , 5, 6

3 Locals: x, y

4 Globals: print

5 BEGIN

6 LOAD_CONST 1

7 STORE_FAST 0

8 LOAD_CONST 2

9 STORE_FAST 1

10 LOAD_FAST 0

11 LOAD_FAST 1

12 COMPARE_OP 1

13 POP_JUMP_IF_TRUE label00

14 LOAD_GLOBAL 0

15 LOAD_FAST 0

16 CALL_FUNCTION 1

3.17 Solutions to Practice Problems 103

17 POP_TOP

18 label00: LOAD_GLOBAL 0

19 LOAD_FAST 1

20 CALL_FUNCTION 1

21 RETURN_VALUE

22 END

3.17.4 Solution to Practice Problem 3.4

The following code behaves differently if the BREAK_LOOP instruction is removed

from the program.

1 Function: main/0

2 Constants: None , 7, 6

3 Locals: x, y

4 Globals: print

5 BEGIN

6 SETUP_LOOP label01

7 LOAD_CONST 1

8 STORE_FAST 0

9 LOAD_CONST 2

10 STORE_FAST 1

11 LOAD_FAST 0

12 LOAD_FAST 1

13 COMPARE_OP 1

14 POP_JUMP_IF_TRUE label00

15 BREAK_LOOP

16 LOAD_GLOBAL 0

17 LOAD_FAST 0

18 CALL_FUNCTION 1

19 POP_TOP

20 label00: POP_BLOCK

21 label01: LOAD_GLOBAL 0

22 LOAD_FAST 1

23 CALL_FUNCTION 1

24 RETURN_VALUE

25 END

3.17.5 Solution to Practice Problem 3.5

This is the hello world program with exception handling used to raise and catch

an exception. This solution does not include code for finally handling in case an

exception happened while handling the exception. It also assumes the exception will

match when thrown since JCoCo only supports one type of exception.

1 Function: main/0

2 Constants: None , "Hello World!"

3 Locals: ex

104 3 Assembly Language

4 Globals: Exception , print

5 BEGIN

6 SETUP_EXCEPT label00

7 LOAD_GLOBAL 0

8 LOAD_CONST 1

9 CALL_FUNCTION 1

10 RAISE_VARARGS 1

11 POP_BLOCK

12 JUMP_FORWARD label01

13 label00: LOAD_GLOBAL 1

14 ROT_TWO

15 CALL_FUNCTION 1

16 POP_TOP

17 POP_EXCEPT

18 label01: LOAD_CONST 0

19 RETURN_VALUE

20 END

3.17.6 Solution to Practice Problem 3.6

This program adds 5 and 6 together using the __add__ magic method associated

with integer objects. First 5 is loaded onto the operand stack. Then LOAD_ATTR

is used to load the __add__ of the 5 object onto the stack. This is the function.

The argument to __add__ is loaded next which is the 6. The 6 is loaded by the

LOAD_CONST instruction. Then __add__ is called with one argument. The 11 is

left on the operand stack after the function call. It is stored in x, the print is loaded,

x is loaded onto the operand stack, and print is called to print the value. Since print

leaves None on the stack, that value is returned from the main function.

1 Function: main/0

2 Constants: None , 5, 6

3 Locals: x

4 Globals: __add__ , print

5 BEGIN

6

7 LOAD_CONST 1

8 LOAD_ATTR 0

9 LOAD_CONST 2

10 CALL_FUNCTION 1

11 STORE_FAST 0

12 LOAD_GLOBAL 1

13 LOAD_FAST 0

14 CALL_FUNCTION 1

15 RETURN_VALUE

16 END

3.17 Solutions to Practice Problems 105

3.17.7 Solution to Practice Problem 3.7

1 Function: main/0

2 Constants: None , "Enter a string: "

3 Locals: x, a

4 Globals: input , print

5 BEGIN

6 LOAD_GLOBAL 0

7 LOAD_CONST 1

8 CALL_FUNCTION 1

9 STORE_FAST 0

10 SETUP_LOOP label02

11 LOAD_FAST 0

12 GET_ITER

13 label00: FOR_ITER label01

14 STORE_FAST 1

15 LOAD_GLOBAL 1

16 LOAD_FAST 1

17 CALL_FUNCTION 1

18 POP_TOP

19 JUMP_ABSOLUTE label00

20 label01: POP_BLOCK

21 label02: LOAD_CONST 0

22 RETURN_VALUE

23 END

3.17.8 Solution to Practice Problem 3.8

A cell variable is needed if an inner function makes a modification to a variable that

is located in the outer function. Consider the JCoCo program below. Without the cell

the program below would print 10 to the screen and with the cell it prints 11. Why is

that? Draw the run-time stack both ways to see what happens with and without the

cell variable.

1 Function: f/1

2 Function: g/1

3 Constants: None , 1

4 Locals: y

5 FreeVars: x

6 BEGIN

7 LOAD_DEREF 0

8 LOAD_CONST 1

9 BINARY_ADD

10 STORE_DEREF 0

11 LOAD_DEREF 0

12 LOAD_FAST 0

13 BINARY_ADD

14 RETURN_VALUE

15 END

106 3 Assembly Language

16 Constants: None , code(g)

17 Locals: x, g

18 CellVars: x

19 BEGIN

20 LOAD_CLOSURE 0

21 BUILD_TUPLE 1

22 LOAD_CONST 1

23 MAKE_CLOSURE 0

24 STORE_FAST 1

25 LOAD_FAST 1

26 LOAD_DEREF 0

27 CALL_FUNCTION 1

28 LOAD_DEREF 0

29 BINARY_ADD

30 RETURN_VALUE

31 END

32 Function: main/0

33 Constants: None , 3

34 Globals: print , f

35 BEGIN

36 LOAD_GLOBAL 0

37 LOAD_GLOBAL 1

38 LOAD_CONST 1

39 CALL_FUNCTION 1

40 CALL_FUNCTION 1

41 POP_TOP

42 LOAD_CONST 0

43 RETURN_VALUE

44 END

Interestingly, this program cannot be written in Python. The closest Python equiv-

alent of this program is given below. However, it is not the equivalent of the program

written above. In fact, the program below won’t even execute. There is an error on

the line x = x + 1. The problem is that as soon as Python sees x = in the function g,

it decides there is another x that is a local variable in g. But, then x = x + 1 results

in an error because x in g has not yet been assigned a value.

1 d e f f(x):

2 d e f g(y):

3 x=x+1

4 r e t u r n x + y

5 r e t u r n g(x) + x

6 d e f main ():

7 p r i n t (f(3))

8 main()

3.17 Solutions to Practice Problems 107

Fig. 3.20 Execution of fact.casm

3.17.9 Solution to Practice Problem 3.9

A couple things to notice in Fig. 3.20. The run-time stack contains one stack frame for

every function call to factorial. Each of the stack frames, except the one for the main

function, point at the factorial code. While there is only one copy of each function’s

code, there may be multiple stack frames executing the code. This happens when a

function is recursive. There also multiple n values, one for each stack frame. Again

this is expected in a recursive function.

3.17.10 Solution to Practice Problem 3.10

Python is a very transparent language. It turns out there is function called dir that

can be used to print the attributes of an object which are the keys of its dictionary.

108 3 Assembly Language

The dictionary maps names (i.e. strings) to the attributes of the object. The following

strings map to their indicated values.

• __init__ is mapped to the constructor code.

• eat is mapped to the eat method.

• speak is mapped to the speak method.

• food is mapped to an integer.

• This is all that is mapped by JCoCo. However, if you try this in Python you will

discover that a number of other methods are mapped to default implementations

of magic methods in Python including a hash method, comparison methods like

equality (i.e. __eq__), a repr method, a str method, and a number of others.

3.17.11 Solution to Practice Problem 3.11

1 Class: Animal

2 BEGIN

3 Function: eat/1

4 Constants: None , 1

5 Locals: self

6 Globals: food

7 BEGIN

8 LOAD_FAST 0

9 LOAD_ATTR 0

10 LOAD_CONST 1

11 BINARY_ADD

12 LOAD_FAST 0

13 STORE_ATTR 0

14 LOAD_CONST 0

15 RETURN_VALUE

16 END

17 Function: __init__ /2

18 Constants: None , 0

19 Locals: self , name

20 Globals: name , food

21 BEGIN

22 LOAD_FAST 1

23 LOAD_FAST 0

24 STORE_ATTR 0

25 LOAD_CONST 1

26 LOAD_FAST 0

27 STORE_ATTR 1

28 LOAD_CONST 0

29 RETURN_VALUE

30 END

31 Function: speak/1

32 Constants: None , "is an animal"

33 Locals: self

34 Globals: print , name

3.17 Solutions to Practice Problems 109

35 BEGIN

36 LOAD_GLOBAL 0

37 LOAD_FAST 0

38 LOAD_ATTR 1

39 LOAD_CONST 1

40 CALL_FUNCTION 2

41 POP_TOP

42 LOAD_CONST 0

43 RETURN_VALUE

44 END

45 END

46 Class: Dog(Animal)

47 BEGIN

48 Function: __init__ /2

49 Constants: None

50 Locals: self , name

51 FreeVars: __class__

52 Globals: super , __init__

53 BEGIN

54 LOAD_GLOBAL 0

55 CALL_FUNCTION 0

56 LOAD_ATTR 1

57 LOAD_FAST 1

58 CALL_FUNCTION 1

59 POP_TOP

60 LOAD_CONST 0

61 RETURN_VALUE

62 END

63 Function: speak/1

64 Constants: None , "says woof!"

65 Locals: self

66 Globals: print , name

67 BEGIN

68 LOAD_GLOBAL 0

69 LOAD_FAST 0

70 LOAD_ATTR 1

71 LOAD_CONST 1

72 CALL_FUNCTION 2

73 POP_TOP

74 LOAD_CONST 0

75 RETURN_VALUE

76 END

77 END

78 Function: main/0

79 Constants: None , "Mesa"

80 Locals: mesa

81 Globals: Dog , eat , speak

82 BEGIN

83 LOAD_GLOBAL 0

84 LOAD_CONST 1

85 CALL_FUNCTION 1

110 3 Assembly Language

86 STORE_FAST 0

87 LOAD_FAST 0

88 LOAD_ATTR 1

89 CALL_FUNCTION 0

90 POP_TOP

91 LOAD_FAST 0

92 LOAD_ATTR 2

93 CALL_FUNCTION 0

94 POP_TOP

95 LOAD_CONST 0

96 RETURN_VALUE

97 END

3.17.12 Solution to Practice Problem 3.12

To get ready to execute the built-in class builder function the stack must contain

the following in order from the top of the stack down: The name of the class is on

the top of the operand stack. Below the name is the closure of the class initializing

function and its environment. Below that is the built-in class builder function itself.

The CALL_FUNCTION instruction is executed with two arguments indicated to call

the class builder.

Upon its return, the two arguments and the class builder function have been popped

from the stack and the instance of the class is left on the operand stack. This class

instance may then be stored as a reference from some known location, likely by a

STORE_FAST instruction.

4Object-Oriented Programming

In this chapter you’ll learn about the implementation of the JCoCo virtual machine

while at the same time you’ll be introduced to the Java and C++, two statically

typed object-oriented programming languages. The primary focus of the chapter is

on learning advanced object-oriented programming using Java and C++. Statically

typed languages, like C++ and Java, differ from dynamically typed languages like

Python in the way that type errors are caught. When running a Python program a

type error can occur in any branch of code. One of the big problems with Python

programming is that these errors may exist until every possible path in a Python

program is executed. Testing Python code takes considerable effort to ensure every

possible path is executed. While thorough testing is always a good idea, these type

errors may not be discovered until much later in the development cycle.

Java and C++ programs are statically typed. This means that type errors are found

at compile time, when the program is translated into executable format, without

executing the program at all. Programmers must declare the types of all values or

the compiler must be able to infer their type from the context of expressions in

the program. With the declaration of value types in C++ and Java programs, the

programmer is notified if any operation is not allowed without executing a single

line of code. Run-time errors are still possible, but those run-time errors are due to

logic problems and not due to type errors.

The JCoCo implementation will serve as nice examples while learning Java and

C++. We’ll compare Java and C++ when appropriate to show you the differences and

similarities between the two languages. In the interest of seeing the big picture, we’ll

start with an overview of the JCoCo implementation as pictured in Fig. 4.1. JCoCo

reads an input file which must be formatted according to the grammar specified in

Sect. A.1. Two parts of the JCoCo implementation, the scanner and the parser are

responsible for reading the input file. The scanner is implemented as a finite state

machine. The parser is written as a top-down parser. The parser produces a list of

function and class definitions which make up the abstract syntax tree definition of

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_4

111

112 4 Object-Oriented Programming

Fig. 4.1 JCoCo

the program. The remainder of the JCoCo implementation makes up the bytecode

interpreter.

The bytecode interpreter evaluates the abstract syntax tree (i.e. AST) which con-

sists of function and class objects. The AST is interpreted within the context of frame

objects. A frame is one activation record on the run-time stack of the executing pro-

4 Object-Oriented Programming 113

gram. When the program begins, the interpreter starts execution at the main function,

creating a frame for it and starting execution at the first instruction.

The examples of Java and C++ used within this chapter will come from the

implementation of the scanner, parser, function, class, and frame classes along with

classes for types and instances of types like integers, floats, strings, and lists.

JCoCo is written in Java. A similar project, CoCo, was earlier written in C++.

JCoCo is an improved, more fully developed version of CoCo, rewritten in Java.

JCoCo is a large project consisting of 56 source files and around 8,900 lines of code.

Don’t be intimidated, a lot of the code is repetitive. With such a large program,

structuring it correctly is of the utmost importance. The JCoCo virtual machine is

an interpreter of bytecode instructions somewhat like the Java Virtual Machine (i.e.

JVM). The JCoCo interpreter reads assembly language source files called CASM

files as you learned about in the last chapter.

Much of the design of CoCo and JCoCo is similar. JCoCo includes support for

programmer-defined classes. CoCo does not support classes definition. Otherwise,

the two implementations are very similar. The early part of this chapter will present

Fig. 4.2 The JCoCo virtual machine

114 4 Object-Oriented Programming

examples of both the Java and C++ implementations when appropriate to compare

and contrast the two languages. Later sections will explore the details of the Java

implementation of JCoCo.

Like other interpreters, the JCoCo/CoCo implementation is divided into some

logical components: the scanner, parser, and bytecode interpreter. The scanner reads

characters from the CASM source file and creates objects called tokens. The last

chapter had many examples of CASM files. Tokens from a CASM file like the one

in Sect. 3.2 and pictured in Fig. 4.2 include a Function keyword, a colon, a main

identifier, a slash, an integer 0, another keyword Constants, another colon, a None

keyword, and so on. These tokens are returned one at a time to the parser when the

parser requests another token.

The parser reads the tokens one at a time from the scanner and uses them while

parsing the source file according to the grammar for JCoCo given in Appendix A. The

grammar given there is LL(1) so the parser is implemented as a recursive descent

parser. Each non-terminal of the grammar is a function in the parser. The right hand

sides of rules for each nonterminal defines the body of each function in the parser.

There will be more on this later in the chapter. The result of parsing the source file

is an Abstract Syntax Tree, or AST. This AST is an internal representation of the

program to be interpreted.

The JCoCo bytecode interpreter is the part of the program, given the AST, that

interprets the byte code instructions of each function. As the instructions are exe-

cuted, the virtual machine interacts with I/O devices like the keyboard and the screen.

Bytecode interpretation is the responsibility of several parts of the JCoCo implemen-

tation as you will read later. The last part of this chapter has a detailed explanation

of the implementation of the JCoCo virtual machine.

4.1 The Java Environment

In Chap. 1 we learned that Java originated as part of the Green project. Today, Java is a

robust language that contains many features that make it convenient for programmers

while also being efficient and powerful. Java actually consists of two important tools:

a Java Virtual Machine (i.e. JVM) and a Java compiler that compiles from Java source

code to Java bytecode (which is what the JVM executes).

Let’s consider the hello world example, written in Java. The Java program is given

in Fig. 4.3. This program must be saved in a file called HelloWorld.java. The program

is compiled and run using commands like this.

My Mac > javac HelloWorld.java
My Mac > java HelloWorld
Hello World
My Mac >

The javac program is the Java compiler which translates a Java source program,

ending in an extension of .java, to a bytecode file, ending in .class. The bytecode file

http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_1

4.1 The Java Environment 115

Fig. 4.3 Hello world

is a binary file that is machine readable, but not human readable. The bytecode file is

read by the Java Virtual Machine or JVM which is actually the program called java

or java.exe if you are running on a Windows machine. The JVM interacts with the

operating system to execute the bytecode file.

Typically, a Java program consists of many source code files which are compiled

into many bytecode files. When programming in Java, each source code file must

be named the same as the public class within the source code file. For instance, the

code in Fig. 4.3 must be in a file called HelloWorld.java because the public class is

called HelloWorld. Every Java source code file can have exactly one public class.

Writing a non-trivial Java program involves creating many classes and therefore

many source files. When a Java project is compiled, the Java compiler looks at

the dates of all source files and all bytecode files. Every time a file is created or

modified its last modification date is changed. This is information that is maintained

by every operating system including Mac OS X, Microsoft Windows, and Linux.

If any bytecode file is found to be older than its corresponding source file, then the

source file is recompiled to produce a new bytecode file with a newer date than its

source code file. This mechanism of using timestamps to determine what needs to

be recompiled is called a make facility for historical reasons which we’ll revisit in

the next section.

Practice 4.1 Another program is written and compiled. Here is the error mes-

sage from the compiler. What can you discern from the compile message? Why

would this be important to Java?

test.java :1: error: c l a s s Test is p u b l i c ,
should be declared in a file named Test.java

p u b l i c c l a s s Test {
^

1 error
My Mac >

You can check your answer(s) in Section 4.34.1.

116 4 Object-Oriented Programming

4.2 The C++ Environment

C++ and Java share a lot of syntax. C++ was designed first with Java starting devel-

opment about 10 years later. As mentioned in chapter one, Bjarne Stroustrup was

developing C++ during the early eighties. He designed the language to be backward

compatible with C so there were some decisions already made for him like the need

for separate compilation and the presence of a macro processor. C++ is one of the

most widely used object-oriented languages today and continues to evolve. A stan-

dards committee now oversees C++ with regular revisions to the language like the

C++11 revision which came out in 2011 and the 2014 version which contained small

changes over the 2011 version. A new version was formally accepted late in 2017.

Development of the C++ language is ongoing.

Using C/C++ for a programming project does not come without some risks. A

significant problem, perhaps the most persistent problem over time, with C/C++ pro-

grams are memory leaks. C/C++ programmers must be disciplined in their allocation

and deallocation of memory. It is common that programs that run for a long time

will have a memory leak that has to be tracked down, which is a difficult task. In

many languages a garbage collector takes care of freeing memory that is no longer

needed by a program. A garbage collector cannot safely be included as part of C

and C++ programs. Both C and C++ are designed to give the programmer maximum

control. This means that more responsibility is left to the programmer and as a result

programmers need to be very disciplined when using C/C++. There is more on this

in Sect. 4.7.

C and C++ have many uses including operating system development, timing crit-

ical software, and detailed hardware access. Learning to program in C++ well will

take you a long ways towards being a great programmer in any language. This chapter

won’t teach you everything you need to know to become a C++ programmer. That

could be and is the topic of many books. But this chapter will introduce you to many

of the important concepts and skills you’ll need to become a good C++ programmer.

Like Java, C++ programs must be compiled before you can run the them. Java

programs are compiled to Java bytecode and the bytecode is run on the JVM. C++

programs are compiled into the machine language of the CPU that will execute them.

The operating system of the computer where a C++ program runs is responsible for

loading the executable program and getting it ready to run but otherwise a compiled

C++ program runs directly on the CPU of the machine for which it was compiled.

Figure 4.5 depicts the compilation process for C++ programs. Examine Fig. 4.4

to contrast that with the execution of Java programs. The C++ environment looks

more complicated. But everything in the green box is actually accomplished using

one compile command. Figure 4.6 contains the classic hello world program written

in C++.

To run the hello world program it must first be compiled. Figure 4.5 shows

the process of compiling a C++ program like the one that appears in Fig. 4.6. First, the

macro processor reads the iostream header file and combines it with the rest of the

source file. The iostream header file does not include the code for streams. It just

declares the streams and the operators used to write to the out stream. The combined

4.2 The C++ Environment 117

Fig. 4.4 Java compiler and virtual machine

program text is sent to the compiler which parses the program and generates machine

language code using an assembler. The machine language code is then linked with

the iostream library to produce the executable code. Thankfully, this whole process

is encapsulated in one command. There will be more about both the macro processor

and I/O streams in the next sections.

Executing the g++ command compiles the program as shown in Fig. 4.7. By

default g++ produces a program called a.out. To execute the program you type a.out

and the operating system will load and run it. The default a.out can be renamed or a

different name can be provided on the compile command.

The −g option in Fig. 4.8 tells g++ to include debugging information in the

program. The -o tells g++ to name the executable program hello instead of a.out.

To compile a C++ program you must have a C++ compiler installed on your

system. The g++ compiler used in Fig. 4.7 is the GNU C++ compiler. This compiler

is available for Mac OS X, Linux, and Microsoft Windows.

118 4 Object-Oriented Programming

Fig. 4.5 C++ compile

4.2 The C++ Environment 119

Fig. 4.6 hello.cpp

Fig. 4.7 Compiling hello.cpp

Fig. 4.8 Include debug and name

4.2.1 The Macro Processor

The first line of the program in Fig. 4.6 is called a macro processor directive. The

macro processor is a part of the C++ compiler that is responsible for pulling other

files into the source program and sometimes for some simple editing of a source file

to get it ready to be compiled. In this program the macro processor includes another

file or library called iostream. The iostream file is called a header file because it

defines functions and variables that exist in some other library or code on the system

where it is compiled. Header files define the interfaces to these other libraries or

code. When a header file is enclosed in angle braces, a less than/greater than pair,

it is a system provided header file. More information on the macro processor and

header files can be found in Sect. 4.9.1.

120 4 Object-Oriented Programming

4.2.2 The Make Tool

A file system is the software and format that controls how files are stored on the hard

disk of a computer. All operating systems have their own file systems and sometimes

support multiple file systems. Microsoft Windows supports NTFS and Fat32 among

others. Linux support ext2, ext3, reiserfs, and others. Mac OS X supports several file

systems including HFS+. Every one of these file systems store attributes of every

file including the date and time the file was last modified.

Make is a program that can be used to compile programs that are composed

of modules and utilize separate compilation. C and C++ programs utilize separate

compilation and typically you write a make file to compile programs written in these

languages, or you use a tool to automatically create a make file. Java programs are

not compiled via the make program because the make program is built into the Java

compiler as was mentioned in the previous section.

The idea is simple. Every time a module is compiled by the C++ compiler it

produces an object file. For instance, when PyObject.cpp is compiled, the C++ com-

piler writes a file called PyObject.o. For each of these files the date and time when

it was last modified or created is stored with the file. After a compile the date on

PyObject.cpp is older than the date on PyObject.o. When a programmer changes

PyObject.cpp, its date will be newer than PyObject.o‘s date.

Make uses this simple observation along with make rules to execute the compile

commands necessary to make PyObject.o‘s date newer than PyObject.cpp‘s date.

Here is a make rule for PyObject.cpp.

PyObject.o: PyObject.cpp PyObect.h
g++ -g -c -std=c++0x PyObject.cpp

This rule says that PyObject.o must be newer than PyObject.cpp and PyObject.h. If

either of these two files are newer then make will execute the command on the next

line, which must be indented under the first line. The result of executing this compile

command is to produce a new PyObject.o file with a newer date than either of the

two source files.

To make the coco executable, all the object files must be linked together. To link

everything together the first rule is written like this.

coco: main.o PyObject.o PyInt.o PyType.o
g++ -o coco -std=c++0x main.o PyObject.o PyInt.o PyType.o

All 38 object files must be listed here. This says that the date on coco, the executable

program, must be newer than the date on all its object files.

All these rules are placed in a file called Makefile in the same directory as the C++

source files. When make is invoked it will look for a file named Makefile. By keeping

track of the dates, only the source files that have been updated will get recompiled

and the coco executable will get recreated by linking together all the object files.

Writing a good Makefile is sometimes difficult and almost always error prone, so

often there is a rule in the makefile called clean. Executing make clean will erase

all object files so you can get a fresh compile. There are also tools like autoreconf

that will generate a Makefile automatically with just a few inputs. Take a look at

4.2 The C++ Environment 121

the rebuild script in the CoCo distribution to see how this might be used. To use

autoreconf you must have the automake tools installed on your system. But if you

do, you can execute

./ rebuild

./ configure
make

to build the entire CoCo Virtual Machine. Without the automake tools you should

still be able to execute the configure and make commands to build CoCo.

Separate compilation in C++ programs means that each module in the program is

compiled separately. Each object file, generated by the compilation of a module, is

produced independently of the other source files. This is important because large C++

projects often contain hundreds of C++ source files. Separate compilation means that

only the small piece a programmer changes needs to be recompiled if the interface

(i.e. the header file) to other modules does not change. After compiling the source

files to object files, the object files can be linked together to form an executable

program. Linking is a very fast operation compared to compiling.

Practice 4.2 Using C++ there are no naming requirements for modules and

classes like Java. So, when class A uses class Test both class A and class Test

can be put into a file by any name. Why is this OK for C++ programs, but not

for Java programs?

You can check your answer(s) in Section 4.34.2.

4.3 Namespaces

Line 2 of the program in Fig. 4.6 opens up the std, short for standard, namespace in

the program. The first two lines of this C++ program are like importing a module in

Python or a package in Java. When importing a module in Python the programmer

writes an import statement like one of these two lines.

from iostream import * # merges the namespace with the current module
import iostream # preserves the namespace while importing the module

In Java the programmer would write an import statement somewhat like this, although

not exactly.

import java.iostream.cout

The Python equivalent of a namespace is a module. Python modules can be imported

in one of two ways, preserving the namespace or merging it with the existing

namespace. In Java packages are the equivalent of a namespace and selected classes

and objects can be imported from a package. Namespaces are important in C++,

Python, and Java, because without them there would be many potential name con-

flicts between header files and modules that would create compile errors and prevent

122 4 Object-Oriented Programming

Fig. 4.9 Namespace std

programs from compiling, or in the case of Python - from running, that were other-

wise correct programs. In C++ programs, if we didn’t want to open the std namespace

we could rewrite the program as shown in Fig. 4.9.

The safest way to program is to not open up namespaces or merge them together.

But, that is also inconvenient since the whole name must be written each time. What

is correct for your program depends on the program being written.

4.4 Dynamic Linking

Dynamic linking is related to namespaces, modules, and packages. Modern program-

ming languages like C++ and Java are reliant on many libraries so programmers can

solve problems instead of rewriting code that is common to more than one program.

Libraries containing commonly used code are generally available to be used by pro-

grams written in a high level language, including C++ and Java programs. These

libraries must be linked into your program to be able to use them. Figure 4.5 shows

object files (i.e. modules) being linked together into a C++ program.

There is a problem with the picture in Fig. 4.5. Early C programs could be self-

contained programs that relied on only a small number of system calls from the Unix

operating system. However, modern C, C++, Java, and almost any other modern

programming language are reliant on so many libraries that linking all of them

together would be a problem in several ways.

• The size of the linked executable program would be huge taking up a lot of space

in memory as it was executing.

• Any change in any library would require each program that uses it to be re-linked

to get the new version of the library.

• There is no reason to have multiple copies of libraries, one for each program that

uses it. This wastes space in addition to the overhead of having to manage multiple

copies of libraries.

Modern languages don’t statically link all the libraries that are required by a pro-

gram. They dynamically link them. When you hear the word dynamic you should

4.4 Dynamic Linking 123

think run-time. Libraries are generally linked at run-time. Software, often part of the

operating system, detects when a library is going to be used by a program and loads

it into memory and links it to the program that requests its services as the program

is executing. Microsoft Windows calls these dynamically linked libraries DLL’s.

Windows includes services that let libraries be written so they can be dynamically

linked to programs as they execute. Mac OS X and Linux also have the ability to

dynamically link libraries. C++ programs often dynamically link to libraries that are

provided by the C++ run-time libraries and other libraries that may be required by a

program but have been supplied with the program.

Java programs also use dynamic linking. In fact, dynamic linking is built into the

very foundations of Java. The JVM loads bytecode files (i.e. modules) as needed in

your Java program. Java programs consist of .class files, called bytecode files, which

must be in the current working directory or in a directory on the class path. The class

path is a list of directories, or folders, where the JVM looks for bytecode files. The

class path is recorded in an environment variable called CLASSPATH. Here is one

example of a class path.

e x p o r t CLASSPATH =./ DBBrowser/lib/mysql -connector -
java -5.1.17 - bin.jar:.: $CLASSPATH

The class path is a list of folders, or directories, where these dynamically loaded .class

files can be found. Sometimes a whole group of classes are written to implement some

library. For instance, this class path includes mysql-connector-java-5.1.17-bin.jar.

This is actually what is called a JAR file. A JAR file stands for Java Archive, and is a

zipped up set of .class files that are stored in compressed format. Dynamically linked

libraries are so common to Java programs that JAR files were added as a means to

conveniently group and redistribute collections of classes for Java programs. The

bytecode files found in a JAR file are organized into packages. Importing something

like

import java.io.BufferedInputStream

in a Java program would cause the BufferedInputStream class to be dynamically

linked from the java.io package, which is a library provided by the Java run-time

environment.

4.5 Defining the Main Function

Lines 3–5 of the hello world program in Fig. 4.6 define the main function. Every

C++ program must have one main function, and only one. The main function should

return an integer and it is given an integer and an array of character arrays which

are the command-line arguments. The command-line arguments are elaborated on

in more detail in the section on arrays and pointers later in this chapter.

Every Java program must also have a main function. However, when the program

is run the class whose main function you want to run must be specified. In this way,

124 4 Object-Oriented Programming

each class could potentially have a main function. The main of the specified class

will be the first to run. The main function of the Java hello world program can be

found in Fig. 4.3.

Practice 4.3 Command-line arguments are typed in after the name of the

program. For instance if a program is called grep then you might provide

command-line arguments like this.

grep def *.py

Both C++ and Java programs can receive command-line arguments through the

main function. With C++ the number of command-line arguments is passed as

argc and the actual arguments are passed in the array of strings (i.e. character

arrays) in the parameter named argv as declared in Fig. 4.9. The variable argc

is always at least one for C++ programs but the length of the command-line

arguments String array in Java may be zero if no command-line arguments are

passed. Do you know why?

You can check your answer(s) in Section 4.34.3.

4.6 I/O Streams

Line 4 of the program in Fig. 4.6 prints Hello World to the screen. To be a little more

precise, cout represents what is called a stream in C++. You can think of a C++

stream like a real stream with water in it. You can place things in the stream and they

will be carried downstream. To place something in a C++ stream you use the <<

operator. Writing

cout << "Hello World";

places the string “Hello World” into the cout stream. This expression returns the cout

stream. This means that multiple << operators can be chained together. Line 4 is

like writing

(cout << "Hello World") << endl;

The parentheses are not needed in this example since the << is already left-

associative. But they were included so you can see that the function call to <<

returns a stream which can be used in the next << operator to the right.

There are three streams automatically associated with programs. These three

streams are associated with any program, whether C++, Python, Java, or other lan-

guage. In C++, the first stream is called cout and by default it writes to the screen.

The cerr stream also writes to the screen by default. The cin stream reads from the

keyboard by default. The operator for reading from a stream is the right-shift oper-

ator, written cin>>variable where the variable will hold the value of its type which

4.6 I/O Streams 125

was read from the stream. In each of these cases these streams can be redirected

to read or write to different locations. Redirecting input and output is an operating

system feature and not really associated with a specific programming language. You

can search on the web for information about redirecting standard output, standard

error, or standard input if you are interested in learning more about redirection.

Java programs have the same three streams. System.out is the name of the standard

output stream. System.err is the standard error stream. System.in is the input stream.

Figure 4.3 demonstrates writing to standard output in a Java program. The right-shift

and left-shift operators are not used to read from and write to streams in Java. Instead

the more traditional function call syntax is used.

4.7 Garbage Collection

Garbage collection occurs when dynamically allocated space needs to be returned

to the pool of available space in memory. This space that is available for run-time

allocation is called the heap. Every time an object is created a little of the heap

memory of the computer must be reserved to hold that object’s state information.

When the object is no longer needed, the space on the heap has to be freed so it can

be used by another object later.

Languages like Java and Python provide garbage collection as part of the underly-

ing model of computation. They can do this because these languages are careful about

how pointers are exposed to the programmer. In fact pointers are called references

in these languages to distinguish them from pointers in languages like C and C++.

The trade-off is that these languages take some control away from the programmer.

Java, Python, and many languages that provide garbage collection require a virtual

machine to execute their programs and the virtual machine takes care of managing

and freeing unused memory.

Garbage collection can impact the run-time performance of a system. Languages

like Java and Python aren’t as well-suited to real-time applications where timing is

critical. In these languages garbage collection can occur at any time. Usually, running

of a program is not time critical and the time taken for garbage collection is negli-

gible. The advantages of garbage collection typically far outweigh the possibility of

memory leaks, but not in timing critical applications.

The existence of a run-time system that supports garbage collection, like the Java

and Python virtual machines, means that those programs have less access to the

underlying hardware of the machine. To safely free unused memory any garbage

collection system must restrict the use of pointers in programs and as a result pro-

grams written in languages like Java and Python have less access to the details of the

hardware platform. Again, this is not usually a problem for most programs, but there

are instances where direct hardware access is important. Programs like operating

systems are typically not written in Python or Java. To avoid any misconceptions,

Android applications are written in Java, but the Android operating system itself is

based on the Linux kernel which is implemented in C.

126 4 Object-Oriented Programming

C++ programs must manage the allocation and freeing of heap space. But, it’s not

always clear when an object will no longer be used. A memory leak occurs when

memory never gets freed even though the C++ program is done using it. There is

extra work involved in writing C++ classes to insure that objects get freed when they

are no longer needed. In the case of the CoCo virtual machine it is not safe to free

objects once created because there is no reference counting in CoCo to decide when

an object is no longer in use. Because objects are created and often referenced from

multiple parts of a CASM program it is safe to simply free objects in CoCo. True

garbage collection is needed in the C++ implementation of CoCo to make it a really

useful virtual machine. As it stands, CoCo works for running short programs, but

would not be suitable for long running applications.

For Java programs the garbage collector is a thread that runs once in a while and

checks to see how many references are still referring to an object. If there are no parts

of the program using an object, then it can be freed. Once in a while you might have

a group of objects that are not being used, but all appear to be using each other. In

this case the garbage collector can form a dependency graph and figure out that the

objects involved form a cycle and no other objects outside the cycle are depending on

the group of objects in the cycle. In this case, all objects in the cycle can be freed. The

existence of a garbage collector greatly simplifies writing Java programs including

JCoCo.

4.8 Threading

In the previous section it was mentioned that the JVM garbage collector runs in a

different thread. A thread is a running sequence of instructions that shares access to

objects with other threads. Each thread runs largely independently from other threads

in the same program. You can think of each thread as essentially an independent

program that is working with other threads in the same larger program to accomplish

some work.

Java was built from the ground up to be a multi-threaded programming language.

Every object in Java contains a lock that can be used to synchronize the behavior of

multiple threads. When more than one thread is running, its work should not undo

or change the work another thread is doing. When more than one thread is running

there are two issues that need to be dealt with: synchronization of the threads, and

communication between the threads.

Locks on objects make it possible for Java threads to both synchronize their work,

and communicate with each other in structured ways. Every object in Java has a lock

associated with it. There are also keywords in Java like synchronized that insure that

only one method at a time may run on an object. This text won’t teach you about

Java threading, but it is an important topic and should be studied at some point.

C++ also has support for threads through the thread class in the standard

namespace. However, C++ support of threads is quite a bit different than the Java

support. For instance, C++ does not have keywords that allow for synchronized meth-

4.8 Threading 127

ods like Java. Threading in C++ requires a little more thought and work. C++ and

Java are equally powerful in their support of multi-threaded programs, but given a

choice, Java is the language to use for multi-threaded applications.

4.9 The PyToken Class

Object-Oriented programming is all about creating objects. Objects have state infor-

mation, sometimes just called state, and methods that operate on that state, sometimes

altering the state. If we alter the state of an object we call it a mutable object. If we

cannot alter the object’s state once it is created, the object is called immutable.

A class defines the state information maintained by an object and the methods that

operate on that state. We’ll start by examining the PyToken class in Fig. 4.10 since

Fig. 4.10 The PyToken class

128 4 Object-Oriented Programming

it is a simple immutable class. The PyToken class defines the token objects that are

returned by the scanner to the parser during parsing of a JCoCo program. All the

JCoCo code is in a package called jcoco. Line 1 declares that this class belongs in

this jcoco package.

Lines 4–17 of Fig. 4.10 define the TokenType enum, which is short for enumeration.

The TokenType enumeration defines the types of the tokens returned by the scanner.

If you recall from Chap. 3, the syntax of CASM programs is pretty simple and these

constant values are all the possible token types. Each constant serves as a name for

each token type. With this enumeration it is possible to use these constant names in

the Java code where the type of token is needed. For instance, here is one snippet

of code from the JCoCo interpreter. Using descriptive constant names is useful in

writing self-documenting code which you should always strive to do.

i f (tok.getType () != TokenType.PYEOFTOKEN)
{

badToken(tok , "Excpected End Of File (EOF)");
}

Lines 19–22 define the instance variables of the object (i.e. the object state). Each

of these variables is declared private so that only the class’ methods may access

the state information directly. Lines 24–29 define the PyToken constructor which is

called when a PyToken object is created. Here is how a PyToken object gets created.

PyToken t;
t = new PyToken(type , lex , line , column);

Of course, the variables type, lex, line, and column would all have to have values

already and be of the proper types. For instance, the lex variable must be declared as

a String. Java is a statically typed language, so all variables must be declared before

they can be used. In this code the variable t was declared to have PyToken type.

There are a couple of things you can’t see in the textbook. Because this class is

defined in a package called jcoco, the result of compiling this class will be placed

in a subdirectory named jcoco. Packages and subdirectories go together in Java

organization of files. In addition, this file must be named PyToken.java since it

contains the public class PyToken. This is also part of Java’s organization of files.

4.9.1 The C++ PyToken Class

The implementation of PyToken in C++ looks a bit different than the Java version.

Java and C++ both support separate compilation of code. Using Java each class is

written in a separate file. Each file is compiled separately by the Java compiler. When

to re-compile a Java class is decided based on dates of both the .java and the .class

files.

In C++ there is no such make mechanism built into the compiler. Instead, the

separate make tool provides this functionality as described in Sect. 4.2.2. In addition,

the interface to the class (i.e. the declaration of the class’ instance variables and

methods) is separated from the actual code that implements the methods. So, the

http://dx.doi.org/10.1007/978-3-319-70790-7_3

4.9 The PyToken Class 129

Fig. 4.11 The C++ PyToken class declaration - PyToken.h

PyToken class definition is separated into two files: the PyToken header file, named

PyToken.h, and the method implementations located in PyToken.cpp. Figure 4.11

shows the contents of the header file declaration of the class. Only the .cpp source

files are compiled using the compiler. The header files are included in the source

files for use during compilation of the source files.

Much of the class declaration in the header file looks like the Java version. The

enum defined in Fig. 4.10 is implemented as integer constants in Fig. 4.11 for no

good reason. Enums are supported in C++ as well. Line 6 provides the declaration

of a destructor which in general is used by C++ because C++ programs must free

up their space since there is no garbage collector as there is in Java. However, the

destructor in this case doesn’t really have a purpose since these tokens don’t have

pointers to other objects. A destructor is needed precisely when an object contains

pointers to other resources that must be freed. PyToken objects do not contain any

pointers to other objects and hence the destructor has no purpose in this class.

The other difference worth noting is the use of const after the four methods that

return values. This declares that these methods don’t mutate the PyToken object.

They only return values from the PyToken object. The use of const exists in C++

because C++ is very flexible in the way parameters are passed and values are returned.

Declaring that a method is const helps C++ know where the method can be safely

called and can optimize the performance of C++ programs.

130 4 Object-Oriented Programming

Fig. 4.12 The C++ PyToken class implementation - PyToken.cpp

The C++ implementation of PyToken is given in Fig. 4.12. The first line includes

the declaration of the PyToken.h header file. This is a macro processor directive to

bring that source code into this file. By doing this, the PyToken class is declared for

this source code.

The PyToken:: that you see in Fig. 4.12 is a scope qualifier. It indicates that while

none of this code is physically written inside the PyToken class definition, it is meant

to be a part of the PyToken class.

Lines 3–6 of Fig. 4.12 use an arrow operator, written ->. In Java this is written as

a dot. The arrow operator follows a pointer. In C++, this is a pointer that points to the

current object. In Java, this is a reference and we use the dot notation to dereference

the this reference. Pointers are the address of data in the memory of the computer.

Pointers can be used in expressions to create new pointers using pointer arithmetic.

In a programming language a pointer can point anywhere. A reference is much more

controlled. References are somewhat like pointers except that they cannot be used in

arithmetic expressions. They also don’t directly point to locations in memory. When

a reference is dereferenced using a dot, the run-time system does the lookup in a

reference table.

This difference between references and pointers means that we can safely rely

on every reference pointing to a real object where we don’t necessarily know if a

pointer is pointing to space that might be safely freed or not since the pointer might

be the result of some pointer arithmetic. References are safe for garbage collection.

Pointers are not.

4.10 Inheritance and Polymorphism

Object-oriented programming languages help us organize our code. One great advan-

tage of organizing our code around objects occurs when we are able to re-use code.

4.10 Inheritance and Polymorphism 131

Fig. 4.13 The C++ PyObject header file - PyObject.h

Code re-use is important so that we can write something once and forget it while we

solve other problems. But for code re-use to work we need a way of customizing this

code for our purposes.

Inheritance is the mechanism we employ to re-use code in software we are cur-

rently writing. Polymorphism is the mechanism we employ to customize the behavior

of code we have already written. In this section we’ll look at some C++ code to see

how inheritance and polymorphism are specified. In the next section we’ll revisit the

same code as implemented in Java.

Consider the header file for PyObject in Fig. 4.13. The CoCo and JCoCo virtual

machines work on Python objects. Every data value in Python is an object, so this

idea of objects is very pervasive in the JCoCo/CoCo implementations. In fact, it is

so pervasive there are certain things that every object in Python must be able to do.

Certain methods can be called on every Python object. To be able to re-use as much

code as possible it makes sense to write that common code in one place. One such

place is the PyObject class in the C++ CoCo implementation.

Every object in Python can be converted to a string. While the string represen-

tations vary, the mechanism to convert an object to a string is to call the __str__

method on the object. This is declared on line 22 of Fig. 4.13. Since all objects

should respond to this method, the PyObject class defines a toString method and

a __str__ which calls the toString method. The __repr__ method is similar to

the __str__ method. In some case the two methods return exactly the same string.

132 4 Object-Oriented Programming

But, the __repr__ returns a string that if evaluated using the eval function, would

construct the same object. For instance, consider this code.

x = [1,2,3]
y = eval(repr(x))

After evaluating this code, both x and y refer to lists of integers, where y is a complete

copy of the contents of the list referred to by x.

Every object in Python responds to a number of basic method calls. CoCo does

not attempt to implement all of them. But another that it does implement is the

__hash__ method which returns a hash value for all hashable objects in Python.

This is used when the object is used as a key in a dictionary (i.e. hash table). Only

immutable objects may be used as keys in dictionaries.

The __type__ method returns the type of any Python object. Every Python object

has a type. The type is returned via this method which is also an object.

There are a few things to note in Fig. 4.13 related to programming in C++. The

first seven lines are called macro processor directives. Any line starting with a pound

sign (i.e. #) is a macro processor directive. The first line is an if-not-defined directive

and the second line is a define directive. The last line of Fig. 4.13 is an endif that

goes with the first line. The pattern of ifndef, define, endif macro processor directives

is needed because include directives often end up with circular references where

include A includes B which may in turn includes C which includes A again. This kind

of circular reference is avoided by defining PYOBJECT_H_ in Fig. 4.13. Once the

PyObject.h include is included, the PYOBJECT_H_ is defined and if PyObject.h is

included again through a circular reference, or even through another include including

it without a circular reference, it will not get included twice. This pattern of ifndef-

define-endif is used for every header file in C and C++ programming.

Line 10 declares a class (i.e. type) called PyType. This is called a forward dec-

laration. The PyType class is used in this header file, but PyType.h also includes

PyObject.h so the forward declaration was necessary because of the circular ref-

erence. Line 14 is a constructor for the PyObject class. Line 15 is the destructor

declaration which again doesn’t really do anything for this class.

The use of the keyword virtual is important. Virtual methods are methods that are

included in the virtual function table of a C++ class. This virtual function table is

how C++ implements polymorphism. When a virtual function is called, there is an

extra lookup of the function’s address because classes that inherit from this class may

override any of the virtual functions. For instance, it can’t be known at compile-time

which version of toString should be called, the one in PyObject or one of the toString

methods defined in a subclass of PyObject.

Examine the PyObject::__str__ method shown in Fig. 4.14. This method calls

toString and returns a new PyStr object as the result of converting the object to a

string. The subtly here is that which toString will be called is unknown until this

code actually executes. For instance, if the current object is a PyInt then the code

would be executed from PyInt.cpp as shown in Fig. 4.15. But if a PyList were the

current object, then the toString method would be executed from Fig. 4.16.

4.10 Inheritance and Polymorphism 133

Fig. 4.14 The CoCo str magic method

Fig. 4.15 The PyInt toString method

Fig. 4.16 The PyList toString method

Both PyInt and PyList inherit from PyObject in the C++ implementation. So,

polymorphism works because toString is declared virtual and therefore the determi-

nation of which toString to call is made through an extra lookup of the actual pointer

to the function, in the virtual function table, at run-time.

Line 28 declares a function, which in this case is an overloaded left-shift operator

(i.e. <<) that can be used to print objects. The implementation of this overloaded

left-shift operator, from the file PyObject.cpp, relies on polymorphism to customize

its behavior, like the __str__ method also implemented in that module. The toString

to get called will depend on which type of object this is called.

ostream& o p e r a t o r <<(ostream &os , PyObject &t) {
r e t u r n os << t.toString ();

}

134 4 Object-Oriented Programming

4.11 Interfaces and Adapters

In early Object-Oriented programming languages the specification of an interface

was tied directly to a class. For instance, in the previous section we learned that

toString was tied directly to the PyObject class and any classes that inherited from

PyObject. This works great until you have some class that inherits from something

other than PyObject and would like to use the polymorphism defined by the toString

method. Then you have a situation where you would like to inherit from two different

classes at the same time. C++ solves this problem with multiple inheritance. C++

classes can inherit from more than one class.

Java does a few things a little different than C++. First, unlike C++, every class

in Java inherits from the Object class either directly or indirectly. There is one class

hierarchy in Java of which every class participates. C++ has no built-in inheritance

hierarchy. Using C++, a class that does not explicitly inherit from something does not

inherit from anything. In Java a class that does not explicitly inherit from anything

inherits from Object.

Secondly, multiple inheritance is not supported using Java, which simplifies inher-

itance and its implementation. But, Java solves the whole problem of interfaces being

tied to class declarations by separating the two concepts. An interface is a promise

to support certain methods in a class. Classes can implement as many interfaces as

they wish, which is the Java way of achieving multiple inheritance. But, interfaces

are in no way tied to the class hierarchy. What’s more, you can declare a parameter

to be of the type of an interface. Consider the code in Fig. 4.17.

Like the C++ version, the Java PyObject interface declares a str method, similar

in purpose to the C++ toString method. Declaring the str method in the interface

means that all classes that implement this interface must implement the str method.

While the interface declaration separates the interface from the class hierarchy,

it also does not implement any of the code for the interface. It’s often the case that

many classes which implement an interface will have at least some common code.

Either each class must implement the same code or the programmer may choose to

Fig. 4.17 The PyObject interface

4.11 Interfaces and Adapters 135

Fig. 4.18 The PyObjectAdapter

use inheritance to write an adapter class that implements the interface and provides

common code to several subclasses. This is the case in Fig. 4.18. A significant portion

of the code is omitted for brevity here.

There are several things to note in this code. Lines 4–7 define protected variables.

Protected variables are hidden (i.e. not accessible) from any code that is not in the

same package, in this case the jcoco package. Line 10 of the code calls this() which

136 4 Object-Oriented Programming

calls the default constructor on line 15 so that code common to both constructors

need not be duplicated.

Line 33 uses a decorator called @Override. This decorator tells the compiler

that the method that follows overrides or implements a method from a base class or

interface. This is useful in case you make a spelling error or incorrectly specify a

type of parameter of a method. Spelling a name wrong, or changing the type of a

parameter will result in a method that will never get called because polymorphism

only works when the name and the types of arguments all match. Otherwise you

are just defining a different method since Java supports parametrically overloading

names, meaning that two methods may have the same name if they have different

types of parameters. So, @Override can be useful in catching mistakes that might

otherwise be difficult to debug.

Practice 4.4 We have seen how polymorphism is provided by the C++ and

Java programming languages. Polymorphism is also provided by Python. Yet

with Python we don’t declare methods virtual, like C++, and we don’t have an

built-in class hierarchy like Java. How does polymorphism happen in Python?

You can check your answer(s) in Section 4.34.4.

4.12 Functions as Values

Python is a dynamically typed language. As such, methods are looked up at run-time,

not compile time. All methods and values in Python are objects that are stored in

dictionaries within other objects so they can be looked up at run-time. The keys in

these dictionaries are strings: the names of the values, methods, or functions.

To implement a virtual machine that works like Python’s virtual machine, it is

necessary to treat functions as values and store them in dictionaries, or hash tables,

like Python’s virtual machine implementation. C++ supports treating functions as

values. Using C++ we can write the following.

dict["__str__"]=(PyObject* (PyObject ::*)(vector <
PyObject *>*)) (& PyObject :: __str__);

This code comes from the PyObject class in the C++ implementation of CoCo,

in the file PyObject.cpp. There is a subtle nuance to this code. Once the __str__

method is set in the object’s dictionary any and all subclasses that inherit from

PyObject and override the __str__ method will automatically get the overridden

method definition. There is no need to set "__str__" to point to the new, overridden

__str__ method. Because the __str__ method is declared virtual, polymorphism

means it only has to be set in the dictionary once.

SImilar code is not possible in Java because Java does not treat functions and

methods as values. But there is a solution. A class can simulate a function or method.

4.12 Functions as Values 137

Fig. 4.19 The PyCallable interface

In fact, Java contains support for doing just this. JCoCo implements its own version

of run-time lookup of a method or function by using objects to simulate the functions

and methods.

JCoCo defines an interface called PyCallable, shown in Fig. 4.19. This interface

defines one method called __call__. This method takes a list of PyObject references

and returns a PyObject as its result. This reflects the calling mechanism within

Python. All Python functions are given a list of Python objects and return a Python

object. This uniformity means that any class that implements the PyCallable interface

can be called by calling its __call__ method. This means that functions can be treated

as values in JCoCo by encoding the functions as objects.

4.13 Anonymous Inner Classes

Interfaces in Java specify the methods that must be supported by classes that imple-

ment them. The PyCallable interface, described in the last section, specifies a

__call__ method. Like other interfaces, there are adapter classes that provide some

common code for classes that choose to implement the PyCallable interface. The

simplest of these is the PyBaseCallable class which is used in the functions imple-

mented in the PyObjectAdapter class and the PyCallableAdapter class to avoid a

circular reference problem within the object hierarchy. Another class also imple-

ments the PyCallable interface, named PyCallableAdapter, which is used by all other

implementations of PyCallable other than those created in the PyObjectAdapter and

PyCallableAdapter classes.

Figure 4.18 contains code on lines 19–29 that creates an instance of the PyBase-

Callable adapter. This is an example of an anonymous inner class. Line 19 creates a

class that has no name, but inherits from PyBaseCallable and overrides the __call__

method. There is one instance of this PyBaseCallable class created, the instance for

this __str__ method. When an object wishes to call the __str__ method on an

object it calls the callMethod method of the PyObjectAdapter class.

The callMethod code in Fig. 4.20 looks up the method in the object’s dictionary

and if it finds it, it calls the __call__ method on it, which in the case of the code

on lines 19–29 of Fig. 4.18 is overridden to call the str() method on the object and

return a PyStr object with the contents returned by the str() method.

Anonymous inner classes are very important in Java. An inner class is any class

defined within another class. Inner classes are important because they provide a

means to implement call-backs. When an event occurs in a Java program, like an

event from a GUI program (i.e. a mouse-click) or a message being received from the

138 4 Object-Oriented Programming

Fig. 4.20 The callMethod code

internet, if a call-back has been registered to handle that event, then the call-back is

called. Inner classes are the perfect way to implement a call-back because the inner

class automatically has access to all the variables and methods of the outer object.

In the case of the code in Fig. 4.18, the inner class is anonymous, it does not have

a name. This is okay because typically a call-back has one and only one instance

created for it, for a particular outer object. Earlier versions of Java did not have

anonymous classes leaving Java programs littered with inner classes that only ever

had one instance created. Java programmers needed a more compact, precise syntax

to manage call-backs and anonymous classes were introduced.

The advantage of the inner class defined on lines 19–29 of Fig. 4.18 is on line 27

where the str() method is called which is a member of PyObjectAdapter which is the

class of the outer object in this instance. Since this is an inner class, we can directly

call the str() method in this call-back. Anonymous inner classes are used extensively

throughout the JCoCo implementation.

4.14 Type Casting and Generics

Line 21 of the C++ code in Fig. 4.13 is an example of declaring a variable dict whose

type is defined by a template. A template is how C++ programmers write generic

classes. A generic class is usually a container of some type, in this case a hash table.

This hash table maps strings to functions that are given a vector of PyObject pointers

and return a PyObject pointer. The vector class is again a template. The vector passed

to these functions is a sequence of PyObject pointers.

Generics are an important part of object-oriented languages. Generics let pro-

grammers re-use classes, especially classes that are designed as data structures like

maps and vectors. A map is a data structure mapping keys to values. The type of

the keys and values can be practically anything. So, a generic map class provides

the ability to map any type of keys to any type of values. In Java a map is called a

HashMap. In C++ there are several kinds of map classes. Please note that in C++ the

4.14 Type Casting and Generics 139

Fig. 4.21 An ArrayList example

standard map class is not implemented as a hash table. It guarantees O(log n) insert

and lookup time. A hash table guarantees an amortized complexity of O(1) insert

and lookup. The unordered_map of C++11 is implemented as a hash table. Before

C++11 this class was not included with C++.

Java has one type hierarchy. Everything inherits from Object either directly or

indirectly. By having one type hierarchy the creators of Java could provide container

classes for many of the data structures we need in our programs including HashMap

and ArrayList which provides a means for storing a list of objects. For instance, if

you needed a list of objects to be returned from a function you might code it as shown

in Fig. 4.21.

The BodyPart function, a part of the PyParser module, returns a list of PyByteCode

objects. When one of these PyByteCode objects is needed, we would be forced to

write code like this to access the first PyByteCode object in the list.

ArrayList bp = BodyPart ();
PyByteCode byteCode = (PyByteCode) bp.get (0);

The (PyByteCode), with the parens, is called a type cast or just a cast. Casting is

necessary when moving down in the inheritance hierarchy. A cast is a way to tell the

Java compiler that you know the actual type of the value while the compiler does

not. There is a run-time check that is inserted into your code. If the cast is invalid,

the Java program will throw an exception so casting is safe. It’s just not convenient

and the extra run-time check is less than desirable, although arguably better than not

checking at all.

Casting is the same in C++ and Java. The same issue occurs in C++. When moving

down the inheritance hierarchy, a cast would be required. C++ has a datatype similar

to Java’s ArrayList, called vector. However, C++ does not have one super class of

all other classes. So the vector datatype would be a little harder to write without

something called generics.

Moving down the inheritance hierarchy in either Java or C++ requires the pro-

grammer to write more code. If we could avoid moving up the hierarchy in the

first place, then moving down again would become unnecessary. This is the aim of

generics. Generics were added to Java to make moving up and down the inheritance

hierarchy, and therefore casting, unnecessary in many circumstances. Consider the

real version of the BodyPart function in Fig. 4.22.

140 4 Object-Oriented Programming

Fig. 4.22 An ArrayList example using generics

Fig. 4.23 The unordered _map template

In this code the angle brackets (i.e. < and >) delimit the type of the ArrayList. The

ArrayList is a list of PyByteCode elements. This declares the specific type contained

in the ArrayList making the declaration of the ArrayList generic, so that it can be

a container of any type, not just Object values. To declare the ArrayList class to be

generic the Java creators would have changed its definition to look like this.

c l a s s ArrayList <T> {
p r i v a t e T data[] = new T[10];
...

The type, T , becomes a parameter to the class declaration. A version of the class

is created for each declared version of the ArrayList. So, when the ArrayList

<PyByteCode> class is specified, a PyByteCode ArrayList object is created.

Python, since it is dynamically typed, does not need generics. Generics are only

needed for statically typed languages like Java and C++. In C++ generics are called

templates. A template is a parameterized class. Like Java, the parameter to the class is

a type or types. Standard template containers in C++ include unordered_map, map,

vector, list, queue, stack, deque, set, and array among others. Consider the declaration

of the unordered_map template in C++ in Fig. 4.23. This template definition shows

us that more than one type parameter can be used for a template or a generic in C++

or Java. In the case of the unordered_map there are five type parameters passed to

the declaration of the map.

Diamond notation is one topic related to generics in Java. To save even more

writing, Java programmers may use diamond notation when writing a generic object

4.14 Type Casting and Generics 141

declaration. The declaration of the variable instructions earlier in this section could

have be written as follows if we would have used diamond notation.

ArrayList <PyByteCode > instructions = new ArrayList <>();

You can probably see the diamond in the code. Since PyByteCode is already written

once on this line, using Java you don’t have to write it again. The compiler can infer

the type of the ArrayList as it is created from the type of the reference instructions

pointing to it.

4.15 Auto-Boxing and Unboxing

In C++ you can declare a vector of int if you need to by writing

vector < i n t > intVec;

It is not possible to declare an ArrayList of int in Java. Templates in C++ can take

any type as an argument to the class, even primitive types. In Java, only classes can

serve as arguments to generics. The type int is a primitive type. That means it is not a

class. However, the creators of Java understood this problem and provided wrapper

classes for each of the primitive types so we could declare collections of ints for

instance by wrapping each int as an Integer. So, while we can’t declare an ArrayList

of int, we can declare an ArrayList of Integer as follows.

ArrayList <Integer > intList = new ArrayList <>();

A wrapped int is created and added to our list as follows.

i n t x = 6;
Integer y = new Integer(x);
intList.add(y);

And getting it back out again involves writing some code like this.

x = intList.get (0). intValue ();

This is the old way of wrapping and unwrapping integers, and other primitive types,

in Java. Once again, programmers do this often enough they wanted a more compact

way of wrapping and unwrapping primitive types. Java programmers refer to this as

boxing and unboxing. Recent versions of Java support auto-boxing and unboxing.

So, now in Java you can write the following.

i n t x = 6;
intList.add(x);
...
x = intList.get (0);

The variable x’s value is auto-boxed when it is added to the list and auto-unboxed

when it is extracted. Java determines when to box and unbox primitive values based

on the type of value and the method being called. The syntax is much more compact

and it is easier to read.

142 4 Object-Oriented Programming

C++ does not support autoboxing and unboxing, but since you can declare template

containers of primitive types it isn’t as necessary to wrap and unwrap primitive values

when using C++.

Practice 4.5 The Java ArrayList contains two overloaded methods called

remove. One takes an int parameter and removes an object at the specified

index in the ArrayList. The other takes an Object as a parameter and removes

the first instance of the object from the ArrayList. Why might this pose a

problem?

You can check your answer(s) in Section 4.34.5.

4.16 Exception Handling in Java and C++

Java and C++ can throw exceptions and catch them as in many languages. Sometimes

exceptions are thrown in code not written by us but code we use. For instance,

indexing beyond the end of a vector. Other times we may wish to throw an exception.

In C++ literally any type of value can be thrown.

Figure 4.24 shows how an object called a PyException is thrown using C++. This

code was taken from the PyRange.cpp module. When indexOf is called beyond

the end of a range object, CoCo throws a PyException object with a value of stop

iteration as shown in Fig. 4.24.

Using Java, you throw values that inherit from the class Exception. Additionally,

in some cases you must declare that a function throws an exception. For instance,

in Fig. 4.25 the indexOf method declares that it throws PyException. It turns out

in this case that declaring that the method throws this exception is optional because

PyException inherits from RuntimeException. Exceptions that inherit from Runtime-

Exception don’t have to be declared to be thrown in Java.

Exceptions that are thrown can be caught and the C++ version of the exception

is caught in PyFrame.cpp in the FOR_ITER instruction. The code for this appears

Fig. 4.24 Throwing an exception in C++

4.16 Exception Handling in Java and C++ 143

Fig. 4.25 Throwing an exception in Java

Fig. 4.26 Catching an exception in C++

Fig. 4.27 Catching an exception in Java

144 4 Object-Oriented Programming

in Fig. 4.26. To catch an exception it must be thrown in a try block or in some code

called from a try block. Then the type of value caught in the catch must match the

type of value thrown. Figure 4.27 provides the Java version of catching an exception.

There is not much difference between C++ and Java in handling exceptions. The

additional code in Fig. 4.26 on lines 14–20 are needed because C++ does not have

garbage collection while Java does.

Figures 4.24 and 4.26 demonstrate how exception handling can be used to

implement iteration within the CoCo interpreter, while Figs. 4.25 and 4.27 provide

the Java version for JCoCo. When the end of an iteration is reached, a stop iteration

exception is thrown and when caught it signals the end of the iteration.

Fig. 4.28 Signal handling

4.16 Exception Handling in Java and C++ 145

Exception handling is a means of handling conditions within a program, whether

planned or unplanned. C++ and Java programs can throw and/or catch exceptions as

needed. However some problems in C++, like division by zero errors, do not surface

as exceptions. They are signaled instead which is the topic of the next section.

4.17 Signals

The C version of exception handling is signal handling. C programs can generate

signals, but it is more common to put a signal handler in place to handle signals

generated by the operating system. Figure 4.28 contains an excerpt of the code from

main.cpp where a signal handler is implemented and is installed in main.

There are several types of signals and the code in Fig. 4.28 is written to catch

all of the signals defined in the C standard. The constant signal types are defined

in an include called signal.h. When a signal is generated the program immediately

jumps to the signal handler passing it the signal value that was generated. The signal

handler usually is written to report some type of error and then terminates. The signal

handler presented in Fig. 4.28 does that. It prints a traceback of the program and then

terminates.

4.18 JCoCo in Depth

The rest of the chapter will cover only the Java implementation of JCoCo. Many

similarities exist to the C++ CoCo implementation. JCoCo is mostly a superset of the

CoCo implementation. When there are differences between the two implementations

they will be noted. Primarily JCoCo adds support for the creation of programmer-

defined classes.

4.19 The Scanner

The JCoCo virtual machine reads a CASM file as depicted in Fig. 4.1. The virtual

machine starts by using a scanner to return the tokens of the CASM file. It is common

to implement a scanner as a finite state machine. The finite state machine consists

of states and transitions between states depending on the characters read from the

input file. The finite state machine accepts tokens of the CASM file. The finite state

machine employed by JCoCo is depicted in Fig. 4.29.

When the parser is constructed, it first creates a scanner to read the tokens of

the CASM program. The PyScanner’s getToken method is written as a finite state

machine to get the tokens of the CASM program. Figure 4.30 contains the getToken

146 4 Object-Oriented Programming

Fig. 4.29 The JCoCo scanner FSM

and putBackToken methods for the scanner. The putBackToken method is capable of

putting back one token which is used by the parser when it has to look ahead one

token to determine its next action.

The scanner reads from a stream, which in the case of JCoCo is a PushbackInput-

Stream so that a character can be unread. The scanner also keeps track of its position

within the file so each token can carry along the position where it was found in the

input file.

The start state is 0 as shown in the Fig. 4.29. There are several things to take note

of in the finite state machine. First, identifiers are accepted by state 1 and are limited

to letters and digits where the first character is a letter. Underscore characters and @

characters are considered letters by the scanner so tokens like @x _1 are recognized

as identifiers by JCoCo even though that is an illegal identifier in Python. State 2

accepts integers. State 5 accepts floating point numbers which must have a decimal

point. Scientific floating point notation is not accepted by JCoCo.

States 6 and 7 are responsible for recognizing strings. These states keep reading

until a single or double quote is found to end the string. However, strings cannot

have a quote or double quote in them as they are defined. For instance, the string

‘how’s it going?’ is not allowed because there is no escape character implemented

in JCoCo and the second quote would end the string. The entire implementation of

the finite state machine can be found in PyScanner.java with only an excerpt of the

code appearing in Fig. 4.30.

4.19 The Scanner 147

Fig. 4.30 PyScanner getToken and putBackToken methods

148 4 Object-Oriented Programming

The input stream contains a method to put back the last character which is used

by the scanner code on line 38 of the finite state machine loop in Fig. 4.30. The last

character must be put back when a token is returned because the last character is not

a part of that token. Consider state 1 for example. The finite state machine remains

in state 1 as long as the character is still a letter or a digit. When it is neither, the

foundOne variable is set to true, terminating the loop. But, that last character may

be part of the next token and so is put back before returning.

Just before getToken returns a token, the token to be returned is saved. This is

used by the putBackToken method. If the last token is put back then needToken is

simply set to false. When getToken is called, lines 2–5 check to see if needToken is

false and if so return the token that was put back by the putBackToken method. By

saving the token before it is returned the last token is always remembered in case it

needs to be returned again.

4.20 The Parser

The tokens of a CASM file are read by the parser and parsed according to the

grammar rules in Appendix A. Each BNF non-terminal corresponds to one function

in the parser. The parser returns an abstract syntax tree representing the CASM

program. In this implementation, the abstract syntax tree is an ArrayList of PyCode

and PyClass objects, which means the ArrayList is declared as a list of PyObjects.

Figure 4.31 contains an outline of the parse method and some of the code called by

parse which can be found in PyParser.java.

Each method of the parser corresponds to a non-terminal of the grammar. The

implementation of each method method is determined by the right hand sides of

its rules. The entire parser implementation is in PyParser.java. Figures 4.31 and

4.32 contain two excerpts of this code. Examining the rules for ClassFunctionList,

FunDef, and ConstPart will shed some light on the implementations of the methods

in Figs. 4.31 and 4.32.

CoCoAssemblyProg ::= ClassFunctionListPart EOF

ClassFunctionListPart ::= ClassFunDef ClassFunctionList

ClassFunctionList ::= ClassFunDef ClassFunctionList | <null >

ClassFunDef ::= ClassDef | FunDef

FunDef ::= Function colon Identifier slash Integer

ClassFunctionList ConstPart LocalsPart FreeVarsPart

CellVarsPart GlobalsPart BodyPart

ClassDef ::= Class colon Identifier [(Identifier)]

BEGIN ClassFunctionList END

ConstPart ::= <null > | Constants colon ValueList

Starting with the ClassFunctionList non-terminal, its rules say that either it is empty

(i.e. <null>) or it is a ClassFunDef followed by a ClassFunctionList. How do we

know which rule to follow? The answer can be found by looking ahead one token.

If we examine the FunDef rule, it must start with the keyword Function and that

should be the next token to be read in the ClassFunctionList implementation unless

4.20 The Parser 149

Fig. 4.31 PyParser.java excerpt 1

the next part of the program is a class definition. In that case the ClassDef non-

terminal requires a Class keyword. To determine what to do we get the next token

in line 29 of Fig. 4.31, put it back right away, and check to see if it was a Function

or Class keyword. If it was either of these, then the first rule is executed by calling

ClassFunDef followed by ClassFunctionList. If Function or Class is not the next

token, then we return the ArrayList passed to the method since we follow the <null>

rule.

150 4 Object-Oriented Programming

Fig. 4.32 PyParser.java excerpt 2

Why is an ArrayList of PyObjects passed to the ClassFunctionList method? This

ArrayList is the abstract syntax tree “so far”, as it has been read up to this point in

the parser. The ClassFunctionList method adds to that ArrayList if it finds another

function or class definition.

4.20 The Parser 151

The FunDef method has only one rule to follow. It is responsible for building a

PyCode object to return to the ClassFunDef method. When FunDef is called, we

have already checked that the first token is the keyword Function so lines 2–5 could

be omitted. The rest of the method gets tokens, checks them to see if they are the

expected tokens, and calls other methods of the parser to read the rest of the function

definition.

The ConstPart method has two rules to follow, like the ClassFunctionList method.

Again, it must get a token to determine which rule to follow. If the next token is not

Constants, then the empty rule is used and the ConstPart method returns an empty

ArrayList. Otherwise, it returns an ArrayList of the constants used in the function.

Each constant string is used to build a PyObject value for that constant. The ArrayList

nestedCFList is passed to the ConstPart method because a nested class or function

is itself a constant value stored in a PyClass or PyCode object respectively. When a

constant like code(g) appears in the list of constants it tells the parser to look up the

code for it in the list of nested classes or functions passed to the ConstPart method.

The code excerpts in Figs. 4.31 and 4.32 demonstrate that the functions of the

parser are straightforward implementations of the rules in the grammar. Once in a

while a lookahead token is needed to determine which rule to follow, but otherwise

the parser gets tokens when required and calls other nonterminal methods when

indicated by the rule. The trickiest part of writing the parser is probably determining

what should be returned. This is dictated by the information that is required in the

abstract syntax tree which is determined by the intended use of the information in

the source file.

4.21 The Assembler

Before CoCo can execute the code in a function, all labels must be converted to target

addresses in the instructions. Labels make no sense to the bytecode interpreter. Labels

are convenient for programmers but are not for code execution. The assembly phase

looks for labels and replaces any instruction jump label with the address to which

it corresponds. For instance, consider the CASM program in Fig. 4.33. The label00

identifies the instruction at offset 11 in the main function. The label01 maps to offset

18 and label02 maps to offset 19. The instructions on line 14, 17, and 23 need to get

the offset, not the label, of their intended targets. This is the job of the assembler.

The assembler is simple enough to include in the parser code when the body part

of a function is parsed. There are two parts to it utilizing a HashMap to remember

and then update the target addresses in the code.

The code for the assembler is contained in two of the parser methods, the

LabeledInstruction method and the BodyPart method. The grammar rules surround-

ing this code are provided here.

<BodyPart > ::= BEGIN <InstructionList > END

<InstructionList > ::= <null > | <LabeledInstruction > <InstructionList >

<LabeledInstruction > ::= Identifier colon <LabeledInstruction > |

<Instruction > | <OpInstruction >

<Instruction > ::= STOP_CODE | NOP | POP_TOP | ROT_TWO | ROT_THREE | ...

152 4 Object-Oriented Programming

The code for LabeledInstruction adds each discovered label to a map from labels to

integer offsets. Lines 32–39 of Fig. 4.34 do this when they discover an instruction

contains a label. If the code finds a label, then line 34 adds the label to the map

making it point to the offset, called index in the code.

Target locations are updated in the body of the function on lines 11–19 of Fig. 4.34.

If an instruction is found that uses a label as its target, the instruction is deleted and

a new instruction with identical opcode is created with the actual target address of

the instruction.

4.22 ByteCode

A PyByteCode object is created for each instruction found in a CASM program. The

class definition, partially defined in Fig. 4.35, shows an enum being declared with all

possible opcodes. This enum construct in Java is convenient and powerful. An enum

is actually a class definition that declares both the name of each enumerated value and

any attributes associated with it. In the case of the PyOpCode enum each instruction

Fig. 4.33 listiter.casm

4.22 ByteCode 153

Fig. 4.34 Assembling a program

name has associated with it the number of arguments that will be supplied with the

instruction. Each instruction either has zero or one arguments, which appear imme-

diately following the instruction in a CASM file. Referring back to Fig. 4.33 most

instructions in that example have one argument with the exception of the GET_ITER,

POP_TOP, and POP_BLOCK instructions which have zero arguments.

Enumerated values are convenient because they aid in writing self-documenting

code. The enumerated values in the program are constructed as objects, one for each

value enumerated in the declaration. They can be referred to by their enumerated

value in code. For instance, in PyFrame.java a switch statement chooses between

possible instruction values.

154 4 Object-Oriented Programming

Fig. 4.35 Static initialization

inst = t h i s .code.getInstructions (). get(t h i s .PC);

s w i t c h (inst.getOpCode ()) {

c a s e LOAD_FAST:

u = t h i s .locals.get(t h i s .code.getLocals ().get(operand));

i f (u == n u l l) {

t h r o w new PyException(ExceptionType.PYILLEGALOPERATIONEXCEPTION ,

"NameError: name ’" + t h i s .code.getLocals (). get(operand) ...

}

t h i s .opStack.push(u);

b r e a k ;

...

This code gets the opcode from the next instruction. The switch statement is written

with each instruction opcode enumerated in the case statements. This makes the code

very clear when examining it. The behavior of the instructions is associated with the

name of each instruction.

4.22 ByteCode 155

To build the PyByteCode objects from the CASM file it is necessary to translate

the string opcodes, like "LOAD_FAST" into their actual opcodes, like LOAD_FAST.

To accomplish this there has to be a way to look up a string and find its corresponding

opcode. This lookup is done in O(1) time by using a HashMap. The hash map is

created once, when the program begins. When code is executed once and only once

at program initialization, it is called static initialization. Java and C++ both support

static initialization of values.

Internally to the PyByteCode class there are two statically allocated maps that

help in translating each instruction that is read by the parser into a PyByteCode

object. The code in Fig. 4.35 appears in the PyByteCode module. The two vari-

ables OpCodeMap and ArgMap are statically initialized and available to all code

implemented in the class. OpCodeMap is used when an opcode name is found in a

CASM file. It serves to verify it is a valid instruction and to provide a translation to

its enumerated value. ArgMap provides a count of the number of operands, either

0 or 1, allowed for the instruction. For example, looking up "BINARY_ADD" as

OpCodeMap["BINARY_ADD"] would yield the enumerated value BINARY_ADD.

Static initialization of variables can be helpful when you have one-time code that

needs to be run during program initialization. This section demonstrates how to do

this using Java. Similar code exists for C++. See the module PyByteCode.cpp and

PyByteCode.h in the CoCo implementation for an example of doing this using C++

for further details. In this Java version of it the two functions that create the maps

are executed when called by the static initialization on lines 17 and 18 of the code

in Fig. 4.35.

4.23 JCoCo’s Class and Interface Type Hierarchy

The JCoCo implementation consists of approximately fifty six classes and interfaces.

Approximately fifty six classes because JCoCo continues to grow and evolve. Class

inheritance is used for code re-use and polymorphism throughout the implemen-

tation. Figure 4.36 provides a look at the hierarchy of classes and interfaces. The

PyBuiltIns represent a collection of classes for all the built-in functions provided

with JCoCo which include concat, print, fprint, tprint, iter, len, open, and repr. The

fprint and tprint built-in functions are not part of Python. The fprint function is a

functional version of print that takes one value and returns the fprint instance. The

tprint built-in function takes a tuple and prints the elements of the tuple with spaces

separating values in the tuple. PyBuildClass is similar to a built-in function, but is

only accessible via the LOAD_BUILD_CLASS instruction.

PyIterators represents the collection of all iterator classes which include all the

iterable values supported by JCoCo including dictionaries, lists, files, funlists (which

are functional lists implemented as head/tail links). The key shows that the dark grey

classes are used internally in the JCoCo implementation and are not available to

CASM programs. These classes are part of the internal implementation of JCoCo

and are not accessible to the programmer. Some of them have been described earlier

156 4 Object-Oriented Programming

Fig. 4.36 JCoCo type hierarchy

in this chapter. The PyType class is used by all but two of the JCoCo types of values

in the construction of their type objects. The type of exception and range objects

had to inherit from the PyType class so the behavior of calling the type could be

overridden since these two types can be called to build either an exception object or

range object, respectively.

There are two interfaces and three adapter classes. When possible, adapters were

written to allow code to be shared between multiple classes. Consider the PyPrimi-

tiveTypeAdapter class. This class defines the magic methods __repr__, __str__,

__hash__, __iter__, and __type__. These methods are called by the repr, str,

hash, iter, and type methods.

4.23 JCoCo’s Class and Interface Type Hierarchy 157

The PyException class is one interesting example of the need for multiple inher-

itance in Java. PyException inherits from RuntimeException. By inheriting from

RuntimeException, JCoCo exceptions don’t have to be declared to be thrown in

each and every method that either throws or calls something that could throw an

exception. Without inheriting from RuntimeException pretty much every method in

JCoCo would have to be declared as possibly throwing a PyException which would

have made quite a mess of the code.

Since PyException inherits from RuntimeException it cannot inherit from PyOb-

jectAdapter. Instead, PyException implements the PyObject interface and therefore

must re-implement the methods common to the PyObjectAdapter class. With multi-

ple inheritance this could have been avoided. But, this is the only case where multiple

inheritance would have been useful in this collection of classes.

JCoCo supports a number of different types of values, including integers, floats,

dictionaries, lists, strings, booleans, and a few others. Each of these values has a type

associated with it. Each JCoCo object has a method called getType that returns its

type. It turns out even types are objects and they too have a type. Calling getType on

a type returns the type named type. This has to end somewhere and it does with the

type object named type. The type of type is type. This comes from the first two lines

of the initTypes function in the JCoCo.java source file. The type object is created on

the first line and is created with itself as its own type identifier.

PyType typeType = new PyType("type", PyTypeId.PyTypeType);
PyTypes.put(PyTypeId.PyTypeType , typeType);

The next few sections will dive deeper into a few of the JCoCo classes and interfaces

to explore their purpose and how they fit in to the larger implementation of JCoCo.

Practice 4.6 The existence of a class named PySuper suggests that classes

can be built dynamically (i.e. at run-time). The need for PySuper stems from

needing to look up the superclass dynamically, while the program is running,

because in general it cannot be known before its use. What instruction in

appendix A is responsible for getting JCoCo ready to dynamically create a

class?

You can check your answer(s) in Section 4.34.6.

4.24 Code

A CASM function consists of more than just a sequence of PyByteCode objects.

There is the name of the function, the number of arguments passed to the function,

the list of constants used by the function, the local variables, the global variable ref-

erences, and any enclosed functions or classes declared within this CASM function.

All this information and more is encapsulated within a PyCode object.

158 4 Object-Oriented Programming

Fig. 4.37 The PyCode class instance variables

From a Java programming perspective, this code not that unique. It is a container

for all the information that goes along with each function. The class declaration of

instance variables is given in Fig. 4.37.

PyCode objects cannot be executed. There is no way to run a PyCode object. To

run code you need two things: the code and the environment in which it should be

run. The environment is the variables, functions, and other values that are already

defined and initialized before the function executes. The environment and code are

both provided to PyFunction objects when they are executed, which is described in

more detail in Sect. 4.25.

When a Python function is encoded as a PyCode object there are two lists that are

necessary. They reflect the eventual contents of the environment. The free variables

are variables that are referred to that exist in the environment and not in the code of

the function. The other list, the cellvars, are a list of variables that come from the

environment or are part of an inner function’s environment that may be modified and

therefore have to be indirectly referenced. This means that we go through an extra

step to reference cellvars so we can update their values while accessing them from

another environment. See Sect. 4.25 for an example.

4.25 Functions

Each function in a CASM file is scanned by the parser and a PyCode object is cre-

ated in the abstract syntax tree to represent the code, its name and number of argu-

ments along with its declaration of constants, locals, freevars, cellvars, and globals

4.25 Functions 159

Fig. 4.38 The PyFunction constructor and _ _call _ _ method

as described in Sect. 4.24. But, PyCode objects are not callable as shown in Fig. 4.36.

To be callable you need both the code and an environment in which to execute the

code. The environment fills in the gaps so to speak. The freevars are not defined

within the function’s code. The freevars come from the environment.

The code in Fig. 4.38 provides the constructor and the call method for the PyFunc-

tion class. The constructor builds what is called a closure from the environment and

the code. The closure is initialized on line 8–10 where we iterate over the free vari-

ables in the code mapping the cell variables in the closure from their free variable

names to their cells variable values. All variables that are accessed from the closure

are accessed indirectly, through cell variables.

When a function gets called, the __call__ method gets called. When this occurs

a new PyFrame object is created. The PyFrame contains the program counter and

space for local variables to be stored. A PyFrame object is executed by calling the

execute method.

160 4 Object-Oriented Programming

Practice 4.7 What are the free variables and bound variables in this Python

function?

d e f f(x):
y = x
r e t u r n aVal + lstInts [0] + y

You can check your answer(s) in Section 4.34.7.

4.26 Classes

User-defined classes in JCoCo are collections of PyFunction objects and nested

classes. The class contains the name of the class, (i.e. its type) its super class, and a

list of PyFunction or PyClass objects as shown in Fig. 4.39. This reflects the imple-

mentation in Python. For instance, while it’s not normally written this way, to add

two integers together it is possible to write this.

z = i n t .__add__(x,y)

This code looks up the addition magic method in the int class and calls it passing

the two arguments to the function. While addition is a method called on an integer

object, it can also be called on the class by providing both integers.

> python3 .2

Python 3.2.5 (v3 .2.5: cef745775b65 , May 13 2013, 13:37:00)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information .

>>> int.__add__ (4,6)

10

>>>

When a PyClass is constructed it is passed a list of inner classes and one PyCode

object for each of its methods. The PyCode objects are used to build PyFunction

objects on lines 22–23. The PyFunction objects are placed in the attr dictionary. The

variable attr of the class holds attributes that are to be passed on to any instance of this

class. The class contains the functions that will become methods of any instance of

the class. For example, the __add__ function in the int class will become a method

in an instance of the int class.

4.27 Methods

Instances of a class are created by calling their class. For instance, writing

Dog(“Mesa”) creates an instance of the Dog class. The code that is executed when

a class is called is shown in Fig. 4.39 on lines 48–54, which calls the initInstance

method on lines 36–47. In this code all PyFunctions found in the attrs variable are

4.27 Methods 161

Fig. 4.39 The PyClass constructor and _ _call _ _ method

passed on to the instance of the class (i.e. the object instance) as PyMethod objects.

Then, on line 52 the object’s constructor is called to perform any initialization of

the object. Continuing our example from the previous section, this means that like

in Python, the following code can be disassembled and executed in JCoCo.

162 4 Object-Oriented Programming

Fig. 4.40 The PyMethod _ _call _ _ method

> python3 .2

Python 3.2.5 (v3 .2.5: cef745775b65 , May 13 2013, 13:37:00)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information .

>>> int (4). __add__ (6)

10

>>> 4 + 6

10

>>>

The integer 4 had to be written int(4) because otherwise it would look like there

was a decimal point in the number. Syntactically it would not be an integer in that

case. Of course, the more usual way to call this method is by using the overloaded +

operator.

The PyMethod class is a wrapper class for a PyFunction. A PyFunction of a class

is passed on to any instance of that class as a PyMethod as shown in Fig. 4.39. Calling

a method on an object is usually written as object.method(arg1, arg2, ...). It is useful

to know that JCoCo passes the list of args in reverse order. So the last argument is

first, followed by the second to last, and so on.

When a method is called as in object.method(args) the first argument passed to the

method is always self in Python. This self variable is the reference to the object. Since

the arguments are passed in reverse order in JCoCo, the self argument can be added

to the end of the arguments passed to the function that the method encapsulates. This

is shown in Fig. 4.40 on line 3 where the reference to the current object is added to

the end of the ArrayList of arguments. Note that line 8 removes self from the args

ArrayList before returning so the calling code won’t see a modified list of arguments.

Practice 4.8 Consider the code in the example below. When a Dog object is

created its __init__ method implicitly gets called. We never explicitly call the

constructor on a Python object. Where does __init__ get called in the JCoCo

virtual machine?

mydog = Dog("Mesa")

You can check your answer(s) in Section 4.34.8.

4.28 JCoCo Exceptions and Tracebacks 163

Fig. 4.41 A synopsis of exception handling in JCoCo

4.28 JCoCo Exceptions and Tracebacks

The execute method for PyFrame exits in one of two ways. Either the

RETURN_VALUE instruction is executed, or an exception occurs that is not handled

within this function. If an exception occurs, execution jumps to line 18 of the code

in Fig. 4.41. All intentionally thrown exceptions thrown by JCoCo are PyException

objects, so the catch block on line 18 will catch it.

164 4 Object-Oriented Programming

JCoCo exceptions use the exception handling mechanism of Java to jump to the

code starting on line 18 anytime a PyException is thrown in a JCoCo program, which

would be any exception intentionally thrown by a CASM program. Upon entering

the catch block on line 19 the code looks for an exception handler that may have

been put in place to handle the exception in this PyFrame object. There may be

an exception handler and there might not. JCoCo includes a block stack used for

iteration and exception handling. The block stack records the exit points of loops

and the addresses of exception handlers. For loops, the exit point is pushed on the

block stack in case a BREAK_LOOP instruction is executed to break out of a loop.

When an exception handler is put in place the location of the handler is indicated by

a negative value on the block stack to differentiate it from loop exit points. Lines 13–

16 show how an exception handler is set up within a frame. The SETUP_EXCEPT

instruction pushes the exception handler address onto the block stack.

When an exception occurs the block stack is popped until the address of an excep-

tion handling block is found (i.e. a negative value is popped). The address of the

exception handler is the negation of this negative value.

When an exception occurs it can occur anywhere within the code. In particular

there could be operands left on the operand stack because the exception occurred

in the middle of some other work. For instance, an exception might occur while

preparing for a function call and arguments may be left on the operand stack. The

PyMarker class serves to help clean up the operand stack after an exception is caught.

When an exception handler is installed with the SETUP_EXCEPT instruction, a

PyMarker object is pushed onto the operand stack. If a PyMarker object is popped

during normal instruction execution, it is just thrown away. If an exception occurs

the exception handling code on line 25–29 pops arguments from the operand stack

until it is emptied or until a PyMarker object is found, thus cleaning up the operand

stack.

If an exception handler was found in the JCoCo function’s code, the exception is

pushed onto the stack to get ready to jump to the exception handler code. Lines 31–33

seem a little strange until you remember that JCoCo maintains compatibility with

Python 3.2 and disassembled Python code expects there to be three operands pushed

onto the stack when an exception handler begins executing. Line 34 causes execution

to jump to the first instruction of the exception handler. The Python virtual machine

also assumes there is another exception handling block pushed on the blockStack.

This is not needed by JCoCo, but to maintain compatibility line 35 pushes an entry

onto the block stack.

If no exception handler is found then line 38 adds the current frame to the excep-

tion’s traceback. The traceback is a list of all the PyFrame objects that are popped

until an exception handler is found. If no exception handler is found, control returns

to the main function where the traceback is printed.

Non-JCoCo Java exceptions may also be thrown by JCoCo code. This can happen

in one of two scenarios. JCoCo may have a bug and if so, an exception may be thrown

due to some unforeseen circumstance. The other reason a standard Java exception

may be thrown would be due to the programmer attempting an illegal operation,

like an arithmetic operation causing integer overflow for instance. If either of these

4.28 JCoCo Exceptions and Tracebacks 165

scenarios occur, then lines 42–49 will handle those exceptions. When a non-JCoCo

Java exception occurs a PyException is created, the current frame is added to its

traceback and the PyException is thrown. If this PyException is not caught anywhere

within the CASM program then control will return to the main function in JCoCo.java

and the exception’s traceback will be printed as the source of the error.

4.29 Magic Methods

The JCoCo implementation of Python’s virtual machine makes use of inheritance

to reuse code in the implementation and to create is-a relationships between the

objects manipulated by JCoCo. That type hierarchy is provided in Fig. 4.36. All of

the JCoCo datatypes implement the PyObject interface which sits at the root of this

type hierarchy.

Through inheritance every descendent of PyObjectAdapter contains a dictionary

called dict that maps method names to methods as shown in Fig. 4.18. In Python,

when a method is called, the method name is looked up in this dictionary to locate

the code that corresponds to the method name. JCoCo mirrors this implementation

to emulate the dynamic run-time typing behavior of Python. The dynamic lookup of

methods occurs in the callMethod method of the PyObjectAdapter class as described

in the related Sect. 4.13.

Figure 4.42 contains four methods that are defined on every type of value in

JCoCo. For instance, any object can be converted to a string and all objects have

a type within the hierarchy that can be retrieved. Notice that all these methods have

the same signature. Each function or method in JCoCo (and Python) takes a list of

objects as arguments and returns an object. Every JCoCo object implements methods

with this signature and only this signature. The __str__ and __type__ methods are

called magic methods by Python developers because they get called automatically

by certain operators in Python. For instance, converting a PyObject to a string calls

the __str__ magic method to get a string representation of the object. Calling type

on an object in a Python program results in calling the __type__ method to get an

object’s type.

Calling repr on an object in a Python program calls the __repr__ method. The

repr function returns a string representation of an object that, when evaluated, would

yield a copy of that same object. The hash function may also be called on any object,

but only hashable objects implement the __hash__ magic method with something

other than throwing an exception.

Methods are the operations that can be performed on objects within the JCoCo

type hierarchy. Magic methods are methods that get called as a result of either a built-

in function call or some operator overloading in Python. The __str__, __type__,

__repr__, and __hash__ magic methods are added to the dictionary of methods

for all objects by the PyObjectAdapter constructor. Figure 4.42 shows the methods

that are supported by the PyObjectAdapter class for all subclasses. But, subclasses

of PyObjectAdapter may add to the map of supported operations. For instance, the

166 4 Object-Oriented Programming

Fig. 4.42 PyObjectAdapter’s constructor

4.29 Magic Methods 167

PyInt object’s constructor calls the funs method to add a whole host of additional

supported methods to integer objects as shown in Fig. 4.43.

The method name, called just name in the code in Fig. 4.20, is searched for in

the dictionary. If it is not found, an exception is thrown. Otherwise, mbr is made to

point at the code of the method (i.e. a PyCallable object). Line 6 calls the __call__

method for this member function or method on the current object, returning whatever

is returned from the call to the caller. The use of the dictionary maps names (i.e.

strings) provided to JCoCo, to the methods of objects, which are implemented as

PyCallable objects, within JCoCo. If the object does not have a method defined, the

callMethod code gracefully handles this by throwing an exception which will result

in a traceback being printed of the offending CALL_FUNCTION instruction.

Within JCoCo, magic methods get called as the result of many instructions. For

instance, the __add__ magic method gets called on an object as the result of exe-

cuting the BINARY_ADD instruction. The COMPARE_OP instruction calls several

different magic methods depending on the comparison operand of the instruction.

Precisely which magic method gets called for a given instruction is detailed in the

documentation provided in Appendix A.

Practice 4.9 How can an object or class override the default behavior of a

magic method like the __str__ method without changing the JCoCo virtual

machine itself?

You can check your answer(s) in Section 4.34.9.

Fig. 4.43 PyInt’s additional magic methods

168 4 Object-Oriented Programming

Fig. 4.44 dicttest.py

4.30 Dictionaries

Python implements a type called dict, short for dictionary, which is a map from keys

to values. Dictionary objects are implemented as a hash table with O(1) get and

set methods. A dictionary is created by using the braces around an optional list of

key/value pairs. Line 2 of Fig. 4.44 shows an empty dictionary being created. Items

are put in the dictionary using subscript notation. The key is the subscript and the

value is the assigned value at the key’s location. Lines 3–5 provide an example of

storing key/value pairs in a dictionary. Line 11 uses subscript notation to look for a

value corresponding to a key.

Dictionaries differ from lists because the subscript can be almost any type of

value. Dictionaries are not limited to integer subscripts like lists. There are three

requirements of a dictionary key. The key must be hashable. Hashing refers to deriv-

ing an integer from a value, as close to unique as possible. Keys in a dictionary must

support an equality test. There must be a way of determining if two keys are equal.

Finally, keys should not be mutable. Python lists are not suitable for keys because

they are mutable. In JCoCo strings, integers, floats, tuples, and funlists are not muta-

ble and therefore are suitable as keys in a dictionary. Funlists are a JCoCo specific

functional programming list that is not a part of standard Python, but is supplied with

JCoCo. Floats are not usually used as keys due to their being approximations of real

numbers and the chance for round-off error in calculations. In general floats should

4.30 Dictionaries 169

Fig. 4.45 Outline of PyDict.java

not be compared for equality and therefore, while immutable, they are not usually

appropriate as keys in a dictionary.

The dict datatype is not included in the JCoCo implementation available to you

on Github. This section describes the steps to add dictionaries as a case study of

extending the JCoCo virtual machine. You must have the Java development environ-

ment installed on your computer to complete the steps described here. When you

have completed the steps in this section the disassembled code from Fig. 4.44 will

execute on JCoCo producing output similar to that of Python.

4.30.1 Two New Classes

Two new classes are required to support dictionaries; the PyDict class and the PyDic-

tIterarator class. The PyDict class resembles the PyList class in some ways. The

PyDict class must be added to the Java source code in a file called PyDict.java. An

excerpt of the PyDict.java header file is given in Fig. 4.45.

There are several methods to be implemented to support dictionaries. The

__getitem__ method is given a key in the args vector and returns the correponding

value. The __setitem__ method maps a key to a value. The key is at index 0 in args

and the value is at args[1]. The __len__ method returns the size of the map. All of

these methods use the HashMap called map and the methods of a HashMap are used

in the implementation of the PyDict class.

170 4 Object-Oriented Programming

The map instance variable is central to the PyDict implementation. A HashMap

is part of the utility library of Java. There is a subtle implementation detail with the

use of HashMap here. Java provides built-in support for hashing items. The Object

class of Java includes a method called hashCode that is used to get a hash value

for any hashable Java value. But, in JCoCo we wish to call the __hash__ magic

method to give the JCoCo assembly language programmer control over how an

object is hashed. The PyObjectAdapter class comes to the rescue here by defining

the hashCode method to call the __hash__ magic method.

@Override
public int hashCode () {

ArrayList <PyObject > args = new ArrayList <PyObject >();
PyInt val = (PyInt) this.callMethod (" __hash__", args);
return val.getVal ();

}

This means that the JCoCo PyDict implementation can just use the HashMap as you

would in any Java program and the __hash__ magic method will automatically get

called when needed.

Many of the classes provided with Java have hashing functions defined for them

already. The PyStr class can use the string hashing function provided by the hashCode

method of PyObject. That hashCode function can be called in the __hash__ magic

method of PyStr to hash the string. Every type of object that could be used for a key

in a dictionary must implement the __hash__ method.

The HashMap needs to determine if two keys are equal as part of the hash table

implementation. The HashMap needs to know if the key it is looking up matches

one that it finds in the hash table. Again, PyObjectAdapter comes to the rescue. The

HashMap automatically calls the equals method of Java Object to determine if the

two keys are equal or not. The PyObjectAdapter overrides the equals method to call

the __eq__ magic method. So, the HashMap automatically makes calls to both the

hash and equals magic methods. This means that the equals magic method must be

implemented in any class that will be used as a key in a dictionary. Of course, this is

already done for the built-in types of JCoCo.

The other class to be written is a PyDictIterator class that implements iteration

over the keys of the dictionary. The PyListIterator can be used as an example in how to

write this iterator. Remember that to terminate the iteration, the PYSTOPITERATION

exception must be thrown once the iterator is exhausted. Here is how iteration is

achieved over a Java HashMap object.

import java.util.Iterator;
import java.util.HashMap;
Iterator <HashMap.Entry <PyObject , PyObject >> it;
it = map.entrySet (). iterator ();
while (it.hasNext ()) {

HashMap.Entry <PyObject , PyObject > pair = it.next ();
System.out.println(pair.getKey ());

}

4.30 Dictionaries 171

Fig. 4.46 Initializing a dictionary

This code must be divided up into the PyDictIterator implementation in a manner

similar to the PyListIterator code.

4.30.2 Two New Types

In addition to the new classes, two new types must also be defined. The main module,

JCoCo.java, contains a function called initTypes. The dict and dict_keyiterator types

should be added as two new types to this function. To do this, two new values

for the PyTypeID enum in PyType.java must also be defined; the PyDictType and

PyDictKeyIteratorType values. This is a relatively simple addition to the code, but

must be tied together with the implementations of the PyDict and PyDictIterator

classes. Once these types are created, don’t forget to set the instance functions in the

type objects.

4.30.3 Two New Instructions

Finally, after disassembling the code in Fig. 4.44 a new instruction appears, the

BUILD_MAP instruction. This instruction creates an empty dictionary and pushes

it onto the operand stack.

Disassembling the code in Fig. 4.46 yields one other instruction. The STORE_MAP

instruction expects three operands on the stack. The TOS element is a key, the TOS1

element is a value and the TOS2 element is a dictionary. The STORE _MAP instruc-

tion stores the key/value pair in the dictionary and leaves the dictionary on top of the

operand stack when it completes. These two new instructions are implemented in

PyFrame.java in the execute method. You can look at other examples of instructions

to see how these two instructions should be implemented.

4.31 Chapter Summary

This chapter covered object-oriented, imperative programming in Java with C++ cov-

ered to a lesser degree. Advanced techniques including inheritance, polymorphism,

172 4 Object-Oriented Programming

interfaces, generics, autoboxing and unboxing, inner classes and a few other impor-

tant topics were covered with examples coming from the JCoCo virtual machine

implementation.

Java and C++ are statically typed languages as compared to Python, which is a

dynamically typed language. Static typing requires more work by the programmer

when writing code, but also provides some level of assurance that code is type-

correct. Python program type errors are not found until run-time. The C++ and Java

compilers catch most type errors at compile-time.

C++ and Java share a lot of syntax, but they are distinct languages in many

ways. C++ is especially suited to low-level and real-time implementations where

performance is critical and you need access to the underlying hardware. C++ gives

you complete control of when dynamically allocated data is freed. But with that

responsibility comes the age old problem of memory leaks. C++ programs are prone

to memory leaks and the C++ CoCo implementation is full of them because it is

difficult to determine exactly when space can be freed in the virtual machine without

implementing some form of garbage collection. C++ has many great programming

features like templates, a large standard library, and compiler support for many

hardware platforms.

Java programs benefit from garbage collection which is built into the JVM. Java

also provides a unified type hierarchy for classes with Object at the root of the tree.

C++ has no built-in class hierarchy. Java has built into it several nice programming

features like auto-boxing and unboxing, threading support including synchronization

support for all Java objects, inner class support, and support for separating interfaces

from implementation.

Both C++ and Java serve as good examples of statically typed, object-oriented,

imperative programming languages. They each have their benefits and shortcomings,

but for the CoCo and JCoCo virtual machines, Java is the better-suited language

providing garbage collection and a more unified approach to handling exceptions

within the virtual machine. In the next chapter we introduce another programming

paradigm while studying another statically typed language.

4.32 Review Questions

1. What does static type checking mean? Does C++ have it? Does Python have it?

Does Java have it?

2. What are the names and purposes of the two programs that make up the Java

environment for executing programs?

3. What is the number one problem that C/C++ programs must deal with? Why is

this not a problem for Java and Python programs?

4. What does the make tool do and how does it work for C++ programs?

5. Is there an equivalent to the make tool for Java programs?

6. How does the C++ compiler distinguish between macro processor directives and

C/C++ statements?

4.32 Review Questions 173

7. What is a namespace in C++? What is comparable to a namespace in Java? In

Python?

8. What is the default executable name for a compiled C++ program?

9. What is separate compilation and why is it important?

10. What is dynamic linking? Does it happen in C++ or in Java? Why is it important?

11. Which environment has garbage collection built in, C++ or Java?

12. What are the advantages of garbage collection?

13. Are there any drawbacks to garbage collection?

14. What is a destructor and when is it needed?

15. What do you have to write to get a polymorphic method in C++?

16. What is the purpose of polymorphism?

17. What is the purpose of inheritance?

18. How do interfaces and classes differ in Java? How are they similar? How are

they different?

19. What is an adapter class? Why are they useful?

20. What is a callback and how are they usually implemented in Java?

21. What are generics? Why are they convenient?

22. What is a template? How do you declare a vector in C++?

23. What is auto-boxing and unboxing?

24. How is a function represented as a value in Java?

25. What is an anonymous class?

26. What is the type(6) in JCoCo and Python? How about the type(type(6))? How

about the type(type(type(6)))? Why isn’t it interesting to go any further?

27. The JCoCo scanner is based on a finite state machine. How is the finite state

machine implemented? What are the major constructs used by a finite state

machine?

28. Does the JCoCo parser run bottom-up or top-down?

29. In JCoCo how are a PyCode object and a PyFunction object related?

30. What is a traceback and why is it important?

31. What is the purpose of a PyMethod class?

32. Arriving at hash values for hashable objects in Java is trivial. Describe how

JCoCo determines hash values for objects in the implementation of PyDict

objects.

4.33 Exercises

1. Alter the finite state machine of PyScanner.java to allow strings to include the

escape character. Any character following the backslash, or escape character,

in a string should be allowed. This project can be implemented by altering the

PyScanner.java class to allow the escape character to appear within a string. Hint:

Two extra states may be needed to implement this code. Note that JCoCo will

already allow pretty much any character, including tabs and newline characters,

to be included in a string constant. The only characters that pose problems are

174 4 Object-Oriented Programming

single and double quotes. The escape character should not be included in the

constant string, only the character that follows the escape character.

2. Implement true division and floor division for floats in JCoCo. Write a test pro-

gram to thoroughly test these new operations supported by floats. The test program

and the source code are both required for the solution to this problem. You may

use the disassembler to help generate your test program.

3. Alter the JCoCo grammar to allow each line of a function’s code to be either a

JCoCo instruction or a source code line. Any source code line should be preceded

by a pound sign, a line number, and a colon followed by the text of the source

code line. A source code line would reflect a line from a source language other

than JCoCo which was compiled to the JCoCo assembly language. Then, when an

uncaught exception occurs in the JCoCo program, the traceback should be printed

along with the source code line that caused the exception. This is a challenging

exercise and requires changes to the scanner, parser, internal storage of PyCode

objects, and traceback handling.

4. Add a dictionary object type to JCoCo by following the description at the end of

this chapter. This project requires significant programming and there are pieces in

the last part of the chapter that are left out. However, the provided code samples

along with other similar code in the JCoCo project provides enough details to

be able to complete it. When done, the successful project will be able to run

the disassembled code from Figs. 4.44 and 4.46. The output should appear to

be identical to the output produced by running the Python programs. However,

the order of keys may be different since dictionaries are implemented with an

unordered _map datatype.

5. Empty type calls produce empty results in Python but not in JCoCo. For instance,

when int() is called in Python, the object 0 is created. In JCoCo this produces an

error. Use Python to determine what should happen for all the empty type calls

that JCoCo supports. Then modify CoCo so it will behave in a similar fashion.

6. Add a set datatype to JCoCo. Lookup the set datatype in Python documentation.

Include support in your set datatype to support contructing a set, union, inter-

section, mutating union, and mutating set difference along with set cardinality,

membership, and addition of an element to the set. Write a Python test program

and disassemble it. Then run your test program to test your set datatype.

7. Modify JCoCo to allow instructions like LOAD_FAST x in addition to

LOAD_FAST 0. Currently, the LOAD _FAST and STORE _FAST instructions

insist on an integer operand. If an identifier operand were provided then the

identifier must exist in the sequence of LOCALS. If it does not, the parser should

signal an error. Internally, the LOAD _FAST and STORE _FAST instructions

should not change. The conversion from identifier to integer should happen in

the parser. Convert the LOAD_GLOBAL, and LOAD_ATTR instructions to allow

either an identifier or integer operand in the same manner. Do not try to modify the

LOAD_CONST instruction since it would be impossible to distinguish between

indices and values for constants.

This project is not too hard to implement. Labels are already converted to offsets

in the parser in the BodyPart method. That code has to be modified slightly to

4.33 Exercises 175

handle identifiers for things other than labels. The identifiers for the load and

store instructions can be converted to integer operands in the FunDef function.

8. Currently the assembler has three different load instructions including

LOAD_FAST, LOAD_GLOBAL, and LOAD_DEREF that all use indices into

different lists as operands. Define a new pseudo LOAD instruction that lets you

specify an identifier for a value to load. For instance LOAD x would result in

scanning the LOCALS list for x. If x were found in the first position of the locals

list, then the LOAD x would be changed to a LOAD_FAST 0 instruction. Other-

wise, if x was not in the list of locals, then the GLOBALS would be scanned next

and if x were found there a LOAD_GLOBAL instruction would replace the LOAD

pseudo instruction. If x was not found in the globals, then the cellvars could be

scanned and finally the freevars. Create a STORE pseudo instruction as well for

the STORE_FAST and STORE_DEREF instructions.

Do not try to implement the pseudo instructions for any of the other load or

store instructions. For instance, it would be impossible to know whether a LOAD

referred to a LOAD_DEREF or a LOAD_CLOSURE if you tried to include

LOAD_CLOSURE in your pseudo instruction.

4.34 Solutions to Practice Problems

4.34.1 Solution to Practice Problem 4.1

The Java compiler insists that if the class is called Test then the file must be Test.java.

This is necessary because when class A is compiled and uses the Test class, the Java

compiler must find the Test class. There is nothing included or imported into class

A to tell the compiler where to look. Instead, Java looks for a file called Test.java if

class Test is used in class A.

4.34.2 Solution to Practice Problem 4.2

The C++ compiler uses macro processor directives to explicitly include header files

which declare classes and other entities. The header file names are explicitly provided

in the include macro processor directive. The C++ compiler does not need to infer

the name of the module from the name of the class like Java does.

4.34.3 Solution to Practice Problem 4.3

In C++ programs the name of the executable for the program is passed in argv[0].

So the value of argc is always at least one. In a Java program the program consists

of a collection of .class files. The main function must be defined inside the public

176 4 Object-Oriented Programming

class for one of these .class files, so the name of the main module is always known

by the programmer and therefore is not passed as an argument.

4.34.4 Solution to Practice Problem 4.4

Polymorphism occurs in Python because methods are looked up by name at run-

time. This leads to run-time type checking, not compile-time as is supported by C++

and Java. C++ and Java are statically typed languages. Python is dynamically typed.

Further, Python supports inheritance, but the purpose of inheritance in Python is

only for code re-use. Polymorphism is not related to inheritance in Python programs

since polymorphism occurs because of the late, just in time, lookup of methods in

an object’s attribute dictionary.

4.34.5 Solution to Practice Problem 4.5

The confusion may occur when an ArrayList of Integer was declared. When call-

ing a.remove(1) will autoboxing occur? The answer is no, in this case because the

ArrayList class contains a method with int as a parameter Java will choose the method

with the closest argument types when there are multiple to choose from. Neverthe-

less, the programmer must be aware of this to correctly choose the right remove

method. If the Object argument version is really the one to call, then it must called as

a.remove(new Integer(1)) to get the correct remove called. Boxing must be explicitly

called in this case. No autoboxing will occur.

4.34.6 Solution to Practice Problem 4.6

It’s the LOAD _BUILD _CLASS instruction. This instruction loads the built-in func-

tion onto the operand stack so it can be called to dynamically build a class.

4.34.7 Solution to Practice Problem 4.7

The bound variables are f, x, and y. They are bound because the name of the function

is always defined and the parameter name is given the value of any argument passed

to the function. The variable y is bound to the same value as x because y appears on

the left side of an assignment statement.

The free variables are aVal and lstInts. These values have to be supplied in the

environment by forming a closure before the function can be executed.

4.34 Solutions to Practice Problems 177

4.34.8 Solution to Practice Problem 4.8

The _ _init _ _ gets called during object instantiation on line 52 of Fig. 4.39.

4.34.9 Solution to Practice Problem 4.9

Since magic methods are looked up at run-time (i.e. dynamically) then at any time

before the magic method, the object can have its magic method implementation

replaced by an alternative implementation. There is no modification necessary to the

JCoCo Java code.

5Functional Programming

Chapter 3 introduced assembly language which was a very prescriptive language.

Certain operands had to be on the operand stack before an instruction could be

executed. These details had to be dealt with even though the programmer was trying

to solve a bigger problem than how to execute the next instruction. This was solved

by learning some patterns of assembly language instructions that could be used to

solve bigger problems like implementing a loop. Of course, even writing a loop is

more prescriptive than trying to compute the sum of some list of integers.

Chapter 4 moved on to Java and C++ where programming was less prescriptive.

Most programmers learn to program imperatively first. Object-oriented languages

are imperative languages where objects are created and the states of objects are

updated as program execution proceeds. Thinking about maintaining and updating

the states of objects is a lot less prescriptive than thinking about which instruction

to execute next.

This chapter introduces functional programming. Functional languages, like Stan-

dard ML, obviously concentrate more heavily on writing and calling functions. How-

ever, the term functional programming doesn’t say what functional programming

languages lack. Specifically, pure functional languages lack assignment statements

and iteration. Iteration relates to the ability to iterate or repeat code as in a loop of

some sort. It is impossible in a pure functional language to declare a variable that gets

updated as your program executes! If you think about it, if there are no variables, then

there isn’t any reason for a looping construct in the language. Iteration and variables

go hand in hand. But, how do you get any work done without variables? The primary

mode of programming in a functional language is through recursion.

Functional languages also contain a feature that other languages don’t. They allow

functions to be passed to functions as parameters. We say that these functions are

higher-order. Higher-order functions take other functions as parameters and use them.

There are many useful higher order functions that are derived from common patterns

of computation. Particular instances of these patterns commonly have one small

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_5

179

http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_4

180 5 Functional Programming

Fig. 5.1 Commutativity

difference between them. If that small difference is left as a function to be defined

later, we have one function that requires another function to complete its imple-

mentation. Higher-order functions may be customized by providing some of their

functionality later. In some ways this is the functional equivalent of what inheritance

or interfaces provide us in object-oriented languages.

These two features, lack of variables and higher-order functions, drastically

change the way in which you think about programming. Programming recursively

takes some time to get used to, but in the end it is a very nice way to program.

Programming recursively is more declarative than prescriptive. Writing imperative

programs is prescriptive. When programming declaratively we can focus on what

we want to say about a problem instead of exactly how to solve a problem.

But why would we want to get rid of variables in a programming language? The

problem is that variables often make it hard to reason about our programs. Functional

languages are more mathematical in nature and have certain rules like commutativity

and associativity that they follow. Rules like associativity and commutativity can

make it easier to reason about our programs.

Practice 5.1 Is addition commutative in C++, Pascal, Java, or Python? Will

write(a+b) always produce the same value as write(b+a)? Consider the Pascal

program in Fig. 5.1. What does this program produce? What would it produce

if the statement were write(b+a())?

You can check your answer(s) in Section 5.26.1.

5.1 Imperative Versus Functional Programming 181

5.1 Imperative Versus Functional Programming

You are probably familiar with at least one imperative language. Languages like

C, C++, Java, Python, and Ruby are considered imperative languages because the

fundamental construct is the assignment statement. In each of these languages we

declare variables and assign them values, updating those variables as a program’s

execution progresses.

Imperative languages are heavily influenced by the von Neumann architecture of

computers that includes a store and an program counter; the computation model has

control structures that iterate over instructions that make incremental modifications

of memory. Assignment of values to variables, for loops, and while loops are all

part of imperative languages. The principal operation is the assignment of values

to variables. Programs are statement oriented, and they carry out algorithms with

statement level sequential control. In other words, computing is done by side-effects.

Sometimes problems with imperative programs stem from these side-effects. It is

difficult to reason about a program that relies on side-effects. If we wish to reuse the

code of an imperative program then we must be sure that the same conditions are true

before the reused code executes since imperative code relies on a certain machine

state. As programmers we sometimes forget which preconditions are required and

what postconditions result from executing a segment of code. That can lead to bugs

in our programs.

Functional languages are based on the mathematical concept of a function and do

not reflect the underlying von Neumann architecture. These languages are concerned

with data objects and values instead of variables. The principal operation is function

application.

Functions are treated as first-class objects that may be stored in data structures,

passed as parameters, and returned as function results. Primitive functions are gen-

erally supplied with the language implementation. Functional languages allow new

functions to be defined by the programmer. Functional program execution consists

of the evaluation of an expression, and sequential control is replaced by recursion.

There is no assignment statement. Values are communicated primarily through

the use of parameters and return values. Without variables, loop statements don’t

have a purpose and so they also don’t exist in pure functional languages.

Pure functional languages have no side-effects other than possibly reading some

input from the user. Scheme is a pure functional language. In general, functional

languages avoid or at least isolate code with side-effects. Even input and output

operations in functional languages do not update the state of variables within a

program.

What is amazing is that it has been proven that exactly the same things can be

computed with functional languages as can be computed with imperative languages.

This is known because a Turing machine, the theoretical basis for imperative pro-

gramming and the design of the computer, have been proven equivalent in power to

the Lambda Calculus, the basis for all functional programming languages.

You might be surprised by the number and types of languages that support func-

tional programming. Of course, Standard ML was designed as a functional language

182 5 Functional Programming

from the ground up, but languages like C++, Java, and Python also support functional

programming. While C++, Java, and Python are also object-oriented imperative lan-

guages, they all support functional programming as well. Functional programming

does not depend so much on the language, but how you use the language. The rest

of this chapter will introduce the functional style of programming. It all started with

the lambda calculus, which is briefly considered next.

5.2 The Lambda Calculus

All functional programming languages are derived either directly or indirectly from

the work of Alonzo Church and Stephen Kleene. The lambda calculus was defined

by Church and Kleene in the 1930s, before computers existed. At the time, mathe-

maticians were interested in formally expressing computation in some written form

other than English or other informal language. The lambda calculus was designed as

a way of expressing those things that can be computed. It is a very small, functional

programming language. In the lambda calculus, a function is a mapping from the

elements of a domain to the elements of a codomain given by a rule. Consider the

function cube(x) = x3. What is the value of the identifier cube in the definition

cube(x) = x3? Can this function be defined without giving it a name?

λx .x3 defines the function that maps each x in the domain to x3. We can say that

this definition or lambda abstraction, λx .x3, is the value bound to the identifier cube.

We say that x3 is the body of the lambda abstraction. Every lambda abstraction in

lambda notation is a function of one identifier. However, lambda expressions may

contain more than one identifier.

The expression y2 + x can be expressed as a lambda abstraction in one of two

ways:

λx .λy.y2 + x

λy.λx .y2 + x

In the first lambda abstraction the x is the first parameter to be supplied to the

expression. In the second lambda abstraction the y is the parameter to get a value

first. In either case, the abstraction is often abbreviated by throwing out the extra λ. In

abbreviated form the two abstractions would become λxy.y2 + x and λyx .y2 + x .

5.2.1 Normal Form

To say the lambda calculus, or any language, has a normal form means that each

expression that can be reduced has a simplest form. It means that we can reduce

more complex expressions to simpler expressions in some mechanical way. The

lambda calculus exhibits a property called confluence.

5.2 The Lambda Calculus 183

Fig. 5.2 Normal Order Reduction

Confluence means that one or more reduction strategies (or intermixing them)

always leads to the same normal form of an expression, assuming the expression can

be reduced by the reduction strategy. This property of confluence was proven in the

Church–Rosser theorem.

Function application (i.e. calling a function) in lambda notation is written with

a lambda abstraction followed by the value to call the abstraction with. Such a

combination is called a redex.

To call λx .x3 with the value 2 for x we would write

(λx .x3)2

This combination of lambda abstraction and value is called a redex.

A redex is a lambda expression that may be reduced. Typically a lambda expression

contains several redexes that may be chosen to be reduced. Function application is

left-associative meaning that if more than one redex is available at the same level of

parenthetical nesting, the left-most redex must be reduced first. If the left-most outer-

most redex is always chosen for reduction first, the order of reduction is called normal

order reduction. When a redex is reduced by applying the lambda calculus equivalent

of function application it is called a β-reduction (pronounced beta-reduction).

The normal order reduction of (λxyz.xz(yz))(λx .x)(λxy.x) is given in Fig. 5.2.

The redex to be β-reduced at each step is underlined.

Practice 5.2 Another reduction strategy is called applicative order reduction.

Using this strategy, the left-most inner-most redex is always reduced first. Use

this strategy to reduce the expression in Fig. 5.2. Be sure to parenthesize your

expression first so you are sure that you left-associate redexes.

You can check your answer(s) in Section 5.26.2.

In practice problem 5.2 you should have reduced the lambda expression to the

same reduced lambda expression derived from the normal order reduction in Fig. 5.2.

If you didn’t, you did something wrong. If you want more experience with reducing

lambda expressions you may wish to consult a lambda expression interpreter. One

excellent interpreter was written by Peter Sestoft and is available on the web. It

184 5 Functional Programming

is located at http://www.itu.dk/people/sestoft/lamreduce/. Be sure to read his help

page to get familiar with the syntax required for entering lambda expressions in his

interpreter. Also be aware that his interpreter does not understand math symbols like

+. Instead, you can use a p to represent addition if needed. Sestoft’s lambda calculus

interpreter is for the pure lambda calculus without knowledge of Mathematics or any

other language.

5.2.2 Problems with Applicative Order Reduction

Sometimes, applicative order reduction can lead to problems. For instance, consider

the expression (λx .y)((λx .xx)(λx .xx)).

Practice 5.3 Reduce the expression (λx .y)((λx .xx)(λx .xx)) with both nor-

mal order and applicative order reduction. Don’t spend too much time on this!

You can check your answer(s) in Section 5.26.3.

This practice problem shows why the definition of confluence includes the phrase,

assuming the expression can be reduced by the reduction strategy. Applicative order

may not always result in the expression being reduced. No fear, if that happens we are

free to use normal order reduction for a while since intermixing reduction strategies

will not affect whether we arrive at the normal form for the expression or not.

5.3 Getting Started with Standard ML

Standard ML (or just SML) is a functional language based on Lisp which in turn is

based on the lambda calculus. Important ML features are listed below.

• SML is higher-order supporting functions as first-class values.

• It is strongly typed like Pascal, but more powerful since it supports polymorphic

type checking. With this strong type checking it is pretty infrequent that you need

to debug your code!! What a great thing!!!

• Exception handling is built into Standard ML. It provides a safe environment for

code development and execution. This means there are no traditional pointers in

ML. Pointers are handled like references in Java.

• Since there are no traditional pointers, garbage collection is implemented in the

ML system.

• Pattern-matching is provided for conveniently writing recursive functions.

• There are built-in advanced data structures like lists and recursive data structures.

• A library of commonly used functions and data structures is available called the

Basis Library.

http://www.itu.dk/people/sestoft/lamreduce/

5.3 Getting Started with Standard ML 185

There are several implementations of Standard ML. Standard ML of New Jersey

and Moscow ML are the most complete and certainly the most popular. There is also

a SML.NET implementation that targets the Microsoft .NET run-time library and

can be integrated with other .NET languages. There is an MLj implementation that

targets the Java Virtual Machine. Poly/ML is another implementation that includes

support for Windows programming. While many implementations exist, they all

support the same definition of SML. If you write a Standard ML program that runs

in one environment, it’ll run on any other implementation as long as you are not

using platform specific functions.

SML has been successfully used on a variety of large programming projects. It was

used to implement the entire TCP protocol on the FOX Project at Carnegie Mellon.

It has been used to implement server side scripting on web servers. It was originally

designed as a language to write theorem provers and has been used extensively in

this area. It has been used in hardware design and verification. It has also been used

in programming languages research.

The rest of this chapter introduces SML. By the end of the chapter you should

understand and be able to use many of the important features of the language. This text

is based on the Standard ML of New Jersey implementation. You can download SML

of New Jersey from smlnj.org. SML of New Jersey is available for most platforms

so you should be able to find an implementation for your needs.

Once you’ve installed SML you can open a terminal window and start the inter-

preter. Typing sml at the command-line will start the interactive mode of the inter-

preter. Typing ctl-d will terminate the interpreter. You can type expressions and

programs directly in at the interpreter’s prompt or you can type them in a file and

use that file within SML. To do this you type the word use as follows:

Standard ML of New Jersey v110 .59
- use "myfile.txt";

SML will take whatever you have typed in the file and evaluate it just as if you had

typed it directly into the interpreter.

The examples and practice problems in this chapter introduce SML. The following

sections introduce important aspects of SML and ready the reader to write more

complicated programs in the next chapter.

5.4 Expressions, Types, Structures, and Functions

Functional programming focuses on the evaluation of expressions. In SML you can

evaluate expressions right in the intepreter. When evaluating an expression you will

notice that type information is displayed along with the result of the expression

evaluation. The dialog below contains some interactive expression evaluations in the

SML interpreter.

In SML the identifier it is bound to the result of the last successfully evaluated

expression. This is convenient if you want to use the result in a subsequent expression.

http://www.cs.cmu.edu/afs/cs/project/fox/mosaic/HomePage.html
http://smlnj.org

186 5 Functional Programming

Fig. 5.3 Interpreter Interaction

The last expression result can be referred to as it in the subsequent, interactively

entered expression.

The interaction presented in Fig. 5.3 contains a negative one written as ~ 1 in SML.

While a little unconventional, ~ is the unary negation operator in SML, distinguishing

it from the binary subtraction operator.

SML has a very rigorous type system. In fact, the type system for SML has been

proved sound. That means that any correctly typed program is guaranteed to be free

of type errors. SML is statically typed like C++ and Java. That means that all type

errors are detected at compile-time and not at run-time. Robin Milner proved this for

Standard ML. ML is the only widely distributed language whose type system has

been formally defined and proven type correct.

While being formally defined and rigorous, the type system of ML is remarkably

flexible. It is polymorphic. We’ll see what this means for us soon. Many of the types

in ML are also implicitly expressed. In C++ and Java the type of every variable and

function must be declared. You may notice in Fig. 5.3 that the programmer never

entered any types for the expressions given there. In most cases Standard ML’s type

system frees the programmer from having to specify types in a program since they

are mostly determined automatically.

You may have also noticed that there is a type error in Fig. 5.3. ML is polymorphic

but it is also strongly typed. Since 5 is an integer in SML and 3.0 is a real, the two

cannot be multiplied together. If you should have the need to multiply an integer and

a real it can be done, but you must explicitly convert one of the types. The intepreter

5.4 Expressions,Types, Structures, and Functions 187

interaction below show some code to multiply an integer and a real, producing a real

number.

- Real.fromInt (5) * 3.0;
val it = 15.0 : real
-

The integer 5 is converted to 5.0 by calling a function called fromInt in the structure

called Real. A Structure in SML is a grouping of functions and types. A structure

is like a module in Python or an include in C++. There are several structures that

make up the Basis Library for Standard ML. The basis library is available in SML

when the interpreter is started. The structures in the basis library include Bool, Int,

Real, Char, String, and List. Appendix B or the website http://standardml.org/Basis

contain descriptions of many of these structures.

A function in SML takes one or more arguments and returns a value. The signature

of a function is the type of the function. In other words, a function’s type is its

signature. The signature of the function fromInt in the Real structure is

val fromInt : int -> real

This signature indicates that fromInt takes an int as an argument and returns a

real. From the name of the function, and the fact that it is part of the Real structure,

we can ascertain that it creates a real number from an int.

The type on the left side of the arrow (i.e. the ->) is the type of the arguments given

to the function. The type on the right side of the arrow is the type of the value returned

by the function. The fromInt function takes an int as an argument and returns a real.

Practice 5.4 Write expressions that compute the values described below. Con-

sult the basis library in Appendix B as needed.

1. Divide the integer bound to x by 6.

2. Multiply the integer x and the real number y giving the closest integer as

the result.

3. Divide the real number 6.3 into the real number bound to x.

4. Compute the remainder of dividing integer x by integer y.

You can check your answer(s) in Section 5.26.4.

5.5 Recursive Functions

Recursion is the way to get things done in a functional language. Recursion happens

when a function calls itself. Because of the principle of referential transparency a

function must never call itself with the same arguments. If it were to do that, then

http://standardml.org/Basis

188 5 Functional Programming

the function would do exactly what it did the last time, call itself with the same

arguments, which would then.... Well, you get the picture!

To spare ourselves from this problem we insist on two things happening. First,

every recursive function must have a base case. A base case is a simple subproblem

that we are trying to solve that doesn’t require recursion. We must write some code

that checks for the simple problem and simply returns the answer in that case.

The second rule of recursive functions requires them to call themselves on some

simpler or smaller subproblem. In some way each recursive call should take a step

toward the base case of the problem. If each recursive call advances toward the base

case then by the mathematical principle of induction we can conclude the function

will work for all values on which the function is defined! The trick is not to think

about this too hard. The recursive case is often referred to as the inductive case.

Writing functional programs is much more declarative than the prescriptive pro-

gramming of assembly and imperative programming in languages like C++, Python,

and Java. What this statement is really saying is that when writing recursive functions

we think much less about how it works and more about the structure of the data. This

leads to a few simple steps that can be applied to writing any recursive function.

Memorize these steps and practice them and you can write any recursive function.

1. Decide what the function is named, what arguments are passed to it, and what the

function should return.

2. At least one of the arguments must get smaller each time. Most of the time it is

only one argument getting smaller. Decide which one that will be.

3. Write the function declaration, declaring the name, arguments types, and return

type if necessary.

4. Write a base case for the argument that you decided will get smaller. Pick the

smallest, simplest value that could be passed to the function and just return the

result for that base case.

5. The next step is the crucial step. You don’t write the next statement from left to

right. You write from the inside out at this point.

6. Make a recursive call to the function with a smaller value. For instance, if it is a

list you decided will get smaller, call the function with the tail of the list. If an

integer is the argument getting smaller, call the function with the integer argument

minus 1. Call the function with the required arguments and in particular with a

smaller value for the argument you decided would get smaller at each step.

7. Now, here’s a leap of faith. That call you made in the last step worked! It returned

the result that you expected for the arguments it was given. Use that result in

building the result for the original arguments passed to the function. At this step

it may be helpful to try a concrete example. Assume the recursive call worked on

the concrete example. What do you have to do with that result to get the result

you wanted for the initial call? Write code that uses the result in building the final

result for your concrete example. By considering a concrete example it will help

you see what computation is required to get your final result.

8. That’s it! Your function is complete and it will work if you stuck to these guide-

lines.

5.5 Recursive Functions 189

Fig. 5.4 Square Root

To define a function in SML we write the keyword fun followed by a function name,

parameters, an equal sign, and the body of the function. The syntax is quite similar

to defining functions in other languages. The main difference is the body of the

function. Instead of being a sequence of statements with variable assignment, the

body of the function will be an expression.

One important expression in SML is the if-then-else expression. This is not an if-

then-else statement. Instead, it’s an if-then-else expression. An if-then-else expression

gives one of two values and those values must be type compatible. The easiest way

to understand if-then-else expressions is to see one in practice.

The Babylonian method of computing square root of a number, x, is to start with

an arbitrary number as a guess. If guess2 = x we are done. If not, then let the next

guess be (guess + x/guess)/2.0. To write this as a recursive function we must find

a base case and be certain that our successive guesses will approach the base case.

Since the Babylonian method of finding a square root is a well-known algorithm, we

can be assured it will converge on the square root. The base case has to be written

so that when we get close enough, we will be done. Let’s let the close enough factor

be one millionth of the original number.

The SML code in Fig. 5.4 implements this function. Looking at the code there are

two things to observe. The base case comes first. If the guess is within one millionth

of the right value then the function returns the guess as the square root. The other

observation is the recursive call brings us closer to the solution.

Practice 5.5 n! is called the factorial of n. It is defined recursively as 0! = 1

and n! = n ∗ (n − 1)!. Write this as a recursive function in SML.

You can check your answer(s) in Section 5.26.5.

190 5 Functional Programming

Practice 5.6 The Fibonacci sequence is a sequence of numbers 0, 1, 1, 2, 3, 5,

8, 13, ... Subsequent numbers in the sequence are derived by adding the previous

two numbers in the sequence together. This leads to a recursive definition of the

Fibonacci sequence. What is the recursive definition of Fibonacci’s sequence?

HINT: The first number in the sequence can be thought of as the zeroeth

element, then the first element is next and so on. So, fib(0) = 0. After arriving

at the definition, write a recursive SML function to find the nth element of the

sequence.

You can check your answer(s) in Section 5.26.6.

5.6 Characters, Strings, and Lists

SML has separate types for characters and strings. A character literal begins with a

pound sign (i.e. #). The character is then surrounded by double quotes. So, the first

character in the alphabet is represented as #”a” in SML. There are several functions

available in the Char structure for testing and converting characters. The signature

of the functions in the Char structure is given in Appendix B.

Strings in SML are not simply sequences of characters as they are in some lan-

guages. A string in SML is its own primitive type. There are functions for converting

between strings and characters of course. You can consult Appendix B for a list of

those functions. A string literal is text surrounded by double quotes. The backslash

character (i.e. \) is an escape character in strings. This means to include a double

quote in a string you can write ” as part of the string. A \n is the newline character

in a string and \t is the tab character as they are in many languages.

Perhaps the most powerful data structure in SML is the list. A list is polymorphic

meaning that there are many list types in SML. However, the list functions all work

on any type of list. Since it is impossible to determine all the types in SML (because

programmers may define their own types), a list’s type is parameterized by a type

variable. A list’s type is written as ‘a list. When the type of the list is known, the

type variable ‘a is replaced by the type it represents. So, a list of integers has type int

list. You may have figured this out already, but lists in SML must be homogeneous.

This means all the elements of a list must have the same type. This is not like

some languages, but there is a good reason for this restriction. Requiring lists to

be homogeneous makes static checking of the types in SML possible and the type

checker sound and complete.

A list is constructed in one of several ways. First, an empty list is represented as

nil or by the empty list (i.e. []). A list may be represented as a literal by putting a left

bracket and a right bracket around the list contents, as in [1,4,9,16]. A list may also

be constructed using the list constructor which is written ::, and pronounced cons.

In the functional language Lisp the same list construction operator is written cons

5.6 Characters, Strings, and Lists 191

Fig. 5.5 Function Signatures

so it is called the cons operator by many functional programmers. The cons operator

takes an element on the left side of it and a list on the right side and constructs a

new list of its two arguments. A list may be constructed by concatenating two lists

together. List concatenation is represented with the @ symbol. The following are all

valid list constructions in SML.

• [1,4,9,16]

• 1 ::[4,9,16,25]

• #”a” ::#”b” ::[#”c”]

• 1 ::2 ::3 ::nil

• [”hello”,”how”]@[”are”,”you”]

The third example works because the :: constructor is right-associative. So the right-

most constructor is applied first, then the one to its left, and so on. The signatures of

the list constructor and some list functions are given in Fig. 5.5.

Practice 5.7 The following are NOT valid list constructions in SML. Why

not? Can you fix them?

• #”a” ::[”beautiful day”]

• “hi” ::”there”

• [”how”,”are”] ::”you”

• [1,2.0,3.5,4.2]

• 2@[3,4]

• [] ::3

You can check your answer(s) in Section 5.26.7.

You can select elements from a list using the hd and tl functions. The hd (pronounced

head) of a list is the first element of the list. The tl is the tail or all the rest of the

elements of the list. Calling the hd or tl functions on the empty list will result in an

error. Using these two functions and recursion it is possible to access each element

of a list. The code in Fig. 5.6 illustrates a function called implode that takes a list

192 5 Functional Programming

Fig. 5.6 The Implode Function

Fig. 5.7 Two List Functions

of characters as an argument and returns a string comprised of those characters. So,

implode([#”H”,#”e”,#”l”,#”l”,#”o”]) would yield “Hello”.

When writing a recursive function the trick is to not think too hard about how

it works. Think of the base case or cases and the recursive cases separately. So, in

Fig. 5.6 the base case is when the list is empty (since a list is the parameter). When

the list is empty, the string the function should return should also be empty.

The recursive case is when when the list is not empty. In that case, there is at least

one element in the list. If that is true then we can call hd to get the first element and

tl to get the rest of the list. The head of the list is a character and must be converted

to a string. The rest of the list is converted to a string by calling some function that

will convert a list to a string. This function is called implode! We can just assume it

will work. That is the nature of recursion. The trick, if there is one, is to trust that

recursion will work. Later, we will explore exactly why we can trust recursion.

Practice 5.8 Write a function called explode that will take a string as an argu-

ment and return a list of characters in the string. So, explode(“hi”) would yield

[#”h”,#”i”]. HINT: How do you get the first character of a string?

You can check your answer(s) in Section 5.26.8.

The code in Fig. 5.7 contains a couple more examples of list functions. The length

function counts the number of elements in a list. It must be a list because the tl

function is used. The append function appends two lists by taking each element from

the first list and consing it onto the result of appending the rest of the first list to the

second list.

5.6 Characters, Strings, and Lists 193

Practice 5.9 Use the append function to write reverse. The reverse function

reverses the elements of a list. Its signature is

reverse = fn: ’a list -> ’a list

You can check your answer(s) in Section 5.26.9.

5.7 Pattern Matching

Frequently, recursive functions rely on several recursive and several base cases. SML

includes a nice facility for handling these different cases in a recursive definition by

allowing pattern matching of the arguments to a function. Pattern matching works

with literal values like 0, the empty string, and the empty list. Generally, you can

use pattern matching if you would normally use equality to compare values. Real

numbers are not equality types. The real type only approximates real numbers. The

code in Fig. 5.4 shows how two real numbers are compared for equality.

You can also use constructors in patterns. So the list constructor :: works in

patterns as well. Functions like the append function (i.e. the infix @) and string

concatenation (i.e. ^) don’t work in patterns. These functions are not constructors

of values and cannot be efficiently or deterministically matched to patterns of argu-

ments.

Append can be written using pattern-matching as shown in Fig. 5.8. The extra

parens around the recursive call to append are needed because the :: constructor has

higher precedence than function application.

Practice 5.10 Rewrite reverse using pattern-matching.

You can check your answer(s) in Section 5.26.10.

Fig. 5.8 Pattern Matching

194 5 Functional Programming

5.8 Tuples

A tuple type is a cross product of types. A two-tuple is a cross product of two types,

a three-tuple is a cross product of three types, and so on. (5,6) is a two-tuple of int *

int. The three tuple (5,6,”hi”) is of type int * int * string.

You might have noticed the signature of some of the functions in this chapter. For

instance, consider the signature of the append function. Its signature is

val append : ’a list * ’a list -> ’a list

This indicates it’s a function that takes as its argument an ‘a list * ‘a list tuple.

In fact, every function takes a single argument and returns a single value. The sole

argument might be a tuple of one or more values, but every function takes a single

argument as a parameter. The return value of a function may also be a tuple.

In many other languages we think of writing function application as the function

followed by a left paren, followed by comma separated arguments, followed by a

right paren. In Standard ML (and most functional languages) function application is

written as a function name followed by the value to which the function is applied.

This is just like function application in the lambda calculus. So, we can think of

calling a function with zero or more values, but in reality every function in ML is

passed on argument, which may be a tuple. In Standard ML rather than writing

append ([1 ,2] ,[3])

it is more appropriate to write

append ([1 ,2] ,[3])

because function application is a function name followed by the value to which it

will be applied. In this case append is applied to a tuple of ‘a list * ‘a list.

5.9 Let Expressions and Scope

Let expressions are simply syntax for binding a value to an identifier to later be

used in an expression. They are useful when you want to document your code by

assigning a meaningful name to a value. They can also be useful when you need the

same value more than once in a function definition. Rather than calling a function

twice to get the same value, you can call it once and bind the value to an identifier.

Then the identifier can be used as many times as the value is needed. This is more

efficient than calling a function multiple times with the same arguments.

Consider a function that computes the sum of the first n integers as shown in

Fig. 5.9. Let expressions define identifiers that are local to functions. The identifier

called sum in Fig. 5.9 is not visible outside the sumupto function definition. We say

the scope of sum is the body of the let expression (i.e. the expression given between

the in and end keywords). Let expressions allow us to declare identifiers with limited

scope.

5.9 Let Expressions and Scope 195

Fig. 5.9 Let Expression

Limiting scope is an important aspect of any language. Function definitions also

limit scope in SML and most languages. The formal parameters of a function defin-

ition are not visible beyond the body of the function.

Binding values to identifiers should not be confused with variable assignment.

A binding of a value to an identifier is a one time operation. The identifier’s value

cannot be updated like a variable. A practice problem will help to illustrate this.

Practice 5.11 What is the value of x at the various numbered points within

the following expression? Be careful, it’s not what you think it might be if you

are relying on your imperative understanding of code.

l e t v a l x = 10 i n

(* 1. Value of x here? *)
l e t v a l x = x+1
i n

(* 2. Value of x here? *)
x

e n d ;
(* 3. Value of x here? *)
x

e n d

You can check your answer(s) in Section 5.26.11.

Bindings are not the same as variables. Bindings are made once and only once and

cannot be updated. Variables are meant to be updated as code progresses. Bindings

are an association between a value and an identifier that is not updated.

SML and many modern languages use static or lexical scope rules. This means

you can determine the scope of a variable by looking at the structure of the program

without considering its execution. The word lexical refers to the written word and

lexical or static scope refers to determining scope by looking at how the code is

written and not the execution of the code. Originally, LISP used dynamic scope

rules. To determine dynamic scope you must look at the bindings that were active

when the code being executed was called. The difference between dynamic and

196 5 Functional Programming

Fig. 5.10 Scope

static scope can be seen when functions may be nested in a language and may also

be passed as parameters or returned as function results.

The difference between dynamic and static scope can be observed in the program

in Fig. 5.10. In this program the function a, when called, declares a local binding of

x to 1 and returns the function b. When c, the result of calling a, is called it returns

a 1, the value of x in the environment where b was defined, not a 2. This result is

what most people expect to happen. It is static or lexical scope. The correct value

of x does not depend on the value of x when it was called, but the value where the

function b was written.

While static scope is used by many programming languages including Standard

ML, Python, Lisp, and Scheme, it is not used by all languages. The Emacs version of

Lisp uses dynamic scope and if the equivalent Lisp program for the code in Fig. 5.10

is evaluated in Emacs Lisp it will return a value of 2.

It is actually harder to implement static scope than dynamic scope. In dynamically

scoped languages when a function is returned as a value the return value can include

a pointer to the code of the function. When the function b from Fig. 5.10 is executed

in a dynamically scoped language, it simply looks in the current environment for

the value of x. To implement static scope, more than a pointer to the code is needed.

A pointer to the current environment is needed which contains the binding of x to

the value at the time the function was defined. This is needed so when the function

b is evaluated, the right x binding can be found. The combination of a pointer to a

function’s code and its environment is called a closure. Closures are used to represent

function values in statically scoped languages where functions may be returned as

results and nested functions may be defined. Chapters 3 and 4 introduced closures

and Fig. 5.10 provides an example in Standard ML showing why they are necesssary

for statically scoped languages.

http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_4

5.10 Datatypes 197

5.10 Datatypes

The word datatype is often loosely used in computer science. In ML, a datatype is a

special kind of type. A datatype is a tagged structure that can be recursively defined.

This type is powerful in that you can define enumerated types with it and you can

define recursive data structures like lists and trees.

Datatypes are user-defined types and are generally recursively defined. There are

infinitely many datatypes in Standard ML. Defining a datatype is like creating a

class in C++ without any methods and only public data. In C/C++ we can create an

enumerated type by writing the declaration found in Fig. 5.11. This defines a type

called TokenType of eleven values: identifier is 0, keyword is 1, number is 2, etc.

You can declare a variable of this type as follows.

TokenType t = keyword;

However, until C++11 there was nothing preventing you from executing the state-

ment

t = 1; //this is the keyword value.

In this example, even though t is of type TokenType, it could be assigned an integer

with compilers prior to C++11. This is because the TokenType type was just another

name for the integer type in C++ prior the C++11. Assigning t to 1 didn’t bother C++

in the least. In fact, assigning t to 99 wouldn’t bother C++ either prior to C++11.

In Standard ML, and now in C++, we can’t use integers and datatypes (or enums)

interchangeably.

- datatype TokenType = Identifier | Keyword | Number |
Add | Sub | Times | Divide | LParen | RParen | EOF |
Unrecognized;

datatype TokenType = Identifier | Keyword | Number | ...
- val x = Keyword;
x = Keyword : TokenType

Datatypes allow programmers to define their own types. Normally, a datatype

includes other information. Datatypes are used to represent structured data of some

sort. By adding the keyword of, a datatype value can include a tuple of other types as

Fig. 5.11 C++ Enum Type

198 5 Functional Programming

Fig. 5.12 An AST Datatype

Fig. 5.13 An AST in SML

part of its definition. A datatype can represent any kind of recursive data structure.

That includes lists, trees, and other structures that are related to lists and trees. In

Fig. 5.12 we have a tree definition with a mix of unary and binary nodes.

Datatypes allow a programmer to write a recursive function that can traverse the

data given to it. Functions can use pattern matching to handle each case in a datatype

with a pattern match in the function.

In the datatype given in Fig. 5.12 the add’ value can be thought of as a node in

an AST that has two children, each of which are ASTs. The datatype is recursive

because it is defined in terms of itself. The code in Fig. 5.12 is the entire definition of

abstract syntax trees for expressions in a calculator language. Store nodes in the tree

store their value in the one memory location of the calculator. Recall nodes recall

the memory location of the calculator. The negate’ node represents unary negation

of the value we get when evaluating its child. So ~6 is a valid expression if we let

the tilde sign represent unary negation as it does in Standard ML.

The abstract syntax tree for ~6S+R is drawn graphically in Fig. 5.13. The value

add’(store’(negate’(integer’(6))), recall’) is the SML way of representing the AST

shown in Fig. 5.13. A function can be written to evaluate such an abstract syntax tree

based on the patterns in a value like this and this is done later in the chapter.

5.10 Datatypes 199

Fig. 5.14 Pattern Matching Function Results

You can use pattern matching on datatypes. For instance, to evaluate an expression

tree you can write a recursive function using pattern-matching. Each pattern that is

matched in such a function corresponds to processing one node in the tree. Each

subtree can be processed by a recursive call to the same function. In Fig. 5.14, the

parameter min is the value of the memory before evaluating the given node in the

abstract syntax tree. The value mout is the value of memory after evaluating the node

in the abstract syntax tree.

This example code in Fig. 5.14 illustrates how to use pattern-matching with

datatypes and patterns in a let construct. This is one way to write the evaluate func-

tion to evaluate the abstract syntax trees defined in Fig. 5.12. mout1 is the value of

memory after evaluating e1. This is passed to evaluating e2 as the value of the mem-

ory before evaluating e2. The value of memory after evaluating e2 is the value of

memory after evaluating the sum/difference of the two expressions. This pattern of

passing the memory through the evaluation of the tree is called single-threading the

memory in the computation.

Practice 5.12 Define a datatype for integer lists. A list is constructed of a head

and a tail. Sometimes this constructor is called cons. The empty list is also a

list and is usually called nil. However, in this practice problem, to distinguish

from the built-in nil you could call it nil’.

You can check your answer(s) in Section 5.26.12.

200 5 Functional Programming

Practice 5.13 Write a function called maxIntList that returns the maximum

integer found in one of the lists you just defined in practice problem 5.12. You

can consult Appendix B for help with finding the max of two integers.

You can check your answer(s) in Section 5.26.13.

5.11 Parameter Passing in Standard ML

The types of data in Standard ML include integers, reals, characters, strings, tuples,

lists, and the user-defined datatypes presented in the last section. If you look at these

types in this chapter and in Appendix B you may notice that there are no functions

that modify the existing data. The substring function defined on strings returns a new

string. In fact most functions on the types of data available in Standard ML return a

new value without mutating the arguments passed to them. Not all data in Standard

ML is immutable, but most of it is.

There is one type of data that is mutable in Standard ML. A reference is a reference

to a value of a determined type. References may be mutated to enable the programmer

to program using the imperative style of programming. References are discussed in

more detail later in this chapter. The array type in Standard ML is a list of references

so by arrays are generally considered mutable data types as well, but only because

arrays are lists of references.

The absence of mutable data, except for references, has some impact on the

implementation of the language. Values are passed by reference in Standard ML.

However, the only time that matters is when a reference is passed as a parameter

or one of the few mutable types of objects is passed to a function. Otherwise, the

immutability of all data means that how data is passed to a function is irrelevant. This

is nice for programmers as they don’t have to be concerned about which functions

mutate data and which construct new data values. For most practical purposes, there

is only one operation that mutates data, the assignment operator (i.e. :=) and the only

data it can mutate is a reference. In addition, because most data is immutable and

passed by reference, parameters are passed efficiently in ML.

5.12 Efficiency of Recursion

Once you get used to it, writing recursive functions isn’t too hard. In fact, it can be

easier than writing iterative solutions. But, just because you find a recursive solution

to a problem, doesn’t mean it’s an effficient solution to a problem. Consider the

Fibonacci numbers. The recursive definition leads to a very straightforward recursive

solution. However, as it turns out, the simple recursive solution is anything but

efficient. In fact, given the definition in Fig. 5.15, fib(42) took six seconds to compute

5.12 Efficiency of Recursion 201

Fig. 5.15 The Fib Function

Fig. 5.16 Calls to Calculate fib(5)

on a 2.66 GHz MacBook Pro with 8 GB of RAM. Fib(43) took a third longer, jumping

to nine seconds.

The Fibonacci numbers can be computed with the function definition given in

Fig. 5.15. This is a very inefficient way of calculating the Fibonacci numbers. The

number of calls to fib increases exponentially with the size of n. This can be seen by

looking at a tree of the calls to fib as in Fig. 5.16. The number of calls required to

calculate fib(5) is 15. If we were to enumerate the calls required to calculate fib(6) it

would be everything in the fib(5) call tree plus the number of nodes in the fib(4) call

tree, 15+9=25. The number of calls grows exponentially.

Practice 5.14 One way of proving that the fib function in Fig. 5.15 is exponen-

tial is to show that the number of calls for fib(n) is bounded by two exponential

functions. In other words, there is an exponential function of n that will always

return less than the number of calls required to compute fib(n) and there is

another exponential function that always returns greater than the number of

required calls to compute fib(n) for some choice of starting n and all values

greater than it. If the number of calls to compute fib(n) lies in between then the

fib function must have exponential complexity. Find two exponential functions

of the form cm that bound the number of calls required to compute fib(n).

You can check your answer(s) in Section 5.26.14.

202 5 Functional Programming

Fig. 5.17 An Efficient Fib Function

From this analysis you have probably noticed that there is a lot of the same work

being done over and over again. It may be possible to eliminate a lot of this work

if we are smarter about the way we write the Fibonacci function. In fact it is. The

key to this efficient version of fib is to recognize that we can get the next value

in the sequence by adding together the previous two values. If we just carry along

two values, the current and the next value in the sequence, we can compute each

Fibonacci number with just one call. The code in Fig. 5.17 demonstrates how to do

this. With the new function, computation of fib(43) is instantaneous.

Using a helper function may lead to a better implementation in some situations.

In the case of the fib function, the fibhelper function turns an exponentially complex

function into a linear time function. The code in Fig. 5.17 uses a helper function

that is private to the fib function because we don’t want other programmers to call

the fibhelper function directly. It is meant to be used by the fib function. We also

wouldn’t want to have to remember how to call the fibhelper function each time we

called it. By hiding it in the fib function we can expose the same interface we had

with the original implementation, but implement a much more efficient function.

The helper function uses a pattern called an accumulator pattern. The helper

function makes use of an accumulator to reduce the amount of work that is done.

The work is reduced because the function keeps track of the last two values computed

by the helper function to aid in computing the next number.

Practice 5.15 Consider the reverse function from practice problem 5.10. The

append function is called n times, where n is the length of the list. How many

cons operations happen each time append is called? What is the overall com-

plexity of the reverse function?

You can check your answer(s) in Section 5.26.15.

5.13 Tail Recursion 203

5.13 Tail Recursion

One criticism of functional programming centers on the heavy use of recursion that is

seen by some critics as overly inefficient. The problem is related to the use of caches

in modern processors. Depending on the block size of an instruction cache, the code

surrounding the currently executing code may be readily available in the cache. How-

ever, when the instruction stream is interrupted by a call to a function, even the same

function, the cache may not contain the correct instructions. Retrieving instructions

from memory is much slower than finding them in the cache. However, cache sizes

continue to increase and even imperative languages like C++ and Java encourage

many calls to small functions or methods given their object-oriented nature. So, the

argument in favor of fewer function calls has certainly diminished in recent years.

It is still the case that a function call takes longer than executing a simple loop.

When a function call is made, extra instructions are executed to create a new activation

record. In addition, in pipelined processors the pipeline is disrupted by function calls.

Standard ML of New Jersey, Scheme, and some other functional languages have a

mechanism where they optimize certain recursive functions by reducing the storage

on the run-time stack and eliminating calls. In certain cases, recursive calls can

be automatically transformed to code that can be executed using jump or branch

instructions. For this optimization to be possible, the recursive function must be tail

recursive. A tail recursive function is a function where the very last operation of the

function is the recursive call to itself.

The factorial function is presented in Fig. 5.18. Is factorial tail recursive? The

answer is no. Tail recursion happens when the very last thing done in a recursive

function is a call to itself. The last thing done in Fig. 5.18 is the multiplication.

When factorial 6 is invoked, activation records are needed for seven invocations

of the function, namely factorial 6 through factorial 0. Without each of these stack

frames, the local values of n, n=6 through n=0, will be lost so that the multiplication

at the end can not be carried out correctly.

At its deepest level of recursion all the information in the expression,

(6 ∗ (5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ (f actorial0)))))))

is stored in the run-time execution stack.

Fig. 5.18 Factorial

204 5 Functional Programming

Fig. 5.19 Tail Recursive Factorial

Practice 5.16 Show the run-time execution stack at the point that factorial 0

is executing when the original call was factorial 6.

You can check your answer(s) in Section 5.26.16.

The factorial function can be written to be tail recursive. The solution is to use a

technique similar to the fib function improvement made in Fig. 5.17. An accumulator

is added to the function definition. An accumulator is an extra parameter that can

be used to accumulate a value, much the way you would accumulate a value in

a loop. The accumulator value is initially given the identity of the operation used

to accumulate the value. In Fig. 5.19 the operation is multiplication. The identity

provided as the initial value is 1.

The function presented in Fig. 5.19 is the tail recursive version of the factorial

function. The tail recursive function is the tailfac helper function. Note that although

tailfac is recursive, there is no need to save it’s local environment when it calls itself

since no computation remains after the call. The result of the recursive call is simply

passed on as the result of the current function call. A function is tail recursive if its

recursive call is the last action that occurs during any particular invocation of the

function.

Practice 5.17 Use the accumulator pattern to devise a more efficient reverse

function. The append function is not used in the efficient reverse function.

HINT: What are we trying to accumulate? What is the identity of that operation?

You can check your answer(s) in Section 5.26.17.

5.14 Currying

A binary function, for example, + or @, takes both of its arguments at the same time.

a+b will evaluate both a and b so that values can be passed to the addition operation.

There can be an advantage in having a binary function take its arguments one at a

5.14 Currying 205

time. Such a function is called curried after Haskell Curry. ML functions take their

parameters one at a time because all functions take exactly one argument. A curried

function takes one argument as well. However, that function of one parameter may

in turn return a function that takes a single argument. This is probably best illustrated

with an example. Here is a function that takes a pair of arguments as its input via a

single tuple.

- fun plus(a:int ,b) = a+b;
val plus = fn : int * int -> int

The function plus takes one argument that just happens to be a tuple. Calling the

function means providing it a single tuple.

- plus (5,8);
val it = 13 : int

ML functions can be defined with what looks like more than one parameter:

- fun cplus (a:int) b = a+b;
val cplus = fn : int -> (int -> int)

Observe the signature of the function cplus. It appears to take two arguments, but

takes them one at a time. Actually, cplus takes only one argument. The cplus function

returns a function that takes the second argument. The second function has no name.

- cplus 5 8;
val it = 13 : int

Function application is left associative. The parens below show the order of opera-

tions.

- (cplus 5) 8;
val it = 13 : int

The result of (cplus 5) is a function that adds 5 to its argument.

- cplus 5;
val it = fn : int -> int

We can give this function a name.

- val add5 = cplus 5;
val add5 = fn : int -> int
- add5 8;
val it = 13 : int

The add5 function adds 5 to whatever might be passed to it.

Practice 5.18 Write a function that given an uncurried function of two argu-

ments will return a curried form of the function so that it takes its arguments

one at a time.

Write a function that given a curried function that takes two arguments one

at a time will return an uncurried version of the given function.

You can check your answer(s) in Section 5.26.18.

206 5 Functional Programming

Curried functions allow partial evaluation, a very interesting topic in functional

languages, but beyond the scope of this text. It should be noted that Standard ML

of New Jersey uses curried functions extensively in its implementation. Appendix B

contains many functions whose signatures reflect that they are curried.

5.15 Anonymous Functions

The beginning of this chapter describes the lambda calculus. In that section we

learned that functions can be characterized as first class objects. Functions can be

represented by a lambda abstraction and don’t have to be assigned a name. This is

also true in SML. Functions in SML don’t need names. The anonymous function

λxy.y2+x can be represented in ML as

f n x => f n y => y*y + x;

The anonymous function can be applied to a value in the same way a named function

is applied to a value. Function application is always the function first, followed by

the value.

- (fn x => fn y => y*y + x) 3 4;
val it = 19 : int

We can define a function by binding a lambda abstraction to an identifier:

- val f = fn x => fn y => y*y + x;
val f = fn: int -> int -> int
- f 3 4;
val it = 19 : int

This mechanism provides an alternative form for defining functions as long as they

are not recursive; in a val declaration, the identifier being defined is not visible in the

expression on the right side of the arrow. For recursive definitions a val rec expression

is required. To define a recursive function using the anonymous function form you

must use val rec to declare it.

- val rec fac = fn n => if n=0 then 1 else n*fac(n-1);
val fac = fn: int -> int
- fac 7;
val it = 5040: int

This val rec definition of a function is the way all functions are defined in SML. The

functional form used when the keyword fun is used to define a function is translated

into val rec form. The fun form of function definition is called syntactic sugar.

Syntactic sugar refers to another way of writing something that gets treated the same

way in either case. Usually sugared forms are the nicer way to write something.

5.16 Higher-Order Functions 207

5.16 Higher-Order Functions

The unique feature of functional languages is that functions are treated as first-class

objects with the same rights as other objects, namely to be stored in data structures,

to be passed as a parameter, and to be returned as function results. Functions can be

bound to identifiers using the keywords fun, val, and val rec and may also be stored

in structures. These are examples of functions being treated as values.

- val fnlist = [fn (n) => 2*n, abs , ~, fn (n) => n*n];
val fnlist = [fn ,fn ,fn ,fn] : (int -> int) list

Notice each of these functions takes an int and returns an int. An ML function can

be defined to apply each of these functions to a number. The construction function

applies a list of functions to a value.

- fun construction nil n = nil
| construction (h::t) n = (h n)::(construction t n);

val construction = fn : (’a -> ’b) list -> ’a -> ’b list
- construction [op +, op *, fn (x,y) => x - y] (4,5);
val it = [9 ,20 ,~1] : int list

Construction is based on a functional form found in FP, an early functional program-

ming language developed by John Backus. It illustrates the possibility of passing

functions as arguments. Since functions are first-class objects in ML, they may be

stored in any sort of structure. It is possible to imagine an application for a stack of

functions or even a tree of functions.

A function is called higher-order if it takes a function as a parameter or returns a

function as its result. Higher-order functions are sometimes called functional forms

since they allow the construction of new functions from already defined functions.

The usefulness of functional programming comes from the use of functional forms

that allow the development of complex functions from simple functions using abstract

patterns. The construction function is one of these abstract patterns of computation.

These functional forms, or patterns of computation, appear over and over again in

programs. Programmers have recognized these patterns and have abstracted out the

details to arrive at several commonly used higher-order functions. The next sections

introduce several of these higher-order functions.

5.16.1 Composition

Composing two functions is a naturally higher-order operation that you have probably

used in algrebra. Have you ever written something like f(g(x))? This operation can

be expressed in ML. In fact, ML has a built-in operator called o which represents

composition. This example code demonstrates how composition can be written and

used.

208 5 Functional Programming

- fun compose f g x = f (g x);
val compose = fn : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b
- fun add1 n = n+1;
val add1 = fn : int -> int
- fun sqr n:int = n*n;
val sqr = fn : int -> int

- val incsqr = compose add1 sqr;
val incsqr = fn : int -> int
- val sqrinc = compose sqr add1;
val sqrinc = fn : int -> int

Observe that these two functions, incsqr and sqrinc, are defined without the use of

parameters.

- incsqr 5;
val it = 26 : int
- sqrinc 5;
val it = 36 : int

ML has a predefined infix function o that composes functions. Note that o is uncurried.

- op o;
val it = fn : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b
- val incsqr = add1 o sqr;
val incsqr = fn : int -> int
- incsqr 5;
val it = 26 : int
- val sqrinc = op o(sqr ,add1);
val sqrinc = fn : int -> int
- sqrinc 5;
val it = 36 : int

5.16.2 Map

In SML, applying a function to every element in a list is called map and is predefined.

It takes a unary function and a list as arguments and applies the function to each

element of the list returning the list of results.

- map;
val it = fn : (’a -> ’b) -> ’a list -> ’b list
- map add1 [1,2,3];
val it = [2,3,4] : int list
- map (fn n => n*n - 1) [1,2,3,4,5];
val it = [0,3,8,15,24] : int list
- map (fn ls => "a"::ls) [["a","b"],["c"],["d","e","f"]];
val it = [["a","a","b"],["a","c"],["a","d","e","f"]] :

string list list
- map real [1,2,3,4,5];
val it = [1.0 ,2.0 ,3.0 ,4.0 ,5.0] : real list

5.16 Higher-Order Functions 209

Fig. 5.20 The Map Function

The map function is predefined in the List structure, but is provided in Fig. 5.20 for

your reference.

Practice 5.19 Describe the behavior (signatures and output) of these func-

tions:

• map (map add1)

• (map map)

Invoking (map map) causes the type inference system of SML to report

language
stdIn :12.27 -13.7 Warning: type vars n o t generalized

because of value restriction are instantiated to
dummy types (X1 ,X2 ,...)

This warning message is OK. It is telling you that to complete the type inference

for this expression, SML had to instantiate a type variable to a dummy variable.

When more type information is available, SML would not need to do this. The

warning message only applies to the specific case where you created a function

by invoking (map map). In the presence of more information the type inference

system will interpret the type correctly without any dummy variables.

You can check your answer(s) in Section 5.26.19.

5.16.3 Reduce or Foldright

Higher-order functions are developed by abstracting common patterns from pro-

grams. For example, consider the functions that find the sum or the product of a list

of integers. In this pattern the results of the previous invocation of the function are

used in a binary operation with the next value to be used in the computation.

In other words, to add up a list of values you start with either the first or last

element of the list and then add it together with the value next to it. Then you add

the result of that computation to the next value in the list and so on. When we start

210 5 Functional Programming

with the end of the list and work our way backwards through the list the operation is

sometimes called foldr (i.e. foldright) or reduce.

- fun sum nil = 0
| sum ((h:int)::t) = h + sum t;

val sum = fn : int list -> int
- sum [1,2,3,4,5];
val it = 15 : int

- fun product nil = 1
| product ((h:int)::t) = h * product t;

val product = fn : int list -> int
- product [1,2,3,4,5];
val it = 120 : int

Each of these functions has the same pattern. If we abstract the common pattern as

a higher-order function we arrive at a common higher-order function called foldr.

foldr is an abbreviation for foldright. The foldr function keeps applying its function

to the result and the next item in the list.

- fun foldr f init nil = init
| foldr f init (h::t) = f(h, foldr f init t);

val foldr = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
- foldr op + 0 [1,2,3,4,5];
val it = 15 : int
- foldr op * 1 [1,2,3,4,5];
val it = 120 : int

Now sum and product can be defined in terms of reduce.

- val sumlist = List.foldr (op +) 0;
val sumlist = fn : int list -> int
- val mullist = List.foldr op * 1;
val mullist = fn : int list -> int
- sumlist [1,2,3,4,5];
val it = 15 : int
- mullist [1,2,3,4,5];
val it = 120 : int

SML includes two predefined functions that reduce a list, foldr and foldl which stands

for foldleft. They behave slightly differently.

- List.foldr;
val it = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
- List.foldl;
val it = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
- fun abdiff (m,n:int) = abs(m-n);
val abdiff = fn : int * int -> int
- foldr abdiff 0 [1,2,3,4,5];
val it = 1 : int

5.16 Higher-Order Functions 211

- foldl abdiff 0 [1,2,3,4,5];
val it = 3 : int

Practice 5.20 How does foldl differ from foldr? Determine the difference by

looking at the example code in this section. Then, describe the result of these

functions invocations.

• foldr op :: nil ls

• foldr op @ nil ls

You can check your answer(s) in Section 5.26.20.

5.16.4 Filter

A predicate function is a function that takes a value and returns true or false depending

on the value. By passing a predicate function, it is possible to filter in only those

elements from a list that satisfy the predicate. This is a commonly used higher-order

function called filter. If we had to write filter ourselves, this is how it would be

written. This example also shows how it might be used.

- fun filter bfun nil = nil

| filter bfun (h::t) = if bfun h then h:: filter bfun t

else filter bfun t;

val it = fn : (’a -> bool) -> ’a list -> ’a list

- even;

val it = fn : int -> bool

- filter even [1,2,3,4,5,6];

val it = [2,4,6] : int list

- filter (fn n => n > 3) [1,2,3,4,5,6];

val it = [4,5,6] : int list

Practice 5.21 Use filter to select numbers from a list that are

• divisible by 7

• greater than 10 or equal to zero

You can check your answer(s) in Section 5.26.21.

212 5 Functional Programming

5.17 Continuation Passing Style

Continuation Passing Style (or CPS) is a way of writing functional programs where

control is made explicit. In other words, the continuation represents the remaining

work to be done. This style of writing code is interesting because the style is used in

the SML compiler. To understand cps it’s best to look at an example. Let’s consider

the len function for computing the length of a list.

- fun len nil = 0
| len (h::t) = 1+(len t);

val len = fn : ’a list -> int

To transform this to cps form we represent the rest of the computation explicitly as a

parameter called k. In this way, whenever we need the continuation of the calculation,

we can just write the identifier k. Here’s the cps form of len and an example of calling

it.

- fun cpslen nil k = k 0
| cpslen (h::t) k = cpslen t (fn v => (k (1 + v)));

val cpslen = fn : ’a list -> (int -> ’b) -> ’b
- cpslen [1,2,3] (fn v => v);
val it = 3 : int

Practice 5.22 Trace the execution of cpslen to see how it works and how the

continuation is used.

You can check your answer(s) in Section 5.26.22.

Notice that the recursive call to cpslen is the last thing that is done. This function

is tail recursive. However, tail recursion elimination cannot be applied because the

function returns a function and recursively calls itself with a function as a parameter.

CPS is still important because it can be optimized by a compiler. In addition, since

control flow is explicit (passed around as k), function calls can be implemented with

jumps and many of the jumps can be eliminated if the code is organized in the right

way.

Eliminating calls and jumps is important since calls have the effect of interrupting

pipelines in RISC processors. Since functional languages make lots of calls, one of the

criticisms of functional languages is that they were inefficient. With the optimization

of CPS functions, functional languages get closer to being as efficient as imperative

languages. In addition, as cache sizes and processor speeds increase the performance

difference becomes less and less of an issue.

5.17 Continuation Passing Style 213

Practice 5.23 Write a function called depth that prints the longest path in a

binary tree. First create the datatype for a binary tree. You can use the Int.max

function in your solution, which returns the maximum of two integers.

First write a non-cps depth function, then write a cps cpsdepth function.

You can check your answer(s) in Section 5.26.23.

5.18 Input and Output

SML contains a TextIO structure as part of the basis library. The signature of the

functions in the TextIO structure is given in Appendix B. It is possible to read and

write strings to streams using this library of functions. The usual standard input,

standard output, and standard error streams are predefined. Here is an example of

reading a string from the keyboard. Explode is used on the string to show the vector

type is really the string type. It also shows how to print something to a stream.

- val s = TextIO.input(TextIO.stdIn);
hi there
val s = "hi there\n" : vector
- explode(s);
val it = [#"h",#"i",#" ",#"t",#"h",#"e",

#"r",#"e",#"\n"] : char list
- TextIO.output(TextIO.stdOut ,s^"How are you!\n");
hi there
How are you!
- val it = () : unit

Since streams can be directed to files, the screen, or across the network, there really

isn’t much more to input and output in SML. Of course if you are opening your own

stream it should be closed when you are done with it. Program termination will also

close any open streams.

There are some TextIO functions that may or may not return a value. In these

cases an option is returned. An option is a value that is either NONE or SOME value.

An option is SML’s way of dealing with functions that may or may not succeed.

Functions must always return a value or end with an exception. To prevent the

exception handling mechanism from being used for input operations that may or

may not succeed, this idea of an option was created. Options fit nicely into the strong

typing that SML provides. The input1 function of the TextIO structure reads exactly

one character from the input and returns an option as a result. The reason it returns

an option and not the character directly is because the stream might not be ready

for reading. The valOf function can be used to get the value of an option that is not

NONE.

- val u = TextIO.input1(TextIO.stdIn);

214 5 Functional Programming

hi there
val u = SOME #"h" : elem option
=
= ^C
Interrupt
- u;
val it = SOME #"h" : elem option
- val v = valOf(u);
val v = #"h" : elem

5.19 Programming with Side-effects

Standard ML is not a pure functional language. It is possible to write programs

with side effects, such as reading from and writing to streams. To write imperative

programs the language should support sequential execution, variables, and possibly

loops. All three of these features are available in SML. The following sections show

you how to use each of these features.

5.19.1 Variables in Standard ML

There is only one kind of variable in Standard ML. Variables are called references.

It is interesting to note that you cannot update an integer, real, string, or many other

types of values in SML. All these values are immutable. They cannot be changed

once created. That is a nice feature of a language because then you don’t have to

worry about the distinction between a reference to a value and the value itself. Array

objects are mutable because they contain a list of references.

A reference in Standard ML is typed. It is either a reference to an int, or a string,

or some other type of data. References can be mutated. So a reference can be updated

to point to a new value as your program executes. Declaring and using a reference

variable is shown in this example code. In SML a variable is declared by creating a

reference to a value of a particular type.

- val x = ref 0;
val x = ref 0 : int ref

The exclamation point is used to refer to the value to which a reference points. This

is called the dereference operator. It is the similar to the star (i.e. *) in C++ which

dereferences a pointer.

- !x;
val it = 0 : int
- x := !x + 1;
val it = () : unit
- !x;
val it = 1 : int

5.19 Programming with Side-effects 215

Fig. 5.21 Sequential Execution

The assignment operator (i.e. :=) operator updates the reference variable to point to

a new value. The result of assignment is the empty tuple which has a special type

called unit. Imperative programming in SML will often result in the unit type. Unlike

ordinary identifiers you can bind to values using a let val id = Expr in Expr end, a

reference can truly be updated to point to a new value.

It should be noted that references in Standard ML are typed. When a reference

is created it can only point to a value of the same type it was originally created to

refer to. This is unlike references in Python, but is similar to references in Java. A

reference refers to a particular type of data.

5.19.2 Sequential Execution

If a program is going to assign variables new values or read from and write to streams

it must be able to execute statements or expressions sequentially. There are two ways

to write a sequence of expressions in SML. When you write a let val id = Expr

in Expr end expression, the Expr in between the in and end may be a sequence of

expressions. A sequence of expressions is semicolon separated. The code in Fig. 5.21

demonstrates how to write a sequence of expressions.

Evaluating this expression produces the following output.

The new value of x is 1
val it = 1 : int

In Fig. 5.21 semicolons separate the expressions in the sequence. Notice that semi-

colons don’t terminate each line as in C++ or Java. Semicolons in SML are expression

separators, not statement terminators. The last expression in a sequence of expres-

sions is the value of the expression. All previously computed values in the sequential

expression are thrown away. The !x is the last expression in the sequence in Fig. 5.21

so 1 is yielded as the value of the expression.

There are times when you may wish to evaluate a sequence of expressions in

the absence of a let expression. In that case the sequence of expressions may be

surrounded by parens. A left paren can start a sequence of expressions terminated

by a right paren. The sequence of expressions is semicolon separated in either case.

Here is some code that prints the value of x to the screen and then returns x + 1.

216 5 Functional Programming

(TextIO.output(TextIO.stdOut ,"The value of x is" ^
Int.toString(x);
x+1)

5.19.3 Iteration

Strictly speaking, variables and iteration are not needed in a functional language.

Parameters can be passed in place of variable declarations. Recursion can be used in

place of iteration. However, there are times when an iterative function might make

more sense. For instance, when reading from a stream it might be more efficient to

read the stream in a loop, especially when the stream might be large. A recursive

function could overflow the stack in that case unless the recursive function were tail

recursive and could be optimized to remove the recursive call.

A while loop in SML is written as while Expr do Expr. As is usual with while

loops, the first Expr must evaluate to a boolean value. If it evaluates to true then the

second Expr is evaluated. This process is repeated until the first Expr returns false.

5.20 Exception Handling

An exception occurs in SML when a condition occurs that requires special handling.

If no special handling is defined for the condition the program terminates. As with

most modern languages, SML has facilities for handling these exceptions and for

raising user-defined exceptions. Consider the maxIntList function you wrote in prac-

tice problem 5.13. You probably had to figure out what to do if an empty list was

passed to the function. One way to handle this is to raise an exception.

e x c e p t i o n emptyList;

f u n maxIntList [] = r a i s e emptyList
| maxIntList (h::t) = Int.max(h,maxIntList t) h a n d l e

emptyList => h

Invoking the maxIntList on an empty list can be handled using an exception handling

expression. The handle clause uses pattern matching to match the right exception

handler. To handle any exception the pattern _ can be used. The underscore matches

anything. Multiple exceptions can be handled by using the vertical bar (i.e. |) between

the handlers.

5.21 Encapsulation in ML 217

5.21 Encapsulation in ML

ML provides two language constructs that enable programmers to define new

datatypes and hide their implementation details. The first of these language con-

structs we’ll look at is the signature. The other construct is the structure.

5.21.1 Signatures

A signature is a means for specifying a set of related functions and types without

providing any implementation details. This is analogous to an interface in Java or

a template in C++. Consider the datatype consisting of a set of elements. A set is a

group of elements with no duplicate values. Sets are very important in many areas of

Computer Science and Mathematics. Set theory is an entire branch of mathematics.

If we wanted to define a set in ML we could write a signature for it as follows.

The signature of a group of set functions and a set datatype is provided in Fig. 5.22.

Notice this datatype is parameterized by a type variable so this could be a signature

for a set of anything. You’ll also notice that while the type parameter is ′a there are

type variables named ′′a within the signature. This is because some of these functions

rely on the equals operator. In ML the equals operator is polymorphic and cannot be

instantiated to a type. When this signature is used in practice the ′a and ′′a types will

be correctly instantiated to the same type.

Before a signature can be used, each of these functions must be implemented in

a structure that implements the signature. This encapsulation allows a programmer

to write code that uses these set functions without regards to their implementation.

Fig. 5.22 The Set Signature

218 5 Functional Programming

An implementation must be provided before the program can be run. However, if a

better implementation comes along later it can be substituted without changing any

of the code that uses the set signature.

5.21.2 Implementing a Signature

To implement a signature we can use the struct construct that we’ve seen before. In

this case it is done as follows. A partial implementation of the SetSig signature is

provided in Fig. 5.23.

Of course, the entire implementation of all the set functions in the signature is

required. Some of these functions are left as an exercise.

Practice 5.24 1. Write the card function. Cardinality of a set is the size of

the set.

2. Write the intersect function. Intersection of two sets are just those elements

that the two sets have in common. Sets do not contain duplicate elements.

You can check your answer(s) in Section 5.26.24.

Fig. 5.23 A Set Structure

5.22 Type Inference 219

5.22 Type Inference

Perhaps Standard ML’s strongest point is the formally proven soundness of its type

inference system. ML’s type inference system is guaranteed to prevent any run-time

type errors from occurring in a program. This turns out to prevent many run-time

errors from occurring in your programs. Projects like the Fox Project have shown

that ML can be used to produce highly reliable large software systems.

The origins of type inference include Haskell Curry and Robert Feys who in 1958

devised a type inference algorithm for the simply typed lambda calculus. In 1969

Roger Hindley worked on extending this type inference algorithm. In 1978 Robin

Milner independently from Hindley devised a similar type inference system proving

its soundness. In 1985 Luis Damas proved Milner’s algorithm was complete and

extended it to support polymorphic references. This algorithm is called the Hindley-

Milner type inference algorithm or the Milner-Damas algorithm. The type inference

system is based on a very powerful concept called unification.

Unification is the process of using type inference rules to bind type variables to

values. The type inference rules look like this.

IfThen

ε ⊢ e1 : bool ε ⊢ e2 : α ε ⊢ e3 : α

ε ⊢ i f e1 then e2 else e3 : α

This rule says that for an if-then expression to be correctly typed, the type of the

first expression must be a bool and the types of the second and third expression must

be unifiable. If those preconditions hold, then the type of the if-then expression is

given by the type of either of the second two expressions (since they are the same).

Unification happens when α is written twice in the rule above. The ε is the presence

of type information that is used when determining the types of the three expressions

and is called the type environment.

Here are two examples that suggest how the type inference mechanism works. In

this example we determine the type of the following function.

f u n f(nil ,nil) = nil
| f(x::xs ,y::ys) = (x,y)::f(xs ,ys);

The function f takes one parameter, a pair.

f: ’a * ’b -> ’c

From the nature of the argument patterns, we conclude that the three unknown types

must be lists.

f: (’p list) * (’s list) -> ’t list

The function imposes no constraints on the domain lists, but the codomain list must

be a list of pairs because of the cons operation (x,y) ::. We know x:’p and y:’s.

Therefore ‘t=’p *’s.

f: ’p list * ’s list -> (’p * ’s) list

220 5 Functional Programming

where ‘p and ‘s are any ML types. In this example the type of the function g is

inferred.

f u n g h x = i f null x t h e n nil
e l s e

i f h (hd x) t h e n g h (tl x)
e l s e (hd x)::g h (tl x);

The function g takes two parameters, one at a time.

g: ’a -> ’b -> ’c

The second parameter, x, must serve as an argument to null, hd, and tl; it must be a

list.

g: ’a -> (’s list) -> ’c

The first parameter, h, must be a function since it is applied to hd x, and its domain

type must agree with the type of elements in the list. In addition, h must produce a

boolean result because of its use in the conditional expression.

g: (’s -> bool) -> (’s list) -> ’c

The result of the function must be a list since the base case returns nil. The result

list is constructed by the code (hd x) ::g h (tl x), which adds items of type ‘s to the

resulting list.

Therefore, the type of g must be:

g: (’s -> bool) -> ’s list -> s list

Chapter 8 explores type inference in much more detail. A type checker for Standard

ML is developed using Prolog, a programming language ideally suited to problems

involving unification.

5.23 Building a Prefix Calculator Interpreter

The datatype definition in Fig. 5.12 provided an abstract syntax tree definition for a

calculator language with one memory location. A related prefix calculator expression

language is relatively easy to define and from that we can build an interpreter of prefix

calculator expressions. Prefix expressions are comprised of an operator first followed

by an expression or expressions. The prefix calculator expression language is defined

by this LL(1) grammar.

G = (N , T , P,E) where

N = {E}

T = {S, R, number, ,+, −, ∗, /}

P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E |∼ E | S E | R | number

http://dx.doi.org/10.1007/978-3-319-70790-7_8

5.23 Building a Prefix Calculator Interpreter 221

Fig. 5.24 The Prefix Calc Interpreter Run Function

The only non-terminal in this grammar is E. The S is the store operator which stores

the expression that follows it in the memory location. The R is the recall operator.

The tilde (i.e. ~) is the unary negation operator. To implement an interpreter for this

language we must first parse the expression and build an abstract syntax tree. Then

the abstract syntax tree can be evaluated. The entire process can be encapsulated in

a run function.

The run function that provides the overall design of the prefix calculator interpreter

is provided in Fig. 5.24.

A number of things should be explained about this code. Line 8 flushes standard

output. Without it the prompt does not print before the program starts waiting for

input. Line 9 gets a line of input from the user. It is returned as a string option so on

line 10 the valOf function is applied to get the string or raise an Option exception if

NONE had been returned.

Line 10 calls the tokens function. All the tokens must be separated by spaces or

tabs for the program to read the tokens correct. Here is an example of running this

code.

- run ();
Please enter a prefix calculator expression: + * S ~ 6 R 5
The answer is: 41
val it = () : unit

Line 11 calls the parser to parse the list of tokens. In this case, the list of tokens is

passed to the parsing function. The parser returns a tuple with the AST as the first

item of the tuple and the rest of the tokens as the second result. After parsing, line

222 5 Functional Programming

14 checks to see that there are no more tokens left after parsing. If there are, then the

eofExceptioni is raised.

Line 12 calls the evaluator function eval to interpret the AST. The eval function

returns the result of evaluating the tree. Line 17 prints the result to the screen.

There are two handled exceptions. If the eofException is thrown then the expres-

sion did not parse correctly. If the Option exception is thrown there was a bad token

in the input. Note that only integers are allowed for numbers in this implementation.

This was decided by the AST definition in Fig. 5.12.

5.23.1 The Prefix Calc Parser

Parsing the expression is easy thanks to the LL(1) grammar for prefix calculator

expressions. The E function is defined using pattern-matching in Fig. 5.25. Each

time a token is consumed it is simply omitted from the remaining list of tokens. The

tokens are single-threaded through the function. This just means the left over tokens

are always passed on to the next piece to be parsed and the remaining tokens are

always returned along with the AST when the E function returns.

The parser doesn’t do any evaluation of the data. It simply works on building an

AST for the expression. The evaluation of the AST comes later, by the evaluator.

Notice in line 39 that the valOf function is used on the result of the Int.fromString

function. If the string being converted is not a valid value, the valOf will raise the

Option exception terminating the run function with an appropriate error message.

Line 43 of Fig. 5.25 handles getting to the end of the input (i.e. the list of tokens)

earlier than is expected. If the parser reaches this case the original expression was

mal-formed and throwing the eofException is the appropriate response.

5.23.2 The AST Evaluator

To complete implementation of the prefix calculator the AST needs to be evaluated.

The eval function presented in Fig. 5.26 provides this evaluation function. Line 1

declares a memory reference that is imperatively updated with the value stored in

the calculator’s memory.

Lines 2–9 provide the traditional binary operations of addition, subtraction, mul-

tiplication, and division. Because this calculator is only an integer calculator, the

integer division div is used. Unary negation occurs on lines 10 and 11.

Line 12 stores a value in the memory of the calculator by first evaluating the sub-

tree and then storing the value before returning it. Line 18 is responsible for recalling

the value by returning the dereferenced memory location.

5.23 Building a Prefix Calculator Interpreter 223

Fig. 5.25 The Parser

224 5 Functional Programming

Fig. 5.26 The Evaluator

5.23.3 Imperative Programming Observations

There are a couple of Standard ML syntax issues that are good to recognize at

this point. In Fig. 5.24, line 7 begins with a left paren. The left paren can be used

to construct a tuple in Standard ML, but it is also used to begin a sequence of

expressions. The last right paren on line 24 ends the sequence. Expressions are

separated by semicolons in a sequence of expressions. This occurs on line 16 of

Fig. 5.24. No semicolon appears after the expression on line 17 because semicolons

only separate expressions, they do not terminate them. On line 16 the else clause has

a unit (i.e. ()) as its result. This is because the type generated by raising an exception

is a unit, and the then and else clause return types must match.

5.24 Chapter Summary

This chapter introduced functional programming. For many this is a new way of

thinking about programming. Recursion is the main pattern used in computing when

writing in a functional programming style. Higher-order functions are an important

part of functional programming. Certain patterns appear often in functional programs

and these patterns have been implemented as some common higher-order functions

like map, filter, foldr, and others.

5.24 Chapter Summary 225

An important thing to learn from this chapter is that functional programming is

more declarative and less prescriptive than programming in an imperative language

like C++ or Java. Standard ML is a good functional programming language but other

languages like C++, Java, and Python support functional programming as well.

Standard ML has a strong type checker that has been proven sound and complete.

That means that while more time is spent removing type errors from programs,

much less time is spent debugging Standard ML programs. Experiments like the Fox

Project at Carnegie Mellon have shown this is true for large software systems written

in Standard ML as well.

Much more can be learned about Standard ML and the next chapter not only

looks at some Standard ML tools for language implementation, but it also describes

the implementation of a compiler that translates Standard ML to JCoCo assembly

language.

Jeffrey Ullman’s book on functional programming in Standard ML is a very

good introduction and reference for Standard ML. It is more thorough than the

topics provided in this text and contains many topics not covered here including

discussion of arrays, functors, and sharings along with a few of the Basis structures.

The topics presented here and in the next chapter give you a good introduction to

the ideas and concepts associated with functional programming. Ullman’s book and

on-line tutorials and manual pages are another great resource for learning functional

programming.

5.25 Exercises

In the exercises below you are encouraged to write other functions that may help you

in your solutions. You might have better luck with some of the harder ones if you

solve a simpler problem first that can be used in the solution to the harder problem.

You may wish to put your solutions to these problems in a file and then

- use "thefile ";

in SML. This will make writing the solutions easier. You can try the solutions out by

placing tests right within the same file. You should always comment any code you

write. Comments in SML are preceded with a (* and terminated with a *).

1. Reduce (λz.z + z)((λx .λy.x + y) 4 3) by normal order and applicative order

reduction strategies. Show the steps.

2. How does the SML interpreter respond to evaluating each of the following

expressions? Evaluate each of these expression in ML and record what the

response of the ML interpreter is.

(a) 8 div 3;

(b) 8 mod 3;

(c) “hi”^”there”;

226 5 Functional Programming

(d) 8 mod 3 = 8 div 3 orelse 4 div 0 = 4;

(e) 8 mod 3 = 8 div 3 andalso 4 div 0 = 4;

3. Describe the behavior of the orelse operator in exercise 2 by writing an equivalent

if then expression. You may use nested if expressions. Be sure to try your solution

to see you get the same result.

4. Describe the behavior of the andalso operator in exercise 2 by writing an equiv-

alent if then expression. Again you can use nested if expressions.

5. Write an expression that converts a character to a string.

6. Write an expression that converts a real number to the next lower integer.

7. Write an expression that converts a character to an integer.

8. Write an expression that converts an integer to a character.

9. What is the signature of the following functions? Give the signature and an

example of using each function.

(a) hd

(b) tl

(c) explode

(d) concat

(e) :: - This is an infix operator. Use the prefix form of op :: to get the signature.

10. The greatest common divisor of two integers, x and y, can be defined recur-

sively. If y is zero then x is the greatest common divisor. Otherwise, the greatest

common divisor of x and y is equal to the greatest common divisor of y and the

remainder x divided by y. Write a recursive function called gcd to determine

the greatest common divisor of x and y.

11. Write a recursive function called allCaps that given a string returns a capitalized

version of the string.

12. Write a recursive function called firstCaps that given a list of strings, returns a

list where the first letter of each of the original strings is capitalized.

13. Using pattern matching, write a recursive function called swap that swaps every

pair of elements in a list. So, if [1,2,3,4,5] is given to the function it returns

[2,1,4,3,5].

14. Using pattern matching, write a function called rotate that rotates a list by n

elements. So, rotate(3,[1,2,3,4,5]) would return [4,5,1,2,3].

15. Use pattern matching to write a recursive function called delete that deletes the

nth letter from a string. So, delete(3,”Hi there”) returns “Hi here”. HINT: This

might be easier to do if it were a list.

16. Again, using pattern matching write a recursive function called intpow that

computes xn . It should do so with O(log n) complexity.

17. Rewrite the rotate function of exercise 14 calling it rotate2 to use a helper

function so as to guarantee O(n) complexity where n is the number of positions

to rotate.

18. Rewrite exercise 14’s rotate(n,lst) function calling it rotate3 to guarantee that

less than l rotations are done where l is the length of the list. However, the

5.25 Exercises 227

outcome of rotate should be the same as if you rotated n times. For instance,

calling the function as rotate3(6,[1,2,3,4,5]) should return [2,3,4,5,1] with less

than 5 recursive calls to rotate3.

19. Rewrite the delete function from exercise 15 calling it delete2 so that it is curried.

20. Write a function called delete5 that always deletes the fifth character of a string.

21. Use a higher-order function to find all those elements of a list of integers that

are even.

22. Use a higher-order function to find all those strings that begin with a lower case

letter.

23. Use a higher-order function to write the function allCaps from exercise 11.

24. Write a function called find(s,file) that prints the lines from the file named file

that contain the string s. You can print the lines to TextIO.stdOut. The file should

exist and should be in the current directory.

25. Write a higher-order function called transform that applies the same function to

all elements of a list transforming it to the new values. However, if an exception

occurs when transforming an element of the list, the original value in the given

list should be used. For instance,

- transform (fn x => 15 div x) [1,3,0,5]
val it = [15,5,0,3] : int list

26. The natural numbers can be defined as the set of terms constructed from 0 and

the succ(n) where n is a natural number. Write a datatype called Natural that

can be used to construct natural numbers like this. Use the capital letter O for

your zero value so as not to be confused with the integer 0 in SML.

27. Write a convert(x) function that given a natural number like that defined in

exercise 26 returns the integer equivalent of that value.

28. Define a function called add(x,y) that given x and y, two natural numbers as

described in exercise 26, returns a natural number that represents the sum of x

and y. For example,

- add(succ(succ(O)),succ(O))
val it = succ(succ(succ(O))) : Natural

You may NOT use convert or any form of it in your solution.

29. Define a function called mul(x,y) that given x and y, two natural numbers as

described in exercise 26, returns a natural that represents the product of x and y.

You may NOT use convert or any form of it in your solution.

30. Using the add function in exercise 28, write a new function hadd that uses the

higher order function called foldr to add together a list of natural numbers.

31. The prefix calculator intpreter presented at the end of this chapter can be imple-

mented a little more concisely by having the parser not only parse the prefix

expression, but also evaluate the expression at the same time. If this is to be

done, the parser ends up returning a unit because the parser does not need to

return an AST since the expression has already been evaluated. This means the

definition of the AST is no longer needed. Rewrite the prefix calculator code

presented at the end of this chapter to combine the parse and eval functions.

228 5 Functional Programming

Remove any unneeded code from your implementation but be sure to cover all

the error conditions as the version presented in this chapter.

32. Alter the prefix expression calculator to accept either integers or floating point

numbers as input. The result should always be a float in this implementation.

33. Add an input operator to the prefix calculator. In this version, expressions like

+ S I 5 when evaluated would prompt the user to enter a value when the I

was encountered. This expression, when evaluated, would cause the program to

respond as follows.

Please enter a prefix calculator expression: + S I 5
? 4
The answer is: 9

34. The prefix calculator intrepeter presented in this chapter can be transformed into

a prefix calculator compiler by having the program write a file called a.casm

with a JCoCo program that when run evaluates the compiled prefix calculator

expression. Alter the code at the end of this chapter to create a prefix caclulator

compiler. Running the compiler should work like this.

% sml
- use "prefixcalc.sml";
- run();
Please enter a prefix calculator expression: + S 6 5
- <ctrl -d>
% coco a.casm
The answer is: 11

35. For an extra hard project, combine the previous two exercises into one prefix

calc compiler whose programs when run can gather input from the user to be

used in the calculation.

36. Rewrite the prefix calculator project to single thread the memory location

through the eval function as shown in pattern Completing this project removes

the imperatively updated memory location from the code and replaces it with a

single-threaded argument to the eval function.

5.26 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers

after you have tried each of them for yourself first. Practice problems are meant to

help reinforce the material you have just read so make use of them.

5.26.1 Solution to Practice Problem 5.1

Addition is not commutative in Pascal or Java. The problem is that a function call,

which may be one or both of the operands to the addition operator, could have a

5.26 Solutions to Practice Problems 229

side-effect. In that case, the functions must be called in order. If no order is specified

within expression evaluation then you can’t even reliably write code with side-effects

within an expression.

Here’s another example of the problem with side-effects within code. In the code

below, it was observed that when the code was compiled with one C++ compiler

it printed 1,2 while with another compiler it printed 1,1. In this case, the language

definition is the problem. The C++ language definition doesn’t say what should

happen in this case. The decision is left to the compiler writer.

i n t x = 1;
cout << x++ << x << endl;

The practice problem writes 17 as written. If the expression were b+a() then 15 would

be written.

5.26.2 Solution to Practice Problem 5.2

With either normal order or applicative order function application is still left-

associative. There is no choice for the initial redex.

(λxyz.xz(yz))(λx .x)(λxy.x)

⇒ (λyz.(λx .x)z(yz))(λxy.x)

⇒ (λyz.z(yz))(λxy.x)

⇒ λz.z((λxy.x)z)

⇒ λz.z(λy.z)�

5.26.3 Solution to Practice Problem 5.3

Normal Order Reduction

(λx .y)((λx .xx)(λx .xx))

⇒ y

Applicative Order Reduction

(λx .y)((λx .xx)(λx .xx))

⇒ (λx .y)((λx .xx)(λx .xx))

⇒ (λx .y)((λx .xx)(λx .xx))

⇒ (λx .y)((λx .xx)(λx .xx)) ...

You get the idea.

5.26.4 Solution to Practice Problem 5.4

x div 6;
Real.round(Real.fromInt(x) * y);
x / 6.3;
x mod y

230 5 Functional Programming

5.26.5 Solution to Practice Problem 5.5

f u n factorial(n) = i f n=0 t h e n 1 e l s e n*factorial(n-1)

5.26.6 Solution to Practice Problem 5.6

The recursive definition is fib(0) = 0, fib(1) = 1, fib(n)=fib(n-1)+fib(n-2). The recur-

sive function is:

f u n fib(n) = i f n = 0 t h e n 1 e l s e

i f n = 1 t h e n 1 e l s e

fib(n-1) + fib(n-2)

5.26.7 Solution to Practice Problem 5.7

The solutions below are example solutions only. Others exist. However, the problem

with each invalid list is not debatable.

1. You cannot cons a character onto a string list. “a” ::[”beautiful day”]

2. You cannot cons two strings. The second operand must be a list. “hi” ::

[”there”]

3. The element comes first in a cons operation and the list second.

“you” ::[”how”,”are”]

4. Lists are homogeneous. Reals and integers can’t be in a list together.

[1.0,2.0,3.5,4.2]

5. Append is between two lists.2 ::[3,4] or [2]@[3,4]

6. Cons works with an element and a list, not a list and an element. 3 ::[]

5.26.8 Solution to Practice Problem 5.8

f u n explode(s) =
i f s ="" t h e n []
e l s e String.sub(s ,0){~:}{:}

(explode(String.substring(s,1,String.size(s) -1)))

5.26.9 Solution to Practice Problem 5.9

f u n reverse(L) =
i f null L t h e n []
e l s e append(reverse(tl(L)),[hd(L)])

5.26 Solutions to Practice Problems 231

5.26.10 Solution to Practice Problem 5.10

f u n reverse ([]) = []
| reverse(h{~:}{:}t) = reverse(t)@[h]

5.26.11 Solution to Practice Problem 5.11

l e t v a l x = 10
i n

(* 1. Value of x = 10 *)
l e t v a l x = x+1
i n

(* 2. Value of x = 11 (hidden x still is 10) *)
x

e n d ;
(* 3. Value of x = 10 (hidden x is visible again) *)
x

e n d

5.26.12 Solution to Practice Problem 5.12

d a t a t y p e intlist = nil ’ | cons o f int * intlist;

5.26.13 Solution to Practice Problem 5.13

f u n maxIntList nil ’ = valOf(Int.minInt)
| maxIntList (cons(x,xs)) = Int.max(x,maxIntList xs)

or

f u n maxIntList (cons(x,nil ’)) = x
| maxIntList (cons(x,xs)) = Int.max(x,maxIntList xs)

The second solution will cause a pattern match nonexhaustive warning. That should

be avoided, but is OK in this case. The second solution will raise a pattern match

exception if an empty list is given to the function. See the section on exception

handling for a better solution to this problem.

5.26.14 Solution to Practice Problem 5.14

The first step in the solution is to determine the number of calls required for values

of n. Consulting Fig. 5.16 shows us that the number of calls are 1, 1, 3, 5, 9, 15, 25,

etc. The next number in the sequence can be found by adding together two previous

plus one more for the initial call.

The solution is that for n ≥ 3 the function 1.5n bounds the number of calls on

the lower side while 2n bounds it on the upper side. Therefore, the number of calls

increases exponentially.

232 5 Functional Programming

Fig. 5.27 The run-time stack when factorial(6) is called at its deepest point

5.26.15 Solution to Practice Problem 5.15

The cons operation is called n times where n is the length of the first list when

append is called. When reverse is called it calls append with n − 1 elements in the

first list the first time. The first recursive call to reverse calls append with n − 2

elements in the first list. The second recursive call to reverse calls append with n − 3

elements in the first list. If we add up n − 1 + n − 2 + n − 3+... we end up with∑n−1
i=1 i = ((n − 1)n)/2. Multiplying this out leads to an n2 term and the overall

complexity of reverse is O(n2).

5.26.16 Solution to Practice Problem 5.16, see Fig. 5.27

5.26.17 Solution to Practice Problem 5.17

This solution uses the accumulator pattern and a helper function to implement a

linear time reverse.

f u n reverse(L) =
l e t f u n helprev (nil , acc) = acc

| helprev (h::t, acc) = helprev(t,h::acc)
i n

helprev(L,[])
e n d

5.26 Solutions to Practice Problems 233

5.26.18 Solution to Practice Problem 5.18

This solution is surprisingly hard to figure out. In the first, f is certainly an uncurried

function (look at how it is applied). The second requires f to be curried.

- fun curry f x y = f(x,y)
val curry = fn : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

- fun uncurry f (x,y) = f x y
val uncurry = fn : (’a -> ’b -> ’c) -> ’a * ’b -> ’c

5.26.19 Solution to Practice Problem 5.19

The first takes a list of lists of integers and adds one to each integer of each list in

the list of lists.

The second function takes a list of functions that all take the same type argument,

say a’. The function returns a list of functions that all take an a’ list argument. The

example below might help. The list of functions that is returned by (map map) is

suitable to be used as an argument to the construction function discussed earlier in

the chapter.

- map (map add1);

val it = fn : int list list -> int list list

(map map);

stdIn :63.16 -64.10 Warning: type vars not generalized because

of value restriction are instantiated to dummy types

(X1,X2 ,...)

val it = fn : (?.X1 -> ?.X2) list ->

(?.X1 list -> ?.X2 list) list

- fun double x = 2 * x;

val double = fn : int -> int

- val flist = (map map) [add1 ,double];

val flist = [fn,fn] : (int list -> int list) list

- construction flist [1,2,3];

val it = [[2,3,4],[2,4,6]] : int list list

5.26.20 Solution to Practice Problem 5.20

foldl is left-associative and foldr is right-associative.

- foldr op :: nil [1,2,3];
val it = [1,2,3] : int list
- foldr op @ nil [[1] ,[2 ,3] ,[4 ,5]];
val it = [1,2,3,4,5] : int list

234 5 Functional Programming

5.26.21 Solution to Practice Problem 5.21

- List.filter (fn x => x mod 7 = 0) [2,3,7,14,21,25,28];

val it = [7 ,14 ,21 ,28] : int list
- List.filter (fn x => x > 10 orelse x = 0)

[10, 11, 0, 5, 16, 8];
val it = [11 ,0 ,16] : int list

5.26.22 Solution to Practice Problem 5.22

cpslen [1,2,3] (fn v => v)
= cpslen [2,3] (fn w => ((fn v => v) (1 + w)))
= cpslen [3]

(fn x => ((fn w => ((fn v => v) (1 + w)))(1 + x)))
= cpslen []

(fn y => ((fn x => ((fn w => ((fn v => v)
(1 + w)))(1 + x)))(1 + y)))

= (fn y => ((fn x => ((fn w => ((fn v => v)
(1 + w)))(1 + x)))(1 + y))) 0

= (fn x => ((fn w => ((fn v => v) (1 + w)))(1 + x))) 1
= (fn w => ((fn v => v) (1 + w))) 2
= (fn v => v) 3
= 3

5.26.23 Solution to Practice Problem 5.23

d a t a t y p e bintree = termnode o f int

| binnode o f int * bintree * bintree;

v a l tree = (binnode(5,binnode(3,termnode (4), binnode(8,

termnode (5), termnode (4))), termnode (4)));

f u n depth (termnode _) = 0

| depth (binnode(_,t1,t2)) = Int.max(depth(t1),depth(t2))+1

f u n cpsdepth (termnode _) k = k 0

| cpsdepth (binnode(_,t1 ,t2)) k =

Int.max(cpsdepth t1 (f n v => (k (1 + v))),

cpsdepth t2 (f n v => (k (1 + v))))

5.26.24 Solution to Practice Problem 5.24

f u n card (Set L) = List.length L;

f u n intersect (Set L1) S2 =
Set ((List.filter (f n x => member x S2) L1))

6Compiling Standard ML

The ML in the name Standard ML stands for meta-language. SML was designed as

a language for describing languages when it was used as part of the Logic for Com-

putable Functions (LCF) system [9]. Two tools were designed to work with Standard

ML for language implementation, ML-lex and ML-yacc. The pattern matching, ease

of defining recursive datatypes, the functional nature of the language along with

these two tools make Standard ML an excellent language choice for implementing

interpreters and compilers. This chapter introduces these two tools through a case

study involving the development of a compiler for a subset of the Standard ML lan-

guage called the Small language. Over the years the Small language has grown into

a pretty robust subset of Standard ML.

Depicted in Fig. 6.1 are all the relevant pieces in constructing and using the mlcomp

compiler which can be downloaded from http://github.com/kentdlee/mlcomp. Com-

piling an SML program begins by scanning the source file for tokens. The scanner is

called by the parser to get each of the tokens from the SML source file. The parser,

a bottom-up parser, performs a reverse right-most derivation of the source program

forming an abstract syntax tree along the way. When the AST is returned by the

parser, the compiler calls the code generator to evaluate the tree and produce the tar-

get code, in this case JCoCo assembly language. In this chapter the scanner and the

parser won’t have to be written by hand. ML-lex and ML-yacc are used to generate

these parts of the compiler from specifications that are provided to these tools.

Two commonly used terms in compiler construction are the front end and the

back end. The front end, referring to the scanner and the parser, reads the tokens

and builds an AST of a program. The back end generates the code given the AST

representation of the program. ML-lex and ML-yacc are used to generate the front end

from two specifications, provided by the compiler writer. The back end is written by

the compiler writer to generate the code given an AST of the program. In Fig. 6.1 the

light green objects are the parts of the compiler provided by the compiler writer. The

dark green box represents the SML program provided by the user of the compiler, the

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_6

235

http://github.com/kentdlee/mlcomp

236 6 Compiling Standard ML

Fig. 6.1 Structure of MLComp

SML programmer who is compiling his or her code. Summarizing, the files written

by the compiler writer include the following.

• The tokens of the language are defined in a file called mlcomp.lex.

• The datatype for the AST is defined in a file called mlast.sml.

• The grammar of the language is defined in a file called mlcomp.grm. This file also

contains a mapping from productions in the grammar to nodes in an AST. The

parser reads tokens and builds an AST of the expression being compiled.

• The code generator is defined in a file called mlcomp.sml.

The next sections introduce ML-lex, ML-yacc, and code generation. The rest of this

chapter explores parts of the compiler that are already completed and other possible

enhancements to the language. Building and using this compiler requires installation

of Standard ML and the ML-yacc and ML-lex tools.

Don’t be intimidated! The suggested enhancements to the language are accom-

panied by test programs that use these enhancements. By attempting to compile one

6 Compiling Standard ML 237

of these tests you will be pointed at the location in the compiler where new code

is required. Adding that code will lead you to another location within the compiler,

and so on. The compiler is designed so that it will tell you where enhancements

are needed when you attempt to compile a test that is not currently supported. By

repeatedly attempting to build the compiler and compile a new test, you will be given

a hands-on tour of the compiler. That, along with the descriptions in this chapter of

how the compiler currently works will teach you about compiler construction for a

non-trivial language! Good luck. With a little work you will learn a lot about compiler

construction and implementing a functional programming language!

6.1 ML-lex

ML-lex is a scanner generator. ML-lex generates a function that can be used to get

tokens from the input. It is based on a similar tool called lex that generates scanners

for C programs. The input to the two tools is similar but not exactly the same. The

input to ML-lex is a file consisting of three sections, where each section is separated

by %%. The format of an ML-lex input file is:

User declarations
%%
ML -lex definitions
%%
Token Rules

The user declarations include any ML code that will assist you in defining the tokens.

Typically, a variable is used to keep track of the line of input being read. There might

also be some functions for converting strings to other values like integers. An error

function that handles bad tokens is a common function for this section to get the

scanner and the parser to work together.

The ML-lex definitions follow the user declarations. Sets of characters are declared

in this section. In addition a functor must be declared. A functor is a module that

takes a structure as a parameter and returns a new structure as a result. A functor is

used by ML-lex and ML-yacc to create the scanner.

The last section of an ML-lex definition is composed of a set of rules that define

the tokens of the language. Each rule has the form:

reg_exp => (return_value);

The reg_exp is a regular expression. The language of regular expressions can be

used to define tokens. Every regular expression can be expressed as a finite state

machine. Finite state machines can be used to recognize tokens. The set of reg_exp

is eventually translated into a finite state machine that can be used to recognize tokens

in the language. When a string of characters is recognized as a token, its matching

return value is constructed from the rules and that value is returned by the scanner to

the parser. Figures 6.2, 6.3, and 6.4 contain the three parts of the lexer specification

given to ML-lex for the mlcomp compiler. The file is called mlcomp.lex.

238 6 Compiling Standard ML

Fig. 6.2 mlcomp.lex part one

Fig. 6.3 mlcomp.lex part two

In Fig. 6.2 lines 1–19 make up the first part of the ML-lex specification, the user

declarations. The pos type must be defined and is used to define the position within

the source program where a token is found. In this case, the position is the line on

which it is found. Later a variable called pos is also initialized to 1 for the first line

of the source program.

A structure called Tokens is used to contain information about the tokens returned

by ML-lex. The Tokens.svalue is the actual string representing the characters of each

token. Line 3 just equates a type called svalue to the Tokens.svalue. Line 4 does the

same for the type token. Those two type names are used in line 6 where lexresult is

declared. This lexresult is required to be defined in the user declarations section of

ML-lex.

The error function is used later in the lexer specification. The eof function is used

to return the EOF token and is called automatically by the lexer when it reaches the

6.1 ML-lex 239

Fig. 6.4 mlcomp.lex part three

end of file. The countnewlines function is also used later in the lexer specification

when skipping over whitespace likes spaces, tabs, and newline characters.

The ML-lex declarations begins with declaring a functor in Fig. 6.3. The functor

is required by the parser. A functor is a parameterized type in Standard ML and

this functor is expected by the parser and is parameterized by the Tokens structure.

Declaring the functor in this way is required to get the parser generated by ML-yacc

to talk to the scanner generated by ML-lex.

240 6 Compiling Standard ML

The alpha declaration declares a class of characters called alpha that consists of

letters a to z in lower and upper case. The alphanumeric characters include letters,

digits, underscores, and the period character. The digit declaration defines the class

of digits as being 0 to 9. The ws stands for whitespace. It defines blanks and tabs as

whitespace. The dquote class is for double quote and squote for single quote. The

^ means not so anycharbutquote is exactly as it reads. The period represents any

character whatsoever. The actual period character must be escaped by preceding it

with a backslash.

Finally, the rules define all the tokens in the third part of the lexer definition in

Fig. 6.4. The first rule discards comments in the source file. It says that comments look

like (* any text *). Unfortunately, this is a complex regular to start the rule definitions

with. It is first because the rules will be matched in order of their definition. It begins

by saying look for a left paren followed by an asterisk. Then the next part of the

regular expression is one of two possibilities.

• A character which is not an asterisk or it is a carriage return (i.e. the \r) or a

newline (i.e. the \n).

• A string of characters which is some number of asterisks followed by a either not

an asterisk or a right paren or a carriage return or a newline.

Those two preceeding bullets may repeat zero or more times (the Kleene star that

appears near the end of the regular expression says this). Finally, the whole regular

expression ends by saying that the comment ends with one or more asterisks fol-

lowed by a right paren. The action to take in this case is to call the countnewlines

function to count any newline characters in the comment to update the pos variable

accordingly. Finally, calling lex at the end of the action causes the lexer to get the next

token, effectively ignoring the comment so the parser never sees it. The next regular

expression skips newlines that are not in a comment. The third regular expression

skips blanks and tabs that might appear in the program.

The next several rules define short simple tokens like infix operators. The token

is defined within the Tokens structure and each rule returns a particular token value,

defined in the parser. Every token value carries with it two integers. In this case, the

line number is provided for both values. Tokens that consist of more than one or two

characters should not be defined in this way since the length of each token string

makes the number of states grow exponentially. The remaining rules define tokens

that can’t be explicitly given along with the keywords that are defined like identifiers

in the language.

Line 54 defines positive and negative numbers. The ? indicates 0 or 1 occurrence

of the negation symbol. This is followed by 1 or more digits, followed by a possible

period and other digits. Line 55 defines character constants in Standard ML like

#“a” for instance. Escape characters like the newline character, “n”, are not currently

supported by could be. Line 56 defines string tokens which start with a double quote

followed by zero or more of any character but double quote followed by a double

quote. Lines 57–82 recognize identifiers and keywords. Defining one rule to handle

all these different tokens with an if-else-if expression reduces the final number of

6.1 ML-lex 241

states in the scanner. If each keyword were handled by a separate rule the number

of states in the scanner would explode. Finally, line 83 handles any other character

that might be found in the source file by writing an error message to the screen and

skipping over it.

The scanner generated by ML-lex returns each token described in Fig. 6.4 with

the line number in the source program where it was found. In some cases, the lexeme,

the actual string of characters making up the token, is also returned. The lexeme is

returned for tokens where the token type is not enough information. For instance, Int,

String, Char, and Id tokens all need to carry along the lexeme, the yytext, because

that information is needed by the parser. From a definition like the mlcomp.lex file

shown in Figs. 6.2, 6.3, and 6.4 the ML-lex tool has enough information to generate

a scanner for the tokens of the language.

Practice 6.1 Given the ML-lex specification in Figs. 6.2, 6.3, and 6.4, what

more would have to be added to allow expressions like this to be correctly

tokenized by the scanner? What new tokens would have to be recognized?

How would you modify the specification to accept these tokens?

c a s e x of
1 => "hello"

| 2 => "how"
| 3 => "are"
| 4 => "you"

You can check your answer(s) in Section 6.15.1.

6.2 The Small AST Definition

The parser reads tokens and builds an abstract syntax tree of a source program.

Figure 6.5 contains the abstract syntax definition for the Small language. In SML,

the abstract syntax definition is given by an SML datatype. Each type of node in the

tree is tagged with its type. Some nodes in the tree include the subtrees such as the

infixexp node. The datatype can consist of multiple types which may all be mutually

recursive. For the multiple types to be mutually recursive, the keyword and is used

to separate the datatype definitions.

The Small subset of Standard ML is primarily composed of expressions. The exp

datatype describes trees representing expressions in the language. An expression is

either an integer, character, boolean value, identifier, list constant, tuple constant,

function application, infix expression, a sequence of expressions, a let declaration, a

raised exception, an exception handler, an if then expression, a while do expression,

or a function definition.

A function definition and an exception handler contain a list of matches. A match

is composed of a pattern and an expression as in 4 =>“you” for instance. The allowed

242 6 Compiling Standard ML

Fig. 6.5 mlast.sml

6.2 The Small AST Definition 243

patterns are described by the pat datatype and include integers, characters, strings,

boolean values, identifiers, the underscore pattern (called wildcardpat in the AST

definition), tuples, lists, and a special as pattern which lets the programmer specify

an identifer as a pattern as in z as (x,y). This would match a pattern where x and y

match the elements of a tuple and z matches the entire tuple.

A let expression binds identifiers to values and the dec datatype defines binding

declarations. In Standard ML it is possible to bind the identifiers in a pattern to an

expression. The bindvalrec represents a recursive binding which is needed in the case

of recursive function definitions. The funmatch is used in a function which is defined

with a series of pattern matching cases. The funmatches comes into play when a

series of mutually recursive function definitions are being defined, somewhat like

the mutually recursive AST datatype definition given in Fig. 6.5.

Practice 6.2 How would you modify the abstract syntax so expressions like

this could be represented?

c a s e x of
1 => "hello"

| 2 => "how"
| 3 => "are"
| 4 => "you"

You can check your answer(s) in Section 6.15.2.

6.3 Using ML-yacc

ML-yacc is a parser generator. The name stands for Yet Another Compiler Compiler

(i.e. yacc). Yacc is a tool that generates parsers for compilers written in C or C++.

ML-yacc is the SML version of this tool. ML-yacc is a little different than yacc

but provides mostly the same functionality. ML-yacc’s input format is similar to

ML-lex’s input format. An ML-yacc specification consists of three parts.

User declarations
%%
ML -yacc definitions
%%
Rules

The user declarations include providing the AST definition and any functions, vari-

ables, or exceptions that might be useful while parsing the input. Figures 6.6, 6.7,

6.8, and 6.9 contains the parser specification for the Small language.

The user declarations of the parser are on lines 1–42 of Fig. 6.6. This part of the

parser contains useful utility functions much like the user declaration section of ML-

lex. The abstract syntax definition is opened in the parser. This is similar to the using

244 6 Compiling Standard ML

Fig. 6.6 mlcomp.grm part one

namespace std in C++. Lines 2–8 define a function that can return a unique integer

which is needed in some code in the parser. Line 10–33 define a function and two

exceptions that are used in defining curried functions. This is covered in detail later

in the chapter. Lines 34–42 convert a list of (name, pattern, expression) tuples to a

tuple of (name,list) where the list is a list of (pattern,expression) pairs. It also checks

that all names in the original tuples were for the same function.

The ML-yacc definitions start on line 43 if Fig. 6.7. They include a name to prefix

functions in the scanner with, in this case mlcomp. The verbose helps in debugging.

The eop, or end of parse, says that EOF is the last token returned. This helps in

terminating the parser. The pos type is redeclared in Fig. 6.7 for use with the scanner.

The nodefault tells the parser not to insert tokens it thinks might have been left

out. This helps in finding syntax errors earlier than they would be otherwise. If this

were omitted the parser would insert a token when it is reasonably sure the program

6.3 Using ML-yacc 245

Fig. 6.7 mlcomp.grm part two

Fig. 6.8 mlcomp.grm part three

246 6 Compiling Standard ML

Fig. 6.9 mlcomp.grm part four

being parsed is missing a token. The pure declarations says that the parser has no

side-effects. It simply builds a tree and returns it. This means that ML-yacc can undo

certain parsing operations if it needs to without fear of a side-effect not being undone.

Most importantly the terminals and nonterminals of the language are declared in

the ML-yacc declarations. Those tokens that carry along their lexeme are declared as

a token of something. For instance, Int of string where the string is a string containing

the token’s number. The nonterminals include all the nonterm defined identifiers and

represent the syntactic categories of the grammar.

6.3 Using ML-yacc 247

There are just a few more declarations in the ML-yacc definitions section. The

grammar rules, given in the next section, have some ambiguity in them. Specifically,

some of the operators have ambiguous precedence. The associativity and precedence

rules are defined on lines 65–69 with those operators with lowest precedence coming

first and higher precedence operators later. So SetEqual has the lowest precedence

and is right associative. The Plus, Minus, Append, Equals, and NotEqual operator

tokens have the next lowest precedence and are all left associative. These precedence

rules simplify the writing of the grammar while disambiguating it.

Lines 70–150 of Figs. 6.8 and 6.9 make up the Rules section and define the gram-

mar for Small. Each production of the grammar is given on the left of the AST it

returns when matched. Consider a Small program like this:

4 * x + 5

When matching the rule on line 77 of the grammar specification the 4*x will match

the expression on the left side of the Plus token. The AST that results from parsing

4*x is named Exp1 by ML-yacc. Remember, the parser is a bottom-up parser so the

4*x has already been parsed. The 5 on the right side of the Plus has also been parsed

when this rule is matched. The 5 is referred to as Exp2 by ML-yacc. The rule on line

74 says when this rule is matched to return an AST of infixexp(“+”,Exp1,Exp2).

The full AST for this expression, and the value returned for this example, would be

infixexp(“+”, infixexp(“*”, int(“4”), id(“x”)), int(“5”))

To the right of each production is a value that is returned when that production is

matched during parsing. In most cases, this is a straight-forward construction of an

AST. In a few cases a list is returned instead as in the MatchExp nonterminal or

the PatternSeq nonterminal. In a couple of cases, the uncurryIt or makeMatchList

functions are called which in turn generate an AST node to be returned. In the end,

the parser returns a description of the source program as an abstract syntax tree.

Practice 6.3 What modifications would be required in the mlcomp.grm spec-

ification to parse expressions like this?

c a s e x of
1 => "hello"

| 2 => "how"
| 3 => "are"
| 4 => "you"

You can check your answer(s) in Section 6.15.3.

248 6 Compiling Standard ML

Fig. 6.10 SML addition

Fig. 6.11 JCoCo addition

Fig. 6.12 Addition AST

6.4 Compiling and Running the Compiler

Code generation is essential to any compiler. The code generator translates the

abstract syntax tree into a language that may either be executed directly or inter-

preted by some low-level interpreter like the JCoCo Virtual Machine. For this text,

the mlcomp compiler generates JCoCo assembly language. The code generator for

mlcomp is in the file named mlcomp.sml. The entire file is too big to include here.

The remainder of this chapter will examine code generation in parts. First, consider

code generation for the addition of two integers.

Adding 5 and 4 in the Small language is written as shown in Fig. 6.10. Adding 5

and 4 in JCoCo can be written as shown in the code of Fig. 6.11. The compiler for the

Small language is given a source file as shown in Fig. 6.10 and parses it to produce

an abstract syntax tree as shown in Fig. 6.12. The abstract syntax tree is passed to

the code generator. It is the job of the code generator, given the abstract sytnax tree

shown in Fig. 6.12, to generate code similar to that of Fig. 6.11.

6.4 Compiling and Running the Compiler 249

Fig. 6.13 Addition code generation

The codegen function of mlcomp.sml is responsible for generating code. To gen-

erate code for the AST shown in Fig. 6.12 the two patterns shown in Fig. 6.13 are

needed. When the infixexp code generation is called, it recursively calls code gen-

eration on the two subtrees. The subtrees in this example are the two int nodes in

the AST, resulting in calling the code generator on int(i). When code is generated

for int(“5”), line 2 looks up the index of the “5” in the constants which is a list of

the function’s constants much like it appears on line 2 of Fig. 6.11. Line 4 of the

code generator then writes the LOAD_CONST instruction to the file. The recursive

call of codegen on line 8 of Fig. 6.13 similarly calls the int codegen to generate the

other LOAD_CONST instruction. Finally, line 10 of the code in Fig. 6.13 generates

the BINARY_ADD instruction.

Every JCoCo program must contain code like lines 1–3 of Fig. 6.11. Likewise,

lines 7–10 are needed to finish up the main function of every JCoCo program. Lines

1–3 are often referred to as the prolog of a compiled program and lines 7–10 are

commonly referred to as the epilog of the program. The prolog and epilog code is

generated by the code that calls the code generator.

The compiler starts when the run function is called in the code of Fig. 6.15. The run

function is written with two arguments so it can be exported. Exporting a function in

Standard ML causes the SML interpreter to export it and all dependent functions into

an executable program that can be started from the command-line. The run function

is like the main function in C or C++ program. The arguments to run include the

list of command-line arguments to the program. The first item in that list is the first

command-line argument. In this case that is the filename of the source program. The

argument a to the run function is the name of the SML interpreter used to run the

program.

The run function then calls the compile function passing it the filename. Line 2

calls the parser to parse it which returns the AST. Two output files are opened and

the termFile is written by the writeTerm function. This is covered in more detail in

Chap. 8.

Lines 7–16 create various bindings of identifiers to locations or functions within

the JCoCo virtual machine. Lines 17–23 check for any unbound identifiers in the

http://dx.doi.org/10.1007/978-3-319-70790-7_8

250 6 Compiling Standard ML

Fig. 6.14 The mlcomp script

program which are not allowed. Lines 24–35 are responsible for writing the prolog

and generating any code for functions that are defined within the program. The

codegen function is called on line 36. The epilog is written by lines 37–41.

The run function is invoked via the bash script mlcomp in Fig. 6.14. The script is

invoked as mlcomp test0.sml for instance. The test0.sml command-line argument is

$1 in the code. Line 4 checkes to see if a non-empty filename was provided. If not, then

lines 5–6 prompt for and get a filename from the user. Line 13 invokes the exported

run function by loading the compiled image file mlcompimage. The compiler writes

a file called a.casm which was opened for output on line 3 of Fig. 6.15 on page 201.

Then the JCoCo virtual machine is invoked on the target program on line 15 of the

script in Fig. 6.14. The mlcomp script both compiles and runs the intended SML

program.

The Bash script of Fig. 6.16, found in Makefile.gen, runs Standard ML’s compiler

manager. It does this by starting sml and then executing the function CM.make on

the file sources.cm. The exportFn function creates the binary image executable that

is started on line 13 of Fig. 6.14. The target image is created by Standard ML’s

compiler manager. This is a tool provided with Standard ML much like the make

utility for Unix except better because Standard ML’s compiler manager figures out

all dependencies by itself, without the need for a Makefile.

The sources.cm file is needed to indicate which files to include in the project. Lines

2–3 include the ML-yacc tool (which in turn include ML-lex), the basis library, and

some utility code to help with debugging. The last four lines are the compiler source

6.4 Compiling and Running the Compiler 251

Fig. 6.15 MLComp run function

Fig. 6.16 Makefile.gen

252 6 Compiling Standard ML

Fig. 6.17 sources.cm

code for the mlcomp compiler. From this simple specification, the Standard ML

Compiler Manager will run ML-lex and ML-yacc if needed and recompile only the

parts of the project that have changed, just as make does for Unix. To make compiling

the compiler even easier a Makefile is part of the project which simply invokes the

Makefile.gen script.

make
mlcomp test0.sml

To compile and run the mlcomp compiler simply type in the mlcomp directory to

compile the compiler and run the first test, test0.sml. If all succeeds there will be no

errors printed and the program will print nothing to the screen, although other output

will be printed like the AST and the compiled and assembled source program.

The remainder of this chapter will cover parts of the code generator that are already

implemented and worth taking a look at. It will also cover parts of the compiler that

are not yet implemented and suggest how they can be implemented. After working

through this chapter you will have a working compiler for the Small language.

6.5 Function Calls

Running test0.sml is not very satisfying because no output is printed. Calling a

function like println will print the output to the screen. The Small language includes

a number of functions that can be called for input and output operations. Small differs

some from Standard ML in this regard and println is one of those differences. Adding

a println to test0.sml results in println 5 + 4, the contents of a file called test1.sml

in the mlcomp distribution file found on Github. Parsing the program results in the

AST

apply(id(" println"),infixexp ("+",int("5"), int ("4")))

Code generation for this program yields the program in Fig. 6.18. The code con-

tains two additional instructions, the LOAD_GLOBAL and the CALL_FUNCTION

6.5 Function Calls 253

Fig. 6.18 test1.sml JCoCo code

instructions. The code generator is called for two additional AST nodes as well,

the id node and the apply node. Each of these two calls to codegen are provided in

Fig. 6.19. The elipses (i.e. …) indicate abbreviated code. The mlcomp.sml file can

be consulted for the full details.

When codegen is called a list of globals and globalBindings are provided to

each call to codegen. The globals list can be seen in Fig. 6.18 on lines 3 and 4.

The env in Fig. 6.19 is a list of bindings including a binding of the Small println

function to a built-in function in JCoCo called print which does the same thing in the

target language. The env list contains the tuple (“println”, “print”). Initially env and

globalBindings are the same list (see line initial call to codegen in the mlcomp.sml

file).

When codegen is called for the apply in the AST, it immediately calls codegen

on the id(“println”).. This results in calling the load function which searches all the

different bindings to find the binding for println. It finds this in the env list, finds

the corresponding print JCoCo function, and looks up print in the list of globals

generating the LOAD_GLOBAL 0 since it finds print in the first position in the globals

list. The load function was written because the type of load necessary depends on

where the identifier is found.

The call to codegen for apply first calls codegen to load the print function onto the

stack. Then addition code is generated by the call to codegen on line 5 of Fig. 6.19.

Finally, the apply codegen call generates the CALL_FUNCTION instruction. There

is only one argument passed to any function in the Small language so the 1 is hard-

coded.

254 6 Compiling Standard ML

Fig. 6.19 Code generation for function calls

Fig. 6.20 test2.sml

Calling a function is relatively easy as shown in this example. Maintaining and

understanding all the bindings is the trickier part, but further examples will serve to

make this clearer as well. The next example takes a look at user-defined bindings.

6.6 Let Expressions

Let expressions provide a means for a value or function to be bound to a value.

Consider the code in Fig. 6.20 that binds x to 5. This SML program is compiled into

the JCoCo program of Fig. 6.21. From the source program, this AST is built.

letdec(bindval(idpat("x"),int("5")),
[apply(id("println"),id("x"))])

The AST has the new binding first, followed by the sequence of expressions between

the in and end keywords. In this case there is one expression in the body of the let

expression. Examining the code in Fig. 6.21 there are two new instructions on lines

7 and 8. These two lines take care of storing the 5 in a local variable called x@0. The

0 refers to the scope level of the variable is added to the variable name to be sure

that variable names in JCoCo are unique. Line 10 has the LOAD_FAST instruction,

another new instruction in the program. The LOAD_FAST loads from the list of

locals. We have seen the call to the load function in Fig. 6.19 that loads this value

from the locals.

The Small program contains the binding of x to 5. When compiling this code,

the x is bound to a location in the locals called x@0 which contains the 5. The

let expression must create this binding to make the x visible in the body of the let

6.6 Let Expressions 255

Fig. 6.21 test2.sml JCoCo code

Fig. 6.22 Let expression code generation

expression. It does this in the code in Fig. 6.22 by calling the function decgen which

generates the code for storing the value in the local location and also creates a new

binding (“x”,”x@0”). This new binding is added to the env environment bindings.

When the load function is called in the body of the let expression, the x@0 will be

found in the list of locals.

Building the list of locals for the main function is handled by lines 12 in Fig. 6.15.

The locals is computed in part from the bindings computed by the localBindings

function. The localBindings function traverses the body of a function looking at all

identifiers found in the code. If an identifier is free in the body of a function, it is

added to the freeVars returned by the localBindings function. If the identifier is bound

to a value or inner function, the bindings is returned in the newbindings. If the code

passed to the localBindings function contains nested functions, then the freeVars of

those nested functions must be cellVars in the current function because a closure

will be necessary when the inner function is called. The localBindings function finds

those identifiers that must be bound to cellVars and returns them as well.

256 6 Compiling Standard ML

Fig. 6.23 test10.sml

Fig. 6.24 The folded let

Fig. 6.25 Unsweetened

For the code in Fig. 6.20, the newbindings of Fig. 6.22 consist of [(“x”,”x@0”)]

and these bindings are added to the environment env when the code for the body

of the let declaration is generated. The list of the locals already is set to [“x@0”]

so when the load function is called to load the value of x, the combination of the

environment env and the locals results in the correct index being found to generate

the STORE_FAST and LOAD_FAST instructions.

With Standard ML it is possible to define more than one value in a let expression.

Consider the program in Fig. 6.23. This program has two bindings created in one

let expression. However, the program is not the program compiled by the mlcomp

compiler. The parser transforms this program into a program like the one given in

Fig. 6.25. The ability to write a program like Fig. 6.23 is called syntactic sugar. It is

certainly nicer to write programs like that in Fig. 6.23 rather than being limited to

one binding per let expression all the time. However, the Small abstract syntax does

not include support for multiple bindings. That’s what is meant by syntactic sugar.

When a programming language feature like let expressions of multiple bindings

is implemented in terms of some other simpler but less desirable form it is called

6.6 Let Expressions 257

syntactic sugar. The mlcomp compiler handles multiple bindings by using a foldr

call to fold those multiple bindings into multiple nested let expressions. Figure 6.24

contains the code in the parser that forms this folded let.

6.7 Unary Negation

It turns out that unary negation is not implemented correctly in the mlcomp compiler.

Presently, it is possible to print a negative 5. However, the program in Fig. 6.26 should

compile and run, but instead the scanner deletes the ~ as a bad token and a 5 is printed

to the screen instead. This is not the behavior of Standard ML. The tilde serves as a

unary negation operator in Standard ML. To fix this, several changes are necessary.

Starting with the scanner, the tilde must be recognized as its own token. To do this,

the tilde is removed from the Int token and added as its own token in the mlcomp.lex

file.

{tilde} => (Tokens.Negate(!pos ,!pos));
{digit}+ => (Tokens.Int(yytext ,!pos ,!pos));

Adding the token in the parser specification is next. So the tokens are now defined

as follows in mlcomp.grm

%term EOF
| Negate
| ...

Then we define the precedence of the Negate token in mlcomp.grm. Unary negation

has very high precedence and is right-associative.

%right ListCons Negate

The last bit in the mlcomp.grm is to write a production that uses the Negate token.

To negate an expression we just write an expression as possibly being negated as in

this bit of code.

| Negate Exp (negate(Exp))

Writing this production requires a new node definition for the AST in mlast.sml.

A negate node in an AST is another kind of expression. Unary negation can be

represented by defining another expression for negate as follows.

Fig. 6.26 test3.sml

258 6 Compiling Standard ML

| negate of exp

Finally, to finish the correct implementation of unary negation, the code generator

module must be modified. The mlcomp.sml file must be edited in a few spots to

add support for unary negation. The infixexp expression is an AST node like the

negate node. Searching for infixexp in the mlcomp.sml file helps determine where

the changes must be made in mlcomp.sml. The first change is in the nameOf function.

| nameOf(infixexp(operator ,e1 ,e2)) = operator
| nameOf(negate(e)) = "~"

The next match is found inside the constants function where this code must be added.

| con(infixexp(operator ,t1 ,t2)) = (con t1) @ (con t2)
| con(negate(e)) = "0" :: (con e)

This code adds a zero to the list of constants. This is because to implement unary

negation the generated code will subtract the value from zero. The bindingsOf func-

tion is the next location where infixexp appears in the mlcomp.sml file. The code to

write here looks like this.

| bindingsOf(infixexp(operator ,exp1 ,exp2),bindings ,scope) =

(bindingsOf(exp1 ,bindings ,scope); bindingsOf(exp2 ,bindings ,scope))

| bindingsOf(negate(exp),bindings ,scope) = bindingsOf(exp ,bindings ,scope)

The bindingsOf function is looking for any new bindings introduced by the new

unary negation expression. There are no new bindings created by Unary negation so

it just calls the bindingsOf function on its sub-expression. The codegen function is

the next place where infixexp is found and the following code is added to generate

code for unary negation.

| codegen(negate(t),outFile ,indent ,consts ,...) =
l e t v a l _ = codegen(int("0"),outFile ,indent ,consts ,...)

v a l _ = codegen(t,outFile ,indent ,consts ,...)
i n

TextIO.output(outFile ,indent^"BINARY_SUBTRACT\n")
e n d

In the codegen function a “fake” int(“0”) node is created to get a zero loaded onto

the stack. Then the value for the sub-expression is loaded onto the stack and the

BINARY_SUBTRACT instruction causes the unary negation to be computed. Both

the nestedfuns and the makeFunctions function need a line for unary negation added

as well. In both cases the code is identical and looks like this:

| functions(infixexp(operator ,exp1 ,exp2)) = (functions exp1;functions exp2)

| functions(negate(exp)) = functions exp

The nestedfuns code is looking for any nested functions within the expression. Unary

negation is not a nested function so the code just calls the check by calling the

functions function on the sub-expression. The makeFunctions function generates

some code for any nested functions to have JCoCo create the closure or function

objects for any nested functions. Finally, the writeTerm function must be modified.

While not needed by the compiler, the writeTerm function is useful when reading

Chap. 8. Here is the code for writing a unary negation term.

http://dx.doi.org/10.1007/978-3-319-70790-7_8

6.7 Unary Negation 259

Fig. 6.27 test3.sml JCoCo code

| writeExp(indent ,negate(exp)) =
(print("negate(");
writeExp(indent ,exp);
print(")"))

The final result of these changes is code as it appears in Fig. 6.27. The value of ~x

is computed by subtracting from 0. The new code consists of lines 8 and 10 in the

JCoCo code in Fig. 6.27.

6.8 If-Then-Else Expressions

Comparing two values in SML is as simple as writing x < y. In JCoCo it involves

pushing two values on the operand stack and calling the COMPARE_OP instruction.

When comparing values in an if-then-else expression the result of the comparison

will be used to jump to one label or another. Consider the Small program in Fig. 6.28.

Again, this code differs a bit from Standard ML. The input function is unique to Small

as are the print and println functions. The input function returns a string of input

from the user. The print function prints without a newline character. The println

prints with a newline at the end of the line.

Compiling the code in Fig. 6.28 should result in the JCoCo code in Fig. 6.29.

However, code generation for if-then-else expressions is not currently implemented.

The abstract syntax tree for the program in Fig. 6.28 includes a node for the if-then-

else expression like this.

260 6 Compiling Standard ML

ifthen(infixexp (">",id("x"),id("y")),id("x"),id("y"))

The AST definition for this program is already in the mlast.sml file and the scanner

and parser are already able to parse if-then-else expressions. Generating code for

this AST involves some of the same changes that were needed to add unary negation

to the code generator. Those steps can be followed to add all the necessary code to

handle if-then-else expressions in the code generator. By attempting to compile the

code in Fig. 6.28 you will discover places in the compiler where code is missing. The

compiler is written to report where code is missing. Attempt to compile test4.sml,

see where the problem is, fix it, and repeat as many times as is necessary.

Implementing the codegen code is the hardest part of adding support for if-then-

else expressions, but it’s not too hard. The AST expression above has three sub-

expressions: the greater than comparison, the id(“x”), and the id(“y”). Code gener-

ation is already done for identifiers so the id nodes for x and y are already handled.

Generating code for the if-then-else expression involves generating the code for the

comparison and then jumping to one place or another depending on the result of the

comparison.

The if-then-else generated code begins on line 26 of Fig. 6.29 with the comparison

code. Calling codegen on the infix expression generates the code on lines 26–28. Line

29 begins some of the code for the if-then-else expression. Line 29 begins by jumping

to L0 if the condition is false. The label L0 labels the else clause of the expression.

Line 30 is the code generated for the id(“x”) which is the then expression. Line 31

is generated by the if-then-else again to jump past the code in the else expression.

Line 34 is the last bit of code generated by the if-then-else expression.

There are two labels needed by the code generator. The nextLabel function in

mlcomp.sml is designed just for that purpose. Calling it will return a unique label

that can be used in the code. Code generation for if-then-else expressions calls this

function twice. In summary, there are several actions that must occur to generate

code for if-then-else expressions.

Fig. 6.28 test4.sml

6.8 If-Then-Else Expressions 261

Fig. 6.29 test4.sml JCoCo code

262 6 Compiling Standard ML

• Two labels need to be created.

• The comparison code is generated.

• The POP_JUMP_IF_FALSE instruction is written along with the else clause label.

• The then clause code is generated.

• A jump to jump past the else clause code is written.

• The else clause label is written.

• The else clause code is generated.

• The final label is written to the file.

Successfully completing this code will get if-then-else expressions compiling cor-

rectly and test4.sml will run printing the maximum of two numbers entered at the

keyboard.

6.9 Short-Circuit Logic

Short-circuit logic is a common feature of programming languages. If you have two

boolean expressions, E1 and E2, and you want to know if both are true or false

there are situations where it is not necessary to test both the conditions. For instance,

when testing E1 and E2 if E1 is false, there is no reason to evaluate E2. Likewise, if

evaluating E1 or E2 if E1 is true there is no reason to evaluate E2. This logic is called

short-circuit logic and is commonly used by and and or operators in programming

languages. C++ and Java use this logic in their && and || operators. In Standard ML

the operators are called andalso and orelse to indicate their short-circuit nature.

Neither the andalso or orelse operators are implemented in the mlcomp compiler.

Support can be added pretty easily by following many of the steps in adding unary

negation to the language. These steps include:

• Add two tokens for andalso and orelse to the scanner. Both are keywords and

should be added to the keywords section of the scanner specification in mlcomp.lex.

• Add the tokens to the grammar specification in mlcomp.grm and define their

precedence. Both operators have the same precedence which is at the same level

as addition. They are also both left-associative.

• Add two productions to the grammar so the expressions can be parsed. The pro-

ductions should return AST nodes as described next.

• Implement the code generation for these operators.

A correctly generated AST for this code will both include infixexp nodes like this.

infixexp("orelse",id("x"),
infixexp("div",id("y"),int("0")))

infixexp("andalso",id("y"),
infixexp("*",id("x"),int("5")))

The code for line 4 of Fig. 6.30 starts on line 14 of Fig. 6.31. The print function

is loaded first. This is already implemented of course. Line 15 begins the code

6.9 Short-Circuit Logic 263

Fig. 6.30 test5.sml

generation for the orelse operator. For the expression E1 orelse E2 the code for E1 is

generated first, followed by DUP_TOP, POP_JUMP_IF_TRUE, and the POP_TOP

instructions. The idea is if the first value is true, leave it on the stack and skip

evaluating E2. However, if the value of E1 is false, pop its value, and leave the value

of E2 on the stack after executing the code for E1 orelse E2.

A label is needed as the target for the jump instruction. The nextLabel function

returns a unique label as was described in Sect. 6.8 on compiling if-then-else expres-

sions.

The code for andalso appearing on lines 26–33 of Fig. 6.31 is analogous to the

orelse code jumping if the first value is false and evaluating E2 if E1 is true.

The program in Fig. 6.30 is of some interest because it is not a valid Small program,

yet the mlcomp compiler will generate code and it is possible to run the program

on the JCoCo virtual machine. Since the short-circuit logic prevents the badly typed

expressions from being evaluated, the error is never encountered. Chapter 8 will

explore how the program in Fig. 6.30 fails to pass typechecking by looking at how

the Standard ML type inference algorithm is implemented.

The difference between Python and Standard ML is that Python will allow a

program like this to run as long as no run-time error occurs and Standard ML will

complain that it doesn’t pass type checking and will abort. Is the type inference of

Standard ML better than the dynamic type checking of Python? Type inference

catches many errors in logic. Debugging most Standard ML programs is trivial

compared to debugging Python programs. However, passing the type checker is

often more difficult and often requires tedious type conversion code. Standard ML is

a bit better in that regard given its polymorphic type inference algorithm. In general,

research like the Fox project at Carnegie Mellon has shown that large software

systems benefit enormously from strong type checking by reducing the time it takes

to test code.

The tradeoff is in convenience vs safety while writing code and the amount of time

spent testing and debugging after the code is written. Standard ML is somewhat less

convenient for writing, but debugging costs are negligible. Python is more convenient

to write but in a large software system you might pay for it later. Other factors in

language selection include appropriateness for the task at hand, whether similar

code has already been written in a particular language, the existence of libraries

http://dx.doi.org/10.1007/978-3-319-70790-7_8

264 6 Compiling Standard ML

Fig. 6.31 test5.sml JCoCo code

6.9 Short-Circuit Logic 265

providing APIs, and the availability of tools like compilers, interpreters, and IDEs

(i.e. Integrated Development Environments). All these factors must be weighed to

decide what language is most appropriate for a project.

6.10 Defining Functions

Function definitions in Standard ML may appear literally anywhere within the pro-

gram. Functions are first class values and may appear anywhere a declaration may

appear. In addition, anonymous functions may appear anywhere an expression may

appear in an SML program. Not so in JCoCo. In the JCoCo virtual machine function

definitions may be provided at the top level, outside any other functions, or may be

nested inside another function but must be written immediately after the Function

statement of their outer function. In addition, in JCoCo all functions must be named.

There are no anonymous functions.

The nestedfuns function traverses an AST for an SML expression looking for

any function definitions. If it finds one it generates the code for the nested function

immediately. Consider the compile function of the mlcomp.sml module.

TextIO.output(outFile ," Function: main /0\n");
nestedfuns(ast ,outFile ," ",globals ,[], globalBindings ,0);

This code prints the Function statement for the main function. Then it immediately

called the nestedfuns function to look for any nested functions and generate their

code before continuing with the code generation for the main function. Again, this is

the order required by the JCoCo virtual machine. When a nested function definition

is found in the AST, the nestedfun function is called to generate the code for it. There

is too much code to include here, but the nestedfun function gathers information

about the constants, locals, cell variables, and bindings of the inner function before

calling codegen to generate the body of it. Of course, it also looks for any nested

functions inside it before continuing.

When an anonymous function is found it must be assigned a name since that is

required by the JCoCo virtual machine. Naming anonymous functions occurs in the

parser in the production for anonymous functions.

Fn MatchExp (func(nextIdNum(),MatchExp))

Fig. 6.32 test6.sml

266 6 Compiling Standard ML

Fig. 6.33 test6.sml JCoCo code

6.10 Defining Functions 267

In this code the nextIdNum function returns a unique integer. In the code generator

this unique integer is used to form a name for the anonymous function of anon@i

where i is the unique integer assigned by the parser.

Function definitions are always defined for functions of exactly one argument.

Pattern matching may be used in matching the argument as it is in Standard ML.

The parameter of the function is matched to each pattern in the function definition.

Consider the code in Fig. 6.32. There are two patterns in the function definition,

a number pattern, and an identifier pattern, which always matches. The patMatch

function in mlcomp.sml takes care of generating code to match the argument to the

pattern.

For the number pattern, the code on lines 12–14 of Fig. 6.33 checks to see if the

number matches. If not, the code jumps to the end of its case. There is no code to

check the identifier pattern matching because it always matches.

Take note of the code on lines 28–32 of Fig. 6.33. Each time the patmatch code is

called it is passed the label of the next pattern to jump to if the current pattern does

not match. In this case, the last pattern always matches, but if it hadn’t the code might

have jumped to L1. In that case, since all the patterns are exhausted at that point, an

exception would be raised by the code. In this particular function, lines 28–32 are

an example of dead code. The code will never be reached and could be removed.

The patmatch function matches patterns for nil, numbers, true or false, strings,

identifiers, the : : cons operator (i.e. a non-empty list pattern), and tuples. The tuple

pattern in turn matches each element of the tuple pattern to the elements of the tuple

argument by calling patmatch.

6.10.1 Curried Functions

It was said earlier that all functions are functions of one argument in Small (and in

Standard ML as well) and it’s true. Curried functions are another example of syntactic

sugar. A curried function appears to be a function of more than one argument where

the arguments can be provided one at a time. The truth is that a curried function is

transformed into a series of anonymous functions, each of one argument. Consider

the program in Fig. 6.34. The append function is written in curried form. appendOne

is a function of one argument. When the program is run they both do exactly the same

thing appending two lists together. Calling append and appendOne look identical.

That’s because the two functions are identical. Function application is left associative

so each function is applied to its first, and only, argument which returns a function

that is applied to its second argument.

The mlcomp parser reduces curried functions like append to a function of one

argument with one anonymous function for each of the curried arguments. This is

done via a rather complex function that gathers each of the different pattern matches

of a curried function and rewrites the code so that each pattern match is a pattern

match of exactly one argument returning a function that takes the next argument.

This function is called uncurryIt and is given in Fig. 6.35 on page 213.

268 6 Compiling Standard ML

Fig. 6.34 test7sml

Fig. 6.35 The uncurryIt function

6.10.2 Mutually Recursive Functions

Functions in Small and SML are often recursive. Sometimes, functions may be

mutually recursive as is the case in Fig. 6.36. The function f calls g and vice versa.

In C++, to write two functions like this, a forward declaration is required using the

function prototype for at least g. In Standard ML, the use of the and keyword between

the two function definitions indicates that they are mutually recursive functions. The

AST for this program is specified like this:

6.10 Defining Functions 269

Fig. 6.36 test11.sml

Fig. 6.37 Mutually recursive function declarations

letdec(funmatches ([funmatch ("f",f’s body),funmatch ("g",g’s body)]))

When a funmatches AST node is encountered, the bindings of all the functions in

the funmatches list are passed to the code generation of each function. This is seen

in the nestedfuns function when matching a declaration for a funmatch as shown in

Fig. 6.37.

In this code the list of all function names is gathered in nameList and then passed

to each recursive call of nestedfun after taking out the name of the function on which

nestedfun is being called. Mutually recursive functions are more common than you

might think. Look for uses of and in the mlcomp.sml file to see when it is needed in

the implementation of the compiler.

6.11 Reference Variables

Adding variables to the Small language turns out to be almost trivial. Examining

Fig. 6.38 the new code involves the ref keyword, the exclamation point used as

the dereference operator, and the := operator (pronounced set equal). The scanner

270 6 Compiling Standard ML

includes support for the dereference and the set equal operators. The ref will be

recognized as an identifier, which turns out to be just fine.

The grammar specification in mlcomp.grm already has support for both the deref-

erence and set equal operators. The productions for the two are of some interest.

In Fig. 6.39 the set equal production demands that an identifier be on the left hand

side. A variable cannot be an expression. If the reference variable is to point to a

new value, the left hand side must name the reference variable. Yet, the AST is an

infixexp by creating an expression node from the identifier using id(Id). The deref-

erence production is even more interesting creating a fake function application node

with a ! identifier. No production is needed for the ref keyword addition because

the grammar already parses this as function application of the ref function to the

value 0.

Code generation for variables is handled by a series of special cases. The decBind-

ingsOf function must be modified because binding for a variable is different than

the binding for a regular identifier. The code in Fig. 6.40 must be placed before the

pattern for regular identifiers.

The code in Fig. 6.40 binds the variable name to a unique identifier in the JCoCo

program and it adds the variable name to the list of identifiers that will be associated

with cell variables. A cell variable is a reference and variables are references in

Standard ML.

The dereference operator must be handled as a special case in the bindingsOf

function. Normally an identifier is looked up to see if it is bound or free in a function.

The parser generated AST for the dereference operator makes it look like an identifier

in Fig. 6.39. To handle this, the following code is a special case and must appear before

the normal look up of identifiers in the bindingsOf function.

Fig. 6.38 test8.sml

Fig. 6.39 Set equal and deref operators

6.11 Reference Variables 271

Fig. 6.40 Reference variable bindings

Fig. 6.41 Variable code generation

| bindingsOf(id("!"),bindings ,scope) = ()

Finally, code generation must be done for the ref declaration, the dereference oper-

ator, and the set equal operator. The ref code generation is another special case and

must be done before normal function application. What is interesting is that all the

work of code generation was actually done by the decBindingsOf function when

the variable was added to the cell variables list. In lines 1–2 of Fig. 6.41, the code

for a ref expression is identical to the code for a non-reference expression because

the store function will find the variable in the cell variables and then generate the

appropriate store instruction.

Lines 3–4 generate the code for dereferencing a variable. Indirectly, this calls

load which will automatically generate the appropriate load instruction because the

decBindingsOf function placed the variable in the list of cell variables. Finally,

the code for the set equal operator is pretty straightforward. The LOAD_CONST

instruction is needed because every expression in Standard ML has a result and at

the end of the assignment statement the result is popped from the stack. The result of

assignment is unit which translates to the None value in the JCoCo virtual machine.

When a binding to an identifier is used in an inner function, the identifier must be

bound to a cell variable so a closure can be constructed when the inner function is

272 6 Compiling Standard ML

Fig. 6.42 test9.sml

called. Reference variables are also bound to cell variables so they can be updated.

Having two different sorts of bindings both map to the same implementation leads

to some interesting possibilities in the code. Consider the program in Fig. 6.42. This

program is not a legal Small program. The binding of x to 0 is a constant binding. It

should not be possible to update the contents of the variable. However, the assignment

statement on line 2 works because x is used in the inner function f and therefore is

assigned to a cell variable.

The code in Fig. 6.42 is an example of when type checking is needed to prevent

an illegal program from executing. The program is incorrect. The programmer made

a mistake and would like to know about this mistake. Yet JCoCo doesn’t care and

neither does the mlcomp compiler. A typechecker should flag this as an error and

terminate the code generator before any program is generated. This example, and

the need for type checking, will be studied in more detail in Chap. 8.

6.12 Chapter Summary

The goal of the chapter was to provide an introduction to language features by

studying the implementation of the Small language. Those wishing to learn more

about compiler construction may want to consult a full text on the subject. For

instance Aho, Sethi, and Ullman’s dragon book [2]. There are many other good texts

on compiler writing as well.

The case study in this chapter illustrated several features of programming lan-

guages. The implementation of functions in block structured languages is perhaps

the most difficult of the concepts presented. Important concepts and skills presented

in this chapter include the scope of bindings and how bindings are created, mutually

recursive functions, reference variables, code generation for several language fea-

tures, how to extend a language, how to use ML-lex and ML-yacc, syntactic sugar

and its uses in the Small language, and short-circuit logic. Exception handling was

not covered in this chapter and is a part of the mlcomp compiler.

As the need for embedded systems grows so will the demand for new programming

languages targeting those platforms. The demands of a fast-paced work environment

http://dx.doi.org/10.1007/978-3-319-70790-7_8

6.12 Chapter Summary 273

have also spurred interest in programming language design and development. This

is an exciting time for experts in programming languages and this text only scratches

the surface of a vast and exciting area of study.

6.13 Review Questions

1. The language of regular expressions can be used to define the tokens of a lan-

guage. Give an example for a regular expression from the chapter and indicate

what kind of tokens it represents.

2. What does ML-lex do? What input does it require? What does it produce?

3. Why do keywords have to be recognized by an if-else-if statement in the ML-

lex definition? Why couldn’t each keyword just be recognized like other fixed

tokens in a language?

4. How is an abstract syntax tree declared in ML?

5. Using the grammar specification for Small, what is the AST of the following

expression?

f u n abs(x) = i f x > 0 t h e n x e l s e ~1*x

6. How does the load function of the code generator decide which load instruction

to generate?

7. In the code generation for function calls in Fig. 6.19, what is the purpose of the

two recursive calls to codegen?

8. Which function in the code generator is responsible for returning the new bind-

ings created by a let expression?

9. What does it mean for the Small language to support short-circuit logic? What

happens in the code generation?

10. In Fig. 6.37 what do nameList and adjustedBindings refer to for the program

given in Fig. 6.36? Give the actual contents of the three lists? Why three lists?

6.14 Exercises

1. Modify the compiler to support unary negation as described in this chapter. Upon

completion test3.sml should compile and run correctly.

2. Add >=, <=, and <> (not equal) operators to the Small language. Provide all

the pieces in all the files so programs using these operators can be compiled.

Write a Small program that demonstrates that this functionality works.

274 6 Compiling Standard ML

3. Add support for if-then-else expressions to the Small compiler as described in

this chapter. Follow the instructions of the chapter and be sure to test your imple-

mentation using test4.sml.

4. Implement short-circuit logic as described in this chapter for the andalso and the

orelse operators.

5. Follow the step in this chapter to add support for compiling expressions with

variables. Then, implement a while do loop for the mlcomp compiler. A while

loop is written while Exp1 do Exp2. The Exp1 expression is evaluated first to see

if it yields true. If it does, then Exp2 is evaluated. This repeats until Exp2 returns

false. Remember your job is to generate code for a while loop, not execute it. Use

examples like adding if-then-else to help you determine where the changes need

to be made to add support for while do loops. Successfully writing this code will

result in successfully compiling and running test12.sml.

6. Add support for case expressions in the mlcomp Small compiler. The concrete

syntax of a case statement is

Expression : ...
| Case Exp Of MatchExp (caseof(Exp ,MatchExp))

while the abstract syntax of a case expression is given here.

caseof o f exp * match list

Follow an example like adding support for unary negation to see what all is

required to support the case expression in JCoCo. Write a program to test the

use of the case expression in your code. There is currently no support for case

expressions in the mlcomp compiler. This project will require you to add support

to all facets of the compiler including the scanner, parser, and code generator.

When you have successfully implemented the code to parse and compile case

expressions, you will be able to compile this program which is test15.sml in the

mlcomp distribution.

1 l e t v a l x = 4
2 i n

3 println
4 (c a s e x o f

5 1 => "hello"
6 | 2 => "how"
7 | 3 => "are"
8 | 4 => "you")
9 e n d

The generated code for this program is given below. The program, when run, will

print you to the screen.

6.14 Exercises 275

1 Function: main/0

2 Constants: None , ’Match Not Found ’, 0, 1, "hello", 2, "how", 3, "are", 4, "you"

3 Locals: x@0

4 Globals: print , fprint , input , int , len , type , Exception , funlist , concat

5 BEGIN

6 LOAD_CONST 9 # Here the 6 is stored in x.

7 STORE_FAST 0

8 LOAD_GLOBAL 0 # This is the println pushed onto stack.

9 LOAD_FAST 0 # x is loaded onto stack.

10 DUP_TOP # Case expression code where x’s value is duplicated.

11 LOAD_CONST 3 # This is a pattern match for the first pattern.

12 COMPARE_OP 2

13 POP_JUMP_IF_FALSE L1

14 POP_TOP # Case expression code to pop x from stack

15 LOAD_CONST 4 # This is the expression for the first match.

16 JUMP_FORWARD L0 # Case expression code to jump to end of case.

17 L1: # Case expression code for label for end of first pattern.

18 DUP_TOP # Case expression code where x’s value is duplicated.

19 LOAD_CONST 5 # This is a pattern match for the second pattern.

20 COMPARE_OP 2

21 POP_JUMP_IF_FALSE L2

22 POP_TOP # Case expression code to pop x from stack

23 LOAD_CONST 6 # This is the expression for the second match.

24 JUMP_FORWARD L0 # Case expression code to jump to end of case.

25 L2: # Case expression code for label for end of second pattern.

26 DUP_TOP # Case expression code where x’s value is duplicated.

27 LOAD_CONST 7 # This is a pattern match for the third pattern.

28 COMPARE_OP 2

29 POP_JUMP_IF_FALSE L3

30 POP_TOP # Case expression code to pop x from stack

31 LOAD_CONST 8 # This is the expression for the third match.

32 JUMP_FORWARD L0 # Case expression code to jump to end of case.

33 L3: # Case expression code for label for end of third pattern.

34 DUP_TOP # Case expression code where x’s value is duplicated.

35 LOAD_CONST 9 # This is a pattern match for the fourth pattern.

36 COMPARE_OP 2

37 POP_JUMP_IF_FALSE L4

38 POP_TOP # Case expression code to pop x from stack

39 LOAD_CONST 10 # This is the expression for the fourth match.

40 JUMP_FORWARD L0 # Case expression code to jump to end of case.

41 L4: # Case expression code for label for end of fourth pattern.

42 L0: # This is the end of case expression label.

43 CALL_FUNCTION 1 # print the result which was left on the stack

44 POP_TOP # Pop the None left by println

45 LOAD_CONST 0 # Push a None to return

46 RETURN_VALUE # Return the None

47 END

7. The following program does not compile correctly using the mlcomp compiler

and type inference system. However, it is a valid Standard ML program. Modify

the mlcomp compiler to correctly compile this program.

l e t v a l [(x,y,z)] = [(l+s+s2{h}ellop{,}1,true)] i n println x e n d

8. Currently, the abstract syntax and parser of Small includes support for the wildcard

pattern in pattern matching, but the code generator does not support it. Add

support for wildcard patterns, write a test program, and test the compiler and

code generation.

9. Currently, the abstract syntax and parser of Small includes support for the as

pattern in pattern matching, but the code generator does not support it. Add

support for as patterns, write a test program, and test the compiler and code

generation. The as pattern comes up when you write a pattern like L as h::t which

assigns L as a pattern that represents the same value as the compound pattern of

h::t.

276 6 Compiling Standard ML

6.15 Solutions to Practice Problems

These are solutions to the practice problem s. You should only consult these answers

after you have tried each of them for yourself first. Practice problems are meant to

help reinforce the material you have just read so make use of them.

6.15.1 Solution to Practice Problem 6.1

The keywords case and of must be added to the scanner specification in mlcomp.lex.

All the other tokens are already available in the scanner.

6.15.2 Solution to Practice Problem 6.2

You need to add a new AST node type.

| caseof o f exp * match list

6.15.3 Solution to Practice Problem 6.3

The grammar changes required for case expressions are as follows.

Expression : ...
| Case Exp Of MatchExp (caseof(Exp ,MatchExp))

7Logic Programming

Imperative programming languages reflect the architecture of the underlying von

Neumann stored program computer: Programs update memory locations under the

control of instructions. Execution is (for the most part) sequential. Sequential execu-

tion is governed by a program counter. Imperative programs are prescriptive. They

dictate precisely how a result is to be computed by means of a sequence of statements

to be performed by the computer. Consider this program using the Small language

developed in Chap. 6.

What do we want to know about the program in Fig. 7.1? Are we concerned with

a detailed description of what happens when the computer runs this? Do we want to

know what the PC is set to when the program finishes? Are we interested in what is

in memory location 13 after the second iteration of the loop? These questions are not

ones that need to be answered. They don’t tell us anything about what the program

does.

Instead, if we want to understand the program we want to be able to describe the

relationship between the input and the output. The output is the remainder after divid-

ing the first input value by the second input. If this is what we are really concerned

about then why not program by describing relationships rather than prescribing a set

of steps. In Logic Programming the programmer describes the logical structure of a

problem rather than prescribing how a computer is to go about solving it. Languages

for Logic Programming are called:

• Descriptive languages: Programs are expressed as known facts and logical rela-

tionships about a problem. Programmers assert the existence of the des ired result

and a logic interpreter then uses the computer to find the desired result by making

inferences to prove its existence.

• Nonprocedural languages: The programmer states only what is to be accom-

plished and leaves it to the interpreter to determine how it is to be accomplished.

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_7

277

http://dx.doi.org/10.1007/978-3-319-70790-7_6

278 7 Logic Programming

Fig. 7.1 A small sample

• Relational languages: Desired results are expressed as relations or predicates

instead of as functions. Rather than define a function for calculating a square

root, the programmer defines a relation, say sqrt (x, y), that is true exactly when

y2 = x .

While there are many application specific logic programming languages, there is one

language that stands out as a general purpose logic programming language. Prolog

is the language that is most commonly associated with logic programming. The

model of computation for Prolog is not based on the Von Neumann architecture. It’s

based on the mechanism in logic called unification. Unification is the process where

variables are unified to terms.

This text has explored a variety of languages from the JCoCo assembly language,

to Java and C++, to Standard ML, and now Prolog. These languages reflect a con-

tinuum from prescriptive languages to descriptive languages.

• Assembly language is a very prescriptive language, meaning that you must think

in terms of the particular machine and solve problems accordingly. Programmers

must think in terms of the von Neumann machine stored program computer model.

• C++ is a high-level language and hence allows you to think in a more descriptive

way about a problem. However, the underlying computational model is still the

von Neumann machine.

• Standard ML is a high-level language too, but allows the programmer to think in a

mathematical way about a problem. This language gets away from the traditional

von Neumann model in some ways.

• Prolog takes the descriptive component of languages further and lets programmers

write programs based solely on describing relationships.

7 Logic Programming 279

Prolog was developed in 1972. Alain Colmerauer, Phillipe Roussel, and Robert

Kowalski were key players in the development of the Prolog language. It is a sur-

prisingly small language with a lot of power. The Prolog interpreter operates by

doing a depth first search of the search space while unifying terms to try to come

to a conclusion about a question that the programmer poses to the interpreter. The

programmer describes facts and relationships and then asks questions.

This simple model of programming has been used in a wide variety of applications

including automated writing of real estate advertisements, an application that writes

legal documents in multiple languages, another that analyzes social networks, and

a landfill management expert system. This is only a sampling of the many, many

applications that have been written using this simple but powerful programming

model.

7.1 Getting Started with Prolog

If you don’t already have a Prolog interpreter, you will want to download one and

install it. There are many versions of Prolog available. Some are free and some

are not. The standard free implementation is available at http://www.swi-prolog.org.

There are binary distributions available for Microsoft Windows, Mac OS X, and

Linux, so there should be something to suit your needs.

Unlike SML, there is no way to write a program interactively with Prolog. Instead,

you write a text file, sometimes called a database, containing a list of facts and

predicates. Then you start the Prolog interpreter, consult the file, and ask yes or no

questions that the Prolog interpreter tries to prove are true.

To start the Prolog interpreter you type either pl or swipl depending on your

installation of SWI Prolog. To exit the interpreter type a ctl-d. A Prolog program is

a database of facts and predicates that can be used to establish further relationships

among those facts. A predicate is a function that returns true or false. Prolog programs

describe relationships. A simple example is a database of facts about several people

in an extended family and the relationships between them as shown in Fig. 7.2.

Questions we might ask:

1. Is Gary’s father Sophus?

2. Who are Kent’s fathers?

3. For who is Lars a father?

These questions can all be answered by Prolog given the database in Fig. 7.2.

http://www.swi-prolog.org

280 7 Logic Programming

Fig. 7.2 The family tree

7.2 Fundamentals

Prolog programs (databases) are composed of facts. Facts describe relationships

between terms. Simple terms include numbers and atoms. Atoms are symbols like

sophus that represent an object in our universe of discourse. Atoms MUST start

with a small letter. Numbers start with a digit and include both integers and real

numbers. Real numbers are written in scientific notation. For instance, 3.14159e0 or

just 3.14159 when the exponent is zero.

A predicate is a function that returns true or false. Predicates are defined in Prolog

by recording a fact or facts about them. For instance, Fig. 7.2 establishes the fact that

Johan was the parent of Sophus. parent is a predicate representing a true fact about

the relationship of johan and sophus.

Frequently terms include variables in predicate definitions to establish relation-

ships between groups of objects. A variable starts with a capital letter. Variables

are used to establish relationships between classes of objects. For instance, to be a

father means that you must be a parent of someone and be male. In Fig. 7.2 the father

predicate is defined by writing

father(X,Y):-parent(X,Y), male(X).

7.2 Fundamentals 281

which means X is the father of Y if X is the parent of Y and X is male. The symbol:−

is read as if and the comma in the predicate definition is read as and. So X is a father

of Y if X is a parent of Y and X is male.

Practice 7.1 What are the terms in Fig. 7.2? What is the difference between

an atom and a variable? Give examples of terms, atoms, and variables from

Fig. 7.2.

You can check your answer(s) in Section 7.17.1.

To program in Prolog the programmer first writes a database like the one in Fig. 7.2.

Then the programmer consults the database so the Prolog interpreter can internally

record the facts that are written there. Once the database has been consulted, questions

can be asked about the database. Questions asked of Prolog are limited to yes or no

questions that are posed in terms of the predicates in the database. A question posed

to Prolog is sometimes called a query. To discover if Johan is the father of Sophus

you start Prolog using pl or swipl, then consult the database, and pose the query.

% swipl
?- consult(’family.prolog ’).
?- father(johan ,sophus).
Yes
?-

Queries may also contain variables. If we want to find out who the father of sophus

is we can ask that of Prolog by replacing the father position in the predicate with a

variable. When using a variable in a query Prolog will answer yes or no. If the answer

is yes, Prolog will tell us what the value of the variable was when the answer was

yes. If there is more than one way for the answer to be yes then typing a semicolon

will tell Prolog to look for other values where the query is true.

?- father(X, sophus).
X = johan
Yes
?- parent(X,kent).
X = gary ;
X = gerry ;
No
?-

The final No is Prolog telling us there are no other ways for parent(X,kent) to be true.

7.3 The Prolog Program

Prolog performs unification to search for a solution. Unification is simply a list of

substitutions of terms for variables. A query of the database is matched with its

predicate definition in the database. Terms in the query are matched when a suitable

282 7 Logic Programming

pattern is found among the parameters of a predicate in the database. If the matched

predicate is dependent on other predicates being true, then those queries are posed

to the Prolog interpreter. This process continues until either Prolog finds that no

substitution will satisfy the query or it finds a suitable substitution.

Prolog uses depth first search with backtracking to search for a valid substitution.

In its search for truth it will unify variables to terms. Once a valid substitution is found

it will report the substitution and wait for input. In Sect. 7.2 the interpreter reports that

X = gary is a substitution that makes parent(X,kent) true. Prolog waits until either

return is pressed or a semicolon is entered. When the semicolon is entered, Prolog

undoes the last successful substitution it made and continues searching for another

substitution that will satisfy the query. In Sect. 7.2 Prolog reports that X = gerry will

satisfy the query as well. Pressing semicolon one more time undoes the X = gerry

substitution, Prolog continues its depth first search looking for another substitution,

finds none, and reports No indicating that the search has exhausted all possible

substitutions.

Unification finds a substitution of terms for variables or variables for terms. Uni-

fication is a symmetric operation. It doesn’t work in only one direction. This means

(among other things) that Prolog predicates can run backwards and forwards. For

instance, if you want to know who Kent’s dad is you can ask that as easily as who

is Gary the father of. In the following example we find out that gary is the father of

kent. We also find out who gary is the father of.

?- father(X,kent).
X = gary ;
No
?- father(gary ,X).
X = kent ;
X = stephen ;
X = anne ;
No

Practice 7.2 Write predicates that define the following relationships.

1. brother

2. sister

3. grandparent

4. grandchild

Depending on how you wrote grandparent and grandchild there might be

something to note about these two predicates. Do you see a pattern? Why?

You can check your answer(s) in Section 7.17.2.

7.4 Lists 283

7.4 Lists

Prolog supports lists as a data structure. A list is constructed the same as in ML. A

list may be empty which is written as [] in Prolog. A non-empty list is constructed

from an element and a list. The construction of a list with head, H, and tail, T, is

written as[H | T]. So, [1,2,3] can also be written as [1 | [2 | [3 | []]]]. The list [a | []] is

equivalent to writing [a]. Unlike ML, lists in Prolog do not need to be homogeneous.

So [1, hi, 4.3] is a valid Prolog list.

By virtue of the fact that Prolog’s algorithm is depth first search combined with

unification, Prolog naturally does pattern matching. Not only does [H | T] work to

construct a list, it also works to match a list with a variable. Append can be written

as a relationship between three lists. The result of appending the first two lists is

the third argument to the append predicate. The first fact below says appending the

empty list to the front of Y is just Y. The second fact says that appending a list whose

first element is H to the front of L2 results in [H|T3] when appending T1 and L2

results in T3.

append([],Y,Y).
append([H|T1], L2, [H|T3]) :- append(T1 ,L2 ,T3).

Try out append both backwards and forwards! The definition of append can be used

to define a predicate called sublist as follows:

sublist(X,Y) :- append(_,X,L), append(L,_,Y).

Stated in English this says that X is a sublist of Y if you can append something on

the front of X to get L and something else on the end of L to get Y. The underscore

is used in predicate definitions for values we don’t care about.

To prove that sublist([1],[1,2]) is true we can use the definition of sublist and

append to find a substitution for which the predicate holds. Figure 7.3 provides a

proof that [1] is a sublist of [1,2].

Practice 7.3 What is the complexity of the append predicate? How many steps

does it take to append two lists?

You can check your answer(s) in Section 7.17.3.

Practice 7.4 Write the reverse predicate for lists in Prolog using the append

predicate. What is the complexity of this reverse predicate?

You can check your answer(s) in Section 7.17.4.

284 7 Logic Programming

Fig. 7.3 A unification tree

7.5 The Accumulator Pattern

The slow version of reverse from practice problem 7.4 can be improved upon. The

accumulator pattern can be applied to Prolog as it was in SML. Looking back at the

solution to practice problem 5.17, the ML solution can be rewritten to apply to Prolog

as well. In the ML version an accumulator argument was added to the function that

allowed the helprev helper function to accumulate the reversed list without the use

of append.

f u n reverse(L) =
l e t f u n helprev (nil , acc) = acc

| helprev (h::t, acc) = helprev(t,h::acc)
i n

helprev(L,[])
e n d

Unlike SML, Prolog does not have any facility for defining local functions with lim-

ited scope. If using helper predicates in a Prolog program the user and/or programmer

must be trusted to invoke the correct predicates in the correct way.

Applying what we learned from the ML version of reverse to Prolog results in

a helprev predicate with an extra argument as well. In many ways this is the same

function rewritten in Prolog syntax. The only trick is to remember that you don’t write

functions in Prolog. Instead, you write predicates. Predicates are just like functions

with an extra parameter. The extra parameter establishes the relationship between

the input and the output.

http://dx.doi.org/10.1007/978-3-319-70790-7_5

7.5 The Accumulator Pattern 285

Sometimes in Prolog it is useful to think of input and output parameters. For

instance, with append defined as a predicate it might be useful to think of the first two

parameters as input values and the third as the return value. While as a programmer

it might sometimes be useful to think this way, this is not how Prolog works. As was

shown in Sect. 7.4, append works both backwards and forwards. But, thinking about

the problem in this way may help identifying a base case or cases. When the base

cases are identified, the problem may be easier to solve.

Practice 7.5 Write the reverse predicate using a helper predicate to make a

linear time reverse using the accumulator pattern.

You can check your answer(s) in Section 7.17.5.

7.6 Built-In Predicates

Prolog offers a few built in predicates. The relational operators (<, >, <=, >=,

and =) all work on numbers and are written in infix form. Notice that not equals is

written as \= in Prolog.

To check that a predicate doesn’t hold, the not predicate is provided. Preceding

any predicate with not insists the predicate returns false. For instance, not(5 > 6)

returns true because 5 > 6 returns false.

The atom predicate returns true if the argument is an atom. So atom(sophus) is true

but atom(5) is not. The number predicate returns true if the argument is a number.

So number(5) is true but number(sophus) is not.

7.7 Unification and Arithmetic

The Prolog interpreter does a depth first search of the search space while unifying

variables to terms. The primary operation that Prolog carries out is unification. Uni-

fication can be represented explicitly in a Prolog program by using the equals (i.e. =)

operator. When equals is used, Prolog attempts to unify the terms that appear on each

side of the operator. If they can be unified, Prolog reports yes and continues unifying

other terms to try to find a substitution that satisfies the query. If no substitution is

possible, Prolog will report no.

You might have caught yourself wanting to write something like X = Y in some of

the practice problem s. This is normal, but is the sign of a novice Prolog programmer.

Writing X = Y in a predicate definition is never necessary. Instead, everywhere Y

appears in the predicate, write X instead.

Unification has one other little nuance that most new Prolog programmers miss.

There is no point in unifying a variable to a term if that variable is used only once in

286 7 Logic Programming

a predicate definition. Unification is all about describing relationships. Unification

doesn’t mean much when a variable is not used in more than one place in a definition.

In terms of imperative programming it’s kind of like storing a value in a variable and

then never using the variable. What’s the point? Prolog warns us when we do this by

saying

Singleton variables: [X]

If this happens, look for a variable called X (or whatever the variable name is)

that is used only once in a predicate definition and replace it with an underscore (i.e.

_). An underscore indicates the result of unification in that position of a predicate

isn’t needed by the current computation. Prolog warns you of singleton variables

because they are a sign that there may be an error in a predicate definition. If an extra

variable exists in a predicate definition it may never be instantiated. If that is the case,

the predicate will always fail to find a valid substitution. While singleton variables

should be removed from predicate definitions, the message is only a warning and

does not mean that the predicate is wrong.

The use of equality for unification and not for assignment statements probably

seems a little odd to most imperative programmers. The equals operator is not the

assignment operator in Prolog. It is unification. Assignment and unification are dif-

ferent concepts. Writing X = 6∗5 in Prolog means that the variable X must be equal

to the term 6 ∗ 5, not 30. The equals operator doesn’t do arithmetic in Prolog. Instead,

a special Prolog operator called is is used. To compute 6 ∗ 5 and assign the result to

the variable X the Prolog programmer writes X is 6 ∗ 5 as part of a predicate. Using

the is operator succeeds when the variable on the left is unbound and the expres-

sion on the right doesn’t cause an exception when computed. All values on the right

side of the is predicate must be known for the operation to complete successfully.

Arithmetic can only be satisfied in one direction, from left to right. This means that

predicates involving arithmetic can only be used in one direction, unlike the append

predicate and other predicates that don’t involve arithmetic.

Practice 7.6 Write a length predicate that computes the length of a list.

You can check your answer(s) in Section 7.17.6.

7.8 Input and Output

Prolog programs can read from standard input and write to standard output. Reading

input is a side-effect so it can only be satisfied once. Once read, it is impossible

to unread something. The most basic predicates for getting input are get_char(X)

which instantiates X to the next character in the input (whatever it is) and get(X)

which instantiates X to the next non-whitespace character. The get_char predicate

7.8 Input and Output 287

instantiates X to the character that was read. The get predicate instantiates X to the

ASCII code of the next character.

There is also a predicate called read(X) which reads the next term from the input.

When X is uninstantiated, the next term is read from the input and X is instantiated

with its value. If X is already instantiated, the next term is read from the input and

Prolog attempts to unify the two terms.

As a convenience, there are certain libraries that also may be provided with Prolog.

The readln predicate may be used to read an entire line of terms from the keyboard,

instantiating a variable to the list that was read. The readln predicate has several

arguments to control how the terms are read, but typically it can be used by writing

readln(L, _, _, _, lowercase).

? - readln(L,_,_,_,lowercase).

Reading input from the keyboard, no matter which predicate is used, causes Prolog to

prompt for the input by printing a |: to the screen. If the readln predicate is invoked

as shown above, entering the text below will instantiate L to the list as shown.

|: + 5 S R
L = [+, 5, s, r] ;
No
?-

The print(X) predicate will print a term to the screen in Prolog. The value of its

argument must be instantiated to print it. Print always succeeds even if the argument

is an uninstantiated variable. However, printing an uninstantiated variable results in

the name of the variable being printed which is probably not what the programmer

wants. When a query is made in Prolog, each variable is given a unique name to avoid

name collisions with other predicates the query may be dependent on. Prolog assigns

these unique names and they start with an underscore character. If an uninstantiated

variable is printed, you will see it’s Prolog assigned unique name.

?- print(X).
_G180
X = _G180 ;
No

The print predicate is satisfied by unifying the variable with the name of Prolog’s

internal unique variable name which is almost certainly not what was intended. The

print predicate should never be invoked with an uninstantiated variable.

7.9 Structures

Prolog terms include numbers, atoms, variables and one other important type of

term called a structure. A structure in Prolog is like a datatype in SML. Structures

are recursive data structures that are used to model structured data. Computer scien-

tists typically call this kind of structured data a tree because they model recursive,

288 7 Logic Programming

Fig. 7.4 Search tree

hierarchical data. A structure is written by writing a string of characters preceding

a tuple of some number of elements. Consider implementing a lookup predicate for

a binary search tree in Prolog. A tree may be defined recursively as either nil or a

btnode(Val, Left, Right) where Val is the value stored at the node and Left and Right

represent the left and right binary search trees. The recursive definition of a binary

search tree says that all values in the left subtree must be less than Val and all values

in the right subtree must be greater than Val. For this example, let’s assume that

binary search trees don’t have duplicate values stored in them.

A typical binary search tree structure might look something like the term below

and corresponds to the tree shown graphically in Fig. 7.4.

btnode(5,
btnode(3,

btnode(2, nil , nil),
btnode(4, nil , nil)),

btnode(8,
btnode(7, nil , nil),
btnode(9, nil ,

btnode(10, nil , nil))))

Items may be inserted into and deleted from a binary search tree. Since Prolog pro-

grammers write predicates, the code to insert into and delete from a binary search tree

must reflect the before and after picture. Because a binary search tree is recursively

defined, each part of the definition will be part of a corresponding case for the insert

and delete predicates. So, inserting into a search tree involves the value to insert,

the tree before it was inserted, and the tree after it was inserted. Similarly, a delete

predicate involves the same three arguments.

Looking up a value in a binary search tree results in a true or false response, which

is the definition of a predicate. Writing a lookup predicate requires the value and the

search tree in which to look for the value.

7.9 Structures 289

Practice 7.7 Write a lookup predicate that looks up a value in a binary search

tree like the kind defined in this section.

You can check your answer(s) in Section 7.17.7.

7.10 Parsing in Prolog

As mentioned earlier in the text, Prolog originated out of Colmerauer’s interest in

using logic to express grammar rules and to formalize the parsing of natural language

sentences. Kowalski and Comerauer solved this problem together and Colmerauer

figured out how to encode the grammar as predicates so sentences could be parsed

efficiently. The next sections describe the implementation of parsing Colmerauer

devised in 1972. Consider the following context-free grammar for English sentences.

Sentence ::= Subject Predicate .

Subject ::= Determiner Noun

Predicate ::= Verb | Verb Subject

Determiner ::= a | the

Noun ::= professor | home | group

Verb ::= walked | discovered | jailed

Given a sequence of tokens like “the professor discovered a group.”, Chap. 2 showed

that a parse tree can be used to demonstrate that a string is a sentence in the language

and at the same time displays its syntactic structure.

Practice 7.8 Construct the parse tree for “the professor discovered a group.”

using the grammar in this section.

You can check your answer(s) in Section 7.17.8.

Prolog is especially well suited to parse sentences like the one in practice problem

6.8. The language has built in support for writing grammars and will automatically

generate a parser given the grammar of a language. How Prolog does this is not

intuitively obvious. The grammar is taken through a series of transformations that

produce the parser. The next few pages present these transformations to provide

insight into how Prolog generates parsers.

Parsing in Prolog requires the source program, or sentence, be scanned as in

the parser implementations presented in Chaps. 2 and 3. The readln predicate will

suffice to read a sentence from the keyboard and scan the tokens in it. Using the

readln predicate to read the sentence, “the professor discovered a group.”, produces

the list [the, professor, discovered, a, group,’.’].

http://dx.doi.org/10.1007/978-3-319-70790-7_2
http://dx.doi.org/10.1007/978-3-319-70790-7_6
http://dx.doi.org/10.1007/978-3-319-70790-7_2
http://dx.doi.org/10.1007/978-3-319-70790-7_3

290 7 Logic Programming

Fig. 7.5 Sentence structure

Fig. 7.6 A sentence graph

Fig. 7.7 A labeled sentence graph

A Prolog parser is a top-down or recursive-descent parser. Because the constructed

parser is top-down, the grammar must be LL(1). There cannot be any left-recursive

productions in the grammar. Also, because Prolog uses backtracking, there cannot

be any productions in the grammar with common prefixes. If there are any common

prefixes, left factorization must be performed. Fortunately, the grammar presented

in this section is already LL(1).

The Prolog parser will take the list of tokens and produce a Prolog structure.

The structure is the Prolog representation of the abstract syntax tree of the sentence.

For instance, the sentence, “the professor discovered a group.”, when parsed by

Prolog, yields the term sen(sub(det(the), noun(professor)), pred(verb(discovered),

sub(det(a), noun(group)))).

The logic programming approach to analyzing a sentence in a grammar can be

viewed in terms of a graph whose edges are labeled by the tokens or terminals in the

language. Figure 7.6 contains a graph representation of a sentence. Two terminals

are contiguous in the original string if they share a common node in the graph.

A sequence of contiguous labels constitutes a nonterminal if the sequence corre-

sponds to the right-hand side of a production rule in the grammar. The contiguous

sequence may then be labeled with the nonterminal. In Fig. 7.5 three nonterminals

are identified. To facilitate the representation of graphs like Fig. 7.6 in Prolog the

nodes of the graph are given labels. Positive integers are convenient labels to use as

shown in Fig. 7.7.

The graph for the sentence can be represented in Prolog by entering the following

facts. These predicates reflect the end points of their corresponding labeled edge in

the graph.

the(1,2).
professor (2,3).
discovered (3 ,4).
a(4,5).

7.10 Parsing in Prolog 291

group (5 ,6).
period (6,7).

Using the labeled graph in Fig. 7.7, nonterminals in the grammar can be represented

by predicates. For instance, the subject of a sentence can be represented by a subject

predicate. The subject(K,L) predicate means that the path from node K to node L can

be interpreted as an instance of the subject nonterminal.

For example, subject(4, 6) should return true because edge (4, 5) is labeled by a

determiner “a” and edge (5, 6) is labeled by the noun “group’‘. To define a sentence

predicate there must exist a determiner and a noun. The rule for the sentence predicate

is

subject(K,L) :- determiner(K,M), noun(M,L).

The common variable M insure the determiner immediately precedes the noun.

Practice 7.9 Construct the predicates for the rest of the grammar.

You can check your answer(s) in Section 7.17.9.

The syntactic correctness of the sentence, “the professor discovered a group.” can

be determined by either of the following queries

?- sentence (1,7).
yes
? - sentence(X,Y).
X = 1
Y = 7

The sentence is recognized by the parser when the paths in the graph corresponding

to the nonterminals in the grammar are verified. If eventually a path for the sentence

nonterminal is found then the sentence is valid. The paths in the graph of the sentence

are shown in Fig. 7.8. Note the similarity of the structure exhibited by the paths in

the graph with the tree of the sentence. If you use your imagination a bit you can see

the parse tree upside down (or right-side up for your non-programming friends).

Fig. 7.8 An upside down parse tree

292 7 Logic Programming

7.10.1 Difference Lists

There are a couple of problems with the development of the parser above. First,

entering the sentence as facts like the(1,2) and professor(2,3) is impractical and

awkward. There would have to be some preprocessing on the list to get it in the

correct format to be parsed. While this could be done, a better solution exists. The

other problem concerns what the parser does. So far the parser only recognizes a

syntactically valid sentence and does not produce a representation of the abstract

syntax tree for the sentence.

Labeling the nodes of the graph above with integers was an arbitrary decision.

The only requirement of labeling nodes in the graph requires that it be obvious when

two nodes in the graph are connected. Both problems above can be solved by letting

sublists of the sentence label the graph instead of labeling the nodes with integers.

These sublists are called difference lists. A difference list represents the part of the

sentence that is left to be parsed. The difference between two adjacent nodes is the

term which labels the intervening edge. The difference list representation of the graph

is shown in Fig. 7.9. Using difference lists, two nodes are connected if their difference

lists differ by only one element. This connection relationship can be expressed as a

Prolog predicate.

This is the connect predicate and the grammar rewritten to use the connect pred-

icate.

c([H|T],H,T).

The c (i.e. connect) predicate says that the node labeled [H|T] is connected to the

node labeled T and the edge connecting the two nodes is labeled H. This predicate

can be used for the terminals in the grammar in place of the facts given above.

determiner(K,L) :- c(K,a,L).
determiner(K,L):- c(K,the ,L).

noun(K,L) :- c(K,professor ,L).
noun(K,L) :- c(K,home ,L).
noun(K,L) :- c(K,group ,L).

verb(K,L) :- c(K,walked ,L).
verb(K,L) :- c(K,discovered ,L).
verb(K,L) :- c(K,jailed ,L).

Fig. 7.9 Difference lists

7.10 Parsing in Prolog 293

The graph need not be explicitly created when this representation is employed. The

syntactic correctness of the sentence, “the professor discovered a group.” can be

recognized by the following query.

?- sentence ([the ,professor ,discovered ,a,group ,’.’], []).
yes

The parsing succeeds because the node labeled with [the, professor, discovered,

a, group, ‘.’] can be joined to the node labeled with [] via the intermediate nodes

involved in the recursive descent parse of the sentence. Because Prolog predicates

work backwards as well as forward, it is just as easy to explore all the sentences of

this grammar by posing this query to the Prolog interpreter.

?- sentence(S,[]).

This reveals that there are 126 different sentences defined by the grammar. Some of

the sentences are pretty non-sensical like “the group discovered a group.”. Some of

the sentences like “the group jailed the professor.” have some truth to them. Sophus

Lie used to walk to many of the places he visited partly because he liked to walk and

partly because he had little money at the time. He also liked to draw sketches of the

countryside when hiking. He was jailed in France when France and Germany were

at war because the French thought he was a German spy. It was understandable since

he was walking through the countryside talking to himself in Norwegian (which

the French thought might be German). When they stopped to question him, they

found his notebook full of Mathematical formulas and sketchings of the French

countryside. He spent a month in prison until they let him go. While in prison he

read and worked on his research in Geometry. Of his prison stay he later commented,

“I think that a Mathematician is comparatively well suited to be in Prison.”[20]. Other

mathematicians may not agree with his assessment of the mathematical personality.

Some care must be taken when asking for all sentences of a grammar. If the

grammar contained a recursive rule, say

Subject ::= Determiner Noun | Determiner Noun Subject

then the language would allow infinitely many sentences, and the sentence generator

will get stuck with ever lengthening subject phrases.

7.11 Prolog Grammar Rules

Most implementations of Prolog have a preprocessor which translates grammar rules

into Prolog predicates that implement a parser of the language defined by the gram-

mar. The grammar of the English language example takes the following form as a

logic grammar in Prolog.

sentence --> subject , predicate ,[’.’].
subject --> determiner , noun.
predicate --> verb , subject.
determiner --> [a].

294 7 Logic Programming

determiner --> [the].
noun --> [professor]; [home]; [group].
verb --> [walked]; [discovered]; [jailed].

Note that terminal symbols appear inside brackets exactly as they look in the source

text. Since they are Prolog atoms, tokens starting with characters other than lower

case letters must be placed within apostrophes. The Prolog interpreter automati-

cally translates these grammar rules into normal Prolog predicates identical to those

defining the grammar presented in the previous section.

7.12 Building an AST

The grammar given above is transformed by a preprocessor to generate a Prolog

parser. However, in its given form the parser will only answer yes or no, indicating

the sentence is valid or invalid. Programmers also want an abstract syntax tree if the

sentence is valid. The problem of producing an abstract syntax tree as a sentence is

parsed can be handled by using parameters in the logic grammar rules.

Predicates defined using Prolog grammar rules may have arguments in addition

to the implicit ones created by the preprocessor. These additional arguments are

inserted by the translator to precede the implicit arguments. The grammar rule

sentence(sen(N,P)) --> subject(N), predicate(P), [’.’].

will be translated into the Prolog rule

sentence(sen(N,P),K,L) :- subject(N,K,M),
predicate(P,M,R),c(R,’.’,L).

A query with a variable representing a tree produces that tree as its answer.

?- sentence(Tree , [the ,professor ,discovered ,a,group ,’.’],[]).
Tree = sen(sub(det(the),noun(professor)),

pred(verb(discovered),sub(det(a),noun(group))))

Practice 7.10 Write a grammar for the subset of English sentences presented

in this text to parse sentences like the one above. Include parameters to build

abstract syntax trees like the one above.

You can check your answer(s) in Section 7.17.10.

Writing an interpreter or compiler in Prolog is relatively simple given the grammar

for the language. Once the AST has been generated for an expression in the language

the back end of the interpreter or compiler proceeds much like it does in other

languages.

7.13 Attribute Grammars 295

7.13 Attribute Grammars

Programming language syntax is specified by formal methods like grammars. Seman-

tics, or the meaning of a computer program, are much harder to define. The study of

formal methods of specifying the meaning, or semantics, of a program is a difficult

but rewarding area of Computer Science. In Chap. 6 a compiler for the Small lan-

guage was developed. Mapping the Small language into the language of JCoCo is

a way of defining the semantics of Small. Mappings like this are sometimes called

Small Step Operational Semantics meaning that the Small language was defined in

terms of the smaller steps in the JCoCo language. Of course, the JCoCo language’s

semantics should also be formally defined in that case.

Another form of semantic definition is an Attribute Grammar. Attribute grammars

are not ideal for larger languages, even languages as big as the Small language would

be difficult and tedious to describe with an attribute grammar. But, a language like

the prefix calculator language is perfect for an attribute grammar definition.

The prefix calculator expression language was first presented in Chap. 5. The

contents of the memory location after evaluating an expression is not specified by

the grammar of the language. In fact, the purpose of any of the operators is not

made explicit in the grammar. Even though we know that ∗ stands for multiplication,

there is nothing in the grammar itself that insists this be the case. Other means are

necessary to convey that meaning. One such method of conveying the semantics of

a language is called an attribute grammar. An attribute grammar adds attributes to

each node of an abstract syntax tree for sentences in the language.

The attributes tell us how a program would be evaluated in terms of its abstract

syntax tree. In other words, an attribute grammar provides a mapping of the syntax of

a program into a set of attributes that describe the semantics of the program. Consider

the prefix calculator grammar

G = (N , T , P,E) where

N = E

T = S, R, number, ,+, −, ∗, /

P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E |∼ E | S E | R | number

Recall the grammar represents prefix expressions because the operation is written

before its arguments. So, +5 ∗ 64 results in 29 when evaluated. Notice that when

written in prefix notation, the expression S 5 stores 5 in the memory location. S is a

prefix operator.

The prog node in the abstract syntax definition in Fig. 7.10 was added to assist in

the definition of the attribute grammar. This abstract syntax can be used in Prolog

but does not need to be defined as a datatype as it would in Standard ML.

An attribute grammar attaches assignment statements for the attributes to each

node in the abstract syntax tree. To distinguish between parts of the abstract syntax

http://dx.doi.org/10.1007/978-3-319-70790-7_6
http://dx.doi.org/10.1007/978-3-319-70790-7_5

296 7 Logic Programming

Fig. 7.10 AST definition

Fig. 7.11 Annotated AST for + S 4 R

tree, let AST0 denote the AST on the left hand side of a production and ASTi where i

> 0 represent an AST on the right hand side of the production. The attribute grammar

for the calculator language is given in Fig. 7.12. Semantics rules are attached to each

of the nodes in the AST definition. These rules govern the assignment of the attributes

in the AST. The numbers to the left of each rule are there simply to number the rules

and are not part of the attribute grammar. By deriving an AST for a sentence and

then applying the semantic rules the tree is decorated with attributes that describe

the meaning of the sentence, or program, in the language.

The attribute grammar given in Fig. 7.12 can be used to convey the meaning

of evaluating an expression like + S 4 R. Figure 7.11 depicts the annotated AST

according to the attribute grammar given in Fig. 7.12.

7.13 Attribute Grammars 297

Fig. 7.12 Attribute grammar

Practice 7.11 Justify the annotation of the tree given in Fig. 7.11 by stating

which rule was used in assigning each of the attributes annotating the tree.

You can check your answer(s) in Section 7.17.11.

298 7 Logic Programming

7.13.1 Synthesized Versus Inherited

Attributes in an attribute grammar come in two flavors. Some attributes are inherited

which means they are derived from values that are above or to the left in the AST.

Some attributes are synthesized meaning they are derived from values that are below

or to the right in the tree. The val attribute is a synthesized attribute in the attribute

grammar presented in Fig. 7.12.

Practice 7.12 Is the min attribute synthesized or inherited? Is the mout

attribute synthesized or inherited?

You can check your answer(s) in Section 7.17.12.

Attribute grammars work great for small languages. When a language is larger, the

number of attributes can grow exponentially, resulting in a very large annotated tree.

In addition, attribute grammars don’t deal well with things like control flow and val-

ues that aren’t determined until run-time. There are many aspects of programming

languages that are difficult to assign as attributes in an AST. Typically, attribute

grammars work well for small interpreted languages with little or no unknown infor-

mation.

7.14 Chapter Summary

This chapter provided an introduction to programming in Prolog. List manipulation

and building and traversing complex recursive terms are important skills in becoming

an experienced Prolog programmer. Grammars and recursive-descent parsing are

natural topics relating to Prolog. Building top-down parsers in Prolog is easy with

the grammar extension provided in the Prolog language.

In addition, the chapter introduced a couple of formal semantic methods for

describing programming languages. Small step operational semantics is one method

where a language is defined in terms of smaller steps in a simpler well-defined

language. Attribute grammars is another method of assigning meaning to programs.

There are several good books on Prolog programming. The Prolog presented in

this chapter is enough to get a flavor of the language and a good start programming

in the language. Things left out of the discussion include the cut operator and some

nuances of how unification is done (i.e. the difference between = and ==). Reading

from and writing to files was also left out. The definitive book for more information

is Clocksin and Mellish [5]. This book lacks exercises but contains many examples

and is a good reference once you understand something about how to program in

Prolog (which I hope you do once you’ve read the chapter and worked through the

problems).

7.15 Review Questions 299

7.15 Review Questions

1. What is a term made up of in Prolog? Give examples of both simple and complex

terms.

2. What is a predicate in Prolog?

3. In Standard ML you can pattern match a list using (h::t). How do you pattern

match a list in Prolog?

4. According to the definition of append, which are the input and the output para-

meters to the predicate?

5. How do you get more possible answers for a question posed to Prolog?

6. In the expression X = 6 ∗ 5 + 4 why doesn’t X equal 34 when evaluated in

Prolog? What does X equal? What would you write to get X equal to 34?

7. Provide the calls to lookup to look up 7 in the binary tree in Fig. 7.4. Be sure to

write down the whole term that is passed to lookup each time. You can consult

the answer to practice problem 7.5 to see the definition of the lookup predicate.

8. What symbol is used in place of the:- when writing a grammar in Prolog?

9. What is a synthesized atrribute?

10. What is an inherited attribute?

7.16 Exercises

In these early exercises you should work with the relative database presented at the

beginning of this chapter.

1. Write a rule (i.e. predicate) that describes the relationship of a sibling. Then

write a query to find out if Anne and Stephen are siblings. Then ask if Stephen

and Michael are siblings. What is Prolog’s response?

2. Write a rule that describes the relationship of a brother. Then write a query to

find the brothers of sophusw. What is Prolog’s response?

3. Write a rule that describes the relationship of a niece. Then write a query to find

all nieces in the database. What is Prolog’s response?

4. Write a predicate that describes the relationship of cousins.

5. Write a predicate that describes the ancestor relationship.

6. Write a predicate called odd that returns true if a list has an odd number of

elements.

7. Write a predicate that checks to see if a list is a palindrome.

8. Show the substitution required to prove that sublist([a, b], [c, a, b]) is true. Use

the definition in Fig. 7.3 and use the same method of proving it’s true.

9. Write a predicate that computes the factorial of a number.

10. Write a predicate that computes the nth fibonacci number in exponential time

complexity.

11. Write a predicate that computes the nth fibonacci number in linear time com-

plexity.

300 7 Logic Programming

12. Write a predicate that returns true if a third list is the result of zipping two others

together. For instance,

zipped ([1,2,3],[a,b,c],[pair(1,a),pair(2,b),pair(3,c)])

should return true since zipping [1, 2, 3] and [a, b, c] would yield the list of pairs

given above.

13. Write a predicate that counts the number of times a specific atom appears in a

list.

14. Write a predicate that returns true if a list is three copies of the same sublist. For

instance, the predicate should return true if called as

threecopies ([a, b, c, a, b, c, a, b, c]).

It should also return true if it were called like

threecopies ([a,b,c,d,a,b,c,d,a,b,c,d]).

15. Implement insert, lookup, and delete on a binary search tree. The structure of a

binary search tree was discussed in this chapter. Your main run predicate should

be this:

buildtree(T) :- readln(L,_,_,_,lowercase), processlist(L,nil ,T).

run :- p r i n t (’Please enter integers to build a tree: ’), buildtree(T),

p r i n t (’Here is the tree:’), p r i n t (T), p r i n t (’\PYGZbs{n’}),

p r i n t (’Now enter integers to delete: ’), readln(L,_,_,_,lowercase),

delListFromTree(L,T,DT), p r i n t (DT).

The run predicate calls the buildTree predicate to build the binary search tree

from the list read by the readline. If 5 8 2 10 is entered at the keyboard, L would

be the list containing those numbers. To complete this project there should be at

least three predicates: insert, lookup, and delFromTree.

The lookup predicate was a practice problem and the solution is provided if you

need it. The insert predicate is somewhat like the lookup predicate except that

a new node is constructed when you reach a leaf. Deleting a node is similiar

to looking it up except that if it is found, the tree is altered to delete the node.

Deleting a node from a binary search tree has three cases.

(a) The node to delete is a leaf node. If this is the case, then deleting it is simple

because you just return an empty tree. In Fig. 7.4 this occurs when 2, 4, 7,

or 10 is deleted.

(b) The node to delete has one child. If this is the case, then the result of deleting

the node is the subtree under the deleted node. In Fig. 7.4, if the 9 is deleted,

then the 10 is just moved up to replace the 9 in the tree.

(c) The node to delete has two children. If this is the case, then you have to

do two things. First, find the left-most value from the right subtree. Then,

delete the left-most value from the right subtree and return a new tree with

the left-most value of the right subtree at its root. Consider deleting 5 from

the tree in Fig. 7.4. The left-most value of the right subtree is 7. To delete 5

we put the 7 at the root of the tree and then delete 7 from the right subtree.

7.16 Exercises 301

To make this project easy, write it incrementally. Print the results as you go

so you can see what works and what doesn’t. The print predicate will print its

argument while the nl predicate will print a newline. Don’t start by writing the

entire run predicate right away. Write one piece at a time, test it, and then move

on to the next piece.

16. Implement a calculator prefix expression interpreter in Prolog as described in

the section on attribute grammars in this chapter. The interpreter will read an

expression from the keyboard and print its result. The interpreter should start

with a calc predicate. Here is the calc predicate to get you started.

calc :- readln(L,_,_,_,lowercase), preprocess(L,PreL), p r i n t (PreL), n l ,
expr(Tree ,PreL ,[]), p r i n t (Tree), n l , interpret(Tree ,0,_,Val),
p r i n t (Val), n l .

The program reads a list of tokens from the keyboard. The preprocess predicate

should take the list of values and add num tags to any number it finds in the list.

This makes writing the grammar a lot easier. Any number like 6 in L should

be replaced by num((6) in the list PreL. The expr predicate represents the start

symbol of your grammar. Finally, the interpret predicate is the attribute grammar

evaluation of the AST represented by Tree.

To make this project easy, write it incrementally. Print the results as you go

so you can see what works and what doesn’t. The print predicate will print its

argument while the nl predicate will print a newline. Don’t write the entire calc

predicate right away. Write one piece, test it, and then move on to the next piece.

7.17 Solutions to Practice Problems

These are solutions to the practice problem s. You should only consult these answers

after you have tried each of them for yourself first. Practice problems are meant to

help reinforce the material you have just read so make use of them.

7.17.1 Solution to Practice Problem 7.1

Terms include atoms and variables. Atoms include sophus, fred, sophusw, kent,

johan, mads, etc. Atoms start with a lowercase letter. Variables start with a capital

letter and include X and Y from the example.

7.17.2 Solution to Practice Problem 7.2

1. brother(X,Y):- father(Z,X), father(Z,Y), male(X).

2. sister(X,Y):- father(Z,X), father(Z,Y), female(X).

3. grandparent(X,Y):- parent(X,Z), parent(Z,Y).

4. grandchild(X,Y):- grandparent(Y,X).

302 7 Logic Programming

Grandparent and grandchild relationships are just the inverse of each other.

7.17.3 Solution to Practice Problem 7.3

The complexity of append is O(n) in the length of the first list.

7.17.4 Solution to Practice Problem 7.4

reverse ([] ,[]).
reverse ([H|T],L) :- reverse(T,RT), append(RT ,[H],L).

This predicate has O(n2) complexity since append is called n times and append is

O(n) complexity.

7.17.5 Solution to Practice Problem 7.5

reverseHelp([],Acc ,Acc).
reverseHelp([H|T], Acc , L) :- reverseHelp(T,[H|Acc],L).
reverse(L,R):-reverseHelp(L,[],R).

7.17.6 Solution to Practice Problem 7.6

len ([] ,0).
len([_|T],N) :- len(T,M), N i s M + 1.

7.17.7 Solution to Practice Problem 7.7

lookup(X,btnode(X,_,_)).
lookup(X,btnode(Val ,Left ,_)) :- X < Val , lookup(X,Left).
lookup(X,btnode(Val ,_,Right)) :- X > Val , lookup(X,Right).

7.17.8 Solution to Practice Problem 7.8

7.17.9 Solution to Practice Problem 7.9

sentence(K,L) :- subject(K,M), predicate(M,N), period(N,L).

subject(K,L) :- determiner(K,M), noun(M,L).

predicate(K,L) :- verb(K,M), subject(M,L).

determiner(K,L) :- a(K,L); the(K,L).

verb(K,L) :- discovered(K,L); jailed(K,L); walked(K,L).

noun(K,L) :- professor(K,L); group(K,L); home(K,L).

7.17 Solutions to Practice Problems 303

Fig. 7.13 The sentence structure for “The professor discovered a group”

Fig. 7.14 Decorated tree for the prefix expression + S 4 R

304 7 Logic Programming

7.17.10 Solution to Practice Problem 7.10

sentence(sen(N,P)) --> subject(N), predicate(P), [’.’].
subject(sub(D,N)) --> determiner(D), noun(N).
predicate(pred(V,S)) --> verb(V), subject(S).
determiner(det(the)) --> [the].
determiner(det(a)) --> [a].
noun(noun(professor)) --> [professor].
noun(noun(home)) --> [home].
noun(noun(group)) --> [group].
verb(verb(walked)) --> [walked].
verb(verb(discovered)) --> [discovered].
verb(verb(jailed)) --> [jailed].

7.17.11 Solution to Practice Problem 7.11 (See Fig. 7.13)

7.17.12 Solution to Practice Problem 7.12

The val attribute is synthesized. The min value is inherited. The mout value is syn-

thesized (See Fig. 7.14).

8Standard ML Type Inference

Many language implementations, like C++ and Java, check the types of values and

operations to be sure each operation is supported for the types of its operands. An

important feature of Standard ML is the type inference system which is somewhat

like the type checkers of C++ and Java, but a bit more powerful. A type checker

checks the types written by the programmer to be sure each type declaration is

consistent with the operations being performed, values being passed to functions,

and the values being returned. Compilers for Java and C++ even infer the types of

some expressions when polymorphic operators are used. For instance, the addition

operator has multiple result types depending on the types of its operands.

The type inference system of Standard ML distinguishes itself from other type

inference systems by inferring almost all the types of an SML program, rather than

requiring the programmer to declare the types of variables. The SML type inference

system infers the types of values in its programs by using type information about

constant values and the types supported by its built-in operators or functions. Many

of the functions in Standard ML are polymorphic allowing more than one type of

argument to be passed to them. The type inference system of Standard ML is able

to handle this polymorphism. Robin Milner, Roger Hindley, and Luis Damas all

contributed to this powerful polymorphic type inference system.

This chapter develops a polymorphic type inference system for the Small lan-

guage using Prolog as the implementation language. A typical way to describe type

inference is with type inference rules. Each of the type inference rules associated

with the Small language is presented along with some of the type inference rule

implementations. Not all code is provided since some problems are left as exercises

for the reader, but the Prolog examples in this chapter come from a working type

inference system for the Small subset of Standard ML.

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_8

305

306 8 Standard ML Type Inference

8.1 Why Static Type Inference?

To motivate our discussion, consider the program found in Fig. 8.1. This is a valid

Small program and when compiled to JCoCo and run it prints 1 to the screen. Contrast

that to the program in Fig. 8.2, which is not a valid Small program or Standard ML

program. It is missing the dereference operator in the expressions referring to x.

This program should not execute. Executing such a program would, at best, have

unpredictable results. With the target language as the JCoCo virtual machine the

program actually does run and produces 1 as its output, which is even worse than it

not running at all. Any change in the compiler could end up breaking this program

when at one time it seemed to compile and run successfully.

8.1.1 Exception Program

Here is another example. This question was posted on stackoverflow.com. The ques-

tion posed was,

When executing the code [from Fig. 8.3] in SML I get:

1 stdIn :216.8 -216.12 Error: operator and operand don ’t agree [literal]

2 operator domain: real

3 operand: int

4 in expression:

5 z 3

That’s fine - I understand that the line z(3); causes an error, since z throws int instead

of real. But my problem is with the line x(3.0); why doesn’t it cause an error?

l e t v a l

i n

end

Fig. 8.1 test8.sml

l e t v a l

i n

end

Fig. 8.2 test13.sml

8.1 Why Static Type Inference? 307

e x c e p t i o n o f

fun r a i s e

fun

l e t

e x c e p t i o n o f

fun r a i s e

i n

end

Fig. 8.3 Exception program

The answer is that the program in Fig. 8.3 never executes in Standard ML because

it is not correctly typed. Since it is not correctly typed, the type inference system

finds the type error, not with the first sequentially evaluated expression, but with the

function application of z to 3. Without static type checking before the program runs,

the Small language that we developed in Chap. 6 would try to execute this program

and would encounter an error when evaluating x(3.0). We need type inference to

prevent this from happening. Preventing an incorrectly typed program from running

catches many unintended errors that might only be caught at run-time otherwise. The

type checker helps us find errors that might otherwise go undetected until the code

path gets executed.

8.1.2 A Bad Function Call

One more example helps to illustrate the need for type inference. Consider the pro-

gram in Fig. 8.4. This program is incorrect because it is missing a semicolon between

the two println expressions. However, in the absence of type inference it starts run-

l e t v a l

i n

end

Fig. 8.4 A bad function call

http://dx.doi.org/10.1007/978-3-319-70790-7_6

308 8 Standard ML Type Inference

ning and produces a run-time error stating that None is not a callable object. The first

call to println looks like a curried function call of println x println “Done”. The result

of println x is None. That appears to Small to be a function that should be passed

the next argument, println. Hence we get the “None is not callable” run-time error

message from the JCoCo virtual machine when the correct error message should

come from type inference on this program to say that the println function application

does not match its signature.

It would be much better to report to the programmer that the programs in Sect. 8.1

are invalid and do not pass the type inference system. It is dangerous for a program

to execute that has undefined results because while an implementation detail like the

JCoCo Virtual Machine’s use of cell variables may allow a program to execute with

the correct output, the implementation of the virtual machine or even a completely

different target architecture could then cause a once working program to suddenly

stop working. As programmers we rely on the tools we use to produce correct code

and to guarantee that once debugged the behavior of a program won’t suddenly

change due to external factors like a compiler change.

8.2 Type Inference Rules

A type inference system is defined in terms of type inference rules. The collection

of these rules define a type inference system. Each type inference system defines its

own set of rules. Type inference rules follow a pattern of necessary conditions, or

premises, and a logical conclusion. The rules are written in this form.

RuleName

Premise1, Premise2, ..., Premisen

Conclusion

The way to read this is to say that if each of the premises hold in some model, then the

conclusion holds as well in that model. An inference system contains a collection of

inference rules. Normally each rule in an inference system is given a name so it can

be referred to in proofs. The collection of inference rules can be used in constructing

a proof. In this case a proof of an expression’s type.

All the type inference rules for the Small language are provided in the sections

in this chapter. Some of the type inference rules will contain braces surrounding

sytantic elements of the language (i.e. { and }). These braces are used to indicate

zero or more occurrences of syntactic elements.

Much of the Prolog implementation of this type inference system is provided as

well, although some pieces of it are left as exercises for the reader.

8.3 Using Prolog 309

8.3 Using Prolog

The Small language and grammar is sufficiently complex that writing a top-down

parser for it would be difficult. Since Prolog’s grammar support creates a top-down

parser from a grammar, it is not powerful enough to parse programs in the Small

language. So, the program is not parsed by Prolog. Instead, the mlcomp compiler

writes a file called a.term which is a Prolog term representing the abstract syntax of

the source program. This AST is read by the Prolog type inference system. Consider

the program in Fig. 8.1. The AST Prolog term for this program is shown in Fig. 8.5.

In most cases, even if the compiler has not been extended to generate the correct

code for a program, the compiler will still write a correct Prolog term. If compiling

a new extension to the language the writeTerm function in mlcomp.sml may have to

be extended to support the new extension.

The code in Fig. 8.6 starts the type checker. The run predicate reads the abstract

syntax tree for the program from the file called a.term. The print prints it back to

Fig. 8.5 test8.sml AST

p r i n t nl

p r i n t nl

p r i n t

nl nl

nl nl p r i n t nl

p r i n t nl nl

nl nl p r i n t nl

p r i n t nl nl

nl nl p r i n t nl

p r i n t nl nl

p r i n t nl

p r i n t nl p r i n t nl nl nl

nl nl p r i n t nl nl

Fig. 8.6 The type checker run predicate

310 8 Standard ML Type Inference

the screen just for visual confirmation. The catch is a Prolog predicate that provides

exception handling. The first argument to catch is a predicate to satisfy. If an exception

occurs while attempting to satisfy the predicate the error is unified with E and the

errorOut predicate is called which prints one of three messages depending on the

error.

If no error occurs, the variable Type will hold the type returned by the Small

program. The printType predicate prints the type in Standard ML format and returns

a list of any type variables it finds. The warning predicate warns of any uninstantiated

type variables found in the type.

The cut operator (i.e. !) stops Prolog from backtracking. Normally, if a point is

reached where Prolog cannot satisfy a predicate, it will undo the last unification and

look for another way to satisfy the original query. The type inference system has

side-effects, like printing error messages, and the type inference is deterministic in

its choices. There is only one way to satisfy predicates in the type inference system:

by finding the type of the program. To prevent backtracking the cut operator can

be used. Technically, the cut operator is not needed because different cases of a

predicate should all be logically mutually exclusive. However, it is sometimes more

convenient to use the cut. When Prolog comes across a cut operator, the search space

is pruned. The predicate in which the cut is found may not be satisfied by any other

choices in that predicate. In the warning predicate, once one of the patterns matches

(from the top down), the warning predicate cannot be satisfied by any other warning

definition. As a Standard ML programmer this is appealing because it leads to the

same kind of pattern matching used in Standard ML programs.

So, a term like the one in Fig. 8.5 is read as the AST by the type checker and

passed to the predicate called typeCheckProgram that does the type inference of

the Small program. The AST description is given in Standard ML form in Fig. 8.7.

Prolog does not require datatypes be declared so there is no explicit declaration of

the AST datatype in the typechecker. Nevertheless, the datatype is coded into the

expected values of AST nodes in the type checker predicates. The Prolog AST format

is nearly an exact copy from the Standard ML AST definition except that boolval in

the Standard ML implementation is called bool in the Prolog version, the infixexp in

the Standard ML AST is replaced with an apply in the type checker, and the raise

AST node is replaced with an apply. See the writeExp function for infix expressions

in mlcomp.sml for the details of the conversion from infixexp to apply and raise to

apply. The implementation of the type checker follows from the definition of the

abstract syntax.

The Standard ML types used in the Small language include the types in Fig. 8.8.

These types include the usual boolean, integer, and string types. The exn type is the

type of exceptions. The tuple type is a tuple of some aggregation of other types. Lists

must be homogeneous meaning they are a list of some one type of value. The type

fn(A,B) is the type of all functions. Every function takes one argument, which may be

a tuple, and returns one value. The ref types are the reference types and are defined

by the type of value to which they point. Type variables are denoted by the typevar

type. The string in a typevar is the name of the type variable. The type checker assigns

variable names as a, b, c, d, etc. The type checker is strict in typeerror, meaning once

8.3 Using Prolog 311

Fig. 8.7 AST description

an expression results in a type error all other expressions that interact with it also

result in typeerror.

The job of the type checker is to map a program in the syntax of Fig. 8.7 into its

type as defined in Fig. 8.8. Type inference rules provide the mapping instructions.

The rest of this chapter explores type inference for the simplest nodes first, working

up to more complex language constructs.

312 8 Standard ML Type Inference

Fig. 8.8 Small types

8.4 The Type Environment

Functions in Standard ML are typed by their signature as seen in Chap. 5. For instance,

the Int.fromString function has a signature of

f n : str → int

The environment of the type checker provides information about the signature of

built-in functions and operators in the language. The environment is referred to as

epsilon (i.e. ε), the type environment, or just the environment. More generally, the

environment provides a mapping of identifiers to types which can be consulted during

type checking as needed.

Some functions are polymorphic and therefore type variables are necessary to

describe their type. For instance, the print function has a type of

f n : α → ()

The α represents a type variable in the signature of the print function. The existence

of type variables makes it possible for functions in the Standard ML type inference

system to be polymorphic.

In Prolog the environment is created by the typecheckProgram predicate which

passes it to the typecheckExp predicate. Figure 8.9 provides the type environment

given to the typecheckExp predicate.

There are a number of functions and operators provided in the environment. The

function type begins with fn. All type variables are named typevar and the unit type

is denoted as tuple([]) in the type checker. The environment is represented as follows

in the type inference rules.

ε = [Exception �→ α → exn, raise �→ exn → α, andalso �→ bool × bool → bool, ...]

http://dx.doi.org/10.1007/978-3-319-70790-7_5

8.4 The Type Environment 313

Fig. 8.9 The type environment

The environment is a list of bindings of identifiers to types. The environment is

always searched from left to right to find a binding as needed by type inference

rules. The symbol �→ is pronounced maps to. For instance, Exception maps to a

polymorphic type from alpha to exn.

8.5 Integers, Strings, and Boolean Constants

The types of integer, string, and boolean constant values are determined by the scan-

ner when read in mlcomp. Determining their types then is just a matter of matching

their scanned type to a type in the type checker. So we write the following statements

about the types of simple constant values. In each case, there are no premises that

must be satisfied. When we see a boolean constant we can immediately determine

its type.

BoolCon

ε ⊢ bool(v) : bool

IntCon

ε ⊢ int (v) : int

StringCon

ε ⊢ str(v) : str

314 8 Standard ML Type Inference

Fig. 8.10 Constant type inference

To keep things simpler in the type inference algorithm we’ll limit our discussion

to integers for all numbers. Each type inference rule will be named in bold and its

definition will be indented underneath it as seen here. In Prolog constant types are

given a type by the typecheckExp predicate as shown in Fig. 8.10. The environment

is the first argument to the typecheckExp predicate and is a don’t care value in this

case since the environment is not needed to determine the type of a constant. The

AST argument is the second argument to the predicate. The third argument is the

type of the expression.

Consider the expression 5. This is mapped into the term int(5) by the mlcomp

compiler. Passing int(5) to the type checker matches the predicate in Fig. 8.10 and

returns int for its type. The type is printed by the type checker. Output from the type

checker looks like this.

1 Typechecking is commencing ...

2 Here is the AST

3 int (5)

4 val it : int

5 The program passed the typechecker .

8.6 List and Tuple Constants

The type of a list is derived from its constituent type. Lists are homogeneous in Small

as they are in Standard ML, meaning that all elements must have the same type. The

type of a tuple is derived from its constituent types. For example consider this list

and tuple.

[6, 5, 4] : int list

("hi", true, 6) : str ∗ bool ∗ int

In the abstract syntax, list and tuple constants are written as lists of values. For

instance, written in Prolog syntax, to typecheck the two values above, typecheckExp

is implemented as follows.

1 typecheckExp(Env ,listcon(L),listOf(T)) :- typecheckList (Env ,L,T).

2 typecheckExp(Env ,tuple(L),tuple(T)) :- typecheckTuple(Env ,L,T).

Typechecking the list and tuple constants above returns these type values.

8.6 List and Tuple Constants 315

1 listOf(int)

2 tuple ([str ,bool ,int])

Note the type value of listOf here. list is a built-in predicate in Prolog and should

not be used. Here is the type inference rule that describes the type of lists in Small.

ListCon

∀i 1 ≤ i ≤ n, n ≥ 0

ε ⊢ ei : α

ε ⊢ [e1, e2, ..., en] : α list

The List type inference rule can be read as follows: If in the type environment the

types of all elements of a list are found to be α, then the type of the list constant of

these values is α list in the same type environment. In the vacuous condition, where

n = 0, there are no premises with the type of the list being polymorphically α list .

For tuples the type inference rule is somewhat similar. The × in the rule below

is the cross product symbol and is the symbol that corresponds to ∗ printed by the

Standard ML type checker. The writing of this cross product forms the type for tuples

of n elements.

TupleCon

∀ 1 ≤ i ≤ n, n ≥ 0

ε ⊢ ei : αi

ε ⊢ (e1, e2, ..., en) : ×n
i=1αi

In the vacuous condition of n = 0 in the TupleCon rule the type is the empty Cartesian

product which is denoted as the unit type in Standard ML. In other words, the empty

tuple has type unit in Standard ML.

Consider type checking the expression [1,2,3,4]. The type checker provides output

as shown below. Typechecking the list constant calls typecheckList as shown earlier

in this section. The typecheckList predicate proceeds through the list of elements

making sure all the types match, resulting in the type you see below.

1 Typechecking is commencing ...

2 Here is the AST

3 listcon ([int (1),int (2),int (3),int (4)])

4 val it : int list

5 The program passed the typechecker .

8.7 Identifiers

When a program uses an identifier the type of the identifier must be looked up in

the type environment. Lookup in the environment is denoted as ε[id �→ α] which

says that in the type environment find id and its associated type alpha. The rule

316 8 Standard ML Type Inference

Fig. 8.11 Environment lookup predicates

below indicates the type of an identifier is its type in the environment. In the Prolog

implementation a find predicate is written to look up an indentifier in an environment

to find its type. Here is the identifier type inference rule.

Identifier

ε[id �→ α] ⊢ id : α

The code in Fig. 8.11 provides the details of the find predicate implementation in

Prolog. There is also an exists predicate that is satisfied if an environment contains a

binding. The member predicate is a built-in predicate in Prolog. Normally in a proof

this lookup will be implied when an identifier is looked up in the bindings and this

step will be omitted. Consider the expression containing just the name of a function,

as in println. Type checking this expression will reveal the type of println, which is

not a Standard ML function but is in the Small language.

1 Typechecking is commencing ...

2 Here is the AST

3 id(println)

4 val it : ’a -> unit

5 The program passed the typechecker .

The type checker sees the identifier and looks in the environment, finding the println

identifier and yielding its type.

8.8 Function Application

Function application in Small and Standard ML occurs when two expressions are

written next to each other as in the expression

8.8 Function Application 317

1 println 6

for instance. In the Prolog AST this appears as apply(id(‘println’),int(‘6’)).

Function application is the act of calling a function. The type of println is α → unit .

The println function is being applied to an integer. We need a type inference rule that

formally defines a legal function application.

Before the function application type inference rule can be written one more oper-

ator is needed which may be a bit difficult to understand at first. Small and Standard

ML support polymorphic type checking. When a type contains type variables the

type variables place restrictions on the kinds of values to which the type may be

instantiated. For instance, the println function has type α → unit which says that

the function println is polymorphic taking arguments of any type. The type is defined

with the type variable α, but just when is println polymorphic? The answer is every

time println is called. One application of println can be given an integer, while the

next application could be given a tuple of an integer and a boolean value. In each

case the α type variable is instantiated to a type, an integer in the first case and a

tuple in the second. Type inference rules need a way of creating instances of poly-

morphic types. In this way, one instance of the polymorphic type α → unit can be

instantiated as int → unit while the next can be instantiated as int × bool → unit .

In type inference rules this instantiation operator is written as inst. It is given a

type and returns an instance of that type where all type variables are replaced by

fresh, unbound instances of variables. In the type inference rule below the result type

of function application is the specialization of the instantiated result type given an

instance of the type of the argument passed to the function.

FunApp

ε ⊢ e1 : α → β, α′ → β ′ : inst (α → β), ε ⊢ e2 : αe2, α
′ : inst (αe2)

ε ⊢ e1e2 : β ′

The Prolog implementation of instantiation will shed some light on instantiation. In

Prolog, all type variables are written as typevar(id) where id is typically some letter

from a to z, but could be any identifier. This corresponds to the way type variables

appear in Standard ML’s type inference system when types like

fn:’a->’a

are printed. In the Prolog implementation of the typechecker the function type fn:’a

->’a is represented as fn(typevar(a),typevar(a)). Making an instance of a type like

this creates a type that can be unified with other types in Prolog. An instance of

this type would be written as fn(A,A). In this Prolog term the variable A is unbound

since it is not unified with any other term. The Prolog term fn(A,A) is an instance of

the type fn(typevar(a),typevar(a)). Instantiation is performed by the inst predicate

shown in Fig. 8.12.

On line 17 of Fig. 8.12 the inst operator calls the instanceOf predicate with an

empty environment. The instanceOf predicate recursively traverses the type, chang-

ing all occurrences of type variables to Prolog variables. The environment keeps track

318 8 Standard ML Type Inference

var

p r i n t

p r i n t nl

Fig. 8.12 The instantiation operator

Fig. 8.13 Function application type inference

of the mapping of type variables to Prolog variables so if a type variable appears

more than once in a type it is replaced by the same Prolog variable as is evident with

the example of the polymorphic type of function f in the preceeding paragraph. Line

11 insures the same Prolog variable is used when the type variable is found in the

environment. Line 12 creates a new Prolog variable when the type variable is not

found in the environment.

Line 4 of Fig. 8.12 uses the var predicate which returns true if A is an unbound

Prolog variable. This clause is important because if instanceOf is called with an

uninstantiated variable already, then it will unify with anything it is matched to, like

the function type in line 6 for instance. Line 4 insures that an unbound variable stays

unbound. Line 5 uses the simple predicate which just means that A is a simple term

like int, or bool. It is not complex, meaning there are no subterms that are a part

of this term. A complex term would be a type like tuple([typevar(a),typevar(a)]).

Line 5 handles all the simple types by just returning them. Simple types are not

polymorphic.

Type inference for function application in Prolog utilizes Prolog exception han-

dling as shown in Fig. 8.13. If a function call is not correct due to a type error, the

8.8 Function Application 319

instantiation predicate in Fig. 8.12 will throw a type error exception. In that case it

would be nice to know there was an error with a function call. The error is caught in

this code and a message is printed.

8.8.1 Instantiation

When an instance of a type is created with free variables, the Prolog variables only

stay free as long as the instantiated type is not unified with any other types. Once

that instance of a type is unified some or all of the free variables will be bound. In

this way, when an instance of a type is created, it moves towards being a type with

no free variables as type inference proceeds. If unification is not possible due to a

type error, then that condition is recognized and the resulting type is the special type

typeerror which is handled in the Prolog implementation by throwing an exception.

Several of the rules in the next section use instantiation so that unification of types

is possible. When an instance of a type is the result of a type inference rule, all free

variables have been unified with bound values producing a valid type except in the

cases of type errors in the original program. Consider the invocation of println 6 and

how we would arrive at a type. The following instance of the FunApp rules shows

how it is proved to be a valid function application.

ε ⊢ println : α → unit, int → unit : inst (α → unit), ε ⊢ 6 : int

ε ⊢ println 6 : unit

8.9 Let Expressions

Binding identifiers to values is the job of let expressions in Standard ML and Small.

Let expressions create bindings between identifiers and values through the use of pat-

terns. Identifiers can be bound to one or more function definitions in a let expression

because functions are values too in Small and Standard ML. A little new notation

must be introduced to write type inference rules for let expressions.

Let expression build new environments. To properly define type inference for

the newly created environment, environments must be considered values in the type

checker. A declaration produces an environment mapping one or more identifiers to

their types. To combine two environments a new overlay operator is defined. One

environment can then be used to partially overlay another environment. Consider

two environments ε1 and ε2. To combine the first with the second environment the

overlay ⊕ operator is defined as demonstrated here.

320 8 Standard ML Type Inference

ε1 = [x �→ α → β, y �→ int, z �→ α × β]

ε2 = [u �→ α × β → β, y �→ bool]

ε2 ⊕ ε1 = [u �→ α × β → β, y �→ bool] ⊕ [x �→ α → β, y �→ int, z �→ α × β]

= [u �→ α × β → β, y �→ bool, x �→ α → β, y �→ int, z �→ α × β]

Since environments are always searched from left to right, the result of the overlay

operator is the concatenation of the two environments. In this example the result is

that y is mapped to bool in the new environment ε2 ⊕ ε1. In Prolog, environments

are represented as lists of bindings just as described here. The overlay operator is

simply the append predicate in Prolog. Recalling that the find predicate searches an

environment from left to right the result of appending two lists is the overlay of the

bindings in the second list. One more bit of notation is needed. When a declaration

creates a new environment it will be written using a double right arrow as follows.

ε ⊢ dec ⇒ εdec

This indicates that the declaration builds a new environment εdec that will be used

later in the type inference rule. Now we are ready to define the let expression type

inference rule.

Let

ε ⊢ dec ⇒ εdec, εdec ⊕ ε ⊢ esequence : β

ε ⊢ let dec in esequence end : β

The dec declaration in the rule above can be one of two types of declarations in

Small: either a val declaration or a series of fun declarations. The type inference for

these two types of declarations is provided in the rules below. The expression e in

the rule above is a sequence of expressions. The type inference rule for sequential

execution is provided in a later section of this chapter.

ValDec

pat : α ⇒ εpat , ε ⊢ e : close(α)

ε ⊢ val pat = e ⇒ εpat

In the ValDec rule there are pattern declarations. The type inference rules for pattern

declarations are provided in the next section of the chapter. Each pattern declaration

provides an environment mapping identifiers in the pattern to their associated types.

The next section provides the type inference rules for pattern matching along with

the environments yielded by each type of pattern.

ValRecDec

[id : α] ⊕ ε ⊢ e : α

ε ⊢ val rec id = e ⇒ [id : close(α)]

8.9 Let Expressions 321

A ValRecDec is used when an identifier is bound to an anonymous function that calls

itself recursively. Anonymous functions don’t normally call themselves. In this one

instance, the anonymous function can through the use of a recursive binding. The

binding in this case binds the identifier to the type of the function in the body of the

function.

FunDecs

∀i 1 ≤ i ≤ n,∀ j 1 < j ≤ n, n ≥ 1,

[id1 �→ α1 → β1 {, id j �→ α j → β j }] ⊕ ε ⊢ idi matchesi : αi → βi

ε ⊢ fun id1 matches1 {and id j matches j } ⇒ [id1 �→ close(α1 → β1) {, id j �→ close(α j → β j)}]

In the rule above the braces (i.e. { and }) are EBNF and represent zero or more

occurrences as necessary. Since j must be greater than 1, if n=1 then no occurrences

of the parts written inside braces are necessary. This rule introduces matches. The

type inference for matches appears right after the section on patterns.

A FunDecs is a series of mutually recursive function definitions. See mlcomp.sml

for examples where the keyword and is used between function definitions. The rule

above starts with the premise that each function in the FunDecs has a type α → β.

The rule makes an instance of the function type and places it in the environment given

the matches. The matches are the list of pattern matches for one function definition.

This is done because all recursive function calls to functions in the FunDecs must

have consistent types. As the type inference rules are satisfied the instance of the

type is bound to type values. If these premises are met, the conclusion produces a

new environment with each function bound to its type.

The newly built environment that results from the FunDecs rule contains a type

function called close. This type function is important. Closing a type means that any

free type variables (i.e. Prolog type variables) are instantiated to typevar type vari-

ables. This is needed because otherwise the first application of a function with free

type variables would instantiate them to the types of that particular function appli-

cation. This would not be a problem if functions were not polymorphic. However,

functions in Standard ML often have polymorphic types. The close type function is

needed to support polymorphic type inference. The close function is the inverse of

the inst type function.

8.10 Patterns

Patterns are used in ValDec declarations and in matches which are discussed in the

next section. When a pattern is used, it produces bindings of one or more identifiers

to types. Constant values can be used as patterns as in the IntPat, BoolPat, StrPat,

NilPat, and UnitPat rules. Patterns like this don’t produce any bindings because

identifiers are not part of these patterns.

322 8 Standard ML Type Inference

IntPat

integer_constant : int ⇒ []

BoolPat

true : bool ⇒ []

f alse : bool ⇒ []

StrPat

string_constant : str ⇒ []

NilPat

nil : α list ⇒ []

ConsPat

pat1 : α ⇒ εpat1 , pat2 : α list ⇒ εpat2

pat1::pat2 : α list ⇒ εpat1 + εpat2

TuplePat

∀i 1 ≤ i ≤ n, n ≥ 0

pati : αi ⇒ εpati

(pat1, pat2, ..., patn) : ×n
i=1αi ⇒

∑n
i=1 εpati

ListPat

∀i 1 ≤ i ≤ n, n ≥ 0

pati : α ⇒ εpati

[pat1, pat2, ..., patn] : α list ⇒
∑n

i=1 εpati

The ConsPat, TuplePat, and ListPat rules may contain other patterns. Each of them

employ the disjoint union operator to build new environments from their sub-

environments. Disjoint union is used because duplicate identifiers are not allowed

in patterns. The + and
∑

symbols are used to denote the disjoint union of sets of

patterns.

The TuplePat rule forms the cross product type of all its constituent types and forms

the environment that results from all the sub-pattern environments being overlayed

8.10 Patterns 323

Fig. 8.14 Pattern matching

on one another. In the vacuous case, when n = 0, the TuplePat rule derives the unit

pattern (i.e. the empty tuple) and yields an empty environment.

The vacuous case of the ListPat rule, when n = 0, provides an alternative form

of specifying the empty list. Both nil and [] represent the empty list in Standard ML

with polymorphic type α list .

IdPat

id : α ⇒ [id �→ α]

Most patterns boil down to creating bindings of identifiers to values. The IdPat type

inference rule yields a new binding environment, binding the identifier to its type.

Consider the program in Fig. 8.14. Typechecking this program results in the following

output.

1 letdec(

2 bindval(infixpat ({:}{:} , tuplepat ([idpat(x),idpat(y)]),idpat(L)),

3 listcon ([tuple ([int (1),int (2)]),tuple ([int (3),int (4)])])),

4 [apply(id(println),id(x))])

5 val (x,y){:}{:}L : (int * int) list

6 val it : unit

7 The program passed the typechecker .

The type inference rules specify how the type checker works. To see this in action a

proof is possible using the type inference rules. Each step in the proof is justified by a

type inference rule written to the right side of the rule’s use. To reach the conclusion

(1) of the type checker, premises (2) and (3) must hold.

(2)ε ⊢ val (x, y)::L = [(1, 2), (3, 4)] ⇒ εdec (3)εdec ⊕ ε ⊢ println x : unit

(1)ε ⊢ let val (x, y)::L = [(1, 2), (3, 4)] in println x end : unit
(Let)

εdec = [x �→ int, y �→ int, L �→ int ∗ int list]

To prove (2):

(4)(x, y)::L : int × int list ⇒ εdec (5)ε ⊢ [(1, 2), (3, 4)] : int × int list

(2)ε ⊢ val (x, y)::L = [(1, 2), (3, 4)] ⇒ εdec
(V al Dec)

324 8 Standard ML Type Inference

To prove (4):

(6)(x, y) : int × int ⇒ [x �→ int, y �→ int] (7)L : int × int list ⇒ [L �→ int × int list]

(4)(x, y)::L : int × int list ⇒ εdec

(Cons Pat)

To prove (6):

(8)x : int ⇒ [x �→ int] (9)y : int ⇒ [y �→ int]

(6)(x, y) : int × int ⇒ [x �→ int, y �→ int]
(T uplePat)

Premises (7), (8), and (9) are true by virtue of the IdPat inference rule. Considering

(5):

(10)ε ⊢ (1, 2) : int × int (11)ε ⊢ (3, 4) : int × int

(5)ε ⊢ [(1, 2), (3, 4)] : int × int list
(ListCon)

Considering (10) and a similar argument for (11):

(12)ε ⊢ 1 : int (13)ε ⊢ 2 : int

(10)ε ⊢ (1, 2) : int × int
(T upleCon)

Both (12) and (13) are true by the IntCon rule. A similar argument holds for (11).

The proof nears completion by proving (3):

(14)εdec ⊕ ε ⊢ println : α → unit int → unit : inst (α → unit) (15)εdec ⊕ ε ⊢ x : inst (int)

(3)εdec ⊕ ε ⊢ println x : unit
(Fun App)

Both (14) and (15) are true by the Identifier rule concluding the proof of the type cor-

rectness of this program. The sequence rule was glossed over in this proof. Sequence

type checking appears later in the chapter.

Practice 8.1 Prove that the program in Fig. 8.15 is correctly typed. The

abstract syntax for this program is provided here.

letdec(bindval(idpat(’x’),int(’5’)),

[letdec(bindval(idpat(’y’),int(’6’)),

[apply(id(’println ’),apply(id(’+’),tuple ([id(’x’),id(’y’)])))

])

]).

You can check your answer(s) in Section 8.19.1.

Practice 8.2 Minimally, what must the type environment contain to correctly

type check the program in Fig. 8.15.

You can check your answer(s) in Section 8.19.2.

8.11 Matches 325

l e t v a l

v a l

i n

end

Fig. 8.15 test10.sml

8.11 Matches

Matches

There are two alternatives to the Matches rule differing only in the syntax of the

match.

∀i 1 ≤ i ≤ n,∀ j 1 < j ≤ n, n ≥ 1

ε ⊢ id : α → β, pati : α ⇒ εpati , εpati ⊕ ε ⊢ ei : β

ε ⊢ id pat1 = e1{| id pat j = e j } : α → β

or

∀i 1 ≤ i ≤ n,∀ j 1 < j ≤ n, n ≥ 1

ε ⊢ id : α → β, pati : α ⇒ εpati , εpati ⊕ ε ⊢ ei : β

ε ⊢ id pat1 => e1{| pat j => e j } : α → β

The Matches type inference rule handles one or more matches in a function definition

or other matches occurrence. A match has an identifier (i.e. the name of the function),

a pattern, and an expression. Each match takes an argument and returns a value. The

argument and pattern must be of type α and the type of the expression must be of

type β. In addition, the bindings created by the pattern are part of the environment

when the type of the expression is inferred.

l e t fun

and

i n

end

Fig. 8.16 test11.sml

326 8 Standard ML Type Inference

Consider the program in Fig. 8.16. This is an example of a program with multi-

ple function declarations separated by the keyword and, thus allowing them to be

mutually exclusive, which they are. The first function, f has two matches, which the

Matches rule handles. The abstract syntax for this program includes two funmatches,

one for each function f and g.

1 letdec(

2 funmatches(

3 [funmatch(f,

4 [match(tuplepat ([intpat (0),idpat(y)]),id(y)),

5 match(tuplepat ([idpat(x),idpat(y)]),apply(id(g),

6 tuple ([id(x),apply(id(*),tuple ([id(x),id(y)]))])))]),

7 funmatch(g,

8 [match(tuplepat ([idpat(x),idpat(y)]),

9 apply(id(f),tuple ([apply(id(-),tuple ([id(x),int (1)])),id(y)

])))])]),

10 [apply(id(println),apply(id(f),tuple ([int (10),int (5)])))])

Consulting the AST for the program the two matches for f each include a pattern

and the expression after the equals sign. The first expression is the y that is returned

for the first match of f. The second match of f returns g(x, x ∗ y).

8.12 Anonymous Functions

AnonFun

[id �→ α → β] ⊕ ε ⊢ id matches : α → β

ε ⊢ f n id matches : α → β

An anonymous function is given a name by the parser before a Prolog term is created.

Names are needed for code generation. The type checker uses the name only to

provide consistency in the way the Matches type inference rule is satisfied. However,

the identifier is not used by the type inference rule because an anonymous function

never calls itself recursively except in the case of a val rec binding, where a different

identifier is present to be bound to the function. Consider the anonymous function

defined in Fig. 8.17. The abstract syntax for this program is as shown here.

1 func(anon@0 ,[match(idpat(x),apply(id(+),tuple ([id(x),int (1)])))])

Notice that the compiler has assigned a name to this function. The name anon@0 is

needed by the code generator and also by the Matches rule above (only to syntactically

match the rule though), but is not used during type inference. Applying this program

to the AnonFun rule we get this instance.

fn

Fig. 8.17 Anonymous function

8.12 Anonymous Functions 327

[anon@0 �→ int → int] ⊕ ε ⊢ anon@0 x => x + 1 : int → int

ε ⊢ f n anon@0 x => x + 1 : int → int

In this instance it doesn’t appear much has changed. The fn has dropped in the

premise. The premise is now an instance of the Matches rule which can then be

applied to further reduce the proof.

Practice 8.3 Provide a complete proof that the program in Fig. 8.17 is correctly

typed.

You can check your answer(s) in Section 8.19.3.

8.13 Sequential Execution

Sequence

∀i 1 ≤ i ≤ n,∀ j 1 < j ≤ n, n ≥ 1

ε ⊢ ei : αi

ε ⊢ e1{; e j } : αn

Sequential execution of expressions results in the last value of the sequence. All other

values are discarded. So, the type of a sequence is the type of the last expression

evaluated. In the degenerative case, where n = 1, the type of the sequence is the type

of the only expression in the sequence.

8.14 If-Then and While-Do

If-Then expressions and While-Do expressions have type restrictions on the types

of values they can process. The type inference rules provided here describe those

restrictions. The IfThen type inference rule was first presented in Chap. 5.

IfThen

ε ⊢ e1 : bool, ε ⊢ e2 : α, ε ⊢ e3 : α

ε ⊢ i f e1 then e2 else e3 : α

WhileDo

ε ⊢ e1 : bool, ε ⊢ e2 : α

ε ⊢ while e1 do e2 : α

http://dx.doi.org/10.1007/978-3-319-70790-7_5

328 8 Standard ML Type Inference

Fig. 8.18 If-Then type inference

While reporting yes it type checked correctly and here is your type, or no it did not

type check correctly is what Prolog would do by default, that isn’t really enough

information to determine where in a program the type checker failed. As the type

checker proceeds, certain error messages can be printed. For instance, consider the

code for type checking If-Then expressions in Prolog.

The first rule in Fig. 8.18 is the Prolog implementation of the If-Then type inference

rule. If the first rule works the cut operator insures that no backtracking will occur to

match it another way. If the first rule is not satisfied, then an error message is printed

and an exception is thrown to terminate the type checker.

Strictly speaking, an exception does not need to be thrown in the code of Fig. 8.18.

The result of the If-Then failure could be the special type typeerror. The type infer-

ence algorithm is said to by strict in typeerror which means that once a type results

in typeerror all types in which it takes part must also result in typeerror. However,

this still leads to the whole program failing type inference and throwing an exception

is a quick and dirty way to terminate the type inference algorithm.

8.15 Exception Handling

Handler

ε ⊢ e : α, [handle@ �→ exn → α] ⊕ ε ⊢ handle@ matches : exn → α

ε ⊢ e handle matches : α

An exception handler is a polymorphic function as far as the type inference system is

concerned, mapping from type exn to the type of the expression. Both the expression

and its exception handler must have the same result type according to this definition.

To implement the handler like a function the identifier handle@ is bound to the type

of the handler.

8.16 Chapter Summary 329

8.16 Chapter Summary

This is a shorter but denser chapter than some in the text. Type inference is difficult

at best to demonstrate on paper. Section 8.10 carries out a complete proof of type

correctness as one example from beginning to end of type inference. The type infer-

ence system implemented here relies heavily on the unification of Prolog variables

to terms. Perhaps the best way to understand this code is to extend it. Implementing

type inference rules demands an understanding of how Prolog works. Examining

already written type inference rules can help as well.

In spite of it being a challenging topic, inference and unification are two very

powerful techniques available to computer programmers through the use of Prolog.

Unification provides the means to work both backwards and forwards or anywhere

in between as was pointed out with the append predicate in the last chapter. In terms

of type inference, one important aspect is being able to assign a type to an expression

before you know what its type is. By assigning a Prolog variable that will be unified

to an actual type later, the type inference can be written very declaratively, like the

inference rules themselves, without regard to exactly the order that information is

known. That’s the power of Prolog. The unification algorithm makes declarative

programming in Prolog possible.

Type checking, without type inference, is effective and simpler to implement but

costs the programmer more in having to explicitly declare types of each variable.

Being explicit about types is not always a bad thing. Even the SML compiler needs

a little help sometimes by declaring the type of a function parameter. Regardless of

the language, every type checker engages in some type inference. Standard ML’s

type inference system differs from other language implementations by the extent to

which types are inferred.

8.17 Review Questions

1. What appears above and below the line in a type inference rule?

2. Why don’t infix operators appear in the abstract syntax of programs handled by

the type checker?

3. What does typevar represent in Fig. 8.8?

4. What does typeerror represent in Fig. 8.8?

5. What does the type of the list [(“hello”,1,true)] look like as a Prolog term?

6. What is the type environment?

7. Give an example of the use of the overlay operator.

8. What pattern(s) are used in this let expression?

1 let val (x,y,z) = (l+s+s2{h}ellop{,}1,true) in println x end

What is the pattern as a Prolog term?

9. Give an example where the Sequence rule might be used to infer a type.

10. Give a short example of where the Handler rule might be used to infer a type.

330 8 Standard ML Type Inference

8.18 Exercises

1. The following program does not compile correctly or typecheck correctly using

the mlcomp compiler and type inference system. However, it is a valid Standard

ML program. Modify both the mlcomp compiler and type checker to correctly

compile and infer its type. This program is included in the compiler project as

test20.sml.

1 let val [(x,y,z)] = [(l+s+s2{h}ellop{,}1,true)] in println x end

Output from the type checker should appear as follows.

1 Typechecking is commencing ...

2 Here is the AST

3 letdec(bindval(listpat ([tuplepat ([idpat(x),idpat(y),idpat(z)])]),

4 listcon ([tuple ([str(" hello "),int (1),bool(true)])])),

5 [apply(id(println),id(x))])

6 val [(x,y,z)] : (str * int * bool) list

7 val it : unit

8 The program passed the typechecker .

2. Implement the Prolog type predicates to get the following program to type check

successfully. This program is test14.sml in the mlcomp compiler project. This will

involve writing type checking predicates for matching, boolean patterns, integer

patterns, and sequential execution.

1 l e t f u n f(true ,x) = (println(x); g(x-1))

2 | f(false ,x) = g(x-1)

3 a n d g 0 = ()

4 | g x = f(true ,x)

5 i n

6 g(10)

7 e n d

Output from the type checker should appear as follows.

1 Typechecking is commencing ...
2 Here is the AST
3 letdec(funmatches ([funmatch(f,[match(tuplepat ([boolpat

(true),idpat(x)]),
4 expsequence ([apply(id(println),id(x)),apply(id(

g),apply(id(-),
5 tuple([id(x),int(1)])))])),match(tuplepat ([

boolpat(false),idpat(x)]),
6 apply(id(g),apply(id(-),tuple([id(x),int(1)])))

)]),funmatch(g,[match(intpat (0),
7 tuple ([])),match(idpat(x),apply(id(f),tuple([

bool(true),id(x)])))])]),
8 [apply(id(g),int (10))])
9 val f = fn : bool * int -> unit

10 val g = fn : int -> unit
11 val it : unit
12 The program passed the typechecker.

8.18 Exercises 331

3. Implement enough of the type checker to get test12.sml to type check correctly.

This will mean writing the WhileDo inference rule as a Prolog predicate, imple-

menting the Match rule’s predicate called typecheckMatch, and the type inference

predicate for sequential execution named typecheckSequence as defined in the

Sequence rule. The code for test12.sml is given here for reference.

1 l e t v a l zero = 0

2 f u n fib n =

3 l e t v a l i = ref zero

4 v a l current = ref 0

5 v a l next = ref 1

6 v a l tmp = ref 0

7 i n

8 w h i l e !i < n d o (

9 tmp := !next + !current;

10 current := !next;

11 next := !tmp;

12 i := !i + 1

13);

14 !current

15 e n d

16 v a l x = Int.fromString(input(l+s+s2{"lease enter an integer:"))

17 v a l r = fib(x)

18 i n

19 print l+s+s2{F}ib(p{;}

20 print x;

21 print l+s+s2{)} is p{;}

22 println r

23 e n d

Output from the type checker should appear as follows.

1 Typechecking is commencing ...
2 Here is the AST
3 letdec(bindval(idpat(zero),int(0)) ,[letdec(funmatches

([funmatch(fib ,
4 [match(idpat(n),letdec(bindval(idpat(i),apply(id(

ref),id(zero))),
5 [letdec(bindval(idpat(current),apply(id(ref),int(0)

)),
6 [letdec(bindval(idpat(next),apply(id(ref),int(1))),
7 [letdec(bindval(idpat(tmp),apply(id(ref),int(0))),
8 [whiledo(apply(id(<),tuple([apply(id(!),id(i)),id(n

)])),
9 expsequence ([apply(id(:=),tuple([id(tmp),apply(id

(+),tuple([apply(id(!),id(next)),
10 apply(id(!),id(current))]))])),apply(id(:=),tuple([

id(current),apply(id(!),
11 id(next))])),apply(id(:=),tuple([id(next),apply(id

(!),id(tmp))])),apply(id(:=),
12 tuple([id(i),apply(id(+),tuple([apply(id(!),id(i)),

int(1)]))]))])),apply(id(!),
13 id(current))])])])]))])]) ,[letdec(bindval(idpat(x),

apply(id(Int.fromString),
14 apply(id(input),str(" Please enter an integer :")))),

332 8 Standard ML Type Inference

15 [letdec(bindval(idpat(r),apply(id(fib),id(x))) ,[
apply(id(print),str("Fib(")),

16 apply(id(print),id(x)),apply(id(print),str(") is"))
,apply(id(println),id(r))])])])])

17 val zero : int
18 val i : int ref
19 val current : int ref
20 val next : int ref
21 val tmp : int ref
22 val fib = fn : int -> int
23 val x : int
24 val r : int
25 val it : unit
26 The program passed the typechecker.

4. Add support to the type checker to correctly infer the types of case expressions

in Small. The following program should type check correctly once this project is

completed. This test is in test15.sml in the mlcomp compiler project. This will

involve writing code to correctly type check matches according to the Match rule.

If case statements are not yet implemented in the compiler, support must be added

to the compiler to parse case expressions, build an AST for them, and write their

AST to the a.term file.

1 l e t v a l x = 4

2 i n

3 println

4 (c a s e x o f

5 1 => "hello"

6 | 2 => "how"

7 | 3 => "are"

8 | 4 => "you")

9 e n d

Output from the type checker should appear as follows.

1 Typechecking is commencing ...

2 Here is the AST

3 letdec(bindval(idpat(x),int (6)) ,[apply(id(println),caseof(id(x),

4 [match(intpat (1),str(" hello ")),match(intpat (2),str("how")),

5 match(intpat (3),str("are")),match(intpat (4),str("you"))]))])

6 val x : int

7 val it : unit

8 The program passed the typechecker .

5. Add support to the type checker to correctly infer the types for test7.sml. The

code is provided below for reference. Support will need to be added to infer the

types of anonymous functions defined in the rule AnonFun, matching defined in

the rule Matches, and the ConsPat rule.

8.18 Exercises 333

1 l e t f u n append nil L = L

2 | append (h{:}{:}t) L = h {:}{:} (append t L)

3 f u n appendOne x = (f n nil => (f n L => L)

4 | h{:}{:}t => (f n L => h {:}{:} (appendOne t L

))) x

5 i n

6 println(append [1,2,3] [4]);

7 println(appendOne [1,2,3] [4])

8 e n d

Output from the type checker should appear as follows.

1 Typechecking is commencing ...
2 Here is the AST
3 letdec(funmatches ([funmatch(append ,[match(idpat(v0),

func(anon@3 ,
4 [match(idpat(v1),apply(func(anon@2 ,[match(tuplepat ([

idpat(nil),idpat(L)]),id(L)),
5 match(tuplepat ([infixpat ({:}{:} , idpat(h),idpat(t)),

idpat(L)]),apply(id ({:}{:}) ,
6 tuple([id(h),apply(apply(id(append),id(t)),id(L))])))

]),
7 tuple([id(v0),id(v1)])))]))])]) ,[letdec(funmatches ([

funmatch(appendOne ,
8 [match(idpat(x),apply(func(anon@6 ,[match(idpat(nil),

func(anon@4 ,
9 [match(idpat(L),id(L))])),match(infixpat ({:}{:} , idpat(

h),idpat(t)),
10 func(anon@5 ,[match(idpat(L),apply(id ({:}{:}) ,tuple([id

(h),apply(apply(id(appendOne),id(t)),
11 id(L))])))]))]),id(x)))])]) ,[apply(id(println),apply(

apply(id(append),
12 listcon ([int(1),int(2),int(3)])),listcon ([int(4)]))),

apply(id(println),
13 apply(apply(id(appendOne),listcon ([int(1),int(2),int

(3)])),listcon ([int(4)])))])])
14 val append = fn : ’a list -> ’a list -> ’a list
15 val appendOne = fn : ’a list -> ’a list -> ’a list
16 val it : unit
17 The program passed the typechecker.

6. Add support for type inference for recursive bindings. The following program,

saved as test19.sml in the Small compiler project, is a valid program with a

recursive binding. It will type check correctly if the ValRecDec type inference

rule is implemented. Write the code to get this program to pass the type checker

as a valid program.

1 l e t v a l r e c f = (f n 0 => 1

2 | x => x * (f (x-1)))

3 i n

4 println(f 5)

5 e n d

334 8 Standard ML Type Inference

Output from the type checker should appear as follows.

1 Typechecking is commencing ...
2 Here is the AST
3 letdec(bindvalrec(idpat(f),func(anon@0 ,[match(

intpat (0),int(1)),match(idpat(x),
4 apply(id(*),tuple([id(x),apply(id(f),apply(id

(-),tuple([id(x),int(1)])))])))])),
5 [apply(id(println),apply(id(f),int(5)))])
6 val f = fn : int -> int
7 val it : unit
8 The program passed the typechecker.

7. Currently the type checker allows duplicate identifiers in compound patterns

like listPat and tuplePat. Standard ML does not allow duplicate identifiers in

patterns. The type checker uses the append predicate to combine pattern binding

environments. This is not good enough. Find the locations in the type checker

where pattern environments are incorrectly appended and rewrite this code to

enforce that all identifiers within a pattern must be unique. If not, you should print

an error message like “Error: duplicate variable in pattern(s): x” to indicate the

problem and typechecking should end with an error.

8. Currently, the abstract syntax and parser of Small includes support for the wildcard

pattern in pattern matching, but the type checker does not support it. Add support

for wildcard patterns, write a test program, and test the compiler and type checker.

Be sure to write a type inference rule for wildcard patterns first.

9. Currently, the abstract syntax and parser of Small includes support for the as

pattern in pattern matching, but the type checker does not support it. Add support

for as patterns, write a test program, and test the compiler and type checker. The

as pattern comes up when you write a pattern like L as h::t which assigns L as a

pattern that represents the same value as the compound pattern of h::t. Be sure to

write a type inference rule for as patterns first.

8.19 Solutions to Practice Problems

8.19.1 Solution to Practice Problem 8.1

Proving this requires a proof like was done in the chapter. Rules involved include

Let, ValDec, IdPat, TupleCon, and FunApp. Technically, the Sequence rule is also

required, but only in the degenerative case (i.e. when n = 1).

8.19 Solutions to Practice Problems 335

8.19.2 Solution to Practice Problem 8.2

Minimally the environment must contain println bound to a function type of α →

unit and the + function bound to a function type of int × int → int .

8.19.3 Solution to Practice Problem 8.3

The AnonFun rule is applied first which requires the Matches rule be applied. The

Matches rule requires the use of the IdPat rule and the FunApp rule. Finally, the

IntCon rule is needed to complete the proof.

9Appendix A: The JCoCo Virtual
Machine Specification

JCoCo is a virtual machine which includes a built-in assembler. JCoCo executes

assembly language programs by first processing the assembly language program and

then executing it. The processing of the assembly language program is called assem-

bling. The assembly language supported by JCoCo is defined by a BNF grammar.

The grammar specifies how JCoCo assembly language programs are constructed. The

grammar for the JCoCo virtual machine assembly language is provided in Fig. 9.1.

According to the BNF in Fig. 9.1 a JCoCo program is a sequence of class or

function definitions. Each class definition may consist of one or more function defin-

itions. Each function definition has several parts including a sequence of JCoCo

virtual machine instructions like LOAD_CONST, STORE_FAST, and many oth-

ers. The complete specification of instructions supported by JCoCo is provided at

http://cs.luther.edu/~leekent/JCoCo and in this appendix. The complete syntax of the

language is given in Fig. 9.1. There are just a few things to note in the BNF.

• Instructions may have as many labels defined on them as necessary. The definition

of labeled instruction is recursive.

• The use of <null> indicates an empty production. For instance, a FunctionList may

be empty meaning that there might not be a function list in a function definition.

In this case that simply means a function might or might not have some nested

functions.

• [and] indicate an optional part of a JCoCo program.

• Of course, the ... indicates there are more Unary and Binary mnemonics that are

not listed in the BNF. The complete list of instructions and descriptions of each

of them are given in this appendix.

• The JCoCo language is not line oriented. This BNF completely describes the

language which has no line requirements. However, formatting a program like the

disassembler will help in the clarity of written programs.

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_9

337

http://cs.luther.edu/~leekent/JCoCo

338 9 Appendix A: The JCoCo Virtual Machine Specification

Fig. 9.1 The BNF for the JCoCo assembly language

9.1 Types

JCoCo supports the types given in Fig. 9.2.

9.2 JCoCo Magic and Attr Methods 339

Fig. 9.2 JCoCo supported types

9.2 JCoCo Magic and Attr Methods

One of the powerful features of the Python language comes from methods being

looked up on objects at run-time. This means that new types of objects can easily

be added to the language because the virtual machine instructions presented in this

appendix will polymorphically call the proper methods since lookup happens at

run-time. In support of this, JCoCo, like Python, has what have traditionally been

called magic methods. These methods typically begin and end with two underscores.

Magic methods are used by instructions as needed. For instance, the _ _add_ _ magic

method is used by the BINARY_ADD instruction.

JCoCo includes support for all the magic methods that are defined by Python.

While support is there for the whole list, not all magic methods are implemented on

each type of object. The magic methods that are supported are controlled by the type

of the object. When a magic method is called, the magic method is first looked up on

the type and if it is supported, the call is made. Otherwise, an IllegalOperationEx-

340 9 Appendix A: The JCoCo Virtual Machine Specification

ception is raised. The use of magic methods is illustrated in the descriptions of the

JCoCo instructions in this appendix.

The possible magic methods include the following: _ _cmp_ _, _ _eq_ _, _ _ne_ _,

_ _lt_ _, _ _gt_ _, _ _le_ _, _ _ge_ _, _ _pos_ _, _ _neg_ _, _ _abs_ _, _ _invert_ _, _ _

round_ _, _ _floor_ _, _ _ceil_ _, _ _trunc_ _, _ _add_ _, _ _sub_ _, _ _mul_ _, _ _

floordiv_ _, _ _div_ _, _ _truediv_ _, _ _mod_ _, _ _divmod_ _, _ _pow_ _, _ _lshift_ _,

_ _rshift_ _, _ _and_ _, _ _or_ _, _ _xor_ _, _ _radd_ _, _ _rsub_ _, _ _rmul_ _, _ _

rfloordiv_ _, _ _rdiv_ _, _ _rtruediv_ _, _ _rmod_ _, _ _rdivmod_ _, _ _rpow_ _, _ _

rlshift_ _, _ _rand_ _, _ _ror_ _, _ _rxor_ _, _ _iadd_ _, _ _isub_ _, _ _imul_ _, _ _

ifloordiv_ _, _ _idiv_ _, _ _itruediv_ _, _ _imod_ _, _ _ipow_ _, _ _ilshift_ _, _ _iand_ _,

_ _ior_ _, _ _ixor_ _, _ _int_ _, _ _long_ _, _ _float_ _, _ _bool_ _, _ _cmplex_ _, _ _

oct_ _, _ _hex_ _, _ _index_ _, _ _coerce_ _, _ _str_ _, _ _list_ _, vfunlist_ _, _ _repr_ _,

_ _unicode_ _, _ _formatv, _ _hash_ _, _ _nonzero_ _, _ _dir_ _, _ _sizeofv, _ _getattr

_ _, _ _setattr_ _, _ _delattr_ _, _ _getattribute_ _, _ _len_ _, _ _getitem_ _, _ _setitem

_ _, _ _delitem_ _, _ _reversed_ _, _ _contains_ _, _ _missing_ _, _ _instancecheck_ _,

_ _subclasscheckv, _ _call_ _, _ _copy_ _, _ _deepcopyv, _ _iter_ _, _ _next_ _, _ _type

_ _, _ _excmatchv.

The last two magic methods are specific to CoCo and JCoCo but not a part of

Python. The _ _type_ _ magic method is called when the type function is called on

an object. The _ _excmatch_ _ magic method is called when matching an exception

in an exception handler.

In addition, some objects have additional methods defined on them that are

accessed like traditional method calls on objects. For instance, str objects have a

split method that can be called to split a string on separator characters. The list of attr

methods defined in JCoCo are split on strings, append on lists, head on funlists, tail

on funlists, concat on strings, keys on dictionaries, and values on dictionaries. The

head and tail methods are not found in Python but are defined in CoCo and JCoCo

to support funlist objects which are defined to have a head and a tail.

9.3 Global Built-In Functions

JCoCo supports the following globally available built-in functions. These functions

are not associated with any one type. When they are called, they polymorphically

handle the arguments passed to them in their own manner as described.

print is a built-in function that prints a variable number of arguments to standard output,

followed by a newline character, and returns None, just as print does in Python. The objects

passed to print are printed by calling the _ _str_ _ magic method on each of them and append-

ing their strings with an extra space between each pair of objects.

fprint prints exactly one argument. This is a built-in function that is specific to JCoCo and is

not part of the standard Python language. It prints its argument by calling the _ _str_ _ magic

method on the object to convert it to a string. This function returns itself, which can be useful

when chaining together fprint expressions.

9.3 Global Built-In Functions 341

tprint prints exactly one argument, which may be a tuple, and returns None. tprint can be

thought of as tuple print, because if a tuple is provided, the contents of the tuple are printed,

separated by spaces, just as print does. However, tprint takes only one argument which may

be a tuple. print takes a variable number of arguments. tprint is specific to JCoCo and is not

part of the standard Python language. The values of the tuple are converted to strings using

the _ _str_ _ magic method on each object. None is returned by tprint.

input is a built-in function that prints its prompt to standard output and returns one line of

input as a string, just as input does in Python.

iter is a built-in function that constructs and returns an iterator over the object that is passed

to it, just as Python’s iter function works. This is implemented by calling the viter_ _ magic

method on the object.

len is a built-in function that returns the length of the sequence that is passed to it. It does

this by calling the _ _len_ _ magic method on the object given to it.

concat is built-in function that returns a string representation of the elements of its sequence

concatenated together. The concat function in turn calls the concat method on the object that

is passed to it.

int, float, str, funlist, type, and bool are all calls to types. When the type is called, the corre-

sponding magic method of _ _int_ _, _ _float_ _, _ _strv, _ _funlistv, _ _type_ _, or _ _bool_ _

is called on the object that is passed to it. In this way, the object itself is in charge of how it

is converted to the specified type.

range is a call to the range type that constructs a range object over the specified range. As in

Python, the range function has 1, 2, or 3 arguments passed to it, representing the start, stop,

and increment of the range of integer values. The start and increment values are optional.

Exception is a call to the exception type that constructs and returns an exception object that

may be raised or thrown and caught by an exception handler.

super may be called in an instance method to gain access to the base class of an object. Single

inheritance is supported in JCoCo. Unlike Python, multiple inheritance is not supported.

9.4 Virtual Machine Instructions

This is a subset of the full Python 3.2 instruction set with the addition of a few extra

instructions and a couple of minor differences.

In the instructions in this appendix, TOS refers to the top element on the operand

stack. TOS1 refers to the element second from the top of the operand stack. TOS2,

and so on are similarly defined.

JCoCo instructions each take up exactly one location of space. The Python Virtual

Machine uses one or more bytes for each instruction and therefore some instruc-

tions are composed of multiple bytes. JCoCo does not store its instructions as bytes

and therefore each instruction takes exactly one location within the JCoCo virtual

machine interpreter.

The Python Virtual machine defines some branching instructions as absolute

jumps and other as relative jumps, that being relative to the current PC. JCoCo

differs from the Python Virtual Machine in this regard. In the instructions any jump

or branch is to an absolute location. Generally, the target of a branch or jump will

342 9 Appendix A: The JCoCo Virtual Machine Specification

be specified using a label. If labels are used for all branch and jump targets then

this difference will only be noticable when looking at the assembled program. When

read by the JCoCo assembler, the labels are converted to target locations which are

always absolute addresses.

9.5 Arithmetic Instructions

BINARY_ADD

Implements TOS = TOS1 + TOS by making the call TOS1._ _add_ _(TOS).

BINARY_SUBTRACT

Implements TOS = TOS1 - TOS by making the call TOS1._ _sub_ _(TOS).

BINARY_MULTIPLY

Implements TOS = TOS1 * TOS by making the call TOS1._ _mul_ _(TOS).

BINARY_MODULO

Implements TOS = TOS1 % TOS by making the call TOS1._ _mod_ _(TOS).

BINARY_FLOOR_DIVIDE

Implements TOS = TOS1 // TOS by making the call TOS1._ _floordiv_ _(TOS).

BINARY_TRUE_DIVIDE

Implements TOS = TOS1 / TOS by making the call TOS1._ _truediv_ _(TOS).

BINARY_POWER

Implements TOS = TOS1 ** TOS by making the call TOS1._ _pow_ _(TOS).

INPLACE_ADD

Implements in-place TOS = TOS1 + TOS. Exactly the same as BINARY_ADD
by making the call TOS1._ _add_ _(TOS).

9.6 Load and Store Instructions

BINARY_SUBSCR

Implements TOS=TOS1[TOS]. This instruction provides indexing into a list,
tuple, or other object that supports subscripting. This is implemented as TOS1.
_ _getitem_ _(TOS).

DELETE_FAST(namei)

This instruction does nothing in JCoCo which varies from the Python imple-
mentation. The purpose of this instruction seems to be implementation depen-
dent. In the Python Virtual Machine it performs cleanup after an exception has

9.6 Load and Store Instructions 343

occurred. The handling of exceptions is different in JCoCo so this instruction
exists to make it work with the disassembler, but it is ignored.

LOAD_ATTR(namei)

Replaces TOS with getattr(TOS,Globals[namei]). An attribute is usually a
method associated with some object.

LOAD_CLOSURE(i)

Pushes a reference to the cell contained in slot i of the cell and free variable
storage. The name of the variable is CellVars[i] if i is less than the length of
CellVars. Otherwise it is FreeVars[i-len(CellVars)].

LOAD_CONST(consti)

Argument consti is a zero-based integer. Pushes Constants[consti] onto the stack.

LOAD_DEREF(i)

Loads the cell contained in slot i of the cell and free variable storage. Pushes a
reference to the object the cell contains on the stack.

LOAD_FAST(namei)

Argument namei is a zero-based integer. Pushes a reference to Locals[namei]
onto the stack.

LOAD_GLOBAL(namei)

Argument namei is a zero-based integer. Loads the Globals[namei] onto the stack.

LOAD_NAME(var_num)

Loads a value from the locals dictionary that is named in the globals at var_num.
It pushes the loaded value onto the stack. Preference should be given to using
LOAD_FAST if possible.

LOAD_BUILD_CLASS

Loads the built-in function for building classes onto the operand stack. This

function, when called, takes two or three arguments. When there are two argu-

ments passed to the build class function the name of the class must be at TOS.

The function that will instantiate the class must be at TOS1. When called with

CALL_FUNCTION, this built-in function for building classes will be at TOS2.

This built-in function leaves the instantiated class on the top of the stack.

When called with three arguments the name of the base class, from which this
class will inherit, is located at TOS and the other two arguments are in the same
order under the name of the base class.

STORE_ATTR(var_num)

Stores the object found at TOS1 in the object found at TOS in an attribute name
found in the globals at var_num.

344 9 Appendix A: The JCoCo Virtual Machine Specification

STORE_DEREF(i)

Stores TOS into the cell contained in slot i of the cell and free variable storage.

STORE_FAST(namei)

Argument namei is a zero-based integer. Stores TOS into the Locals[namei].

STORE_LOCALS

Used during class instantiation. Pops the dictionary from TOS and uses it as
the locals for the currently executing function, replacing any locals dictionary
already in use. The popped dictionary is the attribute dictionary of the class
which includes methods to be instantiated upon object instantiation for objects
of the class.

STORE_NAME(var_num)

Uses the name found in the globals at var_num to store a named value in the
locals dictionary. Preference should be given to STORE_FAST if possible.

STORE_SUBSCR

Implements TOS1[TOS]=TOS2. The instruction provides indexing into a
mutable list or other object that supports subscripting. The instruction is imple-
mented by calling TOS1._ _setitem_ _(TOS,TOS2).

9.7 List, Tuple, and Dictionary Instructions

BUILD_MAP(initial_capacity)

Creates an empty dictionary object and pushes it onto the stack. The initial
capacity is ignored by JCoCo.

STORE_MAP

Performs TOS2[TOS]=TOS1. TOS1 is the value to be stored at key TOS in
dictionary TOS2.

BUILD_TUPLE(count)

Creates a tuple consuming count items from the stack, and pushes the resulting
tuple onto the stack.

SELECT_TUPLE(count)

Pushes the contents of the tuple with count elements onto the operand stack.
The count must match the tuple’s size or an illegal operation exception will be
thrown. The elements of the tuple are pushed so the left-most element is left on
the top of the stack. This instruction is not part of the Python Virtual Machine.
It is JCoCo specific.

9.7 List, Tuple, and Dictionary Instructions 345

BUILD_LIST(count)

Works as BUILD_TUPLE, but creates a list.

BUILD_FUNLIST

Works as BUILD_TUPLE, but creates a list.

SELECT_FUNLIST

This instruction pushes the head and the tail (which is a funlist) onto the operand
stack. The head of the list is left on the top of the operand stack. The tail is
below it on the stack. This instruction is JCoCo specific.

CONS_FUNLIST

Pops two elements from the operand stack. TOS should be a funlist and TOS-1
should be an element. The instruction create a new funlist from the two pieces
with TOS-1 the head and TOS the tail of the new list. It pushes this new list
onto the operand stack. This instruction is JCoCo specific.

9.8 Stack Manipulation Instructions

POP_TOP

Removes the top-of-stack (TOS) item.

ROT_TWO

Swaps the two top-most stack items.

DUP_TOP

Duplicates the reference on top of the stack.

9.9 Conditional and Iterative Execution Instructions

GET_ITER

Implements TOS=iter(TOS).

BREAK_LOOP

Terminates a loop due to a break statement.

POP_BLOCK

Removes one block from the block stack. Per frame, there is a stack of blocks,
denoting nested loops, try statements, and such.

POP_EXCEPT

Removes one block from the block stack. The popped block must be an excep-
tion handler block, as implicitly created when entering an except handler. In

346 9 Appendix A: The JCoCo Virtual Machine Specification

addition to popping extraneous values from the frame stack, the last three
popped values are used to restore the exception state.

END_FINALLY

Terminates a finally clause. The interpreter recalls whether the exception has to
be re-raised, or whether the function returns, and continues with the outer-next
block.

COMPARE_OP(opname)

Performs a Boolean operation. Both TOS1 and TOS are popped from the stack
and the boolean result is left on the operand stack after the execution of this
instruction. opname is an integer corresponding to the following comparisons.
In each case the comparison corresponding to opname is shown along with the
magic method call that implements the comparison.

opname Comparison Operation

0 TOS1 < TOS as TOS1._ _lt_ _(TOS)

1 TOS1 <= TOS as TOS1._ _le_ _(TOS)

2 TOS1 = TOS as TOS1._ _eq_ _(TOS)

3 TOS1 != TOS as TOS1._ _ne_ _(TOS)

4 TOS1 > TOS as TOS1._ _gt_ _(TOS)

5 TOS1 >= TOS as TOS1.vge_ _(TOS)

6 TOS1 contains TOS as TOS1._ _contains_ _(TOS)

7 TOS1 not in TOS as TOS1._ _notin_ _(TOS)

8 TOS1 is TOS as TOS1.is_(TOS)

9 TOS1 is not TOS as TOS1.is_not(TOS)

10 Exception TOS1 matches TOS as TOS1._ _excmatch_ _(TOS)

JUMP_FORWARD(target)

Sets the Program Counter (PC) to target.

POP_JUMP_IF_TRUE(target)

If TOS is true, sets the bytecode counter to target. TOS is popped.

POP_JUMP_IF_FALSE(target)

If TOS is false, sets the bytecode counter to target. TOS is popped.

JUMP_ABSOLUTE(target)

Set bytecode counter to target.

FOR_ITER(target)

TOS is an iterator. Call its _ _next_ _() method. If this yields a new value,
push it on the stack (leaving the iterator below it). If the iterator indicates it is
exhausted TOS is popped, and the PC is set to target.

9.9 Conditional and Iterative Execution Instructions 347

SETUP_LOOP(target)

Pushes a block for a loop onto the block stack. The block spans from the current
instruction to target.

SETUP_EXCEPT(target)

Pushes a try block from a try-except clause onto the block stack. Target points
to the first except block.

SETUP_FINALLY(target)

Pushes a try block from a try-except clause onto the block stack. Target points
to the finally block.

RAISE_VARARGS(argc)

This instruction varies from the Python version slightly. In JCoCo the argc
must be one. This is because exceptions in JCoCo automatically contain the
traceback which is not necessarily the case in the Python Virtual Machine. The
argument on the stack should be an exception. The exception is thrown by this
instruction.

9.10 Function Execution Instructions

RETURN_VALUE

Returns with TOS to the caller of the function.

CALL_FUNCTION(argc)

Calls a function. The argc indicates the number of positional parameters, the
high byte the number of keyword parameters. On the stack, the opcode finds
the keyword parameters first. For each keyword argument, the value is on top
of the key. Below the keyword parameters, the positional parameters are on the
stack, with the right-most parameter on top. Below the parameters, the function
object to call is on the stack. Pops all function arguments, and the function itself
off the stack, and pushes the return value.

MAKE_FUNCTION(argc)

Pushes a new function object on the stack. TOS is the code associated with the
function. The function object is defined to have argc default parameters, which
are found below TOS.

MAKE_CLOSURE(argc)

Creates a new function object, sets its closure, and pushes it on the stack. TOS
is the code associated with the function, TOS1 the tuple containing cells for the
closure’s free variables. The function also has argc default parameters, which
are found below the cells.

348 9 Appendix A: The JCoCo Virtual Machine Specification

9.11 Special Instructions

BREAK_POINT

Pauses execution of the program and drops the JCoCo virtual machine into the
interactive debugger.

10Appendix B: The Standard ML Basis
Library

Following is a subset of the Standard ML Basis Library. The Basis Library is cov-

ered in more detail at http://www.standardml.org/Basis. Documentation for these

structures is found in this appendix.

• Bool

• Int

• Real

• Char

• String

• List

• Array

• TextIO

Other structures exist on the Basis website. The descriptions provided here may be

helpful as well. Each function, along with its signature, is provided for each of the

structures listed in this appendix.

10.1 The Bool Structure

This is the signature of the functions Bool structure. In addition to the not operator,

SML defines the andalso and orelse operators which implement shortcircuit logic.

More information can be found at http://www.standardml.org/Basis/bool.html.

datatype bool = false | true

The bool datatype is either false or true.

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_10

349

http://www.standardml.org/Basis
http://www.standardml.org/Basis/bool.html

350 10 Appendix B: The Standard ML Basis Library

val not : bool -> bool

not true = false, not false = true.

val toString : bool -> string

Converts a true/false value to a string for printing or other purposes.

val fromString : string -> bool option

Converts from a string to a bool. An option is either NONE or SOME val. If

the string cannot be converted to a bool (i.e. it does not contain true or false),

then NONE is returned. Otherwise SOME true or SOME false is returned.

Pattern-matching can be used to determine the return value.

val scan : (char,’a) StringCvt.reader -> (bool,’a) StringCvt.reader

This behaves like fromString except that the remaining character stream is

returned along with the value if a bool is found in the stream.

10.2 The Int Structure

Implementing the INTEGER signature, the Int structure contains the int type.

Integer precision is platform dependent. Normally 32-bit or 64-bit precision is avail-

able depending on the platform. More information can be found at

http://www.standardml.org/Basis/integer.html.

type int

The type of integers.

val precision : Int31.int option

An option indicating the precision of integers. For instance, SOME 31 indicating

32-bit integers from −231 to 231
−1. If the value is NONE it indicates arbitrary

precision.

val minInt : int option

val maxInt : int option

Minimum and maximum integer values given the precision available. NONE

if integers have arbitrary precision.

val toLarge : int -> IntInf.int

val fromLarge : IntInf.int -> int

Conversion functions from and to large integers.

http://www.standardml.org/Basis/integer.html

10.2 The Int Structure 351

val toInt : int -> Int31.int

val fromInt : Int31.int -> int

Conversion functions from and to 32-bit integers. Depending on implementa-

tion these may be identity functions.

val ~ : int -> int

Unary negation. ~6 is a negative 6.

val + : int * int -> int

val - : int * int -> int

val * : int * int -> int

val div : int * int -> int

val mod : int * int -> int

Typical integer operations. Note that div and mod are infix operators returning

the integer division and remainder respectively. For instance, 6 div 4 = 1 and 6

mod 4 = 2. These operations are infix operators.

val quot : int * int -> int

val rem : int * int -> int

These two operations reflect that most hardware implementations of integer

division behave differently than the mathematical definition used by div and

mod for negative integers. Consider the following.

1 - val x = ~6;

2 val x = ~6 : int

3 - x mod 4;

4 val it = 2 : int

5 - x div 4;

6 val it = ~2 : int

7 - Int.quot(x,4);

8 val it = ~1 : int

9 - Int.rem(x,4);

10 val it = ~2 : int

This shows that mod and div factor –6 as –2 * 4 +2 while quot and rem factor

–6 as –1 * 4 +–2. The mathematical definition of mod always results in a

positive remainder. However, computer hardware often calculates using quot

and rem semantics possibly resulting in faster calculations.

352 10 Appendix B: The Standard ML Basis Library

val min : int * int -> int

val max : int * int -> int

Maximum and minimum functions of two integers. Returns the max or min

value of the pair of integers.

val abs : int -> int

Returns the absolute value.

val sign : int -> Int31.int

Returns either 1 or −1 depending on the sign of the integer.

val sameSign : int * int -> bool

True or false depending on the two integers.

val > : int * int -> bool

val >= : int * int -> bool

val < : int * int -> bool

val <= : int * int -> bool

Relational operators for the ordering of integers. These operators are infix

operators.

val compare : int * int -> order

Returns one of the order values of GREATER, LESS, or EQUAL depending on

the integers.

val toString : int -> string

val fromString : string -> int option

val scan : StringCvt.radix-> (char,’a) StringCvt.reader -> (int,’a) StringCvt.

reader

val fmt : StringCvt.radix -> int -> string

Conversion functions for integer to string and streams. See the Bool struc-

ture for descriptions. The StringCvt.radix may be one of StringCvt.BIN,

StringCvt.OCT, StringCvt.DEC, or StringCvt.HEX for conversion to/from their

respective bases.

10.3 The Real Structure

Real numbers in Standard ML, and any other programming language, are approx-

imations for Real numbers in Mathematics. They are always precisely the same.

10.3 The Real Structure 353

The Real numbers of Standard ML conform to the underlying architecture’s im-

plementation of double precision floating point numbers. Typically, this standard is

attributed to the IEEE. More information on Standard ML Reals can be found at

http://www.standardml.org/Basis/real.html.

type real

The type of Real numbers. Type real are approximations of Real numbers.

val pi : real

val e : real

Constant values for convenience for pi and e. e is the base of natural log values,

ln e = 1.

val Math.sqrt : real -> real

The square root of a non-negative real yields a real. For negative numbers it

yields nan which stands for Not A Number.

val Math.sin : real -> real

val Math.cos : real -> real

val Math.tan : real -> real

val Math.asin : real -> real

val Math.acos : real -> real

val Math.atan : real -> real

val Math.atan2 : real * real -> real

Various trigonometric functions.

val Math.exp : real -> real

This raises e to the specified power.

val Math.pow : real * real -> real

Raises the first argument to the power specified by the second argument.

val Math.ln : real -> real

val Math.log10 : real -> real

Natural and log base 10 functions.

val Math.sinh : real -> real

val Math.cosh : real -> real

http://www.standardml.org/Basis/real.html

354 10 Appendix B: The Standard ML Basis Library

val Math.tanh : real -> real

Hyperbolic functions.

val radix : int

The base used in the floating point representation, either 2 or 10.

val precision : int

The number of digits in the mantissa in the base specified by radix.

val maxFinite : real

val minPos : real

val minNormalPos : real

val posInf : real

val negInf : real

Various constant values.

val + : real * real -> real

val - : real * real -> real

val * : real * real -> real

val / : real * real -> real

Normal binary operations. These operators are infix operators.

val *+ : real * real * real -> real

val *- : real * real * real -> real

Multiply by a factor and add a term as in *+(6.0, 5.0, 3.0) which yields 33.0.

val ~ : real -> real

Unary negation.

val abs : real -> real

Absolute value.

val min : real * real -> real

val max : real * real -> real

Binary max and min.

val sign : real -> int

Returns −1 or 1 depending on the sign.

10.3 The Real Structure 355

val signBit : real -> bool

True if negative and false otherwise.

val sameSign : real * real -> bool

True if both have same sign.

val copySign : real * real -> real

The result is the first argument with the sign of the second argument.

val compare : real * real -> order

val compareReal : real * real -> IEEEReal.real_order

Returns GREATER, LESS, or EQUAL depending on how the first argument

compares to the second. The compareReal has slightly different semantics for

unordered real numbers (i.e. nan) returning IEEEReal.UNORDERED in those

cases.

val < : real * real -> bool

val <= : real * real -> bool

val > : real * real -> bool

val >= : real * real -> bool

val == : real * real -> bool

val != : real * real -> bool

val ?= : real * real -> bool

Binary relational operators. These are infix operators.

val unordered : real * real -> bool

Returns true if one is nan.

val isFinite : real -> bool

val isNan : real -> bool

val isNormal : real -> bool

Tests for real values.

val class : real -> IEEEReal.float_class

Returns the IEEE class to which the real belongs.

val fmt : StringCvt.realfmt -> real -> string

val toString : real -> string

val fromString : string -> real option

356 10 Appendix B: The Standard ML Basis Library

val scan : (char,’a) StringCvt.reader -> (real,’a) StringCvt.reader

Various real to string or stream conversion functions. See int or bool for details

on these functions.

val toManExp : real -> {exp:int, man:real}

val fromManExp : {exp:int, man:real} -> real

val split : real -> {frac:real, whole:real}

val realMod : real -> real

val rem : real * real -> real

Mantissa, exponent and fractional part functions.

val checkFloat : real -> real

Determines if it is a proper real number (not nan or inf). If it is proper, it returns

the argument, otherwise an exception is raised.

val floor : real -> int

val ceil : real -> int

val trunc : real -> int

val round : real -> int

val realFloor : real -> real

val realCeil : real -> real

val realTrunc : real -> real

val realRound : real -> real

Various truncation and rounding functions.

val toInt : IEEEReal.rounding_mode -> real -> int

val toLargeInt : IEEEReal.rounding_mode -> real -> IntInf.int

val fromInt : int -> real

val fromLargeInt : IntInf.int -> real

val toLarge : real -> Real64.real

val fromLarge : IEEEReal.rounding_mode -> Real64.real -> real

val toDecimal : real -> IEEEReal.decimal_approx

val fromDecimal : IEEEReal.decimal_approx -> real

Numeric conversion functions.

10.4 The Char Structure 357

10.4 The Char Structure

The following functions are part of the Char structure for the char type. The char

type is separate from the string type, covered in the next section. More information

can be found at http://www.standardml.org/Basis/char.html.

type char

The character type.

val chr : int -> char

val ord : char -> int

Conversion from and to ASCII values.

val minChar : char

val maxChar : char

val maxOrd : int

Various constants.

val pred : char -> char

val succ : char -> char

Moves through ASCII values.

val < : char * char -> bool

val <= : char * char -> bool

val > : char * char -> bool

val >= : char * char -> bool

Infix relational operators.

val compare : char * char -> order

See other compare functions for a description of the order type.

val scan : (char,’a) StringCvt.reader -> (char,’a) StringCvt.reader

val fromString : String.string -> char option

val toString : char -> String.string

val fromCString : String.string -> char option

http://www.standardml.org/Basis/char.html

358 10 Appendix B: The Standard ML Basis Library

val toCString : char -> String.string

Various conversion functions to and from strings.

val contains : string -> char -> bool

val notContains : string -> char -> bool

String search functions.

val isLower : char -> bool

val isUpper : char -> bool

val isDigit : char -> bool

val isAlpha : char -> bool

val isHexDigit : char -> bool

val isAlphaNum : char -> bool

val isPrint : char -> bool

val isSpace : char -> bool

val isPunct : char -> bool

val isGraph : char -> bool

val isCntrl : char -> bool

val isAscii : char -> bool

Character test functions.

val toUpper : char -> char

val toLower : char -> char

Upper and lowercase conversion functions.

10.5 The String Structure

This is the String structure providing functions that operate on strings. Strings are

not the same as characters. A string can be exploded into a list of characters, but

strings are separate objects from character values. More information can be found at

http://www.standardml.org/Basis/string.html.

http://www.standardml.org/Basis/string.html

10.5 The String Structure 359

type string

Character sequences fall under the string type in Standard ML. However, strings

are NOT lists of characters. There are functions given here to explode and

implode a string to and from a list of characters.

val maxSize : int

Maximum string size.

val size : string -> int

Current size of a string.

val sub : string * int -> char

String subscript operator.

val str : char -> string

Convert char to string.

val extract : string * int * int option -> string

val substring : string * int * int -> string

A couple of substring operations. Extract’s third argument is either SOME x

where x is the ending lcoation+1 for the substring, or NONE to have extract

extend to the the end of the string.

val ^ : string * string -> string

Binary string concatenation.

val concat : string list -> string

N-ary string concatenation.

val concatWith : string -> string list -> string

A variation on the other two concatenation operations.

val implode : char list -> string

val explode : string -> char list

Conversion to/from a list of characters to a string. These are useful when writing

recursive string functions.

val map : (char -> char) -> string -> string

This is a higher order function that applies a character to character function to

each character of a string and returns the string of collected results.

360 10 Appendix B: The Standard ML Basis Library

val translate : (char -> string) -> string -> string

Same as map above, but applies a character to string function to each character

returning the string of collected strings.

val tokens : (char -> bool) -> string -> string list

val fields : (char -> bool) -> string -> string list

These two functions return tokens from a string. The char to bool function

defines the delimiters of tokens. In other words the first argument is a function

that returns true when white space is encountered. The tokens function always

returns a non-empty token, the fields function may return empty tokens.

val isPrefix : string -> string -> bool

val isSubstring : string -> string -> bool

val isSuffix : string -> string -> bool

These are substring dectecting functions.

val compare : string * string -> order

Returns one of GREATER, LESS, or EQUAL depending on the two values being

compared.

val collate : (char * char -> order) -> string * string -> order

Compares two strings lexicographically according to the provided character

ordering.

val < : string * string -> bool

val <= : string * string -> bool

val > : string * string -> bool

val >= : string * string -> bool

Four infix, normal lexicographical comparisons.

val toString : string -> String.string

Replaces non-printing characters with SML escape character sequences.

val scan : (char,’a) StringCvt.reader -> (string,’a) StringCvt.reader

val fromString : String.string -> string option

val toCString : string -> String.string

val fromCString : String.string -> string option

Various string conversion functions and stream reading functions.

10.6 The List Structure 361

10.6 The List Structure

This is the List structure for the list polymorphic datatype in SML. More information

can be found at http://www.standardml.org/Basis/list.html.

datatype ‘a list = :: of ‘a * ‘a list | nil

A list is formed from an element and a list. It is a recursive data structure with

O(n) access to any element of the list. This should not be confused with an

array that provides O(1) element access. The :: is called cons and stands for

list construction or constructor. It forms a list from an element, e, and a list, lst

as in e::lst. The nil keyword is used to represent an empty list. Writing [] is

equivalent to nil in Standard ML. Lists in Standard ML must be homogenous,

containing all the same type of elements.

exception Empty

Raised as necessary by various functions should an empty list be used as an

argument. Not raised unless necessary.

val null : ‘a list -> bool

Returns true if the given list is empty.

val hd : ‘a list -> ‘a

val tl : ‘a list -> ‘a list

hd e::lst returns e while tl e::lst returns lst. hd is short for head of the list and

tl is short for tail of the list.

val last : ‘a list -> ‘a

Returns the last element of the given list. Raise Empty if given an empty list.

val getItem : ‘a list -> (‘a * ‘a list) option

Returns SOME of the head and tail of a list or NONE if the list is empty. Calling

getItem (e::lst) returns SOME (e,lst).

val nth : ‘a list * int -> ‘a

Returns the nth item of the list (zero based) and raise Subscript if the list is too

short.

val take : ‘a list * int -> ‘a list

Returns the first i elements of a list given a list and i. Raises Subscript if the

list is too short.

val drop : ‘a list * int -> ‘a list

Returns the rest of a list after the first i elements. Raises Subscript if the list is

too short.

http://www.standardml.org/Basis/list.html

362 10 Appendix B: The Standard ML Basis Library

val length : ‘a list -> int

Returns the length of a list.

val rev : ‘a list -> ‘a list

Returns the reverse of a list.

val @ : ‘a list * ‘a list -> ‘a list

This is list concatenation, not to be confused with :: which is list construction.

This is an infix operator. So [1, 2, 3]@[4, 5, 6] is legal and so is 1 ::[2, 3, 4,

5, 6] which both yield the same result.

val concat : ‘a list list -> ‘a list

This takes a list of lists of all the same element and concatenates each of the

lists together returning one big list of all the elements.

val revAppend : ‘a list * ‘a list -> ‘a list

Reverses the first list and appends it to the second.

val app : (‘a -> unit) -> ‘a list -> unit

This function applies the first argument, a function with a side-effect, to each

element of a list. The unit type is another name for the empty tuple (i.e. ())

which is the return type of many functions that have side-effects.

val map : (‘a -> ‘b) -> ‘a list -> ‘b list

The map function applies a function to each element of a list, building a new

list of all the results.

val mapPartial : (‘a -> ‘b option) -> ‘a list -> ‘b list

This is like map except that if NONE is returned by the function, it is omitted

from the resulting list. Only values of SOME val are included in the final result.

val find : (‘a -> bool) -> ‘a list -> ‘a option

Given a predicate function and a list, the find function returns either SOME val

for the found value or NONE indicating the predicate did not return true for

any element of the list.

val filter : (‘a -> bool) -> ‘a list -> ‘a list

This function returns a new list of all elements of the list that satisfy the provided

predicate function.

val partition : (‘a -> bool) -> ‘a list -> ‘a list * ‘a list

This function returns a tuple where the first list consists of all elements that

satisfy the predicate function and the second is comprised of the elements that

did not satisfy the predicate.

10.6 The List Structure 363

val foldr : (‘a * ‘b -> ‘b) -> ‘b -> ‘a list -> ‘b

This function applies a provided function to each element and an initial value,

folding all the results into one finals result. This function is called foldr because

it is right-associative. Here is an example of calling foldr.

1 - foldr (op -) 0 [1,2,3,4];

2 val it = ~2 : int

The use of op - in the example transforms the infix - operator to a prefix function.

The example computed (1 – (2 – (3 – (4 – 0)))). If the list is empty then the

initial value, the second argument, is returned.

val foldl : (‘a * ‘b -> ‘b) -> ‘b -> ‘a list -> ‘b

This function is the left-associative analog of foldr meaning that the initial

value is applied along with the first element of the list and that result applied

along with the second element of the list and so on. For example,

1 - foldl (op -) 0 [1,2,3,4];

2 val it = 2 : int

The example computed (4 – (3 – (2 – (1 – 0)))). If the list is empty, then the

initial value, the second argument, is returned.

val exists : (‘a -> bool) -> ‘a list -> bool

Given a predicate function, exists returns true if the predicate function evaluates

to true for at least one element of the list.

val all : (‘a -> bool) -> ‘a list -> bool

Given a predicate function, all returns true if the predicate function evaluates

to true for all elements of the list.

val tabulate : int * (int -> ‘a) -> ‘a list

Builds a list of n elements. The n is the first argument to tabulate. The each

element is generated by passing one of 0 to n-1 to the second argument, a

function. Raises Size if there are less than n elements in the list.

1 - List.tabulate(5,fn x => x + 1);

2 val it = [1,2,3,4,5] : int list

val collate : (‘a * ‘a -> order) -> ‘a list * ‘a list -> order

This performs a lexicographical comparison of two lists according to the pro-

vided ordering function for each element of the lists. Returns one of LESS,

GREATER, or EQUAL.

364 10 Appendix B: The Standard ML Basis Library

10.7 The Array Structure

Arrays are mutable sequences that provide O(1) lookup and assignment complex-

ities. Lists are immutable and provide O(n) lookup time. Lists are immutable

so item assignment is not possible in a list. Since arrays are mutable, many of

the functions on arrays return unit the type of () which is used as the return

type of mutating functions in Standard ML. More information can be found at

http://www.standardml.org/Basis/array.html.

type ‘a array

Arrays must be homogeneous in Standard ML, comprised of all the same type

of elements.

val maxLen : int

Maximum size of an array.

val array : int * ‘a -> ‘a array

Build an array with size n, the first argument, and all elements initialized to the

value of a, the second argument.

val fromList : ‘a list -> ‘a array

Build an array from a list.

val tabulate : int * (int -> ‘a) -> ‘a array

See List.tabulate.

val length : ‘a array -> int

The length of an array.

val sub : ‘a array * int -> ‘a

The O(1) element retrieval operation not provided by lists in Standard ML.

val update : ‘a array * int * ‘a -> unit

The array element assignment operation, a O(1) mutating operation.

val vector : ‘a array -> ‘a vector

Builds a vector from an array.

val copy : {di:int, dst:’a array, src:’a array} -> unit

val copyVec : {di:int, dst:’a array, src:’a vector} -> unit

Copy utility functions.

val appi : (int * ‘a -> unit) -> ‘a array -> unit

http://www.standardml.org/Basis/array.html

10.7 The Array Structure 365

val app : (‘a -> unit) -> ‘a array -> unit

Applies a function to an array. The first supplies the function with i provided

as the first argument where i is the index of the element. The second applies

the function to each element of the vector without knowledge of its location.

The function applied would have some side-effect.

val modifyi : (int * ‘a -> ‘a) -> ‘a array -> unit

val modify : (‘a -> ‘a) -> ‘a array -> unit

Applies a function to an array. The first supplies the function with i provided

as the first argument where i is the index of the element. The second applies

the function to each element of the vector without knowledge of its location.

The function applied results in a value that replaces the value in the array at

the same location.

val foldli : (int * ‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

val foldri : (int * ‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

val foldl : (‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

val foldr : (‘a * ‘b -> ‘b) -> ‘b -> ‘a array -> ‘b

The fold equivalents (see List.fold functions) for arrays. The foldli and foldri

functions provide the index of the value in addition to the value at each element

of the array.

val findi : (int * ‘a -> bool) -> ‘a array -> (int * ‘a) option

val find : (‘a -> bool) -> ‘a array -> ‘a option

val exists : (‘a -> bool) -> ‘a array -> bool

val all : (‘a -> bool) -> ‘a array -> bool

val collate : (‘a * ‘a -> order) -> ‘a array * ‘a array -> order

All similar to List functions. See the List equivalents for explanations.

10.8 The TextIO Structure

This is a subset of the entire TextIO structure. Detailed descriptions of all func-

tions can be found on the Basis Library website at http://www.standardml.org/Basis/

text-io.html.

type instream

type outstream

Standard ML supports stream operations for both input and output streams.

http://www.standardml.org/Basis/text-io.html
http://www.standardml.org/Basis/text-io.html

366 10 Appendix B: The Standard ML Basis Library

val input : instream -> vector

val input1 : instream -> elem option

val inputN : instream * int -> vector

val inputAll : instream -> vector

These are blocking input functions. The input returns an empty vector if the

input stream is closed, otherwise returning one or more items in the stream.

The input1 reads just one element from the stream and returns NONE if the

input stream is closed. The inputN returns at most n items. The inputAll returns

everything up to the end of stream.

val canInput : instream * int -> int option

val lookahead : instream -> elem option

These two functions look at the state of the stream. They are useful in making

input decisions.

val closeIn : instream -> unit

val endOfStream : instream -> bool

The closeIn function closes a stream and endOfStream closes the given stream.

val output : outstream * vector -> unit

val output1 : outstream * elem -> unit

Writes all elements of a vector and one element, respectively, to a stream.

val flushOut : outstream -> unit

val closeOut : outstream -> unit

Before input is read, it may be necessary to flush output if a prompt is printed

for instance. Otherwise, the prompt may not appear on the screen. The closeOut

function closes an output stream.

val inputLine : instream -> string option

Reads an input line and returns either SOME line or NONE.

val outputSubstr : outstream * substring -> unit

Writes a substring.

val openIn : string -> instream

Opens an input stream for reading. The argument is a filename.

val openString : string -> instream

Opens a string stream for reading.

10.8 The TextIO Structure 367

val openOut : string -> outstream

Opens an output stream for writing. The argument is a filename.

val openAppend : string -> outstream

Opens an output stream for writing. The argument is a filename. If the file

exists, the data written will be appended to the end of the file.

val stdIn : instream

val stdOut : outstream

val stdErr : outstream

These are the names of the default input, output, and error streams supplied

with every program. They are precreated objects.

val print : string -> unit

Prints to standard output the given string.

val scanStream : ((elem,StreamIO.instream) StringCvt.reader -> instream ->

(‘a,StreamIO.instream) StringCvt.reader) -> instream -> ‘a option

Uses a stream and converts it to an imperative stream where conversions can be

done while reading input. See the Basis Library for a more complete description

of how this works.

http://www.standardml.org/Basis/text-io.html#SIG:TEXT_IO.scanStream:VAL

Bibliography

1. J. Adams, National science foundation press release 07-029. National Science Foundation Press

Releases (2007)

2. A.V. Aho, M. Lam, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools, 2nd

edn. (Addison-Wesley Longman Publishing Co., Boston, 2006)

3. J. Backus, [Photograph]. Photograph provided courtesy of IBM and used with permission (2008)

4. E. Biagioni, A structured TCP in standard ML, in SIGCOMM ’94: Proceedings of the Confer-

ence on Communications Architectures, Protocols and Applications, New York, NY, USA (ACM

Press, 1994), pp. 36–45

5. W. Clocksin, C. Mellish, Programming in Prolog (Springer, Berlin, 2003)

6. A. Colmerauer, [Photograph]. Photograph provided courtesy of Alain Colmerauer and used

with his permission (2008)

7. A. Colmerauer, P. Roussel, The birth of prolog, in HOPL-II: The second ACM SIGPLAN

Conference on History of Programming Languages, New York, NY, USA (ACM, 1993), pp.

37–52

8. R. Girvan, Partial differential equations, Scientific-Computing.com (2006), http://www.

scientific-computing.com/review4.html

9. M. Gordon, From LCF to HOL: a short history (2000), pp. 169–185

10. R. Harper, P. Lee, Advanced languages for systems software: the Fox project in 1994. Technical

report CMU-CS-94-104, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA, January 1994. (Also published as Fox Memorandum CMU-CS-FOX-94-01)

11. R Kowalski, An interview with Robert Kowalski, 2008. Details of events provided by Robert

Kowalski through an exchange of email from 12 Feb 2008 to 14 Feb 2008 (2008)

12. R. Kowalski, [Photograph]. Photograph provided courtesy of Robert Kowalski and used with

his permission (2008)

13. P. Linz, An Introduction to Formal Languages and Automata (Jones and Bartlett, Sudbury,

2006)

14. J. McCarthy, [Photograph]. Photograph provided courtesy of John McCarthy and used with his

permission (2008)

15. R. Milner, [Photograph]. Photograph provided courtesy of Robin Milner and used with his

permission (2008)

© Springer International Publishing AG 2017

K.D. Lee, Foundations of Programming Languages, Undergraduate Topics

in Computer Science, https://doi.org/10.1007/978-3-319-70790-7

369

http://www.scientific-computing.com/review4.html
http://www.scientific-computing.com/review4.html

370 Bibliography

16. R. Milner, M. Tofte, R. Harper, D. Macqueen, The Definition of Standard ML - Revised (The

MIT Press, Cambridge, 1997)

17. B. Stroustrup, A history of C++: 1979–1991 (1996), pp. 699–769

18. B. Stroustrup, [Photograph]. Photograph provided courtesy of Bjarne Stroustrup and used with

his permission (2006)

19. B. Stroustrup, The C++ Programming Language, 4th edn. (Addison-Wesley Professional,

Boston, 2013)

20. A. Stubhaug, The Mathematician Sophus Lie (Springer, New York, 2002)

21. A. Stubhaug, The Mathematician Sophus Lie [Photograph] (Springer, Photograph reprinted

with permission of Springer and Arild Stubhaug, New York, 2002)

22. The Web Education Community Group: A Member of the W3C, A short his-

tory of javascript (2012), https://www.w3.org/community/webed/wiki/A_Short_History_of_

JavaScript. Accessed 19 Mar 2017

23. A. Turing, On computable numbers, with an application to the entscheidungsproblem. Proc.

Lond. Math. Soc. 42, 230–265 (1936)

24. A.M. Turing, A. M. Turing’s ACE Report of 1946 and Other Papers (MIT Press, Cambridge,

1986)

25. G. van Rossum, [Photograph]. Photograph provided courtesy of Guido van Rossum and used

with permission (2013)

26. J. von Neumann, First draft of a report on the EDVAC, http://en.wikipedia.org/wiki/Von_

Neumann_architecture (1945)

27. Wikipedia, Charles babbage (2006). Accessed 14 Jan 2006

28. Wikipedia, John vincent atanasoff (2006). Accessed 14 Jan 2006

29. Wikipedia, Prolog (2008). Accessed 13 Feb 2008

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Von_Neumann_architecture

	Preface
	Acknowledgements
	For Teachers

	Contents
	1 Introduction
	1.1 Historical Perspective
	1.2 Models of Computation
	1.2.1 The Imperative Model
	1.2.2 The Functional Model
	1.2.3 The Logic Model

	1.3 The Origins of a Few Programming Languages
	1.3.1 A Brief History of C and C++
	1.3.2 A Brief History of Java
	1.3.3 A Brief History of Python
	1.3.4 A Brief History of Standard ML
	1.3.5 A Brief History of Prolog

	1.4 Language Implementation
	1.4.1 Compilation
	1.4.2 Interpretation
	1.4.3 Virtual Machines

	1.5 Types and Type Checking
	1.6 Chapter Summary
	1.7 Review Questions
	1.8 Solutions to Practice Problems
	1.8.1 Solution to Practice Problem 1.1
	1.8.2 Solution to Practice Problem 1.2
	1.8.3 Solution to Practice Problem 1.3
	1.8.4 Solution to Practice Problem 1.4
	1.8.5 Solution to Practice Problem 1.5

	2 Syntax
	2.1 Terminology
	2.2 Backus Naur Form (BNF)
	2.2.1 BNF Examples
	2.2.2 Extended BNF (EBNF)

	2.3 Context-Free Grammars
	2.3.1 The Infix Expression Grammar

	2.4 Derivations
	2.4.1 A Derivation
	2.4.2 Types of Derivations
	2.4.3 Prefix Expressions
	2.4.4 The Prefix Expression Grammar

	2.5 Parse Trees
	2.6 Abstract Syntax Trees
	2.7 Lexical Analysis
	2.7.1 The Language of Regular Expressions
	2.7.2 Finite State Machines
	2.7.3 Lexer Generators

	2.8 Parsing
	2.9 Top-Down Parsers
	2.9.1 An LL(1) Grammar
	2.9.2 A Non-LL(1) Grammar
	2.9.3 An LL(1) Infix Expression Grammar

	2.10 Bottom-Up Parsers
	2.10.1 Parsing an Infix Expression

	2.11 Ambiguity in Grammars
	2.12 Other Forms of Grammars
	2.13 Limitations of Syntactic Definitions
	2.14 Chapter Summary
	2.15 Review Questions
	2.16 Exercises
	2.17 Solutions to Practice Problems
	2.17.1 Solution to Practice Problem 2.1
	2.17.2 Solution to Practice Problem 2.2
	2.17.3 Solution to Practice Problem 2.3
	2.17.4 Solution to Practice Problem 2.4
	2.17.5 Solution to Practice Problem 2.5
	2.17.6 Solution to Practice Problem 2.6
	2.17.7 Solution to Practice Problem 2.7
	2.17.8 Solution to Practice Problem 2.8
	2.17.9 Solution to Practice Problem 2.9
	2.17.10 Solution to Practice Problem 2.10
	2.17.11 Solution to Practice Problem 2.11

	3 Assembly Language
	3.1 Overview of the JCoCo VM
	3.2 Getting Started
	3.3 Input/Output
	3.4 If-Then-Else Statements
	3.4.1 If-Then Statements

	3.5 While Loops
	3.6 Exception Handling
	3.7 List Constants
	3.8 Calling a Method
	3.9 Iterating Over a List
	3.10 Range Objects and Lazy Evaluation
	3.11 Functions and Closures
	3.12 Recursion
	3.13 Support for Classes and Objects
	3.13.1 Inheritance
	3.13.2 Dynamically Created Classes

	3.14 Chapter Summary
	3.15 Review Questions
	3.16 Exercises
	3.17 Solutions to Practice Problems
	3.17.1 Solution to Practice Problem 3.1
	3.17.2 Solution to Practice Problem 3.2
	3.17.3 Solution to Practice Problem 3.3
	3.17.4 Solution to Practice Problem 3.4
	3.17.5 Solution to Practice Problem 3.5
	3.17.6 Solution to Practice Problem 3.6
	3.17.7 Solution to Practice Problem 3.7
	3.17.8 Solution to Practice Problem 3.8
	3.17.9 Solution to Practice Problem 3.9
	3.17.10 Solution to Practice Problem 3.10
	3.17.11 Solution to Practice Problem 3.11
	3.17.12 Solution to Practice Problem 3.12

	4 Object-Oriented Programming
	4.1 The Java Environment
	4.2 The C++ Environment
	4.2.1 The Macro Processor
	4.2.2 The Make Tool

	4.3 Namespaces
	4.4 Dynamic Linking
	4.5 Defining the Main Function
	4.6 I/O Streams
	4.7 Garbage Collection
	4.8 Threading
	4.9 The PyToken Class
	4.9.1 The C++ PyToken Class

	4.10 Inheritance and Polymorphism
	4.11 Interfaces and Adapters
	4.12 Functions as Values
	4.13 Anonymous Inner Classes
	4.14 Type Casting and Generics
	4.15 Auto-Boxing and Unboxing
	4.16 Exception Handling in Java and C++
	4.17 Signals
	4.18 JCoCo in Depth
	4.19 The Scanner
	4.20 The Parser
	4.21 The Assembler
	4.22 ByteCode
	4.23 JCoCo's Class and Interface Type Hierarchy
	4.24 Code
	4.25 Functions
	4.26 Classes
	4.27 Methods
	4.28 JCoCo Exceptions and Tracebacks
	4.29 Magic Methods
	4.30 Dictionaries
	4.30.1 Two New Classes
	4.30.2 Two New Types
	4.30.3 Two New Instructions

	4.31 Chapter Summary
	4.32 Review Questions
	4.33 Exercises
	4.34 Solutions to Practice Problems
	4.34.1 Solution to Practice Problem 4.1
	4.34.2 Solution to Practice Problem 4.2
	4.34.3 Solution to Practice Problem 4.3
	4.34.4 Solution to Practice Problem 4.4
	4.34.5 Solution to Practice Problem 4.5
	4.34.6 Solution to Practice Problem 4.6
	4.34.7 Solution to Practice Problem 4.7
	4.34.8 Solution to Practice Problem 4.8
	4.34.9 Solution to Practice Problem 4.9

	5 Functional Programming
	5.1 Imperative Versus Functional Programming
	5.2 The Lambda Calculus
	5.2.1 Normal Form
	5.2.2 Problems with Applicative Order Reduction

	5.3 Getting Started with Standard ML
	5.4 Expressions, Types, Structures, and Functions
	5.5 Recursive Functions
	5.6 Characters, Strings, and Lists
	5.7 Pattern Matching
	5.8 Tuples
	5.9 Let Expressions and Scope
	5.10 Datatypes
	5.11 Parameter Passing in Standard ML
	5.12 Efficiency of Recursion
	5.13 Tail Recursion
	5.14 Currying
	5.15 Anonymous Functions
	5.16 Higher-Order Functions
	5.16.1 Composition
	5.16.2 Map
	5.16.3 Reduce or Foldright
	5.16.4 Filter

	5.17 Continuation Passing Style
	5.18 Input and Output
	5.19 Programming with Side-effects
	5.19.1 Variables in Standard ML
	5.19.2 Sequential Execution
	5.19.3 Iteration

	5.20 Exception Handling
	5.21 Encapsulation in ML
	5.21.1 Signatures
	5.21.2 Implementing a Signature

	5.22 Type Inference
	5.23 Building a Prefix Calculator Interpreter
	5.23.1 The Prefix Calc Parser
	5.23.2 The AST Evaluator
	5.23.3 Imperative Programming Observations

	5.24 Chapter Summary
	5.25 Exercises
	5.26 Solutions to Practice Problems
	5.26.1 Solution to Practice Problem 5.1
	5.26.2 Solution to Practice Problem 5.2
	5.26.3 Solution to Practice Problem 5.3
	5.26.4 Solution to Practice Problem 5.4
	5.26.5 Solution to Practice Problem 5.5
	5.26.6 Solution to Practice Problem 5.6
	5.26.7 Solution to Practice Problem 5.7
	5.26.8 Solution to Practice Problem 5.8
	5.26.9 Solution to Practice Problem 5.9
	5.26.10 Solution to Practice Problem 5.10
	5.26.11 Solution to Practice Problem 5.11
	5.26.12 Solution to Practice Problem 5.12
	5.26.13 Solution to Practice Problem 5.13
	5.26.14 Solution to Practice Problem 5.14
	5.26.15 Solution to Practice Problem 5.15
	5.26.16 Solution to Practice Problem 5.16, see Fig.5.27
	5.26.17 Solution to Practice Problem 5.17
	5.26.18 Solution to Practice Problem 5.18
	5.26.19 Solution to Practice Problem 5.19
	5.26.20 Solution to Practice Problem 5.20
	5.26.21 Solution to Practice Problem 5.21
	5.26.22 Solution to Practice Problem 5.22
	5.26.23 Solution to Practice Problem 5.23
	5.26.24 Solution to Practice Problem 5.24

	6 Compiling Standard ML
	6.1 ML-lex
	6.2 The Small AST Definition
	6.3 Using ML-yacc
	6.4 Compiling and Running the Compiler
	6.5 Function Calls
	6.6 Let Expressions
	6.7 Unary Negation
	6.8 If-Then-Else Expressions
	6.9 Short-Circuit Logic
	6.10 Defining Functions
	6.10.1 Curried Functions
	6.10.2 Mutually Recursive Functions

	6.11 Reference Variables
	6.12 Chapter Summary
	6.13 Review Questions
	6.14 Exercises
	6.15 Solutions to Practice Problems
	6.15.1 Solution to Practice Problem 6.1
	6.15.2 Solution to Practice Problem 6.2
	6.15.3 Solution to Practice Problem 6.3

	7 Logic Programming
	7.1 Getting Started with Prolog
	7.2 Fundamentals
	7.3 The Prolog Program
	7.4 Lists
	7.5 The Accumulator Pattern
	7.6 Built-In Predicates
	7.7 Unification and Arithmetic
	7.8 Input and Output
	7.9 Structures
	7.10 Parsing in Prolog
	7.10.1 Difference Lists

	7.11 Prolog Grammar Rules
	7.12 Building an AST
	7.13 Attribute Grammars
	7.13.1 Synthesized Versus Inherited

	7.14 Chapter Summary
	7.15 Review Questions
	7.16 Exercises
	7.17 Solutions to Practice Problems
	7.17.1 Solution to Practice Problem 7.1
	7.17.2 Solution to Practice Problem 7.2
	7.17.3 Solution to Practice Problem 7.3
	7.17.4 Solution to Practice Problem 7.4
	7.17.5 Solution to Practice Problem 7.5
	7.17.6 Solution to Practice Problem 7.6
	7.17.7 Solution to Practice Problem 7.7
	7.17.8 Solution to Practice Problem 7.8
	7.17.9 Solution to Practice Problem 7.9
	7.17.10 Solution to Practice Problem 7.10
	7.17.11 Solution to Practice Problem 7.11 (See Fig.7.13)
	7.17.12 Solution to Practice Problem 7.12

	8 Standard ML Type Inference
	8.1 Why Static Type Inference?
	8.1.1 Exception Program
	8.1.2 A Bad Function Call

	8.2 Type Inference Rules
	8.3 Using Prolog
	8.4 The Type Environment
	8.5 Integers, Strings, and Boolean Constants
	8.6 List and Tuple Constants
	8.7 Identifiers
	8.8 Function Application
	8.8.1 Instantiation

	8.9 Let Expressions
	8.10 Patterns
	8.11 Matches
	8.12 Anonymous Functions
	8.13 Sequential Execution
	8.14 If-Then and While-Do
	8.15 Exception Handling
	8.16 Chapter Summary
	8.17 Review Questions
	8.18 Exercises
	8.19 Solutions to Practice Problems
	8.19.1 Solution to Practice Problem 8.1
	8.19.2 Solution to Practice Problem 8.2
	8.19.3 Solution to Practice Problem 8.3

	9 Appendix A: The JCoCo Virtual Machine Specification
	9.1 Types
	9.2 JCoCo Magic and Attr Methods
	9.3 Global Built-In Functions
	9.4 Virtual Machine Instructions
	9.5 Arithmetic Instructions
	9.6 Load and Store Instructions
	9.7 List, Tuple, and Dictionary Instructions
	9.8 Stack Manipulation Instructions
	9.9 Conditional and Iterative Execution Instructions
	9.10 Function Execution Instructions
	9.11 Special Instructions

	10 Appendix B: The Standard ML Basis Library
	10.1 The Bool Structure
	10.2 The Int Structure
	10.3 The Real Structure
	10.4 The Char Structure
	10.5 The String Structure
	10.6 The List Structure
	10.7 The Array Structure
	10.8 The TextIO Structure

	 Bibliography

